1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Limited and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 39 #include <linux/nvme-fc-driver.h> 40 41 #include "lpfc_hw4.h" 42 #include "lpfc_hw.h" 43 #include "lpfc_sli.h" 44 #include "lpfc_sli4.h" 45 #include "lpfc_nl.h" 46 #include "lpfc_disc.h" 47 #include "lpfc.h" 48 #include "lpfc_scsi.h" 49 #include "lpfc_nvme.h" 50 #include "lpfc_nvmet.h" 51 #include "lpfc_crtn.h" 52 #include "lpfc_logmsg.h" 53 #include "lpfc_compat.h" 54 #include "lpfc_debugfs.h" 55 #include "lpfc_vport.h" 56 #include "lpfc_version.h" 57 58 /* There are only four IOCB completion types. */ 59 typedef enum _lpfc_iocb_type { 60 LPFC_UNKNOWN_IOCB, 61 LPFC_UNSOL_IOCB, 62 LPFC_SOL_IOCB, 63 LPFC_ABORT_IOCB 64 } lpfc_iocb_type; 65 66 67 /* Provide function prototypes local to this module. */ 68 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 69 uint32_t); 70 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 71 uint8_t *, uint32_t *); 72 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 73 struct lpfc_iocbq *); 74 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 75 struct hbq_dmabuf *); 76 static int lpfc_sli4_fp_handle_cqe(struct lpfc_hba *, struct lpfc_queue *, 77 struct lpfc_cqe *); 78 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 79 int); 80 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *, struct lpfc_eqe *, 81 uint32_t); 82 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 83 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 84 static int lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba, 85 struct lpfc_sli_ring *pring, 86 struct lpfc_iocbq *cmdiocb); 87 88 static IOCB_t * 89 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 90 { 91 return &iocbq->iocb; 92 } 93 94 /** 95 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 96 * @q: The Work Queue to operate on. 97 * @wqe: The work Queue Entry to put on the Work queue. 98 * 99 * This routine will copy the contents of @wqe to the next available entry on 100 * the @q. This function will then ring the Work Queue Doorbell to signal the 101 * HBA to start processing the Work Queue Entry. This function returns 0 if 102 * successful. If no entries are available on @q then this function will return 103 * -ENOMEM. 104 * The caller is expected to hold the hbalock when calling this routine. 105 **/ 106 static uint32_t 107 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe *wqe) 108 { 109 union lpfc_wqe *temp_wqe; 110 struct lpfc_register doorbell; 111 uint32_t host_index; 112 uint32_t idx; 113 114 /* sanity check on queue memory */ 115 if (unlikely(!q)) 116 return -ENOMEM; 117 temp_wqe = q->qe[q->host_index].wqe; 118 119 /* If the host has not yet processed the next entry then we are done */ 120 idx = ((q->host_index + 1) % q->entry_count); 121 if (idx == q->hba_index) { 122 q->WQ_overflow++; 123 return -ENOMEM; 124 } 125 q->WQ_posted++; 126 /* set consumption flag every once in a while */ 127 if (!((q->host_index + 1) % q->entry_repost)) 128 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 129 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 130 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 131 lpfc_sli_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 132 /* ensure WQE bcopy flushed before doorbell write */ 133 wmb(); 134 135 /* Update the host index before invoking device */ 136 host_index = q->host_index; 137 138 q->host_index = idx; 139 140 /* Ring Doorbell */ 141 doorbell.word0 = 0; 142 if (q->db_format == LPFC_DB_LIST_FORMAT) { 143 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 144 bf_set(lpfc_wq_db_list_fm_index, &doorbell, host_index); 145 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 146 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 147 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 148 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 149 } else { 150 return -EINVAL; 151 } 152 writel(doorbell.word0, q->db_regaddr); 153 154 return 0; 155 } 156 157 /** 158 * lpfc_sli4_wq_release - Updates internal hba index for WQ 159 * @q: The Work Queue to operate on. 160 * @index: The index to advance the hba index to. 161 * 162 * This routine will update the HBA index of a queue to reflect consumption of 163 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 164 * an entry the host calls this function to update the queue's internal 165 * pointers. This routine returns the number of entries that were consumed by 166 * the HBA. 167 **/ 168 static uint32_t 169 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 170 { 171 uint32_t released = 0; 172 173 /* sanity check on queue memory */ 174 if (unlikely(!q)) 175 return 0; 176 177 if (q->hba_index == index) 178 return 0; 179 do { 180 q->hba_index = ((q->hba_index + 1) % q->entry_count); 181 released++; 182 } while (q->hba_index != index); 183 return released; 184 } 185 186 /** 187 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 188 * @q: The Mailbox Queue to operate on. 189 * @wqe: The Mailbox Queue Entry to put on the Work queue. 190 * 191 * This routine will copy the contents of @mqe to the next available entry on 192 * the @q. This function will then ring the Work Queue Doorbell to signal the 193 * HBA to start processing the Work Queue Entry. This function returns 0 if 194 * successful. If no entries are available on @q then this function will return 195 * -ENOMEM. 196 * The caller is expected to hold the hbalock when calling this routine. 197 **/ 198 static uint32_t 199 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 200 { 201 struct lpfc_mqe *temp_mqe; 202 struct lpfc_register doorbell; 203 204 /* sanity check on queue memory */ 205 if (unlikely(!q)) 206 return -ENOMEM; 207 temp_mqe = q->qe[q->host_index].mqe; 208 209 /* If the host has not yet processed the next entry then we are done */ 210 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 211 return -ENOMEM; 212 lpfc_sli_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 213 /* Save off the mailbox pointer for completion */ 214 q->phba->mbox = (MAILBOX_t *)temp_mqe; 215 216 /* Update the host index before invoking device */ 217 q->host_index = ((q->host_index + 1) % q->entry_count); 218 219 /* Ring Doorbell */ 220 doorbell.word0 = 0; 221 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 222 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 223 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 224 return 0; 225 } 226 227 /** 228 * lpfc_sli4_mq_release - Updates internal hba index for MQ 229 * @q: The Mailbox Queue to operate on. 230 * 231 * This routine will update the HBA index of a queue to reflect consumption of 232 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 233 * an entry the host calls this function to update the queue's internal 234 * pointers. This routine returns the number of entries that were consumed by 235 * the HBA. 236 **/ 237 static uint32_t 238 lpfc_sli4_mq_release(struct lpfc_queue *q) 239 { 240 /* sanity check on queue memory */ 241 if (unlikely(!q)) 242 return 0; 243 244 /* Clear the mailbox pointer for completion */ 245 q->phba->mbox = NULL; 246 q->hba_index = ((q->hba_index + 1) % q->entry_count); 247 return 1; 248 } 249 250 /** 251 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 252 * @q: The Event Queue to get the first valid EQE from 253 * 254 * This routine will get the first valid Event Queue Entry from @q, update 255 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 256 * the Queue (no more work to do), or the Queue is full of EQEs that have been 257 * processed, but not popped back to the HBA then this routine will return NULL. 258 **/ 259 static struct lpfc_eqe * 260 lpfc_sli4_eq_get(struct lpfc_queue *q) 261 { 262 struct lpfc_eqe *eqe; 263 uint32_t idx; 264 265 /* sanity check on queue memory */ 266 if (unlikely(!q)) 267 return NULL; 268 eqe = q->qe[q->hba_index].eqe; 269 270 /* If the next EQE is not valid then we are done */ 271 if (!bf_get_le32(lpfc_eqe_valid, eqe)) 272 return NULL; 273 /* If the host has not yet processed the next entry then we are done */ 274 idx = ((q->hba_index + 1) % q->entry_count); 275 if (idx == q->host_index) 276 return NULL; 277 278 q->hba_index = idx; 279 280 /* 281 * insert barrier for instruction interlock : data from the hardware 282 * must have the valid bit checked before it can be copied and acted 283 * upon. Speculative instructions were allowing a bcopy at the start 284 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 285 * after our return, to copy data before the valid bit check above 286 * was done. As such, some of the copied data was stale. The barrier 287 * ensures the check is before any data is copied. 288 */ 289 mb(); 290 return eqe; 291 } 292 293 /** 294 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 295 * @q: The Event Queue to disable interrupts 296 * 297 **/ 298 static inline void 299 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 300 { 301 struct lpfc_register doorbell; 302 303 doorbell.word0 = 0; 304 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 305 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 306 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 307 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 308 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 309 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 310 } 311 312 /** 313 * lpfc_sli4_eq_release - Indicates the host has finished processing an EQ 314 * @q: The Event Queue that the host has completed processing for. 315 * @arm: Indicates whether the host wants to arms this CQ. 316 * 317 * This routine will mark all Event Queue Entries on @q, from the last 318 * known completed entry to the last entry that was processed, as completed 319 * by clearing the valid bit for each completion queue entry. Then it will 320 * notify the HBA, by ringing the doorbell, that the EQEs have been processed. 321 * The internal host index in the @q will be updated by this routine to indicate 322 * that the host has finished processing the entries. The @arm parameter 323 * indicates that the queue should be rearmed when ringing the doorbell. 324 * 325 * This function will return the number of EQEs that were popped. 326 **/ 327 uint32_t 328 lpfc_sli4_eq_release(struct lpfc_queue *q, bool arm) 329 { 330 uint32_t released = 0; 331 struct lpfc_eqe *temp_eqe; 332 struct lpfc_register doorbell; 333 334 /* sanity check on queue memory */ 335 if (unlikely(!q)) 336 return 0; 337 338 /* while there are valid entries */ 339 while (q->hba_index != q->host_index) { 340 temp_eqe = q->qe[q->host_index].eqe; 341 bf_set_le32(lpfc_eqe_valid, temp_eqe, 0); 342 released++; 343 q->host_index = ((q->host_index + 1) % q->entry_count); 344 } 345 if (unlikely(released == 0 && !arm)) 346 return 0; 347 348 /* ring doorbell for number popped */ 349 doorbell.word0 = 0; 350 if (arm) { 351 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 352 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 353 } 354 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 355 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 356 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 357 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 358 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 359 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 360 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 361 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 362 readl(q->phba->sli4_hba.EQCQDBregaddr); 363 return released; 364 } 365 366 /** 367 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 368 * @q: The Completion Queue to get the first valid CQE from 369 * 370 * This routine will get the first valid Completion Queue Entry from @q, update 371 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 372 * the Queue (no more work to do), or the Queue is full of CQEs that have been 373 * processed, but not popped back to the HBA then this routine will return NULL. 374 **/ 375 static struct lpfc_cqe * 376 lpfc_sli4_cq_get(struct lpfc_queue *q) 377 { 378 struct lpfc_cqe *cqe; 379 uint32_t idx; 380 381 /* sanity check on queue memory */ 382 if (unlikely(!q)) 383 return NULL; 384 385 /* If the next CQE is not valid then we are done */ 386 if (!bf_get_le32(lpfc_cqe_valid, q->qe[q->hba_index].cqe)) 387 return NULL; 388 /* If the host has not yet processed the next entry then we are done */ 389 idx = ((q->hba_index + 1) % q->entry_count); 390 if (idx == q->host_index) 391 return NULL; 392 393 cqe = q->qe[q->hba_index].cqe; 394 q->hba_index = idx; 395 396 /* 397 * insert barrier for instruction interlock : data from the hardware 398 * must have the valid bit checked before it can be copied and acted 399 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 400 * instructions allowing action on content before valid bit checked, 401 * add barrier here as well. May not be needed as "content" is a 402 * single 32-bit entity here (vs multi word structure for cq's). 403 */ 404 mb(); 405 return cqe; 406 } 407 408 /** 409 * lpfc_sli4_cq_release - Indicates the host has finished processing a CQ 410 * @q: The Completion Queue that the host has completed processing for. 411 * @arm: Indicates whether the host wants to arms this CQ. 412 * 413 * This routine will mark all Completion queue entries on @q, from the last 414 * known completed entry to the last entry that was processed, as completed 415 * by clearing the valid bit for each completion queue entry. Then it will 416 * notify the HBA, by ringing the doorbell, that the CQEs have been processed. 417 * The internal host index in the @q will be updated by this routine to indicate 418 * that the host has finished processing the entries. The @arm parameter 419 * indicates that the queue should be rearmed when ringing the doorbell. 420 * 421 * This function will return the number of CQEs that were released. 422 **/ 423 uint32_t 424 lpfc_sli4_cq_release(struct lpfc_queue *q, bool arm) 425 { 426 uint32_t released = 0; 427 struct lpfc_cqe *temp_qe; 428 struct lpfc_register doorbell; 429 430 /* sanity check on queue memory */ 431 if (unlikely(!q)) 432 return 0; 433 /* while there are valid entries */ 434 while (q->hba_index != q->host_index) { 435 temp_qe = q->qe[q->host_index].cqe; 436 bf_set_le32(lpfc_cqe_valid, temp_qe, 0); 437 released++; 438 q->host_index = ((q->host_index + 1) % q->entry_count); 439 } 440 if (unlikely(released == 0 && !arm)) 441 return 0; 442 443 /* ring doorbell for number popped */ 444 doorbell.word0 = 0; 445 if (arm) 446 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 447 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 448 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 449 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 450 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 451 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 452 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 453 return released; 454 } 455 456 /** 457 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 458 * @q: The Header Receive Queue to operate on. 459 * @wqe: The Receive Queue Entry to put on the Receive queue. 460 * 461 * This routine will copy the contents of @wqe to the next available entry on 462 * the @q. This function will then ring the Receive Queue Doorbell to signal the 463 * HBA to start processing the Receive Queue Entry. This function returns the 464 * index that the rqe was copied to if successful. If no entries are available 465 * on @q then this function will return -ENOMEM. 466 * The caller is expected to hold the hbalock when calling this routine. 467 **/ 468 int 469 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 470 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 471 { 472 struct lpfc_rqe *temp_hrqe; 473 struct lpfc_rqe *temp_drqe; 474 struct lpfc_register doorbell; 475 int put_index; 476 477 /* sanity check on queue memory */ 478 if (unlikely(!hq) || unlikely(!dq)) 479 return -ENOMEM; 480 put_index = hq->host_index; 481 temp_hrqe = hq->qe[hq->host_index].rqe; 482 temp_drqe = dq->qe[dq->host_index].rqe; 483 484 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 485 return -EINVAL; 486 if (hq->host_index != dq->host_index) 487 return -EINVAL; 488 /* If the host has not yet processed the next entry then we are done */ 489 if (((hq->host_index + 1) % hq->entry_count) == hq->hba_index) 490 return -EBUSY; 491 lpfc_sli_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 492 lpfc_sli_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 493 494 /* Update the host index to point to the next slot */ 495 hq->host_index = ((hq->host_index + 1) % hq->entry_count); 496 dq->host_index = ((dq->host_index + 1) % dq->entry_count); 497 498 /* Ring The Header Receive Queue Doorbell */ 499 if (!(hq->host_index % hq->entry_repost)) { 500 doorbell.word0 = 0; 501 if (hq->db_format == LPFC_DB_RING_FORMAT) { 502 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 503 hq->entry_repost); 504 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 505 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 506 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 507 hq->entry_repost); 508 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 509 hq->host_index); 510 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 511 } else { 512 return -EINVAL; 513 } 514 writel(doorbell.word0, hq->db_regaddr); 515 } 516 return put_index; 517 } 518 519 /** 520 * lpfc_sli4_rq_release - Updates internal hba index for RQ 521 * @q: The Header Receive Queue to operate on. 522 * 523 * This routine will update the HBA index of a queue to reflect consumption of 524 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 525 * consumed an entry the host calls this function to update the queue's 526 * internal pointers. This routine returns the number of entries that were 527 * consumed by the HBA. 528 **/ 529 static uint32_t 530 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 531 { 532 /* sanity check on queue memory */ 533 if (unlikely(!hq) || unlikely(!dq)) 534 return 0; 535 536 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 537 return 0; 538 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 539 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 540 return 1; 541 } 542 543 /** 544 * lpfc_cmd_iocb - Get next command iocb entry in the ring 545 * @phba: Pointer to HBA context object. 546 * @pring: Pointer to driver SLI ring object. 547 * 548 * This function returns pointer to next command iocb entry 549 * in the command ring. The caller must hold hbalock to prevent 550 * other threads consume the next command iocb. 551 * SLI-2/SLI-3 provide different sized iocbs. 552 **/ 553 static inline IOCB_t * 554 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 555 { 556 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 557 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 558 } 559 560 /** 561 * lpfc_resp_iocb - Get next response iocb entry in the ring 562 * @phba: Pointer to HBA context object. 563 * @pring: Pointer to driver SLI ring object. 564 * 565 * This function returns pointer to next response iocb entry 566 * in the response ring. The caller must hold hbalock to make sure 567 * that no other thread consume the next response iocb. 568 * SLI-2/SLI-3 provide different sized iocbs. 569 **/ 570 static inline IOCB_t * 571 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 572 { 573 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 574 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 575 } 576 577 /** 578 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 579 * @phba: Pointer to HBA context object. 580 * 581 * This function is called with hbalock held. This function 582 * allocates a new driver iocb object from the iocb pool. If the 583 * allocation is successful, it returns pointer to the newly 584 * allocated iocb object else it returns NULL. 585 **/ 586 struct lpfc_iocbq * 587 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 588 { 589 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 590 struct lpfc_iocbq * iocbq = NULL; 591 592 lockdep_assert_held(&phba->hbalock); 593 594 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 595 if (iocbq) 596 phba->iocb_cnt++; 597 if (phba->iocb_cnt > phba->iocb_max) 598 phba->iocb_max = phba->iocb_cnt; 599 return iocbq; 600 } 601 602 /** 603 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 604 * @phba: Pointer to HBA context object. 605 * @xritag: XRI value. 606 * 607 * This function clears the sglq pointer from the array of acive 608 * sglq's. The xritag that is passed in is used to index into the 609 * array. Before the xritag can be used it needs to be adjusted 610 * by subtracting the xribase. 611 * 612 * Returns sglq ponter = success, NULL = Failure. 613 **/ 614 struct lpfc_sglq * 615 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 616 { 617 struct lpfc_sglq *sglq; 618 619 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 620 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 621 return sglq; 622 } 623 624 /** 625 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 626 * @phba: Pointer to HBA context object. 627 * @xritag: XRI value. 628 * 629 * This function returns the sglq pointer from the array of acive 630 * sglq's. The xritag that is passed in is used to index into the 631 * array. Before the xritag can be used it needs to be adjusted 632 * by subtracting the xribase. 633 * 634 * Returns sglq ponter = success, NULL = Failure. 635 **/ 636 struct lpfc_sglq * 637 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 638 { 639 struct lpfc_sglq *sglq; 640 641 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 642 return sglq; 643 } 644 645 /** 646 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 647 * @phba: Pointer to HBA context object. 648 * @xritag: xri used in this exchange. 649 * @rrq: The RRQ to be cleared. 650 * 651 **/ 652 void 653 lpfc_clr_rrq_active(struct lpfc_hba *phba, 654 uint16_t xritag, 655 struct lpfc_node_rrq *rrq) 656 { 657 struct lpfc_nodelist *ndlp = NULL; 658 659 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp)) 660 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 661 662 /* The target DID could have been swapped (cable swap) 663 * we should use the ndlp from the findnode if it is 664 * available. 665 */ 666 if ((!ndlp) && rrq->ndlp) 667 ndlp = rrq->ndlp; 668 669 if (!ndlp) 670 goto out; 671 672 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 673 rrq->send_rrq = 0; 674 rrq->xritag = 0; 675 rrq->rrq_stop_time = 0; 676 } 677 out: 678 mempool_free(rrq, phba->rrq_pool); 679 } 680 681 /** 682 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 683 * @phba: Pointer to HBA context object. 684 * 685 * This function is called with hbalock held. This function 686 * Checks if stop_time (ratov from setting rrq active) has 687 * been reached, if it has and the send_rrq flag is set then 688 * it will call lpfc_send_rrq. If the send_rrq flag is not set 689 * then it will just call the routine to clear the rrq and 690 * free the rrq resource. 691 * The timer is set to the next rrq that is going to expire before 692 * leaving the routine. 693 * 694 **/ 695 void 696 lpfc_handle_rrq_active(struct lpfc_hba *phba) 697 { 698 struct lpfc_node_rrq *rrq; 699 struct lpfc_node_rrq *nextrrq; 700 unsigned long next_time; 701 unsigned long iflags; 702 LIST_HEAD(send_rrq); 703 704 spin_lock_irqsave(&phba->hbalock, iflags); 705 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 706 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 707 list_for_each_entry_safe(rrq, nextrrq, 708 &phba->active_rrq_list, list) { 709 if (time_after(jiffies, rrq->rrq_stop_time)) 710 list_move(&rrq->list, &send_rrq); 711 else if (time_before(rrq->rrq_stop_time, next_time)) 712 next_time = rrq->rrq_stop_time; 713 } 714 spin_unlock_irqrestore(&phba->hbalock, iflags); 715 if ((!list_empty(&phba->active_rrq_list)) && 716 (!(phba->pport->load_flag & FC_UNLOADING))) 717 mod_timer(&phba->rrq_tmr, next_time); 718 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 719 list_del(&rrq->list); 720 if (!rrq->send_rrq) 721 /* this call will free the rrq */ 722 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 723 else if (lpfc_send_rrq(phba, rrq)) { 724 /* if we send the rrq then the completion handler 725 * will clear the bit in the xribitmap. 726 */ 727 lpfc_clr_rrq_active(phba, rrq->xritag, 728 rrq); 729 } 730 } 731 } 732 733 /** 734 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 735 * @vport: Pointer to vport context object. 736 * @xri: The xri used in the exchange. 737 * @did: The targets DID for this exchange. 738 * 739 * returns NULL = rrq not found in the phba->active_rrq_list. 740 * rrq = rrq for this xri and target. 741 **/ 742 struct lpfc_node_rrq * 743 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 744 { 745 struct lpfc_hba *phba = vport->phba; 746 struct lpfc_node_rrq *rrq; 747 struct lpfc_node_rrq *nextrrq; 748 unsigned long iflags; 749 750 if (phba->sli_rev != LPFC_SLI_REV4) 751 return NULL; 752 spin_lock_irqsave(&phba->hbalock, iflags); 753 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 754 if (rrq->vport == vport && rrq->xritag == xri && 755 rrq->nlp_DID == did){ 756 list_del(&rrq->list); 757 spin_unlock_irqrestore(&phba->hbalock, iflags); 758 return rrq; 759 } 760 } 761 spin_unlock_irqrestore(&phba->hbalock, iflags); 762 return NULL; 763 } 764 765 /** 766 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 767 * @vport: Pointer to vport context object. 768 * @ndlp: Pointer to the lpfc_node_list structure. 769 * If ndlp is NULL Remove all active RRQs for this vport from the 770 * phba->active_rrq_list and clear the rrq. 771 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 772 **/ 773 void 774 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 775 776 { 777 struct lpfc_hba *phba = vport->phba; 778 struct lpfc_node_rrq *rrq; 779 struct lpfc_node_rrq *nextrrq; 780 unsigned long iflags; 781 LIST_HEAD(rrq_list); 782 783 if (phba->sli_rev != LPFC_SLI_REV4) 784 return; 785 if (!ndlp) { 786 lpfc_sli4_vport_delete_els_xri_aborted(vport); 787 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 788 } 789 spin_lock_irqsave(&phba->hbalock, iflags); 790 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) 791 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp)) 792 list_move(&rrq->list, &rrq_list); 793 spin_unlock_irqrestore(&phba->hbalock, iflags); 794 795 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 796 list_del(&rrq->list); 797 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 798 } 799 } 800 801 /** 802 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 803 * @phba: Pointer to HBA context object. 804 * @ndlp: Targets nodelist pointer for this exchange. 805 * @xritag the xri in the bitmap to test. 806 * 807 * This function is called with hbalock held. This function 808 * returns 0 = rrq not active for this xri 809 * 1 = rrq is valid for this xri. 810 **/ 811 int 812 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 813 uint16_t xritag) 814 { 815 lockdep_assert_held(&phba->hbalock); 816 if (!ndlp) 817 return 0; 818 if (!ndlp->active_rrqs_xri_bitmap) 819 return 0; 820 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 821 return 1; 822 else 823 return 0; 824 } 825 826 /** 827 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 828 * @phba: Pointer to HBA context object. 829 * @ndlp: nodelist pointer for this target. 830 * @xritag: xri used in this exchange. 831 * @rxid: Remote Exchange ID. 832 * @send_rrq: Flag used to determine if we should send rrq els cmd. 833 * 834 * This function takes the hbalock. 835 * The active bit is always set in the active rrq xri_bitmap even 836 * if there is no slot avaiable for the other rrq information. 837 * 838 * returns 0 rrq actived for this xri 839 * < 0 No memory or invalid ndlp. 840 **/ 841 int 842 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 843 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 844 { 845 unsigned long iflags; 846 struct lpfc_node_rrq *rrq; 847 int empty; 848 849 if (!ndlp) 850 return -EINVAL; 851 852 if (!phba->cfg_enable_rrq) 853 return -EINVAL; 854 855 spin_lock_irqsave(&phba->hbalock, iflags); 856 if (phba->pport->load_flag & FC_UNLOADING) { 857 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 858 goto out; 859 } 860 861 /* 862 * set the active bit even if there is no mem available. 863 */ 864 if (NLP_CHK_FREE_REQ(ndlp)) 865 goto out; 866 867 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 868 goto out; 869 870 if (!ndlp->active_rrqs_xri_bitmap) 871 goto out; 872 873 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 874 goto out; 875 876 spin_unlock_irqrestore(&phba->hbalock, iflags); 877 rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL); 878 if (!rrq) { 879 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 880 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 881 " DID:0x%x Send:%d\n", 882 xritag, rxid, ndlp->nlp_DID, send_rrq); 883 return -EINVAL; 884 } 885 if (phba->cfg_enable_rrq == 1) 886 rrq->send_rrq = send_rrq; 887 else 888 rrq->send_rrq = 0; 889 rrq->xritag = xritag; 890 rrq->rrq_stop_time = jiffies + 891 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 892 rrq->ndlp = ndlp; 893 rrq->nlp_DID = ndlp->nlp_DID; 894 rrq->vport = ndlp->vport; 895 rrq->rxid = rxid; 896 spin_lock_irqsave(&phba->hbalock, iflags); 897 empty = list_empty(&phba->active_rrq_list); 898 list_add_tail(&rrq->list, &phba->active_rrq_list); 899 phba->hba_flag |= HBA_RRQ_ACTIVE; 900 if (empty) 901 lpfc_worker_wake_up(phba); 902 spin_unlock_irqrestore(&phba->hbalock, iflags); 903 return 0; 904 out: 905 spin_unlock_irqrestore(&phba->hbalock, iflags); 906 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 907 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 908 " DID:0x%x Send:%d\n", 909 xritag, rxid, ndlp->nlp_DID, send_rrq); 910 return -EINVAL; 911 } 912 913 /** 914 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 915 * @phba: Pointer to HBA context object. 916 * @piocb: Pointer to the iocbq. 917 * 918 * This function is called with the ring lock held. This function 919 * gets a new driver sglq object from the sglq list. If the 920 * list is not empty then it is successful, it returns pointer to the newly 921 * allocated sglq object else it returns NULL. 922 **/ 923 static struct lpfc_sglq * 924 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 925 { 926 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 927 struct lpfc_sglq *sglq = NULL; 928 struct lpfc_sglq *start_sglq = NULL; 929 struct lpfc_scsi_buf *lpfc_cmd; 930 struct lpfc_nodelist *ndlp; 931 int found = 0; 932 933 lockdep_assert_held(&phba->hbalock); 934 935 if (piocbq->iocb_flag & LPFC_IO_FCP) { 936 lpfc_cmd = (struct lpfc_scsi_buf *) piocbq->context1; 937 ndlp = lpfc_cmd->rdata->pnode; 938 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 939 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 940 ndlp = piocbq->context_un.ndlp; 941 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 942 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 943 ndlp = NULL; 944 else 945 ndlp = piocbq->context_un.ndlp; 946 } else { 947 ndlp = piocbq->context1; 948 } 949 950 spin_lock(&phba->sli4_hba.sgl_list_lock); 951 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 952 start_sglq = sglq; 953 while (!found) { 954 if (!sglq) 955 return NULL; 956 if (ndlp && ndlp->active_rrqs_xri_bitmap && 957 test_bit(sglq->sli4_lxritag, 958 ndlp->active_rrqs_xri_bitmap)) { 959 /* This xri has an rrq outstanding for this DID. 960 * put it back in the list and get another xri. 961 */ 962 list_add_tail(&sglq->list, lpfc_els_sgl_list); 963 sglq = NULL; 964 list_remove_head(lpfc_els_sgl_list, sglq, 965 struct lpfc_sglq, list); 966 if (sglq == start_sglq) { 967 sglq = NULL; 968 break; 969 } else 970 continue; 971 } 972 sglq->ndlp = ndlp; 973 found = 1; 974 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 975 sglq->state = SGL_ALLOCATED; 976 } 977 spin_unlock(&phba->sli4_hba.sgl_list_lock); 978 return sglq; 979 } 980 981 /** 982 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 983 * @phba: Pointer to HBA context object. 984 * @piocb: Pointer to the iocbq. 985 * 986 * This function is called with the sgl_list lock held. This function 987 * gets a new driver sglq object from the sglq list. If the 988 * list is not empty then it is successful, it returns pointer to the newly 989 * allocated sglq object else it returns NULL. 990 **/ 991 struct lpfc_sglq * 992 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 993 { 994 struct list_head *lpfc_nvmet_sgl_list; 995 struct lpfc_sglq *sglq = NULL; 996 997 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 998 999 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1000 1001 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1002 if (!sglq) 1003 return NULL; 1004 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1005 sglq->state = SGL_ALLOCATED; 1006 return sglq; 1007 } 1008 1009 /** 1010 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1011 * @phba: Pointer to HBA context object. 1012 * 1013 * This function is called with no lock held. This function 1014 * allocates a new driver iocb object from the iocb pool. If the 1015 * allocation is successful, it returns pointer to the newly 1016 * allocated iocb object else it returns NULL. 1017 **/ 1018 struct lpfc_iocbq * 1019 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1020 { 1021 struct lpfc_iocbq * iocbq = NULL; 1022 unsigned long iflags; 1023 1024 spin_lock_irqsave(&phba->hbalock, iflags); 1025 iocbq = __lpfc_sli_get_iocbq(phba); 1026 spin_unlock_irqrestore(&phba->hbalock, iflags); 1027 return iocbq; 1028 } 1029 1030 /** 1031 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1032 * @phba: Pointer to HBA context object. 1033 * @iocbq: Pointer to driver iocb object. 1034 * 1035 * This function is called with hbalock held to release driver 1036 * iocb object to the iocb pool. The iotag in the iocb object 1037 * does not change for each use of the iocb object. This function 1038 * clears all other fields of the iocb object when it is freed. 1039 * The sqlq structure that holds the xritag and phys and virtual 1040 * mappings for the scatter gather list is retrieved from the 1041 * active array of sglq. The get of the sglq pointer also clears 1042 * the entry in the array. If the status of the IO indiactes that 1043 * this IO was aborted then the sglq entry it put on the 1044 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1045 * IO has good status or fails for any other reason then the sglq 1046 * entry is added to the free list (lpfc_els_sgl_list). 1047 **/ 1048 static void 1049 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1050 { 1051 struct lpfc_sglq *sglq; 1052 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1053 unsigned long iflag = 0; 1054 struct lpfc_sli_ring *pring; 1055 1056 lockdep_assert_held(&phba->hbalock); 1057 1058 if (iocbq->sli4_xritag == NO_XRI) 1059 sglq = NULL; 1060 else 1061 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1062 1063 1064 if (sglq) { 1065 if (iocbq->iocb_flag & LPFC_IO_NVMET) { 1066 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1067 iflag); 1068 sglq->state = SGL_FREED; 1069 sglq->ndlp = NULL; 1070 list_add_tail(&sglq->list, 1071 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1072 spin_unlock_irqrestore( 1073 &phba->sli4_hba.sgl_list_lock, iflag); 1074 goto out; 1075 } 1076 1077 pring = phba->sli4_hba.els_wq->pring; 1078 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1079 (sglq->state != SGL_XRI_ABORTED)) { 1080 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1081 iflag); 1082 list_add(&sglq->list, 1083 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1084 spin_unlock_irqrestore( 1085 &phba->sli4_hba.sgl_list_lock, iflag); 1086 } else { 1087 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1088 iflag); 1089 sglq->state = SGL_FREED; 1090 sglq->ndlp = NULL; 1091 list_add_tail(&sglq->list, 1092 &phba->sli4_hba.lpfc_els_sgl_list); 1093 spin_unlock_irqrestore( 1094 &phba->sli4_hba.sgl_list_lock, iflag); 1095 1096 /* Check if TXQ queue needs to be serviced */ 1097 if (!list_empty(&pring->txq)) 1098 lpfc_worker_wake_up(phba); 1099 } 1100 } 1101 1102 out: 1103 /* 1104 * Clean all volatile data fields, preserve iotag and node struct. 1105 */ 1106 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1107 iocbq->sli4_lxritag = NO_XRI; 1108 iocbq->sli4_xritag = NO_XRI; 1109 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | 1110 LPFC_IO_NVME_LS); 1111 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1112 } 1113 1114 1115 /** 1116 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1117 * @phba: Pointer to HBA context object. 1118 * @iocbq: Pointer to driver iocb object. 1119 * 1120 * This function is called with hbalock held to release driver 1121 * iocb object to the iocb pool. The iotag in the iocb object 1122 * does not change for each use of the iocb object. This function 1123 * clears all other fields of the iocb object when it is freed. 1124 **/ 1125 static void 1126 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1127 { 1128 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1129 1130 lockdep_assert_held(&phba->hbalock); 1131 1132 /* 1133 * Clean all volatile data fields, preserve iotag and node struct. 1134 */ 1135 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1136 iocbq->sli4_xritag = NO_XRI; 1137 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1138 } 1139 1140 /** 1141 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1142 * @phba: Pointer to HBA context object. 1143 * @iocbq: Pointer to driver iocb object. 1144 * 1145 * This function is called with hbalock held to release driver 1146 * iocb object to the iocb pool. The iotag in the iocb object 1147 * does not change for each use of the iocb object. This function 1148 * clears all other fields of the iocb object when it is freed. 1149 **/ 1150 static void 1151 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1152 { 1153 lockdep_assert_held(&phba->hbalock); 1154 1155 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1156 phba->iocb_cnt--; 1157 } 1158 1159 /** 1160 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1161 * @phba: Pointer to HBA context object. 1162 * @iocbq: Pointer to driver iocb object. 1163 * 1164 * This function is called with no lock held to release the iocb to 1165 * iocb pool. 1166 **/ 1167 void 1168 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1169 { 1170 unsigned long iflags; 1171 1172 /* 1173 * Clean all volatile data fields, preserve iotag and node struct. 1174 */ 1175 spin_lock_irqsave(&phba->hbalock, iflags); 1176 __lpfc_sli_release_iocbq(phba, iocbq); 1177 spin_unlock_irqrestore(&phba->hbalock, iflags); 1178 } 1179 1180 /** 1181 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1182 * @phba: Pointer to HBA context object. 1183 * @iocblist: List of IOCBs. 1184 * @ulpstatus: ULP status in IOCB command field. 1185 * @ulpWord4: ULP word-4 in IOCB command field. 1186 * 1187 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1188 * on the list by invoking the complete callback function associated with the 1189 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1190 * fields. 1191 **/ 1192 void 1193 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1194 uint32_t ulpstatus, uint32_t ulpWord4) 1195 { 1196 struct lpfc_iocbq *piocb; 1197 1198 while (!list_empty(iocblist)) { 1199 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1200 if (!piocb->iocb_cmpl) 1201 lpfc_sli_release_iocbq(phba, piocb); 1202 else { 1203 piocb->iocb.ulpStatus = ulpstatus; 1204 piocb->iocb.un.ulpWord[4] = ulpWord4; 1205 (piocb->iocb_cmpl) (phba, piocb, piocb); 1206 } 1207 } 1208 return; 1209 } 1210 1211 /** 1212 * lpfc_sli_iocb_cmd_type - Get the iocb type 1213 * @iocb_cmnd: iocb command code. 1214 * 1215 * This function is called by ring event handler function to get the iocb type. 1216 * This function translates the iocb command to an iocb command type used to 1217 * decide the final disposition of each completed IOCB. 1218 * The function returns 1219 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1220 * LPFC_SOL_IOCB if it is a solicited iocb completion 1221 * LPFC_ABORT_IOCB if it is an abort iocb 1222 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1223 * 1224 * The caller is not required to hold any lock. 1225 **/ 1226 static lpfc_iocb_type 1227 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1228 { 1229 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1230 1231 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1232 return 0; 1233 1234 switch (iocb_cmnd) { 1235 case CMD_XMIT_SEQUENCE_CR: 1236 case CMD_XMIT_SEQUENCE_CX: 1237 case CMD_XMIT_BCAST_CN: 1238 case CMD_XMIT_BCAST_CX: 1239 case CMD_ELS_REQUEST_CR: 1240 case CMD_ELS_REQUEST_CX: 1241 case CMD_CREATE_XRI_CR: 1242 case CMD_CREATE_XRI_CX: 1243 case CMD_GET_RPI_CN: 1244 case CMD_XMIT_ELS_RSP_CX: 1245 case CMD_GET_RPI_CR: 1246 case CMD_FCP_IWRITE_CR: 1247 case CMD_FCP_IWRITE_CX: 1248 case CMD_FCP_IREAD_CR: 1249 case CMD_FCP_IREAD_CX: 1250 case CMD_FCP_ICMND_CR: 1251 case CMD_FCP_ICMND_CX: 1252 case CMD_FCP_TSEND_CX: 1253 case CMD_FCP_TRSP_CX: 1254 case CMD_FCP_TRECEIVE_CX: 1255 case CMD_FCP_AUTO_TRSP_CX: 1256 case CMD_ADAPTER_MSG: 1257 case CMD_ADAPTER_DUMP: 1258 case CMD_XMIT_SEQUENCE64_CR: 1259 case CMD_XMIT_SEQUENCE64_CX: 1260 case CMD_XMIT_BCAST64_CN: 1261 case CMD_XMIT_BCAST64_CX: 1262 case CMD_ELS_REQUEST64_CR: 1263 case CMD_ELS_REQUEST64_CX: 1264 case CMD_FCP_IWRITE64_CR: 1265 case CMD_FCP_IWRITE64_CX: 1266 case CMD_FCP_IREAD64_CR: 1267 case CMD_FCP_IREAD64_CX: 1268 case CMD_FCP_ICMND64_CR: 1269 case CMD_FCP_ICMND64_CX: 1270 case CMD_FCP_TSEND64_CX: 1271 case CMD_FCP_TRSP64_CX: 1272 case CMD_FCP_TRECEIVE64_CX: 1273 case CMD_GEN_REQUEST64_CR: 1274 case CMD_GEN_REQUEST64_CX: 1275 case CMD_XMIT_ELS_RSP64_CX: 1276 case DSSCMD_IWRITE64_CR: 1277 case DSSCMD_IWRITE64_CX: 1278 case DSSCMD_IREAD64_CR: 1279 case DSSCMD_IREAD64_CX: 1280 type = LPFC_SOL_IOCB; 1281 break; 1282 case CMD_ABORT_XRI_CN: 1283 case CMD_ABORT_XRI_CX: 1284 case CMD_CLOSE_XRI_CN: 1285 case CMD_CLOSE_XRI_CX: 1286 case CMD_XRI_ABORTED_CX: 1287 case CMD_ABORT_MXRI64_CN: 1288 case CMD_XMIT_BLS_RSP64_CX: 1289 type = LPFC_ABORT_IOCB; 1290 break; 1291 case CMD_RCV_SEQUENCE_CX: 1292 case CMD_RCV_ELS_REQ_CX: 1293 case CMD_RCV_SEQUENCE64_CX: 1294 case CMD_RCV_ELS_REQ64_CX: 1295 case CMD_ASYNC_STATUS: 1296 case CMD_IOCB_RCV_SEQ64_CX: 1297 case CMD_IOCB_RCV_ELS64_CX: 1298 case CMD_IOCB_RCV_CONT64_CX: 1299 case CMD_IOCB_RET_XRI64_CX: 1300 type = LPFC_UNSOL_IOCB; 1301 break; 1302 case CMD_IOCB_XMIT_MSEQ64_CR: 1303 case CMD_IOCB_XMIT_MSEQ64_CX: 1304 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1305 case CMD_IOCB_RCV_ELS_LIST64_CX: 1306 case CMD_IOCB_CLOSE_EXTENDED_CN: 1307 case CMD_IOCB_ABORT_EXTENDED_CN: 1308 case CMD_IOCB_RET_HBQE64_CN: 1309 case CMD_IOCB_FCP_IBIDIR64_CR: 1310 case CMD_IOCB_FCP_IBIDIR64_CX: 1311 case CMD_IOCB_FCP_ITASKMGT64_CX: 1312 case CMD_IOCB_LOGENTRY_CN: 1313 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1314 printk("%s - Unhandled SLI-3 Command x%x\n", 1315 __func__, iocb_cmnd); 1316 type = LPFC_UNKNOWN_IOCB; 1317 break; 1318 default: 1319 type = LPFC_UNKNOWN_IOCB; 1320 break; 1321 } 1322 1323 return type; 1324 } 1325 1326 /** 1327 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1328 * @phba: Pointer to HBA context object. 1329 * 1330 * This function is called from SLI initialization code 1331 * to configure every ring of the HBA's SLI interface. The 1332 * caller is not required to hold any lock. This function issues 1333 * a config_ring mailbox command for each ring. 1334 * This function returns zero if successful else returns a negative 1335 * error code. 1336 **/ 1337 static int 1338 lpfc_sli_ring_map(struct lpfc_hba *phba) 1339 { 1340 struct lpfc_sli *psli = &phba->sli; 1341 LPFC_MBOXQ_t *pmb; 1342 MAILBOX_t *pmbox; 1343 int i, rc, ret = 0; 1344 1345 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1346 if (!pmb) 1347 return -ENOMEM; 1348 pmbox = &pmb->u.mb; 1349 phba->link_state = LPFC_INIT_MBX_CMDS; 1350 for (i = 0; i < psli->num_rings; i++) { 1351 lpfc_config_ring(phba, i, pmb); 1352 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1353 if (rc != MBX_SUCCESS) { 1354 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1355 "0446 Adapter failed to init (%d), " 1356 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1357 "ring %d\n", 1358 rc, pmbox->mbxCommand, 1359 pmbox->mbxStatus, i); 1360 phba->link_state = LPFC_HBA_ERROR; 1361 ret = -ENXIO; 1362 break; 1363 } 1364 } 1365 mempool_free(pmb, phba->mbox_mem_pool); 1366 return ret; 1367 } 1368 1369 /** 1370 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1371 * @phba: Pointer to HBA context object. 1372 * @pring: Pointer to driver SLI ring object. 1373 * @piocb: Pointer to the driver iocb object. 1374 * 1375 * This function is called with hbalock held. The function adds the 1376 * new iocb to txcmplq of the given ring. This function always returns 1377 * 0. If this function is called for ELS ring, this function checks if 1378 * there is a vport associated with the ELS command. This function also 1379 * starts els_tmofunc timer if this is an ELS command. 1380 **/ 1381 static int 1382 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1383 struct lpfc_iocbq *piocb) 1384 { 1385 lockdep_assert_held(&phba->hbalock); 1386 1387 BUG_ON(!piocb); 1388 1389 list_add_tail(&piocb->list, &pring->txcmplq); 1390 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1391 1392 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1393 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1394 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1395 BUG_ON(!piocb->vport); 1396 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1397 mod_timer(&piocb->vport->els_tmofunc, 1398 jiffies + 1399 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1400 } 1401 1402 return 0; 1403 } 1404 1405 /** 1406 * lpfc_sli_ringtx_get - Get first element of the txq 1407 * @phba: Pointer to HBA context object. 1408 * @pring: Pointer to driver SLI ring object. 1409 * 1410 * This function is called with hbalock held to get next 1411 * iocb in txq of the given ring. If there is any iocb in 1412 * the txq, the function returns first iocb in the list after 1413 * removing the iocb from the list, else it returns NULL. 1414 **/ 1415 struct lpfc_iocbq * 1416 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1417 { 1418 struct lpfc_iocbq *cmd_iocb; 1419 1420 lockdep_assert_held(&phba->hbalock); 1421 1422 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1423 return cmd_iocb; 1424 } 1425 1426 /** 1427 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1428 * @phba: Pointer to HBA context object. 1429 * @pring: Pointer to driver SLI ring object. 1430 * 1431 * This function is called with hbalock held and the caller must post the 1432 * iocb without releasing the lock. If the caller releases the lock, 1433 * iocb slot returned by the function is not guaranteed to be available. 1434 * The function returns pointer to the next available iocb slot if there 1435 * is available slot in the ring, else it returns NULL. 1436 * If the get index of the ring is ahead of the put index, the function 1437 * will post an error attention event to the worker thread to take the 1438 * HBA to offline state. 1439 **/ 1440 static IOCB_t * 1441 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1442 { 1443 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1444 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1445 1446 lockdep_assert_held(&phba->hbalock); 1447 1448 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1449 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1450 pring->sli.sli3.next_cmdidx = 0; 1451 1452 if (unlikely(pring->sli.sli3.local_getidx == 1453 pring->sli.sli3.next_cmdidx)) { 1454 1455 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1456 1457 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1458 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 1459 "0315 Ring %d issue: portCmdGet %d " 1460 "is bigger than cmd ring %d\n", 1461 pring->ringno, 1462 pring->sli.sli3.local_getidx, 1463 max_cmd_idx); 1464 1465 phba->link_state = LPFC_HBA_ERROR; 1466 /* 1467 * All error attention handlers are posted to 1468 * worker thread 1469 */ 1470 phba->work_ha |= HA_ERATT; 1471 phba->work_hs = HS_FFER3; 1472 1473 lpfc_worker_wake_up(phba); 1474 1475 return NULL; 1476 } 1477 1478 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1479 return NULL; 1480 } 1481 1482 return lpfc_cmd_iocb(phba, pring); 1483 } 1484 1485 /** 1486 * lpfc_sli_next_iotag - Get an iotag for the iocb 1487 * @phba: Pointer to HBA context object. 1488 * @iocbq: Pointer to driver iocb object. 1489 * 1490 * This function gets an iotag for the iocb. If there is no unused iotag and 1491 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1492 * array and assigns a new iotag. 1493 * The function returns the allocated iotag if successful, else returns zero. 1494 * Zero is not a valid iotag. 1495 * The caller is not required to hold any lock. 1496 **/ 1497 uint16_t 1498 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1499 { 1500 struct lpfc_iocbq **new_arr; 1501 struct lpfc_iocbq **old_arr; 1502 size_t new_len; 1503 struct lpfc_sli *psli = &phba->sli; 1504 uint16_t iotag; 1505 1506 spin_lock_irq(&phba->hbalock); 1507 iotag = psli->last_iotag; 1508 if(++iotag < psli->iocbq_lookup_len) { 1509 psli->last_iotag = iotag; 1510 psli->iocbq_lookup[iotag] = iocbq; 1511 spin_unlock_irq(&phba->hbalock); 1512 iocbq->iotag = iotag; 1513 return iotag; 1514 } else if (psli->iocbq_lookup_len < (0xffff 1515 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1516 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1517 spin_unlock_irq(&phba->hbalock); 1518 new_arr = kzalloc(new_len * sizeof (struct lpfc_iocbq *), 1519 GFP_KERNEL); 1520 if (new_arr) { 1521 spin_lock_irq(&phba->hbalock); 1522 old_arr = psli->iocbq_lookup; 1523 if (new_len <= psli->iocbq_lookup_len) { 1524 /* highly unprobable case */ 1525 kfree(new_arr); 1526 iotag = psli->last_iotag; 1527 if(++iotag < psli->iocbq_lookup_len) { 1528 psli->last_iotag = iotag; 1529 psli->iocbq_lookup[iotag] = iocbq; 1530 spin_unlock_irq(&phba->hbalock); 1531 iocbq->iotag = iotag; 1532 return iotag; 1533 } 1534 spin_unlock_irq(&phba->hbalock); 1535 return 0; 1536 } 1537 if (psli->iocbq_lookup) 1538 memcpy(new_arr, old_arr, 1539 ((psli->last_iotag + 1) * 1540 sizeof (struct lpfc_iocbq *))); 1541 psli->iocbq_lookup = new_arr; 1542 psli->iocbq_lookup_len = new_len; 1543 psli->last_iotag = iotag; 1544 psli->iocbq_lookup[iotag] = iocbq; 1545 spin_unlock_irq(&phba->hbalock); 1546 iocbq->iotag = iotag; 1547 kfree(old_arr); 1548 return iotag; 1549 } 1550 } else 1551 spin_unlock_irq(&phba->hbalock); 1552 1553 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1554 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1555 psli->last_iotag); 1556 1557 return 0; 1558 } 1559 1560 /** 1561 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1562 * @phba: Pointer to HBA context object. 1563 * @pring: Pointer to driver SLI ring object. 1564 * @iocb: Pointer to iocb slot in the ring. 1565 * @nextiocb: Pointer to driver iocb object which need to be 1566 * posted to firmware. 1567 * 1568 * This function is called with hbalock held to post a new iocb to 1569 * the firmware. This function copies the new iocb to ring iocb slot and 1570 * updates the ring pointers. It adds the new iocb to txcmplq if there is 1571 * a completion call back for this iocb else the function will free the 1572 * iocb object. 1573 **/ 1574 static void 1575 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1576 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1577 { 1578 lockdep_assert_held(&phba->hbalock); 1579 /* 1580 * Set up an iotag 1581 */ 1582 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1583 1584 1585 if (pring->ringno == LPFC_ELS_RING) { 1586 lpfc_debugfs_slow_ring_trc(phba, 1587 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1588 *(((uint32_t *) &nextiocb->iocb) + 4), 1589 *(((uint32_t *) &nextiocb->iocb) + 6), 1590 *(((uint32_t *) &nextiocb->iocb) + 7)); 1591 } 1592 1593 /* 1594 * Issue iocb command to adapter 1595 */ 1596 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1597 wmb(); 1598 pring->stats.iocb_cmd++; 1599 1600 /* 1601 * If there is no completion routine to call, we can release the 1602 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1603 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1604 */ 1605 if (nextiocb->iocb_cmpl) 1606 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1607 else 1608 __lpfc_sli_release_iocbq(phba, nextiocb); 1609 1610 /* 1611 * Let the HBA know what IOCB slot will be the next one the 1612 * driver will put a command into. 1613 */ 1614 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1615 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1616 } 1617 1618 /** 1619 * lpfc_sli_update_full_ring - Update the chip attention register 1620 * @phba: Pointer to HBA context object. 1621 * @pring: Pointer to driver SLI ring object. 1622 * 1623 * The caller is not required to hold any lock for calling this function. 1624 * This function updates the chip attention bits for the ring to inform firmware 1625 * that there are pending work to be done for this ring and requests an 1626 * interrupt when there is space available in the ring. This function is 1627 * called when the driver is unable to post more iocbs to the ring due 1628 * to unavailability of space in the ring. 1629 **/ 1630 static void 1631 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1632 { 1633 int ringno = pring->ringno; 1634 1635 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1636 1637 wmb(); 1638 1639 /* 1640 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1641 * The HBA will tell us when an IOCB entry is available. 1642 */ 1643 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1644 readl(phba->CAregaddr); /* flush */ 1645 1646 pring->stats.iocb_cmd_full++; 1647 } 1648 1649 /** 1650 * lpfc_sli_update_ring - Update chip attention register 1651 * @phba: Pointer to HBA context object. 1652 * @pring: Pointer to driver SLI ring object. 1653 * 1654 * This function updates the chip attention register bit for the 1655 * given ring to inform HBA that there is more work to be done 1656 * in this ring. The caller is not required to hold any lock. 1657 **/ 1658 static void 1659 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1660 { 1661 int ringno = pring->ringno; 1662 1663 /* 1664 * Tell the HBA that there is work to do in this ring. 1665 */ 1666 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 1667 wmb(); 1668 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 1669 readl(phba->CAregaddr); /* flush */ 1670 } 1671 } 1672 1673 /** 1674 * lpfc_sli_resume_iocb - Process iocbs in the txq 1675 * @phba: Pointer to HBA context object. 1676 * @pring: Pointer to driver SLI ring object. 1677 * 1678 * This function is called with hbalock held to post pending iocbs 1679 * in the txq to the firmware. This function is called when driver 1680 * detects space available in the ring. 1681 **/ 1682 static void 1683 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1684 { 1685 IOCB_t *iocb; 1686 struct lpfc_iocbq *nextiocb; 1687 1688 lockdep_assert_held(&phba->hbalock); 1689 1690 /* 1691 * Check to see if: 1692 * (a) there is anything on the txq to send 1693 * (b) link is up 1694 * (c) link attention events can be processed (fcp ring only) 1695 * (d) IOCB processing is not blocked by the outstanding mbox command. 1696 */ 1697 1698 if (lpfc_is_link_up(phba) && 1699 (!list_empty(&pring->txq)) && 1700 (pring->ringno != LPFC_FCP_RING || 1701 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 1702 1703 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 1704 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 1705 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 1706 1707 if (iocb) 1708 lpfc_sli_update_ring(phba, pring); 1709 else 1710 lpfc_sli_update_full_ring(phba, pring); 1711 } 1712 1713 return; 1714 } 1715 1716 /** 1717 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 1718 * @phba: Pointer to HBA context object. 1719 * @hbqno: HBQ number. 1720 * 1721 * This function is called with hbalock held to get the next 1722 * available slot for the given HBQ. If there is free slot 1723 * available for the HBQ it will return pointer to the next available 1724 * HBQ entry else it will return NULL. 1725 **/ 1726 static struct lpfc_hbq_entry * 1727 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 1728 { 1729 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1730 1731 lockdep_assert_held(&phba->hbalock); 1732 1733 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 1734 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 1735 hbqp->next_hbqPutIdx = 0; 1736 1737 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 1738 uint32_t raw_index = phba->hbq_get[hbqno]; 1739 uint32_t getidx = le32_to_cpu(raw_index); 1740 1741 hbqp->local_hbqGetIdx = getidx; 1742 1743 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 1744 lpfc_printf_log(phba, KERN_ERR, 1745 LOG_SLI | LOG_VPORT, 1746 "1802 HBQ %d: local_hbqGetIdx " 1747 "%u is > than hbqp->entry_count %u\n", 1748 hbqno, hbqp->local_hbqGetIdx, 1749 hbqp->entry_count); 1750 1751 phba->link_state = LPFC_HBA_ERROR; 1752 return NULL; 1753 } 1754 1755 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 1756 return NULL; 1757 } 1758 1759 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 1760 hbqp->hbqPutIdx; 1761 } 1762 1763 /** 1764 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 1765 * @phba: Pointer to HBA context object. 1766 * 1767 * This function is called with no lock held to free all the 1768 * hbq buffers while uninitializing the SLI interface. It also 1769 * frees the HBQ buffers returned by the firmware but not yet 1770 * processed by the upper layers. 1771 **/ 1772 void 1773 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 1774 { 1775 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 1776 struct hbq_dmabuf *hbq_buf; 1777 unsigned long flags; 1778 int i, hbq_count; 1779 1780 hbq_count = lpfc_sli_hbq_count(); 1781 /* Return all memory used by all HBQs */ 1782 spin_lock_irqsave(&phba->hbalock, flags); 1783 for (i = 0; i < hbq_count; ++i) { 1784 list_for_each_entry_safe(dmabuf, next_dmabuf, 1785 &phba->hbqs[i].hbq_buffer_list, list) { 1786 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 1787 list_del(&hbq_buf->dbuf.list); 1788 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 1789 } 1790 phba->hbqs[i].buffer_count = 0; 1791 } 1792 1793 /* Mark the HBQs not in use */ 1794 phba->hbq_in_use = 0; 1795 spin_unlock_irqrestore(&phba->hbalock, flags); 1796 } 1797 1798 /** 1799 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 1800 * @phba: Pointer to HBA context object. 1801 * @hbqno: HBQ number. 1802 * @hbq_buf: Pointer to HBQ buffer. 1803 * 1804 * This function is called with the hbalock held to post a 1805 * hbq buffer to the firmware. If the function finds an empty 1806 * slot in the HBQ, it will post the buffer. The function will return 1807 * pointer to the hbq entry if it successfully post the buffer 1808 * else it will return NULL. 1809 **/ 1810 static int 1811 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 1812 struct hbq_dmabuf *hbq_buf) 1813 { 1814 lockdep_assert_held(&phba->hbalock); 1815 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 1816 } 1817 1818 /** 1819 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 1820 * @phba: Pointer to HBA context object. 1821 * @hbqno: HBQ number. 1822 * @hbq_buf: Pointer to HBQ buffer. 1823 * 1824 * This function is called with the hbalock held to post a hbq buffer to the 1825 * firmware. If the function finds an empty slot in the HBQ, it will post the 1826 * buffer and place it on the hbq_buffer_list. The function will return zero if 1827 * it successfully post the buffer else it will return an error. 1828 **/ 1829 static int 1830 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 1831 struct hbq_dmabuf *hbq_buf) 1832 { 1833 struct lpfc_hbq_entry *hbqe; 1834 dma_addr_t physaddr = hbq_buf->dbuf.phys; 1835 1836 lockdep_assert_held(&phba->hbalock); 1837 /* Get next HBQ entry slot to use */ 1838 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 1839 if (hbqe) { 1840 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1841 1842 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 1843 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 1844 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 1845 hbqe->bde.tus.f.bdeFlags = 0; 1846 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 1847 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 1848 /* Sync SLIM */ 1849 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 1850 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 1851 /* flush */ 1852 readl(phba->hbq_put + hbqno); 1853 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 1854 return 0; 1855 } else 1856 return -ENOMEM; 1857 } 1858 1859 /** 1860 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 1861 * @phba: Pointer to HBA context object. 1862 * @hbqno: HBQ number. 1863 * @hbq_buf: Pointer to HBQ buffer. 1864 * 1865 * This function is called with the hbalock held to post an RQE to the SLI4 1866 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 1867 * the hbq_buffer_list and return zero, otherwise it will return an error. 1868 **/ 1869 static int 1870 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 1871 struct hbq_dmabuf *hbq_buf) 1872 { 1873 int rc; 1874 struct lpfc_rqe hrqe; 1875 struct lpfc_rqe drqe; 1876 struct lpfc_queue *hrq; 1877 struct lpfc_queue *drq; 1878 1879 if (hbqno != LPFC_ELS_HBQ) 1880 return 1; 1881 hrq = phba->sli4_hba.hdr_rq; 1882 drq = phba->sli4_hba.dat_rq; 1883 1884 lockdep_assert_held(&phba->hbalock); 1885 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 1886 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 1887 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 1888 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 1889 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 1890 if (rc < 0) 1891 return rc; 1892 hbq_buf->tag = (rc | (hbqno << 16)); 1893 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 1894 return 0; 1895 } 1896 1897 /* HBQ for ELS and CT traffic. */ 1898 static struct lpfc_hbq_init lpfc_els_hbq = { 1899 .rn = 1, 1900 .entry_count = 256, 1901 .mask_count = 0, 1902 .profile = 0, 1903 .ring_mask = (1 << LPFC_ELS_RING), 1904 .buffer_count = 0, 1905 .init_count = 40, 1906 .add_count = 40, 1907 }; 1908 1909 /* Array of HBQs */ 1910 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 1911 &lpfc_els_hbq, 1912 }; 1913 1914 /** 1915 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 1916 * @phba: Pointer to HBA context object. 1917 * @hbqno: HBQ number. 1918 * @count: Number of HBQ buffers to be posted. 1919 * 1920 * This function is called with no lock held to post more hbq buffers to the 1921 * given HBQ. The function returns the number of HBQ buffers successfully 1922 * posted. 1923 **/ 1924 static int 1925 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 1926 { 1927 uint32_t i, posted = 0; 1928 unsigned long flags; 1929 struct hbq_dmabuf *hbq_buffer; 1930 LIST_HEAD(hbq_buf_list); 1931 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 1932 return 0; 1933 1934 if ((phba->hbqs[hbqno].buffer_count + count) > 1935 lpfc_hbq_defs[hbqno]->entry_count) 1936 count = lpfc_hbq_defs[hbqno]->entry_count - 1937 phba->hbqs[hbqno].buffer_count; 1938 if (!count) 1939 return 0; 1940 /* Allocate HBQ entries */ 1941 for (i = 0; i < count; i++) { 1942 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 1943 if (!hbq_buffer) 1944 break; 1945 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 1946 } 1947 /* Check whether HBQ is still in use */ 1948 spin_lock_irqsave(&phba->hbalock, flags); 1949 if (!phba->hbq_in_use) 1950 goto err; 1951 while (!list_empty(&hbq_buf_list)) { 1952 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 1953 dbuf.list); 1954 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 1955 (hbqno << 16)); 1956 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 1957 phba->hbqs[hbqno].buffer_count++; 1958 posted++; 1959 } else 1960 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 1961 } 1962 spin_unlock_irqrestore(&phba->hbalock, flags); 1963 return posted; 1964 err: 1965 spin_unlock_irqrestore(&phba->hbalock, flags); 1966 while (!list_empty(&hbq_buf_list)) { 1967 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 1968 dbuf.list); 1969 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 1970 } 1971 return 0; 1972 } 1973 1974 /** 1975 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 1976 * @phba: Pointer to HBA context object. 1977 * @qno: HBQ number. 1978 * 1979 * This function posts more buffers to the HBQ. This function 1980 * is called with no lock held. The function returns the number of HBQ entries 1981 * successfully allocated. 1982 **/ 1983 int 1984 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 1985 { 1986 if (phba->sli_rev == LPFC_SLI_REV4) 1987 return 0; 1988 else 1989 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 1990 lpfc_hbq_defs[qno]->add_count); 1991 } 1992 1993 /** 1994 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 1995 * @phba: Pointer to HBA context object. 1996 * @qno: HBQ queue number. 1997 * 1998 * This function is called from SLI initialization code path with 1999 * no lock held to post initial HBQ buffers to firmware. The 2000 * function returns the number of HBQ entries successfully allocated. 2001 **/ 2002 static int 2003 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2004 { 2005 if (phba->sli_rev == LPFC_SLI_REV4) 2006 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2007 lpfc_hbq_defs[qno]->entry_count); 2008 else 2009 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2010 lpfc_hbq_defs[qno]->init_count); 2011 } 2012 2013 /** 2014 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2015 * @phba: Pointer to HBA context object. 2016 * @hbqno: HBQ number. 2017 * 2018 * This function removes the first hbq buffer on an hbq list and returns a 2019 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2020 **/ 2021 static struct hbq_dmabuf * 2022 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2023 { 2024 struct lpfc_dmabuf *d_buf; 2025 2026 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2027 if (!d_buf) 2028 return NULL; 2029 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2030 } 2031 2032 /** 2033 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2034 * @phba: Pointer to HBA context object. 2035 * @hbqno: HBQ number. 2036 * 2037 * This function removes the first RQ buffer on an RQ buffer list and returns a 2038 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2039 **/ 2040 static struct rqb_dmabuf * 2041 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2042 { 2043 struct lpfc_dmabuf *h_buf; 2044 struct lpfc_rqb *rqbp; 2045 2046 rqbp = hrq->rqbp; 2047 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2048 struct lpfc_dmabuf, list); 2049 if (!h_buf) 2050 return NULL; 2051 rqbp->buffer_count--; 2052 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2053 } 2054 2055 /** 2056 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2057 * @phba: Pointer to HBA context object. 2058 * @tag: Tag of the hbq buffer. 2059 * 2060 * This function searches for the hbq buffer associated with the given tag in 2061 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2062 * otherwise it returns NULL. 2063 **/ 2064 static struct hbq_dmabuf * 2065 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2066 { 2067 struct lpfc_dmabuf *d_buf; 2068 struct hbq_dmabuf *hbq_buf; 2069 uint32_t hbqno; 2070 2071 hbqno = tag >> 16; 2072 if (hbqno >= LPFC_MAX_HBQS) 2073 return NULL; 2074 2075 spin_lock_irq(&phba->hbalock); 2076 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2077 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2078 if (hbq_buf->tag == tag) { 2079 spin_unlock_irq(&phba->hbalock); 2080 return hbq_buf; 2081 } 2082 } 2083 spin_unlock_irq(&phba->hbalock); 2084 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT, 2085 "1803 Bad hbq tag. Data: x%x x%x\n", 2086 tag, phba->hbqs[tag >> 16].buffer_count); 2087 return NULL; 2088 } 2089 2090 /** 2091 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2092 * @phba: Pointer to HBA context object. 2093 * @hbq_buffer: Pointer to HBQ buffer. 2094 * 2095 * This function is called with hbalock. This function gives back 2096 * the hbq buffer to firmware. If the HBQ does not have space to 2097 * post the buffer, it will free the buffer. 2098 **/ 2099 void 2100 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2101 { 2102 uint32_t hbqno; 2103 2104 if (hbq_buffer) { 2105 hbqno = hbq_buffer->tag >> 16; 2106 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2107 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2108 } 2109 } 2110 2111 /** 2112 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2113 * @mbxCommand: mailbox command code. 2114 * 2115 * This function is called by the mailbox event handler function to verify 2116 * that the completed mailbox command is a legitimate mailbox command. If the 2117 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2118 * and the mailbox event handler will take the HBA offline. 2119 **/ 2120 static int 2121 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2122 { 2123 uint8_t ret; 2124 2125 switch (mbxCommand) { 2126 case MBX_LOAD_SM: 2127 case MBX_READ_NV: 2128 case MBX_WRITE_NV: 2129 case MBX_WRITE_VPARMS: 2130 case MBX_RUN_BIU_DIAG: 2131 case MBX_INIT_LINK: 2132 case MBX_DOWN_LINK: 2133 case MBX_CONFIG_LINK: 2134 case MBX_CONFIG_RING: 2135 case MBX_RESET_RING: 2136 case MBX_READ_CONFIG: 2137 case MBX_READ_RCONFIG: 2138 case MBX_READ_SPARM: 2139 case MBX_READ_STATUS: 2140 case MBX_READ_RPI: 2141 case MBX_READ_XRI: 2142 case MBX_READ_REV: 2143 case MBX_READ_LNK_STAT: 2144 case MBX_REG_LOGIN: 2145 case MBX_UNREG_LOGIN: 2146 case MBX_CLEAR_LA: 2147 case MBX_DUMP_MEMORY: 2148 case MBX_DUMP_CONTEXT: 2149 case MBX_RUN_DIAGS: 2150 case MBX_RESTART: 2151 case MBX_UPDATE_CFG: 2152 case MBX_DOWN_LOAD: 2153 case MBX_DEL_LD_ENTRY: 2154 case MBX_RUN_PROGRAM: 2155 case MBX_SET_MASK: 2156 case MBX_SET_VARIABLE: 2157 case MBX_UNREG_D_ID: 2158 case MBX_KILL_BOARD: 2159 case MBX_CONFIG_FARP: 2160 case MBX_BEACON: 2161 case MBX_LOAD_AREA: 2162 case MBX_RUN_BIU_DIAG64: 2163 case MBX_CONFIG_PORT: 2164 case MBX_READ_SPARM64: 2165 case MBX_READ_RPI64: 2166 case MBX_REG_LOGIN64: 2167 case MBX_READ_TOPOLOGY: 2168 case MBX_WRITE_WWN: 2169 case MBX_SET_DEBUG: 2170 case MBX_LOAD_EXP_ROM: 2171 case MBX_ASYNCEVT_ENABLE: 2172 case MBX_REG_VPI: 2173 case MBX_UNREG_VPI: 2174 case MBX_HEARTBEAT: 2175 case MBX_PORT_CAPABILITIES: 2176 case MBX_PORT_IOV_CONTROL: 2177 case MBX_SLI4_CONFIG: 2178 case MBX_SLI4_REQ_FTRS: 2179 case MBX_REG_FCFI: 2180 case MBX_UNREG_FCFI: 2181 case MBX_REG_VFI: 2182 case MBX_UNREG_VFI: 2183 case MBX_INIT_VPI: 2184 case MBX_INIT_VFI: 2185 case MBX_RESUME_RPI: 2186 case MBX_READ_EVENT_LOG_STATUS: 2187 case MBX_READ_EVENT_LOG: 2188 case MBX_SECURITY_MGMT: 2189 case MBX_AUTH_PORT: 2190 case MBX_ACCESS_VDATA: 2191 ret = mbxCommand; 2192 break; 2193 default: 2194 ret = MBX_SHUTDOWN; 2195 break; 2196 } 2197 return ret; 2198 } 2199 2200 /** 2201 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2202 * @phba: Pointer to HBA context object. 2203 * @pmboxq: Pointer to mailbox command. 2204 * 2205 * This is completion handler function for mailbox commands issued from 2206 * lpfc_sli_issue_mbox_wait function. This function is called by the 2207 * mailbox event handler function with no lock held. This function 2208 * will wake up thread waiting on the wait queue pointed by context1 2209 * of the mailbox. 2210 **/ 2211 void 2212 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2213 { 2214 wait_queue_head_t *pdone_q; 2215 unsigned long drvr_flag; 2216 2217 /* 2218 * If pdone_q is empty, the driver thread gave up waiting and 2219 * continued running. 2220 */ 2221 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2222 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2223 pdone_q = (wait_queue_head_t *) pmboxq->context1; 2224 if (pdone_q) 2225 wake_up_interruptible(pdone_q); 2226 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2227 return; 2228 } 2229 2230 2231 /** 2232 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2233 * @phba: Pointer to HBA context object. 2234 * @pmb: Pointer to mailbox object. 2235 * 2236 * This function is the default mailbox completion handler. It 2237 * frees the memory resources associated with the completed mailbox 2238 * command. If the completed command is a REG_LOGIN mailbox command, 2239 * this function will issue a UREG_LOGIN to re-claim the RPI. 2240 **/ 2241 void 2242 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2243 { 2244 struct lpfc_vport *vport = pmb->vport; 2245 struct lpfc_dmabuf *mp; 2246 struct lpfc_nodelist *ndlp; 2247 struct Scsi_Host *shost; 2248 uint16_t rpi, vpi; 2249 int rc; 2250 2251 mp = (struct lpfc_dmabuf *) (pmb->context1); 2252 2253 if (mp) { 2254 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2255 kfree(mp); 2256 } 2257 2258 /* 2259 * If a REG_LOGIN succeeded after node is destroyed or node 2260 * is in re-discovery driver need to cleanup the RPI. 2261 */ 2262 if (!(phba->pport->load_flag & FC_UNLOADING) && 2263 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2264 !pmb->u.mb.mbxStatus) { 2265 rpi = pmb->u.mb.un.varWords[0]; 2266 vpi = pmb->u.mb.un.varRegLogin.vpi; 2267 lpfc_unreg_login(phba, vpi, rpi, pmb); 2268 pmb->vport = vport; 2269 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2270 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2271 if (rc != MBX_NOT_FINISHED) 2272 return; 2273 } 2274 2275 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2276 !(phba->pport->load_flag & FC_UNLOADING) && 2277 !pmb->u.mb.mbxStatus) { 2278 shost = lpfc_shost_from_vport(vport); 2279 spin_lock_irq(shost->host_lock); 2280 vport->vpi_state |= LPFC_VPI_REGISTERED; 2281 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2282 spin_unlock_irq(shost->host_lock); 2283 } 2284 2285 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2286 ndlp = (struct lpfc_nodelist *)pmb->context2; 2287 lpfc_nlp_put(ndlp); 2288 pmb->context2 = NULL; 2289 } 2290 2291 /* Check security permission status on INIT_LINK mailbox command */ 2292 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2293 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2294 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2295 "2860 SLI authentication is required " 2296 "for INIT_LINK but has not done yet\n"); 2297 2298 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2299 lpfc_sli4_mbox_cmd_free(phba, pmb); 2300 else 2301 mempool_free(pmb, phba->mbox_mem_pool); 2302 } 2303 /** 2304 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2305 * @phba: Pointer to HBA context object. 2306 * @pmb: Pointer to mailbox object. 2307 * 2308 * This function is the unreg rpi mailbox completion handler. It 2309 * frees the memory resources associated with the completed mailbox 2310 * command. An additional refrenece is put on the ndlp to prevent 2311 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2312 * the unreg mailbox command completes, this routine puts the 2313 * reference back. 2314 * 2315 **/ 2316 void 2317 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2318 { 2319 struct lpfc_vport *vport = pmb->vport; 2320 struct lpfc_nodelist *ndlp; 2321 2322 ndlp = pmb->context1; 2323 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2324 if (phba->sli_rev == LPFC_SLI_REV4 && 2325 (bf_get(lpfc_sli_intf_if_type, 2326 &phba->sli4_hba.sli_intf) == 2327 LPFC_SLI_INTF_IF_TYPE_2)) { 2328 if (ndlp) { 2329 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 2330 "0010 UNREG_LOGIN vpi:%x " 2331 "rpi:%x DID:%x map:%x %p\n", 2332 vport->vpi, ndlp->nlp_rpi, 2333 ndlp->nlp_DID, 2334 ndlp->nlp_usg_map, ndlp); 2335 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2336 lpfc_nlp_put(ndlp); 2337 } 2338 } 2339 } 2340 2341 mempool_free(pmb, phba->mbox_mem_pool); 2342 } 2343 2344 /** 2345 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2346 * @phba: Pointer to HBA context object. 2347 * 2348 * This function is called with no lock held. This function processes all 2349 * the completed mailbox commands and gives it to upper layers. The interrupt 2350 * service routine processes mailbox completion interrupt and adds completed 2351 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2352 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2353 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2354 * function returns the mailbox commands to the upper layer by calling the 2355 * completion handler function of each mailbox. 2356 **/ 2357 int 2358 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2359 { 2360 MAILBOX_t *pmbox; 2361 LPFC_MBOXQ_t *pmb; 2362 int rc; 2363 LIST_HEAD(cmplq); 2364 2365 phba->sli.slistat.mbox_event++; 2366 2367 /* Get all completed mailboxe buffers into the cmplq */ 2368 spin_lock_irq(&phba->hbalock); 2369 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2370 spin_unlock_irq(&phba->hbalock); 2371 2372 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2373 do { 2374 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2375 if (pmb == NULL) 2376 break; 2377 2378 pmbox = &pmb->u.mb; 2379 2380 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2381 if (pmb->vport) { 2382 lpfc_debugfs_disc_trc(pmb->vport, 2383 LPFC_DISC_TRC_MBOX_VPORT, 2384 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2385 (uint32_t)pmbox->mbxCommand, 2386 pmbox->un.varWords[0], 2387 pmbox->un.varWords[1]); 2388 } 2389 else { 2390 lpfc_debugfs_disc_trc(phba->pport, 2391 LPFC_DISC_TRC_MBOX, 2392 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2393 (uint32_t)pmbox->mbxCommand, 2394 pmbox->un.varWords[0], 2395 pmbox->un.varWords[1]); 2396 } 2397 } 2398 2399 /* 2400 * It is a fatal error if unknown mbox command completion. 2401 */ 2402 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2403 MBX_SHUTDOWN) { 2404 /* Unknown mailbox command compl */ 2405 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2406 "(%d):0323 Unknown Mailbox command " 2407 "x%x (x%x/x%x) Cmpl\n", 2408 pmb->vport ? pmb->vport->vpi : 0, 2409 pmbox->mbxCommand, 2410 lpfc_sli_config_mbox_subsys_get(phba, 2411 pmb), 2412 lpfc_sli_config_mbox_opcode_get(phba, 2413 pmb)); 2414 phba->link_state = LPFC_HBA_ERROR; 2415 phba->work_hs = HS_FFER3; 2416 lpfc_handle_eratt(phba); 2417 continue; 2418 } 2419 2420 if (pmbox->mbxStatus) { 2421 phba->sli.slistat.mbox_stat_err++; 2422 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2423 /* Mbox cmd cmpl error - RETRYing */ 2424 lpfc_printf_log(phba, KERN_INFO, 2425 LOG_MBOX | LOG_SLI, 2426 "(%d):0305 Mbox cmd cmpl " 2427 "error - RETRYing Data: x%x " 2428 "(x%x/x%x) x%x x%x x%x\n", 2429 pmb->vport ? pmb->vport->vpi : 0, 2430 pmbox->mbxCommand, 2431 lpfc_sli_config_mbox_subsys_get(phba, 2432 pmb), 2433 lpfc_sli_config_mbox_opcode_get(phba, 2434 pmb), 2435 pmbox->mbxStatus, 2436 pmbox->un.varWords[0], 2437 pmb->vport->port_state); 2438 pmbox->mbxStatus = 0; 2439 pmbox->mbxOwner = OWN_HOST; 2440 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2441 if (rc != MBX_NOT_FINISHED) 2442 continue; 2443 } 2444 } 2445 2446 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2447 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2448 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p " 2449 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2450 "x%x x%x x%x\n", 2451 pmb->vport ? pmb->vport->vpi : 0, 2452 pmbox->mbxCommand, 2453 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2454 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2455 pmb->mbox_cmpl, 2456 *((uint32_t *) pmbox), 2457 pmbox->un.varWords[0], 2458 pmbox->un.varWords[1], 2459 pmbox->un.varWords[2], 2460 pmbox->un.varWords[3], 2461 pmbox->un.varWords[4], 2462 pmbox->un.varWords[5], 2463 pmbox->un.varWords[6], 2464 pmbox->un.varWords[7], 2465 pmbox->un.varWords[8], 2466 pmbox->un.varWords[9], 2467 pmbox->un.varWords[10]); 2468 2469 if (pmb->mbox_cmpl) 2470 pmb->mbox_cmpl(phba,pmb); 2471 } while (1); 2472 return 0; 2473 } 2474 2475 /** 2476 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2477 * @phba: Pointer to HBA context object. 2478 * @pring: Pointer to driver SLI ring object. 