1 2 /******************************************************************* 3 * This file is part of the Emulex Linux Device Driver for * 4 * Fibre Channel Host Bus Adapters. * 5 * Copyright (C) 2017 Broadcom. All Rights Reserved. The term * 6 * “Broadcom” refers to Broadcom Limited and/or its subsidiaries. * 7 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 8 * EMULEX and SLI are trademarks of Emulex. * 9 * www.broadcom.com * 10 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 11 * * 12 * This program is free software; you can redistribute it and/or * 13 * modify it under the terms of version 2 of the GNU General * 14 * Public License as published by the Free Software Foundation. * 15 * This program is distributed in the hope that it will be useful. * 16 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 17 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 18 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 19 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 20 * TO BE LEGALLY INVALID. See the GNU General Public License for * 21 * more details, a copy of which can be found in the file COPYING * 22 * included with this package. * 23 *******************************************************************/ 24 25 #include <linux/blkdev.h> 26 #include <linux/pci.h> 27 #include <linux/interrupt.h> 28 #include <linux/delay.h> 29 #include <linux/slab.h> 30 #include <linux/lockdep.h> 31 32 #include <scsi/scsi.h> 33 #include <scsi/scsi_cmnd.h> 34 #include <scsi/scsi_device.h> 35 #include <scsi/scsi_host.h> 36 #include <scsi/scsi_transport_fc.h> 37 #include <scsi/fc/fc_fs.h> 38 #include <linux/aer.h> 39 40 #include <linux/nvme-fc-driver.h> 41 42 #include "lpfc_hw4.h" 43 #include "lpfc_hw.h" 44 #include "lpfc_sli.h" 45 #include "lpfc_sli4.h" 46 #include "lpfc_nl.h" 47 #include "lpfc_disc.h" 48 #include "lpfc.h" 49 #include "lpfc_scsi.h" 50 #include "lpfc_nvme.h" 51 #include "lpfc_nvmet.h" 52 #include "lpfc_crtn.h" 53 #include "lpfc_logmsg.h" 54 #include "lpfc_compat.h" 55 #include "lpfc_debugfs.h" 56 #include "lpfc_vport.h" 57 #include "lpfc_version.h" 58 59 /* There are only four IOCB completion types. */ 60 typedef enum _lpfc_iocb_type { 61 LPFC_UNKNOWN_IOCB, 62 LPFC_UNSOL_IOCB, 63 LPFC_SOL_IOCB, 64 LPFC_ABORT_IOCB 65 } lpfc_iocb_type; 66 67 68 /* Provide function prototypes local to this module. */ 69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 70 uint32_t); 71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint8_t *, uint32_t *); 73 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 74 struct lpfc_iocbq *); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static int lpfc_sli4_fp_handle_cqe(struct lpfc_hba *, struct lpfc_queue *, 80 struct lpfc_cqe *); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static int lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_eqe *eqe, uint32_t qidx); 85 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 86 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 87 static int lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba, 88 struct lpfc_sli_ring *pring, 89 struct lpfc_iocbq *cmdiocb); 90 91 static IOCB_t * 92 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 93 { 94 return &iocbq->iocb; 95 } 96 97 /** 98 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 99 * @q: The Work Queue to operate on. 100 * @wqe: The work Queue Entry to put on the Work queue. 101 * 102 * This routine will copy the contents of @wqe to the next available entry on 103 * the @q. This function will then ring the Work Queue Doorbell to signal the 104 * HBA to start processing the Work Queue Entry. This function returns 0 if 105 * successful. If no entries are available on @q then this function will return 106 * -ENOMEM. 107 * The caller is expected to hold the hbalock when calling this routine. 108 **/ 109 static int 110 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe *wqe) 111 { 112 union lpfc_wqe *temp_wqe; 113 struct lpfc_register doorbell; 114 uint32_t host_index; 115 uint32_t idx; 116 117 /* sanity check on queue memory */ 118 if (unlikely(!q)) 119 return -ENOMEM; 120 temp_wqe = q->qe[q->host_index].wqe; 121 122 /* If the host has not yet processed the next entry then we are done */ 123 idx = ((q->host_index + 1) % q->entry_count); 124 if (idx == q->hba_index) { 125 q->WQ_overflow++; 126 return -EBUSY; 127 } 128 q->WQ_posted++; 129 /* set consumption flag every once in a while */ 130 if (!((q->host_index + 1) % q->entry_repost)) 131 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 132 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 133 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 134 lpfc_sli_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 135 /* ensure WQE bcopy flushed before doorbell write */ 136 wmb(); 137 138 /* Update the host index before invoking device */ 139 host_index = q->host_index; 140 141 q->host_index = idx; 142 143 /* Ring Doorbell */ 144 doorbell.word0 = 0; 145 if (q->db_format == LPFC_DB_LIST_FORMAT) { 146 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 147 bf_set(lpfc_wq_db_list_fm_index, &doorbell, host_index); 148 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 149 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 150 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 151 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 152 } else { 153 return -EINVAL; 154 } 155 writel(doorbell.word0, q->db_regaddr); 156 157 return 0; 158 } 159 160 /** 161 * lpfc_sli4_wq_release - Updates internal hba index for WQ 162 * @q: The Work Queue to operate on. 163 * @index: The index to advance the hba index to. 164 * 165 * This routine will update the HBA index of a queue to reflect consumption of 166 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 167 * an entry the host calls this function to update the queue's internal 168 * pointers. This routine returns the number of entries that were consumed by 169 * the HBA. 170 **/ 171 static uint32_t 172 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 173 { 174 uint32_t released = 0; 175 176 /* sanity check on queue memory */ 177 if (unlikely(!q)) 178 return 0; 179 180 if (q->hba_index == index) 181 return 0; 182 do { 183 q->hba_index = ((q->hba_index + 1) % q->entry_count); 184 released++; 185 } while (q->hba_index != index); 186 return released; 187 } 188 189 /** 190 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 191 * @q: The Mailbox Queue to operate on. 192 * @wqe: The Mailbox Queue Entry to put on the Work queue. 193 * 194 * This routine will copy the contents of @mqe to the next available entry on 195 * the @q. This function will then ring the Work Queue Doorbell to signal the 196 * HBA to start processing the Work Queue Entry. This function returns 0 if 197 * successful. If no entries are available on @q then this function will return 198 * -ENOMEM. 199 * The caller is expected to hold the hbalock when calling this routine. 200 **/ 201 static uint32_t 202 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 203 { 204 struct lpfc_mqe *temp_mqe; 205 struct lpfc_register doorbell; 206 207 /* sanity check on queue memory */ 208 if (unlikely(!q)) 209 return -ENOMEM; 210 temp_mqe = q->qe[q->host_index].mqe; 211 212 /* If the host has not yet processed the next entry then we are done */ 213 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 214 return -ENOMEM; 215 lpfc_sli_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 216 /* Save off the mailbox pointer for completion */ 217 q->phba->mbox = (MAILBOX_t *)temp_mqe; 218 219 /* Update the host index before invoking device */ 220 q->host_index = ((q->host_index + 1) % q->entry_count); 221 222 /* Ring Doorbell */ 223 doorbell.word0 = 0; 224 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 225 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 226 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 227 return 0; 228 } 229 230 /** 231 * lpfc_sli4_mq_release - Updates internal hba index for MQ 232 * @q: The Mailbox Queue to operate on. 233 * 234 * This routine will update the HBA index of a queue to reflect consumption of 235 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 236 * an entry the host calls this function to update the queue's internal 237 * pointers. This routine returns the number of entries that were consumed by 238 * the HBA. 239 **/ 240 static uint32_t 241 lpfc_sli4_mq_release(struct lpfc_queue *q) 242 { 243 /* sanity check on queue memory */ 244 if (unlikely(!q)) 245 return 0; 246 247 /* Clear the mailbox pointer for completion */ 248 q->phba->mbox = NULL; 249 q->hba_index = ((q->hba_index + 1) % q->entry_count); 250 return 1; 251 } 252 253 /** 254 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 255 * @q: The Event Queue to get the first valid EQE from 256 * 257 * This routine will get the first valid Event Queue Entry from @q, update 258 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 259 * the Queue (no more work to do), or the Queue is full of EQEs that have been 260 * processed, but not popped back to the HBA then this routine will return NULL. 261 **/ 262 static struct lpfc_eqe * 263 lpfc_sli4_eq_get(struct lpfc_queue *q) 264 { 265 struct lpfc_eqe *eqe; 266 uint32_t idx; 267 268 /* sanity check on queue memory */ 269 if (unlikely(!q)) 270 return NULL; 271 eqe = q->qe[q->hba_index].eqe; 272 273 /* If the next EQE is not valid then we are done */ 274 if (!bf_get_le32(lpfc_eqe_valid, eqe)) 275 return NULL; 276 /* If the host has not yet processed the next entry then we are done */ 277 idx = ((q->hba_index + 1) % q->entry_count); 278 if (idx == q->host_index) 279 return NULL; 280 281 q->hba_index = idx; 282 283 /* 284 * insert barrier for instruction interlock : data from the hardware 285 * must have the valid bit checked before it can be copied and acted 286 * upon. Speculative instructions were allowing a bcopy at the start 287 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 288 * after our return, to copy data before the valid bit check above 289 * was done. As such, some of the copied data was stale. The barrier 290 * ensures the check is before any data is copied. 291 */ 292 mb(); 293 return eqe; 294 } 295 296 /** 297 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 298 * @q: The Event Queue to disable interrupts 299 * 300 **/ 301 static inline void 302 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 303 { 304 struct lpfc_register doorbell; 305 306 doorbell.word0 = 0; 307 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 308 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 309 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 310 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 311 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 312 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 313 } 314 315 /** 316 * lpfc_sli4_eq_release - Indicates the host has finished processing an EQ 317 * @q: The Event Queue that the host has completed processing for. 318 * @arm: Indicates whether the host wants to arms this CQ. 319 * 320 * This routine will mark all Event Queue Entries on @q, from the last 321 * known completed entry to the last entry that was processed, as completed 322 * by clearing the valid bit for each completion queue entry. Then it will 323 * notify the HBA, by ringing the doorbell, that the EQEs have been processed. 324 * The internal host index in the @q will be updated by this routine to indicate 325 * that the host has finished processing the entries. The @arm parameter 326 * indicates that the queue should be rearmed when ringing the doorbell. 327 * 328 * This function will return the number of EQEs that were popped. 329 **/ 330 uint32_t 331 lpfc_sli4_eq_release(struct lpfc_queue *q, bool arm) 332 { 333 uint32_t released = 0; 334 struct lpfc_eqe *temp_eqe; 335 struct lpfc_register doorbell; 336 337 /* sanity check on queue memory */ 338 if (unlikely(!q)) 339 return 0; 340 341 /* while there are valid entries */ 342 while (q->hba_index != q->host_index) { 343 temp_eqe = q->qe[q->host_index].eqe; 344 bf_set_le32(lpfc_eqe_valid, temp_eqe, 0); 345 released++; 346 q->host_index = ((q->host_index + 1) % q->entry_count); 347 } 348 if (unlikely(released == 0 && !arm)) 349 return 0; 350 351 /* ring doorbell for number popped */ 352 doorbell.word0 = 0; 353 if (arm) { 354 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 355 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 356 } 357 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 358 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 359 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 360 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 361 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 362 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 363 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 364 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 365 readl(q->phba->sli4_hba.EQCQDBregaddr); 366 return released; 367 } 368 369 /** 370 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 371 * @q: The Completion Queue to get the first valid CQE from 372 * 373 * This routine will get the first valid Completion Queue Entry from @q, update 374 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 375 * the Queue (no more work to do), or the Queue is full of CQEs that have been 376 * processed, but not popped back to the HBA then this routine will return NULL. 377 **/ 378 static struct lpfc_cqe * 379 lpfc_sli4_cq_get(struct lpfc_queue *q) 380 { 381 struct lpfc_cqe *cqe; 382 uint32_t idx; 383 384 /* sanity check on queue memory */ 385 if (unlikely(!q)) 386 return NULL; 387 388 /* If the next CQE is not valid then we are done */ 389 if (!bf_get_le32(lpfc_cqe_valid, q->qe[q->hba_index].cqe)) 390 return NULL; 391 /* If the host has not yet processed the next entry then we are done */ 392 idx = ((q->hba_index + 1) % q->entry_count); 393 if (idx == q->host_index) 394 return NULL; 395 396 cqe = q->qe[q->hba_index].cqe; 397 q->hba_index = idx; 398 399 /* 400 * insert barrier for instruction interlock : data from the hardware 401 * must have the valid bit checked before it can be copied and acted 402 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 403 * instructions allowing action on content before valid bit checked, 404 * add barrier here as well. May not be needed as "content" is a 405 * single 32-bit entity here (vs multi word structure for cq's). 406 */ 407 mb(); 408 return cqe; 409 } 410 411 /** 412 * lpfc_sli4_cq_release - Indicates the host has finished processing a CQ 413 * @q: The Completion Queue that the host has completed processing for. 414 * @arm: Indicates whether the host wants to arms this CQ. 415 * 416 * This routine will mark all Completion queue entries on @q, from the last 417 * known completed entry to the last entry that was processed, as completed 418 * by clearing the valid bit for each completion queue entry. Then it will 419 * notify the HBA, by ringing the doorbell, that the CQEs have been processed. 420 * The internal host index in the @q will be updated by this routine to indicate 421 * that the host has finished processing the entries. The @arm parameter 422 * indicates that the queue should be rearmed when ringing the doorbell. 423 * 424 * This function will return the number of CQEs that were released. 425 **/ 426 uint32_t 427 lpfc_sli4_cq_release(struct lpfc_queue *q, bool arm) 428 { 429 uint32_t released = 0; 430 struct lpfc_cqe *temp_qe; 431 struct lpfc_register doorbell; 432 433 /* sanity check on queue memory */ 434 if (unlikely(!q)) 435 return 0; 436 /* while there are valid entries */ 437 while (q->hba_index != q->host_index) { 438 temp_qe = q->qe[q->host_index].cqe; 439 bf_set_le32(lpfc_cqe_valid, temp_qe, 0); 440 released++; 441 q->host_index = ((q->host_index + 1) % q->entry_count); 442 } 443 if (unlikely(released == 0 && !arm)) 444 return 0; 445 446 /* ring doorbell for number popped */ 447 doorbell.word0 = 0; 448 if (arm) 449 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 450 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 451 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 452 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 453 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 454 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 455 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 456 return released; 457 } 458 459 /** 460 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 461 * @q: The Header Receive Queue to operate on. 462 * @wqe: The Receive Queue Entry to put on the Receive queue. 463 * 464 * This routine will copy the contents of @wqe to the next available entry on 465 * the @q. This function will then ring the Receive Queue Doorbell to signal the 466 * HBA to start processing the Receive Queue Entry. This function returns the 467 * index that the rqe was copied to if successful. If no entries are available 468 * on @q then this function will return -ENOMEM. 469 * The caller is expected to hold the hbalock when calling this routine. 470 **/ 471 int 472 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 473 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 474 { 475 struct lpfc_rqe *temp_hrqe; 476 struct lpfc_rqe *temp_drqe; 477 struct lpfc_register doorbell; 478 int put_index; 479 480 /* sanity check on queue memory */ 481 if (unlikely(!hq) || unlikely(!dq)) 482 return -ENOMEM; 483 put_index = hq->host_index; 484 temp_hrqe = hq->qe[put_index].rqe; 485 temp_drqe = dq->qe[dq->host_index].rqe; 486 487 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 488 return -EINVAL; 489 if (put_index != dq->host_index) 490 return -EINVAL; 491 /* If the host has not yet processed the next entry then we are done */ 492 if (((put_index + 1) % hq->entry_count) == hq->hba_index) 493 return -EBUSY; 494 lpfc_sli_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 495 lpfc_sli_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 496 497 /* Update the host index to point to the next slot */ 498 hq->host_index = ((put_index + 1) % hq->entry_count); 499 dq->host_index = ((dq->host_index + 1) % dq->entry_count); 500 hq->RQ_buf_posted++; 501 502 /* Ring The Header Receive Queue Doorbell */ 503 if (!(hq->host_index % hq->entry_repost)) { 504 doorbell.word0 = 0; 505 if (hq->db_format == LPFC_DB_RING_FORMAT) { 506 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 507 hq->entry_repost); 508 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 509 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 510 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 511 hq->entry_repost); 512 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 513 hq->host_index); 514 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 515 } else { 516 return -EINVAL; 517 } 518 writel(doorbell.word0, hq->db_regaddr); 519 } 520 return put_index; 521 } 522 523 /** 524 * lpfc_sli4_rq_release - Updates internal hba index for RQ 525 * @q: The Header Receive Queue to operate on. 526 * 527 * This routine will update the HBA index of a queue to reflect consumption of 528 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 529 * consumed an entry the host calls this function to update the queue's 530 * internal pointers. This routine returns the number of entries that were 531 * consumed by the HBA. 532 **/ 533 static uint32_t 534 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 535 { 536 /* sanity check on queue memory */ 537 if (unlikely(!hq) || unlikely(!dq)) 538 return 0; 539 540 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 541 return 0; 542 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 543 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 544 return 1; 545 } 546 547 /** 548 * lpfc_cmd_iocb - Get next command iocb entry in the ring 549 * @phba: Pointer to HBA context object. 550 * @pring: Pointer to driver SLI ring object. 551 * 552 * This function returns pointer to next command iocb entry 553 * in the command ring. The caller must hold hbalock to prevent 554 * other threads consume the next command iocb. 555 * SLI-2/SLI-3 provide different sized iocbs. 556 **/ 557 static inline IOCB_t * 558 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 559 { 560 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 561 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 562 } 563 564 /** 565 * lpfc_resp_iocb - Get next response iocb entry in the ring 566 * @phba: Pointer to HBA context object. 567 * @pring: Pointer to driver SLI ring object. 568 * 569 * This function returns pointer to next response iocb entry 570 * in the response ring. The caller must hold hbalock to make sure 571 * that no other thread consume the next response iocb. 572 * SLI-2/SLI-3 provide different sized iocbs. 573 **/ 574 static inline IOCB_t * 575 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 576 { 577 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 578 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 579 } 580 581 /** 582 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 583 * @phba: Pointer to HBA context object. 584 * 585 * This function is called with hbalock held. This function 586 * allocates a new driver iocb object from the iocb pool. If the 587 * allocation is successful, it returns pointer to the newly 588 * allocated iocb object else it returns NULL. 589 **/ 590 struct lpfc_iocbq * 591 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 592 { 593 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 594 struct lpfc_iocbq * iocbq = NULL; 595 596 lockdep_assert_held(&phba->hbalock); 597 598 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 599 if (iocbq) 600 phba->iocb_cnt++; 601 if (phba->iocb_cnt > phba->iocb_max) 602 phba->iocb_max = phba->iocb_cnt; 603 return iocbq; 604 } 605 606 /** 607 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 608 * @phba: Pointer to HBA context object. 609 * @xritag: XRI value. 610 * 611 * This function clears the sglq pointer from the array of acive 612 * sglq's. The xritag that is passed in is used to index into the 613 * array. Before the xritag can be used it needs to be adjusted 614 * by subtracting the xribase. 615 * 616 * Returns sglq ponter = success, NULL = Failure. 617 **/ 618 struct lpfc_sglq * 619 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 620 { 621 struct lpfc_sglq *sglq; 622 623 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 624 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 625 return sglq; 626 } 627 628 /** 629 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 630 * @phba: Pointer to HBA context object. 631 * @xritag: XRI value. 632 * 633 * This function returns the sglq pointer from the array of acive 634 * sglq's. The xritag that is passed in is used to index into the 635 * array. Before the xritag can be used it needs to be adjusted 636 * by subtracting the xribase. 637 * 638 * Returns sglq ponter = success, NULL = Failure. 639 **/ 640 struct lpfc_sglq * 641 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 642 { 643 struct lpfc_sglq *sglq; 644 645 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 646 return sglq; 647 } 648 649 /** 650 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 651 * @phba: Pointer to HBA context object. 652 * @xritag: xri used in this exchange. 653 * @rrq: The RRQ to be cleared. 654 * 655 **/ 656 void 657 lpfc_clr_rrq_active(struct lpfc_hba *phba, 658 uint16_t xritag, 659 struct lpfc_node_rrq *rrq) 660 { 661 struct lpfc_nodelist *ndlp = NULL; 662 663 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp)) 664 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 665 666 /* The target DID could have been swapped (cable swap) 667 * we should use the ndlp from the findnode if it is 668 * available. 669 */ 670 if ((!ndlp) && rrq->ndlp) 671 ndlp = rrq->ndlp; 672 673 if (!ndlp) 674 goto out; 675 676 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 677 rrq->send_rrq = 0; 678 rrq->xritag = 0; 679 rrq->rrq_stop_time = 0; 680 } 681 out: 682 mempool_free(rrq, phba->rrq_pool); 683 } 684 685 /** 686 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 687 * @phba: Pointer to HBA context object. 688 * 689 * This function is called with hbalock held. This function 690 * Checks if stop_time (ratov from setting rrq active) has 691 * been reached, if it has and the send_rrq flag is set then 692 * it will call lpfc_send_rrq. If the send_rrq flag is not set 693 * then it will just call the routine to clear the rrq and 694 * free the rrq resource. 695 * The timer is set to the next rrq that is going to expire before 696 * leaving the routine. 697 * 698 **/ 699 void 700 lpfc_handle_rrq_active(struct lpfc_hba *phba) 701 { 702 struct lpfc_node_rrq *rrq; 703 struct lpfc_node_rrq *nextrrq; 704 unsigned long next_time; 705 unsigned long iflags; 706 LIST_HEAD(send_rrq); 707 708 spin_lock_irqsave(&phba->hbalock, iflags); 709 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 710 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 711 list_for_each_entry_safe(rrq, nextrrq, 712 &phba->active_rrq_list, list) { 713 if (time_after(jiffies, rrq->rrq_stop_time)) 714 list_move(&rrq->list, &send_rrq); 715 else if (time_before(rrq->rrq_stop_time, next_time)) 716 next_time = rrq->rrq_stop_time; 717 } 718 spin_unlock_irqrestore(&phba->hbalock, iflags); 719 if ((!list_empty(&phba->active_rrq_list)) && 720 (!(phba->pport->load_flag & FC_UNLOADING))) 721 mod_timer(&phba->rrq_tmr, next_time); 722 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 723 list_del(&rrq->list); 724 if (!rrq->send_rrq) 725 /* this call will free the rrq */ 726 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 727 else if (lpfc_send_rrq(phba, rrq)) { 728 /* if we send the rrq then the completion handler 729 * will clear the bit in the xribitmap. 730 */ 731 lpfc_clr_rrq_active(phba, rrq->xritag, 732 rrq); 733 } 734 } 735 } 736 737 /** 738 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 739 * @vport: Pointer to vport context object. 740 * @xri: The xri used in the exchange. 741 * @did: The targets DID for this exchange. 742 * 743 * returns NULL = rrq not found in the phba->active_rrq_list. 744 * rrq = rrq for this xri and target. 745 **/ 746 struct lpfc_node_rrq * 747 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 748 { 749 struct lpfc_hba *phba = vport->phba; 750 struct lpfc_node_rrq *rrq; 751 struct lpfc_node_rrq *nextrrq; 752 unsigned long iflags; 753 754 if (phba->sli_rev != LPFC_SLI_REV4) 755 return NULL; 756 spin_lock_irqsave(&phba->hbalock, iflags); 757 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 758 if (rrq->vport == vport && rrq->xritag == xri && 759 rrq->nlp_DID == did){ 760 list_del(&rrq->list); 761 spin_unlock_irqrestore(&phba->hbalock, iflags); 762 return rrq; 763 } 764 } 765 spin_unlock_irqrestore(&phba->hbalock, iflags); 766 return NULL; 767 } 768 769 /** 770 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 771 * @vport: Pointer to vport context object. 772 * @ndlp: Pointer to the lpfc_node_list structure. 773 * If ndlp is NULL Remove all active RRQs for this vport from the 774 * phba->active_rrq_list and clear the rrq. 775 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 776 **/ 777 void 778 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 779 780 { 781 struct lpfc_hba *phba = vport->phba; 782 struct lpfc_node_rrq *rrq; 783 struct lpfc_node_rrq *nextrrq; 784 unsigned long iflags; 785 LIST_HEAD(rrq_list); 786 787 if (phba->sli_rev != LPFC_SLI_REV4) 788 return; 789 if (!ndlp) { 790 lpfc_sli4_vport_delete_els_xri_aborted(vport); 791 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 792 } 793 spin_lock_irqsave(&phba->hbalock, iflags); 794 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) 795 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp)) 796 list_move(&rrq->list, &rrq_list); 797 spin_unlock_irqrestore(&phba->hbalock, iflags); 798 799 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 800 list_del(&rrq->list); 801 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 802 } 803 } 804 805 /** 806 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 807 * @phba: Pointer to HBA context object. 808 * @ndlp: Targets nodelist pointer for this exchange. 809 * @xritag the xri in the bitmap to test. 810 * 811 * This function is called with hbalock held. This function 812 * returns 0 = rrq not active for this xri 813 * 1 = rrq is valid for this xri. 814 **/ 815 int 816 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 817 uint16_t xritag) 818 { 819 lockdep_assert_held(&phba->hbalock); 820 if (!ndlp) 821 return 0; 822 if (!ndlp->active_rrqs_xri_bitmap) 823 return 0; 824 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 825 return 1; 826 else 827 return 0; 828 } 829 830 /** 831 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 832 * @phba: Pointer to HBA context object. 833 * @ndlp: nodelist pointer for this target. 834 * @xritag: xri used in this exchange. 835 * @rxid: Remote Exchange ID. 836 * @send_rrq: Flag used to determine if we should send rrq els cmd. 837 * 838 * This function takes the hbalock. 839 * The active bit is always set in the active rrq xri_bitmap even 840 * if there is no slot avaiable for the other rrq information. 841 * 842 * returns 0 rrq actived for this xri 843 * < 0 No memory or invalid ndlp. 844 **/ 845 int 846 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 847 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 848 { 849 unsigned long iflags; 850 struct lpfc_node_rrq *rrq; 851 int empty; 852 853 if (!ndlp) 854 return -EINVAL; 855 856 if (!phba->cfg_enable_rrq) 857 return -EINVAL; 858 859 spin_lock_irqsave(&phba->hbalock, iflags); 860 if (phba->pport->load_flag & FC_UNLOADING) { 861 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 862 goto out; 863 } 864 865 /* 866 * set the active bit even if there is no mem available. 867 */ 868 if (NLP_CHK_FREE_REQ(ndlp)) 869 goto out; 870 871 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 872 goto out; 873 874 if (!ndlp->active_rrqs_xri_bitmap) 875 goto out; 876 877 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 878 goto out; 879 880 spin_unlock_irqrestore(&phba->hbalock, iflags); 881 rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL); 882 if (!rrq) { 883 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 884 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 885 " DID:0x%x Send:%d\n", 886 xritag, rxid, ndlp->nlp_DID, send_rrq); 887 return -EINVAL; 888 } 889 if (phba->cfg_enable_rrq == 1) 890 rrq->send_rrq = send_rrq; 891 else 892 rrq->send_rrq = 0; 893 rrq->xritag = xritag; 894 rrq->rrq_stop_time = jiffies + 895 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 896 rrq->ndlp = ndlp; 897 rrq->nlp_DID = ndlp->nlp_DID; 898 rrq->vport = ndlp->vport; 899 rrq->rxid = rxid; 900 spin_lock_irqsave(&phba->hbalock, iflags); 901 empty = list_empty(&phba->active_rrq_list); 902 list_add_tail(&rrq->list, &phba->active_rrq_list); 903 phba->hba_flag |= HBA_RRQ_ACTIVE; 904 if (empty) 905 lpfc_worker_wake_up(phba); 906 spin_unlock_irqrestore(&phba->hbalock, iflags); 907 return 0; 908 out: 909 spin_unlock_irqrestore(&phba->hbalock, iflags); 910 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 911 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 912 " DID:0x%x Send:%d\n", 913 xritag, rxid, ndlp->nlp_DID, send_rrq); 914 return -EINVAL; 915 } 916 917 /** 918 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 919 * @phba: Pointer to HBA context object. 920 * @piocb: Pointer to the iocbq. 921 * 922 * This function is called with the ring lock held. This function 923 * gets a new driver sglq object from the sglq list. If the 924 * list is not empty then it is successful, it returns pointer to the newly 925 * allocated sglq object else it returns NULL. 926 **/ 927 static struct lpfc_sglq * 928 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 929 { 930 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 931 struct lpfc_sglq *sglq = NULL; 932 struct lpfc_sglq *start_sglq = NULL; 933 struct lpfc_scsi_buf *lpfc_cmd; 934 struct lpfc_nodelist *ndlp; 935 int found = 0; 936 937 lockdep_assert_held(&phba->hbalock); 938 939 if (piocbq->iocb_flag & LPFC_IO_FCP) { 940 lpfc_cmd = (struct lpfc_scsi_buf *) piocbq->context1; 941 ndlp = lpfc_cmd->rdata->pnode; 942 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 943 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 944 ndlp = piocbq->context_un.ndlp; 945 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 946 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 947 ndlp = NULL; 948 else 949 ndlp = piocbq->context_un.ndlp; 950 } else { 951 ndlp = piocbq->context1; 952 } 953 954 spin_lock(&phba->sli4_hba.sgl_list_lock); 955 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 956 start_sglq = sglq; 957 while (!found) { 958 if (!sglq) 959 break; 960 if (ndlp && ndlp->active_rrqs_xri_bitmap && 961 test_bit(sglq->sli4_lxritag, 962 ndlp->active_rrqs_xri_bitmap)) { 963 /* This xri has an rrq outstanding for this DID. 964 * put it back in the list and get another xri. 965 */ 966 list_add_tail(&sglq->list, lpfc_els_sgl_list); 967 sglq = NULL; 968 list_remove_head(lpfc_els_sgl_list, sglq, 969 struct lpfc_sglq, list); 970 if (sglq == start_sglq) { 971 list_add_tail(&sglq->list, lpfc_els_sgl_list); 972 sglq = NULL; 973 break; 974 } else 975 continue; 976 } 977 sglq->ndlp = ndlp; 978 found = 1; 979 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 980 sglq->state = SGL_ALLOCATED; 981 } 982 spin_unlock(&phba->sli4_hba.sgl_list_lock); 983 return sglq; 984 } 985 986 /** 987 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 988 * @phba: Pointer to HBA context object. 989 * @piocb: Pointer to the iocbq. 990 * 991 * This function is called with the sgl_list lock held. This function 992 * gets a new driver sglq object from the sglq list. If the 993 * list is not empty then it is successful, it returns pointer to the newly 994 * allocated sglq object else it returns NULL. 995 **/ 996 struct lpfc_sglq * 997 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 998 { 999 struct list_head *lpfc_nvmet_sgl_list; 1000 struct lpfc_sglq *sglq = NULL; 1001 1002 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1003 1004 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1005 1006 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1007 if (!sglq) 1008 return NULL; 1009 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1010 sglq->state = SGL_ALLOCATED; 1011 return sglq; 1012 } 1013 1014 /** 1015 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1016 * @phba: Pointer to HBA context object. 1017 * 1018 * This function is called with no lock held. This function 1019 * allocates a new driver iocb object from the iocb pool. If the 1020 * allocation is successful, it returns pointer to the newly 1021 * allocated iocb object else it returns NULL. 1022 **/ 1023 struct lpfc_iocbq * 1024 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1025 { 1026 struct lpfc_iocbq * iocbq = NULL; 1027 unsigned long iflags; 1028 1029 spin_lock_irqsave(&phba->hbalock, iflags); 1030 iocbq = __lpfc_sli_get_iocbq(phba); 1031 spin_unlock_irqrestore(&phba->hbalock, iflags); 1032 return iocbq; 1033 } 1034 1035 /** 1036 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1037 * @phba: Pointer to HBA context object. 1038 * @iocbq: Pointer to driver iocb object. 1039 * 1040 * This function is called with hbalock held to release driver 1041 * iocb object to the iocb pool. The iotag in the iocb object 1042 * does not change for each use of the iocb object. This function 1043 * clears all other fields of the iocb object when it is freed. 1044 * The sqlq structure that holds the xritag and phys and virtual 1045 * mappings for the scatter gather list is retrieved from the 1046 * active array of sglq. The get of the sglq pointer also clears 1047 * the entry in the array. If the status of the IO indiactes that 1048 * this IO was aborted then the sglq entry it put on the 1049 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1050 * IO has good status or fails for any other reason then the sglq 1051 * entry is added to the free list (lpfc_els_sgl_list). 1052 **/ 1053 static void 1054 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1055 { 1056 struct lpfc_sglq *sglq; 1057 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1058 unsigned long iflag = 0; 1059 struct lpfc_sli_ring *pring; 1060 1061 lockdep_assert_held(&phba->hbalock); 1062 1063 if (iocbq->sli4_xritag == NO_XRI) 1064 sglq = NULL; 1065 else 1066 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1067 1068 1069 if (sglq) { 1070 if (iocbq->iocb_flag & LPFC_IO_NVMET) { 1071 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1072 iflag); 1073 sglq->state = SGL_FREED; 1074 sglq->ndlp = NULL; 1075 list_add_tail(&sglq->list, 1076 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1077 spin_unlock_irqrestore( 1078 &phba->sli4_hba.sgl_list_lock, iflag); 1079 goto out; 1080 } 1081 1082 pring = phba->sli4_hba.els_wq->pring; 1083 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1084 (sglq->state != SGL_XRI_ABORTED)) { 1085 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1086 iflag); 1087 list_add(&sglq->list, 1088 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1089 spin_unlock_irqrestore( 1090 &phba->sli4_hba.sgl_list_lock, iflag); 1091 } else { 1092 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1093 iflag); 1094 sglq->state = SGL_FREED; 1095 sglq->ndlp = NULL; 1096 list_add_tail(&sglq->list, 1097 &phba->sli4_hba.lpfc_els_sgl_list); 1098 spin_unlock_irqrestore( 1099 &phba->sli4_hba.sgl_list_lock, iflag); 1100 1101 /* Check if TXQ queue needs to be serviced */ 1102 if (!list_empty(&pring->txq)) 1103 lpfc_worker_wake_up(phba); 1104 } 1105 } 1106 1107 out: 1108 /* 1109 * Clean all volatile data fields, preserve iotag and node struct. 1110 */ 1111 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1112 iocbq->sli4_lxritag = NO_XRI; 1113 iocbq->sli4_xritag = NO_XRI; 1114 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | 1115 LPFC_IO_NVME_LS); 1116 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1117 } 1118 1119 1120 /** 1121 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1122 * @phba: Pointer to HBA context object. 1123 * @iocbq: Pointer to driver iocb object. 1124 * 1125 * This function is called with hbalock held to release driver 1126 * iocb object to the iocb pool. The iotag in the iocb object 1127 * does not change for each use of the iocb object. This function 1128 * clears all other fields of the iocb object when it is freed. 1129 **/ 1130 static void 1131 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1132 { 1133 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1134 1135 lockdep_assert_held(&phba->hbalock); 1136 1137 /* 1138 * Clean all volatile data fields, preserve iotag and node struct. 1139 */ 1140 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1141 iocbq->sli4_xritag = NO_XRI; 1142 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1143 } 1144 1145 /** 1146 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1147 * @phba: Pointer to HBA context object. 1148 * @iocbq: Pointer to driver iocb object. 1149 * 1150 * This function is called with hbalock held to release driver 1151 * iocb object to the iocb pool. The iotag in the iocb object 1152 * does not change for each use of the iocb object. This function 1153 * clears all other fields of the iocb object when it is freed. 1154 **/ 1155 static void 1156 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1157 { 1158 lockdep_assert_held(&phba->hbalock); 1159 1160 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1161 phba->iocb_cnt--; 1162 } 1163 1164 /** 1165 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1166 * @phba: Pointer to HBA context object. 1167 * @iocbq: Pointer to driver iocb object. 1168 * 1169 * This function is called with no lock held to release the iocb to 1170 * iocb pool. 1171 **/ 1172 void 1173 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1174 { 1175 unsigned long iflags; 1176 1177 /* 1178 * Clean all volatile data fields, preserve iotag and node struct. 1179 */ 1180 spin_lock_irqsave(&phba->hbalock, iflags); 1181 __lpfc_sli_release_iocbq(phba, iocbq); 1182 spin_unlock_irqrestore(&phba->hbalock, iflags); 1183 } 1184 1185 /** 1186 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1187 * @phba: Pointer to HBA context object. 1188 * @iocblist: List of IOCBs. 1189 * @ulpstatus: ULP status in IOCB command field. 1190 * @ulpWord4: ULP word-4 in IOCB command field. 1191 * 1192 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1193 * on the list by invoking the complete callback function associated with the 1194 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1195 * fields. 1196 **/ 1197 void 1198 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1199 uint32_t ulpstatus, uint32_t ulpWord4) 1200 { 1201 struct lpfc_iocbq *piocb; 1202 1203 while (!list_empty(iocblist)) { 1204 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1205 if (!piocb->iocb_cmpl) 1206 lpfc_sli_release_iocbq(phba, piocb); 1207 else { 1208 piocb->iocb.ulpStatus = ulpstatus; 1209 piocb->iocb.un.ulpWord[4] = ulpWord4; 1210 (piocb->iocb_cmpl) (phba, piocb, piocb); 1211 } 1212 } 1213 return; 1214 } 1215 1216 /** 1217 * lpfc_sli_iocb_cmd_type - Get the iocb type 1218 * @iocb_cmnd: iocb command code. 1219 * 1220 * This function is called by ring event handler function to get the iocb type. 1221 * This function translates the iocb command to an iocb command type used to 1222 * decide the final disposition of each completed IOCB. 1223 * The function returns 1224 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1225 * LPFC_SOL_IOCB if it is a solicited iocb completion 1226 * LPFC_ABORT_IOCB if it is an abort iocb 1227 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1228 * 1229 * The caller is not required to hold any lock. 1230 **/ 1231 static lpfc_iocb_type 1232 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1233 { 1234 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1235 1236 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1237 return 0; 1238 1239 switch (iocb_cmnd) { 1240 case CMD_XMIT_SEQUENCE_CR: 1241 case CMD_XMIT_SEQUENCE_CX: 1242 case CMD_XMIT_BCAST_CN: 1243 case CMD_XMIT_BCAST_CX: 1244 case CMD_ELS_REQUEST_CR: 1245 case CMD_ELS_REQUEST_CX: 1246 case CMD_CREATE_XRI_CR: 1247 case CMD_CREATE_XRI_CX: 1248 case CMD_GET_RPI_CN: 1249 case CMD_XMIT_ELS_RSP_CX: 1250 case CMD_GET_RPI_CR: 1251 case CMD_FCP_IWRITE_CR: 1252 case CMD_FCP_IWRITE_CX: 1253 case CMD_FCP_IREAD_CR: 1254 case CMD_FCP_IREAD_CX: 1255 case CMD_FCP_ICMND_CR: 1256 case CMD_FCP_ICMND_CX: 1257 case CMD_FCP_TSEND_CX: 1258 case CMD_FCP_TRSP_CX: 1259 case CMD_FCP_TRECEIVE_CX: 1260 case CMD_FCP_AUTO_TRSP_CX: 1261 case CMD_ADAPTER_MSG: 1262 case CMD_ADAPTER_DUMP: 1263 case CMD_XMIT_SEQUENCE64_CR: 1264 case CMD_XMIT_SEQUENCE64_CX: 1265 case CMD_XMIT_BCAST64_CN: 1266 case CMD_XMIT_BCAST64_CX: 1267 case CMD_ELS_REQUEST64_CR: 1268 case CMD_ELS_REQUEST64_CX: 1269 case CMD_FCP_IWRITE64_CR: 1270 case CMD_FCP_IWRITE64_CX: 1271 case CMD_FCP_IREAD64_CR: 1272 case CMD_FCP_IREAD64_CX: 1273 case CMD_FCP_ICMND64_CR: 1274 case CMD_FCP_ICMND64_CX: 1275 case CMD_FCP_TSEND64_CX: 1276 case CMD_FCP_TRSP64_CX: 1277 case CMD_FCP_TRECEIVE64_CX: 1278 case CMD_GEN_REQUEST64_CR: 1279 case CMD_GEN_REQUEST64_CX: 1280 case CMD_XMIT_ELS_RSP64_CX: 1281 case DSSCMD_IWRITE64_CR: 1282 case DSSCMD_IWRITE64_CX: 1283 case DSSCMD_IREAD64_CR: 1284 case DSSCMD_IREAD64_CX: 1285 type = LPFC_SOL_IOCB; 1286 break; 1287 case CMD_ABORT_XRI_CN: 1288 case CMD_ABORT_XRI_CX: 1289 case CMD_CLOSE_XRI_CN: 1290 case CMD_CLOSE_XRI_CX: 1291 case CMD_XRI_ABORTED_CX: 1292 case CMD_ABORT_MXRI64_CN: 1293 case CMD_XMIT_BLS_RSP64_CX: 1294 type = LPFC_ABORT_IOCB; 1295 break; 1296 case CMD_RCV_SEQUENCE_CX: 1297 case CMD_RCV_ELS_REQ_CX: 1298 case CMD_RCV_SEQUENCE64_CX: 1299 case CMD_RCV_ELS_REQ64_CX: 1300 case CMD_ASYNC_STATUS: 1301 case CMD_IOCB_RCV_SEQ64_CX: 1302 case CMD_IOCB_RCV_ELS64_CX: 1303 case CMD_IOCB_RCV_CONT64_CX: 1304 case CMD_IOCB_RET_XRI64_CX: 1305 type = LPFC_UNSOL_IOCB; 1306 break; 1307 case CMD_IOCB_XMIT_MSEQ64_CR: 1308 case CMD_IOCB_XMIT_MSEQ64_CX: 1309 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1310 case CMD_IOCB_RCV_ELS_LIST64_CX: 1311 case CMD_IOCB_CLOSE_EXTENDED_CN: 1312 case CMD_IOCB_ABORT_EXTENDED_CN: 1313 case CMD_IOCB_RET_HBQE64_CN: 1314 case CMD_IOCB_FCP_IBIDIR64_CR: 1315 case CMD_IOCB_FCP_IBIDIR64_CX: 1316 case CMD_IOCB_FCP_ITASKMGT64_CX: 1317 case CMD_IOCB_LOGENTRY_CN: 1318 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1319 printk("%s - Unhandled SLI-3 Command x%x\n", 1320 __func__, iocb_cmnd); 1321 type = LPFC_UNKNOWN_IOCB; 1322 break; 1323 default: 1324 type = LPFC_UNKNOWN_IOCB; 1325 break; 1326 } 1327 1328 return type; 1329 } 1330 1331 /** 1332 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1333 * @phba: Pointer to HBA context object. 1334 * 1335 * This function is called from SLI initialization code 1336 * to configure every ring of the HBA's SLI interface. The 1337 * caller is not required to hold any lock. This function issues 1338 * a config_ring mailbox command for each ring. 1339 * This function returns zero if successful else returns a negative 1340 * error code. 1341 **/ 1342 static int 1343 lpfc_sli_ring_map(struct lpfc_hba *phba) 1344 { 1345 struct lpfc_sli *psli = &phba->sli; 1346 LPFC_MBOXQ_t *pmb; 1347 MAILBOX_t *pmbox; 1348 int i, rc, ret = 0; 1349 1350 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1351 if (!pmb) 1352 return -ENOMEM; 1353 pmbox = &pmb->u.mb; 1354 phba->link_state = LPFC_INIT_MBX_CMDS; 1355 for (i = 0; i < psli->num_rings; i++) { 1356 lpfc_config_ring(phba, i, pmb); 1357 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1358 if (rc != MBX_SUCCESS) { 1359 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1360 "0446 Adapter failed to init (%d), " 1361 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1362 "ring %d\n", 1363 rc, pmbox->mbxCommand, 1364 pmbox->mbxStatus, i); 1365 phba->link_state = LPFC_HBA_ERROR; 1366 ret = -ENXIO; 1367 break; 1368 } 1369 } 1370 mempool_free(pmb, phba->mbox_mem_pool); 1371 return ret; 1372 } 1373 1374 /** 1375 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1376 * @phba: Pointer to HBA context object. 1377 * @pring: Pointer to driver SLI ring object. 1378 * @piocb: Pointer to the driver iocb object. 1379 * 1380 * This function is called with hbalock held. The function adds the 1381 * new iocb to txcmplq of the given ring. This function always returns 1382 * 0. If this function is called for ELS ring, this function checks if 1383 * there is a vport associated with the ELS command. This function also 1384 * starts els_tmofunc timer if this is an ELS command. 1385 **/ 1386 static int 1387 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1388 struct lpfc_iocbq *piocb) 1389 { 1390 lockdep_assert_held(&phba->hbalock); 1391 1392 BUG_ON(!piocb); 1393 1394 list_add_tail(&piocb->list, &pring->txcmplq); 1395 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1396 1397 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1398 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1399 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1400 BUG_ON(!piocb->vport); 1401 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1402 mod_timer(&piocb->vport->els_tmofunc, 1403 jiffies + 1404 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1405 } 1406 1407 return 0; 1408 } 1409 1410 /** 1411 * lpfc_sli_ringtx_get - Get first element of the txq 1412 * @phba: Pointer to HBA context object. 1413 * @pring: Pointer to driver SLI ring object. 1414 * 1415 * This function is called with hbalock held to get next 1416 * iocb in txq of the given ring. If there is any iocb in 1417 * the txq, the function returns first iocb in the list after 1418 * removing the iocb from the list, else it returns NULL. 1419 **/ 1420 struct lpfc_iocbq * 1421 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1422 { 1423 struct lpfc_iocbq *cmd_iocb; 1424 1425 lockdep_assert_held(&phba->hbalock); 1426 1427 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1428 return cmd_iocb; 1429 } 1430 1431 /** 1432 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1433 * @phba: Pointer to HBA context object. 1434 * @pring: Pointer to driver SLI ring object. 1435 * 1436 * This function is called with hbalock held and the caller must post the 1437 * iocb without releasing the lock. If the caller releases the lock, 1438 * iocb slot returned by the function is not guaranteed to be available. 1439 * The function returns pointer to the next available iocb slot if there 1440 * is available slot in the ring, else it returns NULL. 1441 * If the get index of the ring is ahead of the put index, the function 1442 * will post an error attention event to the worker thread to take the 1443 * HBA to offline state. 1444 **/ 1445 static IOCB_t * 1446 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1447 { 1448 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1449 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1450 1451 lockdep_assert_held(&phba->hbalock); 1452 1453 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1454 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1455 pring->sli.sli3.next_cmdidx = 0; 1456 1457 if (unlikely(pring->sli.sli3.local_getidx == 1458 pring->sli.sli3.next_cmdidx)) { 1459 1460 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1461 1462 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1463 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 1464 "0315 Ring %d issue: portCmdGet %d " 1465 "is bigger than cmd ring %d\n", 1466 pring->ringno, 1467 pring->sli.sli3.local_getidx, 1468 max_cmd_idx); 1469 1470 phba->link_state = LPFC_HBA_ERROR; 1471 /* 1472 * All error attention handlers are posted to 1473 * worker thread 1474 */ 1475 phba->work_ha |= HA_ERATT; 1476 phba->work_hs = HS_FFER3; 1477 1478 lpfc_worker_wake_up(phba); 1479 1480 return NULL; 1481 } 1482 1483 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1484 return NULL; 1485 } 1486 1487 return lpfc_cmd_iocb(phba, pring); 1488 } 1489 1490 /** 1491 * lpfc_sli_next_iotag - Get an iotag for the iocb 1492 * @phba: Pointer to HBA context object. 1493 * @iocbq: Pointer to driver iocb object. 1494 * 1495 * This function gets an iotag for the iocb. If there is no unused iotag and 1496 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1497 * array and assigns a new iotag. 1498 * The function returns the allocated iotag if successful, else returns zero. 1499 * Zero is not a valid iotag. 1500 * The caller is not required to hold any lock. 1501 **/ 1502 uint16_t 1503 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1504 { 1505 struct lpfc_iocbq **new_arr; 1506 struct lpfc_iocbq **old_arr; 1507 size_t new_len; 1508 struct lpfc_sli *psli = &phba->sli; 1509 uint16_t iotag; 1510 1511 spin_lock_irq(&phba->hbalock); 1512 iotag = psli->last_iotag; 1513 if(++iotag < psli->iocbq_lookup_len) { 1514 psli->last_iotag = iotag; 1515 psli->iocbq_lookup[iotag] = iocbq; 1516 spin_unlock_irq(&phba->hbalock); 1517 iocbq->iotag = iotag; 1518 return iotag; 1519 } else if (psli->iocbq_lookup_len < (0xffff 1520 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1521 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1522 spin_unlock_irq(&phba->hbalock); 1523 new_arr = kzalloc(new_len * sizeof (struct lpfc_iocbq *), 1524 GFP_KERNEL); 1525 if (new_arr) { 1526 spin_lock_irq(&phba->hbalock); 1527 old_arr = psli->iocbq_lookup; 1528 if (new_len <= psli->iocbq_lookup_len) { 1529 /* highly unprobable case */ 1530 kfree(new_arr); 1531 iotag = psli->last_iotag; 1532 if(++iotag < psli->iocbq_lookup_len) { 1533 psli->last_iotag = iotag; 1534 psli->iocbq_lookup[iotag] = iocbq; 1535 spin_unlock_irq(&phba->hbalock); 1536 iocbq->iotag = iotag; 1537 return iotag; 1538 } 1539 spin_unlock_irq(&phba->hbalock); 1540 return 0; 1541 } 1542 if (psli->iocbq_lookup) 1543 memcpy(new_arr, old_arr, 1544 ((psli->last_iotag + 1) * 1545 sizeof (struct lpfc_iocbq *))); 1546 psli->iocbq_lookup = new_arr; 1547 psli->iocbq_lookup_len = new_len; 1548 psli->last_iotag = iotag; 1549 psli->iocbq_lookup[iotag] = iocbq; 1550 spin_unlock_irq(&phba->hbalock); 1551 iocbq->iotag = iotag; 1552 kfree(old_arr); 1553 return iotag; 1554 } 1555 } else 1556 spin_unlock_irq(&phba->hbalock); 1557 1558 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1559 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1560 psli->last_iotag); 1561 1562 return 0; 1563 } 1564 1565 /** 1566 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1567 * @phba: Pointer to HBA context object. 1568 * @pring: Pointer to driver SLI ring object. 1569 * @iocb: Pointer to iocb slot in the ring. 1570 * @nextiocb: Pointer to driver iocb object which need to be 1571 * posted to firmware. 1572 * 1573 * This function is called with hbalock held to post a new iocb to 1574 * the firmware. This function copies the new iocb to ring iocb slot and 1575 * updates the ring pointers. It adds the new iocb to txcmplq if there is 1576 * a completion call back for this iocb else the function will free the 1577 * iocb object. 1578 **/ 1579 static void 1580 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1581 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1582 { 1583 lockdep_assert_held(&phba->hbalock); 1584 /* 1585 * Set up an iotag 1586 */ 1587 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1588 1589 1590 if (pring->ringno == LPFC_ELS_RING) { 1591 lpfc_debugfs_slow_ring_trc(phba, 1592 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1593 *(((uint32_t *) &nextiocb->iocb) + 4), 1594 *(((uint32_t *) &nextiocb->iocb) + 6), 1595 *(((uint32_t *) &nextiocb->iocb) + 7)); 1596 } 1597 1598 /* 1599 * Issue iocb command to adapter 1600 */ 1601 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1602 wmb(); 1603 pring->stats.iocb_cmd++; 1604 1605 /* 1606 * If there is no completion routine to call, we can release the 1607 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1608 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1609 */ 1610 if (nextiocb->iocb_cmpl) 1611 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1612 else 1613 __lpfc_sli_release_iocbq(phba, nextiocb); 1614 1615 /* 1616 * Let the HBA know what IOCB slot will be the next one the 1617 * driver will put a command into. 1618 */ 1619 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1620 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1621 } 1622 1623 /** 1624 * lpfc_sli_update_full_ring - Update the chip attention register 1625 * @phba: Pointer to HBA context object. 1626 * @pring: Pointer to driver SLI ring object. 1627 * 1628 * The caller is not required to hold any lock for calling this function. 1629 * This function updates the chip attention bits for the ring to inform firmware 1630 * that there are pending work to be done for this ring and requests an 1631 * interrupt when there is space available in the ring. This function is 1632 * called when the driver is unable to post more iocbs to the ring due 1633 * to unavailability of space in the ring. 1634 **/ 1635 static void 1636 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1637 { 1638 int ringno = pring->ringno; 1639 1640 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1641 1642 wmb(); 1643 1644 /* 1645 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1646 * The HBA will tell us when an IOCB entry is available. 1647 */ 1648 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1649 readl(phba->CAregaddr); /* flush */ 1650 1651 pring->stats.iocb_cmd_full++; 1652 } 1653 1654 /** 1655 * lpfc_sli_update_ring - Update chip attention register 1656 * @phba: Pointer to HBA context object. 1657 * @pring: Pointer to driver SLI ring object. 1658 * 1659 * This function updates the chip attention register bit for the 1660 * given ring to inform HBA that there is more work to be done 1661 * in this ring. The caller is not required to hold any lock. 1662 **/ 1663 static void 1664 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1665 { 1666 int ringno = pring->ringno; 1667 1668 /* 1669 * Tell the HBA that there is work to do in this ring. 1670 */ 1671 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 1672 wmb(); 1673 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 1674 readl(phba->CAregaddr); /* flush */ 1675 } 1676 } 1677 1678 /** 1679 * lpfc_sli_resume_iocb - Process iocbs in the txq 1680 * @phba: Pointer to HBA context object. 1681 * @pring: Pointer to driver SLI ring object. 1682 * 1683 * This function is called with hbalock held to post pending iocbs 1684 * in the txq to the firmware. This function is called when driver 1685 * detects space available in the ring. 1686 **/ 1687 static void 1688 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1689 { 1690 IOCB_t *iocb; 1691 struct lpfc_iocbq *nextiocb; 1692 1693 lockdep_assert_held(&phba->hbalock); 1694 1695 /* 1696 * Check to see if: 1697 * (a) there is anything on the txq to send 1698 * (b) link is up 1699 * (c) link attention events can be processed (fcp ring only) 1700 * (d) IOCB processing is not blocked by the outstanding mbox command. 1701 */ 1702 1703 if (lpfc_is_link_up(phba) && 1704 (!list_empty(&pring->txq)) && 1705 (pring->ringno != LPFC_FCP_RING || 1706 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 1707 1708 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 1709 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 1710 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 1711 1712 if (iocb) 1713 lpfc_sli_update_ring(phba, pring); 1714 else 1715 lpfc_sli_update_full_ring(phba, pring); 1716 } 1717 1718 return; 1719 } 1720 1721 /** 1722 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 1723 * @phba: Pointer to HBA context object. 1724 * @hbqno: HBQ number. 1725 * 1726 * This function is called with hbalock held to get the next 1727 * available slot for the given HBQ. If there is free slot 1728 * available for the HBQ it will return pointer to the next available 1729 * HBQ entry else it will return NULL. 1730 **/ 1731 static struct lpfc_hbq_entry * 1732 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 1733 { 1734 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1735 1736 lockdep_assert_held(&phba->hbalock); 1737 1738 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 1739 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 1740 hbqp->next_hbqPutIdx = 0; 1741 1742 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 1743 uint32_t raw_index = phba->hbq_get[hbqno]; 1744 uint32_t getidx = le32_to_cpu(raw_index); 1745 1746 hbqp->local_hbqGetIdx = getidx; 1747 1748 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 1749 lpfc_printf_log(phba, KERN_ERR, 1750 LOG_SLI | LOG_VPORT, 1751 "1802 HBQ %d: local_hbqGetIdx " 1752 "%u is > than hbqp->entry_count %u\n", 1753 hbqno, hbqp->local_hbqGetIdx, 1754 hbqp->entry_count); 1755 1756 phba->link_state = LPFC_HBA_ERROR; 1757 return NULL; 1758 } 1759 1760 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 1761 return NULL; 1762 } 1763 1764 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 1765 hbqp->hbqPutIdx; 1766 } 1767 1768 /** 1769 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 1770 * @phba: Pointer to HBA context object. 1771 * 1772 * This function is called with no lock held to free all the 1773 * hbq buffers while uninitializing the SLI interface. It also 1774 * frees the HBQ buffers returned by the firmware but not yet 1775 * processed by the upper layers. 1776 **/ 1777 void 1778 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 1779 { 1780 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 1781 struct hbq_dmabuf *hbq_buf; 1782 unsigned long flags; 1783 int i, hbq_count; 1784 1785 hbq_count = lpfc_sli_hbq_count(); 1786 /* Return all memory used by all HBQs */ 1787 spin_lock_irqsave(&phba->hbalock, flags); 1788 for (i = 0; i < hbq_count; ++i) { 1789 list_for_each_entry_safe(dmabuf, next_dmabuf, 1790 &phba->hbqs[i].hbq_buffer_list, list) { 1791 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 1792 list_del(&hbq_buf->dbuf.list); 1793 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 1794 } 1795 phba->hbqs[i].buffer_count = 0; 1796 } 1797 1798 /* Mark the HBQs not in use */ 1799 phba->hbq_in_use = 0; 1800 spin_unlock_irqrestore(&phba->hbalock, flags); 1801 } 1802 1803 /** 1804 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 1805 * @phba: Pointer to HBA context object. 1806 * @hbqno: HBQ number. 1807 * @hbq_buf: Pointer to HBQ buffer. 1808 * 1809 * This function is called with the hbalock held to post a 1810 * hbq buffer to the firmware. If the function finds an empty 1811 * slot in the HBQ, it will post the buffer. The function will return 1812 * pointer to the hbq entry if it successfully post the buffer 1813 * else it will return NULL. 1814 **/ 1815 static int 1816 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 1817 struct hbq_dmabuf *hbq_buf) 1818 { 1819 lockdep_assert_held(&phba->hbalock); 1820 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 1821 } 1822 1823 /** 1824 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 1825 * @phba: Pointer to HBA context object. 1826 * @hbqno: HBQ number. 1827 * @hbq_buf: Pointer to HBQ buffer. 1828 * 1829 * This function is called with the hbalock held to post a hbq buffer to the 1830 * firmware. If the function finds an empty slot in the HBQ, it will post the 1831 * buffer and place it on the hbq_buffer_list. The function will return zero if 1832 * it successfully post the buffer else it will return an error. 1833 **/ 1834 static int 1835 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 1836 struct hbq_dmabuf *hbq_buf) 1837 { 1838 struct lpfc_hbq_entry *hbqe; 1839 dma_addr_t physaddr = hbq_buf->dbuf.phys; 1840 1841 lockdep_assert_held(&phba->hbalock); 1842 /* Get next HBQ entry slot to use */ 1843 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 1844 if (hbqe) { 1845 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1846 1847 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 1848 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 1849 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 1850 hbqe->bde.tus.f.bdeFlags = 0; 1851 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 1852 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 1853 /* Sync SLIM */ 1854 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 1855 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 1856 /* flush */ 1857 readl(phba->hbq_put + hbqno); 1858 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 1859 return 0; 1860 } else 1861 return -ENOMEM; 1862 } 1863 1864 /** 1865 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 1866 * @phba: Pointer to HBA context object. 1867 * @hbqno: HBQ number. 1868 * @hbq_buf: Pointer to HBQ buffer. 1869 * 1870 * This function is called with the hbalock held to post an RQE to the SLI4 1871 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 1872 * the hbq_buffer_list and return zero, otherwise it will return an error. 1873 **/ 1874 static int 1875 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 1876 struct hbq_dmabuf *hbq_buf) 1877 { 1878 int rc; 1879 struct lpfc_rqe hrqe; 1880 struct lpfc_rqe drqe; 1881 struct lpfc_queue *hrq; 1882 struct lpfc_queue *drq; 1883 1884 if (hbqno != LPFC_ELS_HBQ) 1885 return 1; 1886 hrq = phba->sli4_hba.hdr_rq; 1887 drq = phba->sli4_hba.dat_rq; 1888 1889 lockdep_assert_held(&phba->hbalock); 1890 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 1891 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 1892 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 1893 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 1894 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 1895 if (rc < 0) 1896 return rc; 1897 hbq_buf->tag = (rc | (hbqno << 16)); 1898 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 1899 return 0; 1900 } 1901 1902 /* HBQ for ELS and CT traffic. */ 1903 static struct lpfc_hbq_init lpfc_els_hbq = { 1904 .rn = 1, 1905 .entry_count = 256, 1906 .mask_count = 0, 1907 .profile = 0, 1908 .ring_mask = (1 << LPFC_ELS_RING), 1909 .buffer_count = 0, 1910 .init_count = 40, 1911 .add_count = 40, 1912 }; 1913 1914 /* Array of HBQs */ 1915 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 1916 &lpfc_els_hbq, 1917 }; 1918 1919 /** 1920 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 1921 * @phba: Pointer to HBA context object. 1922 * @hbqno: HBQ number. 1923 * @count: Number of HBQ buffers to be posted. 1924 * 1925 * This function is called with no lock held to post more hbq buffers to the 1926 * given HBQ. The function returns the number of HBQ buffers successfully 1927 * posted. 1928 **/ 1929 static int 1930 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 1931 { 1932 uint32_t i, posted = 0; 1933 unsigned long flags; 1934 struct hbq_dmabuf *hbq_buffer; 1935 LIST_HEAD(hbq_buf_list); 1936 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 1937 return 0; 1938 1939 if ((phba->hbqs[hbqno].buffer_count + count) > 1940 lpfc_hbq_defs[hbqno]->entry_count) 1941 count = lpfc_hbq_defs[hbqno]->entry_count - 1942 phba->hbqs[hbqno].buffer_count; 1943 if (!count) 1944 return 0; 1945 /* Allocate HBQ entries */ 1946 for (i = 0; i < count; i++) { 1947 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 1948 if (!hbq_buffer) 1949 break; 1950 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 1951 } 1952 /* Check whether HBQ is still in use */ 1953 spin_lock_irqsave(&phba->hbalock, flags); 1954 if (!phba->hbq_in_use) 1955 goto err; 1956 while (!list_empty(&hbq_buf_list)) { 1957 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 1958 dbuf.list); 1959 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 1960 (hbqno << 16)); 1961 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 1962 phba->hbqs[hbqno].buffer_count++; 1963 posted++; 1964 } else 1965 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 1966 } 1967 spin_unlock_irqrestore(&phba->hbalock, flags); 1968 return posted; 1969 err: 1970 spin_unlock_irqrestore(&phba->hbalock, flags); 1971 while (!list_empty(&hbq_buf_list)) { 1972 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 1973 dbuf.list); 1974 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 1975 } 1976 return 0; 1977 } 1978 1979 /** 1980 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 1981 * @phba: Pointer to HBA context object. 1982 * @qno: HBQ number. 1983 * 1984 * This function posts more buffers to the HBQ. This function 1985 * is called with no lock held. The function returns the number of HBQ entries 1986 * successfully allocated. 1987 **/ 1988 int 1989 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 1990 { 1991 if (phba->sli_rev == LPFC_SLI_REV4) 1992 return 0; 1993 else 1994 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 1995 lpfc_hbq_defs[qno]->add_count); 1996 } 1997 1998 /** 1999 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2000 * @phba: Pointer to HBA context object. 2001 * @qno: HBQ queue number. 2002 * 2003 * This function is called from SLI initialization code path with 2004 * no lock held to post initial HBQ buffers to firmware. The 2005 * function returns the number of HBQ entries successfully allocated. 2006 **/ 2007 static int 2008 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2009 { 2010 if (phba->sli_rev == LPFC_SLI_REV4) 2011 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2012 lpfc_hbq_defs[qno]->entry_count); 2013 else 2014 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2015 lpfc_hbq_defs[qno]->init_count); 2016 } 2017 2018 /** 2019 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2020 * @phba: Pointer to HBA context object. 2021 * @hbqno: HBQ number. 2022 * 2023 * This function removes the first hbq buffer on an hbq list and returns a 2024 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2025 **/ 2026 static struct hbq_dmabuf * 2027 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2028 { 2029 struct lpfc_dmabuf *d_buf; 2030 2031 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2032 if (!d_buf) 2033 return NULL; 2034 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2035 } 2036 2037 /** 2038 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2039 * @phba: Pointer to HBA context object. 2040 * @hbqno: HBQ number. 2041 * 2042 * This function removes the first RQ buffer on an RQ buffer list and returns a 2043 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2044 **/ 2045 static struct rqb_dmabuf * 2046 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2047 { 2048 struct lpfc_dmabuf *h_buf; 2049 struct lpfc_rqb *rqbp; 2050 2051 rqbp = hrq->rqbp; 2052 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2053 struct lpfc_dmabuf, list); 2054 if (!h_buf) 2055 return NULL; 2056 rqbp->buffer_count--; 2057 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2058 } 2059 2060 /** 2061 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2062 * @phba: Pointer to HBA context object. 2063 * @tag: Tag of the hbq buffer. 2064 * 2065 * This function searches for the hbq buffer associated with the given tag in 2066 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2067 * otherwise it returns NULL. 2068 **/ 2069 static struct hbq_dmabuf * 2070 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2071 { 2072 struct lpfc_dmabuf *d_buf; 2073 struct hbq_dmabuf *hbq_buf; 2074 uint32_t hbqno; 2075 2076 hbqno = tag >> 16; 2077 if (hbqno >= LPFC_MAX_HBQS) 2078 return NULL; 2079 2080 spin_lock_irq(&phba->hbalock); 2081 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2082 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2083 if (hbq_buf->tag == tag) { 2084 spin_unlock_irq(&phba->hbalock); 2085 return hbq_buf; 2086 } 2087 } 2088 spin_unlock_irq(&phba->hbalock); 2089 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT, 2090 "1803 Bad hbq tag. Data: x%x x%x\n", 2091 tag, phba->hbqs[tag >> 16].buffer_count); 2092 return NULL; 2093 } 2094 2095 /** 2096 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2097 * @phba: Pointer to HBA context object. 2098 * @hbq_buffer: Pointer to HBQ buffer. 2099 * 2100 * This function is called with hbalock. This function gives back 2101 * the hbq buffer to firmware. If the HBQ does not have space to 2102 * post the buffer, it will free the buffer. 2103 **/ 2104 void 2105 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2106 { 2107 uint32_t hbqno; 2108 2109 if (hbq_buffer) { 2110 hbqno = hbq_buffer->tag >> 16; 2111 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2112 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2113 } 2114 } 2115 2116 /** 2117 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2118 * @mbxCommand: mailbox command code. 2119 * 2120 * This function is called by the mailbox event handler function to verify 2121 * that the completed mailbox command is a legitimate mailbox command. If the 2122 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2123 * and the mailbox event handler will take the HBA offline. 2124 **/ 2125 static int 2126 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2127 { 2128 uint8_t ret; 2129 2130 switch (mbxCommand) { 2131 case MBX_LOAD_SM: 2132 case MBX_READ_NV: 2133 case MBX_WRITE_NV: 2134 case MBX_WRITE_VPARMS: 2135 case MBX_RUN_BIU_DIAG: 2136 case MBX_INIT_LINK: 2137 case MBX_DOWN_LINK: 2138 case MBX_CONFIG_LINK: 2139 case MBX_CONFIG_RING: 2140 case MBX_RESET_RING: 2141 case MBX_READ_CONFIG: 2142 case MBX_READ_RCONFIG: 2143 case MBX_READ_SPARM: 2144 case MBX_READ_STATUS: 2145 case MBX_READ_RPI: 2146 case MBX_READ_XRI: 2147 case MBX_READ_REV: 2148 case MBX_READ_LNK_STAT: 2149 case MBX_REG_LOGIN: 2150 case MBX_UNREG_LOGIN: 2151 case MBX_CLEAR_LA: 2152 case MBX_DUMP_MEMORY: 2153 case MBX_DUMP_CONTEXT: 2154 case MBX_RUN_DIAGS: 2155 case MBX_RESTART: 2156 case MBX_UPDATE_CFG: 2157 case MBX_DOWN_LOAD: 2158 case MBX_DEL_LD_ENTRY: 2159 case MBX_RUN_PROGRAM: 2160 case MBX_SET_MASK: 2161 case MBX_SET_VARIABLE: 2162 case MBX_UNREG_D_ID: 2163 case MBX_KILL_BOARD: 2164 case MBX_CONFIG_FARP: 2165 case MBX_BEACON: 2166 case MBX_LOAD_AREA: 2167 case MBX_RUN_BIU_DIAG64: 2168 case MBX_CONFIG_PORT: 2169 case MBX_READ_SPARM64: 2170 case MBX_READ_RPI64: 2171 case MBX_REG_LOGIN64: 2172 case MBX_READ_TOPOLOGY: 2173 case MBX_WRITE_WWN: 2174 case MBX_SET_DEBUG: 2175 case MBX_LOAD_EXP_ROM: 2176 case MBX_ASYNCEVT_ENABLE: 2177 case MBX_REG_VPI: 2178 case MBX_UNREG_VPI: 2179 case MBX_HEARTBEAT: 2180 case MBX_PORT_CAPABILITIES: 2181 case MBX_PORT_IOV_CONTROL: 2182 case MBX_SLI4_CONFIG: 2183 case MBX_SLI4_REQ_FTRS: 2184 case MBX_REG_FCFI: 2185 case MBX_UNREG_FCFI: 2186 case MBX_REG_VFI: 2187 case MBX_UNREG_VFI: 2188 case MBX_INIT_VPI: 2189 case MBX_INIT_VFI: 2190 case MBX_RESUME_RPI: 2191 case MBX_READ_EVENT_LOG_STATUS: 2192 case MBX_READ_EVENT_LOG: 2193 case MBX_SECURITY_MGMT: 2194 case MBX_AUTH_PORT: 2195 case MBX_ACCESS_VDATA: 2196 ret = mbxCommand; 2197 break; 2198 default: 2199 ret = MBX_SHUTDOWN; 2200 break; 2201 } 2202 return ret; 2203 } 2204 2205 /** 2206 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2207 * @phba: Pointer to HBA context object. 2208 * @pmboxq: Pointer to mailbox command. 2209 * 2210 * This is completion handler function for mailbox commands issued from 2211 * lpfc_sli_issue_mbox_wait function. This function is called by the 2212 * mailbox event handler function with no lock held. This function 2213 * will wake up thread waiting on the wait queue pointed by context1 2214 * of the mailbox. 2215 **/ 2216 void 2217 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2218 { 2219 wait_queue_head_t *pdone_q; 2220 unsigned long drvr_flag; 2221 2222 /* 2223 * If pdone_q is empty, the driver thread gave up waiting and 2224 * continued running. 2225 */ 2226 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2227 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2228 pdone_q = (wait_queue_head_t *) pmboxq->context1; 2229 if (pdone_q) 2230 wake_up_interruptible(pdone_q); 2231 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2232 return; 2233 } 2234 2235 2236 /** 2237 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2238 * @phba: Pointer to HBA context object. 2239 * @pmb: Pointer to mailbox object. 2240 * 2241 * This function is the default mailbox completion handler. It 2242 * frees the memory resources associated with the completed mailbox 2243 * command. If the completed command is a REG_LOGIN mailbox command, 2244 * this function will issue a UREG_LOGIN to re-claim the RPI. 2245 **/ 2246 void 2247 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2248 { 2249 struct lpfc_vport *vport = pmb->vport; 2250 struct lpfc_dmabuf *mp; 2251 struct lpfc_nodelist *ndlp; 2252 struct Scsi_Host *shost; 2253 uint16_t rpi, vpi; 2254 int rc; 2255 2256 mp = (struct lpfc_dmabuf *) (pmb->context1); 2257 2258 if (mp) { 2259 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2260 kfree(mp); 2261 } 2262 2263 /* 2264 * If a REG_LOGIN succeeded after node is destroyed or node 2265 * is in re-discovery driver need to cleanup the RPI. 2266 */ 2267 if (!(phba->pport->load_flag & FC_UNLOADING) && 2268 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2269 !pmb->u.mb.mbxStatus) { 2270 rpi = pmb->u.mb.un.varWords[0]; 2271 vpi = pmb->u.mb.un.varRegLogin.vpi; 2272 lpfc_unreg_login(phba, vpi, rpi, pmb); 2273 pmb->vport = vport; 2274 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2275 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2276 if (rc != MBX_NOT_FINISHED) 2277 return; 2278 } 2279 2280 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2281 !(phba->pport->load_flag & FC_UNLOADING) && 2282 !pmb->u.mb.mbxStatus) { 2283 shost = lpfc_shost_from_vport(vport); 2284 spin_lock_irq(shost->host_lock); 2285 vport->vpi_state |= LPFC_VPI_REGISTERED; 2286 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2287 spin_unlock_irq(shost->host_lock); 2288 } 2289 2290 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2291 ndlp = (struct lpfc_nodelist *)pmb->context2; 2292 lpfc_nlp_put(ndlp); 2293 pmb->context2 = NULL; 2294 } 2295 2296 /* Check security permission status on INIT_LINK mailbox command */ 2297 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2298 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2299 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2300 "2860 SLI authentication is required " 2301 "for INIT_LINK but has not done yet\n"); 2302 2303 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2304 lpfc_sli4_mbox_cmd_free(phba, pmb); 2305 else 2306 mempool_free(pmb, phba->mbox_mem_pool); 2307 } 2308 /** 2309 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2310 * @phba: Pointer to HBA context object. 2311 * @pmb: Pointer to mailbox object. 2312 * 2313 * This function is the unreg rpi mailbox completion handler. It 2314 * frees the memory resources associated with the completed mailbox 2315 * command. An additional refrenece is put on the ndlp to prevent 2316 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2317 * the unreg mailbox command completes, this routine puts the 2318 * reference back. 2319 * 2320 **/ 2321 void 2322 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2323 { 2324 struct lpfc_vport *vport = pmb->vport; 2325 struct lpfc_nodelist *ndlp; 2326 2327 ndlp = pmb->context1; 2328 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2329 if (phba->sli_rev == LPFC_SLI_REV4 && 2330 (bf_get(lpfc_sli_intf_if_type, 2331 &phba->sli4_hba.sli_intf) == 2332 LPFC_SLI_INTF_IF_TYPE_2)) { 2333 if (ndlp) { 2334 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 2335 "0010 UNREG_LOGIN vpi:%x " 2336 "rpi:%x DID:%x map:%x %p\n", 2337 vport->vpi, ndlp->nlp_rpi, 2338 ndlp->nlp_DID, 2339 ndlp->nlp_usg_map, ndlp); 2340 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2341 lpfc_nlp_put(ndlp); 2342 } 2343 } 2344 } 2345 2346 mempool_free(pmb, phba->mbox_mem_pool); 2347 } 2348 2349 /** 2350 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2351 * @phba: Pointer to HBA context object. 2352 * 2353 * This function is called with no lock held. This function processes all 2354 * the completed mailbox commands and gives it to upper layers. The interrupt 2355 * service routine processes mailbox completion interrupt and adds completed 2356 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2357 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2358 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2359 * function returns the mailbox commands to the upper layer by calling the 2360 * completion handler function of each mailbox. 2361 **/ 2362 int 2363 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2364 { 2365 MAILBOX_t *pmbox; 2366 LPFC_MBOXQ_t *pmb; 2367 int rc; 2368 LIST_HEAD(cmplq); 2369 2370 phba->sli.slistat.mbox_event++; 2371 2372 /* Get all completed mailboxe buffers into the cmplq */ 2373 spin_lock_irq(&phba->hbalock); 2374 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2375 spin_unlock_irq(&phba->hbalock); 2376 2377 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2378 do { 2379 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2380 if (pmb == NULL) 2381 break; 2382 2383 pmbox = &pmb->u.mb; 2384 2385 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2386 if (pmb->vport) { 2387 lpfc_debugfs_disc_trc(pmb->vport, 2388 LPFC_DISC_TRC_MBOX_VPORT, 2389 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2390 (uint32_t)pmbox->mbxCommand, 2391 pmbox->un.varWords[0], 2392 pmbox->un.varWords[1]); 2393 } 2394 else { 2395 lpfc_debugfs_disc_trc(phba->pport, 2396 LPFC_DISC_TRC_MBOX, 2397 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2398 (uint32_t)pmbox->mbxCommand, 2399 pmbox->un.varWords[0], 2400 pmbox->un.varWords[1]); 2401 } 2402 } 2403 2404 /* 2405 * It is a fatal error if unknown mbox command completion. 2406 */ 2407 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2408 MBX_SHUTDOWN) { 2409 /* Unknown mailbox command compl */ 2410 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2411 "(%d):0323 Unknown Mailbox command " 2412 "x%x (x%x/x%x) Cmpl\n", 2413 pmb->vport ? pmb->vport->vpi : 0, 2414 pmbox->mbxCommand, 2415 lpfc_sli_config_mbox_subsys_get(phba, 2416 pmb), 2417 lpfc_sli_config_mbox_opcode_get(phba, 2418 pmb)); 2419 phba->link_state = LPFC_HBA_ERROR; 2420 phba->work_hs = HS_FFER3; 2421 lpfc_handle_eratt(phba); 2422 continue; 2423 } 2424 2425 if (pmbox->mbxStatus) { 2426 phba->sli.slistat.mbox_stat_err++; 2427 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2428 /* Mbox cmd cmpl error - RETRYing */ 2429 lpfc_printf_log(phba, KERN_INFO, 2430 LOG_MBOX | LOG_SLI, 2431 "(%d):0305 Mbox cmd cmpl " 2432 "error - RETRYing Data: x%x " 2433 "(x%x/x%x) x%x x%x x%x\n", 2434 pmb->vport ? pmb->vport->vpi : 0, 2435 pmbox->mbxCommand, 2436 lpfc_sli_config_mbox_subsys_get(phba, 2437 pmb), 2438 lpfc_sli_config_mbox_opcode_get(phba, 2439 pmb), 2440 pmbox->mbxStatus, 2441 pmbox->un.varWords[0], 2442 pmb->vport->port_state); 2443 pmbox->mbxStatus = 0; 2444 pmbox->mbxOwner = OWN_HOST; 2445 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2446 if (rc != MBX_NOT_FINISHED) 2447 continue; 2448 } 2449 } 2450 2451 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2452 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2453 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p " 2454 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2455 "x%x x%x x%x\n", 2456 pmb->vport ? pmb->vport->vpi : 0, 2457 pmbox->mbxCommand, 2458 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2459 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2460 pmb->mbox_cmpl, 2461 *((uint32_t *) pmbox), 2462 pmbox->un.varWords[0], 2463 pmbox->un.varWords[1], 2464 pmbox->un.varWords[2], 2465 pmbox->un.varWords[3], 2466 pmbox->un.varWords[4], 2467 pmbox->un.varWords[5], 2468 pmbox->un.varWords[6], 2469 pmbox->un.varWords[7], 2470 pmbox->un.varWords[8], 2471 pmbox->un.varWords[9], 2472 pmbox->un.varWords[10]); 2473 2474 if (pmb->mbox_cmpl) 2475 pmb->mbox_cmpl(phba,pmb); 2476 } while (1); 2477 return 0; 2478 } 2479 2480 /** 2481 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2482 * @phba: Pointer to HBA context object. 