1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2021 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 #include <linux/crash_dump.h> 39 #ifdef CONFIG_X86 40 #include <asm/set_memory.h> 41 #endif 42 43 #include "lpfc_hw4.h" 44 #include "lpfc_hw.h" 45 #include "lpfc_sli.h" 46 #include "lpfc_sli4.h" 47 #include "lpfc_nl.h" 48 #include "lpfc_disc.h" 49 #include "lpfc.h" 50 #include "lpfc_scsi.h" 51 #include "lpfc_nvme.h" 52 #include "lpfc_crtn.h" 53 #include "lpfc_logmsg.h" 54 #include "lpfc_compat.h" 55 #include "lpfc_debugfs.h" 56 #include "lpfc_vport.h" 57 #include "lpfc_version.h" 58 59 /* There are only four IOCB completion types. */ 60 typedef enum _lpfc_iocb_type { 61 LPFC_UNKNOWN_IOCB, 62 LPFC_UNSOL_IOCB, 63 LPFC_SOL_IOCB, 64 LPFC_ABORT_IOCB 65 } lpfc_iocb_type; 66 67 68 /* Provide function prototypes local to this module. */ 69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 70 uint32_t); 71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint8_t *, uint32_t *); 73 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 74 struct lpfc_iocbq *); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 80 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_queue *eq, 85 struct lpfc_eqe *eqe); 86 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 87 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 88 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 89 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 90 struct lpfc_queue *cq, 91 struct lpfc_cqe *cqe); 92 93 union lpfc_wqe128 lpfc_iread_cmd_template; 94 union lpfc_wqe128 lpfc_iwrite_cmd_template; 95 union lpfc_wqe128 lpfc_icmnd_cmd_template; 96 97 static IOCB_t * 98 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 99 { 100 return &iocbq->iocb; 101 } 102 103 /* Setup WQE templates for IOs */ 104 void lpfc_wqe_cmd_template(void) 105 { 106 union lpfc_wqe128 *wqe; 107 108 /* IREAD template */ 109 wqe = &lpfc_iread_cmd_template; 110 memset(wqe, 0, sizeof(union lpfc_wqe128)); 111 112 /* Word 0, 1, 2 - BDE is variable */ 113 114 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 115 116 /* Word 4 - total_xfer_len is variable */ 117 118 /* Word 5 - is zero */ 119 120 /* Word 6 - ctxt_tag, xri_tag is variable */ 121 122 /* Word 7 */ 123 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 124 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 125 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 126 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 127 128 /* Word 8 - abort_tag is variable */ 129 130 /* Word 9 - reqtag is variable */ 131 132 /* Word 10 - dbde, wqes is variable */ 133 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 134 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 135 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 136 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 137 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 138 139 /* Word 11 - pbde is variable */ 140 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 141 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 142 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 143 144 /* Word 12 - is zero */ 145 146 /* Word 13, 14, 15 - PBDE is variable */ 147 148 /* IWRITE template */ 149 wqe = &lpfc_iwrite_cmd_template; 150 memset(wqe, 0, sizeof(union lpfc_wqe128)); 151 152 /* Word 0, 1, 2 - BDE is variable */ 153 154 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 155 156 /* Word 4 - total_xfer_len is variable */ 157 158 /* Word 5 - initial_xfer_len is variable */ 159 160 /* Word 6 - ctxt_tag, xri_tag is variable */ 161 162 /* Word 7 */ 163 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 164 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 165 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 166 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 167 168 /* Word 8 - abort_tag is variable */ 169 170 /* Word 9 - reqtag is variable */ 171 172 /* Word 10 - dbde, wqes is variable */ 173 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 174 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 175 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 176 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 177 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 178 179 /* Word 11 - pbde is variable */ 180 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 181 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 182 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 183 184 /* Word 12 - is zero */ 185 186 /* Word 13, 14, 15 - PBDE is variable */ 187 188 /* ICMND template */ 189 wqe = &lpfc_icmnd_cmd_template; 190 memset(wqe, 0, sizeof(union lpfc_wqe128)); 191 192 /* Word 0, 1, 2 - BDE is variable */ 193 194 /* Word 3 - payload_offset_len is variable */ 195 196 /* Word 4, 5 - is zero */ 197 198 /* Word 6 - ctxt_tag, xri_tag is variable */ 199 200 /* Word 7 */ 201 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 202 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 203 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 204 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 205 206 /* Word 8 - abort_tag is variable */ 207 208 /* Word 9 - reqtag is variable */ 209 210 /* Word 10 - dbde, wqes is variable */ 211 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 212 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 213 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 214 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 215 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 216 217 /* Word 11 */ 218 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 219 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 220 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 221 222 /* Word 12, 13, 14, 15 - is zero */ 223 } 224 225 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 226 /** 227 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 228 * @srcp: Source memory pointer. 229 * @destp: Destination memory pointer. 230 * @cnt: Number of words required to be copied. 231 * Must be a multiple of sizeof(uint64_t) 232 * 233 * This function is used for copying data between driver memory 234 * and the SLI WQ. This function also changes the endianness 235 * of each word if native endianness is different from SLI 236 * endianness. This function can be called with or without 237 * lock. 238 **/ 239 static void 240 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 241 { 242 uint64_t *src = srcp; 243 uint64_t *dest = destp; 244 int i; 245 246 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 247 *dest++ = *src++; 248 } 249 #else 250 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 251 #endif 252 253 /** 254 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 255 * @q: The Work Queue to operate on. 256 * @wqe: The work Queue Entry to put on the Work queue. 257 * 258 * This routine will copy the contents of @wqe to the next available entry on 259 * the @q. This function will then ring the Work Queue Doorbell to signal the 260 * HBA to start processing the Work Queue Entry. This function returns 0 if 261 * successful. If no entries are available on @q then this function will return 262 * -ENOMEM. 263 * The caller is expected to hold the hbalock when calling this routine. 264 **/ 265 static int 266 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 267 { 268 union lpfc_wqe *temp_wqe; 269 struct lpfc_register doorbell; 270 uint32_t host_index; 271 uint32_t idx; 272 uint32_t i = 0; 273 uint8_t *tmp; 274 u32 if_type; 275 276 /* sanity check on queue memory */ 277 if (unlikely(!q)) 278 return -ENOMEM; 279 280 temp_wqe = lpfc_sli4_qe(q, q->host_index); 281 282 /* If the host has not yet processed the next entry then we are done */ 283 idx = ((q->host_index + 1) % q->entry_count); 284 if (idx == q->hba_index) { 285 q->WQ_overflow++; 286 return -EBUSY; 287 } 288 q->WQ_posted++; 289 /* set consumption flag every once in a while */ 290 if (!((q->host_index + 1) % q->notify_interval)) 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 292 else 293 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 294 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 295 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 296 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 297 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 298 /* write to DPP aperture taking advatage of Combined Writes */ 299 tmp = (uint8_t *)temp_wqe; 300 #ifdef __raw_writeq 301 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 302 __raw_writeq(*((uint64_t *)(tmp + i)), 303 q->dpp_regaddr + i); 304 #else 305 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 306 __raw_writel(*((uint32_t *)(tmp + i)), 307 q->dpp_regaddr + i); 308 #endif 309 } 310 /* ensure WQE bcopy and DPP flushed before doorbell write */ 311 wmb(); 312 313 /* Update the host index before invoking device */ 314 host_index = q->host_index; 315 316 q->host_index = idx; 317 318 /* Ring Doorbell */ 319 doorbell.word0 = 0; 320 if (q->db_format == LPFC_DB_LIST_FORMAT) { 321 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 322 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 323 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 324 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 325 q->dpp_id); 326 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 327 q->queue_id); 328 } else { 329 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 330 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 331 332 /* Leave bits <23:16> clear for if_type 6 dpp */ 333 if_type = bf_get(lpfc_sli_intf_if_type, 334 &q->phba->sli4_hba.sli_intf); 335 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 336 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 337 host_index); 338 } 339 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 340 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 341 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 342 } else { 343 return -EINVAL; 344 } 345 writel(doorbell.word0, q->db_regaddr); 346 347 return 0; 348 } 349 350 /** 351 * lpfc_sli4_wq_release - Updates internal hba index for WQ 352 * @q: The Work Queue to operate on. 353 * @index: The index to advance the hba index to. 354 * 355 * This routine will update the HBA index of a queue to reflect consumption of 356 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 357 * an entry the host calls this function to update the queue's internal 358 * pointers. 359 **/ 360 static void 361 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 362 { 363 /* sanity check on queue memory */ 364 if (unlikely(!q)) 365 return; 366 367 q->hba_index = index; 368 } 369 370 /** 371 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 372 * @q: The Mailbox Queue to operate on. 373 * @mqe: The Mailbox Queue Entry to put on the Work queue. 374 * 375 * This routine will copy the contents of @mqe to the next available entry on 376 * the @q. This function will then ring the Work Queue Doorbell to signal the 377 * HBA to start processing the Work Queue Entry. This function returns 0 if 378 * successful. If no entries are available on @q then this function will return 379 * -ENOMEM. 380 * The caller is expected to hold the hbalock when calling this routine. 381 **/ 382 static uint32_t 383 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 384 { 385 struct lpfc_mqe *temp_mqe; 386 struct lpfc_register doorbell; 387 388 /* sanity check on queue memory */ 389 if (unlikely(!q)) 390 return -ENOMEM; 391 temp_mqe = lpfc_sli4_qe(q, q->host_index); 392 393 /* If the host has not yet processed the next entry then we are done */ 394 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 395 return -ENOMEM; 396 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 397 /* Save off the mailbox pointer for completion */ 398 q->phba->mbox = (MAILBOX_t *)temp_mqe; 399 400 /* Update the host index before invoking device */ 401 q->host_index = ((q->host_index + 1) % q->entry_count); 402 403 /* Ring Doorbell */ 404 doorbell.word0 = 0; 405 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 406 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 407 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 408 return 0; 409 } 410 411 /** 412 * lpfc_sli4_mq_release - Updates internal hba index for MQ 413 * @q: The Mailbox Queue to operate on. 414 * 415 * This routine will update the HBA index of a queue to reflect consumption of 416 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 417 * an entry the host calls this function to update the queue's internal 418 * pointers. This routine returns the number of entries that were consumed by 419 * the HBA. 420 **/ 421 static uint32_t 422 lpfc_sli4_mq_release(struct lpfc_queue *q) 423 { 424 /* sanity check on queue memory */ 425 if (unlikely(!q)) 426 return 0; 427 428 /* Clear the mailbox pointer for completion */ 429 q->phba->mbox = NULL; 430 q->hba_index = ((q->hba_index + 1) % q->entry_count); 431 return 1; 432 } 433 434 /** 435 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 436 * @q: The Event Queue to get the first valid EQE from 437 * 438 * This routine will get the first valid Event Queue Entry from @q, update 439 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 440 * the Queue (no more work to do), or the Queue is full of EQEs that have been 441 * processed, but not popped back to the HBA then this routine will return NULL. 442 **/ 443 static struct lpfc_eqe * 444 lpfc_sli4_eq_get(struct lpfc_queue *q) 445 { 446 struct lpfc_eqe *eqe; 447 448 /* sanity check on queue memory */ 449 if (unlikely(!q)) 450 return NULL; 451 eqe = lpfc_sli4_qe(q, q->host_index); 452 453 /* If the next EQE is not valid then we are done */ 454 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 455 return NULL; 456 457 /* 458 * insert barrier for instruction interlock : data from the hardware 459 * must have the valid bit checked before it can be copied and acted 460 * upon. Speculative instructions were allowing a bcopy at the start 461 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 462 * after our return, to copy data before the valid bit check above 463 * was done. As such, some of the copied data was stale. The barrier 464 * ensures the check is before any data is copied. 