2479 * @tag: buffer tag. 2480 * 2481 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2482 * is set in the tag the buffer is posted for a particular exchange, 2483 * the function will return the buffer without replacing the buffer. 2484 * If the buffer is for unsolicited ELS or CT traffic, this function 2485 * returns the buffer and also posts another buffer to the firmware. 2486 **/ 2487 static struct lpfc_dmabuf * 2488 lpfc_sli_get_buff(struct lpfc_hba *phba, 2489 struct lpfc_sli_ring *pring, 2490 uint32_t tag) 2491 { 2492 struct hbq_dmabuf *hbq_entry; 2493 2494 if (tag & QUE_BUFTAG_BIT) 2495 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2496 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2497 if (!hbq_entry) 2498 return NULL; 2499 return &hbq_entry->dbuf; 2500 } 2501 2502 /** 2503 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 2504 * @phba: Pointer to HBA context object. 2505 * @pring: Pointer to driver SLI ring object. 2506 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 2507 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 2508 * @fch_type: the type for the first frame of the sequence. 2509 * 2510 * This function is called with no lock held. This function uses the r_ctl and 2511 * type of the received sequence to find the correct callback function to call 2512 * to process the sequence. 2513 **/ 2514 static int 2515 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2516 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 2517 uint32_t fch_type) 2518 { 2519 int i; 2520 2521 switch (fch_type) { 2522 case FC_TYPE_NVME: 2523 lpfc_nvmet_unsol_ls_event(phba, pring, saveq); 2524 return 1; 2525 default: 2526 break; 2527 } 2528 2529 /* unSolicited Responses */ 2530 if (pring->prt[0].profile) { 2531 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 2532 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 2533 saveq); 2534 return 1; 2535 } 2536 /* We must search, based on rctl / type 2537 for the right routine */ 2538 for (i = 0; i < pring->num_mask; i++) { 2539 if ((pring->prt[i].rctl == fch_r_ctl) && 2540 (pring->prt[i].type == fch_type)) { 2541 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 2542 (pring->prt[i].lpfc_sli_rcv_unsol_event) 2543 (phba, pring, saveq); 2544 return 1; 2545 } 2546 } 2547 return 0; 2548 } 2549 2550 /** 2551 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 2552 * @phba: Pointer to HBA context object. 2553 * @pring: Pointer to driver SLI ring object. 2554 * @saveq: Pointer to the unsolicited iocb. 2555 * 2556 * This function is called with no lock held by the ring event handler 2557 * when there is an unsolicited iocb posted to the response ring by the 2558 * firmware. This function gets the buffer associated with the iocbs 2559 * and calls the event handler for the ring. This function handles both 2560 * qring buffers and hbq buffers. 2561 * When the function returns 1 the caller can free the iocb object otherwise 2562 * upper layer functions will free the iocb objects. 2563 **/ 2564 static int 2565 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2566 struct lpfc_iocbq *saveq) 2567 { 2568 IOCB_t * irsp; 2569 WORD5 * w5p; 2570 uint32_t Rctl, Type; 2571 struct lpfc_iocbq *iocbq; 2572 struct lpfc_dmabuf *dmzbuf; 2573 2574 irsp = &(saveq->iocb); 2575 2576 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 2577 if (pring->lpfc_sli_rcv_async_status) 2578 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 2579 else 2580 lpfc_printf_log(phba, 2581 KERN_WARNING, 2582 LOG_SLI, 2583 "0316 Ring %d handler: unexpected " 2584 "ASYNC_STATUS iocb received evt_code " 2585 "0x%x\n", 2586 pring->ringno, 2587 irsp->un.asyncstat.evt_code); 2588 return 1; 2589 } 2590 2591 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 2592 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 2593 if (irsp->ulpBdeCount > 0) { 2594 dmzbuf = lpfc_sli_get_buff(phba, pring, 2595 irsp->un.ulpWord[3]); 2596 lpfc_in_buf_free(phba, dmzbuf); 2597 } 2598 2599 if (irsp->ulpBdeCount > 1) { 2600 dmzbuf = lpfc_sli_get_buff(phba, pring, 2601 irsp->unsli3.sli3Words[3]); 2602 lpfc_in_buf_free(phba, dmzbuf); 2603 } 2604 2605 if (irsp->ulpBdeCount > 2) { 2606 dmzbuf = lpfc_sli_get_buff(phba, pring, 2607 irsp->unsli3.sli3Words[7]); 2608 lpfc_in_buf_free(phba, dmzbuf); 2609 } 2610 2611 return 1; 2612 } 2613 2614 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 2615 if (irsp->ulpBdeCount != 0) { 2616 saveq->context2 = lpfc_sli_get_buff(phba, pring, 2617 irsp->un.ulpWord[3]); 2618 if (!saveq->context2) 2619 lpfc_printf_log(phba, 2620 KERN_ERR, 2621 LOG_SLI, 2622 "0341 Ring %d Cannot find buffer for " 2623 "an unsolicited iocb. tag 0x%x\n", 2624 pring->ringno, 2625 irsp->un.ulpWord[3]); 2626 } 2627 if (irsp->ulpBdeCount == 2) { 2628 saveq->context3 = lpfc_sli_get_buff(phba, pring, 2629 irsp->unsli3.sli3Words[7]); 2630 if (!saveq->context3) 2631 lpfc_printf_log(phba, 2632 KERN_ERR, 2633 LOG_SLI, 2634 "0342 Ring %d Cannot find buffer for an" 2635 " unsolicited iocb. tag 0x%x\n", 2636 pring->ringno, 2637 irsp->unsli3.sli3Words[7]); 2638 } 2639 list_for_each_entry(iocbq, &saveq->list, list) { 2640 irsp = &(iocbq->iocb); 2641 if (irsp->ulpBdeCount != 0) { 2642 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 2643 irsp->un.ulpWord[3]); 2644 if (!iocbq->context2) 2645 lpfc_printf_log(phba, 2646 KERN_ERR, 2647 LOG_SLI, 2648 "0343 Ring %d Cannot find " 2649 "buffer for an unsolicited iocb" 2650 ". tag 0x%x\n", pring->ringno, 2651 irsp->un.ulpWord[3]); 2652 } 2653 if (irsp->ulpBdeCount == 2) { 2654 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 2655 irsp->unsli3.sli3Words[7]); 2656 if (!iocbq->context3) 2657 lpfc_printf_log(phba, 2658 KERN_ERR, 2659 LOG_SLI, 2660 "0344 Ring %d Cannot find " 2661 "buffer for an unsolicited " 2662 "iocb. tag 0x%x\n", 2663 pring->ringno, 2664 irsp->unsli3.sli3Words[7]); 2665 } 2666 } 2667 } 2668 if (irsp->ulpBdeCount != 0 && 2669 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 2670 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 2671 int found = 0; 2672 2673 /* search continue save q for same XRI */ 2674 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 2675 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 2676 saveq->iocb.unsli3.rcvsli3.ox_id) { 2677 list_add_tail(&saveq->list, &iocbq->list); 2678 found = 1; 2679 break; 2680 } 2681 } 2682 if (!found) 2683 list_add_tail(&saveq->clist, 2684 &pring->iocb_continue_saveq); 2685 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 2686 list_del_init(&iocbq->clist); 2687 saveq = iocbq; 2688 irsp = &(saveq->iocb); 2689 } else 2690 return 0; 2691 } 2692 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 2693 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 2694 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 2695 Rctl = FC_RCTL_ELS_REQ; 2696 Type = FC_TYPE_ELS; 2697 } else { 2698 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 2699 Rctl = w5p->hcsw.Rctl; 2700 Type = w5p->hcsw.Type; 2701 2702 /* Firmware Workaround */ 2703 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 2704 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 2705 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 2706 Rctl = FC_RCTL_ELS_REQ; 2707 Type = FC_TYPE_ELS; 2708 w5p->hcsw.Rctl = Rctl; 2709 w5p->hcsw.Type = Type; 2710 } 2711 } 2712 2713 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 2714 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2715 "0313 Ring %d handler: unexpected Rctl x%x " 2716 "Type x%x received\n", 2717 pring->ringno, Rctl, Type); 2718 2719 return 1; 2720 } 2721 2722 /** 2723 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 2724 * @phba: Pointer to HBA context object. 2725 * @pring: Pointer to driver SLI ring object. 2726 * @prspiocb: Pointer to response iocb object. 2727 * 2728 * This function looks up the iocb_lookup table to get the command iocb 2729 * corresponding to the given response iocb using the iotag of the 2730 * response iocb. This function is called with the hbalock held. 2731 * This function returns the command iocb object if it finds the command 2732 * iocb else returns NULL. 2733 **/ 2734 static struct lpfc_iocbq * 2735 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 2736 struct lpfc_sli_ring *pring, 2737 struct lpfc_iocbq *prspiocb) 2738 { 2739 struct lpfc_iocbq *cmd_iocb = NULL; 2740 uint16_t iotag; 2741 lockdep_assert_held(&phba->hbalock); 2742 2743 iotag = prspiocb->iocb.ulpIoTag; 2744 2745 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2746 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2747 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2748 /* remove from txcmpl queue list */ 2749 list_del_init(&cmd_iocb->list); 2750 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 2751 return cmd_iocb; 2752 } 2753 } 2754 2755 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2756 "0317 iotag x%x is out of " 2757 "range: max iotag x%x wd0 x%x\n", 2758 iotag, phba->sli.last_iotag, 2759 *(((uint32_t *) &prspiocb->iocb) + 7)); 2760 return NULL; 2761 } 2762 2763 /** 2764 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 2765 * @phba: Pointer to HBA context object. 2766 * @pring: Pointer to driver SLI ring object. 2767 * @iotag: IOCB tag. 2768 * 2769 * This function looks up the iocb_lookup table to get the command iocb 2770 * corresponding to the given iotag. This function is called with the 2771 * hbalock held. 2772 * This function returns the command iocb object if it finds the command 2773 * iocb else returns NULL. 2774 **/ 2775 static struct lpfc_iocbq * 2776 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 2777 struct lpfc_sli_ring *pring, uint16_t iotag) 2778 { 2779 struct lpfc_iocbq *cmd_iocb = NULL; 2780 2781 lockdep_assert_held(&phba->hbalock); 2782 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2783 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2784 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2785 /* remove from txcmpl queue list */ 2786 list_del_init(&cmd_iocb->list); 2787 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 2788 return cmd_iocb; 2789 } 2790 } 2791 2792 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2793 "0372 iotag x%x lookup error: max iotag (x%x) " 2794 "iocb_flag x%x\n", 2795 iotag, phba->sli.last_iotag, 2796 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); 2797 return NULL; 2798 } 2799 2800 /** 2801 * lpfc_sli_process_sol_iocb - process solicited iocb completion 2802 * @phba: Pointer to HBA context object. 2803 * @pring: Pointer to driver SLI ring object. 2804 * @saveq: Pointer to the response iocb to be processed. 2805 * 2806 * This function is called by the ring event handler for non-fcp 2807 * rings when there is a new response iocb in the response ring. 2808 * The caller is not required to hold any locks. This function 2809 * gets the command iocb associated with the response iocb and 2810 * calls the completion handler for the command iocb. If there 2811 * is no completion handler, the function will free the resources 2812 * associated with command iocb. If the response iocb is for 2813 * an already aborted command iocb, the status of the completion 2814 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 2815 * This function always returns 1. 2816 **/ 2817 static int 2818 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2819 struct lpfc_iocbq *saveq) 2820 { 2821 struct lpfc_iocbq *cmdiocbp; 2822 int rc = 1; 2823 unsigned long iflag; 2824 2825 /* Based on the iotag field, get the cmd IOCB from the txcmplq */ 2826 spin_lock_irqsave(&phba->hbalock, iflag); 2827 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 2828 spin_unlock_irqrestore(&phba->hbalock, iflag); 2829 2830 if (cmdiocbp) { 2831 if (cmdiocbp->iocb_cmpl) { 2832 /* 2833 * If an ELS command failed send an event to mgmt 2834 * application. 2835 */ 2836 if (saveq->iocb.ulpStatus && 2837 (pring->ringno == LPFC_ELS_RING) && 2838 (cmdiocbp->iocb.ulpCommand == 2839 CMD_ELS_REQUEST64_CR)) 2840 lpfc_send_els_failure_event(phba, 2841 cmdiocbp, saveq); 2842 2843 /* 2844 * Post all ELS completions to the worker thread. 2845 * All other are passed to the completion callback. 2846 */ 2847 if (pring->ringno == LPFC_ELS_RING) { 2848 if ((phba->sli_rev < LPFC_SLI_REV4) && 2849 (cmdiocbp->iocb_flag & 2850 LPFC_DRIVER_ABORTED)) { 2851 spin_lock_irqsave(&phba->hbalock, 2852 iflag); 2853 cmdiocbp->iocb_flag &= 2854 ~LPFC_DRIVER_ABORTED; 2855 spin_unlock_irqrestore(&phba->hbalock, 2856 iflag); 2857 saveq->iocb.ulpStatus = 2858 IOSTAT_LOCAL_REJECT; 2859 saveq->iocb.un.ulpWord[4] = 2860 IOERR_SLI_ABORTED; 2861 2862 /* Firmware could still be in progress 2863 * of DMAing payload, so don't free data 2864 * buffer till after a hbeat. 2865 */ 2866 spin_lock_irqsave(&phba->hbalock, 2867 iflag); 2868 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 2869 spin_unlock_irqrestore(&phba->hbalock, 2870 iflag); 2871 } 2872 if (phba->sli_rev == LPFC_SLI_REV4) { 2873 if (saveq->iocb_flag & 2874 LPFC_EXCHANGE_BUSY) { 2875 /* Set cmdiocb flag for the 2876 * exchange busy so sgl (xri) 2877 * will not be released until 2878 * the abort xri is received 2879 * from hba. 2880 */ 2881 spin_lock_irqsave( 2882 &phba->hbalock, iflag); 2883 cmdiocbp->iocb_flag |= 2884 LPFC_EXCHANGE_BUSY; 2885 spin_unlock_irqrestore( 2886 &phba->hbalock, iflag); 2887 } 2888 if (cmdiocbp->iocb_flag & 2889 LPFC_DRIVER_ABORTED) { 2890 /* 2891 * Clear LPFC_DRIVER_ABORTED 2892 * bit in case it was driver 2893 * initiated abort. 2894 */ 2895 spin_lock_irqsave( 2896 &phba->hbalock, iflag); 2897 cmdiocbp->iocb_flag &= 2898 ~LPFC_DRIVER_ABORTED; 2899 spin_unlock_irqrestore( 2900 &phba->hbalock, iflag); 2901 cmdiocbp->iocb.ulpStatus = 2902 IOSTAT_LOCAL_REJECT; 2903 cmdiocbp->iocb.un.ulpWord[4] = 2904 IOERR_ABORT_REQUESTED; 2905 /* 2906 * For SLI4, irsiocb contains 2907 * NO_XRI in sli_xritag, it 2908 * shall not affect releasing 2909 * sgl (xri) process. 2910 */ 2911 saveq->iocb.ulpStatus = 2912 IOSTAT_LOCAL_REJECT; 2913 saveq->iocb.un.ulpWord[4] = 2914 IOERR_SLI_ABORTED; 2915 spin_lock_irqsave( 2916 &phba->hbalock, iflag); 2917 saveq->iocb_flag |= 2918 LPFC_DELAY_MEM_FREE; 2919 spin_unlock_irqrestore( 2920 &phba->hbalock, iflag); 2921 } 2922 } 2923 } 2924 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 2925 } else 2926 lpfc_sli_release_iocbq(phba, cmdiocbp); 2927 } else { 2928 /* 2929 * Unknown initiating command based on the response iotag. 2930 * This could be the case on the ELS ring because of 2931 * lpfc_els_abort(). 2932 */ 2933 if (pring->ringno != LPFC_ELS_RING) { 2934 /* 2935 * Ring <ringno> handler: unexpected completion IoTag 2936 * <IoTag> 2937 */ 2938 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2939 "0322 Ring %d handler: " 2940 "unexpected completion IoTag x%x " 2941 "Data: x%x x%x x%x x%x\n", 2942 pring->ringno, 2943 saveq->iocb.ulpIoTag, 2944 saveq->iocb.ulpStatus, 2945 saveq->iocb.un.ulpWord[4], 2946 saveq->iocb.ulpCommand, 2947 saveq->iocb.ulpContext); 2948 } 2949 } 2950 2951 return rc; 2952 } 2953 2954 /** 2955 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 2956 * @phba: Pointer to HBA context object. 2957 * @pring: Pointer to driver SLI ring object. 2958 * 2959 * This function is called from the iocb ring event handlers when 2960 * put pointer is ahead of the get pointer for a ring. This function signal 2961 * an error attention condition to the worker thread and the worker 2962 * thread will transition the HBA to offline state. 2963 **/ 2964 static void 2965 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2966 { 2967 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2968 /* 2969 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 2970 * rsp ring <portRspMax> 2971 */ 2972 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2973 "0312 Ring %d handler: portRspPut %d " 2974 "is bigger than rsp ring %d\n", 2975 pring->ringno, le32_to_cpu(pgp->rspPutInx), 2976 pring->sli.sli3.numRiocb); 2977 2978 phba->link_state = LPFC_HBA_ERROR; 2979 2980 /* 2981 * All error attention handlers are posted to 2982 * worker thread 2983 */ 2984 phba->work_ha |= HA_ERATT; 2985 phba->work_hs = HS_FFER3; 2986 2987 lpfc_worker_wake_up(phba); 2988 2989 return; 2990 } 2991 2992 /** 2993 * lpfc_poll_eratt - Error attention polling timer timeout handler 2994 * @ptr: Pointer to address of HBA context object. 2995 * 2996 * This function is invoked by the Error Attention polling timer when the 2997 * timer times out. It will check the SLI Error Attention register for 2998 * possible attention events. If so, it will post an Error Attention event 2999 * and wake up worker thread to process it. Otherwise, it will set up the 3000 * Error Attention polling timer for the next poll. 3001 **/ 3002 void lpfc_poll_eratt(unsigned long ptr) 3003 { 3004 struct lpfc_hba *phba; 3005 uint32_t eratt = 0; 3006 uint64_t sli_intr, cnt; 3007 3008 phba = (struct lpfc_hba *)ptr; 3009 3010 /* Here we will also keep track of interrupts per sec of the hba */ 3011 sli_intr = phba->sli.slistat.sli_intr; 3012 3013 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3014 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3015 sli_intr); 3016 else 3017 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3018 3019 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3020 do_div(cnt, phba->eratt_poll_interval); 3021 phba->sli.slistat.sli_ips = cnt; 3022 3023 phba->sli.slistat.sli_prev_intr = sli_intr; 3024 3025 /* Check chip HA register for error event */ 3026 eratt = lpfc_sli_check_eratt(phba); 3027 3028 if (eratt) 3029 /* Tell the worker thread there is work to do */ 3030 lpfc_worker_wake_up(phba); 3031 else 3032 /* Restart the timer for next eratt poll */ 3033 mod_timer(&phba->eratt_poll, 3034 jiffies + 3035 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3036 return; 3037 } 3038 3039 3040 /** 3041 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3042 * @phba: Pointer to HBA context object. 3043 * @pring: Pointer to driver SLI ring object. 3044 * @mask: Host attention register mask for this ring. 3045 * 3046 * This function is called from the interrupt context when there is a ring 3047 * event for the fcp ring. The caller does not hold any lock. 3048 * The function processes each response iocb in the response ring until it 3049 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3050 * LE bit set. The function will call the completion handler of the command iocb 3051 * if the response iocb indicates a completion for a command iocb or it is 3052 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3053 * function if this is an unsolicited iocb. 3054 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3055 * to check it explicitly. 3056 */ 3057 int 3058 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3059 struct lpfc_sli_ring *pring, uint32_t mask) 3060 { 3061 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3062 IOCB_t *irsp = NULL; 3063 IOCB_t *entry = NULL; 3064 struct lpfc_iocbq *cmdiocbq = NULL; 3065 struct lpfc_iocbq rspiocbq; 3066 uint32_t status; 3067 uint32_t portRspPut, portRspMax; 3068 int rc = 1; 3069 lpfc_iocb_type type; 3070 unsigned long iflag; 3071 uint32_t rsp_cmpl = 0; 3072 3073 spin_lock_irqsave(&phba->hbalock, iflag); 3074 pring->stats.iocb_event++; 3075 3076 /* 3077 * The next available response entry should never exceed the maximum 3078 * entries. If it does, treat it as an adapter hardware error. 3079 */ 3080 portRspMax = pring->sli.sli3.numRiocb; 3081 portRspPut = le32_to_cpu(pgp->rspPutInx); 3082 if (unlikely(portRspPut >= portRspMax)) { 3083 lpfc_sli_rsp_pointers_error(phba, pring); 3084 spin_unlock_irqrestore(&phba->hbalock, iflag); 3085 return 1; 3086 } 3087 if (phba->fcp_ring_in_use) { 3088 spin_unlock_irqrestore(&phba->hbalock, iflag); 3089 return 1; 3090 } else 3091 phba->fcp_ring_in_use = 1; 3092 3093 rmb(); 3094 while (pring->sli.sli3.rspidx != portRspPut) { 3095 /* 3096 * Fetch an entry off the ring and copy it into a local data 3097 * structure. The copy involves a byte-swap since the 3098 * network byte order and pci byte orders are different. 3099 */ 3100 entry = lpfc_resp_iocb(phba, pring); 3101 phba->last_completion_time = jiffies; 3102 3103 if (++pring->sli.sli3.rspidx >= portRspMax) 3104 pring->sli.sli3.rspidx = 0; 3105 3106 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3107 (uint32_t *) &rspiocbq.iocb, 3108 phba->iocb_rsp_size); 3109 INIT_LIST_HEAD(&(rspiocbq.list)); 3110 irsp = &rspiocbq.iocb; 3111 3112 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3113 pring->stats.iocb_rsp++; 3114 rsp_cmpl++; 3115 3116 if (unlikely(irsp->ulpStatus)) { 3117 /* 3118 * If resource errors reported from HBA, reduce 3119 * queuedepths of the SCSI device. 3120 */ 3121 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3122 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3123 IOERR_NO_RESOURCES)) { 3124 spin_unlock_irqrestore(&phba->hbalock, iflag); 3125 phba->lpfc_rampdown_queue_depth(phba); 3126 spin_lock_irqsave(&phba->hbalock, iflag); 3127 } 3128 3129 /* Rsp ring <ringno> error: IOCB */ 3130 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3131 "0336 Rsp Ring %d error: IOCB Data: " 3132 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3133 pring->ringno, 3134 irsp->un.ulpWord[0], 3135 irsp->un.ulpWord[1], 3136 irsp->un.ulpWord[2], 3137 irsp->un.ulpWord[3], 3138 irsp->un.ulpWord[4], 3139 irsp->un.ulpWord[5], 3140 *(uint32_t *)&irsp->un1, 3141 *((uint32_t *)&irsp->un1 + 1)); 3142 } 3143 3144 switch (type) { 3145 case LPFC_ABORT_IOCB: 3146 case LPFC_SOL_IOCB: 3147 /* 3148 * Idle exchange closed via ABTS from port. No iocb 3149 * resources need to be recovered. 3150 */ 3151 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3152 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3153 "0333 IOCB cmd 0x%x" 3154 " processed. Skipping" 3155 " completion\n", 3156 irsp->ulpCommand); 3157 break; 3158 } 3159 3160 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3161 &rspiocbq); 3162 if (unlikely(!cmdiocbq)) 3163 break; 3164 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3165 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3166 if (cmdiocbq->iocb_cmpl) { 3167 spin_unlock_irqrestore(&phba->hbalock, iflag); 3168 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3169 &rspiocbq); 3170 spin_lock_irqsave(&phba->hbalock, iflag); 3171 } 3172 break; 3173 case LPFC_UNSOL_IOCB: 3174 spin_unlock_irqrestore(&phba->hbalock, iflag); 3175 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3176 spin_lock_irqsave(&phba->hbalock, iflag); 3177 break; 3178 default: 3179 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3180 char adaptermsg[LPFC_MAX_ADPTMSG]; 3181 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3182 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3183 MAX_MSG_DATA); 3184 dev_warn(&((phba->pcidev)->dev), 3185 "lpfc%d: %s\n", 3186 phba->brd_no, adaptermsg); 3187 } else { 3188 /* Unknown IOCB command */ 3189 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3190 "0334 Unknown IOCB command " 3191 "Data: x%x, x%x x%x x%x x%x\n", 3192 type, irsp->ulpCommand, 3193 irsp->ulpStatus, 3194 irsp->ulpIoTag, 3195 irsp->ulpContext); 3196 } 3197 break; 3198 } 3199 3200 /* 3201 * The response IOCB has been processed. Update the ring 3202 * pointer in SLIM. If the port response put pointer has not 3203 * been updated, sync the pgp->rspPutInx and fetch the new port 3204 * response put pointer. 3205 */ 3206 writel(pring->sli.sli3.rspidx, 3207 &phba->host_gp[pring->ringno].rspGetInx); 3208 3209 if (pring->sli.sli3.rspidx == portRspPut) 3210 portRspPut = le32_to_cpu(pgp->rspPutInx); 3211 } 3212 3213 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3214 pring->stats.iocb_rsp_full++; 3215 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3216 writel(status, phba->CAregaddr); 3217 readl(phba->CAregaddr); 3218 } 3219 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3220 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3221 pring->stats.iocb_cmd_empty++; 3222 3223 /* Force update of the local copy of cmdGetInx */ 3224 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3225 lpfc_sli_resume_iocb(phba, pring); 3226 3227 if ((pring->lpfc_sli_cmd_available)) 3228 (pring->lpfc_sli_cmd_available) (phba, pring); 3229 3230 } 3231 3232 phba->fcp_ring_in_use = 0; 3233 spin_unlock_irqrestore(&phba->hbalock, iflag); 3234 return rc; 3235 } 3236 3237 /** 3238 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3239 * @phba: Pointer to HBA context object. 3240 * @pring: Pointer to driver SLI ring object. 3241 * @rspiocbp: Pointer to driver response IOCB object. 3242 * 3243 * This function is called from the worker thread when there is a slow-path 3244 * response IOCB to process. This function chains all the response iocbs until 3245 * seeing the iocb with the LE bit set. The function will call 3246 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3247 * completion of a command iocb. The function will call the 3248 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3249 * The function frees the resources or calls the completion handler if this 3250 * iocb is an abort completion. The function returns NULL when the response 3251 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3252 * this function shall chain the iocb on to the iocb_continueq and return the 3253 * response iocb passed in. 3254 **/ 3255 static struct lpfc_iocbq * 3256 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3257 struct lpfc_iocbq *rspiocbp) 3258 { 3259 struct lpfc_iocbq *saveq; 3260 struct lpfc_iocbq *cmdiocbp; 3261 struct lpfc_iocbq *next_iocb; 3262 IOCB_t *irsp = NULL; 3263 uint32_t free_saveq; 3264 uint8_t iocb_cmd_type; 3265 lpfc_iocb_type type; 3266 unsigned long iflag; 3267 int rc; 3268 3269 spin_lock_irqsave(&phba->hbalock, iflag); 3270 /* First add the response iocb to the countinueq list */ 3271 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3272 pring->iocb_continueq_cnt++; 3273 3274 /* Now, determine whether the list is completed for processing */ 3275 irsp = &rspiocbp->iocb; 3276 if (irsp->ulpLe) { 3277 /* 3278 * By default, the driver expects to free all resources 3279 * associated with this iocb completion. 3280 */ 3281 free_saveq = 1; 3282 saveq = list_get_first(&pring->iocb_continueq, 3283 struct lpfc_iocbq, list); 3284 irsp = &(saveq->iocb); 3285 list_del_init(&pring->iocb_continueq); 3286 pring->iocb_continueq_cnt = 0; 3287 3288 pring->stats.iocb_rsp++; 3289 3290 /* 3291 * If resource errors reported from HBA, reduce 3292 * queuedepths of the SCSI device. 3293 */ 3294 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3295 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3296 IOERR_NO_RESOURCES)) { 3297 spin_unlock_irqrestore(&phba->hbalock, iflag); 3298 phba->lpfc_rampdown_queue_depth(phba); 3299 spin_lock_irqsave(&phba->hbalock, iflag); 3300 } 3301 3302 if (irsp->ulpStatus) { 3303 /* Rsp ring <ringno> error: IOCB */ 3304 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3305 "0328 Rsp Ring %d error: " 3306 "IOCB Data: " 3307 "x%x x%x x%x x%x " 3308 "x%x x%x x%x x%x " 3309 "x%x x%x x%x x%x " 3310 "x%x x%x x%x x%x\n", 3311 pring->ringno, 3312 irsp->un.ulpWord[0], 3313 irsp->un.ulpWord[1], 3314 irsp->un.ulpWord[2], 3315 irsp->un.ulpWord[3], 3316 irsp->un.ulpWord[4], 3317 irsp->un.ulpWord[5], 3318 *(((uint32_t *) irsp) + 6), 3319 *(((uint32_t *) irsp) + 7), 3320 *(((uint32_t *) irsp) + 8), 3321 *(((uint32_t *) irsp) + 9), 3322 *(((uint32_t *) irsp) + 10), 3323 *(((uint32_t *) irsp) + 11), 3324 *(((uint32_t *) irsp) + 12), 3325 *(((uint32_t *) irsp) + 13), 3326 *(((uint32_t *) irsp) + 14), 3327 *(((uint32_t *) irsp) + 15)); 3328 } 3329 3330 /* 3331 * Fetch the IOCB command type and call the correct completion 3332 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3333 * get freed back to the lpfc_iocb_list by the discovery 3334 * kernel thread. 3335 */ 3336 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3337 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3338 switch (type) { 3339 case LPFC_SOL_IOCB: 3340 spin_unlock_irqrestore(&phba->hbalock, iflag); 3341 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3342 spin_lock_irqsave(&phba->hbalock, iflag); 3343 break; 3344 3345 case LPFC_UNSOL_IOCB: 3346 spin_unlock_irqrestore(&phba->hbalock, iflag); 3347 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3348 spin_lock_irqsave(&phba->hbalock, iflag); 3349 if (!rc) 3350 free_saveq = 0; 3351 break; 3352 3353 case LPFC_ABORT_IOCB: 3354 cmdiocbp = NULL; 3355 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) 3356 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3357 saveq); 3358 if (cmdiocbp) { 3359 /* Call the specified completion routine */ 3360 if (cmdiocbp->iocb_cmpl) { 3361 spin_unlock_irqrestore(&phba->hbalock, 3362 iflag); 3363 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3364 saveq); 3365 spin_lock_irqsave(&phba->hbalock, 3366 iflag); 3367 } else 3368 __lpfc_sli_release_iocbq(phba, 3369 cmdiocbp); 3370 } 3371 break; 3372 3373 case LPFC_UNKNOWN_IOCB: 3374 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3375 char adaptermsg[LPFC_MAX_ADPTMSG]; 3376 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3377 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3378 MAX_MSG_DATA); 3379 dev_warn(&((phba->pcidev)->dev), 3380 "lpfc%d: %s\n", 3381 phba->brd_no, adaptermsg); 3382 } else { 3383 /* Unknown IOCB command */ 3384 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3385 "0335 Unknown IOCB " 3386 "command Data: x%x " 3387 "x%x x%x x%x\n", 3388 irsp->ulpCommand, 3389 irsp->ulpStatus, 3390 irsp->ulpIoTag, 3391 irsp->ulpContext); 3392 } 3393 break; 3394 } 3395 3396 if (free_saveq) { 3397 list_for_each_entry_safe(rspiocbp, next_iocb, 3398 &saveq->list, list) { 3399 list_del_init(&rspiocbp->list); 3400 __lpfc_sli_release_iocbq(phba, rspiocbp); 3401 } 3402 __lpfc_sli_release_iocbq(phba, saveq); 3403 } 3404 rspiocbp = NULL; 3405 } 3406 spin_unlock_irqrestore(&phba->hbalock, iflag); 3407 return rspiocbp; 3408 } 3409 3410 /** 3411 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3412 * @phba: Pointer to HBA context object. 3413 * @pring: Pointer to driver SLI ring object. 3414 * @mask: Host attention register mask for this ring. 3415 * 3416 * This routine wraps the actual slow_ring event process routine from the 3417 * API jump table function pointer from the lpfc_hba struct. 3418 **/ 3419 void 3420 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 3421 struct lpfc_sli_ring *pring, uint32_t mask) 3422 { 3423 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 3424 } 3425 3426 /** 3427 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 3428 * @phba: Pointer to HBA context object. 3429 * @pring: Pointer to driver SLI ring object. 3430 * @mask: Host attention register mask for this ring. 3431 * 3432 * This function is called from the worker thread when there is a ring event 3433 * for non-fcp rings. The caller does not hold any lock. The function will 3434 * remove each response iocb in the response ring and calls the handle 3435 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3436 **/ 3437 static void 3438 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 3439 struct lpfc_sli_ring *pring, uint32_t mask) 3440 { 3441 struct lpfc_pgp *pgp; 3442 IOCB_t *entry; 3443 IOCB_t *irsp = NULL; 3444 struct lpfc_iocbq *rspiocbp = NULL; 3445 uint32_t portRspPut, portRspMax; 3446 unsigned long iflag; 3447 uint32_t status; 3448 3449 pgp = &phba->port_gp[pring->ringno]; 3450 spin_lock_irqsave(&phba->hbalock, iflag); 3451 pring->stats.iocb_event++; 3452 3453 /* 3454 * The next available response entry should never exceed the maximum 3455 * entries. If it does, treat it as an adapter hardware error. 3456 */ 3457 portRspMax = pring->sli.sli3.numRiocb; 3458 portRspPut = le32_to_cpu(pgp->rspPutInx); 3459 if (portRspPut >= portRspMax) { 3460 /* 3461 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3462 * rsp ring <portRspMax> 3463 */ 3464 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3465 "0303 Ring %d handler: portRspPut %d " 3466 "is bigger than rsp ring %d\n", 3467 pring->ringno, portRspPut, portRspMax); 3468 3469 phba->link_state = LPFC_HBA_ERROR; 3470 spin_unlock_irqrestore(&phba->hbalock, iflag); 3471 3472 phba->work_hs = HS_FFER3; 3473 lpfc_handle_eratt(phba); 3474 3475 return; 3476 } 3477 3478 rmb(); 3479 while (pring->sli.sli3.rspidx != portRspPut) { 3480 /* 3481 * Build a completion list and call the appropriate handler. 3482 * The process is to get the next available response iocb, get 3483 * a free iocb from the list, copy the response data into the 3484 * free iocb, insert to the continuation list, and update the 3485 * next response index to slim. This process makes response 3486 * iocb's in the ring available to DMA as fast as possible but 3487 * pays a penalty for a copy operation. Since the iocb is 3488 * only 32 bytes, this penalty is considered small relative to 3489 * the PCI reads for register values and a slim write. When 3490 * the ulpLe field is set, the entire Command has been 3491 * received. 3492 */ 3493 entry = lpfc_resp_iocb(phba, pring); 3494 3495 phba->last_completion_time = jiffies; 3496 rspiocbp = __lpfc_sli_get_iocbq(phba); 3497 if (rspiocbp == NULL) { 3498 printk(KERN_ERR "%s: out of buffers! Failing " 3499 "completion.\n", __func__); 3500 break; 3501 } 3502 3503 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 3504 phba->iocb_rsp_size); 3505 irsp = &rspiocbp->iocb; 3506 3507 if (++pring->sli.sli3.rspidx >= portRspMax) 3508 pring->sli.sli3.rspidx = 0; 3509 3510 if (pring->ringno == LPFC_ELS_RING) { 3511 lpfc_debugfs_slow_ring_trc(phba, 3512 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 3513 *(((uint32_t *) irsp) + 4), 3514 *(((uint32_t *) irsp) + 6), 3515 *(((uint32_t *) irsp) + 7)); 3516 } 3517 3518 writel(pring->sli.sli3.rspidx, 3519 &phba->host_gp[pring->ringno].rspGetInx); 3520 3521 spin_unlock_irqrestore(&phba->hbalock, iflag); 3522 /* Handle the response IOCB */ 3523 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 3524 spin_lock_irqsave(&phba->hbalock, iflag); 3525 3526 /* 3527 * If the port response put pointer has not been updated, sync 3528 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 3529 * response put pointer. 3530 */ 3531 if (pring->sli.sli3.rspidx == portRspPut) { 3532 portRspPut = le32_to_cpu(pgp->rspPutInx); 3533 } 3534 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 3535 3536 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 3537 /* At least one response entry has been freed */ 3538 pring->stats.iocb_rsp_full++; 3539 /* SET RxRE_RSP in Chip Att register */ 3540 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3541 writel(status, phba->CAregaddr); 3542 readl(phba->CAregaddr); /* flush */ 3543 } 3544 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3545 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3546 pring->stats.iocb_cmd_empty++; 3547 3548 /* Force update of the local copy of cmdGetInx */ 3549 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3550 lpfc_sli_resume_iocb(phba, pring); 3551 3552 if ((pring->lpfc_sli_cmd_available)) 3553 (pring->lpfc_sli_cmd_available) (phba, pring); 3554 3555 } 3556 3557 spin_unlock_irqrestore(&phba->hbalock, iflag); 3558 return; 3559 } 3560 3561 /** 3562 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 3563 * @phba: Pointer to HBA context object. 3564 * @pring: Pointer to driver SLI ring object. 3565 * @mask: Host attention register mask for this ring. 3566 * 3567 * This function is called from the worker thread when there is a pending 3568 * ELS response iocb on the driver internal slow-path response iocb worker 3569 * queue. The caller does not hold any lock. The function will remove each 3570 * response iocb from the response worker queue and calls the handle 3571 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3572 **/ 3573 static void 3574 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 3575 struct lpfc_sli_ring *pring, uint32_t mask) 3576 { 3577 struct lpfc_iocbq *irspiocbq; 3578 struct hbq_dmabuf *dmabuf; 3579 struct lpfc_cq_event *cq_event; 3580 unsigned long iflag; 3581 3582 spin_lock_irqsave(&phba->hbalock, iflag); 3583 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 3584 spin_unlock_irqrestore(&phba->hbalock, iflag); 3585 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 3586 /* Get the response iocb from the head of work queue */ 3587 spin_lock_irqsave(&phba->hbalock, iflag); 3588 list_remove_head(&phba->sli4_hba.sp_queue_event, 3589 cq_event, struct lpfc_cq_event, list); 3590 spin_unlock_irqrestore(&phba->hbalock, iflag); 3591 3592 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 3593 case CQE_CODE_COMPL_WQE: 3594 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 3595 cq_event); 3596 /* Translate ELS WCQE to response IOCBQ */ 3597 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 3598 irspiocbq); 3599 if (irspiocbq) 3600 lpfc_sli_sp_handle_rspiocb(phba, pring, 3601 irspiocbq); 3602 break; 3603 case CQE_CODE_RECEIVE: 3604 case CQE_CODE_RECEIVE_V1: 3605 dmabuf = container_of(cq_event, struct hbq_dmabuf, 3606 cq_event); 3607 lpfc_sli4_handle_received_buffer(phba, dmabuf); 3608 break; 3609 default: 3610 break; 3611 } 3612 } 3613 } 3614 3615 /** 3616 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 3617 * @phba: Pointer to HBA context object. 3618 * @pring: Pointer to driver SLI ring object. 3619 * 3620 * This function aborts all iocbs in the given ring and frees all the iocb 3621 * objects in txq. This function issues an abort iocb for all the iocb commands 3622 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3623 * the return of this function. The caller is not required to hold any locks. 3624 **/ 3625 void 3626 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3627 { 3628 LIST_HEAD(completions); 3629 struct lpfc_iocbq *iocb, *next_iocb; 3630 3631 if (pring->ringno == LPFC_ELS_RING) { 3632 lpfc_fabric_abort_hba(phba); 3633 } 3634 3635 /* Error everything on txq and txcmplq 3636 * First do the txq. 3637 */ 3638 if (phba->sli_rev >= LPFC_SLI_REV4) { 3639 spin_lock_irq(&pring->ring_lock); 3640 list_splice_init(&pring->txq, &completions); 3641 pring->txq_cnt = 0; 3642 spin_unlock_irq(&pring->ring_lock); 3643 3644 spin_lock_irq(&phba->hbalock); 3645 /* Next issue ABTS for everything on the txcmplq */ 3646 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3647 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3648 spin_unlock_irq(&phba->hbalock); 3649 } else { 3650 spin_lock_irq(&phba->hbalock); 3651 list_splice_init(&pring->txq, &completions); 3652 pring->txq_cnt = 0; 3653 3654 /* Next issue ABTS for everything on the txcmplq */ 3655 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3656 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3657 spin_unlock_irq(&phba->hbalock); 3658 } 3659 3660 /* Cancel all the IOCBs from the completions list */ 3661 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 3662 IOERR_SLI_ABORTED); 3663 } 3664 3665 /** 3666 * lpfc_sli_abort_wqe_ring - Abort all iocbs in the ring 3667 * @phba: Pointer to HBA context object. 3668 * @pring: Pointer to driver SLI ring object. 3669 * 3670 * This function aborts all iocbs in the given ring and frees all the iocb 3671 * objects in txq. This function issues an abort iocb for all the iocb commands 3672 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3673 * the return of this function. The caller is not required to hold any locks. 3674 **/ 3675 void 3676 lpfc_sli_abort_wqe_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3677 { 3678 LIST_HEAD(completions); 3679 struct lpfc_iocbq *iocb, *next_iocb; 3680 3681 if (pring->ringno == LPFC_ELS_RING) 3682 lpfc_fabric_abort_hba(phba); 3683 3684 spin_lock_irq(&phba->hbalock); 3685 /* Next issue ABTS for everything on the txcmplq */ 3686 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3687 lpfc_sli4_abort_nvme_io(phba, pring, iocb); 3688 spin_unlock_irq(&phba->hbalock); 3689 } 3690 3691 3692 /** 3693 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 3694 * @phba: Pointer to HBA context object. 3695 * @pring: Pointer to driver SLI ring object. 3696 * 3697 * This function aborts all iocbs in FCP rings and frees all the iocb 3698 * objects in txq. This function issues an abort iocb for all the iocb commands 3699 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3700 * the return of this function. The caller is not required to hold any locks. 3701 **/ 3702 void 3703 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 3704 { 3705 struct lpfc_sli *psli = &phba->sli; 3706 struct lpfc_sli_ring *pring; 3707 uint32_t i; 3708 3709 /* Look on all the FCP Rings for the iotag */ 3710 if (phba->sli_rev >= LPFC_SLI_REV4) { 3711 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3712 pring = phba->sli4_hba.fcp_wq[i]->pring; 3713 lpfc_sli_abort_iocb_ring(phba, pring); 3714 } 3715 } else { 3716 pring = &psli->sli3_ring[LPFC_FCP_RING]; 3717 lpfc_sli_abort_iocb_ring(phba, pring); 3718 } 3719 } 3720 3721 /** 3722 * lpfc_sli_abort_nvme_rings - Abort all wqes in all NVME rings 3723 * @phba: Pointer to HBA context object. 3724 * 3725 * This function aborts all wqes in NVME rings. This function issues an 3726 * abort wqe for all the outstanding IO commands in txcmplq. The iocbs in 3727 * the txcmplq is not guaranteed to complete before the return of this 3728 * function. The caller is not required to hold any locks. 3729 **/ 3730 void 3731 lpfc_sli_abort_nvme_rings(struct lpfc_hba *phba) 3732 { 3733 struct lpfc_sli_ring *pring; 3734 uint32_t i; 3735 3736 if (phba->sli_rev < LPFC_SLI_REV4) 3737 return; 3738 3739 /* Abort all IO on each NVME ring. */ 3740 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 3741 pring = phba->sli4_hba.nvme_wq[i]->pring; 3742 lpfc_sli_abort_wqe_ring(phba, pring); 3743 } 3744 } 3745 3746 3747 /** 3748 * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring 3749 * @phba: Pointer to HBA context object. 3750 * 3751 * This function flushes all iocbs in the fcp ring and frees all the iocb 3752 * objects in txq and txcmplq. This function will not issue abort iocbs 3753 * for all the iocb commands in txcmplq, they will just be returned with 3754 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 3755 * slot has been permanently disabled. 3756 **/ 3757 void 3758 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba) 3759 { 3760 LIST_HEAD(txq); 3761 LIST_HEAD(txcmplq); 3762 struct lpfc_sli *psli = &phba->sli; 3763 struct lpfc_sli_ring *pring; 3764 uint32_t i; 3765 3766 spin_lock_irq(&phba->hbalock); 3767 /* Indicate the I/O queues are flushed */ 3768 phba->hba_flag |= HBA_FCP_IOQ_FLUSH; 3769 spin_unlock_irq(&phba->hbalock); 3770 3771 /* Look on all the FCP Rings for the iotag */ 3772 if (phba->sli_rev >= LPFC_SLI_REV4) { 3773 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3774 pring = phba->sli4_hba.fcp_wq[i]->pring; 3775 3776 spin_lock_irq(&pring->ring_lock); 3777 /* Retrieve everything on txq */ 3778 list_splice_init(&pring->txq, &txq); 3779 /* Retrieve everything on the txcmplq */ 3780 list_splice_init(&pring->txcmplq, &txcmplq); 3781 pring->txq_cnt = 0; 3782 pring->txcmplq_cnt = 0; 3783 spin_unlock_irq(&pring->ring_lock); 3784 3785 /* Flush the txq */ 3786 lpfc_sli_cancel_iocbs(phba, &txq, 3787 IOSTAT_LOCAL_REJECT, 3788 IOERR_SLI_DOWN); 3789 /* Flush the txcmpq */ 3790 lpfc_sli_cancel_iocbs(phba, &txcmplq, 3791 IOSTAT_LOCAL_REJECT, 3792 IOERR_SLI_DOWN); 3793 } 3794 } else { 3795 pring = &psli->sli3_ring[LPFC_FCP_RING]; 3796 3797 spin_lock_irq(&phba->hbalock); 3798 /* Retrieve everything on txq */ 3799 list_splice_init(&pring->txq, &txq); 3800 /* Retrieve everything on the txcmplq */ 3801 list_splice_init(&pring->txcmplq, &txcmplq); 3802 pring->txq_cnt = 0; 3803 pring->txcmplq_cnt = 0; 3804 spin_unlock_irq(&phba->hbalock); 3805 3806 /* Flush the txq */ 3807 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 3808 IOERR_SLI_DOWN); 3809 /* Flush the txcmpq */ 3810 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 3811 IOERR_SLI_DOWN); 3812 } 3813 } 3814 3815 /** 3816 * lpfc_sli_flush_nvme_rings - flush all wqes in the nvme rings 3817 * @phba: Pointer to HBA context object. 3818 * 3819 * This function flushes all wqes in the nvme rings and frees all resources 3820 * in the txcmplq. This function does not issue abort wqes for the IO 3821 * commands in txcmplq, they will just be returned with 3822 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 3823 * slot has been permanently disabled. 3824 **/ 3825 void 3826 lpfc_sli_flush_nvme_rings(struct lpfc_hba *phba) 3827 { 3828 LIST_HEAD(txcmplq); 3829 struct lpfc_sli_ring *pring; 3830 uint32_t i; 3831 3832 if (phba->sli_rev < LPFC_SLI_REV4) 3833 return; 3834 3835 /* Hint to other driver operations that a flush is in progress. */ 3836 spin_lock_irq(&phba->hbalock); 3837 phba->hba_flag |= HBA_NVME_IOQ_FLUSH; 3838 spin_unlock_irq(&phba->hbalock); 3839 3840 /* Cycle through all NVME rings and complete each IO with 3841 * a local driver reason code. This is a flush so no 3842 * abort exchange to FW. 3843 */ 3844 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 3845 pring = phba->sli4_hba.nvme_wq[i]->pring; 3846 3847 /* Retrieve everything on the txcmplq */ 3848 spin_lock_irq(&pring->ring_lock); 3849 list_splice_init(&pring->txcmplq, &txcmplq); 3850 pring->txcmplq_cnt = 0; 3851 spin_unlock_irq(&pring->ring_lock); 3852 3853 /* Flush the txcmpq &&&PAE */ 3854 lpfc_sli_cancel_iocbs(phba, &txcmplq, 3855 IOSTAT_LOCAL_REJECT, 3856 IOERR_SLI_DOWN); 3857 } 3858 } 3859 3860 /** 3861 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 3862 * @phba: Pointer to HBA context object. 3863 * @mask: Bit mask to be checked. 3864 * 3865 * This function reads the host status register and compares 3866 * with the provided bit mask to check if HBA completed 3867 * the restart. This function will wait in a loop for the 3868 * HBA to complete restart. If the HBA does not restart within 3869 * 15 iterations, the function will reset the HBA again. The 3870 * function returns 1 when HBA fail to restart otherwise returns 3871 * zero. 3872 **/ 3873 static int 3874 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 3875 { 3876 uint32_t status; 3877 int i = 0; 3878 int retval = 0; 3879 3880 /* Read the HBA Host Status Register */ 3881 if (lpfc_readl(phba->HSregaddr, &status)) 3882 return 1; 3883 3884 /* 3885 * Check status register every 100ms for 5 retries, then every 3886 * 500ms for 5, then every 2.5 sec for 5, then reset board and 3887 * every 2.5 sec for 4. 3888 * Break our of the loop if errors occurred during init. 3889 */ 3890 while (((status & mask) != mask) && 3891 !(status & HS_FFERM) && 3892 i++ < 20) { 3893 3894 if (i <= 5) 3895 msleep(10); 3896 else if (i <= 10) 3897 msleep(500); 3898 else 3899 msleep(2500); 3900 3901 if (i == 15) { 3902 /* Do post */ 3903 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 3904 lpfc_sli_brdrestart(phba); 3905 } 3906 /* Read the HBA Host Status Register */ 3907 if (lpfc_readl(phba->HSregaddr, &status)) { 3908 retval = 1; 3909 break; 3910 } 3911 } 3912 3913 /* Check to see if any errors occurred during init */ 3914 if ((status & HS_FFERM) || (i >= 20)) { 3915 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 3916 "2751 Adapter failed to restart, " 3917 "status reg x%x, FW Data: A8 x%x AC x%x\n", 3918 status, 3919 readl(phba->MBslimaddr + 0xa8), 3920 readl(phba->MBslimaddr + 0xac)); 3921 phba->link_state = LPFC_HBA_ERROR; 3922 retval = 1; 3923 } 3924 3925 return retval; 3926 } 3927 3928 /** 3929 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 3930 * @phba: Pointer to HBA context object. 3931 * @mask: Bit mask to be checked. 3932 * 3933 * This function checks the host status register to check if HBA is 3934 * ready. This function will wait in a loop for the HBA to be ready 3935 * If the HBA is not ready , the function will will reset the HBA PCI 3936 * function again. The function returns 1 when HBA fail to be ready 3937 * otherwise returns zero. 3938 **/ 3939 static int 3940 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 3941 { 3942 uint32_t status; 3943 int retval = 0; 3944 3945 /* Read the HBA Host Status Register */ 3946 status = lpfc_sli4_post_status_check(phba); 3947 3948 if (status) { 3949 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 3950 lpfc_sli_brdrestart(phba); 3951 status = lpfc_sli4_post_status_check(phba); 3952 } 3953 3954 /* Check to see if any errors occurred during init */ 3955 if (status) { 3956 phba->link_state = LPFC_HBA_ERROR; 3957 retval = 1; 3958 } else 3959 phba->sli4_hba.intr_enable = 0; 3960 3961 return retval; 3962 } 3963 3964 /** 3965 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 3966 * @phba: Pointer to HBA context object. 3967 * @mask: Bit mask to be checked. 3968 * 3969 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 3970 * from the API jump table function pointer from the lpfc_hba struct. 3971 **/ 3972 int 3973 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 3974 { 3975 return phba->lpfc_sli_brdready(phba, mask); 3976 } 3977 3978 #define BARRIER_TEST_PATTERN (0xdeadbeef) 3979 3980 /** 3981 * lpfc_reset_barrier - Make HBA ready for HBA reset 3982 * @phba: Pointer to HBA context object. 3983 * 3984 * This function is called before resetting an HBA. This function is called 3985 * with hbalock held and requests HBA to quiesce DMAs before a reset. 3986 **/ 3987 void lpfc_reset_barrier(struct lpfc_hba *phba) 3988 { 3989 uint32_t __iomem *resp_buf; 3990 uint32_t __iomem *mbox_buf; 3991 volatile uint32_t mbox; 3992 uint32_t hc_copy, ha_copy, resp_data; 3993 int i; 3994 uint8_t hdrtype; 3995 3996 lockdep_assert_held(&phba->hbalock); 3997 3998 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 3999 if (hdrtype != 0x80 || 4000 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4001 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4002 return; 4003 4004 /* 4005 * Tell the other part of the chip to suspend temporarily all 4006 * its DMA activity. 4007 */ 4008 resp_buf = phba->MBslimaddr; 4009 4010 /* Disable the error attention */ 4011 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4012 return; 4013 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4014 readl(phba->HCregaddr); /* flush */ 4015 phba->link_flag |= LS_IGNORE_ERATT; 4016 4017 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4018 return; 4019 if (ha_copy & HA_ERATT) { 4020 /* Clear Chip error bit */ 4021 writel(HA_ERATT, phba->HAregaddr); 4022 phba->pport->stopped = 1; 4023 } 4024 4025 mbox = 0; 4026 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 4027 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 4028 4029 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4030 mbox_buf = phba->MBslimaddr; 4031 writel(mbox, mbox_buf); 4032 4033 for (i = 0; i < 50; i++) { 4034 if (lpfc_readl((resp_buf + 1), &resp_data)) 4035 return; 4036 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4037 mdelay(1); 4038 else 4039 break; 4040 } 4041 resp_data = 0; 4042 if (lpfc_readl((resp_buf + 1), &resp_data)) 4043 return; 4044 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4045 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4046 phba->pport->stopped) 4047 goto restore_hc; 4048 else 4049 goto clear_errat; 4050 } 4051 4052 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 4053 resp_data = 0; 4054 for (i = 0; i < 500; i++) { 4055 if (lpfc_readl(resp_buf, &resp_data)) 4056 return; 4057 if (resp_data != mbox) 4058 mdelay(1); 4059 else 4060 break; 4061 } 4062 4063 clear_errat: 4064 4065 while (++i < 500) { 4066 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4067 return; 4068 if (!(ha_copy & HA_ERATT)) 4069 mdelay(1); 4070 else 4071 break; 4072 } 4073 4074 if (readl(phba->HAregaddr) & HA_ERATT) { 4075 writel(HA_ERATT, phba->HAregaddr); 4076 phba->pport->stopped = 1; 4077 } 4078 4079 restore_hc: 4080 phba->link_flag &= ~LS_IGNORE_ERATT; 4081 writel(hc_copy, phba->HCregaddr); 4082 readl(phba->HCregaddr); /* flush */ 4083 } 4084 4085 /** 4086 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4087 * @phba: Pointer to HBA context object. 4088 * 4089 * This function issues a kill_board mailbox command and waits for 4090 * the error attention interrupt. This function is called for stopping 4091 * the firmware processing. The caller is not required to hold any 4092 * locks. This function calls lpfc_hba_down_post function to free 4093 * any pending commands after the kill. The function will return 1 when it 4094 * fails to kill the board else will return 0. 4095 **/ 4096 int 4097 lpfc_sli_brdkill(struct lpfc_hba *phba) 4098 { 4099 struct lpfc_sli *psli; 4100 LPFC_MBOXQ_t *pmb; 4101 uint32_t status; 4102 uint32_t ha_copy; 4103 int retval; 4104 int i = 0; 4105 4106 psli = &phba->sli; 4107 4108 /* Kill HBA */ 4109 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4110 "0329 Kill HBA Data: x%x x%x\n", 4111 phba->pport->port_state, psli->sli_flag); 4112 4113 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4114 if (!pmb) 4115 return 1; 4116 4117 /* Disable the error attention */ 4118 spin_lock_irq(&phba->hbalock); 4119 if (lpfc_readl(phba->HCregaddr, &status)) { 4120 spin_unlock_irq(&phba->hbalock); 4121 mempool_free(pmb, phba->mbox_mem_pool); 4122 return 1; 4123 } 4124 status &= ~HC_ERINT_ENA; 4125 writel(status, phba->HCregaddr); 4126 readl(phba->HCregaddr); /* flush */ 4127 phba->link_flag |= LS_IGNORE_ERATT; 4128 spin_unlock_irq(&phba->hbalock); 4129 4130 lpfc_kill_board(phba, pmb); 4131 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4132 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4133 4134 if (retval != MBX_SUCCESS) { 4135 if (retval != MBX_BUSY) 4136 mempool_free(pmb, phba->mbox_mem_pool); 4137 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4138 "2752 KILL_BOARD command failed retval %d\n", 4139 retval); 4140 spin_lock_irq(&phba->hbalock); 4141 phba->link_flag &= ~LS_IGNORE_ERATT; 4142 spin_unlock_irq(&phba->hbalock); 4143 return 1; 4144 } 4145 4146 spin_lock_irq(&phba->hbalock); 4147 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4148 spin_unlock_irq(&phba->hbalock); 4149 4150 mempool_free(pmb, phba->mbox_mem_pool); 4151 4152 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4153 * attention every 100ms for 3 seconds. If we don't get ERATT after 4154 * 3 seconds we still set HBA_ERROR state because the status of the 4155 * board is now undefined. 4156 */ 4157 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4158 return 1; 4159 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4160 mdelay(100); 4161 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4162 return 1; 4163 } 4164 4165 del_timer_sync(&psli->mbox_tmo); 4166 if (ha_copy & HA_ERATT) { 4167 writel(HA_ERATT, phba->HAregaddr); 4168 phba->pport->stopped = 1; 4169 } 4170 spin_lock_irq(&phba->hbalock); 4171 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4172 psli->mbox_active = NULL; 4173 phba->link_flag &= ~LS_IGNORE_ERATT; 4174 spin_unlock_irq(&phba->hbalock); 4175 4176 lpfc_hba_down_post(phba); 4177 phba->link_state = LPFC_HBA_ERROR; 4178 4179 return ha_copy & HA_ERATT ? 0 : 1; 4180 } 4181 4182 /** 4183 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4184 * @phba: Pointer to HBA context object. 4185 * 4186 * This function resets the HBA by writing HC_INITFF to the control 4187 * register. After the HBA resets, this function resets all the iocb ring 4188 * indices. This function disables PCI layer parity checking during 4189 * the reset. 4190 * This function returns 0 always. 4191 * The caller is not required to hold any locks. 4192 **/ 4193 int 4194 lpfc_sli_brdreset(struct lpfc_hba *phba) 4195 { 4196 struct lpfc_sli *psli; 4197 struct lpfc_sli_ring *pring; 4198 uint16_t cfg_value; 4199 int i; 4200 4201 psli = &phba->sli; 4202 4203 /* Reset HBA */ 4204 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4205 "0325 Reset HBA Data: x%x x%x\n", 4206 phba->pport->port_state, psli->sli_flag); 4207 4208 /* perform board reset */ 4209 phba->fc_eventTag = 0; 4210 phba->link_events = 0; 4211 phba->pport->fc_myDID = 0; 4212 phba->pport->fc_prevDID = 0; 4213 4214 /* Turn off parity checking and serr during the physical reset */ 4215 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4216 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4217 (cfg_value & 4218 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4219 4220 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4221 4222 /* Now toggle INITFF bit in the Host Control Register */ 4223 writel(HC_INITFF, phba->HCregaddr); 4224 mdelay(1); 4225 readl(phba->HCregaddr); /* flush */ 4226 writel(0, phba->HCregaddr); 4227 readl(phba->HCregaddr); /* flush */ 4228 4229 /* Restore PCI cmd register */ 4230 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4231 4232 /* Initialize relevant SLI info */ 4233 for (i = 0; i < psli->num_rings; i++) { 4234 pring = &psli->sli3_ring[i]; 4235 pring->flag = 0; 4236 pring->sli.sli3.rspidx = 0; 4237 pring->sli.sli3.next_cmdidx = 0; 4238 pring->sli.sli3.local_getidx = 0; 4239 pring->sli.sli3.cmdidx = 0; 4240 pring->missbufcnt = 0; 4241 } 4242 4243 phba->link_state = LPFC_WARM_START; 4244 return 0; 4245 } 4246 4247 /** 4248 * lpfc_sli4_brdreset - Reset a sli-4 HBA 4249 * @phba: Pointer to HBA context object. 4250 * 4251 * This function resets a SLI4 HBA. This function disables PCI layer parity 4252 * checking during resets the device. The caller is not required to hold 4253 * any locks. 4254 * 4255 * This function returns 0 always. 4256 **/ 4257 int 4258 lpfc_sli4_brdreset(struct lpfc_hba *phba) 4259 { 4260 struct lpfc_sli *psli = &phba->sli; 4261 uint16_t cfg_value; 4262 int rc = 0; 4263 4264 /* Reset HBA */ 4265 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4266 "0295 Reset HBA Data: x%x x%x x%x\n", 4267 phba->pport->port_state, psli->sli_flag, 4268 phba->hba_flag); 4269 4270 /* perform board reset */ 4271 phba->fc_eventTag = 0; 4272 phba->link_events = 0; 4273 phba->pport->fc_myDID = 0; 4274 phba->pport->fc_prevDID = 0; 4275 4276 spin_lock_irq(&phba->hbalock); 4277 psli->sli_flag &= ~(LPFC_PROCESS_LA); 4278 phba->fcf.fcf_flag = 0; 4279 spin_unlock_irq(&phba->hbalock); 4280 4281 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 4282 if (phba->hba_flag & HBA_FW_DUMP_OP) { 4283 phba->hba_flag &= ~HBA_FW_DUMP_OP; 4284 return rc; 4285 } 4286 4287 /* Now physically reset the device */ 4288 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4289 "0389 Performing PCI function reset!\n"); 4290 4291 /* Turn off parity checking and serr during the physical reset */ 4292 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4293 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4294 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4295 4296 /* Perform FCoE PCI function reset before freeing queue memory */ 4297 rc = lpfc_pci_function_reset(phba); 4298 lpfc_sli4_queue_destroy(phba); 4299 4300 /* Restore PCI cmd register */ 4301 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4302 4303 return rc; 4304 } 4305 4306 /** 4307 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4308 * @phba: Pointer to HBA context object. 4309 * 4310 * This function is called in the SLI initialization code path to 4311 * restart the HBA. The caller is not required to hold any lock. 4312 * This function writes MBX_RESTART mailbox command to the SLIM and 4313 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4314 * function to free any pending commands. The function enables 4315 * POST only during the first initialization. The function returns zero. 4316 * The function does not guarantee completion of MBX_RESTART mailbox 4317 * command before the return of this function. 4318 **/ 4319 static int 4320 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4321 { 4322 MAILBOX_t *mb; 4323 struct lpfc_sli *psli; 4324 volatile uint32_t word0; 4325 void __iomem *to_slim; 4326 uint32_t hba_aer_enabled; 4327 4328 spin_lock_irq(&phba->hbalock); 4329 4330 /* Take PCIe device Advanced Error Reporting (AER) state */ 4331 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4332 4333 psli = &phba->sli; 4334 4335 /* Restart HBA */ 4336 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4337 "0337 Restart HBA Data: x%x x%x\n", 4338 phba->pport->port_state, psli->sli_flag); 4339 4340 word0 = 0; 4341 mb = (MAILBOX_t *) &word0; 4342 mb->mbxCommand = MBX_RESTART; 4343 mb->mbxHc = 1; 4344 4345 lpfc_reset_barrier(phba); 4346 4347 to_slim = phba->MBslimaddr; 4348 writel(*(uint32_t *) mb, to_slim); 4349 readl(to_slim); /* flush */ 4350 4351 /* Only skip post after fc_ffinit is completed */ 4352 if (phba->pport->port_state) 4353 word0 = 1; /* This is really setting up word1 */ 4354 else 4355 word0 = 0; /* This is really setting up word1 */ 4356 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4357 writel(*(uint32_t *) mb, to_slim); 4358 readl(to_slim); /* flush */ 4359 4360 lpfc_sli_brdreset(phba); 4361 phba->pport->stopped = 0; 4362 phba->link_state = LPFC_INIT_START; 4363 phba->hba_flag = 0; 4364 spin_unlock_irq(&phba->hbalock); 4365 4366 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4367 psli->stats_start = get_seconds(); 4368 4369 /* Give the INITFF and Post time to settle. */ 4370 mdelay(100); 4371 4372 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4373 if (hba_aer_enabled) 4374 pci_disable_pcie_error_reporting(phba->pcidev); 4375 4376 lpfc_hba_down_post(phba); 4377 4378 return 0; 4379 } 4380 4381 /** 4382 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4383 * @phba: Pointer to HBA context object. 4384 * 4385 * This function is called in the SLI initialization code path to restart 4386 * a SLI4 HBA. The caller is not required to hold any lock. 4387 * At the end of the function, it calls lpfc_hba_down_post function to 4388 * free any pending commands. 4389 **/ 4390 static int 4391 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4392 { 4393 struct lpfc_sli *psli = &phba->sli; 4394 uint32_t hba_aer_enabled; 4395 int rc; 4396 4397 /* Restart HBA */ 4398 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4399 "0296 Restart HBA Data: x%x x%x\n", 4400 phba->pport->port_state, psli->sli_flag); 4401 4402 /* Take PCIe device Advanced Error Reporting (AER) state */ 4403 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4404 4405 rc = lpfc_sli4_brdreset(phba); 4406 4407 spin_lock_irq(&phba->hbalock); 4408 phba->pport->stopped = 0; 4409 phba->link_state = LPFC_INIT_START; 4410 phba->hba_flag = 0; 4411 spin_unlock_irq(&phba->hbalock); 4412 4413 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4414 psli->stats_start = get_seconds(); 4415 4416 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4417 if (hba_aer_enabled) 4418 pci_disable_pcie_error_reporting(phba->pcidev); 4419 4420 lpfc_hba_down_post(phba); 4421 4422 return rc; 4423 } 4424 4425 /** 4426 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4427 * @phba: Pointer to HBA context object. 4428 * 4429 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4430 * API jump table function pointer from the lpfc_hba struct. 4431 **/ 4432 int 4433 lpfc_sli_brdrestart(struct lpfc_hba *phba) 4434 { 4435 return phba->lpfc_sli_brdrestart(phba); 4436 } 4437 4438 /** 4439 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4440 * @phba: Pointer to HBA context object. 4441 * 4442 * This function is called after a HBA restart to wait for successful 4443 * restart of the HBA. Successful restart of the HBA is indicated by 4444 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4445 * iteration, the function will restart the HBA again. The function returns 4446 * zero if HBA successfully restarted else returns negative error code. 4447 **/ 4448 static int 4449 lpfc_sli_chipset_init(struct lpfc_hba *phba) 4450 { 4451 uint32_t status, i = 0; 4452 4453 /* Read the HBA Host Status Register */ 4454 if (lpfc_readl(phba->HSregaddr, &status)) 4455 return -EIO; 4456 4457 /* Check status register to see what current state is */ 4458 i = 0; 4459 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4460 4461 /* Check every 10ms for 10 retries, then every 100ms for 90 4462 * retries, then every 1 sec for 50 retires for a total of 4463 * ~60 seconds before reset the board again and check every 4464 * 1 sec for 50 retries. The up to 60 seconds before the 4465 * board ready is required by the Falcon FIPS zeroization 4466 * complete, and any reset the board in between shall cause 4467 * restart of zeroization, further delay the board ready. 4468 */ 4469 if (i++ >= 200) { 4470 /* Adapter failed to init, timeout, status reg 4471 <status> */ 4472 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4473 "0436 Adapter failed to init, " 4474 "timeout, status reg x%x, " 4475 "FW Data: A8 x%x AC x%x\n", status, 4476 readl(phba->MBslimaddr + 0xa8), 4477 readl(phba->MBslimaddr + 0xac)); 4478 phba->link_state = LPFC_HBA_ERROR; 4479 return -ETIMEDOUT; 4480 } 4481 4482 /* Check to see if any errors occurred during init */ 4483 if (status & HS_FFERM) { 4484 /* ERROR: During chipset initialization */ 4485 /* Adapter failed to init, chipset, status reg 4486 <status> */ 4487 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4488 "0437 Adapter failed to init, " 4489 "chipset, status reg x%x, " 4490 "FW Data: A8 x%x AC x%x\n", status, 4491 readl(phba->MBslimaddr + 0xa8), 4492 readl(phba->MBslimaddr + 0xac)); 4493 phba->link_state = LPFC_HBA_ERROR; 4494 return -EIO; 4495 } 4496 4497 if (i <= 10) 4498 msleep(10); 4499 else if (i <= 100) 4500 msleep(100); 4501 else 4502 msleep(1000); 4503 4504 if (i == 150) { 4505 /* Do post */ 4506 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4507 lpfc_sli_brdrestart(phba); 4508 } 4509 /* Read the HBA Host Status Register */ 4510 if (lpfc_readl(phba->HSregaddr, &status)) 4511 return -EIO; 4512 } 4513 4514 /* Check to see if any errors occurred during init */ 4515 if (status & HS_FFERM) { 4516 /* ERROR: During chipset initialization */ 4517 /* Adapter failed to init, chipset, status reg <status> */ 4518 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4519 "0438 Adapter failed to init, chipset, " 4520 "status reg x%x, " 4521 "FW Data: A8 x%x AC x%x\n", status, 4522 readl(phba->MBslimaddr + 0xa8), 4523 readl(phba->MBslimaddr + 0xac)); 4524 phba->link_state = LPFC_HBA_ERROR; 4525 return -EIO; 4526 } 4527 4528 /* Clear all interrupt enable conditions */ 4529 writel(0, phba->HCregaddr); 4530 readl(phba->HCregaddr); /* flush */ 4531 4532 /* setup host attn register */ 4533 writel(0xffffffff, phba->HAregaddr); 4534 readl(phba->HAregaddr); /* flush */ 4535 return 0; 4536 } 4537 4538 /** 4539 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 4540 * 4541 * This function calculates and returns the number of HBQs required to be 4542 * configured. 4543 **/ 4544 int 4545 lpfc_sli_hbq_count(void) 4546 { 4547 return ARRAY_SIZE(lpfc_hbq_defs); 4548 } 4549 4550 /** 4551 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 4552 * 4553 * This function adds the number of hbq entries in every HBQ to get 4554 * the total number of hbq entries required for the HBA and returns 4555 * the total count. 4556 **/ 4557 static int 4558 lpfc_sli_hbq_entry_count(void) 4559 { 4560 int hbq_count = lpfc_sli_hbq_count(); 4561 int count = 0; 4562 int i; 4563 4564 for (i = 0; i < hbq_count; ++i) 4565 count += lpfc_hbq_defs[i]->entry_count; 4566 return count; 4567 } 4568 4569 /** 4570 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 4571 * 4572 * This function calculates amount of memory required for all hbq entries 4573 * to be configured and returns the total memory required. 4574 **/ 4575 int 4576 lpfc_sli_hbq_size(void) 4577 { 4578 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 4579 } 4580 4581 /** 4582 * lpfc_sli_hbq_setup - configure and initialize HBQs 4583 * @phba: Pointer to HBA context object. 4584 * 4585 * This function is called during the SLI initialization to configure 4586 * all the HBQs and post buffers to the HBQ. The caller is not 4587 * required to hold any locks. This function will return zero if successful 4588 * else it will return negative error code. 4589 **/ 4590 static int 4591 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 4592 { 4593 int hbq_count = lpfc_sli_hbq_count(); 4594 LPFC_MBOXQ_t *pmb; 4595 MAILBOX_t *pmbox; 4596 uint32_t hbqno; 4597 uint32_t hbq_entry_index; 4598 4599 /* Get a Mailbox buffer to setup mailbox 4600 * commands for HBA initialization 4601 */ 4602 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4603 4604 if (!pmb) 4605 return -ENOMEM; 4606 4607 pmbox = &pmb->u.mb; 4608 4609 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 4610 phba->link_state = LPFC_INIT_MBX_CMDS; 4611 phba->hbq_in_use = 1; 4612 4613 hbq_entry_index = 0; 4614 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 4615 phba->hbqs[hbqno].next_hbqPutIdx = 0; 4616 phba->hbqs[hbqno].hbqPutIdx = 0; 4617 phba->hbqs[hbqno].local_hbqGetIdx = 0; 4618 phba->hbqs[hbqno].entry_count = 4619 lpfc_hbq_defs[hbqno]->entry_count; 4620 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 4621 hbq_entry_index, pmb); 4622 hbq_entry_index += phba->hbqs[hbqno].entry_count; 4623 4624 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 4625 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 4626 mbxStatus <status>, ring <num> */ 4627 4628 lpfc_printf_log(phba, KERN_ERR, 4629 LOG_SLI | LOG_VPORT, 4630 "1805 Adapter failed to init. " 4631 "Data: x%x x%x x%x\n", 4632 pmbox->mbxCommand, 4633 pmbox->mbxStatus, hbqno); 4634 4635 phba->link_state = LPFC_HBA_ERROR; 4636 mempool_free(pmb, phba->mbox_mem_pool); 4637 return -ENXIO; 4638 } 4639 } 4640 phba->hbq_count = hbq_count; 4641 4642 mempool_free(pmb, phba->mbox_mem_pool); 4643 4644 /* Initially populate or replenish the HBQs */ 4645 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 4646 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 4647 return 0; 4648 } 4649 4650 /** 4651 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 4652 * @phba: Pointer to HBA context object. 4653 * 4654 * This function is called during the SLI initialization to configure 4655 * all the HBQs and post buffers to the HBQ. The caller is not 4656 * required to hold any locks. This function will return zero if successful 4657 * else it will return negative error code. 4658 **/ 4659 static int 4660 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 4661 { 4662 phba->hbq_in_use = 1; 4663 phba->hbqs[LPFC_ELS_HBQ].entry_count = 4664 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 4665 phba->hbq_count = 1; 4666 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 4667 /* Initially populate or replenish the HBQs */ 4668 return 0; 4669 } 4670 4671 /** 4672 * lpfc_sli_config_port - Issue config port mailbox command 4673 * @phba: Pointer to HBA context object. 4674 * @sli_mode: sli mode - 2/3 4675 * 4676 * This function is called by the sli initialization code path 4677 * to issue config_port mailbox command. This function restarts the 4678 * HBA firmware and issues a config_port mailbox command to configure 4679 * the SLI interface in the sli mode specified by sli_mode 4680 * variable. The caller is not required to hold any locks. 4681 * The function returns 0 if successful, else returns negative error 4682 * code. 4683 **/ 4684 int 4685 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 4686 { 4687 LPFC_MBOXQ_t *pmb; 4688 uint32_t resetcount = 0, rc = 0, done = 0; 4689 4690 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4691 if (!pmb) { 4692 phba->link_state = LPFC_HBA_ERROR; 4693 return -ENOMEM; 4694 } 4695 4696 phba->sli_rev = sli_mode; 4697 while (resetcount < 2 && !done) { 4698 spin_lock_irq(&phba->hbalock); 4699 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 4700 spin_unlock_irq(&phba->hbalock); 4701 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4702 lpfc_sli_brdrestart(phba); 4703 rc = lpfc_sli_chipset_init(phba); 4704 if (rc) 4705 break; 4706 4707 spin_lock_irq(&phba->hbalock); 4708 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4709 spin_unlock_irq(&phba->hbalock); 4710 resetcount++; 4711 4712 /* Call pre CONFIG_PORT mailbox command initialization. A 4713 * value of 0 means the call was successful. Any other 4714 * nonzero value is a failure, but if ERESTART is returned, 4715 * the driver may reset the HBA and try again. 4716 */ 4717 rc = lpfc_config_port_prep(phba); 4718 if (rc == -ERESTART) { 4719 phba->link_state = LPFC_LINK_UNKNOWN; 4720 continue; 4721 } else if (rc) 4722 break; 4723 4724 phba->link_state = LPFC_INIT_MBX_CMDS; 4725 lpfc_config_port(phba, pmb); 4726 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 4727 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 4728 LPFC_SLI3_HBQ_ENABLED | 4729 LPFC_SLI3_CRP_ENABLED | 4730 LPFC_SLI3_BG_ENABLED | 4731 LPFC_SLI3_DSS_ENABLED); 4732 if (rc != MBX_SUCCESS) { 4733 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4734 "0442 Adapter failed to init, mbxCmd x%x " 4735 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 4736 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 4737 spin_lock_irq(&phba->hbalock); 4738 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 4739 spin_unlock_irq(&phba->hbalock); 4740 rc = -ENXIO; 4741 } else { 4742 /* Allow asynchronous mailbox command to go through */ 4743 spin_lock_irq(&phba->hbalock); 4744 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 4745 spin_unlock_irq(&phba->hbalock); 4746 done = 1; 4747 4748 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 4749 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 4750 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 4751 "3110 Port did not grant ASABT\n"); 4752 } 4753 } 4754 if (!done) { 4755 rc = -EINVAL; 4756 goto do_prep_failed; 4757 } 4758 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 4759 if (!pmb->u.mb.un.varCfgPort.cMA) { 4760 rc = -ENXIO; 4761 goto do_prep_failed; 4762 } 4763 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 4764 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 4765 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 4766 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 4767 phba->max_vpi : phba->max_vports; 4768 4769 } else 4770 phba->max_vpi = 0; 4771 phba->fips_level = 0; 4772 phba->fips_spec_rev = 0; 4773 if (pmb->u.mb.un.varCfgPort.gdss) { 4774 phba->sli3_options |= LPFC_SLI3_DSS_ENABLED; 4775 phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level; 4776 phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev; 4777 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4778 "2850 Security Crypto Active. FIPS x%d " 4779 "(Spec Rev: x%d)", 4780 phba->fips_level, phba->fips_spec_rev); 4781 } 4782 if (pmb->u.mb.un.varCfgPort.sec_err) { 4783 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4784 "2856 Config Port Security Crypto " 4785 "Error: x%x ", 4786 pmb->u.mb.un.varCfgPort.sec_err); 4787 } 4788 if (pmb->u.mb.un.varCfgPort.gerbm) 4789 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 4790 if (pmb->u.mb.un.varCfgPort.gcrp) 4791 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 4792 4793 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 4794 phba->port_gp = phba->mbox->us.s3_pgp.port; 4795 4796 if (phba->cfg_enable_bg) { 4797 if (pmb->u.mb.un.varCfgPort.gbg) 4798 phba->sli3_options |= LPFC_SLI3_BG_ENABLED; 4799 else 4800 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4801 "0443 Adapter did not grant " 4802 "BlockGuard\n"); 4803 } 4804 } else { 4805 phba->hbq_get = NULL; 4806 phba->port_gp = phba->mbox->us.s2.port; 4807 phba->max_vpi = 0; 4808 } 4809 do_prep_failed: 4810 mempool_free(pmb, phba->mbox_mem_pool); 4811 return rc; 4812 } 4813 4814 4815 /** 4816 * lpfc_sli_hba_setup - SLI initialization function 4817 * @phba: Pointer to HBA context object. 4818 * 4819 * This function is the main SLI initialization function. This function 4820 * is called by the HBA initialization code, HBA reset code and HBA 4821 * error attention handler code. Caller is not required to hold any 4822 * locks. This function issues config_port mailbox command to configure 4823 * the SLI, setup iocb rings and HBQ rings. In the end the function 4824 * calls the config_port_post function to issue init_link mailbox 4825 * command and to start the discovery. The function will return zero 4826 * if successful, else it will return negative error code. 4827 **/ 4828 int 4829 lpfc_sli_hba_setup(struct lpfc_hba *phba) 4830 { 4831 uint32_t rc; 4832 int mode = 3, i; 4833 int longs; 4834 4835 switch (phba->cfg_sli_mode) { 4836 case 2: 4837 if (phba->cfg_enable_npiv) { 4838 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4839 "1824 NPIV enabled: Override sli_mode " 4840 "parameter (%d) to auto (0).\n", 4841 phba->cfg_sli_mode); 4842 break; 4843 } 4844 mode = 2; 4845 break; 4846 case 0: 4847 case 3: 4848 break; 4849 default: 4850 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4851 "1819 Unrecognized sli_mode parameter: %d.\n", 4852 phba->cfg_sli_mode); 4853 4854 break; 4855 } 4856 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 4857 4858 rc = lpfc_sli_config_port(phba, mode); 4859 4860 if (rc && phba->cfg_sli_mode == 3) 4861 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4862 "1820 Unable to select SLI-3. " 4863 "Not supported by adapter.\n"); 4864 if (rc && mode != 2) 4865 rc = lpfc_sli_config_port(phba, 2); 4866 else if (rc && mode == 2) 4867 rc = lpfc_sli_config_port(phba, 3); 4868 if (rc) 4869 goto lpfc_sli_hba_setup_error; 4870 4871 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 4872 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 4873 rc = pci_enable_pcie_error_reporting(phba->pcidev); 4874 if (!rc) { 4875 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4876 "2709 This device supports " 4877 "Advanced Error Reporting (AER)\n"); 4878 spin_lock_irq(&phba->hbalock); 4879 phba->hba_flag |= HBA_AER_ENABLED; 4880 spin_unlock_irq(&phba->hbalock); 4881 } else { 4882 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4883 "2708 This device does not support " 4884 "Advanced Error Reporting (AER): %d\n", 4885 rc); 4886 phba->cfg_aer_support = 0; 4887 } 4888 } 4889 4890 if (phba->sli_rev == 3) { 4891 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 4892 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 4893 } else { 4894 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 4895 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 4896 phba->sli3_options = 0; 4897 } 4898 4899 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4900 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 4901 phba->sli_rev, phba->max_vpi); 4902 rc = lpfc_sli_ring_map(phba); 4903 4904 if (rc) 4905 goto lpfc_sli_hba_setup_error; 4906 4907 /* Initialize VPIs. */ 4908 if (phba->sli_rev == LPFC_SLI_REV3) { 4909 /* 4910 * The VPI bitmask and physical ID array are allocated 4911 * and initialized once only - at driver load. A port 4912 * reset doesn't need to reinitialize this memory. 4913 */ 4914 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 4915 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 4916 phba->vpi_bmask = kzalloc(longs * sizeof(unsigned long), 4917 GFP_KERNEL); 4918 if (!phba->vpi_bmask) { 4919 rc = -ENOMEM; 4920 goto lpfc_sli_hba_setup_error; 4921 } 4922 4923 phba->vpi_ids = kzalloc( 4924 (phba->max_vpi+1) * sizeof(uint16_t), 4925 GFP_KERNEL); 4926 if (!phba->vpi_ids) { 4927 kfree(phba->vpi_bmask); 4928 rc = -ENOMEM; 4929 goto lpfc_sli_hba_setup_error; 4930 } 4931 for (i = 0; i < phba->max_vpi; i++) 4932 phba->vpi_ids[i] = i; 4933 } 4934 } 4935 4936 /* Init HBQs */ 4937 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 4938 rc = lpfc_sli_hbq_setup(phba); 4939 if (rc) 4940 goto lpfc_sli_hba_setup_error; 4941 } 4942 spin_lock_irq(&phba->hbalock); 4943 phba->sli.sli_flag |= LPFC_PROCESS_LA; 4944 spin_unlock_irq(&phba->hbalock); 4945 4946 rc = lpfc_config_port_post(phba); 4947 if (rc) 4948 goto lpfc_sli_hba_setup_error; 4949 4950 return rc; 4951 4952 lpfc_sli_hba_setup_error: 4953 phba->link_state = LPFC_HBA_ERROR; 4954 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4955 "0445 Firmware initialization failed\n"); 4956 return rc; 4957 } 4958 4959 /** 4960 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 4961 * @phba: Pointer to HBA context object. 4962 * @mboxq: mailbox pointer. 4963 * This function issue a dump mailbox command to read config region 4964 * 23 and parse the records in the region and populate driver 4965 * data structure. 