2483 * @pring: Pointer to driver SLI ring object. 2484 * @tag: buffer tag. 2485 * 2486 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2487 * is set in the tag the buffer is posted for a particular exchange, 2488 * the function will return the buffer without replacing the buffer. 2489 * If the buffer is for unsolicited ELS or CT traffic, this function 2490 * returns the buffer and also posts another buffer to the firmware. 2491 **/ 2492 static struct lpfc_dmabuf * 2493 lpfc_sli_get_buff(struct lpfc_hba *phba, 2494 struct lpfc_sli_ring *pring, 2495 uint32_t tag) 2496 { 2497 struct hbq_dmabuf *hbq_entry; 2498 2499 if (tag & QUE_BUFTAG_BIT) 2500 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2501 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2502 if (!hbq_entry) 2503 return NULL; 2504 return &hbq_entry->dbuf; 2505 } 2506 2507 /** 2508 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 2509 * @phba: Pointer to HBA context object. 2510 * @pring: Pointer to driver SLI ring object. 2511 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 2512 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 2513 * @fch_type: the type for the first frame of the sequence. 2514 * 2515 * This function is called with no lock held. This function uses the r_ctl and 2516 * type of the received sequence to find the correct callback function to call 2517 * to process the sequence. 2518 **/ 2519 static int 2520 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2521 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 2522 uint32_t fch_type) 2523 { 2524 int i; 2525 2526 switch (fch_type) { 2527 case FC_TYPE_NVME: 2528 lpfc_nvmet_unsol_ls_event(phba, pring, saveq); 2529 return 1; 2530 default: 2531 break; 2532 } 2533 2534 /* unSolicited Responses */ 2535 if (pring->prt[0].profile) { 2536 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 2537 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 2538 saveq); 2539 return 1; 2540 } 2541 /* We must search, based on rctl / type 2542 for the right routine */ 2543 for (i = 0; i < pring->num_mask; i++) { 2544 if ((pring->prt[i].rctl == fch_r_ctl) && 2545 (pring->prt[i].type == fch_type)) { 2546 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 2547 (pring->prt[i].lpfc_sli_rcv_unsol_event) 2548 (phba, pring, saveq); 2549 return 1; 2550 } 2551 } 2552 return 0; 2553 } 2554 2555 /** 2556 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 2557 * @phba: Pointer to HBA context object. 2558 * @pring: Pointer to driver SLI ring object. 2559 * @saveq: Pointer to the unsolicited iocb. 2560 * 2561 * This function is called with no lock held by the ring event handler 2562 * when there is an unsolicited iocb posted to the response ring by the 2563 * firmware. This function gets the buffer associated with the iocbs 2564 * and calls the event handler for the ring. This function handles both 2565 * qring buffers and hbq buffers. 2566 * When the function returns 1 the caller can free the iocb object otherwise 2567 * upper layer functions will free the iocb objects. 2568 **/ 2569 static int 2570 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2571 struct lpfc_iocbq *saveq) 2572 { 2573 IOCB_t * irsp; 2574 WORD5 * w5p; 2575 uint32_t Rctl, Type; 2576 struct lpfc_iocbq *iocbq; 2577 struct lpfc_dmabuf *dmzbuf; 2578 2579 irsp = &(saveq->iocb); 2580 2581 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 2582 if (pring->lpfc_sli_rcv_async_status) 2583 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 2584 else 2585 lpfc_printf_log(phba, 2586 KERN_WARNING, 2587 LOG_SLI, 2588 "0316 Ring %d handler: unexpected " 2589 "ASYNC_STATUS iocb received evt_code " 2590 "0x%x\n", 2591 pring->ringno, 2592 irsp->un.asyncstat.evt_code); 2593 return 1; 2594 } 2595 2596 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 2597 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 2598 if (irsp->ulpBdeCount > 0) { 2599 dmzbuf = lpfc_sli_get_buff(phba, pring, 2600 irsp->un.ulpWord[3]); 2601 lpfc_in_buf_free(phba, dmzbuf); 2602 } 2603 2604 if (irsp->ulpBdeCount > 1) { 2605 dmzbuf = lpfc_sli_get_buff(phba, pring, 2606 irsp->unsli3.sli3Words[3]); 2607 lpfc_in_buf_free(phba, dmzbuf); 2608 } 2609 2610 if (irsp->ulpBdeCount > 2) { 2611 dmzbuf = lpfc_sli_get_buff(phba, pring, 2612 irsp->unsli3.sli3Words[7]); 2613 lpfc_in_buf_free(phba, dmzbuf); 2614 } 2615 2616 return 1; 2617 } 2618 2619 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 2620 if (irsp->ulpBdeCount != 0) { 2621 saveq->context2 = lpfc_sli_get_buff(phba, pring, 2622 irsp->un.ulpWord[3]); 2623 if (!saveq->context2) 2624 lpfc_printf_log(phba, 2625 KERN_ERR, 2626 LOG_SLI, 2627 "0341 Ring %d Cannot find buffer for " 2628 "an unsolicited iocb. tag 0x%x\n", 2629 pring->ringno, 2630 irsp->un.ulpWord[3]); 2631 } 2632 if (irsp->ulpBdeCount == 2) { 2633 saveq->context3 = lpfc_sli_get_buff(phba, pring, 2634 irsp->unsli3.sli3Words[7]); 2635 if (!saveq->context3) 2636 lpfc_printf_log(phba, 2637 KERN_ERR, 2638 LOG_SLI, 2639 "0342 Ring %d Cannot find buffer for an" 2640 " unsolicited iocb. tag 0x%x\n", 2641 pring->ringno, 2642 irsp->unsli3.sli3Words[7]); 2643 } 2644 list_for_each_entry(iocbq, &saveq->list, list) { 2645 irsp = &(iocbq->iocb); 2646 if (irsp->ulpBdeCount != 0) { 2647 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 2648 irsp->un.ulpWord[3]); 2649 if (!iocbq->context2) 2650 lpfc_printf_log(phba, 2651 KERN_ERR, 2652 LOG_SLI, 2653 "0343 Ring %d Cannot find " 2654 "buffer for an unsolicited iocb" 2655 ". tag 0x%x\n", pring->ringno, 2656 irsp->un.ulpWord[3]); 2657 } 2658 if (irsp->ulpBdeCount == 2) { 2659 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 2660 irsp->unsli3.sli3Words[7]); 2661 if (!iocbq->context3) 2662 lpfc_printf_log(phba, 2663 KERN_ERR, 2664 LOG_SLI, 2665 "0344 Ring %d Cannot find " 2666 "buffer for an unsolicited " 2667 "iocb. tag 0x%x\n", 2668 pring->ringno, 2669 irsp->unsli3.sli3Words[7]); 2670 } 2671 } 2672 } 2673 if (irsp->ulpBdeCount != 0 && 2674 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 2675 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 2676 int found = 0; 2677 2678 /* search continue save q for same XRI */ 2679 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 2680 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 2681 saveq->iocb.unsli3.rcvsli3.ox_id) { 2682 list_add_tail(&saveq->list, &iocbq->list); 2683 found = 1; 2684 break; 2685 } 2686 } 2687 if (!found) 2688 list_add_tail(&saveq->clist, 2689 &pring->iocb_continue_saveq); 2690 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 2691 list_del_init(&iocbq->clist); 2692 saveq = iocbq; 2693 irsp = &(saveq->iocb); 2694 } else 2695 return 0; 2696 } 2697 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 2698 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 2699 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 2700 Rctl = FC_RCTL_ELS_REQ; 2701 Type = FC_TYPE_ELS; 2702 } else { 2703 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 2704 Rctl = w5p->hcsw.Rctl; 2705 Type = w5p->hcsw.Type; 2706 2707 /* Firmware Workaround */ 2708 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 2709 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 2710 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 2711 Rctl = FC_RCTL_ELS_REQ; 2712 Type = FC_TYPE_ELS; 2713 w5p->hcsw.Rctl = Rctl; 2714 w5p->hcsw.Type = Type; 2715 } 2716 } 2717 2718 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 2719 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2720 "0313 Ring %d handler: unexpected Rctl x%x " 2721 "Type x%x received\n", 2722 pring->ringno, Rctl, Type); 2723 2724 return 1; 2725 } 2726 2727 /** 2728 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 2729 * @phba: Pointer to HBA context object. 2730 * @pring: Pointer to driver SLI ring object. 2731 * @prspiocb: Pointer to response iocb object. 2732 * 2733 * This function looks up the iocb_lookup table to get the command iocb 2734 * corresponding to the given response iocb using the iotag of the 2735 * response iocb. This function is called with the hbalock held. 2736 * This function returns the command iocb object if it finds the command 2737 * iocb else returns NULL. 2738 **/ 2739 static struct lpfc_iocbq * 2740 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 2741 struct lpfc_sli_ring *pring, 2742 struct lpfc_iocbq *prspiocb) 2743 { 2744 struct lpfc_iocbq *cmd_iocb = NULL; 2745 uint16_t iotag; 2746 lockdep_assert_held(&phba->hbalock); 2747 2748 iotag = prspiocb->iocb.ulpIoTag; 2749 2750 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2751 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2752 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2753 /* remove from txcmpl queue list */ 2754 list_del_init(&cmd_iocb->list); 2755 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 2756 return cmd_iocb; 2757 } 2758 } 2759 2760 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2761 "0317 iotag x%x is out of " 2762 "range: max iotag x%x wd0 x%x\n", 2763 iotag, phba->sli.last_iotag, 2764 *(((uint32_t *) &prspiocb->iocb) + 7)); 2765 return NULL; 2766 } 2767 2768 /** 2769 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 2770 * @phba: Pointer to HBA context object. 2771 * @pring: Pointer to driver SLI ring object. 2772 * @iotag: IOCB tag. 2773 * 2774 * This function looks up the iocb_lookup table to get the command iocb 2775 * corresponding to the given iotag. This function is called with the 2776 * hbalock held. 2777 * This function returns the command iocb object if it finds the command 2778 * iocb else returns NULL. 2779 **/ 2780 static struct lpfc_iocbq * 2781 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 2782 struct lpfc_sli_ring *pring, uint16_t iotag) 2783 { 2784 struct lpfc_iocbq *cmd_iocb = NULL; 2785 2786 lockdep_assert_held(&phba->hbalock); 2787 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2788 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2789 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2790 /* remove from txcmpl queue list */ 2791 list_del_init(&cmd_iocb->list); 2792 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 2793 return cmd_iocb; 2794 } 2795 } 2796 2797 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2798 "0372 iotag x%x lookup error: max iotag (x%x) " 2799 "iocb_flag x%x\n", 2800 iotag, phba->sli.last_iotag, 2801 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); 2802 return NULL; 2803 } 2804 2805 /** 2806 * lpfc_sli_process_sol_iocb - process solicited iocb completion 2807 * @phba: Pointer to HBA context object. 2808 * @pring: Pointer to driver SLI ring object. 2809 * @saveq: Pointer to the response iocb to be processed. 2810 * 2811 * This function is called by the ring event handler for non-fcp 2812 * rings when there is a new response iocb in the response ring. 2813 * The caller is not required to hold any locks. This function 2814 * gets the command iocb associated with the response iocb and 2815 * calls the completion handler for the command iocb. If there 2816 * is no completion handler, the function will free the resources 2817 * associated with command iocb. If the response iocb is for 2818 * an already aborted command iocb, the status of the completion 2819 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 2820 * This function always returns 1. 2821 **/ 2822 static int 2823 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2824 struct lpfc_iocbq *saveq) 2825 { 2826 struct lpfc_iocbq *cmdiocbp; 2827 int rc = 1; 2828 unsigned long iflag; 2829 2830 /* Based on the iotag field, get the cmd IOCB from the txcmplq */ 2831 spin_lock_irqsave(&phba->hbalock, iflag); 2832 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 2833 spin_unlock_irqrestore(&phba->hbalock, iflag); 2834 2835 if (cmdiocbp) { 2836 if (cmdiocbp->iocb_cmpl) { 2837 /* 2838 * If an ELS command failed send an event to mgmt 2839 * application. 2840 */ 2841 if (saveq->iocb.ulpStatus && 2842 (pring->ringno == LPFC_ELS_RING) && 2843 (cmdiocbp->iocb.ulpCommand == 2844 CMD_ELS_REQUEST64_CR)) 2845 lpfc_send_els_failure_event(phba, 2846 cmdiocbp, saveq); 2847 2848 /* 2849 * Post all ELS completions to the worker thread. 2850 * All other are passed to the completion callback. 2851 */ 2852 if (pring->ringno == LPFC_ELS_RING) { 2853 if ((phba->sli_rev < LPFC_SLI_REV4) && 2854 (cmdiocbp->iocb_flag & 2855 LPFC_DRIVER_ABORTED)) { 2856 spin_lock_irqsave(&phba->hbalock, 2857 iflag); 2858 cmdiocbp->iocb_flag &= 2859 ~LPFC_DRIVER_ABORTED; 2860 spin_unlock_irqrestore(&phba->hbalock, 2861 iflag); 2862 saveq->iocb.ulpStatus = 2863 IOSTAT_LOCAL_REJECT; 2864 saveq->iocb.un.ulpWord[4] = 2865 IOERR_SLI_ABORTED; 2866 2867 /* Firmware could still be in progress 2868 * of DMAing payload, so don't free data 2869 * buffer till after a hbeat. 2870 */ 2871 spin_lock_irqsave(&phba->hbalock, 2872 iflag); 2873 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 2874 spin_unlock_irqrestore(&phba->hbalock, 2875 iflag); 2876 } 2877 if (phba->sli_rev == LPFC_SLI_REV4) { 2878 if (saveq->iocb_flag & 2879 LPFC_EXCHANGE_BUSY) { 2880 /* Set cmdiocb flag for the 2881 * exchange busy so sgl (xri) 2882 * will not be released until 2883 * the abort xri is received 2884 * from hba. 2885 */ 2886 spin_lock_irqsave( 2887 &phba->hbalock, iflag); 2888 cmdiocbp->iocb_flag |= 2889 LPFC_EXCHANGE_BUSY; 2890 spin_unlock_irqrestore( 2891 &phba->hbalock, iflag); 2892 } 2893 if (cmdiocbp->iocb_flag & 2894 LPFC_DRIVER_ABORTED) { 2895 /* 2896 * Clear LPFC_DRIVER_ABORTED 2897 * bit in case it was driver 2898 * initiated abort. 2899 */ 2900 spin_lock_irqsave( 2901 &phba->hbalock, iflag); 2902 cmdiocbp->iocb_flag &= 2903 ~LPFC_DRIVER_ABORTED; 2904 spin_unlock_irqrestore( 2905 &phba->hbalock, iflag); 2906 cmdiocbp->iocb.ulpStatus = 2907 IOSTAT_LOCAL_REJECT; 2908 cmdiocbp->iocb.un.ulpWord[4] = 2909 IOERR_ABORT_REQUESTED; 2910 /* 2911 * For SLI4, irsiocb contains 2912 * NO_XRI in sli_xritag, it 2913 * shall not affect releasing 2914 * sgl (xri) process. 2915 */ 2916 saveq->iocb.ulpStatus = 2917 IOSTAT_LOCAL_REJECT; 2918 saveq->iocb.un.ulpWord[4] = 2919 IOERR_SLI_ABORTED; 2920 spin_lock_irqsave( 2921 &phba->hbalock, iflag); 2922 saveq->iocb_flag |= 2923 LPFC_DELAY_MEM_FREE; 2924 spin_unlock_irqrestore( 2925 &phba->hbalock, iflag); 2926 } 2927 } 2928 } 2929 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 2930 } else 2931 lpfc_sli_release_iocbq(phba, cmdiocbp); 2932 } else { 2933 /* 2934 * Unknown initiating command based on the response iotag. 2935 * This could be the case on the ELS ring because of 2936 * lpfc_els_abort(). 2937 */ 2938 if (pring->ringno != LPFC_ELS_RING) { 2939 /* 2940 * Ring <ringno> handler: unexpected completion IoTag 2941 * <IoTag> 2942 */ 2943 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2944 "0322 Ring %d handler: " 2945 "unexpected completion IoTag x%x " 2946 "Data: x%x x%x x%x x%x\n", 2947 pring->ringno, 2948 saveq->iocb.ulpIoTag, 2949 saveq->iocb.ulpStatus, 2950 saveq->iocb.un.ulpWord[4], 2951 saveq->iocb.ulpCommand, 2952 saveq->iocb.ulpContext); 2953 } 2954 } 2955 2956 return rc; 2957 } 2958 2959 /** 2960 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 2961 * @phba: Pointer to HBA context object. 2962 * @pring: Pointer to driver SLI ring object. 2963 * 2964 * This function is called from the iocb ring event handlers when 2965 * put pointer is ahead of the get pointer for a ring. This function signal 2966 * an error attention condition to the worker thread and the worker 2967 * thread will transition the HBA to offline state. 2968 **/ 2969 static void 2970 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2971 { 2972 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2973 /* 2974 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 2975 * rsp ring <portRspMax> 2976 */ 2977 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2978 "0312 Ring %d handler: portRspPut %d " 2979 "is bigger than rsp ring %d\n", 2980 pring->ringno, le32_to_cpu(pgp->rspPutInx), 2981 pring->sli.sli3.numRiocb); 2982 2983 phba->link_state = LPFC_HBA_ERROR; 2984 2985 /* 2986 * All error attention handlers are posted to 2987 * worker thread 2988 */ 2989 phba->work_ha |= HA_ERATT; 2990 phba->work_hs = HS_FFER3; 2991 2992 lpfc_worker_wake_up(phba); 2993 2994 return; 2995 } 2996 2997 /** 2998 * lpfc_poll_eratt - Error attention polling timer timeout handler 2999 * @ptr: Pointer to address of HBA context object. 3000 * 3001 * This function is invoked by the Error Attention polling timer when the 3002 * timer times out. It will check the SLI Error Attention register for 3003 * possible attention events. If so, it will post an Error Attention event 3004 * and wake up worker thread to process it. Otherwise, it will set up the 3005 * Error Attention polling timer for the next poll. 3006 **/ 3007 void lpfc_poll_eratt(unsigned long ptr) 3008 { 3009 struct lpfc_hba *phba; 3010 uint32_t eratt = 0; 3011 uint64_t sli_intr, cnt; 3012 3013 phba = (struct lpfc_hba *)ptr; 3014 3015 /* Here we will also keep track of interrupts per sec of the hba */ 3016 sli_intr = phba->sli.slistat.sli_intr; 3017 3018 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3019 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3020 sli_intr); 3021 else 3022 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3023 3024 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3025 do_div(cnt, phba->eratt_poll_interval); 3026 phba->sli.slistat.sli_ips = cnt; 3027 3028 phba->sli.slistat.sli_prev_intr = sli_intr; 3029 3030 /* Check chip HA register for error event */ 3031 eratt = lpfc_sli_check_eratt(phba); 3032 3033 if (eratt) 3034 /* Tell the worker thread there is work to do */ 3035 lpfc_worker_wake_up(phba); 3036 else 3037 /* Restart the timer for next eratt poll */ 3038 mod_timer(&phba->eratt_poll, 3039 jiffies + 3040 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3041 return; 3042 } 3043 3044 3045 /** 3046 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3047 * @phba: Pointer to HBA context object. 3048 * @pring: Pointer to driver SLI ring object. 3049 * @mask: Host attention register mask for this ring. 3050 * 3051 * This function is called from the interrupt context when there is a ring 3052 * event for the fcp ring. The caller does not hold any lock. 3053 * The function processes each response iocb in the response ring until it 3054 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3055 * LE bit set. The function will call the completion handler of the command iocb 3056 * if the response iocb indicates a completion for a command iocb or it is 3057 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3058 * function if this is an unsolicited iocb. 3059 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3060 * to check it explicitly. 3061 */ 3062 int 3063 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3064 struct lpfc_sli_ring *pring, uint32_t mask) 3065 { 3066 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3067 IOCB_t *irsp = NULL; 3068 IOCB_t *entry = NULL; 3069 struct lpfc_iocbq *cmdiocbq = NULL; 3070 struct lpfc_iocbq rspiocbq; 3071 uint32_t status; 3072 uint32_t portRspPut, portRspMax; 3073 int rc = 1; 3074 lpfc_iocb_type type; 3075 unsigned long iflag; 3076 uint32_t rsp_cmpl = 0; 3077 3078 spin_lock_irqsave(&phba->hbalock, iflag); 3079 pring->stats.iocb_event++; 3080 3081 /* 3082 * The next available response entry should never exceed the maximum 3083 * entries. If it does, treat it as an adapter hardware error. 3084 */ 3085 portRspMax = pring->sli.sli3.numRiocb; 3086 portRspPut = le32_to_cpu(pgp->rspPutInx); 3087 if (unlikely(portRspPut >= portRspMax)) { 3088 lpfc_sli_rsp_pointers_error(phba, pring); 3089 spin_unlock_irqrestore(&phba->hbalock, iflag); 3090 return 1; 3091 } 3092 if (phba->fcp_ring_in_use) { 3093 spin_unlock_irqrestore(&phba->hbalock, iflag); 3094 return 1; 3095 } else 3096 phba->fcp_ring_in_use = 1; 3097 3098 rmb(); 3099 while (pring->sli.sli3.rspidx != portRspPut) { 3100 /* 3101 * Fetch an entry off the ring and copy it into a local data 3102 * structure. The copy involves a byte-swap since the 3103 * network byte order and pci byte orders are different. 3104 */ 3105 entry = lpfc_resp_iocb(phba, pring); 3106 phba->last_completion_time = jiffies; 3107 3108 if (++pring->sli.sli3.rspidx >= portRspMax) 3109 pring->sli.sli3.rspidx = 0; 3110 3111 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3112 (uint32_t *) &rspiocbq.iocb, 3113 phba->iocb_rsp_size); 3114 INIT_LIST_HEAD(&(rspiocbq.list)); 3115 irsp = &rspiocbq.iocb; 3116 3117 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3118 pring->stats.iocb_rsp++; 3119 rsp_cmpl++; 3120 3121 if (unlikely(irsp->ulpStatus)) { 3122 /* 3123 * If resource errors reported from HBA, reduce 3124 * queuedepths of the SCSI device. 3125 */ 3126 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3127 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3128 IOERR_NO_RESOURCES)) { 3129 spin_unlock_irqrestore(&phba->hbalock, iflag); 3130 phba->lpfc_rampdown_queue_depth(phba); 3131 spin_lock_irqsave(&phba->hbalock, iflag); 3132 } 3133 3134 /* Rsp ring <ringno> error: IOCB */ 3135 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3136 "0336 Rsp Ring %d error: IOCB Data: " 3137 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3138 pring->ringno, 3139 irsp->un.ulpWord[0], 3140 irsp->un.ulpWord[1], 3141 irsp->un.ulpWord[2], 3142 irsp->un.ulpWord[3], 3143 irsp->un.ulpWord[4], 3144 irsp->un.ulpWord[5], 3145 *(uint32_t *)&irsp->un1, 3146 *((uint32_t *)&irsp->un1 + 1)); 3147 } 3148 3149 switch (type) { 3150 case LPFC_ABORT_IOCB: 3151 case LPFC_SOL_IOCB: 3152 /* 3153 * Idle exchange closed via ABTS from port. No iocb 3154 * resources need to be recovered. 3155 */ 3156 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3157 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3158 "0333 IOCB cmd 0x%x" 3159 " processed. Skipping" 3160 " completion\n", 3161 irsp->ulpCommand); 3162 break; 3163 } 3164 3165 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3166 &rspiocbq); 3167 if (unlikely(!cmdiocbq)) 3168 break; 3169 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3170 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3171 if (cmdiocbq->iocb_cmpl) { 3172 spin_unlock_irqrestore(&phba->hbalock, iflag); 3173 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3174 &rspiocbq); 3175 spin_lock_irqsave(&phba->hbalock, iflag); 3176 } 3177 break; 3178 case LPFC_UNSOL_IOCB: 3179 spin_unlock_irqrestore(&phba->hbalock, iflag); 3180 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3181 spin_lock_irqsave(&phba->hbalock, iflag); 3182 break; 3183 default: 3184 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3185 char adaptermsg[LPFC_MAX_ADPTMSG]; 3186 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3187 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3188 MAX_MSG_DATA); 3189 dev_warn(&((phba->pcidev)->dev), 3190 "lpfc%d: %s\n", 3191 phba->brd_no, adaptermsg); 3192 } else { 3193 /* Unknown IOCB command */ 3194 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3195 "0334 Unknown IOCB command " 3196 "Data: x%x, x%x x%x x%x x%x\n", 3197 type, irsp->ulpCommand, 3198 irsp->ulpStatus, 3199 irsp->ulpIoTag, 3200 irsp->ulpContext); 3201 } 3202 break; 3203 } 3204 3205 /* 3206 * The response IOCB has been processed. Update the ring 3207 * pointer in SLIM. If the port response put pointer has not 3208 * been updated, sync the pgp->rspPutInx and fetch the new port 3209 * response put pointer. 3210 */ 3211 writel(pring->sli.sli3.rspidx, 3212 &phba->host_gp[pring->ringno].rspGetInx); 3213 3214 if (pring->sli.sli3.rspidx == portRspPut) 3215 portRspPut = le32_to_cpu(pgp->rspPutInx); 3216 } 3217 3218 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3219 pring->stats.iocb_rsp_full++; 3220 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3221 writel(status, phba->CAregaddr); 3222 readl(phba->CAregaddr); 3223 } 3224 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3225 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3226 pring->stats.iocb_cmd_empty++; 3227 3228 /* Force update of the local copy of cmdGetInx */ 3229 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3230 lpfc_sli_resume_iocb(phba, pring); 3231 3232 if ((pring->lpfc_sli_cmd_available)) 3233 (pring->lpfc_sli_cmd_available) (phba, pring); 3234 3235 } 3236 3237 phba->fcp_ring_in_use = 0; 3238 spin_unlock_irqrestore(&phba->hbalock, iflag); 3239 return rc; 3240 } 3241 3242 /** 3243 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3244 * @phba: Pointer to HBA context object. 3245 * @pring: Pointer to driver SLI ring object. 3246 * @rspiocbp: Pointer to driver response IOCB object. 3247 * 3248 * This function is called from the worker thread when there is a slow-path 3249 * response IOCB to process. This function chains all the response iocbs until 3250 * seeing the iocb with the LE bit set. The function will call 3251 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3252 * completion of a command iocb. The function will call the 3253 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3254 * The function frees the resources or calls the completion handler if this 3255 * iocb is an abort completion. The function returns NULL when the response 3256 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3257 * this function shall chain the iocb on to the iocb_continueq and return the 3258 * response iocb passed in. 3259 **/ 3260 static struct lpfc_iocbq * 3261 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3262 struct lpfc_iocbq *rspiocbp) 3263 { 3264 struct lpfc_iocbq *saveq; 3265 struct lpfc_iocbq *cmdiocbp; 3266 struct lpfc_iocbq *next_iocb; 3267 IOCB_t *irsp = NULL; 3268 uint32_t free_saveq; 3269 uint8_t iocb_cmd_type; 3270 lpfc_iocb_type type; 3271 unsigned long iflag; 3272 int rc; 3273 3274 spin_lock_irqsave(&phba->hbalock, iflag); 3275 /* First add the response iocb to the countinueq list */ 3276 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3277 pring->iocb_continueq_cnt++; 3278 3279 /* Now, determine whether the list is completed for processing */ 3280 irsp = &rspiocbp->iocb; 3281 if (irsp->ulpLe) { 3282 /* 3283 * By default, the driver expects to free all resources 3284 * associated with this iocb completion. 3285 */ 3286 free_saveq = 1; 3287 saveq = list_get_first(&pring->iocb_continueq, 3288 struct lpfc_iocbq, list); 3289 irsp = &(saveq->iocb); 3290 list_del_init(&pring->iocb_continueq); 3291 pring->iocb_continueq_cnt = 0; 3292 3293 pring->stats.iocb_rsp++; 3294 3295 /* 3296 * If resource errors reported from HBA, reduce 3297 * queuedepths of the SCSI device. 3298 */ 3299 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3300 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3301 IOERR_NO_RESOURCES)) { 3302 spin_unlock_irqrestore(&phba->hbalock, iflag); 3303 phba->lpfc_rampdown_queue_depth(phba); 3304 spin_lock_irqsave(&phba->hbalock, iflag); 3305 } 3306 3307 if (irsp->ulpStatus) { 3308 /* Rsp ring <ringno> error: IOCB */ 3309 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3310 "0328 Rsp Ring %d error: " 3311 "IOCB Data: " 3312 "x%x x%x x%x x%x " 3313 "x%x x%x x%x x%x " 3314 "x%x x%x x%x x%x " 3315 "x%x x%x x%x x%x\n", 3316 pring->ringno, 3317 irsp->un.ulpWord[0], 3318 irsp->un.ulpWord[1], 3319 irsp->un.ulpWord[2], 3320 irsp->un.ulpWord[3], 3321 irsp->un.ulpWord[4], 3322 irsp->un.ulpWord[5], 3323 *(((uint32_t *) irsp) + 6), 3324 *(((uint32_t *) irsp) + 7), 3325 *(((uint32_t *) irsp) + 8), 3326 *(((uint32_t *) irsp) + 9), 3327 *(((uint32_t *) irsp) + 10), 3328 *(((uint32_t *) irsp) + 11), 3329 *(((uint32_t *) irsp) + 12), 3330 *(((uint32_t *) irsp) + 13), 3331 *(((uint32_t *) irsp) + 14), 3332 *(((uint32_t *) irsp) + 15)); 3333 } 3334 3335 /* 3336 * Fetch the IOCB command type and call the correct completion 3337 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3338 * get freed back to the lpfc_iocb_list by the discovery 3339 * kernel thread. 3340 */ 3341 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3342 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3343 switch (type) { 3344 case LPFC_SOL_IOCB: 3345 spin_unlock_irqrestore(&phba->hbalock, iflag); 3346 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3347 spin_lock_irqsave(&phba->hbalock, iflag); 3348 break; 3349 3350 case LPFC_UNSOL_IOCB: 3351 spin_unlock_irqrestore(&phba->hbalock, iflag); 3352 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3353 spin_lock_irqsave(&phba->hbalock, iflag); 3354 if (!rc) 3355 free_saveq = 0; 3356 break; 3357 3358 case LPFC_ABORT_IOCB: 3359 cmdiocbp = NULL; 3360 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) 3361 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3362 saveq); 3363 if (cmdiocbp) { 3364 /* Call the specified completion routine */ 3365 if (cmdiocbp->iocb_cmpl) { 3366 spin_unlock_irqrestore(&phba->hbalock, 3367 iflag); 3368 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3369 saveq); 3370 spin_lock_irqsave(&phba->hbalock, 3371 iflag); 3372 } else 3373 __lpfc_sli_release_iocbq(phba, 3374 cmdiocbp); 3375 } 3376 break; 3377 3378 case LPFC_UNKNOWN_IOCB: 3379 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3380 char adaptermsg[LPFC_MAX_ADPTMSG]; 3381 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3382 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3383 MAX_MSG_DATA); 3384 dev_warn(&((phba->pcidev)->dev), 3385 "lpfc%d: %s\n", 3386 phba->brd_no, adaptermsg); 3387 } else { 3388 /* Unknown IOCB command */ 3389 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3390 "0335 Unknown IOCB " 3391 "command Data: x%x " 3392 "x%x x%x x%x\n", 3393 irsp->ulpCommand, 3394 irsp->ulpStatus, 3395 irsp->ulpIoTag, 3396 irsp->ulpContext); 3397 } 3398 break; 3399 } 3400 3401 if (free_saveq) { 3402 list_for_each_entry_safe(rspiocbp, next_iocb, 3403 &saveq->list, list) { 3404 list_del_init(&rspiocbp->list); 3405 __lpfc_sli_release_iocbq(phba, rspiocbp); 3406 } 3407 __lpfc_sli_release_iocbq(phba, saveq); 3408 } 3409 rspiocbp = NULL; 3410 } 3411 spin_unlock_irqrestore(&phba->hbalock, iflag); 3412 return rspiocbp; 3413 } 3414 3415 /** 3416 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3417 * @phba: Pointer to HBA context object. 3418 * @pring: Pointer to driver SLI ring object. 3419 * @mask: Host attention register mask for this ring. 3420 * 3421 * This routine wraps the actual slow_ring event process routine from the 3422 * API jump table function pointer from the lpfc_hba struct. 3423 **/ 3424 void 3425 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 3426 struct lpfc_sli_ring *pring, uint32_t mask) 3427 { 3428 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 3429 } 3430 3431 /** 3432 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 3433 * @phba: Pointer to HBA context object. 3434 * @pring: Pointer to driver SLI ring object. 3435 * @mask: Host attention register mask for this ring. 3436 * 3437 * This function is called from the worker thread when there is a ring event 3438 * for non-fcp rings. The caller does not hold any lock. The function will 3439 * remove each response iocb in the response ring and calls the handle 3440 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3441 **/ 3442 static void 3443 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 3444 struct lpfc_sli_ring *pring, uint32_t mask) 3445 { 3446 struct lpfc_pgp *pgp; 3447 IOCB_t *entry; 3448 IOCB_t *irsp = NULL; 3449 struct lpfc_iocbq *rspiocbp = NULL; 3450 uint32_t portRspPut, portRspMax; 3451 unsigned long iflag; 3452 uint32_t status; 3453 3454 pgp = &phba->port_gp[pring->ringno]; 3455 spin_lock_irqsave(&phba->hbalock, iflag); 3456 pring->stats.iocb_event++; 3457 3458 /* 3459 * The next available response entry should never exceed the maximum 3460 * entries. If it does, treat it as an adapter hardware error. 3461 */ 3462 portRspMax = pring->sli.sli3.numRiocb; 3463 portRspPut = le32_to_cpu(pgp->rspPutInx); 3464 if (portRspPut >= portRspMax) { 3465 /* 3466 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3467 * rsp ring <portRspMax> 3468 */ 3469 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3470 "0303 Ring %d handler: portRspPut %d " 3471 "is bigger than rsp ring %d\n", 3472 pring->ringno, portRspPut, portRspMax); 3473 3474 phba->link_state = LPFC_HBA_ERROR; 3475 spin_unlock_irqrestore(&phba->hbalock, iflag); 3476 3477 phba->work_hs = HS_FFER3; 3478 lpfc_handle_eratt(phba); 3479 3480 return; 3481 } 3482 3483 rmb(); 3484 while (pring->sli.sli3.rspidx != portRspPut) { 3485 /* 3486 * Build a completion list and call the appropriate handler. 3487 * The process is to get the next available response iocb, get 3488 * a free iocb from the list, copy the response data into the 3489 * free iocb, insert to the continuation list, and update the 3490 * next response index to slim. This process makes response 3491 * iocb's in the ring available to DMA as fast as possible but 3492 * pays a penalty for a copy operation. Since the iocb is 3493 * only 32 bytes, this penalty is considered small relative to 3494 * the PCI reads for register values and a slim write. When 3495 * the ulpLe field is set, the entire Command has been 3496 * received. 3497 */ 3498 entry = lpfc_resp_iocb(phba, pring); 3499 3500 phba->last_completion_time = jiffies; 3501 rspiocbp = __lpfc_sli_get_iocbq(phba); 3502 if (rspiocbp == NULL) { 3503 printk(KERN_ERR "%s: out of buffers! Failing " 3504 "completion.\n", __func__); 3505 break; 3506 } 3507 3508 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 3509 phba->iocb_rsp_size); 3510 irsp = &rspiocbp->iocb; 3511 3512 if (++pring->sli.sli3.rspidx >= portRspMax) 3513 pring->sli.sli3.rspidx = 0; 3514 3515 if (pring->ringno == LPFC_ELS_RING) { 3516 lpfc_debugfs_slow_ring_trc(phba, 3517 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 3518 *(((uint32_t *) irsp) + 4), 3519 *(((uint32_t *) irsp) + 6), 3520 *(((uint32_t *) irsp) + 7)); 3521 } 3522 3523 writel(pring->sli.sli3.rspidx, 3524 &phba->host_gp[pring->ringno].rspGetInx); 3525 3526 spin_unlock_irqrestore(&phba->hbalock, iflag); 3527 /* Handle the response IOCB */ 3528 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 3529 spin_lock_irqsave(&phba->hbalock, iflag); 3530 3531 /* 3532 * If the port response put pointer has not been updated, sync 3533 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 3534 * response put pointer. 3535 */ 3536 if (pring->sli.sli3.rspidx == portRspPut) { 3537 portRspPut = le32_to_cpu(pgp->rspPutInx); 3538 } 3539 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 3540 3541 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 3542 /* At least one response entry has been freed */ 3543 pring->stats.iocb_rsp_full++; 3544 /* SET RxRE_RSP in Chip Att register */ 3545 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3546 writel(status, phba->CAregaddr); 3547 readl(phba->CAregaddr); /* flush */ 3548 } 3549 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3550 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3551 pring->stats.iocb_cmd_empty++; 3552 3553 /* Force update of the local copy of cmdGetInx */ 3554 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3555 lpfc_sli_resume_iocb(phba, pring); 3556 3557 if ((pring->lpfc_sli_cmd_available)) 3558 (pring->lpfc_sli_cmd_available) (phba, pring); 3559 3560 } 3561 3562 spin_unlock_irqrestore(&phba->hbalock, iflag); 3563 return; 3564 } 3565 3566 /** 3567 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 3568 * @phba: Pointer to HBA context object. 3569 * @pring: Pointer to driver SLI ring object. 3570 * @mask: Host attention register mask for this ring. 3571 * 3572 * This function is called from the worker thread when there is a pending 3573 * ELS response iocb on the driver internal slow-path response iocb worker 3574 * queue. The caller does not hold any lock. The function will remove each 3575 * response iocb from the response worker queue and calls the handle 3576 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3577 **/ 3578 static void 3579 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 3580 struct lpfc_sli_ring *pring, uint32_t mask) 3581 { 3582 struct lpfc_iocbq *irspiocbq; 3583 struct hbq_dmabuf *dmabuf; 3584 struct lpfc_cq_event *cq_event; 3585 unsigned long iflag; 3586 3587 spin_lock_irqsave(&phba->hbalock, iflag); 3588 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 3589 spin_unlock_irqrestore(&phba->hbalock, iflag); 3590 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 3591 /* Get the response iocb from the head of work queue */ 3592 spin_lock_irqsave(&phba->hbalock, iflag); 3593 list_remove_head(&phba->sli4_hba.sp_queue_event, 3594 cq_event, struct lpfc_cq_event, list); 3595 spin_unlock_irqrestore(&phba->hbalock, iflag); 3596 3597 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 3598 case CQE_CODE_COMPL_WQE: 3599 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 3600 cq_event); 3601 /* Translate ELS WCQE to response IOCBQ */ 3602 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 3603 irspiocbq); 3604 if (irspiocbq) 3605 lpfc_sli_sp_handle_rspiocb(phba, pring, 3606 irspiocbq); 3607 break; 3608 case CQE_CODE_RECEIVE: 3609 case CQE_CODE_RECEIVE_V1: 3610 dmabuf = container_of(cq_event, struct hbq_dmabuf, 3611 cq_event); 3612 lpfc_sli4_handle_received_buffer(phba, dmabuf); 3613 break; 3614 default: 3615 break; 3616 } 3617 } 3618 } 3619 3620 /** 3621 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 3622 * @phba: Pointer to HBA context object. 3623 * @pring: Pointer to driver SLI ring object. 3624 * 3625 * This function aborts all iocbs in the given ring and frees all the iocb 3626 * objects in txq. This function issues an abort iocb for all the iocb commands 3627 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3628 * the return of this function. The caller is not required to hold any locks. 3629 **/ 3630 void 3631 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3632 { 3633 LIST_HEAD(completions); 3634 struct lpfc_iocbq *iocb, *next_iocb; 3635 3636 if (pring->ringno == LPFC_ELS_RING) { 3637 lpfc_fabric_abort_hba(phba); 3638 } 3639 3640 /* Error everything on txq and txcmplq 3641 * First do the txq. 3642 */ 3643 if (phba->sli_rev >= LPFC_SLI_REV4) { 3644 spin_lock_irq(&pring->ring_lock); 3645 list_splice_init(&pring->txq, &completions); 3646 pring->txq_cnt = 0; 3647 spin_unlock_irq(&pring->ring_lock); 3648 3649 spin_lock_irq(&phba->hbalock); 3650 /* Next issue ABTS for everything on the txcmplq */ 3651 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3652 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3653 spin_unlock_irq(&phba->hbalock); 3654 } else { 3655 spin_lock_irq(&phba->hbalock); 3656 list_splice_init(&pring->txq, &completions); 3657 pring->txq_cnt = 0; 3658 3659 /* Next issue ABTS for everything on the txcmplq */ 3660 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3661 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3662 spin_unlock_irq(&phba->hbalock); 3663 } 3664 3665 /* Cancel all the IOCBs from the completions list */ 3666 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 3667 IOERR_SLI_ABORTED); 3668 } 3669 3670 /** 3671 * lpfc_sli_abort_wqe_ring - Abort all iocbs in the ring 3672 * @phba: Pointer to HBA context object. 3673 * @pring: Pointer to driver SLI ring object. 3674 * 3675 * This function aborts all iocbs in the given ring and frees all the iocb 3676 * objects in txq. This function issues an abort iocb for all the iocb commands 3677 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3678 * the return of this function. The caller is not required to hold any locks. 3679 **/ 3680 void 3681 lpfc_sli_abort_wqe_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3682 { 3683 LIST_HEAD(completions); 3684 struct lpfc_iocbq *iocb, *next_iocb; 3685 3686 if (pring->ringno == LPFC_ELS_RING) 3687 lpfc_fabric_abort_hba(phba); 3688 3689 spin_lock_irq(&phba->hbalock); 3690 /* Next issue ABTS for everything on the txcmplq */ 3691 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3692 lpfc_sli4_abort_nvme_io(phba, pring, iocb); 3693 spin_unlock_irq(&phba->hbalock); 3694 } 3695 3696 3697 /** 3698 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 3699 * @phba: Pointer to HBA context object. 3700 * @pring: Pointer to driver SLI ring object. 3701 * 3702 * This function aborts all iocbs in FCP rings and frees all the iocb 3703 * objects in txq. This function issues an abort iocb for all the iocb commands 3704 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3705 * the return of this function. The caller is not required to hold any locks. 3706 **/ 3707 void 3708 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 3709 { 3710 struct lpfc_sli *psli = &phba->sli; 3711 struct lpfc_sli_ring *pring; 3712 uint32_t i; 3713 3714 /* Look on all the FCP Rings for the iotag */ 3715 if (phba->sli_rev >= LPFC_SLI_REV4) { 3716 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3717 pring = phba->sli4_hba.fcp_wq[i]->pring; 3718 lpfc_sli_abort_iocb_ring(phba, pring); 3719 } 3720 } else { 3721 pring = &psli->sli3_ring[LPFC_FCP_RING]; 3722 lpfc_sli_abort_iocb_ring(phba, pring); 3723 } 3724 } 3725 3726 /** 3727 * lpfc_sli_abort_nvme_rings - Abort all wqes in all NVME rings 3728 * @phba: Pointer to HBA context object. 3729 * 3730 * This function aborts all wqes in NVME rings. This function issues an 3731 * abort wqe for all the outstanding IO commands in txcmplq. The iocbs in 3732 * the txcmplq is not guaranteed to complete before the return of this 3733 * function. The caller is not required to hold any locks. 3734 **/ 3735 void 3736 lpfc_sli_abort_nvme_rings(struct lpfc_hba *phba) 3737 { 3738 struct lpfc_sli_ring *pring; 3739 uint32_t i; 3740 3741 if (phba->sli_rev < LPFC_SLI_REV4) 3742 return; 3743 3744 /* Abort all IO on each NVME ring. */ 3745 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 3746 pring = phba->sli4_hba.nvme_wq[i]->pring; 3747 lpfc_sli_abort_wqe_ring(phba, pring); 3748 } 3749 } 3750 3751 3752 /** 3753 * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring 3754 * @phba: Pointer to HBA context object. 3755 * 3756 * This function flushes all iocbs in the fcp ring and frees all the iocb 3757 * objects in txq and txcmplq. This function will not issue abort iocbs 3758 * for all the iocb commands in txcmplq, they will just be returned with 3759 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 3760 * slot has been permanently disabled. 3761 **/ 3762 void 3763 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba) 3764 { 3765 LIST_HEAD(txq); 3766 LIST_HEAD(txcmplq); 3767 struct lpfc_sli *psli = &phba->sli; 3768 struct lpfc_sli_ring *pring; 3769 uint32_t i; 3770 3771 spin_lock_irq(&phba->hbalock); 3772 /* Indicate the I/O queues are flushed */ 3773 phba->hba_flag |= HBA_FCP_IOQ_FLUSH; 3774 spin_unlock_irq(&phba->hbalock); 3775 3776 /* Look on all the FCP Rings for the iotag */ 3777 if (phba->sli_rev >= LPFC_SLI_REV4) { 3778 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3779 pring = phba->sli4_hba.fcp_wq[i]->pring; 3780 3781 spin_lock_irq(&pring->ring_lock); 3782 /* Retrieve everything on txq */ 3783 list_splice_init(&pring->txq, &txq); 3784 /* Retrieve everything on the txcmplq */ 3785 list_splice_init(&pring->txcmplq, &txcmplq); 3786 pring->txq_cnt = 0; 3787 pring->txcmplq_cnt = 0; 3788 spin_unlock_irq(&pring->ring_lock); 3789 3790 /* Flush the txq */ 3791 lpfc_sli_cancel_iocbs(phba, &txq, 3792 IOSTAT_LOCAL_REJECT, 3793 IOERR_SLI_DOWN); 3794 /* Flush the txcmpq */ 3795 lpfc_sli_cancel_iocbs(phba, &txcmplq, 3796 IOSTAT_LOCAL_REJECT, 3797 IOERR_SLI_DOWN); 3798 } 3799 } else { 3800 pring = &psli->sli3_ring[LPFC_FCP_RING]; 3801 3802 spin_lock_irq(&phba->hbalock); 3803 /* Retrieve everything on txq */ 3804 list_splice_init(&pring->txq, &txq); 3805 /* Retrieve everything on the txcmplq */ 3806 list_splice_init(&pring->txcmplq, &txcmplq); 3807 pring->txq_cnt = 0; 3808 pring->txcmplq_cnt = 0; 3809 spin_unlock_irq(&phba->hbalock); 3810 3811 /* Flush the txq */ 3812 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 3813 IOERR_SLI_DOWN); 3814 /* Flush the txcmpq */ 3815 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 3816 IOERR_SLI_DOWN); 3817 } 3818 } 3819 3820 /** 3821 * lpfc_sli_flush_nvme_rings - flush all wqes in the nvme rings 3822 * @phba: Pointer to HBA context object. 3823 * 3824 * This function flushes all wqes in the nvme rings and frees all resources 3825 * in the txcmplq. This function does not issue abort wqes for the IO 3826 * commands in txcmplq, they will just be returned with 3827 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 3828 * slot has been permanently disabled. 3829 **/ 3830 void 3831 lpfc_sli_flush_nvme_rings(struct lpfc_hba *phba) 3832 { 3833 LIST_HEAD(txcmplq); 3834 struct lpfc_sli_ring *pring; 3835 uint32_t i; 3836 3837 if (phba->sli_rev < LPFC_SLI_REV4) 3838 return; 3839 3840 /* Hint to other driver operations that a flush is in progress. */ 3841 spin_lock_irq(&phba->hbalock); 3842 phba->hba_flag |= HBA_NVME_IOQ_FLUSH; 3843 spin_unlock_irq(&phba->hbalock); 3844 3845 /* Cycle through all NVME rings and complete each IO with 3846 * a local driver reason code. This is a flush so no 3847 * abort exchange to FW. 3848 */ 3849 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 3850 pring = phba->sli4_hba.nvme_wq[i]->pring; 3851 3852 /* Retrieve everything on the txcmplq */ 3853 spin_lock_irq(&pring->ring_lock); 3854 list_splice_init(&pring->txcmplq, &txcmplq); 3855 pring->txcmplq_cnt = 0; 3856 spin_unlock_irq(&pring->ring_lock); 3857 3858 /* Flush the txcmpq &&&PAE */ 3859 lpfc_sli_cancel_iocbs(phba, &txcmplq, 3860 IOSTAT_LOCAL_REJECT, 3861 IOERR_SLI_DOWN); 3862 } 3863 } 3864 3865 /** 3866 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 3867 * @phba: Pointer to HBA context object. 3868 * @mask: Bit mask to be checked. 3869 * 3870 * This function reads the host status register and compares 3871 * with the provided bit mask to check if HBA completed 3872 * the restart. This function will wait in a loop for the 3873 * HBA to complete restart. If the HBA does not restart within 3874 * 15 iterations, the function will reset the HBA again. The 3875 * function returns 1 when HBA fail to restart otherwise returns 3876 * zero. 3877 **/ 3878 static int 3879 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 3880 { 3881 uint32_t status; 3882 int i = 0; 3883 int retval = 0; 3884 3885 /* Read the HBA Host Status Register */ 3886 if (lpfc_readl(phba->HSregaddr, &status)) 3887 return 1; 3888 3889 /* 3890 * Check status register every 100ms for 5 retries, then every 3891 * 500ms for 5, then every 2.5 sec for 5, then reset board and 3892 * every 2.5 sec for 4. 3893 * Break our of the loop if errors occurred during init. 3894 */ 3895 while (((status & mask) != mask) && 3896 !(status & HS_FFERM) && 3897 i++ < 20) { 3898 3899 if (i <= 5) 3900 msleep(10); 3901 else if (i <= 10) 3902 msleep(500); 3903 else 3904 msleep(2500); 3905 3906 if (i == 15) { 3907 /* Do post */ 3908 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 3909 lpfc_sli_brdrestart(phba); 3910 } 3911 /* Read the HBA Host Status Register */ 3912 if (lpfc_readl(phba->HSregaddr, &status)) { 3913 retval = 1; 3914 break; 3915 } 3916 } 3917 3918 /* Check to see if any errors occurred during init */ 3919 if ((status & HS_FFERM) || (i >= 20)) { 3920 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 3921 "2751 Adapter failed to restart, " 3922 "status reg x%x, FW Data: A8 x%x AC x%x\n", 3923 status, 3924 readl(phba->MBslimaddr + 0xa8), 3925 readl(phba->MBslimaddr + 0xac)); 3926 phba->link_state = LPFC_HBA_ERROR; 3927 retval = 1; 3928 } 3929 3930 return retval; 3931 } 3932 3933 /** 3934 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 3935 * @phba: Pointer to HBA context object. 3936 * @mask: Bit mask to be checked. 3937 * 3938 * This function checks the host status register to check if HBA is 3939 * ready. This function will wait in a loop for the HBA to be ready 3940 * If the HBA is not ready , the function will will reset the HBA PCI 3941 * function again. The function returns 1 when HBA fail to be ready 3942 * otherwise returns zero. 3943 **/ 3944 static int 3945 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 3946 { 3947 uint32_t status; 3948 int retval = 0; 3949 3950 /* Read the HBA Host Status Register */ 3951 status = lpfc_sli4_post_status_check(phba); 3952 3953 if (status) { 3954 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 3955 lpfc_sli_brdrestart(phba); 3956 status = lpfc_sli4_post_status_check(phba); 3957 } 3958 3959 /* Check to see if any errors occurred during init */ 3960 if (status) { 3961 phba->link_state = LPFC_HBA_ERROR; 3962 retval = 1; 3963 } else 3964 phba->sli4_hba.intr_enable = 0; 3965 3966 return retval; 3967 } 3968 3969 /** 3970 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 3971 * @phba: Pointer to HBA context object. 3972 * @mask: Bit mask to be checked. 3973 * 3974 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 3975 * from the API jump table function pointer from the lpfc_hba struct. 3976 **/ 3977 int 3978 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 3979 { 3980 return phba->lpfc_sli_brdready(phba, mask); 3981 } 3982 3983 #define BARRIER_TEST_PATTERN (0xdeadbeef) 3984 3985 /** 3986 * lpfc_reset_barrier - Make HBA ready for HBA reset 3987 * @phba: Pointer to HBA context object. 3988 * 3989 * This function is called before resetting an HBA. This function is called 3990 * with hbalock held and requests HBA to quiesce DMAs before a reset. 3991 **/ 3992 void lpfc_reset_barrier(struct lpfc_hba *phba) 3993 { 3994 uint32_t __iomem *resp_buf; 3995 uint32_t __iomem *mbox_buf; 3996 volatile uint32_t mbox; 3997 uint32_t hc_copy, ha_copy, resp_data; 3998 int i; 3999 uint8_t hdrtype; 4000 4001 lockdep_assert_held(&phba->hbalock); 4002 4003 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4004 if (hdrtype != 0x80 || 4005 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4006 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4007 return; 4008 4009 /* 4010 * Tell the other part of the chip to suspend temporarily all 4011 * its DMA activity. 4012 */ 4013 resp_buf = phba->MBslimaddr; 4014 4015 /* Disable the error attention */ 4016 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4017 return; 4018 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4019 readl(phba->HCregaddr); /* flush */ 4020 phba->link_flag |= LS_IGNORE_ERATT; 4021 4022 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4023 return; 4024 if (ha_copy & HA_ERATT) { 4025 /* Clear Chip error bit */ 4026 writel(HA_ERATT, phba->HAregaddr); 4027 phba->pport->stopped = 1; 4028 } 4029 4030 mbox = 0; 4031 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 4032 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 4033 4034 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4035 mbox_buf = phba->MBslimaddr; 4036 writel(mbox, mbox_buf); 4037 4038 for (i = 0; i < 50; i++) { 4039 if (lpfc_readl((resp_buf + 1), &resp_data)) 4040 return; 4041 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4042 mdelay(1); 4043 else 4044 break; 4045 } 4046 resp_data = 0; 4047 if (lpfc_readl((resp_buf + 1), &resp_data)) 4048 return; 4049 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4050 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4051 phba->pport->stopped) 4052 goto restore_hc; 4053 else 4054 goto clear_errat; 4055 } 4056 4057 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 4058 resp_data = 0; 4059 for (i = 0; i < 500; i++) { 4060 if (lpfc_readl(resp_buf, &resp_data)) 4061 return; 4062 if (resp_data != mbox) 4063 mdelay(1); 4064 else 4065 break; 4066 } 4067 4068 clear_errat: 4069 4070 while (++i < 500) { 4071 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4072 return; 4073 if (!(ha_copy & HA_ERATT)) 4074 mdelay(1); 4075 else 4076 break; 4077 } 4078 4079 if (readl(phba->HAregaddr) & HA_ERATT) { 4080 writel(HA_ERATT, phba->HAregaddr); 4081 phba->pport->stopped = 1; 4082 } 4083 4084 restore_hc: 4085 phba->link_flag &= ~LS_IGNORE_ERATT; 4086 writel(hc_copy, phba->HCregaddr); 4087 readl(phba->HCregaddr); /* flush */ 4088 } 4089 4090 /** 4091 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4092 * @phba: Pointer to HBA context object. 4093 * 4094 * This function issues a kill_board mailbox command and waits for 4095 * the error attention interrupt. This function is called for stopping 4096 * the firmware processing. The caller is not required to hold any 4097 * locks. This function calls lpfc_hba_down_post function to free 4098 * any pending commands after the kill. The function will return 1 when it 4099 * fails to kill the board else will return 0. 4100 **/ 4101 int 4102 lpfc_sli_brdkill(struct lpfc_hba *phba) 4103 { 4104 struct lpfc_sli *psli; 4105 LPFC_MBOXQ_t *pmb; 4106 uint32_t status; 4107 uint32_t ha_copy; 4108 int retval; 4109 int i = 0; 4110 4111 psli = &phba->sli; 4112 4113 /* Kill HBA */ 4114 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4115 "0329 Kill HBA Data: x%x x%x\n", 4116 phba->pport->port_state, psli->sli_flag); 4117 4118 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4119 if (!pmb) 4120 return 1; 4121 4122 /* Disable the error attention */ 4123 spin_lock_irq(&phba->hbalock); 4124 if (lpfc_readl(phba->HCregaddr, &status)) { 4125 spin_unlock_irq(&phba->hbalock); 4126 mempool_free(pmb, phba->mbox_mem_pool); 4127 return 1; 4128 } 4129 status &= ~HC_ERINT_ENA; 4130 writel(status, phba->HCregaddr); 4131 readl(phba->HCregaddr); /* flush */ 4132 phba->link_flag |= LS_IGNORE_ERATT; 4133 spin_unlock_irq(&phba->hbalock); 4134 4135 lpfc_kill_board(phba, pmb); 4136 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4137 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4138 4139 if (retval != MBX_SUCCESS) { 4140 if (retval != MBX_BUSY) 4141 mempool_free(pmb, phba->mbox_mem_pool); 4142 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4143 "2752 KILL_BOARD command failed retval %d\n", 4144 retval); 4145 spin_lock_irq(&phba->hbalock); 4146 phba->link_flag &= ~LS_IGNORE_ERATT; 4147 spin_unlock_irq(&phba->hbalock); 4148 return 1; 4149 } 4150 4151 spin_lock_irq(&phba->hbalock); 4152 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4153 spin_unlock_irq(&phba->hbalock); 4154 4155 mempool_free(pmb, phba->mbox_mem_pool); 4156 4157 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4158 * attention every 100ms for 3 seconds. If we don't get ERATT after 4159 * 3 seconds we still set HBA_ERROR state because the status of the 4160 * board is now undefined. 4161 */ 4162 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4163 return 1; 4164 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4165 mdelay(100); 4166 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4167 return 1; 4168 } 4169 4170 del_timer_sync(&psli->mbox_tmo); 4171 if (ha_copy & HA_ERATT) { 4172 writel(HA_ERATT, phba->HAregaddr); 4173 phba->pport->stopped = 1; 4174 } 4175 spin_lock_irq(&phba->hbalock); 4176 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4177 psli->mbox_active = NULL; 4178 phba->link_flag &= ~LS_IGNORE_ERATT; 4179 spin_unlock_irq(&phba->hbalock); 4180 4181 lpfc_hba_down_post(phba); 4182 phba->link_state = LPFC_HBA_ERROR; 4183 4184 return ha_copy & HA_ERATT ? 0 : 1; 4185 } 4186 4187 /** 4188 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4189 * @phba: Pointer to HBA context object. 4190 * 4191 * This function resets the HBA by writing HC_INITFF to the control 4192 * register. After the HBA resets, this function resets all the iocb ring 4193 * indices. This function disables PCI layer parity checking during 4194 * the reset. 4195 * This function returns 0 always. 4196 * The caller is not required to hold any locks. 4197 **/ 4198 int 4199 lpfc_sli_brdreset(struct lpfc_hba *phba) 4200 { 4201 struct lpfc_sli *psli; 4202 struct lpfc_sli_ring *pring; 4203 uint16_t cfg_value; 4204 int i; 4205 4206 psli = &phba->sli; 4207 4208 /* Reset HBA */ 4209 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4210 "0325 Reset HBA Data: x%x x%x\n", 4211 (phba->pport) ? phba->pport->port_state : 0, 4212 psli->sli_flag); 4213 4214 /* perform board reset */ 4215 phba->fc_eventTag = 0; 4216 phba->link_events = 0; 4217 if (phba->pport) { 4218 phba->pport->fc_myDID = 0; 4219 phba->pport->fc_prevDID = 0; 4220 } 4221 4222 /* Turn off parity checking and serr during the physical reset */ 4223 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4224 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4225 (cfg_value & 4226 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4227 4228 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4229 4230 /* Now toggle INITFF bit in the Host Control Register */ 4231 writel(HC_INITFF, phba->HCregaddr); 4232 mdelay(1); 4233 readl(phba->HCregaddr); /* flush */ 4234 writel(0, phba->HCregaddr); 4235 readl(phba->HCregaddr); /* flush */ 4236 4237 /* Restore PCI cmd register */ 4238 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4239 4240 /* Initialize relevant SLI info */ 4241 for (i = 0; i < psli->num_rings; i++) { 4242 pring = &psli->sli3_ring[i]; 4243 pring->flag = 0; 4244 pring->sli.sli3.rspidx = 0; 4245 pring->sli.sli3.next_cmdidx = 0; 4246 pring->sli.sli3.local_getidx = 0; 4247 pring->sli.sli3.cmdidx = 0; 4248 pring->missbufcnt = 0; 4249 } 4250 4251 phba->link_state = LPFC_WARM_START; 4252 return 0; 4253 } 4254 4255 /** 4256 * lpfc_sli4_brdreset - Reset a sli-4 HBA 4257 * @phba: Pointer to HBA context object. 4258 * 4259 * This function resets a SLI4 HBA. This function disables PCI layer parity 4260 * checking during resets the device. The caller is not required to hold 4261 * any locks. 4262 * 4263 * This function returns 0 always. 4264 **/ 4265 int 4266 lpfc_sli4_brdreset(struct lpfc_hba *phba) 4267 { 4268 struct lpfc_sli *psli = &phba->sli; 4269 uint16_t cfg_value; 4270 int rc = 0; 4271 4272 /* Reset HBA */ 4273 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4274 "0295 Reset HBA Data: x%x x%x x%x\n", 4275 phba->pport->port_state, psli->sli_flag, 4276 phba->hba_flag); 4277 4278 /* perform board reset */ 4279 phba->fc_eventTag = 0; 4280 phba->link_events = 0; 4281 phba->pport->fc_myDID = 0; 4282 phba->pport->fc_prevDID = 0; 4283 4284 spin_lock_irq(&phba->hbalock); 4285 psli->sli_flag &= ~(LPFC_PROCESS_LA); 4286 phba->fcf.fcf_flag = 0; 4287 spin_unlock_irq(&phba->hbalock); 4288 4289 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 4290 if (phba->hba_flag & HBA_FW_DUMP_OP) { 4291 phba->hba_flag &= ~HBA_FW_DUMP_OP; 4292 return rc; 4293 } 4294 4295 /* Now physically reset the device */ 4296 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4297 "0389 Performing PCI function reset!\n"); 4298 4299 /* Turn off parity checking and serr during the physical reset */ 4300 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4301 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4302 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4303 4304 /* Perform FCoE PCI function reset before freeing queue memory */ 4305 rc = lpfc_pci_function_reset(phba); 4306 4307 /* Restore PCI cmd register */ 4308 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4309 4310 return rc; 4311 } 4312 4313 /** 4314 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4315 * @phba: Pointer to HBA context object. 4316 * 4317 * This function is called in the SLI initialization code path to 4318 * restart the HBA. The caller is not required to hold any lock. 4319 * This function writes MBX_RESTART mailbox command to the SLIM and 4320 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4321 * function to free any pending commands. The function enables 4322 * POST only during the first initialization. The function returns zero. 4323 * The function does not guarantee completion of MBX_RESTART mailbox 4324 * command before the return of this function. 4325 **/ 4326 static int 4327 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4328 { 4329 MAILBOX_t *mb; 4330 struct lpfc_sli *psli; 4331 volatile uint32_t word0; 4332 void __iomem *to_slim; 4333 uint32_t hba_aer_enabled; 4334 4335 spin_lock_irq(&phba->hbalock); 4336 4337 /* Take PCIe device Advanced Error Reporting (AER) state */ 4338 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4339 4340 psli = &phba->sli; 4341 4342 /* Restart HBA */ 4343 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4344 "0337 Restart HBA Data: x%x x%x\n", 4345 (phba->pport) ? phba->pport->port_state : 0, 4346 psli->sli_flag); 4347 4348 word0 = 0; 4349 mb = (MAILBOX_t *) &word0; 4350 mb->mbxCommand = MBX_RESTART; 4351 mb->mbxHc = 1; 4352 4353 lpfc_reset_barrier(phba); 4354 4355 to_slim = phba->MBslimaddr; 4356 writel(*(uint32_t *) mb, to_slim); 4357 readl(to_slim); /* flush */ 4358 4359 /* Only skip post after fc_ffinit is completed */ 4360 if (phba->pport && phba->pport->port_state) 4361 word0 = 1; /* This is really setting up word1 */ 4362 else 4363 word0 = 0; /* This is really setting up word1 */ 4364 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4365 writel(*(uint32_t *) mb, to_slim); 4366 readl(to_slim); /* flush */ 4367 4368 lpfc_sli_brdreset(phba); 4369 if (phba->pport) 4370 phba->pport->stopped = 0; 4371 phba->link_state = LPFC_INIT_START; 4372 phba->hba_flag = 0; 4373 spin_unlock_irq(&phba->hbalock); 4374 4375 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4376 psli->stats_start = get_seconds(); 4377 4378 /* Give the INITFF and Post time to settle. */ 4379 mdelay(100); 4380 4381 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4382 if (hba_aer_enabled) 4383 pci_disable_pcie_error_reporting(phba->pcidev); 4384 4385 lpfc_hba_down_post(phba); 4386 4387 return 0; 4388 } 4389 4390 /** 4391 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4392 * @phba: Pointer to HBA context object. 4393 * 4394 * This function is called in the SLI initialization code path to restart 4395 * a SLI4 HBA. The caller is not required to hold any lock. 4396 * At the end of the function, it calls lpfc_hba_down_post function to 4397 * free any pending commands. 4398 **/ 4399 static int 4400 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4401 { 4402 struct lpfc_sli *psli = &phba->sli; 4403 uint32_t hba_aer_enabled; 4404 int rc; 4405 4406 /* Restart HBA */ 4407 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4408 "0296 Restart HBA Data: x%x x%x\n", 4409 phba->pport->port_state, psli->sli_flag); 4410 4411 /* Take PCIe device Advanced Error Reporting (AER) state */ 4412 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4413 4414 rc = lpfc_sli4_brdreset(phba); 4415 4416 spin_lock_irq(&phba->hbalock); 4417 phba->pport->stopped = 0; 4418 phba->link_state = LPFC_INIT_START; 4419 phba->hba_flag = 0; 4420 spin_unlock_irq(&phba->hbalock); 4421 4422 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4423 psli->stats_start = get_seconds(); 4424 4425 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4426 if (hba_aer_enabled) 4427 pci_disable_pcie_error_reporting(phba->pcidev); 4428 4429 lpfc_hba_down_post(phba); 4430 lpfc_sli4_queue_destroy(phba); 4431 4432 return rc; 4433 } 4434 4435 /** 4436 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4437 * @phba: Pointer to HBA context object. 4438 * 4439 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4440 * API jump table function pointer from the lpfc_hba struct. 4441 **/ 4442 int 4443 lpfc_sli_brdrestart(struct lpfc_hba *phba) 4444 { 4445 return phba->lpfc_sli_brdrestart(phba); 4446 } 4447 4448 /** 4449 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4450 * @phba: Pointer to HBA context object. 4451 * 4452 * This function is called after a HBA restart to wait for successful 4453 * restart of the HBA. Successful restart of the HBA is indicated by 4454 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4455 * iteration, the function will restart the HBA again. The function returns 4456 * zero if HBA successfully restarted else returns negative error code. 4457 **/ 4458 int 4459 lpfc_sli_chipset_init(struct lpfc_hba *phba) 4460 { 4461 uint32_t status, i = 0; 4462 4463 /* Read the HBA Host Status Register */ 4464 if (lpfc_readl(phba->HSregaddr, &status)) 4465 return -EIO; 4466 4467 /* Check status register to see what current state is */ 4468 i = 0; 4469 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4470 4471 /* Check every 10ms for 10 retries, then every 100ms for 90 4472 * retries, then every 1 sec for 50 retires for a total of 4473 * ~60 seconds before reset the board again and check every 4474 * 1 sec for 50 retries. The up to 60 seconds before the 4475 * board ready is required by the Falcon FIPS zeroization 4476 * complete, and any reset the board in between shall cause 4477 * restart of zeroization, further delay the board ready. 4478 */ 4479 if (i++ >= 200) { 4480 /* Adapter failed to init, timeout, status reg 4481 <status> */ 4482 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4483 "0436 Adapter failed to init, " 4484 "timeout, status reg x%x, " 4485 "FW Data: A8 x%x AC x%x\n", status, 4486 readl(phba->MBslimaddr + 0xa8), 4487 readl(phba->MBslimaddr + 0xac)); 4488 phba->link_state = LPFC_HBA_ERROR; 4489 return -ETIMEDOUT; 4490 } 4491 4492 /* Check to see if any errors occurred during init */ 4493 if (status & HS_FFERM) { 4494 /* ERROR: During chipset initialization */ 4495 /* Adapter failed to init, chipset, status reg 4496 <status> */ 4497 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4498 "0437 Adapter failed to init, " 4499 "chipset, status reg x%x, " 4500 "FW Data: A8 x%x AC x%x\n", status, 4501 readl(phba->MBslimaddr + 0xa8), 4502 readl(phba->MBslimaddr + 0xac)); 4503 phba->link_state = LPFC_HBA_ERROR; 4504 return -EIO; 4505 } 4506 4507 if (i <= 10) 4508 msleep(10); 4509 else if (i <= 100) 4510 msleep(100); 4511 else 4512 msleep(1000); 4513 4514 if (i == 150) { 4515 /* Do post */ 4516 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4517 lpfc_sli_brdrestart(phba); 4518 } 4519 /* Read the HBA Host Status Register */ 4520 if (lpfc_readl(phba->HSregaddr, &status)) 4521 return -EIO; 4522 } 4523 4524 /* Check to see if any errors occurred during init */ 4525 if (status & HS_FFERM) { 4526 /* ERROR: During chipset initialization */ 4527 /* Adapter failed to init, chipset, status reg <status> */ 4528 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4529 "0438 Adapter failed to init, chipset, " 4530 "status reg x%x, " 4531 "FW Data: A8 x%x AC x%x\n", status, 4532 readl(phba->MBslimaddr + 0xa8), 4533 readl(phba->MBslimaddr + 0xac)); 4534 phba->link_state = LPFC_HBA_ERROR; 4535 return -EIO; 4536 } 4537 4538 /* Clear all interrupt enable conditions */ 4539 writel(0, phba->HCregaddr); 4540 readl(phba->HCregaddr); /* flush */ 4541 4542 /* setup host attn register */ 4543 writel(0xffffffff, phba->HAregaddr); 4544 readl(phba->HAregaddr); /* flush */ 4545 return 0; 4546 } 4547 4548 /** 4549 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 4550 * 4551 * This function calculates and returns the number of HBQs required to be 4552 * configured. 4553 **/ 4554 int 4555 lpfc_sli_hbq_count(void) 4556 { 4557 return ARRAY_SIZE(lpfc_hbq_defs); 4558 } 4559 4560 /** 4561 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 4562 * 4563 * This function adds the number of hbq entries in every HBQ to get 4564 * the total number of hbq entries required for the HBA and returns 4565 * the total count. 4566 **/ 4567 static int 4568 lpfc_sli_hbq_entry_count(void) 4569 { 4570 int hbq_count = lpfc_sli_hbq_count(); 4571 int count = 0; 4572 int i; 4573 4574 for (i = 0; i < hbq_count; ++i) 4575 count += lpfc_hbq_defs[i]->entry_count; 4576 return count; 4577 } 4578 4579 /** 4580 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 4581 * 4582 * This function calculates amount of memory required for all hbq entries 4583 * to be configured and returns the total memory required. 4584 **/ 4585 int 4586 lpfc_sli_hbq_size(void) 4587 { 4588 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 4589 } 4590 4591 /** 4592 * lpfc_sli_hbq_setup - configure and initialize HBQs 4593 * @phba: Pointer to HBA context object. 4594 * 4595 * This function is called during the SLI initialization to configure 4596 * all the HBQs and post buffers to the HBQ. The caller is not 4597 * required to hold any locks. This function will return zero if successful 4598 * else it will return negative error code. 4599 **/ 4600 static int 4601 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 4602 { 4603 int hbq_count = lpfc_sli_hbq_count(); 4604 LPFC_MBOXQ_t *pmb; 4605 MAILBOX_t *pmbox; 4606 uint32_t hbqno; 4607 uint32_t hbq_entry_index; 4608 4609 /* Get a Mailbox buffer to setup mailbox 4610 * commands for HBA initialization 4611 */ 4612 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4613 4614 if (!pmb) 4615 return -ENOMEM; 4616 4617 pmbox = &pmb->u.mb; 4618 4619 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 4620 phba->link_state = LPFC_INIT_MBX_CMDS; 4621 phba->hbq_in_use = 1; 4622 4623 hbq_entry_index = 0; 4624 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 4625 phba->hbqs[hbqno].next_hbqPutIdx = 0; 4626 phba->hbqs[hbqno].hbqPutIdx = 0; 4627 phba->hbqs[hbqno].local_hbqGetIdx = 0; 4628 phba->hbqs[hbqno].entry_count = 4629 lpfc_hbq_defs[hbqno]->entry_count; 4630 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 4631 hbq_entry_index, pmb); 4632 hbq_entry_index += phba->hbqs[hbqno].entry_count; 4633 4634 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 4635 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 4636 mbxStatus <status>, ring <num> */ 4637 4638 lpfc_printf_log(phba, KERN_ERR, 4639 LOG_SLI | LOG_VPORT, 4640 "1805 Adapter failed to init. " 4641 "Data: x%x x%x x%x\n", 4642 pmbox->mbxCommand, 4643 pmbox->mbxStatus, hbqno); 4644 4645 phba->link_state = LPFC_HBA_ERROR; 4646 mempool_free(pmb, phba->mbox_mem_pool); 4647 return -ENXIO; 4648 } 4649 } 4650 phba->hbq_count = hbq_count; 4651 4652 mempool_free(pmb, phba->mbox_mem_pool); 4653 4654 /* Initially populate or replenish the HBQs */ 4655 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 4656 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 4657 return 0; 4658 } 4659 4660 /** 4661 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 4662 * @phba: Pointer to HBA context object. 4663 * 4664 * This function is called during the SLI initialization to configure 4665 * all the HBQs and post buffers to the HBQ. The caller is not 4666 * required to hold any locks. This function will return zero if successful 4667 * else it will return negative error code. 4668 **/ 4669 static int 4670 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 4671 { 4672 phba->hbq_in_use = 1; 4673 phba->hbqs[LPFC_ELS_HBQ].entry_count = 4674 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 4675 phba->hbq_count = 1; 4676 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 4677 /* Initially populate or replenish the HBQs */ 4678 return 0; 4679 } 4680 4681 /** 4682 * lpfc_sli_config_port - Issue config port mailbox command 4683 * @phba: Pointer to HBA context object. 4684 * @sli_mode: sli mode - 2/3 4685 * 4686 * This function is called by the sli initialization code path 4687 * to issue config_port mailbox command. This function restarts the 4688 * HBA firmware and issues a config_port mailbox command to configure 4689 * the SLI interface in the sli mode specified by sli_mode 4690 * variable. The caller is not required to hold any locks. 4691 * The function returns 0 if successful, else returns negative error 4692 * code. 4693 **/ 4694 int 4695 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 4696 { 4697 LPFC_MBOXQ_t *pmb; 4698 uint32_t resetcount = 0, rc = 0, done = 0; 4699 4700 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4701 if (!pmb) { 4702 phba->link_state = LPFC_HBA_ERROR; 4703 return -ENOMEM; 4704 } 4705 4706 phba->sli_rev = sli_mode; 4707 while (resetcount < 2 && !done) { 4708 spin_lock_irq(&phba->hbalock); 4709 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 4710 spin_unlock_irq(&phba->hbalock); 4711 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4712 lpfc_sli_brdrestart(phba); 4713 rc = lpfc_sli_chipset_init(phba); 4714 if (rc) 4715 break; 4716 4717 spin_lock_irq(&phba->hbalock); 4718 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4719 spin_unlock_irq(&phba->hbalock); 4720 resetcount++; 4721 4722 /* Call pre CONFIG_PORT mailbox command initialization. A 4723 * value of 0 means the call was successful. Any other 4724 * nonzero value is a failure, but if ERESTART is returned, 4725 * the driver may reset the HBA and try again. 4726 */ 4727 rc = lpfc_config_port_prep(phba); 4728 if (rc == -ERESTART) { 4729 phba->link_state = LPFC_LINK_UNKNOWN; 4730 continue; 4731 } else if (rc) 4732 break; 4733 4734 phba->link_state = LPFC_INIT_MBX_CMDS; 4735 lpfc_config_port(phba, pmb); 4736 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 4737 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 4738 LPFC_SLI3_HBQ_ENABLED | 4739 LPFC_SLI3_CRP_ENABLED | 4740 LPFC_SLI3_BG_ENABLED | 4741 LPFC_SLI3_DSS_ENABLED); 4742 if (rc != MBX_SUCCESS) { 4743 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4744 "0442 Adapter failed to init, mbxCmd x%x " 4745 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 4746 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 4747 spin_lock_irq(&phba->hbalock); 4748 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 4749 spin_unlock_irq(&phba->hbalock); 4750 rc = -ENXIO; 4751 } else { 4752 /* Allow asynchronous mailbox command to go through */ 4753 spin_lock_irq(&phba->hbalock); 4754 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 4755 spin_unlock_irq(&phba->hbalock); 4756 done = 1; 4757 4758 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 4759 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 4760 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 4761 "3110 Port did not grant ASABT\n"); 4762 } 4763 } 4764 if (!done) { 4765 rc = -EINVAL; 4766 goto do_prep_failed; 4767 } 4768 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 4769 if (!pmb->u.mb.un.varCfgPort.cMA) { 4770 rc = -ENXIO; 4771 goto do_prep_failed; 4772 } 4773 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 4774 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 4775 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 4776 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 4777 phba->max_vpi : phba->max_vports; 4778 4779 } else 4780 phba->max_vpi = 0; 4781 phba->fips_level = 0; 4782 phba->fips_spec_rev = 0; 4783 if (pmb->u.mb.un.varCfgPort.gdss) { 4784 phba->sli3_options |= LPFC_SLI3_DSS_ENABLED; 4785 phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level; 4786 phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev; 4787 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4788 "2850 Security Crypto Active. FIPS x%d " 4789 "(Spec Rev: x%d)", 4790 phba->fips_level, phba->fips_spec_rev); 4791 } 4792 if (pmb->u.mb.un.varCfgPort.sec_err) { 4793 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4794 "2856 Config Port Security Crypto " 4795 "Error: x%x ", 4796 pmb->u.mb.un.varCfgPort.sec_err); 4797 } 4798 if (pmb->u.mb.un.varCfgPort.gerbm) 4799 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 4800 if (pmb->u.mb.un.varCfgPort.gcrp) 4801 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 4802 4803 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 4804 phba->port_gp = phba->mbox->us.s3_pgp.port; 4805 4806 if (phba->cfg_enable_bg) { 4807 if (pmb->u.mb.un.varCfgPort.gbg) 4808 phba->sli3_options |= LPFC_SLI3_BG_ENABLED; 4809 else 4810 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4811 "0443 Adapter did not grant " 4812 "BlockGuard\n"); 4813 } 4814 } else { 4815 phba->hbq_get = NULL; 4816 phba->port_gp = phba->mbox->us.s2.port; 4817 phba->max_vpi = 0; 4818 } 4819 do_prep_failed: 4820 mempool_free(pmb, phba->mbox_mem_pool); 4821 return rc; 4822 } 4823 4824 4825 /** 4826 * lpfc_sli_hba_setup - SLI initialization function 4827 * @phba: Pointer to HBA context object. 4828 * 4829 * This function is the main SLI initialization function. This function 4830 * is called by the HBA initialization code, HBA reset code and HBA 4831 * error attention handler code. Caller is not required to hold any 4832 * locks. This function issues config_port mailbox command to configure 4833 * the SLI, setup iocb rings and HBQ rings. In the end the function 4834 * calls the config_port_post function to issue init_link mailbox 4835 * command and to start the discovery. The function will return zero 4836 * if successful, else it will return negative error code. 4837 **/ 4838 int 4839 lpfc_sli_hba_setup(struct lpfc_hba *phba) 4840 { 4841 uint32_t rc; 4842 int mode = 3, i; 4843 int longs; 4844 4845 switch (phba->cfg_sli_mode) { 4846 case 2: 4847 if (phba->cfg_enable_npiv) { 4848 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4849 "1824 NPIV enabled: Override sli_mode " 4850 "parameter (%d) to auto (0).\n", 4851 phba->cfg_sli_mode); 4852 break; 4853 } 4854 mode = 2; 4855 break; 4856 case 0: 4857 case 3: 4858 break; 4859 default: 4860 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4861 "1819 Unrecognized sli_mode parameter: %d.\n", 4862 phba->cfg_sli_mode); 4863 4864 break; 4865 } 4866 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 4867 4868 rc = lpfc_sli_config_port(phba, mode); 4869 4870 if (rc && phba->cfg_sli_mode == 3) 4871 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4872 "1820 Unable to select SLI-3. " 4873 "Not supported by adapter.\n"); 4874 if (rc && mode != 2) 4875 rc = lpfc_sli_config_port(phba, 2); 4876 else if (rc && mode == 2) 4877 rc = lpfc_sli_config_port(phba, 3); 4878 if (rc) 4879 goto lpfc_sli_hba_setup_error; 4880 4881 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 4882 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 4883 rc = pci_enable_pcie_error_reporting(phba->pcidev); 4884 if (!rc) { 4885 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4886 "2709 This device supports " 4887 "Advanced Error Reporting (AER)\n"); 4888 spin_lock_irq(&phba->hbalock); 4889 phba->hba_flag |= HBA_AER_ENABLED; 4890 spin_unlock_irq(&phba->hbalock); 4891 } else { 4892 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4893 "2708 This device does not support " 4894 "Advanced Error Reporting (AER): %d\n", 4895 rc); 4896 phba->cfg_aer_support = 0; 4897 } 4898 } 4899 4900 if (phba->sli_rev == 3) { 4901 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 4902 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 4903 } else { 4904 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 4905 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 4906 phba->sli3_options = 0; 4907 } 4908 4909 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4910 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 4911 phba->sli_rev, phba->max_vpi); 4912 rc = lpfc_sli_ring_map(phba); 4913 4914 if (rc) 4915 goto lpfc_sli_hba_setup_error; 4916 4917 /* Initialize VPIs. */ 4918 if (phba->sli_rev == LPFC_SLI_REV3) { 4919 /* 4920 * The VPI bitmask and physical ID array are allocated 4921 * and initialized once only - at driver load. A port 4922 * reset doesn't need to reinitialize this memory. 4923 */ 4924 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 4925 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 4926 phba->vpi_bmask = kzalloc(longs * sizeof(unsigned long), 4927 GFP_KERNEL); 4928 if (!phba->vpi_bmask) { 4929 rc = -ENOMEM; 4930 goto lpfc_sli_hba_setup_error; 4931 } 4932 4933 phba->vpi_ids = kzalloc( 4934 (phba->max_vpi+1) * sizeof(uint16_t), 4935 GFP_KERNEL); 4936 if (!phba->vpi_ids) { 4937 kfree(phba->vpi_bmask); 4938 rc = -ENOMEM; 4939 goto lpfc_sli_hba_setup_error; 4940 } 4941 for (i = 0; i < phba->max_vpi; i++) 4942 phba->vpi_ids[i] = i; 4943 } 4944 } 4945 4946 /* Init HBQs */ 4947 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 4948 rc = lpfc_sli_hbq_setup(phba); 4949 if (rc) 4950 goto lpfc_sli_hba_setup_error; 4951 } 4952 spin_lock_irq(&phba->hbalock); 4953 phba->sli.sli_flag |= LPFC_PROCESS_LA; 4954 spin_unlock_irq(&phba->hbalock); 4955 4956 rc = lpfc_config_port_post(phba); 4957 if (rc) 4958 goto lpfc_sli_hba_setup_error; 4959 4960 return rc; 4961 4962 lpfc_sli_hba_setup_error: 4963 phba->link_state = LPFC_HBA_ERROR; 4964 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4965 "0445 Firmware initialization failed\n"); 4966 return rc; 4967 } 4968 4969 /** 4970 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 4971 * @phba: Pointer to HBA context object. 4972 * @mboxq: mailbox pointer. 4973 * This function issue a dump mailbox command to read config region 4974 * 23 and parse the records in the region and populate driver 4975 * data structure. 4976 **/ 4977 static int 4978 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 4979 { 4980 LPFC_MBOXQ_t *mboxq; 4981 struct lpfc_dmabuf *mp; 4982 struct lpfc_mqe *mqe; 4983 uint32_t data_length; 4984 int rc; 4985 4986 /* Program the default value of vlan_id and fc_map */ 4987 phba->valid_vlan = 0; 4988 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 4989 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 4990 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 4991 4992 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4993 if (!mboxq) 4994 return -ENOMEM; 4995 4996 mqe = &mboxq->u.mqe; 4997 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 4998 rc = -ENOMEM; 4999 goto out_free_mboxq; 5000 } 5001 5002 mp = (struct lpfc_dmabuf *) mboxq->context1; 5003 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5004 5005 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5006 "(%d):2571 Mailbox cmd x%x Status x%x " 5007 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5008 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5009 "CQ: x%x x%x x%x x%x\n", 5010 mboxq->vport ? mboxq->vport->vpi : 0, 5011 bf_get(lpfc_mqe_command, mqe), 5012 bf_get(lpfc_mqe_status, mqe), 5013 mqe->un.mb_words[0], mqe->un.mb_words[1], 5014 mqe->un.mb_words[2], mqe->un.mb_words[3], 5015 mqe->un.mb_words[4], mqe->un.mb_words[5], 5016 mqe->un.mb_words[6], mqe->un.mb_words[7], 5017 mqe->un.mb_words[8], mqe->un.mb_words[9], 5018 mqe->un.mb_words[10], mqe->un.mb_words[11], 5019 mqe->un.mb_words[12], mqe->un.mb_words[13], 5020 mqe->un.mb_words[14], mqe->un.mb_words[15], 5021 mqe->un.mb_words[16], mqe->un.mb_words[50], 5022 mboxq->mcqe.word0, 5023 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5024 mboxq->mcqe.trailer); 5025 5026 if (rc) { 5027 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5028 kfree(mp); 5029 rc = -EIO; 5030 goto out_free_mboxq; 5031 } 5032 data_length = mqe->un.mb_words[5]; 5033 if (data_length > DMP_RGN23_SIZE) { 5034 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5035 kfree(mp); 5036 rc = -EIO; 5037 goto out_free_mboxq; 5038 } 5039 5040 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5041 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5042 kfree(mp); 5043 rc = 0; 5044 5045 out_free_mboxq: 5046 mempool_free(mboxq, phba->mbox_mem_pool); 5047 return rc; 5048 } 5049 5050 /** 5051 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5052 * @phba: pointer to lpfc hba data structure. 