465 */ 466 mb(); 467 return eqe; 468 } 469 470 /** 471 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 472 * @q: The Event Queue to disable interrupts 473 * 474 **/ 475 void 476 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 477 { 478 struct lpfc_register doorbell; 479 480 doorbell.word0 = 0; 481 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 482 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 483 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 484 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 485 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 486 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 487 } 488 489 /** 490 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 491 * @q: The Event Queue to disable interrupts 492 * 493 **/ 494 void 495 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 496 { 497 struct lpfc_register doorbell; 498 499 doorbell.word0 = 0; 500 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 501 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 502 } 503 504 /** 505 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 506 * @phba: adapter with EQ 507 * @q: The Event Queue that the host has completed processing for. 508 * @count: Number of elements that have been consumed 509 * @arm: Indicates whether the host wants to arms this CQ. 510 * 511 * This routine will notify the HBA, by ringing the doorbell, that count 512 * number of EQEs have been processed. The @arm parameter indicates whether 513 * the queue should be rearmed when ringing the doorbell. 514 **/ 515 void 516 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 517 uint32_t count, bool arm) 518 { 519 struct lpfc_register doorbell; 520 521 /* sanity check on queue memory */ 522 if (unlikely(!q || (count == 0 && !arm))) 523 return; 524 525 /* ring doorbell for number popped */ 526 doorbell.word0 = 0; 527 if (arm) { 528 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 529 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 530 } 531 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 532 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 533 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 534 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 535 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 536 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 537 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 538 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 539 readl(q->phba->sli4_hba.EQDBregaddr); 540 } 541 542 /** 543 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 544 * @phba: adapter with EQ 545 * @q: The Event Queue that the host has completed processing for. 546 * @count: Number of elements that have been consumed 547 * @arm: Indicates whether the host wants to arms this CQ. 548 * 549 * This routine will notify the HBA, by ringing the doorbell, that count 550 * number of EQEs have been processed. The @arm parameter indicates whether 551 * the queue should be rearmed when ringing the doorbell. 552 **/ 553 void 554 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 555 uint32_t count, bool arm) 556 { 557 struct lpfc_register doorbell; 558 559 /* sanity check on queue memory */ 560 if (unlikely(!q || (count == 0 && !arm))) 561 return; 562 563 /* ring doorbell for number popped */ 564 doorbell.word0 = 0; 565 if (arm) 566 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 567 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 568 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 569 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 570 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 571 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 572 readl(q->phba->sli4_hba.EQDBregaddr); 573 } 574 575 static void 576 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 577 struct lpfc_eqe *eqe) 578 { 579 if (!phba->sli4_hba.pc_sli4_params.eqav) 580 bf_set_le32(lpfc_eqe_valid, eqe, 0); 581 582 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 583 584 /* if the index wrapped around, toggle the valid bit */ 585 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 586 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 587 } 588 589 static void 590 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 591 { 592 struct lpfc_eqe *eqe = NULL; 593 u32 eq_count = 0, cq_count = 0; 594 struct lpfc_cqe *cqe = NULL; 595 struct lpfc_queue *cq = NULL, *childq = NULL; 596 int cqid = 0; 597 598 /* walk all the EQ entries and drop on the floor */ 599 eqe = lpfc_sli4_eq_get(eq); 600 while (eqe) { 601 /* Get the reference to the corresponding CQ */ 602 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 603 cq = NULL; 604 605 list_for_each_entry(childq, &eq->child_list, list) { 606 if (childq->queue_id == cqid) { 607 cq = childq; 608 break; 609 } 610 } 611 /* If CQ is valid, iterate through it and drop all the CQEs */ 612 if (cq) { 613 cqe = lpfc_sli4_cq_get(cq); 614 while (cqe) { 615 __lpfc_sli4_consume_cqe(phba, cq, cqe); 616 cq_count++; 617 cqe = lpfc_sli4_cq_get(cq); 618 } 619 /* Clear and re-arm the CQ */ 620 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 621 LPFC_QUEUE_REARM); 622 cq_count = 0; 623 } 624 __lpfc_sli4_consume_eqe(phba, eq, eqe); 625 eq_count++; 626 eqe = lpfc_sli4_eq_get(eq); 627 } 628 629 /* Clear and re-arm the EQ */ 630 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 631 } 632 633 static int 634 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 635 uint8_t rearm) 636 { 637 struct lpfc_eqe *eqe; 638 int count = 0, consumed = 0; 639 640 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 641 goto rearm_and_exit; 642 643 eqe = lpfc_sli4_eq_get(eq); 644 while (eqe) { 645 lpfc_sli4_hba_handle_eqe(phba, eq, eqe); 646 __lpfc_sli4_consume_eqe(phba, eq, eqe); 647 648 consumed++; 649 if (!(++count % eq->max_proc_limit)) 650 break; 651 652 if (!(count % eq->notify_interval)) { 653 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 654 LPFC_QUEUE_NOARM); 655 consumed = 0; 656 } 657 658 eqe = lpfc_sli4_eq_get(eq); 659 } 660 eq->EQ_processed += count; 661 662 /* Track the max number of EQEs processed in 1 intr */ 663 if (count > eq->EQ_max_eqe) 664 eq->EQ_max_eqe = count; 665 666 xchg(&eq->queue_claimed, 0); 667 668 rearm_and_exit: 669 /* Always clear the EQ. */ 670 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 671 672 return count; 673 } 674 675 /** 676 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 677 * @q: The Completion Queue to get the first valid CQE from 678 * 679 * This routine will get the first valid Completion Queue Entry from @q, update 680 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 681 * the Queue (no more work to do), or the Queue is full of CQEs that have been 682 * processed, but not popped back to the HBA then this routine will return NULL. 683 **/ 684 static struct lpfc_cqe * 685 lpfc_sli4_cq_get(struct lpfc_queue *q) 686 { 687 struct lpfc_cqe *cqe; 688 689 /* sanity check on queue memory */ 690 if (unlikely(!q)) 691 return NULL; 692 cqe = lpfc_sli4_qe(q, q->host_index); 693 694 /* If the next CQE is not valid then we are done */ 695 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 696 return NULL; 697 698 /* 699 * insert barrier for instruction interlock : data from the hardware 700 * must have the valid bit checked before it can be copied and acted 701 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 702 * instructions allowing action on content before valid bit checked, 703 * add barrier here as well. May not be needed as "content" is a 704 * single 32-bit entity here (vs multi word structure for cq's). 705 */ 706 mb(); 707 return cqe; 708 } 709 710 static void 711 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 712 struct lpfc_cqe *cqe) 713 { 714 if (!phba->sli4_hba.pc_sli4_params.cqav) 715 bf_set_le32(lpfc_cqe_valid, cqe, 0); 716 717 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 718 719 /* if the index wrapped around, toggle the valid bit */ 720 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 721 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 722 } 723 724 /** 725 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 726 * @phba: the adapter with the CQ 727 * @q: The Completion Queue that the host has completed processing for. 728 * @count: the number of elements that were consumed 729 * @arm: Indicates whether the host wants to arms this CQ. 730 * 731 * This routine will notify the HBA, by ringing the doorbell, that the 732 * CQEs have been processed. The @arm parameter specifies whether the 733 * queue should be rearmed when ringing the doorbell. 734 **/ 735 void 736 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 737 uint32_t count, bool arm) 738 { 739 struct lpfc_register doorbell; 740 741 /* sanity check on queue memory */ 742 if (unlikely(!q || (count == 0 && !arm))) 743 return; 744 745 /* ring doorbell for number popped */ 746 doorbell.word0 = 0; 747 if (arm) 748 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 749 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 750 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 751 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 752 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 753 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 754 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 755 } 756 757 /** 758 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 759 * @phba: the adapter with the CQ 760 * @q: The Completion Queue that the host has completed processing for. 761 * @count: the number of elements that were consumed 762 * @arm: Indicates whether the host wants to arms this CQ. 763 * 764 * This routine will notify the HBA, by ringing the doorbell, that the 765 * CQEs have been processed. The @arm parameter specifies whether the 766 * queue should be rearmed when ringing the doorbell. 767 **/ 768 void 769 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 770 uint32_t count, bool arm) 771 { 772 struct lpfc_register doorbell; 773 774 /* sanity check on queue memory */ 775 if (unlikely(!q || (count == 0 && !arm))) 776 return; 777 778 /* ring doorbell for number popped */ 779 doorbell.word0 = 0; 780 if (arm) 781 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 782 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 783 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 784 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 785 } 786 787 /* 788 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 789 * 790 * This routine will copy the contents of @wqe to the next available entry on 791 * the @q. This function will then ring the Receive Queue Doorbell to signal the 792 * HBA to start processing the Receive Queue Entry. This function returns the 793 * index that the rqe was copied to if successful. If no entries are available 794 * on @q then this function will return -ENOMEM. 795 * The caller is expected to hold the hbalock when calling this routine. 796 **/ 797 int 798 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 799 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 800 { 801 struct lpfc_rqe *temp_hrqe; 802 struct lpfc_rqe *temp_drqe; 803 struct lpfc_register doorbell; 804 int hq_put_index; 805 int dq_put_index; 806 807 /* sanity check on queue memory */ 808 if (unlikely(!hq) || unlikely(!dq)) 809 return -ENOMEM; 810 hq_put_index = hq->host_index; 811 dq_put_index = dq->host_index; 812 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 813 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 814 815 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 816 return -EINVAL; 817 if (hq_put_index != dq_put_index) 818 return -EINVAL; 819 /* If the host has not yet processed the next entry then we are done */ 820 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 821 return -EBUSY; 822 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 823 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 824 825 /* Update the host index to point to the next slot */ 826 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 827 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 828 hq->RQ_buf_posted++; 829 830 /* Ring The Header Receive Queue Doorbell */ 831 if (!(hq->host_index % hq->notify_interval)) { 832 doorbell.word0 = 0; 833 if (hq->db_format == LPFC_DB_RING_FORMAT) { 834 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 835 hq->notify_interval); 836 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 837 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 838 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 839 hq->notify_interval); 840 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 841 hq->host_index); 842 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 843 } else { 844 return -EINVAL; 845 } 846 writel(doorbell.word0, hq->db_regaddr); 847 } 848 return hq_put_index; 849 } 850 851 /* 852 * lpfc_sli4_rq_release - Updates internal hba index for RQ 853 * 854 * This routine will update the HBA index of a queue to reflect consumption of 855 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 856 * consumed an entry the host calls this function to update the queue's 857 * internal pointers. This routine returns the number of entries that were 858 * consumed by the HBA. 859 **/ 860 static uint32_t 861 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 862 { 863 /* sanity check on queue memory */ 864 if (unlikely(!hq) || unlikely(!dq)) 865 return 0; 866 867 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 868 return 0; 869 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 870 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 871 return 1; 872 } 873 874 /** 875 * lpfc_cmd_iocb - Get next command iocb entry in the ring 876 * @phba: Pointer to HBA context object. 