4966 **/ 4967 static int 4968 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 4969 { 4970 LPFC_MBOXQ_t *mboxq; 4971 struct lpfc_dmabuf *mp; 4972 struct lpfc_mqe *mqe; 4973 uint32_t data_length; 4974 int rc; 4975 4976 /* Program the default value of vlan_id and fc_map */ 4977 phba->valid_vlan = 0; 4978 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 4979 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 4980 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 4981 4982 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4983 if (!mboxq) 4984 return -ENOMEM; 4985 4986 mqe = &mboxq->u.mqe; 4987 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 4988 rc = -ENOMEM; 4989 goto out_free_mboxq; 4990 } 4991 4992 mp = (struct lpfc_dmabuf *) mboxq->context1; 4993 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4994 4995 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 4996 "(%d):2571 Mailbox cmd x%x Status x%x " 4997 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 4998 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 4999 "CQ: x%x x%x x%x x%x\n", 5000 mboxq->vport ? mboxq->vport->vpi : 0, 5001 bf_get(lpfc_mqe_command, mqe), 5002 bf_get(lpfc_mqe_status, mqe), 5003 mqe->un.mb_words[0], mqe->un.mb_words[1], 5004 mqe->un.mb_words[2], mqe->un.mb_words[3], 5005 mqe->un.mb_words[4], mqe->un.mb_words[5], 5006 mqe->un.mb_words[6], mqe->un.mb_words[7], 5007 mqe->un.mb_words[8], mqe->un.mb_words[9], 5008 mqe->un.mb_words[10], mqe->un.mb_words[11], 5009 mqe->un.mb_words[12], mqe->un.mb_words[13], 5010 mqe->un.mb_words[14], mqe->un.mb_words[15], 5011 mqe->un.mb_words[16], mqe->un.mb_words[50], 5012 mboxq->mcqe.word0, 5013 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5014 mboxq->mcqe.trailer); 5015 5016 if (rc) { 5017 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5018 kfree(mp); 5019 rc = -EIO; 5020 goto out_free_mboxq; 5021 } 5022 data_length = mqe->un.mb_words[5]; 5023 if (data_length > DMP_RGN23_SIZE) { 5024 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5025 kfree(mp); 5026 rc = -EIO; 5027 goto out_free_mboxq; 5028 } 5029 5030 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5031 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5032 kfree(mp); 5033 rc = 0; 5034 5035 out_free_mboxq: 5036 mempool_free(mboxq, phba->mbox_mem_pool); 5037 return rc; 5038 } 5039 5040 /** 5041 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5042 * @phba: pointer to lpfc hba data structure. 5043 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5044 * @vpd: pointer to the memory to hold resulting port vpd data. 5045 * @vpd_size: On input, the number of bytes allocated to @vpd. 5046 * On output, the number of data bytes in @vpd. 5047 * 5048 * This routine executes a READ_REV SLI4 mailbox command. In 5049 * addition, this routine gets the port vpd data. 5050 * 5051 * Return codes 5052 * 0 - successful 5053 * -ENOMEM - could not allocated memory. 5054 **/ 5055 static int 5056 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5057 uint8_t *vpd, uint32_t *vpd_size) 5058 { 5059 int rc = 0; 5060 uint32_t dma_size; 5061 struct lpfc_dmabuf *dmabuf; 5062 struct lpfc_mqe *mqe; 5063 5064 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5065 if (!dmabuf) 5066 return -ENOMEM; 5067 5068 /* 5069 * Get a DMA buffer for the vpd data resulting from the READ_REV 5070 * mailbox command. 5071 */ 5072 dma_size = *vpd_size; 5073 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, dma_size, 5074 &dmabuf->phys, GFP_KERNEL); 5075 if (!dmabuf->virt) { 5076 kfree(dmabuf); 5077 return -ENOMEM; 5078 } 5079 5080 /* 5081 * The SLI4 implementation of READ_REV conflicts at word1, 5082 * bits 31:16 and SLI4 adds vpd functionality not present 5083 * in SLI3. This code corrects the conflicts. 5084 */ 5085 lpfc_read_rev(phba, mboxq); 5086 mqe = &mboxq->u.mqe; 5087 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5088 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5089 mqe->un.read_rev.word1 &= 0x0000FFFF; 5090 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5091 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5092 5093 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5094 if (rc) { 5095 dma_free_coherent(&phba->pcidev->dev, dma_size, 5096 dmabuf->virt, dmabuf->phys); 5097 kfree(dmabuf); 5098 return -EIO; 5099 } 5100 5101 /* 5102 * The available vpd length cannot be bigger than the 5103 * DMA buffer passed to the port. Catch the less than 5104 * case and update the caller's size. 5105 */ 5106 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5107 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5108 5109 memcpy(vpd, dmabuf->virt, *vpd_size); 5110 5111 dma_free_coherent(&phba->pcidev->dev, dma_size, 5112 dmabuf->virt, dmabuf->phys); 5113 kfree(dmabuf); 5114 return 0; 5115 } 5116 5117 /** 5118 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 5119 * @phba: pointer to lpfc hba data structure. 5120 * 5121 * This routine retrieves SLI4 device physical port name this PCI function 5122 * is attached to. 5123 * 5124 * Return codes 5125 * 0 - successful 5126 * otherwise - failed to retrieve physical port name 5127 **/ 5128 static int 5129 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 5130 { 5131 LPFC_MBOXQ_t *mboxq; 5132 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5133 struct lpfc_controller_attribute *cntl_attr; 5134 struct lpfc_mbx_get_port_name *get_port_name; 5135 void *virtaddr = NULL; 5136 uint32_t alloclen, reqlen; 5137 uint32_t shdr_status, shdr_add_status; 5138 union lpfc_sli4_cfg_shdr *shdr; 5139 char cport_name = 0; 5140 int rc; 5141 5142 /* We assume nothing at this point */ 5143 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5144 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 5145 5146 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5147 if (!mboxq) 5148 return -ENOMEM; 5149 /* obtain link type and link number via READ_CONFIG */ 5150 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5151 lpfc_sli4_read_config(phba); 5152 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 5153 goto retrieve_ppname; 5154 5155 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 5156 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5157 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5158 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5159 LPFC_SLI4_MBX_NEMBED); 5160 if (alloclen < reqlen) { 5161 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5162 "3084 Allocated DMA memory size (%d) is " 5163 "less than the requested DMA memory size " 5164 "(%d)\n", alloclen, reqlen); 5165 rc = -ENOMEM; 5166 goto out_free_mboxq; 5167 } 5168 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5169 virtaddr = mboxq->sge_array->addr[0]; 5170 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5171 shdr = &mbx_cntl_attr->cfg_shdr; 5172 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5173 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5174 if (shdr_status || shdr_add_status || rc) { 5175 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5176 "3085 Mailbox x%x (x%x/x%x) failed, " 5177 "rc:x%x, status:x%x, add_status:x%x\n", 5178 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5179 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5180 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5181 rc, shdr_status, shdr_add_status); 5182 rc = -ENXIO; 5183 goto out_free_mboxq; 5184 } 5185 cntl_attr = &mbx_cntl_attr->cntl_attr; 5186 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5187 phba->sli4_hba.lnk_info.lnk_tp = 5188 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5189 phba->sli4_hba.lnk_info.lnk_no = 5190 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5191 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5192 "3086 lnk_type:%d, lnk_numb:%d\n", 5193 phba->sli4_hba.lnk_info.lnk_tp, 5194 phba->sli4_hba.lnk_info.lnk_no); 5195 5196 retrieve_ppname: 5197 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5198 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5199 sizeof(struct lpfc_mbx_get_port_name) - 5200 sizeof(struct lpfc_sli4_cfg_mhdr), 5201 LPFC_SLI4_MBX_EMBED); 5202 get_port_name = &mboxq->u.mqe.un.get_port_name; 5203 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5204 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5205 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5206 phba->sli4_hba.lnk_info.lnk_tp); 5207 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5208 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5209 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5210 if (shdr_status || shdr_add_status || rc) { 5211 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5212 "3087 Mailbox x%x (x%x/x%x) failed: " 5213 "rc:x%x, status:x%x, add_status:x%x\n", 5214 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5215 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5216 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5217 rc, shdr_status, shdr_add_status); 5218 rc = -ENXIO; 5219 goto out_free_mboxq; 5220 } 5221 switch (phba->sli4_hba.lnk_info.lnk_no) { 5222 case LPFC_LINK_NUMBER_0: 5223 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 5224 &get_port_name->u.response); 5225 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5226 break; 5227 case LPFC_LINK_NUMBER_1: 5228 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 5229 &get_port_name->u.response); 5230 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5231 break; 5232 case LPFC_LINK_NUMBER_2: 5233 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 5234 &get_port_name->u.response); 5235 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5236 break; 5237 case LPFC_LINK_NUMBER_3: 5238 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 5239 &get_port_name->u.response); 5240 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5241 break; 5242 default: 5243 break; 5244 } 5245 5246 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 5247 phba->Port[0] = cport_name; 5248 phba->Port[1] = '\0'; 5249 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5250 "3091 SLI get port name: %s\n", phba->Port); 5251 } 5252 5253 out_free_mboxq: 5254 if (rc != MBX_TIMEOUT) { 5255 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5256 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5257 else 5258 mempool_free(mboxq, phba->mbox_mem_pool); 5259 } 5260 return rc; 5261 } 5262 5263 /** 5264 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 5265 * @phba: pointer to lpfc hba data structure. 5266 * 5267 * This routine is called to explicitly arm the SLI4 device's completion and 5268 * event queues 5269 **/ 5270 static void 5271 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 5272 { 5273 int qidx; 5274 5275 lpfc_sli4_cq_release(phba->sli4_hba.mbx_cq, LPFC_QUEUE_REARM); 5276 lpfc_sli4_cq_release(phba->sli4_hba.els_cq, LPFC_QUEUE_REARM); 5277 if (phba->sli4_hba.nvmels_cq) 5278 lpfc_sli4_cq_release(phba->sli4_hba.nvmels_cq, 5279 LPFC_QUEUE_REARM); 5280 5281 if (phba->sli4_hba.fcp_cq) 5282 for (qidx = 0; qidx < phba->cfg_fcp_io_channel; qidx++) 5283 lpfc_sli4_cq_release(phba->sli4_hba.fcp_cq[qidx], 5284 LPFC_QUEUE_REARM); 5285 5286 if (phba->sli4_hba.nvme_cq) 5287 for (qidx = 0; qidx < phba->cfg_nvme_io_channel; qidx++) 5288 lpfc_sli4_cq_release(phba->sli4_hba.nvme_cq[qidx], 5289 LPFC_QUEUE_REARM); 5290 5291 if (phba->cfg_fof) 5292 lpfc_sli4_cq_release(phba->sli4_hba.oas_cq, LPFC_QUEUE_REARM); 5293 5294 if (phba->sli4_hba.hba_eq) 5295 for (qidx = 0; qidx < phba->io_channel_irqs; qidx++) 5296 lpfc_sli4_eq_release(phba->sli4_hba.hba_eq[qidx], 5297 LPFC_QUEUE_REARM); 5298 5299 if (phba->nvmet_support) { 5300 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 5301 lpfc_sli4_cq_release( 5302 phba->sli4_hba.nvmet_cqset[qidx], 5303 LPFC_QUEUE_REARM); 5304 } 5305 } 5306 5307 if (phba->cfg_fof) 5308 lpfc_sli4_eq_release(phba->sli4_hba.fof_eq, LPFC_QUEUE_REARM); 5309 } 5310 5311 /** 5312 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 5313 * @phba: Pointer to HBA context object. 5314 * @type: The resource extent type. 5315 * @extnt_count: buffer to hold port available extent count. 5316 * @extnt_size: buffer to hold element count per extent. 5317 * 5318 * This function calls the port and retrievs the number of available 5319 * extents and their size for a particular extent type. 5320 * 5321 * Returns: 0 if successful. Nonzero otherwise. 5322 **/ 5323 int 5324 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5325 uint16_t *extnt_count, uint16_t *extnt_size) 5326 { 5327 int rc = 0; 5328 uint32_t length; 5329 uint32_t mbox_tmo; 5330 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5331 LPFC_MBOXQ_t *mbox; 5332 5333 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5334 if (!mbox) 5335 return -ENOMEM; 5336 5337 /* Find out how many extents are available for this resource type */ 5338 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5339 sizeof(struct lpfc_sli4_cfg_mhdr)); 5340 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5341 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5342 length, LPFC_SLI4_MBX_EMBED); 5343 5344 /* Send an extents count of 0 - the GET doesn't use it. */ 5345 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5346 LPFC_SLI4_MBX_EMBED); 5347 if (unlikely(rc)) { 5348 rc = -EIO; 5349 goto err_exit; 5350 } 5351 5352 if (!phba->sli4_hba.intr_enable) 5353 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5354 else { 5355 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5356 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5357 } 5358 if (unlikely(rc)) { 5359 rc = -EIO; 5360 goto err_exit; 5361 } 5362 5363 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5364 if (bf_get(lpfc_mbox_hdr_status, 5365 &rsrc_info->header.cfg_shdr.response)) { 5366 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5367 "2930 Failed to get resource extents " 5368 "Status 0x%x Add'l Status 0x%x\n", 5369 bf_get(lpfc_mbox_hdr_status, 5370 &rsrc_info->header.cfg_shdr.response), 5371 bf_get(lpfc_mbox_hdr_add_status, 5372 &rsrc_info->header.cfg_shdr.response)); 5373 rc = -EIO; 5374 goto err_exit; 5375 } 5376 5377 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5378 &rsrc_info->u.rsp); 5379 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5380 &rsrc_info->u.rsp); 5381 5382 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5383 "3162 Retrieved extents type-%d from port: count:%d, " 5384 "size:%d\n", type, *extnt_count, *extnt_size); 5385 5386 err_exit: 5387 mempool_free(mbox, phba->mbox_mem_pool); 5388 return rc; 5389 } 5390 5391 /** 5392 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5393 * @phba: Pointer to HBA context object. 5394 * @type: The extent type to check. 5395 * 5396 * This function reads the current available extents from the port and checks 5397 * if the extent count or extent size has changed since the last access. 5398 * Callers use this routine post port reset to understand if there is a 5399 * extent reprovisioning requirement. 5400 * 5401 * Returns: 5402 * -Error: error indicates problem. 5403 * 1: Extent count or size has changed. 5404 * 0: No changes. 5405 **/ 5406 static int 5407 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5408 { 5409 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5410 uint16_t size_diff, rsrc_ext_size; 5411 int rc = 0; 5412 struct lpfc_rsrc_blks *rsrc_entry; 5413 struct list_head *rsrc_blk_list = NULL; 5414 5415 size_diff = 0; 5416 curr_ext_cnt = 0; 5417 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5418 &rsrc_ext_cnt, 5419 &rsrc_ext_size); 5420 if (unlikely(rc)) 5421 return -EIO; 5422 5423 switch (type) { 5424 case LPFC_RSC_TYPE_FCOE_RPI: 5425 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5426 break; 5427 case LPFC_RSC_TYPE_FCOE_VPI: 5428 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5429 break; 5430 case LPFC_RSC_TYPE_FCOE_XRI: 5431 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5432 break; 5433 case LPFC_RSC_TYPE_FCOE_VFI: 5434 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5435 break; 5436 default: 5437 break; 5438 } 5439 5440 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5441 curr_ext_cnt++; 5442 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5443 size_diff++; 5444 } 5445 5446 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5447 rc = 1; 5448 5449 return rc; 5450 } 5451 5452 /** 5453 * lpfc_sli4_cfg_post_extnts - 5454 * @phba: Pointer to HBA context object. 5455 * @extnt_cnt - number of available extents. 5456 * @type - the extent type (rpi, xri, vfi, vpi). 5457 * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5458 * @mbox - pointer to the caller's allocated mailbox structure. 5459 * 5460 * This function executes the extents allocation request. It also 5461 * takes care of the amount of memory needed to allocate or get the 5462 * allocated extents. It is the caller's responsibility to evaluate 5463 * the response. 5464 * 5465 * Returns: 5466 * -Error: Error value describes the condition found. 5467 * 0: if successful 5468 **/ 5469 static int 5470 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 5471 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 5472 { 5473 int rc = 0; 5474 uint32_t req_len; 5475 uint32_t emb_len; 5476 uint32_t alloc_len, mbox_tmo; 5477 5478 /* Calculate the total requested length of the dma memory */ 5479 req_len = extnt_cnt * sizeof(uint16_t); 5480 5481 /* 5482 * Calculate the size of an embedded mailbox. The uint32_t 5483 * accounts for extents-specific word. 5484 */ 5485 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 5486 sizeof(uint32_t); 5487 5488 /* 5489 * Presume the allocation and response will fit into an embedded 5490 * mailbox. If not true, reconfigure to a non-embedded mailbox. 5491 */ 5492 *emb = LPFC_SLI4_MBX_EMBED; 5493 if (req_len > emb_len) { 5494 req_len = extnt_cnt * sizeof(uint16_t) + 5495 sizeof(union lpfc_sli4_cfg_shdr) + 5496 sizeof(uint32_t); 5497 *emb = LPFC_SLI4_MBX_NEMBED; 5498 } 5499 5500 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5501 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 5502 req_len, *emb); 5503 if (alloc_len < req_len) { 5504 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5505 "2982 Allocated DMA memory size (x%x) is " 5506 "less than the requested DMA memory " 5507 "size (x%x)\n", alloc_len, req_len); 5508 return -ENOMEM; 5509 } 5510 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 5511 if (unlikely(rc)) 5512 return -EIO; 5513 5514 if (!phba->sli4_hba.intr_enable) 5515 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5516 else { 5517 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5518 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5519 } 5520 5521 if (unlikely(rc)) 5522 rc = -EIO; 5523 return rc; 5524 } 5525 5526 /** 5527 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 5528 * @phba: Pointer to HBA context object. 5529 * @type: The resource extent type to allocate. 5530 * 5531 * This function allocates the number of elements for the specified 5532 * resource type. 5533 **/ 5534 static int 5535 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 5536 { 5537 bool emb = false; 5538 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 5539 uint16_t rsrc_id, rsrc_start, j, k; 5540 uint16_t *ids; 5541 int i, rc; 5542 unsigned long longs; 5543 unsigned long *bmask; 5544 struct lpfc_rsrc_blks *rsrc_blks; 5545 LPFC_MBOXQ_t *mbox; 5546 uint32_t length; 5547 struct lpfc_id_range *id_array = NULL; 5548 void *virtaddr = NULL; 5549 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 5550 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 5551 struct list_head *ext_blk_list; 5552 5553 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5554 &rsrc_cnt, 5555 &rsrc_size); 5556 if (unlikely(rc)) 5557 return -EIO; 5558 5559 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 5560 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5561 "3009 No available Resource Extents " 5562 "for resource type 0x%x: Count: 0x%x, " 5563 "Size 0x%x\n", type, rsrc_cnt, 5564 rsrc_size); 5565 return -ENOMEM; 5566 } 5567 5568 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 5569 "2903 Post resource extents type-0x%x: " 5570 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 5571 5572 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5573 if (!mbox) 5574 return -ENOMEM; 5575 5576 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 5577 if (unlikely(rc)) { 5578 rc = -EIO; 5579 goto err_exit; 5580 } 5581 5582 /* 5583 * Figure out where the response is located. Then get local pointers 5584 * to the response data. The port does not guarantee to respond to 5585 * all extents counts request so update the local variable with the 5586 * allocated count from the port. 5587 */ 5588 if (emb == LPFC_SLI4_MBX_EMBED) { 5589 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 5590 id_array = &rsrc_ext->u.rsp.id[0]; 5591 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 5592 } else { 5593 virtaddr = mbox->sge_array->addr[0]; 5594 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 5595 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 5596 id_array = &n_rsrc->id; 5597 } 5598 5599 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 5600 rsrc_id_cnt = rsrc_cnt * rsrc_size; 5601 5602 /* 5603 * Based on the resource size and count, correct the base and max 5604 * resource values. 5605 */ 5606 length = sizeof(struct lpfc_rsrc_blks); 5607 switch (type) { 5608 case LPFC_RSC_TYPE_FCOE_RPI: 5609 phba->sli4_hba.rpi_bmask = kzalloc(longs * 5610 sizeof(unsigned long), 5611 GFP_KERNEL); 5612 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 5613 rc = -ENOMEM; 5614 goto err_exit; 5615 } 5616 phba->sli4_hba.rpi_ids = kzalloc(rsrc_id_cnt * 5617 sizeof(uint16_t), 5618 GFP_KERNEL); 5619 if (unlikely(!phba->sli4_hba.rpi_ids)) { 5620 kfree(phba->sli4_hba.rpi_bmask); 5621 rc = -ENOMEM; 5622 goto err_exit; 5623 } 5624 5625 /* 5626 * The next_rpi was initialized with the maximum available 5627 * count but the port may allocate a smaller number. Catch 5628 * that case and update the next_rpi. 5629 */ 5630 phba->sli4_hba.next_rpi = rsrc_id_cnt; 5631 5632 /* Initialize local ptrs for common extent processing later. */ 5633 bmask = phba->sli4_hba.rpi_bmask; 5634 ids = phba->sli4_hba.rpi_ids; 5635 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5636 break; 5637 case LPFC_RSC_TYPE_FCOE_VPI: 5638 phba->vpi_bmask = kzalloc(longs * 5639 sizeof(unsigned long), 5640 GFP_KERNEL); 5641 if (unlikely(!phba->vpi_bmask)) { 5642 rc = -ENOMEM; 5643 goto err_exit; 5644 } 5645 phba->vpi_ids = kzalloc(rsrc_id_cnt * 5646 sizeof(uint16_t), 5647 GFP_KERNEL); 5648 if (unlikely(!phba->vpi_ids)) { 5649 kfree(phba->vpi_bmask); 5650 rc = -ENOMEM; 5651 goto err_exit; 5652 } 5653 5654 /* Initialize local ptrs for common extent processing later. */ 5655 bmask = phba->vpi_bmask; 5656 ids = phba->vpi_ids; 5657 ext_blk_list = &phba->lpfc_vpi_blk_list; 5658 break; 5659 case LPFC_RSC_TYPE_FCOE_XRI: 5660 phba->sli4_hba.xri_bmask = kzalloc(longs * 5661 sizeof(unsigned long), 5662 GFP_KERNEL); 5663 if (unlikely(!phba->sli4_hba.xri_bmask)) { 5664 rc = -ENOMEM; 5665 goto err_exit; 5666 } 5667 phba->sli4_hba.max_cfg_param.xri_used = 0; 5668 phba->sli4_hba.xri_ids = kzalloc(rsrc_id_cnt * 5669 sizeof(uint16_t), 5670 GFP_KERNEL); 5671 if (unlikely(!phba->sli4_hba.xri_ids)) { 5672 kfree(phba->sli4_hba.xri_bmask); 5673 rc = -ENOMEM; 5674 goto err_exit; 5675 } 5676 5677 /* Initialize local ptrs for common extent processing later. */ 5678 bmask = phba->sli4_hba.xri_bmask; 5679 ids = phba->sli4_hba.xri_ids; 5680 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5681 break; 5682 case LPFC_RSC_TYPE_FCOE_VFI: 5683 phba->sli4_hba.vfi_bmask = kzalloc(longs * 5684 sizeof(unsigned long), 5685 GFP_KERNEL); 5686 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 5687 rc = -ENOMEM; 5688 goto err_exit; 5689 } 5690 phba->sli4_hba.vfi_ids = kzalloc(rsrc_id_cnt * 5691 sizeof(uint16_t), 5692 GFP_KERNEL); 5693 if (unlikely(!phba->sli4_hba.vfi_ids)) { 5694 kfree(phba->sli4_hba.vfi_bmask); 5695 rc = -ENOMEM; 5696 goto err_exit; 5697 } 5698 5699 /* Initialize local ptrs for common extent processing later. */ 5700 bmask = phba->sli4_hba.vfi_bmask; 5701 ids = phba->sli4_hba.vfi_ids; 5702 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5703 break; 5704 default: 5705 /* Unsupported Opcode. Fail call. */ 5706 id_array = NULL; 5707 bmask = NULL; 5708 ids = NULL; 5709 ext_blk_list = NULL; 5710 goto err_exit; 5711 } 5712 5713 /* 5714 * Complete initializing the extent configuration with the 5715 * allocated ids assigned to this function. The bitmask serves 5716 * as an index into the array and manages the available ids. The 5717 * array just stores the ids communicated to the port via the wqes. 5718 */ 5719 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 5720 if ((i % 2) == 0) 5721 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 5722 &id_array[k]); 5723 else 5724 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 5725 &id_array[k]); 5726 5727 rsrc_blks = kzalloc(length, GFP_KERNEL); 5728 if (unlikely(!rsrc_blks)) { 5729 rc = -ENOMEM; 5730 kfree(bmask); 5731 kfree(ids); 5732 goto err_exit; 5733 } 5734 rsrc_blks->rsrc_start = rsrc_id; 5735 rsrc_blks->rsrc_size = rsrc_size; 5736 list_add_tail(&rsrc_blks->list, ext_blk_list); 5737 rsrc_start = rsrc_id; 5738 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 5739 phba->sli4_hba.scsi_xri_start = rsrc_start + 5740 lpfc_sli4_get_iocb_cnt(phba); 5741 phba->sli4_hba.nvme_xri_start = 5742 phba->sli4_hba.scsi_xri_start + 5743 phba->sli4_hba.scsi_xri_max; 5744 } 5745 5746 while (rsrc_id < (rsrc_start + rsrc_size)) { 5747 ids[j] = rsrc_id; 5748 rsrc_id++; 5749 j++; 5750 } 5751 /* Entire word processed. Get next word.*/ 5752 if ((i % 2) == 1) 5753 k++; 5754 } 5755 err_exit: 5756 lpfc_sli4_mbox_cmd_free(phba, mbox); 5757 return rc; 5758 } 5759 5760 5761 5762 /** 5763 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 5764 * @phba: Pointer to HBA context object. 5765 * @type: the extent's type. 5766 * 5767 * This function deallocates all extents of a particular resource type. 5768 * SLI4 does not allow for deallocating a particular extent range. It 5769 * is the caller's responsibility to release all kernel memory resources. 5770 **/ 5771 static int 5772 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 5773 { 5774 int rc; 5775 uint32_t length, mbox_tmo = 0; 5776 LPFC_MBOXQ_t *mbox; 5777 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 5778 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 5779 5780 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5781 if (!mbox) 5782 return -ENOMEM; 5783 5784 /* 5785 * This function sends an embedded mailbox because it only sends the 5786 * the resource type. All extents of this type are released by the 5787 * port. 5788 */ 5789 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 5790 sizeof(struct lpfc_sli4_cfg_mhdr)); 5791 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5792 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 5793 length, LPFC_SLI4_MBX_EMBED); 5794 5795 /* Send an extents count of 0 - the dealloc doesn't use it. */ 5796 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5797 LPFC_SLI4_MBX_EMBED); 5798 if (unlikely(rc)) { 5799 rc = -EIO; 5800 goto out_free_mbox; 5801 } 5802 if (!phba->sli4_hba.intr_enable) 5803 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5804 else { 5805 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5806 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5807 } 5808 if (unlikely(rc)) { 5809 rc = -EIO; 5810 goto out_free_mbox; 5811 } 5812 5813 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 5814 if (bf_get(lpfc_mbox_hdr_status, 5815 &dealloc_rsrc->header.cfg_shdr.response)) { 5816 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5817 "2919 Failed to release resource extents " 5818 "for type %d - Status 0x%x Add'l Status 0x%x. " 5819 "Resource memory not released.\n", 5820 type, 5821 bf_get(lpfc_mbox_hdr_status, 5822 &dealloc_rsrc->header.cfg_shdr.response), 5823 bf_get(lpfc_mbox_hdr_add_status, 5824 &dealloc_rsrc->header.cfg_shdr.response)); 5825 rc = -EIO; 5826 goto out_free_mbox; 5827 } 5828 5829 /* Release kernel memory resources for the specific type. */ 5830 switch (type) { 5831 case LPFC_RSC_TYPE_FCOE_VPI: 5832 kfree(phba->vpi_bmask); 5833 kfree(phba->vpi_ids); 5834 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5835 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5836 &phba->lpfc_vpi_blk_list, list) { 5837 list_del_init(&rsrc_blk->list); 5838 kfree(rsrc_blk); 5839 } 5840 phba->sli4_hba.max_cfg_param.vpi_used = 0; 5841 break; 5842 case LPFC_RSC_TYPE_FCOE_XRI: 5843 kfree(phba->sli4_hba.xri_bmask); 5844 kfree(phba->sli4_hba.xri_ids); 5845 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5846 &phba->sli4_hba.lpfc_xri_blk_list, list) { 5847 list_del_init(&rsrc_blk->list); 5848 kfree(rsrc_blk); 5849 } 5850 break; 5851 case LPFC_RSC_TYPE_FCOE_VFI: 5852 kfree(phba->sli4_hba.vfi_bmask); 5853 kfree(phba->sli4_hba.vfi_ids); 5854 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5855 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5856 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 5857 list_del_init(&rsrc_blk->list); 5858 kfree(rsrc_blk); 5859 } 5860 break; 5861 case LPFC_RSC_TYPE_FCOE_RPI: 5862 /* RPI bitmask and physical id array are cleaned up earlier. */ 5863 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5864 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 5865 list_del_init(&rsrc_blk->list); 5866 kfree(rsrc_blk); 5867 } 5868 break; 5869 default: 5870 break; 5871 } 5872 5873 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5874 5875 out_free_mbox: 5876 mempool_free(mbox, phba->mbox_mem_pool); 5877 return rc; 5878 } 5879 5880 static void 5881 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 5882 uint32_t feature) 5883 { 5884 uint32_t len; 5885 5886 len = sizeof(struct lpfc_mbx_set_feature) - 5887 sizeof(struct lpfc_sli4_cfg_mhdr); 5888 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5889 LPFC_MBOX_OPCODE_SET_FEATURES, len, 5890 LPFC_SLI4_MBX_EMBED); 5891 5892 switch (feature) { 5893 case LPFC_SET_UE_RECOVERY: 5894 bf_set(lpfc_mbx_set_feature_UER, 5895 &mbox->u.mqe.un.set_feature, 1); 5896 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 5897 mbox->u.mqe.un.set_feature.param_len = 8; 5898 break; 5899 case LPFC_SET_MDS_DIAGS: 5900 bf_set(lpfc_mbx_set_feature_mds, 5901 &mbox->u.mqe.un.set_feature, 1); 5902 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 5903 &mbox->u.mqe.un.set_feature, 0); 5904 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 5905 mbox->u.mqe.un.set_feature.param_len = 8; 5906 break; 5907 } 5908 5909 return; 5910 } 5911 5912 /** 5913 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 5914 * @phba: Pointer to HBA context object. 5915 * 5916 * This function allocates all SLI4 resource identifiers. 5917 **/ 5918 int 5919 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 5920 { 5921 int i, rc, error = 0; 5922 uint16_t count, base; 5923 unsigned long longs; 5924 5925 if (!phba->sli4_hba.rpi_hdrs_in_use) 5926 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 5927 if (phba->sli4_hba.extents_in_use) { 5928 /* 5929 * The port supports resource extents. The XRI, VPI, VFI, RPI 5930 * resource extent count must be read and allocated before 5931 * provisioning the resource id arrays. 5932 */ 5933 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 5934 LPFC_IDX_RSRC_RDY) { 5935 /* 5936 * Extent-based resources are set - the driver could 5937 * be in a port reset. Figure out if any corrective 5938 * actions need to be taken. 5939 */ 5940 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5941 LPFC_RSC_TYPE_FCOE_VFI); 5942 if (rc != 0) 5943 error++; 5944 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5945 LPFC_RSC_TYPE_FCOE_VPI); 5946 if (rc != 0) 5947 error++; 5948 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5949 LPFC_RSC_TYPE_FCOE_XRI); 5950 if (rc != 0) 5951 error++; 5952 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5953 LPFC_RSC_TYPE_FCOE_RPI); 5954 if (rc != 0) 5955 error++; 5956 5957 /* 5958 * It's possible that the number of resources 5959 * provided to this port instance changed between 5960 * resets. Detect this condition and reallocate 5961 * resources. Otherwise, there is no action. 5962 */ 5963 if (error) { 5964 lpfc_printf_log(phba, KERN_INFO, 5965 LOG_MBOX | LOG_INIT, 5966 "2931 Detected extent resource " 5967 "change. Reallocating all " 5968 "extents.\n"); 5969 rc = lpfc_sli4_dealloc_extent(phba, 5970 LPFC_RSC_TYPE_FCOE_VFI); 5971 rc = lpfc_sli4_dealloc_extent(phba, 5972 LPFC_RSC_TYPE_FCOE_VPI); 5973 rc = lpfc_sli4_dealloc_extent(phba, 5974 LPFC_RSC_TYPE_FCOE_XRI); 5975 rc = lpfc_sli4_dealloc_extent(phba, 5976 LPFC_RSC_TYPE_FCOE_RPI); 5977 } else 5978 return 0; 5979 } 5980 5981 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 5982 if (unlikely(rc)) 5983 goto err_exit; 5984 5985 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 5986 if (unlikely(rc)) 5987 goto err_exit; 5988 5989 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 5990 if (unlikely(rc)) 5991 goto err_exit; 5992 5993 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 5994 if (unlikely(rc)) 5995 goto err_exit; 5996 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 5997 LPFC_IDX_RSRC_RDY); 5998 return rc; 5999 } else { 6000 /* 6001 * The port does not support resource extents. The XRI, VPI, 6002 * VFI, RPI resource ids were determined from READ_CONFIG. 6003 * Just allocate the bitmasks and provision the resource id 6004 * arrays. If a port reset is active, the resources don't 6005 * need any action - just exit. 6006 */ 6007 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6008 LPFC_IDX_RSRC_RDY) { 6009 lpfc_sli4_dealloc_resource_identifiers(phba); 6010 lpfc_sli4_remove_rpis(phba); 6011 } 6012 /* RPIs. */ 6013 count = phba->sli4_hba.max_cfg_param.max_rpi; 6014 if (count <= 0) { 6015 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6016 "3279 Invalid provisioning of " 6017 "rpi:%d\n", count); 6018 rc = -EINVAL; 6019 goto err_exit; 6020 } 6021 base = phba->sli4_hba.max_cfg_param.rpi_base; 6022 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6023 phba->sli4_hba.rpi_bmask = kzalloc(longs * 6024 sizeof(unsigned long), 6025 GFP_KERNEL); 6026 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6027 rc = -ENOMEM; 6028 goto err_exit; 6029 } 6030 phba->sli4_hba.rpi_ids = kzalloc(count * 6031 sizeof(uint16_t), 6032 GFP_KERNEL); 6033 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6034 rc = -ENOMEM; 6035 goto free_rpi_bmask; 6036 } 6037 6038 for (i = 0; i < count; i++) 6039 phba->sli4_hba.rpi_ids[i] = base + i; 6040 6041 /* VPIs. */ 6042 count = phba->sli4_hba.max_cfg_param.max_vpi; 6043 if (count <= 0) { 6044 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6045 "3280 Invalid provisioning of " 6046 "vpi:%d\n", count); 6047 rc = -EINVAL; 6048 goto free_rpi_ids; 6049 } 6050 base = phba->sli4_hba.max_cfg_param.vpi_base; 6051 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6052 phba->vpi_bmask = kzalloc(longs * 6053 sizeof(unsigned long), 6054 GFP_KERNEL); 6055 if (unlikely(!phba->vpi_bmask)) { 6056 rc = -ENOMEM; 6057 goto free_rpi_ids; 6058 } 6059 phba->vpi_ids = kzalloc(count * 6060 sizeof(uint16_t), 6061 GFP_KERNEL); 6062 if (unlikely(!phba->vpi_ids)) { 6063 rc = -ENOMEM; 6064 goto free_vpi_bmask; 6065 } 6066 6067 for (i = 0; i < count; i++) 6068 phba->vpi_ids[i] = base + i; 6069 6070 /* XRIs. */ 6071 count = phba->sli4_hba.max_cfg_param.max_xri; 6072 if (count <= 0) { 6073 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6074 "3281 Invalid provisioning of " 6075 "xri:%d\n", count); 6076 rc = -EINVAL; 6077 goto free_vpi_ids; 6078 } 6079 base = phba->sli4_hba.max_cfg_param.xri_base; 6080 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6081 phba->sli4_hba.xri_bmask = kzalloc(longs * 6082 sizeof(unsigned long), 6083 GFP_KERNEL); 6084 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6085 rc = -ENOMEM; 6086 goto free_vpi_ids; 6087 } 6088 phba->sli4_hba.max_cfg_param.xri_used = 0; 6089 phba->sli4_hba.xri_ids = kzalloc(count * 6090 sizeof(uint16_t), 6091 GFP_KERNEL); 6092 if (unlikely(!phba->sli4_hba.xri_ids)) { 6093 rc = -ENOMEM; 6094 goto free_xri_bmask; 6095 } 6096 6097 for (i = 0; i < count; i++) 6098 phba->sli4_hba.xri_ids[i] = base + i; 6099 6100 /* VFIs. */ 6101 count = phba->sli4_hba.max_cfg_param.max_vfi; 6102 if (count <= 0) { 6103 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6104 "3282 Invalid provisioning of " 6105 "vfi:%d\n", count); 6106 rc = -EINVAL; 6107 goto free_xri_ids; 6108 } 6109 base = phba->sli4_hba.max_cfg_param.vfi_base; 6110 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6111 phba->sli4_hba.vfi_bmask = kzalloc(longs * 6112 sizeof(unsigned long), 6113 GFP_KERNEL); 6114 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6115 rc = -ENOMEM; 6116 goto free_xri_ids; 6117 } 6118 phba->sli4_hba.vfi_ids = kzalloc(count * 6119 sizeof(uint16_t), 6120 GFP_KERNEL); 6121 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6122 rc = -ENOMEM; 6123 goto free_vfi_bmask; 6124 } 6125 6126 for (i = 0; i < count; i++) 6127 phba->sli4_hba.vfi_ids[i] = base + i; 6128 6129 /* 6130 * Mark all resources ready. An HBA reset doesn't need 6131 * to reset the initialization. 6132 */ 6133 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6134 LPFC_IDX_RSRC_RDY); 6135 return 0; 6136 } 6137 6138 free_vfi_bmask: 6139 kfree(phba->sli4_hba.vfi_bmask); 6140 phba->sli4_hba.vfi_bmask = NULL; 6141 free_xri_ids: 6142 kfree(phba->sli4_hba.xri_ids); 6143 phba->sli4_hba.xri_ids = NULL; 6144 free_xri_bmask: 6145 kfree(phba->sli4_hba.xri_bmask); 6146 phba->sli4_hba.xri_bmask = NULL; 6147 free_vpi_ids: 6148 kfree(phba->vpi_ids); 6149 phba->vpi_ids = NULL; 6150 free_vpi_bmask: 6151 kfree(phba->vpi_bmask); 6152 phba->vpi_bmask = NULL; 6153 free_rpi_ids: 6154 kfree(phba->sli4_hba.rpi_ids); 6155 phba->sli4_hba.rpi_ids = NULL; 6156 free_rpi_bmask: 6157 kfree(phba->sli4_hba.rpi_bmask); 6158 phba->sli4_hba.rpi_bmask = NULL; 6159 err_exit: 6160 return rc; 6161 } 6162 6163 /** 6164 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 6165 * @phba: Pointer to HBA context object. 6166 * 6167 * This function allocates the number of elements for the specified 6168 * resource type. 6169 **/ 6170 int 6171 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 6172 { 6173 if (phba->sli4_hba.extents_in_use) { 6174 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6175 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6176 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6177 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6178 } else { 6179 kfree(phba->vpi_bmask); 6180 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6181 kfree(phba->vpi_ids); 6182 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6183 kfree(phba->sli4_hba.xri_bmask); 6184 kfree(phba->sli4_hba.xri_ids); 6185 kfree(phba->sli4_hba.vfi_bmask); 6186 kfree(phba->sli4_hba.vfi_ids); 6187 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6188 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6189 } 6190 6191 return 0; 6192 } 6193 6194 /** 6195 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 6196 * @phba: Pointer to HBA context object. 6197 * @type: The resource extent type. 6198 * @extnt_count: buffer to hold port extent count response 6199 * @extnt_size: buffer to hold port extent size response. 6200 * 6201 * This function calls the port to read the host allocated extents 6202 * for a particular type. 6203 **/ 6204 int 6205 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 6206 uint16_t *extnt_cnt, uint16_t *extnt_size) 6207 { 6208 bool emb; 6209 int rc = 0; 6210 uint16_t curr_blks = 0; 6211 uint32_t req_len, emb_len; 6212 uint32_t alloc_len, mbox_tmo; 6213 struct list_head *blk_list_head; 6214 struct lpfc_rsrc_blks *rsrc_blk; 6215 LPFC_MBOXQ_t *mbox; 6216 void *virtaddr = NULL; 6217 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6218 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6219 union lpfc_sli4_cfg_shdr *shdr; 6220 6221 switch (type) { 6222 case LPFC_RSC_TYPE_FCOE_VPI: 6223 blk_list_head = &phba->lpfc_vpi_blk_list; 6224 break; 6225 case LPFC_RSC_TYPE_FCOE_XRI: 6226 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 6227 break; 6228 case LPFC_RSC_TYPE_FCOE_VFI: 6229 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 6230 break; 6231 case LPFC_RSC_TYPE_FCOE_RPI: 6232 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 6233 break; 6234 default: 6235 return -EIO; 6236 } 6237 6238 /* Count the number of extents currently allocatd for this type. */ 6239 list_for_each_entry(rsrc_blk, blk_list_head, list) { 6240 if (curr_blks == 0) { 6241 /* 6242 * The GET_ALLOCATED mailbox does not return the size, 6243 * just the count. The size should be just the size 6244 * stored in the current allocated block and all sizes 6245 * for an extent type are the same so set the return 6246 * value now. 6247 */ 6248 *extnt_size = rsrc_blk->rsrc_size; 6249 } 6250 curr_blks++; 6251 } 6252 6253 /* 6254 * Calculate the size of an embedded mailbox. The uint32_t 6255 * accounts for extents-specific word. 6256 */ 6257 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6258 sizeof(uint32_t); 6259 6260 /* 6261 * Presume the allocation and response will fit into an embedded 6262 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6263 */ 6264 emb = LPFC_SLI4_MBX_EMBED; 6265 req_len = emb_len; 6266 if (req_len > emb_len) { 6267 req_len = curr_blks * sizeof(uint16_t) + 6268 sizeof(union lpfc_sli4_cfg_shdr) + 6269 sizeof(uint32_t); 6270 emb = LPFC_SLI4_MBX_NEMBED; 6271 } 6272 6273 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6274 if (!mbox) 6275 return -ENOMEM; 6276 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 6277 6278 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6279 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 6280 req_len, emb); 6281 if (alloc_len < req_len) { 6282 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6283 "2983 Allocated DMA memory size (x%x) is " 6284 "less than the requested DMA memory " 6285 "size (x%x)\n", alloc_len, req_len); 6286 rc = -ENOMEM; 6287 goto err_exit; 6288 } 6289 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 6290 if (unlikely(rc)) { 6291 rc = -EIO; 6292 goto err_exit; 6293 } 6294 6295 if (!phba->sli4_hba.intr_enable) 6296 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6297 else { 6298 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6299 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6300 } 6301 6302 if (unlikely(rc)) { 6303 rc = -EIO; 6304 goto err_exit; 6305 } 6306 6307 /* 6308 * Figure out where the response is located. Then get local pointers 6309 * to the response data. The port does not guarantee to respond to 6310 * all extents counts request so update the local variable with the 6311 * allocated count from the port. 6312 */ 6313 if (emb == LPFC_SLI4_MBX_EMBED) { 6314 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6315 shdr = &rsrc_ext->header.cfg_shdr; 6316 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6317 } else { 6318 virtaddr = mbox->sge_array->addr[0]; 6319 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6320 shdr = &n_rsrc->cfg_shdr; 6321 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6322 } 6323 6324 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 6325 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 6326 "2984 Failed to read allocated resources " 6327 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 6328 type, 6329 bf_get(lpfc_mbox_hdr_status, &shdr->response), 6330 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 6331 rc = -EIO; 6332 goto err_exit; 6333 } 6334 err_exit: 6335 lpfc_sli4_mbox_cmd_free(phba, mbox); 6336 return rc; 6337 } 6338 6339 /** 6340 * lpfc_sli4_repost_sgl_list - Repsot the buffers sgl pages as block 6341 * @phba: pointer to lpfc hba data structure. 6342 * @pring: Pointer to driver SLI ring object. 6343 * @sgl_list: linked link of sgl buffers to post 6344 * @cnt: number of linked list buffers 6345 * 6346 * This routine walks the list of buffers that have been allocated and 6347 * repost them to the port by using SGL block post. This is needed after a 6348 * pci_function_reset/warm_start or start. It attempts to construct blocks 6349 * of buffer sgls which contains contiguous xris and uses the non-embedded 6350 * SGL block post mailbox commands to post them to the port. For single 6351 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 6352 * mailbox command for posting. 6353 * 6354 * Returns: 0 = success, non-zero failure. 6355 **/ 6356 static int 6357 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 6358 struct list_head *sgl_list, int cnt) 6359 { 6360 struct lpfc_sglq *sglq_entry = NULL; 6361 struct lpfc_sglq *sglq_entry_next = NULL; 6362 struct lpfc_sglq *sglq_entry_first = NULL; 6363 int status, total_cnt; 6364 int post_cnt = 0, num_posted = 0, block_cnt = 0; 6365 int last_xritag = NO_XRI; 6366 LIST_HEAD(prep_sgl_list); 6367 LIST_HEAD(blck_sgl_list); 6368 LIST_HEAD(allc_sgl_list); 6369 LIST_HEAD(post_sgl_list); 6370 LIST_HEAD(free_sgl_list); 6371 6372 spin_lock_irq(&phba->hbalock); 6373 spin_lock(&phba->sli4_hba.sgl_list_lock); 6374 list_splice_init(sgl_list, &allc_sgl_list); 6375 spin_unlock(&phba->sli4_hba.sgl_list_lock); 6376 spin_unlock_irq(&phba->hbalock); 6377 6378 total_cnt = cnt; 6379 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 6380 &allc_sgl_list, list) { 6381 list_del_init(&sglq_entry->list); 6382 block_cnt++; 6383 if ((last_xritag != NO_XRI) && 6384 (sglq_entry->sli4_xritag != last_xritag + 1)) { 6385 /* a hole in xri block, form a sgl posting block */ 6386 list_splice_init(&prep_sgl_list, &blck_sgl_list); 6387 post_cnt = block_cnt - 1; 6388 /* prepare list for next posting block */ 6389 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6390 block_cnt = 1; 6391 } else { 6392 /* prepare list for next posting block */ 6393 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6394 /* enough sgls for non-embed sgl mbox command */ 6395 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 6396 list_splice_init(&prep_sgl_list, 6397 &blck_sgl_list); 6398 post_cnt = block_cnt; 6399 block_cnt = 0; 6400 } 6401 } 6402 num_posted++; 6403 6404 /* keep track of last sgl's xritag */ 6405 last_xritag = sglq_entry->sli4_xritag; 6406 6407 /* end of repost sgl list condition for buffers */ 6408 if (num_posted == total_cnt) { 6409 if (post_cnt == 0) { 6410 list_splice_init(&prep_sgl_list, 6411 &blck_sgl_list); 6412 post_cnt = block_cnt; 6413 } else if (block_cnt == 1) { 6414 status = lpfc_sli4_post_sgl(phba, 6415 sglq_entry->phys, 0, 6416 sglq_entry->sli4_xritag); 6417 if (!status) { 6418 /* successful, put sgl to posted list */ 6419 list_add_tail(&sglq_entry->list, 6420 &post_sgl_list); 6421 } else { 6422 /* Failure, put sgl to free list */ 6423 lpfc_printf_log(phba, KERN_WARNING, 6424 LOG_SLI, 6425 "3159 Failed to post " 6426 "sgl, xritag:x%x\n", 6427 sglq_entry->sli4_xritag); 6428 list_add_tail(&sglq_entry->list, 6429 &free_sgl_list); 6430 total_cnt--; 6431 } 6432 } 6433 } 6434 6435 /* continue until a nembed page worth of sgls */ 6436 if (post_cnt == 0) 6437 continue; 6438 6439 /* post the buffer list sgls as a block */ 6440 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 6441 post_cnt); 6442 6443 if (!status) { 6444 /* success, put sgl list to posted sgl list */ 6445 list_splice_init(&blck_sgl_list, &post_sgl_list); 6446 } else { 6447 /* Failure, put sgl list to free sgl list */ 6448 sglq_entry_first = list_first_entry(&blck_sgl_list, 6449 struct lpfc_sglq, 6450 list); 6451 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6452 "3160 Failed to post sgl-list, " 6453 "xritag:x%x-x%x\n", 6454 sglq_entry_first->sli4_xritag, 6455 (sglq_entry_first->sli4_xritag + 6456 post_cnt - 1)); 6457 list_splice_init(&blck_sgl_list, &free_sgl_list); 6458 total_cnt -= post_cnt; 6459 } 6460 6461 /* don't reset xirtag due to hole in xri block */ 6462 if (block_cnt == 0) 6463 last_xritag = NO_XRI; 6464 6465 /* reset sgl post count for next round of posting */ 6466 post_cnt = 0; 6467 } 6468 6469 /* free the sgls failed to post */ 6470 lpfc_free_sgl_list(phba, &free_sgl_list); 6471 6472 /* push sgls posted to the available list */ 6473 if (!list_empty(&post_sgl_list)) { 6474 spin_lock_irq(&phba->hbalock); 6475 spin_lock(&phba->sli4_hba.sgl_list_lock); 6476 list_splice_init(&post_sgl_list, sgl_list); 6477 spin_unlock(&phba->sli4_hba.sgl_list_lock); 6478 spin_unlock_irq(&phba->hbalock); 6479 } else { 6480 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6481 "3161 Failure to post sgl to port.\n"); 6482 return -EIO; 6483 } 6484 6485 /* return the number of XRIs actually posted */ 6486 return total_cnt; 6487 } 6488 6489 void 6490 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 6491 { 6492 uint32_t len; 6493 6494 len = sizeof(struct lpfc_mbx_set_host_data) - 6495 sizeof(struct lpfc_sli4_cfg_mhdr); 6496 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6497 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 6498 LPFC_SLI4_MBX_EMBED); 6499 6500 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 6501 mbox->u.mqe.un.set_host_data.param_len = 6502 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 6503 snprintf(mbox->u.mqe.un.set_host_data.data, 6504 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 6505 "Linux %s v"LPFC_DRIVER_VERSION, 6506 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 6507 } 6508 6509 /** 6510 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 6511 * @phba: Pointer to HBA context object. 6512 * 6513 * This function is the main SLI4 device initialization PCI function. This 6514 * function is called by the HBA initialization code, HBA reset code and 6515 * HBA error attention handler code. Caller is not required to hold any 6516 * locks. 6517 **/ 6518 int 6519 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 6520 { 6521 int rc, i; 6522 LPFC_MBOXQ_t *mboxq; 6523 struct lpfc_mqe *mqe; 6524 uint8_t *vpd; 6525 uint32_t vpd_size; 6526 uint32_t ftr_rsp = 0; 6527 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 6528 struct lpfc_vport *vport = phba->pport; 6529 struct lpfc_dmabuf *mp; 6530 struct lpfc_rqb *rqbp; 6531 6532 /* Perform a PCI function reset to start from clean */ 6533 rc = lpfc_pci_function_reset(phba); 6534 if (unlikely(rc)) 6535 return -ENODEV; 6536 6537 /* Check the HBA Host Status Register for readyness */ 6538 rc = lpfc_sli4_post_status_check(phba); 6539 if (unlikely(rc)) 6540 return -ENODEV; 6541 else { 6542 spin_lock_irq(&phba->hbalock); 6543 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 6544 spin_unlock_irq(&phba->hbalock); 6545 } 6546 6547 /* 6548 * Allocate a single mailbox container for initializing the 6549 * port. 6550 */ 6551 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6552 if (!mboxq) 6553 return -ENOMEM; 6554 6555 /* Issue READ_REV to collect vpd and FW information. */ 6556 vpd_size = SLI4_PAGE_SIZE; 6557 vpd = kzalloc(vpd_size, GFP_KERNEL); 6558 if (!vpd) { 6559 rc = -ENOMEM; 6560 goto out_free_mbox; 6561 } 6562 6563 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 6564 if (unlikely(rc)) { 6565 kfree(vpd); 6566 goto out_free_mbox; 6567 } 6568 6569 mqe = &mboxq->u.mqe; 6570 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 6571 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 6572 phba->hba_flag |= HBA_FCOE_MODE; 6573 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 6574 } else { 6575 phba->hba_flag &= ~HBA_FCOE_MODE; 6576 } 6577 6578 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 6579 LPFC_DCBX_CEE_MODE) 6580 phba->hba_flag |= HBA_FIP_SUPPORT; 6581 else 6582 phba->hba_flag &= ~HBA_FIP_SUPPORT; 6583 6584 phba->hba_flag &= ~HBA_FCP_IOQ_FLUSH; 6585 6586 if (phba->sli_rev != LPFC_SLI_REV4) { 6587 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6588 "0376 READ_REV Error. SLI Level %d " 6589 "FCoE enabled %d\n", 6590 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 6591 rc = -EIO; 6592 kfree(vpd); 6593 goto out_free_mbox; 6594 } 6595 6596 /* 6597 * Continue initialization with default values even if driver failed 6598 * to read FCoE param config regions, only read parameters if the 6599 * board is FCoE 6600 */ 6601 if (phba->hba_flag & HBA_FCOE_MODE && 6602 lpfc_sli4_read_fcoe_params(phba)) 6603 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 6604 "2570 Failed to read FCoE parameters\n"); 6605 6606 /* 6607 * Retrieve sli4 device physical port name, failure of doing it 6608 * is considered as non-fatal. 6609 */ 6610 rc = lpfc_sli4_retrieve_pport_name(phba); 6611 if (!rc) 6612 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6613 "3080 Successful retrieving SLI4 device " 6614 "physical port name: %s.\n", phba->Port); 6615 6616 /* 6617 * Evaluate the read rev and vpd data. Populate the driver 6618 * state with the results. If this routine fails, the failure 6619 * is not fatal as the driver will use generic values. 6620 */ 6621 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 6622 if (unlikely(!rc)) { 6623 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6624 "0377 Error %d parsing vpd. " 6625 "Using defaults.\n", rc); 6626 rc = 0; 6627 } 6628 kfree(vpd); 6629 6630 /* Save information as VPD data */ 6631 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 6632 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 6633 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 6634 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 6635 &mqe->un.read_rev); 6636 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 6637 &mqe->un.read_rev); 6638 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 6639 &mqe->un.read_rev); 6640 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 6641 &mqe->un.read_rev); 6642 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 6643 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 6644 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 6645 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 6646 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 6647 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 6648 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6649 "(%d):0380 READ_REV Status x%x " 6650 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 6651 mboxq->vport ? mboxq->vport->vpi : 0, 6652 bf_get(lpfc_mqe_status, mqe), 6653 phba->vpd.rev.opFwName, 6654 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 6655 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 6656 6657 /* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3) */ 6658 rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3); 6659 if (phba->pport->cfg_lun_queue_depth > rc) { 6660 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6661 "3362 LUN queue depth changed from %d to %d\n", 6662 phba->pport->cfg_lun_queue_depth, rc); 6663 phba->pport->cfg_lun_queue_depth = rc; 6664 } 6665 6666 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 6667 LPFC_SLI_INTF_IF_TYPE_0) { 6668 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 6669 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6670 if (rc == MBX_SUCCESS) { 6671 phba->hba_flag |= HBA_RECOVERABLE_UE; 6672 /* Set 1Sec interval to detect UE */ 6673 phba->eratt_poll_interval = 1; 6674 phba->sli4_hba.ue_to_sr = bf_get( 6675 lpfc_mbx_set_feature_UESR, 6676 &mboxq->u.mqe.un.set_feature); 6677 phba->sli4_hba.ue_to_rp = bf_get( 6678 lpfc_mbx_set_feature_UERP, 6679 &mboxq->u.mqe.un.set_feature); 6680 } 6681 } 6682 6683 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 6684 /* Enable MDS Diagnostics only if the SLI Port supports it */ 6685 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 6686 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6687 if (rc != MBX_SUCCESS) 6688 phba->mds_diags_support = 0; 6689 } 6690 6691 /* 6692 * Discover the port's supported feature set and match it against the 6693 * hosts requests. 6694 */ 6695 lpfc_request_features(phba, mboxq); 6696 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6697 if (unlikely(rc)) { 6698 rc = -EIO; 6699 goto out_free_mbox; 6700 } 6701 6702 /* 6703 * The port must support FCP initiator mode as this is the 6704 * only mode running in the host. 6705 */ 6706 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 6707 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6708 "0378 No support for fcpi mode.\n"); 6709 ftr_rsp++; 6710 } 6711 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 6712 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 6713 else 6714 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 6715 /* 6716 * If the port cannot support the host's requested features 6717 * then turn off the global config parameters to disable the 6718 * feature in the driver. This is not a fatal error. 6719 */ 6720 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 6721 if (phba->cfg_enable_bg) { 6722 if (bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)) 6723 phba->sli3_options |= LPFC_SLI3_BG_ENABLED; 6724 else 6725 ftr_rsp++; 6726 } 6727 6728 if (phba->max_vpi && phba->cfg_enable_npiv && 6729 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 6730 ftr_rsp++; 6731 6732 if (ftr_rsp) { 6733 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6734 "0379 Feature Mismatch Data: x%08x %08x " 6735 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 6736 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 6737 phba->cfg_enable_npiv, phba->max_vpi); 6738 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 6739 phba->cfg_enable_bg = 0; 6740 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 6741 phba->cfg_enable_npiv = 0; 6742 } 6743 6744 /* These SLI3 features are assumed in SLI4 */ 6745 spin_lock_irq(&phba->hbalock); 6746 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 6747 spin_unlock_irq(&phba->hbalock); 6748 6749 /* 6750 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 6751 * calls depends on these resources to complete port setup. 6752 */ 6753 rc = lpfc_sli4_alloc_resource_identifiers(phba); 6754 if (rc) { 6755 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6756 "2920 Failed to alloc Resource IDs " 6757 "rc = x%x\n", rc); 6758 goto out_free_mbox; 6759 } 6760 6761 lpfc_set_host_data(phba, mboxq); 6762 6763 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6764 if (rc) { 6765 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6766 "2134 Failed to set host os driver version %x", 6767 rc); 6768 } 6769 6770 /* Read the port's service parameters. */ 6771 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 6772 if (rc) { 6773 phba->link_state = LPFC_HBA_ERROR; 6774 rc = -ENOMEM; 6775 goto out_free_mbox; 6776 } 6777 6778 mboxq->vport = vport; 6779 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6780 mp = (struct lpfc_dmabuf *) mboxq->context1; 6781 if (rc == MBX_SUCCESS) { 6782 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 6783 rc = 0; 6784 } 6785 6786 /* 6787 * This memory was allocated by the lpfc_read_sparam routine. Release 6788 * it to the mbuf pool. 6789 */ 6790 lpfc_mbuf_free(phba, mp->virt, mp->phys); 6791 kfree(mp); 6792 mboxq->context1 = NULL; 6793 if (unlikely(rc)) { 6794 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6795 "0382 READ_SPARAM command failed " 6796 "status %d, mbxStatus x%x\n", 6797 rc, bf_get(lpfc_mqe_status, mqe)); 6798 phba->link_state = LPFC_HBA_ERROR; 6799 rc = -EIO; 6800 goto out_free_mbox; 6801 } 6802 6803 lpfc_update_vport_wwn(vport); 6804 6805 /* Update the fc_host data structures with new wwn. */ 6806 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 6807 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 6808 6809 /* Create all the SLI4 queues */ 6810 rc = lpfc_sli4_queue_create(phba); 6811 if (rc) { 6812 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6813 "3089 Failed to allocate queues\n"); 6814 rc = -ENODEV; 6815 goto out_free_mbox; 6816 } 6817 /* Set up all the queues to the device */ 6818 rc = lpfc_sli4_queue_setup(phba); 6819 if (unlikely(rc)) { 6820 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6821 "0381 Error %d during queue setup.\n ", rc); 6822 goto out_stop_timers; 6823 } 6824 /* Initialize the driver internal SLI layer lists. */ 6825 lpfc_sli4_setup(phba); 6826 lpfc_sli4_queue_init(phba); 6827 6828 /* update host els xri-sgl sizes and mappings */ 6829 rc = lpfc_sli4_els_sgl_update(phba); 6830 if (unlikely(rc)) { 6831 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6832 "1400 Failed to update xri-sgl size and " 6833 "mapping: %d\n", rc); 6834 goto out_destroy_queue; 6835 } 6836 6837 /* register the els sgl pool to the port */ 6838 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 6839 phba->sli4_hba.els_xri_cnt); 6840 if (unlikely(rc < 0)) { 6841 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6842 "0582 Error %d during els sgl post " 6843 "operation\n", rc); 6844 rc = -ENODEV; 6845 goto out_destroy_queue; 6846 } 6847 phba->sli4_hba.els_xri_cnt = rc; 6848 6849 if (phba->nvmet_support) { 6850 /* update host nvmet xri-sgl sizes and mappings */ 6851 rc = lpfc_sli4_nvmet_sgl_update(phba); 6852 if (unlikely(rc)) { 6853 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6854 "6308 Failed to update nvmet-sgl size " 6855 "and mapping: %d\n", rc); 6856 goto out_destroy_queue; 6857 } 6858 6859 /* register the nvmet sgl pool to the port */ 6860 rc = lpfc_sli4_repost_sgl_list( 6861 phba, 6862 &phba->sli4_hba.lpfc_nvmet_sgl_list, 6863 phba->sli4_hba.nvmet_xri_cnt); 6864 if (unlikely(rc < 0)) { 6865 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6866 "3117 Error %d during nvmet " 6867 "sgl post\n", rc); 6868 rc = -ENODEV; 6869 goto out_destroy_queue; 6870 } 6871 phba->sli4_hba.nvmet_xri_cnt = rc; 6872 lpfc_nvmet_create_targetport(phba); 6873 } else { 6874 /* update host scsi xri-sgl sizes and mappings */ 6875 rc = lpfc_sli4_scsi_sgl_update(phba); 6876 if (unlikely(rc)) { 6877 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6878 "6309 Failed to update scsi-sgl size " 6879 "and mapping: %d\n", rc); 6880 goto out_destroy_queue; 6881 } 6882 6883 /* update host nvme xri-sgl sizes and mappings */ 6884 rc = lpfc_sli4_nvme_sgl_update(phba); 6885 if (unlikely(rc)) { 6886 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6887 "6082 Failed to update nvme-sgl size " 6888 "and mapping: %d\n", rc); 6889 goto out_destroy_queue; 6890 } 6891 } 6892 6893 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 6894 6895 /* Post initial buffers to all RQs created */ 6896 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 6897 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 6898 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 6899 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 6900 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 6901 rqbp->entry_count = 256; 6902 rqbp->buffer_count = 0; 6903 6904 /* Divide by 4 and round down to multiple of 16 */ 6905 rc = (phba->cfg_nvmet_mrq_post >> 2) & 0xfff8; 6906 phba->sli4_hba.nvmet_mrq_hdr[i]->entry_repost = rc; 6907 phba->sli4_hba.nvmet_mrq_data[i]->entry_repost = rc; 6908 6909 lpfc_post_rq_buffer( 6910 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 6911 phba->sli4_hba.nvmet_mrq_data[i], 6912 phba->cfg_nvmet_mrq_post); 6913 } 6914 } 6915 6916 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 6917 /* register the allocated scsi sgl pool to the port */ 6918 rc = lpfc_sli4_repost_scsi_sgl_list(phba); 6919 if (unlikely(rc)) { 6920 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6921 "0383 Error %d during scsi sgl post " 6922 "operation\n", rc); 6923 /* Some Scsi buffers were moved to abort scsi list */ 6924 /* A pci function reset will repost them */ 6925 rc = -ENODEV; 6926 goto out_destroy_queue; 6927 } 6928 } 6929 6930 if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) && 6931 (phba->nvmet_support == 0)) { 6932 6933 /* register the allocated nvme sgl pool to the port */ 6934 rc = lpfc_repost_nvme_sgl_list(phba); 6935 if (unlikely(rc)) { 6936 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6937 "6116 Error %d during nvme sgl post " 6938 "operation\n", rc); 6939 /* Some NVME buffers were moved to abort nvme list */ 6940 /* A pci function reset will repost them */ 6941 rc = -ENODEV; 6942 goto out_destroy_queue; 6943 } 6944 } 6945 6946 /* Post the rpi header region to the device. */ 6947 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 6948 if (unlikely(rc)) { 6949 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6950 "0393 Error %d during rpi post operation\n", 6951 rc); 6952 rc = -ENODEV; 6953 goto out_destroy_queue; 6954 } 6955 lpfc_sli4_node_prep(phba); 6956 6957 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 6958 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 6959 /* 6960 * The FC Port needs to register FCFI (index 0) 6961 */ 6962 lpfc_reg_fcfi(phba, mboxq); 6963 mboxq->vport = phba->pport; 6964 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6965 if (rc != MBX_SUCCESS) 6966 goto out_unset_queue; 6967 rc = 0; 6968 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 6969 &mboxq->u.mqe.un.reg_fcfi); 6970 } else { 6971 /* We are a NVME Target mode with MRQ > 1 */ 6972 6973 /* First register the FCFI */ 6974 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 6975 mboxq->vport = phba->pport; 6976 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6977 if (rc != MBX_SUCCESS) 6978 goto out_unset_queue; 6979 rc = 0; 6980 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 6981 &mboxq->u.mqe.un.reg_fcfi_mrq); 6982 6983 /* Next register the MRQs */ 6984 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 6985 mboxq->vport = phba->pport; 6986 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6987 if (rc != MBX_SUCCESS) 6988 goto out_unset_queue; 6989 rc = 0; 6990 } 6991 /* Check if the port is configured to be disabled */ 6992 lpfc_sli_read_link_ste(phba); 6993 } 6994 6995 /* Arm the CQs and then EQs on device */ 6996 lpfc_sli4_arm_cqeq_intr(phba); 6997 6998 /* Indicate device interrupt mode */ 6999 phba->sli4_hba.intr_enable = 1; 7000 7001 /* Allow asynchronous mailbox command to go through */ 7002 spin_lock_irq(&phba->hbalock); 7003 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7004 spin_unlock_irq(&phba->hbalock); 7005 7006 /* Post receive buffers to the device */ 7007 lpfc_sli4_rb_setup(phba); 7008 7009 /* Reset HBA FCF states after HBA reset */ 7010 phba->fcf.fcf_flag = 0; 7011 phba->fcf.current_rec.flag = 0; 7012 7013 /* Start the ELS watchdog timer */ 7014 mod_timer(&vport->els_tmofunc, 7015 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 7016 7017 /* Start heart beat timer */ 7018 mod_timer(&phba->hb_tmofunc, 7019 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 7020 phba->hb_outstanding = 0; 7021 phba->last_completion_time = jiffies; 7022 7023 /* Start error attention (ERATT) polling timer */ 7024 mod_timer(&phba->eratt_poll, 7025 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 7026 7027 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 7028 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 7029 rc = pci_enable_pcie_error_reporting(phba->pcidev); 7030 if (!rc) { 7031 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7032 "2829 This device supports " 7033 "Advanced Error Reporting (AER)\n"); 7034 spin_lock_irq(&phba->hbalock); 7035 phba->hba_flag |= HBA_AER_ENABLED; 7036 spin_unlock_irq(&phba->hbalock); 7037 } else { 7038 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7039 "2830 This device does not support " 7040 "Advanced Error Reporting (AER)\n"); 7041 phba->cfg_aer_support = 0; 7042 } 7043 rc = 0; 7044 } 7045 7046 /* 7047 * The port is ready, set the host's link state to LINK_DOWN 7048 * in preparation for link interrupts. 7049 */ 7050 spin_lock_irq(&phba->hbalock); 7051 phba->link_state = LPFC_LINK_DOWN; 7052 spin_unlock_irq(&phba->hbalock); 7053 if (!(phba->hba_flag & HBA_FCOE_MODE) && 7054 (phba->hba_flag & LINK_DISABLED)) { 7055 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 7056 "3103 Adapter Link is disabled.\n"); 7057 lpfc_down_link(phba, mboxq); 7058 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7059 if (rc != MBX_SUCCESS) { 7060 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 7061 "3104 Adapter failed to issue " 7062 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 7063 goto out_unset_queue; 7064 } 7065 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 7066 /* don't perform init_link on SLI4 FC port loopback test */ 7067 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 7068 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 7069 if (rc) 7070 goto out_unset_queue; 7071 } 7072 } 7073 mempool_free(mboxq, phba->mbox_mem_pool); 7074 return rc; 7075 out_unset_queue: 7076 /* Unset all the queues set up in this routine when error out */ 7077 lpfc_sli4_queue_unset(phba); 7078 out_destroy_queue: 7079 lpfc_sli4_queue_destroy(phba); 7080 out_stop_timers: 7081 lpfc_stop_hba_timers(phba); 7082 out_free_mbox: 7083 mempool_free(mboxq, phba->mbox_mem_pool); 7084 return rc; 7085 } 7086 7087 /** 7088 * lpfc_mbox_timeout - Timeout call back function for mbox timer 7089 * @ptr: context object - pointer to hba structure. 7090 * 7091 * This is the callback function for mailbox timer. The mailbox 7092 * timer is armed when a new mailbox command is issued and the timer 7093 * is deleted when the mailbox complete. The function is called by 7094 * the kernel timer code when a mailbox does not complete within 7095 * expected time. This function wakes up the worker thread to 7096 * process the mailbox timeout and returns. All the processing is 7097 * done by the worker thread function lpfc_mbox_timeout_handler. 7098 **/ 7099 void 7100 lpfc_mbox_timeout(unsigned long ptr) 7101 { 7102 struct lpfc_hba *phba = (struct lpfc_hba *) ptr; 7103 unsigned long iflag; 7104 uint32_t tmo_posted; 7105 7106 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 7107 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 7108 if (!tmo_posted) 7109 phba->pport->work_port_events |= WORKER_MBOX_TMO; 7110 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 7111 7112 if (!tmo_posted) 7113 lpfc_worker_wake_up(phba); 7114 return; 7115 } 7116 7117 /** 7118 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 7119 * are pending 7120 * @phba: Pointer to HBA context object. 7121 * 7122 * This function checks if any mailbox completions are present on the mailbox 7123 * completion queue. 7124 **/ 7125 static bool 7126 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 7127 { 7128 7129 uint32_t idx; 7130 struct lpfc_queue *mcq; 7131 struct lpfc_mcqe *mcqe; 7132 bool pending_completions = false; 7133 7134 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 7135 return false; 7136 7137 /* Check for completions on mailbox completion queue */ 7138 7139 mcq = phba->sli4_hba.mbx_cq; 7140 idx = mcq->hba_index; 7141 while (bf_get_le32(lpfc_cqe_valid, mcq->qe[idx].cqe)) { 7142 mcqe = (struct lpfc_mcqe *)mcq->qe[idx].cqe; 7143 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 7144 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 7145 pending_completions = true; 7146 break; 7147 } 7148 idx = (idx + 1) % mcq->entry_count; 7149 if (mcq->hba_index == idx) 7150 break; 7151 } 7152 return pending_completions; 7153 7154 } 7155 7156 /** 7157 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 7158 * that were missed. 7159 * @phba: Pointer to HBA context object. 7160 * 7161 * For sli4, it is possible to miss an interrupt. As such mbox completions 7162 * maybe missed causing erroneous mailbox timeouts to occur. This function 7163 * checks to see if mbox completions are on the mailbox completion queue 7164 * and will process all the completions associated with the eq for the 7165 * mailbox completion queue. 7166 **/ 7167 bool 7168 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 7169 { 7170 7171 uint32_t eqidx; 7172 struct lpfc_queue *fpeq = NULL; 7173 struct lpfc_eqe *eqe; 7174 bool mbox_pending; 7175 7176 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 7177 return false; 7178 7179 /* Find the eq associated with the mcq */ 7180 7181 if (phba->sli4_hba.hba_eq) 7182 for (eqidx = 0; eqidx < phba->io_channel_irqs; eqidx++) 7183 if (phba->sli4_hba.hba_eq[eqidx]->queue_id == 7184 phba->sli4_hba.mbx_cq->assoc_qid) { 7185 fpeq = phba->sli4_hba.hba_eq[eqidx]; 7186 break; 7187 } 7188 if (!fpeq) 7189 return false; 7190 7191 /* Turn off interrupts from this EQ */ 7192 7193 lpfc_sli4_eq_clr_intr(fpeq); 7194 7195 /* Check to see if a mbox completion is pending */ 7196 7197 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 7198 7199 /* 7200 * If a mbox completion is pending, process all the events on EQ 7201 * associated with the mbox completion queue (this could include 7202 * mailbox commands, async events, els commands, receive queue data 7203 * and fcp commands) 7204 */ 7205 7206 if (mbox_pending) 7207 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 7208 lpfc_sli4_hba_handle_eqe(phba, eqe, eqidx); 7209 fpeq->EQ_processed++; 7210 } 7211 7212 /* Always clear and re-arm the EQ */ 7213 7214 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 7215 7216 return mbox_pending; 7217 7218 } 7219 7220 /** 7221 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 7222 * @phba: Pointer to HBA context object. 7223 * 7224 * This function is called from worker thread when a mailbox command times out. 7225 * The caller is not required to hold any locks. This function will reset the 7226 * HBA and recover all the pending commands. 7227 **/ 7228 void 7229 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 7230 { 7231 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 7232 MAILBOX_t *mb = NULL; 7233 7234 struct lpfc_sli *psli = &phba->sli; 7235 7236 /* If the mailbox completed, process the completion and return */ 7237 if (lpfc_sli4_process_missed_mbox_completions(phba)) 7238 return; 7239 7240 if (pmbox != NULL) 7241 mb = &pmbox->u.mb; 7242 /* Check the pmbox pointer first. There is a race condition 7243 * between the mbox timeout handler getting executed in the 7244 * worklist and the mailbox actually completing. When this 7245 * race condition occurs, the mbox_active will be NULL. 7246 */ 7247 spin_lock_irq(&phba->hbalock); 7248 if (pmbox == NULL) { 7249 lpfc_printf_log(phba, KERN_WARNING, 7250 LOG_MBOX | LOG_SLI, 7251 "0353 Active Mailbox cleared - mailbox timeout " 7252 "exiting\n"); 7253 spin_unlock_irq(&phba->hbalock); 7254 return; 7255 } 7256 7257 /* Mbox cmd <mbxCommand> timeout */ 7258 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7259 "0310 Mailbox command x%x timeout Data: x%x x%x x%p\n", 7260 mb->mbxCommand, 7261 phba->pport->port_state, 7262 phba->sli.sli_flag, 7263 phba->sli.mbox_active); 7264 spin_unlock_irq(&phba->hbalock); 7265 7266 /* Setting state unknown so lpfc_sli_abort_iocb_ring 7267 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 7268 * it to fail all outstanding SCSI IO. 7269 */ 7270 spin_lock_irq(&phba->pport->work_port_lock); 7271 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 7272 spin_unlock_irq(&phba->pport->work_port_lock); 7273 spin_lock_irq(&phba->hbalock); 7274 phba->link_state = LPFC_LINK_UNKNOWN; 7275 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 7276 spin_unlock_irq(&phba->hbalock); 7277 7278 lpfc_sli_abort_fcp_rings(phba); 7279 7280 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7281 "0345 Resetting board due to mailbox timeout\n"); 7282 7283 /* Reset the HBA device */ 7284 lpfc_reset_hba(phba); 7285 } 7286 7287 /** 7288 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 7289 * @phba: Pointer to HBA context object. 7290 * @pmbox: Pointer to mailbox object. 7291 * @flag: Flag indicating how the mailbox need to be processed. 7292 * 7293 * This function is called by discovery code and HBA management code 7294 * to submit a mailbox command to firmware with SLI-3 interface spec. This 7295 * function gets the hbalock to protect the data structures. 7296 * The mailbox command can be submitted in polling mode, in which case 7297 * this function will wait in a polling loop for the completion of the 7298 * mailbox. 7299 * If the mailbox is submitted in no_wait mode (not polling) the 7300 * function will submit the command and returns immediately without waiting 7301 * for the mailbox completion. The no_wait is supported only when HBA 7302 * is in SLI2/SLI3 mode - interrupts are enabled. 7303 * The SLI interface allows only one mailbox pending at a time. If the 7304 * mailbox is issued in polling mode and there is already a mailbox 7305 * pending, then the function will return an error. If the mailbox is issued 7306 * in NO_WAIT mode and there is a mailbox pending already, the function 7307 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 7308 * The sli layer owns the mailbox object until the completion of mailbox 7309 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 7310 * return codes the caller owns the mailbox command after the return of 7311 * the function. 7312 **/ 7313 static int 7314 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 7315 uint32_t flag) 7316 { 7317 MAILBOX_t *mbx; 7318 struct lpfc_sli *psli = &phba->sli; 7319 uint32_t status, evtctr; 7320 uint32_t ha_copy, hc_copy; 7321 int i; 7322 unsigned long timeout; 7323 unsigned long drvr_flag = 0; 7324 uint32_t word0, ldata; 7325 void __iomem *to_slim; 7326 int processing_queue = 0; 7327 7328 spin_lock_irqsave(&phba->hbalock, drvr_flag); 7329 if (!pmbox) { 7330 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7331 /* processing mbox queue from intr_handler */ 7332 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7333 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7334 return MBX_SUCCESS; 7335 } 7336 processing_queue = 1; 7337 pmbox = lpfc_mbox_get(phba); 7338 if (!pmbox) { 7339 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7340 return MBX_SUCCESS; 7341 } 7342 } 7343 7344 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 7345 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 7346 if(!pmbox->vport) { 7347 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7348 lpfc_printf_log(phba, KERN_ERR, 7349 LOG_MBOX | LOG_VPORT, 7350 "1806 Mbox x%x failed. No vport\n", 7351 pmbox->u.mb.mbxCommand); 7352 dump_stack(); 7353 goto out_not_finished; 7354 } 7355 } 7356 7357 /* If the PCI channel is in offline state, do not post mbox. */ 7358 if (unlikely(pci_channel_offline(phba->pcidev))) { 7359 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7360 goto out_not_finished; 7361 } 7362 7363 /* If HBA has a deferred error attention, fail the iocb. */ 7364 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 7365 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7366 goto out_not_finished; 7367 } 7368 7369 psli = &phba->sli; 7370 7371 mbx = &pmbox->u.mb; 7372 status = MBX_SUCCESS; 7373 7374 if (phba->link_state == LPFC_HBA_ERROR) { 7375 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7376 7377 /* Mbox command <mbxCommand> cannot issue */ 7378 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7379 "(%d):0311 Mailbox command x%x cannot " 7380 "issue Data: x%x x%x\n", 7381 pmbox->vport ? pmbox->vport->vpi : 0, 7382 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 7383 goto out_not_finished; 7384 } 7385 7386 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 7387 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 7388 !(hc_copy & HC_MBINT_ENA)) { 7389 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7390 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7391 "(%d):2528 Mailbox command x%x cannot " 7392 "issue Data: x%x x%x\n", 7393 pmbox->vport ? pmbox->vport->vpi : 0, 7394 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 7395 goto out_not_finished; 7396 } 7397 } 7398 7399 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7400 /* Polling for a mbox command when another one is already active 7401 * is not allowed in SLI. Also, the driver must have established 7402 * SLI2 mode to queue and process multiple mbox commands. 7403 */ 7404 7405 if (flag & MBX_POLL) { 7406 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7407 7408 /* Mbox command <mbxCommand> cannot issue */ 7409 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7410 "(%d):2529 Mailbox command x%x " 7411 "cannot issue Data: x%x x%x\n", 7412 pmbox->vport ? pmbox->vport->vpi : 0, 7413 pmbox->u.mb.mbxCommand, 7414 psli->sli_flag, flag); 7415 goto out_not_finished; 7416 } 7417 7418 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 7419 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7420 /* Mbox command <mbxCommand> cannot issue */ 7421 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7422 "(%d):2530 Mailbox command x%x " 7423 "cannot issue Data: x%x x%x\n", 7424 pmbox->vport ? pmbox->vport->vpi : 0, 7425 pmbox->u.mb.mbxCommand, 7426 psli->sli_flag, flag); 7427 goto out_not_finished; 7428 } 7429 7430 /* Another mailbox command is still being processed, queue this 7431 * command to be processed later. 