5053 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5054 * @vpd: pointer to the memory to hold resulting port vpd data. 5055 * @vpd_size: On input, the number of bytes allocated to @vpd. 5056 * On output, the number of data bytes in @vpd. 5057 * 5058 * This routine executes a READ_REV SLI4 mailbox command. In 5059 * addition, this routine gets the port vpd data. 5060 * 5061 * Return codes 5062 * 0 - successful 5063 * -ENOMEM - could not allocated memory. 5064 **/ 5065 static int 5066 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5067 uint8_t *vpd, uint32_t *vpd_size) 5068 { 5069 int rc = 0; 5070 uint32_t dma_size; 5071 struct lpfc_dmabuf *dmabuf; 5072 struct lpfc_mqe *mqe; 5073 5074 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5075 if (!dmabuf) 5076 return -ENOMEM; 5077 5078 /* 5079 * Get a DMA buffer for the vpd data resulting from the READ_REV 5080 * mailbox command. 5081 */ 5082 dma_size = *vpd_size; 5083 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, dma_size, 5084 &dmabuf->phys, GFP_KERNEL); 5085 if (!dmabuf->virt) { 5086 kfree(dmabuf); 5087 return -ENOMEM; 5088 } 5089 5090 /* 5091 * The SLI4 implementation of READ_REV conflicts at word1, 5092 * bits 31:16 and SLI4 adds vpd functionality not present 5093 * in SLI3. This code corrects the conflicts. 5094 */ 5095 lpfc_read_rev(phba, mboxq); 5096 mqe = &mboxq->u.mqe; 5097 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5098 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5099 mqe->un.read_rev.word1 &= 0x0000FFFF; 5100 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5101 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5102 5103 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5104 if (rc) { 5105 dma_free_coherent(&phba->pcidev->dev, dma_size, 5106 dmabuf->virt, dmabuf->phys); 5107 kfree(dmabuf); 5108 return -EIO; 5109 } 5110 5111 /* 5112 * The available vpd length cannot be bigger than the 5113 * DMA buffer passed to the port. Catch the less than 5114 * case and update the caller's size. 5115 */ 5116 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5117 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5118 5119 memcpy(vpd, dmabuf->virt, *vpd_size); 5120 5121 dma_free_coherent(&phba->pcidev->dev, dma_size, 5122 dmabuf->virt, dmabuf->phys); 5123 kfree(dmabuf); 5124 return 0; 5125 } 5126 5127 /** 5128 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 5129 * @phba: pointer to lpfc hba data structure. 5130 * 5131 * This routine retrieves SLI4 device physical port name this PCI function 5132 * is attached to. 5133 * 5134 * Return codes 5135 * 0 - successful 5136 * otherwise - failed to retrieve physical port name 5137 **/ 5138 static int 5139 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 5140 { 5141 LPFC_MBOXQ_t *mboxq; 5142 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5143 struct lpfc_controller_attribute *cntl_attr; 5144 struct lpfc_mbx_get_port_name *get_port_name; 5145 void *virtaddr = NULL; 5146 uint32_t alloclen, reqlen; 5147 uint32_t shdr_status, shdr_add_status; 5148 union lpfc_sli4_cfg_shdr *shdr; 5149 char cport_name = 0; 5150 int rc; 5151 5152 /* We assume nothing at this point */ 5153 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5154 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 5155 5156 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5157 if (!mboxq) 5158 return -ENOMEM; 5159 /* obtain link type and link number via READ_CONFIG */ 5160 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5161 lpfc_sli4_read_config(phba); 5162 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 5163 goto retrieve_ppname; 5164 5165 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 5166 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5167 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5168 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5169 LPFC_SLI4_MBX_NEMBED); 5170 if (alloclen < reqlen) { 5171 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5172 "3084 Allocated DMA memory size (%d) is " 5173 "less than the requested DMA memory size " 5174 "(%d)\n", alloclen, reqlen); 5175 rc = -ENOMEM; 5176 goto out_free_mboxq; 5177 } 5178 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5179 virtaddr = mboxq->sge_array->addr[0]; 5180 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5181 shdr = &mbx_cntl_attr->cfg_shdr; 5182 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5183 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5184 if (shdr_status || shdr_add_status || rc) { 5185 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5186 "3085 Mailbox x%x (x%x/x%x) failed, " 5187 "rc:x%x, status:x%x, add_status:x%x\n", 5188 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5189 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5190 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5191 rc, shdr_status, shdr_add_status); 5192 rc = -ENXIO; 5193 goto out_free_mboxq; 5194 } 5195 cntl_attr = &mbx_cntl_attr->cntl_attr; 5196 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5197 phba->sli4_hba.lnk_info.lnk_tp = 5198 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5199 phba->sli4_hba.lnk_info.lnk_no = 5200 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5201 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5202 "3086 lnk_type:%d, lnk_numb:%d\n", 5203 phba->sli4_hba.lnk_info.lnk_tp, 5204 phba->sli4_hba.lnk_info.lnk_no); 5205 5206 retrieve_ppname: 5207 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5208 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5209 sizeof(struct lpfc_mbx_get_port_name) - 5210 sizeof(struct lpfc_sli4_cfg_mhdr), 5211 LPFC_SLI4_MBX_EMBED); 5212 get_port_name = &mboxq->u.mqe.un.get_port_name; 5213 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5214 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5215 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5216 phba->sli4_hba.lnk_info.lnk_tp); 5217 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5218 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5219 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5220 if (shdr_status || shdr_add_status || rc) { 5221 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5222 "3087 Mailbox x%x (x%x/x%x) failed: " 5223 "rc:x%x, status:x%x, add_status:x%x\n", 5224 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5225 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5226 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5227 rc, shdr_status, shdr_add_status); 5228 rc = -ENXIO; 5229 goto out_free_mboxq; 5230 } 5231 switch (phba->sli4_hba.lnk_info.lnk_no) { 5232 case LPFC_LINK_NUMBER_0: 5233 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 5234 &get_port_name->u.response); 5235 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5236 break; 5237 case LPFC_LINK_NUMBER_1: 5238 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 5239 &get_port_name->u.response); 5240 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5241 break; 5242 case LPFC_LINK_NUMBER_2: 5243 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 5244 &get_port_name->u.response); 5245 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5246 break; 5247 case LPFC_LINK_NUMBER_3: 5248 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 5249 &get_port_name->u.response); 5250 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5251 break; 5252 default: 5253 break; 5254 } 5255 5256 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 5257 phba->Port[0] = cport_name; 5258 phba->Port[1] = '\0'; 5259 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5260 "3091 SLI get port name: %s\n", phba->Port); 5261 } 5262 5263 out_free_mboxq: 5264 if (rc != MBX_TIMEOUT) { 5265 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5266 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5267 else 5268 mempool_free(mboxq, phba->mbox_mem_pool); 5269 } 5270 return rc; 5271 } 5272 5273 /** 5274 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 5275 * @phba: pointer to lpfc hba data structure. 5276 * 5277 * This routine is called to explicitly arm the SLI4 device's completion and 5278 * event queues 5279 **/ 5280 static void 5281 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 5282 { 5283 int qidx; 5284 5285 lpfc_sli4_cq_release(phba->sli4_hba.mbx_cq, LPFC_QUEUE_REARM); 5286 lpfc_sli4_cq_release(phba->sli4_hba.els_cq, LPFC_QUEUE_REARM); 5287 if (phba->sli4_hba.nvmels_cq) 5288 lpfc_sli4_cq_release(phba->sli4_hba.nvmels_cq, 5289 LPFC_QUEUE_REARM); 5290 5291 if (phba->sli4_hba.fcp_cq) 5292 for (qidx = 0; qidx < phba->cfg_fcp_io_channel; qidx++) 5293 lpfc_sli4_cq_release(phba->sli4_hba.fcp_cq[qidx], 5294 LPFC_QUEUE_REARM); 5295 5296 if (phba->sli4_hba.nvme_cq) 5297 for (qidx = 0; qidx < phba->cfg_nvme_io_channel; qidx++) 5298 lpfc_sli4_cq_release(phba->sli4_hba.nvme_cq[qidx], 5299 LPFC_QUEUE_REARM); 5300 5301 if (phba->cfg_fof) 5302 lpfc_sli4_cq_release(phba->sli4_hba.oas_cq, LPFC_QUEUE_REARM); 5303 5304 if (phba->sli4_hba.hba_eq) 5305 for (qidx = 0; qidx < phba->io_channel_irqs; qidx++) 5306 lpfc_sli4_eq_release(phba->sli4_hba.hba_eq[qidx], 5307 LPFC_QUEUE_REARM); 5308 5309 if (phba->nvmet_support) { 5310 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 5311 lpfc_sli4_cq_release( 5312 phba->sli4_hba.nvmet_cqset[qidx], 5313 LPFC_QUEUE_REARM); 5314 } 5315 } 5316 5317 if (phba->cfg_fof) 5318 lpfc_sli4_eq_release(phba->sli4_hba.fof_eq, LPFC_QUEUE_REARM); 5319 } 5320 5321 /** 5322 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 5323 * @phba: Pointer to HBA context object. 5324 * @type: The resource extent type. 5325 * @extnt_count: buffer to hold port available extent count. 5326 * @extnt_size: buffer to hold element count per extent. 5327 * 5328 * This function calls the port and retrievs the number of available 5329 * extents and their size for a particular extent type. 5330 * 5331 * Returns: 0 if successful. Nonzero otherwise. 5332 **/ 5333 int 5334 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5335 uint16_t *extnt_count, uint16_t *extnt_size) 5336 { 5337 int rc = 0; 5338 uint32_t length; 5339 uint32_t mbox_tmo; 5340 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5341 LPFC_MBOXQ_t *mbox; 5342 5343 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5344 if (!mbox) 5345 return -ENOMEM; 5346 5347 /* Find out how many extents are available for this resource type */ 5348 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5349 sizeof(struct lpfc_sli4_cfg_mhdr)); 5350 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5351 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5352 length, LPFC_SLI4_MBX_EMBED); 5353 5354 /* Send an extents count of 0 - the GET doesn't use it. */ 5355 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5356 LPFC_SLI4_MBX_EMBED); 5357 if (unlikely(rc)) { 5358 rc = -EIO; 5359 goto err_exit; 5360 } 5361 5362 if (!phba->sli4_hba.intr_enable) 5363 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5364 else { 5365 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5366 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5367 } 5368 if (unlikely(rc)) { 5369 rc = -EIO; 5370 goto err_exit; 5371 } 5372 5373 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5374 if (bf_get(lpfc_mbox_hdr_status, 5375 &rsrc_info->header.cfg_shdr.response)) { 5376 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5377 "2930 Failed to get resource extents " 5378 "Status 0x%x Add'l Status 0x%x\n", 5379 bf_get(lpfc_mbox_hdr_status, 5380 &rsrc_info->header.cfg_shdr.response), 5381 bf_get(lpfc_mbox_hdr_add_status, 5382 &rsrc_info->header.cfg_shdr.response)); 5383 rc = -EIO; 5384 goto err_exit; 5385 } 5386 5387 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5388 &rsrc_info->u.rsp); 5389 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5390 &rsrc_info->u.rsp); 5391 5392 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5393 "3162 Retrieved extents type-%d from port: count:%d, " 5394 "size:%d\n", type, *extnt_count, *extnt_size); 5395 5396 err_exit: 5397 mempool_free(mbox, phba->mbox_mem_pool); 5398 return rc; 5399 } 5400 5401 /** 5402 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5403 * @phba: Pointer to HBA context object. 5404 * @type: The extent type to check. 5405 * 5406 * This function reads the current available extents from the port and checks 5407 * if the extent count or extent size has changed since the last access. 5408 * Callers use this routine post port reset to understand if there is a 5409 * extent reprovisioning requirement. 5410 * 5411 * Returns: 5412 * -Error: error indicates problem. 5413 * 1: Extent count or size has changed. 5414 * 0: No changes. 5415 **/ 5416 static int 5417 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5418 { 5419 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5420 uint16_t size_diff, rsrc_ext_size; 5421 int rc = 0; 5422 struct lpfc_rsrc_blks *rsrc_entry; 5423 struct list_head *rsrc_blk_list = NULL; 5424 5425 size_diff = 0; 5426 curr_ext_cnt = 0; 5427 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5428 &rsrc_ext_cnt, 5429 &rsrc_ext_size); 5430 if (unlikely(rc)) 5431 return -EIO; 5432 5433 switch (type) { 5434 case LPFC_RSC_TYPE_FCOE_RPI: 5435 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5436 break; 5437 case LPFC_RSC_TYPE_FCOE_VPI: 5438 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5439 break; 5440 case LPFC_RSC_TYPE_FCOE_XRI: 5441 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5442 break; 5443 case LPFC_RSC_TYPE_FCOE_VFI: 5444 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5445 break; 5446 default: 5447 break; 5448 } 5449 5450 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5451 curr_ext_cnt++; 5452 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5453 size_diff++; 5454 } 5455 5456 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5457 rc = 1; 5458 5459 return rc; 5460 } 5461 5462 /** 5463 * lpfc_sli4_cfg_post_extnts - 5464 * @phba: Pointer to HBA context object. 5465 * @extnt_cnt - number of available extents. 5466 * @type - the extent type (rpi, xri, vfi, vpi). 5467 * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5468 * @mbox - pointer to the caller's allocated mailbox structure. 5469 * 5470 * This function executes the extents allocation request. It also 5471 * takes care of the amount of memory needed to allocate or get the 5472 * allocated extents. It is the caller's responsibility to evaluate 5473 * the response. 5474 * 5475 * Returns: 5476 * -Error: Error value describes the condition found. 5477 * 0: if successful 5478 **/ 5479 static int 5480 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 5481 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 5482 { 5483 int rc = 0; 5484 uint32_t req_len; 5485 uint32_t emb_len; 5486 uint32_t alloc_len, mbox_tmo; 5487 5488 /* Calculate the total requested length of the dma memory */ 5489 req_len = extnt_cnt * sizeof(uint16_t); 5490 5491 /* 5492 * Calculate the size of an embedded mailbox. The uint32_t 5493 * accounts for extents-specific word. 5494 */ 5495 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 5496 sizeof(uint32_t); 5497 5498 /* 5499 * Presume the allocation and response will fit into an embedded 5500 * mailbox. If not true, reconfigure to a non-embedded mailbox. 5501 */ 5502 *emb = LPFC_SLI4_MBX_EMBED; 5503 if (req_len > emb_len) { 5504 req_len = extnt_cnt * sizeof(uint16_t) + 5505 sizeof(union lpfc_sli4_cfg_shdr) + 5506 sizeof(uint32_t); 5507 *emb = LPFC_SLI4_MBX_NEMBED; 5508 } 5509 5510 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5511 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 5512 req_len, *emb); 5513 if (alloc_len < req_len) { 5514 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5515 "2982 Allocated DMA memory size (x%x) is " 5516 "less than the requested DMA memory " 5517 "size (x%x)\n", alloc_len, req_len); 5518 return -ENOMEM; 5519 } 5520 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 5521 if (unlikely(rc)) 5522 return -EIO; 5523 5524 if (!phba->sli4_hba.intr_enable) 5525 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5526 else { 5527 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5528 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5529 } 5530 5531 if (unlikely(rc)) 5532 rc = -EIO; 5533 return rc; 5534 } 5535 5536 /** 5537 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 5538 * @phba: Pointer to HBA context object. 5539 * @type: The resource extent type to allocate. 5540 * 5541 * This function allocates the number of elements for the specified 5542 * resource type. 5543 **/ 5544 static int 5545 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 5546 { 5547 bool emb = false; 5548 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 5549 uint16_t rsrc_id, rsrc_start, j, k; 5550 uint16_t *ids; 5551 int i, rc; 5552 unsigned long longs; 5553 unsigned long *bmask; 5554 struct lpfc_rsrc_blks *rsrc_blks; 5555 LPFC_MBOXQ_t *mbox; 5556 uint32_t length; 5557 struct lpfc_id_range *id_array = NULL; 5558 void *virtaddr = NULL; 5559 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 5560 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 5561 struct list_head *ext_blk_list; 5562 5563 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5564 &rsrc_cnt, 5565 &rsrc_size); 5566 if (unlikely(rc)) 5567 return -EIO; 5568 5569 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 5570 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5571 "3009 No available Resource Extents " 5572 "for resource type 0x%x: Count: 0x%x, " 5573 "Size 0x%x\n", type, rsrc_cnt, 5574 rsrc_size); 5575 return -ENOMEM; 5576 } 5577 5578 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 5579 "2903 Post resource extents type-0x%x: " 5580 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 5581 5582 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5583 if (!mbox) 5584 return -ENOMEM; 5585 5586 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 5587 if (unlikely(rc)) { 5588 rc = -EIO; 5589 goto err_exit; 5590 } 5591 5592 /* 5593 * Figure out where the response is located. Then get local pointers 5594 * to the response data. The port does not guarantee to respond to 5595 * all extents counts request so update the local variable with the 5596 * allocated count from the port. 5597 */ 5598 if (emb == LPFC_SLI4_MBX_EMBED) { 5599 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 5600 id_array = &rsrc_ext->u.rsp.id[0]; 5601 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 5602 } else { 5603 virtaddr = mbox->sge_array->addr[0]; 5604 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 5605 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 5606 id_array = &n_rsrc->id; 5607 } 5608 5609 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 5610 rsrc_id_cnt = rsrc_cnt * rsrc_size; 5611 5612 /* 5613 * Based on the resource size and count, correct the base and max 5614 * resource values. 5615 */ 5616 length = sizeof(struct lpfc_rsrc_blks); 5617 switch (type) { 5618 case LPFC_RSC_TYPE_FCOE_RPI: 5619 phba->sli4_hba.rpi_bmask = kzalloc(longs * 5620 sizeof(unsigned long), 5621 GFP_KERNEL); 5622 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 5623 rc = -ENOMEM; 5624 goto err_exit; 5625 } 5626 phba->sli4_hba.rpi_ids = kzalloc(rsrc_id_cnt * 5627 sizeof(uint16_t), 5628 GFP_KERNEL); 5629 if (unlikely(!phba->sli4_hba.rpi_ids)) { 5630 kfree(phba->sli4_hba.rpi_bmask); 5631 rc = -ENOMEM; 5632 goto err_exit; 5633 } 5634 5635 /* 5636 * The next_rpi was initialized with the maximum available 5637 * count but the port may allocate a smaller number. Catch 5638 * that case and update the next_rpi. 5639 */ 5640 phba->sli4_hba.next_rpi = rsrc_id_cnt; 5641 5642 /* Initialize local ptrs for common extent processing later. */ 5643 bmask = phba->sli4_hba.rpi_bmask; 5644 ids = phba->sli4_hba.rpi_ids; 5645 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5646 break; 5647 case LPFC_RSC_TYPE_FCOE_VPI: 5648 phba->vpi_bmask = kzalloc(longs * 5649 sizeof(unsigned long), 5650 GFP_KERNEL); 5651 if (unlikely(!phba->vpi_bmask)) { 5652 rc = -ENOMEM; 5653 goto err_exit; 5654 } 5655 phba->vpi_ids = kzalloc(rsrc_id_cnt * 5656 sizeof(uint16_t), 5657 GFP_KERNEL); 5658 if (unlikely(!phba->vpi_ids)) { 5659 kfree(phba->vpi_bmask); 5660 rc = -ENOMEM; 5661 goto err_exit; 5662 } 5663 5664 /* Initialize local ptrs for common extent processing later. */ 5665 bmask = phba->vpi_bmask; 5666 ids = phba->vpi_ids; 5667 ext_blk_list = &phba->lpfc_vpi_blk_list; 5668 break; 5669 case LPFC_RSC_TYPE_FCOE_XRI: 5670 phba->sli4_hba.xri_bmask = kzalloc(longs * 5671 sizeof(unsigned long), 5672 GFP_KERNEL); 5673 if (unlikely(!phba->sli4_hba.xri_bmask)) { 5674 rc = -ENOMEM; 5675 goto err_exit; 5676 } 5677 phba->sli4_hba.max_cfg_param.xri_used = 0; 5678 phba->sli4_hba.xri_ids = kzalloc(rsrc_id_cnt * 5679 sizeof(uint16_t), 5680 GFP_KERNEL); 5681 if (unlikely(!phba->sli4_hba.xri_ids)) { 5682 kfree(phba->sli4_hba.xri_bmask); 5683 rc = -ENOMEM; 5684 goto err_exit; 5685 } 5686 5687 /* Initialize local ptrs for common extent processing later. */ 5688 bmask = phba->sli4_hba.xri_bmask; 5689 ids = phba->sli4_hba.xri_ids; 5690 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5691 break; 5692 case LPFC_RSC_TYPE_FCOE_VFI: 5693 phba->sli4_hba.vfi_bmask = kzalloc(longs * 5694 sizeof(unsigned long), 5695 GFP_KERNEL); 5696 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 5697 rc = -ENOMEM; 5698 goto err_exit; 5699 } 5700 phba->sli4_hba.vfi_ids = kzalloc(rsrc_id_cnt * 5701 sizeof(uint16_t), 5702 GFP_KERNEL); 5703 if (unlikely(!phba->sli4_hba.vfi_ids)) { 5704 kfree(phba->sli4_hba.vfi_bmask); 5705 rc = -ENOMEM; 5706 goto err_exit; 5707 } 5708 5709 /* Initialize local ptrs for common extent processing later. */ 5710 bmask = phba->sli4_hba.vfi_bmask; 5711 ids = phba->sli4_hba.vfi_ids; 5712 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5713 break; 5714 default: 5715 /* Unsupported Opcode. Fail call. */ 5716 id_array = NULL; 5717 bmask = NULL; 5718 ids = NULL; 5719 ext_blk_list = NULL; 5720 goto err_exit; 5721 } 5722 5723 /* 5724 * Complete initializing the extent configuration with the 5725 * allocated ids assigned to this function. The bitmask serves 5726 * as an index into the array and manages the available ids. The 5727 * array just stores the ids communicated to the port via the wqes. 5728 */ 5729 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 5730 if ((i % 2) == 0) 5731 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 5732 &id_array[k]); 5733 else 5734 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 5735 &id_array[k]); 5736 5737 rsrc_blks = kzalloc(length, GFP_KERNEL); 5738 if (unlikely(!rsrc_blks)) { 5739 rc = -ENOMEM; 5740 kfree(bmask); 5741 kfree(ids); 5742 goto err_exit; 5743 } 5744 rsrc_blks->rsrc_start = rsrc_id; 5745 rsrc_blks->rsrc_size = rsrc_size; 5746 list_add_tail(&rsrc_blks->list, ext_blk_list); 5747 rsrc_start = rsrc_id; 5748 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 5749 phba->sli4_hba.scsi_xri_start = rsrc_start + 5750 lpfc_sli4_get_iocb_cnt(phba); 5751 phba->sli4_hba.nvme_xri_start = 5752 phba->sli4_hba.scsi_xri_start + 5753 phba->sli4_hba.scsi_xri_max; 5754 } 5755 5756 while (rsrc_id < (rsrc_start + rsrc_size)) { 5757 ids[j] = rsrc_id; 5758 rsrc_id++; 5759 j++; 5760 } 5761 /* Entire word processed. Get next word.*/ 5762 if ((i % 2) == 1) 5763 k++; 5764 } 5765 err_exit: 5766 lpfc_sli4_mbox_cmd_free(phba, mbox); 5767 return rc; 5768 } 5769 5770 5771 5772 /** 5773 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 5774 * @phba: Pointer to HBA context object. 5775 * @type: the extent's type. 5776 * 5777 * This function deallocates all extents of a particular resource type. 5778 * SLI4 does not allow for deallocating a particular extent range. It 5779 * is the caller's responsibility to release all kernel memory resources. 5780 **/ 5781 static int 5782 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 5783 { 5784 int rc; 5785 uint32_t length, mbox_tmo = 0; 5786 LPFC_MBOXQ_t *mbox; 5787 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 5788 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 5789 5790 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5791 if (!mbox) 5792 return -ENOMEM; 5793 5794 /* 5795 * This function sends an embedded mailbox because it only sends the 5796 * the resource type. All extents of this type are released by the 5797 * port. 5798 */ 5799 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 5800 sizeof(struct lpfc_sli4_cfg_mhdr)); 5801 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5802 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 5803 length, LPFC_SLI4_MBX_EMBED); 5804 5805 /* Send an extents count of 0 - the dealloc doesn't use it. */ 5806 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5807 LPFC_SLI4_MBX_EMBED); 5808 if (unlikely(rc)) { 5809 rc = -EIO; 5810 goto out_free_mbox; 5811 } 5812 if (!phba->sli4_hba.intr_enable) 5813 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5814 else { 5815 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5816 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5817 } 5818 if (unlikely(rc)) { 5819 rc = -EIO; 5820 goto out_free_mbox; 5821 } 5822 5823 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 5824 if (bf_get(lpfc_mbox_hdr_status, 5825 &dealloc_rsrc->header.cfg_shdr.response)) { 5826 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5827 "2919 Failed to release resource extents " 5828 "for type %d - Status 0x%x Add'l Status 0x%x. " 5829 "Resource memory not released.\n", 5830 type, 5831 bf_get(lpfc_mbox_hdr_status, 5832 &dealloc_rsrc->header.cfg_shdr.response), 5833 bf_get(lpfc_mbox_hdr_add_status, 5834 &dealloc_rsrc->header.cfg_shdr.response)); 5835 rc = -EIO; 5836 goto out_free_mbox; 5837 } 5838 5839 /* Release kernel memory resources for the specific type. */ 5840 switch (type) { 5841 case LPFC_RSC_TYPE_FCOE_VPI: 5842 kfree(phba->vpi_bmask); 5843 kfree(phba->vpi_ids); 5844 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5845 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5846 &phba->lpfc_vpi_blk_list, list) { 5847 list_del_init(&rsrc_blk->list); 5848 kfree(rsrc_blk); 5849 } 5850 phba->sli4_hba.max_cfg_param.vpi_used = 0; 5851 break; 5852 case LPFC_RSC_TYPE_FCOE_XRI: 5853 kfree(phba->sli4_hba.xri_bmask); 5854 kfree(phba->sli4_hba.xri_ids); 5855 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5856 &phba->sli4_hba.lpfc_xri_blk_list, list) { 5857 list_del_init(&rsrc_blk->list); 5858 kfree(rsrc_blk); 5859 } 5860 break; 5861 case LPFC_RSC_TYPE_FCOE_VFI: 5862 kfree(phba->sli4_hba.vfi_bmask); 5863 kfree(phba->sli4_hba.vfi_ids); 5864 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5865 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5866 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 5867 list_del_init(&rsrc_blk->list); 5868 kfree(rsrc_blk); 5869 } 5870 break; 5871 case LPFC_RSC_TYPE_FCOE_RPI: 5872 /* RPI bitmask and physical id array are cleaned up earlier. */ 5873 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5874 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 5875 list_del_init(&rsrc_blk->list); 5876 kfree(rsrc_blk); 5877 } 5878 break; 5879 default: 5880 break; 5881 } 5882 5883 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5884 5885 out_free_mbox: 5886 mempool_free(mbox, phba->mbox_mem_pool); 5887 return rc; 5888 } 5889 5890 static void 5891 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 5892 uint32_t feature) 5893 { 5894 uint32_t len; 5895 5896 len = sizeof(struct lpfc_mbx_set_feature) - 5897 sizeof(struct lpfc_sli4_cfg_mhdr); 5898 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5899 LPFC_MBOX_OPCODE_SET_FEATURES, len, 5900 LPFC_SLI4_MBX_EMBED); 5901 5902 switch (feature) { 5903 case LPFC_SET_UE_RECOVERY: 5904 bf_set(lpfc_mbx_set_feature_UER, 5905 &mbox->u.mqe.un.set_feature, 1); 5906 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 5907 mbox->u.mqe.un.set_feature.param_len = 8; 5908 break; 5909 case LPFC_SET_MDS_DIAGS: 5910 bf_set(lpfc_mbx_set_feature_mds, 5911 &mbox->u.mqe.un.set_feature, 1); 5912 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 5913 &mbox->u.mqe.un.set_feature, 1); 5914 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 5915 mbox->u.mqe.un.set_feature.param_len = 8; 5916 break; 5917 } 5918 5919 return; 5920 } 5921 5922 /** 5923 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 5924 * @phba: Pointer to HBA context object. 5925 * 5926 * This function allocates all SLI4 resource identifiers. 5927 **/ 5928 int 5929 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 5930 { 5931 int i, rc, error = 0; 5932 uint16_t count, base; 5933 unsigned long longs; 5934 5935 if (!phba->sli4_hba.rpi_hdrs_in_use) 5936 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 5937 if (phba->sli4_hba.extents_in_use) { 5938 /* 5939 * The port supports resource extents. The XRI, VPI, VFI, RPI 5940 * resource extent count must be read and allocated before 5941 * provisioning the resource id arrays. 5942 */ 5943 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 5944 LPFC_IDX_RSRC_RDY) { 5945 /* 5946 * Extent-based resources are set - the driver could 5947 * be in a port reset. Figure out if any corrective 5948 * actions need to be taken. 5949 */ 5950 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5951 LPFC_RSC_TYPE_FCOE_VFI); 5952 if (rc != 0) 5953 error++; 5954 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5955 LPFC_RSC_TYPE_FCOE_VPI); 5956 if (rc != 0) 5957 error++; 5958 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5959 LPFC_RSC_TYPE_FCOE_XRI); 5960 if (rc != 0) 5961 error++; 5962 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5963 LPFC_RSC_TYPE_FCOE_RPI); 5964 if (rc != 0) 5965 error++; 5966 5967 /* 5968 * It's possible that the number of resources 5969 * provided to this port instance changed between 5970 * resets. Detect this condition and reallocate 5971 * resources. Otherwise, there is no action. 5972 */ 5973 if (error) { 5974 lpfc_printf_log(phba, KERN_INFO, 5975 LOG_MBOX | LOG_INIT, 5976 "2931 Detected extent resource " 5977 "change. Reallocating all " 5978 "extents.\n"); 5979 rc = lpfc_sli4_dealloc_extent(phba, 5980 LPFC_RSC_TYPE_FCOE_VFI); 5981 rc = lpfc_sli4_dealloc_extent(phba, 5982 LPFC_RSC_TYPE_FCOE_VPI); 5983 rc = lpfc_sli4_dealloc_extent(phba, 5984 LPFC_RSC_TYPE_FCOE_XRI); 5985 rc = lpfc_sli4_dealloc_extent(phba, 5986 LPFC_RSC_TYPE_FCOE_RPI); 5987 } else 5988 return 0; 5989 } 5990 5991 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 5992 if (unlikely(rc)) 5993 goto err_exit; 5994 5995 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 5996 if (unlikely(rc)) 5997 goto err_exit; 5998 5999 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6000 if (unlikely(rc)) 6001 goto err_exit; 6002 6003 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6004 if (unlikely(rc)) 6005 goto err_exit; 6006 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6007 LPFC_IDX_RSRC_RDY); 6008 return rc; 6009 } else { 6010 /* 6011 * The port does not support resource extents. The XRI, VPI, 6012 * VFI, RPI resource ids were determined from READ_CONFIG. 6013 * Just allocate the bitmasks and provision the resource id 6014 * arrays. If a port reset is active, the resources don't 6015 * need any action - just exit. 6016 */ 6017 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6018 LPFC_IDX_RSRC_RDY) { 6019 lpfc_sli4_dealloc_resource_identifiers(phba); 6020 lpfc_sli4_remove_rpis(phba); 6021 } 6022 /* RPIs. */ 6023 count = phba->sli4_hba.max_cfg_param.max_rpi; 6024 if (count <= 0) { 6025 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6026 "3279 Invalid provisioning of " 6027 "rpi:%d\n", count); 6028 rc = -EINVAL; 6029 goto err_exit; 6030 } 6031 base = phba->sli4_hba.max_cfg_param.rpi_base; 6032 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6033 phba->sli4_hba.rpi_bmask = kzalloc(longs * 6034 sizeof(unsigned long), 6035 GFP_KERNEL); 6036 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6037 rc = -ENOMEM; 6038 goto err_exit; 6039 } 6040 phba->sli4_hba.rpi_ids = kzalloc(count * 6041 sizeof(uint16_t), 6042 GFP_KERNEL); 6043 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6044 rc = -ENOMEM; 6045 goto free_rpi_bmask; 6046 } 6047 6048 for (i = 0; i < count; i++) 6049 phba->sli4_hba.rpi_ids[i] = base + i; 6050 6051 /* VPIs. */ 6052 count = phba->sli4_hba.max_cfg_param.max_vpi; 6053 if (count <= 0) { 6054 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6055 "3280 Invalid provisioning of " 6056 "vpi:%d\n", count); 6057 rc = -EINVAL; 6058 goto free_rpi_ids; 6059 } 6060 base = phba->sli4_hba.max_cfg_param.vpi_base; 6061 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6062 phba->vpi_bmask = kzalloc(longs * 6063 sizeof(unsigned long), 6064 GFP_KERNEL); 6065 if (unlikely(!phba->vpi_bmask)) { 6066 rc = -ENOMEM; 6067 goto free_rpi_ids; 6068 } 6069 phba->vpi_ids = kzalloc(count * 6070 sizeof(uint16_t), 6071 GFP_KERNEL); 6072 if (unlikely(!phba->vpi_ids)) { 6073 rc = -ENOMEM; 6074 goto free_vpi_bmask; 6075 } 6076 6077 for (i = 0; i < count; i++) 6078 phba->vpi_ids[i] = base + i; 6079 6080 /* XRIs. */ 6081 count = phba->sli4_hba.max_cfg_param.max_xri; 6082 if (count <= 0) { 6083 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6084 "3281 Invalid provisioning of " 6085 "xri:%d\n", count); 6086 rc = -EINVAL; 6087 goto free_vpi_ids; 6088 } 6089 base = phba->sli4_hba.max_cfg_param.xri_base; 6090 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6091 phba->sli4_hba.xri_bmask = kzalloc(longs * 6092 sizeof(unsigned long), 6093 GFP_KERNEL); 6094 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6095 rc = -ENOMEM; 6096 goto free_vpi_ids; 6097 } 6098 phba->sli4_hba.max_cfg_param.xri_used = 0; 6099 phba->sli4_hba.xri_ids = kzalloc(count * 6100 sizeof(uint16_t), 6101 GFP_KERNEL); 6102 if (unlikely(!phba->sli4_hba.xri_ids)) { 6103 rc = -ENOMEM; 6104 goto free_xri_bmask; 6105 } 6106 6107 for (i = 0; i < count; i++) 6108 phba->sli4_hba.xri_ids[i] = base + i; 6109 6110 /* VFIs. */ 6111 count = phba->sli4_hba.max_cfg_param.max_vfi; 6112 if (count <= 0) { 6113 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6114 "3282 Invalid provisioning of " 6115 "vfi:%d\n", count); 6116 rc = -EINVAL; 6117 goto free_xri_ids; 6118 } 6119 base = phba->sli4_hba.max_cfg_param.vfi_base; 6120 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6121 phba->sli4_hba.vfi_bmask = kzalloc(longs * 6122 sizeof(unsigned long), 6123 GFP_KERNEL); 6124 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6125 rc = -ENOMEM; 6126 goto free_xri_ids; 6127 } 6128 phba->sli4_hba.vfi_ids = kzalloc(count * 6129 sizeof(uint16_t), 6130 GFP_KERNEL); 6131 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6132 rc = -ENOMEM; 6133 goto free_vfi_bmask; 6134 } 6135 6136 for (i = 0; i < count; i++) 6137 phba->sli4_hba.vfi_ids[i] = base + i; 6138 6139 /* 6140 * Mark all resources ready. An HBA reset doesn't need 6141 * to reset the initialization. 6142 */ 6143 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6144 LPFC_IDX_RSRC_RDY); 6145 return 0; 6146 } 6147 6148 free_vfi_bmask: 6149 kfree(phba->sli4_hba.vfi_bmask); 6150 phba->sli4_hba.vfi_bmask = NULL; 6151 free_xri_ids: 6152 kfree(phba->sli4_hba.xri_ids); 6153 phba->sli4_hba.xri_ids = NULL; 6154 free_xri_bmask: 6155 kfree(phba->sli4_hba.xri_bmask); 6156 phba->sli4_hba.xri_bmask = NULL; 6157 free_vpi_ids: 6158 kfree(phba->vpi_ids); 6159 phba->vpi_ids = NULL; 6160 free_vpi_bmask: 6161 kfree(phba->vpi_bmask); 6162 phba->vpi_bmask = NULL; 6163 free_rpi_ids: 6164 kfree(phba->sli4_hba.rpi_ids); 6165 phba->sli4_hba.rpi_ids = NULL; 6166 free_rpi_bmask: 6167 kfree(phba->sli4_hba.rpi_bmask); 6168 phba->sli4_hba.rpi_bmask = NULL; 6169 err_exit: 6170 return rc; 6171 } 6172 6173 /** 6174 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 6175 * @phba: Pointer to HBA context object. 6176 * 6177 * This function allocates the number of elements for the specified 6178 * resource type. 6179 **/ 6180 int 6181 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 6182 { 6183 if (phba->sli4_hba.extents_in_use) { 6184 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6185 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6186 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6187 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6188 } else { 6189 kfree(phba->vpi_bmask); 6190 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6191 kfree(phba->vpi_ids); 6192 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6193 kfree(phba->sli4_hba.xri_bmask); 6194 kfree(phba->sli4_hba.xri_ids); 6195 kfree(phba->sli4_hba.vfi_bmask); 6196 kfree(phba->sli4_hba.vfi_ids); 6197 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6198 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6199 } 6200 6201 return 0; 6202 } 6203 6204 /** 6205 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 6206 * @phba: Pointer to HBA context object. 6207 * @type: The resource extent type. 6208 * @extnt_count: buffer to hold port extent count response 6209 * @extnt_size: buffer to hold port extent size response. 6210 * 6211 * This function calls the port to read the host allocated extents 6212 * for a particular type. 6213 **/ 6214 int 6215 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 6216 uint16_t *extnt_cnt, uint16_t *extnt_size) 6217 { 6218 bool emb; 6219 int rc = 0; 6220 uint16_t curr_blks = 0; 6221 uint32_t req_len, emb_len; 6222 uint32_t alloc_len, mbox_tmo; 6223 struct list_head *blk_list_head; 6224 struct lpfc_rsrc_blks *rsrc_blk; 6225 LPFC_MBOXQ_t *mbox; 6226 void *virtaddr = NULL; 6227 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6228 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6229 union lpfc_sli4_cfg_shdr *shdr; 6230 6231 switch (type) { 6232 case LPFC_RSC_TYPE_FCOE_VPI: 6233 blk_list_head = &phba->lpfc_vpi_blk_list; 6234 break; 6235 case LPFC_RSC_TYPE_FCOE_XRI: 6236 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 6237 break; 6238 case LPFC_RSC_TYPE_FCOE_VFI: 6239 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 6240 break; 6241 case LPFC_RSC_TYPE_FCOE_RPI: 6242 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 6243 break; 6244 default: 6245 return -EIO; 6246 } 6247 6248 /* Count the number of extents currently allocatd for this type. */ 6249 list_for_each_entry(rsrc_blk, blk_list_head, list) { 6250 if (curr_blks == 0) { 6251 /* 6252 * The GET_ALLOCATED mailbox does not return the size, 6253 * just the count. The size should be just the size 6254 * stored in the current allocated block and all sizes 6255 * for an extent type are the same so set the return 6256 * value now. 6257 */ 6258 *extnt_size = rsrc_blk->rsrc_size; 6259 } 6260 curr_blks++; 6261 } 6262 6263 /* 6264 * Calculate the size of an embedded mailbox. The uint32_t 6265 * accounts for extents-specific word. 6266 */ 6267 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6268 sizeof(uint32_t); 6269 6270 /* 6271 * Presume the allocation and response will fit into an embedded 6272 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6273 */ 6274 emb = LPFC_SLI4_MBX_EMBED; 6275 req_len = emb_len; 6276 if (req_len > emb_len) { 6277 req_len = curr_blks * sizeof(uint16_t) + 6278 sizeof(union lpfc_sli4_cfg_shdr) + 6279 sizeof(uint32_t); 6280 emb = LPFC_SLI4_MBX_NEMBED; 6281 } 6282 6283 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6284 if (!mbox) 6285 return -ENOMEM; 6286 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 6287 6288 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6289 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 6290 req_len, emb); 6291 if (alloc_len < req_len) { 6292 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6293 "2983 Allocated DMA memory size (x%x) is " 6294 "less than the requested DMA memory " 6295 "size (x%x)\n", alloc_len, req_len); 6296 rc = -ENOMEM; 6297 goto err_exit; 6298 } 6299 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 6300 if (unlikely(rc)) { 6301 rc = -EIO; 6302 goto err_exit; 6303 } 6304 6305 if (!phba->sli4_hba.intr_enable) 6306 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6307 else { 6308 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6309 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6310 } 6311 6312 if (unlikely(rc)) { 6313 rc = -EIO; 6314 goto err_exit; 6315 } 6316 6317 /* 6318 * Figure out where the response is located. Then get local pointers 6319 * to the response data. The port does not guarantee to respond to 6320 * all extents counts request so update the local variable with the 6321 * allocated count from the port. 6322 */ 6323 if (emb == LPFC_SLI4_MBX_EMBED) { 6324 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6325 shdr = &rsrc_ext->header.cfg_shdr; 6326 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6327 } else { 6328 virtaddr = mbox->sge_array->addr[0]; 6329 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6330 shdr = &n_rsrc->cfg_shdr; 6331 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6332 } 6333 6334 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 6335 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 6336 "2984 Failed to read allocated resources " 6337 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 6338 type, 6339 bf_get(lpfc_mbox_hdr_status, &shdr->response), 6340 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 6341 rc = -EIO; 6342 goto err_exit; 6343 } 6344 err_exit: 6345 lpfc_sli4_mbox_cmd_free(phba, mbox); 6346 return rc; 6347 } 6348 6349 /** 6350 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 6351 * @phba: pointer to lpfc hba data structure. 6352 * @pring: Pointer to driver SLI ring object. 6353 * @sgl_list: linked link of sgl buffers to post 6354 * @cnt: number of linked list buffers 6355 * 6356 * This routine walks the list of buffers that have been allocated and 6357 * repost them to the port by using SGL block post. This is needed after a 6358 * pci_function_reset/warm_start or start. It attempts to construct blocks 6359 * of buffer sgls which contains contiguous xris and uses the non-embedded 6360 * SGL block post mailbox commands to post them to the port. For single 6361 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 6362 * mailbox command for posting. 6363 * 6364 * Returns: 0 = success, non-zero failure. 6365 **/ 6366 static int 6367 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 6368 struct list_head *sgl_list, int cnt) 6369 { 6370 struct lpfc_sglq *sglq_entry = NULL; 6371 struct lpfc_sglq *sglq_entry_next = NULL; 6372 struct lpfc_sglq *sglq_entry_first = NULL; 6373 int status, total_cnt; 6374 int post_cnt = 0, num_posted = 0, block_cnt = 0; 6375 int last_xritag = NO_XRI; 6376 LIST_HEAD(prep_sgl_list); 6377 LIST_HEAD(blck_sgl_list); 6378 LIST_HEAD(allc_sgl_list); 6379 LIST_HEAD(post_sgl_list); 6380 LIST_HEAD(free_sgl_list); 6381 6382 spin_lock_irq(&phba->hbalock); 6383 spin_lock(&phba->sli4_hba.sgl_list_lock); 6384 list_splice_init(sgl_list, &allc_sgl_list); 6385 spin_unlock(&phba->sli4_hba.sgl_list_lock); 6386 spin_unlock_irq(&phba->hbalock); 6387 6388 total_cnt = cnt; 6389 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 6390 &allc_sgl_list, list) { 6391 list_del_init(&sglq_entry->list); 6392 block_cnt++; 6393 if ((last_xritag != NO_XRI) && 6394 (sglq_entry->sli4_xritag != last_xritag + 1)) { 6395 /* a hole in xri block, form a sgl posting block */ 6396 list_splice_init(&prep_sgl_list, &blck_sgl_list); 6397 post_cnt = block_cnt - 1; 6398 /* prepare list for next posting block */ 6399 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6400 block_cnt = 1; 6401 } else { 6402 /* prepare list for next posting block */ 6403 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6404 /* enough sgls for non-embed sgl mbox command */ 6405 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 6406 list_splice_init(&prep_sgl_list, 6407 &blck_sgl_list); 6408 post_cnt = block_cnt; 6409 block_cnt = 0; 6410 } 6411 } 6412 num_posted++; 6413 6414 /* keep track of last sgl's xritag */ 6415 last_xritag = sglq_entry->sli4_xritag; 6416 6417 /* end of repost sgl list condition for buffers */ 6418 if (num_posted == total_cnt) { 6419 if (post_cnt == 0) { 6420 list_splice_init(&prep_sgl_list, 6421 &blck_sgl_list); 6422 post_cnt = block_cnt; 6423 } else if (block_cnt == 1) { 6424 status = lpfc_sli4_post_sgl(phba, 6425 sglq_entry->phys, 0, 6426 sglq_entry->sli4_xritag); 6427 if (!status) { 6428 /* successful, put sgl to posted list */ 6429 list_add_tail(&sglq_entry->list, 6430 &post_sgl_list); 6431 } else { 6432 /* Failure, put sgl to free list */ 6433 lpfc_printf_log(phba, KERN_WARNING, 6434 LOG_SLI, 6435 "3159 Failed to post " 6436 "sgl, xritag:x%x\n", 6437 sglq_entry->sli4_xritag); 6438 list_add_tail(&sglq_entry->list, 6439 &free_sgl_list); 6440 total_cnt--; 6441 } 6442 } 6443 } 6444 6445 /* continue until a nembed page worth of sgls */ 6446 if (post_cnt == 0) 6447 continue; 6448 6449 /* post the buffer list sgls as a block */ 6450 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 6451 post_cnt); 6452 6453 if (!status) { 6454 /* success, put sgl list to posted sgl list */ 6455 list_splice_init(&blck_sgl_list, &post_sgl_list); 6456 } else { 6457 /* Failure, put sgl list to free sgl list */ 6458 sglq_entry_first = list_first_entry(&blck_sgl_list, 6459 struct lpfc_sglq, 6460 list); 6461 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6462 "3160 Failed to post sgl-list, " 6463 "xritag:x%x-x%x\n", 6464 sglq_entry_first->sli4_xritag, 6465 (sglq_entry_first->sli4_xritag + 6466 post_cnt - 1)); 6467 list_splice_init(&blck_sgl_list, &free_sgl_list); 6468 total_cnt -= post_cnt; 6469 } 6470 6471 /* don't reset xirtag due to hole in xri block */ 6472 if (block_cnt == 0) 6473 last_xritag = NO_XRI; 6474 6475 /* reset sgl post count for next round of posting */ 6476 post_cnt = 0; 6477 } 6478 6479 /* free the sgls failed to post */ 6480 lpfc_free_sgl_list(phba, &free_sgl_list); 6481 6482 /* push sgls posted to the available list */ 6483 if (!list_empty(&post_sgl_list)) { 6484 spin_lock_irq(&phba->hbalock); 6485 spin_lock(&phba->sli4_hba.sgl_list_lock); 6486 list_splice_init(&post_sgl_list, sgl_list); 6487 spin_unlock(&phba->sli4_hba.sgl_list_lock); 6488 spin_unlock_irq(&phba->hbalock); 6489 } else { 6490 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6491 "3161 Failure to post sgl to port.\n"); 6492 return -EIO; 6493 } 6494 6495 /* return the number of XRIs actually posted */ 6496 return total_cnt; 6497 } 6498 6499 void 6500 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 6501 { 6502 uint32_t len; 6503 6504 len = sizeof(struct lpfc_mbx_set_host_data) - 6505 sizeof(struct lpfc_sli4_cfg_mhdr); 6506 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6507 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 6508 LPFC_SLI4_MBX_EMBED); 6509 6510 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 6511 mbox->u.mqe.un.set_host_data.param_len = 6512 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 6513 snprintf(mbox->u.mqe.un.set_host_data.data, 6514 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 6515 "Linux %s v"LPFC_DRIVER_VERSION, 6516 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 6517 } 6518 6519 int 6520 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 6521 struct lpfc_queue *drq, int count, int idx) 6522 { 6523 int rc, i; 6524 struct lpfc_rqe hrqe; 6525 struct lpfc_rqe drqe; 6526 struct lpfc_rqb *rqbp; 6527 struct rqb_dmabuf *rqb_buffer; 6528 LIST_HEAD(rqb_buf_list); 6529 6530 rqbp = hrq->rqbp; 6531 for (i = 0; i < count; i++) { 6532 /* IF RQ is already full, don't bother */ 6533 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) 6534 break; 6535 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 6536 if (!rqb_buffer) 6537 break; 6538 rqb_buffer->hrq = hrq; 6539 rqb_buffer->drq = drq; 6540 rqb_buffer->idx = idx; 6541 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 6542 } 6543 while (!list_empty(&rqb_buf_list)) { 6544 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 6545 hbuf.list); 6546 6547 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 6548 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 6549 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 6550 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 6551 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 6552 if (rc < 0) { 6553 rqbp->rqb_free_buffer(phba, rqb_buffer); 6554 } else { 6555 list_add_tail(&rqb_buffer->hbuf.list, 6556 &rqbp->rqb_buffer_list); 6557 rqbp->buffer_count++; 6558 } 6559 } 6560 return 1; 6561 } 6562 6563 /** 6564 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 6565 * @phba: Pointer to HBA context object. 6566 * 6567 * This function is the main SLI4 device initialization PCI function. This 6568 * function is called by the HBA initialization code, HBA reset code and 6569 * HBA error attention handler code. Caller is not required to hold any 6570 * locks. 6571 **/ 6572 int 6573 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 6574 { 6575 int rc, i, cnt; 6576 LPFC_MBOXQ_t *mboxq; 6577 struct lpfc_mqe *mqe; 6578 uint8_t *vpd; 6579 uint32_t vpd_size; 6580 uint32_t ftr_rsp = 0; 6581 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 6582 struct lpfc_vport *vport = phba->pport; 6583 struct lpfc_dmabuf *mp; 6584 struct lpfc_rqb *rqbp; 6585 6586 /* Perform a PCI function reset to start from clean */ 6587 rc = lpfc_pci_function_reset(phba); 6588 if (unlikely(rc)) 6589 return -ENODEV; 6590 6591 /* Check the HBA Host Status Register for readyness */ 6592 rc = lpfc_sli4_post_status_check(phba); 6593 if (unlikely(rc)) 6594 return -ENODEV; 6595 else { 6596 spin_lock_irq(&phba->hbalock); 6597 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 6598 spin_unlock_irq(&phba->hbalock); 6599 } 6600 6601 /* 6602 * Allocate a single mailbox container for initializing the 6603 * port. 6604 */ 6605 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6606 if (!mboxq) 6607 return -ENOMEM; 6608 6609 /* Issue READ_REV to collect vpd and FW information. */ 6610 vpd_size = SLI4_PAGE_SIZE; 6611 vpd = kzalloc(vpd_size, GFP_KERNEL); 6612 if (!vpd) { 6613 rc = -ENOMEM; 6614 goto out_free_mbox; 6615 } 6616 6617 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 6618 if (unlikely(rc)) { 6619 kfree(vpd); 6620 goto out_free_mbox; 6621 } 6622 6623 mqe = &mboxq->u.mqe; 6624 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 6625 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 6626 phba->hba_flag |= HBA_FCOE_MODE; 6627 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 6628 } else { 6629 phba->hba_flag &= ~HBA_FCOE_MODE; 6630 } 6631 6632 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 6633 LPFC_DCBX_CEE_MODE) 6634 phba->hba_flag |= HBA_FIP_SUPPORT; 6635 else 6636 phba->hba_flag &= ~HBA_FIP_SUPPORT; 6637 6638 phba->hba_flag &= ~HBA_FCP_IOQ_FLUSH; 6639 6640 if (phba->sli_rev != LPFC_SLI_REV4) { 6641 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6642 "0376 READ_REV Error. SLI Level %d " 6643 "FCoE enabled %d\n", 6644 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 6645 rc = -EIO; 6646 kfree(vpd); 6647 goto out_free_mbox; 6648 } 6649 6650 /* 6651 * Continue initialization with default values even if driver failed 6652 * to read FCoE param config regions, only read parameters if the 6653 * board is FCoE 6654 */ 6655 if (phba->hba_flag & HBA_FCOE_MODE && 6656 lpfc_sli4_read_fcoe_params(phba)) 6657 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 6658 "2570 Failed to read FCoE parameters\n"); 6659 6660 /* 6661 * Retrieve sli4 device physical port name, failure of doing it 6662 * is considered as non-fatal. 6663 */ 6664 rc = lpfc_sli4_retrieve_pport_name(phba); 6665 if (!rc) 6666 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6667 "3080 Successful retrieving SLI4 device " 6668 "physical port name: %s.\n", phba->Port); 6669 6670 /* 6671 * Evaluate the read rev and vpd data. Populate the driver 6672 * state with the results. If this routine fails, the failure 6673 * is not fatal as the driver will use generic values. 6674 */ 6675 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 6676 if (unlikely(!rc)) { 6677 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6678 "0377 Error %d parsing vpd. " 6679 "Using defaults.\n", rc); 6680 rc = 0; 6681 } 6682 kfree(vpd); 6683 6684 /* Save information as VPD data */ 6685 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 6686 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 6687 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 6688 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 6689 &mqe->un.read_rev); 6690 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 6691 &mqe->un.read_rev); 6692 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 6693 &mqe->un.read_rev); 6694 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 6695 &mqe->un.read_rev); 6696 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 6697 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 6698 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 6699 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 6700 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 6701 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 6702 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6703 "(%d):0380 READ_REV Status x%x " 6704 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 6705 mboxq->vport ? mboxq->vport->vpi : 0, 6706 bf_get(lpfc_mqe_status, mqe), 6707 phba->vpd.rev.opFwName, 6708 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 6709 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 6710 6711 /* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3) */ 6712 rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3); 6713 if (phba->pport->cfg_lun_queue_depth > rc) { 6714 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6715 "3362 LUN queue depth changed from %d to %d\n", 6716 phba->pport->cfg_lun_queue_depth, rc); 6717 phba->pport->cfg_lun_queue_depth = rc; 6718 } 6719 6720 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 6721 LPFC_SLI_INTF_IF_TYPE_0) { 6722 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 6723 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6724 if (rc == MBX_SUCCESS) { 6725 phba->hba_flag |= HBA_RECOVERABLE_UE; 6726 /* Set 1Sec interval to detect UE */ 6727 phba->eratt_poll_interval = 1; 6728 phba->sli4_hba.ue_to_sr = bf_get( 6729 lpfc_mbx_set_feature_UESR, 6730 &mboxq->u.mqe.un.set_feature); 6731 phba->sli4_hba.ue_to_rp = bf_get( 6732 lpfc_mbx_set_feature_UERP, 6733 &mboxq->u.mqe.un.set_feature); 6734 } 6735 } 6736 6737 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 6738 /* Enable MDS Diagnostics only if the SLI Port supports it */ 6739 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 6740 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6741 if (rc != MBX_SUCCESS) 6742 phba->mds_diags_support = 0; 6743 } 6744 6745 /* 6746 * Discover the port's supported feature set and match it against the 6747 * hosts requests. 6748 */ 6749 lpfc_request_features(phba, mboxq); 6750 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6751 if (unlikely(rc)) { 6752 rc = -EIO; 6753 goto out_free_mbox; 6754 } 6755 6756 /* 6757 * The port must support FCP initiator mode as this is the 6758 * only mode running in the host. 6759 */ 6760 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 6761 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6762 "0378 No support for fcpi mode.\n"); 6763 ftr_rsp++; 6764 } 6765 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 6766 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 6767 else 6768 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 6769 /* 6770 * If the port cannot support the host's requested features 6771 * then turn off the global config parameters to disable the 6772 * feature in the driver. This is not a fatal error. 6773 */ 6774 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 6775 if (phba->cfg_enable_bg) { 6776 if (bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)) 6777 phba->sli3_options |= LPFC_SLI3_BG_ENABLED; 6778 else 6779 ftr_rsp++; 6780 } 6781 6782 if (phba->max_vpi && phba->cfg_enable_npiv && 6783 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 6784 ftr_rsp++; 6785 6786 if (ftr_rsp) { 6787 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6788 "0379 Feature Mismatch Data: x%08x %08x " 6789 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 6790 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 6791 phba->cfg_enable_npiv, phba->max_vpi); 6792 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 6793 phba->cfg_enable_bg = 0; 6794 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 6795 phba->cfg_enable_npiv = 0; 6796 } 6797 6798 /* These SLI3 features are assumed in SLI4 */ 6799 spin_lock_irq(&phba->hbalock); 6800 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 6801 spin_unlock_irq(&phba->hbalock); 6802 6803 /* 6804 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 6805 * calls depends on these resources to complete port setup. 6806 */ 6807 rc = lpfc_sli4_alloc_resource_identifiers(phba); 6808 if (rc) { 6809 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6810 "2920 Failed to alloc Resource IDs " 6811 "rc = x%x\n", rc); 6812 goto out_free_mbox; 6813 } 6814 6815 lpfc_set_host_data(phba, mboxq); 6816 6817 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6818 if (rc) { 6819 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6820 "2134 Failed to set host os driver version %x", 6821 rc); 6822 } 6823 6824 /* Read the port's service parameters. */ 6825 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 6826 if (rc) { 6827 phba->link_state = LPFC_HBA_ERROR; 6828 rc = -ENOMEM; 6829 goto out_free_mbox; 6830 } 6831 6832 mboxq->vport = vport; 6833 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6834 mp = (struct lpfc_dmabuf *) mboxq->context1; 6835 if (rc == MBX_SUCCESS) { 6836 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 6837 rc = 0; 6838 } 6839 6840 /* 6841 * This memory was allocated by the lpfc_read_sparam routine. Release 6842 * it to the mbuf pool. 6843 */ 6844 lpfc_mbuf_free(phba, mp->virt, mp->phys); 6845 kfree(mp); 6846 mboxq->context1 = NULL; 6847 if (unlikely(rc)) { 6848 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6849 "0382 READ_SPARAM command failed " 6850 "status %d, mbxStatus x%x\n", 6851 rc, bf_get(lpfc_mqe_status, mqe)); 6852 phba->link_state = LPFC_HBA_ERROR; 6853 rc = -EIO; 6854 goto out_free_mbox; 6855 } 6856 6857 lpfc_update_vport_wwn(vport); 6858 6859 /* Update the fc_host data structures with new wwn. */ 6860 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 6861 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 6862 6863 /* Create all the SLI4 queues */ 6864 rc = lpfc_sli4_queue_create(phba); 6865 if (rc) { 6866 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6867 "3089 Failed to allocate queues\n"); 6868 rc = -ENODEV; 6869 goto out_free_mbox; 6870 } 6871 /* Set up all the queues to the device */ 6872 rc = lpfc_sli4_queue_setup(phba); 6873 if (unlikely(rc)) { 6874 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6875 "0381 Error %d during queue setup.\n ", rc); 6876 goto out_stop_timers; 6877 } 6878 /* Initialize the driver internal SLI layer lists. */ 6879 lpfc_sli4_setup(phba); 6880 lpfc_sli4_queue_init(phba); 6881 6882 /* update host els xri-sgl sizes and mappings */ 6883 rc = lpfc_sli4_els_sgl_update(phba); 6884 if (unlikely(rc)) { 6885 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6886 "1400 Failed to update xri-sgl size and " 6887 "mapping: %d\n", rc); 6888 goto out_destroy_queue; 6889 } 6890 6891 /* register the els sgl pool to the port */ 6892 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 6893 phba->sli4_hba.els_xri_cnt); 6894 if (unlikely(rc < 0)) { 6895 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6896 "0582 Error %d during els sgl post " 6897 "operation\n", rc); 6898 rc = -ENODEV; 6899 goto out_destroy_queue; 6900 } 6901 phba->sli4_hba.els_xri_cnt = rc; 6902 6903 if (phba->nvmet_support) { 6904 /* update host nvmet xri-sgl sizes and mappings */ 6905 rc = lpfc_sli4_nvmet_sgl_update(phba); 6906 if (unlikely(rc)) { 6907 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6908 "6308 Failed to update nvmet-sgl size " 6909 "and mapping: %d\n", rc); 6910 goto out_destroy_queue; 6911 } 6912 6913 /* register the nvmet sgl pool to the port */ 6914 rc = lpfc_sli4_repost_sgl_list( 6915 phba, 6916 &phba->sli4_hba.lpfc_nvmet_sgl_list, 6917 phba->sli4_hba.nvmet_xri_cnt); 6918 if (unlikely(rc < 0)) { 6919 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6920 "3117 Error %d during nvmet " 6921 "sgl post\n", rc); 6922 rc = -ENODEV; 6923 goto out_destroy_queue; 6924 } 6925 phba->sli4_hba.nvmet_xri_cnt = rc; 6926 6927 cnt = phba->cfg_iocb_cnt * 1024; 6928 /* We need 1 iocbq for every SGL, for IO processing */ 6929 cnt += phba->sli4_hba.nvmet_xri_cnt; 6930 } else { 6931 /* update host scsi xri-sgl sizes and mappings */ 6932 rc = lpfc_sli4_scsi_sgl_update(phba); 6933 if (unlikely(rc)) { 6934 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6935 "6309 Failed to update scsi-sgl size " 6936 "and mapping: %d\n", rc); 6937 goto out_destroy_queue; 6938 } 6939 6940 /* update host nvme xri-sgl sizes and mappings */ 6941 rc = lpfc_sli4_nvme_sgl_update(phba); 6942 if (unlikely(rc)) { 6943 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6944 "6082 Failed to update nvme-sgl size " 6945 "and mapping: %d\n", rc); 6946 goto out_destroy_queue; 6947 } 6948 6949 cnt = phba->cfg_iocb_cnt * 1024; 6950 } 6951 6952 if (!phba->sli.iocbq_lookup) { 6953 /* Initialize and populate the iocb list per host */ 6954 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6955 "2821 initialize iocb list %d total %d\n", 6956 phba->cfg_iocb_cnt, cnt); 6957 rc = lpfc_init_iocb_list(phba, cnt); 6958 if (rc) { 6959 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6960 "1413 Failed to init iocb list.\n"); 6961 goto out_destroy_queue; 6962 } 6963 } 6964 6965 if (phba->nvmet_support) 6966 lpfc_nvmet_create_targetport(phba); 6967 6968 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 6969 /* Post initial buffers to all RQs created */ 6970 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 6971 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 6972 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 6973 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 6974 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 6975 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 6976 rqbp->buffer_count = 0; 6977 6978 lpfc_post_rq_buffer( 6979 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 6980 phba->sli4_hba.nvmet_mrq_data[i], 6981 LPFC_NVMET_RQE_DEF_COUNT, i); 6982 } 6983 } 6984 6985 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 6986 /* register the allocated scsi sgl pool to the port */ 6987 rc = lpfc_sli4_repost_scsi_sgl_list(phba); 6988 if (unlikely(rc)) { 6989 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6990 "0383 Error %d during scsi sgl post " 6991 "operation\n", rc); 6992 /* Some Scsi buffers were moved to abort scsi list */ 6993 /* A pci function reset will repost them */ 6994 rc = -ENODEV; 6995 goto out_destroy_queue; 6996 } 6997 } 6998 6999 if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) && 7000 (phba->nvmet_support == 0)) { 7001 7002 /* register the allocated nvme sgl pool to the port */ 7003 rc = lpfc_repost_nvme_sgl_list(phba); 7004 if (unlikely(rc)) { 7005 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7006 "6116 Error %d during nvme sgl post " 7007 "operation\n", rc); 7008 /* Some NVME buffers were moved to abort nvme list */ 7009 /* A pci function reset will repost them */ 7010 rc = -ENODEV; 7011 goto out_destroy_queue; 7012 } 7013 } 7014 7015 /* Post the rpi header region to the device. */ 7016 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 7017 if (unlikely(rc)) { 7018 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7019 "0393 Error %d during rpi post operation\n", 7020 rc); 7021 rc = -ENODEV; 7022 goto out_destroy_queue; 7023 } 7024 lpfc_sli4_node_prep(phba); 7025 7026 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 7027 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 7028 /* 7029 * The FC Port needs to register FCFI (index 0) 7030 */ 7031 lpfc_reg_fcfi(phba, mboxq); 7032 mboxq->vport = phba->pport; 7033 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7034 if (rc != MBX_SUCCESS) 7035 goto out_unset_queue; 7036 rc = 0; 7037 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 7038 &mboxq->u.mqe.un.reg_fcfi); 7039 } else { 7040 /* We are a NVME Target mode with MRQ > 1 */ 7041 7042 /* First register the FCFI */ 7043 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 7044 mboxq->vport = phba->pport; 7045 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7046 if (rc != MBX_SUCCESS) 7047 goto out_unset_queue; 7048 rc = 0; 7049 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 7050 &mboxq->u.mqe.un.reg_fcfi_mrq); 7051 7052 /* Next register the MRQs */ 7053 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 7054 mboxq->vport = phba->pport; 7055 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7056 if (rc != MBX_SUCCESS) 7057 goto out_unset_queue; 7058 rc = 0; 7059 } 7060 /* Check if the port is configured to be disabled */ 7061 lpfc_sli_read_link_ste(phba); 7062 } 7063 7064 /* Arm the CQs and then EQs on device */ 7065 lpfc_sli4_arm_cqeq_intr(phba); 7066 7067 /* Indicate device interrupt mode */ 7068 phba->sli4_hba.intr_enable = 1; 7069 7070 /* Allow asynchronous mailbox command to go through */ 7071 spin_lock_irq(&phba->hbalock); 7072 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7073 spin_unlock_irq(&phba->hbalock); 7074 7075 /* Post receive buffers to the device */ 7076 lpfc_sli4_rb_setup(phba); 7077 7078 /* Reset HBA FCF states after HBA reset */ 7079 phba->fcf.fcf_flag = 0; 7080 phba->fcf.current_rec.flag = 0; 7081 7082 /* Start the ELS watchdog timer */ 7083 mod_timer(&vport->els_tmofunc, 7084 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 7085 7086 /* Start heart beat timer */ 7087 mod_timer(&phba->hb_tmofunc, 7088 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 7089 phba->hb_outstanding = 0; 7090 phba->last_completion_time = jiffies; 7091 7092 /* Start error attention (ERATT) polling timer */ 7093 mod_timer(&phba->eratt_poll, 7094 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 7095 7096 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 7097 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 7098 rc = pci_enable_pcie_error_reporting(phba->pcidev); 7099 if (!rc) { 7100 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7101 "2829 This device supports " 7102 "Advanced Error Reporting (AER)\n"); 7103 spin_lock_irq(&phba->hbalock); 7104 phba->hba_flag |= HBA_AER_ENABLED; 7105 spin_unlock_irq(&phba->hbalock); 7106 } else { 7107 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7108 "2830 This device does not support " 7109 "Advanced Error Reporting (AER)\n"); 7110 phba->cfg_aer_support = 0; 7111 } 7112 rc = 0; 7113 } 7114 7115 /* 7116 * The port is ready, set the host's link state to LINK_DOWN 7117 * in preparation for link interrupts. 7118 */ 7119 spin_lock_irq(&phba->hbalock); 7120 phba->link_state = LPFC_LINK_DOWN; 7121 spin_unlock_irq(&phba->hbalock); 7122 if (!(phba->hba_flag & HBA_FCOE_MODE) && 7123 (phba->hba_flag & LINK_DISABLED)) { 7124 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 7125 "3103 Adapter Link is disabled.\n"); 7126 lpfc_down_link(phba, mboxq); 7127 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7128 if (rc != MBX_SUCCESS) { 7129 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 7130 "3104 Adapter failed to issue " 7131 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 7132 goto out_unset_queue; 7133 } 7134 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 7135 /* don't perform init_link on SLI4 FC port loopback test */ 7136 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 7137 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 7138 if (rc) 7139 goto out_unset_queue; 7140 } 7141 } 7142 mempool_free(mboxq, phba->mbox_mem_pool); 7143 return rc; 7144 out_unset_queue: 7145 /* Unset all the queues set up in this routine when error out */ 7146 lpfc_sli4_queue_unset(phba); 7147 out_destroy_queue: 7148 lpfc_free_iocb_list(phba); 7149 lpfc_sli4_queue_destroy(phba); 7150 out_stop_timers: 7151 lpfc_stop_hba_timers(phba); 7152 out_free_mbox: 7153 mempool_free(mboxq, phba->mbox_mem_pool); 7154 return rc; 7155 } 7156 7157 /** 7158 * lpfc_mbox_timeout - Timeout call back function for mbox timer 7159 * @ptr: context object - pointer to hba structure. 7160 * 7161 * This is the callback function for mailbox timer. The mailbox 7162 * timer is armed when a new mailbox command is issued and the timer 7163 * is deleted when the mailbox complete. The function is called by 7164 * the kernel timer code when a mailbox does not complete within 7165 * expected time. This function wakes up the worker thread to 7166 * process the mailbox timeout and returns. All the processing is 7167 * done by the worker thread function lpfc_mbox_timeout_handler. 7168 **/ 7169 void 7170 lpfc_mbox_timeout(unsigned long ptr) 7171 { 7172 struct lpfc_hba *phba = (struct lpfc_hba *) ptr; 7173 unsigned long iflag; 7174 uint32_t tmo_posted; 7175 7176 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 7177 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 7178 if (!tmo_posted) 7179 phba->pport->work_port_events |= WORKER_MBOX_TMO; 7180 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 7181 7182 if (!tmo_posted) 7183 lpfc_worker_wake_up(phba); 7184 return; 7185 } 7186 7187 /** 7188 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 7189 * are pending 7190 * @phba: Pointer to HBA context object. 7191 * 7192 * This function checks if any mailbox completions are present on the mailbox 7193 * completion queue. 7194 **/ 7195 static bool 7196 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 7197 { 7198 7199 uint32_t idx; 7200 struct lpfc_queue *mcq; 7201 struct lpfc_mcqe *mcqe; 7202 bool pending_completions = false; 7203 7204 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 7205 return false; 7206 7207 /* Check for completions on mailbox completion queue */ 7208 7209 mcq = phba->sli4_hba.mbx_cq; 7210 idx = mcq->hba_index; 7211 while (bf_get_le32(lpfc_cqe_valid, mcq->qe[idx].cqe)) { 7212 mcqe = (struct lpfc_mcqe *)mcq->qe[idx].cqe; 7213 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 7214 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 7215 pending_completions = true; 7216 break; 7217 } 7218 idx = (idx + 1) % mcq->entry_count; 7219 if (mcq->hba_index == idx) 7220 break; 7221 } 7222 return pending_completions; 7223 7224 } 7225 7226 /** 7227 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 7228 * that were missed. 7229 * @phba: Pointer to HBA context object. 7230 * 7231 * For sli4, it is possible to miss an interrupt. As such mbox completions 7232 * maybe missed causing erroneous mailbox timeouts to occur. This function 7233 * checks to see if mbox completions are on the mailbox completion queue 7234 * and will process all the completions associated with the eq for the 7235 * mailbox completion queue. 7236 **/ 7237 bool 7238 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 7239 { 7240 7241 uint32_t eqidx; 7242 struct lpfc_queue *fpeq = NULL; 7243 struct lpfc_eqe *eqe; 7244 bool mbox_pending; 7245 7246 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 7247 return false; 7248 7249 /* Find the eq associated with the mcq */ 7250 7251 if (phba->sli4_hba.hba_eq) 7252 for (eqidx = 0; eqidx < phba->io_channel_irqs; eqidx++) 7253 if (phba->sli4_hba.hba_eq[eqidx]->queue_id == 7254 phba->sli4_hba.mbx_cq->assoc_qid) { 7255 fpeq = phba->sli4_hba.hba_eq[eqidx]; 7256 break; 7257 } 7258 if (!fpeq) 7259 return false; 7260 7261 /* Turn off interrupts from this EQ */ 7262 7263 lpfc_sli4_eq_clr_intr(fpeq); 7264 7265 /* Check to see if a mbox completion is pending */ 7266 7267 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 7268 7269 /* 7270 * If a mbox completion is pending, process all the events on EQ 7271 * associated with the mbox completion queue (this could include 7272 * mailbox commands, async events, els commands, receive queue data 7273 * and fcp commands) 7274 */ 7275 7276 if (mbox_pending) 7277 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 7278 lpfc_sli4_hba_handle_eqe(phba, eqe, eqidx); 7279 fpeq->EQ_processed++; 7280 } 7281 7282 /* Always clear and re-arm the EQ */ 7283 7284 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 7285 7286 return mbox_pending; 7287 7288 } 7289 7290 /** 7291 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 7292 * @phba: Pointer to HBA context object. 7293 * 7294 * This function is called from worker thread when a mailbox command times out. 7295 * The caller is not required to hold any locks. This function will reset the 7296 * HBA and recover all the pending commands. 7297 **/ 7298 void 7299 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 7300 { 7301 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 7302 MAILBOX_t *mb = NULL; 7303 7304 struct lpfc_sli *psli = &phba->sli; 7305 7306 /* If the mailbox completed, process the completion and return */ 7307 if (lpfc_sli4_process_missed_mbox_completions(phba)) 7308 return; 7309 7310 if (pmbox != NULL) 7311 mb = &pmbox->u.mb; 7312 /* Check the pmbox pointer first. There is a race condition 7313 * between the mbox timeout handler getting executed in the 7314 * worklist and the mailbox actually completing. When this 7315 * race condition occurs, the mbox_active will be NULL. 7316 */ 7317 spin_lock_irq(&phba->hbalock); 7318 if (pmbox == NULL) { 7319 lpfc_printf_log(phba, KERN_WARNING, 7320 LOG_MBOX | LOG_SLI, 7321 "0353 Active Mailbox cleared - mailbox timeout " 7322 "exiting\n"); 7323 spin_unlock_irq(&phba->hbalock); 7324 return; 7325 } 7326 7327 /* Mbox cmd <mbxCommand> timeout */ 7328 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7329 "0310 Mailbox command x%x timeout Data: x%x x%x x%p\n", 7330 mb->mbxCommand, 7331 phba->pport->port_state, 7332 phba->sli.sli_flag, 7333 phba->sli.mbox_active); 7334 spin_unlock_irq(&phba->hbalock); 7335 7336 /* Setting state unknown so lpfc_sli_abort_iocb_ring 7337 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 7338 * it to fail all outstanding SCSI IO. 7339 */ 7340 spin_lock_irq(&phba->pport->work_port_lock); 7341 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 7342 spin_unlock_irq(&phba->pport->work_port_lock); 7343 spin_lock_irq(&phba->hbalock); 7344 phba->link_state = LPFC_LINK_UNKNOWN; 7345 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 7346 spin_unlock_irq(&phba->hbalock); 7347 7348 lpfc_sli_abort_fcp_rings(phba); 7349 7350 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7351 "0345 Resetting board due to mailbox timeout\n"); 7352 7353 /* Reset the HBA device */ 7354 lpfc_reset_hba(phba); 7355 } 7356 7357 /** 7358 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 7359 * @phba: Pointer to HBA context object. 7360 * @pmbox: Pointer to mailbox object. 7361 * @flag: Flag indicating how the mailbox need to be processed. 7362 * 7363 * This function is called by discovery code and HBA management code 7364 * to submit a mailbox command to firmware with SLI-3 interface spec. This 7365 * function gets the hbalock to protect the data structures. 7366 * The mailbox command can be submitted in polling mode, in which case 7367 * this function will wait in a polling loop for the completion of the 7368 * mailbox. 7369 * If the mailbox is submitted in no_wait mode (not polling) the 7370 * function will submit the command and returns immediately without waiting 7371 * for the mailbox completion. The no_wait is supported only when HBA 7372 * is in SLI2/SLI3 mode - interrupts are enabled. 7373 * The SLI interface allows only one mailbox pending at a time. If the 7374 * mailbox is issued in polling mode and there is already a mailbox 7375 * pending, then the function will return an error. If the mailbox is issued 7376 * in NO_WAIT mode and there is a mailbox pending already, the function 7377 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 7378 * The sli layer owns the mailbox object until the completion of mailbox 7379 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 7380 * return codes the caller owns the mailbox command after the return of 7381 * the function. 7382 **/ 7383 static int 7384 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 7385 uint32_t flag) 7386 { 7387 MAILBOX_t *mbx; 7388 struct lpfc_sli *psli = &phba->sli; 7389 uint32_t status, evtctr; 7390 uint32_t ha_copy, hc_copy; 7391 int i; 7392 unsigned long timeout; 7393 unsigned long drvr_flag = 0; 7394 uint32_t word0, ldata; 7395 void __iomem *to_slim; 7396 int processing_queue = 0; 7397 7398 spin_lock_irqsave(&phba->hbalock, drvr_flag); 7399 if (!pmbox) { 7400 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7401 /* processing mbox queue from intr_handler */ 7402 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7403 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7404 return MBX_SUCCESS; 7405 } 7406 processing_queue = 1; 7407 pmbox = lpfc_mbox_get(phba); 7408 if (!pmbox) { 7409 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7410 return MBX_SUCCESS; 7411 } 7412 } 7413 7414 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 7415 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 7416 if(!pmbox->vport) { 7417 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7418 lpfc_printf_log(phba, KERN_ERR, 7419 LOG_MBOX | LOG_VPORT, 7420 "1806 Mbox x%x failed. No vport\n", 7421 pmbox->u.mb.mbxCommand); 7422 dump_stack(); 7423 goto out_not_finished; 7424 } 7425 } 7426 7427 /* If the PCI channel is in offline state, do not post mbox. */ 7428 if (unlikely(pci_channel_offline(phba->pcidev))) { 7429 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7430 goto out_not_finished; 7431 } 7432 7433 /* If HBA has a deferred error attention, fail the iocb. */ 7434 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 7435 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7436 goto out_not_finished; 7437 } 7438 7439 psli = &phba->sli; 7440 7441 mbx = &pmbox->u.mb; 7442 status = MBX_SUCCESS; 7443 7444 if (phba->link_state == LPFC_HBA_ERROR) { 7445 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7446 7447 /* Mbox command <mbxCommand> cannot issue */ 7448 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7449 "(%d):0311 Mailbox command x%x cannot " 7450 "issue Data: x%x x%x\n", 7451 pmbox->vport ? pmbox->vport->vpi : 0, 7452 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 7453 goto out_not_finished; 7454 } 7455 7456 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 7457 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 7458 !(hc_copy & HC_MBINT_ENA)) { 7459 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7460 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7461 "(%d):2528 Mailbox command x%x cannot " 7462 "issue Data: x%x x%x\n", 7463 pmbox->vport ? pmbox->vport->vpi : 0, 7464 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 7465 goto out_not_finished; 7466 } 7467 } 7468 7469 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7470 /* Polling for a mbox command when another one is already active 7471 * is not allowed in SLI. Also, the driver must have established 7472 * SLI2 mode to queue and process multiple mbox commands. 7473 */ 7474 7475 if (flag & MBX_POLL) { 7476 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7477 7478 /* Mbox command <mbxCommand> cannot issue */ 7479 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7480 "(%d):2529 Mailbox command x%x " 7481 "cannot issue Data: x%x x%x\n", 7482 pmbox->vport ? pmbox->vport->vpi : 0, 7483 pmbox->u.mb.mbxCommand, 7484 psli->sli_flag, flag); 7485 goto out_not_finished; 7486 } 7487 7488 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 7489 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7490 /* Mbox command <mbxCommand> cannot issue */ 7491 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7492 "(%d):2530 Mailbox command x%x " 7493 "cannot issue Data: x%x x%x\n", 7494 pmbox->vport ? pmbox->vport->vpi : 0, 7495 pmbox->u.mb.mbxCommand, 7496 psli->sli_flag, flag); 7497 goto out_not_finished; 7498 } 7499 7500 /* Another mailbox command is still being processed, queue this 7501 * command to be processed later. 