877 * @pring: Pointer to driver SLI ring object. 878 * 879 * This function returns pointer to next command iocb entry 880 * in the command ring. The caller must hold hbalock to prevent 881 * other threads consume the next command iocb. 882 * SLI-2/SLI-3 provide different sized iocbs. 883 **/ 884 static inline IOCB_t * 885 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 886 { 887 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 888 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 889 } 890 891 /** 892 * lpfc_resp_iocb - Get next response iocb entry in the ring 893 * @phba: Pointer to HBA context object. 894 * @pring: Pointer to driver SLI ring object. 895 * 896 * This function returns pointer to next response iocb entry 897 * in the response ring. The caller must hold hbalock to make sure 898 * that no other thread consume the next response iocb. 899 * SLI-2/SLI-3 provide different sized iocbs. 900 **/ 901 static inline IOCB_t * 902 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 903 { 904 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 905 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 906 } 907 908 /** 909 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 910 * @phba: Pointer to HBA context object. 911 * 912 * This function is called with hbalock held. This function 913 * allocates a new driver iocb object from the iocb pool. If the 914 * allocation is successful, it returns pointer to the newly 915 * allocated iocb object else it returns NULL. 916 **/ 917 struct lpfc_iocbq * 918 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 919 { 920 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 921 struct lpfc_iocbq * iocbq = NULL; 922 923 lockdep_assert_held(&phba->hbalock); 924 925 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 926 if (iocbq) 927 phba->iocb_cnt++; 928 if (phba->iocb_cnt > phba->iocb_max) 929 phba->iocb_max = phba->iocb_cnt; 930 return iocbq; 931 } 932 933 /** 934 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 935 * @phba: Pointer to HBA context object. 936 * @xritag: XRI value. 937 * 938 * This function clears the sglq pointer from the array of active 939 * sglq's. The xritag that is passed in is used to index into the 940 * array. Before the xritag can be used it needs to be adjusted 941 * by subtracting the xribase. 942 * 943 * Returns sglq ponter = success, NULL = Failure. 944 **/ 945 struct lpfc_sglq * 946 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 947 { 948 struct lpfc_sglq *sglq; 949 950 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 951 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 952 return sglq; 953 } 954 955 /** 956 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 957 * @phba: Pointer to HBA context object. 958 * @xritag: XRI value. 959 * 960 * This function returns the sglq pointer from the array of active 961 * sglq's. The xritag that is passed in is used to index into the 962 * array. Before the xritag can be used it needs to be adjusted 963 * by subtracting the xribase. 964 * 965 * Returns sglq ponter = success, NULL = Failure. 966 **/ 967 struct lpfc_sglq * 968 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 969 { 970 struct lpfc_sglq *sglq; 971 972 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 973 return sglq; 974 } 975 976 /** 977 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 978 * @phba: Pointer to HBA context object. 979 * @xritag: xri used in this exchange. 980 * @rrq: The RRQ to be cleared. 981 * 982 **/ 983 void 984 lpfc_clr_rrq_active(struct lpfc_hba *phba, 985 uint16_t xritag, 986 struct lpfc_node_rrq *rrq) 987 { 988 struct lpfc_nodelist *ndlp = NULL; 989 990 /* Lookup did to verify if did is still active on this vport */ 991 if (rrq->vport) 992 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 993 994 if (!ndlp) 995 goto out; 996 997 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 998 rrq->send_rrq = 0; 999 rrq->xritag = 0; 1000 rrq->rrq_stop_time = 0; 1001 } 1002 out: 1003 mempool_free(rrq, phba->rrq_pool); 1004 } 1005 1006 /** 1007 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1008 * @phba: Pointer to HBA context object. 1009 * 1010 * This function is called with hbalock held. This function 1011 * Checks if stop_time (ratov from setting rrq active) has 1012 * been reached, if it has and the send_rrq flag is set then 1013 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1014 * then it will just call the routine to clear the rrq and 1015 * free the rrq resource. 1016 * The timer is set to the next rrq that is going to expire before 1017 * leaving the routine. 1018 * 1019 **/ 1020 void 1021 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1022 { 1023 struct lpfc_node_rrq *rrq; 1024 struct lpfc_node_rrq *nextrrq; 1025 unsigned long next_time; 1026 unsigned long iflags; 1027 LIST_HEAD(send_rrq); 1028 1029 spin_lock_irqsave(&phba->hbalock, iflags); 1030 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1031 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1032 list_for_each_entry_safe(rrq, nextrrq, 1033 &phba->active_rrq_list, list) { 1034 if (time_after(jiffies, rrq->rrq_stop_time)) 1035 list_move(&rrq->list, &send_rrq); 1036 else if (time_before(rrq->rrq_stop_time, next_time)) 1037 next_time = rrq->rrq_stop_time; 1038 } 1039 spin_unlock_irqrestore(&phba->hbalock, iflags); 1040 if ((!list_empty(&phba->active_rrq_list)) && 1041 (!(phba->pport->load_flag & FC_UNLOADING))) 1042 mod_timer(&phba->rrq_tmr, next_time); 1043 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1044 list_del(&rrq->list); 1045 if (!rrq->send_rrq) { 1046 /* this call will free the rrq */ 1047 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1048 } else if (lpfc_send_rrq(phba, rrq)) { 1049 /* if we send the rrq then the completion handler 1050 * will clear the bit in the xribitmap. 1051 */ 1052 lpfc_clr_rrq_active(phba, rrq->xritag, 1053 rrq); 1054 } 1055 } 1056 } 1057 1058 /** 1059 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1060 * @vport: Pointer to vport context object. 1061 * @xri: The xri used in the exchange. 1062 * @did: The targets DID for this exchange. 1063 * 1064 * returns NULL = rrq not found in the phba->active_rrq_list. 1065 * rrq = rrq for this xri and target. 1066 **/ 1067 struct lpfc_node_rrq * 1068 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1069 { 1070 struct lpfc_hba *phba = vport->phba; 1071 struct lpfc_node_rrq *rrq; 1072 struct lpfc_node_rrq *nextrrq; 1073 unsigned long iflags; 1074 1075 if (phba->sli_rev != LPFC_SLI_REV4) 1076 return NULL; 1077 spin_lock_irqsave(&phba->hbalock, iflags); 1078 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1079 if (rrq->vport == vport && rrq->xritag == xri && 1080 rrq->nlp_DID == did){ 1081 list_del(&rrq->list); 1082 spin_unlock_irqrestore(&phba->hbalock, iflags); 1083 return rrq; 1084 } 1085 } 1086 spin_unlock_irqrestore(&phba->hbalock, iflags); 1087 return NULL; 1088 } 1089 1090 /** 1091 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1092 * @vport: Pointer to vport context object. 1093 * @ndlp: Pointer to the lpfc_node_list structure. 1094 * If ndlp is NULL Remove all active RRQs for this vport from the 1095 * phba->active_rrq_list and clear the rrq. 1096 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1097 **/ 1098 void 1099 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1100 1101 { 1102 struct lpfc_hba *phba = vport->phba; 1103 struct lpfc_node_rrq *rrq; 1104 struct lpfc_node_rrq *nextrrq; 1105 unsigned long iflags; 1106 LIST_HEAD(rrq_list); 1107 1108 if (phba->sli_rev != LPFC_SLI_REV4) 1109 return; 1110 if (!ndlp) { 1111 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1112 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1113 } 1114 spin_lock_irqsave(&phba->hbalock, iflags); 1115 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1116 if (rrq->vport != vport) 1117 continue; 1118 1119 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1120 list_move(&rrq->list, &rrq_list); 1121 1122 } 1123 spin_unlock_irqrestore(&phba->hbalock, iflags); 1124 1125 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1126 list_del(&rrq->list); 1127 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1128 } 1129 } 1130 1131 /** 1132 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1133 * @phba: Pointer to HBA context object. 1134 * @ndlp: Targets nodelist pointer for this exchange. 1135 * @xritag: the xri in the bitmap to test. 1136 * 1137 * This function returns: 1138 * 0 = rrq not active for this xri 1139 * 1 = rrq is valid for this xri. 1140 **/ 1141 int 1142 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1143 uint16_t xritag) 1144 { 1145 if (!ndlp) 1146 return 0; 1147 if (!ndlp->active_rrqs_xri_bitmap) 1148 return 0; 1149 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1150 return 1; 1151 else 1152 return 0; 1153 } 1154 1155 /** 1156 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1157 * @phba: Pointer to HBA context object. 1158 * @ndlp: nodelist pointer for this target. 1159 * @xritag: xri used in this exchange. 1160 * @rxid: Remote Exchange ID. 1161 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1162 * 1163 * This function takes the hbalock. 1164 * The active bit is always set in the active rrq xri_bitmap even 1165 * if there is no slot avaiable for the other rrq information. 1166 * 1167 * returns 0 rrq actived for this xri 1168 * < 0 No memory or invalid ndlp. 1169 **/ 1170 int 1171 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1172 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1173 { 1174 unsigned long iflags; 1175 struct lpfc_node_rrq *rrq; 1176 int empty; 1177 1178 if (!ndlp) 1179 return -EINVAL; 1180 1181 if (!phba->cfg_enable_rrq) 1182 return -EINVAL; 1183 1184 spin_lock_irqsave(&phba->hbalock, iflags); 1185 if (phba->pport->load_flag & FC_UNLOADING) { 1186 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1187 goto out; 1188 } 1189 1190 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1191 goto out; 1192 1193 if (!ndlp->active_rrqs_xri_bitmap) 1194 goto out; 1195 1196 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1197 goto out; 1198 1199 spin_unlock_irqrestore(&phba->hbalock, iflags); 1200 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1201 if (!rrq) { 1202 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1203 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1204 " DID:0x%x Send:%d\n", 1205 xritag, rxid, ndlp->nlp_DID, send_rrq); 1206 return -EINVAL; 1207 } 1208 if (phba->cfg_enable_rrq == 1) 1209 rrq->send_rrq = send_rrq; 1210 else 1211 rrq->send_rrq = 0; 1212 rrq->xritag = xritag; 1213 rrq->rrq_stop_time = jiffies + 1214 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1215 rrq->nlp_DID = ndlp->nlp_DID; 1216 rrq->vport = ndlp->vport; 1217 rrq->rxid = rxid; 1218 spin_lock_irqsave(&phba->hbalock, iflags); 1219 empty = list_empty(&phba->active_rrq_list); 1220 list_add_tail(&rrq->list, &phba->active_rrq_list); 1221 phba->hba_flag |= HBA_RRQ_ACTIVE; 1222 if (empty) 1223 lpfc_worker_wake_up(phba); 1224 spin_unlock_irqrestore(&phba->hbalock, iflags); 1225 return 0; 1226 out: 1227 spin_unlock_irqrestore(&phba->hbalock, iflags); 1228 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1229 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1230 " DID:0x%x Send:%d\n", 1231 xritag, rxid, ndlp->nlp_DID, send_rrq); 1232 return -EINVAL; 1233 } 1234 1235 /** 1236 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1237 * @phba: Pointer to HBA context object. 1238 * @piocbq: Pointer to the iocbq. 1239 * 1240 * The driver calls this function with either the nvme ls ring lock 1241 * or the fc els ring lock held depending on the iocb usage. This function 1242 * gets a new driver sglq object from the sglq list. If the list is not empty 1243 * then it is successful, it returns pointer to the newly allocated sglq 1244 * object else it returns NULL. 1245 **/ 1246 static struct lpfc_sglq * 1247 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1248 { 1249 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1250 struct lpfc_sglq *sglq = NULL; 1251 struct lpfc_sglq *start_sglq = NULL; 1252 struct lpfc_io_buf *lpfc_cmd; 1253 struct lpfc_nodelist *ndlp; 1254 struct lpfc_sli_ring *pring = NULL; 1255 int found = 0; 1256 1257 if (piocbq->iocb_flag & LPFC_IO_NVME_LS) 1258 pring = phba->sli4_hba.nvmels_wq->pring; 1259 else 1260 pring = lpfc_phba_elsring(phba); 1261 1262 lockdep_assert_held(&pring->ring_lock); 1263 1264 if (piocbq->iocb_flag & LPFC_IO_FCP) { 1265 lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1; 1266 ndlp = lpfc_cmd->rdata->pnode; 1267 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 1268 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 1269 ndlp = piocbq->context_un.ndlp; 1270 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 1271 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 1272 ndlp = NULL; 1273 else 1274 ndlp = piocbq->context_un.ndlp; 1275 } else { 1276 ndlp = piocbq->context1; 1277 } 1278 1279 spin_lock(&phba->sli4_hba.sgl_list_lock); 1280 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1281 start_sglq = sglq; 1282 while (!found) { 1283 if (!sglq) 1284 break; 1285 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1286 test_bit(sglq->sli4_lxritag, 1287 ndlp->active_rrqs_xri_bitmap)) { 1288 /* This xri has an rrq outstanding for this DID. 1289 * put it back in the list and get another xri. 1290 */ 1291 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1292 sglq = NULL; 1293 list_remove_head(lpfc_els_sgl_list, sglq, 1294 struct lpfc_sglq, list); 1295 if (sglq == start_sglq) { 1296 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1297 sglq = NULL; 1298 break; 1299 } else 1300 continue; 1301 } 1302 sglq->ndlp = ndlp; 1303 found = 1; 1304 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1305 sglq->state = SGL_ALLOCATED; 1306 } 1307 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1308 return sglq; 1309 } 1310 1311 /** 1312 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1313 * @phba: Pointer to HBA context object. 