7432 */ 7433 lpfc_mbox_put(phba, pmbox); 7434 7435 /* Mbox cmd issue - BUSY */ 7436 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7437 "(%d):0308 Mbox cmd issue - BUSY Data: " 7438 "x%x x%x x%x x%x\n", 7439 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 7440 mbx->mbxCommand, phba->pport->port_state, 7441 psli->sli_flag, flag); 7442 7443 psli->slistat.mbox_busy++; 7444 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7445 7446 if (pmbox->vport) { 7447 lpfc_debugfs_disc_trc(pmbox->vport, 7448 LPFC_DISC_TRC_MBOX_VPORT, 7449 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 7450 (uint32_t)mbx->mbxCommand, 7451 mbx->un.varWords[0], mbx->un.varWords[1]); 7452 } 7453 else { 7454 lpfc_debugfs_disc_trc(phba->pport, 7455 LPFC_DISC_TRC_MBOX, 7456 "MBOX Bsy: cmd:x%x mb:x%x x%x", 7457 (uint32_t)mbx->mbxCommand, 7458 mbx->un.varWords[0], mbx->un.varWords[1]); 7459 } 7460 7461 return MBX_BUSY; 7462 } 7463 7464 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7465 7466 /* If we are not polling, we MUST be in SLI2 mode */ 7467 if (flag != MBX_POLL) { 7468 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 7469 (mbx->mbxCommand != MBX_KILL_BOARD)) { 7470 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7471 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7472 /* Mbox command <mbxCommand> cannot issue */ 7473 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7474 "(%d):2531 Mailbox command x%x " 7475 "cannot issue Data: x%x x%x\n", 7476 pmbox->vport ? pmbox->vport->vpi : 0, 7477 pmbox->u.mb.mbxCommand, 7478 psli->sli_flag, flag); 7479 goto out_not_finished; 7480 } 7481 /* timeout active mbox command */ 7482 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 7483 1000); 7484 mod_timer(&psli->mbox_tmo, jiffies + timeout); 7485 } 7486 7487 /* Mailbox cmd <cmd> issue */ 7488 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7489 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 7490 "x%x\n", 7491 pmbox->vport ? pmbox->vport->vpi : 0, 7492 mbx->mbxCommand, phba->pport->port_state, 7493 psli->sli_flag, flag); 7494 7495 if (mbx->mbxCommand != MBX_HEARTBEAT) { 7496 if (pmbox->vport) { 7497 lpfc_debugfs_disc_trc(pmbox->vport, 7498 LPFC_DISC_TRC_MBOX_VPORT, 7499 "MBOX Send vport: cmd:x%x mb:x%x x%x", 7500 (uint32_t)mbx->mbxCommand, 7501 mbx->un.varWords[0], mbx->un.varWords[1]); 7502 } 7503 else { 7504 lpfc_debugfs_disc_trc(phba->pport, 7505 LPFC_DISC_TRC_MBOX, 7506 "MBOX Send: cmd:x%x mb:x%x x%x", 7507 (uint32_t)mbx->mbxCommand, 7508 mbx->un.varWords[0], mbx->un.varWords[1]); 7509 } 7510 } 7511 7512 psli->slistat.mbox_cmd++; 7513 evtctr = psli->slistat.mbox_event; 7514 7515 /* next set own bit for the adapter and copy over command word */ 7516 mbx->mbxOwner = OWN_CHIP; 7517 7518 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7519 /* Populate mbox extension offset word. */ 7520 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 7521 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 7522 = (uint8_t *)phba->mbox_ext 7523 - (uint8_t *)phba->mbox; 7524 } 7525 7526 /* Copy the mailbox extension data */ 7527 if (pmbox->in_ext_byte_len && pmbox->context2) { 7528 lpfc_sli_pcimem_bcopy(pmbox->context2, 7529 (uint8_t *)phba->mbox_ext, 7530 pmbox->in_ext_byte_len); 7531 } 7532 /* Copy command data to host SLIM area */ 7533 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 7534 } else { 7535 /* Populate mbox extension offset word. */ 7536 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 7537 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 7538 = MAILBOX_HBA_EXT_OFFSET; 7539 7540 /* Copy the mailbox extension data */ 7541 if (pmbox->in_ext_byte_len && pmbox->context2) 7542 lpfc_memcpy_to_slim(phba->MBslimaddr + 7543 MAILBOX_HBA_EXT_OFFSET, 7544 pmbox->context2, pmbox->in_ext_byte_len); 7545 7546 if (mbx->mbxCommand == MBX_CONFIG_PORT) 7547 /* copy command data into host mbox for cmpl */ 7548 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 7549 MAILBOX_CMD_SIZE); 7550 7551 /* First copy mbox command data to HBA SLIM, skip past first 7552 word */ 7553 to_slim = phba->MBslimaddr + sizeof (uint32_t); 7554 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 7555 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 7556 7557 /* Next copy over first word, with mbxOwner set */ 7558 ldata = *((uint32_t *)mbx); 7559 to_slim = phba->MBslimaddr; 7560 writel(ldata, to_slim); 7561 readl(to_slim); /* flush */ 7562 7563 if (mbx->mbxCommand == MBX_CONFIG_PORT) 7564 /* switch over to host mailbox */ 7565 psli->sli_flag |= LPFC_SLI_ACTIVE; 7566 } 7567 7568 wmb(); 7569 7570 switch (flag) { 7571 case MBX_NOWAIT: 7572 /* Set up reference to mailbox command */ 7573 psli->mbox_active = pmbox; 7574 /* Interrupt board to do it */ 7575 writel(CA_MBATT, phba->CAregaddr); 7576 readl(phba->CAregaddr); /* flush */ 7577 /* Don't wait for it to finish, just return */ 7578 break; 7579 7580 case MBX_POLL: 7581 /* Set up null reference to mailbox command */ 7582 psli->mbox_active = NULL; 7583 /* Interrupt board to do it */ 7584 writel(CA_MBATT, phba->CAregaddr); 7585 readl(phba->CAregaddr); /* flush */ 7586 7587 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7588 /* First read mbox status word */ 7589 word0 = *((uint32_t *)phba->mbox); 7590 word0 = le32_to_cpu(word0); 7591 } else { 7592 /* First read mbox status word */ 7593 if (lpfc_readl(phba->MBslimaddr, &word0)) { 7594 spin_unlock_irqrestore(&phba->hbalock, 7595 drvr_flag); 7596 goto out_not_finished; 7597 } 7598 } 7599 7600 /* Read the HBA Host Attention Register */ 7601 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 7602 spin_unlock_irqrestore(&phba->hbalock, 7603 drvr_flag); 7604 goto out_not_finished; 7605 } 7606 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 7607 1000) + jiffies; 7608 i = 0; 7609 /* Wait for command to complete */ 7610 while (((word0 & OWN_CHIP) == OWN_CHIP) || 7611 (!(ha_copy & HA_MBATT) && 7612 (phba->link_state > LPFC_WARM_START))) { 7613 if (time_after(jiffies, timeout)) { 7614 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7615 spin_unlock_irqrestore(&phba->hbalock, 7616 drvr_flag); 7617 goto out_not_finished; 7618 } 7619 7620 /* Check if we took a mbox interrupt while we were 7621 polling */ 7622 if (((word0 & OWN_CHIP) != OWN_CHIP) 7623 && (evtctr != psli->slistat.mbox_event)) 7624 break; 7625 7626 if (i++ > 10) { 7627 spin_unlock_irqrestore(&phba->hbalock, 7628 drvr_flag); 7629 msleep(1); 7630 spin_lock_irqsave(&phba->hbalock, drvr_flag); 7631 } 7632 7633 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7634 /* First copy command data */ 7635 word0 = *((uint32_t *)phba->mbox); 7636 word0 = le32_to_cpu(word0); 7637 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 7638 MAILBOX_t *slimmb; 7639 uint32_t slimword0; 7640 /* Check real SLIM for any errors */ 7641 slimword0 = readl(phba->MBslimaddr); 7642 slimmb = (MAILBOX_t *) & slimword0; 7643 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 7644 && slimmb->mbxStatus) { 7645 psli->sli_flag &= 7646 ~LPFC_SLI_ACTIVE; 7647 word0 = slimword0; 7648 } 7649 } 7650 } else { 7651 /* First copy command data */ 7652 word0 = readl(phba->MBslimaddr); 7653 } 7654 /* Read the HBA Host Attention Register */ 7655 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 7656 spin_unlock_irqrestore(&phba->hbalock, 7657 drvr_flag); 7658 goto out_not_finished; 7659 } 7660 } 7661 7662 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7663 /* copy results back to user */ 7664 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 7665 MAILBOX_CMD_SIZE); 7666 /* Copy the mailbox extension data */ 7667 if (pmbox->out_ext_byte_len && pmbox->context2) { 7668 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 7669 pmbox->context2, 7670 pmbox->out_ext_byte_len); 7671 } 7672 } else { 7673 /* First copy command data */ 7674 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 7675 MAILBOX_CMD_SIZE); 7676 /* Copy the mailbox extension data */ 7677 if (pmbox->out_ext_byte_len && pmbox->context2) { 7678 lpfc_memcpy_from_slim(pmbox->context2, 7679 phba->MBslimaddr + 7680 MAILBOX_HBA_EXT_OFFSET, 7681 pmbox->out_ext_byte_len); 7682 } 7683 } 7684 7685 writel(HA_MBATT, phba->HAregaddr); 7686 readl(phba->HAregaddr); /* flush */ 7687 7688 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7689 status = mbx->mbxStatus; 7690 } 7691 7692 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7693 return status; 7694 7695 out_not_finished: 7696 if (processing_queue) { 7697 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 7698 lpfc_mbox_cmpl_put(phba, pmbox); 7699 } 7700 return MBX_NOT_FINISHED; 7701 } 7702 7703 /** 7704 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 7705 * @phba: Pointer to HBA context object. 7706 * 7707 * The function blocks the posting of SLI4 asynchronous mailbox commands from 7708 * the driver internal pending mailbox queue. It will then try to wait out the 7709 * possible outstanding mailbox command before return. 7710 * 7711 * Returns: 7712 * 0 - the outstanding mailbox command completed; otherwise, the wait for 7713 * the outstanding mailbox command timed out. 7714 **/ 7715 static int 7716 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 7717 { 7718 struct lpfc_sli *psli = &phba->sli; 7719 int rc = 0; 7720 unsigned long timeout = 0; 7721 7722 /* Mark the asynchronous mailbox command posting as blocked */ 7723 spin_lock_irq(&phba->hbalock); 7724 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 7725 /* Determine how long we might wait for the active mailbox 7726 * command to be gracefully completed by firmware. 7727 */ 7728 if (phba->sli.mbox_active) 7729 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 7730 phba->sli.mbox_active) * 7731 1000) + jiffies; 7732 spin_unlock_irq(&phba->hbalock); 7733 7734 /* Make sure the mailbox is really active */ 7735 if (timeout) 7736 lpfc_sli4_process_missed_mbox_completions(phba); 7737 7738 /* Wait for the outstnading mailbox command to complete */ 7739 while (phba->sli.mbox_active) { 7740 /* Check active mailbox complete status every 2ms */ 7741 msleep(2); 7742 if (time_after(jiffies, timeout)) { 7743 /* Timeout, marked the outstanding cmd not complete */ 7744 rc = 1; 7745 break; 7746 } 7747 } 7748 7749 /* Can not cleanly block async mailbox command, fails it */ 7750 if (rc) { 7751 spin_lock_irq(&phba->hbalock); 7752 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7753 spin_unlock_irq(&phba->hbalock); 7754 } 7755 return rc; 7756 } 7757 7758 /** 7759 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 7760 * @phba: Pointer to HBA context object. 7761 * 7762 * The function unblocks and resume posting of SLI4 asynchronous mailbox 7763 * commands from the driver internal pending mailbox queue. It makes sure 7764 * that there is no outstanding mailbox command before resuming posting 7765 * asynchronous mailbox commands. If, for any reason, there is outstanding 7766 * mailbox command, it will try to wait it out before resuming asynchronous 7767 * mailbox command posting. 7768 **/ 7769 static void 7770 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 7771 { 7772 struct lpfc_sli *psli = &phba->sli; 7773 7774 spin_lock_irq(&phba->hbalock); 7775 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7776 /* Asynchronous mailbox posting is not blocked, do nothing */ 7777 spin_unlock_irq(&phba->hbalock); 7778 return; 7779 } 7780 7781 /* Outstanding synchronous mailbox command is guaranteed to be done, 7782 * successful or timeout, after timing-out the outstanding mailbox 7783 * command shall always be removed, so just unblock posting async 7784 * mailbox command and resume 7785 */ 7786 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7787 spin_unlock_irq(&phba->hbalock); 7788 7789 /* wake up worker thread to post asynchronlous mailbox command */ 7790 lpfc_worker_wake_up(phba); 7791 } 7792 7793 /** 7794 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 7795 * @phba: Pointer to HBA context object. 7796 * @mboxq: Pointer to mailbox object. 7797 * 7798 * The function waits for the bootstrap mailbox register ready bit from 7799 * port for twice the regular mailbox command timeout value. 7800 * 7801 * 0 - no timeout on waiting for bootstrap mailbox register ready. 7802 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 7803 **/ 7804 static int 7805 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 7806 { 7807 uint32_t db_ready; 7808 unsigned long timeout; 7809 struct lpfc_register bmbx_reg; 7810 7811 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 7812 * 1000) + jiffies; 7813 7814 do { 7815 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 7816 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 7817 if (!db_ready) 7818 msleep(2); 7819 7820 if (time_after(jiffies, timeout)) 7821 return MBXERR_ERROR; 7822 } while (!db_ready); 7823 7824 return 0; 7825 } 7826 7827 /** 7828 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 7829 * @phba: Pointer to HBA context object. 7830 * @mboxq: Pointer to mailbox object. 7831 * 7832 * The function posts a mailbox to the port. The mailbox is expected 7833 * to be comletely filled in and ready for the port to operate on it. 7834 * This routine executes a synchronous completion operation on the 7835 * mailbox by polling for its completion. 7836 * 7837 * The caller must not be holding any locks when calling this routine. 7838 * 7839 * Returns: 7840 * MBX_SUCCESS - mailbox posted successfully 7841 * Any of the MBX error values. 7842 **/ 7843 static int 7844 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 7845 { 7846 int rc = MBX_SUCCESS; 7847 unsigned long iflag; 7848 uint32_t mcqe_status; 7849 uint32_t mbx_cmnd; 7850 struct lpfc_sli *psli = &phba->sli; 7851 struct lpfc_mqe *mb = &mboxq->u.mqe; 7852 struct lpfc_bmbx_create *mbox_rgn; 7853 struct dma_address *dma_address; 7854 7855 /* 7856 * Only one mailbox can be active to the bootstrap mailbox region 7857 * at a time and there is no queueing provided. 7858 */ 7859 spin_lock_irqsave(&phba->hbalock, iflag); 7860 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7861 spin_unlock_irqrestore(&phba->hbalock, iflag); 7862 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7863 "(%d):2532 Mailbox command x%x (x%x/x%x) " 7864 "cannot issue Data: x%x x%x\n", 7865 mboxq->vport ? mboxq->vport->vpi : 0, 7866 mboxq->u.mb.mbxCommand, 7867 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7868 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7869 psli->sli_flag, MBX_POLL); 7870 return MBXERR_ERROR; 7871 } 7872 /* The server grabs the token and owns it until release */ 7873 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7874 phba->sli.mbox_active = mboxq; 7875 spin_unlock_irqrestore(&phba->hbalock, iflag); 7876 7877 /* wait for bootstrap mbox register for readyness */ 7878 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7879 if (rc) 7880 goto exit; 7881 7882 /* 7883 * Initialize the bootstrap memory region to avoid stale data areas 7884 * in the mailbox post. Then copy the caller's mailbox contents to 7885 * the bmbx mailbox region. 7886 */ 7887 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 7888 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 7889 lpfc_sli_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 7890 sizeof(struct lpfc_mqe)); 7891 7892 /* Post the high mailbox dma address to the port and wait for ready. */ 7893 dma_address = &phba->sli4_hba.bmbx.dma_address; 7894 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 7895 7896 /* wait for bootstrap mbox register for hi-address write done */ 7897 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7898 if (rc) 7899 goto exit; 7900 7901 /* Post the low mailbox dma address to the port. */ 7902 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 7903 7904 /* wait for bootstrap mbox register for low address write done */ 7905 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7906 if (rc) 7907 goto exit; 7908 7909 /* 7910 * Read the CQ to ensure the mailbox has completed. 7911 * If so, update the mailbox status so that the upper layers 7912 * can complete the request normally. 7913 */ 7914 lpfc_sli_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 7915 sizeof(struct lpfc_mqe)); 7916 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 7917 lpfc_sli_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 7918 sizeof(struct lpfc_mcqe)); 7919 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 7920 /* 7921 * When the CQE status indicates a failure and the mailbox status 7922 * indicates success then copy the CQE status into the mailbox status 7923 * (and prefix it with x4000). 7924 */ 7925 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 7926 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 7927 bf_set(lpfc_mqe_status, mb, 7928 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 7929 rc = MBXERR_ERROR; 7930 } else 7931 lpfc_sli4_swap_str(phba, mboxq); 7932 7933 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7934 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 7935 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 7936 " x%x x%x CQ: x%x x%x x%x x%x\n", 7937 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 7938 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7939 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7940 bf_get(lpfc_mqe_status, mb), 7941 mb->un.mb_words[0], mb->un.mb_words[1], 7942 mb->un.mb_words[2], mb->un.mb_words[3], 7943 mb->un.mb_words[4], mb->un.mb_words[5], 7944 mb->un.mb_words[6], mb->un.mb_words[7], 7945 mb->un.mb_words[8], mb->un.mb_words[9], 7946 mb->un.mb_words[10], mb->un.mb_words[11], 7947 mb->un.mb_words[12], mboxq->mcqe.word0, 7948 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 7949 mboxq->mcqe.trailer); 7950 exit: 7951 /* We are holding the token, no needed for lock when release */ 7952 spin_lock_irqsave(&phba->hbalock, iflag); 7953 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7954 phba->sli.mbox_active = NULL; 7955 spin_unlock_irqrestore(&phba->hbalock, iflag); 7956 return rc; 7957 } 7958 7959 /** 7960 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 7961 * @phba: Pointer to HBA context object. 7962 * @pmbox: Pointer to mailbox object. 7963 * @flag: Flag indicating how the mailbox need to be processed. 7964 * 7965 * This function is called by discovery code and HBA management code to submit 7966 * a mailbox command to firmware with SLI-4 interface spec. 7967 * 7968 * Return codes the caller owns the mailbox command after the return of the 7969 * function. 7970 **/ 7971 static int 7972 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 7973 uint32_t flag) 7974 { 7975 struct lpfc_sli *psli = &phba->sli; 7976 unsigned long iflags; 7977 int rc; 7978 7979 /* dump from issue mailbox command if setup */ 7980 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 7981 7982 rc = lpfc_mbox_dev_check(phba); 7983 if (unlikely(rc)) { 7984 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7985 "(%d):2544 Mailbox command x%x (x%x/x%x) " 7986 "cannot issue Data: x%x x%x\n", 7987 mboxq->vport ? mboxq->vport->vpi : 0, 7988 mboxq->u.mb.mbxCommand, 7989 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7990 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7991 psli->sli_flag, flag); 7992 goto out_not_finished; 7993 } 7994 7995 /* Detect polling mode and jump to a handler */ 7996 if (!phba->sli4_hba.intr_enable) { 7997 if (flag == MBX_POLL) 7998 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 7999 else 8000 rc = -EIO; 8001 if (rc != MBX_SUCCESS) 8002 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8003 "(%d):2541 Mailbox command x%x " 8004 "(x%x/x%x) failure: " 8005 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8006 "Data: x%x x%x\n,", 8007 mboxq->vport ? mboxq->vport->vpi : 0, 8008 mboxq->u.mb.mbxCommand, 8009 lpfc_sli_config_mbox_subsys_get(phba, 8010 mboxq), 8011 lpfc_sli_config_mbox_opcode_get(phba, 8012 mboxq), 8013 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8014 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8015 bf_get(lpfc_mcqe_ext_status, 8016 &mboxq->mcqe), 8017 psli->sli_flag, flag); 8018 return rc; 8019 } else if (flag == MBX_POLL) { 8020 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8021 "(%d):2542 Try to issue mailbox command " 8022 "x%x (x%x/x%x) synchronously ahead of async" 8023 "mailbox command queue: x%x x%x\n", 8024 mboxq->vport ? mboxq->vport->vpi : 0, 8025 mboxq->u.mb.mbxCommand, 8026 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8027 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8028 psli->sli_flag, flag); 8029 /* Try to block the asynchronous mailbox posting */ 8030 rc = lpfc_sli4_async_mbox_block(phba); 8031 if (!rc) { 8032 /* Successfully blocked, now issue sync mbox cmd */ 8033 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8034 if (rc != MBX_SUCCESS) 8035 lpfc_printf_log(phba, KERN_WARNING, 8036 LOG_MBOX | LOG_SLI, 8037 "(%d):2597 Sync Mailbox command " 8038 "x%x (x%x/x%x) failure: " 8039 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8040 "Data: x%x x%x\n,", 8041 mboxq->vport ? mboxq->vport->vpi : 0, 8042 mboxq->u.mb.mbxCommand, 8043 lpfc_sli_config_mbox_subsys_get(phba, 8044 mboxq), 8045 lpfc_sli_config_mbox_opcode_get(phba, 8046 mboxq), 8047 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8048 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8049 bf_get(lpfc_mcqe_ext_status, 8050 &mboxq->mcqe), 8051 psli->sli_flag, flag); 8052 /* Unblock the async mailbox posting afterward */ 8053 lpfc_sli4_async_mbox_unblock(phba); 8054 } 8055 return rc; 8056 } 8057 8058 /* Now, interrupt mode asynchrous mailbox command */ 8059 rc = lpfc_mbox_cmd_check(phba, mboxq); 8060 if (rc) { 8061 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8062 "(%d):2543 Mailbox command x%x (x%x/x%x) " 8063 "cannot issue Data: x%x x%x\n", 8064 mboxq->vport ? mboxq->vport->vpi : 0, 8065 mboxq->u.mb.mbxCommand, 8066 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8067 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8068 psli->sli_flag, flag); 8069 goto out_not_finished; 8070 } 8071 8072 /* Put the mailbox command to the driver internal FIFO */ 8073 psli->slistat.mbox_busy++; 8074 spin_lock_irqsave(&phba->hbalock, iflags); 8075 lpfc_mbox_put(phba, mboxq); 8076 spin_unlock_irqrestore(&phba->hbalock, iflags); 8077 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8078 "(%d):0354 Mbox cmd issue - Enqueue Data: " 8079 "x%x (x%x/x%x) x%x x%x x%x\n", 8080 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 8081 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8082 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8083 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8084 phba->pport->port_state, 8085 psli->sli_flag, MBX_NOWAIT); 8086 /* Wake up worker thread to transport mailbox command from head */ 8087 lpfc_worker_wake_up(phba); 8088 8089 return MBX_BUSY; 8090 8091 out_not_finished: 8092 return MBX_NOT_FINISHED; 8093 } 8094 8095 /** 8096 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 8097 * @phba: Pointer to HBA context object. 8098 * 8099 * This function is called by worker thread to send a mailbox command to 8100 * SLI4 HBA firmware. 8101 * 8102 **/ 8103 int 8104 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 8105 { 8106 struct lpfc_sli *psli = &phba->sli; 8107 LPFC_MBOXQ_t *mboxq; 8108 int rc = MBX_SUCCESS; 8109 unsigned long iflags; 8110 struct lpfc_mqe *mqe; 8111 uint32_t mbx_cmnd; 8112 8113 /* Check interrupt mode before post async mailbox command */ 8114 if (unlikely(!phba->sli4_hba.intr_enable)) 8115 return MBX_NOT_FINISHED; 8116 8117 /* Check for mailbox command service token */ 8118 spin_lock_irqsave(&phba->hbalock, iflags); 8119 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8120 spin_unlock_irqrestore(&phba->hbalock, iflags); 8121 return MBX_NOT_FINISHED; 8122 } 8123 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8124 spin_unlock_irqrestore(&phba->hbalock, iflags); 8125 return MBX_NOT_FINISHED; 8126 } 8127 if (unlikely(phba->sli.mbox_active)) { 8128 spin_unlock_irqrestore(&phba->hbalock, iflags); 8129 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8130 "0384 There is pending active mailbox cmd\n"); 8131 return MBX_NOT_FINISHED; 8132 } 8133 /* Take the mailbox command service token */ 8134 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8135 8136 /* Get the next mailbox command from head of queue */ 8137 mboxq = lpfc_mbox_get(phba); 8138 8139 /* If no more mailbox command waiting for post, we're done */ 8140 if (!mboxq) { 8141 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8142 spin_unlock_irqrestore(&phba->hbalock, iflags); 8143 return MBX_SUCCESS; 8144 } 8145 phba->sli.mbox_active = mboxq; 8146 spin_unlock_irqrestore(&phba->hbalock, iflags); 8147 8148 /* Check device readiness for posting mailbox command */ 8149 rc = lpfc_mbox_dev_check(phba); 8150 if (unlikely(rc)) 8151 /* Driver clean routine will clean up pending mailbox */ 8152 goto out_not_finished; 8153 8154 /* Prepare the mbox command to be posted */ 8155 mqe = &mboxq->u.mqe; 8156 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 8157 8158 /* Start timer for the mbox_tmo and log some mailbox post messages */ 8159 mod_timer(&psli->mbox_tmo, (jiffies + 8160 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 8161 8162 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8163 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 8164 "x%x x%x\n", 8165 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 8166 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8167 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8168 phba->pport->port_state, psli->sli_flag); 8169 8170 if (mbx_cmnd != MBX_HEARTBEAT) { 8171 if (mboxq->vport) { 8172 lpfc_debugfs_disc_trc(mboxq->vport, 8173 LPFC_DISC_TRC_MBOX_VPORT, 8174 "MBOX Send vport: cmd:x%x mb:x%x x%x", 8175 mbx_cmnd, mqe->un.mb_words[0], 8176 mqe->un.mb_words[1]); 8177 } else { 8178 lpfc_debugfs_disc_trc(phba->pport, 8179 LPFC_DISC_TRC_MBOX, 8180 "MBOX Send: cmd:x%x mb:x%x x%x", 8181 mbx_cmnd, mqe->un.mb_words[0], 8182 mqe->un.mb_words[1]); 8183 } 8184 } 8185 psli->slistat.mbox_cmd++; 8186 8187 /* Post the mailbox command to the port */ 8188 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 8189 if (rc != MBX_SUCCESS) { 8190 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8191 "(%d):2533 Mailbox command x%x (x%x/x%x) " 8192 "cannot issue Data: x%x x%x\n", 8193 mboxq->vport ? mboxq->vport->vpi : 0, 8194 mboxq->u.mb.mbxCommand, 8195 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8196 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8197 psli->sli_flag, MBX_NOWAIT); 8198 goto out_not_finished; 8199 } 8200 8201 return rc; 8202 8203 out_not_finished: 8204 spin_lock_irqsave(&phba->hbalock, iflags); 8205 if (phba->sli.mbox_active) { 8206 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 8207 __lpfc_mbox_cmpl_put(phba, mboxq); 8208 /* Release the token */ 8209 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8210 phba->sli.mbox_active = NULL; 8211 } 8212 spin_unlock_irqrestore(&phba->hbalock, iflags); 8213 8214 return MBX_NOT_FINISHED; 8215 } 8216 8217 /** 8218 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 8219 * @phba: Pointer to HBA context object. 8220 * @pmbox: Pointer to mailbox object. 8221 * @flag: Flag indicating how the mailbox need to be processed. 8222 * 8223 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 8224 * the API jump table function pointer from the lpfc_hba struct. 8225 * 8226 * Return codes the caller owns the mailbox command after the return of the 8227 * function. 8228 **/ 8229 int 8230 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 8231 { 8232 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 8233 } 8234 8235 /** 8236 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 8237 * @phba: The hba struct for which this call is being executed. 8238 * @dev_grp: The HBA PCI-Device group number. 8239 * 8240 * This routine sets up the mbox interface API function jump table in @phba 8241 * struct. 8242 * Returns: 0 - success, -ENODEV - failure. 8243 **/ 8244 int 8245 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 8246 { 8247 8248 switch (dev_grp) { 8249 case LPFC_PCI_DEV_LP: 8250 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 8251 phba->lpfc_sli_handle_slow_ring_event = 8252 lpfc_sli_handle_slow_ring_event_s3; 8253 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 8254 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 8255 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 8256 break; 8257 case LPFC_PCI_DEV_OC: 8258 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 8259 phba->lpfc_sli_handle_slow_ring_event = 8260 lpfc_sli_handle_slow_ring_event_s4; 8261 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 8262 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 8263 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 8264 break; 8265 default: 8266 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8267 "1420 Invalid HBA PCI-device group: 0x%x\n", 8268 dev_grp); 8269 return -ENODEV; 8270 break; 8271 } 8272 return 0; 8273 } 8274 8275 /** 8276 * __lpfc_sli_ringtx_put - Add an iocb to the txq 8277 * @phba: Pointer to HBA context object. 8278 * @pring: Pointer to driver SLI ring object. 8279 * @piocb: Pointer to address of newly added command iocb. 8280 * 8281 * This function is called with hbalock held to add a command 8282 * iocb to the txq when SLI layer cannot submit the command iocb 8283 * to the ring. 8284 **/ 8285 void 8286 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 8287 struct lpfc_iocbq *piocb) 8288 { 8289 lockdep_assert_held(&phba->hbalock); 8290 /* Insert the caller's iocb in the txq tail for later processing. */ 8291 list_add_tail(&piocb->list, &pring->txq); 8292 } 8293 8294 /** 8295 * lpfc_sli_next_iocb - Get the next iocb in the txq 8296 * @phba: Pointer to HBA context object. 8297 * @pring: Pointer to driver SLI ring object. 8298 * @piocb: Pointer to address of newly added command iocb. 8299 * 8300 * This function is called with hbalock held before a new 8301 * iocb is submitted to the firmware. This function checks 8302 * txq to flush the iocbs in txq to Firmware before 8303 * submitting new iocbs to the Firmware. 8304 * If there are iocbs in the txq which need to be submitted 8305 * to firmware, lpfc_sli_next_iocb returns the first element 8306 * of the txq after dequeuing it from txq. 8307 * If there is no iocb in the txq then the function will return 8308 * *piocb and *piocb is set to NULL. Caller needs to check 8309 * *piocb to find if there are more commands in the txq. 8310 **/ 8311 static struct lpfc_iocbq * 8312 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 8313 struct lpfc_iocbq **piocb) 8314 { 8315 struct lpfc_iocbq * nextiocb; 8316 8317 lockdep_assert_held(&phba->hbalock); 8318 8319 nextiocb = lpfc_sli_ringtx_get(phba, pring); 8320 if (!nextiocb) { 8321 nextiocb = *piocb; 8322 *piocb = NULL; 8323 } 8324 8325 return nextiocb; 8326 } 8327 8328 /** 8329 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 8330 * @phba: Pointer to HBA context object. 8331 * @ring_number: SLI ring number to issue iocb on. 8332 * @piocb: Pointer to command iocb. 8333 * @flag: Flag indicating if this command can be put into txq. 8334 * 8335 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 8336 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 8337 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 8338 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 8339 * this function allows only iocbs for posting buffers. This function finds 8340 * next available slot in the command ring and posts the command to the 8341 * available slot and writes the port attention register to request HBA start 8342 * processing new iocb. If there is no slot available in the ring and 8343 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 8344 * the function returns IOCB_BUSY. 8345 * 8346 * This function is called with hbalock held. The function will return success 8347 * after it successfully submit the iocb to firmware or after adding to the 8348 * txq. 8349 **/ 8350 static int 8351 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 8352 struct lpfc_iocbq *piocb, uint32_t flag) 8353 { 8354 struct lpfc_iocbq *nextiocb; 8355 IOCB_t *iocb; 8356 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 8357 8358 lockdep_assert_held(&phba->hbalock); 8359 8360 if (piocb->iocb_cmpl && (!piocb->vport) && 8361 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 8362 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 8363 lpfc_printf_log(phba, KERN_ERR, 8364 LOG_SLI | LOG_VPORT, 8365 "1807 IOCB x%x failed. No vport\n", 8366 piocb->iocb.ulpCommand); 8367 dump_stack(); 8368 return IOCB_ERROR; 8369 } 8370 8371 8372 /* If the PCI channel is in offline state, do not post iocbs. */ 8373 if (unlikely(pci_channel_offline(phba->pcidev))) 8374 return IOCB_ERROR; 8375 8376 /* If HBA has a deferred error attention, fail the iocb. */ 8377 if (unlikely(phba->hba_flag & DEFER_ERATT)) 8378 return IOCB_ERROR; 8379 8380 /* 8381 * We should never get an IOCB if we are in a < LINK_DOWN state 8382 */ 8383 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 8384 return IOCB_ERROR; 8385 8386 /* 8387 * Check to see if we are blocking IOCB processing because of a 8388 * outstanding event. 8389 */ 8390 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 8391 goto iocb_busy; 8392 8393 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 8394 /* 8395 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 8396 * can be issued if the link is not up. 8397 */ 8398 switch (piocb->iocb.ulpCommand) { 8399 case CMD_GEN_REQUEST64_CR: 8400 case CMD_GEN_REQUEST64_CX: 8401 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 8402 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 8403 FC_RCTL_DD_UNSOL_CMD) || 8404 (piocb->iocb.un.genreq64.w5.hcsw.Type != 8405 MENLO_TRANSPORT_TYPE)) 8406 8407 goto iocb_busy; 8408 break; 8409 case CMD_QUE_RING_BUF_CN: 8410 case CMD_QUE_RING_BUF64_CN: 8411 /* 8412 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 8413 * completion, iocb_cmpl MUST be 0. 8414 */ 8415 if (piocb->iocb_cmpl) 8416 piocb->iocb_cmpl = NULL; 8417 /*FALLTHROUGH*/ 8418 case CMD_CREATE_XRI_CR: 8419 case CMD_CLOSE_XRI_CN: 8420 case CMD_CLOSE_XRI_CX: 8421 break; 8422 default: 8423 goto iocb_busy; 8424 } 8425 8426 /* 8427 * For FCP commands, we must be in a state where we can process link 8428 * attention events. 8429 */ 8430 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 8431 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 8432 goto iocb_busy; 8433 } 8434 8435 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 8436 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 8437 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 8438 8439 if (iocb) 8440 lpfc_sli_update_ring(phba, pring); 8441 else 8442 lpfc_sli_update_full_ring(phba, pring); 8443 8444 if (!piocb) 8445 return IOCB_SUCCESS; 8446 8447 goto out_busy; 8448 8449 iocb_busy: 8450 pring->stats.iocb_cmd_delay++; 8451 8452 out_busy: 8453 8454 if (!(flag & SLI_IOCB_RET_IOCB)) { 8455 __lpfc_sli_ringtx_put(phba, pring, piocb); 8456 return IOCB_SUCCESS; 8457 } 8458 8459 return IOCB_BUSY; 8460 } 8461 8462 /** 8463 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 8464 * @phba: Pointer to HBA context object. 8465 * @piocb: Pointer to command iocb. 8466 * @sglq: Pointer to the scatter gather queue object. 8467 * 8468 * This routine converts the bpl or bde that is in the IOCB 8469 * to a sgl list for the sli4 hardware. The physical address 8470 * of the bpl/bde is converted back to a virtual address. 8471 * If the IOCB contains a BPL then the list of BDE's is 8472 * converted to sli4_sge's. If the IOCB contains a single 8473 * BDE then it is converted to a single sli_sge. 8474 * The IOCB is still in cpu endianess so the contents of 8475 * the bpl can be used without byte swapping. 8476 * 8477 * Returns valid XRI = Success, NO_XRI = Failure. 8478 **/ 8479 static uint16_t 8480 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 8481 struct lpfc_sglq *sglq) 8482 { 8483 uint16_t xritag = NO_XRI; 8484 struct ulp_bde64 *bpl = NULL; 8485 struct ulp_bde64 bde; 8486 struct sli4_sge *sgl = NULL; 8487 struct lpfc_dmabuf *dmabuf; 8488 IOCB_t *icmd; 8489 int numBdes = 0; 8490 int i = 0; 8491 uint32_t offset = 0; /* accumulated offset in the sg request list */ 8492 int inbound = 0; /* number of sg reply entries inbound from firmware */ 8493 8494 if (!piocbq || !sglq) 8495 return xritag; 8496 8497 sgl = (struct sli4_sge *)sglq->sgl; 8498 icmd = &piocbq->iocb; 8499 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 8500 return sglq->sli4_xritag; 8501 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 8502 numBdes = icmd->un.genreq64.bdl.bdeSize / 8503 sizeof(struct ulp_bde64); 8504 /* The addrHigh and addrLow fields within the IOCB 8505 * have not been byteswapped yet so there is no 8506 * need to swap them back. 8507 */ 8508 if (piocbq->context3) 8509 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 8510 else 8511 return xritag; 8512 8513 bpl = (struct ulp_bde64 *)dmabuf->virt; 8514 if (!bpl) 8515 return xritag; 8516 8517 for (i = 0; i < numBdes; i++) { 8518 /* Should already be byte swapped. */ 8519 sgl->addr_hi = bpl->addrHigh; 8520 sgl->addr_lo = bpl->addrLow; 8521 8522 sgl->word2 = le32_to_cpu(sgl->word2); 8523 if ((i+1) == numBdes) 8524 bf_set(lpfc_sli4_sge_last, sgl, 1); 8525 else 8526 bf_set(lpfc_sli4_sge_last, sgl, 0); 8527 /* swap the size field back to the cpu so we 8528 * can assign it to the sgl. 8529 */ 8530 bde.tus.w = le32_to_cpu(bpl->tus.w); 8531 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 8532 /* The offsets in the sgl need to be accumulated 8533 * separately for the request and reply lists. 8534 * The request is always first, the reply follows. 8535 */ 8536 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 8537 /* add up the reply sg entries */ 8538 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 8539 inbound++; 8540 /* first inbound? reset the offset */ 8541 if (inbound == 1) 8542 offset = 0; 8543 bf_set(lpfc_sli4_sge_offset, sgl, offset); 8544 bf_set(lpfc_sli4_sge_type, sgl, 8545 LPFC_SGE_TYPE_DATA); 8546 offset += bde.tus.f.bdeSize; 8547 } 8548 sgl->word2 = cpu_to_le32(sgl->word2); 8549 bpl++; 8550 sgl++; 8551 } 8552 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 8553 /* The addrHigh and addrLow fields of the BDE have not 8554 * been byteswapped yet so they need to be swapped 8555 * before putting them in the sgl. 8556 */ 8557 sgl->addr_hi = 8558 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 8559 sgl->addr_lo = 8560 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 8561 sgl->word2 = le32_to_cpu(sgl->word2); 8562 bf_set(lpfc_sli4_sge_last, sgl, 1); 8563 sgl->word2 = cpu_to_le32(sgl->word2); 8564 sgl->sge_len = 8565 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 8566 } 8567 return sglq->sli4_xritag; 8568 } 8569 8570 /** 8571 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry. 8572 * @phba: Pointer to HBA context object. 8573 * @piocb: Pointer to command iocb. 8574 * @wqe: Pointer to the work queue entry. 8575 * 8576 * This routine converts the iocb command to its Work Queue Entry 8577 * equivalent. The wqe pointer should not have any fields set when 8578 * this routine is called because it will memcpy over them. 8579 * This routine does not set the CQ_ID or the WQEC bits in the 8580 * wqe. 8581 * 8582 * Returns: 0 = Success, IOCB_ERROR = Failure. 8583 **/ 8584 static int 8585 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 8586 union lpfc_wqe *wqe) 8587 { 8588 uint32_t xmit_len = 0, total_len = 0; 8589 uint8_t ct = 0; 8590 uint32_t fip; 8591 uint32_t abort_tag; 8592 uint8_t command_type = ELS_COMMAND_NON_FIP; 8593 uint8_t cmnd; 8594 uint16_t xritag; 8595 uint16_t abrt_iotag; 8596 struct lpfc_iocbq *abrtiocbq; 8597 struct ulp_bde64 *bpl = NULL; 8598 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 8599 int numBdes, i; 8600 struct ulp_bde64 bde; 8601 struct lpfc_nodelist *ndlp; 8602 uint32_t *pcmd; 8603 uint32_t if_type; 8604 8605 fip = phba->hba_flag & HBA_FIP_SUPPORT; 8606 /* The fcp commands will set command type */ 8607 if (iocbq->iocb_flag & LPFC_IO_FCP) 8608 command_type = FCP_COMMAND; 8609 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 8610 command_type = ELS_COMMAND_FIP; 8611 else 8612 command_type = ELS_COMMAND_NON_FIP; 8613 8614 if (phba->fcp_embed_io) 8615 memset(wqe, 0, sizeof(union lpfc_wqe128)); 8616 /* Some of the fields are in the right position already */ 8617 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 8618 wqe->generic.wqe_com.word7 = 0; /* The ct field has moved so reset */ 8619 wqe->generic.wqe_com.word10 = 0; 8620 8621 abort_tag = (uint32_t) iocbq->iotag; 8622 xritag = iocbq->sli4_xritag; 8623 /* words0-2 bpl convert bde */ 8624 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 8625 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 8626 sizeof(struct ulp_bde64); 8627 bpl = (struct ulp_bde64 *) 8628 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 8629 if (!bpl) 8630 return IOCB_ERROR; 8631 8632 /* Should already be byte swapped. */ 8633 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 8634 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 8635 /* swap the size field back to the cpu so we 8636 * can assign it to the sgl. 8637 */ 8638 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 8639 xmit_len = wqe->generic.bde.tus.f.bdeSize; 8640 total_len = 0; 8641 for (i = 0; i < numBdes; i++) { 8642 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 8643 total_len += bde.tus.f.bdeSize; 8644 } 8645 } else 8646 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 8647 8648 iocbq->iocb.ulpIoTag = iocbq->iotag; 8649 cmnd = iocbq->iocb.ulpCommand; 8650 8651 switch (iocbq->iocb.ulpCommand) { 8652 case CMD_ELS_REQUEST64_CR: 8653 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 8654 ndlp = iocbq->context_un.ndlp; 8655 else 8656 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8657 if (!iocbq->iocb.ulpLe) { 8658 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8659 "2007 Only Limited Edition cmd Format" 8660 " supported 0x%x\n", 8661 iocbq->iocb.ulpCommand); 8662 return IOCB_ERROR; 8663 } 8664 8665 wqe->els_req.payload_len = xmit_len; 8666 /* Els_reguest64 has a TMO */ 8667 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 8668 iocbq->iocb.ulpTimeout); 8669 /* Need a VF for word 4 set the vf bit*/ 8670 bf_set(els_req64_vf, &wqe->els_req, 0); 8671 /* And a VFID for word 12 */ 8672 bf_set(els_req64_vfid, &wqe->els_req, 0); 8673 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 8674 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8675 iocbq->iocb.ulpContext); 8676 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 8677 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 8678 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 8679 if (command_type == ELS_COMMAND_FIP) 8680 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 8681 >> LPFC_FIP_ELS_ID_SHIFT); 8682 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 8683 iocbq->context2)->virt); 8684 if_type = bf_get(lpfc_sli_intf_if_type, 8685 &phba->sli4_hba.sli_intf); 8686 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) { 8687 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 8688 *pcmd == ELS_CMD_SCR || 8689 *pcmd == ELS_CMD_FDISC || 8690 *pcmd == ELS_CMD_LOGO || 8691 *pcmd == ELS_CMD_PLOGI)) { 8692 bf_set(els_req64_sp, &wqe->els_req, 1); 8693 bf_set(els_req64_sid, &wqe->els_req, 8694 iocbq->vport->fc_myDID); 8695 if ((*pcmd == ELS_CMD_FLOGI) && 8696 !(phba->fc_topology == 8697 LPFC_TOPOLOGY_LOOP)) 8698 bf_set(els_req64_sid, &wqe->els_req, 0); 8699 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 8700 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8701 phba->vpi_ids[iocbq->vport->vpi]); 8702 } else if (pcmd && iocbq->context1) { 8703 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 8704 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8705 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8706 } 8707 } 8708 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 8709 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8710 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 8711 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 8712 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 8713 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 8714 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 8715 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 8716 wqe->els_req.max_response_payload_len = total_len - xmit_len; 8717 break; 8718 case CMD_XMIT_SEQUENCE64_CX: 8719 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 8720 iocbq->iocb.un.ulpWord[3]); 8721 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 8722 iocbq->iocb.unsli3.rcvsli3.ox_id); 8723 /* The entire sequence is transmitted for this IOCB */ 8724 xmit_len = total_len; 8725 cmnd = CMD_XMIT_SEQUENCE64_CR; 8726 if (phba->link_flag & LS_LOOPBACK_MODE) 8727 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 8728 case CMD_XMIT_SEQUENCE64_CR: 8729 /* word3 iocb=io_tag32 wqe=reserved */ 8730 wqe->xmit_sequence.rsvd3 = 0; 8731 /* word4 relative_offset memcpy */ 8732 /* word5 r_ctl/df_ctl memcpy */ 8733 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 8734 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 8735 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 8736 LPFC_WQE_IOD_WRITE); 8737 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 8738 LPFC_WQE_LENLOC_WORD12); 8739 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 8740 wqe->xmit_sequence.xmit_len = xmit_len; 8741 command_type = OTHER_COMMAND; 8742 break; 8743 case CMD_XMIT_BCAST64_CN: 8744 /* word3 iocb=iotag32 wqe=seq_payload_len */ 8745 wqe->xmit_bcast64.seq_payload_len = xmit_len; 8746 /* word4 iocb=rsvd wqe=rsvd */ 8747 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 8748 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 8749 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 8750 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 8751 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 8752 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 8753 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 8754 LPFC_WQE_LENLOC_WORD3); 8755 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 8756 break; 8757 case CMD_FCP_IWRITE64_CR: 8758 command_type = FCP_COMMAND_DATA_OUT; 8759 /* word3 iocb=iotag wqe=payload_offset_len */ 8760 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8761 bf_set(payload_offset_len, &wqe->fcp_iwrite, 8762 xmit_len + sizeof(struct fcp_rsp)); 8763 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 8764 0); 8765 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 8766 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 8767 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 8768 iocbq->iocb.ulpFCP2Rcvy); 8769 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 8770 /* Always open the exchange */ 8771 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 8772 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 8773 LPFC_WQE_LENLOC_WORD4); 8774 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 8775 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 8776 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8777 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 8778 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 8779 if (iocbq->priority) { 8780 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 8781 (iocbq->priority << 1)); 8782 } else { 8783 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 8784 (phba->cfg_XLanePriority << 1)); 8785 } 8786 } 8787 /* Note, word 10 is already initialized to 0 */ 8788 8789 if (phba->fcp_embed_io) { 8790 struct lpfc_scsi_buf *lpfc_cmd; 8791 struct sli4_sge *sgl; 8792 union lpfc_wqe128 *wqe128; 8793 struct fcp_cmnd *fcp_cmnd; 8794 uint32_t *ptr; 8795 8796 /* 128 byte wqe support here */ 8797 wqe128 = (union lpfc_wqe128 *)wqe; 8798 8799 lpfc_cmd = iocbq->context1; 8800 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 8801 fcp_cmnd = lpfc_cmd->fcp_cmnd; 8802 8803 /* Word 0-2 - FCP_CMND */ 8804 wqe128->generic.bde.tus.f.bdeFlags = 8805 BUFF_TYPE_BDE_IMMED; 8806 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len; 8807 wqe128->generic.bde.addrHigh = 0; 8808 wqe128->generic.bde.addrLow = 88; /* Word 22 */ 8809 8810 bf_set(wqe_wqes, &wqe128->fcp_iwrite.wqe_com, 1); 8811 8812 /* Word 22-29 FCP CMND Payload */ 8813 ptr = &wqe128->words[22]; 8814 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 8815 } 8816 break; 8817 case CMD_FCP_IREAD64_CR: 8818 /* word3 iocb=iotag wqe=payload_offset_len */ 8819 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8820 bf_set(payload_offset_len, &wqe->fcp_iread, 8821 xmit_len + sizeof(struct fcp_rsp)); 8822 bf_set(cmd_buff_len, &wqe->fcp_iread, 8823 0); 8824 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 8825 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 8826 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 8827 iocbq->iocb.ulpFCP2Rcvy); 8828 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 8829 /* Always open the exchange */ 8830 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 8831 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 8832 LPFC_WQE_LENLOC_WORD4); 8833 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 8834 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 8835 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8836 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 8837 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 8838 if (iocbq->priority) { 8839 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 8840 (iocbq->priority << 1)); 8841 } else { 8842 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 8843 (phba->cfg_XLanePriority << 1)); 8844 } 8845 } 8846 /* Note, word 10 is already initialized to 0 */ 8847 8848 if (phba->fcp_embed_io) { 8849 struct lpfc_scsi_buf *lpfc_cmd; 8850 struct sli4_sge *sgl; 8851 union lpfc_wqe128 *wqe128; 8852 struct fcp_cmnd *fcp_cmnd; 8853 uint32_t *ptr; 8854 8855 /* 128 byte wqe support here */ 8856 wqe128 = (union lpfc_wqe128 *)wqe; 8857 8858 lpfc_cmd = iocbq->context1; 8859 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 8860 fcp_cmnd = lpfc_cmd->fcp_cmnd; 8861 8862 /* Word 0-2 - FCP_CMND */ 8863 wqe128->generic.bde.tus.f.bdeFlags = 8864 BUFF_TYPE_BDE_IMMED; 8865 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len; 8866 wqe128->generic.bde.addrHigh = 0; 8867 wqe128->generic.bde.addrLow = 88; /* Word 22 */ 8868 8869 bf_set(wqe_wqes, &wqe128->fcp_iread.wqe_com, 1); 8870 8871 /* Word 22-29 FCP CMND Payload */ 8872 ptr = &wqe128->words[22]; 8873 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 8874 } 8875 break; 8876 case CMD_FCP_ICMND64_CR: 8877 /* word3 iocb=iotag wqe=payload_offset_len */ 8878 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8879 bf_set(payload_offset_len, &wqe->fcp_icmd, 8880 xmit_len + sizeof(struct fcp_rsp)); 8881 bf_set(cmd_buff_len, &wqe->fcp_icmd, 8882 0); 8883 /* word3 iocb=IO_TAG wqe=reserved */ 8884 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 8885 /* Always open the exchange */ 8886 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 8887 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 8888 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 8889 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 8890 LPFC_WQE_LENLOC_NONE); 8891 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 8892 iocbq->iocb.ulpFCP2Rcvy); 8893 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8894 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 8895 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 8896 if (iocbq->priority) { 8897 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 8898 (iocbq->priority << 1)); 8899 } else { 8900 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 8901 (phba->cfg_XLanePriority << 1)); 8902 } 8903 } 8904 /* Note, word 10 is already initialized to 0 */ 8905 8906 if (phba->fcp_embed_io) { 8907 struct lpfc_scsi_buf *lpfc_cmd; 8908 struct sli4_sge *sgl; 8909 union lpfc_wqe128 *wqe128; 8910 struct fcp_cmnd *fcp_cmnd; 8911 uint32_t *ptr; 8912 8913 /* 128 byte wqe support here */ 8914 wqe128 = (union lpfc_wqe128 *)wqe; 8915 8916 lpfc_cmd = iocbq->context1; 8917 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 8918 fcp_cmnd = lpfc_cmd->fcp_cmnd; 8919 8920 /* Word 0-2 - FCP_CMND */ 8921 wqe128->generic.bde.tus.f.bdeFlags = 8922 BUFF_TYPE_BDE_IMMED; 8923 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len; 8924 wqe128->generic.bde.addrHigh = 0; 8925 wqe128->generic.bde.addrLow = 88; /* Word 22 */ 8926 8927 bf_set(wqe_wqes, &wqe128->fcp_icmd.wqe_com, 1); 8928 8929 /* Word 22-29 FCP CMND Payload */ 8930 ptr = &wqe128->words[22]; 8931 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 8932 } 8933 break; 8934 case CMD_GEN_REQUEST64_CR: 8935 /* For this command calculate the xmit length of the 8936 * request bde. 8937 */ 8938 xmit_len = 0; 8939 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 8940 sizeof(struct ulp_bde64); 8941 for (i = 0; i < numBdes; i++) { 8942 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 8943 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 8944 break; 8945 xmit_len += bde.tus.f.bdeSize; 8946 } 8947 /* word3 iocb=IO_TAG wqe=request_payload_len */ 8948 wqe->gen_req.request_payload_len = xmit_len; 8949 /* word4 iocb=parameter wqe=relative_offset memcpy */ 8950 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 8951 /* word6 context tag copied in memcpy */ 8952 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 8953 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 8954 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8955 "2015 Invalid CT %x command 0x%x\n", 8956 ct, iocbq->iocb.ulpCommand); 8957 return IOCB_ERROR; 8958 } 8959 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 8960 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 8961 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 8962 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 8963 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 8964 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 8965 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 8966 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 8967 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 8968 command_type = OTHER_COMMAND; 8969 break; 8970 case CMD_XMIT_ELS_RSP64_CX: 8971 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8972 /* words0-2 BDE memcpy */ 8973 /* word3 iocb=iotag32 wqe=response_payload_len */ 8974 wqe->xmit_els_rsp.response_payload_len = xmit_len; 8975 /* word4 */ 8976 wqe->xmit_els_rsp.word4 = 0; 8977 /* word5 iocb=rsvd wge=did */ 8978 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 8979 iocbq->iocb.un.xseq64.xmit_els_remoteID); 8980 8981 if_type = bf_get(lpfc_sli_intf_if_type, 8982 &phba->sli4_hba.sli_intf); 8983 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) { 8984 if (iocbq->vport->fc_flag & FC_PT2PT) { 8985 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 8986 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 8987 iocbq->vport->fc_myDID); 8988 if (iocbq->vport->fc_myDID == Fabric_DID) { 8989 bf_set(wqe_els_did, 8990 &wqe->xmit_els_rsp.wqe_dest, 0); 8991 } 8992 } 8993 } 8994 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 8995 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 8996 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 8997 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 8998 iocbq->iocb.unsli3.rcvsli3.ox_id); 8999 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 9000 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9001 phba->vpi_ids[iocbq->vport->vpi]); 9002 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 9003 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 9004 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 9005 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 9006 LPFC_WQE_LENLOC_WORD3); 9007 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 9008 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 9009 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9010 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9011 iocbq->context2)->virt); 9012 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 9013 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 9014 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 9015 iocbq->vport->fc_myDID); 9016 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 9017 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9018 phba->vpi_ids[phba->pport->vpi]); 9019 } 9020 command_type = OTHER_COMMAND; 9021 break; 9022 case CMD_CLOSE_XRI_CN: 9023 case CMD_ABORT_XRI_CN: 9024 case CMD_ABORT_XRI_CX: 9025 /* words 0-2 memcpy should be 0 rserved */ 9026 /* port will send abts */ 9027 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 9028 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 9029 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 9030 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 9031 } else 9032 fip = 0; 9033 9034 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 9035 /* 9036 * The link is down, or the command was ELS_FIP 9037 * so the fw does not need to send abts 9038 * on the wire. 9039 */ 9040 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 9041 else 9042 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 9043 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 9044 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 9045 wqe->abort_cmd.rsrvd5 = 0; 9046 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 9047 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9048 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 9049 /* 9050 * The abort handler will send us CMD_ABORT_XRI_CN or 9051 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 9052 */ 9053 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 9054 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 9055 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 9056 LPFC_WQE_LENLOC_NONE); 9057 cmnd = CMD_ABORT_XRI_CX; 9058 command_type = OTHER_COMMAND; 9059 xritag = 0; 9060 break; 9061 case CMD_XMIT_BLS_RSP64_CX: 9062 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9063 /* As BLS ABTS RSP WQE is very different from other WQEs, 9064 * we re-construct this WQE here based on information in 9065 * iocbq from scratch. 9066 */ 9067 memset(wqe, 0, sizeof(union lpfc_wqe)); 9068 /* OX_ID is invariable to who sent ABTS to CT exchange */ 9069 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 9070 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 9071 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 9072 LPFC_ABTS_UNSOL_INT) { 9073 /* ABTS sent by initiator to CT exchange, the 9074 * RX_ID field will be filled with the newly 9075 * allocated responder XRI. 9076 */ 9077 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 9078 iocbq->sli4_xritag); 9079 } else { 9080 /* ABTS sent by responder to CT exchange, the 9081 * RX_ID field will be filled with the responder 9082 * RX_ID from ABTS. 9083 */ 9084 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 9085 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 9086 } 9087 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 9088 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 9089 9090 /* Use CT=VPI */ 9091 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 9092 ndlp->nlp_DID); 9093 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 9094 iocbq->iocb.ulpContext); 9095 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 9096 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 9097 phba->vpi_ids[phba->pport->vpi]); 9098 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 9099 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 9100 LPFC_WQE_LENLOC_NONE); 9101 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 9102 command_type = OTHER_COMMAND; 9103 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 9104 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 9105 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 9106 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 9107 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 9108 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 9109 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 9110 } 9111 9112 break; 9113 case CMD_XRI_ABORTED_CX: 9114 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 9115 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 9116 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 9117 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 9118 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 9119 default: 9120 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9121 "2014 Invalid command 0x%x\n", 9122 iocbq->iocb.ulpCommand); 9123 return IOCB_ERROR; 9124 break; 9125 } 9126 9127 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 9128 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 9129 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 9130 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 9131 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 9132 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 9133 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 9134 LPFC_IO_DIF_INSERT); 9135 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 9136 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 9137 wqe->generic.wqe_com.abort_tag = abort_tag; 9138 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 9139 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 9140 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 9141 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 9142 return 0; 9143 } 9144 9145 /** 9146 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 9147 * @phba: Pointer to HBA context object. 9148 * @ring_number: SLI ring number to issue iocb on. 9149 * @piocb: Pointer to command iocb. 9150 * @flag: Flag indicating if this command can be put into txq. 9151 * 9152 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 9153 * an iocb command to an HBA with SLI-4 interface spec. 9154 * 9155 * This function is called with hbalock held. The function will return success 9156 * after it successfully submit the iocb to firmware or after adding to the 9157 * txq. 9158 **/ 9159 static int 9160 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 9161 struct lpfc_iocbq *piocb, uint32_t flag) 9162 { 9163 struct lpfc_sglq *sglq; 9164 union lpfc_wqe *wqe; 9165 union lpfc_wqe128 wqe128; 9166 struct lpfc_queue *wq; 9167 struct lpfc_sli_ring *pring; 9168 9169 /* Get the WQ */ 9170 if ((piocb->iocb_flag & LPFC_IO_FCP) || 9171 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 9172 if (!phba->cfg_fof || (!(piocb->iocb_flag & LPFC_IO_OAS))) 9173 wq = phba->sli4_hba.fcp_wq[piocb->hba_wqidx]; 9174 else 9175 wq = phba->sli4_hba.oas_wq; 9176 } else { 9177 wq = phba->sli4_hba.els_wq; 9178 } 9179 9180 /* Get corresponding ring */ 9181 pring = wq->pring; 9182 9183 /* 9184 * The WQE can be either 64 or 128 bytes, 9185 * so allocate space on the stack assuming the largest. 9186 */ 9187 wqe = (union lpfc_wqe *)&wqe128; 9188 9189 lockdep_assert_held(&phba->hbalock); 9190 9191 if (piocb->sli4_xritag == NO_XRI) { 9192 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 9193 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 9194 sglq = NULL; 9195 else { 9196 if (!list_empty(&pring->txq)) { 9197 if (!(flag & SLI_IOCB_RET_IOCB)) { 9198 __lpfc_sli_ringtx_put(phba, 9199 pring, piocb); 9200 return IOCB_SUCCESS; 9201 } else { 9202 return IOCB_BUSY; 9203 } 9204 } else { 9205 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 9206 if (!sglq) { 9207 if (!(flag & SLI_IOCB_RET_IOCB)) { 9208 __lpfc_sli_ringtx_put(phba, 9209 pring, 9210 piocb); 9211 return IOCB_SUCCESS; 9212 } else 9213 return IOCB_BUSY; 9214 } 9215 } 9216 } 9217 } else if (piocb->iocb_flag & LPFC_IO_FCP) 9218 /* These IO's already have an XRI and a mapped sgl. */ 9219 sglq = NULL; 9220 else { 9221 /* 9222 * This is a continuation of a commandi,(CX) so this 9223 * sglq is on the active list 9224 */ 9225 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 9226 if (!sglq) 9227 return IOCB_ERROR; 9228 } 9229 9230 if (sglq) { 9231 piocb->sli4_lxritag = sglq->sli4_lxritag; 9232 piocb->sli4_xritag = sglq->sli4_xritag; 9233 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 9234 return IOCB_ERROR; 9235 } 9236 9237 if (lpfc_sli4_iocb2wqe(phba, piocb, wqe)) 9238 return IOCB_ERROR; 9239 9240 if (lpfc_sli4_wq_put(wq, wqe)) 9241 return IOCB_ERROR; 9242 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 9243 9244 return 0; 9245 } 9246 9247 /** 9248 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 9249 * 9250 * This routine wraps the actual lockless version for issusing IOCB function 9251 * pointer from the lpfc_hba struct. 9252 * 9253 * Return codes: 9254 * IOCB_ERROR - Error 9255 * IOCB_SUCCESS - Success 9256 * IOCB_BUSY - Busy 9257 **/ 9258 int 9259 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 9260 struct lpfc_iocbq *piocb, uint32_t flag) 9261 { 9262 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9263 } 9264 9265 /** 9266 * lpfc_sli_api_table_setup - Set up sli api function jump table 9267 * @phba: The hba struct for which this call is being executed. 9268 * @dev_grp: The HBA PCI-Device group number. 9269 * 9270 * This routine sets up the SLI interface API function jump table in @phba 9271 * struct. 9272 * Returns: 0 - success, -ENODEV - failure. 9273 **/ 9274 int 9275 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 9276 { 9277 9278 switch (dev_grp) { 9279 case LPFC_PCI_DEV_LP: 9280 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 9281 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 9282 break; 9283 case LPFC_PCI_DEV_OC: 9284 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 9285 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 9286 break; 9287 default: 9288 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9289 "1419 Invalid HBA PCI-device group: 0x%x\n", 9290 dev_grp); 9291 return -ENODEV; 9292 break; 9293 } 9294 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 9295 return 0; 9296 } 9297 9298 /** 9299 * lpfc_sli4_calc_ring - Calculates which ring to use 9300 * @phba: Pointer to HBA context object. 9301 * @piocb: Pointer to command iocb. 9302 * 9303 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 9304 * hba_wqidx, thus we need to calculate the corresponding ring. 9305 * Since ABORTS must go on the same WQ of the command they are 9306 * aborting, we use command's hba_wqidx. 9307 */ 9308 struct lpfc_sli_ring * 9309 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 9310 { 9311 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 9312 if (!(phba->cfg_fof) || 9313 (!(piocb->iocb_flag & LPFC_IO_FOF))) { 9314 if (unlikely(!phba->sli4_hba.fcp_wq)) 9315 return NULL; 9316 /* 9317 * for abort iocb hba_wqidx should already 9318 * be setup based on what work queue we used. 9319 */ 9320 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) 9321 piocb->hba_wqidx = 9322 lpfc_sli4_scmd_to_wqidx_distr(phba, 9323 piocb->context1); 9324 return phba->sli4_hba.fcp_wq[piocb->hba_wqidx]->pring; 9325 } else { 9326 if (unlikely(!phba->sli4_hba.oas_wq)) 9327 return NULL; 9328 piocb->hba_wqidx = 0; 9329 return phba->sli4_hba.oas_wq->pring; 9330 } 9331 } else { 9332 if (unlikely(!phba->sli4_hba.els_wq)) 9333 return NULL; 9334 piocb->hba_wqidx = 0; 9335 return phba->sli4_hba.els_wq->pring; 9336 } 9337 } 9338 9339 /** 9340 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 9341 * @phba: Pointer to HBA context object. 9342 * @pring: Pointer to driver SLI ring object. 9343 * @piocb: Pointer to command iocb. 9344 * @flag: Flag indicating if this command can be put into txq. 9345 * 9346 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 9347 * function. This function gets the hbalock and calls 9348 * __lpfc_sli_issue_iocb function and will return the error returned 9349 * by __lpfc_sli_issue_iocb function. This wrapper is used by 9350 * functions which do not hold hbalock. 9351 **/ 9352 int 9353 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 9354 struct lpfc_iocbq *piocb, uint32_t flag) 9355 { 9356 struct lpfc_hba_eq_hdl *hba_eq_hdl; 9357 struct lpfc_sli_ring *pring; 9358 struct lpfc_queue *fpeq; 9359 struct lpfc_eqe *eqe; 9360 unsigned long iflags; 9361 int rc, idx; 9362 9363 if (phba->sli_rev == LPFC_SLI_REV4) { 9364 pring = lpfc_sli4_calc_ring(phba, piocb); 9365 if (unlikely(pring == NULL)) 9366 return IOCB_ERROR; 9367 9368 spin_lock_irqsave(&pring->ring_lock, iflags); 9369 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9370 spin_unlock_irqrestore(&pring->ring_lock, iflags); 9371 9372 if (lpfc_fcp_look_ahead && (piocb->iocb_flag & LPFC_IO_FCP)) { 9373 idx = piocb->hba_wqidx; 9374 hba_eq_hdl = &phba->sli4_hba.hba_eq_hdl[idx]; 9375 9376 if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use)) { 9377 9378 /* Get associated EQ with this index */ 9379 fpeq = phba->sli4_hba.hba_eq[idx]; 9380 9381 /* Turn off interrupts from this EQ */ 9382 lpfc_sli4_eq_clr_intr(fpeq); 9383 9384 /* 9385 * Process all the events on FCP EQ 9386 */ 9387 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 9388 lpfc_sli4_hba_handle_eqe(phba, 9389 eqe, idx); 9390 fpeq->EQ_processed++; 9391 } 9392 9393 /* Always clear and re-arm the EQ */ 9394 lpfc_sli4_eq_release(fpeq, 9395 LPFC_QUEUE_REARM); 9396 } 9397 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 9398 } 9399 } else { 9400 /* For now, SLI2/3 will still use hbalock */ 9401 spin_lock_irqsave(&phba->hbalock, iflags); 9402 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9403 spin_unlock_irqrestore(&phba->hbalock, iflags); 9404 } 9405 return rc; 9406 } 9407 9408 /** 9409 * lpfc_extra_ring_setup - Extra ring setup function 9410 * @phba: Pointer to HBA context object. 9411 * 9412 * This function is called while driver attaches with the 9413 * HBA to setup the extra ring. The extra ring is used 9414 * only when driver needs to support target mode functionality 9415 * or IP over FC functionalities. 9416 * 9417 * This function is called with no lock held. SLI3 only. 9418 **/ 9419 static int 9420 lpfc_extra_ring_setup( struct lpfc_hba *phba) 9421 { 9422 struct lpfc_sli *psli; 9423 struct lpfc_sli_ring *pring; 9424 9425 psli = &phba->sli; 9426 9427 /* Adjust cmd/rsp ring iocb entries more evenly */ 9428 9429 /* Take some away from the FCP ring */ 9430 pring = &psli->sli3_ring[LPFC_FCP_RING]; 9431 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9432 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9433 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9434 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9435 9436 /* and give them to the extra ring */ 9437 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 9438 9439 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9440 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9441 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9442 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9443 9444 /* Setup default profile for this ring */ 9445 pring->iotag_max = 4096; 9446 pring->num_mask = 1; 9447 pring->prt[0].profile = 0; /* Mask 0 */ 9448 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 9449 pring->prt[0].type = phba->cfg_multi_ring_type; 9450 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 9451 return 0; 9452 } 9453 9454 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 9455 * @phba: Pointer to HBA context object. 9456 * @iocbq: Pointer to iocb object. 9457 * 9458 * The async_event handler calls this routine when it receives 9459 * an ASYNC_STATUS_CN event from the port. The port generates 9460 * this event when an Abort Sequence request to an rport fails 9461 * twice in succession. The abort could be originated by the 9462 * driver or by the port. The ABTS could have been for an ELS 9463 * or FCP IO. The port only generates this event when an ABTS 9464 * fails to complete after one retry. 9465 */ 9466 static void 9467 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 9468 struct lpfc_iocbq *iocbq) 9469 { 9470 struct lpfc_nodelist *ndlp = NULL; 9471 uint16_t rpi = 0, vpi = 0; 9472 struct lpfc_vport *vport = NULL; 9473 9474 /* The rpi in the ulpContext is vport-sensitive. */ 9475 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 9476 rpi = iocbq->iocb.ulpContext; 9477 9478 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9479 "3092 Port generated ABTS async event " 9480 "on vpi %d rpi %d status 0x%x\n", 9481 vpi, rpi, iocbq->iocb.ulpStatus); 9482 9483 vport = lpfc_find_vport_by_vpid(phba, vpi); 9484 if (!vport) 9485 goto err_exit; 9486 ndlp = lpfc_findnode_rpi(vport, rpi); 9487 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) 9488 goto err_exit; 9489 9490 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 9491 lpfc_sli_abts_recover_port(vport, ndlp); 9492 return; 9493 9494 err_exit: 9495 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9496 "3095 Event Context not found, no " 9497 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 9498 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 9499 vpi, rpi); 9500 } 9501 9502 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 9503 * @phba: pointer to HBA context object. 9504 * @ndlp: nodelist pointer for the impacted rport. 9505 * @axri: pointer to the wcqe containing the failed exchange. 9506 * 9507 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 9508 * port. The port generates this event when an abort exchange request to an 9509 * rport fails twice in succession with no reply. The abort could be originated 9510 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 9511 */ 9512 void 9513 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 9514 struct lpfc_nodelist *ndlp, 9515 struct sli4_wcqe_xri_aborted *axri) 9516 { 9517 struct lpfc_vport *vport; 9518 uint32_t ext_status = 0; 9519 9520 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { 9521 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9522 "3115 Node Context not found, driver " 9523 "ignoring abts err event\n"); 9524 return; 9525 } 9526 9527 vport = ndlp->vport; 9528 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9529 "3116 Port generated FCP XRI ABORT event on " 9530 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 9531 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 9532 bf_get(lpfc_wcqe_xa_xri, axri), 9533 bf_get(lpfc_wcqe_xa_status, axri), 9534 axri->parameter); 9535 9536 /* 9537 * Catch the ABTS protocol failure case. Older OCe FW releases returned 9538 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 9539 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 9540 */ 9541 ext_status = axri->parameter & IOERR_PARAM_MASK; 9542 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 9543 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 9544 lpfc_sli_abts_recover_port(vport, ndlp); 9545 } 9546 9547 /** 9548 * lpfc_sli_async_event_handler - ASYNC iocb handler function 9549 * @phba: Pointer to HBA context object. 9550 * @pring: Pointer to driver SLI ring object. 9551 * @iocbq: Pointer to iocb object. 9552 * 9553 * This function is called by the slow ring event handler 9554 * function when there is an ASYNC event iocb in the ring. 9555 * This function is called with no lock held. 9556 * Currently this function handles only temperature related 9557 * ASYNC events. The function decodes the temperature sensor 9558 * event message and posts events for the management applications. 9559 **/ 9560 static void 9561 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 9562 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 9563 { 9564 IOCB_t *icmd; 9565 uint16_t evt_code; 9566 struct temp_event temp_event_data; 9567 struct Scsi_Host *shost; 9568 uint32_t *iocb_w; 9569 9570 icmd = &iocbq->iocb; 9571 evt_code = icmd->un.asyncstat.evt_code; 9572 9573 switch (evt_code) { 9574 case ASYNC_TEMP_WARN: 9575 case ASYNC_TEMP_SAFE: 9576 temp_event_data.data = (uint32_t) icmd->ulpContext; 9577 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 9578 if (evt_code == ASYNC_TEMP_WARN) { 9579 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 9580 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 9581 "0347 Adapter is very hot, please take " 9582 "corrective action. temperature : %d Celsius\n", 9583 (uint32_t) icmd->ulpContext); 9584 } else { 9585 temp_event_data.event_code = LPFC_NORMAL_TEMP; 9586 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 9587 "0340 Adapter temperature is OK now. " 9588 "temperature : %d Celsius\n", 9589 (uint32_t) icmd->ulpContext); 9590 } 9591 9592 /* Send temperature change event to applications */ 9593 shost = lpfc_shost_from_vport(phba->pport); 9594 fc_host_post_vendor_event(shost, fc_get_event_number(), 9595 sizeof(temp_event_data), (char *) &temp_event_data, 9596 LPFC_NL_VENDOR_ID); 9597 break; 9598 case ASYNC_STATUS_CN: 9599 lpfc_sli_abts_err_handler(phba, iocbq); 9600 break; 9601 default: 9602 iocb_w = (uint32_t *) icmd; 9603 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9604 "0346 Ring %d handler: unexpected ASYNC_STATUS" 9605 " evt_code 0x%x\n" 9606 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 9607 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 9608 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 9609 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 9610 pring->ringno, icmd->un.asyncstat.evt_code, 9611 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 9612 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 9613 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 9614 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 9615 9616 break; 9617 } 9618 } 9619 9620 9621 /** 9622 * lpfc_sli4_setup - SLI ring setup function 9623 * @phba: Pointer to HBA context object. 9624 * 9625 * lpfc_sli_setup sets up rings of the SLI interface with 9626 * number of iocbs per ring and iotags. This function is 9627 * called while driver attach to the HBA and before the 9628 * interrupts are enabled. So there is no need for locking. 9629 * 9630 * This function always returns 0. 9631 **/ 9632 int 9633 lpfc_sli4_setup(struct lpfc_hba *phba) 9634 { 9635 struct lpfc_sli_ring *pring; 9636 9637 pring = phba->sli4_hba.els_wq->pring; 9638 pring->num_mask = LPFC_MAX_RING_MASK; 9639 pring->prt[0].profile = 0; /* Mask 0 */ 9640 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 9641 pring->prt[0].type = FC_TYPE_ELS; 9642 pring->prt[0].lpfc_sli_rcv_unsol_event = 9643 lpfc_els_unsol_event; 9644 pring->prt[1].profile = 0; /* Mask 1 */ 9645 pring->prt[1].rctl = FC_RCTL_ELS_REP; 9646 pring->prt[1].type = FC_TYPE_ELS; 9647 pring->prt[1].lpfc_sli_rcv_unsol_event = 9648 lpfc_els_unsol_event; 9649 pring->prt[2].profile = 0; /* Mask 2 */ 9650 /* NameServer Inquiry */ 9651 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 9652 /* NameServer */ 9653 pring->prt[2].type = FC_TYPE_CT; 9654 pring->prt[2].lpfc_sli_rcv_unsol_event = 9655 lpfc_ct_unsol_event; 9656 pring->prt[3].profile = 0; /* Mask 3 */ 9657 /* NameServer response */ 9658 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 9659 /* NameServer */ 9660 pring->prt[3].type = FC_TYPE_CT; 9661 pring->prt[3].lpfc_sli_rcv_unsol_event = 9662 lpfc_ct_unsol_event; 9663 return 0; 9664 } 9665 9666 /** 9667 * lpfc_sli_setup - SLI ring setup function 9668 * @phba: Pointer to HBA context object. 9669 * 9670 * lpfc_sli_setup sets up rings of the SLI interface with 9671 * number of iocbs per ring and iotags. This function is 9672 * called while driver attach to the HBA and before the 9673 * interrupts are enabled. So there is no need for locking. 