7502 */ 7503 lpfc_mbox_put(phba, pmbox); 7504 7505 /* Mbox cmd issue - BUSY */ 7506 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7507 "(%d):0308 Mbox cmd issue - BUSY Data: " 7508 "x%x x%x x%x x%x\n", 7509 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 7510 mbx->mbxCommand, 7511 phba->pport ? phba->pport->port_state : 0xff, 7512 psli->sli_flag, flag); 7513 7514 psli->slistat.mbox_busy++; 7515 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7516 7517 if (pmbox->vport) { 7518 lpfc_debugfs_disc_trc(pmbox->vport, 7519 LPFC_DISC_TRC_MBOX_VPORT, 7520 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 7521 (uint32_t)mbx->mbxCommand, 7522 mbx->un.varWords[0], mbx->un.varWords[1]); 7523 } 7524 else { 7525 lpfc_debugfs_disc_trc(phba->pport, 7526 LPFC_DISC_TRC_MBOX, 7527 "MBOX Bsy: cmd:x%x mb:x%x x%x", 7528 (uint32_t)mbx->mbxCommand, 7529 mbx->un.varWords[0], mbx->un.varWords[1]); 7530 } 7531 7532 return MBX_BUSY; 7533 } 7534 7535 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7536 7537 /* If we are not polling, we MUST be in SLI2 mode */ 7538 if (flag != MBX_POLL) { 7539 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 7540 (mbx->mbxCommand != MBX_KILL_BOARD)) { 7541 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7542 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7543 /* Mbox command <mbxCommand> cannot issue */ 7544 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7545 "(%d):2531 Mailbox command x%x " 7546 "cannot issue Data: x%x x%x\n", 7547 pmbox->vport ? pmbox->vport->vpi : 0, 7548 pmbox->u.mb.mbxCommand, 7549 psli->sli_flag, flag); 7550 goto out_not_finished; 7551 } 7552 /* timeout active mbox command */ 7553 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 7554 1000); 7555 mod_timer(&psli->mbox_tmo, jiffies + timeout); 7556 } 7557 7558 /* Mailbox cmd <cmd> issue */ 7559 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7560 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 7561 "x%x\n", 7562 pmbox->vport ? pmbox->vport->vpi : 0, 7563 mbx->mbxCommand, 7564 phba->pport ? phba->pport->port_state : 0xff, 7565 psli->sli_flag, flag); 7566 7567 if (mbx->mbxCommand != MBX_HEARTBEAT) { 7568 if (pmbox->vport) { 7569 lpfc_debugfs_disc_trc(pmbox->vport, 7570 LPFC_DISC_TRC_MBOX_VPORT, 7571 "MBOX Send vport: cmd:x%x mb:x%x x%x", 7572 (uint32_t)mbx->mbxCommand, 7573 mbx->un.varWords[0], mbx->un.varWords[1]); 7574 } 7575 else { 7576 lpfc_debugfs_disc_trc(phba->pport, 7577 LPFC_DISC_TRC_MBOX, 7578 "MBOX Send: cmd:x%x mb:x%x x%x", 7579 (uint32_t)mbx->mbxCommand, 7580 mbx->un.varWords[0], mbx->un.varWords[1]); 7581 } 7582 } 7583 7584 psli->slistat.mbox_cmd++; 7585 evtctr = psli->slistat.mbox_event; 7586 7587 /* next set own bit for the adapter and copy over command word */ 7588 mbx->mbxOwner = OWN_CHIP; 7589 7590 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7591 /* Populate mbox extension offset word. */ 7592 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 7593 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 7594 = (uint8_t *)phba->mbox_ext 7595 - (uint8_t *)phba->mbox; 7596 } 7597 7598 /* Copy the mailbox extension data */ 7599 if (pmbox->in_ext_byte_len && pmbox->context2) { 7600 lpfc_sli_pcimem_bcopy(pmbox->context2, 7601 (uint8_t *)phba->mbox_ext, 7602 pmbox->in_ext_byte_len); 7603 } 7604 /* Copy command data to host SLIM area */ 7605 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 7606 } else { 7607 /* Populate mbox extension offset word. */ 7608 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 7609 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 7610 = MAILBOX_HBA_EXT_OFFSET; 7611 7612 /* Copy the mailbox extension data */ 7613 if (pmbox->in_ext_byte_len && pmbox->context2) 7614 lpfc_memcpy_to_slim(phba->MBslimaddr + 7615 MAILBOX_HBA_EXT_OFFSET, 7616 pmbox->context2, pmbox->in_ext_byte_len); 7617 7618 if (mbx->mbxCommand == MBX_CONFIG_PORT) 7619 /* copy command data into host mbox for cmpl */ 7620 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 7621 MAILBOX_CMD_SIZE); 7622 7623 /* First copy mbox command data to HBA SLIM, skip past first 7624 word */ 7625 to_slim = phba->MBslimaddr + sizeof (uint32_t); 7626 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 7627 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 7628 7629 /* Next copy over first word, with mbxOwner set */ 7630 ldata = *((uint32_t *)mbx); 7631 to_slim = phba->MBslimaddr; 7632 writel(ldata, to_slim); 7633 readl(to_slim); /* flush */ 7634 7635 if (mbx->mbxCommand == MBX_CONFIG_PORT) 7636 /* switch over to host mailbox */ 7637 psli->sli_flag |= LPFC_SLI_ACTIVE; 7638 } 7639 7640 wmb(); 7641 7642 switch (flag) { 7643 case MBX_NOWAIT: 7644 /* Set up reference to mailbox command */ 7645 psli->mbox_active = pmbox; 7646 /* Interrupt board to do it */ 7647 writel(CA_MBATT, phba->CAregaddr); 7648 readl(phba->CAregaddr); /* flush */ 7649 /* Don't wait for it to finish, just return */ 7650 break; 7651 7652 case MBX_POLL: 7653 /* Set up null reference to mailbox command */ 7654 psli->mbox_active = NULL; 7655 /* Interrupt board to do it */ 7656 writel(CA_MBATT, phba->CAregaddr); 7657 readl(phba->CAregaddr); /* flush */ 7658 7659 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7660 /* First read mbox status word */ 7661 word0 = *((uint32_t *)phba->mbox); 7662 word0 = le32_to_cpu(word0); 7663 } else { 7664 /* First read mbox status word */ 7665 if (lpfc_readl(phba->MBslimaddr, &word0)) { 7666 spin_unlock_irqrestore(&phba->hbalock, 7667 drvr_flag); 7668 goto out_not_finished; 7669 } 7670 } 7671 7672 /* Read the HBA Host Attention Register */ 7673 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 7674 spin_unlock_irqrestore(&phba->hbalock, 7675 drvr_flag); 7676 goto out_not_finished; 7677 } 7678 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 7679 1000) + jiffies; 7680 i = 0; 7681 /* Wait for command to complete */ 7682 while (((word0 & OWN_CHIP) == OWN_CHIP) || 7683 (!(ha_copy & HA_MBATT) && 7684 (phba->link_state > LPFC_WARM_START))) { 7685 if (time_after(jiffies, timeout)) { 7686 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7687 spin_unlock_irqrestore(&phba->hbalock, 7688 drvr_flag); 7689 goto out_not_finished; 7690 } 7691 7692 /* Check if we took a mbox interrupt while we were 7693 polling */ 7694 if (((word0 & OWN_CHIP) != OWN_CHIP) 7695 && (evtctr != psli->slistat.mbox_event)) 7696 break; 7697 7698 if (i++ > 10) { 7699 spin_unlock_irqrestore(&phba->hbalock, 7700 drvr_flag); 7701 msleep(1); 7702 spin_lock_irqsave(&phba->hbalock, drvr_flag); 7703 } 7704 7705 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7706 /* First copy command data */ 7707 word0 = *((uint32_t *)phba->mbox); 7708 word0 = le32_to_cpu(word0); 7709 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 7710 MAILBOX_t *slimmb; 7711 uint32_t slimword0; 7712 /* Check real SLIM for any errors */ 7713 slimword0 = readl(phba->MBslimaddr); 7714 slimmb = (MAILBOX_t *) & slimword0; 7715 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 7716 && slimmb->mbxStatus) { 7717 psli->sli_flag &= 7718 ~LPFC_SLI_ACTIVE; 7719 word0 = slimword0; 7720 } 7721 } 7722 } else { 7723 /* First copy command data */ 7724 word0 = readl(phba->MBslimaddr); 7725 } 7726 /* Read the HBA Host Attention Register */ 7727 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 7728 spin_unlock_irqrestore(&phba->hbalock, 7729 drvr_flag); 7730 goto out_not_finished; 7731 } 7732 } 7733 7734 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7735 /* copy results back to user */ 7736 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 7737 MAILBOX_CMD_SIZE); 7738 /* Copy the mailbox extension data */ 7739 if (pmbox->out_ext_byte_len && pmbox->context2) { 7740 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 7741 pmbox->context2, 7742 pmbox->out_ext_byte_len); 7743 } 7744 } else { 7745 /* First copy command data */ 7746 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 7747 MAILBOX_CMD_SIZE); 7748 /* Copy the mailbox extension data */ 7749 if (pmbox->out_ext_byte_len && pmbox->context2) { 7750 lpfc_memcpy_from_slim(pmbox->context2, 7751 phba->MBslimaddr + 7752 MAILBOX_HBA_EXT_OFFSET, 7753 pmbox->out_ext_byte_len); 7754 } 7755 } 7756 7757 writel(HA_MBATT, phba->HAregaddr); 7758 readl(phba->HAregaddr); /* flush */ 7759 7760 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7761 status = mbx->mbxStatus; 7762 } 7763 7764 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7765 return status; 7766 7767 out_not_finished: 7768 if (processing_queue) { 7769 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 7770 lpfc_mbox_cmpl_put(phba, pmbox); 7771 } 7772 return MBX_NOT_FINISHED; 7773 } 7774 7775 /** 7776 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 7777 * @phba: Pointer to HBA context object. 7778 * 7779 * The function blocks the posting of SLI4 asynchronous mailbox commands from 7780 * the driver internal pending mailbox queue. It will then try to wait out the 7781 * possible outstanding mailbox command before return. 7782 * 7783 * Returns: 7784 * 0 - the outstanding mailbox command completed; otherwise, the wait for 7785 * the outstanding mailbox command timed out. 7786 **/ 7787 static int 7788 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 7789 { 7790 struct lpfc_sli *psli = &phba->sli; 7791 int rc = 0; 7792 unsigned long timeout = 0; 7793 7794 /* Mark the asynchronous mailbox command posting as blocked */ 7795 spin_lock_irq(&phba->hbalock); 7796 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 7797 /* Determine how long we might wait for the active mailbox 7798 * command to be gracefully completed by firmware. 7799 */ 7800 if (phba->sli.mbox_active) 7801 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 7802 phba->sli.mbox_active) * 7803 1000) + jiffies; 7804 spin_unlock_irq(&phba->hbalock); 7805 7806 /* Make sure the mailbox is really active */ 7807 if (timeout) 7808 lpfc_sli4_process_missed_mbox_completions(phba); 7809 7810 /* Wait for the outstnading mailbox command to complete */ 7811 while (phba->sli.mbox_active) { 7812 /* Check active mailbox complete status every 2ms */ 7813 msleep(2); 7814 if (time_after(jiffies, timeout)) { 7815 /* Timeout, marked the outstanding cmd not complete */ 7816 rc = 1; 7817 break; 7818 } 7819 } 7820 7821 /* Can not cleanly block async mailbox command, fails it */ 7822 if (rc) { 7823 spin_lock_irq(&phba->hbalock); 7824 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7825 spin_unlock_irq(&phba->hbalock); 7826 } 7827 return rc; 7828 } 7829 7830 /** 7831 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 7832 * @phba: Pointer to HBA context object. 7833 * 7834 * The function unblocks and resume posting of SLI4 asynchronous mailbox 7835 * commands from the driver internal pending mailbox queue. It makes sure 7836 * that there is no outstanding mailbox command before resuming posting 7837 * asynchronous mailbox commands. If, for any reason, there is outstanding 7838 * mailbox command, it will try to wait it out before resuming asynchronous 7839 * mailbox command posting. 7840 **/ 7841 static void 7842 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 7843 { 7844 struct lpfc_sli *psli = &phba->sli; 7845 7846 spin_lock_irq(&phba->hbalock); 7847 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7848 /* Asynchronous mailbox posting is not blocked, do nothing */ 7849 spin_unlock_irq(&phba->hbalock); 7850 return; 7851 } 7852 7853 /* Outstanding synchronous mailbox command is guaranteed to be done, 7854 * successful or timeout, after timing-out the outstanding mailbox 7855 * command shall always be removed, so just unblock posting async 7856 * mailbox command and resume 7857 */ 7858 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7859 spin_unlock_irq(&phba->hbalock); 7860 7861 /* wake up worker thread to post asynchronlous mailbox command */ 7862 lpfc_worker_wake_up(phba); 7863 } 7864 7865 /** 7866 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 7867 * @phba: Pointer to HBA context object. 7868 * @mboxq: Pointer to mailbox object. 7869 * 7870 * The function waits for the bootstrap mailbox register ready bit from 7871 * port for twice the regular mailbox command timeout value. 7872 * 7873 * 0 - no timeout on waiting for bootstrap mailbox register ready. 7874 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 7875 **/ 7876 static int 7877 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 7878 { 7879 uint32_t db_ready; 7880 unsigned long timeout; 7881 struct lpfc_register bmbx_reg; 7882 7883 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 7884 * 1000) + jiffies; 7885 7886 do { 7887 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 7888 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 7889 if (!db_ready) 7890 msleep(2); 7891 7892 if (time_after(jiffies, timeout)) 7893 return MBXERR_ERROR; 7894 } while (!db_ready); 7895 7896 return 0; 7897 } 7898 7899 /** 7900 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 7901 * @phba: Pointer to HBA context object. 7902 * @mboxq: Pointer to mailbox object. 7903 * 7904 * The function posts a mailbox to the port. The mailbox is expected 7905 * to be comletely filled in and ready for the port to operate on it. 7906 * This routine executes a synchronous completion operation on the 7907 * mailbox by polling for its completion. 7908 * 7909 * The caller must not be holding any locks when calling this routine. 7910 * 7911 * Returns: 7912 * MBX_SUCCESS - mailbox posted successfully 7913 * Any of the MBX error values. 7914 **/ 7915 static int 7916 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 7917 { 7918 int rc = MBX_SUCCESS; 7919 unsigned long iflag; 7920 uint32_t mcqe_status; 7921 uint32_t mbx_cmnd; 7922 struct lpfc_sli *psli = &phba->sli; 7923 struct lpfc_mqe *mb = &mboxq->u.mqe; 7924 struct lpfc_bmbx_create *mbox_rgn; 7925 struct dma_address *dma_address; 7926 7927 /* 7928 * Only one mailbox can be active to the bootstrap mailbox region 7929 * at a time and there is no queueing provided. 7930 */ 7931 spin_lock_irqsave(&phba->hbalock, iflag); 7932 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7933 spin_unlock_irqrestore(&phba->hbalock, iflag); 7934 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7935 "(%d):2532 Mailbox command x%x (x%x/x%x) " 7936 "cannot issue Data: x%x x%x\n", 7937 mboxq->vport ? mboxq->vport->vpi : 0, 7938 mboxq->u.mb.mbxCommand, 7939 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7940 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7941 psli->sli_flag, MBX_POLL); 7942 return MBXERR_ERROR; 7943 } 7944 /* The server grabs the token and owns it until release */ 7945 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7946 phba->sli.mbox_active = mboxq; 7947 spin_unlock_irqrestore(&phba->hbalock, iflag); 7948 7949 /* wait for bootstrap mbox register for readyness */ 7950 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7951 if (rc) 7952 goto exit; 7953 7954 /* 7955 * Initialize the bootstrap memory region to avoid stale data areas 7956 * in the mailbox post. Then copy the caller's mailbox contents to 7957 * the bmbx mailbox region. 7958 */ 7959 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 7960 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 7961 lpfc_sli_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 7962 sizeof(struct lpfc_mqe)); 7963 7964 /* Post the high mailbox dma address to the port and wait for ready. */ 7965 dma_address = &phba->sli4_hba.bmbx.dma_address; 7966 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 7967 7968 /* wait for bootstrap mbox register for hi-address write done */ 7969 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7970 if (rc) 7971 goto exit; 7972 7973 /* Post the low mailbox dma address to the port. */ 7974 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 7975 7976 /* wait for bootstrap mbox register for low address write done */ 7977 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7978 if (rc) 7979 goto exit; 7980 7981 /* 7982 * Read the CQ to ensure the mailbox has completed. 7983 * If so, update the mailbox status so that the upper layers 7984 * can complete the request normally. 7985 */ 7986 lpfc_sli_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 7987 sizeof(struct lpfc_mqe)); 7988 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 7989 lpfc_sli_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 7990 sizeof(struct lpfc_mcqe)); 7991 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 7992 /* 7993 * When the CQE status indicates a failure and the mailbox status 7994 * indicates success then copy the CQE status into the mailbox status 7995 * (and prefix it with x4000). 7996 */ 7997 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 7998 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 7999 bf_set(lpfc_mqe_status, mb, 8000 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 8001 rc = MBXERR_ERROR; 8002 } else 8003 lpfc_sli4_swap_str(phba, mboxq); 8004 8005 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8006 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 8007 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 8008 " x%x x%x CQ: x%x x%x x%x x%x\n", 8009 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 8010 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8011 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8012 bf_get(lpfc_mqe_status, mb), 8013 mb->un.mb_words[0], mb->un.mb_words[1], 8014 mb->un.mb_words[2], mb->un.mb_words[3], 8015 mb->un.mb_words[4], mb->un.mb_words[5], 8016 mb->un.mb_words[6], mb->un.mb_words[7], 8017 mb->un.mb_words[8], mb->un.mb_words[9], 8018 mb->un.mb_words[10], mb->un.mb_words[11], 8019 mb->un.mb_words[12], mboxq->mcqe.word0, 8020 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 8021 mboxq->mcqe.trailer); 8022 exit: 8023 /* We are holding the token, no needed for lock when release */ 8024 spin_lock_irqsave(&phba->hbalock, iflag); 8025 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8026 phba->sli.mbox_active = NULL; 8027 spin_unlock_irqrestore(&phba->hbalock, iflag); 8028 return rc; 8029 } 8030 8031 /** 8032 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 8033 * @phba: Pointer to HBA context object. 8034 * @pmbox: Pointer to mailbox object. 8035 * @flag: Flag indicating how the mailbox need to be processed. 8036 * 8037 * This function is called by discovery code and HBA management code to submit 8038 * a mailbox command to firmware with SLI-4 interface spec. 8039 * 8040 * Return codes the caller owns the mailbox command after the return of the 8041 * function. 8042 **/ 8043 static int 8044 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 8045 uint32_t flag) 8046 { 8047 struct lpfc_sli *psli = &phba->sli; 8048 unsigned long iflags; 8049 int rc; 8050 8051 /* dump from issue mailbox command if setup */ 8052 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 8053 8054 rc = lpfc_mbox_dev_check(phba); 8055 if (unlikely(rc)) { 8056 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8057 "(%d):2544 Mailbox command x%x (x%x/x%x) " 8058 "cannot issue Data: x%x x%x\n", 8059 mboxq->vport ? mboxq->vport->vpi : 0, 8060 mboxq->u.mb.mbxCommand, 8061 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8062 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8063 psli->sli_flag, flag); 8064 goto out_not_finished; 8065 } 8066 8067 /* Detect polling mode and jump to a handler */ 8068 if (!phba->sli4_hba.intr_enable) { 8069 if (flag == MBX_POLL) 8070 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8071 else 8072 rc = -EIO; 8073 if (rc != MBX_SUCCESS) 8074 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8075 "(%d):2541 Mailbox command x%x " 8076 "(x%x/x%x) failure: " 8077 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8078 "Data: x%x x%x\n,", 8079 mboxq->vport ? mboxq->vport->vpi : 0, 8080 mboxq->u.mb.mbxCommand, 8081 lpfc_sli_config_mbox_subsys_get(phba, 8082 mboxq), 8083 lpfc_sli_config_mbox_opcode_get(phba, 8084 mboxq), 8085 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8086 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8087 bf_get(lpfc_mcqe_ext_status, 8088 &mboxq->mcqe), 8089 psli->sli_flag, flag); 8090 return rc; 8091 } else if (flag == MBX_POLL) { 8092 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8093 "(%d):2542 Try to issue mailbox command " 8094 "x%x (x%x/x%x) synchronously ahead of async" 8095 "mailbox command queue: x%x x%x\n", 8096 mboxq->vport ? mboxq->vport->vpi : 0, 8097 mboxq->u.mb.mbxCommand, 8098 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8099 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8100 psli->sli_flag, flag); 8101 /* Try to block the asynchronous mailbox posting */ 8102 rc = lpfc_sli4_async_mbox_block(phba); 8103 if (!rc) { 8104 /* Successfully blocked, now issue sync mbox cmd */ 8105 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8106 if (rc != MBX_SUCCESS) 8107 lpfc_printf_log(phba, KERN_WARNING, 8108 LOG_MBOX | LOG_SLI, 8109 "(%d):2597 Sync Mailbox command " 8110 "x%x (x%x/x%x) failure: " 8111 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8112 "Data: x%x x%x\n,", 8113 mboxq->vport ? mboxq->vport->vpi : 0, 8114 mboxq->u.mb.mbxCommand, 8115 lpfc_sli_config_mbox_subsys_get(phba, 8116 mboxq), 8117 lpfc_sli_config_mbox_opcode_get(phba, 8118 mboxq), 8119 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8120 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8121 bf_get(lpfc_mcqe_ext_status, 8122 &mboxq->mcqe), 8123 psli->sli_flag, flag); 8124 /* Unblock the async mailbox posting afterward */ 8125 lpfc_sli4_async_mbox_unblock(phba); 8126 } 8127 return rc; 8128 } 8129 8130 /* Now, interrupt mode asynchrous mailbox command */ 8131 rc = lpfc_mbox_cmd_check(phba, mboxq); 8132 if (rc) { 8133 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8134 "(%d):2543 Mailbox command x%x (x%x/x%x) " 8135 "cannot issue Data: x%x x%x\n", 8136 mboxq->vport ? mboxq->vport->vpi : 0, 8137 mboxq->u.mb.mbxCommand, 8138 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8139 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8140 psli->sli_flag, flag); 8141 goto out_not_finished; 8142 } 8143 8144 /* Put the mailbox command to the driver internal FIFO */ 8145 psli->slistat.mbox_busy++; 8146 spin_lock_irqsave(&phba->hbalock, iflags); 8147 lpfc_mbox_put(phba, mboxq); 8148 spin_unlock_irqrestore(&phba->hbalock, iflags); 8149 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8150 "(%d):0354 Mbox cmd issue - Enqueue Data: " 8151 "x%x (x%x/x%x) x%x x%x x%x\n", 8152 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 8153 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8154 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8155 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8156 phba->pport->port_state, 8157 psli->sli_flag, MBX_NOWAIT); 8158 /* Wake up worker thread to transport mailbox command from head */ 8159 lpfc_worker_wake_up(phba); 8160 8161 return MBX_BUSY; 8162 8163 out_not_finished: 8164 return MBX_NOT_FINISHED; 8165 } 8166 8167 /** 8168 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 8169 * @phba: Pointer to HBA context object. 8170 * 8171 * This function is called by worker thread to send a mailbox command to 8172 * SLI4 HBA firmware. 8173 * 8174 **/ 8175 int 8176 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 8177 { 8178 struct lpfc_sli *psli = &phba->sli; 8179 LPFC_MBOXQ_t *mboxq; 8180 int rc = MBX_SUCCESS; 8181 unsigned long iflags; 8182 struct lpfc_mqe *mqe; 8183 uint32_t mbx_cmnd; 8184 8185 /* Check interrupt mode before post async mailbox command */ 8186 if (unlikely(!phba->sli4_hba.intr_enable)) 8187 return MBX_NOT_FINISHED; 8188 8189 /* Check for mailbox command service token */ 8190 spin_lock_irqsave(&phba->hbalock, iflags); 8191 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8192 spin_unlock_irqrestore(&phba->hbalock, iflags); 8193 return MBX_NOT_FINISHED; 8194 } 8195 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8196 spin_unlock_irqrestore(&phba->hbalock, iflags); 8197 return MBX_NOT_FINISHED; 8198 } 8199 if (unlikely(phba->sli.mbox_active)) { 8200 spin_unlock_irqrestore(&phba->hbalock, iflags); 8201 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8202 "0384 There is pending active mailbox cmd\n"); 8203 return MBX_NOT_FINISHED; 8204 } 8205 /* Take the mailbox command service token */ 8206 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8207 8208 /* Get the next mailbox command from head of queue */ 8209 mboxq = lpfc_mbox_get(phba); 8210 8211 /* If no more mailbox command waiting for post, we're done */ 8212 if (!mboxq) { 8213 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8214 spin_unlock_irqrestore(&phba->hbalock, iflags); 8215 return MBX_SUCCESS; 8216 } 8217 phba->sli.mbox_active = mboxq; 8218 spin_unlock_irqrestore(&phba->hbalock, iflags); 8219 8220 /* Check device readiness for posting mailbox command */ 8221 rc = lpfc_mbox_dev_check(phba); 8222 if (unlikely(rc)) 8223 /* Driver clean routine will clean up pending mailbox */ 8224 goto out_not_finished; 8225 8226 /* Prepare the mbox command to be posted */ 8227 mqe = &mboxq->u.mqe; 8228 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 8229 8230 /* Start timer for the mbox_tmo and log some mailbox post messages */ 8231 mod_timer(&psli->mbox_tmo, (jiffies + 8232 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 8233 8234 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8235 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 8236 "x%x x%x\n", 8237 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 8238 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8239 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8240 phba->pport->port_state, psli->sli_flag); 8241 8242 if (mbx_cmnd != MBX_HEARTBEAT) { 8243 if (mboxq->vport) { 8244 lpfc_debugfs_disc_trc(mboxq->vport, 8245 LPFC_DISC_TRC_MBOX_VPORT, 8246 "MBOX Send vport: cmd:x%x mb:x%x x%x", 8247 mbx_cmnd, mqe->un.mb_words[0], 8248 mqe->un.mb_words[1]); 8249 } else { 8250 lpfc_debugfs_disc_trc(phba->pport, 8251 LPFC_DISC_TRC_MBOX, 8252 "MBOX Send: cmd:x%x mb:x%x x%x", 8253 mbx_cmnd, mqe->un.mb_words[0], 8254 mqe->un.mb_words[1]); 8255 } 8256 } 8257 psli->slistat.mbox_cmd++; 8258 8259 /* Post the mailbox command to the port */ 8260 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 8261 if (rc != MBX_SUCCESS) { 8262 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8263 "(%d):2533 Mailbox command x%x (x%x/x%x) " 8264 "cannot issue Data: x%x x%x\n", 8265 mboxq->vport ? mboxq->vport->vpi : 0, 8266 mboxq->u.mb.mbxCommand, 8267 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8268 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8269 psli->sli_flag, MBX_NOWAIT); 8270 goto out_not_finished; 8271 } 8272 8273 return rc; 8274 8275 out_not_finished: 8276 spin_lock_irqsave(&phba->hbalock, iflags); 8277 if (phba->sli.mbox_active) { 8278 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 8279 __lpfc_mbox_cmpl_put(phba, mboxq); 8280 /* Release the token */ 8281 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8282 phba->sli.mbox_active = NULL; 8283 } 8284 spin_unlock_irqrestore(&phba->hbalock, iflags); 8285 8286 return MBX_NOT_FINISHED; 8287 } 8288 8289 /** 8290 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 8291 * @phba: Pointer to HBA context object. 8292 * @pmbox: Pointer to mailbox object. 8293 * @flag: Flag indicating how the mailbox need to be processed. 8294 * 8295 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 8296 * the API jump table function pointer from the lpfc_hba struct. 8297 * 8298 * Return codes the caller owns the mailbox command after the return of the 8299 * function. 8300 **/ 8301 int 8302 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 8303 { 8304 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 8305 } 8306 8307 /** 8308 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 8309 * @phba: The hba struct for which this call is being executed. 8310 * @dev_grp: The HBA PCI-Device group number. 8311 * 8312 * This routine sets up the mbox interface API function jump table in @phba 8313 * struct. 8314 * Returns: 0 - success, -ENODEV - failure. 8315 **/ 8316 int 8317 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 8318 { 8319 8320 switch (dev_grp) { 8321 case LPFC_PCI_DEV_LP: 8322 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 8323 phba->lpfc_sli_handle_slow_ring_event = 8324 lpfc_sli_handle_slow_ring_event_s3; 8325 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 8326 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 8327 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 8328 break; 8329 case LPFC_PCI_DEV_OC: 8330 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 8331 phba->lpfc_sli_handle_slow_ring_event = 8332 lpfc_sli_handle_slow_ring_event_s4; 8333 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 8334 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 8335 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 8336 break; 8337 default: 8338 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8339 "1420 Invalid HBA PCI-device group: 0x%x\n", 8340 dev_grp); 8341 return -ENODEV; 8342 break; 8343 } 8344 return 0; 8345 } 8346 8347 /** 8348 * __lpfc_sli_ringtx_put - Add an iocb to the txq 8349 * @phba: Pointer to HBA context object. 8350 * @pring: Pointer to driver SLI ring object. 8351 * @piocb: Pointer to address of newly added command iocb. 8352 * 8353 * This function is called with hbalock held to add a command 8354 * iocb to the txq when SLI layer cannot submit the command iocb 8355 * to the ring. 8356 **/ 8357 void 8358 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 8359 struct lpfc_iocbq *piocb) 8360 { 8361 lockdep_assert_held(&phba->hbalock); 8362 /* Insert the caller's iocb in the txq tail for later processing. */ 8363 list_add_tail(&piocb->list, &pring->txq); 8364 } 8365 8366 /** 8367 * lpfc_sli_next_iocb - Get the next iocb in the txq 8368 * @phba: Pointer to HBA context object. 8369 * @pring: Pointer to driver SLI ring object. 8370 * @piocb: Pointer to address of newly added command iocb. 8371 * 8372 * This function is called with hbalock held before a new 8373 * iocb is submitted to the firmware. This function checks 8374 * txq to flush the iocbs in txq to Firmware before 8375 * submitting new iocbs to the Firmware. 8376 * If there are iocbs in the txq which need to be submitted 8377 * to firmware, lpfc_sli_next_iocb returns the first element 8378 * of the txq after dequeuing it from txq. 8379 * If there is no iocb in the txq then the function will return 8380 * *piocb and *piocb is set to NULL. Caller needs to check 8381 * *piocb to find if there are more commands in the txq. 8382 **/ 8383 static struct lpfc_iocbq * 8384 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 8385 struct lpfc_iocbq **piocb) 8386 { 8387 struct lpfc_iocbq * nextiocb; 8388 8389 lockdep_assert_held(&phba->hbalock); 8390 8391 nextiocb = lpfc_sli_ringtx_get(phba, pring); 8392 if (!nextiocb) { 8393 nextiocb = *piocb; 8394 *piocb = NULL; 8395 } 8396 8397 return nextiocb; 8398 } 8399 8400 /** 8401 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 8402 * @phba: Pointer to HBA context object. 8403 * @ring_number: SLI ring number to issue iocb on. 8404 * @piocb: Pointer to command iocb. 8405 * @flag: Flag indicating if this command can be put into txq. 8406 * 8407 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 8408 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 8409 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 8410 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 8411 * this function allows only iocbs for posting buffers. This function finds 8412 * next available slot in the command ring and posts the command to the 8413 * available slot and writes the port attention register to request HBA start 8414 * processing new iocb. If there is no slot available in the ring and 8415 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 8416 * the function returns IOCB_BUSY. 8417 * 8418 * This function is called with hbalock held. The function will return success 8419 * after it successfully submit the iocb to firmware or after adding to the 8420 * txq. 8421 **/ 8422 static int 8423 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 8424 struct lpfc_iocbq *piocb, uint32_t flag) 8425 { 8426 struct lpfc_iocbq *nextiocb; 8427 IOCB_t *iocb; 8428 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 8429 8430 lockdep_assert_held(&phba->hbalock); 8431 8432 if (piocb->iocb_cmpl && (!piocb->vport) && 8433 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 8434 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 8435 lpfc_printf_log(phba, KERN_ERR, 8436 LOG_SLI | LOG_VPORT, 8437 "1807 IOCB x%x failed. No vport\n", 8438 piocb->iocb.ulpCommand); 8439 dump_stack(); 8440 return IOCB_ERROR; 8441 } 8442 8443 8444 /* If the PCI channel is in offline state, do not post iocbs. */ 8445 if (unlikely(pci_channel_offline(phba->pcidev))) 8446 return IOCB_ERROR; 8447 8448 /* If HBA has a deferred error attention, fail the iocb. */ 8449 if (unlikely(phba->hba_flag & DEFER_ERATT)) 8450 return IOCB_ERROR; 8451 8452 /* 8453 * We should never get an IOCB if we are in a < LINK_DOWN state 8454 */ 8455 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 8456 return IOCB_ERROR; 8457 8458 /* 8459 * Check to see if we are blocking IOCB processing because of a 8460 * outstanding event. 8461 */ 8462 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 8463 goto iocb_busy; 8464 8465 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 8466 /* 8467 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 8468 * can be issued if the link is not up. 8469 */ 8470 switch (piocb->iocb.ulpCommand) { 8471 case CMD_GEN_REQUEST64_CR: 8472 case CMD_GEN_REQUEST64_CX: 8473 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 8474 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 8475 FC_RCTL_DD_UNSOL_CMD) || 8476 (piocb->iocb.un.genreq64.w5.hcsw.Type != 8477 MENLO_TRANSPORT_TYPE)) 8478 8479 goto iocb_busy; 8480 break; 8481 case CMD_QUE_RING_BUF_CN: 8482 case CMD_QUE_RING_BUF64_CN: 8483 /* 8484 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 8485 * completion, iocb_cmpl MUST be 0. 8486 */ 8487 if (piocb->iocb_cmpl) 8488 piocb->iocb_cmpl = NULL; 8489 /*FALLTHROUGH*/ 8490 case CMD_CREATE_XRI_CR: 8491 case CMD_CLOSE_XRI_CN: 8492 case CMD_CLOSE_XRI_CX: 8493 break; 8494 default: 8495 goto iocb_busy; 8496 } 8497 8498 /* 8499 * For FCP commands, we must be in a state where we can process link 8500 * attention events. 8501 */ 8502 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 8503 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 8504 goto iocb_busy; 8505 } 8506 8507 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 8508 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 8509 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 8510 8511 if (iocb) 8512 lpfc_sli_update_ring(phba, pring); 8513 else 8514 lpfc_sli_update_full_ring(phba, pring); 8515 8516 if (!piocb) 8517 return IOCB_SUCCESS; 8518 8519 goto out_busy; 8520 8521 iocb_busy: 8522 pring->stats.iocb_cmd_delay++; 8523 8524 out_busy: 8525 8526 if (!(flag & SLI_IOCB_RET_IOCB)) { 8527 __lpfc_sli_ringtx_put(phba, pring, piocb); 8528 return IOCB_SUCCESS; 8529 } 8530 8531 return IOCB_BUSY; 8532 } 8533 8534 /** 8535 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 8536 * @phba: Pointer to HBA context object. 8537 * @piocb: Pointer to command iocb. 8538 * @sglq: Pointer to the scatter gather queue object. 8539 * 8540 * This routine converts the bpl or bde that is in the IOCB 8541 * to a sgl list for the sli4 hardware. The physical address 8542 * of the bpl/bde is converted back to a virtual address. 8543 * If the IOCB contains a BPL then the list of BDE's is 8544 * converted to sli4_sge's. If the IOCB contains a single 8545 * BDE then it is converted to a single sli_sge. 8546 * The IOCB is still in cpu endianess so the contents of 8547 * the bpl can be used without byte swapping. 8548 * 8549 * Returns valid XRI = Success, NO_XRI = Failure. 8550 **/ 8551 static uint16_t 8552 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 8553 struct lpfc_sglq *sglq) 8554 { 8555 uint16_t xritag = NO_XRI; 8556 struct ulp_bde64 *bpl = NULL; 8557 struct ulp_bde64 bde; 8558 struct sli4_sge *sgl = NULL; 8559 struct lpfc_dmabuf *dmabuf; 8560 IOCB_t *icmd; 8561 int numBdes = 0; 8562 int i = 0; 8563 uint32_t offset = 0; /* accumulated offset in the sg request list */ 8564 int inbound = 0; /* number of sg reply entries inbound from firmware */ 8565 8566 if (!piocbq || !sglq) 8567 return xritag; 8568 8569 sgl = (struct sli4_sge *)sglq->sgl; 8570 icmd = &piocbq->iocb; 8571 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 8572 return sglq->sli4_xritag; 8573 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 8574 numBdes = icmd->un.genreq64.bdl.bdeSize / 8575 sizeof(struct ulp_bde64); 8576 /* The addrHigh and addrLow fields within the IOCB 8577 * have not been byteswapped yet so there is no 8578 * need to swap them back. 8579 */ 8580 if (piocbq->context3) 8581 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 8582 else 8583 return xritag; 8584 8585 bpl = (struct ulp_bde64 *)dmabuf->virt; 8586 if (!bpl) 8587 return xritag; 8588 8589 for (i = 0; i < numBdes; i++) { 8590 /* Should already be byte swapped. */ 8591 sgl->addr_hi = bpl->addrHigh; 8592 sgl->addr_lo = bpl->addrLow; 8593 8594 sgl->word2 = le32_to_cpu(sgl->word2); 8595 if ((i+1) == numBdes) 8596 bf_set(lpfc_sli4_sge_last, sgl, 1); 8597 else 8598 bf_set(lpfc_sli4_sge_last, sgl, 0); 8599 /* swap the size field back to the cpu so we 8600 * can assign it to the sgl. 8601 */ 8602 bde.tus.w = le32_to_cpu(bpl->tus.w); 8603 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 8604 /* The offsets in the sgl need to be accumulated 8605 * separately for the request and reply lists. 8606 * The request is always first, the reply follows. 8607 */ 8608 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 8609 /* add up the reply sg entries */ 8610 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 8611 inbound++; 8612 /* first inbound? reset the offset */ 8613 if (inbound == 1) 8614 offset = 0; 8615 bf_set(lpfc_sli4_sge_offset, sgl, offset); 8616 bf_set(lpfc_sli4_sge_type, sgl, 8617 LPFC_SGE_TYPE_DATA); 8618 offset += bde.tus.f.bdeSize; 8619 } 8620 sgl->word2 = cpu_to_le32(sgl->word2); 8621 bpl++; 8622 sgl++; 8623 } 8624 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 8625 /* The addrHigh and addrLow fields of the BDE have not 8626 * been byteswapped yet so they need to be swapped 8627 * before putting them in the sgl. 8628 */ 8629 sgl->addr_hi = 8630 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 8631 sgl->addr_lo = 8632 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 8633 sgl->word2 = le32_to_cpu(sgl->word2); 8634 bf_set(lpfc_sli4_sge_last, sgl, 1); 8635 sgl->word2 = cpu_to_le32(sgl->word2); 8636 sgl->sge_len = 8637 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 8638 } 8639 return sglq->sli4_xritag; 8640 } 8641 8642 /** 8643 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry. 8644 * @phba: Pointer to HBA context object. 8645 * @piocb: Pointer to command iocb. 8646 * @wqe: Pointer to the work queue entry. 8647 * 8648 * This routine converts the iocb command to its Work Queue Entry 8649 * equivalent. The wqe pointer should not have any fields set when 8650 * this routine is called because it will memcpy over them. 8651 * This routine does not set the CQ_ID or the WQEC bits in the 8652 * wqe. 8653 * 8654 * Returns: 0 = Success, IOCB_ERROR = Failure. 8655 **/ 8656 static int 8657 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 8658 union lpfc_wqe *wqe) 8659 { 8660 uint32_t xmit_len = 0, total_len = 0; 8661 uint8_t ct = 0; 8662 uint32_t fip; 8663 uint32_t abort_tag; 8664 uint8_t command_type = ELS_COMMAND_NON_FIP; 8665 uint8_t cmnd; 8666 uint16_t xritag; 8667 uint16_t abrt_iotag; 8668 struct lpfc_iocbq *abrtiocbq; 8669 struct ulp_bde64 *bpl = NULL; 8670 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 8671 int numBdes, i; 8672 struct ulp_bde64 bde; 8673 struct lpfc_nodelist *ndlp; 8674 uint32_t *pcmd; 8675 uint32_t if_type; 8676 8677 fip = phba->hba_flag & HBA_FIP_SUPPORT; 8678 /* The fcp commands will set command type */ 8679 if (iocbq->iocb_flag & LPFC_IO_FCP) 8680 command_type = FCP_COMMAND; 8681 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 8682 command_type = ELS_COMMAND_FIP; 8683 else 8684 command_type = ELS_COMMAND_NON_FIP; 8685 8686 if (phba->fcp_embed_io) 8687 memset(wqe, 0, sizeof(union lpfc_wqe128)); 8688 /* Some of the fields are in the right position already */ 8689 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 8690 if (iocbq->iocb.ulpCommand != CMD_SEND_FRAME) { 8691 /* The ct field has moved so reset */ 8692 wqe->generic.wqe_com.word7 = 0; 8693 wqe->generic.wqe_com.word10 = 0; 8694 } 8695 8696 abort_tag = (uint32_t) iocbq->iotag; 8697 xritag = iocbq->sli4_xritag; 8698 /* words0-2 bpl convert bde */ 8699 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 8700 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 8701 sizeof(struct ulp_bde64); 8702 bpl = (struct ulp_bde64 *) 8703 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 8704 if (!bpl) 8705 return IOCB_ERROR; 8706 8707 /* Should already be byte swapped. */ 8708 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 8709 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 8710 /* swap the size field back to the cpu so we 8711 * can assign it to the sgl. 8712 */ 8713 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 8714 xmit_len = wqe->generic.bde.tus.f.bdeSize; 8715 total_len = 0; 8716 for (i = 0; i < numBdes; i++) { 8717 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 8718 total_len += bde.tus.f.bdeSize; 8719 } 8720 } else 8721 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 8722 8723 iocbq->iocb.ulpIoTag = iocbq->iotag; 8724 cmnd = iocbq->iocb.ulpCommand; 8725 8726 switch (iocbq->iocb.ulpCommand) { 8727 case CMD_ELS_REQUEST64_CR: 8728 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 8729 ndlp = iocbq->context_un.ndlp; 8730 else 8731 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8732 if (!iocbq->iocb.ulpLe) { 8733 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8734 "2007 Only Limited Edition cmd Format" 8735 " supported 0x%x\n", 8736 iocbq->iocb.ulpCommand); 8737 return IOCB_ERROR; 8738 } 8739 8740 wqe->els_req.payload_len = xmit_len; 8741 /* Els_reguest64 has a TMO */ 8742 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 8743 iocbq->iocb.ulpTimeout); 8744 /* Need a VF for word 4 set the vf bit*/ 8745 bf_set(els_req64_vf, &wqe->els_req, 0); 8746 /* And a VFID for word 12 */ 8747 bf_set(els_req64_vfid, &wqe->els_req, 0); 8748 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 8749 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8750 iocbq->iocb.ulpContext); 8751 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 8752 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 8753 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 8754 if (command_type == ELS_COMMAND_FIP) 8755 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 8756 >> LPFC_FIP_ELS_ID_SHIFT); 8757 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 8758 iocbq->context2)->virt); 8759 if_type = bf_get(lpfc_sli_intf_if_type, 8760 &phba->sli4_hba.sli_intf); 8761 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) { 8762 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 8763 *pcmd == ELS_CMD_SCR || 8764 *pcmd == ELS_CMD_FDISC || 8765 *pcmd == ELS_CMD_LOGO || 8766 *pcmd == ELS_CMD_PLOGI)) { 8767 bf_set(els_req64_sp, &wqe->els_req, 1); 8768 bf_set(els_req64_sid, &wqe->els_req, 8769 iocbq->vport->fc_myDID); 8770 if ((*pcmd == ELS_CMD_FLOGI) && 8771 !(phba->fc_topology == 8772 LPFC_TOPOLOGY_LOOP)) 8773 bf_set(els_req64_sid, &wqe->els_req, 0); 8774 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 8775 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8776 phba->vpi_ids[iocbq->vport->vpi]); 8777 } else if (pcmd && iocbq->context1) { 8778 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 8779 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8780 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8781 } 8782 } 8783 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 8784 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8785 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 8786 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 8787 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 8788 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 8789 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 8790 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 8791 wqe->els_req.max_response_payload_len = total_len - xmit_len; 8792 break; 8793 case CMD_XMIT_SEQUENCE64_CX: 8794 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 8795 iocbq->iocb.un.ulpWord[3]); 8796 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 8797 iocbq->iocb.unsli3.rcvsli3.ox_id); 8798 /* The entire sequence is transmitted for this IOCB */ 8799 xmit_len = total_len; 8800 cmnd = CMD_XMIT_SEQUENCE64_CR; 8801 if (phba->link_flag & LS_LOOPBACK_MODE) 8802 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 8803 case CMD_XMIT_SEQUENCE64_CR: 8804 /* word3 iocb=io_tag32 wqe=reserved */ 8805 wqe->xmit_sequence.rsvd3 = 0; 8806 /* word4 relative_offset memcpy */ 8807 /* word5 r_ctl/df_ctl memcpy */ 8808 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 8809 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 8810 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 8811 LPFC_WQE_IOD_WRITE); 8812 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 8813 LPFC_WQE_LENLOC_WORD12); 8814 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 8815 wqe->xmit_sequence.xmit_len = xmit_len; 8816 command_type = OTHER_COMMAND; 8817 break; 8818 case CMD_XMIT_BCAST64_CN: 8819 /* word3 iocb=iotag32 wqe=seq_payload_len */ 8820 wqe->xmit_bcast64.seq_payload_len = xmit_len; 8821 /* word4 iocb=rsvd wqe=rsvd */ 8822 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 8823 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 8824 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 8825 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 8826 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 8827 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 8828 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 8829 LPFC_WQE_LENLOC_WORD3); 8830 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 8831 break; 8832 case CMD_FCP_IWRITE64_CR: 8833 command_type = FCP_COMMAND_DATA_OUT; 8834 /* word3 iocb=iotag wqe=payload_offset_len */ 8835 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8836 bf_set(payload_offset_len, &wqe->fcp_iwrite, 8837 xmit_len + sizeof(struct fcp_rsp)); 8838 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 8839 0); 8840 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 8841 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 8842 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 8843 iocbq->iocb.ulpFCP2Rcvy); 8844 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 8845 /* Always open the exchange */ 8846 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 8847 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 8848 LPFC_WQE_LENLOC_WORD4); 8849 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 8850 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 8851 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8852 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 8853 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 8854 if (iocbq->priority) { 8855 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 8856 (iocbq->priority << 1)); 8857 } else { 8858 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 8859 (phba->cfg_XLanePriority << 1)); 8860 } 8861 } 8862 /* Note, word 10 is already initialized to 0 */ 8863 8864 if (phba->fcp_embed_io) { 8865 struct lpfc_scsi_buf *lpfc_cmd; 8866 struct sli4_sge *sgl; 8867 union lpfc_wqe128 *wqe128; 8868 struct fcp_cmnd *fcp_cmnd; 8869 uint32_t *ptr; 8870 8871 /* 128 byte wqe support here */ 8872 wqe128 = (union lpfc_wqe128 *)wqe; 8873 8874 lpfc_cmd = iocbq->context1; 8875 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 8876 fcp_cmnd = lpfc_cmd->fcp_cmnd; 8877 8878 /* Word 0-2 - FCP_CMND */ 8879 wqe128->generic.bde.tus.f.bdeFlags = 8880 BUFF_TYPE_BDE_IMMED; 8881 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len; 8882 wqe128->generic.bde.addrHigh = 0; 8883 wqe128->generic.bde.addrLow = 88; /* Word 22 */ 8884 8885 bf_set(wqe_wqes, &wqe128->fcp_iwrite.wqe_com, 1); 8886 8887 /* Word 22-29 FCP CMND Payload */ 8888 ptr = &wqe128->words[22]; 8889 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 8890 } 8891 break; 8892 case CMD_FCP_IREAD64_CR: 8893 /* word3 iocb=iotag wqe=payload_offset_len */ 8894 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8895 bf_set(payload_offset_len, &wqe->fcp_iread, 8896 xmit_len + sizeof(struct fcp_rsp)); 8897 bf_set(cmd_buff_len, &wqe->fcp_iread, 8898 0); 8899 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 8900 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 8901 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 8902 iocbq->iocb.ulpFCP2Rcvy); 8903 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 8904 /* Always open the exchange */ 8905 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 8906 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 8907 LPFC_WQE_LENLOC_WORD4); 8908 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 8909 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 8910 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8911 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 8912 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 8913 if (iocbq->priority) { 8914 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 8915 (iocbq->priority << 1)); 8916 } else { 8917 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 8918 (phba->cfg_XLanePriority << 1)); 8919 } 8920 } 8921 /* Note, word 10 is already initialized to 0 */ 8922 8923 if (phba->fcp_embed_io) { 8924 struct lpfc_scsi_buf *lpfc_cmd; 8925 struct sli4_sge *sgl; 8926 union lpfc_wqe128 *wqe128; 8927 struct fcp_cmnd *fcp_cmnd; 8928 uint32_t *ptr; 8929 8930 /* 128 byte wqe support here */ 8931 wqe128 = (union lpfc_wqe128 *)wqe; 8932 8933 lpfc_cmd = iocbq->context1; 8934 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 8935 fcp_cmnd = lpfc_cmd->fcp_cmnd; 8936 8937 /* Word 0-2 - FCP_CMND */ 8938 wqe128->generic.bde.tus.f.bdeFlags = 8939 BUFF_TYPE_BDE_IMMED; 8940 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len; 8941 wqe128->generic.bde.addrHigh = 0; 8942 wqe128->generic.bde.addrLow = 88; /* Word 22 */ 8943 8944 bf_set(wqe_wqes, &wqe128->fcp_iread.wqe_com, 1); 8945 8946 /* Word 22-29 FCP CMND Payload */ 8947 ptr = &wqe128->words[22]; 8948 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 8949 } 8950 break; 8951 case CMD_FCP_ICMND64_CR: 8952 /* word3 iocb=iotag wqe=payload_offset_len */ 8953 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8954 bf_set(payload_offset_len, &wqe->fcp_icmd, 8955 xmit_len + sizeof(struct fcp_rsp)); 8956 bf_set(cmd_buff_len, &wqe->fcp_icmd, 8957 0); 8958 /* word3 iocb=IO_TAG wqe=reserved */ 8959 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 8960 /* Always open the exchange */ 8961 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 8962 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 8963 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 8964 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 8965 LPFC_WQE_LENLOC_NONE); 8966 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 8967 iocbq->iocb.ulpFCP2Rcvy); 8968 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8969 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 8970 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 8971 if (iocbq->priority) { 8972 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 8973 (iocbq->priority << 1)); 8974 } else { 8975 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 8976 (phba->cfg_XLanePriority << 1)); 8977 } 8978 } 8979 /* Note, word 10 is already initialized to 0 */ 8980 8981 if (phba->fcp_embed_io) { 8982 struct lpfc_scsi_buf *lpfc_cmd; 8983 struct sli4_sge *sgl; 8984 union lpfc_wqe128 *wqe128; 8985 struct fcp_cmnd *fcp_cmnd; 8986 uint32_t *ptr; 8987 8988 /* 128 byte wqe support here */ 8989 wqe128 = (union lpfc_wqe128 *)wqe; 8990 8991 lpfc_cmd = iocbq->context1; 8992 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 8993 fcp_cmnd = lpfc_cmd->fcp_cmnd; 8994 8995 /* Word 0-2 - FCP_CMND */ 8996 wqe128->generic.bde.tus.f.bdeFlags = 8997 BUFF_TYPE_BDE_IMMED; 8998 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len; 8999 wqe128->generic.bde.addrHigh = 0; 9000 wqe128->generic.bde.addrLow = 88; /* Word 22 */ 9001 9002 bf_set(wqe_wqes, &wqe128->fcp_icmd.wqe_com, 1); 9003 9004 /* Word 22-29 FCP CMND Payload */ 9005 ptr = &wqe128->words[22]; 9006 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9007 } 9008 break; 9009 case CMD_GEN_REQUEST64_CR: 9010 /* For this command calculate the xmit length of the 9011 * request bde. 9012 */ 9013 xmit_len = 0; 9014 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 9015 sizeof(struct ulp_bde64); 9016 for (i = 0; i < numBdes; i++) { 9017 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 9018 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 9019 break; 9020 xmit_len += bde.tus.f.bdeSize; 9021 } 9022 /* word3 iocb=IO_TAG wqe=request_payload_len */ 9023 wqe->gen_req.request_payload_len = xmit_len; 9024 /* word4 iocb=parameter wqe=relative_offset memcpy */ 9025 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 9026 /* word6 context tag copied in memcpy */ 9027 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 9028 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9029 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9030 "2015 Invalid CT %x command 0x%x\n", 9031 ct, iocbq->iocb.ulpCommand); 9032 return IOCB_ERROR; 9033 } 9034 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 9035 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 9036 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 9037 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 9038 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 9039 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 9040 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9041 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 9042 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 9043 command_type = OTHER_COMMAND; 9044 break; 9045 case CMD_XMIT_ELS_RSP64_CX: 9046 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9047 /* words0-2 BDE memcpy */ 9048 /* word3 iocb=iotag32 wqe=response_payload_len */ 9049 wqe->xmit_els_rsp.response_payload_len = xmit_len; 9050 /* word4 */ 9051 wqe->xmit_els_rsp.word4 = 0; 9052 /* word5 iocb=rsvd wge=did */ 9053 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 9054 iocbq->iocb.un.xseq64.xmit_els_remoteID); 9055 9056 if_type = bf_get(lpfc_sli_intf_if_type, 9057 &phba->sli4_hba.sli_intf); 9058 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) { 9059 if (iocbq->vport->fc_flag & FC_PT2PT) { 9060 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 9061 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 9062 iocbq->vport->fc_myDID); 9063 if (iocbq->vport->fc_myDID == Fabric_DID) { 9064 bf_set(wqe_els_did, 9065 &wqe->xmit_els_rsp.wqe_dest, 0); 9066 } 9067 } 9068 } 9069 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 9070 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9071 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 9072 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 9073 iocbq->iocb.unsli3.rcvsli3.ox_id); 9074 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 9075 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9076 phba->vpi_ids[iocbq->vport->vpi]); 9077 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 9078 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 9079 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 9080 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 9081 LPFC_WQE_LENLOC_WORD3); 9082 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 9083 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 9084 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9085 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9086 iocbq->context2)->virt); 9087 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 9088 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 9089 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 9090 iocbq->vport->fc_myDID); 9091 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 9092 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9093 phba->vpi_ids[phba->pport->vpi]); 9094 } 9095 command_type = OTHER_COMMAND; 9096 break; 9097 case CMD_CLOSE_XRI_CN: 9098 case CMD_ABORT_XRI_CN: 9099 case CMD_ABORT_XRI_CX: 9100 /* words 0-2 memcpy should be 0 rserved */ 9101 /* port will send abts */ 9102 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 9103 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 9104 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 9105 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 9106 } else 9107 fip = 0; 9108 9109 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 9110 /* 9111 * The link is down, or the command was ELS_FIP 9112 * so the fw does not need to send abts 9113 * on the wire. 9114 */ 9115 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 9116 else 9117 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 9118 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 9119 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 9120 wqe->abort_cmd.rsrvd5 = 0; 9121 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 9122 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9123 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 9124 /* 9125 * The abort handler will send us CMD_ABORT_XRI_CN or 9126 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 9127 */ 9128 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 9129 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 9130 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 9131 LPFC_WQE_LENLOC_NONE); 9132 cmnd = CMD_ABORT_XRI_CX; 9133 command_type = OTHER_COMMAND; 9134 xritag = 0; 9135 break; 9136 case CMD_XMIT_BLS_RSP64_CX: 9137 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9138 /* As BLS ABTS RSP WQE is very different from other WQEs, 9139 * we re-construct this WQE here based on information in 9140 * iocbq from scratch. 9141 */ 9142 memset(wqe, 0, sizeof(union lpfc_wqe)); 9143 /* OX_ID is invariable to who sent ABTS to CT exchange */ 9144 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 9145 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 9146 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 9147 LPFC_ABTS_UNSOL_INT) { 9148 /* ABTS sent by initiator to CT exchange, the 9149 * RX_ID field will be filled with the newly 9150 * allocated responder XRI. 9151 */ 9152 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 9153 iocbq->sli4_xritag); 9154 } else { 9155 /* ABTS sent by responder to CT exchange, the 9156 * RX_ID field will be filled with the responder 9157 * RX_ID from ABTS. 9158 */ 9159 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 9160 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 9161 } 9162 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 9163 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 9164 9165 /* Use CT=VPI */ 9166 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 9167 ndlp->nlp_DID); 9168 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 9169 iocbq->iocb.ulpContext); 9170 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 9171 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 9172 phba->vpi_ids[phba->pport->vpi]); 9173 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 9174 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 9175 LPFC_WQE_LENLOC_NONE); 9176 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 9177 command_type = OTHER_COMMAND; 9178 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 9179 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 9180 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 9181 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 9182 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 9183 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 9184 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 9185 } 9186 9187 break; 9188 case CMD_SEND_FRAME: 9189 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 9190 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 9191 return 0; 9192 case CMD_XRI_ABORTED_CX: 9193 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 9194 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 9195 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 9196 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 9197 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 9198 default: 9199 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9200 "2014 Invalid command 0x%x\n", 9201 iocbq->iocb.ulpCommand); 9202 return IOCB_ERROR; 9203 break; 9204 } 9205 9206 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 9207 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 9208 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 9209 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 9210 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 9211 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 9212 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 9213 LPFC_IO_DIF_INSERT); 9214 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 9215 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 9216 wqe->generic.wqe_com.abort_tag = abort_tag; 9217 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 9218 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 9219 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 9220 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 9221 return 0; 9222 } 9223 9224 /** 9225 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 9226 * @phba: Pointer to HBA context object. 9227 * @ring_number: SLI ring number to issue iocb on. 9228 * @piocb: Pointer to command iocb. 9229 * @flag: Flag indicating if this command can be put into txq. 9230 * 9231 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 9232 * an iocb command to an HBA with SLI-4 interface spec. 9233 * 9234 * This function is called with hbalock held. The function will return success 9235 * after it successfully submit the iocb to firmware or after adding to the 9236 * txq. 9237 **/ 9238 static int 9239 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 9240 struct lpfc_iocbq *piocb, uint32_t flag) 9241 { 9242 struct lpfc_sglq *sglq; 9243 union lpfc_wqe *wqe; 9244 union lpfc_wqe128 wqe128; 9245 struct lpfc_queue *wq; 9246 struct lpfc_sli_ring *pring; 9247 9248 /* Get the WQ */ 9249 if ((piocb->iocb_flag & LPFC_IO_FCP) || 9250 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 9251 if (!phba->cfg_fof || (!(piocb->iocb_flag & LPFC_IO_OAS))) 9252 wq = phba->sli4_hba.fcp_wq[piocb->hba_wqidx]; 9253 else 9254 wq = phba->sli4_hba.oas_wq; 9255 } else { 9256 wq = phba->sli4_hba.els_wq; 9257 } 9258 9259 /* Get corresponding ring */ 9260 pring = wq->pring; 9261 9262 /* 9263 * The WQE can be either 64 or 128 bytes, 9264 * so allocate space on the stack assuming the largest. 9265 */ 9266 wqe = (union lpfc_wqe *)&wqe128; 9267 9268 lockdep_assert_held(&phba->hbalock); 9269 9270 if (piocb->sli4_xritag == NO_XRI) { 9271 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 9272 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 9273 sglq = NULL; 9274 else { 9275 if (!list_empty(&pring->txq)) { 9276 if (!(flag & SLI_IOCB_RET_IOCB)) { 9277 __lpfc_sli_ringtx_put(phba, 9278 pring, piocb); 9279 return IOCB_SUCCESS; 9280 } else { 9281 return IOCB_BUSY; 9282 } 9283 } else { 9284 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 9285 if (!sglq) { 9286 if (!(flag & SLI_IOCB_RET_IOCB)) { 9287 __lpfc_sli_ringtx_put(phba, 9288 pring, 9289 piocb); 9290 return IOCB_SUCCESS; 9291 } else 9292 return IOCB_BUSY; 9293 } 9294 } 9295 } 9296 } else if (piocb->iocb_flag & LPFC_IO_FCP) 9297 /* These IO's already have an XRI and a mapped sgl. */ 9298 sglq = NULL; 9299 else { 9300 /* 9301 * This is a continuation of a commandi,(CX) so this 9302 * sglq is on the active list 9303 */ 9304 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 9305 if (!sglq) 9306 return IOCB_ERROR; 9307 } 9308 9309 if (sglq) { 9310 piocb->sli4_lxritag = sglq->sli4_lxritag; 9311 piocb->sli4_xritag = sglq->sli4_xritag; 9312 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 9313 return IOCB_ERROR; 9314 } 9315 9316 if (lpfc_sli4_iocb2wqe(phba, piocb, wqe)) 9317 return IOCB_ERROR; 9318 9319 if (lpfc_sli4_wq_put(wq, wqe)) 9320 return IOCB_ERROR; 9321 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 9322 9323 return 0; 9324 } 9325 9326 /** 9327 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 9328 * 9329 * This routine wraps the actual lockless version for issusing IOCB function 9330 * pointer from the lpfc_hba struct. 9331 * 9332 * Return codes: 9333 * IOCB_ERROR - Error 9334 * IOCB_SUCCESS - Success 9335 * IOCB_BUSY - Busy 9336 **/ 9337 int 9338 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 9339 struct lpfc_iocbq *piocb, uint32_t flag) 9340 { 9341 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9342 } 9343 9344 /** 9345 * lpfc_sli_api_table_setup - Set up sli api function jump table 9346 * @phba: The hba struct for which this call is being executed. 9347 * @dev_grp: The HBA PCI-Device group number. 9348 * 9349 * This routine sets up the SLI interface API function jump table in @phba 9350 * struct. 9351 * Returns: 0 - success, -ENODEV - failure. 9352 **/ 9353 int 9354 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 9355 { 9356 9357 switch (dev_grp) { 9358 case LPFC_PCI_DEV_LP: 9359 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 9360 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 9361 break; 9362 case LPFC_PCI_DEV_OC: 9363 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 9364 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 9365 break; 9366 default: 9367 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9368 "1419 Invalid HBA PCI-device group: 0x%x\n", 9369 dev_grp); 9370 return -ENODEV; 9371 break; 9372 } 9373 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 9374 return 0; 9375 } 9376 9377 /** 9378 * lpfc_sli4_calc_ring - Calculates which ring to use 9379 * @phba: Pointer to HBA context object. 9380 * @piocb: Pointer to command iocb. 9381 * 9382 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 9383 * hba_wqidx, thus we need to calculate the corresponding ring. 9384 * Since ABORTS must go on the same WQ of the command they are 9385 * aborting, we use command's hba_wqidx. 9386 */ 9387 struct lpfc_sli_ring * 9388 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 9389 { 9390 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 9391 if (!(phba->cfg_fof) || 9392 (!(piocb->iocb_flag & LPFC_IO_FOF))) { 9393 if (unlikely(!phba->sli4_hba.fcp_wq)) 9394 return NULL; 9395 /* 9396 * for abort iocb hba_wqidx should already 9397 * be setup based on what work queue we used. 9398 */ 9399 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) 9400 piocb->hba_wqidx = 9401 lpfc_sli4_scmd_to_wqidx_distr(phba, 9402 piocb->context1); 9403 return phba->sli4_hba.fcp_wq[piocb->hba_wqidx]->pring; 9404 } else { 9405 if (unlikely(!phba->sli4_hba.oas_wq)) 9406 return NULL; 9407 piocb->hba_wqidx = 0; 9408 return phba->sli4_hba.oas_wq->pring; 9409 } 9410 } else { 9411 if (unlikely(!phba->sli4_hba.els_wq)) 9412 return NULL; 9413 piocb->hba_wqidx = 0; 9414 return phba->sli4_hba.els_wq->pring; 9415 } 9416 } 9417 9418 /** 9419 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 9420 * @phba: Pointer to HBA context object. 9421 * @pring: Pointer to driver SLI ring object. 9422 * @piocb: Pointer to command iocb. 9423 * @flag: Flag indicating if this command can be put into txq. 9424 * 9425 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 9426 * function. This function gets the hbalock and calls 9427 * __lpfc_sli_issue_iocb function and will return the error returned 9428 * by __lpfc_sli_issue_iocb function. This wrapper is used by 9429 * functions which do not hold hbalock. 9430 **/ 9431 int 9432 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 9433 struct lpfc_iocbq *piocb, uint32_t flag) 9434 { 9435 struct lpfc_hba_eq_hdl *hba_eq_hdl; 9436 struct lpfc_sli_ring *pring; 9437 struct lpfc_queue *fpeq; 9438 struct lpfc_eqe *eqe; 9439 unsigned long iflags; 9440 int rc, idx; 9441 9442 if (phba->sli_rev == LPFC_SLI_REV4) { 9443 pring = lpfc_sli4_calc_ring(phba, piocb); 9444 if (unlikely(pring == NULL)) 9445 return IOCB_ERROR; 9446 9447 spin_lock_irqsave(&pring->ring_lock, iflags); 9448 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9449 spin_unlock_irqrestore(&pring->ring_lock, iflags); 9450 9451 if (lpfc_fcp_look_ahead && (piocb->iocb_flag & LPFC_IO_FCP)) { 9452 idx = piocb->hba_wqidx; 9453 hba_eq_hdl = &phba->sli4_hba.hba_eq_hdl[idx]; 9454 9455 if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use)) { 9456 9457 /* Get associated EQ with this index */ 9458 fpeq = phba->sli4_hba.hba_eq[idx]; 9459 9460 /* Turn off interrupts from this EQ */ 9461 lpfc_sli4_eq_clr_intr(fpeq); 9462 9463 /* 9464 * Process all the events on FCP EQ 9465 */ 9466 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 9467 lpfc_sli4_hba_handle_eqe(phba, 9468 eqe, idx); 9469 fpeq->EQ_processed++; 9470 } 9471 9472 /* Always clear and re-arm the EQ */ 9473 lpfc_sli4_eq_release(fpeq, 9474 LPFC_QUEUE_REARM); 9475 } 9476 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 9477 } 9478 } else { 9479 /* For now, SLI2/3 will still use hbalock */ 9480 spin_lock_irqsave(&phba->hbalock, iflags); 9481 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9482 spin_unlock_irqrestore(&phba->hbalock, iflags); 9483 } 9484 return rc; 9485 } 9486 9487 /** 9488 * lpfc_extra_ring_setup - Extra ring setup function 9489 * @phba: Pointer to HBA context object. 9490 * 9491 * This function is called while driver attaches with the 9492 * HBA to setup the extra ring. The extra ring is used 9493 * only when driver needs to support target mode functionality 9494 * or IP over FC functionalities. 9495 * 9496 * This function is called with no lock held. SLI3 only. 9497 **/ 9498 static int 9499 lpfc_extra_ring_setup( struct lpfc_hba *phba) 9500 { 9501 struct lpfc_sli *psli; 9502 struct lpfc_sli_ring *pring; 9503 9504 psli = &phba->sli; 9505 9506 /* Adjust cmd/rsp ring iocb entries more evenly */ 9507 9508 /* Take some away from the FCP ring */ 9509 pring = &psli->sli3_ring[LPFC_FCP_RING]; 9510 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9511 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9512 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9513 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9514 9515 /* and give them to the extra ring */ 9516 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 9517 9518 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9519 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9520 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9521 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9522 9523 /* Setup default profile for this ring */ 9524 pring->iotag_max = 4096; 9525 pring->num_mask = 1; 9526 pring->prt[0].profile = 0; /* Mask 0 */ 9527 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 9528 pring->prt[0].type = phba->cfg_multi_ring_type; 9529 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 9530 return 0; 9531 } 9532 9533 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 9534 * @phba: Pointer to HBA context object. 9535 * @iocbq: Pointer to iocb object. 9536 * 9537 * The async_event handler calls this routine when it receives 9538 * an ASYNC_STATUS_CN event from the port. The port generates 9539 * this event when an Abort Sequence request to an rport fails 9540 * twice in succession. The abort could be originated by the 9541 * driver or by the port. The ABTS could have been for an ELS 9542 * or FCP IO. The port only generates this event when an ABTS 9543 * fails to complete after one retry. 9544 */ 9545 static void 9546 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 9547 struct lpfc_iocbq *iocbq) 9548 { 9549 struct lpfc_nodelist *ndlp = NULL; 9550 uint16_t rpi = 0, vpi = 0; 9551 struct lpfc_vport *vport = NULL; 9552 9553 /* The rpi in the ulpContext is vport-sensitive. */ 9554 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 9555 rpi = iocbq->iocb.ulpContext; 9556 9557 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9558 "3092 Port generated ABTS async event " 9559 "on vpi %d rpi %d status 0x%x\n", 9560 vpi, rpi, iocbq->iocb.ulpStatus); 9561 9562 vport = lpfc_find_vport_by_vpid(phba, vpi); 9563 if (!vport) 9564 goto err_exit; 9565 ndlp = lpfc_findnode_rpi(vport, rpi); 9566 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) 9567 goto err_exit; 9568 9569 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 9570 lpfc_sli_abts_recover_port(vport, ndlp); 9571 return; 9572 9573 err_exit: 9574 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9575 "3095 Event Context not found, no " 9576 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 9577 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 9578 vpi, rpi); 9579 } 9580 9581 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 9582 * @phba: pointer to HBA context object. 9583 * @ndlp: nodelist pointer for the impacted rport. 9584 * @axri: pointer to the wcqe containing the failed exchange. 9585 * 9586 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 9587 * port. The port generates this event when an abort exchange request to an 9588 * rport fails twice in succession with no reply. The abort could be originated 9589 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 9590 */ 9591 void 9592 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 9593 struct lpfc_nodelist *ndlp, 9594 struct sli4_wcqe_xri_aborted *axri) 9595 { 9596 struct lpfc_vport *vport; 9597 uint32_t ext_status = 0; 9598 9599 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { 9600 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9601 "3115 Node Context not found, driver " 9602 "ignoring abts err event\n"); 9603 return; 9604 } 9605 9606 vport = ndlp->vport; 9607 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9608 "3116 Port generated FCP XRI ABORT event on " 9609 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 9610 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 9611 bf_get(lpfc_wcqe_xa_xri, axri), 9612 bf_get(lpfc_wcqe_xa_status, axri), 9613 axri->parameter); 9614 9615 /* 9616 * Catch the ABTS protocol failure case. Older OCe FW releases returned 9617 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 9618 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 9619 */ 9620 ext_status = axri->parameter & IOERR_PARAM_MASK; 9621 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 9622 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 9623 lpfc_sli_abts_recover_port(vport, ndlp); 9624 } 9625 9626 /** 9627 * lpfc_sli_async_event_handler - ASYNC iocb handler function 9628 * @phba: Pointer to HBA context object. 9629 * @pring: Pointer to driver SLI ring object. 9630 * @iocbq: Pointer to iocb object. 9631 * 9632 * This function is called by the slow ring event handler 9633 * function when there is an ASYNC event iocb in the ring. 9634 * This function is called with no lock held. 9635 * Currently this function handles only temperature related 9636 * ASYNC events. The function decodes the temperature sensor 9637 * event message and posts events for the management applications. 9638 **/ 9639 static void 9640 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 9641 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 9642 { 9643 IOCB_t *icmd; 9644 uint16_t evt_code; 9645 struct temp_event temp_event_data; 9646 struct Scsi_Host *shost; 9647 uint32_t *iocb_w; 9648 9649 icmd = &iocbq->iocb; 9650 evt_code = icmd->un.asyncstat.evt_code; 9651 9652 switch (evt_code) { 9653 case ASYNC_TEMP_WARN: 9654 case ASYNC_TEMP_SAFE: 9655 temp_event_data.data = (uint32_t) icmd->ulpContext; 9656 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 9657 if (evt_code == ASYNC_TEMP_WARN) { 9658 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 9659 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 9660 "0347 Adapter is very hot, please take " 9661 "corrective action. temperature : %d Celsius\n", 9662 (uint32_t) icmd->ulpContext); 9663 } else { 9664 temp_event_data.event_code = LPFC_NORMAL_TEMP; 9665 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 9666 "0340 Adapter temperature is OK now. " 9667 "temperature : %d Celsius\n", 9668 (uint32_t) icmd->ulpContext); 9669 } 9670 9671 /* Send temperature change event to applications */ 9672 shost = lpfc_shost_from_vport(phba->pport); 9673 fc_host_post_vendor_event(shost, fc_get_event_number(), 9674 sizeof(temp_event_data), (char *) &temp_event_data, 9675 LPFC_NL_VENDOR_ID); 9676 break; 9677 case ASYNC_STATUS_CN: 9678 lpfc_sli_abts_err_handler(phba, iocbq); 9679 break; 9680 default: 9681 iocb_w = (uint32_t *) icmd; 9682 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9683 "0346 Ring %d handler: unexpected ASYNC_STATUS" 9684 " evt_code 0x%x\n" 9685 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 9686 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 9687 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 9688 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 9689 pring->ringno, icmd->un.asyncstat.evt_code, 9690 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 9691 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 9692 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 9693 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 9694 9695 break; 9696 } 9697 } 9698 9699 9700 /** 9701 * lpfc_sli4_setup - SLI ring setup function 9702 * @phba: Pointer to HBA context object. 9703 * 9704 * lpfc_sli_setup sets up rings of the SLI interface with 9705 * number of iocbs per ring and iotags. This function is 9706 * called while driver attach to the HBA and before the 9707 * interrupts are enabled. So there is no need for locking. 9708 * 9709 * This function always returns 0. 9710 **/ 9711 int 9712 lpfc_sli4_setup(struct lpfc_hba *phba) 9713 { 9714 struct lpfc_sli_ring *pring; 9715 9716 pring = phba->sli4_hba.els_wq->pring; 9717 pring->num_mask = LPFC_MAX_RING_MASK; 9718 pring->prt[0].profile = 0; /* Mask 0 */ 9719 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 9720 pring->prt[0].type = FC_TYPE_ELS; 9721 pring->prt[0].lpfc_sli_rcv_unsol_event = 9722 lpfc_els_unsol_event; 9723 pring->prt[1].profile = 0; /* Mask 1 */ 9724 pring->prt[1].rctl = FC_RCTL_ELS_REP; 9725 pring->prt[1].type = FC_TYPE_ELS; 9726 pring->prt[1].lpfc_sli_rcv_unsol_event = 9727 lpfc_els_unsol_event; 9728 pring->prt[2].profile = 0; /* Mask 2 */ 9729 /* NameServer Inquiry */ 9730 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 9731 /* NameServer */ 9732 pring->prt[2].type = FC_TYPE_CT; 9733 pring->prt[2].lpfc_sli_rcv_unsol_event = 9734 lpfc_ct_unsol_event; 9735 pring->prt[3].profile = 0; /* Mask 3 */ 9736 /* NameServer response */ 9737 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 9738 /* NameServer */ 9739 pring->prt[3].type = FC_TYPE_CT; 9740 pring->prt[3].lpfc_sli_rcv_unsol_event = 9741 lpfc_ct_unsol_event; 9742 return 0; 9743 } 9744 9745 /** 9746 * lpfc_sli_setup - SLI ring setup function 9747 * @phba: Pointer to HBA context object. 9748 * 9749 * lpfc_sli_setup sets up rings of the SLI interface with 9750 * number of iocbs per ring and iotags. This function is 9751 * called while driver attach to the HBA and before the 9752 * interrupts are enabled. So there is no need for locking. 9753 * 9754 * This function always returns 0. SLI3 only. 9755 **/ 9756 int 9757 lpfc_sli_setup(struct lpfc_hba *phba) 9758 { 9759 int i, totiocbsize = 0; 9760 struct lpfc_sli *psli = &phba->sli; 9761 struct lpfc_sli_ring *pring; 9762 9763 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 9764 psli->sli_flag = 0; 9765 9766 psli->iocbq_lookup = NULL; 9767 psli->iocbq_lookup_len = 0; 9768 psli->last_iotag = 0; 9769 9770 for (i = 0; i < psli->num_rings; i++) { 9771 pring = &psli->sli3_ring[i]; 9772 switch (i) { 9773 case LPFC_FCP_RING: /* ring 0 - FCP */ 9774 /* numCiocb and numRiocb are used in config_port */ 9775 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 9776 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 9777 pring->sli.sli3.numCiocb += 9778 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9779 pring->sli.sli3.numRiocb += 9780 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9781 pring->sli.sli3.numCiocb += 9782 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9783 pring->sli.sli3.numRiocb += 9784 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9785 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9786 SLI3_IOCB_CMD_SIZE : 9787 SLI2_IOCB_CMD_SIZE; 9788 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9789 SLI3_IOCB_RSP_SIZE : 9790 SLI2_IOCB_RSP_SIZE; 9791 pring->iotag_ctr = 0; 9792 pring->iotag_max = 9793 (phba->cfg_hba_queue_depth * 2); 9794 pring->fast_iotag = pring->iotag_max; 9795 pring->num_mask = 0; 9796 break; 9797 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 9798 /* numCiocb and numRiocb are used in config_port */ 9799 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 9800 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 9801 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9802 SLI3_IOCB_CMD_SIZE : 9803 SLI2_IOCB_CMD_SIZE; 9804 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9805 SLI3_IOCB_RSP_SIZE : 9806 SLI2_IOCB_RSP_SIZE; 9807 pring->iotag_max = phba->cfg_hba_queue_depth; 9808 pring->num_mask = 0; 9809 break; 9810 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 9811 /* numCiocb and numRiocb are used in config_port */ 9812 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 9813 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 9814 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9815 SLI3_IOCB_CMD_SIZE : 9816 SLI2_IOCB_CMD_SIZE; 9817 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9818 SLI3_IOCB_RSP_SIZE : 9819 SLI2_IOCB_RSP_SIZE; 9820 pring->fast_iotag = 0; 9821 pring->iotag_ctr = 0; 9822 pring->iotag_max = 4096; 9823 pring->lpfc_sli_rcv_async_status = 9824 lpfc_sli_async_event_handler; 9825 pring->num_mask = LPFC_MAX_RING_MASK; 9826 pring->prt[0].profile = 0; /* Mask 0 */ 9827 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 9828 pring->prt[0].type = FC_TYPE_ELS; 9829 pring->prt[0].lpfc_sli_rcv_unsol_event = 9830 lpfc_els_unsol_event; 9831 pring->prt[1].profile = 0; /* Mask 1 */ 9832 pring->prt[1].rctl = FC_RCTL_ELS_REP; 9833 pring->prt[1].type = FC_TYPE_ELS; 9834 pring->prt[1].lpfc_sli_rcv_unsol_event = 9835 lpfc_els_unsol_event; 9836 pring->prt[2].profile = 0; /* Mask 2 */ 9837 /* NameServer Inquiry */ 9838 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 9839 /* NameServer */ 9840 pring->prt[2].type = FC_TYPE_CT; 9841 pring->prt[2].lpfc_sli_rcv_unsol_event = 9842 lpfc_ct_unsol_event; 9843 pring->prt[3].profile = 0; /* Mask 3 */ 9844 /* NameServer response */ 9845 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 9846 /* NameServer */ 9847 pring->prt[3].type = FC_TYPE_CT; 9848 pring->prt[3].lpfc_sli_rcv_unsol_event = 9849 lpfc_ct_unsol_event; 9850 break; 9851 } 9852 totiocbsize += (pring->sli.sli3.numCiocb * 9853 pring->sli.sli3.sizeCiocb) + 9854 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 9855 } 9856 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 9857 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 9858 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 9859 "SLI2 SLIM Data: x%x x%lx\n", 9860 phba->brd_no, totiocbsize, 9861 (unsigned long) MAX_SLIM_IOCB_SIZE); 9862 } 9863 if (phba->cfg_multi_ring_support == 2) 9864 lpfc_extra_ring_setup(phba); 9865 9866 return 0; 9867 } 9868 9869 /** 9870 * lpfc_sli4_queue_init - Queue initialization function 9871 * @phba: Pointer to HBA context object. 