1314 * @piocbq: Pointer to the iocbq. 1315 * 1316 * This function is called with the sgl_list lock held. This function 1317 * gets a new driver sglq object from the sglq list. If the 1318 * list is not empty then it is successful, it returns pointer to the newly 1319 * allocated sglq object else it returns NULL. 1320 **/ 1321 struct lpfc_sglq * 1322 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1323 { 1324 struct list_head *lpfc_nvmet_sgl_list; 1325 struct lpfc_sglq *sglq = NULL; 1326 1327 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1328 1329 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1330 1331 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1332 if (!sglq) 1333 return NULL; 1334 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1335 sglq->state = SGL_ALLOCATED; 1336 return sglq; 1337 } 1338 1339 /** 1340 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1341 * @phba: Pointer to HBA context object. 1342 * 1343 * This function is called with no lock held. This function 1344 * allocates a new driver iocb object from the iocb pool. If the 1345 * allocation is successful, it returns pointer to the newly 1346 * allocated iocb object else it returns NULL. 1347 **/ 1348 struct lpfc_iocbq * 1349 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1350 { 1351 struct lpfc_iocbq * iocbq = NULL; 1352 unsigned long iflags; 1353 1354 spin_lock_irqsave(&phba->hbalock, iflags); 1355 iocbq = __lpfc_sli_get_iocbq(phba); 1356 spin_unlock_irqrestore(&phba->hbalock, iflags); 1357 return iocbq; 1358 } 1359 1360 /** 1361 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1362 * @phba: Pointer to HBA context object. 1363 * @iocbq: Pointer to driver iocb object. 1364 * 1365 * This function is called to release the driver iocb object 1366 * to the iocb pool. The iotag in the iocb object 1367 * does not change for each use of the iocb object. This function 1368 * clears all other fields of the iocb object when it is freed. 1369 * The sqlq structure that holds the xritag and phys and virtual 1370 * mappings for the scatter gather list is retrieved from the 1371 * active array of sglq. The get of the sglq pointer also clears 1372 * the entry in the array. If the status of the IO indiactes that 1373 * this IO was aborted then the sglq entry it put on the 1374 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1375 * IO has good status or fails for any other reason then the sglq 1376 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1377 * asserted held in the code path calling this routine. 1378 **/ 1379 static void 1380 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1381 { 1382 struct lpfc_sglq *sglq; 1383 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1384 unsigned long iflag = 0; 1385 struct lpfc_sli_ring *pring; 1386 1387 if (iocbq->sli4_xritag == NO_XRI) 1388 sglq = NULL; 1389 else 1390 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1391 1392 1393 if (sglq) { 1394 if (iocbq->iocb_flag & LPFC_IO_NVMET) { 1395 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1396 iflag); 1397 sglq->state = SGL_FREED; 1398 sglq->ndlp = NULL; 1399 list_add_tail(&sglq->list, 1400 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1401 spin_unlock_irqrestore( 1402 &phba->sli4_hba.sgl_list_lock, iflag); 1403 goto out; 1404 } 1405 1406 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1407 (sglq->state != SGL_XRI_ABORTED)) { 1408 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1409 iflag); 1410 1411 /* Check if we can get a reference on ndlp */ 1412 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1413 sglq->ndlp = NULL; 1414 1415 list_add(&sglq->list, 1416 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1417 spin_unlock_irqrestore( 1418 &phba->sli4_hba.sgl_list_lock, iflag); 1419 } else { 1420 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1421 iflag); 1422 sglq->state = SGL_FREED; 1423 sglq->ndlp = NULL; 1424 list_add_tail(&sglq->list, 1425 &phba->sli4_hba.lpfc_els_sgl_list); 1426 spin_unlock_irqrestore( 1427 &phba->sli4_hba.sgl_list_lock, iflag); 1428 pring = lpfc_phba_elsring(phba); 1429 /* Check if TXQ queue needs to be serviced */ 1430 if (pring && (!list_empty(&pring->txq))) 1431 lpfc_worker_wake_up(phba); 1432 } 1433 } 1434 1435 out: 1436 /* 1437 * Clean all volatile data fields, preserve iotag and node struct. 1438 */ 1439 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1440 iocbq->sli4_lxritag = NO_XRI; 1441 iocbq->sli4_xritag = NO_XRI; 1442 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF | 1443 LPFC_IO_NVME_LS); 1444 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1445 } 1446 1447 1448 /** 1449 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1450 * @phba: Pointer to HBA context object. 1451 * @iocbq: Pointer to driver iocb object. 1452 * 1453 * This function is called to release the driver iocb object to the 1454 * iocb pool. The iotag in the iocb object does not change for each 1455 * use of the iocb object. This function clears all other fields of 1456 * the iocb object when it is freed. The hbalock is asserted held in 1457 * the code path calling this routine. 1458 **/ 1459 static void 1460 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1461 { 1462 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1463 1464 /* 1465 * Clean all volatile data fields, preserve iotag and node struct. 1466 */ 1467 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1468 iocbq->sli4_xritag = NO_XRI; 1469 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1470 } 1471 1472 /** 1473 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1474 * @phba: Pointer to HBA context object. 1475 * @iocbq: Pointer to driver iocb object. 1476 * 1477 * This function is called with hbalock held to release driver 1478 * iocb object to the iocb pool. The iotag in the iocb object 1479 * does not change for each use of the iocb object. This function 1480 * clears all other fields of the iocb object when it is freed. 1481 **/ 1482 static void 1483 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1484 { 1485 lockdep_assert_held(&phba->hbalock); 1486 1487 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1488 phba->iocb_cnt--; 1489 } 1490 1491 /** 1492 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1493 * @phba: Pointer to HBA context object. 1494 * @iocbq: Pointer to driver iocb object. 1495 * 1496 * This function is called with no lock held to release the iocb to 1497 * iocb pool. 1498 **/ 1499 void 1500 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1501 { 1502 unsigned long iflags; 1503 1504 /* 1505 * Clean all volatile data fields, preserve iotag and node struct. 1506 */ 1507 spin_lock_irqsave(&phba->hbalock, iflags); 1508 __lpfc_sli_release_iocbq(phba, iocbq); 1509 spin_unlock_irqrestore(&phba->hbalock, iflags); 1510 } 1511 1512 /** 1513 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1514 * @phba: Pointer to HBA context object. 1515 * @iocblist: List of IOCBs. 1516 * @ulpstatus: ULP status in IOCB command field. 1517 * @ulpWord4: ULP word-4 in IOCB command field. 1518 * 1519 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1520 * on the list by invoking the complete callback function associated with the 1521 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1522 * fields. 1523 **/ 1524 void 1525 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1526 uint32_t ulpstatus, uint32_t ulpWord4) 1527 { 1528 struct lpfc_iocbq *piocb; 1529 1530 while (!list_empty(iocblist)) { 1531 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1532 if (piocb->wqe_cmpl) { 1533 if (piocb->iocb_flag & LPFC_IO_NVME) 1534 lpfc_nvme_cancel_iocb(phba, piocb, 1535 ulpstatus, ulpWord4); 1536 else 1537 lpfc_sli_release_iocbq(phba, piocb); 1538 1539 } else if (piocb->iocb_cmpl) { 1540 piocb->iocb.ulpStatus = ulpstatus; 1541 piocb->iocb.un.ulpWord[4] = ulpWord4; 1542 (piocb->iocb_cmpl) (phba, piocb, piocb); 1543 } else { 1544 lpfc_sli_release_iocbq(phba, piocb); 1545 } 1546 } 1547 return; 1548 } 1549 1550 /** 1551 * lpfc_sli_iocb_cmd_type - Get the iocb type 1552 * @iocb_cmnd: iocb command code. 1553 * 1554 * This function is called by ring event handler function to get the iocb type. 1555 * This function translates the iocb command to an iocb command type used to 1556 * decide the final disposition of each completed IOCB. 1557 * The function returns 1558 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1559 * LPFC_SOL_IOCB if it is a solicited iocb completion 1560 * LPFC_ABORT_IOCB if it is an abort iocb 1561 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1562 * 1563 * The caller is not required to hold any lock. 1564 **/ 1565 static lpfc_iocb_type 1566 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1567 { 1568 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1569 1570 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1571 return 0; 1572 1573 switch (iocb_cmnd) { 1574 case CMD_XMIT_SEQUENCE_CR: 1575 case CMD_XMIT_SEQUENCE_CX: 1576 case CMD_XMIT_BCAST_CN: 1577 case CMD_XMIT_BCAST_CX: 1578 case CMD_ELS_REQUEST_CR: 1579 case CMD_ELS_REQUEST_CX: 1580 case CMD_CREATE_XRI_CR: 1581 case CMD_CREATE_XRI_CX: 1582 case CMD_GET_RPI_CN: 1583 case CMD_XMIT_ELS_RSP_CX: 1584 case CMD_GET_RPI_CR: 1585 case CMD_FCP_IWRITE_CR: 1586 case CMD_FCP_IWRITE_CX: 1587 case CMD_FCP_IREAD_CR: 1588 case CMD_FCP_IREAD_CX: 1589 case CMD_FCP_ICMND_CR: 1590 case CMD_FCP_ICMND_CX: 1591 case CMD_FCP_TSEND_CX: 1592 case CMD_FCP_TRSP_CX: 1593 case CMD_FCP_TRECEIVE_CX: 1594 case CMD_FCP_AUTO_TRSP_CX: 1595 case CMD_ADAPTER_MSG: 1596 case CMD_ADAPTER_DUMP: 1597 case CMD_XMIT_SEQUENCE64_CR: 1598 case CMD_XMIT_SEQUENCE64_CX: 1599 case CMD_XMIT_BCAST64_CN: 1600 case CMD_XMIT_BCAST64_CX: 1601 case CMD_ELS_REQUEST64_CR: 1602 case CMD_ELS_REQUEST64_CX: 1603 case CMD_FCP_IWRITE64_CR: 1604 case CMD_FCP_IWRITE64_CX: 1605 case CMD_FCP_IREAD64_CR: 1606 case CMD_FCP_IREAD64_CX: 1607 case CMD_FCP_ICMND64_CR: 1608 case CMD_FCP_ICMND64_CX: 1609 case CMD_FCP_TSEND64_CX: 1610 case CMD_FCP_TRSP64_CX: 1611 case CMD_FCP_TRECEIVE64_CX: 1612 case CMD_GEN_REQUEST64_CR: 1613 case CMD_GEN_REQUEST64_CX: 1614 case CMD_XMIT_ELS_RSP64_CX: 1615 case DSSCMD_IWRITE64_CR: 1616 case DSSCMD_IWRITE64_CX: 1617 case DSSCMD_IREAD64_CR: 1618 case DSSCMD_IREAD64_CX: 1619 case CMD_SEND_FRAME: 1620 type = LPFC_SOL_IOCB; 1621 break; 1622 case CMD_ABORT_XRI_CN: 1623 case CMD_ABORT_XRI_CX: 1624 case CMD_CLOSE_XRI_CN: 1625 case CMD_CLOSE_XRI_CX: 1626 case CMD_XRI_ABORTED_CX: 1627 case CMD_ABORT_MXRI64_CN: 1628 case CMD_XMIT_BLS_RSP64_CX: 1629 type = LPFC_ABORT_IOCB; 1630 break; 1631 case CMD_RCV_SEQUENCE_CX: 1632 case CMD_RCV_ELS_REQ_CX: 1633 case CMD_RCV_SEQUENCE64_CX: 1634 case CMD_RCV_ELS_REQ64_CX: 1635 case CMD_ASYNC_STATUS: 1636 case CMD_IOCB_RCV_SEQ64_CX: 1637 case CMD_IOCB_RCV_ELS64_CX: 1638 case CMD_IOCB_RCV_CONT64_CX: 1639 case CMD_IOCB_RET_XRI64_CX: 1640 type = LPFC_UNSOL_IOCB; 1641 break; 1642 case CMD_IOCB_XMIT_MSEQ64_CR: 1643 case CMD_IOCB_XMIT_MSEQ64_CX: 1644 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1645 case CMD_IOCB_RCV_ELS_LIST64_CX: 1646 case CMD_IOCB_CLOSE_EXTENDED_CN: 1647 case CMD_IOCB_ABORT_EXTENDED_CN: 1648 case CMD_IOCB_RET_HBQE64_CN: 1649 case CMD_IOCB_FCP_IBIDIR64_CR: 1650 case CMD_IOCB_FCP_IBIDIR64_CX: 1651 case CMD_IOCB_FCP_ITASKMGT64_CX: 1652 case CMD_IOCB_LOGENTRY_CN: 1653 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1654 printk("%s - Unhandled SLI-3 Command x%x\n", 1655 __func__, iocb_cmnd); 1656 type = LPFC_UNKNOWN_IOCB; 1657 break; 1658 default: 1659 type = LPFC_UNKNOWN_IOCB; 1660 break; 1661 } 1662 1663 return type; 1664 } 1665 1666 /** 1667 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1668 * @phba: Pointer to HBA context object. 1669 * 1670 * This function is called from SLI initialization code 1671 * to configure every ring of the HBA's SLI interface. The 1672 * caller is not required to hold any lock. This function issues 1673 * a config_ring mailbox command for each ring. 1674 * This function returns zero if successful else returns a negative 1675 * error code. 1676 **/ 1677 static int 1678 lpfc_sli_ring_map(struct lpfc_hba *phba) 1679 { 1680 struct lpfc_sli *psli = &phba->sli; 1681 LPFC_MBOXQ_t *pmb; 1682 MAILBOX_t *pmbox; 1683 int i, rc, ret = 0; 1684 1685 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1686 if (!pmb) 1687 return -ENOMEM; 1688 pmbox = &pmb->u.mb; 1689 phba->link_state = LPFC_INIT_MBX_CMDS; 1690 for (i = 0; i < psli->num_rings; i++) { 1691 lpfc_config_ring(phba, i, pmb); 1692 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1693 if (rc != MBX_SUCCESS) { 1694 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1695 "0446 Adapter failed to init (%d), " 1696 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1697 "ring %d\n", 1698 rc, pmbox->mbxCommand, 1699 pmbox->mbxStatus, i); 1700 phba->link_state = LPFC_HBA_ERROR; 1701 ret = -ENXIO; 1702 break; 1703 } 1704 } 1705 mempool_free(pmb, phba->mbox_mem_pool); 1706 return ret; 1707 } 1708 1709 /** 1710 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1711 * @phba: Pointer to HBA context object. 