9674 * 9675 * This function always returns 0. SLI3 only. 9676 **/ 9677 int 9678 lpfc_sli_setup(struct lpfc_hba *phba) 9679 { 9680 int i, totiocbsize = 0; 9681 struct lpfc_sli *psli = &phba->sli; 9682 struct lpfc_sli_ring *pring; 9683 9684 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 9685 psli->sli_flag = 0; 9686 9687 psli->iocbq_lookup = NULL; 9688 psli->iocbq_lookup_len = 0; 9689 psli->last_iotag = 0; 9690 9691 for (i = 0; i < psli->num_rings; i++) { 9692 pring = &psli->sli3_ring[i]; 9693 switch (i) { 9694 case LPFC_FCP_RING: /* ring 0 - FCP */ 9695 /* numCiocb and numRiocb are used in config_port */ 9696 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 9697 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 9698 pring->sli.sli3.numCiocb += 9699 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9700 pring->sli.sli3.numRiocb += 9701 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9702 pring->sli.sli3.numCiocb += 9703 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9704 pring->sli.sli3.numRiocb += 9705 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9706 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9707 SLI3_IOCB_CMD_SIZE : 9708 SLI2_IOCB_CMD_SIZE; 9709 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9710 SLI3_IOCB_RSP_SIZE : 9711 SLI2_IOCB_RSP_SIZE; 9712 pring->iotag_ctr = 0; 9713 pring->iotag_max = 9714 (phba->cfg_hba_queue_depth * 2); 9715 pring->fast_iotag = pring->iotag_max; 9716 pring->num_mask = 0; 9717 break; 9718 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 9719 /* numCiocb and numRiocb are used in config_port */ 9720 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 9721 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 9722 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9723 SLI3_IOCB_CMD_SIZE : 9724 SLI2_IOCB_CMD_SIZE; 9725 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9726 SLI3_IOCB_RSP_SIZE : 9727 SLI2_IOCB_RSP_SIZE; 9728 pring->iotag_max = phba->cfg_hba_queue_depth; 9729 pring->num_mask = 0; 9730 break; 9731 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 9732 /* numCiocb and numRiocb are used in config_port */ 9733 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 9734 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 9735 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9736 SLI3_IOCB_CMD_SIZE : 9737 SLI2_IOCB_CMD_SIZE; 9738 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9739 SLI3_IOCB_RSP_SIZE : 9740 SLI2_IOCB_RSP_SIZE; 9741 pring->fast_iotag = 0; 9742 pring->iotag_ctr = 0; 9743 pring->iotag_max = 4096; 9744 pring->lpfc_sli_rcv_async_status = 9745 lpfc_sli_async_event_handler; 9746 pring->num_mask = LPFC_MAX_RING_MASK; 9747 pring->prt[0].profile = 0; /* Mask 0 */ 9748 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 9749 pring->prt[0].type = FC_TYPE_ELS; 9750 pring->prt[0].lpfc_sli_rcv_unsol_event = 9751 lpfc_els_unsol_event; 9752 pring->prt[1].profile = 0; /* Mask 1 */ 9753 pring->prt[1].rctl = FC_RCTL_ELS_REP; 9754 pring->prt[1].type = FC_TYPE_ELS; 9755 pring->prt[1].lpfc_sli_rcv_unsol_event = 9756 lpfc_els_unsol_event; 9757 pring->prt[2].profile = 0; /* Mask 2 */ 9758 /* NameServer Inquiry */ 9759 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 9760 /* NameServer */ 9761 pring->prt[2].type = FC_TYPE_CT; 9762 pring->prt[2].lpfc_sli_rcv_unsol_event = 9763 lpfc_ct_unsol_event; 9764 pring->prt[3].profile = 0; /* Mask 3 */ 9765 /* NameServer response */ 9766 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 9767 /* NameServer */ 9768 pring->prt[3].type = FC_TYPE_CT; 9769 pring->prt[3].lpfc_sli_rcv_unsol_event = 9770 lpfc_ct_unsol_event; 9771 break; 9772 } 9773 totiocbsize += (pring->sli.sli3.numCiocb * 9774 pring->sli.sli3.sizeCiocb) + 9775 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 9776 } 9777 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 9778 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 9779 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 9780 "SLI2 SLIM Data: x%x x%lx\n", 9781 phba->brd_no, totiocbsize, 9782 (unsigned long) MAX_SLIM_IOCB_SIZE); 9783 } 9784 if (phba->cfg_multi_ring_support == 2) 9785 lpfc_extra_ring_setup(phba); 9786 9787 return 0; 9788 } 9789 9790 /** 9791 * lpfc_sli4_queue_init - Queue initialization function 9792 * @phba: Pointer to HBA context object. 9793 * 9794 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 9795 * ring. This function also initializes ring indices of each ring. 9796 * This function is called during the initialization of the SLI 9797 * interface of an HBA. 9798 * This function is called with no lock held and always returns 9799 * 1. 9800 **/ 9801 void 9802 lpfc_sli4_queue_init(struct lpfc_hba *phba) 9803 { 9804 struct lpfc_sli *psli; 9805 struct lpfc_sli_ring *pring; 9806 int i; 9807 9808 psli = &phba->sli; 9809 spin_lock_irq(&phba->hbalock); 9810 INIT_LIST_HEAD(&psli->mboxq); 9811 INIT_LIST_HEAD(&psli->mboxq_cmpl); 9812 /* Initialize list headers for txq and txcmplq as double linked lists */ 9813 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 9814 pring = phba->sli4_hba.fcp_wq[i]->pring; 9815 pring->flag = 0; 9816 pring->ringno = LPFC_FCP_RING; 9817 INIT_LIST_HEAD(&pring->txq); 9818 INIT_LIST_HEAD(&pring->txcmplq); 9819 INIT_LIST_HEAD(&pring->iocb_continueq); 9820 spin_lock_init(&pring->ring_lock); 9821 } 9822 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 9823 pring = phba->sli4_hba.nvme_wq[i]->pring; 9824 pring->flag = 0; 9825 pring->ringno = LPFC_FCP_RING; 9826 INIT_LIST_HEAD(&pring->txq); 9827 INIT_LIST_HEAD(&pring->txcmplq); 9828 INIT_LIST_HEAD(&pring->iocb_continueq); 9829 spin_lock_init(&pring->ring_lock); 9830 } 9831 pring = phba->sli4_hba.els_wq->pring; 9832 pring->flag = 0; 9833 pring->ringno = LPFC_ELS_RING; 9834 INIT_LIST_HEAD(&pring->txq); 9835 INIT_LIST_HEAD(&pring->txcmplq); 9836 INIT_LIST_HEAD(&pring->iocb_continueq); 9837 spin_lock_init(&pring->ring_lock); 9838 9839 if (phba->cfg_nvme_io_channel) { 9840 pring = phba->sli4_hba.nvmels_wq->pring; 9841 pring->flag = 0; 9842 pring->ringno = LPFC_ELS_RING; 9843 INIT_LIST_HEAD(&pring->txq); 9844 INIT_LIST_HEAD(&pring->txcmplq); 9845 INIT_LIST_HEAD(&pring->iocb_continueq); 9846 spin_lock_init(&pring->ring_lock); 9847 } 9848 9849 if (phba->cfg_fof) { 9850 pring = phba->sli4_hba.oas_wq->pring; 9851 pring->flag = 0; 9852 pring->ringno = LPFC_FCP_RING; 9853 INIT_LIST_HEAD(&pring->txq); 9854 INIT_LIST_HEAD(&pring->txcmplq); 9855 INIT_LIST_HEAD(&pring->iocb_continueq); 9856 spin_lock_init(&pring->ring_lock); 9857 } 9858 9859 spin_unlock_irq(&phba->hbalock); 9860 } 9861 9862 /** 9863 * lpfc_sli_queue_init - Queue initialization function 9864 * @phba: Pointer to HBA context object. 9865 * 9866 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 9867 * ring. This function also initializes ring indices of each ring. 9868 * This function is called during the initialization of the SLI 9869 * interface of an HBA. 9870 * This function is called with no lock held and always returns 9871 * 1. 9872 **/ 9873 void 9874 lpfc_sli_queue_init(struct lpfc_hba *phba) 9875 { 9876 struct lpfc_sli *psli; 9877 struct lpfc_sli_ring *pring; 9878 int i; 9879 9880 psli = &phba->sli; 9881 spin_lock_irq(&phba->hbalock); 9882 INIT_LIST_HEAD(&psli->mboxq); 9883 INIT_LIST_HEAD(&psli->mboxq_cmpl); 9884 /* Initialize list headers for txq and txcmplq as double linked lists */ 9885 for (i = 0; i < psli->num_rings; i++) { 9886 pring = &psli->sli3_ring[i]; 9887 pring->ringno = i; 9888 pring->sli.sli3.next_cmdidx = 0; 9889 pring->sli.sli3.local_getidx = 0; 9890 pring->sli.sli3.cmdidx = 0; 9891 INIT_LIST_HEAD(&pring->iocb_continueq); 9892 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 9893 INIT_LIST_HEAD(&pring->postbufq); 9894 pring->flag = 0; 9895 INIT_LIST_HEAD(&pring->txq); 9896 INIT_LIST_HEAD(&pring->txcmplq); 9897 spin_lock_init(&pring->ring_lock); 9898 } 9899 spin_unlock_irq(&phba->hbalock); 9900 } 9901 9902 /** 9903 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 9904 * @phba: Pointer to HBA context object. 9905 * 9906 * This routine flushes the mailbox command subsystem. It will unconditionally 9907 * flush all the mailbox commands in the three possible stages in the mailbox 9908 * command sub-system: pending mailbox command queue; the outstanding mailbox 9909 * command; and completed mailbox command queue. It is caller's responsibility 9910 * to make sure that the driver is in the proper state to flush the mailbox 9911 * command sub-system. Namely, the posting of mailbox commands into the 9912 * pending mailbox command queue from the various clients must be stopped; 9913 * either the HBA is in a state that it will never works on the outstanding 9914 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 9915 * mailbox command has been completed. 9916 **/ 9917 static void 9918 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 9919 { 9920 LIST_HEAD(completions); 9921 struct lpfc_sli *psli = &phba->sli; 9922 LPFC_MBOXQ_t *pmb; 9923 unsigned long iflag; 9924 9925 /* Flush all the mailbox commands in the mbox system */ 9926 spin_lock_irqsave(&phba->hbalock, iflag); 9927 /* The pending mailbox command queue */ 9928 list_splice_init(&phba->sli.mboxq, &completions); 9929 /* The outstanding active mailbox command */ 9930 if (psli->mbox_active) { 9931 list_add_tail(&psli->mbox_active->list, &completions); 9932 psli->mbox_active = NULL; 9933 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9934 } 9935 /* The completed mailbox command queue */ 9936 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 9937 spin_unlock_irqrestore(&phba->hbalock, iflag); 9938 9939 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 9940 while (!list_empty(&completions)) { 9941 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 9942 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 9943 if (pmb->mbox_cmpl) 9944 pmb->mbox_cmpl(phba, pmb); 9945 } 9946 } 9947 9948 /** 9949 * lpfc_sli_host_down - Vport cleanup function 9950 * @vport: Pointer to virtual port object. 9951 * 9952 * lpfc_sli_host_down is called to clean up the resources 9953 * associated with a vport before destroying virtual 9954 * port data structures. 9955 * This function does following operations: 9956 * - Free discovery resources associated with this virtual 9957 * port. 9958 * - Free iocbs associated with this virtual port in 9959 * the txq. 9960 * - Send abort for all iocb commands associated with this 9961 * vport in txcmplq. 9962 * 9963 * This function is called with no lock held and always returns 1. 9964 **/ 9965 int 9966 lpfc_sli_host_down(struct lpfc_vport *vport) 9967 { 9968 LIST_HEAD(completions); 9969 struct lpfc_hba *phba = vport->phba; 9970 struct lpfc_sli *psli = &phba->sli; 9971 struct lpfc_queue *qp = NULL; 9972 struct lpfc_sli_ring *pring; 9973 struct lpfc_iocbq *iocb, *next_iocb; 9974 int i; 9975 unsigned long flags = 0; 9976 uint16_t prev_pring_flag; 9977 9978 lpfc_cleanup_discovery_resources(vport); 9979 9980 spin_lock_irqsave(&phba->hbalock, flags); 9981 9982 /* 9983 * Error everything on the txq since these iocbs 9984 * have not been given to the FW yet. 9985 * Also issue ABTS for everything on the txcmplq 9986 */ 9987 if (phba->sli_rev != LPFC_SLI_REV4) { 9988 for (i = 0; i < psli->num_rings; i++) { 9989 pring = &psli->sli3_ring[i]; 9990 prev_pring_flag = pring->flag; 9991 /* Only slow rings */ 9992 if (pring->ringno == LPFC_ELS_RING) { 9993 pring->flag |= LPFC_DEFERRED_RING_EVENT; 9994 /* Set the lpfc data pending flag */ 9995 set_bit(LPFC_DATA_READY, &phba->data_flags); 9996 } 9997 list_for_each_entry_safe(iocb, next_iocb, 9998 &pring->txq, list) { 9999 if (iocb->vport != vport) 10000 continue; 10001 list_move_tail(&iocb->list, &completions); 10002 } 10003 list_for_each_entry_safe(iocb, next_iocb, 10004 &pring->txcmplq, list) { 10005 if (iocb->vport != vport) 10006 continue; 10007 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10008 } 10009 pring->flag = prev_pring_flag; 10010 } 10011 } else { 10012 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10013 pring = qp->pring; 10014 if (!pring) 10015 continue; 10016 if (pring == phba->sli4_hba.els_wq->pring) { 10017 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10018 /* Set the lpfc data pending flag */ 10019 set_bit(LPFC_DATA_READY, &phba->data_flags); 10020 } 10021 prev_pring_flag = pring->flag; 10022 spin_lock_irq(&pring->ring_lock); 10023 list_for_each_entry_safe(iocb, next_iocb, 10024 &pring->txq, list) { 10025 if (iocb->vport != vport) 10026 continue; 10027 list_move_tail(&iocb->list, &completions); 10028 } 10029 spin_unlock_irq(&pring->ring_lock); 10030 list_for_each_entry_safe(iocb, next_iocb, 10031 &pring->txcmplq, list) { 10032 if (iocb->vport != vport) 10033 continue; 10034 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10035 } 10036 pring->flag = prev_pring_flag; 10037 } 10038 } 10039 spin_unlock_irqrestore(&phba->hbalock, flags); 10040 10041 /* Cancel all the IOCBs from the completions list */ 10042 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10043 IOERR_SLI_DOWN); 10044 return 1; 10045 } 10046 10047 /** 10048 * lpfc_sli_hba_down - Resource cleanup function for the HBA 10049 * @phba: Pointer to HBA context object. 10050 * 10051 * This function cleans up all iocb, buffers, mailbox commands 10052 * while shutting down the HBA. This function is called with no 10053 * lock held and always returns 1. 10054 * This function does the following to cleanup driver resources: 10055 * - Free discovery resources for each virtual port 10056 * - Cleanup any pending fabric iocbs 10057 * - Iterate through the iocb txq and free each entry 10058 * in the list. 10059 * - Free up any buffer posted to the HBA 10060 * - Free mailbox commands in the mailbox queue. 10061 **/ 10062 int 10063 lpfc_sli_hba_down(struct lpfc_hba *phba) 10064 { 10065 LIST_HEAD(completions); 10066 struct lpfc_sli *psli = &phba->sli; 10067 struct lpfc_queue *qp = NULL; 10068 struct lpfc_sli_ring *pring; 10069 struct lpfc_dmabuf *buf_ptr; 10070 unsigned long flags = 0; 10071 int i; 10072 10073 /* Shutdown the mailbox command sub-system */ 10074 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 10075 10076 lpfc_hba_down_prep(phba); 10077 10078 lpfc_fabric_abort_hba(phba); 10079 10080 spin_lock_irqsave(&phba->hbalock, flags); 10081 10082 /* 10083 * Error everything on the txq since these iocbs 10084 * have not been given to the FW yet. 10085 */ 10086 if (phba->sli_rev != LPFC_SLI_REV4) { 10087 for (i = 0; i < psli->num_rings; i++) { 10088 pring = &psli->sli3_ring[i]; 10089 /* Only slow rings */ 10090 if (pring->ringno == LPFC_ELS_RING) { 10091 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10092 /* Set the lpfc data pending flag */ 10093 set_bit(LPFC_DATA_READY, &phba->data_flags); 10094 } 10095 list_splice_init(&pring->txq, &completions); 10096 } 10097 } else { 10098 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10099 pring = qp->pring; 10100 if (!pring) 10101 continue; 10102 spin_lock_irq(&pring->ring_lock); 10103 list_splice_init(&pring->txq, &completions); 10104 spin_unlock_irq(&pring->ring_lock); 10105 if (pring == phba->sli4_hba.els_wq->pring) { 10106 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10107 /* Set the lpfc data pending flag */ 10108 set_bit(LPFC_DATA_READY, &phba->data_flags); 10109 } 10110 } 10111 } 10112 spin_unlock_irqrestore(&phba->hbalock, flags); 10113 10114 /* Cancel all the IOCBs from the completions list */ 10115 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10116 IOERR_SLI_DOWN); 10117 10118 spin_lock_irqsave(&phba->hbalock, flags); 10119 list_splice_init(&phba->elsbuf, &completions); 10120 phba->elsbuf_cnt = 0; 10121 phba->elsbuf_prev_cnt = 0; 10122 spin_unlock_irqrestore(&phba->hbalock, flags); 10123 10124 while (!list_empty(&completions)) { 10125 list_remove_head(&completions, buf_ptr, 10126 struct lpfc_dmabuf, list); 10127 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 10128 kfree(buf_ptr); 10129 } 10130 10131 /* Return any active mbox cmds */ 10132 del_timer_sync(&psli->mbox_tmo); 10133 10134 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 10135 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 10136 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 10137 10138 return 1; 10139 } 10140 10141 /** 10142 * lpfc_sli_pcimem_bcopy - SLI memory copy function 10143 * @srcp: Source memory pointer. 10144 * @destp: Destination memory pointer. 10145 * @cnt: Number of words required to be copied. 10146 * 10147 * This function is used for copying data between driver memory 10148 * and the SLI memory. This function also changes the endianness 10149 * of each word if native endianness is different from SLI 10150 * endianness. This function can be called with or without 10151 * lock. 10152 **/ 10153 void 10154 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 10155 { 10156 uint32_t *src = srcp; 10157 uint32_t *dest = destp; 10158 uint32_t ldata; 10159 int i; 10160 10161 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 10162 ldata = *src; 10163 ldata = le32_to_cpu(ldata); 10164 *dest = ldata; 10165 src++; 10166 dest++; 10167 } 10168 } 10169 10170 10171 /** 10172 * lpfc_sli_bemem_bcopy - SLI memory copy function 10173 * @srcp: Source memory pointer. 10174 * @destp: Destination memory pointer. 10175 * @cnt: Number of words required to be copied. 10176 * 10177 * This function is used for copying data between a data structure 10178 * with big endian representation to local endianness. 10179 * This function can be called with or without lock. 10180 **/ 10181 void 10182 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 10183 { 10184 uint32_t *src = srcp; 10185 uint32_t *dest = destp; 10186 uint32_t ldata; 10187 int i; 10188 10189 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 10190 ldata = *src; 10191 ldata = be32_to_cpu(ldata); 10192 *dest = ldata; 10193 src++; 10194 dest++; 10195 } 10196 } 10197 10198 /** 10199 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 10200 * @phba: Pointer to HBA context object. 10201 * @pring: Pointer to driver SLI ring object. 10202 * @mp: Pointer to driver buffer object. 10203 * 10204 * This function is called with no lock held. 10205 * It always return zero after adding the buffer to the postbufq 10206 * buffer list. 10207 **/ 10208 int 10209 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10210 struct lpfc_dmabuf *mp) 10211 { 10212 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 10213 later */ 10214 spin_lock_irq(&phba->hbalock); 10215 list_add_tail(&mp->list, &pring->postbufq); 10216 pring->postbufq_cnt++; 10217 spin_unlock_irq(&phba->hbalock); 10218 return 0; 10219 } 10220 10221 /** 10222 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 10223 * @phba: Pointer to HBA context object. 10224 * 10225 * When HBQ is enabled, buffers are searched based on tags. This function 10226 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 10227 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 10228 * does not conflict with tags of buffer posted for unsolicited events. 10229 * The function returns the allocated tag. The function is called with 10230 * no locks held. 10231 **/ 10232 uint32_t 10233 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 10234 { 10235 spin_lock_irq(&phba->hbalock); 10236 phba->buffer_tag_count++; 10237 /* 10238 * Always set the QUE_BUFTAG_BIT to distiguish between 10239 * a tag assigned by HBQ. 10240 */ 10241 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 10242 spin_unlock_irq(&phba->hbalock); 10243 return phba->buffer_tag_count; 10244 } 10245 10246 /** 10247 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 10248 * @phba: Pointer to HBA context object. 10249 * @pring: Pointer to driver SLI ring object. 10250 * @tag: Buffer tag. 10251 * 10252 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 10253 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 10254 * iocb is posted to the response ring with the tag of the buffer. 10255 * This function searches the pring->postbufq list using the tag 10256 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 10257 * iocb. If the buffer is found then lpfc_dmabuf object of the 10258 * buffer is returned to the caller else NULL is returned. 10259 * This function is called with no lock held. 10260 **/ 10261 struct lpfc_dmabuf * 10262 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10263 uint32_t tag) 10264 { 10265 struct lpfc_dmabuf *mp, *next_mp; 10266 struct list_head *slp = &pring->postbufq; 10267 10268 /* Search postbufq, from the beginning, looking for a match on tag */ 10269 spin_lock_irq(&phba->hbalock); 10270 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 10271 if (mp->buffer_tag == tag) { 10272 list_del_init(&mp->list); 10273 pring->postbufq_cnt--; 10274 spin_unlock_irq(&phba->hbalock); 10275 return mp; 10276 } 10277 } 10278 10279 spin_unlock_irq(&phba->hbalock); 10280 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10281 "0402 Cannot find virtual addr for buffer tag on " 10282 "ring %d Data x%lx x%p x%p x%x\n", 10283 pring->ringno, (unsigned long) tag, 10284 slp->next, slp->prev, pring->postbufq_cnt); 10285 10286 return NULL; 10287 } 10288 10289 /** 10290 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 10291 * @phba: Pointer to HBA context object. 10292 * @pring: Pointer to driver SLI ring object. 10293 * @phys: DMA address of the buffer. 10294 * 10295 * This function searches the buffer list using the dma_address 10296 * of unsolicited event to find the driver's lpfc_dmabuf object 10297 * corresponding to the dma_address. The function returns the 10298 * lpfc_dmabuf object if a buffer is found else it returns NULL. 10299 * This function is called by the ct and els unsolicited event 10300 * handlers to get the buffer associated with the unsolicited 10301 * event. 10302 * 10303 * This function is called with no lock held. 10304 **/ 10305 struct lpfc_dmabuf * 10306 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10307 dma_addr_t phys) 10308 { 10309 struct lpfc_dmabuf *mp, *next_mp; 10310 struct list_head *slp = &pring->postbufq; 10311 10312 /* Search postbufq, from the beginning, looking for a match on phys */ 10313 spin_lock_irq(&phba->hbalock); 10314 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 10315 if (mp->phys == phys) { 10316 list_del_init(&mp->list); 10317 pring->postbufq_cnt--; 10318 spin_unlock_irq(&phba->hbalock); 10319 return mp; 10320 } 10321 } 10322 10323 spin_unlock_irq(&phba->hbalock); 10324 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10325 "0410 Cannot find virtual addr for mapped buf on " 10326 "ring %d Data x%llx x%p x%p x%x\n", 10327 pring->ringno, (unsigned long long)phys, 10328 slp->next, slp->prev, pring->postbufq_cnt); 10329 return NULL; 10330 } 10331 10332 /** 10333 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 10334 * @phba: Pointer to HBA context object. 10335 * @cmdiocb: Pointer to driver command iocb object. 10336 * @rspiocb: Pointer to driver response iocb object. 10337 * 10338 * This function is the completion handler for the abort iocbs for 10339 * ELS commands. This function is called from the ELS ring event 10340 * handler with no lock held. This function frees memory resources 10341 * associated with the abort iocb. 10342 **/ 10343 static void 10344 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 10345 struct lpfc_iocbq *rspiocb) 10346 { 10347 IOCB_t *irsp = &rspiocb->iocb; 10348 uint16_t abort_iotag, abort_context; 10349 struct lpfc_iocbq *abort_iocb = NULL; 10350 10351 if (irsp->ulpStatus) { 10352 10353 /* 10354 * Assume that the port already completed and returned, or 10355 * will return the iocb. Just Log the message. 10356 */ 10357 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 10358 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 10359 10360 spin_lock_irq(&phba->hbalock); 10361 if (phba->sli_rev < LPFC_SLI_REV4) { 10362 if (abort_iotag != 0 && 10363 abort_iotag <= phba->sli.last_iotag) 10364 abort_iocb = 10365 phba->sli.iocbq_lookup[abort_iotag]; 10366 } else 10367 /* For sli4 the abort_tag is the XRI, 10368 * so the abort routine puts the iotag of the iocb 10369 * being aborted in the context field of the abort 10370 * IOCB. 10371 */ 10372 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 10373 10374 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 10375 "0327 Cannot abort els iocb %p " 10376 "with tag %x context %x, abort status %x, " 10377 "abort code %x\n", 10378 abort_iocb, abort_iotag, abort_context, 10379 irsp->ulpStatus, irsp->un.ulpWord[4]); 10380 10381 spin_unlock_irq(&phba->hbalock); 10382 } 10383 lpfc_sli_release_iocbq(phba, cmdiocb); 10384 return; 10385 } 10386 10387 /** 10388 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 10389 * @phba: Pointer to HBA context object. 10390 * @cmdiocb: Pointer to driver command iocb object. 10391 * @rspiocb: Pointer to driver response iocb object. 10392 * 10393 * The function is called from SLI ring event handler with no 10394 * lock held. This function is the completion handler for ELS commands 10395 * which are aborted. The function frees memory resources used for 10396 * the aborted ELS commands. 10397 **/ 10398 static void 10399 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 10400 struct lpfc_iocbq *rspiocb) 10401 { 10402 IOCB_t *irsp = &rspiocb->iocb; 10403 10404 /* ELS cmd tag <ulpIoTag> completes */ 10405 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 10406 "0139 Ignoring ELS cmd tag x%x completion Data: " 10407 "x%x x%x x%x\n", 10408 irsp->ulpIoTag, irsp->ulpStatus, 10409 irsp->un.ulpWord[4], irsp->ulpTimeout); 10410 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 10411 lpfc_ct_free_iocb(phba, cmdiocb); 10412 else 10413 lpfc_els_free_iocb(phba, cmdiocb); 10414 return; 10415 } 10416 10417 /** 10418 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb 10419 * @phba: Pointer to HBA context object. 10420 * @pring: Pointer to driver SLI ring object. 10421 * @cmdiocb: Pointer to driver command iocb object. 10422 * 10423 * This function issues an abort iocb for the provided command iocb down to 10424 * the port. Other than the case the outstanding command iocb is an abort 10425 * request, this function issues abort out unconditionally. This function is 10426 * called with hbalock held. The function returns 0 when it fails due to 10427 * memory allocation failure or when the command iocb is an abort request. 10428 **/ 10429 static int 10430 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10431 struct lpfc_iocbq *cmdiocb) 10432 { 10433 struct lpfc_vport *vport = cmdiocb->vport; 10434 struct lpfc_iocbq *abtsiocbp; 10435 IOCB_t *icmd = NULL; 10436 IOCB_t *iabt = NULL; 10437 int retval; 10438 unsigned long iflags; 10439 10440 lockdep_assert_held(&phba->hbalock); 10441 10442 /* 10443 * There are certain command types we don't want to abort. And we 10444 * don't want to abort commands that are already in the process of 10445 * being aborted. 10446 */ 10447 icmd = &cmdiocb->iocb; 10448 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 10449 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 10450 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 10451 return 0; 10452 10453 /* issue ABTS for this IOCB based on iotag */ 10454 abtsiocbp = __lpfc_sli_get_iocbq(phba); 10455 if (abtsiocbp == NULL) 10456 return 0; 10457 10458 /* This signals the response to set the correct status 10459 * before calling the completion handler 10460 */ 10461 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 10462 10463 iabt = &abtsiocbp->iocb; 10464 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 10465 iabt->un.acxri.abortContextTag = icmd->ulpContext; 10466 if (phba->sli_rev == LPFC_SLI_REV4) { 10467 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 10468 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 10469 } 10470 else 10471 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 10472 iabt->ulpLe = 1; 10473 iabt->ulpClass = icmd->ulpClass; 10474 10475 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10476 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 10477 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 10478 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 10479 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 10480 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 10481 10482 if (phba->link_state >= LPFC_LINK_UP) 10483 iabt->ulpCommand = CMD_ABORT_XRI_CN; 10484 else 10485 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 10486 10487 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 10488 abtsiocbp->vport = vport; 10489 10490 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 10491 "0339 Abort xri x%x, original iotag x%x, " 10492 "abort cmd iotag x%x\n", 10493 iabt->un.acxri.abortIoTag, 10494 iabt->un.acxri.abortContextTag, 10495 abtsiocbp->iotag); 10496 10497 if (phba->sli_rev == LPFC_SLI_REV4) { 10498 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 10499 if (unlikely(pring == NULL)) 10500 return 0; 10501 /* Note: both hbalock and ring_lock need to be set here */ 10502 spin_lock_irqsave(&pring->ring_lock, iflags); 10503 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 10504 abtsiocbp, 0); 10505 spin_unlock_irqrestore(&pring->ring_lock, iflags); 10506 } else { 10507 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 10508 abtsiocbp, 0); 10509 } 10510 10511 if (retval) 10512 __lpfc_sli_release_iocbq(phba, abtsiocbp); 10513 10514 /* 10515 * Caller to this routine should check for IOCB_ERROR 10516 * and handle it properly. This routine no longer removes 10517 * iocb off txcmplq and call compl in case of IOCB_ERROR. 10518 */ 10519 return retval; 10520 } 10521 10522 /** 10523 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 10524 * @phba: Pointer to HBA context object. 10525 * @pring: Pointer to driver SLI ring object. 10526 * @cmdiocb: Pointer to driver command iocb object. 10527 * 10528 * This function issues an abort iocb for the provided command iocb. In case 10529 * of unloading, the abort iocb will not be issued to commands on the ELS 10530 * ring. Instead, the callback function shall be changed to those commands 10531 * so that nothing happens when them finishes. This function is called with 10532 * hbalock held. The function returns 0 when the command iocb is an abort 10533 * request. 10534 **/ 10535 int 10536 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10537 struct lpfc_iocbq *cmdiocb) 10538 { 10539 struct lpfc_vport *vport = cmdiocb->vport; 10540 int retval = IOCB_ERROR; 10541 IOCB_t *icmd = NULL; 10542 10543 lockdep_assert_held(&phba->hbalock); 10544 10545 /* 10546 * There are certain command types we don't want to abort. And we 10547 * don't want to abort commands that are already in the process of 10548 * being aborted. 10549 */ 10550 icmd = &cmdiocb->iocb; 10551 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 10552 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 10553 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 10554 return 0; 10555 10556 /* 10557 * If we're unloading, don't abort iocb on the ELS ring, but change 10558 * the callback so that nothing happens when it finishes. 10559 */ 10560 if ((vport->load_flag & FC_UNLOADING) && 10561 (pring->ringno == LPFC_ELS_RING)) { 10562 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 10563 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 10564 else 10565 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 10566 goto abort_iotag_exit; 10567 } 10568 10569 /* Now, we try to issue the abort to the cmdiocb out */ 10570 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb); 10571 10572 abort_iotag_exit: 10573 /* 10574 * Caller to this routine should check for IOCB_ERROR 10575 * and handle it properly. This routine no longer removes 10576 * iocb off txcmplq and call compl in case of IOCB_ERROR. 10577 */ 10578 return retval; 10579 } 10580 10581 /** 10582 * lpfc_sli4_abort_nvme_io - Issue abort for a command iocb 10583 * @phba: Pointer to HBA context object. 10584 * @pring: Pointer to driver SLI ring object. 10585 * @cmdiocb: Pointer to driver command iocb object. 10586 * 10587 * This function issues an abort iocb for the provided command iocb down to 10588 * the port. Other than the case the outstanding command iocb is an abort 10589 * request, this function issues abort out unconditionally. This function is 10590 * called with hbalock held. The function returns 0 when it fails due to 10591 * memory allocation failure or when the command iocb is an abort request. 10592 **/ 10593 static int 10594 lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10595 struct lpfc_iocbq *cmdiocb) 10596 { 10597 struct lpfc_vport *vport = cmdiocb->vport; 10598 struct lpfc_iocbq *abtsiocbp; 10599 union lpfc_wqe *abts_wqe; 10600 int retval; 10601 10602 /* 10603 * There are certain command types we don't want to abort. And we 10604 * don't want to abort commands that are already in the process of 10605 * being aborted. 10606 */ 10607 if (cmdiocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 10608 cmdiocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN || 10609 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 10610 return 0; 10611 10612 /* issue ABTS for this io based on iotag */ 10613 abtsiocbp = __lpfc_sli_get_iocbq(phba); 10614 if (abtsiocbp == NULL) 10615 return 0; 10616 10617 /* This signals the response to set the correct status 10618 * before calling the completion handler 10619 */ 10620 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 10621 10622 /* Complete prepping the abort wqe and issue to the FW. */ 10623 abts_wqe = &abtsiocbp->wqe; 10624 bf_set(abort_cmd_ia, &abts_wqe->abort_cmd, 0); 10625 bf_set(abort_cmd_criteria, &abts_wqe->abort_cmd, T_XRI_TAG); 10626 10627 /* Explicitly set reserved fields to zero.*/ 10628 abts_wqe->abort_cmd.rsrvd4 = 0; 10629 abts_wqe->abort_cmd.rsrvd5 = 0; 10630 10631 /* WQE Common - word 6. Context is XRI tag. Set 0. */ 10632 bf_set(wqe_xri_tag, &abts_wqe->abort_cmd.wqe_com, 0); 10633 bf_set(wqe_ctxt_tag, &abts_wqe->abort_cmd.wqe_com, 0); 10634 10635 /* word 7 */ 10636 bf_set(wqe_ct, &abts_wqe->abort_cmd.wqe_com, 0); 10637 bf_set(wqe_cmnd, &abts_wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 10638 bf_set(wqe_class, &abts_wqe->abort_cmd.wqe_com, 10639 cmdiocb->iocb.ulpClass); 10640 10641 /* word 8 - tell the FW to abort the IO associated with this 10642 * outstanding exchange ID. 10643 */ 10644 abts_wqe->abort_cmd.wqe_com.abort_tag = cmdiocb->sli4_xritag; 10645 10646 /* word 9 - this is the iotag for the abts_wqe completion. */ 10647 bf_set(wqe_reqtag, &abts_wqe->abort_cmd.wqe_com, 10648 abtsiocbp->iotag); 10649 10650 /* word 10 */ 10651 bf_set(wqe_wqid, &abts_wqe->abort_cmd.wqe_com, cmdiocb->hba_wqidx); 10652 bf_set(wqe_qosd, &abts_wqe->abort_cmd.wqe_com, 1); 10653 bf_set(wqe_lenloc, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 10654 10655 /* word 11 */ 10656 bf_set(wqe_cmd_type, &abts_wqe->abort_cmd.wqe_com, OTHER_COMMAND); 10657 bf_set(wqe_wqec, &abts_wqe->abort_cmd.wqe_com, 1); 10658 bf_set(wqe_cqid, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10659 10660 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10661 abtsiocbp->iocb_flag |= LPFC_IO_NVME; 10662 abtsiocbp->vport = vport; 10663 abtsiocbp->wqe_cmpl = lpfc_nvme_abort_fcreq_cmpl; 10664 retval = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abtsiocbp); 10665 if (retval == IOCB_ERROR) { 10666 lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME, 10667 "6147 Failed abts issue_wqe with status x%x " 10668 "for oxid x%x\n", 10669 retval, cmdiocb->sli4_xritag); 10670 lpfc_sli_release_iocbq(phba, abtsiocbp); 10671 return retval; 10672 } 10673 10674 lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME, 10675 "6148 Drv Abort NVME Request Issued for " 10676 "ox_id x%x on reqtag x%x\n", 10677 cmdiocb->sli4_xritag, 10678 abtsiocbp->iotag); 10679 10680 return retval; 10681 } 10682 10683 /** 10684 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 10685 * @phba: pointer to lpfc HBA data structure. 10686 * 10687 * This routine will abort all pending and outstanding iocbs to an HBA. 10688 **/ 10689 void 10690 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 10691 { 10692 struct lpfc_sli *psli = &phba->sli; 10693 struct lpfc_sli_ring *pring; 10694 struct lpfc_queue *qp = NULL; 10695 int i; 10696 10697 if (phba->sli_rev != LPFC_SLI_REV4) { 10698 for (i = 0; i < psli->num_rings; i++) { 10699 pring = &psli->sli3_ring[i]; 10700 lpfc_sli_abort_iocb_ring(phba, pring); 10701 } 10702 return; 10703 } 10704 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10705 pring = qp->pring; 10706 if (!pring) 10707 continue; 10708 lpfc_sli_abort_iocb_ring(phba, pring); 10709 } 10710 } 10711 10712 /** 10713 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 10714 * @iocbq: Pointer to driver iocb object. 10715 * @vport: Pointer to driver virtual port object. 10716 * @tgt_id: SCSI ID of the target. 10717 * @lun_id: LUN ID of the scsi device. 10718 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 10719 * 10720 * This function acts as an iocb filter for functions which abort or count 10721 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 10722 * 0 if the filtering criteria is met for the given iocb and will return 10723 * 1 if the filtering criteria is not met. 10724 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 10725 * given iocb is for the SCSI device specified by vport, tgt_id and 10726 * lun_id parameter. 10727 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 10728 * given iocb is for the SCSI target specified by vport and tgt_id 10729 * parameters. 10730 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 10731 * given iocb is for the SCSI host associated with the given vport. 10732 * This function is called with no locks held. 10733 **/ 10734 static int 10735 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 10736 uint16_t tgt_id, uint64_t lun_id, 10737 lpfc_ctx_cmd ctx_cmd) 10738 { 10739 struct lpfc_scsi_buf *lpfc_cmd; 10740 int rc = 1; 10741 10742 if (!(iocbq->iocb_flag & LPFC_IO_FCP)) 10743 return rc; 10744 10745 if (iocbq->vport != vport) 10746 return rc; 10747 10748 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 10749 10750 if (lpfc_cmd->pCmd == NULL) 10751 return rc; 10752 10753 switch (ctx_cmd) { 10754 case LPFC_CTX_LUN: 10755 if ((lpfc_cmd->rdata->pnode) && 10756 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 10757 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 10758 rc = 0; 10759 break; 10760 case LPFC_CTX_TGT: 10761 if ((lpfc_cmd->rdata->pnode) && 10762 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 10763 rc = 0; 10764 break; 10765 case LPFC_CTX_HOST: 10766 rc = 0; 10767 break; 10768 default: 10769 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 10770 __func__, ctx_cmd); 10771 break; 10772 } 10773 10774 return rc; 10775 } 10776 10777 /** 10778 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 10779 * @vport: Pointer to virtual port. 10780 * @tgt_id: SCSI ID of the target. 10781 * @lun_id: LUN ID of the scsi device. 10782 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 10783 * 10784 * This function returns number of FCP commands pending for the vport. 10785 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 10786 * commands pending on the vport associated with SCSI device specified 10787 * by tgt_id and lun_id parameters. 10788 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 10789 * commands pending on the vport associated with SCSI target specified 10790 * by tgt_id parameter. 10791 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 10792 * commands pending on the vport. 10793 * This function returns the number of iocbs which satisfy the filter. 10794 * This function is called without any lock held. 10795 **/ 10796 int 10797 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 10798 lpfc_ctx_cmd ctx_cmd) 10799 { 10800 struct lpfc_hba *phba = vport->phba; 10801 struct lpfc_iocbq *iocbq; 10802 int sum, i; 10803 10804 spin_lock_irq(&phba->hbalock); 10805 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 10806 iocbq = phba->sli.iocbq_lookup[i]; 10807 10808 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 10809 ctx_cmd) == 0) 10810 sum++; 10811 } 10812 spin_unlock_irq(&phba->hbalock); 10813 10814 return sum; 10815 } 10816 10817 /** 10818 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 10819 * @phba: Pointer to HBA context object 10820 * @cmdiocb: Pointer to command iocb object. 10821 * @rspiocb: Pointer to response iocb object. 10822 * 10823 * This function is called when an aborted FCP iocb completes. This 10824 * function is called by the ring event handler with no lock held. 10825 * This function frees the iocb. 10826 **/ 10827 void 10828 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 10829 struct lpfc_iocbq *rspiocb) 10830 { 10831 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10832 "3096 ABORT_XRI_CN completing on rpi x%x " 10833 "original iotag x%x, abort cmd iotag x%x " 10834 "status 0x%x, reason 0x%x\n", 10835 cmdiocb->iocb.un.acxri.abortContextTag, 10836 cmdiocb->iocb.un.acxri.abortIoTag, 10837 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 10838 rspiocb->iocb.un.ulpWord[4]); 10839 lpfc_sli_release_iocbq(phba, cmdiocb); 10840 return; 10841 } 10842 10843 /** 10844 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 10845 * @vport: Pointer to virtual port. 10846 * @pring: Pointer to driver SLI ring object. 10847 * @tgt_id: SCSI ID of the target. 10848 * @lun_id: LUN ID of the scsi device. 10849 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 10850 * 10851 * This function sends an abort command for every SCSI command 10852 * associated with the given virtual port pending on the ring 10853 * filtered by lpfc_sli_validate_fcp_iocb function. 10854 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 10855 * FCP iocbs associated with lun specified by tgt_id and lun_id 10856 * parameters 10857 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 10858 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 10859 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 10860 * FCP iocbs associated with virtual port. 10861 * This function returns number of iocbs it failed to abort. 10862 * This function is called with no locks held. 10863 **/ 10864 int 10865 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 10866 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd) 10867 { 10868 struct lpfc_hba *phba = vport->phba; 10869 struct lpfc_iocbq *iocbq; 10870 struct lpfc_iocbq *abtsiocb; 10871 IOCB_t *cmd = NULL; 10872 int errcnt = 0, ret_val = 0; 10873 int i; 10874 10875 for (i = 1; i <= phba->sli.last_iotag; i++) { 10876 iocbq = phba->sli.iocbq_lookup[i]; 10877 10878 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 10879 abort_cmd) != 0) 10880 continue; 10881 10882 /* 10883 * If the iocbq is already being aborted, don't take a second 10884 * action, but do count it. 10885 */ 10886 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 10887 continue; 10888 10889 /* issue ABTS for this IOCB based on iotag */ 10890 abtsiocb = lpfc_sli_get_iocbq(phba); 10891 if (abtsiocb == NULL) { 10892 errcnt++; 10893 continue; 10894 } 10895 10896 /* indicate the IO is being aborted by the driver. */ 10897 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 10898 10899 cmd = &iocbq->iocb; 10900 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 10901 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext; 10902 if (phba->sli_rev == LPFC_SLI_REV4) 10903 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag; 10904 else 10905 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag; 10906 abtsiocb->iocb.ulpLe = 1; 10907 abtsiocb->iocb.ulpClass = cmd->ulpClass; 10908 abtsiocb->vport = vport; 10909 10910 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10911 abtsiocb->hba_wqidx = iocbq->hba_wqidx; 10912 if (iocbq->iocb_flag & LPFC_IO_FCP) 10913 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 10914 if (iocbq->iocb_flag & LPFC_IO_FOF) 10915 abtsiocb->iocb_flag |= LPFC_IO_FOF; 10916 10917 if (lpfc_is_link_up(phba)) 10918 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN; 10919 else 10920 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 10921 10922 /* Setup callback routine and issue the command. */ 10923 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 10924 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno, 10925 abtsiocb, 0); 10926 if (ret_val == IOCB_ERROR) { 10927 lpfc_sli_release_iocbq(phba, abtsiocb); 10928 errcnt++; 10929 continue; 10930 } 10931 } 10932 10933 return errcnt; 10934 } 10935 10936 /** 10937 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 10938 * @vport: Pointer to virtual port. 10939 * @pring: Pointer to driver SLI ring object. 10940 * @tgt_id: SCSI ID of the target. 10941 * @lun_id: LUN ID of the scsi device. 10942 * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 10943 * 10944 * This function sends an abort command for every SCSI command 10945 * associated with the given virtual port pending on the ring 10946 * filtered by lpfc_sli_validate_fcp_iocb function. 10947 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 10948 * FCP iocbs associated with lun specified by tgt_id and lun_id 10949 * parameters 10950 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 10951 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 10952 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 10953 * FCP iocbs associated with virtual port. 10954 * This function returns number of iocbs it aborted . 10955 * This function is called with no locks held right after a taskmgmt 10956 * command is sent. 10957 **/ 10958 int 10959 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 10960 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 10961 { 10962 struct lpfc_hba *phba = vport->phba; 10963 struct lpfc_scsi_buf *lpfc_cmd; 10964 struct lpfc_iocbq *abtsiocbq; 10965 struct lpfc_nodelist *ndlp; 10966 struct lpfc_iocbq *iocbq; 10967 IOCB_t *icmd; 10968 int sum, i, ret_val; 10969 unsigned long iflags; 10970 struct lpfc_sli_ring *pring_s4; 10971 10972 spin_lock_irq(&phba->hbalock); 10973 10974 /* all I/Os are in process of being flushed */ 10975 if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) { 10976 spin_unlock_irq(&phba->hbalock); 10977 return 0; 10978 } 10979 sum = 0; 10980 10981 for (i = 1; i <= phba->sli.last_iotag; i++) { 10982 iocbq = phba->sli.iocbq_lookup[i]; 10983 10984 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 10985 cmd) != 0) 10986 continue; 10987 10988 /* 10989 * If the iocbq is already being aborted, don't take a second 10990 * action, but do count it. 10991 */ 10992 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 10993 continue; 10994 10995 /* issue ABTS for this IOCB based on iotag */ 10996 abtsiocbq = __lpfc_sli_get_iocbq(phba); 10997 if (abtsiocbq == NULL) 10998 continue; 10999 11000 icmd = &iocbq->iocb; 11001 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 11002 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 11003 if (phba->sli_rev == LPFC_SLI_REV4) 11004 abtsiocbq->iocb.un.acxri.abortIoTag = 11005 iocbq->sli4_xritag; 11006 else 11007 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 11008 abtsiocbq->iocb.ulpLe = 1; 11009 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 11010 abtsiocbq->vport = vport; 11011 11012 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11013 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 11014 if (iocbq->iocb_flag & LPFC_IO_FCP) 11015 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 11016 if (iocbq->iocb_flag & LPFC_IO_FOF) 11017 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 11018 11019 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 11020 ndlp = lpfc_cmd->rdata->pnode; 11021 11022 if (lpfc_is_link_up(phba) && 11023 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 11024 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 11025 else 11026 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 11027 11028 /* Setup callback routine and issue the command. */ 11029 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 11030 11031 /* 11032 * Indicate the IO is being aborted by the driver and set 11033 * the caller's flag into the aborted IO. 11034 */ 11035 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 11036 11037 if (phba->sli_rev == LPFC_SLI_REV4) { 11038 pring_s4 = lpfc_sli4_calc_ring(phba, iocbq); 11039 if (pring_s4 == NULL) 11040 continue; 11041 /* Note: both hbalock and ring_lock must be set here */ 11042 spin_lock_irqsave(&pring_s4->ring_lock, iflags); 11043 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 11044 abtsiocbq, 0); 11045 spin_unlock_irqrestore(&pring_s4->ring_lock, iflags); 11046 } else { 11047 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 11048 abtsiocbq, 0); 11049 } 11050 11051 11052 if (ret_val == IOCB_ERROR) 11053 __lpfc_sli_release_iocbq(phba, abtsiocbq); 11054 else 11055 sum++; 11056 } 11057 spin_unlock_irq(&phba->hbalock); 11058 return sum; 11059 } 11060 11061 /** 11062 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 11063 * @phba: Pointer to HBA context object. 11064 * @cmdiocbq: Pointer to command iocb. 11065 * @rspiocbq: Pointer to response iocb. 11066 * 11067 * This function is the completion handler for iocbs issued using 11068 * lpfc_sli_issue_iocb_wait function. This function is called by the 11069 * ring event handler function without any lock held. This function 11070 * can be called from both worker thread context and interrupt 11071 * context. This function also can be called from other thread which 11072 * cleans up the SLI layer objects. 11073 * This function copy the contents of the response iocb to the 11074 * response iocb memory object provided by the caller of 11075 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 11076 * sleeps for the iocb completion. 11077 **/ 11078 static void 11079 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 11080 struct lpfc_iocbq *cmdiocbq, 11081 struct lpfc_iocbq *rspiocbq) 11082 { 11083 wait_queue_head_t *pdone_q; 11084 unsigned long iflags; 11085 struct lpfc_scsi_buf *lpfc_cmd; 11086 11087 spin_lock_irqsave(&phba->hbalock, iflags); 11088 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 11089 11090 /* 11091 * A time out has occurred for the iocb. If a time out 11092 * completion handler has been supplied, call it. Otherwise, 11093 * just free the iocbq. 11094 */ 11095 11096 spin_unlock_irqrestore(&phba->hbalock, iflags); 11097 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 11098 cmdiocbq->wait_iocb_cmpl = NULL; 11099 if (cmdiocbq->iocb_cmpl) 11100 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 11101 else 11102 lpfc_sli_release_iocbq(phba, cmdiocbq); 11103 return; 11104 } 11105 11106 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 11107 if (cmdiocbq->context2 && rspiocbq) 11108 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 11109 &rspiocbq->iocb, sizeof(IOCB_t)); 11110 11111 /* Set the exchange busy flag for task management commands */ 11112 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 11113 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 11114 lpfc_cmd = container_of(cmdiocbq, struct lpfc_scsi_buf, 11115 cur_iocbq); 11116 lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY; 11117 } 11118 11119 pdone_q = cmdiocbq->context_un.wait_queue; 11120 if (pdone_q) 11121 wake_up(pdone_q); 11122 spin_unlock_irqrestore(&phba->hbalock, iflags); 11123 return; 11124 } 11125 11126 /** 11127 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 11128 * @phba: Pointer to HBA context object.. 11129 * @piocbq: Pointer to command iocb. 11130 * @flag: Flag to test. 11131 * 11132 * This routine grabs the hbalock and then test the iocb_flag to 11133 * see if the passed in flag is set. 11134 * Returns: 11135 * 1 if flag is set. 11136 * 0 if flag is not set. 11137 **/ 11138 static int 11139 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 11140 struct lpfc_iocbq *piocbq, uint32_t flag) 11141 { 11142 unsigned long iflags; 11143 int ret; 11144 11145 spin_lock_irqsave(&phba->hbalock, iflags); 11146 ret = piocbq->iocb_flag & flag; 11147 spin_unlock_irqrestore(&phba->hbalock, iflags); 11148 return ret; 11149 11150 } 11151 11152 /** 11153 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 11154 * @phba: Pointer to HBA context object.. 11155 * @pring: Pointer to sli ring. 11156 * @piocb: Pointer to command iocb. 11157 * @prspiocbq: Pointer to response iocb. 11158 * @timeout: Timeout in number of seconds. 11159 * 11160 * This function issues the iocb to firmware and waits for the 11161 * iocb to complete. The iocb_cmpl field of the shall be used 11162 * to handle iocbs which time out. If the field is NULL, the 11163 * function shall free the iocbq structure. If more clean up is 11164 * needed, the caller is expected to provide a completion function 11165 * that will provide the needed clean up. If the iocb command is 11166 * not completed within timeout seconds, the function will either 11167 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 11168 * completion function set in the iocb_cmpl field and then return 11169 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 11170 * resources if this function returns IOCB_TIMEDOUT. 11171 * The function waits for the iocb completion using an 11172 * non-interruptible wait. 11173 * This function will sleep while waiting for iocb completion. 11174 * So, this function should not be called from any context which 11175 * does not allow sleeping. Due to the same reason, this function 11176 * cannot be called with interrupt disabled. 11177 * This function assumes that the iocb completions occur while 11178 * this function sleep. So, this function cannot be called from 11179 * the thread which process iocb completion for this ring. 11180 * This function clears the iocb_flag of the iocb object before 11181 * issuing the iocb and the iocb completion handler sets this 11182 * flag and wakes this thread when the iocb completes. 11183 * The contents of the response iocb will be copied to prspiocbq 11184 * by the completion handler when the command completes. 11185 * This function returns IOCB_SUCCESS when success. 11186 * This function is called with no lock held. 11187 **/ 11188 int 11189 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 11190 uint32_t ring_number, 11191 struct lpfc_iocbq *piocb, 11192 struct lpfc_iocbq *prspiocbq, 11193 uint32_t timeout) 11194 { 11195 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 11196 long timeleft, timeout_req = 0; 11197 int retval = IOCB_SUCCESS; 11198 uint32_t creg_val; 11199 struct lpfc_iocbq *iocb; 11200 int txq_cnt = 0; 11201 int txcmplq_cnt = 0; 11202 struct lpfc_sli_ring *pring; 11203 unsigned long iflags; 11204 bool iocb_completed = true; 11205 11206 if (phba->sli_rev >= LPFC_SLI_REV4) 11207 pring = lpfc_sli4_calc_ring(phba, piocb); 11208 else 11209 pring = &phba->sli.sli3_ring[ring_number]; 11210 /* 11211 * If the caller has provided a response iocbq buffer, then context2 11212 * is NULL or its an error. 11213 */ 11214 if (prspiocbq) { 11215 if (piocb->context2) 11216 return IOCB_ERROR; 11217 piocb->context2 = prspiocbq; 11218 } 11219 11220 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 11221 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 11222 piocb->context_un.wait_queue = &done_q; 11223 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 11224 11225 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 11226 if (lpfc_readl(phba->HCregaddr, &creg_val)) 11227 return IOCB_ERROR; 11228 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 11229 writel(creg_val, phba->HCregaddr); 11230 readl(phba->HCregaddr); /* flush */ 11231 } 11232 11233 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 11234 SLI_IOCB_RET_IOCB); 11235 if (retval == IOCB_SUCCESS) { 11236 timeout_req = msecs_to_jiffies(timeout * 1000); 11237 timeleft = wait_event_timeout(done_q, 11238 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 11239 timeout_req); 11240 spin_lock_irqsave(&phba->hbalock, iflags); 11241 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 11242 11243 /* 11244 * IOCB timed out. Inform the wake iocb wait 11245 * completion function and set local status 11246 */ 11247 11248 iocb_completed = false; 11249 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 11250 } 11251 spin_unlock_irqrestore(&phba->hbalock, iflags); 11252 if (iocb_completed) { 11253 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11254 "0331 IOCB wake signaled\n"); 11255 /* Note: we are not indicating if the IOCB has a success 11256 * status or not - that's for the caller to check. 11257 * IOCB_SUCCESS means just that the command was sent and 11258 * completed. Not that it completed successfully. 11259 * */ 11260 } else if (timeleft == 0) { 11261 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11262 "0338 IOCB wait timeout error - no " 11263 "wake response Data x%x\n", timeout); 11264 retval = IOCB_TIMEDOUT; 11265 } else { 11266 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11267 "0330 IOCB wake NOT set, " 11268 "Data x%x x%lx\n", 11269 timeout, (timeleft / jiffies)); 11270 retval = IOCB_TIMEDOUT; 11271 } 11272 } else if (retval == IOCB_BUSY) { 11273 if (phba->cfg_log_verbose & LOG_SLI) { 11274 list_for_each_entry(iocb, &pring->txq, list) { 11275 txq_cnt++; 11276 } 11277 list_for_each_entry(iocb, &pring->txcmplq, list) { 11278 txcmplq_cnt++; 11279 } 11280 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11281 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 11282 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 11283 } 11284 return retval; 11285 } else { 11286 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11287 "0332 IOCB wait issue failed, Data x%x\n", 11288 retval); 11289 retval = IOCB_ERROR; 11290 } 11291 11292 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 11293 if (lpfc_readl(phba->HCregaddr, &creg_val)) 11294 return IOCB_ERROR; 11295 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 11296 writel(creg_val, phba->HCregaddr); 11297 readl(phba->HCregaddr); /* flush */ 11298 } 11299 11300 if (prspiocbq) 11301 piocb->context2 = NULL; 11302 11303 piocb->context_un.wait_queue = NULL; 11304 piocb->iocb_cmpl = NULL; 11305 return retval; 11306 } 11307 11308 /** 11309 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 11310 * @phba: Pointer to HBA context object. 11311 * @pmboxq: Pointer to driver mailbox object. 11312 * @timeout: Timeout in number of seconds. 11313 * 11314 * This function issues the mailbox to firmware and waits for the 11315 * mailbox command to complete. If the mailbox command is not 11316 * completed within timeout seconds, it returns MBX_TIMEOUT. 11317 * The function waits for the mailbox completion using an 11318 * interruptible wait. If the thread is woken up due to a 11319 * signal, MBX_TIMEOUT error is returned to the caller. Caller 11320 * should not free the mailbox resources, if this function returns 11321 * MBX_TIMEOUT. 11322 * This function will sleep while waiting for mailbox completion. 11323 * So, this function should not be called from any context which 11324 * does not allow sleeping. Due to the same reason, this function 11325 * cannot be called with interrupt disabled. 11326 * This function assumes that the mailbox completion occurs while 11327 * this function sleep. So, this function cannot be called from 11328 * the worker thread which processes mailbox completion. 11329 * This function is called in the context of HBA management 11330 * applications. 11331 * This function returns MBX_SUCCESS when successful. 11332 * This function is called with no lock held. 11333 **/ 11334 int 11335 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 11336 uint32_t timeout) 11337 { 11338 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 11339 MAILBOX_t *mb = NULL; 11340 int retval; 11341 unsigned long flag; 11342 11343 /* The caller might set context1 for extended buffer */ 11344 if (pmboxq->context1) 11345 mb = (MAILBOX_t *)pmboxq->context1; 11346 11347 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 11348 /* setup wake call as IOCB callback */ 11349 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 11350 /* setup context field to pass wait_queue pointer to wake function */ 11351 pmboxq->context1 = &done_q; 11352 11353 /* now issue the command */ 11354 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 11355 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 11356 wait_event_interruptible_timeout(done_q, 11357 pmboxq->mbox_flag & LPFC_MBX_WAKE, 11358 msecs_to_jiffies(timeout * 1000)); 11359 11360 spin_lock_irqsave(&phba->hbalock, flag); 11361 /* restore the possible extended buffer for free resource */ 11362 pmboxq->context1 = (uint8_t *)mb; 11363 /* 11364 * if LPFC_MBX_WAKE flag is set the mailbox is completed 11365 * else do not free the resources. 11366 */ 11367 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 11368 retval = MBX_SUCCESS; 11369 } else { 11370 retval = MBX_TIMEOUT; 11371 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 11372 } 11373 spin_unlock_irqrestore(&phba->hbalock, flag); 11374 } else { 11375 /* restore the possible extended buffer for free resource */ 11376 pmboxq->context1 = (uint8_t *)mb; 11377 } 11378 11379 return retval; 11380 } 11381 11382 /** 11383 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 11384 * @phba: Pointer to HBA context. 11385 * 11386 * This function is called to shutdown the driver's mailbox sub-system. 11387 * It first marks the mailbox sub-system is in a block state to prevent 11388 * the asynchronous mailbox command from issued off the pending mailbox 11389 * command queue. If the mailbox command sub-system shutdown is due to 11390 * HBA error conditions such as EEH or ERATT, this routine shall invoke 11391 * the mailbox sub-system flush routine to forcefully bring down the 11392 * mailbox sub-system. Otherwise, if it is due to normal condition (such 11393 * as with offline or HBA function reset), this routine will wait for the 11394 * outstanding mailbox command to complete before invoking the mailbox 11395 * sub-system flush routine to gracefully bring down mailbox sub-system. 11396 **/ 11397 void 11398 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 11399 { 11400 struct lpfc_sli *psli = &phba->sli; 11401 unsigned long timeout; 11402 11403 if (mbx_action == LPFC_MBX_NO_WAIT) { 11404 /* delay 100ms for port state */ 11405 msleep(100); 11406 lpfc_sli_mbox_sys_flush(phba); 11407 return; 11408 } 11409 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 11410 11411 spin_lock_irq(&phba->hbalock); 11412 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 11413 11414 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 11415 /* Determine how long we might wait for the active mailbox 11416 * command to be gracefully completed by firmware. 11417 */ 11418 if (phba->sli.mbox_active) 11419 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 11420 phba->sli.mbox_active) * 11421 1000) + jiffies; 11422 spin_unlock_irq(&phba->hbalock); 11423 11424 while (phba->sli.mbox_active) { 11425 /* Check active mailbox complete status every 2ms */ 11426 msleep(2); 11427 if (time_after(jiffies, timeout)) 11428 /* Timeout, let the mailbox flush routine to 11429 * forcefully release active mailbox command 11430 */ 11431 break; 11432 } 11433 } else 11434 spin_unlock_irq(&phba->hbalock); 11435 11436 lpfc_sli_mbox_sys_flush(phba); 11437 } 11438 11439 /** 11440 * lpfc_sli_eratt_read - read sli-3 error attention events 11441 * @phba: Pointer to HBA context. 11442 * 11443 * This function is called to read the SLI3 device error attention registers 11444 * for possible error attention events. The caller must hold the hostlock 11445 * with spin_lock_irq(). 11446 * 11447 * This function returns 1 when there is Error Attention in the Host Attention 11448 * Register and returns 0 otherwise. 11449 **/ 11450 static int 11451 lpfc_sli_eratt_read(struct lpfc_hba *phba) 11452 { 11453 uint32_t ha_copy; 11454 11455 /* Read chip Host Attention (HA) register */ 11456 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 11457 goto unplug_err; 11458 11459 if (ha_copy & HA_ERATT) { 11460 /* Read host status register to retrieve error event */ 11461 if (lpfc_sli_read_hs(phba)) 11462 goto unplug_err; 11463 11464 /* Check if there is a deferred error condition is active */ 11465 if ((HS_FFER1 & phba->work_hs) && 11466 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 11467 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 11468 phba->hba_flag |= DEFER_ERATT; 11469 /* Clear all interrupt enable conditions */ 11470 writel(0, phba->HCregaddr); 11471 readl(phba->HCregaddr); 11472 } 11473 11474 /* Set the driver HA work bitmap */ 11475 phba->work_ha |= HA_ERATT; 11476 /* Indicate polling handles this ERATT */ 11477 phba->hba_flag |= HBA_ERATT_HANDLED; 11478 return 1; 11479 } 11480 return 0; 11481 11482 unplug_err: 11483 /* Set the driver HS work bitmap */ 11484 phba->work_hs |= UNPLUG_ERR; 11485 /* Set the driver HA work bitmap */ 11486 phba->work_ha |= HA_ERATT; 11487 /* Indicate polling handles this ERATT */ 11488 phba->hba_flag |= HBA_ERATT_HANDLED; 11489 return 1; 11490 } 11491 11492 /** 11493 * lpfc_sli4_eratt_read - read sli-4 error attention events 11494 * @phba: Pointer to HBA context. 11495 * 11496 * This function is called to read the SLI4 device error attention registers 11497 * for possible error attention events. The caller must hold the hostlock 11498 * with spin_lock_irq(). 11499 * 11500 * This function returns 1 when there is Error Attention in the Host Attention 11501 * Register and returns 0 otherwise. 11502 **/ 11503 static int 11504 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 11505 { 11506 uint32_t uerr_sta_hi, uerr_sta_lo; 11507 uint32_t if_type, portsmphr; 11508 struct lpfc_register portstat_reg; 11509 11510 /* 11511 * For now, use the SLI4 device internal unrecoverable error 11512 * registers for error attention. This can be changed later. 11513 */ 11514 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 11515 switch (if_type) { 11516 case LPFC_SLI_INTF_IF_TYPE_0: 11517 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 11518 &uerr_sta_lo) || 11519 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 11520 &uerr_sta_hi)) { 11521 phba->work_hs |= UNPLUG_ERR; 11522 phba->work_ha |= HA_ERATT; 11523 phba->hba_flag |= HBA_ERATT_HANDLED; 11524 return 1; 11525 } 11526 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 11527 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 11528 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11529 "1423 HBA Unrecoverable error: " 11530 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 11531 "ue_mask_lo_reg=0x%x, " 11532 "ue_mask_hi_reg=0x%x\n", 11533 uerr_sta_lo, uerr_sta_hi, 11534 phba->sli4_hba.ue_mask_lo, 11535 phba->sli4_hba.ue_mask_hi); 11536 phba->work_status[0] = uerr_sta_lo; 11537 phba->work_status[1] = uerr_sta_hi; 11538 phba->work_ha |= HA_ERATT; 11539 phba->hba_flag |= HBA_ERATT_HANDLED; 11540 return 1; 11541 } 11542 break; 11543 case LPFC_SLI_INTF_IF_TYPE_2: 11544 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 11545 &portstat_reg.word0) || 11546 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 11547 &portsmphr)){ 11548 phba->work_hs |= UNPLUG_ERR; 11549 phba->work_ha |= HA_ERATT; 11550 phba->hba_flag |= HBA_ERATT_HANDLED; 11551 return 1; 11552 } 11553 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 11554 phba->work_status[0] = 11555 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 11556 phba->work_status[1] = 11557 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 11558 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11559 "2885 Port Status Event: " 11560 "port status reg 0x%x, " 11561 "port smphr reg 0x%x, " 11562 "error 1=0x%x, error 2=0x%x\n", 11563 portstat_reg.word0, 11564 portsmphr, 11565 phba->work_status[0], 11566 phba->work_status[1]); 11567 phba->work_ha |= HA_ERATT; 11568 phba->hba_flag |= HBA_ERATT_HANDLED; 11569 return 1; 11570 } 11571 break; 11572 case LPFC_SLI_INTF_IF_TYPE_1: 11573 default: 11574 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11575 "2886 HBA Error Attention on unsupported " 11576 "if type %d.", if_type); 11577 return 1; 11578 } 11579 11580 return 0; 11581 } 11582 11583 /** 11584 * lpfc_sli_check_eratt - check error attention events 11585 * @phba: Pointer to HBA context. 11586 * 11587 * This function is called from timer soft interrupt context to check HBA's 11588 * error attention register bit for error attention events. 11589 * 11590 * This function returns 1 when there is Error Attention in the Host Attention 11591 * Register and returns 0 otherwise. 11592 **/ 11593 int 11594 lpfc_sli_check_eratt(struct lpfc_hba *phba) 11595 { 11596 uint32_t ha_copy; 11597 11598 /* If somebody is waiting to handle an eratt, don't process it 11599 * here. The brdkill function will do this. 11600 */ 11601 if (phba->link_flag & LS_IGNORE_ERATT) 11602 return 0; 11603 11604 /* Check if interrupt handler handles this ERATT */ 11605 spin_lock_irq(&phba->hbalock); 11606 if (phba->hba_flag & HBA_ERATT_HANDLED) { 11607 /* Interrupt handler has handled ERATT */ 11608 spin_unlock_irq(&phba->hbalock); 11609 return 0; 11610 } 11611 11612 /* 11613 * If there is deferred error attention, do not check for error 11614 * attention 11615 */ 11616 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11617 spin_unlock_irq(&phba->hbalock); 11618 return 0; 11619 } 11620 11621 /* If PCI channel is offline, don't process it */ 11622 if (unlikely(pci_channel_offline(phba->pcidev))) { 11623 spin_unlock_irq(&phba->hbalock); 11624 return 0; 11625 } 11626 11627 switch (phba->sli_rev) { 11628 case LPFC_SLI_REV2: 11629 case LPFC_SLI_REV3: 11630 /* Read chip Host Attention (HA) register */ 11631 ha_copy = lpfc_sli_eratt_read(phba); 11632 break; 11633 case LPFC_SLI_REV4: 11634 /* Read device Uncoverable Error (UERR) registers */ 11635 ha_copy = lpfc_sli4_eratt_read(phba); 11636 break; 11637 default: 11638 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11639 "0299 Invalid SLI revision (%d)\n", 11640 phba->sli_rev); 11641 ha_copy = 0; 11642 break; 11643 } 11644 spin_unlock_irq(&phba->hbalock); 11645 11646 return ha_copy; 11647 } 11648 11649 /** 11650 * lpfc_intr_state_check - Check device state for interrupt handling 11651 * @phba: Pointer to HBA context. 11652 * 11653 * This inline routine checks whether a device or its PCI slot is in a state 11654 * that the interrupt should be handled. 11655 * 11656 * This function returns 0 if the device or the PCI slot is in a state that 11657 * interrupt should be handled, otherwise -EIO. 11658 */ 11659 static inline int 11660 lpfc_intr_state_check(struct lpfc_hba *phba) 11661 { 11662 /* If the pci channel is offline, ignore all the interrupts */ 11663 if (unlikely(pci_channel_offline(phba->pcidev))) 11664 return -EIO; 11665 11666 /* Update device level interrupt statistics */ 11667 phba->sli.slistat.sli_intr++; 11668 11669 /* Ignore all interrupts during initialization. */ 11670 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 11671 return -EIO; 11672 11673 return 0; 11674 } 11675 11676 /** 11677 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 11678 * @irq: Interrupt number. 11679 * @dev_id: The device context pointer. 11680 * 11681 * This function is directly called from the PCI layer as an interrupt 11682 * service routine when device with SLI-3 interface spec is enabled with 11683 * MSI-X multi-message interrupt mode and there are slow-path events in 11684 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 11685 * interrupt mode, this function is called as part of the device-level 11686 * interrupt handler. When the PCI slot is in error recovery or the HBA 11687 * is undergoing initialization, the interrupt handler will not process 11688 * the interrupt. The link attention and ELS ring attention events are 11689 * handled by the worker thread. The interrupt handler signals the worker 11690 * thread and returns for these events. This function is called without 11691 * any lock held. It gets the hbalock to access and update SLI data 11692 * structures. 11693 * 11694 * This function returns IRQ_HANDLED when interrupt is handled else it 11695 * returns IRQ_NONE. 11696 **/ 11697 irqreturn_t 11698 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 11699 { 11700 struct lpfc_hba *phba; 11701 uint32_t ha_copy, hc_copy; 11702 uint32_t work_ha_copy; 11703 unsigned long status; 11704 unsigned long iflag; 11705 uint32_t control; 11706 11707 MAILBOX_t *mbox, *pmbox; 11708 struct lpfc_vport *vport; 11709 struct lpfc_nodelist *ndlp; 11710 struct lpfc_dmabuf *mp; 11711 LPFC_MBOXQ_t *pmb; 11712 int rc; 11713 11714 /* 11715 * Get the driver's phba structure from the dev_id and 11716 * assume the HBA is not interrupting. 11717 */ 11718 phba = (struct lpfc_hba *)dev_id; 11719 11720 if (unlikely(!phba)) 11721 return IRQ_NONE; 11722 11723 /* 11724 * Stuff needs to be attented to when this function is invoked as an 11725 * individual interrupt handler in MSI-X multi-message interrupt mode 11726 */ 11727 if (phba->intr_type == MSIX) { 11728 /* Check device state for handling interrupt */ 11729 if (lpfc_intr_state_check(phba)) 11730 return IRQ_NONE; 11731 /* Need to read HA REG for slow-path events */ 11732 spin_lock_irqsave(&phba->hbalock, iflag); 11733 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 11734 goto unplug_error; 11735 /* If somebody is waiting to handle an eratt don't process it 11736 * here. The brdkill function will do this. 11737 */ 11738 if (phba->link_flag & LS_IGNORE_ERATT) 11739 ha_copy &= ~HA_ERATT; 11740 /* Check the need for handling ERATT in interrupt handler */ 11741 if (ha_copy & HA_ERATT) { 11742 if (phba->hba_flag & HBA_ERATT_HANDLED) 11743 /* ERATT polling has handled ERATT */ 11744 ha_copy &= ~HA_ERATT; 11745 else 11746 /* Indicate interrupt handler handles ERATT */ 11747 phba->hba_flag |= HBA_ERATT_HANDLED; 11748 } 11749 11750 /* 11751 * If there is deferred error attention, do not check for any 11752 * interrupt. 11753 */ 11754 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11755 spin_unlock_irqrestore(&phba->hbalock, iflag); 11756 return IRQ_NONE; 11757 } 11758 11759 /* Clear up only attention source related to slow-path */ 11760 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 11761 goto unplug_error; 11762 11763 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 11764 HC_LAINT_ENA | HC_ERINT_ENA), 11765 phba->HCregaddr); 11766 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 11767 phba->HAregaddr); 11768 writel(hc_copy, phba->HCregaddr); 11769 readl(phba->HAregaddr); /* flush */ 11770 spin_unlock_irqrestore(&phba->hbalock, iflag); 11771 } else 11772 ha_copy = phba->ha_copy; 11773 11774 work_ha_copy = ha_copy & phba->work_ha_mask; 11775 11776 if (work_ha_copy) { 11777 if (work_ha_copy & HA_LATT) { 11778 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 11779 /* 11780 * Turn off Link Attention interrupts 11781 * until CLEAR_LA done 11782 */ 11783 spin_lock_irqsave(&phba->hbalock, iflag); 11784 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 11785 if (lpfc_readl(phba->HCregaddr, &control)) 11786 goto unplug_error; 11787 control &= ~HC_LAINT_ENA; 11788 writel(control, phba->HCregaddr); 11789 readl(phba->HCregaddr); /* flush */ 11790 spin_unlock_irqrestore(&phba->hbalock, iflag); 11791 } 11792 else 11793 work_ha_copy &= ~HA_LATT; 11794 } 11795 11796 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 11797 /* 11798 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 11799 * the only slow ring. 11800 */ 11801 status = (work_ha_copy & 11802 (HA_RXMASK << (4*LPFC_ELS_RING))); 11803 status >>= (4*LPFC_ELS_RING); 11804 if (status & HA_RXMASK) { 11805 spin_lock_irqsave(&phba->hbalock, iflag); 11806 if (lpfc_readl(phba->HCregaddr, &control)) 11807 goto unplug_error; 11808 11809 lpfc_debugfs_slow_ring_trc(phba, 11810 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 11811 control, status, 11812 (uint32_t)phba->sli.slistat.sli_intr); 11813 11814 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 11815 lpfc_debugfs_slow_ring_trc(phba, 11816 "ISR Disable ring:" 11817 "pwork:x%x hawork:x%x wait:x%x", 11818 phba->work_ha, work_ha_copy, 11819 (uint32_t)((unsigned long) 11820 &phba->work_waitq)); 11821 11822 control &= 11823 ~(HC_R0INT_ENA << LPFC_ELS_RING); 11824 writel(control, phba->HCregaddr); 11825 readl(phba->HCregaddr); /* flush */ 11826 } 11827 else { 11828 lpfc_debugfs_slow_ring_trc(phba, 11829 "ISR slow ring: pwork:" 11830 "x%x hawork:x%x wait:x%x", 11831 phba->work_ha, work_ha_copy, 11832 (uint32_t)((unsigned long) 11833 &phba->work_waitq)); 11834 } 11835 spin_unlock_irqrestore(&phba->hbalock, iflag); 11836 } 11837 } 11838 spin_lock_irqsave(&phba->hbalock, iflag); 11839 if (work_ha_copy & HA_ERATT) { 11840 if (lpfc_sli_read_hs(phba)) 11841 goto unplug_error; 11842 /* 11843 * Check if there is a deferred error condition 11844 * is active 11845 */ 11846 if ((HS_FFER1 & phba->work_hs) && 11847 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 11848 HS_FFER6 | HS_FFER7 | HS_FFER8) & 11849 phba->work_hs)) { 11850 phba->hba_flag |= DEFER_ERATT; 11851 /* Clear all interrupt enable conditions */ 11852 writel(0, phba->HCregaddr); 11853 readl(phba->HCregaddr); 11854 } 11855 } 11856 11857 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 11858 pmb = phba->sli.mbox_active; 11859 pmbox = &pmb->u.mb; 11860 mbox = phba->mbox; 11861 vport = pmb->vport; 11862 11863 /* First check out the status word */ 11864 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 11865 if (pmbox->mbxOwner != OWN_HOST) { 11866 spin_unlock_irqrestore(&phba->hbalock, iflag); 11867 /* 11868 * Stray Mailbox Interrupt, mbxCommand <cmd> 11869 * mbxStatus <status> 11870 */ 11871 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 11872 LOG_SLI, 11873 "(%d):0304 Stray Mailbox " 11874 "Interrupt mbxCommand x%x " 11875 "mbxStatus x%x\n", 11876 (vport ? vport->vpi : 0), 11877 pmbox->mbxCommand, 11878 pmbox->mbxStatus); 11879 /* clear mailbox attention bit */ 11880 work_ha_copy &= ~HA_MBATT; 11881 } else { 11882 phba->sli.mbox_active = NULL; 11883 spin_unlock_irqrestore(&phba->hbalock, iflag); 11884 phba->last_completion_time = jiffies; 11885 del_timer(&phba->sli.mbox_tmo); 11886 if (pmb->mbox_cmpl) { 11887 lpfc_sli_pcimem_bcopy(mbox, pmbox, 11888 MAILBOX_CMD_SIZE); 11889 if (pmb->out_ext_byte_len && 11890 pmb->context2) 11891 lpfc_sli_pcimem_bcopy( 11892 phba->mbox_ext, 11893 pmb->context2, 11894 pmb->out_ext_byte_len); 11895 } 11896 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 11897 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 11898 11899 lpfc_debugfs_disc_trc(vport, 11900 LPFC_DISC_TRC_MBOX_VPORT, 11901 "MBOX dflt rpi: : " 11902 "status:x%x rpi:x%x", 11903 (uint32_t)pmbox->mbxStatus, 11904 pmbox->un.varWords[0], 0); 11905 11906 if (!pmbox->mbxStatus) { 11907 mp = (struct lpfc_dmabuf *) 11908 (pmb->context1); 11909 ndlp = (struct lpfc_nodelist *) 11910 pmb->context2; 11911 11912 /* Reg_LOGIN of dflt RPI was 11913 * successful. new lets get 11914 * rid of the RPI using the 11915 * same mbox buffer. 11916 */ 11917 lpfc_unreg_login(phba, 11918 vport->vpi, 11919 pmbox->un.varWords[0], 11920 pmb); 11921 pmb->mbox_cmpl = 11922 lpfc_mbx_cmpl_dflt_rpi; 11923 pmb->context1 = mp; 11924 pmb->context2 = ndlp; 11925 pmb->vport = vport; 11926 rc = lpfc_sli_issue_mbox(phba, 11927 pmb, 11928 MBX_NOWAIT); 11929 if (rc != MBX_BUSY) 11930 lpfc_printf_log(phba, 11931 KERN_ERR, 11932 LOG_MBOX | LOG_SLI, 11933 "0350 rc should have" 11934 "been MBX_BUSY\n"); 11935 if (rc != MBX_NOT_FINISHED) 11936 goto send_current_mbox; 11937 } 11938 } 11939 spin_lock_irqsave( 11940 &phba->pport->work_port_lock, 11941 iflag); 11942 phba->pport->work_port_events &= 11943 ~WORKER_MBOX_TMO; 11944 spin_unlock_irqrestore( 11945 &phba->pport->work_port_lock, 11946 iflag); 11947 lpfc_mbox_cmpl_put(phba, pmb); 11948 } 11949 } else 11950 spin_unlock_irqrestore(&phba->hbalock, iflag); 11951 11952 if ((work_ha_copy & HA_MBATT) && 11953 (phba->sli.mbox_active == NULL)) { 11954 send_current_mbox: 11955 /* Process next mailbox command if there is one */ 11956 do { 11957 rc = lpfc_sli_issue_mbox(phba, NULL, 11958 MBX_NOWAIT); 11959 } while (rc == MBX_NOT_FINISHED); 11960 if (rc != MBX_SUCCESS) 11961 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 11962 LOG_SLI, "0349 rc should be " 11963 "MBX_SUCCESS\n"); 11964 } 11965 11966 spin_lock_irqsave(&phba->hbalock, iflag); 11967 phba->work_ha |= work_ha_copy; 11968 spin_unlock_irqrestore(&phba->hbalock, iflag); 11969 lpfc_worker_wake_up(phba); 11970 } 11971 return IRQ_HANDLED; 11972 unplug_error: 11973 spin_unlock_irqrestore(&phba->hbalock, iflag); 11974 return IRQ_HANDLED; 11975 11976 } /* lpfc_sli_sp_intr_handler */ 11977 11978 /** 11979 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 11980 * @irq: Interrupt number. 11981 * @dev_id: The device context pointer. 11982 * 11983 * This function is directly called from the PCI layer as an interrupt 11984 * service routine when device with SLI-3 interface spec is enabled with 11985 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 11986 * ring event in the HBA. However, when the device is enabled with either 11987 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 11988 * device-level interrupt handler. When the PCI slot is in error recovery 11989 * or the HBA is undergoing initialization, the interrupt handler will not 11990 * process the interrupt. The SCSI FCP fast-path ring event are handled in 11991 * the intrrupt context. This function is called without any lock held. 11992 * It gets the hbalock to access and update SLI data structures. 