9872 * 9873 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 9874 * ring. This function also initializes ring indices of each ring. 9875 * This function is called during the initialization of the SLI 9876 * interface of an HBA. 9877 * This function is called with no lock held and always returns 9878 * 1. 9879 **/ 9880 void 9881 lpfc_sli4_queue_init(struct lpfc_hba *phba) 9882 { 9883 struct lpfc_sli *psli; 9884 struct lpfc_sli_ring *pring; 9885 int i; 9886 9887 psli = &phba->sli; 9888 spin_lock_irq(&phba->hbalock); 9889 INIT_LIST_HEAD(&psli->mboxq); 9890 INIT_LIST_HEAD(&psli->mboxq_cmpl); 9891 /* Initialize list headers for txq and txcmplq as double linked lists */ 9892 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 9893 pring = phba->sli4_hba.fcp_wq[i]->pring; 9894 pring->flag = 0; 9895 pring->ringno = LPFC_FCP_RING; 9896 INIT_LIST_HEAD(&pring->txq); 9897 INIT_LIST_HEAD(&pring->txcmplq); 9898 INIT_LIST_HEAD(&pring->iocb_continueq); 9899 spin_lock_init(&pring->ring_lock); 9900 } 9901 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 9902 pring = phba->sli4_hba.nvme_wq[i]->pring; 9903 pring->flag = 0; 9904 pring->ringno = LPFC_FCP_RING; 9905 INIT_LIST_HEAD(&pring->txq); 9906 INIT_LIST_HEAD(&pring->txcmplq); 9907 INIT_LIST_HEAD(&pring->iocb_continueq); 9908 spin_lock_init(&pring->ring_lock); 9909 } 9910 pring = phba->sli4_hba.els_wq->pring; 9911 pring->flag = 0; 9912 pring->ringno = LPFC_ELS_RING; 9913 INIT_LIST_HEAD(&pring->txq); 9914 INIT_LIST_HEAD(&pring->txcmplq); 9915 INIT_LIST_HEAD(&pring->iocb_continueq); 9916 spin_lock_init(&pring->ring_lock); 9917 9918 if (phba->cfg_nvme_io_channel) { 9919 pring = phba->sli4_hba.nvmels_wq->pring; 9920 pring->flag = 0; 9921 pring->ringno = LPFC_ELS_RING; 9922 INIT_LIST_HEAD(&pring->txq); 9923 INIT_LIST_HEAD(&pring->txcmplq); 9924 INIT_LIST_HEAD(&pring->iocb_continueq); 9925 spin_lock_init(&pring->ring_lock); 9926 } 9927 9928 if (phba->cfg_fof) { 9929 pring = phba->sli4_hba.oas_wq->pring; 9930 pring->flag = 0; 9931 pring->ringno = LPFC_FCP_RING; 9932 INIT_LIST_HEAD(&pring->txq); 9933 INIT_LIST_HEAD(&pring->txcmplq); 9934 INIT_LIST_HEAD(&pring->iocb_continueq); 9935 spin_lock_init(&pring->ring_lock); 9936 } 9937 9938 spin_unlock_irq(&phba->hbalock); 9939 } 9940 9941 /** 9942 * lpfc_sli_queue_init - Queue initialization function 9943 * @phba: Pointer to HBA context object. 9944 * 9945 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 9946 * ring. This function also initializes ring indices of each ring. 9947 * This function is called during the initialization of the SLI 9948 * interface of an HBA. 9949 * This function is called with no lock held and always returns 9950 * 1. 9951 **/ 9952 void 9953 lpfc_sli_queue_init(struct lpfc_hba *phba) 9954 { 9955 struct lpfc_sli *psli; 9956 struct lpfc_sli_ring *pring; 9957 int i; 9958 9959 psli = &phba->sli; 9960 spin_lock_irq(&phba->hbalock); 9961 INIT_LIST_HEAD(&psli->mboxq); 9962 INIT_LIST_HEAD(&psli->mboxq_cmpl); 9963 /* Initialize list headers for txq and txcmplq as double linked lists */ 9964 for (i = 0; i < psli->num_rings; i++) { 9965 pring = &psli->sli3_ring[i]; 9966 pring->ringno = i; 9967 pring->sli.sli3.next_cmdidx = 0; 9968 pring->sli.sli3.local_getidx = 0; 9969 pring->sli.sli3.cmdidx = 0; 9970 INIT_LIST_HEAD(&pring->iocb_continueq); 9971 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 9972 INIT_LIST_HEAD(&pring->postbufq); 9973 pring->flag = 0; 9974 INIT_LIST_HEAD(&pring->txq); 9975 INIT_LIST_HEAD(&pring->txcmplq); 9976 spin_lock_init(&pring->ring_lock); 9977 } 9978 spin_unlock_irq(&phba->hbalock); 9979 } 9980 9981 /** 9982 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 9983 * @phba: Pointer to HBA context object. 9984 * 9985 * This routine flushes the mailbox command subsystem. It will unconditionally 9986 * flush all the mailbox commands in the three possible stages in the mailbox 9987 * command sub-system: pending mailbox command queue; the outstanding mailbox 9988 * command; and completed mailbox command queue. It is caller's responsibility 9989 * to make sure that the driver is in the proper state to flush the mailbox 9990 * command sub-system. Namely, the posting of mailbox commands into the 9991 * pending mailbox command queue from the various clients must be stopped; 9992 * either the HBA is in a state that it will never works on the outstanding 9993 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 9994 * mailbox command has been completed. 9995 **/ 9996 static void 9997 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 9998 { 9999 LIST_HEAD(completions); 10000 struct lpfc_sli *psli = &phba->sli; 10001 LPFC_MBOXQ_t *pmb; 10002 unsigned long iflag; 10003 10004 /* Flush all the mailbox commands in the mbox system */ 10005 spin_lock_irqsave(&phba->hbalock, iflag); 10006 /* The pending mailbox command queue */ 10007 list_splice_init(&phba->sli.mboxq, &completions); 10008 /* The outstanding active mailbox command */ 10009 if (psli->mbox_active) { 10010 list_add_tail(&psli->mbox_active->list, &completions); 10011 psli->mbox_active = NULL; 10012 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10013 } 10014 /* The completed mailbox command queue */ 10015 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 10016 spin_unlock_irqrestore(&phba->hbalock, iflag); 10017 10018 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 10019 while (!list_empty(&completions)) { 10020 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 10021 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 10022 if (pmb->mbox_cmpl) 10023 pmb->mbox_cmpl(phba, pmb); 10024 } 10025 } 10026 10027 /** 10028 * lpfc_sli_host_down - Vport cleanup function 10029 * @vport: Pointer to virtual port object. 10030 * 10031 * lpfc_sli_host_down is called to clean up the resources 10032 * associated with a vport before destroying virtual 10033 * port data structures. 10034 * This function does following operations: 10035 * - Free discovery resources associated with this virtual 10036 * port. 10037 * - Free iocbs associated with this virtual port in 10038 * the txq. 10039 * - Send abort for all iocb commands associated with this 10040 * vport in txcmplq. 10041 * 10042 * This function is called with no lock held and always returns 1. 10043 **/ 10044 int 10045 lpfc_sli_host_down(struct lpfc_vport *vport) 10046 { 10047 LIST_HEAD(completions); 10048 struct lpfc_hba *phba = vport->phba; 10049 struct lpfc_sli *psli = &phba->sli; 10050 struct lpfc_queue *qp = NULL; 10051 struct lpfc_sli_ring *pring; 10052 struct lpfc_iocbq *iocb, *next_iocb; 10053 int i; 10054 unsigned long flags = 0; 10055 uint16_t prev_pring_flag; 10056 10057 lpfc_cleanup_discovery_resources(vport); 10058 10059 spin_lock_irqsave(&phba->hbalock, flags); 10060 10061 /* 10062 * Error everything on the txq since these iocbs 10063 * have not been given to the FW yet. 10064 * Also issue ABTS for everything on the txcmplq 10065 */ 10066 if (phba->sli_rev != LPFC_SLI_REV4) { 10067 for (i = 0; i < psli->num_rings; i++) { 10068 pring = &psli->sli3_ring[i]; 10069 prev_pring_flag = pring->flag; 10070 /* Only slow rings */ 10071 if (pring->ringno == LPFC_ELS_RING) { 10072 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10073 /* Set the lpfc data pending flag */ 10074 set_bit(LPFC_DATA_READY, &phba->data_flags); 10075 } 10076 list_for_each_entry_safe(iocb, next_iocb, 10077 &pring->txq, list) { 10078 if (iocb->vport != vport) 10079 continue; 10080 list_move_tail(&iocb->list, &completions); 10081 } 10082 list_for_each_entry_safe(iocb, next_iocb, 10083 &pring->txcmplq, list) { 10084 if (iocb->vport != vport) 10085 continue; 10086 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10087 } 10088 pring->flag = prev_pring_flag; 10089 } 10090 } else { 10091 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10092 pring = qp->pring; 10093 if (!pring) 10094 continue; 10095 if (pring == phba->sli4_hba.els_wq->pring) { 10096 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10097 /* Set the lpfc data pending flag */ 10098 set_bit(LPFC_DATA_READY, &phba->data_flags); 10099 } 10100 prev_pring_flag = pring->flag; 10101 spin_lock_irq(&pring->ring_lock); 10102 list_for_each_entry_safe(iocb, next_iocb, 10103 &pring->txq, list) { 10104 if (iocb->vport != vport) 10105 continue; 10106 list_move_tail(&iocb->list, &completions); 10107 } 10108 spin_unlock_irq(&pring->ring_lock); 10109 list_for_each_entry_safe(iocb, next_iocb, 10110 &pring->txcmplq, list) { 10111 if (iocb->vport != vport) 10112 continue; 10113 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10114 } 10115 pring->flag = prev_pring_flag; 10116 } 10117 } 10118 spin_unlock_irqrestore(&phba->hbalock, flags); 10119 10120 /* Cancel all the IOCBs from the completions list */ 10121 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10122 IOERR_SLI_DOWN); 10123 return 1; 10124 } 10125 10126 /** 10127 * lpfc_sli_hba_down - Resource cleanup function for the HBA 10128 * @phba: Pointer to HBA context object. 10129 * 10130 * This function cleans up all iocb, buffers, mailbox commands 10131 * while shutting down the HBA. This function is called with no 10132 * lock held and always returns 1. 10133 * This function does the following to cleanup driver resources: 10134 * - Free discovery resources for each virtual port 10135 * - Cleanup any pending fabric iocbs 10136 * - Iterate through the iocb txq and free each entry 10137 * in the list. 10138 * - Free up any buffer posted to the HBA 10139 * - Free mailbox commands in the mailbox queue. 10140 **/ 10141 int 10142 lpfc_sli_hba_down(struct lpfc_hba *phba) 10143 { 10144 LIST_HEAD(completions); 10145 struct lpfc_sli *psli = &phba->sli; 10146 struct lpfc_queue *qp = NULL; 10147 struct lpfc_sli_ring *pring; 10148 struct lpfc_dmabuf *buf_ptr; 10149 unsigned long flags = 0; 10150 int i; 10151 10152 /* Shutdown the mailbox command sub-system */ 10153 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 10154 10155 lpfc_hba_down_prep(phba); 10156 10157 lpfc_fabric_abort_hba(phba); 10158 10159 spin_lock_irqsave(&phba->hbalock, flags); 10160 10161 /* 10162 * Error everything on the txq since these iocbs 10163 * have not been given to the FW yet. 10164 */ 10165 if (phba->sli_rev != LPFC_SLI_REV4) { 10166 for (i = 0; i < psli->num_rings; i++) { 10167 pring = &psli->sli3_ring[i]; 10168 /* Only slow rings */ 10169 if (pring->ringno == LPFC_ELS_RING) { 10170 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10171 /* Set the lpfc data pending flag */ 10172 set_bit(LPFC_DATA_READY, &phba->data_flags); 10173 } 10174 list_splice_init(&pring->txq, &completions); 10175 } 10176 } else { 10177 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10178 pring = qp->pring; 10179 if (!pring) 10180 continue; 10181 spin_lock_irq(&pring->ring_lock); 10182 list_splice_init(&pring->txq, &completions); 10183 spin_unlock_irq(&pring->ring_lock); 10184 if (pring == phba->sli4_hba.els_wq->pring) { 10185 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10186 /* Set the lpfc data pending flag */ 10187 set_bit(LPFC_DATA_READY, &phba->data_flags); 10188 } 10189 } 10190 } 10191 spin_unlock_irqrestore(&phba->hbalock, flags); 10192 10193 /* Cancel all the IOCBs from the completions list */ 10194 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10195 IOERR_SLI_DOWN); 10196 10197 spin_lock_irqsave(&phba->hbalock, flags); 10198 list_splice_init(&phba->elsbuf, &completions); 10199 phba->elsbuf_cnt = 0; 10200 phba->elsbuf_prev_cnt = 0; 10201 spin_unlock_irqrestore(&phba->hbalock, flags); 10202 10203 while (!list_empty(&completions)) { 10204 list_remove_head(&completions, buf_ptr, 10205 struct lpfc_dmabuf, list); 10206 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 10207 kfree(buf_ptr); 10208 } 10209 10210 /* Return any active mbox cmds */ 10211 del_timer_sync(&psli->mbox_tmo); 10212 10213 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 10214 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 10215 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 10216 10217 return 1; 10218 } 10219 10220 /** 10221 * lpfc_sli_pcimem_bcopy - SLI memory copy function 10222 * @srcp: Source memory pointer. 10223 * @destp: Destination memory pointer. 10224 * @cnt: Number of words required to be copied. 10225 * 10226 * This function is used for copying data between driver memory 10227 * and the SLI memory. This function also changes the endianness 10228 * of each word if native endianness is different from SLI 10229 * endianness. This function can be called with or without 10230 * lock. 10231 **/ 10232 void 10233 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 10234 { 10235 uint32_t *src = srcp; 10236 uint32_t *dest = destp; 10237 uint32_t ldata; 10238 int i; 10239 10240 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 10241 ldata = *src; 10242 ldata = le32_to_cpu(ldata); 10243 *dest = ldata; 10244 src++; 10245 dest++; 10246 } 10247 } 10248 10249 10250 /** 10251 * lpfc_sli_bemem_bcopy - SLI memory copy function 10252 * @srcp: Source memory pointer. 10253 * @destp: Destination memory pointer. 10254 * @cnt: Number of words required to be copied. 10255 * 10256 * This function is used for copying data between a data structure 10257 * with big endian representation to local endianness. 10258 * This function can be called with or without lock. 10259 **/ 10260 void 10261 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 10262 { 10263 uint32_t *src = srcp; 10264 uint32_t *dest = destp; 10265 uint32_t ldata; 10266 int i; 10267 10268 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 10269 ldata = *src; 10270 ldata = be32_to_cpu(ldata); 10271 *dest = ldata; 10272 src++; 10273 dest++; 10274 } 10275 } 10276 10277 /** 10278 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 10279 * @phba: Pointer to HBA context object. 10280 * @pring: Pointer to driver SLI ring object. 10281 * @mp: Pointer to driver buffer object. 10282 * 10283 * This function is called with no lock held. 10284 * It always return zero after adding the buffer to the postbufq 10285 * buffer list. 10286 **/ 10287 int 10288 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10289 struct lpfc_dmabuf *mp) 10290 { 10291 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 10292 later */ 10293 spin_lock_irq(&phba->hbalock); 10294 list_add_tail(&mp->list, &pring->postbufq); 10295 pring->postbufq_cnt++; 10296 spin_unlock_irq(&phba->hbalock); 10297 return 0; 10298 } 10299 10300 /** 10301 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 10302 * @phba: Pointer to HBA context object. 10303 * 10304 * When HBQ is enabled, buffers are searched based on tags. This function 10305 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 10306 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 10307 * does not conflict with tags of buffer posted for unsolicited events. 10308 * The function returns the allocated tag. The function is called with 10309 * no locks held. 10310 **/ 10311 uint32_t 10312 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 10313 { 10314 spin_lock_irq(&phba->hbalock); 10315 phba->buffer_tag_count++; 10316 /* 10317 * Always set the QUE_BUFTAG_BIT to distiguish between 10318 * a tag assigned by HBQ. 10319 */ 10320 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 10321 spin_unlock_irq(&phba->hbalock); 10322 return phba->buffer_tag_count; 10323 } 10324 10325 /** 10326 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 10327 * @phba: Pointer to HBA context object. 10328 * @pring: Pointer to driver SLI ring object. 10329 * @tag: Buffer tag. 10330 * 10331 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 10332 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 10333 * iocb is posted to the response ring with the tag of the buffer. 10334 * This function searches the pring->postbufq list using the tag 10335 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 10336 * iocb. If the buffer is found then lpfc_dmabuf object of the 10337 * buffer is returned to the caller else NULL is returned. 10338 * This function is called with no lock held. 10339 **/ 10340 struct lpfc_dmabuf * 10341 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10342 uint32_t tag) 10343 { 10344 struct lpfc_dmabuf *mp, *next_mp; 10345 struct list_head *slp = &pring->postbufq; 10346 10347 /* Search postbufq, from the beginning, looking for a match on tag */ 10348 spin_lock_irq(&phba->hbalock); 10349 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 10350 if (mp->buffer_tag == tag) { 10351 list_del_init(&mp->list); 10352 pring->postbufq_cnt--; 10353 spin_unlock_irq(&phba->hbalock); 10354 return mp; 10355 } 10356 } 10357 10358 spin_unlock_irq(&phba->hbalock); 10359 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10360 "0402 Cannot find virtual addr for buffer tag on " 10361 "ring %d Data x%lx x%p x%p x%x\n", 10362 pring->ringno, (unsigned long) tag, 10363 slp->next, slp->prev, pring->postbufq_cnt); 10364 10365 return NULL; 10366 } 10367 10368 /** 10369 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 10370 * @phba: Pointer to HBA context object. 10371 * @pring: Pointer to driver SLI ring object. 10372 * @phys: DMA address of the buffer. 10373 * 10374 * This function searches the buffer list using the dma_address 10375 * of unsolicited event to find the driver's lpfc_dmabuf object 10376 * corresponding to the dma_address. The function returns the 10377 * lpfc_dmabuf object if a buffer is found else it returns NULL. 10378 * This function is called by the ct and els unsolicited event 10379 * handlers to get the buffer associated with the unsolicited 10380 * event. 10381 * 10382 * This function is called with no lock held. 10383 **/ 10384 struct lpfc_dmabuf * 10385 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10386 dma_addr_t phys) 10387 { 10388 struct lpfc_dmabuf *mp, *next_mp; 10389 struct list_head *slp = &pring->postbufq; 10390 10391 /* Search postbufq, from the beginning, looking for a match on phys */ 10392 spin_lock_irq(&phba->hbalock); 10393 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 10394 if (mp->phys == phys) { 10395 list_del_init(&mp->list); 10396 pring->postbufq_cnt--; 10397 spin_unlock_irq(&phba->hbalock); 10398 return mp; 10399 } 10400 } 10401 10402 spin_unlock_irq(&phba->hbalock); 10403 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10404 "0410 Cannot find virtual addr for mapped buf on " 10405 "ring %d Data x%llx x%p x%p x%x\n", 10406 pring->ringno, (unsigned long long)phys, 10407 slp->next, slp->prev, pring->postbufq_cnt); 10408 return NULL; 10409 } 10410 10411 /** 10412 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 10413 * @phba: Pointer to HBA context object. 10414 * @cmdiocb: Pointer to driver command iocb object. 10415 * @rspiocb: Pointer to driver response iocb object. 10416 * 10417 * This function is the completion handler for the abort iocbs for 10418 * ELS commands. This function is called from the ELS ring event 10419 * handler with no lock held. This function frees memory resources 10420 * associated with the abort iocb. 10421 **/ 10422 static void 10423 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 10424 struct lpfc_iocbq *rspiocb) 10425 { 10426 IOCB_t *irsp = &rspiocb->iocb; 10427 uint16_t abort_iotag, abort_context; 10428 struct lpfc_iocbq *abort_iocb = NULL; 10429 10430 if (irsp->ulpStatus) { 10431 10432 /* 10433 * Assume that the port already completed and returned, or 10434 * will return the iocb. Just Log the message. 10435 */ 10436 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 10437 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 10438 10439 spin_lock_irq(&phba->hbalock); 10440 if (phba->sli_rev < LPFC_SLI_REV4) { 10441 if (abort_iotag != 0 && 10442 abort_iotag <= phba->sli.last_iotag) 10443 abort_iocb = 10444 phba->sli.iocbq_lookup[abort_iotag]; 10445 } else 10446 /* For sli4 the abort_tag is the XRI, 10447 * so the abort routine puts the iotag of the iocb 10448 * being aborted in the context field of the abort 10449 * IOCB. 10450 */ 10451 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 10452 10453 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 10454 "0327 Cannot abort els iocb %p " 10455 "with tag %x context %x, abort status %x, " 10456 "abort code %x\n", 10457 abort_iocb, abort_iotag, abort_context, 10458 irsp->ulpStatus, irsp->un.ulpWord[4]); 10459 10460 spin_unlock_irq(&phba->hbalock); 10461 } 10462 lpfc_sli_release_iocbq(phba, cmdiocb); 10463 return; 10464 } 10465 10466 /** 10467 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 10468 * @phba: Pointer to HBA context object. 10469 * @cmdiocb: Pointer to driver command iocb object. 10470 * @rspiocb: Pointer to driver response iocb object. 10471 * 10472 * The function is called from SLI ring event handler with no 10473 * lock held. This function is the completion handler for ELS commands 10474 * which are aborted. The function frees memory resources used for 10475 * the aborted ELS commands. 10476 **/ 10477 static void 10478 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 10479 struct lpfc_iocbq *rspiocb) 10480 { 10481 IOCB_t *irsp = &rspiocb->iocb; 10482 10483 /* ELS cmd tag <ulpIoTag> completes */ 10484 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 10485 "0139 Ignoring ELS cmd tag x%x completion Data: " 10486 "x%x x%x x%x\n", 10487 irsp->ulpIoTag, irsp->ulpStatus, 10488 irsp->un.ulpWord[4], irsp->ulpTimeout); 10489 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 10490 lpfc_ct_free_iocb(phba, cmdiocb); 10491 else 10492 lpfc_els_free_iocb(phba, cmdiocb); 10493 return; 10494 } 10495 10496 /** 10497 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb 10498 * @phba: Pointer to HBA context object. 10499 * @pring: Pointer to driver SLI ring object. 10500 * @cmdiocb: Pointer to driver command iocb object. 10501 * 10502 * This function issues an abort iocb for the provided command iocb down to 10503 * the port. Other than the case the outstanding command iocb is an abort 10504 * request, this function issues abort out unconditionally. This function is 10505 * called with hbalock held. The function returns 0 when it fails due to 10506 * memory allocation failure or when the command iocb is an abort request. 10507 **/ 10508 static int 10509 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10510 struct lpfc_iocbq *cmdiocb) 10511 { 10512 struct lpfc_vport *vport = cmdiocb->vport; 10513 struct lpfc_iocbq *abtsiocbp; 10514 IOCB_t *icmd = NULL; 10515 IOCB_t *iabt = NULL; 10516 int retval; 10517 unsigned long iflags; 10518 10519 lockdep_assert_held(&phba->hbalock); 10520 10521 /* 10522 * There are certain command types we don't want to abort. And we 10523 * don't want to abort commands that are already in the process of 10524 * being aborted. 10525 */ 10526 icmd = &cmdiocb->iocb; 10527 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 10528 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 10529 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 10530 return 0; 10531 10532 /* issue ABTS for this IOCB based on iotag */ 10533 abtsiocbp = __lpfc_sli_get_iocbq(phba); 10534 if (abtsiocbp == NULL) 10535 return 0; 10536 10537 /* This signals the response to set the correct status 10538 * before calling the completion handler 10539 */ 10540 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 10541 10542 iabt = &abtsiocbp->iocb; 10543 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 10544 iabt->un.acxri.abortContextTag = icmd->ulpContext; 10545 if (phba->sli_rev == LPFC_SLI_REV4) { 10546 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 10547 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 10548 } 10549 else 10550 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 10551 iabt->ulpLe = 1; 10552 iabt->ulpClass = icmd->ulpClass; 10553 10554 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10555 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 10556 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 10557 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 10558 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 10559 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 10560 10561 if (phba->link_state >= LPFC_LINK_UP) 10562 iabt->ulpCommand = CMD_ABORT_XRI_CN; 10563 else 10564 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 10565 10566 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 10567 abtsiocbp->vport = vport; 10568 10569 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 10570 "0339 Abort xri x%x, original iotag x%x, " 10571 "abort cmd iotag x%x\n", 10572 iabt->un.acxri.abortIoTag, 10573 iabt->un.acxri.abortContextTag, 10574 abtsiocbp->iotag); 10575 10576 if (phba->sli_rev == LPFC_SLI_REV4) { 10577 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 10578 if (unlikely(pring == NULL)) 10579 return 0; 10580 /* Note: both hbalock and ring_lock need to be set here */ 10581 spin_lock_irqsave(&pring->ring_lock, iflags); 10582 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 10583 abtsiocbp, 0); 10584 spin_unlock_irqrestore(&pring->ring_lock, iflags); 10585 } else { 10586 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 10587 abtsiocbp, 0); 10588 } 10589 10590 if (retval) 10591 __lpfc_sli_release_iocbq(phba, abtsiocbp); 10592 10593 /* 10594 * Caller to this routine should check for IOCB_ERROR 10595 * and handle it properly. This routine no longer removes 10596 * iocb off txcmplq and call compl in case of IOCB_ERROR. 10597 */ 10598 return retval; 10599 } 10600 10601 /** 10602 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 10603 * @phba: Pointer to HBA context object. 10604 * @pring: Pointer to driver SLI ring object. 10605 * @cmdiocb: Pointer to driver command iocb object. 10606 * 10607 * This function issues an abort iocb for the provided command iocb. In case 10608 * of unloading, the abort iocb will not be issued to commands on the ELS 10609 * ring. Instead, the callback function shall be changed to those commands 10610 * so that nothing happens when them finishes. This function is called with 10611 * hbalock held. The function returns 0 when the command iocb is an abort 10612 * request. 10613 **/ 10614 int 10615 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10616 struct lpfc_iocbq *cmdiocb) 10617 { 10618 struct lpfc_vport *vport = cmdiocb->vport; 10619 int retval = IOCB_ERROR; 10620 IOCB_t *icmd = NULL; 10621 10622 lockdep_assert_held(&phba->hbalock); 10623 10624 /* 10625 * There are certain command types we don't want to abort. And we 10626 * don't want to abort commands that are already in the process of 10627 * being aborted. 10628 */ 10629 icmd = &cmdiocb->iocb; 10630 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 10631 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 10632 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 10633 return 0; 10634 10635 /* 10636 * If we're unloading, don't abort iocb on the ELS ring, but change 10637 * the callback so that nothing happens when it finishes. 10638 */ 10639 if ((vport->load_flag & FC_UNLOADING) && 10640 (pring->ringno == LPFC_ELS_RING)) { 10641 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 10642 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 10643 else 10644 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 10645 goto abort_iotag_exit; 10646 } 10647 10648 /* Now, we try to issue the abort to the cmdiocb out */ 10649 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb); 10650 10651 abort_iotag_exit: 10652 /* 10653 * Caller to this routine should check for IOCB_ERROR 10654 * and handle it properly. This routine no longer removes 10655 * iocb off txcmplq and call compl in case of IOCB_ERROR. 10656 */ 10657 return retval; 10658 } 10659 10660 /** 10661 * lpfc_sli4_abort_nvme_io - Issue abort for a command iocb 10662 * @phba: Pointer to HBA context object. 10663 * @pring: Pointer to driver SLI ring object. 10664 * @cmdiocb: Pointer to driver command iocb object. 10665 * 10666 * This function issues an abort iocb for the provided command iocb down to 10667 * the port. Other than the case the outstanding command iocb is an abort 10668 * request, this function issues abort out unconditionally. This function is 10669 * called with hbalock held. The function returns 0 when it fails due to 10670 * memory allocation failure or when the command iocb is an abort request. 10671 **/ 10672 static int 10673 lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10674 struct lpfc_iocbq *cmdiocb) 10675 { 10676 struct lpfc_vport *vport = cmdiocb->vport; 10677 struct lpfc_iocbq *abtsiocbp; 10678 union lpfc_wqe *abts_wqe; 10679 int retval; 10680 10681 /* 10682 * There are certain command types we don't want to abort. And we 10683 * don't want to abort commands that are already in the process of 10684 * being aborted. 10685 */ 10686 if (cmdiocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 10687 cmdiocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN || 10688 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 10689 return 0; 10690 10691 /* issue ABTS for this io based on iotag */ 10692 abtsiocbp = __lpfc_sli_get_iocbq(phba); 10693 if (abtsiocbp == NULL) 10694 return 0; 10695 10696 /* This signals the response to set the correct status 10697 * before calling the completion handler 10698 */ 10699 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 10700 10701 /* Complete prepping the abort wqe and issue to the FW. */ 10702 abts_wqe = &abtsiocbp->wqe; 10703 bf_set(abort_cmd_ia, &abts_wqe->abort_cmd, 0); 10704 bf_set(abort_cmd_criteria, &abts_wqe->abort_cmd, T_XRI_TAG); 10705 10706 /* Explicitly set reserved fields to zero.*/ 10707 abts_wqe->abort_cmd.rsrvd4 = 0; 10708 abts_wqe->abort_cmd.rsrvd5 = 0; 10709 10710 /* WQE Common - word 6. Context is XRI tag. Set 0. */ 10711 bf_set(wqe_xri_tag, &abts_wqe->abort_cmd.wqe_com, 0); 10712 bf_set(wqe_ctxt_tag, &abts_wqe->abort_cmd.wqe_com, 0); 10713 10714 /* word 7 */ 10715 bf_set(wqe_ct, &abts_wqe->abort_cmd.wqe_com, 0); 10716 bf_set(wqe_cmnd, &abts_wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 10717 bf_set(wqe_class, &abts_wqe->abort_cmd.wqe_com, 10718 cmdiocb->iocb.ulpClass); 10719 10720 /* word 8 - tell the FW to abort the IO associated with this 10721 * outstanding exchange ID. 10722 */ 10723 abts_wqe->abort_cmd.wqe_com.abort_tag = cmdiocb->sli4_xritag; 10724 10725 /* word 9 - this is the iotag for the abts_wqe completion. */ 10726 bf_set(wqe_reqtag, &abts_wqe->abort_cmd.wqe_com, 10727 abtsiocbp->iotag); 10728 10729 /* word 10 */ 10730 bf_set(wqe_wqid, &abts_wqe->abort_cmd.wqe_com, cmdiocb->hba_wqidx); 10731 bf_set(wqe_qosd, &abts_wqe->abort_cmd.wqe_com, 1); 10732 bf_set(wqe_lenloc, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 10733 10734 /* word 11 */ 10735 bf_set(wqe_cmd_type, &abts_wqe->abort_cmd.wqe_com, OTHER_COMMAND); 10736 bf_set(wqe_wqec, &abts_wqe->abort_cmd.wqe_com, 1); 10737 bf_set(wqe_cqid, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10738 10739 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10740 abtsiocbp->iocb_flag |= LPFC_IO_NVME; 10741 abtsiocbp->vport = vport; 10742 abtsiocbp->wqe_cmpl = lpfc_nvme_abort_fcreq_cmpl; 10743 retval = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abtsiocbp); 10744 if (retval) { 10745 lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME, 10746 "6147 Failed abts issue_wqe with status x%x " 10747 "for oxid x%x\n", 10748 retval, cmdiocb->sli4_xritag); 10749 lpfc_sli_release_iocbq(phba, abtsiocbp); 10750 return retval; 10751 } 10752 10753 lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME, 10754 "6148 Drv Abort NVME Request Issued for " 10755 "ox_id x%x on reqtag x%x\n", 10756 cmdiocb->sli4_xritag, 10757 abtsiocbp->iotag); 10758 10759 return retval; 10760 } 10761 10762 /** 10763 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 10764 * @phba: pointer to lpfc HBA data structure. 10765 * 10766 * This routine will abort all pending and outstanding iocbs to an HBA. 10767 **/ 10768 void 10769 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 10770 { 10771 struct lpfc_sli *psli = &phba->sli; 10772 struct lpfc_sli_ring *pring; 10773 struct lpfc_queue *qp = NULL; 10774 int i; 10775 10776 if (phba->sli_rev != LPFC_SLI_REV4) { 10777 for (i = 0; i < psli->num_rings; i++) { 10778 pring = &psli->sli3_ring[i]; 10779 lpfc_sli_abort_iocb_ring(phba, pring); 10780 } 10781 return; 10782 } 10783 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10784 pring = qp->pring; 10785 if (!pring) 10786 continue; 10787 lpfc_sli_abort_iocb_ring(phba, pring); 10788 } 10789 } 10790 10791 /** 10792 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 10793 * @iocbq: Pointer to driver iocb object. 10794 * @vport: Pointer to driver virtual port object. 10795 * @tgt_id: SCSI ID of the target. 10796 * @lun_id: LUN ID of the scsi device. 10797 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 10798 * 10799 * This function acts as an iocb filter for functions which abort or count 10800 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 10801 * 0 if the filtering criteria is met for the given iocb and will return 10802 * 1 if the filtering criteria is not met. 10803 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 10804 * given iocb is for the SCSI device specified by vport, tgt_id and 10805 * lun_id parameter. 10806 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 10807 * given iocb is for the SCSI target specified by vport and tgt_id 10808 * parameters. 10809 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 10810 * given iocb is for the SCSI host associated with the given vport. 10811 * This function is called with no locks held. 10812 **/ 10813 static int 10814 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 10815 uint16_t tgt_id, uint64_t lun_id, 10816 lpfc_ctx_cmd ctx_cmd) 10817 { 10818 struct lpfc_scsi_buf *lpfc_cmd; 10819 int rc = 1; 10820 10821 if (!(iocbq->iocb_flag & LPFC_IO_FCP)) 10822 return rc; 10823 10824 if (iocbq->vport != vport) 10825 return rc; 10826 10827 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 10828 10829 if (lpfc_cmd->pCmd == NULL) 10830 return rc; 10831 10832 switch (ctx_cmd) { 10833 case LPFC_CTX_LUN: 10834 if ((lpfc_cmd->rdata->pnode) && 10835 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 10836 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 10837 rc = 0; 10838 break; 10839 case LPFC_CTX_TGT: 10840 if ((lpfc_cmd->rdata->pnode) && 10841 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 10842 rc = 0; 10843 break; 10844 case LPFC_CTX_HOST: 10845 rc = 0; 10846 break; 10847 default: 10848 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 10849 __func__, ctx_cmd); 10850 break; 10851 } 10852 10853 return rc; 10854 } 10855 10856 /** 10857 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 10858 * @vport: Pointer to virtual port. 10859 * @tgt_id: SCSI ID of the target. 10860 * @lun_id: LUN ID of the scsi device. 10861 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 10862 * 10863 * This function returns number of FCP commands pending for the vport. 10864 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 10865 * commands pending on the vport associated with SCSI device specified 10866 * by tgt_id and lun_id parameters. 10867 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 10868 * commands pending on the vport associated with SCSI target specified 10869 * by tgt_id parameter. 10870 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 10871 * commands pending on the vport. 10872 * This function returns the number of iocbs which satisfy the filter. 10873 * This function is called without any lock held. 10874 **/ 10875 int 10876 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 10877 lpfc_ctx_cmd ctx_cmd) 10878 { 10879 struct lpfc_hba *phba = vport->phba; 10880 struct lpfc_iocbq *iocbq; 10881 int sum, i; 10882 10883 spin_lock_irq(&phba->hbalock); 10884 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 10885 iocbq = phba->sli.iocbq_lookup[i]; 10886 10887 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 10888 ctx_cmd) == 0) 10889 sum++; 10890 } 10891 spin_unlock_irq(&phba->hbalock); 10892 10893 return sum; 10894 } 10895 10896 /** 10897 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 10898 * @phba: Pointer to HBA context object 10899 * @cmdiocb: Pointer to command iocb object. 10900 * @rspiocb: Pointer to response iocb object. 10901 * 10902 * This function is called when an aborted FCP iocb completes. This 10903 * function is called by the ring event handler with no lock held. 10904 * This function frees the iocb. 10905 **/ 10906 void 10907 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 10908 struct lpfc_iocbq *rspiocb) 10909 { 10910 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10911 "3096 ABORT_XRI_CN completing on rpi x%x " 10912 "original iotag x%x, abort cmd iotag x%x " 10913 "status 0x%x, reason 0x%x\n", 10914 cmdiocb->iocb.un.acxri.abortContextTag, 10915 cmdiocb->iocb.un.acxri.abortIoTag, 10916 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 10917 rspiocb->iocb.un.ulpWord[4]); 10918 lpfc_sli_release_iocbq(phba, cmdiocb); 10919 return; 10920 } 10921 10922 /** 10923 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 10924 * @vport: Pointer to virtual port. 10925 * @pring: Pointer to driver SLI ring object. 10926 * @tgt_id: SCSI ID of the target. 10927 * @lun_id: LUN ID of the scsi device. 10928 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 10929 * 10930 * This function sends an abort command for every SCSI command 10931 * associated with the given virtual port pending on the ring 10932 * filtered by lpfc_sli_validate_fcp_iocb function. 10933 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 10934 * FCP iocbs associated with lun specified by tgt_id and lun_id 10935 * parameters 10936 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 10937 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 10938 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 10939 * FCP iocbs associated with virtual port. 10940 * This function returns number of iocbs it failed to abort. 10941 * This function is called with no locks held. 10942 **/ 10943 int 10944 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 10945 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd) 10946 { 10947 struct lpfc_hba *phba = vport->phba; 10948 struct lpfc_iocbq *iocbq; 10949 struct lpfc_iocbq *abtsiocb; 10950 struct lpfc_sli_ring *pring_s4; 10951 IOCB_t *cmd = NULL; 10952 int errcnt = 0, ret_val = 0; 10953 int i; 10954 10955 for (i = 1; i <= phba->sli.last_iotag; i++) { 10956 iocbq = phba->sli.iocbq_lookup[i]; 10957 10958 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 10959 abort_cmd) != 0) 10960 continue; 10961 10962 /* 10963 * If the iocbq is already being aborted, don't take a second 10964 * action, but do count it. 10965 */ 10966 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 10967 continue; 10968 10969 /* issue ABTS for this IOCB based on iotag */ 10970 abtsiocb = lpfc_sli_get_iocbq(phba); 10971 if (abtsiocb == NULL) { 10972 errcnt++; 10973 continue; 10974 } 10975 10976 /* indicate the IO is being aborted by the driver. */ 10977 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 10978 10979 cmd = &iocbq->iocb; 10980 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 10981 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext; 10982 if (phba->sli_rev == LPFC_SLI_REV4) 10983 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag; 10984 else 10985 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag; 10986 abtsiocb->iocb.ulpLe = 1; 10987 abtsiocb->iocb.ulpClass = cmd->ulpClass; 10988 abtsiocb->vport = vport; 10989 10990 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10991 abtsiocb->hba_wqidx = iocbq->hba_wqidx; 10992 if (iocbq->iocb_flag & LPFC_IO_FCP) 10993 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 10994 if (iocbq->iocb_flag & LPFC_IO_FOF) 10995 abtsiocb->iocb_flag |= LPFC_IO_FOF; 10996 10997 if (lpfc_is_link_up(phba)) 10998 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN; 10999 else 11000 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 11001 11002 /* Setup callback routine and issue the command. */ 11003 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 11004 if (phba->sli_rev == LPFC_SLI_REV4) { 11005 pring_s4 = lpfc_sli4_calc_ring(phba, iocbq); 11006 if (!pring_s4) 11007 continue; 11008 ret_val = lpfc_sli_issue_iocb(phba, pring_s4->ringno, 11009 abtsiocb, 0); 11010 } else 11011 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno, 11012 abtsiocb, 0); 11013 if (ret_val == IOCB_ERROR) { 11014 lpfc_sli_release_iocbq(phba, abtsiocb); 11015 errcnt++; 11016 continue; 11017 } 11018 } 11019 11020 return errcnt; 11021 } 11022 11023 /** 11024 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 11025 * @vport: Pointer to virtual port. 11026 * @pring: Pointer to driver SLI ring object. 11027 * @tgt_id: SCSI ID of the target. 11028 * @lun_id: LUN ID of the scsi device. 11029 * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11030 * 11031 * This function sends an abort command for every SCSI command 11032 * associated with the given virtual port pending on the ring 11033 * filtered by lpfc_sli_validate_fcp_iocb function. 11034 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 11035 * FCP iocbs associated with lun specified by tgt_id and lun_id 11036 * parameters 11037 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 11038 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11039 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 11040 * FCP iocbs associated with virtual port. 11041 * This function returns number of iocbs it aborted . 11042 * This function is called with no locks held right after a taskmgmt 11043 * command is sent. 11044 **/ 11045 int 11046 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 11047 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 11048 { 11049 struct lpfc_hba *phba = vport->phba; 11050 struct lpfc_scsi_buf *lpfc_cmd; 11051 struct lpfc_iocbq *abtsiocbq; 11052 struct lpfc_nodelist *ndlp; 11053 struct lpfc_iocbq *iocbq; 11054 IOCB_t *icmd; 11055 int sum, i, ret_val; 11056 unsigned long iflags; 11057 struct lpfc_sli_ring *pring_s4; 11058 11059 spin_lock_irq(&phba->hbalock); 11060 11061 /* all I/Os are in process of being flushed */ 11062 if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) { 11063 spin_unlock_irq(&phba->hbalock); 11064 return 0; 11065 } 11066 sum = 0; 11067 11068 for (i = 1; i <= phba->sli.last_iotag; i++) { 11069 iocbq = phba->sli.iocbq_lookup[i]; 11070 11071 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 11072 cmd) != 0) 11073 continue; 11074 11075 /* 11076 * If the iocbq is already being aborted, don't take a second 11077 * action, but do count it. 11078 */ 11079 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 11080 continue; 11081 11082 /* issue ABTS for this IOCB based on iotag */ 11083 abtsiocbq = __lpfc_sli_get_iocbq(phba); 11084 if (abtsiocbq == NULL) 11085 continue; 11086 11087 icmd = &iocbq->iocb; 11088 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 11089 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 11090 if (phba->sli_rev == LPFC_SLI_REV4) 11091 abtsiocbq->iocb.un.acxri.abortIoTag = 11092 iocbq->sli4_xritag; 11093 else 11094 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 11095 abtsiocbq->iocb.ulpLe = 1; 11096 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 11097 abtsiocbq->vport = vport; 11098 11099 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11100 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 11101 if (iocbq->iocb_flag & LPFC_IO_FCP) 11102 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 11103 if (iocbq->iocb_flag & LPFC_IO_FOF) 11104 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 11105 11106 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 11107 ndlp = lpfc_cmd->rdata->pnode; 11108 11109 if (lpfc_is_link_up(phba) && 11110 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 11111 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 11112 else 11113 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 11114 11115 /* Setup callback routine and issue the command. */ 11116 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 11117 11118 /* 11119 * Indicate the IO is being aborted by the driver and set 11120 * the caller's flag into the aborted IO. 11121 */ 11122 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 11123 11124 if (phba->sli_rev == LPFC_SLI_REV4) { 11125 pring_s4 = lpfc_sli4_calc_ring(phba, iocbq); 11126 if (pring_s4 == NULL) 11127 continue; 11128 /* Note: both hbalock and ring_lock must be set here */ 11129 spin_lock_irqsave(&pring_s4->ring_lock, iflags); 11130 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 11131 abtsiocbq, 0); 11132 spin_unlock_irqrestore(&pring_s4->ring_lock, iflags); 11133 } else { 11134 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 11135 abtsiocbq, 0); 11136 } 11137 11138 11139 if (ret_val == IOCB_ERROR) 11140 __lpfc_sli_release_iocbq(phba, abtsiocbq); 11141 else 11142 sum++; 11143 } 11144 spin_unlock_irq(&phba->hbalock); 11145 return sum; 11146 } 11147 11148 /** 11149 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 11150 * @phba: Pointer to HBA context object. 11151 * @cmdiocbq: Pointer to command iocb. 11152 * @rspiocbq: Pointer to response iocb. 11153 * 11154 * This function is the completion handler for iocbs issued using 11155 * lpfc_sli_issue_iocb_wait function. This function is called by the 11156 * ring event handler function without any lock held. This function 11157 * can be called from both worker thread context and interrupt 11158 * context. This function also can be called from other thread which 11159 * cleans up the SLI layer objects. 11160 * This function copy the contents of the response iocb to the 11161 * response iocb memory object provided by the caller of 11162 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 11163 * sleeps for the iocb completion. 11164 **/ 11165 static void 11166 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 11167 struct lpfc_iocbq *cmdiocbq, 11168 struct lpfc_iocbq *rspiocbq) 11169 { 11170 wait_queue_head_t *pdone_q; 11171 unsigned long iflags; 11172 struct lpfc_scsi_buf *lpfc_cmd; 11173 11174 spin_lock_irqsave(&phba->hbalock, iflags); 11175 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 11176 11177 /* 11178 * A time out has occurred for the iocb. If a time out 11179 * completion handler has been supplied, call it. Otherwise, 11180 * just free the iocbq. 11181 */ 11182 11183 spin_unlock_irqrestore(&phba->hbalock, iflags); 11184 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 11185 cmdiocbq->wait_iocb_cmpl = NULL; 11186 if (cmdiocbq->iocb_cmpl) 11187 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 11188 else 11189 lpfc_sli_release_iocbq(phba, cmdiocbq); 11190 return; 11191 } 11192 11193 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 11194 if (cmdiocbq->context2 && rspiocbq) 11195 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 11196 &rspiocbq->iocb, sizeof(IOCB_t)); 11197 11198 /* Set the exchange busy flag for task management commands */ 11199 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 11200 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 11201 lpfc_cmd = container_of(cmdiocbq, struct lpfc_scsi_buf, 11202 cur_iocbq); 11203 lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY; 11204 } 11205 11206 pdone_q = cmdiocbq->context_un.wait_queue; 11207 if (pdone_q) 11208 wake_up(pdone_q); 11209 spin_unlock_irqrestore(&phba->hbalock, iflags); 11210 return; 11211 } 11212 11213 /** 11214 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 11215 * @phba: Pointer to HBA context object.. 11216 * @piocbq: Pointer to command iocb. 11217 * @flag: Flag to test. 11218 * 11219 * This routine grabs the hbalock and then test the iocb_flag to 11220 * see if the passed in flag is set. 11221 * Returns: 11222 * 1 if flag is set. 11223 * 0 if flag is not set. 11224 **/ 11225 static int 11226 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 11227 struct lpfc_iocbq *piocbq, uint32_t flag) 11228 { 11229 unsigned long iflags; 11230 int ret; 11231 11232 spin_lock_irqsave(&phba->hbalock, iflags); 11233 ret = piocbq->iocb_flag & flag; 11234 spin_unlock_irqrestore(&phba->hbalock, iflags); 11235 return ret; 11236 11237 } 11238 11239 /** 11240 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 11241 * @phba: Pointer to HBA context object.. 11242 * @pring: Pointer to sli ring. 11243 * @piocb: Pointer to command iocb. 11244 * @prspiocbq: Pointer to response iocb. 11245 * @timeout: Timeout in number of seconds. 11246 * 11247 * This function issues the iocb to firmware and waits for the 11248 * iocb to complete. The iocb_cmpl field of the shall be used 11249 * to handle iocbs which time out. If the field is NULL, the 11250 * function shall free the iocbq structure. If more clean up is 11251 * needed, the caller is expected to provide a completion function 11252 * that will provide the needed clean up. If the iocb command is 11253 * not completed within timeout seconds, the function will either 11254 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 11255 * completion function set in the iocb_cmpl field and then return 11256 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 11257 * resources if this function returns IOCB_TIMEDOUT. 11258 * The function waits for the iocb completion using an 11259 * non-interruptible wait. 11260 * This function will sleep while waiting for iocb completion. 11261 * So, this function should not be called from any context which 11262 * does not allow sleeping. Due to the same reason, this function 11263 * cannot be called with interrupt disabled. 11264 * This function assumes that the iocb completions occur while 11265 * this function sleep. So, this function cannot be called from 11266 * the thread which process iocb completion for this ring. 11267 * This function clears the iocb_flag of the iocb object before 11268 * issuing the iocb and the iocb completion handler sets this 11269 * flag and wakes this thread when the iocb completes. 11270 * The contents of the response iocb will be copied to prspiocbq 11271 * by the completion handler when the command completes. 11272 * This function returns IOCB_SUCCESS when success. 11273 * This function is called with no lock held. 11274 **/ 11275 int 11276 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 11277 uint32_t ring_number, 11278 struct lpfc_iocbq *piocb, 11279 struct lpfc_iocbq *prspiocbq, 11280 uint32_t timeout) 11281 { 11282 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 11283 long timeleft, timeout_req = 0; 11284 int retval = IOCB_SUCCESS; 11285 uint32_t creg_val; 11286 struct lpfc_iocbq *iocb; 11287 int txq_cnt = 0; 11288 int txcmplq_cnt = 0; 11289 struct lpfc_sli_ring *pring; 11290 unsigned long iflags; 11291 bool iocb_completed = true; 11292 11293 if (phba->sli_rev >= LPFC_SLI_REV4) 11294 pring = lpfc_sli4_calc_ring(phba, piocb); 11295 else 11296 pring = &phba->sli.sli3_ring[ring_number]; 11297 /* 11298 * If the caller has provided a response iocbq buffer, then context2 11299 * is NULL or its an error. 11300 */ 11301 if (prspiocbq) { 11302 if (piocb->context2) 11303 return IOCB_ERROR; 11304 piocb->context2 = prspiocbq; 11305 } 11306 11307 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 11308 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 11309 piocb->context_un.wait_queue = &done_q; 11310 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 11311 11312 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 11313 if (lpfc_readl(phba->HCregaddr, &creg_val)) 11314 return IOCB_ERROR; 11315 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 11316 writel(creg_val, phba->HCregaddr); 11317 readl(phba->HCregaddr); /* flush */ 11318 } 11319 11320 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 11321 SLI_IOCB_RET_IOCB); 11322 if (retval == IOCB_SUCCESS) { 11323 timeout_req = msecs_to_jiffies(timeout * 1000); 11324 timeleft = wait_event_timeout(done_q, 11325 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 11326 timeout_req); 11327 spin_lock_irqsave(&phba->hbalock, iflags); 11328 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 11329 11330 /* 11331 * IOCB timed out. Inform the wake iocb wait 11332 * completion function and set local status 11333 */ 11334 11335 iocb_completed = false; 11336 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 11337 } 11338 spin_unlock_irqrestore(&phba->hbalock, iflags); 11339 if (iocb_completed) { 11340 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11341 "0331 IOCB wake signaled\n"); 11342 /* Note: we are not indicating if the IOCB has a success 11343 * status or not - that's for the caller to check. 11344 * IOCB_SUCCESS means just that the command was sent and 11345 * completed. Not that it completed successfully. 11346 * */ 11347 } else if (timeleft == 0) { 11348 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11349 "0338 IOCB wait timeout error - no " 11350 "wake response Data x%x\n", timeout); 11351 retval = IOCB_TIMEDOUT; 11352 } else { 11353 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11354 "0330 IOCB wake NOT set, " 11355 "Data x%x x%lx\n", 11356 timeout, (timeleft / jiffies)); 11357 retval = IOCB_TIMEDOUT; 11358 } 11359 } else if (retval == IOCB_BUSY) { 11360 if (phba->cfg_log_verbose & LOG_SLI) { 11361 list_for_each_entry(iocb, &pring->txq, list) { 11362 txq_cnt++; 11363 } 11364 list_for_each_entry(iocb, &pring->txcmplq, list) { 11365 txcmplq_cnt++; 11366 } 11367 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11368 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 11369 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 11370 } 11371 return retval; 11372 } else { 11373 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11374 "0332 IOCB wait issue failed, Data x%x\n", 11375 retval); 11376 retval = IOCB_ERROR; 11377 } 11378 11379 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 11380 if (lpfc_readl(phba->HCregaddr, &creg_val)) 11381 return IOCB_ERROR; 11382 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 11383 writel(creg_val, phba->HCregaddr); 11384 readl(phba->HCregaddr); /* flush */ 11385 } 11386 11387 if (prspiocbq) 11388 piocb->context2 = NULL; 11389 11390 piocb->context_un.wait_queue = NULL; 11391 piocb->iocb_cmpl = NULL; 11392 return retval; 11393 } 11394 11395 /** 11396 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 11397 * @phba: Pointer to HBA context object. 11398 * @pmboxq: Pointer to driver mailbox object. 11399 * @timeout: Timeout in number of seconds. 11400 * 11401 * This function issues the mailbox to firmware and waits for the 11402 * mailbox command to complete. If the mailbox command is not 11403 * completed within timeout seconds, it returns MBX_TIMEOUT. 11404 * The function waits for the mailbox completion using an 11405 * interruptible wait. If the thread is woken up due to a 11406 * signal, MBX_TIMEOUT error is returned to the caller. Caller 11407 * should not free the mailbox resources, if this function returns 11408 * MBX_TIMEOUT. 11409 * This function will sleep while waiting for mailbox completion. 11410 * So, this function should not be called from any context which 11411 * does not allow sleeping. Due to the same reason, this function 11412 * cannot be called with interrupt disabled. 11413 * This function assumes that the mailbox completion occurs while 11414 * this function sleep. So, this function cannot be called from 11415 * the worker thread which processes mailbox completion. 11416 * This function is called in the context of HBA management 11417 * applications. 11418 * This function returns MBX_SUCCESS when successful. 11419 * This function is called with no lock held. 11420 **/ 11421 int 11422 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 11423 uint32_t timeout) 11424 { 11425 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 11426 MAILBOX_t *mb = NULL; 11427 int retval; 11428 unsigned long flag; 11429 11430 /* The caller might set context1 for extended buffer */ 11431 if (pmboxq->context1) 11432 mb = (MAILBOX_t *)pmboxq->context1; 11433 11434 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 11435 /* setup wake call as IOCB callback */ 11436 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 11437 /* setup context field to pass wait_queue pointer to wake function */ 11438 pmboxq->context1 = &done_q; 11439 11440 /* now issue the command */ 11441 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 11442 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 11443 wait_event_interruptible_timeout(done_q, 11444 pmboxq->mbox_flag & LPFC_MBX_WAKE, 11445 msecs_to_jiffies(timeout * 1000)); 11446 11447 spin_lock_irqsave(&phba->hbalock, flag); 11448 /* restore the possible extended buffer for free resource */ 11449 pmboxq->context1 = (uint8_t *)mb; 11450 /* 11451 * if LPFC_MBX_WAKE flag is set the mailbox is completed 11452 * else do not free the resources. 11453 */ 11454 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 11455 retval = MBX_SUCCESS; 11456 } else { 11457 retval = MBX_TIMEOUT; 11458 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 11459 } 11460 spin_unlock_irqrestore(&phba->hbalock, flag); 11461 } else { 11462 /* restore the possible extended buffer for free resource */ 11463 pmboxq->context1 = (uint8_t *)mb; 11464 } 11465 11466 return retval; 11467 } 11468 11469 /** 11470 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 11471 * @phba: Pointer to HBA context. 11472 * 11473 * This function is called to shutdown the driver's mailbox sub-system. 11474 * It first marks the mailbox sub-system is in a block state to prevent 11475 * the asynchronous mailbox command from issued off the pending mailbox 11476 * command queue. If the mailbox command sub-system shutdown is due to 11477 * HBA error conditions such as EEH or ERATT, this routine shall invoke 11478 * the mailbox sub-system flush routine to forcefully bring down the 11479 * mailbox sub-system. Otherwise, if it is due to normal condition (such 11480 * as with offline or HBA function reset), this routine will wait for the 11481 * outstanding mailbox command to complete before invoking the mailbox 11482 * sub-system flush routine to gracefully bring down mailbox sub-system. 11483 **/ 11484 void 11485 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 11486 { 11487 struct lpfc_sli *psli = &phba->sli; 11488 unsigned long timeout; 11489 11490 if (mbx_action == LPFC_MBX_NO_WAIT) { 11491 /* delay 100ms for port state */ 11492 msleep(100); 11493 lpfc_sli_mbox_sys_flush(phba); 11494 return; 11495 } 11496 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 11497 11498 spin_lock_irq(&phba->hbalock); 11499 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 11500 11501 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 11502 /* Determine how long we might wait for the active mailbox 11503 * command to be gracefully completed by firmware. 11504 */ 11505 if (phba->sli.mbox_active) 11506 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 11507 phba->sli.mbox_active) * 11508 1000) + jiffies; 11509 spin_unlock_irq(&phba->hbalock); 11510 11511 while (phba->sli.mbox_active) { 11512 /* Check active mailbox complete status every 2ms */ 11513 msleep(2); 11514 if (time_after(jiffies, timeout)) 11515 /* Timeout, let the mailbox flush routine to 11516 * forcefully release active mailbox command 11517 */ 11518 break; 11519 } 11520 } else 11521 spin_unlock_irq(&phba->hbalock); 11522 11523 lpfc_sli_mbox_sys_flush(phba); 11524 } 11525 11526 /** 11527 * lpfc_sli_eratt_read - read sli-3 error attention events 11528 * @phba: Pointer to HBA context. 11529 * 11530 * This function is called to read the SLI3 device error attention registers 11531 * for possible error attention events. The caller must hold the hostlock 11532 * with spin_lock_irq(). 11533 * 11534 * This function returns 1 when there is Error Attention in the Host Attention 11535 * Register and returns 0 otherwise. 11536 **/ 11537 static int 11538 lpfc_sli_eratt_read(struct lpfc_hba *phba) 11539 { 11540 uint32_t ha_copy; 11541 11542 /* Read chip Host Attention (HA) register */ 11543 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 11544 goto unplug_err; 11545 11546 if (ha_copy & HA_ERATT) { 11547 /* Read host status register to retrieve error event */ 11548 if (lpfc_sli_read_hs(phba)) 11549 goto unplug_err; 11550 11551 /* Check if there is a deferred error condition is active */ 11552 if ((HS_FFER1 & phba->work_hs) && 11553 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 11554 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 11555 phba->hba_flag |= DEFER_ERATT; 11556 /* Clear all interrupt enable conditions */ 11557 writel(0, phba->HCregaddr); 11558 readl(phba->HCregaddr); 11559 } 11560 11561 /* Set the driver HA work bitmap */ 11562 phba->work_ha |= HA_ERATT; 11563 /* Indicate polling handles this ERATT */ 11564 phba->hba_flag |= HBA_ERATT_HANDLED; 11565 return 1; 11566 } 11567 return 0; 11568 11569 unplug_err: 11570 /* Set the driver HS work bitmap */ 11571 phba->work_hs |= UNPLUG_ERR; 11572 /* Set the driver HA work bitmap */ 11573 phba->work_ha |= HA_ERATT; 11574 /* Indicate polling handles this ERATT */ 11575 phba->hba_flag |= HBA_ERATT_HANDLED; 11576 return 1; 11577 } 11578 11579 /** 11580 * lpfc_sli4_eratt_read - read sli-4 error attention events 11581 * @phba: Pointer to HBA context. 11582 * 11583 * This function is called to read the SLI4 device error attention registers 11584 * for possible error attention events. The caller must hold the hostlock 11585 * with spin_lock_irq(). 11586 * 11587 * This function returns 1 when there is Error Attention in the Host Attention 11588 * Register and returns 0 otherwise. 11589 **/ 11590 static int 11591 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 11592 { 11593 uint32_t uerr_sta_hi, uerr_sta_lo; 11594 uint32_t if_type, portsmphr; 11595 struct lpfc_register portstat_reg; 11596 11597 /* 11598 * For now, use the SLI4 device internal unrecoverable error 11599 * registers for error attention. This can be changed later. 11600 */ 11601 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 11602 switch (if_type) { 11603 case LPFC_SLI_INTF_IF_TYPE_0: 11604 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 11605 &uerr_sta_lo) || 11606 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 11607 &uerr_sta_hi)) { 11608 phba->work_hs |= UNPLUG_ERR; 11609 phba->work_ha |= HA_ERATT; 11610 phba->hba_flag |= HBA_ERATT_HANDLED; 11611 return 1; 11612 } 11613 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 11614 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 11615 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11616 "1423 HBA Unrecoverable error: " 11617 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 11618 "ue_mask_lo_reg=0x%x, " 11619 "ue_mask_hi_reg=0x%x\n", 11620 uerr_sta_lo, uerr_sta_hi, 11621 phba->sli4_hba.ue_mask_lo, 11622 phba->sli4_hba.ue_mask_hi); 11623 phba->work_status[0] = uerr_sta_lo; 11624 phba->work_status[1] = uerr_sta_hi; 11625 phba->work_ha |= HA_ERATT; 11626 phba->hba_flag |= HBA_ERATT_HANDLED; 11627 return 1; 11628 } 11629 break; 11630 case LPFC_SLI_INTF_IF_TYPE_2: 11631 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 11632 &portstat_reg.word0) || 11633 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 11634 &portsmphr)){ 11635 phba->work_hs |= UNPLUG_ERR; 11636 phba->work_ha |= HA_ERATT; 11637 phba->hba_flag |= HBA_ERATT_HANDLED; 11638 return 1; 11639 } 11640 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 11641 phba->work_status[0] = 11642 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 11643 phba->work_status[1] = 11644 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 11645 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11646 "2885 Port Status Event: " 11647 "port status reg 0x%x, " 11648 "port smphr reg 0x%x, " 11649 "error 1=0x%x, error 2=0x%x\n", 11650 portstat_reg.word0, 11651 portsmphr, 11652 phba->work_status[0], 11653 phba->work_status[1]); 11654 phba->work_ha |= HA_ERATT; 11655 phba->hba_flag |= HBA_ERATT_HANDLED; 11656 return 1; 11657 } 11658 break; 11659 case LPFC_SLI_INTF_IF_TYPE_1: 11660 default: 11661 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11662 "2886 HBA Error Attention on unsupported " 11663 "if type %d.", if_type); 11664 return 1; 11665 } 11666 11667 return 0; 11668 } 11669 11670 /** 11671 * lpfc_sli_check_eratt - check error attention events 11672 * @phba: Pointer to HBA context. 11673 * 11674 * This function is called from timer soft interrupt context to check HBA's 11675 * error attention register bit for error attention events. 11676 * 11677 * This function returns 1 when there is Error Attention in the Host Attention 11678 * Register and returns 0 otherwise. 11679 **/ 11680 int 11681 lpfc_sli_check_eratt(struct lpfc_hba *phba) 11682 { 11683 uint32_t ha_copy; 11684 11685 /* If somebody is waiting to handle an eratt, don't process it 11686 * here. The brdkill function will do this. 11687 */ 11688 if (phba->link_flag & LS_IGNORE_ERATT) 11689 return 0; 11690 11691 /* Check if interrupt handler handles this ERATT */ 11692 spin_lock_irq(&phba->hbalock); 11693 if (phba->hba_flag & HBA_ERATT_HANDLED) { 11694 /* Interrupt handler has handled ERATT */ 11695 spin_unlock_irq(&phba->hbalock); 11696 return 0; 11697 } 11698 11699 /* 11700 * If there is deferred error attention, do not check for error 11701 * attention 11702 */ 11703 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11704 spin_unlock_irq(&phba->hbalock); 11705 return 0; 11706 } 11707 11708 /* If PCI channel is offline, don't process it */ 11709 if (unlikely(pci_channel_offline(phba->pcidev))) { 11710 spin_unlock_irq(&phba->hbalock); 11711 return 0; 11712 } 11713 11714 switch (phba->sli_rev) { 11715 case LPFC_SLI_REV2: 11716 case LPFC_SLI_REV3: 11717 /* Read chip Host Attention (HA) register */ 11718 ha_copy = lpfc_sli_eratt_read(phba); 11719 break; 11720 case LPFC_SLI_REV4: 11721 /* Read device Uncoverable Error (UERR) registers */ 11722 ha_copy = lpfc_sli4_eratt_read(phba); 11723 break; 11724 default: 11725 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11726 "0299 Invalid SLI revision (%d)\n", 11727 phba->sli_rev); 11728 ha_copy = 0; 11729 break; 11730 } 11731 spin_unlock_irq(&phba->hbalock); 11732 11733 return ha_copy; 11734 } 11735 11736 /** 11737 * lpfc_intr_state_check - Check device state for interrupt handling 11738 * @phba: Pointer to HBA context. 11739 * 11740 * This inline routine checks whether a device or its PCI slot is in a state 11741 * that the interrupt should be handled. 11742 * 11743 * This function returns 0 if the device or the PCI slot is in a state that 11744 * interrupt should be handled, otherwise -EIO. 11745 */ 11746 static inline int 11747 lpfc_intr_state_check(struct lpfc_hba *phba) 11748 { 11749 /* If the pci channel is offline, ignore all the interrupts */ 11750 if (unlikely(pci_channel_offline(phba->pcidev))) 11751 return -EIO; 11752 11753 /* Update device level interrupt statistics */ 11754 phba->sli.slistat.sli_intr++; 11755 11756 /* Ignore all interrupts during initialization. */ 11757 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 11758 return -EIO; 11759 11760 return 0; 11761 } 11762 11763 /** 11764 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 11765 * @irq: Interrupt number. 11766 * @dev_id: The device context pointer. 11767 * 11768 * This function is directly called from the PCI layer as an interrupt 11769 * service routine when device with SLI-3 interface spec is enabled with 11770 * MSI-X multi-message interrupt mode and there are slow-path events in 11771 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 11772 * interrupt mode, this function is called as part of the device-level 11773 * interrupt handler. When the PCI slot is in error recovery or the HBA 11774 * is undergoing initialization, the interrupt handler will not process 11775 * the interrupt. The link attention and ELS ring attention events are 11776 * handled by the worker thread. The interrupt handler signals the worker 11777 * thread and returns for these events. This function is called without 11778 * any lock held. It gets the hbalock to access and update SLI data 11779 * structures. 11780 * 11781 * This function returns IRQ_HANDLED when interrupt is handled else it 11782 * returns IRQ_NONE. 11783 **/ 11784 irqreturn_t 11785 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 11786 { 11787 struct lpfc_hba *phba; 11788 uint32_t ha_copy, hc_copy; 11789 uint32_t work_ha_copy; 11790 unsigned long status; 11791 unsigned long iflag; 11792 uint32_t control; 11793 11794 MAILBOX_t *mbox, *pmbox; 11795 struct lpfc_vport *vport; 11796 struct lpfc_nodelist *ndlp; 11797 struct lpfc_dmabuf *mp; 11798 LPFC_MBOXQ_t *pmb; 11799 int rc; 11800 11801 /* 11802 * Get the driver's phba structure from the dev_id and 11803 * assume the HBA is not interrupting. 11804 */ 11805 phba = (struct lpfc_hba *)dev_id; 11806 11807 if (unlikely(!phba)) 11808 return IRQ_NONE; 11809 11810 /* 11811 * Stuff needs to be attented to when this function is invoked as an 11812 * individual interrupt handler in MSI-X multi-message interrupt mode 11813 */ 11814 if (phba->intr_type == MSIX) { 11815 /* Check device state for handling interrupt */ 11816 if (lpfc_intr_state_check(phba)) 11817 return IRQ_NONE; 11818 /* Need to read HA REG for slow-path events */ 11819 spin_lock_irqsave(&phba->hbalock, iflag); 11820 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 11821 goto unplug_error; 11822 /* If somebody is waiting to handle an eratt don't process it 11823 * here. The brdkill function will do this. 11824 */ 11825 if (phba->link_flag & LS_IGNORE_ERATT) 11826 ha_copy &= ~HA_ERATT; 11827 /* Check the need for handling ERATT in interrupt handler */ 11828 if (ha_copy & HA_ERATT) { 11829 if (phba->hba_flag & HBA_ERATT_HANDLED) 11830 /* ERATT polling has handled ERATT */ 11831 ha_copy &= ~HA_ERATT; 11832 else 11833 /* Indicate interrupt handler handles ERATT */ 11834 phba->hba_flag |= HBA_ERATT_HANDLED; 11835 } 11836 11837 /* 11838 * If there is deferred error attention, do not check for any 11839 * interrupt. 11840 */ 11841 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11842 spin_unlock_irqrestore(&phba->hbalock, iflag); 11843 return IRQ_NONE; 11844 } 11845 11846 /* Clear up only attention source related to slow-path */ 11847 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 11848 goto unplug_error; 11849 11850 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 11851 HC_LAINT_ENA | HC_ERINT_ENA), 11852 phba->HCregaddr); 11853 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 11854 phba->HAregaddr); 11855 writel(hc_copy, phba->HCregaddr); 11856 readl(phba->HAregaddr); /* flush */ 11857 spin_unlock_irqrestore(&phba->hbalock, iflag); 11858 } else 11859 ha_copy = phba->ha_copy; 11860 11861 work_ha_copy = ha_copy & phba->work_ha_mask; 11862 11863 if (work_ha_copy) { 11864 if (work_ha_copy & HA_LATT) { 11865 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 11866 /* 11867 * Turn off Link Attention interrupts 11868 * until CLEAR_LA done 11869 */ 11870 spin_lock_irqsave(&phba->hbalock, iflag); 11871 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 11872 if (lpfc_readl(phba->HCregaddr, &control)) 11873 goto unplug_error; 11874 control &= ~HC_LAINT_ENA; 11875 writel(control, phba->HCregaddr); 11876 readl(phba->HCregaddr); /* flush */ 11877 spin_unlock_irqrestore(&phba->hbalock, iflag); 11878 } 11879 else 11880 work_ha_copy &= ~HA_LATT; 11881 } 11882 11883 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 11884 /* 11885 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 11886 * the only slow ring. 11887 */ 11888 status = (work_ha_copy & 11889 (HA_RXMASK << (4*LPFC_ELS_RING))); 11890 status >>= (4*LPFC_ELS_RING); 11891 if (status & HA_RXMASK) { 11892 spin_lock_irqsave(&phba->hbalock, iflag); 11893 if (lpfc_readl(phba->HCregaddr, &control)) 11894 goto unplug_error; 11895 11896 lpfc_debugfs_slow_ring_trc(phba, 11897 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 11898 control, status, 11899 (uint32_t)phba->sli.slistat.sli_intr); 11900 11901 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 11902 lpfc_debugfs_slow_ring_trc(phba, 11903 "ISR Disable ring:" 11904 "pwork:x%x hawork:x%x wait:x%x", 11905 phba->work_ha, work_ha_copy, 11906 (uint32_t)((unsigned long) 11907 &phba->work_waitq)); 11908 11909 control &= 11910 ~(HC_R0INT_ENA << LPFC_ELS_RING); 11911 writel(control, phba->HCregaddr); 11912 readl(phba->HCregaddr); /* flush */ 11913 } 11914 else { 11915 lpfc_debugfs_slow_ring_trc(phba, 11916 "ISR slow ring: pwork:" 11917 "x%x hawork:x%x wait:x%x", 11918 phba->work_ha, work_ha_copy, 11919 (uint32_t)((unsigned long) 11920 &phba->work_waitq)); 11921 } 11922 spin_unlock_irqrestore(&phba->hbalock, iflag); 11923 } 11924 } 11925 spin_lock_irqsave(&phba->hbalock, iflag); 11926 if (work_ha_copy & HA_ERATT) { 11927 if (lpfc_sli_read_hs(phba)) 11928 goto unplug_error; 11929 /* 11930 * Check if there is a deferred error condition 11931 * is active 11932 */ 11933 if ((HS_FFER1 & phba->work_hs) && 11934 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 11935 HS_FFER6 | HS_FFER7 | HS_FFER8) & 11936 phba->work_hs)) { 11937 phba->hba_flag |= DEFER_ERATT; 11938 /* Clear all interrupt enable conditions */ 11939 writel(0, phba->HCregaddr); 11940 readl(phba->HCregaddr); 11941 } 11942 } 11943 11944 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 11945 pmb = phba->sli.mbox_active; 11946 pmbox = &pmb->u.mb; 11947 mbox = phba->mbox; 11948 vport = pmb->vport; 11949 11950 /* First check out the status word */ 11951 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 11952 if (pmbox->mbxOwner != OWN_HOST) { 11953 spin_unlock_irqrestore(&phba->hbalock, iflag); 11954 /* 11955 * Stray Mailbox Interrupt, mbxCommand <cmd> 11956 * mbxStatus <status> 11957 */ 11958 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 11959 LOG_SLI, 11960 "(%d):0304 Stray Mailbox " 11961 "Interrupt mbxCommand x%x " 11962 "mbxStatus x%x\n", 11963 (vport ? vport->vpi : 0), 11964 pmbox->mbxCommand, 11965 pmbox->mbxStatus); 11966 /* clear mailbox attention bit */ 11967 work_ha_copy &= ~HA_MBATT; 11968 } else { 11969 phba->sli.mbox_active = NULL; 11970 spin_unlock_irqrestore(&phba->hbalock, iflag); 11971 phba->last_completion_time = jiffies; 11972 del_timer(&phba->sli.mbox_tmo); 11973 if (pmb->mbox_cmpl) { 11974 lpfc_sli_pcimem_bcopy(mbox, pmbox, 11975 MAILBOX_CMD_SIZE); 11976 if (pmb->out_ext_byte_len && 11977 pmb->context2) 11978 lpfc_sli_pcimem_bcopy( 11979 phba->mbox_ext, 11980 pmb->context2, 11981 pmb->out_ext_byte_len); 11982 } 11983 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 11984 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 11985 11986 lpfc_debugfs_disc_trc(vport, 11987 LPFC_DISC_TRC_MBOX_VPORT, 11988 "MBOX dflt rpi: : " 11989 "status:x%x rpi:x%x", 11990 (uint32_t)pmbox->mbxStatus, 11991 pmbox->un.varWords[0], 0); 11992 11993 if (!pmbox->mbxStatus) { 11994 mp = (struct lpfc_dmabuf *) 11995 (pmb->context1); 11996 ndlp = (struct lpfc_nodelist *) 11997 pmb->context2; 11998 11999 /* Reg_LOGIN of dflt RPI was 12000 * successful. new lets get 12001 * rid of the RPI using the 12002 * same mbox buffer. 12003 */ 12004 lpfc_unreg_login(phba, 12005 vport->vpi, 12006 pmbox->un.varWords[0], 12007 pmb); 12008 pmb->mbox_cmpl = 12009 lpfc_mbx_cmpl_dflt_rpi; 12010 pmb->context1 = mp; 12011 pmb->context2 = ndlp; 12012 pmb->vport = vport; 12013 rc = lpfc_sli_issue_mbox(phba, 12014 pmb, 12015 MBX_NOWAIT); 12016 if (rc != MBX_BUSY) 12017 lpfc_printf_log(phba, 12018 KERN_ERR, 12019 LOG_MBOX | LOG_SLI, 12020 "0350 rc should have" 12021 "been MBX_BUSY\n"); 12022 if (rc != MBX_NOT_FINISHED) 12023 goto send_current_mbox; 12024 } 12025 } 12026 spin_lock_irqsave( 12027 &phba->pport->work_port_lock, 12028 iflag); 12029 phba->pport->work_port_events &= 12030 ~WORKER_MBOX_TMO; 12031 spin_unlock_irqrestore( 12032 &phba->pport->work_port_lock, 12033 iflag); 12034 lpfc_mbox_cmpl_put(phba, pmb); 12035 } 12036 } else 12037 spin_unlock_irqrestore(&phba->hbalock, iflag); 12038 12039 if ((work_ha_copy & HA_MBATT) && 12040 (phba->sli.mbox_active == NULL)) { 12041 send_current_mbox: 12042 /* Process next mailbox command if there is one */ 12043 do { 12044 rc = lpfc_sli_issue_mbox(phba, NULL, 12045 MBX_NOWAIT); 12046 } while (rc == MBX_NOT_FINISHED); 12047 if (rc != MBX_SUCCESS) 12048 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 12049 LOG_SLI, "0349 rc should be " 12050 "MBX_SUCCESS\n"); 12051 } 12052 12053 spin_lock_irqsave(&phba->hbalock, iflag); 12054 phba->work_ha |= work_ha_copy; 12055 spin_unlock_irqrestore(&phba->hbalock, iflag); 12056 lpfc_worker_wake_up(phba); 12057 } 12058 return IRQ_HANDLED; 12059 unplug_error: 12060 spin_unlock_irqrestore(&phba->hbalock, iflag); 12061 return IRQ_HANDLED; 12062 12063 } /* lpfc_sli_sp_intr_handler */ 12064 12065 /** 12066 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 12067 * @irq: Interrupt number. 12068 * @dev_id: The device context pointer. 12069 * 12070 * This function is directly called from the PCI layer as an interrupt 12071 * service routine when device with SLI-3 interface spec is enabled with 12072 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 12073 * ring event in the HBA. However, when the device is enabled with either 12074 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 12075 * device-level interrupt handler. When the PCI slot is in error recovery 12076 * or the HBA is undergoing initialization, the interrupt handler will not 12077 * process the interrupt. The SCSI FCP fast-path ring event are handled in 12078 * the intrrupt context. This function is called without any lock held. 12079 * It gets the hbalock to access and update SLI data structures. 12080 * 12081 * This function returns IRQ_HANDLED when interrupt is handled else it 12082 * returns IRQ_NONE. 12083 **/ 12084 irqreturn_t 12085 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 12086 { 12087 struct lpfc_hba *phba; 12088 uint32_t ha_copy; 12089 unsigned long status; 12090 unsigned long iflag; 12091 struct lpfc_sli_ring *pring; 12092 12093 /* Get the driver's phba structure from the dev_id and 12094 * assume the HBA is not interrupting. 12095 */ 12096 phba = (struct lpfc_hba *) dev_id; 12097 12098 if (unlikely(!phba)) 12099 return IRQ_NONE; 12100 12101 /* 12102 * Stuff needs to be attented to when this function is invoked as an 12103 * individual interrupt handler in MSI-X multi-message interrupt mode 12104 */ 12105 if (phba->intr_type == MSIX) { 12106 /* Check device state for handling interrupt */ 12107 if (lpfc_intr_state_check(phba)) 12108 return IRQ_NONE; 12109 /* Need to read HA REG for FCP ring and other ring events */ 12110 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12111 return IRQ_HANDLED; 12112 /* Clear up only attention source related to fast-path */ 12113 spin_lock_irqsave(&phba->hbalock, iflag); 12114 /* 12115 * If there is deferred error attention, do not check for 12116 * any interrupt. 12117 */ 12118 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12119 spin_unlock_irqrestore(&phba->hbalock, iflag); 12120 return IRQ_NONE; 12121 } 12122 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 12123 phba->HAregaddr); 12124 readl(phba->HAregaddr); /* flush */ 12125 spin_unlock_irqrestore(&phba->hbalock, iflag); 12126 } else 12127 ha_copy = phba->ha_copy; 12128 12129 /* 12130 * Process all events on FCP ring. Take the optimized path for FCP IO. 12131 */ 12132 ha_copy &= ~(phba->work_ha_mask); 12133 12134 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12135 status >>= (4*LPFC_FCP_RING); 12136 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12137 if (status & HA_RXMASK) 12138 lpfc_sli_handle_fast_ring_event(phba, pring, status); 12139 12140 if (phba->cfg_multi_ring_support == 2) { 12141 /* 12142 * Process all events on extra ring. Take the optimized path 12143 * for extra ring IO. 12144 */ 12145 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12146 status >>= (4*LPFC_EXTRA_RING); 12147 if (status & HA_RXMASK) { 12148 lpfc_sli_handle_fast_ring_event(phba, 12149 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 12150 status); 12151 } 12152 } 12153 return IRQ_HANDLED; 12154 } /* lpfc_sli_fp_intr_handler */ 12155 12156 /** 12157 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 12158 * @irq: Interrupt number. 