1712 * @pring: Pointer to driver SLI ring object. 1713 * @piocb: Pointer to the driver iocb object. 1714 * 1715 * The driver calls this function with the hbalock held for SLI3 ports or 1716 * the ring lock held for SLI4 ports. The function adds the 1717 * new iocb to txcmplq of the given ring. This function always returns 1718 * 0. If this function is called for ELS ring, this function checks if 1719 * there is a vport associated with the ELS command. This function also 1720 * starts els_tmofunc timer if this is an ELS command. 1721 **/ 1722 static int 1723 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1724 struct lpfc_iocbq *piocb) 1725 { 1726 if (phba->sli_rev == LPFC_SLI_REV4) 1727 lockdep_assert_held(&pring->ring_lock); 1728 else 1729 lockdep_assert_held(&phba->hbalock); 1730 1731 BUG_ON(!piocb); 1732 1733 list_add_tail(&piocb->list, &pring->txcmplq); 1734 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1735 pring->txcmplq_cnt++; 1736 1737 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1738 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1739 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1740 BUG_ON(!piocb->vport); 1741 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1742 mod_timer(&piocb->vport->els_tmofunc, 1743 jiffies + 1744 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1745 } 1746 1747 return 0; 1748 } 1749 1750 /** 1751 * lpfc_sli_ringtx_get - Get first element of the txq 1752 * @phba: Pointer to HBA context object. 1753 * @pring: Pointer to driver SLI ring object. 1754 * 1755 * This function is called with hbalock held to get next 1756 * iocb in txq of the given ring. If there is any iocb in 1757 * the txq, the function returns first iocb in the list after 1758 * removing the iocb from the list, else it returns NULL. 1759 **/ 1760 struct lpfc_iocbq * 1761 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1762 { 1763 struct lpfc_iocbq *cmd_iocb; 1764 1765 lockdep_assert_held(&phba->hbalock); 1766 1767 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1768 return cmd_iocb; 1769 } 1770 1771 /** 1772 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl 1773 * @phba: Pointer to HBA context object. 1774 * @cmdiocb: Pointer to driver command iocb object. 1775 * @cmf_cmpl: Pointer to completed WCQE. 1776 * 1777 * This routine will inform the driver of any BW adjustments we need 1778 * to make. These changes will be picked up during the next CMF 1779 * timer interrupt. In addition, any BW changes will be logged 1780 * with LOG_CGN_MGMT. 1781 **/ 1782 static void 1783 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 1784 struct lpfc_wcqe_complete *cmf_cmpl) 1785 { 1786 union lpfc_wqe128 *wqe; 1787 uint32_t status, info; 1788 uint64_t bw, bwdif, slop; 1789 uint64_t pcent, bwpcent; 1790 int asig, afpin, sigcnt, fpincnt; 1791 int wsigmax, wfpinmax, cg, tdp; 1792 char *s; 1793 1794 /* First check for error */ 1795 status = bf_get(lpfc_wcqe_c_status, cmf_cmpl); 1796 if (status) { 1797 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1798 "6211 CMF_SYNC_WQE Error " 1799 "req_tag x%x status x%x hwstatus x%x " 1800 "tdatap x%x parm x%x\n", 1801 bf_get(lpfc_wcqe_c_request_tag, cmf_cmpl), 1802 bf_get(lpfc_wcqe_c_status, cmf_cmpl), 1803 bf_get(lpfc_wcqe_c_hw_status, cmf_cmpl), 1804 cmf_cmpl->total_data_placed, 1805 cmf_cmpl->parameter); 1806 goto out; 1807 } 1808 1809 /* Gather congestion information on a successful cmpl */ 1810 info = cmf_cmpl->parameter; 1811 phba->cmf_active_info = info; 1812 1813 /* See if firmware info count is valid or has changed */ 1814 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info) 1815 info = 0; 1816 else 1817 phba->cmf_info_per_interval = info; 1818 1819 tdp = bf_get(lpfc_wcqe_c_cmf_bw, cmf_cmpl); 1820 cg = bf_get(lpfc_wcqe_c_cmf_cg, cmf_cmpl); 1821 1822 /* Get BW requirement from firmware */ 1823 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE; 1824 if (!bw) { 1825 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1826 "6212 CMF_SYNC_WQE x%x: NULL bw\n", 1827 bf_get(lpfc_wcqe_c_request_tag, cmf_cmpl)); 1828 goto out; 1829 } 1830 1831 /* Gather information needed for logging if a BW change is required */ 1832 wqe = &cmdiocb->wqe; 1833 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync); 1834 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync); 1835 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync); 1836 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync); 1837 if (phba->cmf_max_bytes_per_interval != bw || 1838 (asig || afpin || sigcnt || fpincnt)) { 1839 /* Are we increasing or decreasing BW */ 1840 if (phba->cmf_max_bytes_per_interval < bw) { 1841 bwdif = bw - phba->cmf_max_bytes_per_interval; 1842 s = "Increase"; 1843 } else { 1844 bwdif = phba->cmf_max_bytes_per_interval - bw; 1845 s = "Decrease"; 1846 } 1847 1848 /* What is the change percentage */ 1849 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/ 1850 pcent = div64_u64(bwdif * 100 + slop, 1851 phba->cmf_link_byte_count); 1852 bwpcent = div64_u64(bw * 100 + slop, 1853 phba->cmf_link_byte_count); 1854 if (asig) { 1855 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1856 "6237 BW Threshold %lld%% (%lld): " 1857 "%lld%% %s: Signal Alarm: cg:%d " 1858 "Info:%u\n", 1859 bwpcent, bw, pcent, s, cg, 1860 phba->cmf_active_info); 1861 } else if (afpin) { 1862 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1863 "6238 BW Threshold %lld%% (%lld): " 1864 "%lld%% %s: FPIN Alarm: cg:%d " 1865 "Info:%u\n", 1866 bwpcent, bw, pcent, s, cg, 1867 phba->cmf_active_info); 1868 } else if (sigcnt) { 1869 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync); 1870 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1871 "6239 BW Threshold %lld%% (%lld): " 1872 "%lld%% %s: Signal Warning: " 1873 "Cnt %d Max %d: cg:%d Info:%u\n", 1874 bwpcent, bw, pcent, s, sigcnt, 1875 wsigmax, cg, phba->cmf_active_info); 1876 } else if (fpincnt) { 1877 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync); 1878 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1879 "6240 BW Threshold %lld%% (%lld): " 1880 "%lld%% %s: FPIN Warning: " 1881 "Cnt %d Max %d: cg:%d Info:%u\n", 1882 bwpcent, bw, pcent, s, fpincnt, 1883 wfpinmax, cg, phba->cmf_active_info); 1884 } else { 1885 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1886 "6241 BW Threshold %lld%% (%lld): " 1887 "CMF %lld%% %s: cg:%d Info:%u\n", 1888 bwpcent, bw, pcent, s, cg, 1889 phba->cmf_active_info); 1890 } 1891 } else if (info) { 1892 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1893 "6246 Info Threshold %u\n", info); 1894 } 1895 1896 /* Save BW change to be picked up during next timer interrupt */ 1897 phba->cmf_last_sync_bw = bw; 1898 out: 1899 lpfc_sli_release_iocbq(phba, cmdiocb); 1900 } 1901 1902 /** 1903 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE 1904 * @phba: Pointer to HBA context object. 1905 * @ms: ms to set in WQE interval, 0 means use init op 1906 * @total: Total rcv bytes for this interval 1907 * 1908 * This routine is called every CMF timer interrupt. Its purpose is 1909 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events 1910 * that may indicate we have congestion (FPINs or Signals). Upon 1911 * completion, the firmware will indicate any BW restrictions the 1912 * driver may need to take. 1913 **/ 1914 int 1915 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total) 1916 { 1917 union lpfc_wqe128 *wqe; 1918 struct lpfc_iocbq *sync_buf; 1919 unsigned long iflags; 1920 u32 ret_val; 1921 u32 atot, wtot, max; 1922 1923 /* First address any alarm / warning activity */ 1924 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0); 1925 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0); 1926 1927 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */ 1928 if (phba->cmf_active_mode != LPFC_CFG_MANAGED || 1929 phba->link_state == LPFC_LINK_DOWN) 1930 return 0; 1931 1932 spin_lock_irqsave(&phba->hbalock, iflags); 1933 sync_buf = __lpfc_sli_get_iocbq(phba); 1934 if (!sync_buf) { 1935 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 1936 "6213 No available WQEs for CMF_SYNC_WQE\n"); 1937 ret_val = ENOMEM; 1938 goto out_unlock; 1939 } 1940 1941 wqe = &sync_buf->wqe; 1942 1943 /* WQEs are reused. Clear stale data and set key fields to zero */ 1944 memset(wqe, 0, sizeof(*wqe)); 1945 1946 /* If this is the very first CMF_SYNC_WQE, issue an init operation */ 1947 if (!ms) { 1948 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1949 "6441 CMF Init %d - CMF_SYNC_WQE\n", 1950 phba->fc_eventTag); 1951 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */ 1952 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL); 1953 goto initpath; 1954 } 1955 1956 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */ 1957 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms); 1958 1959 /* Check for alarms / warnings */ 1960 if (atot) { 1961 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1962 /* We hit an Signal alarm condition */ 1963 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1); 1964 } else { 1965 /* We hit a FPIN alarm condition */ 1966 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1); 1967 } 1968 } else if (wtot) { 1969 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 1970 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1971 /* We hit an Signal warning condition */ 1972 max = LPFC_SEC_TO_MSEC / lpfc_fabric_cgn_frequency * 1973 lpfc_acqe_cgn_frequency; 1974 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max); 1975 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot); 1976 } else { 1977 /* We hit a FPIN warning condition */ 1978 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1); 1979 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1); 1980 } 1981 } 1982 1983 /* Update total read blocks during previous timer interval */ 1984 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE); 1985 1986 initpath: 1987 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER); 1988 wqe->cmf_sync.event_tag = phba->fc_eventTag; 1989 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE); 1990 1991 /* Setup reqtag to match the wqe completion. */ 1992 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag); 1993 1994 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1); 1995 1996 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND); 1997 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1); 1998 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT); 1999 2000 sync_buf->vport = phba->pport; 2001 sync_buf->wqe_cmpl = lpfc_cmf_sync_cmpl; 2002 sync_buf->iocb_cmpl = NULL; 2003 sync_buf->context1 = NULL; 2004 sync_buf->context2 = NULL; 2005 sync_buf->context3 = NULL; 2006 sync_buf->sli4_xritag = NO_XRI; 2007 2008 sync_buf->iocb_flag |= LPFC_IO_CMF; 2009 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf); 2010 if (ret_val) 2011 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 2012 "6214 Cannot issue CMF_SYNC_WQE: x%x\n", 2013 ret_val); 2014 out_unlock: 2015 spin_unlock_irqrestore(&phba->hbalock, iflags); 2016 return ret_val; 2017 } 2018 2019 /** 2020 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 2021 * @phba: Pointer to HBA context object. 2022 * @pring: Pointer to driver SLI ring object. 2023 * 2024 * This function is called with hbalock held and the caller must post the 2025 * iocb without releasing the lock. If the caller releases the lock, 2026 * iocb slot returned by the function is not guaranteed to be available. 2027 * The function returns pointer to the next available iocb slot if there 2028 * is available slot in the ring, else it returns NULL. 2029 * If the get index of the ring is ahead of the put index, the function 2030 * will post an error attention event to the worker thread to take the 2031 * HBA to offline state. 2032 **/ 2033 static IOCB_t * 2034 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2035 { 2036 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2037 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 2038 2039 lockdep_assert_held(&phba->hbalock); 2040 2041 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 2042 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 2043 pring->sli.sli3.next_cmdidx = 0; 2044 2045 if (unlikely(pring->sli.sli3.local_getidx == 2046 pring->sli.sli3.next_cmdidx)) { 2047 2048 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 2049 2050 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 2051 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2052 "0315 Ring %d issue: portCmdGet %d " 2053 "is bigger than cmd ring %d\n", 2054 pring->ringno, 2055 pring->sli.sli3.local_getidx, 2056 max_cmd_idx); 2057 2058 phba->link_state = LPFC_HBA_ERROR; 2059 /* 2060 * All error attention handlers are posted to 2061 * worker thread 2062 */ 2063 phba->work_ha |= HA_ERATT; 2064 phba->work_hs = HS_FFER3; 2065 2066 lpfc_worker_wake_up(phba); 2067 2068 return NULL; 2069 } 2070 2071 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 2072 return NULL; 2073 } 2074 2075 return lpfc_cmd_iocb(phba, pring); 2076 } 2077 2078 /** 2079 * lpfc_sli_next_iotag - Get an iotag for the iocb 2080 * @phba: Pointer to HBA context object. 