11993 * 11994 * This function returns IRQ_HANDLED when interrupt is handled else it 11995 * returns IRQ_NONE. 11996 **/ 11997 irqreturn_t 11998 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 11999 { 12000 struct lpfc_hba *phba; 12001 uint32_t ha_copy; 12002 unsigned long status; 12003 unsigned long iflag; 12004 struct lpfc_sli_ring *pring; 12005 12006 /* Get the driver's phba structure from the dev_id and 12007 * assume the HBA is not interrupting. 12008 */ 12009 phba = (struct lpfc_hba *) dev_id; 12010 12011 if (unlikely(!phba)) 12012 return IRQ_NONE; 12013 12014 /* 12015 * Stuff needs to be attented to when this function is invoked as an 12016 * individual interrupt handler in MSI-X multi-message interrupt mode 12017 */ 12018 if (phba->intr_type == MSIX) { 12019 /* Check device state for handling interrupt */ 12020 if (lpfc_intr_state_check(phba)) 12021 return IRQ_NONE; 12022 /* Need to read HA REG for FCP ring and other ring events */ 12023 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12024 return IRQ_HANDLED; 12025 /* Clear up only attention source related to fast-path */ 12026 spin_lock_irqsave(&phba->hbalock, iflag); 12027 /* 12028 * If there is deferred error attention, do not check for 12029 * any interrupt. 12030 */ 12031 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12032 spin_unlock_irqrestore(&phba->hbalock, iflag); 12033 return IRQ_NONE; 12034 } 12035 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 12036 phba->HAregaddr); 12037 readl(phba->HAregaddr); /* flush */ 12038 spin_unlock_irqrestore(&phba->hbalock, iflag); 12039 } else 12040 ha_copy = phba->ha_copy; 12041 12042 /* 12043 * Process all events on FCP ring. Take the optimized path for FCP IO. 12044 */ 12045 ha_copy &= ~(phba->work_ha_mask); 12046 12047 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12048 status >>= (4*LPFC_FCP_RING); 12049 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12050 if (status & HA_RXMASK) 12051 lpfc_sli_handle_fast_ring_event(phba, pring, status); 12052 12053 if (phba->cfg_multi_ring_support == 2) { 12054 /* 12055 * Process all events on extra ring. Take the optimized path 12056 * for extra ring IO. 12057 */ 12058 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12059 status >>= (4*LPFC_EXTRA_RING); 12060 if (status & HA_RXMASK) { 12061 lpfc_sli_handle_fast_ring_event(phba, 12062 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 12063 status); 12064 } 12065 } 12066 return IRQ_HANDLED; 12067 } /* lpfc_sli_fp_intr_handler */ 12068 12069 /** 12070 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 12071 * @irq: Interrupt number. 12072 * @dev_id: The device context pointer. 12073 * 12074 * This function is the HBA device-level interrupt handler to device with 12075 * SLI-3 interface spec, called from the PCI layer when either MSI or 12076 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 12077 * requires driver attention. This function invokes the slow-path interrupt 12078 * attention handling function and fast-path interrupt attention handling 12079 * function in turn to process the relevant HBA attention events. This 12080 * function is called without any lock held. It gets the hbalock to access 12081 * and update SLI data structures. 12082 * 12083 * This function returns IRQ_HANDLED when interrupt is handled, else it 12084 * returns IRQ_NONE. 12085 **/ 12086 irqreturn_t 12087 lpfc_sli_intr_handler(int irq, void *dev_id) 12088 { 12089 struct lpfc_hba *phba; 12090 irqreturn_t sp_irq_rc, fp_irq_rc; 12091 unsigned long status1, status2; 12092 uint32_t hc_copy; 12093 12094 /* 12095 * Get the driver's phba structure from the dev_id and 12096 * assume the HBA is not interrupting. 12097 */ 12098 phba = (struct lpfc_hba *) dev_id; 12099 12100 if (unlikely(!phba)) 12101 return IRQ_NONE; 12102 12103 /* Check device state for handling interrupt */ 12104 if (lpfc_intr_state_check(phba)) 12105 return IRQ_NONE; 12106 12107 spin_lock(&phba->hbalock); 12108 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 12109 spin_unlock(&phba->hbalock); 12110 return IRQ_HANDLED; 12111 } 12112 12113 if (unlikely(!phba->ha_copy)) { 12114 spin_unlock(&phba->hbalock); 12115 return IRQ_NONE; 12116 } else if (phba->ha_copy & HA_ERATT) { 12117 if (phba->hba_flag & HBA_ERATT_HANDLED) 12118 /* ERATT polling has handled ERATT */ 12119 phba->ha_copy &= ~HA_ERATT; 12120 else 12121 /* Indicate interrupt handler handles ERATT */ 12122 phba->hba_flag |= HBA_ERATT_HANDLED; 12123 } 12124 12125 /* 12126 * If there is deferred error attention, do not check for any interrupt. 12127 */ 12128 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12129 spin_unlock(&phba->hbalock); 12130 return IRQ_NONE; 12131 } 12132 12133 /* Clear attention sources except link and error attentions */ 12134 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 12135 spin_unlock(&phba->hbalock); 12136 return IRQ_HANDLED; 12137 } 12138 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 12139 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 12140 phba->HCregaddr); 12141 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 12142 writel(hc_copy, phba->HCregaddr); 12143 readl(phba->HAregaddr); /* flush */ 12144 spin_unlock(&phba->hbalock); 12145 12146 /* 12147 * Invokes slow-path host attention interrupt handling as appropriate. 12148 */ 12149 12150 /* status of events with mailbox and link attention */ 12151 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 12152 12153 /* status of events with ELS ring */ 12154 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 12155 status2 >>= (4*LPFC_ELS_RING); 12156 12157 if (status1 || (status2 & HA_RXMASK)) 12158 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 12159 else 12160 sp_irq_rc = IRQ_NONE; 12161 12162 /* 12163 * Invoke fast-path host attention interrupt handling as appropriate. 12164 */ 12165 12166 /* status of events with FCP ring */ 12167 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12168 status1 >>= (4*LPFC_FCP_RING); 12169 12170 /* status of events with extra ring */ 12171 if (phba->cfg_multi_ring_support == 2) { 12172 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12173 status2 >>= (4*LPFC_EXTRA_RING); 12174 } else 12175 status2 = 0; 12176 12177 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 12178 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 12179 else 12180 fp_irq_rc = IRQ_NONE; 12181 12182 /* Return device-level interrupt handling status */ 12183 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 12184 } /* lpfc_sli_intr_handler */ 12185 12186 /** 12187 * lpfc_sli4_fcp_xri_abort_event_proc - Process fcp xri abort event 12188 * @phba: pointer to lpfc hba data structure. 12189 * 12190 * This routine is invoked by the worker thread to process all the pending 12191 * SLI4 FCP abort XRI events. 12192 **/ 12193 void lpfc_sli4_fcp_xri_abort_event_proc(struct lpfc_hba *phba) 12194 { 12195 struct lpfc_cq_event *cq_event; 12196 12197 /* First, declare the fcp xri abort event has been handled */ 12198 spin_lock_irq(&phba->hbalock); 12199 phba->hba_flag &= ~FCP_XRI_ABORT_EVENT; 12200 spin_unlock_irq(&phba->hbalock); 12201 /* Now, handle all the fcp xri abort events */ 12202 while (!list_empty(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue)) { 12203 /* Get the first event from the head of the event queue */ 12204 spin_lock_irq(&phba->hbalock); 12205 list_remove_head(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue, 12206 cq_event, struct lpfc_cq_event, list); 12207 spin_unlock_irq(&phba->hbalock); 12208 /* Notify aborted XRI for FCP work queue */ 12209 lpfc_sli4_fcp_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 12210 /* Free the event processed back to the free pool */ 12211 lpfc_sli4_cq_event_release(phba, cq_event); 12212 } 12213 } 12214 12215 /** 12216 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 12217 * @phba: pointer to lpfc hba data structure. 12218 * 12219 * This routine is invoked by the worker thread to process all the pending 12220 * SLI4 els abort xri events. 12221 **/ 12222 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 12223 { 12224 struct lpfc_cq_event *cq_event; 12225 12226 /* First, declare the els xri abort event has been handled */ 12227 spin_lock_irq(&phba->hbalock); 12228 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 12229 spin_unlock_irq(&phba->hbalock); 12230 /* Now, handle all the els xri abort events */ 12231 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 12232 /* Get the first event from the head of the event queue */ 12233 spin_lock_irq(&phba->hbalock); 12234 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 12235 cq_event, struct lpfc_cq_event, list); 12236 spin_unlock_irq(&phba->hbalock); 12237 /* Notify aborted XRI for ELS work queue */ 12238 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 12239 /* Free the event processed back to the free pool */ 12240 lpfc_sli4_cq_event_release(phba, cq_event); 12241 } 12242 } 12243 12244 /** 12245 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 12246 * @phba: pointer to lpfc hba data structure 12247 * @pIocbIn: pointer to the rspiocbq 12248 * @pIocbOut: pointer to the cmdiocbq 12249 * @wcqe: pointer to the complete wcqe 12250 * 12251 * This routine transfers the fields of a command iocbq to a response iocbq 12252 * by copying all the IOCB fields from command iocbq and transferring the 12253 * completion status information from the complete wcqe. 12254 **/ 12255 static void 12256 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 12257 struct lpfc_iocbq *pIocbIn, 12258 struct lpfc_iocbq *pIocbOut, 12259 struct lpfc_wcqe_complete *wcqe) 12260 { 12261 int numBdes, i; 12262 unsigned long iflags; 12263 uint32_t status, max_response; 12264 struct lpfc_dmabuf *dmabuf; 12265 struct ulp_bde64 *bpl, bde; 12266 size_t offset = offsetof(struct lpfc_iocbq, iocb); 12267 12268 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 12269 sizeof(struct lpfc_iocbq) - offset); 12270 /* Map WCQE parameters into irspiocb parameters */ 12271 status = bf_get(lpfc_wcqe_c_status, wcqe); 12272 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 12273 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 12274 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 12275 pIocbIn->iocb.un.fcpi.fcpi_parm = 12276 pIocbOut->iocb.un.fcpi.fcpi_parm - 12277 wcqe->total_data_placed; 12278 else 12279 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 12280 else { 12281 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 12282 switch (pIocbOut->iocb.ulpCommand) { 12283 case CMD_ELS_REQUEST64_CR: 12284 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 12285 bpl = (struct ulp_bde64 *)dmabuf->virt; 12286 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 12287 max_response = bde.tus.f.bdeSize; 12288 break; 12289 case CMD_GEN_REQUEST64_CR: 12290 max_response = 0; 12291 if (!pIocbOut->context3) 12292 break; 12293 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 12294 sizeof(struct ulp_bde64); 12295 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 12296 bpl = (struct ulp_bde64 *)dmabuf->virt; 12297 for (i = 0; i < numBdes; i++) { 12298 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 12299 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 12300 max_response += bde.tus.f.bdeSize; 12301 } 12302 break; 12303 default: 12304 max_response = wcqe->total_data_placed; 12305 break; 12306 } 12307 if (max_response < wcqe->total_data_placed) 12308 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 12309 else 12310 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 12311 wcqe->total_data_placed; 12312 } 12313 12314 /* Convert BG errors for completion status */ 12315 if (status == CQE_STATUS_DI_ERROR) { 12316 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 12317 12318 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 12319 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 12320 else 12321 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 12322 12323 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 12324 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 12325 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12326 BGS_GUARD_ERR_MASK; 12327 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 12328 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12329 BGS_APPTAG_ERR_MASK; 12330 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 12331 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12332 BGS_REFTAG_ERR_MASK; 12333 12334 /* Check to see if there was any good data before the error */ 12335 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 12336 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12337 BGS_HI_WATER_MARK_PRESENT_MASK; 12338 pIocbIn->iocb.unsli3.sli3_bg.bghm = 12339 wcqe->total_data_placed; 12340 } 12341 12342 /* 12343 * Set ALL the error bits to indicate we don't know what 12344 * type of error it is. 12345 */ 12346 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 12347 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12348 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 12349 BGS_GUARD_ERR_MASK); 12350 } 12351 12352 /* Pick up HBA exchange busy condition */ 12353 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 12354 spin_lock_irqsave(&phba->hbalock, iflags); 12355 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 12356 spin_unlock_irqrestore(&phba->hbalock, iflags); 12357 } 12358 } 12359 12360 /** 12361 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 12362 * @phba: Pointer to HBA context object. 12363 * @wcqe: Pointer to work-queue completion queue entry. 12364 * 12365 * This routine handles an ELS work-queue completion event and construct 12366 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 12367 * discovery engine to handle. 12368 * 12369 * Return: Pointer to the receive IOCBQ, NULL otherwise. 12370 **/ 12371 static struct lpfc_iocbq * 12372 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 12373 struct lpfc_iocbq *irspiocbq) 12374 { 12375 struct lpfc_sli_ring *pring; 12376 struct lpfc_iocbq *cmdiocbq; 12377 struct lpfc_wcqe_complete *wcqe; 12378 unsigned long iflags; 12379 12380 pring = lpfc_phba_elsring(phba); 12381 12382 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 12383 spin_lock_irqsave(&pring->ring_lock, iflags); 12384 pring->stats.iocb_event++; 12385 /* Look up the ELS command IOCB and create pseudo response IOCB */ 12386 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 12387 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12388 /* Put the iocb back on the txcmplq */ 12389 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 12390 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12391 12392 if (unlikely(!cmdiocbq)) { 12393 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12394 "0386 ELS complete with no corresponding " 12395 "cmdiocb: iotag (%d)\n", 12396 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12397 lpfc_sli_release_iocbq(phba, irspiocbq); 12398 return NULL; 12399 } 12400 12401 /* Fake the irspiocbq and copy necessary response information */ 12402 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 12403 12404 return irspiocbq; 12405 } 12406 12407 /** 12408 * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event 12409 * @phba: Pointer to HBA context object. 12410 * @cqe: Pointer to mailbox completion queue entry. 12411 * 12412 * This routine process a mailbox completion queue entry with asynchrous 12413 * event. 12414 * 12415 * Return: true if work posted to worker thread, otherwise false. 12416 **/ 12417 static bool 12418 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 12419 { 12420 struct lpfc_cq_event *cq_event; 12421 unsigned long iflags; 12422 12423 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12424 "0392 Async Event: word0:x%x, word1:x%x, " 12425 "word2:x%x, word3:x%x\n", mcqe->word0, 12426 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 12427 12428 /* Allocate a new internal CQ_EVENT entry */ 12429 cq_event = lpfc_sli4_cq_event_alloc(phba); 12430 if (!cq_event) { 12431 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12432 "0394 Failed to allocate CQ_EVENT entry\n"); 12433 return false; 12434 } 12435 12436 /* Move the CQE into an asynchronous event entry */ 12437 memcpy(&cq_event->cqe, mcqe, sizeof(struct lpfc_mcqe)); 12438 spin_lock_irqsave(&phba->hbalock, iflags); 12439 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 12440 /* Set the async event flag */ 12441 phba->hba_flag |= ASYNC_EVENT; 12442 spin_unlock_irqrestore(&phba->hbalock, iflags); 12443 12444 return true; 12445 } 12446 12447 /** 12448 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 12449 * @phba: Pointer to HBA context object. 12450 * @cqe: Pointer to mailbox completion queue entry. 12451 * 12452 * This routine process a mailbox completion queue entry with mailbox 12453 * completion event. 12454 * 12455 * Return: true if work posted to worker thread, otherwise false. 12456 **/ 12457 static bool 12458 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 12459 { 12460 uint32_t mcqe_status; 12461 MAILBOX_t *mbox, *pmbox; 12462 struct lpfc_mqe *mqe; 12463 struct lpfc_vport *vport; 12464 struct lpfc_nodelist *ndlp; 12465 struct lpfc_dmabuf *mp; 12466 unsigned long iflags; 12467 LPFC_MBOXQ_t *pmb; 12468 bool workposted = false; 12469 int rc; 12470 12471 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 12472 if (!bf_get(lpfc_trailer_completed, mcqe)) 12473 goto out_no_mqe_complete; 12474 12475 /* Get the reference to the active mbox command */ 12476 spin_lock_irqsave(&phba->hbalock, iflags); 12477 pmb = phba->sli.mbox_active; 12478 if (unlikely(!pmb)) { 12479 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 12480 "1832 No pending MBOX command to handle\n"); 12481 spin_unlock_irqrestore(&phba->hbalock, iflags); 12482 goto out_no_mqe_complete; 12483 } 12484 spin_unlock_irqrestore(&phba->hbalock, iflags); 12485 mqe = &pmb->u.mqe; 12486 pmbox = (MAILBOX_t *)&pmb->u.mqe; 12487 mbox = phba->mbox; 12488 vport = pmb->vport; 12489 12490 /* Reset heartbeat timer */ 12491 phba->last_completion_time = jiffies; 12492 del_timer(&phba->sli.mbox_tmo); 12493 12494 /* Move mbox data to caller's mailbox region, do endian swapping */ 12495 if (pmb->mbox_cmpl && mbox) 12496 lpfc_sli_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 12497 12498 /* 12499 * For mcqe errors, conditionally move a modified error code to 12500 * the mbox so that the error will not be missed. 12501 */ 12502 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 12503 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 12504 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 12505 bf_set(lpfc_mqe_status, mqe, 12506 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 12507 } 12508 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 12509 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 12510 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 12511 "MBOX dflt rpi: status:x%x rpi:x%x", 12512 mcqe_status, 12513 pmbox->un.varWords[0], 0); 12514 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 12515 mp = (struct lpfc_dmabuf *)(pmb->context1); 12516 ndlp = (struct lpfc_nodelist *)pmb->context2; 12517 /* Reg_LOGIN of dflt RPI was successful. Now lets get 12518 * RID of the PPI using the same mbox buffer. 12519 */ 12520 lpfc_unreg_login(phba, vport->vpi, 12521 pmbox->un.varWords[0], pmb); 12522 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 12523 pmb->context1 = mp; 12524 pmb->context2 = ndlp; 12525 pmb->vport = vport; 12526 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 12527 if (rc != MBX_BUSY) 12528 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 12529 LOG_SLI, "0385 rc should " 12530 "have been MBX_BUSY\n"); 12531 if (rc != MBX_NOT_FINISHED) 12532 goto send_current_mbox; 12533 } 12534 } 12535 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 12536 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12537 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 12538 12539 /* There is mailbox completion work to do */ 12540 spin_lock_irqsave(&phba->hbalock, iflags); 12541 __lpfc_mbox_cmpl_put(phba, pmb); 12542 phba->work_ha |= HA_MBATT; 12543 spin_unlock_irqrestore(&phba->hbalock, iflags); 12544 workposted = true; 12545 12546 send_current_mbox: 12547 spin_lock_irqsave(&phba->hbalock, iflags); 12548 /* Release the mailbox command posting token */ 12549 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 12550 /* Setting active mailbox pointer need to be in sync to flag clear */ 12551 phba->sli.mbox_active = NULL; 12552 spin_unlock_irqrestore(&phba->hbalock, iflags); 12553 /* Wake up worker thread to post the next pending mailbox command */ 12554 lpfc_worker_wake_up(phba); 12555 out_no_mqe_complete: 12556 if (bf_get(lpfc_trailer_consumed, mcqe)) 12557 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 12558 return workposted; 12559 } 12560 12561 /** 12562 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 12563 * @phba: Pointer to HBA context object. 12564 * @cqe: Pointer to mailbox completion queue entry. 12565 * 12566 * This routine process a mailbox completion queue entry, it invokes the 12567 * proper mailbox complete handling or asynchrous event handling routine 12568 * according to the MCQE's async bit. 12569 * 12570 * Return: true if work posted to worker thread, otherwise false. 12571 **/ 12572 static bool 12573 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_cqe *cqe) 12574 { 12575 struct lpfc_mcqe mcqe; 12576 bool workposted; 12577 12578 /* Copy the mailbox MCQE and convert endian order as needed */ 12579 lpfc_sli_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 12580 12581 /* Invoke the proper event handling routine */ 12582 if (!bf_get(lpfc_trailer_async, &mcqe)) 12583 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 12584 else 12585 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 12586 return workposted; 12587 } 12588 12589 /** 12590 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 12591 * @phba: Pointer to HBA context object. 12592 * @cq: Pointer to associated CQ 12593 * @wcqe: Pointer to work-queue completion queue entry. 12594 * 12595 * This routine handles an ELS work-queue completion event. 12596 * 12597 * Return: true if work posted to worker thread, otherwise false. 12598 **/ 12599 static bool 12600 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12601 struct lpfc_wcqe_complete *wcqe) 12602 { 12603 struct lpfc_iocbq *irspiocbq; 12604 unsigned long iflags; 12605 struct lpfc_sli_ring *pring = cq->pring; 12606 int txq_cnt = 0; 12607 int txcmplq_cnt = 0; 12608 int fcp_txcmplq_cnt = 0; 12609 12610 /* Get an irspiocbq for later ELS response processing use */ 12611 irspiocbq = lpfc_sli_get_iocbq(phba); 12612 if (!irspiocbq) { 12613 if (!list_empty(&pring->txq)) 12614 txq_cnt++; 12615 if (!list_empty(&pring->txcmplq)) 12616 txcmplq_cnt++; 12617 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12618 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 12619 "fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n", 12620 txq_cnt, phba->iocb_cnt, 12621 fcp_txcmplq_cnt, 12622 txcmplq_cnt); 12623 return false; 12624 } 12625 12626 /* Save off the slow-path queue event for work thread to process */ 12627 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 12628 spin_lock_irqsave(&phba->hbalock, iflags); 12629 list_add_tail(&irspiocbq->cq_event.list, 12630 &phba->sli4_hba.sp_queue_event); 12631 phba->hba_flag |= HBA_SP_QUEUE_EVT; 12632 spin_unlock_irqrestore(&phba->hbalock, iflags); 12633 12634 return true; 12635 } 12636 12637 /** 12638 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 12639 * @phba: Pointer to HBA context object. 12640 * @wcqe: Pointer to work-queue completion queue entry. 12641 * 12642 * This routine handles slow-path WQ entry consumed event by invoking the 12643 * proper WQ release routine to the slow-path WQ. 12644 **/ 12645 static void 12646 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 12647 struct lpfc_wcqe_release *wcqe) 12648 { 12649 /* sanity check on queue memory */ 12650 if (unlikely(!phba->sli4_hba.els_wq)) 12651 return; 12652 /* Check for the slow-path ELS work queue */ 12653 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 12654 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 12655 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 12656 else 12657 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12658 "2579 Slow-path wqe consume event carries " 12659 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 12660 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 12661 phba->sli4_hba.els_wq->queue_id); 12662 } 12663 12664 /** 12665 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 12666 * @phba: Pointer to HBA context object. 12667 * @cq: Pointer to a WQ completion queue. 12668 * @wcqe: Pointer to work-queue completion queue entry. 12669 * 12670 * This routine handles an XRI abort event. 12671 * 12672 * Return: true if work posted to worker thread, otherwise false. 12673 **/ 12674 static bool 12675 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 12676 struct lpfc_queue *cq, 12677 struct sli4_wcqe_xri_aborted *wcqe) 12678 { 12679 bool workposted = false; 12680 struct lpfc_cq_event *cq_event; 12681 unsigned long iflags; 12682 12683 /* Allocate a new internal CQ_EVENT entry */ 12684 cq_event = lpfc_sli4_cq_event_alloc(phba); 12685 if (!cq_event) { 12686 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12687 "0602 Failed to allocate CQ_EVENT entry\n"); 12688 return false; 12689 } 12690 12691 /* Move the CQE into the proper xri abort event list */ 12692 memcpy(&cq_event->cqe, wcqe, sizeof(struct sli4_wcqe_xri_aborted)); 12693 switch (cq->subtype) { 12694 case LPFC_FCP: 12695 spin_lock_irqsave(&phba->hbalock, iflags); 12696 list_add_tail(&cq_event->list, 12697 &phba->sli4_hba.sp_fcp_xri_aborted_work_queue); 12698 /* Set the fcp xri abort event flag */ 12699 phba->hba_flag |= FCP_XRI_ABORT_EVENT; 12700 spin_unlock_irqrestore(&phba->hbalock, iflags); 12701 workposted = true; 12702 break; 12703 case LPFC_ELS: 12704 spin_lock_irqsave(&phba->hbalock, iflags); 12705 list_add_tail(&cq_event->list, 12706 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 12707 /* Set the els xri abort event flag */ 12708 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 12709 spin_unlock_irqrestore(&phba->hbalock, iflags); 12710 workposted = true; 12711 break; 12712 default: 12713 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12714 "0603 Invalid work queue CQE subtype (x%x)\n", 12715 cq->subtype); 12716 workposted = false; 12717 break; 12718 } 12719 return workposted; 12720 } 12721 12722 /** 12723 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 12724 * @phba: Pointer to HBA context object. 12725 * @rcqe: Pointer to receive-queue completion queue entry. 12726 * 12727 * This routine process a receive-queue completion queue entry. 12728 * 12729 * Return: true if work posted to worker thread, otherwise false. 12730 **/ 12731 static bool 12732 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 12733 { 12734 bool workposted = false; 12735 struct fc_frame_header *fc_hdr; 12736 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 12737 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 12738 struct hbq_dmabuf *dma_buf; 12739 uint32_t status, rq_id; 12740 unsigned long iflags; 12741 12742 /* sanity check on queue memory */ 12743 if (unlikely(!hrq) || unlikely(!drq)) 12744 return workposted; 12745 12746 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 12747 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 12748 else 12749 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 12750 if (rq_id != hrq->queue_id) 12751 goto out; 12752 12753 status = bf_get(lpfc_rcqe_status, rcqe); 12754 switch (status) { 12755 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 12756 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12757 "2537 Receive Frame Truncated!!\n"); 12758 hrq->RQ_buf_trunc++; 12759 case FC_STATUS_RQ_SUCCESS: 12760 lpfc_sli4_rq_release(hrq, drq); 12761 spin_lock_irqsave(&phba->hbalock, iflags); 12762 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 12763 if (!dma_buf) { 12764 hrq->RQ_no_buf_found++; 12765 spin_unlock_irqrestore(&phba->hbalock, iflags); 12766 goto out; 12767 } 12768 hrq->RQ_rcv_buf++; 12769 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 12770 12771 /* If a NVME LS event (type 0x28), treat it as Fast path */ 12772 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 12773 12774 /* save off the frame for the word thread to process */ 12775 list_add_tail(&dma_buf->cq_event.list, 12776 &phba->sli4_hba.sp_queue_event); 12777 /* Frame received */ 12778 phba->hba_flag |= HBA_SP_QUEUE_EVT; 12779 spin_unlock_irqrestore(&phba->hbalock, iflags); 12780 workposted = true; 12781 break; 12782 case FC_STATUS_INSUFF_BUF_NEED_BUF: 12783 case FC_STATUS_INSUFF_BUF_FRM_DISC: 12784 hrq->RQ_no_posted_buf++; 12785 /* Post more buffers if possible */ 12786 spin_lock_irqsave(&phba->hbalock, iflags); 12787 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 12788 spin_unlock_irqrestore(&phba->hbalock, iflags); 12789 workposted = true; 12790 break; 12791 } 12792 out: 12793 return workposted; 12794 } 12795 12796 /** 12797 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 12798 * @phba: Pointer to HBA context object. 12799 * @cq: Pointer to the completion queue. 12800 * @wcqe: Pointer to a completion queue entry. 12801 * 12802 * This routine process a slow-path work-queue or receive queue completion queue 12803 * entry. 12804 * 12805 * Return: true if work posted to worker thread, otherwise false. 12806 **/ 12807 static bool 12808 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12809 struct lpfc_cqe *cqe) 12810 { 12811 struct lpfc_cqe cqevt; 12812 bool workposted = false; 12813 12814 /* Copy the work queue CQE and convert endian order if needed */ 12815 lpfc_sli_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 12816 12817 /* Check and process for different type of WCQE and dispatch */ 12818 switch (bf_get(lpfc_cqe_code, &cqevt)) { 12819 case CQE_CODE_COMPL_WQE: 12820 /* Process the WQ/RQ complete event */ 12821 phba->last_completion_time = jiffies; 12822 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 12823 (struct lpfc_wcqe_complete *)&cqevt); 12824 break; 12825 case CQE_CODE_RELEASE_WQE: 12826 /* Process the WQ release event */ 12827 lpfc_sli4_sp_handle_rel_wcqe(phba, 12828 (struct lpfc_wcqe_release *)&cqevt); 12829 break; 12830 case CQE_CODE_XRI_ABORTED: 12831 /* Process the WQ XRI abort event */ 12832 phba->last_completion_time = jiffies; 12833 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 12834 (struct sli4_wcqe_xri_aborted *)&cqevt); 12835 break; 12836 case CQE_CODE_RECEIVE: 12837 case CQE_CODE_RECEIVE_V1: 12838 /* Process the RQ event */ 12839 phba->last_completion_time = jiffies; 12840 workposted = lpfc_sli4_sp_handle_rcqe(phba, 12841 (struct lpfc_rcqe *)&cqevt); 12842 break; 12843 default: 12844 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12845 "0388 Not a valid WCQE code: x%x\n", 12846 bf_get(lpfc_cqe_code, &cqevt)); 12847 break; 12848 } 12849 return workposted; 12850 } 12851 12852 /** 12853 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 12854 * @phba: Pointer to HBA context object. 12855 * @eqe: Pointer to fast-path event queue entry. 12856 * 12857 * This routine process a event queue entry from the slow-path event queue. 12858 * It will check the MajorCode and MinorCode to determine this is for a 12859 * completion event on a completion queue, if not, an error shall be logged 12860 * and just return. Otherwise, it will get to the corresponding completion 12861 * queue and process all the entries on that completion queue, rearm the 12862 * completion queue, and then return. 12863 * 12864 **/ 12865 static void 12866 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 12867 struct lpfc_queue *speq) 12868 { 12869 struct lpfc_queue *cq = NULL, *childq; 12870 struct lpfc_cqe *cqe; 12871 bool workposted = false; 12872 int ecount = 0; 12873 uint16_t cqid; 12874 12875 /* Get the reference to the corresponding CQ */ 12876 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 12877 12878 list_for_each_entry(childq, &speq->child_list, list) { 12879 if (childq->queue_id == cqid) { 12880 cq = childq; 12881 break; 12882 } 12883 } 12884 if (unlikely(!cq)) { 12885 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 12886 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12887 "0365 Slow-path CQ identifier " 12888 "(%d) does not exist\n", cqid); 12889 return; 12890 } 12891 12892 /* Save EQ associated with this CQ */ 12893 cq->assoc_qp = speq; 12894 12895 /* Process all the entries to the CQ */ 12896 switch (cq->type) { 12897 case LPFC_MCQ: 12898 while ((cqe = lpfc_sli4_cq_get(cq))) { 12899 workposted |= lpfc_sli4_sp_handle_mcqe(phba, cqe); 12900 if (!(++ecount % cq->entry_repost)) 12901 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12902 cq->CQ_mbox++; 12903 } 12904 break; 12905 case LPFC_WCQ: 12906 while ((cqe = lpfc_sli4_cq_get(cq))) { 12907 if ((cq->subtype == LPFC_FCP) || 12908 (cq->subtype == LPFC_NVME)) 12909 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, 12910 cqe); 12911 else 12912 workposted |= lpfc_sli4_sp_handle_cqe(phba, cq, 12913 cqe); 12914 if (!(++ecount % cq->entry_repost)) 12915 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12916 } 12917 12918 /* Track the max number of CQEs processed in 1 EQ */ 12919 if (ecount > cq->CQ_max_cqe) 12920 cq->CQ_max_cqe = ecount; 12921 break; 12922 default: 12923 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12924 "0370 Invalid completion queue type (%d)\n", 12925 cq->type); 12926 return; 12927 } 12928 12929 /* Catch the no cq entry condition, log an error */ 12930 if (unlikely(ecount == 0)) 12931 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12932 "0371 No entry from the CQ: identifier " 12933 "(x%x), type (%d)\n", cq->queue_id, cq->type); 12934 12935 /* In any case, flash and re-arm the RCQ */ 12936 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 12937 12938 /* wake up worker thread if there are works to be done */ 12939 if (workposted) 12940 lpfc_worker_wake_up(phba); 12941 } 12942 12943 /** 12944 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 12945 * @phba: Pointer to HBA context object. 12946 * @cq: Pointer to associated CQ 12947 * @wcqe: Pointer to work-queue completion queue entry. 12948 * 12949 * This routine process a fast-path work queue completion entry from fast-path 12950 * event queue for FCP command response completion. 12951 **/ 12952 static void 12953 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12954 struct lpfc_wcqe_complete *wcqe) 12955 { 12956 struct lpfc_sli_ring *pring = cq->pring; 12957 struct lpfc_iocbq *cmdiocbq; 12958 struct lpfc_iocbq irspiocbq; 12959 unsigned long iflags; 12960 12961 /* Check for response status */ 12962 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 12963 /* If resource errors reported from HBA, reduce queue 12964 * depth of the SCSI device. 12965 */ 12966 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 12967 IOSTAT_LOCAL_REJECT)) && 12968 ((wcqe->parameter & IOERR_PARAM_MASK) == 12969 IOERR_NO_RESOURCES)) 12970 phba->lpfc_rampdown_queue_depth(phba); 12971 12972 /* Log the error status */ 12973 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12974 "0373 FCP complete error: status=x%x, " 12975 "hw_status=x%x, total_data_specified=%d, " 12976 "parameter=x%x, word3=x%x\n", 12977 bf_get(lpfc_wcqe_c_status, wcqe), 12978 bf_get(lpfc_wcqe_c_hw_status, wcqe), 12979 wcqe->total_data_placed, wcqe->parameter, 12980 wcqe->word3); 12981 } 12982 12983 /* Look up the FCP command IOCB and create pseudo response IOCB */ 12984 spin_lock_irqsave(&pring->ring_lock, iflags); 12985 pring->stats.iocb_event++; 12986 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 12987 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12988 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12989 if (unlikely(!cmdiocbq)) { 12990 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12991 "0374 FCP complete with no corresponding " 12992 "cmdiocb: iotag (%d)\n", 12993 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12994 return; 12995 } 12996 12997 if (cq->assoc_qp) 12998 cmdiocbq->isr_timestamp = 12999 cq->assoc_qp->isr_timestamp; 13000 13001 if (cmdiocbq->iocb_cmpl == NULL) { 13002 if (cmdiocbq->wqe_cmpl) { 13003 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 13004 spin_lock_irqsave(&phba->hbalock, iflags); 13005 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 13006 spin_unlock_irqrestore(&phba->hbalock, iflags); 13007 } 13008 13009 /* Pass the cmd_iocb and the wcqe to the upper layer */ 13010 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); 13011 return; 13012 } 13013 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13014 "0375 FCP cmdiocb not callback function " 13015 "iotag: (%d)\n", 13016 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13017 return; 13018 } 13019 13020 /* Fake the irspiocb and copy necessary response information */ 13021 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 13022 13023 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 13024 spin_lock_irqsave(&phba->hbalock, iflags); 13025 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 13026 spin_unlock_irqrestore(&phba->hbalock, iflags); 13027 } 13028 13029 /* Pass the cmd_iocb and the rsp state to the upper layer */ 13030 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 13031 } 13032 13033 /** 13034 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 13035 * @phba: Pointer to HBA context object. 13036 * @cq: Pointer to completion queue. 13037 * @wcqe: Pointer to work-queue completion queue entry. 13038 * 13039 * This routine handles an fast-path WQ entry consumed event by invoking the 13040 * proper WQ release routine to the slow-path WQ. 13041 **/ 13042 static void 13043 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13044 struct lpfc_wcqe_release *wcqe) 13045 { 13046 struct lpfc_queue *childwq; 13047 bool wqid_matched = false; 13048 uint16_t hba_wqid; 13049 13050 /* Check for fast-path FCP work queue release */ 13051 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 13052 list_for_each_entry(childwq, &cq->child_list, list) { 13053 if (childwq->queue_id == hba_wqid) { 13054 lpfc_sli4_wq_release(childwq, 13055 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 13056 wqid_matched = true; 13057 break; 13058 } 13059 } 13060 /* Report warning log message if no match found */ 13061 if (wqid_matched != true) 13062 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13063 "2580 Fast-path wqe consume event carries " 13064 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 13065 } 13066 13067 /** 13068 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 13069 * @phba: Pointer to HBA context object. 13070 * @rcqe: Pointer to receive-queue completion queue entry. 13071 * 13072 * This routine process a receive-queue completion queue entry. 13073 * 13074 * Return: true if work posted to worker thread, otherwise false. 13075 **/ 13076 static bool 13077 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13078 struct lpfc_rcqe *rcqe) 13079 { 13080 bool workposted = false; 13081 struct lpfc_queue *hrq; 13082 struct lpfc_queue *drq; 13083 struct rqb_dmabuf *dma_buf; 13084 struct fc_frame_header *fc_hdr; 13085 uint32_t status, rq_id; 13086 unsigned long iflags; 13087 uint32_t fctl, idx; 13088 13089 if ((phba->nvmet_support == 0) || 13090 (phba->sli4_hba.nvmet_cqset == NULL)) 13091 return workposted; 13092 13093 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 13094 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 13095 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 13096 13097 /* sanity check on queue memory */ 13098 if (unlikely(!hrq) || unlikely(!drq)) 13099 return workposted; 13100 13101 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13102 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13103 else 13104 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13105 13106 if ((phba->nvmet_support == 0) || 13107 (rq_id != hrq->queue_id)) 13108 return workposted; 13109 13110 status = bf_get(lpfc_rcqe_status, rcqe); 13111 switch (status) { 13112 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13113 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13114 "6126 Receive Frame Truncated!!\n"); 13115 hrq->RQ_buf_trunc++; 13116 break; 13117 case FC_STATUS_RQ_SUCCESS: 13118 lpfc_sli4_rq_release(hrq, drq); 13119 spin_lock_irqsave(&phba->hbalock, iflags); 13120 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 13121 if (!dma_buf) { 13122 hrq->RQ_no_buf_found++; 13123 spin_unlock_irqrestore(&phba->hbalock, iflags); 13124 goto out; 13125 } 13126 spin_unlock_irqrestore(&phba->hbalock, iflags); 13127 hrq->RQ_rcv_buf++; 13128 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 13129 13130 /* Just some basic sanity checks on FCP Command frame */ 13131 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 13132 fc_hdr->fh_f_ctl[1] << 8 | 13133 fc_hdr->fh_f_ctl[2]); 13134 if (((fctl & 13135 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 13136 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 13137 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 13138 goto drop; 13139 13140 if (fc_hdr->fh_type == FC_TYPE_FCP) { 13141 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 13142 lpfc_nvmet_unsol_fcp_event( 13143 phba, phba->sli4_hba.els_wq->pring, dma_buf, 13144 cq->assoc_qp->isr_timestamp); 13145 return false; 13146 } 13147 drop: 13148 lpfc_in_buf_free(phba, &dma_buf->dbuf); 13149 break; 13150 case FC_STATUS_INSUFF_BUF_NEED_BUF: 13151 case FC_STATUS_INSUFF_BUF_FRM_DISC: 13152 hrq->RQ_no_posted_buf++; 13153 /* Post more buffers if possible */ 13154 spin_lock_irqsave(&phba->hbalock, iflags); 13155 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 13156 spin_unlock_irqrestore(&phba->hbalock, iflags); 13157 workposted = true; 13158 break; 13159 } 13160 out: 13161 return workposted; 13162 } 13163 13164 /** 13165 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 13166 * @cq: Pointer to the completion queue. 13167 * @eqe: Pointer to fast-path completion queue entry. 13168 * 13169 * This routine process a fast-path work queue completion entry from fast-path 13170 * event queue for FCP command response completion. 13171 **/ 13172 static int 13173 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13174 struct lpfc_cqe *cqe) 13175 { 13176 struct lpfc_wcqe_release wcqe; 13177 bool workposted = false; 13178 13179 /* Copy the work queue CQE and convert endian order if needed */ 13180 lpfc_sli_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 13181 13182 /* Check and process for different type of WCQE and dispatch */ 13183 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 13184 case CQE_CODE_COMPL_WQE: 13185 case CQE_CODE_NVME_ERSP: 13186 cq->CQ_wq++; 13187 /* Process the WQ complete event */ 13188 phba->last_completion_time = jiffies; 13189 if ((cq->subtype == LPFC_FCP) || (cq->subtype == LPFC_NVME)) 13190 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 13191 (struct lpfc_wcqe_complete *)&wcqe); 13192 if (cq->subtype == LPFC_NVME_LS) 13193 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 13194 (struct lpfc_wcqe_complete *)&wcqe); 13195 break; 13196 case CQE_CODE_RELEASE_WQE: 13197 cq->CQ_release_wqe++; 13198 /* Process the WQ release event */ 13199 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 13200 (struct lpfc_wcqe_release *)&wcqe); 13201 break; 13202 case CQE_CODE_XRI_ABORTED: 13203 cq->CQ_xri_aborted++; 13204 /* Process the WQ XRI abort event */ 13205 phba->last_completion_time = jiffies; 13206 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 13207 (struct sli4_wcqe_xri_aborted *)&wcqe); 13208 break; 13209 case CQE_CODE_RECEIVE_V1: 13210 case CQE_CODE_RECEIVE: 13211 phba->last_completion_time = jiffies; 13212 if (cq->subtype == LPFC_NVMET) { 13213 workposted = lpfc_sli4_nvmet_handle_rcqe( 13214 phba, cq, (struct lpfc_rcqe *)&wcqe); 13215 } 13216 break; 13217 default: 13218 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13219 "0144 Not a valid CQE code: x%x\n", 13220 bf_get(lpfc_wcqe_c_code, &wcqe)); 13221 break; 13222 } 13223 return workposted; 13224 } 13225 13226 /** 13227 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 13228 * @phba: Pointer to HBA context object. 13229 * @eqe: Pointer to fast-path event queue entry. 13230 * 13231 * This routine process a event queue entry from the fast-path event queue. 13232 * It will check the MajorCode and MinorCode to determine this is for a 13233 * completion event on a completion queue, if not, an error shall be logged 13234 * and just return. Otherwise, it will get to the corresponding completion 13235 * queue and process all the entries on the completion queue, rearm the 13236 * completion queue, and then return. 13237 **/ 13238 static void 13239 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 13240 uint32_t qidx) 13241 { 13242 struct lpfc_queue *cq = NULL; 13243 struct lpfc_cqe *cqe; 13244 bool workposted = false; 13245 uint16_t cqid, id; 13246 int ecount = 0; 13247 13248 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 13249 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13250 "0366 Not a valid completion " 13251 "event: majorcode=x%x, minorcode=x%x\n", 13252 bf_get_le32(lpfc_eqe_major_code, eqe), 13253 bf_get_le32(lpfc_eqe_minor_code, eqe)); 13254 return; 13255 } 13256 13257 /* Get the reference to the corresponding CQ */ 13258 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 13259 13260 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 13261 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 13262 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 13263 /* Process NVMET unsol rcv */ 13264 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 13265 goto process_cq; 13266 } 13267 } 13268 13269 if (phba->sli4_hba.nvme_cq_map && 13270 (cqid == phba->sli4_hba.nvme_cq_map[qidx])) { 13271 /* Process NVME / NVMET command completion */ 13272 cq = phba->sli4_hba.nvme_cq[qidx]; 13273 goto process_cq; 13274 } 13275 13276 if (phba->sli4_hba.fcp_cq_map && 13277 (cqid == phba->sli4_hba.fcp_cq_map[qidx])) { 13278 /* Process FCP command completion */ 13279 cq = phba->sli4_hba.fcp_cq[qidx]; 13280 goto process_cq; 13281 } 13282 13283 if (phba->sli4_hba.nvmels_cq && 13284 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 13285 /* Process NVME unsol rcv */ 13286 cq = phba->sli4_hba.nvmels_cq; 13287 } 13288 13289 /* Otherwise this is a Slow path event */ 13290 if (cq == NULL) { 13291 lpfc_sli4_sp_handle_eqe(phba, eqe, phba->sli4_hba.hba_eq[qidx]); 13292 return; 13293 } 13294 13295 process_cq: 13296 if (unlikely(cqid != cq->queue_id)) { 13297 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13298 "0368 Miss-matched fast-path completion " 13299 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 13300 cqid, cq->queue_id); 13301 return; 13302 } 13303 13304 /* Save EQ associated with this CQ */ 13305 cq->assoc_qp = phba->sli4_hba.hba_eq[qidx]; 13306 13307 /* Process all the entries to the CQ */ 13308 while ((cqe = lpfc_sli4_cq_get(cq))) { 13309 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, cqe); 13310 if (!(++ecount % cq->entry_repost)) 13311 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 13312 } 13313 13314 /* Track the max number of CQEs processed in 1 EQ */ 13315 if (ecount > cq->CQ_max_cqe) 13316 cq->CQ_max_cqe = ecount; 13317 13318 /* Catch the no cq entry condition */ 13319 if (unlikely(ecount == 0)) 13320 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13321 "0369 No entry from fast-path completion " 13322 "queue fcpcqid=%d\n", cq->queue_id); 13323 13324 /* In any case, flash and re-arm the CQ */ 13325 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 13326 13327 /* wake up worker thread if there are works to be done */ 13328 if (workposted) 13329 lpfc_worker_wake_up(phba); 13330 } 13331 13332 static void 13333 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 13334 { 13335 struct lpfc_eqe *eqe; 13336 13337 /* walk all the EQ entries and drop on the floor */ 13338 while ((eqe = lpfc_sli4_eq_get(eq))) 13339 ; 13340 13341 /* Clear and re-arm the EQ */ 13342 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM); 13343 } 13344 13345 13346 /** 13347 * lpfc_sli4_fof_handle_eqe - Process a Flash Optimized Fabric event queue 13348 * entry 13349 * @phba: Pointer to HBA context object. 13350 * @eqe: Pointer to fast-path event queue entry. 13351 * 13352 * This routine process a event queue entry from the Flash Optimized Fabric 13353 * event queue. It will check the MajorCode and MinorCode to determine this 13354 * is for a completion event on a completion queue, if not, an error shall be 13355 * logged and just return. Otherwise, it will get to the corresponding 13356 * completion queue and process all the entries on the completion queue, rearm 13357 * the completion queue, and then return. 13358 **/ 13359 static void 13360 lpfc_sli4_fof_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe) 13361 { 13362 struct lpfc_queue *cq; 13363 struct lpfc_cqe *cqe; 13364 bool workposted = false; 13365 uint16_t cqid; 13366 int ecount = 0; 13367 13368 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 13369 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13370 "9147 Not a valid completion " 13371 "event: majorcode=x%x, minorcode=x%x\n", 13372 bf_get_le32(lpfc_eqe_major_code, eqe), 13373 bf_get_le32(lpfc_eqe_minor_code, eqe)); 13374 return; 13375 } 13376 13377 /* Get the reference to the corresponding CQ */ 13378 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 13379 13380 /* Next check for OAS */ 13381 cq = phba->sli4_hba.oas_cq; 13382 if (unlikely(!cq)) { 13383 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 13384 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13385 "9148 OAS completion queue " 13386 "does not exist\n"); 13387 return; 13388 } 13389 13390 if (unlikely(cqid != cq->queue_id)) { 13391 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13392 "9149 Miss-matched fast-path compl " 13393 "queue id: eqcqid=%d, fcpcqid=%d\n", 13394 cqid, cq->queue_id); 13395 return; 13396 } 13397 13398 /* Process all the entries to the OAS CQ */ 13399 while ((cqe = lpfc_sli4_cq_get(cq))) { 13400 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, cqe); 13401 if (!(++ecount % cq->entry_repost)) 13402 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 13403 } 13404 13405 /* Track the max number of CQEs processed in 1 EQ */ 13406 if (ecount > cq->CQ_max_cqe) 13407 cq->CQ_max_cqe = ecount; 13408 13409 /* Catch the no cq entry condition */ 13410 if (unlikely(ecount == 0)) 13411 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13412 "9153 No entry from fast-path completion " 13413 "queue fcpcqid=%d\n", cq->queue_id); 13414 13415 /* In any case, flash and re-arm the CQ */ 13416 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 13417 13418 /* wake up worker thread if there are works to be done */ 13419 if (workposted) 13420 lpfc_worker_wake_up(phba); 13421 } 13422 13423 /** 13424 * lpfc_sli4_fof_intr_handler - HBA interrupt handler to SLI-4 device 13425 * @irq: Interrupt number. 13426 * @dev_id: The device context pointer. 13427 * 13428 * This function is directly called from the PCI layer as an interrupt 13429 * service routine when device with SLI-4 interface spec is enabled with 13430 * MSI-X multi-message interrupt mode and there is a Flash Optimized Fabric 13431 * IOCB ring event in the HBA. However, when the device is enabled with either 13432 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13433 * device-level interrupt handler. When the PCI slot is in error recovery 13434 * or the HBA is undergoing initialization, the interrupt handler will not 13435 * process the interrupt. The Flash Optimized Fabric ring event are handled in 13436 * the intrrupt context. This function is called without any lock held. 13437 * It gets the hbalock to access and update SLI data structures. Note that, 13438 * the EQ to CQ are one-to-one map such that the EQ index is 13439 * equal to that of CQ index. 13440 * 13441 * This function returns IRQ_HANDLED when interrupt is handled else it 13442 * returns IRQ_NONE. 13443 **/ 13444 irqreturn_t 13445 lpfc_sli4_fof_intr_handler(int irq, void *dev_id) 13446 { 13447 struct lpfc_hba *phba; 13448 struct lpfc_hba_eq_hdl *hba_eq_hdl; 13449 struct lpfc_queue *eq; 13450 struct lpfc_eqe *eqe; 13451 unsigned long iflag; 13452 int ecount = 0; 13453 13454 /* Get the driver's phba structure from the dev_id */ 13455 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 13456 phba = hba_eq_hdl->phba; 13457 13458 if (unlikely(!phba)) 13459 return IRQ_NONE; 13460 13461 /* Get to the EQ struct associated with this vector */ 13462 eq = phba->sli4_hba.fof_eq; 13463 if (unlikely(!eq)) 13464 return IRQ_NONE; 13465 13466 /* Check device state for handling interrupt */ 13467 if (unlikely(lpfc_intr_state_check(phba))) { 13468 eq->EQ_badstate++; 13469 /* Check again for link_state with lock held */ 13470 spin_lock_irqsave(&phba->hbalock, iflag); 13471 if (phba->link_state < LPFC_LINK_DOWN) 13472 /* Flush, clear interrupt, and rearm the EQ */ 13473 lpfc_sli4_eq_flush(phba, eq); 13474 spin_unlock_irqrestore(&phba->hbalock, iflag); 13475 return IRQ_NONE; 13476 } 13477 13478 /* 13479 * Process all the event on FCP fast-path EQ 13480 */ 13481 while ((eqe = lpfc_sli4_eq_get(eq))) { 13482 lpfc_sli4_fof_handle_eqe(phba, eqe); 13483 if (!(++ecount % eq->entry_repost)) 13484 lpfc_sli4_eq_release(eq, LPFC_QUEUE_NOARM); 13485 eq->EQ_processed++; 13486 } 13487 13488 /* Track the max number of EQEs processed in 1 intr */ 13489 if (ecount > eq->EQ_max_eqe) 13490 eq->EQ_max_eqe = ecount; 13491 13492 13493 if (unlikely(ecount == 0)) { 13494 eq->EQ_no_entry++; 13495 13496 if (phba->intr_type == MSIX) 13497 /* MSI-X treated interrupt served as no EQ share INT */ 13498 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13499 "9145 MSI-X interrupt with no EQE\n"); 13500 else { 13501 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13502 "9146 ISR interrupt with no EQE\n"); 13503 /* Non MSI-X treated on interrupt as EQ share INT */ 13504 return IRQ_NONE; 13505 } 13506 } 13507 /* Always clear and re-arm the fast-path EQ */ 13508 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM); 13509 return IRQ_HANDLED; 13510 } 13511 13512 /** 13513 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 13514 * @irq: Interrupt number. 13515 * @dev_id: The device context pointer. 13516 * 13517 * This function is directly called from the PCI layer as an interrupt 13518 * service routine when device with SLI-4 interface spec is enabled with 13519 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13520 * ring event in the HBA. However, when the device is enabled with either 13521 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13522 * device-level interrupt handler. When the PCI slot is in error recovery 13523 * or the HBA is undergoing initialization, the interrupt handler will not 13524 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13525 * the intrrupt context. This function is called without any lock held. 13526 * It gets the hbalock to access and update SLI data structures. Note that, 13527 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 13528 * equal to that of FCP CQ index. 13529 * 13530 * The link attention and ELS ring attention events are handled 13531 * by the worker thread. The interrupt handler signals the worker thread 13532 * and returns for these events. This function is called without any lock 13533 * held. It gets the hbalock to access and update SLI data structures. 13534 * 13535 * This function returns IRQ_HANDLED when interrupt is handled else it 13536 * returns IRQ_NONE. 13537 **/ 13538 irqreturn_t 13539 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 13540 { 13541 struct lpfc_hba *phba; 13542 struct lpfc_hba_eq_hdl *hba_eq_hdl; 13543 struct lpfc_queue *fpeq; 13544 struct lpfc_eqe *eqe; 13545 unsigned long iflag; 13546 int ecount = 0; 13547 int hba_eqidx; 13548 13549 /* Get the driver's phba structure from the dev_id */ 13550 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 13551 phba = hba_eq_hdl->phba; 13552 hba_eqidx = hba_eq_hdl->idx; 13553 13554 if (unlikely(!phba)) 13555 return IRQ_NONE; 13556 if (unlikely(!phba->sli4_hba.hba_eq)) 13557 return IRQ_NONE; 13558 13559 /* Get to the EQ struct associated with this vector */ 13560 fpeq = phba->sli4_hba.hba_eq[hba_eqidx]; 13561 if (unlikely(!fpeq)) 13562 return IRQ_NONE; 13563 13564 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 13565 if (phba->ktime_on) 13566 fpeq->isr_timestamp = ktime_get_ns(); 13567 #endif 13568 13569 if (lpfc_fcp_look_ahead) { 13570 if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use)) 13571 lpfc_sli4_eq_clr_intr(fpeq); 13572 else { 13573 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 13574 return IRQ_NONE; 13575 } 13576 } 13577 13578 /* Check device state for handling interrupt */ 13579 if (unlikely(lpfc_intr_state_check(phba))) { 13580 fpeq->EQ_badstate++; 13581 /* Check again for link_state with lock held */ 13582 spin_lock_irqsave(&phba->hbalock, iflag); 13583 if (phba->link_state < LPFC_LINK_DOWN) 13584 /* Flush, clear interrupt, and rearm the EQ */ 13585 lpfc_sli4_eq_flush(phba, fpeq); 13586 spin_unlock_irqrestore(&phba->hbalock, iflag); 13587 if (lpfc_fcp_look_ahead) 13588 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 13589 return IRQ_NONE; 13590 } 13591 13592 /* 13593 * Process all the event on FCP fast-path EQ 13594 */ 13595 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 13596 if (eqe == NULL) 13597 break; 13598 13599 lpfc_sli4_hba_handle_eqe(phba, eqe, hba_eqidx); 13600 if (!(++ecount % fpeq->entry_repost)) 13601 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_NOARM); 13602 fpeq->EQ_processed++; 13603 } 13604 13605 /* Track the max number of EQEs processed in 1 intr */ 13606 if (ecount > fpeq->EQ_max_eqe) 13607 fpeq->EQ_max_eqe = ecount; 13608 13609 /* Always clear and re-arm the fast-path EQ */ 13610 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 13611 13612 if (unlikely(ecount == 0)) { 13613 fpeq->EQ_no_entry++; 13614 13615 if (lpfc_fcp_look_ahead) { 13616 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 13617 return IRQ_NONE; 13618 } 13619 13620 if (phba->intr_type == MSIX) 13621 /* MSI-X treated interrupt served as no EQ share INT */ 13622 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13623 "0358 MSI-X interrupt with no EQE\n"); 13624 else 13625 /* Non MSI-X treated on interrupt as EQ share INT */ 13626 return IRQ_NONE; 13627 } 13628 13629 if (lpfc_fcp_look_ahead) 13630 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 13631 13632 return IRQ_HANDLED; 13633 } /* lpfc_sli4_fp_intr_handler */ 13634 13635 /** 13636 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 13637 * @irq: Interrupt number. 13638 * @dev_id: The device context pointer. 13639 * 13640 * This function is the device-level interrupt handler to device with SLI-4 13641 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 13642 * interrupt mode is enabled and there is an event in the HBA which requires 13643 * driver attention. This function invokes the slow-path interrupt attention 13644 * handling function and fast-path interrupt attention handling function in 13645 * turn to process the relevant HBA attention events. This function is called 13646 * without any lock held. It gets the hbalock to access and update SLI data 13647 * structures. 13648 * 13649 * This function returns IRQ_HANDLED when interrupt is handled, else it 13650 * returns IRQ_NONE. 13651 **/ 13652 irqreturn_t 13653 lpfc_sli4_intr_handler(int irq, void *dev_id) 13654 { 13655 struct lpfc_hba *phba; 13656 irqreturn_t hba_irq_rc; 13657 bool hba_handled = false; 13658 int qidx; 13659 13660 /* Get the driver's phba structure from the dev_id */ 13661 phba = (struct lpfc_hba *)dev_id; 13662 13663 if (unlikely(!phba)) 13664 return IRQ_NONE; 13665 13666 /* 13667 * Invoke fast-path host attention interrupt handling as appropriate. 13668 */ 13669 for (qidx = 0; qidx < phba->io_channel_irqs; qidx++) { 13670 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 13671 &phba->sli4_hba.hba_eq_hdl[qidx]); 13672 if (hba_irq_rc == IRQ_HANDLED) 13673 hba_handled |= true; 13674 } 13675 13676 if (phba->cfg_fof) { 13677 hba_irq_rc = lpfc_sli4_fof_intr_handler(irq, 13678 &phba->sli4_hba.hba_eq_hdl[qidx]); 13679 if (hba_irq_rc == IRQ_HANDLED) 13680 hba_handled |= true; 13681 } 13682 13683 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 13684 } /* lpfc_sli4_intr_handler */ 13685 13686 /** 13687 * lpfc_sli4_queue_free - free a queue structure and associated memory 13688 * @queue: The queue structure to free. 13689 * 13690 * This function frees a queue structure and the DMAable memory used for 13691 * the host resident queue. This function must be called after destroying the 13692 * queue on the HBA. 13693 **/ 13694 void 13695 lpfc_sli4_queue_free(struct lpfc_queue *queue) 13696 { 13697 struct lpfc_dmabuf *dmabuf; 13698 13699 if (!queue) 13700 return; 13701 13702 while (!list_empty(&queue->page_list)) { 13703 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 13704 list); 13705 dma_free_coherent(&queue->phba->pcidev->dev, SLI4_PAGE_SIZE, 13706 dmabuf->virt, dmabuf->phys); 13707 kfree(dmabuf); 13708 } 13709 if (queue->rqbp) { 13710 lpfc_free_rq_buffer(queue->phba, queue); 13711 kfree(queue->rqbp); 13712 } 13713 kfree(queue->pring); 13714 kfree(queue); 13715 return; 13716 } 13717 13718 /** 13719 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 13720 * @phba: The HBA that this queue is being created on. 13721 * @entry_size: The size of each queue entry for this queue. 13722 * @entry count: The number of entries that this queue will handle. 13723 * 13724 * This function allocates a queue structure and the DMAable memory used for 13725 * the host resident queue. This function must be called before creating the 13726 * queue on the HBA. 13727 **/ 13728 struct lpfc_queue * 13729 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t entry_size, 13730 uint32_t entry_count) 13731 { 13732 struct lpfc_queue *queue; 13733 struct lpfc_dmabuf *dmabuf; 13734 int x, total_qe_count; 13735 void *dma_pointer; 13736 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13737 13738 if (!phba->sli4_hba.pc_sli4_params.supported) 13739 hw_page_size = SLI4_PAGE_SIZE; 13740 13741 queue = kzalloc(sizeof(struct lpfc_queue) + 13742 (sizeof(union sli4_qe) * entry_count), GFP_KERNEL); 13743 if (!queue) 13744 return NULL; 13745 queue->page_count = (ALIGN(entry_size * entry_count, 13746 hw_page_size))/hw_page_size; 13747 13748 /* If needed, Adjust page count to match the max the adapter supports */ 13749 if (queue->page_count > phba->sli4_hba.pc_sli4_params.wqpcnt) 13750 queue->page_count = phba->sli4_hba.pc_sli4_params.wqpcnt; 13751 13752 INIT_LIST_HEAD(&queue->list); 13753 INIT_LIST_HEAD(&queue->wq_list); 13754 INIT_LIST_HEAD(&queue->page_list); 13755 INIT_LIST_HEAD(&queue->child_list); 13756 for (x = 0, total_qe_count = 0; x < queue->page_count; x++) { 13757 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 13758 if (!dmabuf) 13759 goto out_fail; 13760 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, 13761 hw_page_size, &dmabuf->phys, 13762 GFP_KERNEL); 13763 if (!dmabuf->virt) { 13764 kfree(dmabuf); 13765 goto out_fail; 13766 } 13767 dmabuf->buffer_tag = x; 13768 list_add_tail(&dmabuf->list, &queue->page_list); 13769 /* initialize queue's entry array */ 13770 dma_pointer = dmabuf->virt; 13771 for (; total_qe_count < entry_count && 13772 dma_pointer < (hw_page_size + dmabuf->virt); 13773 total_qe_count++, dma_pointer += entry_size) { 13774 queue->qe[total_qe_count].address = dma_pointer; 13775 } 13776 } 13777 queue->entry_size = entry_size; 13778 queue->entry_count = entry_count; 13779 13780 /* 13781 * entry_repost is calculated based on the number of entries in the 13782 * queue. This works out except for RQs. If buffers are NOT initially 13783 * posted for every RQE, entry_repost should be adjusted accordingly. 13784 */ 13785 queue->entry_repost = (entry_count >> 3); 13786 if (queue->entry_repost < LPFC_QUEUE_MIN_REPOST) 13787 queue->entry_repost = LPFC_QUEUE_MIN_REPOST; 13788 queue->phba = phba; 13789 13790 return queue; 13791 out_fail: 13792 lpfc_sli4_queue_free(queue); 13793 return NULL; 13794 } 13795 13796 /** 13797 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 13798 * @phba: HBA structure that indicates port to create a queue on. 13799 * @pci_barset: PCI BAR set flag. 13800 * 13801 * This function shall perform iomap of the specified PCI BAR address to host 13802 * memory address if not already done so and return it. The returned host 13803 * memory address can be NULL. 13804 */ 13805 static void __iomem * 13806 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 13807 { 13808 if (!phba->pcidev) 13809 return NULL; 13810 13811 switch (pci_barset) { 13812 case WQ_PCI_BAR_0_AND_1: 13813 return phba->pci_bar0_memmap_p; 13814 case WQ_PCI_BAR_2_AND_3: 13815 return phba->pci_bar2_memmap_p; 13816 case WQ_PCI_BAR_4_AND_5: 13817 return phba->pci_bar4_memmap_p; 13818 default: 13819 break; 13820 } 13821 return NULL; 13822 } 13823 13824 /** 13825 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on FCP EQs 13826 * @phba: HBA structure that indicates port to create a queue on. 13827 * @startq: The starting FCP EQ to modify 13828 * 13829 * This function sends an MODIFY_EQ_DELAY mailbox command to the HBA. 13830 * 13831 * The @phba struct is used to send mailbox command to HBA. The @startq 13832 * is used to get the starting FCP EQ to change. 13833 * This function is asynchronous and will wait for the mailbox 13834 * command to finish before continuing. 13835 * 13836 * On success this function will return a zero. If unable to allocate enough 13837 * memory this function will return -ENOMEM. If the queue create mailbox command 13838 * fails this function will return -ENXIO. 13839 **/ 13840 int 13841 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq) 13842 { 13843 struct lpfc_mbx_modify_eq_delay *eq_delay; 13844 LPFC_MBOXQ_t *mbox; 13845 struct lpfc_queue *eq; 13846 int cnt, rc, length, status = 0; 13847 uint32_t shdr_status, shdr_add_status; 13848 uint32_t result; 13849 int qidx; 13850 union lpfc_sli4_cfg_shdr *shdr; 13851 uint16_t dmult; 13852 13853 if (startq >= phba->io_channel_irqs) 13854 return 0; 13855 13856 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13857 if (!mbox) 13858 return -ENOMEM; 13859 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 13860 sizeof(struct lpfc_sli4_cfg_mhdr)); 13861 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13862 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 13863 length, LPFC_SLI4_MBX_EMBED); 13864 eq_delay = &mbox->u.mqe.un.eq_delay; 13865 13866 /* Calculate delay multiper from maximum interrupt per second */ 13867 result = phba->cfg_fcp_imax / phba->io_channel_irqs; 13868 if (result > LPFC_DMULT_CONST || result == 0) 13869 dmult = 0; 13870 else 13871 dmult = LPFC_DMULT_CONST/result - 1; 13872 13873 cnt = 0; 13874 for (qidx = startq; qidx < phba->io_channel_irqs; qidx++) { 13875 eq = phba->sli4_hba.hba_eq[qidx]; 13876 if (!eq) 13877 continue; 13878 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 13879 eq_delay->u.request.eq[cnt].phase = 0; 13880 eq_delay->u.request.eq[cnt].delay_multi = dmult; 13881 cnt++; 13882 if (cnt >= LPFC_MAX_EQ_DELAY) 13883 break; 13884 } 13885 eq_delay->u.request.num_eq = cnt; 13886 13887 mbox->vport = phba->pport; 13888 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13889 mbox->context1 = NULL; 13890 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13891 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 13892 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13893 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13894 if (shdr_status || shdr_add_status || rc) { 13895 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13896 "2512 MODIFY_EQ_DELAY mailbox failed with " 13897 "status x%x add_status x%x, mbx status x%x\n", 13898 shdr_status, shdr_add_status, rc); 13899 status = -ENXIO; 13900 } 13901 mempool_free(mbox, phba->mbox_mem_pool); 13902 return status; 13903 } 13904 13905 /** 13906 * lpfc_eq_create - Create an Event Queue on the HBA 13907 * @phba: HBA structure that indicates port to create a queue on. 13908 * @eq: The queue structure to use to create the event queue. 13909 * @imax: The maximum interrupt per second limit. 13910 * 13911 * This function creates an event queue, as detailed in @eq, on a port, 13912 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 13913 * 13914 * The @phba struct is used to send mailbox command to HBA. The @eq struct 13915 * is used to get the entry count and entry size that are necessary to 13916 * determine the number of pages to allocate and use for this queue. This 13917 * function will send the EQ_CREATE mailbox command to the HBA to setup the 13918 * event queue. This function is asynchronous and will wait for the mailbox 13919 * command to finish before continuing. 13920 * 13921 * On success this function will return a zero. If unable to allocate enough 13922 * memory this function will return -ENOMEM. If the queue create mailbox command 13923 * fails this function will return -ENXIO. 13924 **/ 13925 int 13926 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 13927 { 13928 struct lpfc_mbx_eq_create *eq_create; 13929 LPFC_MBOXQ_t *mbox; 13930 int rc, length, status = 0; 13931 struct lpfc_dmabuf *dmabuf; 13932 uint32_t shdr_status, shdr_add_status; 13933 union lpfc_sli4_cfg_shdr *shdr; 13934 uint16_t dmult; 13935 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13936 13937 /* sanity check on queue memory */ 13938 if (!eq) 13939 return -ENODEV; 13940 if (!phba->sli4_hba.pc_sli4_params.supported) 13941 hw_page_size = SLI4_PAGE_SIZE; 13942 13943 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13944 if (!mbox) 13945 return -ENOMEM; 13946 length = (sizeof(struct lpfc_mbx_eq_create) - 13947 sizeof(struct lpfc_sli4_cfg_mhdr)); 13948 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13949 LPFC_MBOX_OPCODE_EQ_CREATE, 13950 length, LPFC_SLI4_MBX_EMBED); 13951 eq_create = &mbox->u.mqe.un.eq_create; 13952 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 13953 eq->page_count); 13954 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 13955 LPFC_EQE_SIZE); 13956 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 13957 /* don't setup delay multiplier using EQ_CREATE */ 13958 dmult = 0; 13959 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 13960 dmult); 13961 switch (eq->entry_count) { 13962 default: 13963 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13964 "0360 Unsupported EQ count. (%d)\n", 13965 eq->entry_count); 13966 if (eq->entry_count < 256) 13967 return -EINVAL; 13968 /* otherwise default to smallest count (drop through) */ 13969 case 256: 13970 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13971 LPFC_EQ_CNT_256); 13972 break; 13973 case 512: 13974 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13975 LPFC_EQ_CNT_512); 13976 break; 13977 case 1024: 13978 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13979 LPFC_EQ_CNT_1024); 13980 break; 13981 case 2048: 13982 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13983 LPFC_EQ_CNT_2048); 13984 break; 13985 case 4096: 13986 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13987 LPFC_EQ_CNT_4096); 13988 break; 13989 } 13990 list_for_each_entry(dmabuf, &eq->page_list, list) { 13991 memset(dmabuf->virt, 0, hw_page_size); 13992 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13993 putPaddrLow(dmabuf->phys); 13994 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13995 putPaddrHigh(dmabuf->phys); 13996 } 13997 mbox->vport = phba->pport; 13998 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13999 mbox->context1 = NULL; 14000 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14001 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 14002 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14003 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14004 if (shdr_status || shdr_add_status || rc) { 14005 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14006 "2500 EQ_CREATE mailbox failed with " 14007 "status x%x add_status x%x, mbx status x%x\n", 14008 shdr_status, shdr_add_status, rc); 14009 status = -ENXIO; 14010 } 14011 eq->type = LPFC_EQ; 14012 eq->subtype = LPFC_NONE; 14013 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 14014 if (eq->queue_id == 0xFFFF) 14015 status = -ENXIO; 14016 eq->host_index = 0; 14017 eq->hba_index = 0; 14018 14019 mempool_free(mbox, phba->mbox_mem_pool); 14020 return status; 14021 } 14022 14023 /** 14024 * lpfc_cq_create - Create a Completion Queue on the HBA 14025 * @phba: HBA structure that indicates port to create a queue on. 14026 * @cq: The queue structure to use to create the completion queue. 14027 * @eq: The event queue to bind this completion queue to. 14028 * 14029 * This function creates a completion queue, as detailed in @wq, on a port, 14030 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 14031 * 14032 * The @phba struct is used to send mailbox command to HBA. The @cq struct 14033 * is used to get the entry count and entry size that are necessary to 14034 * determine the number of pages to allocate and use for this queue. The @eq 14035 * is used to indicate which event queue to bind this completion queue to. This 14036 * function will send the CQ_CREATE mailbox command to the HBA to setup the 14037 * completion queue. This function is asynchronous and will wait for the mailbox 14038 * command to finish before continuing. 14039 * 14040 * On success this function will return a zero. If unable to allocate enough 14041 * memory this function will return -ENOMEM. If the queue create mailbox command 14042 * fails this function will return -ENXIO. 14043 **/ 14044 int 14045 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 14046 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 14047 { 14048 struct lpfc_mbx_cq_create *cq_create; 14049 struct lpfc_dmabuf *dmabuf; 14050 LPFC_MBOXQ_t *mbox; 14051 int rc, length, status = 0; 14052 uint32_t shdr_status, shdr_add_status; 14053 union lpfc_sli4_cfg_shdr *shdr; 14054 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14055 14056 /* sanity check on queue memory */ 14057 if (!cq || !eq) 14058 return -ENODEV; 14059 if (!phba->sli4_hba.pc_sli4_params.supported) 14060 hw_page_size = SLI4_PAGE_SIZE; 14061 14062 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14063 if (!mbox) 14064 return -ENOMEM; 14065 length = (sizeof(struct lpfc_mbx_cq_create) - 14066 sizeof(struct lpfc_sli4_cfg_mhdr)); 14067 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14068 LPFC_MBOX_OPCODE_CQ_CREATE, 14069 length, LPFC_SLI4_MBX_EMBED); 14070 cq_create = &mbox->u.mqe.un.cq_create; 14071 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 14072 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 14073 cq->page_count); 14074 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 14075 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 14076 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14077 phba->sli4_hba.pc_sli4_params.cqv); 14078 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 14079 /* FW only supports 1. Should be PAGE_SIZE/SLI4_PAGE_SIZE */ 14080 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 1); 14081 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 14082 eq->queue_id); 14083 } else { 14084 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 14085 eq->queue_id); 14086 } 14087 switch (cq->entry_count) { 14088 default: 14089 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14090 "0361 Unsupported CQ count: " 14091 "entry cnt %d sz %d pg cnt %d repost %d\n", 14092 cq->entry_count, cq->entry_size, 14093 cq->page_count, cq->entry_repost); 14094 if (cq->entry_count < 256) { 14095 status = -EINVAL; 14096 goto out; 14097 } 14098 /* otherwise default to smallest count (drop through) */ 14099 case 256: 14100 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 14101 LPFC_CQ_CNT_256); 14102 break; 14103 case 512: 14104 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 14105 LPFC_CQ_CNT_512); 14106 break; 14107 case 1024: 14108 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 14109 LPFC_CQ_CNT_1024); 14110 break; 14111 } 14112 list_for_each_entry(dmabuf, &cq->page_list, list) { 14113 memset(dmabuf->virt, 0, hw_page_size); 14114 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14115 putPaddrLow(dmabuf->phys); 14116 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14117 putPaddrHigh(dmabuf->phys); 14118 } 14119 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14120 14121 /* The IOCTL status is embedded in the mailbox subheader. */ 14122 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14123 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14124 if (shdr_status || shdr_add_status || rc) { 14125 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14126 "2501 CQ_CREATE mailbox failed with " 14127 "status x%x add_status x%x, mbx status x%x\n", 14128 shdr_status, shdr_add_status, rc); 14129 status = -ENXIO; 14130 goto out; 14131 } 14132 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 14133 if (cq->queue_id == 0xFFFF) { 14134 status = -ENXIO; 14135 goto out; 14136 } 14137 /* link the cq onto the parent eq child list */ 14138 list_add_tail(&cq->list, &eq->child_list); 14139 /* Set up completion queue's type and subtype */ 14140 cq->type = type; 14141 cq->subtype = subtype; 14142 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 14143 cq->assoc_qid = eq->queue_id; 14144 cq->host_index = 0; 14145 cq->hba_index = 0; 14146 14147 out: 14148 mempool_free(mbox, phba->mbox_mem_pool); 14149 return status; 14150 } 14151 14152 /** 14153 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 14154 * @phba: HBA structure that indicates port to create a queue on. 14155 * @cqp: The queue structure array to use to create the completion queues. 14156 * @eqp: The event queue array to bind these completion queues to. 14157 * 14158 * This function creates a set of completion queue, s to support MRQ 14159 * as detailed in @cqp, on a port, 14160 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 14161 * 14162 * The @phba struct is used to send mailbox command to HBA. The @cq struct 14163 * is used to get the entry count and entry size that are necessary to 14164 * determine the number of pages to allocate and use for this queue. The @eq 14165 * is used to indicate which event queue to bind this completion queue to. This 14166 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 14167 * completion queue. This function is asynchronous and will wait for the mailbox 14168 * command to finish before continuing. 14169 * 14170 * On success this function will return a zero. If unable to allocate enough 14171 * memory this function will return -ENOMEM. If the queue create mailbox command 14172 * fails this function will return -ENXIO. 