12159 * @dev_id: The device context pointer. 12160 * 12161 * This function is the HBA device-level interrupt handler to device with 12162 * SLI-3 interface spec, called from the PCI layer when either MSI or 12163 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 12164 * requires driver attention. This function invokes the slow-path interrupt 12165 * attention handling function and fast-path interrupt attention handling 12166 * function in turn to process the relevant HBA attention events. This 12167 * function is called without any lock held. It gets the hbalock to access 12168 * and update SLI data structures. 12169 * 12170 * This function returns IRQ_HANDLED when interrupt is handled, else it 12171 * returns IRQ_NONE. 12172 **/ 12173 irqreturn_t 12174 lpfc_sli_intr_handler(int irq, void *dev_id) 12175 { 12176 struct lpfc_hba *phba; 12177 irqreturn_t sp_irq_rc, fp_irq_rc; 12178 unsigned long status1, status2; 12179 uint32_t hc_copy; 12180 12181 /* 12182 * Get the driver's phba structure from the dev_id and 12183 * assume the HBA is not interrupting. 12184 */ 12185 phba = (struct lpfc_hba *) dev_id; 12186 12187 if (unlikely(!phba)) 12188 return IRQ_NONE; 12189 12190 /* Check device state for handling interrupt */ 12191 if (lpfc_intr_state_check(phba)) 12192 return IRQ_NONE; 12193 12194 spin_lock(&phba->hbalock); 12195 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 12196 spin_unlock(&phba->hbalock); 12197 return IRQ_HANDLED; 12198 } 12199 12200 if (unlikely(!phba->ha_copy)) { 12201 spin_unlock(&phba->hbalock); 12202 return IRQ_NONE; 12203 } else if (phba->ha_copy & HA_ERATT) { 12204 if (phba->hba_flag & HBA_ERATT_HANDLED) 12205 /* ERATT polling has handled ERATT */ 12206 phba->ha_copy &= ~HA_ERATT; 12207 else 12208 /* Indicate interrupt handler handles ERATT */ 12209 phba->hba_flag |= HBA_ERATT_HANDLED; 12210 } 12211 12212 /* 12213 * If there is deferred error attention, do not check for any interrupt. 12214 */ 12215 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12216 spin_unlock(&phba->hbalock); 12217 return IRQ_NONE; 12218 } 12219 12220 /* Clear attention sources except link and error attentions */ 12221 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 12222 spin_unlock(&phba->hbalock); 12223 return IRQ_HANDLED; 12224 } 12225 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 12226 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 12227 phba->HCregaddr); 12228 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 12229 writel(hc_copy, phba->HCregaddr); 12230 readl(phba->HAregaddr); /* flush */ 12231 spin_unlock(&phba->hbalock); 12232 12233 /* 12234 * Invokes slow-path host attention interrupt handling as appropriate. 12235 */ 12236 12237 /* status of events with mailbox and link attention */ 12238 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 12239 12240 /* status of events with ELS ring */ 12241 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 12242 status2 >>= (4*LPFC_ELS_RING); 12243 12244 if (status1 || (status2 & HA_RXMASK)) 12245 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 12246 else 12247 sp_irq_rc = IRQ_NONE; 12248 12249 /* 12250 * Invoke fast-path host attention interrupt handling as appropriate. 12251 */ 12252 12253 /* status of events with FCP ring */ 12254 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12255 status1 >>= (4*LPFC_FCP_RING); 12256 12257 /* status of events with extra ring */ 12258 if (phba->cfg_multi_ring_support == 2) { 12259 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12260 status2 >>= (4*LPFC_EXTRA_RING); 12261 } else 12262 status2 = 0; 12263 12264 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 12265 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 12266 else 12267 fp_irq_rc = IRQ_NONE; 12268 12269 /* Return device-level interrupt handling status */ 12270 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 12271 } /* lpfc_sli_intr_handler */ 12272 12273 /** 12274 * lpfc_sli4_fcp_xri_abort_event_proc - Process fcp xri abort event 12275 * @phba: pointer to lpfc hba data structure. 12276 * 12277 * This routine is invoked by the worker thread to process all the pending 12278 * SLI4 FCP abort XRI events. 12279 **/ 12280 void lpfc_sli4_fcp_xri_abort_event_proc(struct lpfc_hba *phba) 12281 { 12282 struct lpfc_cq_event *cq_event; 12283 12284 /* First, declare the fcp xri abort event has been handled */ 12285 spin_lock_irq(&phba->hbalock); 12286 phba->hba_flag &= ~FCP_XRI_ABORT_EVENT; 12287 spin_unlock_irq(&phba->hbalock); 12288 /* Now, handle all the fcp xri abort events */ 12289 while (!list_empty(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue)) { 12290 /* Get the first event from the head of the event queue */ 12291 spin_lock_irq(&phba->hbalock); 12292 list_remove_head(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue, 12293 cq_event, struct lpfc_cq_event, list); 12294 spin_unlock_irq(&phba->hbalock); 12295 /* Notify aborted XRI for FCP work queue */ 12296 lpfc_sli4_fcp_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 12297 /* Free the event processed back to the free pool */ 12298 lpfc_sli4_cq_event_release(phba, cq_event); 12299 } 12300 } 12301 12302 /** 12303 * lpfc_sli4_nvme_xri_abort_event_proc - Process nvme xri abort event 12304 * @phba: pointer to lpfc hba data structure. 12305 * 12306 * This routine is invoked by the worker thread to process all the pending 12307 * SLI4 NVME abort XRI events. 12308 **/ 12309 void lpfc_sli4_nvme_xri_abort_event_proc(struct lpfc_hba *phba) 12310 { 12311 struct lpfc_cq_event *cq_event; 12312 12313 /* First, declare the fcp xri abort event has been handled */ 12314 spin_lock_irq(&phba->hbalock); 12315 phba->hba_flag &= ~NVME_XRI_ABORT_EVENT; 12316 spin_unlock_irq(&phba->hbalock); 12317 /* Now, handle all the fcp xri abort events */ 12318 while (!list_empty(&phba->sli4_hba.sp_nvme_xri_aborted_work_queue)) { 12319 /* Get the first event from the head of the event queue */ 12320 spin_lock_irq(&phba->hbalock); 12321 list_remove_head(&phba->sli4_hba.sp_nvme_xri_aborted_work_queue, 12322 cq_event, struct lpfc_cq_event, list); 12323 spin_unlock_irq(&phba->hbalock); 12324 /* Notify aborted XRI for NVME work queue */ 12325 if (phba->nvmet_support) { 12326 lpfc_sli4_nvmet_xri_aborted(phba, 12327 &cq_event->cqe.wcqe_axri); 12328 } else { 12329 lpfc_sli4_nvme_xri_aborted(phba, 12330 &cq_event->cqe.wcqe_axri); 12331 } 12332 /* Free the event processed back to the free pool */ 12333 lpfc_sli4_cq_event_release(phba, cq_event); 12334 } 12335 } 12336 12337 /** 12338 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 12339 * @phba: pointer to lpfc hba data structure. 12340 * 12341 * This routine is invoked by the worker thread to process all the pending 12342 * SLI4 els abort xri events. 12343 **/ 12344 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 12345 { 12346 struct lpfc_cq_event *cq_event; 12347 12348 /* First, declare the els xri abort event has been handled */ 12349 spin_lock_irq(&phba->hbalock); 12350 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 12351 spin_unlock_irq(&phba->hbalock); 12352 /* Now, handle all the els xri abort events */ 12353 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 12354 /* Get the first event from the head of the event queue */ 12355 spin_lock_irq(&phba->hbalock); 12356 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 12357 cq_event, struct lpfc_cq_event, list); 12358 spin_unlock_irq(&phba->hbalock); 12359 /* Notify aborted XRI for ELS work queue */ 12360 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 12361 /* Free the event processed back to the free pool */ 12362 lpfc_sli4_cq_event_release(phba, cq_event); 12363 } 12364 } 12365 12366 /** 12367 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 12368 * @phba: pointer to lpfc hba data structure 12369 * @pIocbIn: pointer to the rspiocbq 12370 * @pIocbOut: pointer to the cmdiocbq 12371 * @wcqe: pointer to the complete wcqe 12372 * 12373 * This routine transfers the fields of a command iocbq to a response iocbq 12374 * by copying all the IOCB fields from command iocbq and transferring the 12375 * completion status information from the complete wcqe. 12376 **/ 12377 static void 12378 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 12379 struct lpfc_iocbq *pIocbIn, 12380 struct lpfc_iocbq *pIocbOut, 12381 struct lpfc_wcqe_complete *wcqe) 12382 { 12383 int numBdes, i; 12384 unsigned long iflags; 12385 uint32_t status, max_response; 12386 struct lpfc_dmabuf *dmabuf; 12387 struct ulp_bde64 *bpl, bde; 12388 size_t offset = offsetof(struct lpfc_iocbq, iocb); 12389 12390 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 12391 sizeof(struct lpfc_iocbq) - offset); 12392 /* Map WCQE parameters into irspiocb parameters */ 12393 status = bf_get(lpfc_wcqe_c_status, wcqe); 12394 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 12395 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 12396 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 12397 pIocbIn->iocb.un.fcpi.fcpi_parm = 12398 pIocbOut->iocb.un.fcpi.fcpi_parm - 12399 wcqe->total_data_placed; 12400 else 12401 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 12402 else { 12403 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 12404 switch (pIocbOut->iocb.ulpCommand) { 12405 case CMD_ELS_REQUEST64_CR: 12406 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 12407 bpl = (struct ulp_bde64 *)dmabuf->virt; 12408 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 12409 max_response = bde.tus.f.bdeSize; 12410 break; 12411 case CMD_GEN_REQUEST64_CR: 12412 max_response = 0; 12413 if (!pIocbOut->context3) 12414 break; 12415 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 12416 sizeof(struct ulp_bde64); 12417 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 12418 bpl = (struct ulp_bde64 *)dmabuf->virt; 12419 for (i = 0; i < numBdes; i++) { 12420 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 12421 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 12422 max_response += bde.tus.f.bdeSize; 12423 } 12424 break; 12425 default: 12426 max_response = wcqe->total_data_placed; 12427 break; 12428 } 12429 if (max_response < wcqe->total_data_placed) 12430 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 12431 else 12432 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 12433 wcqe->total_data_placed; 12434 } 12435 12436 /* Convert BG errors for completion status */ 12437 if (status == CQE_STATUS_DI_ERROR) { 12438 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 12439 12440 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 12441 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 12442 else 12443 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 12444 12445 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 12446 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 12447 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12448 BGS_GUARD_ERR_MASK; 12449 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 12450 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12451 BGS_APPTAG_ERR_MASK; 12452 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 12453 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12454 BGS_REFTAG_ERR_MASK; 12455 12456 /* Check to see if there was any good data before the error */ 12457 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 12458 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12459 BGS_HI_WATER_MARK_PRESENT_MASK; 12460 pIocbIn->iocb.unsli3.sli3_bg.bghm = 12461 wcqe->total_data_placed; 12462 } 12463 12464 /* 12465 * Set ALL the error bits to indicate we don't know what 12466 * type of error it is. 12467 */ 12468 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 12469 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12470 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 12471 BGS_GUARD_ERR_MASK); 12472 } 12473 12474 /* Pick up HBA exchange busy condition */ 12475 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 12476 spin_lock_irqsave(&phba->hbalock, iflags); 12477 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 12478 spin_unlock_irqrestore(&phba->hbalock, iflags); 12479 } 12480 } 12481 12482 /** 12483 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 12484 * @phba: Pointer to HBA context object. 12485 * @wcqe: Pointer to work-queue completion queue entry. 12486 * 12487 * This routine handles an ELS work-queue completion event and construct 12488 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 12489 * discovery engine to handle. 12490 * 12491 * Return: Pointer to the receive IOCBQ, NULL otherwise. 12492 **/ 12493 static struct lpfc_iocbq * 12494 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 12495 struct lpfc_iocbq *irspiocbq) 12496 { 12497 struct lpfc_sli_ring *pring; 12498 struct lpfc_iocbq *cmdiocbq; 12499 struct lpfc_wcqe_complete *wcqe; 12500 unsigned long iflags; 12501 12502 pring = lpfc_phba_elsring(phba); 12503 12504 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 12505 spin_lock_irqsave(&pring->ring_lock, iflags); 12506 pring->stats.iocb_event++; 12507 /* Look up the ELS command IOCB and create pseudo response IOCB */ 12508 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 12509 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12510 /* Put the iocb back on the txcmplq */ 12511 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 12512 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12513 12514 if (unlikely(!cmdiocbq)) { 12515 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12516 "0386 ELS complete with no corresponding " 12517 "cmdiocb: iotag (%d)\n", 12518 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12519 lpfc_sli_release_iocbq(phba, irspiocbq); 12520 return NULL; 12521 } 12522 12523 /* Fake the irspiocbq and copy necessary response information */ 12524 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 12525 12526 return irspiocbq; 12527 } 12528 12529 /** 12530 * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event 12531 * @phba: Pointer to HBA context object. 12532 * @cqe: Pointer to mailbox completion queue entry. 12533 * 12534 * This routine process a mailbox completion queue entry with asynchrous 12535 * event. 12536 * 12537 * Return: true if work posted to worker thread, otherwise false. 12538 **/ 12539 static bool 12540 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 12541 { 12542 struct lpfc_cq_event *cq_event; 12543 unsigned long iflags; 12544 12545 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12546 "0392 Async Event: word0:x%x, word1:x%x, " 12547 "word2:x%x, word3:x%x\n", mcqe->word0, 12548 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 12549 12550 /* Allocate a new internal CQ_EVENT entry */ 12551 cq_event = lpfc_sli4_cq_event_alloc(phba); 12552 if (!cq_event) { 12553 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12554 "0394 Failed to allocate CQ_EVENT entry\n"); 12555 return false; 12556 } 12557 12558 /* Move the CQE into an asynchronous event entry */ 12559 memcpy(&cq_event->cqe, mcqe, sizeof(struct lpfc_mcqe)); 12560 spin_lock_irqsave(&phba->hbalock, iflags); 12561 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 12562 /* Set the async event flag */ 12563 phba->hba_flag |= ASYNC_EVENT; 12564 spin_unlock_irqrestore(&phba->hbalock, iflags); 12565 12566 return true; 12567 } 12568 12569 /** 12570 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 12571 * @phba: Pointer to HBA context object. 12572 * @cqe: Pointer to mailbox completion queue entry. 12573 * 12574 * This routine process a mailbox completion queue entry with mailbox 12575 * completion event. 12576 * 12577 * Return: true if work posted to worker thread, otherwise false. 12578 **/ 12579 static bool 12580 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 12581 { 12582 uint32_t mcqe_status; 12583 MAILBOX_t *mbox, *pmbox; 12584 struct lpfc_mqe *mqe; 12585 struct lpfc_vport *vport; 12586 struct lpfc_nodelist *ndlp; 12587 struct lpfc_dmabuf *mp; 12588 unsigned long iflags; 12589 LPFC_MBOXQ_t *pmb; 12590 bool workposted = false; 12591 int rc; 12592 12593 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 12594 if (!bf_get(lpfc_trailer_completed, mcqe)) 12595 goto out_no_mqe_complete; 12596 12597 /* Get the reference to the active mbox command */ 12598 spin_lock_irqsave(&phba->hbalock, iflags); 12599 pmb = phba->sli.mbox_active; 12600 if (unlikely(!pmb)) { 12601 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 12602 "1832 No pending MBOX command to handle\n"); 12603 spin_unlock_irqrestore(&phba->hbalock, iflags); 12604 goto out_no_mqe_complete; 12605 } 12606 spin_unlock_irqrestore(&phba->hbalock, iflags); 12607 mqe = &pmb->u.mqe; 12608 pmbox = (MAILBOX_t *)&pmb->u.mqe; 12609 mbox = phba->mbox; 12610 vport = pmb->vport; 12611 12612 /* Reset heartbeat timer */ 12613 phba->last_completion_time = jiffies; 12614 del_timer(&phba->sli.mbox_tmo); 12615 12616 /* Move mbox data to caller's mailbox region, do endian swapping */ 12617 if (pmb->mbox_cmpl && mbox) 12618 lpfc_sli_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 12619 12620 /* 12621 * For mcqe errors, conditionally move a modified error code to 12622 * the mbox so that the error will not be missed. 12623 */ 12624 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 12625 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 12626 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 12627 bf_set(lpfc_mqe_status, mqe, 12628 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 12629 } 12630 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 12631 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 12632 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 12633 "MBOX dflt rpi: status:x%x rpi:x%x", 12634 mcqe_status, 12635 pmbox->un.varWords[0], 0); 12636 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 12637 mp = (struct lpfc_dmabuf *)(pmb->context1); 12638 ndlp = (struct lpfc_nodelist *)pmb->context2; 12639 /* Reg_LOGIN of dflt RPI was successful. Now lets get 12640 * RID of the PPI using the same mbox buffer. 12641 */ 12642 lpfc_unreg_login(phba, vport->vpi, 12643 pmbox->un.varWords[0], pmb); 12644 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 12645 pmb->context1 = mp; 12646 pmb->context2 = ndlp; 12647 pmb->vport = vport; 12648 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 12649 if (rc != MBX_BUSY) 12650 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 12651 LOG_SLI, "0385 rc should " 12652 "have been MBX_BUSY\n"); 12653 if (rc != MBX_NOT_FINISHED) 12654 goto send_current_mbox; 12655 } 12656 } 12657 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 12658 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12659 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 12660 12661 /* There is mailbox completion work to do */ 12662 spin_lock_irqsave(&phba->hbalock, iflags); 12663 __lpfc_mbox_cmpl_put(phba, pmb); 12664 phba->work_ha |= HA_MBATT; 12665 spin_unlock_irqrestore(&phba->hbalock, iflags); 12666 workposted = true; 12667 12668 send_current_mbox: 12669 spin_lock_irqsave(&phba->hbalock, iflags); 12670 /* Release the mailbox command posting token */ 12671 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 12672 /* Setting active mailbox pointer need to be in sync to flag clear */ 12673 phba->sli.mbox_active = NULL; 12674 spin_unlock_irqrestore(&phba->hbalock, iflags); 12675 /* Wake up worker thread to post the next pending mailbox command */ 12676 lpfc_worker_wake_up(phba); 12677 out_no_mqe_complete: 12678 if (bf_get(lpfc_trailer_consumed, mcqe)) 12679 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 12680 return workposted; 12681 } 12682 12683 /** 12684 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 12685 * @phba: Pointer to HBA context object. 12686 * @cqe: Pointer to mailbox completion queue entry. 12687 * 12688 * This routine process a mailbox completion queue entry, it invokes the 12689 * proper mailbox complete handling or asynchrous event handling routine 12690 * according to the MCQE's async bit. 12691 * 12692 * Return: true if work posted to worker thread, otherwise false. 12693 **/ 12694 static bool 12695 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_cqe *cqe) 12696 { 12697 struct lpfc_mcqe mcqe; 12698 bool workposted; 12699 12700 /* Copy the mailbox MCQE and convert endian order as needed */ 12701 lpfc_sli_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 12702 12703 /* Invoke the proper event handling routine */ 12704 if (!bf_get(lpfc_trailer_async, &mcqe)) 12705 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 12706 else 12707 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 12708 return workposted; 12709 } 12710 12711 /** 12712 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 12713 * @phba: Pointer to HBA context object. 12714 * @cq: Pointer to associated CQ 12715 * @wcqe: Pointer to work-queue completion queue entry. 12716 * 12717 * This routine handles an ELS work-queue completion event. 12718 * 12719 * Return: true if work posted to worker thread, otherwise false. 12720 **/ 12721 static bool 12722 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12723 struct lpfc_wcqe_complete *wcqe) 12724 { 12725 struct lpfc_iocbq *irspiocbq; 12726 unsigned long iflags; 12727 struct lpfc_sli_ring *pring = cq->pring; 12728 int txq_cnt = 0; 12729 int txcmplq_cnt = 0; 12730 int fcp_txcmplq_cnt = 0; 12731 12732 /* Get an irspiocbq for later ELS response processing use */ 12733 irspiocbq = lpfc_sli_get_iocbq(phba); 12734 if (!irspiocbq) { 12735 if (!list_empty(&pring->txq)) 12736 txq_cnt++; 12737 if (!list_empty(&pring->txcmplq)) 12738 txcmplq_cnt++; 12739 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12740 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 12741 "fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n", 12742 txq_cnt, phba->iocb_cnt, 12743 fcp_txcmplq_cnt, 12744 txcmplq_cnt); 12745 return false; 12746 } 12747 12748 /* Save off the slow-path queue event for work thread to process */ 12749 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 12750 spin_lock_irqsave(&phba->hbalock, iflags); 12751 list_add_tail(&irspiocbq->cq_event.list, 12752 &phba->sli4_hba.sp_queue_event); 12753 phba->hba_flag |= HBA_SP_QUEUE_EVT; 12754 spin_unlock_irqrestore(&phba->hbalock, iflags); 12755 12756 return true; 12757 } 12758 12759 /** 12760 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 12761 * @phba: Pointer to HBA context object. 12762 * @wcqe: Pointer to work-queue completion queue entry. 12763 * 12764 * This routine handles slow-path WQ entry consumed event by invoking the 12765 * proper WQ release routine to the slow-path WQ. 12766 **/ 12767 static void 12768 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 12769 struct lpfc_wcqe_release *wcqe) 12770 { 12771 /* sanity check on queue memory */ 12772 if (unlikely(!phba->sli4_hba.els_wq)) 12773 return; 12774 /* Check for the slow-path ELS work queue */ 12775 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 12776 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 12777 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 12778 else 12779 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12780 "2579 Slow-path wqe consume event carries " 12781 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 12782 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 12783 phba->sli4_hba.els_wq->queue_id); 12784 } 12785 12786 /** 12787 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 12788 * @phba: Pointer to HBA context object. 12789 * @cq: Pointer to a WQ completion queue. 12790 * @wcqe: Pointer to work-queue completion queue entry. 12791 * 12792 * This routine handles an XRI abort event. 12793 * 12794 * Return: true if work posted to worker thread, otherwise false. 12795 **/ 12796 static bool 12797 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 12798 struct lpfc_queue *cq, 12799 struct sli4_wcqe_xri_aborted *wcqe) 12800 { 12801 bool workposted = false; 12802 struct lpfc_cq_event *cq_event; 12803 unsigned long iflags; 12804 12805 /* Allocate a new internal CQ_EVENT entry */ 12806 cq_event = lpfc_sli4_cq_event_alloc(phba); 12807 if (!cq_event) { 12808 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12809 "0602 Failed to allocate CQ_EVENT entry\n"); 12810 return false; 12811 } 12812 12813 /* Move the CQE into the proper xri abort event list */ 12814 memcpy(&cq_event->cqe, wcqe, sizeof(struct sli4_wcqe_xri_aborted)); 12815 switch (cq->subtype) { 12816 case LPFC_FCP: 12817 spin_lock_irqsave(&phba->hbalock, iflags); 12818 list_add_tail(&cq_event->list, 12819 &phba->sli4_hba.sp_fcp_xri_aborted_work_queue); 12820 /* Set the fcp xri abort event flag */ 12821 phba->hba_flag |= FCP_XRI_ABORT_EVENT; 12822 spin_unlock_irqrestore(&phba->hbalock, iflags); 12823 workposted = true; 12824 break; 12825 case LPFC_ELS: 12826 spin_lock_irqsave(&phba->hbalock, iflags); 12827 list_add_tail(&cq_event->list, 12828 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 12829 /* Set the els xri abort event flag */ 12830 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 12831 spin_unlock_irqrestore(&phba->hbalock, iflags); 12832 workposted = true; 12833 break; 12834 case LPFC_NVME: 12835 spin_lock_irqsave(&phba->hbalock, iflags); 12836 list_add_tail(&cq_event->list, 12837 &phba->sli4_hba.sp_nvme_xri_aborted_work_queue); 12838 /* Set the nvme xri abort event flag */ 12839 phba->hba_flag |= NVME_XRI_ABORT_EVENT; 12840 spin_unlock_irqrestore(&phba->hbalock, iflags); 12841 workposted = true; 12842 break; 12843 default: 12844 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12845 "0603 Invalid CQ subtype %d: " 12846 "%08x %08x %08x %08x\n", 12847 cq->subtype, wcqe->word0, wcqe->parameter, 12848 wcqe->word2, wcqe->word3); 12849 lpfc_sli4_cq_event_release(phba, cq_event); 12850 workposted = false; 12851 break; 12852 } 12853 return workposted; 12854 } 12855 12856 /** 12857 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 12858 * @phba: Pointer to HBA context object. 12859 * @rcqe: Pointer to receive-queue completion queue entry. 12860 * 12861 * This routine process a receive-queue completion queue entry. 12862 * 12863 * Return: true if work posted to worker thread, otherwise false. 12864 **/ 12865 static bool 12866 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 12867 { 12868 bool workposted = false; 12869 struct fc_frame_header *fc_hdr; 12870 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 12871 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 12872 struct lpfc_nvmet_tgtport *tgtp; 12873 struct hbq_dmabuf *dma_buf; 12874 uint32_t status, rq_id; 12875 unsigned long iflags; 12876 12877 /* sanity check on queue memory */ 12878 if (unlikely(!hrq) || unlikely(!drq)) 12879 return workposted; 12880 12881 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 12882 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 12883 else 12884 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 12885 if (rq_id != hrq->queue_id) 12886 goto out; 12887 12888 status = bf_get(lpfc_rcqe_status, rcqe); 12889 switch (status) { 12890 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 12891 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12892 "2537 Receive Frame Truncated!!\n"); 12893 case FC_STATUS_RQ_SUCCESS: 12894 lpfc_sli4_rq_release(hrq, drq); 12895 spin_lock_irqsave(&phba->hbalock, iflags); 12896 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 12897 if (!dma_buf) { 12898 hrq->RQ_no_buf_found++; 12899 spin_unlock_irqrestore(&phba->hbalock, iflags); 12900 goto out; 12901 } 12902 hrq->RQ_rcv_buf++; 12903 hrq->RQ_buf_posted--; 12904 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 12905 12906 /* If a NVME LS event (type 0x28), treat it as Fast path */ 12907 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 12908 12909 /* save off the frame for the word thread to process */ 12910 list_add_tail(&dma_buf->cq_event.list, 12911 &phba->sli4_hba.sp_queue_event); 12912 /* Frame received */ 12913 phba->hba_flag |= HBA_SP_QUEUE_EVT; 12914 spin_unlock_irqrestore(&phba->hbalock, iflags); 12915 workposted = true; 12916 break; 12917 case FC_STATUS_INSUFF_BUF_FRM_DISC: 12918 if (phba->nvmet_support) { 12919 tgtp = phba->targetport->private; 12920 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME, 12921 "6402 RQE Error x%x, posted %d err_cnt " 12922 "%d: %x %x %x\n", 12923 status, hrq->RQ_buf_posted, 12924 hrq->RQ_no_posted_buf, 12925 atomic_read(&tgtp->rcv_fcp_cmd_in), 12926 atomic_read(&tgtp->rcv_fcp_cmd_out), 12927 atomic_read(&tgtp->xmt_fcp_release)); 12928 } 12929 /* fallthrough */ 12930 12931 case FC_STATUS_INSUFF_BUF_NEED_BUF: 12932 hrq->RQ_no_posted_buf++; 12933 /* Post more buffers if possible */ 12934 spin_lock_irqsave(&phba->hbalock, iflags); 12935 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 12936 spin_unlock_irqrestore(&phba->hbalock, iflags); 12937 workposted = true; 12938 break; 12939 } 12940 out: 12941 return workposted; 12942 } 12943 12944 /** 12945 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 12946 * @phba: Pointer to HBA context object. 12947 * @cq: Pointer to the completion queue. 12948 * @wcqe: Pointer to a completion queue entry. 12949 * 12950 * This routine process a slow-path work-queue or receive queue completion queue 12951 * entry. 12952 * 12953 * Return: true if work posted to worker thread, otherwise false. 12954 **/ 12955 static bool 12956 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12957 struct lpfc_cqe *cqe) 12958 { 12959 struct lpfc_cqe cqevt; 12960 bool workposted = false; 12961 12962 /* Copy the work queue CQE and convert endian order if needed */ 12963 lpfc_sli_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 12964 12965 /* Check and process for different type of WCQE and dispatch */ 12966 switch (bf_get(lpfc_cqe_code, &cqevt)) { 12967 case CQE_CODE_COMPL_WQE: 12968 /* Process the WQ/RQ complete event */ 12969 phba->last_completion_time = jiffies; 12970 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 12971 (struct lpfc_wcqe_complete *)&cqevt); 12972 break; 12973 case CQE_CODE_RELEASE_WQE: 12974 /* Process the WQ release event */ 12975 lpfc_sli4_sp_handle_rel_wcqe(phba, 12976 (struct lpfc_wcqe_release *)&cqevt); 12977 break; 12978 case CQE_CODE_XRI_ABORTED: 12979 /* Process the WQ XRI abort event */ 12980 phba->last_completion_time = jiffies; 12981 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 12982 (struct sli4_wcqe_xri_aborted *)&cqevt); 12983 break; 12984 case CQE_CODE_RECEIVE: 12985 case CQE_CODE_RECEIVE_V1: 12986 /* Process the RQ event */ 12987 phba->last_completion_time = jiffies; 12988 workposted = lpfc_sli4_sp_handle_rcqe(phba, 12989 (struct lpfc_rcqe *)&cqevt); 12990 break; 12991 default: 12992 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12993 "0388 Not a valid WCQE code: x%x\n", 12994 bf_get(lpfc_cqe_code, &cqevt)); 12995 break; 12996 } 12997 return workposted; 12998 } 12999 13000 /** 13001 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 13002 * @phba: Pointer to HBA context object. 13003 * @eqe: Pointer to fast-path event queue entry. 13004 * 13005 * This routine process a event queue entry from the slow-path event queue. 13006 * It will check the MajorCode and MinorCode to determine this is for a 13007 * completion event on a completion queue, if not, an error shall be logged 13008 * and just return. Otherwise, it will get to the corresponding completion 13009 * queue and process all the entries on that completion queue, rearm the 13010 * completion queue, and then return. 13011 * 13012 **/ 13013 static int 13014 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 13015 struct lpfc_queue *speq) 13016 { 13017 struct lpfc_queue *cq = NULL, *childq; 13018 struct lpfc_cqe *cqe; 13019 bool workposted = false; 13020 int ecount = 0; 13021 uint16_t cqid; 13022 13023 /* Get the reference to the corresponding CQ */ 13024 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 13025 13026 list_for_each_entry(childq, &speq->child_list, list) { 13027 if (childq->queue_id == cqid) { 13028 cq = childq; 13029 break; 13030 } 13031 } 13032 if (unlikely(!cq)) { 13033 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 13034 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13035 "0365 Slow-path CQ identifier " 13036 "(%d) does not exist\n", cqid); 13037 return 0; 13038 } 13039 13040 /* Save EQ associated with this CQ */ 13041 cq->assoc_qp = speq; 13042 13043 /* Process all the entries to the CQ */ 13044 switch (cq->type) { 13045 case LPFC_MCQ: 13046 while ((cqe = lpfc_sli4_cq_get(cq))) { 13047 workposted |= lpfc_sli4_sp_handle_mcqe(phba, cqe); 13048 if (!(++ecount % cq->entry_repost)) 13049 break; 13050 cq->CQ_mbox++; 13051 } 13052 break; 13053 case LPFC_WCQ: 13054 while ((cqe = lpfc_sli4_cq_get(cq))) { 13055 if ((cq->subtype == LPFC_FCP) || 13056 (cq->subtype == LPFC_NVME)) 13057 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, 13058 cqe); 13059 else 13060 workposted |= lpfc_sli4_sp_handle_cqe(phba, cq, 13061 cqe); 13062 if (!(++ecount % cq->entry_repost)) 13063 break; 13064 } 13065 13066 /* Track the max number of CQEs processed in 1 EQ */ 13067 if (ecount > cq->CQ_max_cqe) 13068 cq->CQ_max_cqe = ecount; 13069 break; 13070 default: 13071 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13072 "0370 Invalid completion queue type (%d)\n", 13073 cq->type); 13074 return 0; 13075 } 13076 13077 /* Catch the no cq entry condition, log an error */ 13078 if (unlikely(ecount == 0)) 13079 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13080 "0371 No entry from the CQ: identifier " 13081 "(x%x), type (%d)\n", cq->queue_id, cq->type); 13082 13083 /* In any case, flash and re-arm the RCQ */ 13084 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 13085 13086 /* wake up worker thread if there are works to be done */ 13087 if (workposted) 13088 lpfc_worker_wake_up(phba); 13089 13090 return ecount; 13091 } 13092 13093 /** 13094 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 13095 * @phba: Pointer to HBA context object. 13096 * @cq: Pointer to associated CQ 13097 * @wcqe: Pointer to work-queue completion queue entry. 13098 * 13099 * This routine process a fast-path work queue completion entry from fast-path 13100 * event queue for FCP command response completion. 13101 **/ 13102 static void 13103 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13104 struct lpfc_wcqe_complete *wcqe) 13105 { 13106 struct lpfc_sli_ring *pring = cq->pring; 13107 struct lpfc_iocbq *cmdiocbq; 13108 struct lpfc_iocbq irspiocbq; 13109 unsigned long iflags; 13110 13111 /* Check for response status */ 13112 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 13113 /* If resource errors reported from HBA, reduce queue 13114 * depth of the SCSI device. 13115 */ 13116 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 13117 IOSTAT_LOCAL_REJECT)) && 13118 ((wcqe->parameter & IOERR_PARAM_MASK) == 13119 IOERR_NO_RESOURCES)) 13120 phba->lpfc_rampdown_queue_depth(phba); 13121 13122 /* Log the error status */ 13123 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13124 "0373 FCP complete error: status=x%x, " 13125 "hw_status=x%x, total_data_specified=%d, " 13126 "parameter=x%x, word3=x%x\n", 13127 bf_get(lpfc_wcqe_c_status, wcqe), 13128 bf_get(lpfc_wcqe_c_hw_status, wcqe), 13129 wcqe->total_data_placed, wcqe->parameter, 13130 wcqe->word3); 13131 } 13132 13133 /* Look up the FCP command IOCB and create pseudo response IOCB */ 13134 spin_lock_irqsave(&pring->ring_lock, iflags); 13135 pring->stats.iocb_event++; 13136 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13137 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13138 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13139 if (unlikely(!cmdiocbq)) { 13140 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13141 "0374 FCP complete with no corresponding " 13142 "cmdiocb: iotag (%d)\n", 13143 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13144 return; 13145 } 13146 13147 if (cq->assoc_qp) 13148 cmdiocbq->isr_timestamp = 13149 cq->assoc_qp->isr_timestamp; 13150 13151 if (cmdiocbq->iocb_cmpl == NULL) { 13152 if (cmdiocbq->wqe_cmpl) { 13153 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 13154 spin_lock_irqsave(&phba->hbalock, iflags); 13155 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 13156 spin_unlock_irqrestore(&phba->hbalock, iflags); 13157 } 13158 13159 /* Pass the cmd_iocb and the wcqe to the upper layer */ 13160 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); 13161 return; 13162 } 13163 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13164 "0375 FCP cmdiocb not callback function " 13165 "iotag: (%d)\n", 13166 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13167 return; 13168 } 13169 13170 /* Fake the irspiocb and copy necessary response information */ 13171 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 13172 13173 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 13174 spin_lock_irqsave(&phba->hbalock, iflags); 13175 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 13176 spin_unlock_irqrestore(&phba->hbalock, iflags); 13177 } 13178 13179 /* Pass the cmd_iocb and the rsp state to the upper layer */ 13180 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 13181 } 13182 13183 /** 13184 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 13185 * @phba: Pointer to HBA context object. 13186 * @cq: Pointer to completion queue. 13187 * @wcqe: Pointer to work-queue completion queue entry. 13188 * 13189 * This routine handles an fast-path WQ entry consumed event by invoking the 13190 * proper WQ release routine to the slow-path WQ. 13191 **/ 13192 static void 13193 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13194 struct lpfc_wcqe_release *wcqe) 13195 { 13196 struct lpfc_queue *childwq; 13197 bool wqid_matched = false; 13198 uint16_t hba_wqid; 13199 13200 /* Check for fast-path FCP work queue release */ 13201 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 13202 list_for_each_entry(childwq, &cq->child_list, list) { 13203 if (childwq->queue_id == hba_wqid) { 13204 lpfc_sli4_wq_release(childwq, 13205 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 13206 wqid_matched = true; 13207 break; 13208 } 13209 } 13210 /* Report warning log message if no match found */ 13211 if (wqid_matched != true) 13212 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13213 "2580 Fast-path wqe consume event carries " 13214 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 13215 } 13216 13217 /** 13218 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 13219 * @phba: Pointer to HBA context object. 13220 * @rcqe: Pointer to receive-queue completion queue entry. 13221 * 13222 * This routine process a receive-queue completion queue entry. 13223 * 13224 * Return: true if work posted to worker thread, otherwise false. 13225 **/ 13226 static bool 13227 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13228 struct lpfc_rcqe *rcqe) 13229 { 13230 bool workposted = false; 13231 struct lpfc_queue *hrq; 13232 struct lpfc_queue *drq; 13233 struct rqb_dmabuf *dma_buf; 13234 struct fc_frame_header *fc_hdr; 13235 struct lpfc_nvmet_tgtport *tgtp; 13236 uint32_t status, rq_id; 13237 unsigned long iflags; 13238 uint32_t fctl, idx; 13239 13240 if ((phba->nvmet_support == 0) || 13241 (phba->sli4_hba.nvmet_cqset == NULL)) 13242 return workposted; 13243 13244 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 13245 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 13246 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 13247 13248 /* sanity check on queue memory */ 13249 if (unlikely(!hrq) || unlikely(!drq)) 13250 return workposted; 13251 13252 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13253 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13254 else 13255 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13256 13257 if ((phba->nvmet_support == 0) || 13258 (rq_id != hrq->queue_id)) 13259 return workposted; 13260 13261 status = bf_get(lpfc_rcqe_status, rcqe); 13262 switch (status) { 13263 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13264 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13265 "6126 Receive Frame Truncated!!\n"); 13266 /* Drop thru */ 13267 case FC_STATUS_RQ_SUCCESS: 13268 lpfc_sli4_rq_release(hrq, drq); 13269 spin_lock_irqsave(&phba->hbalock, iflags); 13270 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 13271 if (!dma_buf) { 13272 hrq->RQ_no_buf_found++; 13273 spin_unlock_irqrestore(&phba->hbalock, iflags); 13274 goto out; 13275 } 13276 spin_unlock_irqrestore(&phba->hbalock, iflags); 13277 hrq->RQ_rcv_buf++; 13278 hrq->RQ_buf_posted--; 13279 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 13280 13281 /* Just some basic sanity checks on FCP Command frame */ 13282 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 13283 fc_hdr->fh_f_ctl[1] << 8 | 13284 fc_hdr->fh_f_ctl[2]); 13285 if (((fctl & 13286 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 13287 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 13288 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 13289 goto drop; 13290 13291 if (fc_hdr->fh_type == FC_TYPE_FCP) { 13292 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 13293 lpfc_nvmet_unsol_fcp_event( 13294 phba, idx, dma_buf, 13295 cq->assoc_qp->isr_timestamp); 13296 return false; 13297 } 13298 drop: 13299 lpfc_in_buf_free(phba, &dma_buf->dbuf); 13300 break; 13301 case FC_STATUS_INSUFF_BUF_FRM_DISC: 13302 if (phba->nvmet_support) { 13303 tgtp = phba->targetport->private; 13304 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME, 13305 "6401 RQE Error x%x, posted %d err_cnt " 13306 "%d: %x %x %x\n", 13307 status, hrq->RQ_buf_posted, 13308 hrq->RQ_no_posted_buf, 13309 atomic_read(&tgtp->rcv_fcp_cmd_in), 13310 atomic_read(&tgtp->rcv_fcp_cmd_out), 13311 atomic_read(&tgtp->xmt_fcp_release)); 13312 } 13313 /* fallthrough */ 13314 13315 case FC_STATUS_INSUFF_BUF_NEED_BUF: 13316 hrq->RQ_no_posted_buf++; 13317 /* Post more buffers if possible */ 13318 break; 13319 } 13320 out: 13321 return workposted; 13322 } 13323 13324 /** 13325 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 13326 * @cq: Pointer to the completion queue. 13327 * @eqe: Pointer to fast-path completion queue entry. 13328 * 13329 * This routine process a fast-path work queue completion entry from fast-path 13330 * event queue for FCP command response completion. 13331 **/ 13332 static int 13333 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13334 struct lpfc_cqe *cqe) 13335 { 13336 struct lpfc_wcqe_release wcqe; 13337 bool workposted = false; 13338 13339 /* Copy the work queue CQE and convert endian order if needed */ 13340 lpfc_sli_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 13341 13342 /* Check and process for different type of WCQE and dispatch */ 13343 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 13344 case CQE_CODE_COMPL_WQE: 13345 case CQE_CODE_NVME_ERSP: 13346 cq->CQ_wq++; 13347 /* Process the WQ complete event */ 13348 phba->last_completion_time = jiffies; 13349 if ((cq->subtype == LPFC_FCP) || (cq->subtype == LPFC_NVME)) 13350 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 13351 (struct lpfc_wcqe_complete *)&wcqe); 13352 if (cq->subtype == LPFC_NVME_LS) 13353 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 13354 (struct lpfc_wcqe_complete *)&wcqe); 13355 break; 13356 case CQE_CODE_RELEASE_WQE: 13357 cq->CQ_release_wqe++; 13358 /* Process the WQ release event */ 13359 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 13360 (struct lpfc_wcqe_release *)&wcqe); 13361 break; 13362 case CQE_CODE_XRI_ABORTED: 13363 cq->CQ_xri_aborted++; 13364 /* Process the WQ XRI abort event */ 13365 phba->last_completion_time = jiffies; 13366 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 13367 (struct sli4_wcqe_xri_aborted *)&wcqe); 13368 break; 13369 case CQE_CODE_RECEIVE_V1: 13370 case CQE_CODE_RECEIVE: 13371 phba->last_completion_time = jiffies; 13372 if (cq->subtype == LPFC_NVMET) { 13373 workposted = lpfc_sli4_nvmet_handle_rcqe( 13374 phba, cq, (struct lpfc_rcqe *)&wcqe); 13375 } 13376 break; 13377 default: 13378 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13379 "0144 Not a valid CQE code: x%x\n", 13380 bf_get(lpfc_wcqe_c_code, &wcqe)); 13381 break; 13382 } 13383 return workposted; 13384 } 13385 13386 /** 13387 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 13388 * @phba: Pointer to HBA context object. 13389 * @eqe: Pointer to fast-path event queue entry. 13390 * 13391 * This routine process a event queue entry from the fast-path event queue. 13392 * It will check the MajorCode and MinorCode to determine this is for a 13393 * completion event on a completion queue, if not, an error shall be logged 13394 * and just return. Otherwise, it will get to the corresponding completion 13395 * queue and process all the entries on the completion queue, rearm the 13396 * completion queue, and then return. 13397 **/ 13398 static int 13399 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 13400 uint32_t qidx) 13401 { 13402 struct lpfc_queue *cq = NULL; 13403 struct lpfc_cqe *cqe; 13404 bool workposted = false; 13405 uint16_t cqid, id; 13406 int ecount = 0; 13407 13408 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 13409 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13410 "0366 Not a valid completion " 13411 "event: majorcode=x%x, minorcode=x%x\n", 13412 bf_get_le32(lpfc_eqe_major_code, eqe), 13413 bf_get_le32(lpfc_eqe_minor_code, eqe)); 13414 return 0; 13415 } 13416 13417 /* Get the reference to the corresponding CQ */ 13418 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 13419 13420 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 13421 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 13422 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 13423 /* Process NVMET unsol rcv */ 13424 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 13425 goto process_cq; 13426 } 13427 } 13428 13429 if (phba->sli4_hba.nvme_cq_map && 13430 (cqid == phba->sli4_hba.nvme_cq_map[qidx])) { 13431 /* Process NVME / NVMET command completion */ 13432 cq = phba->sli4_hba.nvme_cq[qidx]; 13433 goto process_cq; 13434 } 13435 13436 if (phba->sli4_hba.fcp_cq_map && 13437 (cqid == phba->sli4_hba.fcp_cq_map[qidx])) { 13438 /* Process FCP command completion */ 13439 cq = phba->sli4_hba.fcp_cq[qidx]; 13440 goto process_cq; 13441 } 13442 13443 if (phba->sli4_hba.nvmels_cq && 13444 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 13445 /* Process NVME unsol rcv */ 13446 cq = phba->sli4_hba.nvmels_cq; 13447 } 13448 13449 /* Otherwise this is a Slow path event */ 13450 if (cq == NULL) { 13451 ecount = lpfc_sli4_sp_handle_eqe(phba, eqe, 13452 phba->sli4_hba.hba_eq[qidx]); 13453 return ecount; 13454 } 13455 13456 process_cq: 13457 if (unlikely(cqid != cq->queue_id)) { 13458 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13459 "0368 Miss-matched fast-path completion " 13460 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 13461 cqid, cq->queue_id); 13462 return 0; 13463 } 13464 13465 /* Save EQ associated with this CQ */ 13466 cq->assoc_qp = phba->sli4_hba.hba_eq[qidx]; 13467 13468 /* Process all the entries to the CQ */ 13469 while ((cqe = lpfc_sli4_cq_get(cq))) { 13470 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, cqe); 13471 if (!(++ecount % cq->entry_repost)) 13472 break; 13473 } 13474 13475 /* Track the max number of CQEs processed in 1 EQ */ 13476 if (ecount > cq->CQ_max_cqe) 13477 cq->CQ_max_cqe = ecount; 13478 cq->assoc_qp->EQ_cqe_cnt += ecount; 13479 13480 /* Catch the no cq entry condition */ 13481 if (unlikely(ecount == 0)) 13482 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13483 "0369 No entry from fast-path completion " 13484 "queue fcpcqid=%d\n", cq->queue_id); 13485 13486 /* In any case, flash and re-arm the CQ */ 13487 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 13488 13489 /* wake up worker thread if there are works to be done */ 13490 if (workposted) 13491 lpfc_worker_wake_up(phba); 13492 13493 return ecount; 13494 } 13495 13496 static void 13497 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 13498 { 13499 struct lpfc_eqe *eqe; 13500 13501 /* walk all the EQ entries and drop on the floor */ 13502 while ((eqe = lpfc_sli4_eq_get(eq))) 13503 ; 13504 13505 /* Clear and re-arm the EQ */ 13506 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM); 13507 } 13508 13509 13510 /** 13511 * lpfc_sli4_fof_handle_eqe - Process a Flash Optimized Fabric event queue 13512 * entry 13513 * @phba: Pointer to HBA context object. 13514 * @eqe: Pointer to fast-path event queue entry. 13515 * 13516 * This routine process a event queue entry from the Flash Optimized Fabric 13517 * event queue. It will check the MajorCode and MinorCode to determine this 13518 * is for a completion event on a completion queue, if not, an error shall be 13519 * logged and just return. Otherwise, it will get to the corresponding 13520 * completion queue and process all the entries on the completion queue, rearm 13521 * the completion queue, and then return. 13522 **/ 13523 static void 13524 lpfc_sli4_fof_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe) 13525 { 13526 struct lpfc_queue *cq; 13527 struct lpfc_cqe *cqe; 13528 bool workposted = false; 13529 uint16_t cqid; 13530 int ecount = 0; 13531 13532 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 13533 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13534 "9147 Not a valid completion " 13535 "event: majorcode=x%x, minorcode=x%x\n", 13536 bf_get_le32(lpfc_eqe_major_code, eqe), 13537 bf_get_le32(lpfc_eqe_minor_code, eqe)); 13538 return; 13539 } 13540 13541 /* Get the reference to the corresponding CQ */ 13542 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 13543 13544 /* Next check for OAS */ 13545 cq = phba->sli4_hba.oas_cq; 13546 if (unlikely(!cq)) { 13547 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 13548 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13549 "9148 OAS completion queue " 13550 "does not exist\n"); 13551 return; 13552 } 13553 13554 if (unlikely(cqid != cq->queue_id)) { 13555 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13556 "9149 Miss-matched fast-path compl " 13557 "queue id: eqcqid=%d, fcpcqid=%d\n", 13558 cqid, cq->queue_id); 13559 return; 13560 } 13561 13562 /* Save EQ associated with this CQ */ 13563 cq->assoc_qp = phba->sli4_hba.fof_eq; 13564 13565 /* Process all the entries to the OAS CQ */ 13566 while ((cqe = lpfc_sli4_cq_get(cq))) { 13567 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, cqe); 13568 if (!(++ecount % cq->entry_repost)) 13569 break; 13570 } 13571 13572 /* Track the max number of CQEs processed in 1 EQ */ 13573 if (ecount > cq->CQ_max_cqe) 13574 cq->CQ_max_cqe = ecount; 13575 cq->assoc_qp->EQ_cqe_cnt += ecount; 13576 13577 /* Catch the no cq entry condition */ 13578 if (unlikely(ecount == 0)) 13579 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13580 "9153 No entry from fast-path completion " 13581 "queue fcpcqid=%d\n", cq->queue_id); 13582 13583 /* In any case, flash and re-arm the CQ */ 13584 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 13585 13586 /* wake up worker thread if there are works to be done */ 13587 if (workposted) 13588 lpfc_worker_wake_up(phba); 13589 } 13590 13591 /** 13592 * lpfc_sli4_fof_intr_handler - HBA interrupt handler to SLI-4 device 13593 * @irq: Interrupt number. 13594 * @dev_id: The device context pointer. 13595 * 13596 * This function is directly called from the PCI layer as an interrupt 13597 * service routine when device with SLI-4 interface spec is enabled with 13598 * MSI-X multi-message interrupt mode and there is a Flash Optimized Fabric 13599 * IOCB ring event in the HBA. However, when the device is enabled with either 13600 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13601 * device-level interrupt handler. When the PCI slot is in error recovery 13602 * or the HBA is undergoing initialization, the interrupt handler will not 13603 * process the interrupt. The Flash Optimized Fabric ring event are handled in 13604 * the intrrupt context. This function is called without any lock held. 13605 * It gets the hbalock to access and update SLI data structures. Note that, 13606 * the EQ to CQ are one-to-one map such that the EQ index is 13607 * equal to that of CQ index. 13608 * 13609 * This function returns IRQ_HANDLED when interrupt is handled else it 13610 * returns IRQ_NONE. 13611 **/ 13612 irqreturn_t 13613 lpfc_sli4_fof_intr_handler(int irq, void *dev_id) 13614 { 13615 struct lpfc_hba *phba; 13616 struct lpfc_hba_eq_hdl *hba_eq_hdl; 13617 struct lpfc_queue *eq; 13618 struct lpfc_eqe *eqe; 13619 unsigned long iflag; 13620 int ecount = 0; 13621 13622 /* Get the driver's phba structure from the dev_id */ 13623 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 13624 phba = hba_eq_hdl->phba; 13625 13626 if (unlikely(!phba)) 13627 return IRQ_NONE; 13628 13629 /* Get to the EQ struct associated with this vector */ 13630 eq = phba->sli4_hba.fof_eq; 13631 if (unlikely(!eq)) 13632 return IRQ_NONE; 13633 13634 /* Check device state for handling interrupt */ 13635 if (unlikely(lpfc_intr_state_check(phba))) { 13636 /* Check again for link_state with lock held */ 13637 spin_lock_irqsave(&phba->hbalock, iflag); 13638 if (phba->link_state < LPFC_LINK_DOWN) 13639 /* Flush, clear interrupt, and rearm the EQ */ 13640 lpfc_sli4_eq_flush(phba, eq); 13641 spin_unlock_irqrestore(&phba->hbalock, iflag); 13642 return IRQ_NONE; 13643 } 13644 13645 /* 13646 * Process all the event on FCP fast-path EQ 13647 */ 13648 while ((eqe = lpfc_sli4_eq_get(eq))) { 13649 lpfc_sli4_fof_handle_eqe(phba, eqe); 13650 if (!(++ecount % eq->entry_repost)) 13651 break; 13652 eq->EQ_processed++; 13653 } 13654 13655 /* Track the max number of EQEs processed in 1 intr */ 13656 if (ecount > eq->EQ_max_eqe) 13657 eq->EQ_max_eqe = ecount; 13658 13659 13660 if (unlikely(ecount == 0)) { 13661 eq->EQ_no_entry++; 13662 13663 if (phba->intr_type == MSIX) 13664 /* MSI-X treated interrupt served as no EQ share INT */ 13665 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13666 "9145 MSI-X interrupt with no EQE\n"); 13667 else { 13668 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13669 "9146 ISR interrupt with no EQE\n"); 13670 /* Non MSI-X treated on interrupt as EQ share INT */ 13671 return IRQ_NONE; 13672 } 13673 } 13674 /* Always clear and re-arm the fast-path EQ */ 13675 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM); 13676 return IRQ_HANDLED; 13677 } 13678 13679 /** 13680 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 13681 * @irq: Interrupt number. 13682 * @dev_id: The device context pointer. 13683 * 13684 * This function is directly called from the PCI layer as an interrupt 13685 * service routine when device with SLI-4 interface spec is enabled with 13686 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13687 * ring event in the HBA. However, when the device is enabled with either 13688 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13689 * device-level interrupt handler. When the PCI slot is in error recovery 13690 * or the HBA is undergoing initialization, the interrupt handler will not 13691 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13692 * the intrrupt context. This function is called without any lock held. 13693 * It gets the hbalock to access and update SLI data structures. Note that, 13694 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 13695 * equal to that of FCP CQ index. 13696 * 13697 * The link attention and ELS ring attention events are handled 13698 * by the worker thread. The interrupt handler signals the worker thread 13699 * and returns for these events. This function is called without any lock 13700 * held. It gets the hbalock to access and update SLI data structures. 13701 * 13702 * This function returns IRQ_HANDLED when interrupt is handled else it 13703 * returns IRQ_NONE. 13704 **/ 13705 irqreturn_t 13706 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 13707 { 13708 struct lpfc_hba *phba; 13709 struct lpfc_hba_eq_hdl *hba_eq_hdl; 13710 struct lpfc_queue *fpeq; 13711 struct lpfc_eqe *eqe; 13712 unsigned long iflag; 13713 int ecount = 0; 13714 int ccount = 0; 13715 int hba_eqidx; 13716 13717 /* Get the driver's phba structure from the dev_id */ 13718 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 13719 phba = hba_eq_hdl->phba; 13720 hba_eqidx = hba_eq_hdl->idx; 13721 13722 if (unlikely(!phba)) 13723 return IRQ_NONE; 13724 if (unlikely(!phba->sli4_hba.hba_eq)) 13725 return IRQ_NONE; 13726 13727 /* Get to the EQ struct associated with this vector */ 13728 fpeq = phba->sli4_hba.hba_eq[hba_eqidx]; 13729 if (unlikely(!fpeq)) 13730 return IRQ_NONE; 13731 13732 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 13733 if (phba->ktime_on) 13734 fpeq->isr_timestamp = ktime_get_ns(); 13735 #endif 13736 13737 if (lpfc_fcp_look_ahead) { 13738 if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use)) 13739 lpfc_sli4_eq_clr_intr(fpeq); 13740 else { 13741 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 13742 return IRQ_NONE; 13743 } 13744 } 13745 13746 /* Check device state for handling interrupt */ 13747 if (unlikely(lpfc_intr_state_check(phba))) { 13748 /* Check again for link_state with lock held */ 13749 spin_lock_irqsave(&phba->hbalock, iflag); 13750 if (phba->link_state < LPFC_LINK_DOWN) 13751 /* Flush, clear interrupt, and rearm the EQ */ 13752 lpfc_sli4_eq_flush(phba, fpeq); 13753 spin_unlock_irqrestore(&phba->hbalock, iflag); 13754 if (lpfc_fcp_look_ahead) 13755 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 13756 return IRQ_NONE; 13757 } 13758 13759 /* 13760 * Process all the event on FCP fast-path EQ 13761 */ 13762 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 13763 if (eqe == NULL) 13764 break; 13765 13766 ccount += lpfc_sli4_hba_handle_eqe(phba, eqe, hba_eqidx); 13767 if (!(++ecount % fpeq->entry_repost) || 13768 ccount > LPFC_MAX_ISR_CQE) 13769 break; 13770 fpeq->EQ_processed++; 13771 } 13772 13773 /* Track the max number of EQEs processed in 1 intr */ 13774 if (ecount > fpeq->EQ_max_eqe) 13775 fpeq->EQ_max_eqe = ecount; 13776 13777 /* Always clear and re-arm the fast-path EQ */ 13778 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 13779 13780 if (unlikely(ecount == 0)) { 13781 fpeq->EQ_no_entry++; 13782 13783 if (lpfc_fcp_look_ahead) { 13784 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 13785 return IRQ_NONE; 13786 } 13787 13788 if (phba->intr_type == MSIX) 13789 /* MSI-X treated interrupt served as no EQ share INT */ 13790 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13791 "0358 MSI-X interrupt with no EQE\n"); 13792 else 13793 /* Non MSI-X treated on interrupt as EQ share INT */ 13794 return IRQ_NONE; 13795 } 13796 13797 if (lpfc_fcp_look_ahead) 13798 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 13799 13800 return IRQ_HANDLED; 13801 } /* lpfc_sli4_fp_intr_handler */ 13802 13803 /** 13804 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 13805 * @irq: Interrupt number. 13806 * @dev_id: The device context pointer. 13807 * 13808 * This function is the device-level interrupt handler to device with SLI-4 13809 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 13810 * interrupt mode is enabled and there is an event in the HBA which requires 13811 * driver attention. This function invokes the slow-path interrupt attention 13812 * handling function and fast-path interrupt attention handling function in 13813 * turn to process the relevant HBA attention events. This function is called 13814 * without any lock held. It gets the hbalock to access and update SLI data 13815 * structures. 13816 * 13817 * This function returns IRQ_HANDLED when interrupt is handled, else it 13818 * returns IRQ_NONE. 13819 **/ 13820 irqreturn_t 13821 lpfc_sli4_intr_handler(int irq, void *dev_id) 13822 { 13823 struct lpfc_hba *phba; 13824 irqreturn_t hba_irq_rc; 13825 bool hba_handled = false; 13826 int qidx; 13827 13828 /* Get the driver's phba structure from the dev_id */ 13829 phba = (struct lpfc_hba *)dev_id; 13830 13831 if (unlikely(!phba)) 13832 return IRQ_NONE; 13833 13834 /* 13835 * Invoke fast-path host attention interrupt handling as appropriate. 13836 */ 13837 for (qidx = 0; qidx < phba->io_channel_irqs; qidx++) { 13838 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 13839 &phba->sli4_hba.hba_eq_hdl[qidx]); 13840 if (hba_irq_rc == IRQ_HANDLED) 13841 hba_handled |= true; 13842 } 13843 13844 if (phba->cfg_fof) { 13845 hba_irq_rc = lpfc_sli4_fof_intr_handler(irq, 13846 &phba->sli4_hba.hba_eq_hdl[qidx]); 13847 if (hba_irq_rc == IRQ_HANDLED) 13848 hba_handled |= true; 13849 } 13850 13851 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 13852 } /* lpfc_sli4_intr_handler */ 13853 13854 /** 13855 * lpfc_sli4_queue_free - free a queue structure and associated memory 13856 * @queue: The queue structure to free. 13857 * 13858 * This function frees a queue structure and the DMAable memory used for 13859 * the host resident queue. This function must be called after destroying the 13860 * queue on the HBA. 13861 **/ 13862 void 13863 lpfc_sli4_queue_free(struct lpfc_queue *queue) 13864 { 13865 struct lpfc_dmabuf *dmabuf; 13866 13867 if (!queue) 13868 return; 13869 13870 while (!list_empty(&queue->page_list)) { 13871 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 13872 list); 13873 dma_free_coherent(&queue->phba->pcidev->dev, SLI4_PAGE_SIZE, 13874 dmabuf->virt, dmabuf->phys); 13875 kfree(dmabuf); 13876 } 13877 if (queue->rqbp) { 13878 lpfc_free_rq_buffer(queue->phba, queue); 13879 kfree(queue->rqbp); 13880 } 13881 13882 if (!list_empty(&queue->wq_list)) 13883 list_del(&queue->wq_list); 13884 13885 kfree(queue); 13886 return; 13887 } 13888 13889 /** 13890 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 13891 * @phba: The HBA that this queue is being created on. 13892 * @entry_size: The size of each queue entry for this queue. 13893 * @entry count: The number of entries that this queue will handle. 13894 * 13895 * This function allocates a queue structure and the DMAable memory used for 13896 * the host resident queue. This function must be called before creating the 13897 * queue on the HBA. 13898 **/ 13899 struct lpfc_queue * 13900 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t entry_size, 13901 uint32_t entry_count) 13902 { 13903 struct lpfc_queue *queue; 13904 struct lpfc_dmabuf *dmabuf; 13905 int x, total_qe_count; 13906 void *dma_pointer; 13907 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13908 13909 if (!phba->sli4_hba.pc_sli4_params.supported) 13910 hw_page_size = SLI4_PAGE_SIZE; 13911 13912 queue = kzalloc(sizeof(struct lpfc_queue) + 13913 (sizeof(union sli4_qe) * entry_count), GFP_KERNEL); 13914 if (!queue) 13915 return NULL; 13916 queue->page_count = (ALIGN(entry_size * entry_count, 13917 hw_page_size))/hw_page_size; 13918 13919 /* If needed, Adjust page count to match the max the adapter supports */ 13920 if (queue->page_count > phba->sli4_hba.pc_sli4_params.wqpcnt) 13921 queue->page_count = phba->sli4_hba.pc_sli4_params.wqpcnt; 13922 13923 INIT_LIST_HEAD(&queue->list); 13924 INIT_LIST_HEAD(&queue->wq_list); 13925 INIT_LIST_HEAD(&queue->page_list); 13926 INIT_LIST_HEAD(&queue->child_list); 13927 for (x = 0, total_qe_count = 0; x < queue->page_count; x++) { 13928 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 13929 if (!dmabuf) 13930 goto out_fail; 13931 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, 13932 hw_page_size, &dmabuf->phys, 13933 GFP_KERNEL); 13934 if (!dmabuf->virt) { 13935 kfree(dmabuf); 13936 goto out_fail; 13937 } 13938 dmabuf->buffer_tag = x; 13939 list_add_tail(&dmabuf->list, &queue->page_list); 13940 /* initialize queue's entry array */ 13941 dma_pointer = dmabuf->virt; 13942 for (; total_qe_count < entry_count && 13943 dma_pointer < (hw_page_size + dmabuf->virt); 13944 total_qe_count++, dma_pointer += entry_size) { 13945 queue->qe[total_qe_count].address = dma_pointer; 13946 } 13947 } 13948 queue->entry_size = entry_size; 13949 queue->entry_count = entry_count; 13950 queue->phba = phba; 13951 13952 /* entry_repost will be set during q creation */ 13953 13954 return queue; 13955 out_fail: 13956 lpfc_sli4_queue_free(queue); 13957 return NULL; 13958 } 13959 13960 /** 13961 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 13962 * @phba: HBA structure that indicates port to create a queue on. 13963 * @pci_barset: PCI BAR set flag. 13964 * 13965 * This function shall perform iomap of the specified PCI BAR address to host 13966 * memory address if not already done so and return it. The returned host 13967 * memory address can be NULL. 13968 */ 13969 static void __iomem * 13970 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 13971 { 13972 if (!phba->pcidev) 13973 return NULL; 13974 13975 switch (pci_barset) { 13976 case WQ_PCI_BAR_0_AND_1: 13977 return phba->pci_bar0_memmap_p; 13978 case WQ_PCI_BAR_2_AND_3: 13979 return phba->pci_bar2_memmap_p; 13980 case WQ_PCI_BAR_4_AND_5: 13981 return phba->pci_bar4_memmap_p; 13982 default: 13983 break; 13984 } 13985 return NULL; 13986 } 13987 13988 /** 13989 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on FCP EQs 13990 * @phba: HBA structure that indicates port to create a queue on. 13991 * @startq: The starting FCP EQ to modify 13992 * 13993 * This function sends an MODIFY_EQ_DELAY mailbox command to the HBA. 13994 * The command allows up to LPFC_MAX_EQ_DELAY_EQID_CNT EQ ID's to be 13995 * updated in one mailbox command. 13996 * 13997 * The @phba struct is used to send mailbox command to HBA. The @startq 13998 * is used to get the starting FCP EQ to change. 13999 * This function is asynchronous and will wait for the mailbox 14000 * command to finish before continuing. 14001 * 14002 * On success this function will return a zero. If unable to allocate enough 14003 * memory this function will return -ENOMEM. If the queue create mailbox command 14004 * fails this function will return -ENXIO. 14005 **/ 14006 int 14007 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 14008 uint32_t numq, uint32_t imax) 14009 { 14010 struct lpfc_mbx_modify_eq_delay *eq_delay; 14011 LPFC_MBOXQ_t *mbox; 14012 struct lpfc_queue *eq; 14013 int cnt, rc, length, status = 0; 14014 uint32_t shdr_status, shdr_add_status; 14015 uint32_t result, val; 14016 int qidx; 14017 union lpfc_sli4_cfg_shdr *shdr; 14018 uint16_t dmult; 14019 14020 if (startq >= phba->io_channel_irqs) 14021 return 0; 14022 14023 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14024 if (!mbox) 14025 return -ENOMEM; 14026 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 14027 sizeof(struct lpfc_sli4_cfg_mhdr)); 14028 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14029 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 14030 length, LPFC_SLI4_MBX_EMBED); 14031 eq_delay = &mbox->u.mqe.un.eq_delay; 14032 14033 /* Calculate delay multiper from maximum interrupt per second */ 14034 result = imax / phba->io_channel_irqs; 14035 if (result > LPFC_DMULT_CONST || result == 0) 14036 dmult = 0; 14037 else 14038 dmult = LPFC_DMULT_CONST/result - 1; 14039 if (dmult > LPFC_DMULT_MAX) 14040 dmult = LPFC_DMULT_MAX; 14041 14042 cnt = 0; 14043 for (qidx = startq; qidx < phba->io_channel_irqs; qidx++) { 14044 eq = phba->sli4_hba.hba_eq[qidx]; 14045 if (!eq) 14046 continue; 14047 eq->q_mode = imax; 14048 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 14049 eq_delay->u.request.eq[cnt].phase = 0; 14050 eq_delay->u.request.eq[cnt].delay_multi = dmult; 14051 cnt++; 14052 14053 /* q_mode is only used for auto_imax */ 14054 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 14055 /* Use EQ Delay Register method for q_mode */ 14056 14057 /* Convert for EQ Delay register */ 14058 val = phba->cfg_fcp_imax; 14059 if (val) { 14060 /* First, interrupts per sec per EQ */ 14061 val = phba->cfg_fcp_imax / 14062 phba->io_channel_irqs; 14063 14064 /* us delay between each interrupt */ 14065 val = LPFC_SEC_TO_USEC / val; 14066 } 14067 eq->q_mode = val; 14068 } else { 14069 eq->q_mode = imax; 14070 } 14071 14072 if (cnt >= numq) 14073 break; 14074 } 14075 eq_delay->u.request.num_eq = cnt; 14076 14077 mbox->vport = phba->pport; 14078 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14079 mbox->context1 = NULL; 14080 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14081 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 14082 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14083 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14084 if (shdr_status || shdr_add_status || rc) { 14085 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14086 "2512 MODIFY_EQ_DELAY mailbox failed with " 14087 "status x%x add_status x%x, mbx status x%x\n", 14088 shdr_status, shdr_add_status, rc); 14089 status = -ENXIO; 14090 } 14091 mempool_free(mbox, phba->mbox_mem_pool); 14092 return status; 14093 } 14094 14095 /** 14096 * lpfc_eq_create - Create an Event Queue on the HBA 14097 * @phba: HBA structure that indicates port to create a queue on. 14098 * @eq: The queue structure to use to create the event queue. 14099 * @imax: The maximum interrupt per second limit. 14100 * 14101 * This function creates an event queue, as detailed in @eq, on a port, 14102 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 14103 * 14104 * The @phba struct is used to send mailbox command to HBA. The @eq struct 14105 * is used to get the entry count and entry size that are necessary to 14106 * determine the number of pages to allocate and use for this queue. This 14107 * function will send the EQ_CREATE mailbox command to the HBA to setup the 14108 * event queue. This function is asynchronous and will wait for the mailbox 14109 * command to finish before continuing. 14110 * 14111 * On success this function will return a zero. If unable to allocate enough 14112 * memory this function will return -ENOMEM. If the queue create mailbox command 14113 * fails this function will return -ENXIO. 14114 **/ 14115 int 14116 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 14117 { 14118 struct lpfc_mbx_eq_create *eq_create; 14119 LPFC_MBOXQ_t *mbox; 14120 int rc, length, status = 0; 14121 struct lpfc_dmabuf *dmabuf; 14122 uint32_t shdr_status, shdr_add_status; 14123 union lpfc_sli4_cfg_shdr *shdr; 14124 uint16_t dmult; 14125 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14126 14127 /* sanity check on queue memory */ 14128 if (!eq) 14129 return -ENODEV; 14130 if (!phba->sli4_hba.pc_sli4_params.supported) 14131 hw_page_size = SLI4_PAGE_SIZE; 14132 14133 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14134 if (!mbox) 14135 return -ENOMEM; 14136 length = (sizeof(struct lpfc_mbx_eq_create) - 14137 sizeof(struct lpfc_sli4_cfg_mhdr)); 14138 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14139 LPFC_MBOX_OPCODE_EQ_CREATE, 14140 length, LPFC_SLI4_MBX_EMBED); 14141 eq_create = &mbox->u.mqe.un.eq_create; 14142 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 14143 eq->page_count); 14144 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 14145 LPFC_EQE_SIZE); 14146 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 14147 /* don't setup delay multiplier using EQ_CREATE */ 14148 dmult = 0; 14149 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 14150 dmult); 14151 switch (eq->entry_count) { 14152 default: 14153 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14154 "0360 Unsupported EQ count. (%d)\n", 14155 eq->entry_count); 14156 if (eq->entry_count < 256) 14157 return -EINVAL; 14158 /* otherwise default to smallest count (drop through) */ 14159 case 256: 14160 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14161 LPFC_EQ_CNT_256); 14162 break; 14163 case 512: 14164 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14165 LPFC_EQ_CNT_512); 14166 break; 14167 case 1024: 14168 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14169 LPFC_EQ_CNT_1024); 14170 break; 14171 case 2048: 14172 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14173 LPFC_EQ_CNT_2048); 14174 break; 14175 case 4096: 14176 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14177 LPFC_EQ_CNT_4096); 14178 break; 14179 } 14180 list_for_each_entry(dmabuf, &eq->page_list, list) { 14181 memset(dmabuf->virt, 0, hw_page_size); 14182 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14183 putPaddrLow(dmabuf->phys); 14184 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14185 putPaddrHigh(dmabuf->phys); 14186 } 14187 mbox->vport = phba->pport; 14188 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14189 mbox->context1 = NULL; 14190 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14191 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 14192 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14193 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14194 if (shdr_status || shdr_add_status || rc) { 14195 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14196 "2500 EQ_CREATE mailbox failed with " 14197 "status x%x add_status x%x, mbx status x%x\n", 14198 shdr_status, shdr_add_status, rc); 14199 status = -ENXIO; 14200 } 14201 eq->type = LPFC_EQ; 14202 eq->subtype = LPFC_NONE; 14203 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 14204 if (eq->queue_id == 0xFFFF) 14205 status = -ENXIO; 14206 eq->host_index = 0; 14207 eq->hba_index = 0; 14208 eq->entry_repost = LPFC_EQ_REPOST; 14209 14210 mempool_free(mbox, phba->mbox_mem_pool); 14211 return status; 14212 } 14213 14214 /** 14215 * lpfc_cq_create - Create a Completion Queue on the HBA 14216 * @phba: HBA structure that indicates port to create a queue on. 14217 * @cq: The queue structure to use to create the completion queue. 14218 * @eq: The event queue to bind this completion queue to. 14219 * 14220 * This function creates a completion queue, as detailed in @wq, on a port, 14221 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 14222 * 14223 * The @phba struct is used to send mailbox command to HBA. The @cq struct 14224 * is used to get the entry count and entry size that are necessary to 14225 * determine the number of pages to allocate and use for this queue. The @eq 14226 * is used to indicate which event queue to bind this completion queue to. This 14227 * function will send the CQ_CREATE mailbox command to the HBA to setup the 14228 * completion queue. This function is asynchronous and will wait for the mailbox 14229 * command to finish before continuing. 14230 * 14231 * On success this function will return a zero. If unable to allocate enough 14232 * memory this function will return -ENOMEM. If the queue create mailbox command 14233 * fails this function will return -ENXIO. 14234 **/ 14235 int 14236 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 14237 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 14238 { 14239 struct lpfc_mbx_cq_create *cq_create; 14240 struct lpfc_dmabuf *dmabuf; 14241 LPFC_MBOXQ_t *mbox; 14242 int rc, length, status = 0; 14243 uint32_t shdr_status, shdr_add_status; 14244 union lpfc_sli4_cfg_shdr *shdr; 14245 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14246 14247 /* sanity check on queue memory */ 14248 if (!cq || !eq) 14249 return -ENODEV; 14250 if (!phba->sli4_hba.pc_sli4_params.supported) 14251 hw_page_size = SLI4_PAGE_SIZE; 14252 14253 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14254 if (!mbox) 14255 return -ENOMEM; 14256 length = (sizeof(struct lpfc_mbx_cq_create) - 14257 sizeof(struct lpfc_sli4_cfg_mhdr)); 14258 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14259 LPFC_MBOX_OPCODE_CQ_CREATE, 14260 length, LPFC_SLI4_MBX_EMBED); 14261 cq_create = &mbox->u.mqe.un.cq_create; 14262 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 14263 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 14264 cq->page_count); 14265 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 14266 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 14267 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14268 phba->sli4_hba.pc_sli4_params.cqv); 14269 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 14270 /* FW only supports 1. Should be PAGE_SIZE/SLI4_PAGE_SIZE */ 14271 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 1); 14272 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 14273 eq->queue_id); 14274 } else { 14275 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 14276 eq->queue_id); 14277 } 14278 switch (cq->entry_count) { 14279 default: 14280 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14281 "0361 Unsupported CQ count: " 14282 "entry cnt %d sz %d pg cnt %d\n", 14283 cq->entry_count, cq->entry_size, 14284 cq->page_count); 14285 if (cq->entry_count < 256) { 14286 status = -EINVAL; 14287 goto out; 14288 } 14289 /* otherwise default to smallest count (drop through) */ 14290 case 256: 14291 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 14292 LPFC_CQ_CNT_256); 14293 break; 14294 case 512: 14295 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 14296 LPFC_CQ_CNT_512); 14297 break; 14298 case 1024: 14299 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 14300 LPFC_CQ_CNT_1024); 14301 break; 14302 } 14303 list_for_each_entry(dmabuf, &cq->page_list, list) { 14304 memset(dmabuf->virt, 0, hw_page_size); 14305 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14306 putPaddrLow(dmabuf->phys); 14307 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14308 putPaddrHigh(dmabuf->phys); 14309 } 14310 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14311 14312 /* The IOCTL status is embedded in the mailbox subheader. */ 14313 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14314 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14315 if (shdr_status || shdr_add_status || rc) { 14316 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14317 "2501 CQ_CREATE mailbox failed with " 14318 "status x%x add_status x%x, mbx status x%x\n", 14319 shdr_status, shdr_add_status, rc); 14320 status = -ENXIO; 14321 goto out; 14322 } 14323 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 14324 if (cq->queue_id == 0xFFFF) { 14325 status = -ENXIO; 14326 goto out; 14327 } 14328 /* link the cq onto the parent eq child list */ 14329 list_add_tail(&cq->list, &eq->child_list); 14330 /* Set up completion queue's type and subtype */ 14331 cq->type = type; 14332 cq->subtype = subtype; 14333 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 14334 cq->assoc_qid = eq->queue_id; 14335 cq->host_index = 0; 14336 cq->hba_index = 0; 14337 cq->entry_repost = LPFC_CQ_REPOST; 14338 14339 out: 14340 mempool_free(mbox, phba->mbox_mem_pool); 14341 return status; 14342 } 14343 14344 /** 14345 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 14346 * @phba: HBA structure that indicates port to create a queue on. 14347 * @cqp: The queue structure array to use to create the completion queues. 14348 * @eqp: The event queue array to bind these completion queues to. 14349 * 14350 * This function creates a set of completion queue, s to support MRQ 14351 * as detailed in @cqp, on a port, 14352 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 14353 * 14354 * The @phba struct is used to send mailbox command to HBA. The @cq struct 14355 * is used to get the entry count and entry size that are necessary to 14356 * determine the number of pages to allocate and use for this queue. The @eq 14357 * is used to indicate which event queue to bind this completion queue to. This 14358 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 14359 * completion queue. This function is asynchronous and will wait for the mailbox 14360 * command to finish before continuing. 14361 * 14362 * On success this function will return a zero. If unable to allocate enough 14363 * memory this function will return -ENOMEM. If the queue create mailbox command 14364 * fails this function will return -ENXIO. 