2081 * @iocbq: Pointer to driver iocb object. 2082 * 2083 * This function gets an iotag for the iocb. If there is no unused iotag and 2084 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 2085 * array and assigns a new iotag. 2086 * The function returns the allocated iotag if successful, else returns zero. 2087 * Zero is not a valid iotag. 2088 * The caller is not required to hold any lock. 2089 **/ 2090 uint16_t 2091 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 2092 { 2093 struct lpfc_iocbq **new_arr; 2094 struct lpfc_iocbq **old_arr; 2095 size_t new_len; 2096 struct lpfc_sli *psli = &phba->sli; 2097 uint16_t iotag; 2098 2099 spin_lock_irq(&phba->hbalock); 2100 iotag = psli->last_iotag; 2101 if(++iotag < psli->iocbq_lookup_len) { 2102 psli->last_iotag = iotag; 2103 psli->iocbq_lookup[iotag] = iocbq; 2104 spin_unlock_irq(&phba->hbalock); 2105 iocbq->iotag = iotag; 2106 return iotag; 2107 } else if (psli->iocbq_lookup_len < (0xffff 2108 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 2109 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 2110 spin_unlock_irq(&phba->hbalock); 2111 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 2112 GFP_KERNEL); 2113 if (new_arr) { 2114 spin_lock_irq(&phba->hbalock); 2115 old_arr = psli->iocbq_lookup; 2116 if (new_len <= psli->iocbq_lookup_len) { 2117 /* highly unprobable case */ 2118 kfree(new_arr); 2119 iotag = psli->last_iotag; 2120 if(++iotag < psli->iocbq_lookup_len) { 2121 psli->last_iotag = iotag; 2122 psli->iocbq_lookup[iotag] = iocbq; 2123 spin_unlock_irq(&phba->hbalock); 2124 iocbq->iotag = iotag; 2125 return iotag; 2126 } 2127 spin_unlock_irq(&phba->hbalock); 2128 return 0; 2129 } 2130 if (psli->iocbq_lookup) 2131 memcpy(new_arr, old_arr, 2132 ((psli->last_iotag + 1) * 2133 sizeof (struct lpfc_iocbq *))); 2134 psli->iocbq_lookup = new_arr; 2135 psli->iocbq_lookup_len = new_len; 2136 psli->last_iotag = iotag; 2137 psli->iocbq_lookup[iotag] = iocbq; 2138 spin_unlock_irq(&phba->hbalock); 2139 iocbq->iotag = iotag; 2140 kfree(old_arr); 2141 return iotag; 2142 } 2143 } else 2144 spin_unlock_irq(&phba->hbalock); 2145 2146 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2147 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 2148 psli->last_iotag); 2149 2150 return 0; 2151 } 2152 2153 /** 2154 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 2155 * @phba: Pointer to HBA context object. 2156 * @pring: Pointer to driver SLI ring object. 2157 * @iocb: Pointer to iocb slot in the ring. 2158 * @nextiocb: Pointer to driver iocb object which need to be 2159 * posted to firmware. 2160 * 2161 * This function is called to post a new iocb to the firmware. This 2162 * function copies the new iocb to ring iocb slot and updates the 2163 * ring pointers. It adds the new iocb to txcmplq if there is 2164 * a completion call back for this iocb else the function will free the 2165 * iocb object. The hbalock is asserted held in the code path calling 2166 * this routine. 2167 **/ 2168 static void 2169 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2170 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 2171 { 2172 /* 2173 * Set up an iotag 2174 */ 2175 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 2176 2177 2178 if (pring->ringno == LPFC_ELS_RING) { 2179 lpfc_debugfs_slow_ring_trc(phba, 2180 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 2181 *(((uint32_t *) &nextiocb->iocb) + 4), 2182 *(((uint32_t *) &nextiocb->iocb) + 6), 2183 *(((uint32_t *) &nextiocb->iocb) + 7)); 2184 } 2185 2186 /* 2187 * Issue iocb command to adapter 2188 */ 2189 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 2190 wmb(); 2191 pring->stats.iocb_cmd++; 2192 2193 /* 2194 * If there is no completion routine to call, we can release the 2195 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 2196 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 2197 */ 2198 if (nextiocb->iocb_cmpl) 2199 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 2200 else 2201 __lpfc_sli_release_iocbq(phba, nextiocb); 2202 2203 /* 2204 * Let the HBA know what IOCB slot will be the next one the 2205 * driver will put a command into. 2206 */ 2207 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 2208 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 2209 } 2210 2211 /** 2212 * lpfc_sli_update_full_ring - Update the chip attention register 2213 * @phba: Pointer to HBA context object. 2214 * @pring: Pointer to driver SLI ring object. 2215 * 2216 * The caller is not required to hold any lock for calling this function. 2217 * This function updates the chip attention bits for the ring to inform firmware 2218 * that there are pending work to be done for this ring and requests an 2219 * interrupt when there is space available in the ring. This function is 2220 * called when the driver is unable to post more iocbs to the ring due 2221 * to unavailability of space in the ring. 2222 **/ 2223 static void 2224 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2225 { 2226 int ringno = pring->ringno; 2227 2228 pring->flag |= LPFC_CALL_RING_AVAILABLE; 2229 2230 wmb(); 2231 2232 /* 2233 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 2234 * The HBA will tell us when an IOCB entry is available. 2235 */ 2236 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 2237 readl(phba->CAregaddr); /* flush */ 2238 2239 pring->stats.iocb_cmd_full++; 2240 } 2241 2242 /** 2243 * lpfc_sli_update_ring - Update chip attention register 2244 * @phba: Pointer to HBA context object. 2245 * @pring: Pointer to driver SLI ring object. 2246 * 2247 * This function updates the chip attention register bit for the 2248 * given ring to inform HBA that there is more work to be done 2249 * in this ring. The caller is not required to hold any lock. 2250 **/ 2251 static void 2252 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2253 { 2254 int ringno = pring->ringno; 2255 2256 /* 2257 * Tell the HBA that there is work to do in this ring. 2258 */ 2259 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2260 wmb(); 2261 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2262 readl(phba->CAregaddr); /* flush */ 2263 } 2264 } 2265 2266 /** 2267 * lpfc_sli_resume_iocb - Process iocbs in the txq 2268 * @phba: Pointer to HBA context object. 2269 * @pring: Pointer to driver SLI ring object. 2270 * 2271 * This function is called with hbalock held to post pending iocbs 2272 * in the txq to the firmware. This function is called when driver 2273 * detects space available in the ring. 2274 **/ 2275 static void 2276 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2277 { 2278 IOCB_t *iocb; 2279 struct lpfc_iocbq *nextiocb; 2280 2281 lockdep_assert_held(&phba->hbalock); 2282 2283 /* 2284 * Check to see if: 2285 * (a) there is anything on the txq to send 2286 * (b) link is up 2287 * (c) link attention events can be processed (fcp ring only) 2288 * (d) IOCB processing is not blocked by the outstanding mbox command. 2289 */ 2290 2291 if (lpfc_is_link_up(phba) && 2292 (!list_empty(&pring->txq)) && 2293 (pring->ringno != LPFC_FCP_RING || 2294 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2295 2296 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2297 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2298 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2299 2300 if (iocb) 2301 lpfc_sli_update_ring(phba, pring); 2302 else 2303 lpfc_sli_update_full_ring(phba, pring); 2304 } 2305 2306 return; 2307 } 2308 2309 /** 2310 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2311 * @phba: Pointer to HBA context object. 2312 * @hbqno: HBQ number. 2313 * 2314 * This function is called with hbalock held to get the next 2315 * available slot for the given HBQ. If there is free slot 2316 * available for the HBQ it will return pointer to the next available 2317 * HBQ entry else it will return NULL. 2318 **/ 2319 static struct lpfc_hbq_entry * 2320 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2321 { 2322 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2323 2324 lockdep_assert_held(&phba->hbalock); 2325 2326 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2327 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2328 hbqp->next_hbqPutIdx = 0; 2329 2330 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2331 uint32_t raw_index = phba->hbq_get[hbqno]; 2332 uint32_t getidx = le32_to_cpu(raw_index); 2333 2334 hbqp->local_hbqGetIdx = getidx; 2335 2336 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2337 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2338 "1802 HBQ %d: local_hbqGetIdx " 2339 "%u is > than hbqp->entry_count %u\n", 2340 hbqno, hbqp->local_hbqGetIdx, 2341 hbqp->entry_count); 2342 2343 phba->link_state = LPFC_HBA_ERROR; 2344 return NULL; 2345 } 2346 2347 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2348 return NULL; 2349 } 2350 2351 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2352 hbqp->hbqPutIdx; 2353 } 2354 2355 /** 2356 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2357 * @phba: Pointer to HBA context object. 2358 * 2359 * This function is called with no lock held to free all the 2360 * hbq buffers while uninitializing the SLI interface. It also 2361 * frees the HBQ buffers returned by the firmware but not yet 2362 * processed by the upper layers. 2363 **/ 2364 void 2365 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2366 { 2367 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2368 struct hbq_dmabuf *hbq_buf; 2369 unsigned long flags; 2370 int i, hbq_count; 2371 2372 hbq_count = lpfc_sli_hbq_count(); 2373 /* Return all memory used by all HBQs */ 2374 spin_lock_irqsave(&phba->hbalock, flags); 2375 for (i = 0; i < hbq_count; ++i) { 2376 list_for_each_entry_safe(dmabuf, next_dmabuf, 2377 &phba->hbqs[i].hbq_buffer_list, list) { 2378 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2379 list_del(&hbq_buf->dbuf.list); 2380 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2381 } 2382 phba->hbqs[i].buffer_count = 0; 2383 } 2384 2385 /* Mark the HBQs not in use */ 2386 phba->hbq_in_use = 0; 2387 spin_unlock_irqrestore(&phba->hbalock, flags); 2388 } 2389 2390 /** 2391 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2392 * @phba: Pointer to HBA context object. 2393 * @hbqno: HBQ number. 2394 * @hbq_buf: Pointer to HBQ buffer. 2395 * 2396 * This function is called with the hbalock held to post a 2397 * hbq buffer to the firmware. If the function finds an empty 2398 * slot in the HBQ, it will post the buffer. The function will return 2399 * pointer to the hbq entry if it successfully post the buffer 2400 * else it will return NULL. 2401 **/ 2402 static int 2403 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2404 struct hbq_dmabuf *hbq_buf) 2405 { 2406 lockdep_assert_held(&phba->hbalock); 2407 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2408 } 2409 2410 /** 2411 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2412 * @phba: Pointer to HBA context object. 2413 * @hbqno: HBQ number. 2414 * @hbq_buf: Pointer to HBQ buffer. 2415 * 2416 * This function is called with the hbalock held to post a hbq buffer to the 2417 * firmware. If the function finds an empty slot in the HBQ, it will post the 2418 * buffer and place it on the hbq_buffer_list. The function will return zero if 2419 * it successfully post the buffer else it will return an error. 2420 **/ 2421 static int 2422 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2423 struct hbq_dmabuf *hbq_buf) 2424 { 2425 struct lpfc_hbq_entry *hbqe; 2426 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2427 2428 lockdep_assert_held(&phba->hbalock); 2429 /* Get next HBQ entry slot to use */ 2430 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2431 if (hbqe) { 2432 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2433 2434 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2435 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2436 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2437 hbqe->bde.tus.f.bdeFlags = 0; 2438 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2439 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2440 /* Sync SLIM */ 2441 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2442 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2443 /* flush */ 2444 readl(phba->hbq_put + hbqno); 2445 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2446 return 0; 2447 } else 2448 return -ENOMEM; 2449 } 2450 2451 /** 2452 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2453 * @phba: Pointer to HBA context object. 2454 * @hbqno: HBQ number. 2455 * @hbq_buf: Pointer to HBQ buffer. 2456 * 2457 * This function is called with the hbalock held to post an RQE to the SLI4 2458 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2459 * the hbq_buffer_list and return zero, otherwise it will return an error. 