14173 **/ 14174 int 14175 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 14176 struct lpfc_queue **eqp, uint32_t type, uint32_t subtype) 14177 { 14178 struct lpfc_queue *cq; 14179 struct lpfc_queue *eq; 14180 struct lpfc_mbx_cq_create_set *cq_set; 14181 struct lpfc_dmabuf *dmabuf; 14182 LPFC_MBOXQ_t *mbox; 14183 int rc, length, alloclen, status = 0; 14184 int cnt, idx, numcq, page_idx = 0; 14185 uint32_t shdr_status, shdr_add_status; 14186 union lpfc_sli4_cfg_shdr *shdr; 14187 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14188 14189 /* sanity check on queue memory */ 14190 numcq = phba->cfg_nvmet_mrq; 14191 if (!cqp || !eqp || !numcq) 14192 return -ENODEV; 14193 if (!phba->sli4_hba.pc_sli4_params.supported) 14194 hw_page_size = SLI4_PAGE_SIZE; 14195 14196 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14197 if (!mbox) 14198 return -ENOMEM; 14199 14200 length = sizeof(struct lpfc_mbx_cq_create_set); 14201 length += ((numcq * cqp[0]->page_count) * 14202 sizeof(struct dma_address)); 14203 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14204 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 14205 LPFC_SLI4_MBX_NEMBED); 14206 if (alloclen < length) { 14207 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14208 "3098 Allocated DMA memory size (%d) is " 14209 "less than the requested DMA memory size " 14210 "(%d)\n", alloclen, length); 14211 status = -ENOMEM; 14212 goto out; 14213 } 14214 cq_set = mbox->sge_array->addr[0]; 14215 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 14216 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 14217 14218 for (idx = 0; idx < numcq; idx++) { 14219 cq = cqp[idx]; 14220 eq = eqp[idx]; 14221 if (!cq || !eq) { 14222 status = -ENOMEM; 14223 goto out; 14224 } 14225 14226 switch (idx) { 14227 case 0: 14228 bf_set(lpfc_mbx_cq_create_set_page_size, 14229 &cq_set->u.request, 14230 (hw_page_size / SLI4_PAGE_SIZE)); 14231 bf_set(lpfc_mbx_cq_create_set_num_pages, 14232 &cq_set->u.request, cq->page_count); 14233 bf_set(lpfc_mbx_cq_create_set_evt, 14234 &cq_set->u.request, 1); 14235 bf_set(lpfc_mbx_cq_create_set_valid, 14236 &cq_set->u.request, 1); 14237 bf_set(lpfc_mbx_cq_create_set_cqe_size, 14238 &cq_set->u.request, 0); 14239 bf_set(lpfc_mbx_cq_create_set_num_cq, 14240 &cq_set->u.request, numcq); 14241 switch (cq->entry_count) { 14242 default: 14243 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14244 "3118 Bad CQ count. (%d)\n", 14245 cq->entry_count); 14246 if (cq->entry_count < 256) { 14247 status = -EINVAL; 14248 goto out; 14249 } 14250 /* otherwise default to smallest (drop thru) */ 14251 case 256: 14252 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 14253 &cq_set->u.request, LPFC_CQ_CNT_256); 14254 break; 14255 case 512: 14256 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 14257 &cq_set->u.request, LPFC_CQ_CNT_512); 14258 break; 14259 case 1024: 14260 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 14261 &cq_set->u.request, LPFC_CQ_CNT_1024); 14262 break; 14263 } 14264 bf_set(lpfc_mbx_cq_create_set_eq_id0, 14265 &cq_set->u.request, eq->queue_id); 14266 break; 14267 case 1: 14268 bf_set(lpfc_mbx_cq_create_set_eq_id1, 14269 &cq_set->u.request, eq->queue_id); 14270 break; 14271 case 2: 14272 bf_set(lpfc_mbx_cq_create_set_eq_id2, 14273 &cq_set->u.request, eq->queue_id); 14274 break; 14275 case 3: 14276 bf_set(lpfc_mbx_cq_create_set_eq_id3, 14277 &cq_set->u.request, eq->queue_id); 14278 break; 14279 case 4: 14280 bf_set(lpfc_mbx_cq_create_set_eq_id4, 14281 &cq_set->u.request, eq->queue_id); 14282 break; 14283 case 5: 14284 bf_set(lpfc_mbx_cq_create_set_eq_id5, 14285 &cq_set->u.request, eq->queue_id); 14286 break; 14287 case 6: 14288 bf_set(lpfc_mbx_cq_create_set_eq_id6, 14289 &cq_set->u.request, eq->queue_id); 14290 break; 14291 case 7: 14292 bf_set(lpfc_mbx_cq_create_set_eq_id7, 14293 &cq_set->u.request, eq->queue_id); 14294 break; 14295 case 8: 14296 bf_set(lpfc_mbx_cq_create_set_eq_id8, 14297 &cq_set->u.request, eq->queue_id); 14298 break; 14299 case 9: 14300 bf_set(lpfc_mbx_cq_create_set_eq_id9, 14301 &cq_set->u.request, eq->queue_id); 14302 break; 14303 case 10: 14304 bf_set(lpfc_mbx_cq_create_set_eq_id10, 14305 &cq_set->u.request, eq->queue_id); 14306 break; 14307 case 11: 14308 bf_set(lpfc_mbx_cq_create_set_eq_id11, 14309 &cq_set->u.request, eq->queue_id); 14310 break; 14311 case 12: 14312 bf_set(lpfc_mbx_cq_create_set_eq_id12, 14313 &cq_set->u.request, eq->queue_id); 14314 break; 14315 case 13: 14316 bf_set(lpfc_mbx_cq_create_set_eq_id13, 14317 &cq_set->u.request, eq->queue_id); 14318 break; 14319 case 14: 14320 bf_set(lpfc_mbx_cq_create_set_eq_id14, 14321 &cq_set->u.request, eq->queue_id); 14322 break; 14323 case 15: 14324 bf_set(lpfc_mbx_cq_create_set_eq_id15, 14325 &cq_set->u.request, eq->queue_id); 14326 break; 14327 } 14328 14329 /* link the cq onto the parent eq child list */ 14330 list_add_tail(&cq->list, &eq->child_list); 14331 /* Set up completion queue's type and subtype */ 14332 cq->type = type; 14333 cq->subtype = subtype; 14334 cq->assoc_qid = eq->queue_id; 14335 cq->host_index = 0; 14336 cq->hba_index = 0; 14337 14338 rc = 0; 14339 list_for_each_entry(dmabuf, &cq->page_list, list) { 14340 memset(dmabuf->virt, 0, hw_page_size); 14341 cnt = page_idx + dmabuf->buffer_tag; 14342 cq_set->u.request.page[cnt].addr_lo = 14343 putPaddrLow(dmabuf->phys); 14344 cq_set->u.request.page[cnt].addr_hi = 14345 putPaddrHigh(dmabuf->phys); 14346 rc++; 14347 } 14348 page_idx += rc; 14349 } 14350 14351 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14352 14353 /* The IOCTL status is embedded in the mailbox subheader. */ 14354 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14355 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14356 if (shdr_status || shdr_add_status || rc) { 14357 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14358 "3119 CQ_CREATE_SET mailbox failed with " 14359 "status x%x add_status x%x, mbx status x%x\n", 14360 shdr_status, shdr_add_status, rc); 14361 status = -ENXIO; 14362 goto out; 14363 } 14364 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 14365 if (rc == 0xFFFF) { 14366 status = -ENXIO; 14367 goto out; 14368 } 14369 14370 for (idx = 0; idx < numcq; idx++) { 14371 cq = cqp[idx]; 14372 cq->queue_id = rc + idx; 14373 } 14374 14375 out: 14376 lpfc_sli4_mbox_cmd_free(phba, mbox); 14377 return status; 14378 } 14379 14380 /** 14381 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 14382 * @phba: HBA structure that indicates port to create a queue on. 14383 * @mq: The queue structure to use to create the mailbox queue. 14384 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 14385 * @cq: The completion queue to associate with this cq. 14386 * 14387 * This function provides failback (fb) functionality when the 14388 * mq_create_ext fails on older FW generations. It's purpose is identical 14389 * to mq_create_ext otherwise. 14390 * 14391 * This routine cannot fail as all attributes were previously accessed and 14392 * initialized in mq_create_ext. 14393 **/ 14394 static void 14395 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 14396 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 14397 { 14398 struct lpfc_mbx_mq_create *mq_create; 14399 struct lpfc_dmabuf *dmabuf; 14400 int length; 14401 14402 length = (sizeof(struct lpfc_mbx_mq_create) - 14403 sizeof(struct lpfc_sli4_cfg_mhdr)); 14404 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14405 LPFC_MBOX_OPCODE_MQ_CREATE, 14406 length, LPFC_SLI4_MBX_EMBED); 14407 mq_create = &mbox->u.mqe.un.mq_create; 14408 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 14409 mq->page_count); 14410 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 14411 cq->queue_id); 14412 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 14413 switch (mq->entry_count) { 14414 case 16: 14415 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 14416 LPFC_MQ_RING_SIZE_16); 14417 break; 14418 case 32: 14419 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 14420 LPFC_MQ_RING_SIZE_32); 14421 break; 14422 case 64: 14423 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 14424 LPFC_MQ_RING_SIZE_64); 14425 break; 14426 case 128: 14427 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 14428 LPFC_MQ_RING_SIZE_128); 14429 break; 14430 } 14431 list_for_each_entry(dmabuf, &mq->page_list, list) { 14432 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14433 putPaddrLow(dmabuf->phys); 14434 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14435 putPaddrHigh(dmabuf->phys); 14436 } 14437 } 14438 14439 /** 14440 * lpfc_mq_create - Create a mailbox Queue on the HBA 14441 * @phba: HBA structure that indicates port to create a queue on. 14442 * @mq: The queue structure to use to create the mailbox queue. 14443 * @cq: The completion queue to associate with this cq. 14444 * @subtype: The queue's subtype. 14445 * 14446 * This function creates a mailbox queue, as detailed in @mq, on a port, 14447 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 14448 * 14449 * The @phba struct is used to send mailbox command to HBA. The @cq struct 14450 * is used to get the entry count and entry size that are necessary to 14451 * determine the number of pages to allocate and use for this queue. This 14452 * function will send the MQ_CREATE mailbox command to the HBA to setup the 14453 * mailbox queue. This function is asynchronous and will wait for the mailbox 14454 * command to finish before continuing. 14455 * 14456 * On success this function will return a zero. If unable to allocate enough 14457 * memory this function will return -ENOMEM. If the queue create mailbox command 14458 * fails this function will return -ENXIO. 14459 **/ 14460 int32_t 14461 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 14462 struct lpfc_queue *cq, uint32_t subtype) 14463 { 14464 struct lpfc_mbx_mq_create *mq_create; 14465 struct lpfc_mbx_mq_create_ext *mq_create_ext; 14466 struct lpfc_dmabuf *dmabuf; 14467 LPFC_MBOXQ_t *mbox; 14468 int rc, length, status = 0; 14469 uint32_t shdr_status, shdr_add_status; 14470 union lpfc_sli4_cfg_shdr *shdr; 14471 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14472 14473 /* sanity check on queue memory */ 14474 if (!mq || !cq) 14475 return -ENODEV; 14476 if (!phba->sli4_hba.pc_sli4_params.supported) 14477 hw_page_size = SLI4_PAGE_SIZE; 14478 14479 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14480 if (!mbox) 14481 return -ENOMEM; 14482 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 14483 sizeof(struct lpfc_sli4_cfg_mhdr)); 14484 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14485 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 14486 length, LPFC_SLI4_MBX_EMBED); 14487 14488 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 14489 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 14490 bf_set(lpfc_mbx_mq_create_ext_num_pages, 14491 &mq_create_ext->u.request, mq->page_count); 14492 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 14493 &mq_create_ext->u.request, 1); 14494 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 14495 &mq_create_ext->u.request, 1); 14496 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 14497 &mq_create_ext->u.request, 1); 14498 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 14499 &mq_create_ext->u.request, 1); 14500 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 14501 &mq_create_ext->u.request, 1); 14502 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 14503 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14504 phba->sli4_hba.pc_sli4_params.mqv); 14505 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 14506 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 14507 cq->queue_id); 14508 else 14509 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 14510 cq->queue_id); 14511 switch (mq->entry_count) { 14512 default: 14513 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14514 "0362 Unsupported MQ count. (%d)\n", 14515 mq->entry_count); 14516 if (mq->entry_count < 16) { 14517 status = -EINVAL; 14518 goto out; 14519 } 14520 /* otherwise default to smallest count (drop through) */ 14521 case 16: 14522 bf_set(lpfc_mq_context_ring_size, 14523 &mq_create_ext->u.request.context, 14524 LPFC_MQ_RING_SIZE_16); 14525 break; 14526 case 32: 14527 bf_set(lpfc_mq_context_ring_size, 14528 &mq_create_ext->u.request.context, 14529 LPFC_MQ_RING_SIZE_32); 14530 break; 14531 case 64: 14532 bf_set(lpfc_mq_context_ring_size, 14533 &mq_create_ext->u.request.context, 14534 LPFC_MQ_RING_SIZE_64); 14535 break; 14536 case 128: 14537 bf_set(lpfc_mq_context_ring_size, 14538 &mq_create_ext->u.request.context, 14539 LPFC_MQ_RING_SIZE_128); 14540 break; 14541 } 14542 list_for_each_entry(dmabuf, &mq->page_list, list) { 14543 memset(dmabuf->virt, 0, hw_page_size); 14544 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 14545 putPaddrLow(dmabuf->phys); 14546 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 14547 putPaddrHigh(dmabuf->phys); 14548 } 14549 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14550 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 14551 &mq_create_ext->u.response); 14552 if (rc != MBX_SUCCESS) { 14553 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14554 "2795 MQ_CREATE_EXT failed with " 14555 "status x%x. Failback to MQ_CREATE.\n", 14556 rc); 14557 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 14558 mq_create = &mbox->u.mqe.un.mq_create; 14559 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14560 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 14561 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 14562 &mq_create->u.response); 14563 } 14564 14565 /* The IOCTL status is embedded in the mailbox subheader. */ 14566 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14567 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14568 if (shdr_status || shdr_add_status || rc) { 14569 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14570 "2502 MQ_CREATE mailbox failed with " 14571 "status x%x add_status x%x, mbx status x%x\n", 14572 shdr_status, shdr_add_status, rc); 14573 status = -ENXIO; 14574 goto out; 14575 } 14576 if (mq->queue_id == 0xFFFF) { 14577 status = -ENXIO; 14578 goto out; 14579 } 14580 mq->type = LPFC_MQ; 14581 mq->assoc_qid = cq->queue_id; 14582 mq->subtype = subtype; 14583 mq->host_index = 0; 14584 mq->hba_index = 0; 14585 14586 /* link the mq onto the parent cq child list */ 14587 list_add_tail(&mq->list, &cq->child_list); 14588 out: 14589 mempool_free(mbox, phba->mbox_mem_pool); 14590 return status; 14591 } 14592 14593 /** 14594 * lpfc_wq_create - Create a Work Queue on the HBA 14595 * @phba: HBA structure that indicates port to create a queue on. 14596 * @wq: The queue structure to use to create the work queue. 14597 * @cq: The completion queue to bind this work queue to. 14598 * @subtype: The subtype of the work queue indicating its functionality. 14599 * 14600 * This function creates a work queue, as detailed in @wq, on a port, described 14601 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 14602 * 14603 * The @phba struct is used to send mailbox command to HBA. The @wq struct 14604 * is used to get the entry count and entry size that are necessary to 14605 * determine the number of pages to allocate and use for this queue. The @cq 14606 * is used to indicate which completion queue to bind this work queue to. This 14607 * function will send the WQ_CREATE mailbox command to the HBA to setup the 14608 * work queue. This function is asynchronous and will wait for the mailbox 14609 * command to finish before continuing. 14610 * 14611 * On success this function will return a zero. If unable to allocate enough 14612 * memory this function will return -ENOMEM. If the queue create mailbox command 14613 * fails this function will return -ENXIO. 14614 **/ 14615 int 14616 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 14617 struct lpfc_queue *cq, uint32_t subtype) 14618 { 14619 struct lpfc_mbx_wq_create *wq_create; 14620 struct lpfc_dmabuf *dmabuf; 14621 LPFC_MBOXQ_t *mbox; 14622 int rc, length, status = 0; 14623 uint32_t shdr_status, shdr_add_status; 14624 union lpfc_sli4_cfg_shdr *shdr; 14625 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14626 struct dma_address *page; 14627 void __iomem *bar_memmap_p; 14628 uint32_t db_offset; 14629 uint16_t pci_barset; 14630 14631 /* sanity check on queue memory */ 14632 if (!wq || !cq) 14633 return -ENODEV; 14634 if (!phba->sli4_hba.pc_sli4_params.supported) 14635 hw_page_size = SLI4_PAGE_SIZE; 14636 14637 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14638 if (!mbox) 14639 return -ENOMEM; 14640 length = (sizeof(struct lpfc_mbx_wq_create) - 14641 sizeof(struct lpfc_sli4_cfg_mhdr)); 14642 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14643 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 14644 length, LPFC_SLI4_MBX_EMBED); 14645 wq_create = &mbox->u.mqe.un.wq_create; 14646 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 14647 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 14648 wq->page_count); 14649 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 14650 cq->queue_id); 14651 14652 /* wqv is the earliest version supported, NOT the latest */ 14653 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14654 phba->sli4_hba.pc_sli4_params.wqv); 14655 14656 switch (phba->sli4_hba.pc_sli4_params.wqv) { 14657 case LPFC_Q_CREATE_VERSION_0: 14658 switch (wq->entry_size) { 14659 default: 14660 case 64: 14661 /* Nothing to do, version 0 ONLY supports 64 byte */ 14662 page = wq_create->u.request.page; 14663 break; 14664 case 128: 14665 if (!(phba->sli4_hba.pc_sli4_params.wqsize & 14666 LPFC_WQ_SZ128_SUPPORT)) { 14667 status = -ERANGE; 14668 goto out; 14669 } 14670 /* If we get here the HBA MUST also support V1 and 14671 * we MUST use it 14672 */ 14673 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14674 LPFC_Q_CREATE_VERSION_1); 14675 14676 bf_set(lpfc_mbx_wq_create_wqe_count, 14677 &wq_create->u.request_1, wq->entry_count); 14678 bf_set(lpfc_mbx_wq_create_wqe_size, 14679 &wq_create->u.request_1, 14680 LPFC_WQ_WQE_SIZE_128); 14681 bf_set(lpfc_mbx_wq_create_page_size, 14682 &wq_create->u.request_1, 14683 LPFC_WQ_PAGE_SIZE_4096); 14684 page = wq_create->u.request_1.page; 14685 break; 14686 } 14687 break; 14688 case LPFC_Q_CREATE_VERSION_1: 14689 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 14690 wq->entry_count); 14691 switch (wq->entry_size) { 14692 default: 14693 case 64: 14694 bf_set(lpfc_mbx_wq_create_wqe_size, 14695 &wq_create->u.request_1, 14696 LPFC_WQ_WQE_SIZE_64); 14697 break; 14698 case 128: 14699 if (!(phba->sli4_hba.pc_sli4_params.wqsize & 14700 LPFC_WQ_SZ128_SUPPORT)) { 14701 status = -ERANGE; 14702 goto out; 14703 } 14704 bf_set(lpfc_mbx_wq_create_wqe_size, 14705 &wq_create->u.request_1, 14706 LPFC_WQ_WQE_SIZE_128); 14707 break; 14708 } 14709 bf_set(lpfc_mbx_wq_create_page_size, 14710 &wq_create->u.request_1, 14711 LPFC_WQ_PAGE_SIZE_4096); 14712 page = wq_create->u.request_1.page; 14713 break; 14714 default: 14715 status = -ERANGE; 14716 goto out; 14717 } 14718 14719 list_for_each_entry(dmabuf, &wq->page_list, list) { 14720 memset(dmabuf->virt, 0, hw_page_size); 14721 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 14722 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 14723 } 14724 14725 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 14726 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 14727 14728 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14729 /* The IOCTL status is embedded in the mailbox subheader. */ 14730 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14731 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14732 if (shdr_status || shdr_add_status || rc) { 14733 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14734 "2503 WQ_CREATE mailbox failed with " 14735 "status x%x add_status x%x, mbx status x%x\n", 14736 shdr_status, shdr_add_status, rc); 14737 status = -ENXIO; 14738 goto out; 14739 } 14740 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, &wq_create->u.response); 14741 if (wq->queue_id == 0xFFFF) { 14742 status = -ENXIO; 14743 goto out; 14744 } 14745 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 14746 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 14747 &wq_create->u.response); 14748 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 14749 (wq->db_format != LPFC_DB_RING_FORMAT)) { 14750 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14751 "3265 WQ[%d] doorbell format not " 14752 "supported: x%x\n", wq->queue_id, 14753 wq->db_format); 14754 status = -EINVAL; 14755 goto out; 14756 } 14757 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 14758 &wq_create->u.response); 14759 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 14760 if (!bar_memmap_p) { 14761 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14762 "3263 WQ[%d] failed to memmap pci " 14763 "barset:x%x\n", wq->queue_id, 14764 pci_barset); 14765 status = -ENOMEM; 14766 goto out; 14767 } 14768 db_offset = wq_create->u.response.doorbell_offset; 14769 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 14770 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 14771 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14772 "3252 WQ[%d] doorbell offset not " 14773 "supported: x%x\n", wq->queue_id, 14774 db_offset); 14775 status = -EINVAL; 14776 goto out; 14777 } 14778 wq->db_regaddr = bar_memmap_p + db_offset; 14779 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14780 "3264 WQ[%d]: barset:x%x, offset:x%x, " 14781 "format:x%x\n", wq->queue_id, pci_barset, 14782 db_offset, wq->db_format); 14783 } else { 14784 wq->db_format = LPFC_DB_LIST_FORMAT; 14785 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 14786 } 14787 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 14788 if (wq->pring == NULL) { 14789 status = -ENOMEM; 14790 goto out; 14791 } 14792 wq->type = LPFC_WQ; 14793 wq->assoc_qid = cq->queue_id; 14794 wq->subtype = subtype; 14795 wq->host_index = 0; 14796 wq->hba_index = 0; 14797 wq->entry_repost = LPFC_RELEASE_NOTIFICATION_INTERVAL; 14798 14799 /* link the wq onto the parent cq child list */ 14800 list_add_tail(&wq->list, &cq->child_list); 14801 out: 14802 mempool_free(mbox, phba->mbox_mem_pool); 14803 return status; 14804 } 14805 14806 /** 14807 * lpfc_rq_adjust_repost - Adjust entry_repost for an RQ 14808 * @phba: HBA structure that indicates port to create a queue on. 14809 * @rq: The queue structure to use for the receive queue. 14810 * @qno: The associated HBQ number 14811 * 14812 * 14813 * For SLI4 we need to adjust the RQ repost value based on 14814 * the number of buffers that are initially posted to the RQ. 14815 */ 14816 void 14817 lpfc_rq_adjust_repost(struct lpfc_hba *phba, struct lpfc_queue *rq, int qno) 14818 { 14819 uint32_t cnt; 14820 14821 /* sanity check on queue memory */ 14822 if (!rq) 14823 return; 14824 cnt = lpfc_hbq_defs[qno]->entry_count; 14825 14826 /* Recalc repost for RQs based on buffers initially posted */ 14827 cnt = (cnt >> 3); 14828 if (cnt < LPFC_QUEUE_MIN_REPOST) 14829 cnt = LPFC_QUEUE_MIN_REPOST; 14830 14831 rq->entry_repost = cnt; 14832 } 14833 14834 /** 14835 * lpfc_rq_create - Create a Receive Queue on the HBA 14836 * @phba: HBA structure that indicates port to create a queue on. 14837 * @hrq: The queue structure to use to create the header receive queue. 14838 * @drq: The queue structure to use to create the data receive queue. 14839 * @cq: The completion queue to bind this work queue to. 14840 * 14841 * This function creates a receive buffer queue pair , as detailed in @hrq and 14842 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 14843 * to the HBA. 14844 * 14845 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 14846 * struct is used to get the entry count that is necessary to determine the 14847 * number of pages to use for this queue. The @cq is used to indicate which 14848 * completion queue to bind received buffers that are posted to these queues to. 14849 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 14850 * receive queue pair. This function is asynchronous and will wait for the 14851 * mailbox command to finish before continuing. 14852 * 14853 * On success this function will return a zero. If unable to allocate enough 14854 * memory this function will return -ENOMEM. If the queue create mailbox command 14855 * fails this function will return -ENXIO. 14856 **/ 14857 int 14858 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 14859 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 14860 { 14861 struct lpfc_mbx_rq_create *rq_create; 14862 struct lpfc_dmabuf *dmabuf; 14863 LPFC_MBOXQ_t *mbox; 14864 int rc, length, status = 0; 14865 uint32_t shdr_status, shdr_add_status; 14866 union lpfc_sli4_cfg_shdr *shdr; 14867 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14868 void __iomem *bar_memmap_p; 14869 uint32_t db_offset; 14870 uint16_t pci_barset; 14871 14872 /* sanity check on queue memory */ 14873 if (!hrq || !drq || !cq) 14874 return -ENODEV; 14875 if (!phba->sli4_hba.pc_sli4_params.supported) 14876 hw_page_size = SLI4_PAGE_SIZE; 14877 14878 if (hrq->entry_count != drq->entry_count) 14879 return -EINVAL; 14880 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14881 if (!mbox) 14882 return -ENOMEM; 14883 length = (sizeof(struct lpfc_mbx_rq_create) - 14884 sizeof(struct lpfc_sli4_cfg_mhdr)); 14885 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14886 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 14887 length, LPFC_SLI4_MBX_EMBED); 14888 rq_create = &mbox->u.mqe.un.rq_create; 14889 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 14890 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14891 phba->sli4_hba.pc_sli4_params.rqv); 14892 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 14893 bf_set(lpfc_rq_context_rqe_count_1, 14894 &rq_create->u.request.context, 14895 hrq->entry_count); 14896 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 14897 bf_set(lpfc_rq_context_rqe_size, 14898 &rq_create->u.request.context, 14899 LPFC_RQE_SIZE_8); 14900 bf_set(lpfc_rq_context_page_size, 14901 &rq_create->u.request.context, 14902 LPFC_RQ_PAGE_SIZE_4096); 14903 } else { 14904 switch (hrq->entry_count) { 14905 default: 14906 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14907 "2535 Unsupported RQ count. (%d)\n", 14908 hrq->entry_count); 14909 if (hrq->entry_count < 512) { 14910 status = -EINVAL; 14911 goto out; 14912 } 14913 /* otherwise default to smallest count (drop through) */ 14914 case 512: 14915 bf_set(lpfc_rq_context_rqe_count, 14916 &rq_create->u.request.context, 14917 LPFC_RQ_RING_SIZE_512); 14918 break; 14919 case 1024: 14920 bf_set(lpfc_rq_context_rqe_count, 14921 &rq_create->u.request.context, 14922 LPFC_RQ_RING_SIZE_1024); 14923 break; 14924 case 2048: 14925 bf_set(lpfc_rq_context_rqe_count, 14926 &rq_create->u.request.context, 14927 LPFC_RQ_RING_SIZE_2048); 14928 break; 14929 case 4096: 14930 bf_set(lpfc_rq_context_rqe_count, 14931 &rq_create->u.request.context, 14932 LPFC_RQ_RING_SIZE_4096); 14933 break; 14934 } 14935 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 14936 LPFC_HDR_BUF_SIZE); 14937 } 14938 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 14939 cq->queue_id); 14940 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 14941 hrq->page_count); 14942 list_for_each_entry(dmabuf, &hrq->page_list, list) { 14943 memset(dmabuf->virt, 0, hw_page_size); 14944 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14945 putPaddrLow(dmabuf->phys); 14946 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14947 putPaddrHigh(dmabuf->phys); 14948 } 14949 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 14950 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 14951 14952 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14953 /* The IOCTL status is embedded in the mailbox subheader. */ 14954 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14955 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14956 if (shdr_status || shdr_add_status || rc) { 14957 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14958 "2504 RQ_CREATE mailbox failed with " 14959 "status x%x add_status x%x, mbx status x%x\n", 14960 shdr_status, shdr_add_status, rc); 14961 status = -ENXIO; 14962 goto out; 14963 } 14964 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 14965 if (hrq->queue_id == 0xFFFF) { 14966 status = -ENXIO; 14967 goto out; 14968 } 14969 14970 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 14971 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 14972 &rq_create->u.response); 14973 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 14974 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 14975 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14976 "3262 RQ [%d] doorbell format not " 14977 "supported: x%x\n", hrq->queue_id, 14978 hrq->db_format); 14979 status = -EINVAL; 14980 goto out; 14981 } 14982 14983 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 14984 &rq_create->u.response); 14985 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 14986 if (!bar_memmap_p) { 14987 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14988 "3269 RQ[%d] failed to memmap pci " 14989 "barset:x%x\n", hrq->queue_id, 14990 pci_barset); 14991 status = -ENOMEM; 14992 goto out; 14993 } 14994 14995 db_offset = rq_create->u.response.doorbell_offset; 14996 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 14997 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 14998 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14999 "3270 RQ[%d] doorbell offset not " 15000 "supported: x%x\n", hrq->queue_id, 15001 db_offset); 15002 status = -EINVAL; 15003 goto out; 15004 } 15005 hrq->db_regaddr = bar_memmap_p + db_offset; 15006 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15007 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 15008 "format:x%x\n", hrq->queue_id, pci_barset, 15009 db_offset, hrq->db_format); 15010 } else { 15011 hrq->db_format = LPFC_DB_RING_FORMAT; 15012 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 15013 } 15014 hrq->type = LPFC_HRQ; 15015 hrq->assoc_qid = cq->queue_id; 15016 hrq->subtype = subtype; 15017 hrq->host_index = 0; 15018 hrq->hba_index = 0; 15019 15020 /* now create the data queue */ 15021 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15022 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 15023 length, LPFC_SLI4_MBX_EMBED); 15024 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15025 phba->sli4_hba.pc_sli4_params.rqv); 15026 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 15027 bf_set(lpfc_rq_context_rqe_count_1, 15028 &rq_create->u.request.context, hrq->entry_count); 15029 rq_create->u.request.context.buffer_size = LPFC_DATA_BUF_SIZE; 15030 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 15031 LPFC_RQE_SIZE_8); 15032 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 15033 (PAGE_SIZE/SLI4_PAGE_SIZE)); 15034 } else { 15035 switch (drq->entry_count) { 15036 default: 15037 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15038 "2536 Unsupported RQ count. (%d)\n", 15039 drq->entry_count); 15040 if (drq->entry_count < 512) { 15041 status = -EINVAL; 15042 goto out; 15043 } 15044 /* otherwise default to smallest count (drop through) */ 15045 case 512: 15046 bf_set(lpfc_rq_context_rqe_count, 15047 &rq_create->u.request.context, 15048 LPFC_RQ_RING_SIZE_512); 15049 break; 15050 case 1024: 15051 bf_set(lpfc_rq_context_rqe_count, 15052 &rq_create->u.request.context, 15053 LPFC_RQ_RING_SIZE_1024); 15054 break; 15055 case 2048: 15056 bf_set(lpfc_rq_context_rqe_count, 15057 &rq_create->u.request.context, 15058 LPFC_RQ_RING_SIZE_2048); 15059 break; 15060 case 4096: 15061 bf_set(lpfc_rq_context_rqe_count, 15062 &rq_create->u.request.context, 15063 LPFC_RQ_RING_SIZE_4096); 15064 break; 15065 } 15066 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 15067 LPFC_DATA_BUF_SIZE); 15068 } 15069 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 15070 cq->queue_id); 15071 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 15072 drq->page_count); 15073 list_for_each_entry(dmabuf, &drq->page_list, list) { 15074 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15075 putPaddrLow(dmabuf->phys); 15076 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15077 putPaddrHigh(dmabuf->phys); 15078 } 15079 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15080 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 15081 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15082 /* The IOCTL status is embedded in the mailbox subheader. */ 15083 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 15084 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15085 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15086 if (shdr_status || shdr_add_status || rc) { 15087 status = -ENXIO; 15088 goto out; 15089 } 15090 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 15091 if (drq->queue_id == 0xFFFF) { 15092 status = -ENXIO; 15093 goto out; 15094 } 15095 drq->type = LPFC_DRQ; 15096 drq->assoc_qid = cq->queue_id; 15097 drq->subtype = subtype; 15098 drq->host_index = 0; 15099 drq->hba_index = 0; 15100 15101 /* link the header and data RQs onto the parent cq child list */ 15102 list_add_tail(&hrq->list, &cq->child_list); 15103 list_add_tail(&drq->list, &cq->child_list); 15104 15105 out: 15106 mempool_free(mbox, phba->mbox_mem_pool); 15107 return status; 15108 } 15109 15110 /** 15111 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 15112 * @phba: HBA structure that indicates port to create a queue on. 15113 * @hrqp: The queue structure array to use to create the header receive queues. 15114 * @drqp: The queue structure array to use to create the data receive queues. 15115 * @cqp: The completion queue array to bind these receive queues to. 15116 * 15117 * This function creates a receive buffer queue pair , as detailed in @hrq and 15118 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 15119 * to the HBA. 15120 * 15121 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 15122 * struct is used to get the entry count that is necessary to determine the 15123 * number of pages to use for this queue. The @cq is used to indicate which 15124 * completion queue to bind received buffers that are posted to these queues to. 15125 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 15126 * receive queue pair. This function is asynchronous and will wait for the 15127 * mailbox command to finish before continuing. 15128 * 15129 * On success this function will return a zero. If unable to allocate enough 15130 * memory this function will return -ENOMEM. If the queue create mailbox command 15131 * fails this function will return -ENXIO. 15132 **/ 15133 int 15134 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 15135 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 15136 uint32_t subtype) 15137 { 15138 struct lpfc_queue *hrq, *drq, *cq; 15139 struct lpfc_mbx_rq_create_v2 *rq_create; 15140 struct lpfc_dmabuf *dmabuf; 15141 LPFC_MBOXQ_t *mbox; 15142 int rc, length, alloclen, status = 0; 15143 int cnt, idx, numrq, page_idx = 0; 15144 uint32_t shdr_status, shdr_add_status; 15145 union lpfc_sli4_cfg_shdr *shdr; 15146 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15147 15148 numrq = phba->cfg_nvmet_mrq; 15149 /* sanity check on array memory */ 15150 if (!hrqp || !drqp || !cqp || !numrq) 15151 return -ENODEV; 15152 if (!phba->sli4_hba.pc_sli4_params.supported) 15153 hw_page_size = SLI4_PAGE_SIZE; 15154 15155 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15156 if (!mbox) 15157 return -ENOMEM; 15158 15159 length = sizeof(struct lpfc_mbx_rq_create_v2); 15160 length += ((2 * numrq * hrqp[0]->page_count) * 15161 sizeof(struct dma_address)); 15162 15163 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15164 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 15165 LPFC_SLI4_MBX_NEMBED); 15166 if (alloclen < length) { 15167 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15168 "3099 Allocated DMA memory size (%d) is " 15169 "less than the requested DMA memory size " 15170 "(%d)\n", alloclen, length); 15171 status = -ENOMEM; 15172 goto out; 15173 } 15174 15175 15176 15177 rq_create = mbox->sge_array->addr[0]; 15178 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 15179 15180 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 15181 cnt = 0; 15182 15183 for (idx = 0; idx < numrq; idx++) { 15184 hrq = hrqp[idx]; 15185 drq = drqp[idx]; 15186 cq = cqp[idx]; 15187 15188 if (hrq->entry_count != drq->entry_count) { 15189 status = -EINVAL; 15190 goto out; 15191 } 15192 15193 /* sanity check on queue memory */ 15194 if (!hrq || !drq || !cq) { 15195 status = -ENODEV; 15196 goto out; 15197 } 15198 15199 if (idx == 0) { 15200 bf_set(lpfc_mbx_rq_create_num_pages, 15201 &rq_create->u.request, 15202 hrq->page_count); 15203 bf_set(lpfc_mbx_rq_create_rq_cnt, 15204 &rq_create->u.request, (numrq * 2)); 15205 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 15206 1); 15207 bf_set(lpfc_rq_context_base_cq, 15208 &rq_create->u.request.context, 15209 cq->queue_id); 15210 bf_set(lpfc_rq_context_data_size, 15211 &rq_create->u.request.context, 15212 LPFC_DATA_BUF_SIZE); 15213 bf_set(lpfc_rq_context_hdr_size, 15214 &rq_create->u.request.context, 15215 LPFC_HDR_BUF_SIZE); 15216 bf_set(lpfc_rq_context_rqe_count_1, 15217 &rq_create->u.request.context, 15218 hrq->entry_count); 15219 bf_set(lpfc_rq_context_rqe_size, 15220 &rq_create->u.request.context, 15221 LPFC_RQE_SIZE_8); 15222 bf_set(lpfc_rq_context_page_size, 15223 &rq_create->u.request.context, 15224 (PAGE_SIZE/SLI4_PAGE_SIZE)); 15225 } 15226 rc = 0; 15227 list_for_each_entry(dmabuf, &hrq->page_list, list) { 15228 memset(dmabuf->virt, 0, hw_page_size); 15229 cnt = page_idx + dmabuf->buffer_tag; 15230 rq_create->u.request.page[cnt].addr_lo = 15231 putPaddrLow(dmabuf->phys); 15232 rq_create->u.request.page[cnt].addr_hi = 15233 putPaddrHigh(dmabuf->phys); 15234 rc++; 15235 } 15236 page_idx += rc; 15237 15238 rc = 0; 15239 list_for_each_entry(dmabuf, &drq->page_list, list) { 15240 memset(dmabuf->virt, 0, hw_page_size); 15241 cnt = page_idx + dmabuf->buffer_tag; 15242 rq_create->u.request.page[cnt].addr_lo = 15243 putPaddrLow(dmabuf->phys); 15244 rq_create->u.request.page[cnt].addr_hi = 15245 putPaddrHigh(dmabuf->phys); 15246 rc++; 15247 } 15248 page_idx += rc; 15249 15250 hrq->db_format = LPFC_DB_RING_FORMAT; 15251 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 15252 hrq->type = LPFC_HRQ; 15253 hrq->assoc_qid = cq->queue_id; 15254 hrq->subtype = subtype; 15255 hrq->host_index = 0; 15256 hrq->hba_index = 0; 15257 15258 drq->db_format = LPFC_DB_RING_FORMAT; 15259 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 15260 drq->type = LPFC_DRQ; 15261 drq->assoc_qid = cq->queue_id; 15262 drq->subtype = subtype; 15263 drq->host_index = 0; 15264 drq->hba_index = 0; 15265 15266 list_add_tail(&hrq->list, &cq->child_list); 15267 list_add_tail(&drq->list, &cq->child_list); 15268 } 15269 15270 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15271 /* The IOCTL status is embedded in the mailbox subheader. */ 15272 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15273 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15274 if (shdr_status || shdr_add_status || rc) { 15275 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15276 "3120 RQ_CREATE mailbox failed with " 15277 "status x%x add_status x%x, mbx status x%x\n", 15278 shdr_status, shdr_add_status, rc); 15279 status = -ENXIO; 15280 goto out; 15281 } 15282 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 15283 if (rc == 0xFFFF) { 15284 status = -ENXIO; 15285 goto out; 15286 } 15287 15288 /* Initialize all RQs with associated queue id */ 15289 for (idx = 0; idx < numrq; idx++) { 15290 hrq = hrqp[idx]; 15291 hrq->queue_id = rc + (2 * idx); 15292 drq = drqp[idx]; 15293 drq->queue_id = rc + (2 * idx) + 1; 15294 } 15295 15296 out: 15297 lpfc_sli4_mbox_cmd_free(phba, mbox); 15298 return status; 15299 } 15300 15301 /** 15302 * lpfc_eq_destroy - Destroy an event Queue on the HBA 15303 * @eq: The queue structure associated with the queue to destroy. 15304 * 15305 * This function destroys a queue, as detailed in @eq by sending an mailbox 15306 * command, specific to the type of queue, to the HBA. 15307 * 15308 * The @eq struct is used to get the queue ID of the queue to destroy. 15309 * 15310 * On success this function will return a zero. If the queue destroy mailbox 15311 * command fails this function will return -ENXIO. 15312 **/ 15313 int 15314 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 15315 { 15316 LPFC_MBOXQ_t *mbox; 15317 int rc, length, status = 0; 15318 uint32_t shdr_status, shdr_add_status; 15319 union lpfc_sli4_cfg_shdr *shdr; 15320 15321 /* sanity check on queue memory */ 15322 if (!eq) 15323 return -ENODEV; 15324 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 15325 if (!mbox) 15326 return -ENOMEM; 15327 length = (sizeof(struct lpfc_mbx_eq_destroy) - 15328 sizeof(struct lpfc_sli4_cfg_mhdr)); 15329 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15330 LPFC_MBOX_OPCODE_EQ_DESTROY, 15331 length, LPFC_SLI4_MBX_EMBED); 15332 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 15333 eq->queue_id); 15334 mbox->vport = eq->phba->pport; 15335 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15336 15337 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 15338 /* The IOCTL status is embedded in the mailbox subheader. */ 15339 shdr = (union lpfc_sli4_cfg_shdr *) 15340 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 15341 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15342 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15343 if (shdr_status || shdr_add_status || rc) { 15344 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15345 "2505 EQ_DESTROY mailbox failed with " 15346 "status x%x add_status x%x, mbx status x%x\n", 15347 shdr_status, shdr_add_status, rc); 15348 status = -ENXIO; 15349 } 15350 15351 /* Remove eq from any list */ 15352 list_del_init(&eq->list); 15353 mempool_free(mbox, eq->phba->mbox_mem_pool); 15354 return status; 15355 } 15356 15357 /** 15358 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 15359 * @cq: The queue structure associated with the queue to destroy. 15360 * 15361 * This function destroys a queue, as detailed in @cq by sending an mailbox 15362 * command, specific to the type of queue, to the HBA. 15363 * 15364 * The @cq struct is used to get the queue ID of the queue to destroy. 15365 * 15366 * On success this function will return a zero. If the queue destroy mailbox 15367 * command fails this function will return -ENXIO. 15368 **/ 15369 int 15370 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 15371 { 15372 LPFC_MBOXQ_t *mbox; 15373 int rc, length, status = 0; 15374 uint32_t shdr_status, shdr_add_status; 15375 union lpfc_sli4_cfg_shdr *shdr; 15376 15377 /* sanity check on queue memory */ 15378 if (!cq) 15379 return -ENODEV; 15380 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 15381 if (!mbox) 15382 return -ENOMEM; 15383 length = (sizeof(struct lpfc_mbx_cq_destroy) - 15384 sizeof(struct lpfc_sli4_cfg_mhdr)); 15385 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15386 LPFC_MBOX_OPCODE_CQ_DESTROY, 15387 length, LPFC_SLI4_MBX_EMBED); 15388 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 15389 cq->queue_id); 15390 mbox->vport = cq->phba->pport; 15391 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15392 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 15393 /* The IOCTL status is embedded in the mailbox subheader. */ 15394 shdr = (union lpfc_sli4_cfg_shdr *) 15395 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 15396 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15397 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15398 if (shdr_status || shdr_add_status || rc) { 15399 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15400 "2506 CQ_DESTROY mailbox failed with " 15401 "status x%x add_status x%x, mbx status x%x\n", 15402 shdr_status, shdr_add_status, rc); 15403 status = -ENXIO; 15404 } 15405 /* Remove cq from any list */ 15406 list_del_init(&cq->list); 15407 mempool_free(mbox, cq->phba->mbox_mem_pool); 15408 return status; 15409 } 15410 15411 /** 15412 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 15413 * @qm: The queue structure associated with the queue to destroy. 15414 * 15415 * This function destroys a queue, as detailed in @mq by sending an mailbox 15416 * command, specific to the type of queue, to the HBA. 15417 * 15418 * The @mq struct is used to get the queue ID of the queue to destroy. 15419 * 15420 * On success this function will return a zero. If the queue destroy mailbox 15421 * command fails this function will return -ENXIO. 15422 **/ 15423 int 15424 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 15425 { 15426 LPFC_MBOXQ_t *mbox; 15427 int rc, length, status = 0; 15428 uint32_t shdr_status, shdr_add_status; 15429 union lpfc_sli4_cfg_shdr *shdr; 15430 15431 /* sanity check on queue memory */ 15432 if (!mq) 15433 return -ENODEV; 15434 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 15435 if (!mbox) 15436 return -ENOMEM; 15437 length = (sizeof(struct lpfc_mbx_mq_destroy) - 15438 sizeof(struct lpfc_sli4_cfg_mhdr)); 15439 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15440 LPFC_MBOX_OPCODE_MQ_DESTROY, 15441 length, LPFC_SLI4_MBX_EMBED); 15442 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 15443 mq->queue_id); 15444 mbox->vport = mq->phba->pport; 15445 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15446 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 15447 /* The IOCTL status is embedded in the mailbox subheader. */ 15448 shdr = (union lpfc_sli4_cfg_shdr *) 15449 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 15450 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15451 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15452 if (shdr_status || shdr_add_status || rc) { 15453 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15454 "2507 MQ_DESTROY mailbox failed with " 15455 "status x%x add_status x%x, mbx status x%x\n", 15456 shdr_status, shdr_add_status, rc); 15457 status = -ENXIO; 15458 } 15459 /* Remove mq from any list */ 15460 list_del_init(&mq->list); 15461 mempool_free(mbox, mq->phba->mbox_mem_pool); 15462 return status; 15463 } 15464 15465 /** 15466 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 15467 * @wq: The queue structure associated with the queue to destroy. 15468 * 15469 * This function destroys a queue, as detailed in @wq by sending an mailbox 15470 * command, specific to the type of queue, to the HBA. 15471 * 15472 * The @wq struct is used to get the queue ID of the queue to destroy. 15473 * 15474 * On success this function will return a zero. If the queue destroy mailbox 15475 * command fails this function will return -ENXIO. 15476 **/ 15477 int 15478 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 15479 { 15480 LPFC_MBOXQ_t *mbox; 15481 int rc, length, status = 0; 15482 uint32_t shdr_status, shdr_add_status; 15483 union lpfc_sli4_cfg_shdr *shdr; 15484 15485 /* sanity check on queue memory */ 15486 if (!wq) 15487 return -ENODEV; 15488 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 15489 if (!mbox) 15490 return -ENOMEM; 15491 length = (sizeof(struct lpfc_mbx_wq_destroy) - 15492 sizeof(struct lpfc_sli4_cfg_mhdr)); 15493 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15494 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 15495 length, LPFC_SLI4_MBX_EMBED); 15496 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 15497 wq->queue_id); 15498 mbox->vport = wq->phba->pport; 15499 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15500 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 15501 shdr = (union lpfc_sli4_cfg_shdr *) 15502 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 15503 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15504 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15505 if (shdr_status || shdr_add_status || rc) { 15506 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15507 "2508 WQ_DESTROY mailbox failed with " 15508 "status x%x add_status x%x, mbx status x%x\n", 15509 shdr_status, shdr_add_status, rc); 15510 status = -ENXIO; 15511 } 15512 /* Remove wq from any list */ 15513 list_del_init(&wq->list); 15514 mempool_free(mbox, wq->phba->mbox_mem_pool); 15515 return status; 15516 } 15517 15518 /** 15519 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 15520 * @rq: The queue structure associated with the queue to destroy. 15521 * 15522 * This function destroys a queue, as detailed in @rq by sending an mailbox 15523 * command, specific to the type of queue, to the HBA. 15524 * 15525 * The @rq struct is used to get the queue ID of the queue to destroy. 15526 * 15527 * On success this function will return a zero. If the queue destroy mailbox 15528 * command fails this function will return -ENXIO. 15529 **/ 15530 int 15531 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 15532 struct lpfc_queue *drq) 15533 { 15534 LPFC_MBOXQ_t *mbox; 15535 int rc, length, status = 0; 15536 uint32_t shdr_status, shdr_add_status; 15537 union lpfc_sli4_cfg_shdr *shdr; 15538 15539 /* sanity check on queue memory */ 15540 if (!hrq || !drq) 15541 return -ENODEV; 15542 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 15543 if (!mbox) 15544 return -ENOMEM; 15545 length = (sizeof(struct lpfc_mbx_rq_destroy) - 15546 sizeof(struct lpfc_sli4_cfg_mhdr)); 15547 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15548 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 15549 length, LPFC_SLI4_MBX_EMBED); 15550 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 15551 hrq->queue_id); 15552 mbox->vport = hrq->phba->pport; 15553 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15554 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 15555 /* The IOCTL status is embedded in the mailbox subheader. */ 15556 shdr = (union lpfc_sli4_cfg_shdr *) 15557 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 15558 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15559 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15560 if (shdr_status || shdr_add_status || rc) { 15561 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15562 "2509 RQ_DESTROY mailbox failed with " 15563 "status x%x add_status x%x, mbx status x%x\n", 15564 shdr_status, shdr_add_status, rc); 15565 if (rc != MBX_TIMEOUT) 15566 mempool_free(mbox, hrq->phba->mbox_mem_pool); 15567 return -ENXIO; 15568 } 15569 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 15570 drq->queue_id); 15571 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 15572 shdr = (union lpfc_sli4_cfg_shdr *) 15573 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 15574 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15575 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15576 if (shdr_status || shdr_add_status || rc) { 15577 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15578 "2510 RQ_DESTROY mailbox failed with " 15579 "status x%x add_status x%x, mbx status x%x\n", 15580 shdr_status, shdr_add_status, rc); 15581 status = -ENXIO; 15582 } 15583 list_del_init(&hrq->list); 15584 list_del_init(&drq->list); 15585 mempool_free(mbox, hrq->phba->mbox_mem_pool); 15586 return status; 15587 } 15588 15589 /** 15590 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 15591 * @phba: The virtual port for which this call being executed. 15592 * @pdma_phys_addr0: Physical address of the 1st SGL page. 15593 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 15594 * @xritag: the xritag that ties this io to the SGL pages. 15595 * 15596 * This routine will post the sgl pages for the IO that has the xritag 15597 * that is in the iocbq structure. The xritag is assigned during iocbq 15598 * creation and persists for as long as the driver is loaded. 15599 * if the caller has fewer than 256 scatter gather segments to map then 15600 * pdma_phys_addr1 should be 0. 15601 * If the caller needs to map more than 256 scatter gather segment then 15602 * pdma_phys_addr1 should be a valid physical address. 15603 * physical address for SGLs must be 64 byte aligned. 15604 * If you are going to map 2 SGL's then the first one must have 256 entries 15605 * the second sgl can have between 1 and 256 entries. 15606 * 15607 * Return codes: 15608 * 0 - Success 15609 * -ENXIO, -ENOMEM - Failure 15610 **/ 15611 int 15612 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 15613 dma_addr_t pdma_phys_addr0, 15614 dma_addr_t pdma_phys_addr1, 15615 uint16_t xritag) 15616 { 15617 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 15618 LPFC_MBOXQ_t *mbox; 15619 int rc; 15620 uint32_t shdr_status, shdr_add_status; 15621 uint32_t mbox_tmo; 15622 union lpfc_sli4_cfg_shdr *shdr; 15623 15624 if (xritag == NO_XRI) { 15625 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15626 "0364 Invalid param:\n"); 15627 return -EINVAL; 15628 } 15629 15630 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15631 if (!mbox) 15632 return -ENOMEM; 15633 15634 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15635 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 15636 sizeof(struct lpfc_mbx_post_sgl_pages) - 15637 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 15638 15639 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 15640 &mbox->u.mqe.un.post_sgl_pages; 15641 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 15642 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 15643 15644 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 15645 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 15646 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 15647 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 15648 15649 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 15650 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 15651 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 15652 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 15653 if (!phba->sli4_hba.intr_enable) 15654 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15655 else { 15656 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 15657 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 15658 } 15659 /* The IOCTL status is embedded in the mailbox subheader. */ 15660 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 15661 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15662 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15663 if (rc != MBX_TIMEOUT) 15664 mempool_free(mbox, phba->mbox_mem_pool); 15665 if (shdr_status || shdr_add_status || rc) { 15666 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15667 "2511 POST_SGL mailbox failed with " 15668 "status x%x add_status x%x, mbx status x%x\n", 15669 shdr_status, shdr_add_status, rc); 15670 } 15671 return 0; 15672 } 15673 15674 /** 15675 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 15676 * @phba: pointer to lpfc hba data structure. 15677 * 15678 * This routine is invoked to post rpi header templates to the 15679 * HBA consistent with the SLI-4 interface spec. This routine 15680 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 15681 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 15682 * 15683 * Returns 15684 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 15685 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 15686 **/ 15687 static uint16_t 15688 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 15689 { 15690 unsigned long xri; 15691 15692 /* 15693 * Fetch the next logical xri. Because this index is logical, 15694 * the driver starts at 0 each time. 15695 */ 15696 spin_lock_irq(&phba->hbalock); 15697 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 15698 phba->sli4_hba.max_cfg_param.max_xri, 0); 15699 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 15700 spin_unlock_irq(&phba->hbalock); 15701 return NO_XRI; 15702 } else { 15703 set_bit(xri, phba->sli4_hba.xri_bmask); 15704 phba->sli4_hba.max_cfg_param.xri_used++; 15705 } 15706 spin_unlock_irq(&phba->hbalock); 15707 return xri; 15708 } 15709 15710 /** 15711 * lpfc_sli4_free_xri - Release an xri for reuse. 15712 * @phba: pointer to lpfc hba data structure. 15713 * 15714 * This routine is invoked to release an xri to the pool of 15715 * available rpis maintained by the driver. 15716 **/ 15717 static void 15718 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 15719 { 15720 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 15721 phba->sli4_hba.max_cfg_param.xri_used--; 15722 } 15723 } 15724 15725 /** 15726 * lpfc_sli4_free_xri - Release an xri for reuse. 15727 * @phba: pointer to lpfc hba data structure. 15728 * 15729 * This routine is invoked to release an xri to the pool of 15730 * available rpis maintained by the driver. 15731 **/ 15732 void 15733 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 15734 { 15735 spin_lock_irq(&phba->hbalock); 15736 __lpfc_sli4_free_xri(phba, xri); 15737 spin_unlock_irq(&phba->hbalock); 15738 } 15739 15740 /** 15741 * lpfc_sli4_next_xritag - Get an xritag for the io 15742 * @phba: Pointer to HBA context object. 15743 * 15744 * This function gets an xritag for the iocb. If there is no unused xritag 15745 * it will return 0xffff. 15746 * The function returns the allocated xritag if successful, else returns zero. 15747 * Zero is not a valid xritag. 15748 * The caller is not required to hold any lock. 15749 **/ 15750 uint16_t 15751 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 15752 { 15753 uint16_t xri_index; 15754 15755 xri_index = lpfc_sli4_alloc_xri(phba); 15756 if (xri_index == NO_XRI) 15757 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15758 "2004 Failed to allocate XRI.last XRITAG is %d" 15759 " Max XRI is %d, Used XRI is %d\n", 15760 xri_index, 15761 phba->sli4_hba.max_cfg_param.max_xri, 15762 phba->sli4_hba.max_cfg_param.xri_used); 15763 return xri_index; 15764 } 15765 15766 /** 15767 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 15768 * @phba: pointer to lpfc hba data structure. 15769 * @post_sgl_list: pointer to els sgl entry list. 15770 * @count: number of els sgl entries on the list. 15771 * 15772 * This routine is invoked to post a block of driver's sgl pages to the 15773 * HBA using non-embedded mailbox command. No Lock is held. This routine 15774 * is only called when the driver is loading and after all IO has been 15775 * stopped. 15776 **/ 15777 static int 15778 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 15779 struct list_head *post_sgl_list, 15780 int post_cnt) 15781 { 15782 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 15783 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 15784 struct sgl_page_pairs *sgl_pg_pairs; 15785 void *viraddr; 15786 LPFC_MBOXQ_t *mbox; 15787 uint32_t reqlen, alloclen, pg_pairs; 15788 uint32_t mbox_tmo; 15789 uint16_t xritag_start = 0; 15790 int rc = 0; 15791 uint32_t shdr_status, shdr_add_status; 15792 union lpfc_sli4_cfg_shdr *shdr; 15793 15794 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 15795 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 15796 if (reqlen > SLI4_PAGE_SIZE) { 15797 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15798 "2559 Block sgl registration required DMA " 15799 "size (%d) great than a page\n", reqlen); 15800 return -ENOMEM; 15801 } 15802 15803 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15804 if (!mbox) 15805 return -ENOMEM; 15806 15807 /* Allocate DMA memory and set up the non-embedded mailbox command */ 15808 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15809 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 15810 LPFC_SLI4_MBX_NEMBED); 15811 15812 if (alloclen < reqlen) { 15813 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15814 "0285 Allocated DMA memory size (%d) is " 15815 "less than the requested DMA memory " 15816 "size (%d)\n", alloclen, reqlen); 15817 lpfc_sli4_mbox_cmd_free(phba, mbox); 15818 return -ENOMEM; 15819 } 15820 /* Set up the SGL pages in the non-embedded DMA pages */ 15821 viraddr = mbox->sge_array->addr[0]; 15822 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 15823 sgl_pg_pairs = &sgl->sgl_pg_pairs; 15824 15825 pg_pairs = 0; 15826 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 15827 /* Set up the sge entry */ 15828 sgl_pg_pairs->sgl_pg0_addr_lo = 15829 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 15830 sgl_pg_pairs->sgl_pg0_addr_hi = 15831 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 15832 sgl_pg_pairs->sgl_pg1_addr_lo = 15833 cpu_to_le32(putPaddrLow(0)); 15834 sgl_pg_pairs->sgl_pg1_addr_hi = 15835 cpu_to_le32(putPaddrHigh(0)); 15836 15837 /* Keep the first xritag on the list */ 15838 if (pg_pairs == 0) 15839 xritag_start = sglq_entry->sli4_xritag; 15840 sgl_pg_pairs++; 15841 pg_pairs++; 15842 } 15843 15844 /* Complete initialization and perform endian conversion. */ 15845 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 15846 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 15847 sgl->word0 = cpu_to_le32(sgl->word0); 15848 15849 if (!phba->sli4_hba.intr_enable) 15850 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15851 else { 15852 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 15853 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 15854 } 15855 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 15856 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15857 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15858 if (rc != MBX_TIMEOUT) 15859 lpfc_sli4_mbox_cmd_free(phba, mbox); 15860 if (shdr_status || shdr_add_status || rc) { 15861 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15862 "2513 POST_SGL_BLOCK mailbox command failed " 15863 "status x%x add_status x%x mbx status x%x\n", 15864 shdr_status, shdr_add_status, rc); 15865 rc = -ENXIO; 15866 } 15867 return rc; 15868 } 15869 15870 /** 15871 * lpfc_sli4_post_scsi_sgl_block - post a block of scsi sgl list to firmware 15872 * @phba: pointer to lpfc hba data structure. 15873 * @sblist: pointer to scsi buffer list. 15874 * @count: number of scsi buffers on the list. 15875 * 15876 * This routine is invoked to post a block of @count scsi sgl pages from a 15877 * SCSI buffer list @sblist to the HBA using non-embedded mailbox command. 15878 * No Lock is held. 15879 * 15880 **/ 15881 int 15882 lpfc_sli4_post_scsi_sgl_block(struct lpfc_hba *phba, 15883 struct list_head *sblist, 15884 int count) 15885 { 15886 struct lpfc_scsi_buf *psb; 15887 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 15888 struct sgl_page_pairs *sgl_pg_pairs; 15889 void *viraddr; 15890 LPFC_MBOXQ_t *mbox; 15891 uint32_t reqlen, alloclen, pg_pairs; 15892 uint32_t mbox_tmo; 15893 uint16_t xritag_start = 0; 15894 int rc = 0; 15895 uint32_t shdr_status, shdr_add_status; 15896 dma_addr_t pdma_phys_bpl1; 15897 union lpfc_sli4_cfg_shdr *shdr; 15898 15899 /* Calculate the requested length of the dma memory */ 15900 reqlen = count * sizeof(struct sgl_page_pairs) + 15901 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 15902 if (reqlen > SLI4_PAGE_SIZE) { 15903 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 15904 "0217 Block sgl registration required DMA " 15905 "size (%d) great than a page\n", reqlen); 15906 return -ENOMEM; 15907 } 15908 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15909 if (!mbox) { 15910 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15911 "0283 Failed to allocate mbox cmd memory\n"); 15912 return -ENOMEM; 15913 } 15914 15915 /* Allocate DMA memory and set up the non-embedded mailbox command */ 15916 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15917 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 15918 LPFC_SLI4_MBX_NEMBED); 15919 15920 if (alloclen < reqlen) { 15921 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15922 "2561 Allocated DMA memory size (%d) is " 15923 "less than the requested DMA memory " 15924 "size (%d)\n", alloclen, reqlen); 15925 lpfc_sli4_mbox_cmd_free(phba, mbox); 15926 return -ENOMEM; 15927 } 15928 15929 /* Get the first SGE entry from the non-embedded DMA memory */ 15930 viraddr = mbox->sge_array->addr[0]; 15931 15932 /* Set up the SGL pages in the non-embedded DMA pages */ 15933 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 15934 sgl_pg_pairs = &sgl->sgl_pg_pairs; 15935 15936 pg_pairs = 0; 15937 list_for_each_entry(psb, sblist, list) { 15938 /* Set up the sge entry */ 15939 sgl_pg_pairs->sgl_pg0_addr_lo = 15940 cpu_to_le32(putPaddrLow(psb->dma_phys_bpl)); 15941 sgl_pg_pairs->sgl_pg0_addr_hi = 15942 cpu_to_le32(putPaddrHigh(psb->dma_phys_bpl)); 15943 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 15944 pdma_phys_bpl1 = psb->dma_phys_bpl + SGL_PAGE_SIZE; 15945 else 15946 pdma_phys_bpl1 = 0; 15947 sgl_pg_pairs->sgl_pg1_addr_lo = 15948 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 15949 sgl_pg_pairs->sgl_pg1_addr_hi = 15950 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 15951 /* Keep the first xritag on the list */ 15952 if (pg_pairs == 0) 15953 xritag_start = psb->cur_iocbq.sli4_xritag; 15954 sgl_pg_pairs++; 15955 pg_pairs++; 15956 } 15957 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 15958 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 15959 /* Perform endian conversion if necessary */ 15960 sgl->word0 = cpu_to_le32(sgl->word0); 15961 15962 if (!phba->sli4_hba.intr_enable) 15963 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15964 else { 15965 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 15966 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 15967 } 15968 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 15969 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15970 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15971 if (rc != MBX_TIMEOUT) 15972 lpfc_sli4_mbox_cmd_free(phba, mbox); 15973 if (shdr_status || shdr_add_status || rc) { 15974 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15975 "2564 POST_SGL_BLOCK mailbox command failed " 15976 "status x%x add_status x%x mbx status x%x\n", 15977 shdr_status, shdr_add_status, rc); 15978 rc = -ENXIO; 15979 } 15980 return rc; 15981 } 15982 15983 static char *lpfc_rctl_names[] = FC_RCTL_NAMES_INIT; 15984 static char *lpfc_type_names[] = FC_TYPE_NAMES_INIT; 15985 15986 /** 15987 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 15988 * @phba: pointer to lpfc_hba struct that the frame was received on 15989 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 15990 * 15991 * This function checks the fields in the @fc_hdr to see if the FC frame is a 15992 * valid type of frame that the LPFC driver will handle. This function will 15993 * return a zero if the frame is a valid frame or a non zero value when the 15994 * frame does not pass the check. 15995 **/ 15996 static int 15997 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 15998 { 15999 /* make rctl_names static to save stack space */ 16000 struct fc_vft_header *fc_vft_hdr; 16001 uint32_t *header = (uint32_t *) fc_hdr; 16002 16003 switch (fc_hdr->fh_r_ctl) { 16004 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 16005 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 16006 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 16007 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 16008 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 16009 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 16010 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 16011 case FC_RCTL_DD_CMD_STATUS: /* command status */ 16012 case FC_RCTL_ELS_REQ: /* extended link services request */ 16013 case FC_RCTL_ELS_REP: /* extended link services reply */ 16014 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 16015 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 16016 case FC_RCTL_BA_NOP: /* basic link service NOP */ 16017 case FC_RCTL_BA_ABTS: /* basic link service abort */ 16018 case FC_RCTL_BA_RMC: /* remove connection */ 16019 case FC_RCTL_BA_ACC: /* basic accept */ 16020 case FC_RCTL_BA_RJT: /* basic reject */ 16021 case FC_RCTL_BA_PRMT: 16022 case FC_RCTL_ACK_1: /* acknowledge_1 */ 16023 case FC_RCTL_ACK_0: /* acknowledge_0 */ 16024 case FC_RCTL_P_RJT: /* port reject */ 16025 case FC_RCTL_F_RJT: /* fabric reject */ 16026 case FC_RCTL_P_BSY: /* port busy */ 16027 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 16028 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 16029 case FC_RCTL_LCR: /* link credit reset */ 16030 case FC_RCTL_END: /* end */ 16031 break; 16032 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 16033 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 16034 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 16035 return lpfc_fc_frame_check(phba, fc_hdr); 16036 default: 16037 goto drop; 16038 } 16039 switch (fc_hdr->fh_type) { 16040 case FC_TYPE_BLS: 16041 case FC_TYPE_ELS: 16042 case FC_TYPE_FCP: 16043 case FC_TYPE_CT: 16044 case FC_TYPE_NVME: 16045 break; 16046 case FC_TYPE_IP: 16047 case FC_TYPE_ILS: 16048 default: 16049 goto drop; 16050 } 16051 16052 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 16053 "2538 Received frame rctl:%s (x%x), type:%s (x%x), " 16054 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 16055 lpfc_rctl_names[fc_hdr->fh_r_ctl], fc_hdr->fh_r_ctl, 16056 lpfc_type_names[fc_hdr->fh_type], fc_hdr->fh_type, 16057 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 16058 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 16059 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 16060 be32_to_cpu(header[6])); 16061 return 0; 16062 drop: 16063 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 16064 "2539 Dropped frame rctl:%s type:%s\n", 16065 lpfc_rctl_names[fc_hdr->fh_r_ctl], 16066 lpfc_type_names[fc_hdr->fh_type]); 16067 return 1; 16068 } 16069 16070 /** 16071 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 16072 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 16073 * 16074 * This function processes the FC header to retrieve the VFI from the VF 16075 * header, if one exists. This function will return the VFI if one exists 16076 * or 0 if no VSAN Header exists. 16077 **/ 16078 static uint32_t 16079 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 16080 { 16081 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 16082 16083 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 16084 return 0; 16085 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 16086 } 16087 16088 /** 16089 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 16090 * @phba: Pointer to the HBA structure to search for the vport on 16091 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 16092 * @fcfi: The FC Fabric ID that the frame came from 16093 * 16094 * This function searches the @phba for a vport that matches the content of the 16095 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 16096 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 16097 * returns the matching vport pointer or NULL if unable to match frame to a 16098 * vport. 16099 **/ 16100 static struct lpfc_vport * 16101 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 16102 uint16_t fcfi, uint32_t did) 16103 { 16104 struct lpfc_vport **vports; 16105 struct lpfc_vport *vport = NULL; 16106 int i; 16107 16108 if (did == Fabric_DID) 16109 return phba->pport; 16110 if ((phba->pport->fc_flag & FC_PT2PT) && 16111 !(phba->link_state == LPFC_HBA_READY)) 16112 return phba->pport; 16113 16114 vports = lpfc_create_vport_work_array(phba); 16115 if (vports != NULL) { 16116 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 16117 if (phba->fcf.fcfi == fcfi && 16118 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 16119 vports[i]->fc_myDID == did) { 16120 vport = vports[i]; 16121 break; 16122 } 16123 } 16124 } 16125 lpfc_destroy_vport_work_array(phba, vports); 16126 return vport; 16127 } 16128 16129 /** 16130 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 16131 * @vport: The vport to work on. 16132 * 16133 * This function updates the receive sequence time stamp for this vport. The 16134 * receive sequence time stamp indicates the time that the last frame of the 16135 * the sequence that has been idle for the longest amount of time was received. 16136 * the driver uses this time stamp to indicate if any received sequences have 16137 * timed out. 16138 **/ 16139 static void 16140 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 16141 { 16142 struct lpfc_dmabuf *h_buf; 16143 struct hbq_dmabuf *dmabuf = NULL; 16144 16145 /* get the oldest sequence on the rcv list */ 16146 h_buf = list_get_first(&vport->rcv_buffer_list, 16147 struct lpfc_dmabuf, list); 16148 if (!h_buf) 16149 return; 16150 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16151 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 16152 } 16153 16154 /** 16155 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 16156 * @vport: The vport that the received sequences were sent to. 16157 * 16158 * This function cleans up all outstanding received sequences. This is called 16159 * by the driver when a link event or user action invalidates all the received 16160 * sequences. 16161 **/ 16162 void 16163 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 16164 { 16165 struct lpfc_dmabuf *h_buf, *hnext; 16166 struct lpfc_dmabuf *d_buf, *dnext; 16167 struct hbq_dmabuf *dmabuf = NULL; 16168 16169 /* start with the oldest sequence on the rcv list */ 16170 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 16171 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16172 list_del_init(&dmabuf->hbuf.list); 16173 list_for_each_entry_safe(d_buf, dnext, 16174 &dmabuf->dbuf.list, list) { 16175 list_del_init(&d_buf->list); 16176 lpfc_in_buf_free(vport->phba, d_buf); 16177 } 16178 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 16179 } 16180 } 16181 16182 /** 16183 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 16184 * @vport: The vport that the received sequences were sent to. 16185 * 16186 * This function determines whether any received sequences have timed out by 16187 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 16188 * indicates that there is at least one timed out sequence this routine will 16189 * go through the received sequences one at a time from most inactive to most 16190 * active to determine which ones need to be cleaned up. Once it has determined 16191 * that a sequence needs to be cleaned up it will simply free up the resources 16192 * without sending an abort. 16193 **/ 16194 void 16195 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 16196 { 16197 struct lpfc_dmabuf *h_buf, *hnext; 16198 struct lpfc_dmabuf *d_buf, *dnext; 16199 struct hbq_dmabuf *dmabuf = NULL; 16200 unsigned long timeout; 16201 int abort_count = 0; 16202 16203 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 16204 vport->rcv_buffer_time_stamp); 16205 if (list_empty(&vport->rcv_buffer_list) || 16206 time_before(jiffies, timeout)) 16207 return; 16208 /* start with the oldest sequence on the rcv list */ 16209 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 16210 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16211 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 16212 dmabuf->time_stamp); 16213 if (time_before(jiffies, timeout)) 16214 break; 16215 abort_count++; 16216 list_del_init(&dmabuf->hbuf.list); 16217 list_for_each_entry_safe(d_buf, dnext, 16218 &dmabuf->dbuf.list, list) { 16219 list_del_init(&d_buf->list); 16220 lpfc_in_buf_free(vport->phba, d_buf); 16221 } 16222 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 16223 } 16224 if (abort_count) 16225 lpfc_update_rcv_time_stamp(vport); 16226 } 16227 16228 /** 16229 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 16230 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 16231 * 16232 * This function searches through the existing incomplete sequences that have 16233 * been sent to this @vport. If the frame matches one of the incomplete 16234 * sequences then the dbuf in the @dmabuf is added to the list of frames that 16235 * make up that sequence. If no sequence is found that matches this frame then 16236 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 16237 * This function returns a pointer to the first dmabuf in the sequence list that 16238 * the frame was linked to. 16239 **/ 16240 static struct hbq_dmabuf * 16241 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 16242 { 16243 struct fc_frame_header *new_hdr; 16244 struct fc_frame_header *temp_hdr; 16245 struct lpfc_dmabuf *d_buf; 16246 struct lpfc_dmabuf *h_buf; 16247 struct hbq_dmabuf *seq_dmabuf = NULL; 16248 struct hbq_dmabuf *temp_dmabuf = NULL; 16249 uint8_t found = 0; 16250 16251 INIT_LIST_HEAD(&dmabuf->dbuf.list); 16252 dmabuf->time_stamp = jiffies; 16253 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 16254 16255 /* Use the hdr_buf to find the sequence that this frame belongs to */ 16256 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 16257 temp_hdr = (struct fc_frame_header *)h_buf->virt; 16258 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 16259 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 16260 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 16261 continue; 16262 /* found a pending sequence that matches this frame */ 16263 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16264 break; 16265 } 16266 if (!seq_dmabuf) { 16267 /* 16268 * This indicates first frame received for this sequence. 16269 * Queue the buffer on the vport's rcv_buffer_list. 16270 */ 16271 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 16272 lpfc_update_rcv_time_stamp(vport); 16273 return dmabuf; 16274 } 16275 temp_hdr = seq_dmabuf->hbuf.virt; 16276 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 16277 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 16278 list_del_init(&seq_dmabuf->hbuf.list); 16279 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 16280 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 16281 lpfc_update_rcv_time_stamp(vport); 16282 return dmabuf; 16283 } 16284 /* move this sequence to the tail to indicate a young sequence */ 16285 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 16286 seq_dmabuf->time_stamp = jiffies; 16287 lpfc_update_rcv_time_stamp(vport); 16288 if (list_empty(&seq_dmabuf->dbuf.list)) { 16289 temp_hdr = dmabuf->hbuf.virt; 16290 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 16291 return seq_dmabuf; 16292 } 16293 /* find the correct place in the sequence to insert this frame */ 16294 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 16295 while (!found) { 16296 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 16297 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 16298 /* 16299 * If the frame's sequence count is greater than the frame on 16300 * the list then insert the frame right after this frame 16301 */ 16302 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 16303 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 16304 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 16305 found = 1; 16306 break; 16307 } 16308 16309 if (&d_buf->list == &seq_dmabuf->dbuf.list) 16310 break; 16311 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 16312 } 16313 16314 if (found) 16315 return seq_dmabuf; 16316 return NULL; 16317 } 16318 16319 /** 16320 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 16321 * @vport: pointer to a vitural port 16322 * @dmabuf: pointer to a dmabuf that describes the FC sequence 16323 * 16324 * This function tries to abort from the partially assembed sequence, described 16325 * by the information from basic abbort @dmabuf. It checks to see whether such 16326 * partially assembled sequence held by the driver. If so, it shall free up all 16327 * the frames from the partially assembled sequence. 16328 * 16329 * Return 16330 * true -- if there is matching partially assembled sequence present and all 16331 * the frames freed with the sequence; 16332 * false -- if there is no matching partially assembled sequence present so 16333 * nothing got aborted in the lower layer driver 16334 **/ 16335 static bool 16336 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 16337 struct hbq_dmabuf *dmabuf) 16338 { 16339 struct fc_frame_header *new_hdr; 16340 struct fc_frame_header *temp_hdr; 16341 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 16342 struct hbq_dmabuf *seq_dmabuf = NULL; 16343 16344 /* Use the hdr_buf to find the sequence that matches this frame */ 16345 INIT_LIST_HEAD(&dmabuf->dbuf.list); 16346 INIT_LIST_HEAD(&dmabuf->hbuf.list); 16347 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 16348 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 16349 temp_hdr = (struct fc_frame_header *)h_buf->virt; 16350 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 16351 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 16352 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 16353 continue; 16354 /* found a pending sequence that matches this frame */ 16355 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16356 break; 16357 } 16358 16359 /* Free up all the frames from the partially assembled sequence */ 16360 if (seq_dmabuf) { 16361 list_for_each_entry_safe(d_buf, n_buf, 16362 &seq_dmabuf->dbuf.list, list) { 16363 list_del_init(&d_buf->list); 16364 lpfc_in_buf_free(vport->phba, d_buf); 16365 } 16366 return true; 16367 } 16368 return false; 16369 } 16370 16371 /** 16372 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 16373 * @vport: pointer to a vitural port 16374 * @dmabuf: pointer to a dmabuf that describes the FC sequence 16375 * 16376 * This function tries to abort from the assembed sequence from upper level 16377 * protocol, described by the information from basic abbort @dmabuf. It 16378 * checks to see whether such pending context exists at upper level protocol. 16379 * If so, it shall clean up the pending context. 