14365 **/ 14366 int 14367 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 14368 struct lpfc_queue **eqp, uint32_t type, uint32_t subtype) 14369 { 14370 struct lpfc_queue *cq; 14371 struct lpfc_queue *eq; 14372 struct lpfc_mbx_cq_create_set *cq_set; 14373 struct lpfc_dmabuf *dmabuf; 14374 LPFC_MBOXQ_t *mbox; 14375 int rc, length, alloclen, status = 0; 14376 int cnt, idx, numcq, page_idx = 0; 14377 uint32_t shdr_status, shdr_add_status; 14378 union lpfc_sli4_cfg_shdr *shdr; 14379 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14380 14381 /* sanity check on queue memory */ 14382 numcq = phba->cfg_nvmet_mrq; 14383 if (!cqp || !eqp || !numcq) 14384 return -ENODEV; 14385 if (!phba->sli4_hba.pc_sli4_params.supported) 14386 hw_page_size = SLI4_PAGE_SIZE; 14387 14388 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14389 if (!mbox) 14390 return -ENOMEM; 14391 14392 length = sizeof(struct lpfc_mbx_cq_create_set); 14393 length += ((numcq * cqp[0]->page_count) * 14394 sizeof(struct dma_address)); 14395 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14396 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 14397 LPFC_SLI4_MBX_NEMBED); 14398 if (alloclen < length) { 14399 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14400 "3098 Allocated DMA memory size (%d) is " 14401 "less than the requested DMA memory size " 14402 "(%d)\n", alloclen, length); 14403 status = -ENOMEM; 14404 goto out; 14405 } 14406 cq_set = mbox->sge_array->addr[0]; 14407 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 14408 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 14409 14410 for (idx = 0; idx < numcq; idx++) { 14411 cq = cqp[idx]; 14412 eq = eqp[idx]; 14413 if (!cq || !eq) { 14414 status = -ENOMEM; 14415 goto out; 14416 } 14417 14418 switch (idx) { 14419 case 0: 14420 bf_set(lpfc_mbx_cq_create_set_page_size, 14421 &cq_set->u.request, 14422 (hw_page_size / SLI4_PAGE_SIZE)); 14423 bf_set(lpfc_mbx_cq_create_set_num_pages, 14424 &cq_set->u.request, cq->page_count); 14425 bf_set(lpfc_mbx_cq_create_set_evt, 14426 &cq_set->u.request, 1); 14427 bf_set(lpfc_mbx_cq_create_set_valid, 14428 &cq_set->u.request, 1); 14429 bf_set(lpfc_mbx_cq_create_set_cqe_size, 14430 &cq_set->u.request, 0); 14431 bf_set(lpfc_mbx_cq_create_set_num_cq, 14432 &cq_set->u.request, numcq); 14433 switch (cq->entry_count) { 14434 default: 14435 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14436 "3118 Bad CQ count. (%d)\n", 14437 cq->entry_count); 14438 if (cq->entry_count < 256) { 14439 status = -EINVAL; 14440 goto out; 14441 } 14442 /* otherwise default to smallest (drop thru) */ 14443 case 256: 14444 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 14445 &cq_set->u.request, LPFC_CQ_CNT_256); 14446 break; 14447 case 512: 14448 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 14449 &cq_set->u.request, LPFC_CQ_CNT_512); 14450 break; 14451 case 1024: 14452 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 14453 &cq_set->u.request, LPFC_CQ_CNT_1024); 14454 break; 14455 } 14456 bf_set(lpfc_mbx_cq_create_set_eq_id0, 14457 &cq_set->u.request, eq->queue_id); 14458 break; 14459 case 1: 14460 bf_set(lpfc_mbx_cq_create_set_eq_id1, 14461 &cq_set->u.request, eq->queue_id); 14462 break; 14463 case 2: 14464 bf_set(lpfc_mbx_cq_create_set_eq_id2, 14465 &cq_set->u.request, eq->queue_id); 14466 break; 14467 case 3: 14468 bf_set(lpfc_mbx_cq_create_set_eq_id3, 14469 &cq_set->u.request, eq->queue_id); 14470 break; 14471 case 4: 14472 bf_set(lpfc_mbx_cq_create_set_eq_id4, 14473 &cq_set->u.request, eq->queue_id); 14474 break; 14475 case 5: 14476 bf_set(lpfc_mbx_cq_create_set_eq_id5, 14477 &cq_set->u.request, eq->queue_id); 14478 break; 14479 case 6: 14480 bf_set(lpfc_mbx_cq_create_set_eq_id6, 14481 &cq_set->u.request, eq->queue_id); 14482 break; 14483 case 7: 14484 bf_set(lpfc_mbx_cq_create_set_eq_id7, 14485 &cq_set->u.request, eq->queue_id); 14486 break; 14487 case 8: 14488 bf_set(lpfc_mbx_cq_create_set_eq_id8, 14489 &cq_set->u.request, eq->queue_id); 14490 break; 14491 case 9: 14492 bf_set(lpfc_mbx_cq_create_set_eq_id9, 14493 &cq_set->u.request, eq->queue_id); 14494 break; 14495 case 10: 14496 bf_set(lpfc_mbx_cq_create_set_eq_id10, 14497 &cq_set->u.request, eq->queue_id); 14498 break; 14499 case 11: 14500 bf_set(lpfc_mbx_cq_create_set_eq_id11, 14501 &cq_set->u.request, eq->queue_id); 14502 break; 14503 case 12: 14504 bf_set(lpfc_mbx_cq_create_set_eq_id12, 14505 &cq_set->u.request, eq->queue_id); 14506 break; 14507 case 13: 14508 bf_set(lpfc_mbx_cq_create_set_eq_id13, 14509 &cq_set->u.request, eq->queue_id); 14510 break; 14511 case 14: 14512 bf_set(lpfc_mbx_cq_create_set_eq_id14, 14513 &cq_set->u.request, eq->queue_id); 14514 break; 14515 case 15: 14516 bf_set(lpfc_mbx_cq_create_set_eq_id15, 14517 &cq_set->u.request, eq->queue_id); 14518 break; 14519 } 14520 14521 /* link the cq onto the parent eq child list */ 14522 list_add_tail(&cq->list, &eq->child_list); 14523 /* Set up completion queue's type and subtype */ 14524 cq->type = type; 14525 cq->subtype = subtype; 14526 cq->assoc_qid = eq->queue_id; 14527 cq->host_index = 0; 14528 cq->hba_index = 0; 14529 cq->entry_repost = LPFC_CQ_REPOST; 14530 14531 rc = 0; 14532 list_for_each_entry(dmabuf, &cq->page_list, list) { 14533 memset(dmabuf->virt, 0, hw_page_size); 14534 cnt = page_idx + dmabuf->buffer_tag; 14535 cq_set->u.request.page[cnt].addr_lo = 14536 putPaddrLow(dmabuf->phys); 14537 cq_set->u.request.page[cnt].addr_hi = 14538 putPaddrHigh(dmabuf->phys); 14539 rc++; 14540 } 14541 page_idx += rc; 14542 } 14543 14544 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14545 14546 /* The IOCTL status is embedded in the mailbox subheader. */ 14547 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14548 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14549 if (shdr_status || shdr_add_status || rc) { 14550 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14551 "3119 CQ_CREATE_SET mailbox failed with " 14552 "status x%x add_status x%x, mbx status x%x\n", 14553 shdr_status, shdr_add_status, rc); 14554 status = -ENXIO; 14555 goto out; 14556 } 14557 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 14558 if (rc == 0xFFFF) { 14559 status = -ENXIO; 14560 goto out; 14561 } 14562 14563 for (idx = 0; idx < numcq; idx++) { 14564 cq = cqp[idx]; 14565 cq->queue_id = rc + idx; 14566 } 14567 14568 out: 14569 lpfc_sli4_mbox_cmd_free(phba, mbox); 14570 return status; 14571 } 14572 14573 /** 14574 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 14575 * @phba: HBA structure that indicates port to create a queue on. 14576 * @mq: The queue structure to use to create the mailbox queue. 14577 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 14578 * @cq: The completion queue to associate with this cq. 14579 * 14580 * This function provides failback (fb) functionality when the 14581 * mq_create_ext fails on older FW generations. It's purpose is identical 14582 * to mq_create_ext otherwise. 14583 * 14584 * This routine cannot fail as all attributes were previously accessed and 14585 * initialized in mq_create_ext. 14586 **/ 14587 static void 14588 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 14589 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 14590 { 14591 struct lpfc_mbx_mq_create *mq_create; 14592 struct lpfc_dmabuf *dmabuf; 14593 int length; 14594 14595 length = (sizeof(struct lpfc_mbx_mq_create) - 14596 sizeof(struct lpfc_sli4_cfg_mhdr)); 14597 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14598 LPFC_MBOX_OPCODE_MQ_CREATE, 14599 length, LPFC_SLI4_MBX_EMBED); 14600 mq_create = &mbox->u.mqe.un.mq_create; 14601 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 14602 mq->page_count); 14603 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 14604 cq->queue_id); 14605 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 14606 switch (mq->entry_count) { 14607 case 16: 14608 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 14609 LPFC_MQ_RING_SIZE_16); 14610 break; 14611 case 32: 14612 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 14613 LPFC_MQ_RING_SIZE_32); 14614 break; 14615 case 64: 14616 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 14617 LPFC_MQ_RING_SIZE_64); 14618 break; 14619 case 128: 14620 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 14621 LPFC_MQ_RING_SIZE_128); 14622 break; 14623 } 14624 list_for_each_entry(dmabuf, &mq->page_list, list) { 14625 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14626 putPaddrLow(dmabuf->phys); 14627 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14628 putPaddrHigh(dmabuf->phys); 14629 } 14630 } 14631 14632 /** 14633 * lpfc_mq_create - Create a mailbox Queue on the HBA 14634 * @phba: HBA structure that indicates port to create a queue on. 14635 * @mq: The queue structure to use to create the mailbox queue. 14636 * @cq: The completion queue to associate with this cq. 14637 * @subtype: The queue's subtype. 14638 * 14639 * This function creates a mailbox queue, as detailed in @mq, on a port, 14640 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 14641 * 14642 * The @phba struct is used to send mailbox command to HBA. The @cq struct 14643 * is used to get the entry count and entry size that are necessary to 14644 * determine the number of pages to allocate and use for this queue. This 14645 * function will send the MQ_CREATE mailbox command to the HBA to setup the 14646 * mailbox queue. This function is asynchronous and will wait for the mailbox 14647 * command to finish before continuing. 14648 * 14649 * On success this function will return a zero. If unable to allocate enough 14650 * memory this function will return -ENOMEM. If the queue create mailbox command 14651 * fails this function will return -ENXIO. 14652 **/ 14653 int32_t 14654 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 14655 struct lpfc_queue *cq, uint32_t subtype) 14656 { 14657 struct lpfc_mbx_mq_create *mq_create; 14658 struct lpfc_mbx_mq_create_ext *mq_create_ext; 14659 struct lpfc_dmabuf *dmabuf; 14660 LPFC_MBOXQ_t *mbox; 14661 int rc, length, status = 0; 14662 uint32_t shdr_status, shdr_add_status; 14663 union lpfc_sli4_cfg_shdr *shdr; 14664 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14665 14666 /* sanity check on queue memory */ 14667 if (!mq || !cq) 14668 return -ENODEV; 14669 if (!phba->sli4_hba.pc_sli4_params.supported) 14670 hw_page_size = SLI4_PAGE_SIZE; 14671 14672 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14673 if (!mbox) 14674 return -ENOMEM; 14675 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 14676 sizeof(struct lpfc_sli4_cfg_mhdr)); 14677 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14678 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 14679 length, LPFC_SLI4_MBX_EMBED); 14680 14681 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 14682 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 14683 bf_set(lpfc_mbx_mq_create_ext_num_pages, 14684 &mq_create_ext->u.request, mq->page_count); 14685 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 14686 &mq_create_ext->u.request, 1); 14687 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 14688 &mq_create_ext->u.request, 1); 14689 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 14690 &mq_create_ext->u.request, 1); 14691 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 14692 &mq_create_ext->u.request, 1); 14693 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 14694 &mq_create_ext->u.request, 1); 14695 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 14696 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14697 phba->sli4_hba.pc_sli4_params.mqv); 14698 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 14699 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 14700 cq->queue_id); 14701 else 14702 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 14703 cq->queue_id); 14704 switch (mq->entry_count) { 14705 default: 14706 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14707 "0362 Unsupported MQ count. (%d)\n", 14708 mq->entry_count); 14709 if (mq->entry_count < 16) { 14710 status = -EINVAL; 14711 goto out; 14712 } 14713 /* otherwise default to smallest count (drop through) */ 14714 case 16: 14715 bf_set(lpfc_mq_context_ring_size, 14716 &mq_create_ext->u.request.context, 14717 LPFC_MQ_RING_SIZE_16); 14718 break; 14719 case 32: 14720 bf_set(lpfc_mq_context_ring_size, 14721 &mq_create_ext->u.request.context, 14722 LPFC_MQ_RING_SIZE_32); 14723 break; 14724 case 64: 14725 bf_set(lpfc_mq_context_ring_size, 14726 &mq_create_ext->u.request.context, 14727 LPFC_MQ_RING_SIZE_64); 14728 break; 14729 case 128: 14730 bf_set(lpfc_mq_context_ring_size, 14731 &mq_create_ext->u.request.context, 14732 LPFC_MQ_RING_SIZE_128); 14733 break; 14734 } 14735 list_for_each_entry(dmabuf, &mq->page_list, list) { 14736 memset(dmabuf->virt, 0, hw_page_size); 14737 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 14738 putPaddrLow(dmabuf->phys); 14739 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 14740 putPaddrHigh(dmabuf->phys); 14741 } 14742 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14743 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 14744 &mq_create_ext->u.response); 14745 if (rc != MBX_SUCCESS) { 14746 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14747 "2795 MQ_CREATE_EXT failed with " 14748 "status x%x. Failback to MQ_CREATE.\n", 14749 rc); 14750 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 14751 mq_create = &mbox->u.mqe.un.mq_create; 14752 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14753 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 14754 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 14755 &mq_create->u.response); 14756 } 14757 14758 /* The IOCTL status is embedded in the mailbox subheader. */ 14759 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14760 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14761 if (shdr_status || shdr_add_status || rc) { 14762 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14763 "2502 MQ_CREATE mailbox failed with " 14764 "status x%x add_status x%x, mbx status x%x\n", 14765 shdr_status, shdr_add_status, rc); 14766 status = -ENXIO; 14767 goto out; 14768 } 14769 if (mq->queue_id == 0xFFFF) { 14770 status = -ENXIO; 14771 goto out; 14772 } 14773 mq->type = LPFC_MQ; 14774 mq->assoc_qid = cq->queue_id; 14775 mq->subtype = subtype; 14776 mq->host_index = 0; 14777 mq->hba_index = 0; 14778 mq->entry_repost = LPFC_MQ_REPOST; 14779 14780 /* link the mq onto the parent cq child list */ 14781 list_add_tail(&mq->list, &cq->child_list); 14782 out: 14783 mempool_free(mbox, phba->mbox_mem_pool); 14784 return status; 14785 } 14786 14787 /** 14788 * lpfc_wq_create - Create a Work Queue on the HBA 14789 * @phba: HBA structure that indicates port to create a queue on. 14790 * @wq: The queue structure to use to create the work queue. 14791 * @cq: The completion queue to bind this work queue to. 14792 * @subtype: The subtype of the work queue indicating its functionality. 14793 * 14794 * This function creates a work queue, as detailed in @wq, on a port, described 14795 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 14796 * 14797 * The @phba struct is used to send mailbox command to HBA. The @wq struct 14798 * is used to get the entry count and entry size that are necessary to 14799 * determine the number of pages to allocate and use for this queue. The @cq 14800 * is used to indicate which completion queue to bind this work queue to. This 14801 * function will send the WQ_CREATE mailbox command to the HBA to setup the 14802 * work queue. This function is asynchronous and will wait for the mailbox 14803 * command to finish before continuing. 14804 * 14805 * On success this function will return a zero. If unable to allocate enough 14806 * memory this function will return -ENOMEM. If the queue create mailbox command 14807 * fails this function will return -ENXIO. 14808 **/ 14809 int 14810 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 14811 struct lpfc_queue *cq, uint32_t subtype) 14812 { 14813 struct lpfc_mbx_wq_create *wq_create; 14814 struct lpfc_dmabuf *dmabuf; 14815 LPFC_MBOXQ_t *mbox; 14816 int rc, length, status = 0; 14817 uint32_t shdr_status, shdr_add_status; 14818 union lpfc_sli4_cfg_shdr *shdr; 14819 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14820 struct dma_address *page; 14821 void __iomem *bar_memmap_p; 14822 uint32_t db_offset; 14823 uint16_t pci_barset; 14824 14825 /* sanity check on queue memory */ 14826 if (!wq || !cq) 14827 return -ENODEV; 14828 if (!phba->sli4_hba.pc_sli4_params.supported) 14829 hw_page_size = SLI4_PAGE_SIZE; 14830 14831 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14832 if (!mbox) 14833 return -ENOMEM; 14834 length = (sizeof(struct lpfc_mbx_wq_create) - 14835 sizeof(struct lpfc_sli4_cfg_mhdr)); 14836 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14837 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 14838 length, LPFC_SLI4_MBX_EMBED); 14839 wq_create = &mbox->u.mqe.un.wq_create; 14840 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 14841 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 14842 wq->page_count); 14843 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 14844 cq->queue_id); 14845 14846 /* wqv is the earliest version supported, NOT the latest */ 14847 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14848 phba->sli4_hba.pc_sli4_params.wqv); 14849 14850 switch (phba->sli4_hba.pc_sli4_params.wqv) { 14851 case LPFC_Q_CREATE_VERSION_0: 14852 switch (wq->entry_size) { 14853 default: 14854 case 64: 14855 /* Nothing to do, version 0 ONLY supports 64 byte */ 14856 page = wq_create->u.request.page; 14857 break; 14858 case 128: 14859 if (!(phba->sli4_hba.pc_sli4_params.wqsize & 14860 LPFC_WQ_SZ128_SUPPORT)) { 14861 status = -ERANGE; 14862 goto out; 14863 } 14864 /* If we get here the HBA MUST also support V1 and 14865 * we MUST use it 14866 */ 14867 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14868 LPFC_Q_CREATE_VERSION_1); 14869 14870 bf_set(lpfc_mbx_wq_create_wqe_count, 14871 &wq_create->u.request_1, wq->entry_count); 14872 bf_set(lpfc_mbx_wq_create_wqe_size, 14873 &wq_create->u.request_1, 14874 LPFC_WQ_WQE_SIZE_128); 14875 bf_set(lpfc_mbx_wq_create_page_size, 14876 &wq_create->u.request_1, 14877 LPFC_WQ_PAGE_SIZE_4096); 14878 page = wq_create->u.request_1.page; 14879 break; 14880 } 14881 break; 14882 case LPFC_Q_CREATE_VERSION_1: 14883 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 14884 wq->entry_count); 14885 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14886 LPFC_Q_CREATE_VERSION_1); 14887 14888 switch (wq->entry_size) { 14889 default: 14890 case 64: 14891 bf_set(lpfc_mbx_wq_create_wqe_size, 14892 &wq_create->u.request_1, 14893 LPFC_WQ_WQE_SIZE_64); 14894 break; 14895 case 128: 14896 if (!(phba->sli4_hba.pc_sli4_params.wqsize & 14897 LPFC_WQ_SZ128_SUPPORT)) { 14898 status = -ERANGE; 14899 goto out; 14900 } 14901 bf_set(lpfc_mbx_wq_create_wqe_size, 14902 &wq_create->u.request_1, 14903 LPFC_WQ_WQE_SIZE_128); 14904 break; 14905 } 14906 bf_set(lpfc_mbx_wq_create_page_size, 14907 &wq_create->u.request_1, 14908 LPFC_WQ_PAGE_SIZE_4096); 14909 page = wq_create->u.request_1.page; 14910 break; 14911 default: 14912 status = -ERANGE; 14913 goto out; 14914 } 14915 14916 list_for_each_entry(dmabuf, &wq->page_list, list) { 14917 memset(dmabuf->virt, 0, hw_page_size); 14918 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 14919 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 14920 } 14921 14922 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 14923 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 14924 14925 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14926 /* The IOCTL status is embedded in the mailbox subheader. */ 14927 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14928 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14929 if (shdr_status || shdr_add_status || rc) { 14930 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14931 "2503 WQ_CREATE mailbox failed with " 14932 "status x%x add_status x%x, mbx status x%x\n", 14933 shdr_status, shdr_add_status, rc); 14934 status = -ENXIO; 14935 goto out; 14936 } 14937 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, &wq_create->u.response); 14938 if (wq->queue_id == 0xFFFF) { 14939 status = -ENXIO; 14940 goto out; 14941 } 14942 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 14943 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 14944 &wq_create->u.response); 14945 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 14946 (wq->db_format != LPFC_DB_RING_FORMAT)) { 14947 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14948 "3265 WQ[%d] doorbell format not " 14949 "supported: x%x\n", wq->queue_id, 14950 wq->db_format); 14951 status = -EINVAL; 14952 goto out; 14953 } 14954 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 14955 &wq_create->u.response); 14956 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 14957 if (!bar_memmap_p) { 14958 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14959 "3263 WQ[%d] failed to memmap pci " 14960 "barset:x%x\n", wq->queue_id, 14961 pci_barset); 14962 status = -ENOMEM; 14963 goto out; 14964 } 14965 db_offset = wq_create->u.response.doorbell_offset; 14966 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 14967 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 14968 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14969 "3252 WQ[%d] doorbell offset not " 14970 "supported: x%x\n", wq->queue_id, 14971 db_offset); 14972 status = -EINVAL; 14973 goto out; 14974 } 14975 wq->db_regaddr = bar_memmap_p + db_offset; 14976 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14977 "3264 WQ[%d]: barset:x%x, offset:x%x, " 14978 "format:x%x\n", wq->queue_id, pci_barset, 14979 db_offset, wq->db_format); 14980 } else { 14981 wq->db_format = LPFC_DB_LIST_FORMAT; 14982 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 14983 } 14984 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 14985 if (wq->pring == NULL) { 14986 status = -ENOMEM; 14987 goto out; 14988 } 14989 wq->type = LPFC_WQ; 14990 wq->assoc_qid = cq->queue_id; 14991 wq->subtype = subtype; 14992 wq->host_index = 0; 14993 wq->hba_index = 0; 14994 wq->entry_repost = LPFC_RELEASE_NOTIFICATION_INTERVAL; 14995 14996 /* link the wq onto the parent cq child list */ 14997 list_add_tail(&wq->list, &cq->child_list); 14998 out: 14999 mempool_free(mbox, phba->mbox_mem_pool); 15000 return status; 15001 } 15002 15003 /** 15004 * lpfc_rq_create - Create a Receive Queue on the HBA 15005 * @phba: HBA structure that indicates port to create a queue on. 15006 * @hrq: The queue structure to use to create the header receive queue. 15007 * @drq: The queue structure to use to create the data receive queue. 15008 * @cq: The completion queue to bind this work queue to. 15009 * 15010 * This function creates a receive buffer queue pair , as detailed in @hrq and 15011 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 15012 * to the HBA. 15013 * 15014 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 15015 * struct is used to get the entry count that is necessary to determine the 15016 * number of pages to use for this queue. The @cq is used to indicate which 15017 * completion queue to bind received buffers that are posted to these queues to. 15018 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 15019 * receive queue pair. This function is asynchronous and will wait for the 15020 * mailbox command to finish before continuing. 15021 * 15022 * On success this function will return a zero. If unable to allocate enough 15023 * memory this function will return -ENOMEM. If the queue create mailbox command 15024 * fails this function will return -ENXIO. 15025 **/ 15026 int 15027 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 15028 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 15029 { 15030 struct lpfc_mbx_rq_create *rq_create; 15031 struct lpfc_dmabuf *dmabuf; 15032 LPFC_MBOXQ_t *mbox; 15033 int rc, length, status = 0; 15034 uint32_t shdr_status, shdr_add_status; 15035 union lpfc_sli4_cfg_shdr *shdr; 15036 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15037 void __iomem *bar_memmap_p; 15038 uint32_t db_offset; 15039 uint16_t pci_barset; 15040 15041 /* sanity check on queue memory */ 15042 if (!hrq || !drq || !cq) 15043 return -ENODEV; 15044 if (!phba->sli4_hba.pc_sli4_params.supported) 15045 hw_page_size = SLI4_PAGE_SIZE; 15046 15047 if (hrq->entry_count != drq->entry_count) 15048 return -EINVAL; 15049 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15050 if (!mbox) 15051 return -ENOMEM; 15052 length = (sizeof(struct lpfc_mbx_rq_create) - 15053 sizeof(struct lpfc_sli4_cfg_mhdr)); 15054 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15055 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 15056 length, LPFC_SLI4_MBX_EMBED); 15057 rq_create = &mbox->u.mqe.un.rq_create; 15058 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 15059 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15060 phba->sli4_hba.pc_sli4_params.rqv); 15061 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 15062 bf_set(lpfc_rq_context_rqe_count_1, 15063 &rq_create->u.request.context, 15064 hrq->entry_count); 15065 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 15066 bf_set(lpfc_rq_context_rqe_size, 15067 &rq_create->u.request.context, 15068 LPFC_RQE_SIZE_8); 15069 bf_set(lpfc_rq_context_page_size, 15070 &rq_create->u.request.context, 15071 LPFC_RQ_PAGE_SIZE_4096); 15072 } else { 15073 switch (hrq->entry_count) { 15074 default: 15075 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15076 "2535 Unsupported RQ count. (%d)\n", 15077 hrq->entry_count); 15078 if (hrq->entry_count < 512) { 15079 status = -EINVAL; 15080 goto out; 15081 } 15082 /* otherwise default to smallest count (drop through) */ 15083 case 512: 15084 bf_set(lpfc_rq_context_rqe_count, 15085 &rq_create->u.request.context, 15086 LPFC_RQ_RING_SIZE_512); 15087 break; 15088 case 1024: 15089 bf_set(lpfc_rq_context_rqe_count, 15090 &rq_create->u.request.context, 15091 LPFC_RQ_RING_SIZE_1024); 15092 break; 15093 case 2048: 15094 bf_set(lpfc_rq_context_rqe_count, 15095 &rq_create->u.request.context, 15096 LPFC_RQ_RING_SIZE_2048); 15097 break; 15098 case 4096: 15099 bf_set(lpfc_rq_context_rqe_count, 15100 &rq_create->u.request.context, 15101 LPFC_RQ_RING_SIZE_4096); 15102 break; 15103 } 15104 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 15105 LPFC_HDR_BUF_SIZE); 15106 } 15107 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 15108 cq->queue_id); 15109 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 15110 hrq->page_count); 15111 list_for_each_entry(dmabuf, &hrq->page_list, list) { 15112 memset(dmabuf->virt, 0, hw_page_size); 15113 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15114 putPaddrLow(dmabuf->phys); 15115 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15116 putPaddrHigh(dmabuf->phys); 15117 } 15118 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15119 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 15120 15121 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15122 /* The IOCTL status is embedded in the mailbox subheader. */ 15123 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15124 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15125 if (shdr_status || shdr_add_status || rc) { 15126 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15127 "2504 RQ_CREATE mailbox failed with " 15128 "status x%x add_status x%x, mbx status x%x\n", 15129 shdr_status, shdr_add_status, rc); 15130 status = -ENXIO; 15131 goto out; 15132 } 15133 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 15134 if (hrq->queue_id == 0xFFFF) { 15135 status = -ENXIO; 15136 goto out; 15137 } 15138 15139 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 15140 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 15141 &rq_create->u.response); 15142 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 15143 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 15144 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15145 "3262 RQ [%d] doorbell format not " 15146 "supported: x%x\n", hrq->queue_id, 15147 hrq->db_format); 15148 status = -EINVAL; 15149 goto out; 15150 } 15151 15152 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 15153 &rq_create->u.response); 15154 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 15155 if (!bar_memmap_p) { 15156 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15157 "3269 RQ[%d] failed to memmap pci " 15158 "barset:x%x\n", hrq->queue_id, 15159 pci_barset); 15160 status = -ENOMEM; 15161 goto out; 15162 } 15163 15164 db_offset = rq_create->u.response.doorbell_offset; 15165 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 15166 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 15167 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15168 "3270 RQ[%d] doorbell offset not " 15169 "supported: x%x\n", hrq->queue_id, 15170 db_offset); 15171 status = -EINVAL; 15172 goto out; 15173 } 15174 hrq->db_regaddr = bar_memmap_p + db_offset; 15175 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15176 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 15177 "format:x%x\n", hrq->queue_id, pci_barset, 15178 db_offset, hrq->db_format); 15179 } else { 15180 hrq->db_format = LPFC_DB_RING_FORMAT; 15181 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 15182 } 15183 hrq->type = LPFC_HRQ; 15184 hrq->assoc_qid = cq->queue_id; 15185 hrq->subtype = subtype; 15186 hrq->host_index = 0; 15187 hrq->hba_index = 0; 15188 hrq->entry_repost = LPFC_RQ_REPOST; 15189 15190 /* now create the data queue */ 15191 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15192 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 15193 length, LPFC_SLI4_MBX_EMBED); 15194 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15195 phba->sli4_hba.pc_sli4_params.rqv); 15196 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 15197 bf_set(lpfc_rq_context_rqe_count_1, 15198 &rq_create->u.request.context, hrq->entry_count); 15199 if (subtype == LPFC_NVMET) 15200 rq_create->u.request.context.buffer_size = 15201 LPFC_NVMET_DATA_BUF_SIZE; 15202 else 15203 rq_create->u.request.context.buffer_size = 15204 LPFC_DATA_BUF_SIZE; 15205 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 15206 LPFC_RQE_SIZE_8); 15207 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 15208 (PAGE_SIZE/SLI4_PAGE_SIZE)); 15209 } else { 15210 switch (drq->entry_count) { 15211 default: 15212 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15213 "2536 Unsupported RQ count. (%d)\n", 15214 drq->entry_count); 15215 if (drq->entry_count < 512) { 15216 status = -EINVAL; 15217 goto out; 15218 } 15219 /* otherwise default to smallest count (drop through) */ 15220 case 512: 15221 bf_set(lpfc_rq_context_rqe_count, 15222 &rq_create->u.request.context, 15223 LPFC_RQ_RING_SIZE_512); 15224 break; 15225 case 1024: 15226 bf_set(lpfc_rq_context_rqe_count, 15227 &rq_create->u.request.context, 15228 LPFC_RQ_RING_SIZE_1024); 15229 break; 15230 case 2048: 15231 bf_set(lpfc_rq_context_rqe_count, 15232 &rq_create->u.request.context, 15233 LPFC_RQ_RING_SIZE_2048); 15234 break; 15235 case 4096: 15236 bf_set(lpfc_rq_context_rqe_count, 15237 &rq_create->u.request.context, 15238 LPFC_RQ_RING_SIZE_4096); 15239 break; 15240 } 15241 if (subtype == LPFC_NVMET) 15242 bf_set(lpfc_rq_context_buf_size, 15243 &rq_create->u.request.context, 15244 LPFC_NVMET_DATA_BUF_SIZE); 15245 else 15246 bf_set(lpfc_rq_context_buf_size, 15247 &rq_create->u.request.context, 15248 LPFC_DATA_BUF_SIZE); 15249 } 15250 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 15251 cq->queue_id); 15252 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 15253 drq->page_count); 15254 list_for_each_entry(dmabuf, &drq->page_list, list) { 15255 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15256 putPaddrLow(dmabuf->phys); 15257 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15258 putPaddrHigh(dmabuf->phys); 15259 } 15260 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15261 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 15262 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15263 /* The IOCTL status is embedded in the mailbox subheader. */ 15264 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 15265 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15266 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15267 if (shdr_status || shdr_add_status || rc) { 15268 status = -ENXIO; 15269 goto out; 15270 } 15271 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 15272 if (drq->queue_id == 0xFFFF) { 15273 status = -ENXIO; 15274 goto out; 15275 } 15276 drq->type = LPFC_DRQ; 15277 drq->assoc_qid = cq->queue_id; 15278 drq->subtype = subtype; 15279 drq->host_index = 0; 15280 drq->hba_index = 0; 15281 drq->entry_repost = LPFC_RQ_REPOST; 15282 15283 /* link the header and data RQs onto the parent cq child list */ 15284 list_add_tail(&hrq->list, &cq->child_list); 15285 list_add_tail(&drq->list, &cq->child_list); 15286 15287 out: 15288 mempool_free(mbox, phba->mbox_mem_pool); 15289 return status; 15290 } 15291 15292 /** 15293 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 15294 * @phba: HBA structure that indicates port to create a queue on. 15295 * @hrqp: The queue structure array to use to create the header receive queues. 15296 * @drqp: The queue structure array to use to create the data receive queues. 15297 * @cqp: The completion queue array to bind these receive queues to. 15298 * 15299 * This function creates a receive buffer queue pair , as detailed in @hrq and 15300 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 15301 * to the HBA. 15302 * 15303 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 15304 * struct is used to get the entry count that is necessary to determine the 15305 * number of pages to use for this queue. The @cq is used to indicate which 15306 * completion queue to bind received buffers that are posted to these queues to. 15307 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 15308 * receive queue pair. This function is asynchronous and will wait for the 15309 * mailbox command to finish before continuing. 15310 * 15311 * On success this function will return a zero. If unable to allocate enough 15312 * memory this function will return -ENOMEM. If the queue create mailbox command 15313 * fails this function will return -ENXIO. 15314 **/ 15315 int 15316 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 15317 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 15318 uint32_t subtype) 15319 { 15320 struct lpfc_queue *hrq, *drq, *cq; 15321 struct lpfc_mbx_rq_create_v2 *rq_create; 15322 struct lpfc_dmabuf *dmabuf; 15323 LPFC_MBOXQ_t *mbox; 15324 int rc, length, alloclen, status = 0; 15325 int cnt, idx, numrq, page_idx = 0; 15326 uint32_t shdr_status, shdr_add_status; 15327 union lpfc_sli4_cfg_shdr *shdr; 15328 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15329 15330 numrq = phba->cfg_nvmet_mrq; 15331 /* sanity check on array memory */ 15332 if (!hrqp || !drqp || !cqp || !numrq) 15333 return -ENODEV; 15334 if (!phba->sli4_hba.pc_sli4_params.supported) 15335 hw_page_size = SLI4_PAGE_SIZE; 15336 15337 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15338 if (!mbox) 15339 return -ENOMEM; 15340 15341 length = sizeof(struct lpfc_mbx_rq_create_v2); 15342 length += ((2 * numrq * hrqp[0]->page_count) * 15343 sizeof(struct dma_address)); 15344 15345 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15346 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 15347 LPFC_SLI4_MBX_NEMBED); 15348 if (alloclen < length) { 15349 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15350 "3099 Allocated DMA memory size (%d) is " 15351 "less than the requested DMA memory size " 15352 "(%d)\n", alloclen, length); 15353 status = -ENOMEM; 15354 goto out; 15355 } 15356 15357 15358 15359 rq_create = mbox->sge_array->addr[0]; 15360 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 15361 15362 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 15363 cnt = 0; 15364 15365 for (idx = 0; idx < numrq; idx++) { 15366 hrq = hrqp[idx]; 15367 drq = drqp[idx]; 15368 cq = cqp[idx]; 15369 15370 /* sanity check on queue memory */ 15371 if (!hrq || !drq || !cq) { 15372 status = -ENODEV; 15373 goto out; 15374 } 15375 15376 if (hrq->entry_count != drq->entry_count) { 15377 status = -EINVAL; 15378 goto out; 15379 } 15380 15381 if (idx == 0) { 15382 bf_set(lpfc_mbx_rq_create_num_pages, 15383 &rq_create->u.request, 15384 hrq->page_count); 15385 bf_set(lpfc_mbx_rq_create_rq_cnt, 15386 &rq_create->u.request, (numrq * 2)); 15387 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 15388 1); 15389 bf_set(lpfc_rq_context_base_cq, 15390 &rq_create->u.request.context, 15391 cq->queue_id); 15392 bf_set(lpfc_rq_context_data_size, 15393 &rq_create->u.request.context, 15394 LPFC_NVMET_DATA_BUF_SIZE); 15395 bf_set(lpfc_rq_context_hdr_size, 15396 &rq_create->u.request.context, 15397 LPFC_HDR_BUF_SIZE); 15398 bf_set(lpfc_rq_context_rqe_count_1, 15399 &rq_create->u.request.context, 15400 hrq->entry_count); 15401 bf_set(lpfc_rq_context_rqe_size, 15402 &rq_create->u.request.context, 15403 LPFC_RQE_SIZE_8); 15404 bf_set(lpfc_rq_context_page_size, 15405 &rq_create->u.request.context, 15406 (PAGE_SIZE/SLI4_PAGE_SIZE)); 15407 } 15408 rc = 0; 15409 list_for_each_entry(dmabuf, &hrq->page_list, list) { 15410 memset(dmabuf->virt, 0, hw_page_size); 15411 cnt = page_idx + dmabuf->buffer_tag; 15412 rq_create->u.request.page[cnt].addr_lo = 15413 putPaddrLow(dmabuf->phys); 15414 rq_create->u.request.page[cnt].addr_hi = 15415 putPaddrHigh(dmabuf->phys); 15416 rc++; 15417 } 15418 page_idx += rc; 15419 15420 rc = 0; 15421 list_for_each_entry(dmabuf, &drq->page_list, list) { 15422 memset(dmabuf->virt, 0, hw_page_size); 15423 cnt = page_idx + dmabuf->buffer_tag; 15424 rq_create->u.request.page[cnt].addr_lo = 15425 putPaddrLow(dmabuf->phys); 15426 rq_create->u.request.page[cnt].addr_hi = 15427 putPaddrHigh(dmabuf->phys); 15428 rc++; 15429 } 15430 page_idx += rc; 15431 15432 hrq->db_format = LPFC_DB_RING_FORMAT; 15433 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 15434 hrq->type = LPFC_HRQ; 15435 hrq->assoc_qid = cq->queue_id; 15436 hrq->subtype = subtype; 15437 hrq->host_index = 0; 15438 hrq->hba_index = 0; 15439 hrq->entry_repost = LPFC_RQ_REPOST; 15440 15441 drq->db_format = LPFC_DB_RING_FORMAT; 15442 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 15443 drq->type = LPFC_DRQ; 15444 drq->assoc_qid = cq->queue_id; 15445 drq->subtype = subtype; 15446 drq->host_index = 0; 15447 drq->hba_index = 0; 15448 drq->entry_repost = LPFC_RQ_REPOST; 15449 15450 list_add_tail(&hrq->list, &cq->child_list); 15451 list_add_tail(&drq->list, &cq->child_list); 15452 } 15453 15454 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15455 /* The IOCTL status is embedded in the mailbox subheader. */ 15456 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15457 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15458 if (shdr_status || shdr_add_status || rc) { 15459 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15460 "3120 RQ_CREATE mailbox failed with " 15461 "status x%x add_status x%x, mbx status x%x\n", 15462 shdr_status, shdr_add_status, rc); 15463 status = -ENXIO; 15464 goto out; 15465 } 15466 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 15467 if (rc == 0xFFFF) { 15468 status = -ENXIO; 15469 goto out; 15470 } 15471 15472 /* Initialize all RQs with associated queue id */ 15473 for (idx = 0; idx < numrq; idx++) { 15474 hrq = hrqp[idx]; 15475 hrq->queue_id = rc + (2 * idx); 15476 drq = drqp[idx]; 15477 drq->queue_id = rc + (2 * idx) + 1; 15478 } 15479 15480 out: 15481 lpfc_sli4_mbox_cmd_free(phba, mbox); 15482 return status; 15483 } 15484 15485 /** 15486 * lpfc_eq_destroy - Destroy an event Queue on the HBA 15487 * @eq: The queue structure associated with the queue to destroy. 15488 * 15489 * This function destroys a queue, as detailed in @eq by sending an mailbox 15490 * command, specific to the type of queue, to the HBA. 15491 * 15492 * The @eq struct is used to get the queue ID of the queue to destroy. 15493 * 15494 * On success this function will return a zero. If the queue destroy mailbox 15495 * command fails this function will return -ENXIO. 15496 **/ 15497 int 15498 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 15499 { 15500 LPFC_MBOXQ_t *mbox; 15501 int rc, length, status = 0; 15502 uint32_t shdr_status, shdr_add_status; 15503 union lpfc_sli4_cfg_shdr *shdr; 15504 15505 /* sanity check on queue memory */ 15506 if (!eq) 15507 return -ENODEV; 15508 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 15509 if (!mbox) 15510 return -ENOMEM; 15511 length = (sizeof(struct lpfc_mbx_eq_destroy) - 15512 sizeof(struct lpfc_sli4_cfg_mhdr)); 15513 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15514 LPFC_MBOX_OPCODE_EQ_DESTROY, 15515 length, LPFC_SLI4_MBX_EMBED); 15516 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 15517 eq->queue_id); 15518 mbox->vport = eq->phba->pport; 15519 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15520 15521 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 15522 /* The IOCTL status is embedded in the mailbox subheader. */ 15523 shdr = (union lpfc_sli4_cfg_shdr *) 15524 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 15525 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15526 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15527 if (shdr_status || shdr_add_status || rc) { 15528 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15529 "2505 EQ_DESTROY mailbox failed with " 15530 "status x%x add_status x%x, mbx status x%x\n", 15531 shdr_status, shdr_add_status, rc); 15532 status = -ENXIO; 15533 } 15534 15535 /* Remove eq from any list */ 15536 list_del_init(&eq->list); 15537 mempool_free(mbox, eq->phba->mbox_mem_pool); 15538 return status; 15539 } 15540 15541 /** 15542 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 15543 * @cq: The queue structure associated with the queue to destroy. 15544 * 15545 * This function destroys a queue, as detailed in @cq by sending an mailbox 15546 * command, specific to the type of queue, to the HBA. 15547 * 15548 * The @cq struct is used to get the queue ID of the queue to destroy. 15549 * 15550 * On success this function will return a zero. If the queue destroy mailbox 15551 * command fails this function will return -ENXIO. 15552 **/ 15553 int 15554 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 15555 { 15556 LPFC_MBOXQ_t *mbox; 15557 int rc, length, status = 0; 15558 uint32_t shdr_status, shdr_add_status; 15559 union lpfc_sli4_cfg_shdr *shdr; 15560 15561 /* sanity check on queue memory */ 15562 if (!cq) 15563 return -ENODEV; 15564 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 15565 if (!mbox) 15566 return -ENOMEM; 15567 length = (sizeof(struct lpfc_mbx_cq_destroy) - 15568 sizeof(struct lpfc_sli4_cfg_mhdr)); 15569 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15570 LPFC_MBOX_OPCODE_CQ_DESTROY, 15571 length, LPFC_SLI4_MBX_EMBED); 15572 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 15573 cq->queue_id); 15574 mbox->vport = cq->phba->pport; 15575 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15576 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 15577 /* The IOCTL status is embedded in the mailbox subheader. */ 15578 shdr = (union lpfc_sli4_cfg_shdr *) 15579 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 15580 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15581 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15582 if (shdr_status || shdr_add_status || rc) { 15583 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15584 "2506 CQ_DESTROY mailbox failed with " 15585 "status x%x add_status x%x, mbx status x%x\n", 15586 shdr_status, shdr_add_status, rc); 15587 status = -ENXIO; 15588 } 15589 /* Remove cq from any list */ 15590 list_del_init(&cq->list); 15591 mempool_free(mbox, cq->phba->mbox_mem_pool); 15592 return status; 15593 } 15594 15595 /** 15596 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 15597 * @qm: The queue structure associated with the queue to destroy. 15598 * 15599 * This function destroys a queue, as detailed in @mq by sending an mailbox 15600 * command, specific to the type of queue, to the HBA. 15601 * 15602 * The @mq struct is used to get the queue ID of the queue to destroy. 15603 * 15604 * On success this function will return a zero. If the queue destroy mailbox 15605 * command fails this function will return -ENXIO. 15606 **/ 15607 int 15608 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 15609 { 15610 LPFC_MBOXQ_t *mbox; 15611 int rc, length, status = 0; 15612 uint32_t shdr_status, shdr_add_status; 15613 union lpfc_sli4_cfg_shdr *shdr; 15614 15615 /* sanity check on queue memory */ 15616 if (!mq) 15617 return -ENODEV; 15618 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 15619 if (!mbox) 15620 return -ENOMEM; 15621 length = (sizeof(struct lpfc_mbx_mq_destroy) - 15622 sizeof(struct lpfc_sli4_cfg_mhdr)); 15623 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15624 LPFC_MBOX_OPCODE_MQ_DESTROY, 15625 length, LPFC_SLI4_MBX_EMBED); 15626 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 15627 mq->queue_id); 15628 mbox->vport = mq->phba->pport; 15629 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15630 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 15631 /* The IOCTL status is embedded in the mailbox subheader. */ 15632 shdr = (union lpfc_sli4_cfg_shdr *) 15633 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 15634 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15635 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15636 if (shdr_status || shdr_add_status || rc) { 15637 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15638 "2507 MQ_DESTROY mailbox failed with " 15639 "status x%x add_status x%x, mbx status x%x\n", 15640 shdr_status, shdr_add_status, rc); 15641 status = -ENXIO; 15642 } 15643 /* Remove mq from any list */ 15644 list_del_init(&mq->list); 15645 mempool_free(mbox, mq->phba->mbox_mem_pool); 15646 return status; 15647 } 15648 15649 /** 15650 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 15651 * @wq: The queue structure associated with the queue to destroy. 15652 * 15653 * This function destroys a queue, as detailed in @wq by sending an mailbox 15654 * command, specific to the type of queue, to the HBA. 15655 * 15656 * The @wq struct is used to get the queue ID of the queue to destroy. 15657 * 15658 * On success this function will return a zero. If the queue destroy mailbox 15659 * command fails this function will return -ENXIO. 15660 **/ 15661 int 15662 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 15663 { 15664 LPFC_MBOXQ_t *mbox; 15665 int rc, length, status = 0; 15666 uint32_t shdr_status, shdr_add_status; 15667 union lpfc_sli4_cfg_shdr *shdr; 15668 15669 /* sanity check on queue memory */ 15670 if (!wq) 15671 return -ENODEV; 15672 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 15673 if (!mbox) 15674 return -ENOMEM; 15675 length = (sizeof(struct lpfc_mbx_wq_destroy) - 15676 sizeof(struct lpfc_sli4_cfg_mhdr)); 15677 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15678 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 15679 length, LPFC_SLI4_MBX_EMBED); 15680 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 15681 wq->queue_id); 15682 mbox->vport = wq->phba->pport; 15683 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15684 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 15685 shdr = (union lpfc_sli4_cfg_shdr *) 15686 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 15687 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15688 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15689 if (shdr_status || shdr_add_status || rc) { 15690 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15691 "2508 WQ_DESTROY mailbox failed with " 15692 "status x%x add_status x%x, mbx status x%x\n", 15693 shdr_status, shdr_add_status, rc); 15694 status = -ENXIO; 15695 } 15696 /* Remove wq from any list */ 15697 list_del_init(&wq->list); 15698 kfree(wq->pring); 15699 wq->pring = NULL; 15700 mempool_free(mbox, wq->phba->mbox_mem_pool); 15701 return status; 15702 } 15703 15704 /** 15705 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 15706 * @rq: The queue structure associated with the queue to destroy. 15707 * 15708 * This function destroys a queue, as detailed in @rq by sending an mailbox 15709 * command, specific to the type of queue, to the HBA. 15710 * 15711 * The @rq struct is used to get the queue ID of the queue to destroy. 15712 * 15713 * On success this function will return a zero. If the queue destroy mailbox 15714 * command fails this function will return -ENXIO. 15715 **/ 15716 int 15717 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 15718 struct lpfc_queue *drq) 15719 { 15720 LPFC_MBOXQ_t *mbox; 15721 int rc, length, status = 0; 15722 uint32_t shdr_status, shdr_add_status; 15723 union lpfc_sli4_cfg_shdr *shdr; 15724 15725 /* sanity check on queue memory */ 15726 if (!hrq || !drq) 15727 return -ENODEV; 15728 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 15729 if (!mbox) 15730 return -ENOMEM; 15731 length = (sizeof(struct lpfc_mbx_rq_destroy) - 15732 sizeof(struct lpfc_sli4_cfg_mhdr)); 15733 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15734 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 15735 length, LPFC_SLI4_MBX_EMBED); 15736 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 15737 hrq->queue_id); 15738 mbox->vport = hrq->phba->pport; 15739 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15740 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 15741 /* The IOCTL status is embedded in the mailbox subheader. */ 15742 shdr = (union lpfc_sli4_cfg_shdr *) 15743 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 15744 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15745 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15746 if (shdr_status || shdr_add_status || rc) { 15747 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15748 "2509 RQ_DESTROY mailbox failed with " 15749 "status x%x add_status x%x, mbx status x%x\n", 15750 shdr_status, shdr_add_status, rc); 15751 if (rc != MBX_TIMEOUT) 15752 mempool_free(mbox, hrq->phba->mbox_mem_pool); 15753 return -ENXIO; 15754 } 15755 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 15756 drq->queue_id); 15757 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 15758 shdr = (union lpfc_sli4_cfg_shdr *) 15759 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 15760 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15761 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15762 if (shdr_status || shdr_add_status || rc) { 15763 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15764 "2510 RQ_DESTROY mailbox failed with " 15765 "status x%x add_status x%x, mbx status x%x\n", 15766 shdr_status, shdr_add_status, rc); 15767 status = -ENXIO; 15768 } 15769 list_del_init(&hrq->list); 15770 list_del_init(&drq->list); 15771 mempool_free(mbox, hrq->phba->mbox_mem_pool); 15772 return status; 15773 } 15774 15775 /** 15776 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 15777 * @phba: The virtual port for which this call being executed. 15778 * @pdma_phys_addr0: Physical address of the 1st SGL page. 15779 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 15780 * @xritag: the xritag that ties this io to the SGL pages. 15781 * 15782 * This routine will post the sgl pages for the IO that has the xritag 15783 * that is in the iocbq structure. The xritag is assigned during iocbq 15784 * creation and persists for as long as the driver is loaded. 15785 * if the caller has fewer than 256 scatter gather segments to map then 15786 * pdma_phys_addr1 should be 0. 15787 * If the caller needs to map more than 256 scatter gather segment then 15788 * pdma_phys_addr1 should be a valid physical address. 15789 * physical address for SGLs must be 64 byte aligned. 15790 * If you are going to map 2 SGL's then the first one must have 256 entries 15791 * the second sgl can have between 1 and 256 entries. 15792 * 15793 * Return codes: 15794 * 0 - Success 15795 * -ENXIO, -ENOMEM - Failure 15796 **/ 15797 int 15798 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 15799 dma_addr_t pdma_phys_addr0, 15800 dma_addr_t pdma_phys_addr1, 15801 uint16_t xritag) 15802 { 15803 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 15804 LPFC_MBOXQ_t *mbox; 15805 int rc; 15806 uint32_t shdr_status, shdr_add_status; 15807 uint32_t mbox_tmo; 15808 union lpfc_sli4_cfg_shdr *shdr; 15809 15810 if (xritag == NO_XRI) { 15811 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15812 "0364 Invalid param:\n"); 15813 return -EINVAL; 15814 } 15815 15816 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15817 if (!mbox) 15818 return -ENOMEM; 15819 15820 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15821 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 15822 sizeof(struct lpfc_mbx_post_sgl_pages) - 15823 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 15824 15825 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 15826 &mbox->u.mqe.un.post_sgl_pages; 15827 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 15828 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 15829 15830 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 15831 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 15832 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 15833 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 15834 15835 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 15836 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 15837 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 15838 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 15839 if (!phba->sli4_hba.intr_enable) 15840 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15841 else { 15842 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 15843 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 15844 } 15845 /* The IOCTL status is embedded in the mailbox subheader. */ 15846 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 15847 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15848 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15849 if (rc != MBX_TIMEOUT) 15850 mempool_free(mbox, phba->mbox_mem_pool); 15851 if (shdr_status || shdr_add_status || rc) { 15852 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15853 "2511 POST_SGL mailbox failed with " 15854 "status x%x add_status x%x, mbx status x%x\n", 15855 shdr_status, shdr_add_status, rc); 15856 } 15857 return 0; 15858 } 15859 15860 /** 15861 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 15862 * @phba: pointer to lpfc hba data structure. 15863 * 15864 * This routine is invoked to post rpi header templates to the 15865 * HBA consistent with the SLI-4 interface spec. This routine 15866 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 15867 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 15868 * 15869 * Returns 15870 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 15871 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 15872 **/ 15873 static uint16_t 15874 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 15875 { 15876 unsigned long xri; 15877 15878 /* 15879 * Fetch the next logical xri. Because this index is logical, 15880 * the driver starts at 0 each time. 15881 */ 15882 spin_lock_irq(&phba->hbalock); 15883 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 15884 phba->sli4_hba.max_cfg_param.max_xri, 0); 15885 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 15886 spin_unlock_irq(&phba->hbalock); 15887 return NO_XRI; 15888 } else { 15889 set_bit(xri, phba->sli4_hba.xri_bmask); 15890 phba->sli4_hba.max_cfg_param.xri_used++; 15891 } 15892 spin_unlock_irq(&phba->hbalock); 15893 return xri; 15894 } 15895 15896 /** 15897 * lpfc_sli4_free_xri - Release an xri for reuse. 15898 * @phba: pointer to lpfc hba data structure. 15899 * 15900 * This routine is invoked to release an xri to the pool of 15901 * available rpis maintained by the driver. 15902 **/ 15903 static void 15904 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 15905 { 15906 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 15907 phba->sli4_hba.max_cfg_param.xri_used--; 15908 } 15909 } 15910 15911 /** 15912 * lpfc_sli4_free_xri - Release an xri for reuse. 15913 * @phba: pointer to lpfc hba data structure. 15914 * 15915 * This routine is invoked to release an xri to the pool of 15916 * available rpis maintained by the driver. 15917 **/ 15918 void 15919 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 15920 { 15921 spin_lock_irq(&phba->hbalock); 15922 __lpfc_sli4_free_xri(phba, xri); 15923 spin_unlock_irq(&phba->hbalock); 15924 } 15925 15926 /** 15927 * lpfc_sli4_next_xritag - Get an xritag for the io 15928 * @phba: Pointer to HBA context object. 15929 * 15930 * This function gets an xritag for the iocb. If there is no unused xritag 15931 * it will return 0xffff. 15932 * The function returns the allocated xritag if successful, else returns zero. 15933 * Zero is not a valid xritag. 15934 * The caller is not required to hold any lock. 15935 **/ 15936 uint16_t 15937 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 15938 { 15939 uint16_t xri_index; 15940 15941 xri_index = lpfc_sli4_alloc_xri(phba); 15942 if (xri_index == NO_XRI) 15943 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15944 "2004 Failed to allocate XRI.last XRITAG is %d" 15945 " Max XRI is %d, Used XRI is %d\n", 15946 xri_index, 15947 phba->sli4_hba.max_cfg_param.max_xri, 15948 phba->sli4_hba.max_cfg_param.xri_used); 15949 return xri_index; 15950 } 15951 15952 /** 15953 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 15954 * @phba: pointer to lpfc hba data structure. 15955 * @post_sgl_list: pointer to els sgl entry list. 15956 * @count: number of els sgl entries on the list. 15957 * 15958 * This routine is invoked to post a block of driver's sgl pages to the 15959 * HBA using non-embedded mailbox command. No Lock is held. This routine 15960 * is only called when the driver is loading and after all IO has been 15961 * stopped. 15962 **/ 15963 static int 15964 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 15965 struct list_head *post_sgl_list, 15966 int post_cnt) 15967 { 15968 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 15969 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 15970 struct sgl_page_pairs *sgl_pg_pairs; 15971 void *viraddr; 15972 LPFC_MBOXQ_t *mbox; 15973 uint32_t reqlen, alloclen, pg_pairs; 15974 uint32_t mbox_tmo; 15975 uint16_t xritag_start = 0; 15976 int rc = 0; 15977 uint32_t shdr_status, shdr_add_status; 15978 union lpfc_sli4_cfg_shdr *shdr; 15979 15980 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 15981 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 15982 if (reqlen > SLI4_PAGE_SIZE) { 15983 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15984 "2559 Block sgl registration required DMA " 15985 "size (%d) great than a page\n", reqlen); 15986 return -ENOMEM; 15987 } 15988 15989 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15990 if (!mbox) 15991 return -ENOMEM; 15992 15993 /* Allocate DMA memory and set up the non-embedded mailbox command */ 15994 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15995 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 15996 LPFC_SLI4_MBX_NEMBED); 15997 15998 if (alloclen < reqlen) { 15999 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16000 "0285 Allocated DMA memory size (%d) is " 16001 "less than the requested DMA memory " 16002 "size (%d)\n", alloclen, reqlen); 16003 lpfc_sli4_mbox_cmd_free(phba, mbox); 16004 return -ENOMEM; 16005 } 16006 /* Set up the SGL pages in the non-embedded DMA pages */ 16007 viraddr = mbox->sge_array->addr[0]; 16008 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 16009 sgl_pg_pairs = &sgl->sgl_pg_pairs; 16010 16011 pg_pairs = 0; 16012 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 16013 /* Set up the sge entry */ 16014 sgl_pg_pairs->sgl_pg0_addr_lo = 16015 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 16016 sgl_pg_pairs->sgl_pg0_addr_hi = 16017 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 16018 sgl_pg_pairs->sgl_pg1_addr_lo = 16019 cpu_to_le32(putPaddrLow(0)); 16020 sgl_pg_pairs->sgl_pg1_addr_hi = 16021 cpu_to_le32(putPaddrHigh(0)); 16022 16023 /* Keep the first xritag on the list */ 16024 if (pg_pairs == 0) 16025 xritag_start = sglq_entry->sli4_xritag; 16026 sgl_pg_pairs++; 16027 pg_pairs++; 16028 } 16029 16030 /* Complete initialization and perform endian conversion. */ 16031 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 16032 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 16033 sgl->word0 = cpu_to_le32(sgl->word0); 16034 16035 if (!phba->sli4_hba.intr_enable) 16036 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16037 else { 16038 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16039 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16040 } 16041 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 16042 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16043 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16044 if (rc != MBX_TIMEOUT) 16045 lpfc_sli4_mbox_cmd_free(phba, mbox); 16046 if (shdr_status || shdr_add_status || rc) { 16047 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16048 "2513 POST_SGL_BLOCK mailbox command failed " 16049 "status x%x add_status x%x mbx status x%x\n", 16050 shdr_status, shdr_add_status, rc); 16051 rc = -ENXIO; 16052 } 16053 return rc; 16054 } 16055 16056 /** 16057 * lpfc_sli4_post_scsi_sgl_block - post a block of scsi sgl list to firmware 16058 * @phba: pointer to lpfc hba data structure. 16059 * @sblist: pointer to scsi buffer list. 16060 * @count: number of scsi buffers on the list. 16061 * 16062 * This routine is invoked to post a block of @count scsi sgl pages from a 16063 * SCSI buffer list @sblist to the HBA using non-embedded mailbox command. 16064 * No Lock is held. 16065 * 16066 **/ 16067 int 16068 lpfc_sli4_post_scsi_sgl_block(struct lpfc_hba *phba, 16069 struct list_head *sblist, 16070 int count) 16071 { 16072 struct lpfc_scsi_buf *psb; 16073 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 16074 struct sgl_page_pairs *sgl_pg_pairs; 16075 void *viraddr; 16076 LPFC_MBOXQ_t *mbox; 16077 uint32_t reqlen, alloclen, pg_pairs; 16078 uint32_t mbox_tmo; 16079 uint16_t xritag_start = 0; 16080 int rc = 0; 16081 uint32_t shdr_status, shdr_add_status; 16082 dma_addr_t pdma_phys_bpl1; 16083 union lpfc_sli4_cfg_shdr *shdr; 16084 16085 /* Calculate the requested length of the dma memory */ 16086 reqlen = count * sizeof(struct sgl_page_pairs) + 16087 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 16088 if (reqlen > SLI4_PAGE_SIZE) { 16089 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 16090 "0217 Block sgl registration required DMA " 16091 "size (%d) great than a page\n", reqlen); 16092 return -ENOMEM; 16093 } 16094 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16095 if (!mbox) { 16096 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16097 "0283 Failed to allocate mbox cmd memory\n"); 16098 return -ENOMEM; 16099 } 16100 16101 /* Allocate DMA memory and set up the non-embedded mailbox command */ 16102 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16103 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 16104 LPFC_SLI4_MBX_NEMBED); 16105 16106 if (alloclen < reqlen) { 16107 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16108 "2561 Allocated DMA memory size (%d) is " 16109 "less than the requested DMA memory " 16110 "size (%d)\n", alloclen, reqlen); 16111 lpfc_sli4_mbox_cmd_free(phba, mbox); 16112 return -ENOMEM; 16113 } 16114 16115 /* Get the first SGE entry from the non-embedded DMA memory */ 16116 viraddr = mbox->sge_array->addr[0]; 16117 16118 /* Set up the SGL pages in the non-embedded DMA pages */ 16119 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 16120 sgl_pg_pairs = &sgl->sgl_pg_pairs; 16121 16122 pg_pairs = 0; 16123 list_for_each_entry(psb, sblist, list) { 16124 /* Set up the sge entry */ 16125 sgl_pg_pairs->sgl_pg0_addr_lo = 16126 cpu_to_le32(putPaddrLow(psb->dma_phys_bpl)); 16127 sgl_pg_pairs->sgl_pg0_addr_hi = 16128 cpu_to_le32(putPaddrHigh(psb->dma_phys_bpl)); 16129 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 16130 pdma_phys_bpl1 = psb->dma_phys_bpl + SGL_PAGE_SIZE; 16131 else 16132 pdma_phys_bpl1 = 0; 16133 sgl_pg_pairs->sgl_pg1_addr_lo = 16134 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 16135 sgl_pg_pairs->sgl_pg1_addr_hi = 16136 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 16137 /* Keep the first xritag on the list */ 16138 if (pg_pairs == 0) 16139 xritag_start = psb->cur_iocbq.sli4_xritag; 16140 sgl_pg_pairs++; 16141 pg_pairs++; 16142 } 16143 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 16144 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 16145 /* Perform endian conversion if necessary */ 16146 sgl->word0 = cpu_to_le32(sgl->word0); 16147 16148 if (!phba->sli4_hba.intr_enable) 16149 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16150 else { 16151 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16152 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16153 } 16154 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 16155 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16156 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16157 if (rc != MBX_TIMEOUT) 16158 lpfc_sli4_mbox_cmd_free(phba, mbox); 16159 if (shdr_status || shdr_add_status || rc) { 16160 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16161 "2564 POST_SGL_BLOCK mailbox command failed " 16162 "status x%x add_status x%x mbx status x%x\n", 16163 shdr_status, shdr_add_status, rc); 16164 rc = -ENXIO; 16165 } 16166 return rc; 16167 } 16168 16169 /** 16170 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 16171 * @phba: pointer to lpfc_hba struct that the frame was received on 16172 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 16173 * 16174 * This function checks the fields in the @fc_hdr to see if the FC frame is a 16175 * valid type of frame that the LPFC driver will handle. This function will 16176 * return a zero if the frame is a valid frame or a non zero value when the 16177 * frame does not pass the check. 16178 **/ 16179 static int 16180 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 16181 { 16182 /* make rctl_names static to save stack space */ 16183 struct fc_vft_header *fc_vft_hdr; 16184 uint32_t *header = (uint32_t *) fc_hdr; 16185 16186 #define FC_RCTL_MDS_DIAGS 0xF4 16187 16188 switch (fc_hdr->fh_r_ctl) { 16189 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 16190 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 16191 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 16192 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 16193 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 16194 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 16195 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 16196 case FC_RCTL_DD_CMD_STATUS: /* command status */ 16197 case FC_RCTL_ELS_REQ: /* extended link services request */ 16198 case FC_RCTL_ELS_REP: /* extended link services reply */ 16199 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 16200 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 16201 case FC_RCTL_BA_NOP: /* basic link service NOP */ 16202 case FC_RCTL_BA_ABTS: /* basic link service abort */ 16203 case FC_RCTL_BA_RMC: /* remove connection */ 16204 case FC_RCTL_BA_ACC: /* basic accept */ 16205 case FC_RCTL_BA_RJT: /* basic reject */ 16206 case FC_RCTL_BA_PRMT: 16207 case FC_RCTL_ACK_1: /* acknowledge_1 */ 16208 case FC_RCTL_ACK_0: /* acknowledge_0 */ 16209 case FC_RCTL_P_RJT: /* port reject */ 16210 case FC_RCTL_F_RJT: /* fabric reject */ 16211 case FC_RCTL_P_BSY: /* port busy */ 16212 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 16213 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 16214 case FC_RCTL_LCR: /* link credit reset */ 16215 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 16216 case FC_RCTL_END: /* end */ 16217 break; 16218 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 16219 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 16220 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 16221 return lpfc_fc_frame_check(phba, fc_hdr); 16222 default: 16223 goto drop; 16224 } 16225 16226 #define FC_TYPE_VENDOR_UNIQUE 0xFF 16227 16228 switch (fc_hdr->fh_type) { 16229 case FC_TYPE_BLS: 16230 case FC_TYPE_ELS: 16231 case FC_TYPE_FCP: 16232 case FC_TYPE_CT: 16233 case FC_TYPE_NVME: 16234 case FC_TYPE_VENDOR_UNIQUE: 16235 break; 16236 case FC_TYPE_IP: 16237 case FC_TYPE_ILS: 16238 default: 16239 goto drop; 16240 } 16241 16242 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 16243 "2538 Received frame rctl:x%x, type:x%x, " 16244 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 16245 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 16246 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 16247 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 16248 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 16249 be32_to_cpu(header[6])); 16250 return 0; 16251 drop: 16252 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 16253 "2539 Dropped frame rctl:x%x type:x%x\n", 16254 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 16255 return 1; 16256 } 16257 16258 /** 16259 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 16260 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 16261 * 16262 * This function processes the FC header to retrieve the VFI from the VF 16263 * header, if one exists. This function will return the VFI if one exists 16264 * or 0 if no VSAN Header exists. 16265 **/ 16266 static uint32_t 16267 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 16268 { 16269 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 16270 16271 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 16272 return 0; 16273 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 16274 } 16275 16276 /** 16277 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 16278 * @phba: Pointer to the HBA structure to search for the vport on 16279 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 16280 * @fcfi: The FC Fabric ID that the frame came from 16281 * 16282 * This function searches the @phba for a vport that matches the content of the 16283 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 16284 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 16285 * returns the matching vport pointer or NULL if unable to match frame to a 16286 * vport. 16287 **/ 16288 static struct lpfc_vport * 16289 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 16290 uint16_t fcfi, uint32_t did) 16291 { 16292 struct lpfc_vport **vports; 16293 struct lpfc_vport *vport = NULL; 16294 int i; 16295 16296 if (did == Fabric_DID) 16297 return phba->pport; 16298 if ((phba->pport->fc_flag & FC_PT2PT) && 16299 !(phba->link_state == LPFC_HBA_READY)) 16300 return phba->pport; 16301 16302 vports = lpfc_create_vport_work_array(phba); 16303 if (vports != NULL) { 16304 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 16305 if (phba->fcf.fcfi == fcfi && 16306 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 16307 vports[i]->fc_myDID == did) { 16308 vport = vports[i]; 16309 break; 16310 } 16311 } 16312 } 16313 lpfc_destroy_vport_work_array(phba, vports); 16314 return vport; 16315 } 16316 16317 /** 16318 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 16319 * @vport: The vport to work on. 16320 * 16321 * This function updates the receive sequence time stamp for this vport. The 16322 * receive sequence time stamp indicates the time that the last frame of the 16323 * the sequence that has been idle for the longest amount of time was received. 16324 * the driver uses this time stamp to indicate if any received sequences have 16325 * timed out. 16326 **/ 16327 static void 16328 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 16329 { 16330 struct lpfc_dmabuf *h_buf; 16331 struct hbq_dmabuf *dmabuf = NULL; 16332 16333 /* get the oldest sequence on the rcv list */ 16334 h_buf = list_get_first(&vport->rcv_buffer_list, 16335 struct lpfc_dmabuf, list); 16336 if (!h_buf) 16337 return; 16338 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16339 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 16340 } 16341 16342 /** 16343 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 16344 * @vport: The vport that the received sequences were sent to. 16345 * 16346 * This function cleans up all outstanding received sequences. This is called 16347 * by the driver when a link event or user action invalidates all the received 16348 * sequences. 16349 **/ 16350 void 16351 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 16352 { 16353 struct lpfc_dmabuf *h_buf, *hnext; 16354 struct lpfc_dmabuf *d_buf, *dnext; 16355 struct hbq_dmabuf *dmabuf = NULL; 16356 16357 /* start with the oldest sequence on the rcv list */ 16358 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 16359 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16360 list_del_init(&dmabuf->hbuf.list); 16361 list_for_each_entry_safe(d_buf, dnext, 16362 &dmabuf->dbuf.list, list) { 16363 list_del_init(&d_buf->list); 16364 lpfc_in_buf_free(vport->phba, d_buf); 16365 } 16366 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 16367 } 16368 } 16369 16370 /** 16371 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 16372 * @vport: The vport that the received sequences were sent to. 16373 * 16374 * This function determines whether any received sequences have timed out by 16375 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 16376 * indicates that there is at least one timed out sequence this routine will 16377 * go through the received sequences one at a time from most inactive to most 16378 * active to determine which ones need to be cleaned up. Once it has determined 16379 * that a sequence needs to be cleaned up it will simply free up the resources 16380 * without sending an abort. 16381 **/ 16382 void 16383 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 16384 { 16385 struct lpfc_dmabuf *h_buf, *hnext; 16386 struct lpfc_dmabuf *d_buf, *dnext; 16387 struct hbq_dmabuf *dmabuf = NULL; 16388 unsigned long timeout; 16389 int abort_count = 0; 16390 16391 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 16392 vport->rcv_buffer_time_stamp); 16393 if (list_empty(&vport->rcv_buffer_list) || 16394 time_before(jiffies, timeout)) 16395 return; 16396 /* start with the oldest sequence on the rcv list */ 16397 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 16398 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16399 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 16400 dmabuf->time_stamp); 16401 if (time_before(jiffies, timeout)) 16402 break; 16403 abort_count++; 16404 list_del_init(&dmabuf->hbuf.list); 16405 list_for_each_entry_safe(d_buf, dnext, 16406 &dmabuf->dbuf.list, list) { 16407 list_del_init(&d_buf->list); 16408 lpfc_in_buf_free(vport->phba, d_buf); 16409 } 16410 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 16411 } 16412 if (abort_count) 16413 lpfc_update_rcv_time_stamp(vport); 16414 } 16415 16416 /** 16417 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 16418 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 16419 * 16420 * This function searches through the existing incomplete sequences that have 16421 * been sent to this @vport. If the frame matches one of the incomplete 16422 * sequences then the dbuf in the @dmabuf is added to the list of frames that 16423 * make up that sequence. If no sequence is found that matches this frame then 16424 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 16425 * This function returns a pointer to the first dmabuf in the sequence list that 16426 * the frame was linked to. 16427 **/ 16428 static struct hbq_dmabuf * 16429 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 16430 { 16431 struct fc_frame_header *new_hdr; 16432 struct fc_frame_header *temp_hdr; 16433 struct lpfc_dmabuf *d_buf; 16434 struct lpfc_dmabuf *h_buf; 16435 struct hbq_dmabuf *seq_dmabuf = NULL; 16436 struct hbq_dmabuf *temp_dmabuf = NULL; 16437 uint8_t found = 0; 16438 16439 INIT_LIST_HEAD(&dmabuf->dbuf.list); 16440 dmabuf->time_stamp = jiffies; 16441 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 16442 16443 /* Use the hdr_buf to find the sequence that this frame belongs to */ 16444 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 16445 temp_hdr = (struct fc_frame_header *)h_buf->virt; 16446 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 16447 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 16448 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 16449 continue; 16450 /* found a pending sequence that matches this frame */ 16451 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16452 break; 16453 } 16454 if (!seq_dmabuf) { 16455 /* 16456 * This indicates first frame received for this sequence. 16457 * Queue the buffer on the vport's rcv_buffer_list. 16458 */ 16459 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 16460 lpfc_update_rcv_time_stamp(vport); 16461 return dmabuf; 16462 } 16463 temp_hdr = seq_dmabuf->hbuf.virt; 16464 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 16465 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 16466 list_del_init(&seq_dmabuf->hbuf.list); 16467 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 16468 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 16469 lpfc_update_rcv_time_stamp(vport); 16470 return dmabuf; 16471 } 16472 /* move this sequence to the tail to indicate a young sequence */ 16473 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 16474 seq_dmabuf->time_stamp = jiffies; 16475 lpfc_update_rcv_time_stamp(vport); 16476 if (list_empty(&seq_dmabuf->dbuf.list)) { 16477 temp_hdr = dmabuf->hbuf.virt; 16478 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 16479 return seq_dmabuf; 16480 } 16481 /* find the correct place in the sequence to insert this frame */ 16482 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 16483 while (!found) { 16484 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 16485 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 16486 /* 16487 * If the frame's sequence count is greater than the frame on 16488 * the list then insert the frame right after this frame 16489 */ 16490 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 16491 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 16492 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 16493 found = 1; 16494 break; 16495 } 16496 16497 if (&d_buf->list == &seq_dmabuf->dbuf.list) 16498 break; 16499 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 16500 } 16501 16502 if (found) 16503 return seq_dmabuf; 16504 return NULL; 16505 } 16506 16507 /** 16508 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 16509 * @vport: pointer to a vitural port 16510 * @dmabuf: pointer to a dmabuf that describes the FC sequence 16511 * 16512 * This function tries to abort from the partially assembed sequence, described 16513 * by the information from basic abbort @dmabuf. It checks to see whether such 16514 * partially assembled sequence held by the driver. If so, it shall free up all 16515 * the frames from the partially assembled sequence. 16516 * 16517 * Return 16518 * true -- if there is matching partially assembled sequence present and all 16519 * the frames freed with the sequence; 16520 * false -- if there is no matching partially assembled sequence present so 16521 * nothing got aborted in the lower layer driver 16522 **/ 16523 static bool 16524 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 16525 struct hbq_dmabuf *dmabuf) 16526 { 16527 struct fc_frame_header *new_hdr; 16528 struct fc_frame_header *temp_hdr; 16529 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 16530 struct hbq_dmabuf *seq_dmabuf = NULL; 16531 16532 /* Use the hdr_buf to find the sequence that matches this frame */ 16533 INIT_LIST_HEAD(&dmabuf->dbuf.list); 16534 INIT_LIST_HEAD(&dmabuf->hbuf.list); 16535 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 16536 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 16537 temp_hdr = (struct fc_frame_header *)h_buf->virt; 16538 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 16539 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 16540 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 16541 continue; 16542 /* found a pending sequence that matches this frame */ 16543 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16544 break; 16545 } 16546 16547 /* Free up all the frames from the partially assembled sequence */ 16548 if (seq_dmabuf) { 16549 list_for_each_entry_safe(d_buf, n_buf, 16550 &seq_dmabuf->dbuf.list, list) { 16551 list_del_init(&d_buf->list); 16552 lpfc_in_buf_free(vport->phba, d_buf); 16553 } 16554 return true; 16555 } 16556 return false; 16557 } 16558 16559 /** 16560 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 16561 * @vport: pointer to a vitural port 16562 * @dmabuf: pointer to a dmabuf that describes the FC sequence 16563 * 16564 * This function tries to abort from the assembed sequence from upper level 16565 * protocol, described by the information from basic abbort @dmabuf. It 16566 * checks to see whether such pending context exists at upper level protocol. 16567 * If so, it shall clean up the pending context. 16568 * 16569 * Return 16570 * true -- if there is matching pending context of the sequence cleaned 16571 * at ulp; 16572 * false -- if there is no matching pending context of the sequence present 16573 * at ulp. 16574 **/ 16575 static bool 16576 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 16577 { 16578 struct lpfc_hba *phba = vport->phba; 16579 int handled; 16580 16581 /* Accepting abort at ulp with SLI4 only */ 16582 if (phba->sli_rev < LPFC_SLI_REV4) 16583 return false; 16584 16585 /* Register all caring upper level protocols to attend abort */ 16586 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 16587 if (handled) 16588 return true; 16589 16590 return false; 16591 } 16592 16593 /** 16594 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 16595 * @phba: Pointer to HBA context object. 16596 * @cmd_iocbq: pointer to the command iocbq structure. 16597 * @rsp_iocbq: pointer to the response iocbq structure. 16598 * 16599 * This function handles the sequence abort response iocb command complete 16600 * event. It properly releases the memory allocated to the sequence abort 16601 * accept iocb. 16602 **/ 16603 static void 16604 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 16605 struct lpfc_iocbq *cmd_iocbq, 16606 struct lpfc_iocbq *rsp_iocbq) 16607 { 16608 struct lpfc_nodelist *ndlp; 16609 16610 if (cmd_iocbq) { 16611 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 16612 lpfc_nlp_put(ndlp); 16613 lpfc_nlp_not_used(ndlp); 16614 lpfc_sli_release_iocbq(phba, cmd_iocbq); 16615 } 16616 16617 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 16618 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 16619 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16620 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 16621 rsp_iocbq->iocb.ulpStatus, 16622 rsp_iocbq->iocb.un.ulpWord[4]); 16623 } 16624 16625 /** 16626 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 16627 * @phba: Pointer to HBA context object. 16628 * @xri: xri id in transaction. 16629 * 16630 * This function validates the xri maps to the known range of XRIs allocated an 16631 * used by the driver. 16632 **/ 16633 uint16_t 16634 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 16635 uint16_t xri) 16636 { 16637 uint16_t i; 16638 16639 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 16640 if (xri == phba->sli4_hba.xri_ids[i]) 16641 return i; 16642 } 16643 return NO_XRI; 16644 } 16645 16646 /** 16647 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 16648 * @phba: Pointer to HBA context object. 16649 * @fc_hdr: pointer to a FC frame header. 16650 * 16651 * This function sends a basic response to a previous unsol sequence abort 16652 * event after aborting the sequence handling. 