2460 **/ 2461 static int 2462 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2463 struct hbq_dmabuf *hbq_buf) 2464 { 2465 int rc; 2466 struct lpfc_rqe hrqe; 2467 struct lpfc_rqe drqe; 2468 struct lpfc_queue *hrq; 2469 struct lpfc_queue *drq; 2470 2471 if (hbqno != LPFC_ELS_HBQ) 2472 return 1; 2473 hrq = phba->sli4_hba.hdr_rq; 2474 drq = phba->sli4_hba.dat_rq; 2475 2476 lockdep_assert_held(&phba->hbalock); 2477 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2478 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2479 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2480 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2481 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2482 if (rc < 0) 2483 return rc; 2484 hbq_buf->tag = (rc | (hbqno << 16)); 2485 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2486 return 0; 2487 } 2488 2489 /* HBQ for ELS and CT traffic. */ 2490 static struct lpfc_hbq_init lpfc_els_hbq = { 2491 .rn = 1, 2492 .entry_count = 256, 2493 .mask_count = 0, 2494 .profile = 0, 2495 .ring_mask = (1 << LPFC_ELS_RING), 2496 .buffer_count = 0, 2497 .init_count = 40, 2498 .add_count = 40, 2499 }; 2500 2501 /* Array of HBQs */ 2502 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2503 &lpfc_els_hbq, 2504 }; 2505 2506 /** 2507 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2508 * @phba: Pointer to HBA context object. 2509 * @hbqno: HBQ number. 2510 * @count: Number of HBQ buffers to be posted. 2511 * 2512 * This function is called with no lock held to post more hbq buffers to the 2513 * given HBQ. The function returns the number of HBQ buffers successfully 2514 * posted. 2515 **/ 2516 static int 2517 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2518 { 2519 uint32_t i, posted = 0; 2520 unsigned long flags; 2521 struct hbq_dmabuf *hbq_buffer; 2522 LIST_HEAD(hbq_buf_list); 2523 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2524 return 0; 2525 2526 if ((phba->hbqs[hbqno].buffer_count + count) > 2527 lpfc_hbq_defs[hbqno]->entry_count) 2528 count = lpfc_hbq_defs[hbqno]->entry_count - 2529 phba->hbqs[hbqno].buffer_count; 2530 if (!count) 2531 return 0; 2532 /* Allocate HBQ entries */ 2533 for (i = 0; i < count; i++) { 2534 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2535 if (!hbq_buffer) 2536 break; 2537 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2538 } 2539 /* Check whether HBQ is still in use */ 2540 spin_lock_irqsave(&phba->hbalock, flags); 2541 if (!phba->hbq_in_use) 2542 goto err; 2543 while (!list_empty(&hbq_buf_list)) { 2544 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2545 dbuf.list); 2546 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2547 (hbqno << 16)); 2548 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2549 phba->hbqs[hbqno].buffer_count++; 2550 posted++; 2551 } else 2552 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2553 } 2554 spin_unlock_irqrestore(&phba->hbalock, flags); 2555 return posted; 2556 err: 2557 spin_unlock_irqrestore(&phba->hbalock, flags); 2558 while (!list_empty(&hbq_buf_list)) { 2559 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2560 dbuf.list); 2561 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2562 } 2563 return 0; 2564 } 2565 2566 /** 2567 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2568 * @phba: Pointer to HBA context object. 2569 * @qno: HBQ number. 2570 * 2571 * This function posts more buffers to the HBQ. This function 2572 * is called with no lock held. The function returns the number of HBQ entries 2573 * successfully allocated. 2574 **/ 2575 int 2576 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2577 { 2578 if (phba->sli_rev == LPFC_SLI_REV4) 2579 return 0; 2580 else 2581 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2582 lpfc_hbq_defs[qno]->add_count); 2583 } 2584 2585 /** 2586 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2587 * @phba: Pointer to HBA context object. 2588 * @qno: HBQ queue number. 2589 * 2590 * This function is called from SLI initialization code path with 2591 * no lock held to post initial HBQ buffers to firmware. The 2592 * function returns the number of HBQ entries successfully allocated. 2593 **/ 2594 static int 2595 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2596 { 2597 if (phba->sli_rev == LPFC_SLI_REV4) 2598 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2599 lpfc_hbq_defs[qno]->entry_count); 2600 else 2601 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2602 lpfc_hbq_defs[qno]->init_count); 2603 } 2604 2605 /* 2606 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2607 * 2608 * This function removes the first hbq buffer on an hbq list and returns a 2609 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2610 **/ 2611 static struct hbq_dmabuf * 2612 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2613 { 2614 struct lpfc_dmabuf *d_buf; 2615 2616 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2617 if (!d_buf) 2618 return NULL; 2619 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2620 } 2621 2622 /** 2623 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2624 * @phba: Pointer to HBA context object. 2625 * @hrq: HBQ number. 2626 * 2627 * This function removes the first RQ buffer on an RQ buffer list and returns a 2628 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2629 **/ 2630 static struct rqb_dmabuf * 2631 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2632 { 2633 struct lpfc_dmabuf *h_buf; 2634 struct lpfc_rqb *rqbp; 2635 2636 rqbp = hrq->rqbp; 2637 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2638 struct lpfc_dmabuf, list); 2639 if (!h_buf) 2640 return NULL; 2641 rqbp->buffer_count--; 2642 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2643 } 2644 2645 /** 2646 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2647 * @phba: Pointer to HBA context object. 2648 * @tag: Tag of the hbq buffer. 2649 * 2650 * This function searches for the hbq buffer associated with the given tag in 2651 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2652 * otherwise it returns NULL. 2653 **/ 2654 static struct hbq_dmabuf * 2655 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2656 { 2657 struct lpfc_dmabuf *d_buf; 2658 struct hbq_dmabuf *hbq_buf; 2659 uint32_t hbqno; 2660 2661 hbqno = tag >> 16; 2662 if (hbqno >= LPFC_MAX_HBQS) 2663 return NULL; 2664 2665 spin_lock_irq(&phba->hbalock); 2666 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2667 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2668 if (hbq_buf->tag == tag) { 2669 spin_unlock_irq(&phba->hbalock); 2670 return hbq_buf; 2671 } 2672 } 2673 spin_unlock_irq(&phba->hbalock); 2674 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2675 "1803 Bad hbq tag. Data: x%x x%x\n", 2676 tag, phba->hbqs[tag >> 16].buffer_count); 2677 return NULL; 2678 } 2679 2680 /** 2681 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2682 * @phba: Pointer to HBA context object. 2683 * @hbq_buffer: Pointer to HBQ buffer. 2684 * 2685 * This function is called with hbalock. This function gives back 2686 * the hbq buffer to firmware. If the HBQ does not have space to 2687 * post the buffer, it will free the buffer. 2688 **/ 2689 void 2690 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2691 { 2692 uint32_t hbqno; 2693 2694 if (hbq_buffer) { 2695 hbqno = hbq_buffer->tag >> 16; 2696 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2697 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2698 } 2699 } 2700 2701 /** 2702 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2703 * @mbxCommand: mailbox command code. 2704 * 2705 * This function is called by the mailbox event handler function to verify 2706 * that the completed mailbox command is a legitimate mailbox command. If the 2707 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2708 * and the mailbox event handler will take the HBA offline. 2709 **/ 2710 static int 2711 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2712 { 2713 uint8_t ret; 2714 2715 switch (mbxCommand) { 2716 case MBX_LOAD_SM: 2717 case MBX_READ_NV: 2718 case MBX_WRITE_NV: 2719 case MBX_WRITE_VPARMS: 2720 case MBX_RUN_BIU_DIAG: 2721 case MBX_INIT_LINK: 2722 case MBX_DOWN_LINK: 2723 case MBX_CONFIG_LINK: 2724 case MBX_CONFIG_RING: 2725 case MBX_RESET_RING: 2726 case MBX_READ_CONFIG: 2727 case MBX_READ_RCONFIG: 2728 case MBX_READ_SPARM: 2729 case MBX_READ_STATUS: 2730 case MBX_READ_RPI: 2731 case MBX_READ_XRI: 2732 case MBX_READ_REV: 2733 case MBX_READ_LNK_STAT: 2734 case MBX_REG_LOGIN: 2735 case MBX_UNREG_LOGIN: 2736 case MBX_CLEAR_LA: 2737 case MBX_DUMP_MEMORY: 2738 case MBX_DUMP_CONTEXT: 2739 case MBX_RUN_DIAGS: 2740 case MBX_RESTART: 2741 case MBX_UPDATE_CFG: 2742 case MBX_DOWN_LOAD: 2743 case MBX_DEL_LD_ENTRY: 2744 case MBX_RUN_PROGRAM: 2745 case MBX_SET_MASK: 2746 case MBX_SET_VARIABLE: 2747 case MBX_UNREG_D_ID: 2748 case MBX_KILL_BOARD: 2749 case MBX_CONFIG_FARP: 2750 case MBX_BEACON: 2751 case MBX_LOAD_AREA: 2752 case MBX_RUN_BIU_DIAG64: 2753 case MBX_CONFIG_PORT: 2754 case MBX_READ_SPARM64: 2755 case MBX_READ_RPI64: 2756 case MBX_REG_LOGIN64: 2757 case MBX_READ_TOPOLOGY: 2758 case MBX_WRITE_WWN: 2759 case MBX_SET_DEBUG: 2760 case MBX_LOAD_EXP_ROM: 2761 case MBX_ASYNCEVT_ENABLE: 2762 case MBX_REG_VPI: 2763 case MBX_UNREG_VPI: 2764 case MBX_HEARTBEAT: 2765 case MBX_PORT_CAPABILITIES: 2766 case MBX_PORT_IOV_CONTROL: 2767 case MBX_SLI4_CONFIG: 2768 case MBX_SLI4_REQ_FTRS: 2769 case MBX_REG_FCFI: 2770 case MBX_UNREG_FCFI: 2771 case MBX_REG_VFI: 2772 case MBX_UNREG_VFI: 2773 case MBX_INIT_VPI: 2774 case MBX_INIT_VFI: 2775 case MBX_RESUME_RPI: 2776 case MBX_READ_EVENT_LOG_STATUS: 2777 case MBX_READ_EVENT_LOG: 2778 case MBX_SECURITY_MGMT: 2779 case MBX_AUTH_PORT: 2780 case MBX_ACCESS_VDATA: 2781 ret = mbxCommand; 2782 break; 2783 default: 2784 ret = MBX_SHUTDOWN; 2785 break; 2786 } 2787 return ret; 2788 } 2789 2790 /** 2791 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2792 * @phba: Pointer to HBA context object. 2793 * @pmboxq: Pointer to mailbox command. 2794 * 2795 * This is completion handler function for mailbox commands issued from 2796 * lpfc_sli_issue_mbox_wait function. This function is called by the 2797 * mailbox event handler function with no lock held. This function 2798 * will wake up thread waiting on the wait queue pointed by context1 2799 * of the mailbox. 2800 **/ 2801 void 2802 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2803 { 2804 unsigned long drvr_flag; 2805 struct completion *pmbox_done; 2806 2807 /* 2808 * If pmbox_done is empty, the driver thread gave up waiting and 2809 * continued running. 2810 */ 2811 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2812 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2813 pmbox_done = (struct completion *)pmboxq->context3; 2814 if (pmbox_done) 2815 complete(pmbox_done); 2816 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2817 return; 2818 } 2819 2820 static void 2821 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2822 { 2823 unsigned long iflags; 2824 2825 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2826 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2827 spin_lock_irqsave(&ndlp->lock, iflags); 2828 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2829 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2830 spin_unlock_irqrestore(&ndlp->lock, iflags); 2831 } 2832 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2833 } 2834 2835 /** 2836 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2837 * @phba: Pointer to HBA context object. 2838 * @pmb: Pointer to mailbox object. 2839 * 2840 * This function is the default mailbox completion handler. It 2841 * frees the memory resources associated with the completed mailbox 2842 * command. If the completed command is a REG_LOGIN mailbox command, 2843 * this function will issue a UREG_LOGIN to re-claim the RPI. 2844 **/ 2845 void 2846 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2847 { 2848 struct lpfc_vport *vport = pmb->vport; 2849 struct lpfc_dmabuf *mp; 2850 struct lpfc_nodelist *ndlp; 2851 struct Scsi_Host *shost; 2852 uint16_t rpi, vpi; 2853 int rc; 2854 2855 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 2856 2857 if (mp) { 2858 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2859 kfree(mp); 2860 } 2861 2862 /* 2863 * If a REG_LOGIN succeeded after node is destroyed or node 2864 * is in re-discovery driver need to cleanup the RPI. 2865 */ 2866 if (!(phba->pport->load_flag & FC_UNLOADING) && 2867 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2868 !pmb->u.mb.mbxStatus) { 2869 rpi = pmb->u.mb.un.varWords[0]; 2870 vpi = pmb->u.mb.un.varRegLogin.vpi; 2871 if (phba->sli_rev == LPFC_SLI_REV4) 2872 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2873 lpfc_unreg_login(phba, vpi, rpi, pmb); 2874 pmb->vport = vport; 2875 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2876 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2877 if (rc != MBX_NOT_FINISHED) 2878 return; 2879 } 2880 2881 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2882 !(phba->pport->load_flag & FC_UNLOADING) && 2883 !pmb->u.mb.mbxStatus) { 2884 shost = lpfc_shost_from_vport(vport); 2885 spin_lock_irq(shost->host_lock); 2886 vport->vpi_state |= LPFC_VPI_REGISTERED; 2887 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2888 spin_unlock_irq(shost->host_lock); 2889 } 2890 2891 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2892 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2893 lpfc_nlp_put(ndlp); 2894 pmb->ctx_buf = NULL; 2895 pmb->ctx_ndlp = NULL; 2896 } 2897 2898 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2899 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2900 2901 /* Check to see if there are any deferred events to process */ 2902 if (ndlp) { 2903 lpfc_printf_vlog( 2904 vport, 2905 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2906 "1438 UNREG cmpl deferred mbox x%x " 2907 "on NPort x%x Data: x%x x%x x%px x%x x%x\n", 2908 ndlp->nlp_rpi, ndlp->nlp_DID, 2909 ndlp->nlp_flag, ndlp->nlp_defer_did, 2910 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2911 2912 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2913 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2914 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2915 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2916 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2917 } else { 2918 __lpfc_sli_rpi_release(vport, ndlp); 2919 } 2920 2921 /* The unreg_login mailbox is complete and had a 2922 * reference that has to be released. The PLOGI 2923 * got its own ref. 2924 */ 2925 lpfc_nlp_put(ndlp); 2926 pmb->ctx_ndlp = NULL; 2927 } 2928 } 2929 2930 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2931 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2932 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2933 lpfc_nlp_put(ndlp); 2934 } 2935 2936 /* Check security permission status on INIT_LINK mailbox command */ 2937 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2938 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2939 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2940 "2860 SLI authentication is required " 2941 "for INIT_LINK but has not done yet\n"); 2942 2943 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2944 lpfc_sli4_mbox_cmd_free(phba, pmb); 2945 else 2946 mempool_free(pmb, phba->mbox_mem_pool); 2947 } 2948 /** 2949 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2950 * @phba: Pointer to HBA context object. 