16380 * 16381 * Return 16382 * true -- if there is matching pending context of the sequence cleaned 16383 * at ulp; 16384 * false -- if there is no matching pending context of the sequence present 16385 * at ulp. 16386 **/ 16387 static bool 16388 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 16389 { 16390 struct lpfc_hba *phba = vport->phba; 16391 int handled; 16392 16393 /* Accepting abort at ulp with SLI4 only */ 16394 if (phba->sli_rev < LPFC_SLI_REV4) 16395 return false; 16396 16397 /* Register all caring upper level protocols to attend abort */ 16398 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 16399 if (handled) 16400 return true; 16401 16402 return false; 16403 } 16404 16405 /** 16406 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 16407 * @phba: Pointer to HBA context object. 16408 * @cmd_iocbq: pointer to the command iocbq structure. 16409 * @rsp_iocbq: pointer to the response iocbq structure. 16410 * 16411 * This function handles the sequence abort response iocb command complete 16412 * event. It properly releases the memory allocated to the sequence abort 16413 * accept iocb. 16414 **/ 16415 static void 16416 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 16417 struct lpfc_iocbq *cmd_iocbq, 16418 struct lpfc_iocbq *rsp_iocbq) 16419 { 16420 struct lpfc_nodelist *ndlp; 16421 16422 if (cmd_iocbq) { 16423 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 16424 lpfc_nlp_put(ndlp); 16425 lpfc_nlp_not_used(ndlp); 16426 lpfc_sli_release_iocbq(phba, cmd_iocbq); 16427 } 16428 16429 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 16430 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 16431 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16432 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 16433 rsp_iocbq->iocb.ulpStatus, 16434 rsp_iocbq->iocb.un.ulpWord[4]); 16435 } 16436 16437 /** 16438 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 16439 * @phba: Pointer to HBA context object. 16440 * @xri: xri id in transaction. 16441 * 16442 * This function validates the xri maps to the known range of XRIs allocated an 16443 * used by the driver. 16444 **/ 16445 uint16_t 16446 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 16447 uint16_t xri) 16448 { 16449 uint16_t i; 16450 16451 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 16452 if (xri == phba->sli4_hba.xri_ids[i]) 16453 return i; 16454 } 16455 return NO_XRI; 16456 } 16457 16458 /** 16459 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 16460 * @phba: Pointer to HBA context object. 16461 * @fc_hdr: pointer to a FC frame header. 16462 * 16463 * This function sends a basic response to a previous unsol sequence abort 16464 * event after aborting the sequence handling. 16465 **/ 16466 static void 16467 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 16468 struct fc_frame_header *fc_hdr, bool aborted) 16469 { 16470 struct lpfc_hba *phba = vport->phba; 16471 struct lpfc_iocbq *ctiocb = NULL; 16472 struct lpfc_nodelist *ndlp; 16473 uint16_t oxid, rxid, xri, lxri; 16474 uint32_t sid, fctl; 16475 IOCB_t *icmd; 16476 int rc; 16477 16478 if (!lpfc_is_link_up(phba)) 16479 return; 16480 16481 sid = sli4_sid_from_fc_hdr(fc_hdr); 16482 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 16483 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 16484 16485 ndlp = lpfc_findnode_did(vport, sid); 16486 if (!ndlp) { 16487 ndlp = mempool_alloc(phba->nlp_mem_pool, GFP_KERNEL); 16488 if (!ndlp) { 16489 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 16490 "1268 Failed to allocate ndlp for " 16491 "oxid:x%x SID:x%x\n", oxid, sid); 16492 return; 16493 } 16494 lpfc_nlp_init(vport, ndlp, sid); 16495 /* Put ndlp onto pport node list */ 16496 lpfc_enqueue_node(vport, ndlp); 16497 } else if (!NLP_CHK_NODE_ACT(ndlp)) { 16498 /* re-setup ndlp without removing from node list */ 16499 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE); 16500 if (!ndlp) { 16501 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 16502 "3275 Failed to active ndlp found " 16503 "for oxid:x%x SID:x%x\n", oxid, sid); 16504 return; 16505 } 16506 } 16507 16508 /* Allocate buffer for rsp iocb */ 16509 ctiocb = lpfc_sli_get_iocbq(phba); 16510 if (!ctiocb) 16511 return; 16512 16513 /* Extract the F_CTL field from FC_HDR */ 16514 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 16515 16516 icmd = &ctiocb->iocb; 16517 icmd->un.xseq64.bdl.bdeSize = 0; 16518 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 16519 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 16520 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 16521 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 16522 16523 /* Fill in the rest of iocb fields */ 16524 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 16525 icmd->ulpBdeCount = 0; 16526 icmd->ulpLe = 1; 16527 icmd->ulpClass = CLASS3; 16528 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 16529 ctiocb->context1 = lpfc_nlp_get(ndlp); 16530 16531 ctiocb->iocb_cmpl = NULL; 16532 ctiocb->vport = phba->pport; 16533 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 16534 ctiocb->sli4_lxritag = NO_XRI; 16535 ctiocb->sli4_xritag = NO_XRI; 16536 16537 if (fctl & FC_FC_EX_CTX) 16538 /* Exchange responder sent the abort so we 16539 * own the oxid. 16540 */ 16541 xri = oxid; 16542 else 16543 xri = rxid; 16544 lxri = lpfc_sli4_xri_inrange(phba, xri); 16545 if (lxri != NO_XRI) 16546 lpfc_set_rrq_active(phba, ndlp, lxri, 16547 (xri == oxid) ? rxid : oxid, 0); 16548 /* For BA_ABTS from exchange responder, if the logical xri with 16549 * the oxid maps to the FCP XRI range, the port no longer has 16550 * that exchange context, send a BLS_RJT. Override the IOCB for 16551 * a BA_RJT. 16552 */ 16553 if ((fctl & FC_FC_EX_CTX) && 16554 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 16555 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 16556 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 16557 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 16558 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 16559 } 16560 16561 /* If BA_ABTS failed to abort a partially assembled receive sequence, 16562 * the driver no longer has that exchange, send a BLS_RJT. Override 16563 * the IOCB for a BA_RJT. 16564 */ 16565 if (aborted == false) { 16566 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 16567 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 16568 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 16569 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 16570 } 16571 16572 if (fctl & FC_FC_EX_CTX) { 16573 /* ABTS sent by responder to CT exchange, construction 16574 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 16575 * field and RX_ID from ABTS for RX_ID field. 16576 */ 16577 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 16578 } else { 16579 /* ABTS sent by initiator to CT exchange, construction 16580 * of BA_ACC will need to allocate a new XRI as for the 16581 * XRI_TAG field. 16582 */ 16583 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 16584 } 16585 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 16586 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 16587 16588 /* Xmit CT abts response on exchange <xid> */ 16589 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 16590 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 16591 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 16592 16593 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 16594 if (rc == IOCB_ERROR) { 16595 lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS, 16596 "2925 Failed to issue CT ABTS RSP x%x on " 16597 "xri x%x, Data x%x\n", 16598 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 16599 phba->link_state); 16600 lpfc_nlp_put(ndlp); 16601 ctiocb->context1 = NULL; 16602 lpfc_sli_release_iocbq(phba, ctiocb); 16603 } 16604 } 16605 16606 /** 16607 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 16608 * @vport: Pointer to the vport on which this sequence was received 16609 * @dmabuf: pointer to a dmabuf that describes the FC sequence 16610 * 16611 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 16612 * receive sequence is only partially assembed by the driver, it shall abort 16613 * the partially assembled frames for the sequence. Otherwise, if the 16614 * unsolicited receive sequence has been completely assembled and passed to 16615 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the 16616 * unsolicited sequence has been aborted. After that, it will issue a basic 16617 * accept to accept the abort. 16618 **/ 16619 static void 16620 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 16621 struct hbq_dmabuf *dmabuf) 16622 { 16623 struct lpfc_hba *phba = vport->phba; 16624 struct fc_frame_header fc_hdr; 16625 uint32_t fctl; 16626 bool aborted; 16627 16628 /* Make a copy of fc_hdr before the dmabuf being released */ 16629 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 16630 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 16631 16632 if (fctl & FC_FC_EX_CTX) { 16633 /* ABTS by responder to exchange, no cleanup needed */ 16634 aborted = true; 16635 } else { 16636 /* ABTS by initiator to exchange, need to do cleanup */ 16637 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 16638 if (aborted == false) 16639 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 16640 } 16641 lpfc_in_buf_free(phba, &dmabuf->dbuf); 16642 16643 /* Respond with BA_ACC or BA_RJT accordingly */ 16644 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 16645 } 16646 16647 /** 16648 * lpfc_seq_complete - Indicates if a sequence is complete 16649 * @dmabuf: pointer to a dmabuf that describes the FC sequence 16650 * 16651 * This function checks the sequence, starting with the frame described by 16652 * @dmabuf, to see if all the frames associated with this sequence are present. 16653 * the frames associated with this sequence are linked to the @dmabuf using the 16654 * dbuf list. This function looks for two major things. 1) That the first frame 16655 * has a sequence count of zero. 2) There is a frame with last frame of sequence 16656 * set. 3) That there are no holes in the sequence count. The function will 16657 * return 1 when the sequence is complete, otherwise it will return 0. 16658 **/ 16659 static int 16660 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 16661 { 16662 struct fc_frame_header *hdr; 16663 struct lpfc_dmabuf *d_buf; 16664 struct hbq_dmabuf *seq_dmabuf; 16665 uint32_t fctl; 16666 int seq_count = 0; 16667 16668 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 16669 /* make sure first fame of sequence has a sequence count of zero */ 16670 if (hdr->fh_seq_cnt != seq_count) 16671 return 0; 16672 fctl = (hdr->fh_f_ctl[0] << 16 | 16673 hdr->fh_f_ctl[1] << 8 | 16674 hdr->fh_f_ctl[2]); 16675 /* If last frame of sequence we can return success. */ 16676 if (fctl & FC_FC_END_SEQ) 16677 return 1; 16678 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 16679 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 16680 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 16681 /* If there is a hole in the sequence count then fail. */ 16682 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 16683 return 0; 16684 fctl = (hdr->fh_f_ctl[0] << 16 | 16685 hdr->fh_f_ctl[1] << 8 | 16686 hdr->fh_f_ctl[2]); 16687 /* If last frame of sequence we can return success. */ 16688 if (fctl & FC_FC_END_SEQ) 16689 return 1; 16690 } 16691 return 0; 16692 } 16693 16694 /** 16695 * lpfc_prep_seq - Prep sequence for ULP processing 16696 * @vport: Pointer to the vport on which this sequence was received 16697 * @dmabuf: pointer to a dmabuf that describes the FC sequence 16698 * 16699 * This function takes a sequence, described by a list of frames, and creates 16700 * a list of iocbq structures to describe the sequence. This iocbq list will be 16701 * used to issue to the generic unsolicited sequence handler. This routine 16702 * returns a pointer to the first iocbq in the list. If the function is unable 16703 * to allocate an iocbq then it throw out the received frames that were not 16704 * able to be described and return a pointer to the first iocbq. If unable to 16705 * allocate any iocbqs (including the first) this function will return NULL. 16706 **/ 16707 static struct lpfc_iocbq * 16708 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 16709 { 16710 struct hbq_dmabuf *hbq_buf; 16711 struct lpfc_dmabuf *d_buf, *n_buf; 16712 struct lpfc_iocbq *first_iocbq, *iocbq; 16713 struct fc_frame_header *fc_hdr; 16714 uint32_t sid; 16715 uint32_t len, tot_len; 16716 struct ulp_bde64 *pbde; 16717 16718 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 16719 /* remove from receive buffer list */ 16720 list_del_init(&seq_dmabuf->hbuf.list); 16721 lpfc_update_rcv_time_stamp(vport); 16722 /* get the Remote Port's SID */ 16723 sid = sli4_sid_from_fc_hdr(fc_hdr); 16724 tot_len = 0; 16725 /* Get an iocbq struct to fill in. */ 16726 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 16727 if (first_iocbq) { 16728 /* Initialize the first IOCB. */ 16729 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 16730 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 16731 first_iocbq->vport = vport; 16732 16733 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 16734 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 16735 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 16736 first_iocbq->iocb.un.rcvels.parmRo = 16737 sli4_did_from_fc_hdr(fc_hdr); 16738 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 16739 } else 16740 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 16741 first_iocbq->iocb.ulpContext = NO_XRI; 16742 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 16743 be16_to_cpu(fc_hdr->fh_ox_id); 16744 /* iocbq is prepped for internal consumption. Physical vpi. */ 16745 first_iocbq->iocb.unsli3.rcvsli3.vpi = 16746 vport->phba->vpi_ids[vport->vpi]; 16747 /* put the first buffer into the first IOCBq */ 16748 tot_len = bf_get(lpfc_rcqe_length, 16749 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 16750 16751 first_iocbq->context2 = &seq_dmabuf->dbuf; 16752 first_iocbq->context3 = NULL; 16753 first_iocbq->iocb.ulpBdeCount = 1; 16754 if (tot_len > LPFC_DATA_BUF_SIZE) 16755 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 16756 LPFC_DATA_BUF_SIZE; 16757 else 16758 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 16759 16760 first_iocbq->iocb.un.rcvels.remoteID = sid; 16761 16762 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 16763 } 16764 iocbq = first_iocbq; 16765 /* 16766 * Each IOCBq can have two Buffers assigned, so go through the list 16767 * of buffers for this sequence and save two buffers in each IOCBq 16768 */ 16769 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 16770 if (!iocbq) { 16771 lpfc_in_buf_free(vport->phba, d_buf); 16772 continue; 16773 } 16774 if (!iocbq->context3) { 16775 iocbq->context3 = d_buf; 16776 iocbq->iocb.ulpBdeCount++; 16777 /* We need to get the size out of the right CQE */ 16778 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 16779 len = bf_get(lpfc_rcqe_length, 16780 &hbq_buf->cq_event.cqe.rcqe_cmpl); 16781 pbde = (struct ulp_bde64 *) 16782 &iocbq->iocb.unsli3.sli3Words[4]; 16783 if (len > LPFC_DATA_BUF_SIZE) 16784 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 16785 else 16786 pbde->tus.f.bdeSize = len; 16787 16788 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 16789 tot_len += len; 16790 } else { 16791 iocbq = lpfc_sli_get_iocbq(vport->phba); 16792 if (!iocbq) { 16793 if (first_iocbq) { 16794 first_iocbq->iocb.ulpStatus = 16795 IOSTAT_FCP_RSP_ERROR; 16796 first_iocbq->iocb.un.ulpWord[4] = 16797 IOERR_NO_RESOURCES; 16798 } 16799 lpfc_in_buf_free(vport->phba, d_buf); 16800 continue; 16801 } 16802 /* We need to get the size out of the right CQE */ 16803 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 16804 len = bf_get(lpfc_rcqe_length, 16805 &hbq_buf->cq_event.cqe.rcqe_cmpl); 16806 iocbq->context2 = d_buf; 16807 iocbq->context3 = NULL; 16808 iocbq->iocb.ulpBdeCount = 1; 16809 if (len > LPFC_DATA_BUF_SIZE) 16810 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 16811 LPFC_DATA_BUF_SIZE; 16812 else 16813 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 16814 16815 tot_len += len; 16816 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 16817 16818 iocbq->iocb.un.rcvels.remoteID = sid; 16819 list_add_tail(&iocbq->list, &first_iocbq->list); 16820 } 16821 } 16822 return first_iocbq; 16823 } 16824 16825 static void 16826 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 16827 struct hbq_dmabuf *seq_dmabuf) 16828 { 16829 struct fc_frame_header *fc_hdr; 16830 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 16831 struct lpfc_hba *phba = vport->phba; 16832 16833 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 16834 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 16835 if (!iocbq) { 16836 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16837 "2707 Ring %d handler: Failed to allocate " 16838 "iocb Rctl x%x Type x%x received\n", 16839 LPFC_ELS_RING, 16840 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 16841 return; 16842 } 16843 if (!lpfc_complete_unsol_iocb(phba, 16844 phba->sli4_hba.els_wq->pring, 16845 iocbq, fc_hdr->fh_r_ctl, 16846 fc_hdr->fh_type)) 16847 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16848 "2540 Ring %d handler: unexpected Rctl " 16849 "x%x Type x%x received\n", 16850 LPFC_ELS_RING, 16851 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 16852 16853 /* Free iocb created in lpfc_prep_seq */ 16854 list_for_each_entry_safe(curr_iocb, next_iocb, 16855 &iocbq->list, list) { 16856 list_del_init(&curr_iocb->list); 16857 lpfc_sli_release_iocbq(phba, curr_iocb); 16858 } 16859 lpfc_sli_release_iocbq(phba, iocbq); 16860 } 16861 16862 /** 16863 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 16864 * @phba: Pointer to HBA context object. 16865 * 16866 * This function is called with no lock held. This function processes all 16867 * the received buffers and gives it to upper layers when a received buffer 16868 * indicates that it is the final frame in the sequence. The interrupt 16869 * service routine processes received buffers at interrupt contexts. 16870 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 16871 * appropriate receive function when the final frame in a sequence is received. 16872 **/ 16873 void 16874 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 16875 struct hbq_dmabuf *dmabuf) 16876 { 16877 struct hbq_dmabuf *seq_dmabuf; 16878 struct fc_frame_header *fc_hdr; 16879 struct lpfc_vport *vport; 16880 uint32_t fcfi; 16881 uint32_t did; 16882 16883 /* Process each received buffer */ 16884 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 16885 16886 /* check to see if this a valid type of frame */ 16887 if (lpfc_fc_frame_check(phba, fc_hdr)) { 16888 lpfc_in_buf_free(phba, &dmabuf->dbuf); 16889 return; 16890 } 16891 16892 if ((bf_get(lpfc_cqe_code, 16893 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 16894 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 16895 &dmabuf->cq_event.cqe.rcqe_cmpl); 16896 else 16897 fcfi = bf_get(lpfc_rcqe_fcf_id, 16898 &dmabuf->cq_event.cqe.rcqe_cmpl); 16899 16900 /* d_id this frame is directed to */ 16901 did = sli4_did_from_fc_hdr(fc_hdr); 16902 16903 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 16904 if (!vport) { 16905 /* throw out the frame */ 16906 lpfc_in_buf_free(phba, &dmabuf->dbuf); 16907 return; 16908 } 16909 16910 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 16911 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 16912 (did != Fabric_DID)) { 16913 /* 16914 * Throw out the frame if we are not pt2pt. 16915 * The pt2pt protocol allows for discovery frames 16916 * to be received without a registered VPI. 16917 */ 16918 if (!(vport->fc_flag & FC_PT2PT) || 16919 (phba->link_state == LPFC_HBA_READY)) { 16920 lpfc_in_buf_free(phba, &dmabuf->dbuf); 16921 return; 16922 } 16923 } 16924 16925 /* Handle the basic abort sequence (BA_ABTS) event */ 16926 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 16927 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 16928 return; 16929 } 16930 16931 /* Link this frame */ 16932 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 16933 if (!seq_dmabuf) { 16934 /* unable to add frame to vport - throw it out */ 16935 lpfc_in_buf_free(phba, &dmabuf->dbuf); 16936 return; 16937 } 16938 /* If not last frame in sequence continue processing frames. */ 16939 if (!lpfc_seq_complete(seq_dmabuf)) 16940 return; 16941 16942 /* Send the complete sequence to the upper layer protocol */ 16943 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 16944 } 16945 16946 /** 16947 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 16948 * @phba: pointer to lpfc hba data structure. 16949 * 16950 * This routine is invoked to post rpi header templates to the 16951 * HBA consistent with the SLI-4 interface spec. This routine 16952 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 16953 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 16954 * 16955 * This routine does not require any locks. It's usage is expected 16956 * to be driver load or reset recovery when the driver is 16957 * sequential. 16958 * 16959 * Return codes 16960 * 0 - successful 16961 * -EIO - The mailbox failed to complete successfully. 16962 * When this error occurs, the driver is not guaranteed 16963 * to have any rpi regions posted to the device and 16964 * must either attempt to repost the regions or take a 16965 * fatal error. 16966 **/ 16967 int 16968 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 16969 { 16970 struct lpfc_rpi_hdr *rpi_page; 16971 uint32_t rc = 0; 16972 uint16_t lrpi = 0; 16973 16974 /* SLI4 ports that support extents do not require RPI headers. */ 16975 if (!phba->sli4_hba.rpi_hdrs_in_use) 16976 goto exit; 16977 if (phba->sli4_hba.extents_in_use) 16978 return -EIO; 16979 16980 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 16981 /* 16982 * Assign the rpi headers a physical rpi only if the driver 16983 * has not initialized those resources. A port reset only 16984 * needs the headers posted. 16985 */ 16986 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 16987 LPFC_RPI_RSRC_RDY) 16988 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 16989 16990 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 16991 if (rc != MBX_SUCCESS) { 16992 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16993 "2008 Error %d posting all rpi " 16994 "headers\n", rc); 16995 rc = -EIO; 16996 break; 16997 } 16998 } 16999 17000 exit: 17001 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 17002 LPFC_RPI_RSRC_RDY); 17003 return rc; 17004 } 17005 17006 /** 17007 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 17008 * @phba: pointer to lpfc hba data structure. 17009 * @rpi_page: pointer to the rpi memory region. 17010 * 17011 * This routine is invoked to post a single rpi header to the 17012 * HBA consistent with the SLI-4 interface spec. This memory region 17013 * maps up to 64 rpi context regions. 17014 * 17015 * Return codes 17016 * 0 - successful 17017 * -ENOMEM - No available memory 17018 * -EIO - The mailbox failed to complete successfully. 17019 **/ 17020 int 17021 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 17022 { 17023 LPFC_MBOXQ_t *mboxq; 17024 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 17025 uint32_t rc = 0; 17026 uint32_t shdr_status, shdr_add_status; 17027 union lpfc_sli4_cfg_shdr *shdr; 17028 17029 /* SLI4 ports that support extents do not require RPI headers. */ 17030 if (!phba->sli4_hba.rpi_hdrs_in_use) 17031 return rc; 17032 if (phba->sli4_hba.extents_in_use) 17033 return -EIO; 17034 17035 /* The port is notified of the header region via a mailbox command. */ 17036 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17037 if (!mboxq) { 17038 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17039 "2001 Unable to allocate memory for issuing " 17040 "SLI_CONFIG_SPECIAL mailbox command\n"); 17041 return -ENOMEM; 17042 } 17043 17044 /* Post all rpi memory regions to the port. */ 17045 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 17046 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 17047 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 17048 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 17049 sizeof(struct lpfc_sli4_cfg_mhdr), 17050 LPFC_SLI4_MBX_EMBED); 17051 17052 17053 /* Post the physical rpi to the port for this rpi header. */ 17054 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 17055 rpi_page->start_rpi); 17056 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 17057 hdr_tmpl, rpi_page->page_count); 17058 17059 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 17060 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 17061 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 17062 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 17063 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17064 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17065 if (rc != MBX_TIMEOUT) 17066 mempool_free(mboxq, phba->mbox_mem_pool); 17067 if (shdr_status || shdr_add_status || rc) { 17068 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17069 "2514 POST_RPI_HDR mailbox failed with " 17070 "status x%x add_status x%x, mbx status x%x\n", 17071 shdr_status, shdr_add_status, rc); 17072 rc = -ENXIO; 17073 } 17074 return rc; 17075 } 17076 17077 /** 17078 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 17079 * @phba: pointer to lpfc hba data structure. 17080 * 17081 * This routine is invoked to post rpi header templates to the 17082 * HBA consistent with the SLI-4 interface spec. This routine 17083 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17084 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17085 * 17086 * Returns 17087 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17088 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17089 **/ 17090 int 17091 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 17092 { 17093 unsigned long rpi; 17094 uint16_t max_rpi, rpi_limit; 17095 uint16_t rpi_remaining, lrpi = 0; 17096 struct lpfc_rpi_hdr *rpi_hdr; 17097 unsigned long iflag; 17098 17099 /* 17100 * Fetch the next logical rpi. Because this index is logical, 17101 * the driver starts at 0 each time. 17102 */ 17103 spin_lock_irqsave(&phba->hbalock, iflag); 17104 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 17105 rpi_limit = phba->sli4_hba.next_rpi; 17106 17107 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 17108 if (rpi >= rpi_limit) 17109 rpi = LPFC_RPI_ALLOC_ERROR; 17110 else { 17111 set_bit(rpi, phba->sli4_hba.rpi_bmask); 17112 phba->sli4_hba.max_cfg_param.rpi_used++; 17113 phba->sli4_hba.rpi_count++; 17114 } 17115 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 17116 "0001 rpi:%x max:%x lim:%x\n", 17117 (int) rpi, max_rpi, rpi_limit); 17118 17119 /* 17120 * Don't try to allocate more rpi header regions if the device limit 17121 * has been exhausted. 17122 */ 17123 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 17124 (phba->sli4_hba.rpi_count >= max_rpi)) { 17125 spin_unlock_irqrestore(&phba->hbalock, iflag); 17126 return rpi; 17127 } 17128 17129 /* 17130 * RPI header postings are not required for SLI4 ports capable of 17131 * extents. 17132 */ 17133 if (!phba->sli4_hba.rpi_hdrs_in_use) { 17134 spin_unlock_irqrestore(&phba->hbalock, iflag); 17135 return rpi; 17136 } 17137 17138 /* 17139 * If the driver is running low on rpi resources, allocate another 17140 * page now. Note that the next_rpi value is used because 17141 * it represents how many are actually in use whereas max_rpi notes 17142 * how many are supported max by the device. 17143 */ 17144 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 17145 spin_unlock_irqrestore(&phba->hbalock, iflag); 17146 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 17147 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 17148 if (!rpi_hdr) { 17149 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17150 "2002 Error Could not grow rpi " 17151 "count\n"); 17152 } else { 17153 lrpi = rpi_hdr->start_rpi; 17154 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 17155 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 17156 } 17157 } 17158 17159 return rpi; 17160 } 17161 17162 /** 17163 * lpfc_sli4_free_rpi - Release an rpi for reuse. 17164 * @phba: pointer to lpfc hba data structure. 17165 * 17166 * This routine is invoked to release an rpi to the pool of 17167 * available rpis maintained by the driver. 17168 **/ 17169 static void 17170 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 17171 { 17172 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 17173 phba->sli4_hba.rpi_count--; 17174 phba->sli4_hba.max_cfg_param.rpi_used--; 17175 } 17176 } 17177 17178 /** 17179 * lpfc_sli4_free_rpi - Release an rpi for reuse. 17180 * @phba: pointer to lpfc hba data structure. 17181 * 17182 * This routine is invoked to release an rpi to the pool of 17183 * available rpis maintained by the driver. 17184 **/ 17185 void 17186 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 17187 { 17188 spin_lock_irq(&phba->hbalock); 17189 __lpfc_sli4_free_rpi(phba, rpi); 17190 spin_unlock_irq(&phba->hbalock); 17191 } 17192 17193 /** 17194 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 17195 * @phba: pointer to lpfc hba data structure. 17196 * 17197 * This routine is invoked to remove the memory region that 17198 * provided rpi via a bitmask. 17199 **/ 17200 void 17201 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 17202 { 17203 kfree(phba->sli4_hba.rpi_bmask); 17204 kfree(phba->sli4_hba.rpi_ids); 17205 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 17206 } 17207 17208 /** 17209 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 17210 * @phba: pointer to lpfc hba data structure. 17211 * 17212 * This routine is invoked to remove the memory region that 17213 * provided rpi via a bitmask. 17214 **/ 17215 int 17216 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 17217 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 17218 { 17219 LPFC_MBOXQ_t *mboxq; 17220 struct lpfc_hba *phba = ndlp->phba; 17221 int rc; 17222 17223 /* The port is notified of the header region via a mailbox command. */ 17224 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17225 if (!mboxq) 17226 return -ENOMEM; 17227 17228 /* Post all rpi memory regions to the port. */ 17229 lpfc_resume_rpi(mboxq, ndlp); 17230 if (cmpl) { 17231 mboxq->mbox_cmpl = cmpl; 17232 mboxq->context1 = arg; 17233 mboxq->context2 = ndlp; 17234 } else 17235 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17236 mboxq->vport = ndlp->vport; 17237 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 17238 if (rc == MBX_NOT_FINISHED) { 17239 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17240 "2010 Resume RPI Mailbox failed " 17241 "status %d, mbxStatus x%x\n", rc, 17242 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 17243 mempool_free(mboxq, phba->mbox_mem_pool); 17244 return -EIO; 17245 } 17246 return 0; 17247 } 17248 17249 /** 17250 * lpfc_sli4_init_vpi - Initialize a vpi with the port 17251 * @vport: Pointer to the vport for which the vpi is being initialized 17252 * 17253 * This routine is invoked to activate a vpi with the port. 17254 * 17255 * Returns: 17256 * 0 success 17257 * -Evalue otherwise 17258 **/ 17259 int 17260 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 17261 { 17262 LPFC_MBOXQ_t *mboxq; 17263 int rc = 0; 17264 int retval = MBX_SUCCESS; 17265 uint32_t mbox_tmo; 17266 struct lpfc_hba *phba = vport->phba; 17267 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17268 if (!mboxq) 17269 return -ENOMEM; 17270 lpfc_init_vpi(phba, mboxq, vport->vpi); 17271 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 17272 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 17273 if (rc != MBX_SUCCESS) { 17274 lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI, 17275 "2022 INIT VPI Mailbox failed " 17276 "status %d, mbxStatus x%x\n", rc, 17277 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 17278 retval = -EIO; 17279 } 17280 if (rc != MBX_TIMEOUT) 17281 mempool_free(mboxq, vport->phba->mbox_mem_pool); 17282 17283 return retval; 17284 } 17285 17286 /** 17287 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 17288 * @phba: pointer to lpfc hba data structure. 17289 * @mboxq: Pointer to mailbox object. 17290 * 17291 * This routine is invoked to manually add a single FCF record. The caller 17292 * must pass a completely initialized FCF_Record. This routine takes 17293 * care of the nonembedded mailbox operations. 17294 **/ 17295 static void 17296 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 17297 { 17298 void *virt_addr; 17299 union lpfc_sli4_cfg_shdr *shdr; 17300 uint32_t shdr_status, shdr_add_status; 17301 17302 virt_addr = mboxq->sge_array->addr[0]; 17303 /* The IOCTL status is embedded in the mailbox subheader. */ 17304 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 17305 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17306 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17307 17308 if ((shdr_status || shdr_add_status) && 17309 (shdr_status != STATUS_FCF_IN_USE)) 17310 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17311 "2558 ADD_FCF_RECORD mailbox failed with " 17312 "status x%x add_status x%x\n", 17313 shdr_status, shdr_add_status); 17314 17315 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17316 } 17317 17318 /** 17319 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 17320 * @phba: pointer to lpfc hba data structure. 17321 * @fcf_record: pointer to the initialized fcf record to add. 17322 * 17323 * This routine is invoked to manually add a single FCF record. The caller 17324 * must pass a completely initialized FCF_Record. This routine takes 17325 * care of the nonembedded mailbox operations. 17326 **/ 17327 int 17328 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 17329 { 17330 int rc = 0; 17331 LPFC_MBOXQ_t *mboxq; 17332 uint8_t *bytep; 17333 void *virt_addr; 17334 struct lpfc_mbx_sge sge; 17335 uint32_t alloc_len, req_len; 17336 uint32_t fcfindex; 17337 17338 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17339 if (!mboxq) { 17340 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17341 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 17342 return -ENOMEM; 17343 } 17344 17345 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 17346 sizeof(uint32_t); 17347 17348 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17349 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 17350 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 17351 req_len, LPFC_SLI4_MBX_NEMBED); 17352 if (alloc_len < req_len) { 17353 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17354 "2523 Allocated DMA memory size (x%x) is " 17355 "less than the requested DMA memory " 17356 "size (x%x)\n", alloc_len, req_len); 17357 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17358 return -ENOMEM; 17359 } 17360 17361 /* 17362 * Get the first SGE entry from the non-embedded DMA memory. This 17363 * routine only uses a single SGE. 17364 */ 17365 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 17366 virt_addr = mboxq->sge_array->addr[0]; 17367 /* 17368 * Configure the FCF record for FCFI 0. This is the driver's 17369 * hardcoded default and gets used in nonFIP mode. 17370 */ 17371 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 17372 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 17373 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 17374 17375 /* 17376 * Copy the fcf_index and the FCF Record Data. The data starts after 17377 * the FCoE header plus word10. The data copy needs to be endian 17378 * correct. 17379 */ 17380 bytep += sizeof(uint32_t); 17381 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 17382 mboxq->vport = phba->pport; 17383 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 17384 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 17385 if (rc == MBX_NOT_FINISHED) { 17386 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17387 "2515 ADD_FCF_RECORD mailbox failed with " 17388 "status 0x%x\n", rc); 17389 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17390 rc = -EIO; 17391 } else 17392 rc = 0; 17393 17394 return rc; 17395 } 17396 17397 /** 17398 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 17399 * @phba: pointer to lpfc hba data structure. 17400 * @fcf_record: pointer to the fcf record to write the default data. 17401 * @fcf_index: FCF table entry index. 17402 * 17403 * This routine is invoked to build the driver's default FCF record. The 17404 * values used are hardcoded. This routine handles memory initialization. 17405 * 17406 **/ 17407 void 17408 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 17409 struct fcf_record *fcf_record, 17410 uint16_t fcf_index) 17411 { 17412 memset(fcf_record, 0, sizeof(struct fcf_record)); 17413 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 17414 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 17415 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 17416 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 17417 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 17418 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 17419 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 17420 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 17421 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 17422 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 17423 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 17424 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 17425 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 17426 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 17427 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 17428 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 17429 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 17430 /* Set the VLAN bit map */ 17431 if (phba->valid_vlan) { 17432 fcf_record->vlan_bitmap[phba->vlan_id / 8] 17433 = 1 << (phba->vlan_id % 8); 17434 } 17435 } 17436 17437 /** 17438 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 17439 * @phba: pointer to lpfc hba data structure. 17440 * @fcf_index: FCF table entry offset. 17441 * 17442 * This routine is invoked to scan the entire FCF table by reading FCF 17443 * record and processing it one at a time starting from the @fcf_index 17444 * for initial FCF discovery or fast FCF failover rediscovery. 17445 * 17446 * Return 0 if the mailbox command is submitted successfully, none 0 17447 * otherwise. 17448 **/ 17449 int 17450 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 17451 { 17452 int rc = 0, error; 17453 LPFC_MBOXQ_t *mboxq; 17454 17455 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 17456 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 17457 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17458 if (!mboxq) { 17459 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17460 "2000 Failed to allocate mbox for " 17461 "READ_FCF cmd\n"); 17462 error = -ENOMEM; 17463 goto fail_fcf_scan; 17464 } 17465 /* Construct the read FCF record mailbox command */ 17466 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 17467 if (rc) { 17468 error = -EINVAL; 17469 goto fail_fcf_scan; 17470 } 17471 /* Issue the mailbox command asynchronously */ 17472 mboxq->vport = phba->pport; 17473 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 17474 17475 spin_lock_irq(&phba->hbalock); 17476 phba->hba_flag |= FCF_TS_INPROG; 17477 spin_unlock_irq(&phba->hbalock); 17478 17479 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 17480 if (rc == MBX_NOT_FINISHED) 17481 error = -EIO; 17482 else { 17483 /* Reset eligible FCF count for new scan */ 17484 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 17485 phba->fcf.eligible_fcf_cnt = 0; 17486 error = 0; 17487 } 17488 fail_fcf_scan: 17489 if (error) { 17490 if (mboxq) 17491 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17492 /* FCF scan failed, clear FCF_TS_INPROG flag */ 17493 spin_lock_irq(&phba->hbalock); 17494 phba->hba_flag &= ~FCF_TS_INPROG; 17495 spin_unlock_irq(&phba->hbalock); 17496 } 17497 return error; 17498 } 17499 17500 /** 17501 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 17502 * @phba: pointer to lpfc hba data structure. 17503 * @fcf_index: FCF table entry offset. 17504 * 17505 * This routine is invoked to read an FCF record indicated by @fcf_index 17506 * and to use it for FLOGI roundrobin FCF failover. 17507 * 17508 * Return 0 if the mailbox command is submitted successfully, none 0 17509 * otherwise. 17510 **/ 17511 int 17512 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 17513 { 17514 int rc = 0, error; 17515 LPFC_MBOXQ_t *mboxq; 17516 17517 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17518 if (!mboxq) { 17519 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 17520 "2763 Failed to allocate mbox for " 17521 "READ_FCF cmd\n"); 17522 error = -ENOMEM; 17523 goto fail_fcf_read; 17524 } 17525 /* Construct the read FCF record mailbox command */ 17526 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 17527 if (rc) { 17528 error = -EINVAL; 17529 goto fail_fcf_read; 17530 } 17531 /* Issue the mailbox command asynchronously */ 17532 mboxq->vport = phba->pport; 17533 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 17534 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 17535 if (rc == MBX_NOT_FINISHED) 17536 error = -EIO; 17537 else 17538 error = 0; 17539 17540 fail_fcf_read: 17541 if (error && mboxq) 17542 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17543 return error; 17544 } 17545 17546 /** 17547 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 17548 * @phba: pointer to lpfc hba data structure. 17549 * @fcf_index: FCF table entry offset. 17550 * 17551 * This routine is invoked to read an FCF record indicated by @fcf_index to 17552 * determine whether it's eligible for FLOGI roundrobin failover list. 17553 * 17554 * Return 0 if the mailbox command is submitted successfully, none 0 17555 * otherwise. 17556 **/ 17557 int 17558 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 17559 { 17560 int rc = 0, error; 17561 LPFC_MBOXQ_t *mboxq; 17562 17563 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17564 if (!mboxq) { 17565 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 17566 "2758 Failed to allocate mbox for " 17567 "READ_FCF cmd\n"); 17568 error = -ENOMEM; 17569 goto fail_fcf_read; 17570 } 17571 /* Construct the read FCF record mailbox command */ 17572 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 17573 if (rc) { 17574 error = -EINVAL; 17575 goto fail_fcf_read; 17576 } 17577 /* Issue the mailbox command asynchronously */ 17578 mboxq->vport = phba->pport; 17579 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 17580 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 17581 if (rc == MBX_NOT_FINISHED) 17582 error = -EIO; 17583 else 17584 error = 0; 17585 17586 fail_fcf_read: 17587 if (error && mboxq) 17588 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17589 return error; 17590 } 17591 17592 /** 17593 * lpfc_check_next_fcf_pri_level 17594 * phba pointer to the lpfc_hba struct for this port. 17595 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 17596 * routine when the rr_bmask is empty. The FCF indecies are put into the 17597 * rr_bmask based on their priority level. Starting from the highest priority 17598 * to the lowest. The most likely FCF candidate will be in the highest 17599 * priority group. When this routine is called it searches the fcf_pri list for 17600 * next lowest priority group and repopulates the rr_bmask with only those 17601 * fcf_indexes. 17602 * returns: 17603 * 1=success 0=failure 17604 **/ 17605 static int 17606 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 17607 { 17608 uint16_t next_fcf_pri; 17609 uint16_t last_index; 17610 struct lpfc_fcf_pri *fcf_pri; 17611 int rc; 17612 int ret = 0; 17613 17614 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 17615 LPFC_SLI4_FCF_TBL_INDX_MAX); 17616 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 17617 "3060 Last IDX %d\n", last_index); 17618 17619 /* Verify the priority list has 2 or more entries */ 17620 spin_lock_irq(&phba->hbalock); 17621 if (list_empty(&phba->fcf.fcf_pri_list) || 17622 list_is_singular(&phba->fcf.fcf_pri_list)) { 17623 spin_unlock_irq(&phba->hbalock); 17624 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 17625 "3061 Last IDX %d\n", last_index); 17626 return 0; /* Empty rr list */ 17627 } 17628 spin_unlock_irq(&phba->hbalock); 17629 17630 next_fcf_pri = 0; 17631 /* 17632 * Clear the rr_bmask and set all of the bits that are at this 17633 * priority. 17634 */ 17635 memset(phba->fcf.fcf_rr_bmask, 0, 17636 sizeof(*phba->fcf.fcf_rr_bmask)); 17637 spin_lock_irq(&phba->hbalock); 17638 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 17639 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 17640 continue; 17641 /* 17642 * the 1st priority that has not FLOGI failed 17643 * will be the highest. 17644 */ 17645 if (!next_fcf_pri) 17646 next_fcf_pri = fcf_pri->fcf_rec.priority; 17647 spin_unlock_irq(&phba->hbalock); 17648 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 17649 rc = lpfc_sli4_fcf_rr_index_set(phba, 17650 fcf_pri->fcf_rec.fcf_index); 17651 if (rc) 17652 return 0; 17653 } 17654 spin_lock_irq(&phba->hbalock); 17655 } 17656 /* 17657 * if next_fcf_pri was not set above and the list is not empty then 17658 * we have failed flogis on all of them. So reset flogi failed 17659 * and start at the beginning. 17660 */ 17661 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 17662 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 17663 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 17664 /* 17665 * the 1st priority that has not FLOGI failed 17666 * will be the highest. 17667 */ 17668 if (!next_fcf_pri) 17669 next_fcf_pri = fcf_pri->fcf_rec.priority; 17670 spin_unlock_irq(&phba->hbalock); 17671 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 17672 rc = lpfc_sli4_fcf_rr_index_set(phba, 17673 fcf_pri->fcf_rec.fcf_index); 17674 if (rc) 17675 return 0; 17676 } 17677 spin_lock_irq(&phba->hbalock); 17678 } 17679 } else 17680 ret = 1; 17681 spin_unlock_irq(&phba->hbalock); 17682 17683 return ret; 17684 } 17685 /** 17686 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 17687 * @phba: pointer to lpfc hba data structure. 17688 * 17689 * This routine is to get the next eligible FCF record index in a round 17690 * robin fashion. If the next eligible FCF record index equals to the 17691 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 17692 * shall be returned, otherwise, the next eligible FCF record's index 17693 * shall be returned. 17694 **/ 17695 uint16_t 17696 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 17697 { 17698 uint16_t next_fcf_index; 17699 17700 initial_priority: 17701 /* Search start from next bit of currently registered FCF index */ 17702 next_fcf_index = phba->fcf.current_rec.fcf_indx; 17703 17704 next_priority: 17705 /* Determine the next fcf index to check */ 17706 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 17707 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 17708 LPFC_SLI4_FCF_TBL_INDX_MAX, 17709 next_fcf_index); 17710 17711 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 17712 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 17713 /* 17714 * If we have wrapped then we need to clear the bits that 17715 * have been tested so that we can detect when we should 17716 * change the priority level. 17717 */ 17718 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 17719 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 17720 } 17721 17722 17723 /* Check roundrobin failover list empty condition */ 17724 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 17725 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 17726 /* 17727 * If next fcf index is not found check if there are lower 17728 * Priority level fcf's in the fcf_priority list. 17729 * Set up the rr_bmask with all of the avaiable fcf bits 17730 * at that level and continue the selection process. 17731 */ 17732 if (lpfc_check_next_fcf_pri_level(phba)) 17733 goto initial_priority; 17734 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 17735 "2844 No roundrobin failover FCF available\n"); 17736 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) 17737 return LPFC_FCOE_FCF_NEXT_NONE; 17738 else { 17739 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 17740 "3063 Only FCF available idx %d, flag %x\n", 17741 next_fcf_index, 17742 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag); 17743 return next_fcf_index; 17744 } 17745 } 17746 17747 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 17748 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 17749 LPFC_FCF_FLOGI_FAILED) { 17750 if (list_is_singular(&phba->fcf.fcf_pri_list)) 17751 return LPFC_FCOE_FCF_NEXT_NONE; 17752 17753 goto next_priority; 17754 } 17755 17756 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 17757 "2845 Get next roundrobin failover FCF (x%x)\n", 17758 next_fcf_index); 17759 17760 return next_fcf_index; 17761 } 17762 17763 /** 17764 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 17765 * @phba: pointer to lpfc hba data structure. 17766 * 17767 * This routine sets the FCF record index in to the eligible bmask for 17768 * roundrobin failover search. It checks to make sure that the index 17769 * does not go beyond the range of the driver allocated bmask dimension 17770 * before setting the bit. 17771 * 17772 * Returns 0 if the index bit successfully set, otherwise, it returns 17773 * -EINVAL. 17774 **/ 17775 int 17776 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 17777 { 17778 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 17779 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 17780 "2610 FCF (x%x) reached driver's book " 17781 "keeping dimension:x%x\n", 17782 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 17783 return -EINVAL; 17784 } 17785 /* Set the eligible FCF record index bmask */ 17786 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 17787 17788 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 17789 "2790 Set FCF (x%x) to roundrobin FCF failover " 17790 "bmask\n", fcf_index); 17791 17792 return 0; 17793 } 17794 17795 /** 17796 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 17797 * @phba: pointer to lpfc hba data structure. 17798 * 17799 * This routine clears the FCF record index from the eligible bmask for 17800 * roundrobin failover search. It checks to make sure that the index 17801 * does not go beyond the range of the driver allocated bmask dimension 17802 * before clearing the bit. 17803 **/ 17804 void 17805 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 17806 { 17807 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 17808 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 17809 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 17810 "2762 FCF (x%x) reached driver's book " 17811 "keeping dimension:x%x\n", 17812 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 17813 return; 17814 } 17815 /* Clear the eligible FCF record index bmask */ 17816 spin_lock_irq(&phba->hbalock); 17817 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 17818 list) { 17819 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 17820 list_del_init(&fcf_pri->list); 17821 break; 17822 } 17823 } 17824 spin_unlock_irq(&phba->hbalock); 17825 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 17826 17827 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 17828 "2791 Clear FCF (x%x) from roundrobin failover " 17829 "bmask\n", fcf_index); 17830 } 17831 17832 /** 17833 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 17834 * @phba: pointer to lpfc hba data structure. 17835 * 17836 * This routine is the completion routine for the rediscover FCF table mailbox 17837 * command. If the mailbox command returned failure, it will try to stop the 17838 * FCF rediscover wait timer. 17839 **/ 17840 static void 17841 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 17842 { 17843 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 17844 uint32_t shdr_status, shdr_add_status; 17845 17846 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 17847 17848 shdr_status = bf_get(lpfc_mbox_hdr_status, 17849 &redisc_fcf->header.cfg_shdr.response); 17850 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 17851 &redisc_fcf->header.cfg_shdr.response); 17852 if (shdr_status || shdr_add_status) { 17853 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 17854 "2746 Requesting for FCF rediscovery failed " 17855 "status x%x add_status x%x\n", 17856 shdr_status, shdr_add_status); 17857 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 17858 spin_lock_irq(&phba->hbalock); 17859 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 17860 spin_unlock_irq(&phba->hbalock); 17861 /* 17862 * CVL event triggered FCF rediscover request failed, 17863 * last resort to re-try current registered FCF entry. 17864 */ 17865 lpfc_retry_pport_discovery(phba); 17866 } else { 17867 spin_lock_irq(&phba->hbalock); 17868 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 17869 spin_unlock_irq(&phba->hbalock); 17870 /* 17871 * DEAD FCF event triggered FCF rediscover request 17872 * failed, last resort to fail over as a link down 17873 * to FCF registration. 17874 */ 17875 lpfc_sli4_fcf_dead_failthrough(phba); 17876 } 17877 } else { 17878 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 17879 "2775 Start FCF rediscover quiescent timer\n"); 17880 /* 17881 * Start FCF rediscovery wait timer for pending FCF 17882 * before rescan FCF record table. 17883 */ 17884 lpfc_fcf_redisc_wait_start_timer(phba); 17885 } 17886 17887 mempool_free(mbox, phba->mbox_mem_pool); 17888 } 17889 17890 /** 17891 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 17892 * @phba: pointer to lpfc hba data structure. 17893 * 17894 * This routine is invoked to request for rediscovery of the entire FCF table 17895 * by the port. 17896 **/ 17897 int 17898 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 17899 { 17900 LPFC_MBOXQ_t *mbox; 17901 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 17902 int rc, length; 17903 17904 /* Cancel retry delay timers to all vports before FCF rediscover */ 17905 lpfc_cancel_all_vport_retry_delay_timer(phba); 17906 17907 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17908 if (!mbox) { 17909 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17910 "2745 Failed to allocate mbox for " 17911 "requesting FCF rediscover.\n"); 17912 return -ENOMEM; 17913 } 17914 17915 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 17916 sizeof(struct lpfc_sli4_cfg_mhdr)); 17917 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17918 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 17919 length, LPFC_SLI4_MBX_EMBED); 17920 17921 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 17922 /* Set count to 0 for invalidating the entire FCF database */ 17923 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 17924 17925 /* Issue the mailbox command asynchronously */ 17926 mbox->vport = phba->pport; 17927 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 17928 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 17929 17930 if (rc == MBX_NOT_FINISHED) { 17931 mempool_free(mbox, phba->mbox_mem_pool); 17932 return -EIO; 17933 } 17934 return 0; 17935 } 17936 17937 /** 17938 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 17939 * @phba: pointer to lpfc hba data structure. 17940 * 17941 * This function is the failover routine as a last resort to the FCF DEAD 17942 * event when driver failed to perform fast FCF failover. 17943 **/ 17944 void 17945 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 17946 { 17947 uint32_t link_state; 17948 17949 /* 17950 * Last resort as FCF DEAD event failover will treat this as 17951 * a link down, but save the link state because we don't want 17952 * it to be changed to Link Down unless it is already down. 17953 */ 17954 link_state = phba->link_state; 17955 lpfc_linkdown(phba); 17956 phba->link_state = link_state; 17957 17958 /* Unregister FCF if no devices connected to it */ 17959 lpfc_unregister_unused_fcf(phba); 17960 } 17961 17962 /** 17963 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 17964 * @phba: pointer to lpfc hba data structure. 17965 * @rgn23_data: pointer to configure region 23 data. 17966 * 17967 * This function gets SLI3 port configure region 23 data through memory dump 17968 * mailbox command. When it successfully retrieves data, the size of the data 17969 * will be returned, otherwise, 0 will be returned. 17970 **/ 17971 static uint32_t 17972 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 17973 { 17974 LPFC_MBOXQ_t *pmb = NULL; 17975 MAILBOX_t *mb; 17976 uint32_t offset = 0; 17977 int rc; 17978 17979 if (!rgn23_data) 17980 return 0; 17981 17982 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17983 if (!pmb) { 17984 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17985 "2600 failed to allocate mailbox memory\n"); 17986 return 0; 17987 } 17988 mb = &pmb->u.mb; 17989 17990 do { 17991 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 17992 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 17993 17994 if (rc != MBX_SUCCESS) { 17995 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17996 "2601 failed to read config " 17997 "region 23, rc 0x%x Status 0x%x\n", 17998 rc, mb->mbxStatus); 17999 mb->un.varDmp.word_cnt = 0; 18000 } 18001 /* 18002 * dump mem may return a zero when finished or we got a 18003 * mailbox error, either way we are done. 18004 */ 18005 if (mb->un.varDmp.word_cnt == 0) 18006 break; 18007 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 18008 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 18009 18010 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 18011 rgn23_data + offset, 18012 mb->un.varDmp.word_cnt); 18013 offset += mb->un.varDmp.word_cnt; 18014 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 18015 18016 mempool_free(pmb, phba->mbox_mem_pool); 18017 return offset; 18018 } 18019 18020 /** 18021 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 18022 * @phba: pointer to lpfc hba data structure. 18023 * @rgn23_data: pointer to configure region 23 data. 18024 * 18025 * This function gets SLI4 port configure region 23 data through memory dump 18026 * mailbox command. When it successfully retrieves data, the size of the data 18027 * will be returned, otherwise, 0 will be returned. 18028 **/ 18029 static uint32_t 18030 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 18031 { 18032 LPFC_MBOXQ_t *mboxq = NULL; 18033 struct lpfc_dmabuf *mp = NULL; 18034 struct lpfc_mqe *mqe; 18035 uint32_t data_length = 0; 18036 int rc; 18037 18038 if (!rgn23_data) 18039 return 0; 18040 18041 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18042 if (!mboxq) { 18043 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18044 "3105 failed to allocate mailbox memory\n"); 18045 return 0; 18046 } 18047 18048 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 18049 goto out; 18050 mqe = &mboxq->u.mqe; 18051 mp = (struct lpfc_dmabuf *) mboxq->context1; 18052 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 18053 if (rc) 18054 goto out; 18055 data_length = mqe->un.mb_words[5]; 18056 if (data_length == 0) 18057 goto out; 18058 if (data_length > DMP_RGN23_SIZE) { 18059 data_length = 0; 18060 goto out; 18061 } 18062 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 18063 out: 18064 mempool_free(mboxq, phba->mbox_mem_pool); 18065 if (mp) { 18066 lpfc_mbuf_free(phba, mp->virt, mp->phys); 18067 kfree(mp); 18068 } 18069 return data_length; 18070 } 18071 18072 /** 18073 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 18074 * @phba: pointer to lpfc hba data structure. 18075 * 18076 * This function read region 23 and parse TLV for port status to 18077 * decide if the user disaled the port. If the TLV indicates the 18078 * port is disabled, the hba_flag is set accordingly. 18079 **/ 18080 void 18081 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 18082 { 18083 uint8_t *rgn23_data = NULL; 18084 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 18085 uint32_t offset = 0; 18086 18087 /* Get adapter Region 23 data */ 18088 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 18089 if (!rgn23_data) 18090 goto out; 18091 18092 if (phba->sli_rev < LPFC_SLI_REV4) 18093 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 18094 else { 18095 if_type = bf_get(lpfc_sli_intf_if_type, 18096 &phba->sli4_hba.sli_intf); 18097 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 18098 goto out; 18099 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 18100 } 18101 18102 if (!data_size) 18103 goto out; 18104 18105 /* Check the region signature first */ 18106 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 18107 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18108 "2619 Config region 23 has bad signature\n"); 18109 goto out; 18110 } 18111 offset += 4; 18112 18113 /* Check the data structure version */ 18114 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 18115 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18116 "2620 Config region 23 has bad version\n"); 18117 goto out; 18118 } 18119 offset += 4; 18120 18121 /* Parse TLV entries in the region */ 18122 while (offset < data_size) { 18123 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 18124 break; 18125 /* 18126 * If the TLV is not driver specific TLV or driver id is 18127 * not linux driver id, skip the record. 18128 */ 18129 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 18130 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 18131 (rgn23_data[offset + 3] != 0)) { 18132 offset += rgn23_data[offset + 1] * 4 + 4; 18133 continue; 18134 } 18135 18136 /* Driver found a driver specific TLV in the config region */ 18137 sub_tlv_len = rgn23_data[offset + 1] * 4; 18138 offset += 4; 18139 tlv_offset = 0; 18140 18141 /* 18142 * Search for configured port state sub-TLV. 18143 */ 18144 while ((offset < data_size) && 18145 (tlv_offset < sub_tlv_len)) { 18146 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 18147 offset += 4; 18148 tlv_offset += 4; 18149 break; 18150 } 18151 if (rgn23_data[offset] != PORT_STE_TYPE) { 18152 offset += rgn23_data[offset + 1] * 4 + 4; 18153 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 18154 continue; 18155 } 18156 18157 /* This HBA contains PORT_STE configured */ 18158 if (!rgn23_data[offset + 2]) 18159 phba->hba_flag |= LINK_DISABLED; 18160 18161 goto out; 18162 } 18163 } 18164 18165 out: 18166 kfree(rgn23_data); 18167 return; 18168 } 18169 18170 /** 18171 * lpfc_wr_object - write an object to the firmware 18172 * @phba: HBA structure that indicates port to create a queue on. 18173 * @dmabuf_list: list of dmabufs to write to the port. 18174 * @size: the total byte value of the objects to write to the port. 18175 * @offset: the current offset to be used to start the transfer. 18176 * 18177 * This routine will create a wr_object mailbox command to send to the port. 18178 * the mailbox command will be constructed using the dma buffers described in 18179 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 18180 * BDEs that the imbedded mailbox can support. The @offset variable will be 18181 * used to indicate the starting offset of the transfer and will also return 18182 * the offset after the write object mailbox has completed. @size is used to 18183 * determine the end of the object and whether the eof bit should be set. 18184 * 18185 * Return 0 is successful and offset will contain the the new offset to use 18186 * for the next write. 18187 * Return negative value for error cases. 18188 **/ 18189 int 18190 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 18191 uint32_t size, uint32_t *offset) 18192 { 18193 struct lpfc_mbx_wr_object *wr_object; 18194 LPFC_MBOXQ_t *mbox; 18195 int rc = 0, i = 0; 18196 uint32_t shdr_status, shdr_add_status; 18197 uint32_t mbox_tmo; 18198 union lpfc_sli4_cfg_shdr *shdr; 18199 struct lpfc_dmabuf *dmabuf; 18200 uint32_t written = 0; 18201 18202 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18203 if (!mbox) 18204 return -ENOMEM; 18205 18206 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 18207 LPFC_MBOX_OPCODE_WRITE_OBJECT, 18208 sizeof(struct lpfc_mbx_wr_object) - 18209 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 18210 18211 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 18212 wr_object->u.request.write_offset = *offset; 18213 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 18214 wr_object->u.request.object_name[0] = 18215 cpu_to_le32(wr_object->u.request.object_name[0]); 18216 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 18217 list_for_each_entry(dmabuf, dmabuf_list, list) { 18218 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 18219 break; 18220 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 18221 wr_object->u.request.bde[i].addrHigh = 18222 putPaddrHigh(dmabuf->phys); 18223 if (written + SLI4_PAGE_SIZE >= size) { 18224 wr_object->u.request.bde[i].tus.f.bdeSize = 18225 (size - written); 18226 written += (size - written); 18227 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 18228 } else { 18229 wr_object->u.request.bde[i].tus.f.bdeSize = 18230 SLI4_PAGE_SIZE; 18231 written += SLI4_PAGE_SIZE; 18232 } 18233 i++; 18234 } 18235 wr_object->u.request.bde_count = i; 18236 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 18237 if (!phba->sli4_hba.intr_enable) 18238 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18239 else { 18240 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18241 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18242 } 18243 /* The IOCTL status is embedded in the mailbox subheader. */ 18244 shdr = (union lpfc_sli4_cfg_shdr *) &wr_object->header.cfg_shdr; 18245 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18246 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18247 if (rc != MBX_TIMEOUT) 18248 mempool_free(mbox, phba->mbox_mem_pool); 18249 if (shdr_status || shdr_add_status || rc) { 18250 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18251 "3025 Write Object mailbox failed with " 18252 "status x%x add_status x%x, mbx status x%x\n", 18253 shdr_status, shdr_add_status, rc); 18254 rc = -ENXIO; 18255 } else 18256 *offset += wr_object->u.response.actual_write_length; 18257 return rc; 18258 } 18259 18260 /** 18261 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 18262 * @vport: pointer to vport data structure. 18263 * 18264 * This function iterate through the mailboxq and clean up all REG_LOGIN 18265 * and REG_VPI mailbox commands associated with the vport. This function 18266 * is called when driver want to restart discovery of the vport due to 18267 * a Clear Virtual Link event. 18268 **/ 18269 void 18270 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 18271 { 18272 struct lpfc_hba *phba = vport->phba; 18273 LPFC_MBOXQ_t *mb, *nextmb; 18274 struct lpfc_dmabuf *mp; 18275 struct lpfc_nodelist *ndlp; 18276 struct lpfc_nodelist *act_mbx_ndlp = NULL; 18277 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 18278 LIST_HEAD(mbox_cmd_list); 18279 uint8_t restart_loop; 18280 18281 /* Clean up internally queued mailbox commands with the vport */ 18282 spin_lock_irq(&phba->hbalock); 18283 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 18284 if (mb->vport != vport) 18285 continue; 18286 18287 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 18288 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 18289 continue; 18290 18291 list_del(&mb->list); 18292 list_add_tail(&mb->list, &mbox_cmd_list); 18293 } 18294 /* Clean up active mailbox command with the vport */ 18295 mb = phba->sli.mbox_active; 18296 if (mb && (mb->vport == vport)) { 18297 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 18298 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 18299 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 18300 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 18301 act_mbx_ndlp = (struct lpfc_nodelist *)mb->context2; 18302 /* Put reference count for delayed processing */ 18303 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 18304 /* Unregister the RPI when mailbox complete */ 18305 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 18306 } 18307 } 18308 /* Cleanup any mailbox completions which are not yet processed */ 18309 do { 18310 restart_loop = 0; 18311 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 18312 /* 18313 * If this mailox is already processed or it is 18314 * for another vport ignore it. 18315 */ 18316 if ((mb->vport != vport) || 18317 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 18318 continue; 18319 18320 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 18321 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 18322 continue; 18323 18324 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 18325 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 18326 ndlp = (struct lpfc_nodelist *)mb->context2; 18327 /* Unregister the RPI when mailbox complete */ 18328 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 18329 restart_loop = 1; 18330 spin_unlock_irq(&phba->hbalock); 18331 spin_lock(shost->host_lock); 18332 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 18333 spin_unlock(shost->host_lock); 18334 spin_lock_irq(&phba->hbalock); 18335 break; 18336 } 18337 } 18338 } while (restart_loop); 18339 18340 spin_unlock_irq(&phba->hbalock); 18341 18342 /* Release the cleaned-up mailbox commands */ 18343 while (!list_empty(&mbox_cmd_list)) { 18344 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 18345 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 18346 mp = (struct lpfc_dmabuf *) (mb->context1); 18347 if (mp) { 18348 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 18349 kfree(mp); 18350 } 18351 ndlp = (struct lpfc_nodelist *) mb->context2; 18352 mb->context2 = NULL; 18353 if (ndlp) { 18354 spin_lock(shost->host_lock); 18355 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 18356 spin_unlock(shost->host_lock); 18357 lpfc_nlp_put(ndlp); 18358 } 18359 } 18360 mempool_free(mb, phba->mbox_mem_pool); 18361 } 18362 18363 /* Release the ndlp with the cleaned-up active mailbox command */ 18364 if (act_mbx_ndlp) { 18365 spin_lock(shost->host_lock); 18366 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 18367 spin_unlock(shost->host_lock); 18368 lpfc_nlp_put(act_mbx_ndlp); 18369 } 18370 } 18371 18372 /** 18373 * lpfc_drain_txq - Drain the txq 18374 * @phba: Pointer to HBA context object. 18375 * 18376 * This function attempt to submit IOCBs on the txq 18377 * to the adapter. For SLI4 adapters, the txq contains 18378 * ELS IOCBs that have been deferred because the there 18379 * are no SGLs. This congestion can occur with large 18380 * vport counts during node discovery. 18381 **/ 18382 18383 uint32_t 18384 lpfc_drain_txq(struct lpfc_hba *phba) 18385 { 18386 LIST_HEAD(completions); 18387 struct lpfc_sli_ring *pring; 18388 struct lpfc_iocbq *piocbq = NULL; 18389 unsigned long iflags = 0; 18390 char *fail_msg = NULL; 18391 struct lpfc_sglq *sglq; 18392 union lpfc_wqe128 wqe128; 18393 union lpfc_wqe *wqe = (union lpfc_wqe *) &wqe128; 18394 uint32_t txq_cnt = 0; 18395 18396 pring = lpfc_phba_elsring(phba); 18397 18398 spin_lock_irqsave(&pring->ring_lock, iflags); 18399 list_for_each_entry(piocbq, &pring->txq, list) { 18400 txq_cnt++; 18401 } 18402 18403 if (txq_cnt > pring->txq_max) 18404 pring->txq_max = txq_cnt; 18405 18406 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18407 18408 while (!list_empty(&pring->txq)) { 18409 spin_lock_irqsave(&pring->ring_lock, iflags); 18410 18411 piocbq = lpfc_sli_ringtx_get(phba, pring); 18412 if (!piocbq) { 18413 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18414 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18415 "2823 txq empty and txq_cnt is %d\n ", 18416 txq_cnt); 18417 break; 18418 } 18419 sglq = __lpfc_sli_get_els_sglq(phba, piocbq); 18420 if (!sglq) { 18421 __lpfc_sli_ringtx_put(phba, pring, piocbq); 18422 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18423 break; 18424 } 18425 txq_cnt--; 18426 18427 /* The xri and iocb resources secured, 18428 * attempt to issue request 18429 */ 18430 piocbq->sli4_lxritag = sglq->sli4_lxritag; 18431 piocbq->sli4_xritag = sglq->sli4_xritag; 18432 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 18433 fail_msg = "to convert bpl to sgl"; 18434 else if (lpfc_sli4_iocb2wqe(phba, piocbq, wqe)) 18435 fail_msg = "to convert iocb to wqe"; 18436 else if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, wqe)) 18437 fail_msg = " - Wq is full"; 18438 else 18439 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 18440 18441 if (fail_msg) { 18442 /* Failed means we can't issue and need to cancel */ 18443 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18444 "2822 IOCB failed %s iotag 0x%x " 18445 "xri 0x%x\n", 18446 fail_msg, 18447 piocbq->iotag, piocbq->sli4_xritag); 18448 list_add_tail(&piocbq->list, &completions); 18449 } 18450 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18451 } 18452 18453 /* Cancel all the IOCBs that cannot be issued */ 18454 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 18455 IOERR_SLI_ABORTED); 18456 18457 return txq_cnt; 18458 } 18459 18460 /** 18461 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 18462 * @phba: Pointer to HBA context object. 18463 * @pwqe: Pointer to command WQE. 18464 * @sglq: Pointer to the scatter gather queue object. 18465 * 18466 * This routine converts the bpl or bde that is in the WQE 18467 * to a sgl list for the sli4 hardware. The physical address 18468 * of the bpl/bde is converted back to a virtual address. 18469 * If the WQE contains a BPL then the list of BDE's is 18470 * converted to sli4_sge's. If the WQE contains a single 18471 * BDE then it is converted to a single sli_sge. 18472 * The WQE is still in cpu endianness so the contents of 18473 * the bpl can be used without byte swapping. 18474 * 18475 * Returns valid XRI = Success, NO_XRI = Failure. 18476 */ 18477 static uint16_t 18478 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 18479 struct lpfc_sglq *sglq) 18480 { 18481 uint16_t xritag = NO_XRI; 18482 struct ulp_bde64 *bpl = NULL; 18483 struct ulp_bde64 bde; 18484 struct sli4_sge *sgl = NULL; 18485 struct lpfc_dmabuf *dmabuf; 18486 union lpfc_wqe *wqe; 18487 int numBdes = 0; 18488 int i = 0; 18489 uint32_t offset = 0; /* accumulated offset in the sg request list */ 18490 int inbound = 0; /* number of sg reply entries inbound from firmware */ 18491 uint32_t cmd; 18492 18493 if (!pwqeq || !sglq) 18494 return xritag; 18495 18496 sgl = (struct sli4_sge *)sglq->sgl; 18497 wqe = &pwqeq->wqe; 18498 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 18499 18500 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 18501 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 18502 return sglq->sli4_xritag; 18503 numBdes = pwqeq->rsvd2; 18504 if (numBdes) { 18505 /* The addrHigh and addrLow fields within the WQE 18506 * have not been byteswapped yet so there is no 18507 * need to swap them back. 18508 */ 18509 if (pwqeq->context3) 18510 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 18511 else 18512 return xritag; 18513 18514 bpl = (struct ulp_bde64 *)dmabuf->virt; 18515 if (!bpl) 18516 return xritag; 18517 18518 for (i = 0; i < numBdes; i++) { 18519 /* Should already be byte swapped. */ 18520 sgl->addr_hi = bpl->addrHigh; 18521 sgl->addr_lo = bpl->addrLow; 18522 18523 sgl->word2 = le32_to_cpu(sgl->word2); 18524 if ((i+1) == numBdes) 18525 bf_set(lpfc_sli4_sge_last, sgl, 1); 18526 else 18527 bf_set(lpfc_sli4_sge_last, sgl, 0); 18528 /* swap the size field back to the cpu so we 18529 * can assign it to the sgl. 18530 */ 18531 bde.tus.w = le32_to_cpu(bpl->tus.w); 18532 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 18533 /* The offsets in the sgl need to be accumulated 18534 * separately for the request and reply lists. 18535 * The request is always first, the reply follows. 18536 */ 18537 switch (cmd) { 18538 case CMD_GEN_REQUEST64_WQE: 18539 /* add up the reply sg entries */ 18540 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 18541 inbound++; 18542 /* first inbound? reset the offset */ 18543 if (inbound == 1) 18544 offset = 0; 18545 bf_set(lpfc_sli4_sge_offset, sgl, offset); 18546 bf_set(lpfc_sli4_sge_type, sgl, 18547 LPFC_SGE_TYPE_DATA); 18548 offset += bde.tus.f.bdeSize; 18549 break; 18550 case CMD_FCP_TRSP64_WQE: 18551 bf_set(lpfc_sli4_sge_offset, sgl, 0); 18552 bf_set(lpfc_sli4_sge_type, sgl, 18553 LPFC_SGE_TYPE_DATA); 18554 break; 18555 case CMD_FCP_TSEND64_WQE: 18556 case CMD_FCP_TRECEIVE64_WQE: 18557 bf_set(lpfc_sli4_sge_type, sgl, 18558 bpl->tus.f.bdeFlags); 18559 if (i < 3) 18560 offset = 0; 18561 else 18562 offset += bde.tus.f.bdeSize; 18563 bf_set(lpfc_sli4_sge_offset, sgl, offset); 18564 break; 18565 } 18566 sgl->word2 = cpu_to_le32(sgl->word2); 18567 bpl++; 18568 sgl++; 18569 } 18570 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 18571 /* The addrHigh and addrLow fields of the BDE have not 18572 * been byteswapped yet so they need to be swapped 18573 * before putting them in the sgl. 18574 */ 18575 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 18576 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 18577 sgl->word2 = le32_to_cpu(sgl->word2); 18578 bf_set(lpfc_sli4_sge_last, sgl, 1); 18579 sgl->word2 = cpu_to_le32(sgl->word2); 18580 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 18581 } 18582 return sglq->sli4_xritag; 18583 } 18584 18585 /** 18586 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 18587 * @phba: Pointer to HBA context object. 18588 * @ring_number: Base sli ring number 18589 * @pwqe: Pointer to command WQE. 18590 **/ 18591 int 18592 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, uint32_t ring_number, 18593 struct lpfc_iocbq *pwqe) 18594 { 18595 union lpfc_wqe *wqe = &pwqe->wqe; 18596 struct lpfc_nvmet_rcv_ctx *ctxp; 18597 struct lpfc_queue *wq; 18598 struct lpfc_sglq *sglq; 18599 struct lpfc_sli_ring *pring; 18600 unsigned long iflags; 18601 18602 /* NVME_LS and NVME_LS ABTS requests. */ 18603 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { 18604 pring = phba->sli4_hba.nvmels_wq->pring; 18605 spin_lock_irqsave(&pring->ring_lock, iflags); 18606 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 18607 if (!sglq) { 18608 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18609 return WQE_BUSY; 18610 } 18611 pwqe->sli4_lxritag = sglq->sli4_lxritag; 18612 pwqe->sli4_xritag = sglq->sli4_xritag; 18613 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 18614 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18615 return WQE_ERROR; 18616 } 18617 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 18618 pwqe->sli4_xritag); 18619 if (lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe)) { 18620 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18621 return WQE_ERROR; 18622 } 18623 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 18624 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18625 return 0; 18626 } 18627 18628 /* NVME_FCREQ and NVME_ABTS requests */ 18629 if (pwqe->iocb_flag & LPFC_IO_NVME) { 18630 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 18631 pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring; 18632 18633 spin_lock_irqsave(&pring->ring_lock, iflags); 18634 wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]; 18635 bf_set(wqe_cqid, &wqe->generic.wqe_com, 18636 phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id); 18637 if (lpfc_sli4_wq_put(wq, wqe)) { 18638 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18639 return WQE_ERROR; 18640 } 18641 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 18642 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18643 return 0; 18644 } 18645 18646 /* NVMET requests */ 18647 if (pwqe->iocb_flag & LPFC_IO_NVMET) { 18648 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 18649 pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring; 18650 18651 spin_lock_irqsave(&pring->ring_lock, iflags); 18652 ctxp = pwqe->context2; 18653 sglq = ctxp->rqb_buffer->sglq; 18654 if (pwqe->sli4_xritag == NO_XRI) { 18655 pwqe->sli4_lxritag = sglq->sli4_lxritag; 18656 pwqe->sli4_xritag = sglq->sli4_xritag; 18657 } 18658 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 18659 pwqe->sli4_xritag); 18660 wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]; 18661 bf_set(wqe_cqid, &wqe->generic.wqe_com, 18662 phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id); 18663 if (lpfc_sli4_wq_put(wq, wqe)) { 18664 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18665 return WQE_ERROR; 18666 } 18667 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 18668 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18669 return 0; 18670 } 18671 return WQE_ERROR; 18672 } 18673