16653 **/ 16654 void 16655 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 16656 struct fc_frame_header *fc_hdr, bool aborted) 16657 { 16658 struct lpfc_hba *phba = vport->phba; 16659 struct lpfc_iocbq *ctiocb = NULL; 16660 struct lpfc_nodelist *ndlp; 16661 uint16_t oxid, rxid, xri, lxri; 16662 uint32_t sid, fctl; 16663 IOCB_t *icmd; 16664 int rc; 16665 16666 if (!lpfc_is_link_up(phba)) 16667 return; 16668 16669 sid = sli4_sid_from_fc_hdr(fc_hdr); 16670 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 16671 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 16672 16673 ndlp = lpfc_findnode_did(vport, sid); 16674 if (!ndlp) { 16675 ndlp = lpfc_nlp_init(vport, sid); 16676 if (!ndlp) { 16677 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 16678 "1268 Failed to allocate ndlp for " 16679 "oxid:x%x SID:x%x\n", oxid, sid); 16680 return; 16681 } 16682 /* Put ndlp onto pport node list */ 16683 lpfc_enqueue_node(vport, ndlp); 16684 } else if (!NLP_CHK_NODE_ACT(ndlp)) { 16685 /* re-setup ndlp without removing from node list */ 16686 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE); 16687 if (!ndlp) { 16688 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 16689 "3275 Failed to active ndlp found " 16690 "for oxid:x%x SID:x%x\n", oxid, sid); 16691 return; 16692 } 16693 } 16694 16695 /* Allocate buffer for rsp iocb */ 16696 ctiocb = lpfc_sli_get_iocbq(phba); 16697 if (!ctiocb) 16698 return; 16699 16700 /* Extract the F_CTL field from FC_HDR */ 16701 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 16702 16703 icmd = &ctiocb->iocb; 16704 icmd->un.xseq64.bdl.bdeSize = 0; 16705 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 16706 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 16707 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 16708 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 16709 16710 /* Fill in the rest of iocb fields */ 16711 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 16712 icmd->ulpBdeCount = 0; 16713 icmd->ulpLe = 1; 16714 icmd->ulpClass = CLASS3; 16715 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 16716 ctiocb->context1 = lpfc_nlp_get(ndlp); 16717 16718 ctiocb->iocb_cmpl = NULL; 16719 ctiocb->vport = phba->pport; 16720 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 16721 ctiocb->sli4_lxritag = NO_XRI; 16722 ctiocb->sli4_xritag = NO_XRI; 16723 16724 if (fctl & FC_FC_EX_CTX) 16725 /* Exchange responder sent the abort so we 16726 * own the oxid. 16727 */ 16728 xri = oxid; 16729 else 16730 xri = rxid; 16731 lxri = lpfc_sli4_xri_inrange(phba, xri); 16732 if (lxri != NO_XRI) 16733 lpfc_set_rrq_active(phba, ndlp, lxri, 16734 (xri == oxid) ? rxid : oxid, 0); 16735 /* For BA_ABTS from exchange responder, if the logical xri with 16736 * the oxid maps to the FCP XRI range, the port no longer has 16737 * that exchange context, send a BLS_RJT. Override the IOCB for 16738 * a BA_RJT. 16739 */ 16740 if ((fctl & FC_FC_EX_CTX) && 16741 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 16742 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 16743 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 16744 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 16745 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 16746 } 16747 16748 /* If BA_ABTS failed to abort a partially assembled receive sequence, 16749 * the driver no longer has that exchange, send a BLS_RJT. Override 16750 * the IOCB for a BA_RJT. 16751 */ 16752 if (aborted == false) { 16753 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 16754 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 16755 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 16756 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 16757 } 16758 16759 if (fctl & FC_FC_EX_CTX) { 16760 /* ABTS sent by responder to CT exchange, construction 16761 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 16762 * field and RX_ID from ABTS for RX_ID field. 16763 */ 16764 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 16765 } else { 16766 /* ABTS sent by initiator to CT exchange, construction 16767 * of BA_ACC will need to allocate a new XRI as for the 16768 * XRI_TAG field. 16769 */ 16770 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 16771 } 16772 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 16773 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 16774 16775 /* Xmit CT abts response on exchange <xid> */ 16776 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 16777 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 16778 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 16779 16780 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 16781 if (rc == IOCB_ERROR) { 16782 lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS, 16783 "2925 Failed to issue CT ABTS RSP x%x on " 16784 "xri x%x, Data x%x\n", 16785 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 16786 phba->link_state); 16787 lpfc_nlp_put(ndlp); 16788 ctiocb->context1 = NULL; 16789 lpfc_sli_release_iocbq(phba, ctiocb); 16790 } 16791 } 16792 16793 /** 16794 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 16795 * @vport: Pointer to the vport on which this sequence was received 16796 * @dmabuf: pointer to a dmabuf that describes the FC sequence 16797 * 16798 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 16799 * receive sequence is only partially assembed by the driver, it shall abort 16800 * the partially assembled frames for the sequence. Otherwise, if the 16801 * unsolicited receive sequence has been completely assembled and passed to 16802 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the 16803 * unsolicited sequence has been aborted. After that, it will issue a basic 16804 * accept to accept the abort. 16805 **/ 16806 static void 16807 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 16808 struct hbq_dmabuf *dmabuf) 16809 { 16810 struct lpfc_hba *phba = vport->phba; 16811 struct fc_frame_header fc_hdr; 16812 uint32_t fctl; 16813 bool aborted; 16814 16815 /* Make a copy of fc_hdr before the dmabuf being released */ 16816 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 16817 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 16818 16819 if (fctl & FC_FC_EX_CTX) { 16820 /* ABTS by responder to exchange, no cleanup needed */ 16821 aborted = true; 16822 } else { 16823 /* ABTS by initiator to exchange, need to do cleanup */ 16824 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 16825 if (aborted == false) 16826 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 16827 } 16828 lpfc_in_buf_free(phba, &dmabuf->dbuf); 16829 16830 if (phba->nvmet_support) { 16831 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 16832 return; 16833 } 16834 16835 /* Respond with BA_ACC or BA_RJT accordingly */ 16836 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 16837 } 16838 16839 /** 16840 * lpfc_seq_complete - Indicates if a sequence is complete 16841 * @dmabuf: pointer to a dmabuf that describes the FC sequence 16842 * 16843 * This function checks the sequence, starting with the frame described by 16844 * @dmabuf, to see if all the frames associated with this sequence are present. 16845 * the frames associated with this sequence are linked to the @dmabuf using the 16846 * dbuf list. This function looks for two major things. 1) That the first frame 16847 * has a sequence count of zero. 2) There is a frame with last frame of sequence 16848 * set. 3) That there are no holes in the sequence count. The function will 16849 * return 1 when the sequence is complete, otherwise it will return 0. 16850 **/ 16851 static int 16852 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 16853 { 16854 struct fc_frame_header *hdr; 16855 struct lpfc_dmabuf *d_buf; 16856 struct hbq_dmabuf *seq_dmabuf; 16857 uint32_t fctl; 16858 int seq_count = 0; 16859 16860 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 16861 /* make sure first fame of sequence has a sequence count of zero */ 16862 if (hdr->fh_seq_cnt != seq_count) 16863 return 0; 16864 fctl = (hdr->fh_f_ctl[0] << 16 | 16865 hdr->fh_f_ctl[1] << 8 | 16866 hdr->fh_f_ctl[2]); 16867 /* If last frame of sequence we can return success. */ 16868 if (fctl & FC_FC_END_SEQ) 16869 return 1; 16870 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 16871 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 16872 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 16873 /* If there is a hole in the sequence count then fail. */ 16874 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 16875 return 0; 16876 fctl = (hdr->fh_f_ctl[0] << 16 | 16877 hdr->fh_f_ctl[1] << 8 | 16878 hdr->fh_f_ctl[2]); 16879 /* If last frame of sequence we can return success. */ 16880 if (fctl & FC_FC_END_SEQ) 16881 return 1; 16882 } 16883 return 0; 16884 } 16885 16886 /** 16887 * lpfc_prep_seq - Prep sequence for ULP processing 16888 * @vport: Pointer to the vport on which this sequence was received 16889 * @dmabuf: pointer to a dmabuf that describes the FC sequence 16890 * 16891 * This function takes a sequence, described by a list of frames, and creates 16892 * a list of iocbq structures to describe the sequence. This iocbq list will be 16893 * used to issue to the generic unsolicited sequence handler. This routine 16894 * returns a pointer to the first iocbq in the list. If the function is unable 16895 * to allocate an iocbq then it throw out the received frames that were not 16896 * able to be described and return a pointer to the first iocbq. If unable to 16897 * allocate any iocbqs (including the first) this function will return NULL. 16898 **/ 16899 static struct lpfc_iocbq * 16900 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 16901 { 16902 struct hbq_dmabuf *hbq_buf; 16903 struct lpfc_dmabuf *d_buf, *n_buf; 16904 struct lpfc_iocbq *first_iocbq, *iocbq; 16905 struct fc_frame_header *fc_hdr; 16906 uint32_t sid; 16907 uint32_t len, tot_len; 16908 struct ulp_bde64 *pbde; 16909 16910 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 16911 /* remove from receive buffer list */ 16912 list_del_init(&seq_dmabuf->hbuf.list); 16913 lpfc_update_rcv_time_stamp(vport); 16914 /* get the Remote Port's SID */ 16915 sid = sli4_sid_from_fc_hdr(fc_hdr); 16916 tot_len = 0; 16917 /* Get an iocbq struct to fill in. */ 16918 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 16919 if (first_iocbq) { 16920 /* Initialize the first IOCB. */ 16921 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 16922 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 16923 first_iocbq->vport = vport; 16924 16925 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 16926 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 16927 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 16928 first_iocbq->iocb.un.rcvels.parmRo = 16929 sli4_did_from_fc_hdr(fc_hdr); 16930 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 16931 } else 16932 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 16933 first_iocbq->iocb.ulpContext = NO_XRI; 16934 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 16935 be16_to_cpu(fc_hdr->fh_ox_id); 16936 /* iocbq is prepped for internal consumption. Physical vpi. */ 16937 first_iocbq->iocb.unsli3.rcvsli3.vpi = 16938 vport->phba->vpi_ids[vport->vpi]; 16939 /* put the first buffer into the first IOCBq */ 16940 tot_len = bf_get(lpfc_rcqe_length, 16941 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 16942 16943 first_iocbq->context2 = &seq_dmabuf->dbuf; 16944 first_iocbq->context3 = NULL; 16945 first_iocbq->iocb.ulpBdeCount = 1; 16946 if (tot_len > LPFC_DATA_BUF_SIZE) 16947 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 16948 LPFC_DATA_BUF_SIZE; 16949 else 16950 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 16951 16952 first_iocbq->iocb.un.rcvels.remoteID = sid; 16953 16954 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 16955 } 16956 iocbq = first_iocbq; 16957 /* 16958 * Each IOCBq can have two Buffers assigned, so go through the list 16959 * of buffers for this sequence and save two buffers in each IOCBq 16960 */ 16961 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 16962 if (!iocbq) { 16963 lpfc_in_buf_free(vport->phba, d_buf); 16964 continue; 16965 } 16966 if (!iocbq->context3) { 16967 iocbq->context3 = d_buf; 16968 iocbq->iocb.ulpBdeCount++; 16969 /* We need to get the size out of the right CQE */ 16970 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 16971 len = bf_get(lpfc_rcqe_length, 16972 &hbq_buf->cq_event.cqe.rcqe_cmpl); 16973 pbde = (struct ulp_bde64 *) 16974 &iocbq->iocb.unsli3.sli3Words[4]; 16975 if (len > LPFC_DATA_BUF_SIZE) 16976 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 16977 else 16978 pbde->tus.f.bdeSize = len; 16979 16980 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 16981 tot_len += len; 16982 } else { 16983 iocbq = lpfc_sli_get_iocbq(vport->phba); 16984 if (!iocbq) { 16985 if (first_iocbq) { 16986 first_iocbq->iocb.ulpStatus = 16987 IOSTAT_FCP_RSP_ERROR; 16988 first_iocbq->iocb.un.ulpWord[4] = 16989 IOERR_NO_RESOURCES; 16990 } 16991 lpfc_in_buf_free(vport->phba, d_buf); 16992 continue; 16993 } 16994 /* We need to get the size out of the right CQE */ 16995 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 16996 len = bf_get(lpfc_rcqe_length, 16997 &hbq_buf->cq_event.cqe.rcqe_cmpl); 16998 iocbq->context2 = d_buf; 16999 iocbq->context3 = NULL; 17000 iocbq->iocb.ulpBdeCount = 1; 17001 if (len > LPFC_DATA_BUF_SIZE) 17002 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 17003 LPFC_DATA_BUF_SIZE; 17004 else 17005 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 17006 17007 tot_len += len; 17008 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 17009 17010 iocbq->iocb.un.rcvels.remoteID = sid; 17011 list_add_tail(&iocbq->list, &first_iocbq->list); 17012 } 17013 } 17014 return first_iocbq; 17015 } 17016 17017 static void 17018 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 17019 struct hbq_dmabuf *seq_dmabuf) 17020 { 17021 struct fc_frame_header *fc_hdr; 17022 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 17023 struct lpfc_hba *phba = vport->phba; 17024 17025 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 17026 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 17027 if (!iocbq) { 17028 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17029 "2707 Ring %d handler: Failed to allocate " 17030 "iocb Rctl x%x Type x%x received\n", 17031 LPFC_ELS_RING, 17032 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17033 return; 17034 } 17035 if (!lpfc_complete_unsol_iocb(phba, 17036 phba->sli4_hba.els_wq->pring, 17037 iocbq, fc_hdr->fh_r_ctl, 17038 fc_hdr->fh_type)) 17039 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17040 "2540 Ring %d handler: unexpected Rctl " 17041 "x%x Type x%x received\n", 17042 LPFC_ELS_RING, 17043 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17044 17045 /* Free iocb created in lpfc_prep_seq */ 17046 list_for_each_entry_safe(curr_iocb, next_iocb, 17047 &iocbq->list, list) { 17048 list_del_init(&curr_iocb->list); 17049 lpfc_sli_release_iocbq(phba, curr_iocb); 17050 } 17051 lpfc_sli_release_iocbq(phba, iocbq); 17052 } 17053 17054 static void 17055 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 17056 struct lpfc_iocbq *rspiocb) 17057 { 17058 struct lpfc_dmabuf *pcmd = cmdiocb->context2; 17059 17060 if (pcmd && pcmd->virt) 17061 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 17062 kfree(pcmd); 17063 lpfc_sli_release_iocbq(phba, cmdiocb); 17064 } 17065 17066 static void 17067 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 17068 struct hbq_dmabuf *dmabuf) 17069 { 17070 struct fc_frame_header *fc_hdr; 17071 struct lpfc_hba *phba = vport->phba; 17072 struct lpfc_iocbq *iocbq = NULL; 17073 union lpfc_wqe *wqe; 17074 struct lpfc_dmabuf *pcmd = NULL; 17075 uint32_t frame_len; 17076 int rc; 17077 17078 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17079 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 17080 17081 /* Send the received frame back */ 17082 iocbq = lpfc_sli_get_iocbq(phba); 17083 if (!iocbq) 17084 goto exit; 17085 17086 /* Allocate buffer for command payload */ 17087 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 17088 if (pcmd) 17089 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 17090 &pcmd->phys); 17091 if (!pcmd || !pcmd->virt) 17092 goto exit; 17093 17094 INIT_LIST_HEAD(&pcmd->list); 17095 17096 /* copyin the payload */ 17097 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 17098 17099 /* fill in BDE's for command */ 17100 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys); 17101 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys); 17102 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 17103 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len; 17104 17105 iocbq->context2 = pcmd; 17106 iocbq->vport = vport; 17107 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK; 17108 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 17109 17110 /* 17111 * Setup rest of the iocb as though it were a WQE 17112 * Build the SEND_FRAME WQE 17113 */ 17114 wqe = (union lpfc_wqe *)&iocbq->iocb; 17115 17116 wqe->send_frame.frame_len = frame_len; 17117 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr)); 17118 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1)); 17119 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2)); 17120 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3)); 17121 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4)); 17122 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5)); 17123 17124 iocbq->iocb.ulpCommand = CMD_SEND_FRAME; 17125 iocbq->iocb.ulpLe = 1; 17126 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl; 17127 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 17128 if (rc == IOCB_ERROR) 17129 goto exit; 17130 17131 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17132 return; 17133 17134 exit: 17135 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 17136 "2023 Unable to process MDS loopback frame\n"); 17137 if (pcmd && pcmd->virt) 17138 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 17139 kfree(pcmd); 17140 lpfc_sli_release_iocbq(phba, iocbq); 17141 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17142 } 17143 17144 /** 17145 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 17146 * @phba: Pointer to HBA context object. 17147 * 17148 * This function is called with no lock held. This function processes all 17149 * the received buffers and gives it to upper layers when a received buffer 17150 * indicates that it is the final frame in the sequence. The interrupt 17151 * service routine processes received buffers at interrupt contexts. 17152 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 17153 * appropriate receive function when the final frame in a sequence is received. 17154 **/ 17155 void 17156 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 17157 struct hbq_dmabuf *dmabuf) 17158 { 17159 struct hbq_dmabuf *seq_dmabuf; 17160 struct fc_frame_header *fc_hdr; 17161 struct lpfc_vport *vport; 17162 uint32_t fcfi; 17163 uint32_t did; 17164 17165 /* Process each received buffer */ 17166 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17167 17168 /* check to see if this a valid type of frame */ 17169 if (lpfc_fc_frame_check(phba, fc_hdr)) { 17170 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17171 return; 17172 } 17173 17174 if ((bf_get(lpfc_cqe_code, 17175 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 17176 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 17177 &dmabuf->cq_event.cqe.rcqe_cmpl); 17178 else 17179 fcfi = bf_get(lpfc_rcqe_fcf_id, 17180 &dmabuf->cq_event.cqe.rcqe_cmpl); 17181 17182 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 17183 vport = phba->pport; 17184 /* Handle MDS Loopback frames */ 17185 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 17186 return; 17187 } 17188 17189 /* d_id this frame is directed to */ 17190 did = sli4_did_from_fc_hdr(fc_hdr); 17191 17192 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 17193 if (!vport) { 17194 /* throw out the frame */ 17195 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17196 return; 17197 } 17198 17199 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 17200 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 17201 (did != Fabric_DID)) { 17202 /* 17203 * Throw out the frame if we are not pt2pt. 17204 * The pt2pt protocol allows for discovery frames 17205 * to be received without a registered VPI. 17206 */ 17207 if (!(vport->fc_flag & FC_PT2PT) || 17208 (phba->link_state == LPFC_HBA_READY)) { 17209 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17210 return; 17211 } 17212 } 17213 17214 /* Handle the basic abort sequence (BA_ABTS) event */ 17215 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 17216 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 17217 return; 17218 } 17219 17220 /* Link this frame */ 17221 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 17222 if (!seq_dmabuf) { 17223 /* unable to add frame to vport - throw it out */ 17224 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17225 return; 17226 } 17227 /* If not last frame in sequence continue processing frames. */ 17228 if (!lpfc_seq_complete(seq_dmabuf)) 17229 return; 17230 17231 /* Send the complete sequence to the upper layer protocol */ 17232 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 17233 } 17234 17235 /** 17236 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 17237 * @phba: pointer to lpfc hba data structure. 17238 * 17239 * This routine is invoked to post rpi header templates to the 17240 * HBA consistent with the SLI-4 interface spec. This routine 17241 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17242 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17243 * 17244 * This routine does not require any locks. It's usage is expected 17245 * to be driver load or reset recovery when the driver is 17246 * sequential. 17247 * 17248 * Return codes 17249 * 0 - successful 17250 * -EIO - The mailbox failed to complete successfully. 17251 * When this error occurs, the driver is not guaranteed 17252 * to have any rpi regions posted to the device and 17253 * must either attempt to repost the regions or take a 17254 * fatal error. 17255 **/ 17256 int 17257 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 17258 { 17259 struct lpfc_rpi_hdr *rpi_page; 17260 uint32_t rc = 0; 17261 uint16_t lrpi = 0; 17262 17263 /* SLI4 ports that support extents do not require RPI headers. */ 17264 if (!phba->sli4_hba.rpi_hdrs_in_use) 17265 goto exit; 17266 if (phba->sli4_hba.extents_in_use) 17267 return -EIO; 17268 17269 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 17270 /* 17271 * Assign the rpi headers a physical rpi only if the driver 17272 * has not initialized those resources. A port reset only 17273 * needs the headers posted. 17274 */ 17275 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 17276 LPFC_RPI_RSRC_RDY) 17277 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 17278 17279 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 17280 if (rc != MBX_SUCCESS) { 17281 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17282 "2008 Error %d posting all rpi " 17283 "headers\n", rc); 17284 rc = -EIO; 17285 break; 17286 } 17287 } 17288 17289 exit: 17290 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 17291 LPFC_RPI_RSRC_RDY); 17292 return rc; 17293 } 17294 17295 /** 17296 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 17297 * @phba: pointer to lpfc hba data structure. 17298 * @rpi_page: pointer to the rpi memory region. 17299 * 17300 * This routine is invoked to post a single rpi header to the 17301 * HBA consistent with the SLI-4 interface spec. This memory region 17302 * maps up to 64 rpi context regions. 17303 * 17304 * Return codes 17305 * 0 - successful 17306 * -ENOMEM - No available memory 17307 * -EIO - The mailbox failed to complete successfully. 17308 **/ 17309 int 17310 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 17311 { 17312 LPFC_MBOXQ_t *mboxq; 17313 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 17314 uint32_t rc = 0; 17315 uint32_t shdr_status, shdr_add_status; 17316 union lpfc_sli4_cfg_shdr *shdr; 17317 17318 /* SLI4 ports that support extents do not require RPI headers. */ 17319 if (!phba->sli4_hba.rpi_hdrs_in_use) 17320 return rc; 17321 if (phba->sli4_hba.extents_in_use) 17322 return -EIO; 17323 17324 /* The port is notified of the header region via a mailbox command. */ 17325 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17326 if (!mboxq) { 17327 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17328 "2001 Unable to allocate memory for issuing " 17329 "SLI_CONFIG_SPECIAL mailbox command\n"); 17330 return -ENOMEM; 17331 } 17332 17333 /* Post all rpi memory regions to the port. */ 17334 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 17335 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 17336 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 17337 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 17338 sizeof(struct lpfc_sli4_cfg_mhdr), 17339 LPFC_SLI4_MBX_EMBED); 17340 17341 17342 /* Post the physical rpi to the port for this rpi header. */ 17343 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 17344 rpi_page->start_rpi); 17345 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 17346 hdr_tmpl, rpi_page->page_count); 17347 17348 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 17349 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 17350 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 17351 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 17352 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17353 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17354 if (rc != MBX_TIMEOUT) 17355 mempool_free(mboxq, phba->mbox_mem_pool); 17356 if (shdr_status || shdr_add_status || rc) { 17357 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17358 "2514 POST_RPI_HDR mailbox failed with " 17359 "status x%x add_status x%x, mbx status x%x\n", 17360 shdr_status, shdr_add_status, rc); 17361 rc = -ENXIO; 17362 } else { 17363 /* 17364 * The next_rpi stores the next logical module-64 rpi value used 17365 * to post physical rpis in subsequent rpi postings. 17366 */ 17367 spin_lock_irq(&phba->hbalock); 17368 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 17369 spin_unlock_irq(&phba->hbalock); 17370 } 17371 return rc; 17372 } 17373 17374 /** 17375 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 17376 * @phba: pointer to lpfc hba data structure. 17377 * 17378 * This routine is invoked to post rpi header templates to the 17379 * HBA consistent with the SLI-4 interface spec. This routine 17380 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17381 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17382 * 17383 * Returns 17384 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17385 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17386 **/ 17387 int 17388 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 17389 { 17390 unsigned long rpi; 17391 uint16_t max_rpi, rpi_limit; 17392 uint16_t rpi_remaining, lrpi = 0; 17393 struct lpfc_rpi_hdr *rpi_hdr; 17394 unsigned long iflag; 17395 17396 /* 17397 * Fetch the next logical rpi. Because this index is logical, 17398 * the driver starts at 0 each time. 17399 */ 17400 spin_lock_irqsave(&phba->hbalock, iflag); 17401 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 17402 rpi_limit = phba->sli4_hba.next_rpi; 17403 17404 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 17405 if (rpi >= rpi_limit) 17406 rpi = LPFC_RPI_ALLOC_ERROR; 17407 else { 17408 set_bit(rpi, phba->sli4_hba.rpi_bmask); 17409 phba->sli4_hba.max_cfg_param.rpi_used++; 17410 phba->sli4_hba.rpi_count++; 17411 } 17412 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 17413 "0001 rpi:%x max:%x lim:%x\n", 17414 (int) rpi, max_rpi, rpi_limit); 17415 17416 /* 17417 * Don't try to allocate more rpi header regions if the device limit 17418 * has been exhausted. 17419 */ 17420 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 17421 (phba->sli4_hba.rpi_count >= max_rpi)) { 17422 spin_unlock_irqrestore(&phba->hbalock, iflag); 17423 return rpi; 17424 } 17425 17426 /* 17427 * RPI header postings are not required for SLI4 ports capable of 17428 * extents. 17429 */ 17430 if (!phba->sli4_hba.rpi_hdrs_in_use) { 17431 spin_unlock_irqrestore(&phba->hbalock, iflag); 17432 return rpi; 17433 } 17434 17435 /* 17436 * If the driver is running low on rpi resources, allocate another 17437 * page now. Note that the next_rpi value is used because 17438 * it represents how many are actually in use whereas max_rpi notes 17439 * how many are supported max by the device. 17440 */ 17441 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 17442 spin_unlock_irqrestore(&phba->hbalock, iflag); 17443 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 17444 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 17445 if (!rpi_hdr) { 17446 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17447 "2002 Error Could not grow rpi " 17448 "count\n"); 17449 } else { 17450 lrpi = rpi_hdr->start_rpi; 17451 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 17452 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 17453 } 17454 } 17455 17456 return rpi; 17457 } 17458 17459 /** 17460 * lpfc_sli4_free_rpi - Release an rpi for reuse. 17461 * @phba: pointer to lpfc hba data structure. 17462 * 17463 * This routine is invoked to release an rpi to the pool of 17464 * available rpis maintained by the driver. 17465 **/ 17466 static void 17467 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 17468 { 17469 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 17470 phba->sli4_hba.rpi_count--; 17471 phba->sli4_hba.max_cfg_param.rpi_used--; 17472 } 17473 } 17474 17475 /** 17476 * lpfc_sli4_free_rpi - Release an rpi for reuse. 17477 * @phba: pointer to lpfc hba data structure. 17478 * 17479 * This routine is invoked to release an rpi to the pool of 17480 * available rpis maintained by the driver. 17481 **/ 17482 void 17483 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 17484 { 17485 spin_lock_irq(&phba->hbalock); 17486 __lpfc_sli4_free_rpi(phba, rpi); 17487 spin_unlock_irq(&phba->hbalock); 17488 } 17489 17490 /** 17491 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 17492 * @phba: pointer to lpfc hba data structure. 17493 * 17494 * This routine is invoked to remove the memory region that 17495 * provided rpi via a bitmask. 17496 **/ 17497 void 17498 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 17499 { 17500 kfree(phba->sli4_hba.rpi_bmask); 17501 kfree(phba->sli4_hba.rpi_ids); 17502 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 17503 } 17504 17505 /** 17506 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 17507 * @phba: pointer to lpfc hba data structure. 17508 * 17509 * This routine is invoked to remove the memory region that 17510 * provided rpi via a bitmask. 17511 **/ 17512 int 17513 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 17514 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 17515 { 17516 LPFC_MBOXQ_t *mboxq; 17517 struct lpfc_hba *phba = ndlp->phba; 17518 int rc; 17519 17520 /* The port is notified of the header region via a mailbox command. */ 17521 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17522 if (!mboxq) 17523 return -ENOMEM; 17524 17525 /* Post all rpi memory regions to the port. */ 17526 lpfc_resume_rpi(mboxq, ndlp); 17527 if (cmpl) { 17528 mboxq->mbox_cmpl = cmpl; 17529 mboxq->context1 = arg; 17530 mboxq->context2 = ndlp; 17531 } else 17532 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17533 mboxq->vport = ndlp->vport; 17534 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 17535 if (rc == MBX_NOT_FINISHED) { 17536 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17537 "2010 Resume RPI Mailbox failed " 17538 "status %d, mbxStatus x%x\n", rc, 17539 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 17540 mempool_free(mboxq, phba->mbox_mem_pool); 17541 return -EIO; 17542 } 17543 return 0; 17544 } 17545 17546 /** 17547 * lpfc_sli4_init_vpi - Initialize a vpi with the port 17548 * @vport: Pointer to the vport for which the vpi is being initialized 17549 * 17550 * This routine is invoked to activate a vpi with the port. 17551 * 17552 * Returns: 17553 * 0 success 17554 * -Evalue otherwise 17555 **/ 17556 int 17557 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 17558 { 17559 LPFC_MBOXQ_t *mboxq; 17560 int rc = 0; 17561 int retval = MBX_SUCCESS; 17562 uint32_t mbox_tmo; 17563 struct lpfc_hba *phba = vport->phba; 17564 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17565 if (!mboxq) 17566 return -ENOMEM; 17567 lpfc_init_vpi(phba, mboxq, vport->vpi); 17568 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 17569 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 17570 if (rc != MBX_SUCCESS) { 17571 lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI, 17572 "2022 INIT VPI Mailbox failed " 17573 "status %d, mbxStatus x%x\n", rc, 17574 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 17575 retval = -EIO; 17576 } 17577 if (rc != MBX_TIMEOUT) 17578 mempool_free(mboxq, vport->phba->mbox_mem_pool); 17579 17580 return retval; 17581 } 17582 17583 /** 17584 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 17585 * @phba: pointer to lpfc hba data structure. 17586 * @mboxq: Pointer to mailbox object. 17587 * 17588 * This routine is invoked to manually add a single FCF record. The caller 17589 * must pass a completely initialized FCF_Record. This routine takes 17590 * care of the nonembedded mailbox operations. 17591 **/ 17592 static void 17593 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 17594 { 17595 void *virt_addr; 17596 union lpfc_sli4_cfg_shdr *shdr; 17597 uint32_t shdr_status, shdr_add_status; 17598 17599 virt_addr = mboxq->sge_array->addr[0]; 17600 /* The IOCTL status is embedded in the mailbox subheader. */ 17601 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 17602 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17603 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17604 17605 if ((shdr_status || shdr_add_status) && 17606 (shdr_status != STATUS_FCF_IN_USE)) 17607 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17608 "2558 ADD_FCF_RECORD mailbox failed with " 17609 "status x%x add_status x%x\n", 17610 shdr_status, shdr_add_status); 17611 17612 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17613 } 17614 17615 /** 17616 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 17617 * @phba: pointer to lpfc hba data structure. 17618 * @fcf_record: pointer to the initialized fcf record to add. 17619 * 17620 * This routine is invoked to manually add a single FCF record. The caller 17621 * must pass a completely initialized FCF_Record. This routine takes 17622 * care of the nonembedded mailbox operations. 17623 **/ 17624 int 17625 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 17626 { 17627 int rc = 0; 17628 LPFC_MBOXQ_t *mboxq; 17629 uint8_t *bytep; 17630 void *virt_addr; 17631 struct lpfc_mbx_sge sge; 17632 uint32_t alloc_len, req_len; 17633 uint32_t fcfindex; 17634 17635 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17636 if (!mboxq) { 17637 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17638 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 17639 return -ENOMEM; 17640 } 17641 17642 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 17643 sizeof(uint32_t); 17644 17645 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17646 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 17647 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 17648 req_len, LPFC_SLI4_MBX_NEMBED); 17649 if (alloc_len < req_len) { 17650 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17651 "2523 Allocated DMA memory size (x%x) is " 17652 "less than the requested DMA memory " 17653 "size (x%x)\n", alloc_len, req_len); 17654 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17655 return -ENOMEM; 17656 } 17657 17658 /* 17659 * Get the first SGE entry from the non-embedded DMA memory. This 17660 * routine only uses a single SGE. 17661 */ 17662 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 17663 virt_addr = mboxq->sge_array->addr[0]; 17664 /* 17665 * Configure the FCF record for FCFI 0. This is the driver's 17666 * hardcoded default and gets used in nonFIP mode. 17667 */ 17668 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 17669 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 17670 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 17671 17672 /* 17673 * Copy the fcf_index and the FCF Record Data. The data starts after 17674 * the FCoE header plus word10. The data copy needs to be endian 17675 * correct. 17676 */ 17677 bytep += sizeof(uint32_t); 17678 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 17679 mboxq->vport = phba->pport; 17680 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 17681 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 17682 if (rc == MBX_NOT_FINISHED) { 17683 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17684 "2515 ADD_FCF_RECORD mailbox failed with " 17685 "status 0x%x\n", rc); 17686 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17687 rc = -EIO; 17688 } else 17689 rc = 0; 17690 17691 return rc; 17692 } 17693 17694 /** 17695 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 17696 * @phba: pointer to lpfc hba data structure. 17697 * @fcf_record: pointer to the fcf record to write the default data. 17698 * @fcf_index: FCF table entry index. 17699 * 17700 * This routine is invoked to build the driver's default FCF record. The 17701 * values used are hardcoded. This routine handles memory initialization. 17702 * 17703 **/ 17704 void 17705 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 17706 struct fcf_record *fcf_record, 17707 uint16_t fcf_index) 17708 { 17709 memset(fcf_record, 0, sizeof(struct fcf_record)); 17710 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 17711 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 17712 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 17713 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 17714 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 17715 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 17716 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 17717 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 17718 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 17719 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 17720 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 17721 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 17722 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 17723 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 17724 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 17725 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 17726 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 17727 /* Set the VLAN bit map */ 17728 if (phba->valid_vlan) { 17729 fcf_record->vlan_bitmap[phba->vlan_id / 8] 17730 = 1 << (phba->vlan_id % 8); 17731 } 17732 } 17733 17734 /** 17735 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 17736 * @phba: pointer to lpfc hba data structure. 17737 * @fcf_index: FCF table entry offset. 17738 * 17739 * This routine is invoked to scan the entire FCF table by reading FCF 17740 * record and processing it one at a time starting from the @fcf_index 17741 * for initial FCF discovery or fast FCF failover rediscovery. 17742 * 17743 * Return 0 if the mailbox command is submitted successfully, none 0 17744 * otherwise. 17745 **/ 17746 int 17747 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 17748 { 17749 int rc = 0, error; 17750 LPFC_MBOXQ_t *mboxq; 17751 17752 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 17753 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 17754 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17755 if (!mboxq) { 17756 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17757 "2000 Failed to allocate mbox for " 17758 "READ_FCF cmd\n"); 17759 error = -ENOMEM; 17760 goto fail_fcf_scan; 17761 } 17762 /* Construct the read FCF record mailbox command */ 17763 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 17764 if (rc) { 17765 error = -EINVAL; 17766 goto fail_fcf_scan; 17767 } 17768 /* Issue the mailbox command asynchronously */ 17769 mboxq->vport = phba->pport; 17770 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 17771 17772 spin_lock_irq(&phba->hbalock); 17773 phba->hba_flag |= FCF_TS_INPROG; 17774 spin_unlock_irq(&phba->hbalock); 17775 17776 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 17777 if (rc == MBX_NOT_FINISHED) 17778 error = -EIO; 17779 else { 17780 /* Reset eligible FCF count for new scan */ 17781 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 17782 phba->fcf.eligible_fcf_cnt = 0; 17783 error = 0; 17784 } 17785 fail_fcf_scan: 17786 if (error) { 17787 if (mboxq) 17788 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17789 /* FCF scan failed, clear FCF_TS_INPROG flag */ 17790 spin_lock_irq(&phba->hbalock); 17791 phba->hba_flag &= ~FCF_TS_INPROG; 17792 spin_unlock_irq(&phba->hbalock); 17793 } 17794 return error; 17795 } 17796 17797 /** 17798 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 17799 * @phba: pointer to lpfc hba data structure. 17800 * @fcf_index: FCF table entry offset. 17801 * 17802 * This routine is invoked to read an FCF record indicated by @fcf_index 17803 * and to use it for FLOGI roundrobin FCF failover. 17804 * 17805 * Return 0 if the mailbox command is submitted successfully, none 0 17806 * otherwise. 17807 **/ 17808 int 17809 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 17810 { 17811 int rc = 0, error; 17812 LPFC_MBOXQ_t *mboxq; 17813 17814 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17815 if (!mboxq) { 17816 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 17817 "2763 Failed to allocate mbox for " 17818 "READ_FCF cmd\n"); 17819 error = -ENOMEM; 17820 goto fail_fcf_read; 17821 } 17822 /* Construct the read FCF record mailbox command */ 17823 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 17824 if (rc) { 17825 error = -EINVAL; 17826 goto fail_fcf_read; 17827 } 17828 /* Issue the mailbox command asynchronously */ 17829 mboxq->vport = phba->pport; 17830 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 17831 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 17832 if (rc == MBX_NOT_FINISHED) 17833 error = -EIO; 17834 else 17835 error = 0; 17836 17837 fail_fcf_read: 17838 if (error && mboxq) 17839 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17840 return error; 17841 } 17842 17843 /** 17844 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 17845 * @phba: pointer to lpfc hba data structure. 17846 * @fcf_index: FCF table entry offset. 17847 * 17848 * This routine is invoked to read an FCF record indicated by @fcf_index to 17849 * determine whether it's eligible for FLOGI roundrobin failover list. 17850 * 17851 * Return 0 if the mailbox command is submitted successfully, none 0 17852 * otherwise. 17853 **/ 17854 int 17855 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 17856 { 17857 int rc = 0, error; 17858 LPFC_MBOXQ_t *mboxq; 17859 17860 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17861 if (!mboxq) { 17862 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 17863 "2758 Failed to allocate mbox for " 17864 "READ_FCF cmd\n"); 17865 error = -ENOMEM; 17866 goto fail_fcf_read; 17867 } 17868 /* Construct the read FCF record mailbox command */ 17869 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 17870 if (rc) { 17871 error = -EINVAL; 17872 goto fail_fcf_read; 17873 } 17874 /* Issue the mailbox command asynchronously */ 17875 mboxq->vport = phba->pport; 17876 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 17877 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 17878 if (rc == MBX_NOT_FINISHED) 17879 error = -EIO; 17880 else 17881 error = 0; 17882 17883 fail_fcf_read: 17884 if (error && mboxq) 17885 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17886 return error; 17887 } 17888 17889 /** 17890 * lpfc_check_next_fcf_pri_level 17891 * phba pointer to the lpfc_hba struct for this port. 17892 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 17893 * routine when the rr_bmask is empty. The FCF indecies are put into the 17894 * rr_bmask based on their priority level. Starting from the highest priority 17895 * to the lowest. The most likely FCF candidate will be in the highest 17896 * priority group. When this routine is called it searches the fcf_pri list for 17897 * next lowest priority group and repopulates the rr_bmask with only those 17898 * fcf_indexes. 17899 * returns: 17900 * 1=success 0=failure 17901 **/ 17902 static int 17903 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 17904 { 17905 uint16_t next_fcf_pri; 17906 uint16_t last_index; 17907 struct lpfc_fcf_pri *fcf_pri; 17908 int rc; 17909 int ret = 0; 17910 17911 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 17912 LPFC_SLI4_FCF_TBL_INDX_MAX); 17913 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 17914 "3060 Last IDX %d\n", last_index); 17915 17916 /* Verify the priority list has 2 or more entries */ 17917 spin_lock_irq(&phba->hbalock); 17918 if (list_empty(&phba->fcf.fcf_pri_list) || 17919 list_is_singular(&phba->fcf.fcf_pri_list)) { 17920 spin_unlock_irq(&phba->hbalock); 17921 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 17922 "3061 Last IDX %d\n", last_index); 17923 return 0; /* Empty rr list */ 17924 } 17925 spin_unlock_irq(&phba->hbalock); 17926 17927 next_fcf_pri = 0; 17928 /* 17929 * Clear the rr_bmask and set all of the bits that are at this 17930 * priority. 17931 */ 17932 memset(phba->fcf.fcf_rr_bmask, 0, 17933 sizeof(*phba->fcf.fcf_rr_bmask)); 17934 spin_lock_irq(&phba->hbalock); 17935 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 17936 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 17937 continue; 17938 /* 17939 * the 1st priority that has not FLOGI failed 17940 * will be the highest. 17941 */ 17942 if (!next_fcf_pri) 17943 next_fcf_pri = fcf_pri->fcf_rec.priority; 17944 spin_unlock_irq(&phba->hbalock); 17945 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 17946 rc = lpfc_sli4_fcf_rr_index_set(phba, 17947 fcf_pri->fcf_rec.fcf_index); 17948 if (rc) 17949 return 0; 17950 } 17951 spin_lock_irq(&phba->hbalock); 17952 } 17953 /* 17954 * if next_fcf_pri was not set above and the list is not empty then 17955 * we have failed flogis on all of them. So reset flogi failed 17956 * and start at the beginning. 17957 */ 17958 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 17959 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 17960 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 17961 /* 17962 * the 1st priority that has not FLOGI failed 17963 * will be the highest. 17964 */ 17965 if (!next_fcf_pri) 17966 next_fcf_pri = fcf_pri->fcf_rec.priority; 17967 spin_unlock_irq(&phba->hbalock); 17968 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 17969 rc = lpfc_sli4_fcf_rr_index_set(phba, 17970 fcf_pri->fcf_rec.fcf_index); 17971 if (rc) 17972 return 0; 17973 } 17974 spin_lock_irq(&phba->hbalock); 17975 } 17976 } else 17977 ret = 1; 17978 spin_unlock_irq(&phba->hbalock); 17979 17980 return ret; 17981 } 17982 /** 17983 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 17984 * @phba: pointer to lpfc hba data structure. 17985 * 17986 * This routine is to get the next eligible FCF record index in a round 17987 * robin fashion. If the next eligible FCF record index equals to the 17988 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 17989 * shall be returned, otherwise, the next eligible FCF record's index 17990 * shall be returned. 17991 **/ 17992 uint16_t 17993 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 17994 { 17995 uint16_t next_fcf_index; 17996 17997 initial_priority: 17998 /* Search start from next bit of currently registered FCF index */ 17999 next_fcf_index = phba->fcf.current_rec.fcf_indx; 18000 18001 next_priority: 18002 /* Determine the next fcf index to check */ 18003 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 18004 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 18005 LPFC_SLI4_FCF_TBL_INDX_MAX, 18006 next_fcf_index); 18007 18008 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 18009 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 18010 /* 18011 * If we have wrapped then we need to clear the bits that 18012 * have been tested so that we can detect when we should 18013 * change the priority level. 18014 */ 18015 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 18016 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 18017 } 18018 18019 18020 /* Check roundrobin failover list empty condition */ 18021 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 18022 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 18023 /* 18024 * If next fcf index is not found check if there are lower 18025 * Priority level fcf's in the fcf_priority list. 18026 * Set up the rr_bmask with all of the avaiable fcf bits 18027 * at that level and continue the selection process. 18028 */ 18029 if (lpfc_check_next_fcf_pri_level(phba)) 18030 goto initial_priority; 18031 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 18032 "2844 No roundrobin failover FCF available\n"); 18033 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) 18034 return LPFC_FCOE_FCF_NEXT_NONE; 18035 else { 18036 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 18037 "3063 Only FCF available idx %d, flag %x\n", 18038 next_fcf_index, 18039 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag); 18040 return next_fcf_index; 18041 } 18042 } 18043 18044 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 18045 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 18046 LPFC_FCF_FLOGI_FAILED) { 18047 if (list_is_singular(&phba->fcf.fcf_pri_list)) 18048 return LPFC_FCOE_FCF_NEXT_NONE; 18049 18050 goto next_priority; 18051 } 18052 18053 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18054 "2845 Get next roundrobin failover FCF (x%x)\n", 18055 next_fcf_index); 18056 18057 return next_fcf_index; 18058 } 18059 18060 /** 18061 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 18062 * @phba: pointer to lpfc hba data structure. 18063 * 18064 * This routine sets the FCF record index in to the eligible bmask for 18065 * roundrobin failover search. It checks to make sure that the index 18066 * does not go beyond the range of the driver allocated bmask dimension 18067 * before setting the bit. 18068 * 18069 * Returns 0 if the index bit successfully set, otherwise, it returns 18070 * -EINVAL. 18071 **/ 18072 int 18073 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 18074 { 18075 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 18076 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18077 "2610 FCF (x%x) reached driver's book " 18078 "keeping dimension:x%x\n", 18079 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 18080 return -EINVAL; 18081 } 18082 /* Set the eligible FCF record index bmask */ 18083 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 18084 18085 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18086 "2790 Set FCF (x%x) to roundrobin FCF failover " 18087 "bmask\n", fcf_index); 18088 18089 return 0; 18090 } 18091 18092 /** 18093 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 18094 * @phba: pointer to lpfc hba data structure. 18095 * 18096 * This routine clears the FCF record index from the eligible bmask for 18097 * roundrobin failover search. It checks to make sure that the index 18098 * does not go beyond the range of the driver allocated bmask dimension 18099 * before clearing the bit. 18100 **/ 18101 void 18102 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 18103 { 18104 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 18105 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 18106 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18107 "2762 FCF (x%x) reached driver's book " 18108 "keeping dimension:x%x\n", 18109 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 18110 return; 18111 } 18112 /* Clear the eligible FCF record index bmask */ 18113 spin_lock_irq(&phba->hbalock); 18114 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 18115 list) { 18116 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 18117 list_del_init(&fcf_pri->list); 18118 break; 18119 } 18120 } 18121 spin_unlock_irq(&phba->hbalock); 18122 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 18123 18124 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18125 "2791 Clear FCF (x%x) from roundrobin failover " 18126 "bmask\n", fcf_index); 18127 } 18128 18129 /** 18130 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 18131 * @phba: pointer to lpfc hba data structure. 18132 * 18133 * This routine is the completion routine for the rediscover FCF table mailbox 18134 * command. If the mailbox command returned failure, it will try to stop the 18135 * FCF rediscover wait timer. 18136 **/ 18137 static void 18138 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 18139 { 18140 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 18141 uint32_t shdr_status, shdr_add_status; 18142 18143 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 18144 18145 shdr_status = bf_get(lpfc_mbox_hdr_status, 18146 &redisc_fcf->header.cfg_shdr.response); 18147 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 18148 &redisc_fcf->header.cfg_shdr.response); 18149 if (shdr_status || shdr_add_status) { 18150 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18151 "2746 Requesting for FCF rediscovery failed " 18152 "status x%x add_status x%x\n", 18153 shdr_status, shdr_add_status); 18154 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 18155 spin_lock_irq(&phba->hbalock); 18156 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 18157 spin_unlock_irq(&phba->hbalock); 18158 /* 18159 * CVL event triggered FCF rediscover request failed, 18160 * last resort to re-try current registered FCF entry. 18161 */ 18162 lpfc_retry_pport_discovery(phba); 18163 } else { 18164 spin_lock_irq(&phba->hbalock); 18165 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 18166 spin_unlock_irq(&phba->hbalock); 18167 /* 18168 * DEAD FCF event triggered FCF rediscover request 18169 * failed, last resort to fail over as a link down 18170 * to FCF registration. 18171 */ 18172 lpfc_sli4_fcf_dead_failthrough(phba); 18173 } 18174 } else { 18175 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18176 "2775 Start FCF rediscover quiescent timer\n"); 18177 /* 18178 * Start FCF rediscovery wait timer for pending FCF 18179 * before rescan FCF record table. 18180 */ 18181 lpfc_fcf_redisc_wait_start_timer(phba); 18182 } 18183 18184 mempool_free(mbox, phba->mbox_mem_pool); 18185 } 18186 18187 /** 18188 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 18189 * @phba: pointer to lpfc hba data structure. 18190 * 18191 * This routine is invoked to request for rediscovery of the entire FCF table 18192 * by the port. 18193 **/ 18194 int 18195 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 18196 { 18197 LPFC_MBOXQ_t *mbox; 18198 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 18199 int rc, length; 18200 18201 /* Cancel retry delay timers to all vports before FCF rediscover */ 18202 lpfc_cancel_all_vport_retry_delay_timer(phba); 18203 18204 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18205 if (!mbox) { 18206 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18207 "2745 Failed to allocate mbox for " 18208 "requesting FCF rediscover.\n"); 18209 return -ENOMEM; 18210 } 18211 18212 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 18213 sizeof(struct lpfc_sli4_cfg_mhdr)); 18214 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18215 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 18216 length, LPFC_SLI4_MBX_EMBED); 18217 18218 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 18219 /* Set count to 0 for invalidating the entire FCF database */ 18220 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 18221 18222 /* Issue the mailbox command asynchronously */ 18223 mbox->vport = phba->pport; 18224 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 18225 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 18226 18227 if (rc == MBX_NOT_FINISHED) { 18228 mempool_free(mbox, phba->mbox_mem_pool); 18229 return -EIO; 18230 } 18231 return 0; 18232 } 18233 18234 /** 18235 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 18236 * @phba: pointer to lpfc hba data structure. 18237 * 18238 * This function is the failover routine as a last resort to the FCF DEAD 18239 * event when driver failed to perform fast FCF failover. 18240 **/ 18241 void 18242 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 18243 { 18244 uint32_t link_state; 18245 18246 /* 18247 * Last resort as FCF DEAD event failover will treat this as 18248 * a link down, but save the link state because we don't want 18249 * it to be changed to Link Down unless it is already down. 18250 */ 18251 link_state = phba->link_state; 18252 lpfc_linkdown(phba); 18253 phba->link_state = link_state; 18254 18255 /* Unregister FCF if no devices connected to it */ 18256 lpfc_unregister_unused_fcf(phba); 18257 } 18258 18259 /** 18260 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 18261 * @phba: pointer to lpfc hba data structure. 18262 * @rgn23_data: pointer to configure region 23 data. 18263 * 18264 * This function gets SLI3 port configure region 23 data through memory dump 18265 * mailbox command. When it successfully retrieves data, the size of the data 18266 * will be returned, otherwise, 0 will be returned. 18267 **/ 18268 static uint32_t 18269 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 18270 { 18271 LPFC_MBOXQ_t *pmb = NULL; 18272 MAILBOX_t *mb; 18273 uint32_t offset = 0; 18274 int rc; 18275 18276 if (!rgn23_data) 18277 return 0; 18278 18279 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18280 if (!pmb) { 18281 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18282 "2600 failed to allocate mailbox memory\n"); 18283 return 0; 18284 } 18285 mb = &pmb->u.mb; 18286 18287 do { 18288 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 18289 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 18290 18291 if (rc != MBX_SUCCESS) { 18292 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 18293 "2601 failed to read config " 18294 "region 23, rc 0x%x Status 0x%x\n", 18295 rc, mb->mbxStatus); 18296 mb->un.varDmp.word_cnt = 0; 18297 } 18298 /* 18299 * dump mem may return a zero when finished or we got a 18300 * mailbox error, either way we are done. 18301 */ 18302 if (mb->un.varDmp.word_cnt == 0) 18303 break; 18304 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 18305 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 18306 18307 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 18308 rgn23_data + offset, 18309 mb->un.varDmp.word_cnt); 18310 offset += mb->un.varDmp.word_cnt; 18311 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 18312 18313 mempool_free(pmb, phba->mbox_mem_pool); 18314 return offset; 18315 } 18316 18317 /** 18318 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 18319 * @phba: pointer to lpfc hba data structure. 18320 * @rgn23_data: pointer to configure region 23 data. 18321 * 18322 * This function gets SLI4 port configure region 23 data through memory dump 18323 * mailbox command. When it successfully retrieves data, the size of the data 18324 * will be returned, otherwise, 0 will be returned. 18325 **/ 18326 static uint32_t 18327 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 18328 { 18329 LPFC_MBOXQ_t *mboxq = NULL; 18330 struct lpfc_dmabuf *mp = NULL; 18331 struct lpfc_mqe *mqe; 18332 uint32_t data_length = 0; 18333 int rc; 18334 18335 if (!rgn23_data) 18336 return 0; 18337 18338 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18339 if (!mboxq) { 18340 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18341 "3105 failed to allocate mailbox memory\n"); 18342 return 0; 18343 } 18344 18345 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 18346 goto out; 18347 mqe = &mboxq->u.mqe; 18348 mp = (struct lpfc_dmabuf *) mboxq->context1; 18349 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 18350 if (rc) 18351 goto out; 18352 data_length = mqe->un.mb_words[5]; 18353 if (data_length == 0) 18354 goto out; 18355 if (data_length > DMP_RGN23_SIZE) { 18356 data_length = 0; 18357 goto out; 18358 } 18359 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 18360 out: 18361 mempool_free(mboxq, phba->mbox_mem_pool); 18362 if (mp) { 18363 lpfc_mbuf_free(phba, mp->virt, mp->phys); 18364 kfree(mp); 18365 } 18366 return data_length; 18367 } 18368 18369 /** 18370 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 18371 * @phba: pointer to lpfc hba data structure. 18372 * 18373 * This function read region 23 and parse TLV for port status to 18374 * decide if the user disaled the port. If the TLV indicates the 18375 * port is disabled, the hba_flag is set accordingly. 18376 **/ 18377 void 18378 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 18379 { 18380 uint8_t *rgn23_data = NULL; 18381 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 18382 uint32_t offset = 0; 18383 18384 /* Get adapter Region 23 data */ 18385 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 18386 if (!rgn23_data) 18387 goto out; 18388 18389 if (phba->sli_rev < LPFC_SLI_REV4) 18390 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 18391 else { 18392 if_type = bf_get(lpfc_sli_intf_if_type, 18393 &phba->sli4_hba.sli_intf); 18394 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 18395 goto out; 18396 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 18397 } 18398 18399 if (!data_size) 18400 goto out; 18401 18402 /* Check the region signature first */ 18403 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 18404 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18405 "2619 Config region 23 has bad signature\n"); 18406 goto out; 18407 } 18408 offset += 4; 18409 18410 /* Check the data structure version */ 18411 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 18412 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18413 "2620 Config region 23 has bad version\n"); 18414 goto out; 18415 } 18416 offset += 4; 18417 18418 /* Parse TLV entries in the region */ 18419 while (offset < data_size) { 18420 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 18421 break; 18422 /* 18423 * If the TLV is not driver specific TLV or driver id is 18424 * not linux driver id, skip the record. 18425 */ 18426 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 18427 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 18428 (rgn23_data[offset + 3] != 0)) { 18429 offset += rgn23_data[offset + 1] * 4 + 4; 18430 continue; 18431 } 18432 18433 /* Driver found a driver specific TLV in the config region */ 18434 sub_tlv_len = rgn23_data[offset + 1] * 4; 18435 offset += 4; 18436 tlv_offset = 0; 18437 18438 /* 18439 * Search for configured port state sub-TLV. 18440 */ 18441 while ((offset < data_size) && 18442 (tlv_offset < sub_tlv_len)) { 18443 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 18444 offset += 4; 18445 tlv_offset += 4; 18446 break; 18447 } 18448 if (rgn23_data[offset] != PORT_STE_TYPE) { 18449 offset += rgn23_data[offset + 1] * 4 + 4; 18450 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 18451 continue; 18452 } 18453 18454 /* This HBA contains PORT_STE configured */ 18455 if (!rgn23_data[offset + 2]) 18456 phba->hba_flag |= LINK_DISABLED; 18457 18458 goto out; 18459 } 18460 } 18461 18462 out: 18463 kfree(rgn23_data); 18464 return; 18465 } 18466 18467 /** 18468 * lpfc_wr_object - write an object to the firmware 18469 * @phba: HBA structure that indicates port to create a queue on. 18470 * @dmabuf_list: list of dmabufs to write to the port. 18471 * @size: the total byte value of the objects to write to the port. 18472 * @offset: the current offset to be used to start the transfer. 18473 * 18474 * This routine will create a wr_object mailbox command to send to the port. 18475 * the mailbox command will be constructed using the dma buffers described in 18476 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 18477 * BDEs that the imbedded mailbox can support. The @offset variable will be 18478 * used to indicate the starting offset of the transfer and will also return 18479 * the offset after the write object mailbox has completed. @size is used to 18480 * determine the end of the object and whether the eof bit should be set. 18481 * 18482 * Return 0 is successful and offset will contain the the new offset to use 18483 * for the next write. 18484 * Return negative value for error cases. 18485 **/ 18486 int 18487 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 18488 uint32_t size, uint32_t *offset) 18489 { 18490 struct lpfc_mbx_wr_object *wr_object; 18491 LPFC_MBOXQ_t *mbox; 18492 int rc = 0, i = 0; 18493 uint32_t shdr_status, shdr_add_status; 18494 uint32_t mbox_tmo; 18495 union lpfc_sli4_cfg_shdr *shdr; 18496 struct lpfc_dmabuf *dmabuf; 18497 uint32_t written = 0; 18498 18499 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18500 if (!mbox) 18501 return -ENOMEM; 18502 18503 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 18504 LPFC_MBOX_OPCODE_WRITE_OBJECT, 18505 sizeof(struct lpfc_mbx_wr_object) - 18506 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 18507 18508 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 18509 wr_object->u.request.write_offset = *offset; 18510 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 18511 wr_object->u.request.object_name[0] = 18512 cpu_to_le32(wr_object->u.request.object_name[0]); 18513 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 18514 list_for_each_entry(dmabuf, dmabuf_list, list) { 18515 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 18516 break; 18517 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 18518 wr_object->u.request.bde[i].addrHigh = 18519 putPaddrHigh(dmabuf->phys); 18520 if (written + SLI4_PAGE_SIZE >= size) { 18521 wr_object->u.request.bde[i].tus.f.bdeSize = 18522 (size - written); 18523 written += (size - written); 18524 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 18525 } else { 18526 wr_object->u.request.bde[i].tus.f.bdeSize = 18527 SLI4_PAGE_SIZE; 18528 written += SLI4_PAGE_SIZE; 18529 } 18530 i++; 18531 } 18532 wr_object->u.request.bde_count = i; 18533 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 18534 if (!phba->sli4_hba.intr_enable) 18535 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18536 else { 18537 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18538 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18539 } 18540 /* The IOCTL status is embedded in the mailbox subheader. */ 18541 shdr = (union lpfc_sli4_cfg_shdr *) &wr_object->header.cfg_shdr; 18542 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18543 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18544 if (rc != MBX_TIMEOUT) 18545 mempool_free(mbox, phba->mbox_mem_pool); 18546 if (shdr_status || shdr_add_status || rc) { 18547 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18548 "3025 Write Object mailbox failed with " 18549 "status x%x add_status x%x, mbx status x%x\n", 18550 shdr_status, shdr_add_status, rc); 18551 rc = -ENXIO; 18552 } else 18553 *offset += wr_object->u.response.actual_write_length; 18554 return rc; 18555 } 18556 18557 /** 18558 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 18559 * @vport: pointer to vport data structure. 18560 * 18561 * This function iterate through the mailboxq and clean up all REG_LOGIN 18562 * and REG_VPI mailbox commands associated with the vport. This function 18563 * is called when driver want to restart discovery of the vport due to 18564 * a Clear Virtual Link event. 18565 **/ 18566 void 18567 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 18568 { 18569 struct lpfc_hba *phba = vport->phba; 18570 LPFC_MBOXQ_t *mb, *nextmb; 18571 struct lpfc_dmabuf *mp; 18572 struct lpfc_nodelist *ndlp; 18573 struct lpfc_nodelist *act_mbx_ndlp = NULL; 18574 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 18575 LIST_HEAD(mbox_cmd_list); 18576 uint8_t restart_loop; 18577 18578 /* Clean up internally queued mailbox commands with the vport */ 18579 spin_lock_irq(&phba->hbalock); 18580 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 18581 if (mb->vport != vport) 18582 continue; 18583 18584 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 18585 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 18586 continue; 18587 18588 list_del(&mb->list); 18589 list_add_tail(&mb->list, &mbox_cmd_list); 18590 } 18591 /* Clean up active mailbox command with the vport */ 18592 mb = phba->sli.mbox_active; 18593 if (mb && (mb->vport == vport)) { 18594 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 18595 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 18596 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 18597 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 18598 act_mbx_ndlp = (struct lpfc_nodelist *)mb->context2; 18599 /* Put reference count for delayed processing */ 18600 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 18601 /* Unregister the RPI when mailbox complete */ 18602 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 18603 } 18604 } 18605 /* Cleanup any mailbox completions which are not yet processed */ 18606 do { 18607 restart_loop = 0; 18608 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 18609 /* 18610 * If this mailox is already processed or it is 18611 * for another vport ignore it. 18612 */ 18613 if ((mb->vport != vport) || 18614 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 18615 continue; 18616 18617 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 18618 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 18619 continue; 18620 18621 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 18622 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 18623 ndlp = (struct lpfc_nodelist *)mb->context2; 18624 /* Unregister the RPI when mailbox complete */ 18625 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 18626 restart_loop = 1; 18627 spin_unlock_irq(&phba->hbalock); 18628 spin_lock(shost->host_lock); 18629 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 18630 spin_unlock(shost->host_lock); 18631 spin_lock_irq(&phba->hbalock); 18632 break; 18633 } 18634 } 18635 } while (restart_loop); 18636 18637 spin_unlock_irq(&phba->hbalock); 18638 18639 /* Release the cleaned-up mailbox commands */ 18640 while (!list_empty(&mbox_cmd_list)) { 18641 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 18642 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 18643 mp = (struct lpfc_dmabuf *) (mb->context1); 18644 if (mp) { 18645 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 18646 kfree(mp); 18647 } 18648 ndlp = (struct lpfc_nodelist *) mb->context2; 18649 mb->context2 = NULL; 18650 if (ndlp) { 18651 spin_lock(shost->host_lock); 18652 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 18653 spin_unlock(shost->host_lock); 18654 lpfc_nlp_put(ndlp); 18655 } 18656 } 18657 mempool_free(mb, phba->mbox_mem_pool); 18658 } 18659 18660 /* Release the ndlp with the cleaned-up active mailbox command */ 18661 if (act_mbx_ndlp) { 18662 spin_lock(shost->host_lock); 18663 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 18664 spin_unlock(shost->host_lock); 18665 lpfc_nlp_put(act_mbx_ndlp); 18666 } 18667 } 18668 18669 /** 18670 * lpfc_drain_txq - Drain the txq 18671 * @phba: Pointer to HBA context object. 18672 * 18673 * This function attempt to submit IOCBs on the txq 18674 * to the adapter. For SLI4 adapters, the txq contains 18675 * ELS IOCBs that have been deferred because the there 18676 * are no SGLs. This congestion can occur with large 18677 * vport counts during node discovery. 18678 **/ 18679 18680 uint32_t 18681 lpfc_drain_txq(struct lpfc_hba *phba) 18682 { 18683 LIST_HEAD(completions); 18684 struct lpfc_sli_ring *pring; 18685 struct lpfc_iocbq *piocbq = NULL; 18686 unsigned long iflags = 0; 18687 char *fail_msg = NULL; 18688 struct lpfc_sglq *sglq; 18689 union lpfc_wqe128 wqe128; 18690 union lpfc_wqe *wqe = (union lpfc_wqe *) &wqe128; 18691 uint32_t txq_cnt = 0; 18692 18693 pring = lpfc_phba_elsring(phba); 18694 18695 spin_lock_irqsave(&pring->ring_lock, iflags); 18696 list_for_each_entry(piocbq, &pring->txq, list) { 18697 txq_cnt++; 18698 } 18699 18700 if (txq_cnt > pring->txq_max) 18701 pring->txq_max = txq_cnt; 18702 18703 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18704 18705 while (!list_empty(&pring->txq)) { 18706 spin_lock_irqsave(&pring->ring_lock, iflags); 18707 18708 piocbq = lpfc_sli_ringtx_get(phba, pring); 18709 if (!piocbq) { 18710 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18711 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18712 "2823 txq empty and txq_cnt is %d\n ", 18713 txq_cnt); 18714 break; 18715 } 18716 sglq = __lpfc_sli_get_els_sglq(phba, piocbq); 18717 if (!sglq) { 18718 __lpfc_sli_ringtx_put(phba, pring, piocbq); 18719 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18720 break; 18721 } 18722 txq_cnt--; 18723 18724 /* The xri and iocb resources secured, 18725 * attempt to issue request 18726 */ 18727 piocbq->sli4_lxritag = sglq->sli4_lxritag; 18728 piocbq->sli4_xritag = sglq->sli4_xritag; 18729 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 18730 fail_msg = "to convert bpl to sgl"; 18731 else if (lpfc_sli4_iocb2wqe(phba, piocbq, wqe)) 18732 fail_msg = "to convert iocb to wqe"; 18733 else if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, wqe)) 18734 fail_msg = " - Wq is full"; 18735 else 18736 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 18737 18738 if (fail_msg) { 18739 /* Failed means we can't issue and need to cancel */ 18740 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18741 "2822 IOCB failed %s iotag 0x%x " 18742 "xri 0x%x\n", 18743 fail_msg, 18744 piocbq->iotag, piocbq->sli4_xritag); 18745 list_add_tail(&piocbq->list, &completions); 18746 } 18747 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18748 } 18749 18750 /* Cancel all the IOCBs that cannot be issued */ 18751 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 18752 IOERR_SLI_ABORTED); 18753 18754 return txq_cnt; 18755 } 18756 18757 /** 18758 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 18759 * @phba: Pointer to HBA context object. 18760 * @pwqe: Pointer to command WQE. 18761 * @sglq: Pointer to the scatter gather queue object. 18762 * 18763 * This routine converts the bpl or bde that is in the WQE 18764 * to a sgl list for the sli4 hardware. The physical address 18765 * of the bpl/bde is converted back to a virtual address. 18766 * If the WQE contains a BPL then the list of BDE's is 18767 * converted to sli4_sge's. If the WQE contains a single 18768 * BDE then it is converted to a single sli_sge. 18769 * The WQE is still in cpu endianness so the contents of 18770 * the bpl can be used without byte swapping. 18771 * 18772 * Returns valid XRI = Success, NO_XRI = Failure. 18773 */ 18774 static uint16_t 18775 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 18776 struct lpfc_sglq *sglq) 18777 { 18778 uint16_t xritag = NO_XRI; 18779 struct ulp_bde64 *bpl = NULL; 18780 struct ulp_bde64 bde; 18781 struct sli4_sge *sgl = NULL; 18782 struct lpfc_dmabuf *dmabuf; 18783 union lpfc_wqe *wqe; 18784 int numBdes = 0; 18785 int i = 0; 18786 uint32_t offset = 0; /* accumulated offset in the sg request list */ 18787 int inbound = 0; /* number of sg reply entries inbound from firmware */ 18788 uint32_t cmd; 18789 18790 if (!pwqeq || !sglq) 18791 return xritag; 18792 18793 sgl = (struct sli4_sge *)sglq->sgl; 18794 wqe = &pwqeq->wqe; 18795 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 18796 18797 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 18798 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 18799 return sglq->sli4_xritag; 18800 numBdes = pwqeq->rsvd2; 18801 if (numBdes) { 18802 /* The addrHigh and addrLow fields within the WQE 18803 * have not been byteswapped yet so there is no 18804 * need to swap them back. 18805 */ 18806 if (pwqeq->context3) 18807 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 18808 else 18809 return xritag; 18810 18811 bpl = (struct ulp_bde64 *)dmabuf->virt; 18812 if (!bpl) 18813 return xritag; 18814 18815 for (i = 0; i < numBdes; i++) { 18816 /* Should already be byte swapped. */ 18817 sgl->addr_hi = bpl->addrHigh; 18818 sgl->addr_lo = bpl->addrLow; 18819 18820 sgl->word2 = le32_to_cpu(sgl->word2); 18821 if ((i+1) == numBdes) 18822 bf_set(lpfc_sli4_sge_last, sgl, 1); 18823 else 18824 bf_set(lpfc_sli4_sge_last, sgl, 0); 18825 /* swap the size field back to the cpu so we 18826 * can assign it to the sgl. 18827 */ 18828 bde.tus.w = le32_to_cpu(bpl->tus.w); 18829 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 18830 /* The offsets in the sgl need to be accumulated 18831 * separately for the request and reply lists. 18832 * The request is always first, the reply follows. 18833 */ 18834 switch (cmd) { 18835 case CMD_GEN_REQUEST64_WQE: 18836 /* add up the reply sg entries */ 18837 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 18838 inbound++; 18839 /* first inbound? reset the offset */ 18840 if (inbound == 1) 18841 offset = 0; 18842 bf_set(lpfc_sli4_sge_offset, sgl, offset); 18843 bf_set(lpfc_sli4_sge_type, sgl, 18844 LPFC_SGE_TYPE_DATA); 18845 offset += bde.tus.f.bdeSize; 18846 break; 18847 case CMD_FCP_TRSP64_WQE: 18848 bf_set(lpfc_sli4_sge_offset, sgl, 0); 18849 bf_set(lpfc_sli4_sge_type, sgl, 18850 LPFC_SGE_TYPE_DATA); 18851 break; 18852 case CMD_FCP_TSEND64_WQE: 18853 case CMD_FCP_TRECEIVE64_WQE: 18854 bf_set(lpfc_sli4_sge_type, sgl, 18855 bpl->tus.f.bdeFlags); 18856 if (i < 3) 18857 offset = 0; 18858 else 18859 offset += bde.tus.f.bdeSize; 18860 bf_set(lpfc_sli4_sge_offset, sgl, offset); 18861 break; 18862 } 18863 sgl->word2 = cpu_to_le32(sgl->word2); 18864 bpl++; 18865 sgl++; 18866 } 18867 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 18868 /* The addrHigh and addrLow fields of the BDE have not 18869 * been byteswapped yet so they need to be swapped 18870 * before putting them in the sgl. 18871 */ 18872 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 18873 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 18874 sgl->word2 = le32_to_cpu(sgl->word2); 18875 bf_set(lpfc_sli4_sge_last, sgl, 1); 18876 sgl->word2 = cpu_to_le32(sgl->word2); 18877 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 18878 } 18879 return sglq->sli4_xritag; 18880 } 18881 18882 /** 18883 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 18884 * @phba: Pointer to HBA context object. 18885 * @ring_number: Base sli ring number 18886 * @pwqe: Pointer to command WQE. 18887 **/ 18888 int 18889 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, uint32_t ring_number, 18890 struct lpfc_iocbq *pwqe) 18891 { 18892 union lpfc_wqe *wqe = &pwqe->wqe; 18893 struct lpfc_nvmet_rcv_ctx *ctxp; 18894 struct lpfc_queue *wq; 18895 struct lpfc_sglq *sglq; 18896 struct lpfc_sli_ring *pring; 18897 unsigned long iflags; 18898 uint32_t ret = 0; 18899 18900 /* NVME_LS and NVME_LS ABTS requests. */ 18901 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { 18902 pring = phba->sli4_hba.nvmels_wq->pring; 18903 spin_lock_irqsave(&pring->ring_lock, iflags); 18904 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 18905 if (!sglq) { 18906 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18907 return WQE_BUSY; 18908 } 18909 pwqe->sli4_lxritag = sglq->sli4_lxritag; 18910 pwqe->sli4_xritag = sglq->sli4_xritag; 18911 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 18912 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18913 return WQE_ERROR; 18914 } 18915 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 18916 pwqe->sli4_xritag); 18917 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 18918 if (ret) { 18919 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18920 return ret; 18921 } 18922 18923 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 18924 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18925 return 0; 18926 } 18927 18928 /* NVME_FCREQ and NVME_ABTS requests */ 18929 if (pwqe->iocb_flag & LPFC_IO_NVME) { 18930 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 18931 pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring; 18932 18933 spin_lock_irqsave(&pring->ring_lock, iflags); 18934 wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]; 18935 bf_set(wqe_cqid, &wqe->generic.wqe_com, 18936 phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id); 18937 ret = lpfc_sli4_wq_put(wq, wqe); 18938 if (ret) { 18939 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18940 return ret; 18941 } 18942 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 18943 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18944 return 0; 18945 } 18946 18947 /* NVMET requests */ 18948 if (pwqe->iocb_flag & LPFC_IO_NVMET) { 18949 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 18950 pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring; 18951 18952 spin_lock_irqsave(&pring->ring_lock, iflags); 18953 ctxp = pwqe->context2; 18954 sglq = ctxp->ctxbuf->sglq; 18955 if (pwqe->sli4_xritag == NO_XRI) { 18956 pwqe->sli4_lxritag = sglq->sli4_lxritag; 18957 pwqe->sli4_xritag = sglq->sli4_xritag; 18958 } 18959 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 18960 pwqe->sli4_xritag); 18961 wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]; 18962 bf_set(wqe_cqid, &wqe->generic.wqe_com, 18963 phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id); 18964 ret = lpfc_sli4_wq_put(wq, wqe); 18965 if (ret) { 18966 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18967 return ret; 18968 } 18969 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 18970 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18971 return 0; 18972 } 18973 return WQE_ERROR; 18974 } 18975