2951 * @pmb: Pointer to mailbox object. 2952 * 2953 * This function is the unreg rpi mailbox completion handler. It 2954 * frees the memory resources associated with the completed mailbox 2955 * command. An additional reference is put on the ndlp to prevent 2956 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2957 * the unreg mailbox command completes, this routine puts the 2958 * reference back. 2959 * 2960 **/ 2961 void 2962 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2963 { 2964 struct lpfc_vport *vport = pmb->vport; 2965 struct lpfc_nodelist *ndlp; 2966 2967 ndlp = pmb->ctx_ndlp; 2968 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2969 if (phba->sli_rev == LPFC_SLI_REV4 && 2970 (bf_get(lpfc_sli_intf_if_type, 2971 &phba->sli4_hba.sli_intf) >= 2972 LPFC_SLI_INTF_IF_TYPE_2)) { 2973 if (ndlp) { 2974 lpfc_printf_vlog( 2975 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2976 "0010 UNREG_LOGIN vpi:%x " 2977 "rpi:%x DID:%x defer x%x flg x%x " 2978 "x%px\n", 2979 vport->vpi, ndlp->nlp_rpi, 2980 ndlp->nlp_DID, ndlp->nlp_defer_did, 2981 ndlp->nlp_flag, 2982 ndlp); 2983 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2984 2985 /* Check to see if there are any deferred 2986 * events to process 2987 */ 2988 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2989 (ndlp->nlp_defer_did != 2990 NLP_EVT_NOTHING_PENDING)) { 2991 lpfc_printf_vlog( 2992 vport, KERN_INFO, LOG_DISCOVERY, 2993 "4111 UNREG cmpl deferred " 2994 "clr x%x on " 2995 "NPort x%x Data: x%x x%px\n", 2996 ndlp->nlp_rpi, ndlp->nlp_DID, 2997 ndlp->nlp_defer_did, ndlp); 2998 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2999 ndlp->nlp_defer_did = 3000 NLP_EVT_NOTHING_PENDING; 3001 lpfc_issue_els_plogi( 3002 vport, ndlp->nlp_DID, 0); 3003 } else { 3004 __lpfc_sli_rpi_release(vport, ndlp); 3005 } 3006 lpfc_nlp_put(ndlp); 3007 } 3008 } 3009 } 3010 3011 mempool_free(pmb, phba->mbox_mem_pool); 3012 } 3013 3014 /** 3015 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 3016 * @phba: Pointer to HBA context object. 3017 * 3018 * This function is called with no lock held. This function processes all 3019 * the completed mailbox commands and gives it to upper layers. The interrupt 3020 * service routine processes mailbox completion interrupt and adds completed 3021 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 3022 * Worker thread call lpfc_sli_handle_mb_event, which will return the 3023 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 3024 * function returns the mailbox commands to the upper layer by calling the 3025 * completion handler function of each mailbox. 3026 **/ 3027 int 3028 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 3029 { 3030 MAILBOX_t *pmbox; 3031 LPFC_MBOXQ_t *pmb; 3032 int rc; 3033 LIST_HEAD(cmplq); 3034 3035 phba->sli.slistat.mbox_event++; 3036 3037 /* Get all completed mailboxe buffers into the cmplq */ 3038 spin_lock_irq(&phba->hbalock); 3039 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 3040 spin_unlock_irq(&phba->hbalock); 3041 3042 /* Get a Mailbox buffer to setup mailbox commands for callback */ 3043 do { 3044 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 3045 if (pmb == NULL) 3046 break; 3047 3048 pmbox = &pmb->u.mb; 3049 3050 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 3051 if (pmb->vport) { 3052 lpfc_debugfs_disc_trc(pmb->vport, 3053 LPFC_DISC_TRC_MBOX_VPORT, 3054 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 3055 (uint32_t)pmbox->mbxCommand, 3056 pmbox->un.varWords[0], 3057 pmbox->un.varWords[1]); 3058 } 3059 else { 3060 lpfc_debugfs_disc_trc(phba->pport, 3061 LPFC_DISC_TRC_MBOX, 3062 "MBOX cmpl: cmd:x%x mb:x%x x%x", 3063 (uint32_t)pmbox->mbxCommand, 3064 pmbox->un.varWords[0], 3065 pmbox->un.varWords[1]); 3066 } 3067 } 3068 3069 /* 3070 * It is a fatal error if unknown mbox command completion. 3071 */ 3072 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 3073 MBX_SHUTDOWN) { 3074 /* Unknown mailbox command compl */ 3075 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3076 "(%d):0323 Unknown Mailbox command " 3077 "x%x (x%x/x%x) Cmpl\n", 3078 pmb->vport ? pmb->vport->vpi : 3079 LPFC_VPORT_UNKNOWN, 3080 pmbox->mbxCommand, 3081 lpfc_sli_config_mbox_subsys_get(phba, 3082 pmb), 3083 lpfc_sli_config_mbox_opcode_get(phba, 3084 pmb)); 3085 phba->link_state = LPFC_HBA_ERROR; 3086 phba->work_hs = HS_FFER3; 3087 lpfc_handle_eratt(phba); 3088 continue; 3089 } 3090 3091 if (pmbox->mbxStatus) { 3092 phba->sli.slistat.mbox_stat_err++; 3093 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 3094 /* Mbox cmd cmpl error - RETRYing */ 3095 lpfc_printf_log(phba, KERN_INFO, 3096 LOG_MBOX | LOG_SLI, 3097 "(%d):0305 Mbox cmd cmpl " 3098 "error - RETRYing Data: x%x " 3099 "(x%x/x%x) x%x x%x x%x\n", 3100 pmb->vport ? pmb->vport->vpi : 3101 LPFC_VPORT_UNKNOWN, 3102 pmbox->mbxCommand, 3103 lpfc_sli_config_mbox_subsys_get(phba, 3104 pmb), 3105 lpfc_sli_config_mbox_opcode_get(phba, 3106 pmb), 3107 pmbox->mbxStatus, 3108 pmbox->un.varWords[0], 3109 pmb->vport ? pmb->vport->port_state : 3110 LPFC_VPORT_UNKNOWN); 3111 pmbox->mbxStatus = 0; 3112 pmbox->mbxOwner = OWN_HOST; 3113 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3114 if (rc != MBX_NOT_FINISHED) 3115 continue; 3116 } 3117 } 3118 3119 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 3120 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 3121 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 3122 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 3123 "x%x x%x x%x\n", 3124 pmb->vport ? pmb->vport->vpi : 0, 3125 pmbox->mbxCommand, 3126 lpfc_sli_config_mbox_subsys_get(phba, pmb), 3127 lpfc_sli_config_mbox_opcode_get(phba, pmb), 3128 pmb->mbox_cmpl, 3129 *((uint32_t *) pmbox), 3130 pmbox->un.varWords[0], 3131 pmbox->un.varWords[1], 3132 pmbox->un.varWords[2], 3133 pmbox->un.varWords[3], 3134 pmbox->un.varWords[4], 3135 pmbox->un.varWords[5], 3136 pmbox->un.varWords[6], 3137 pmbox->un.varWords[7], 3138 pmbox->un.varWords[8], 3139 pmbox->un.varWords[9], 3140 pmbox->un.varWords[10]); 3141 3142 if (pmb->mbox_cmpl) 3143 pmb->mbox_cmpl(phba,pmb); 3144 } while (1); 3145 return 0; 3146 } 3147 3148 /** 3149 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 3150 * @phba: Pointer to HBA context object. 3151 * @pring: Pointer to driver SLI ring object. 3152 * @tag: buffer tag. 3153 * 3154 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 3155 * is set in the tag the buffer is posted for a particular exchange, 3156 * the function will return the buffer without replacing the buffer. 3157 * If the buffer is for unsolicited ELS or CT traffic, this function 3158 * returns the buffer and also posts another buffer to the firmware. 3159 **/ 3160 static struct lpfc_dmabuf * 3161 lpfc_sli_get_buff(struct lpfc_hba *phba, 3162 struct lpfc_sli_ring *pring, 3163 uint32_t tag) 3164 { 3165 struct hbq_dmabuf *hbq_entry; 3166 3167 if (tag & QUE_BUFTAG_BIT) 3168 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 3169 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 3170 if (!hbq_entry) 3171 return NULL; 3172 return &hbq_entry->dbuf; 3173 } 3174 3175 /** 3176 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 3177 * containing a NVME LS request. 3178 * @phba: pointer to lpfc hba data structure. 3179 * @piocb: pointer to the iocbq struct representing the sequence starting 3180 * frame. 3181 * 3182 * This routine initially validates the NVME LS, validates there is a login 3183 * with the port that sent the LS, and then calls the appropriate nvme host 3184 * or target LS request handler. 3185 **/ 3186 static void 3187 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 3188 { 3189 struct lpfc_nodelist *ndlp; 3190 struct lpfc_dmabuf *d_buf; 3191 struct hbq_dmabuf *nvmebuf; 3192 struct fc_frame_header *fc_hdr; 3193 struct lpfc_async_xchg_ctx *axchg = NULL; 3194 char *failwhy = NULL; 3195 uint32_t oxid, sid, did, fctl, size; 3196 int ret = 1; 3197 3198 d_buf = piocb->context2; 3199 3200 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 3201 fc_hdr = nvmebuf->hbuf.virt; 3202 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 3203 sid = sli4_sid_from_fc_hdr(fc_hdr); 3204 did = sli4_did_from_fc_hdr(fc_hdr); 3205 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 3206 fc_hdr->fh_f_ctl[1] << 8 | 3207 fc_hdr->fh_f_ctl[2]); 3208 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 3209 3210 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 3211 oxid, size, sid); 3212 3213 if (phba->pport->load_flag & FC_UNLOADING) { 3214 failwhy = "Driver Unloading"; 3215 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 3216 failwhy = "NVME FC4 Disabled"; 3217 } else if (!phba->nvmet_support && !phba->pport->localport) { 3218 failwhy = "No Localport"; 3219 } else if (phba->nvmet_support && !phba->targetport) { 3220 failwhy = "No Targetport"; 3221 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 3222 failwhy = "Bad NVME LS R_CTL"; 3223 } else if (unlikely((fctl & 0x00FF0000) != 3224 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 3225 failwhy = "Bad NVME LS F_CTL"; 3226 } else { 3227 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 3228 if (!axchg) 3229 failwhy = "No CTX memory"; 3230 } 3231 3232 if (unlikely(failwhy)) { 3233 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3234 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 3235 sid, oxid, failwhy); 3236 goto out_fail; 3237 } 3238 3239 /* validate the source of the LS is logged in */ 3240 ndlp = lpfc_findnode_did(phba->pport, sid); 3241 if (!ndlp || 3242 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3243 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3244 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 3245 "6216 NVME Unsol rcv: No ndlp: " 3246 "NPort_ID x%x oxid x%x\n", 3247 sid, oxid); 3248 goto out_fail; 3249 } 3250 3251 axchg->phba = phba; 3252 axchg->ndlp = ndlp; 3253 axchg->size = size; 3254 axchg->oxid = oxid; 3255 axchg->sid = sid; 3256 axchg->wqeq = NULL; 3257 axchg->state = LPFC_NVME_STE_LS_RCV; 3258 axchg->entry_cnt = 1; 3259 axchg->rqb_buffer = (void *)nvmebuf; 3260 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3261 axchg->payload = nvmebuf->dbuf.virt; 3262 INIT_LIST_HEAD(&axchg->list); 3263 3264 if (phba->nvmet_support) { 3265 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3266 spin_lock_irq(&ndlp->lock); 3267 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3268 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3269 spin_unlock_irq(&ndlp->lock); 3270 3271 /* This reference is a single occurrence to hold the 3272 * node valid until the nvmet transport calls 3273 * host_release. 3274 */ 3275 if (!lpfc_nlp_get(ndlp)) 3276 goto out_fail; 3277 3278 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3279 "6206 NVMET unsol ls_req ndlp x%px " 3280 "DID x%x xflags x%x refcnt %d\n", 3281 ndlp, ndlp->nlp_DID, 3282 ndlp->fc4_xpt_flags, 3283 kref_read(&ndlp->kref)); 3284 } else { 3285 spin_unlock_irq(&ndlp->lock); 3286 } 3287 } else { 3288 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3289 } 3290 3291 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3292 if (!ret) 3293 return; 3294 3295 out_fail: 3296 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3297 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3298 "NVMe%s handler failed %d\n", 3299 did, sid, oxid, 3300 (phba->nvmet_support) ? "T" : "I", ret); 3301 3302 /* recycle receive buffer */ 3303 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3304 3305 /* If start of new exchange, abort it */ 3306 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3307 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3308 3309 if (ret) 3310 kfree(axchg); 3311 } 3312 3313 /** 3314 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3315 * @phba: Pointer to HBA context object. 3316 * @pring: Pointer to driver SLI ring object. 3317 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3318 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3319 * @fch_type: the type for the first frame of the sequence. 3320 * 3321 * This function is called with no lock held. This function uses the r_ctl and 3322 * type of the received sequence to find the correct callback function to call 3323 * to process the sequence. 3324 **/ 3325 static int 3326 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3327 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3328 uint32_t fch_type) 3329 { 3330 int i; 3331 3332 switch (fch_type) { 3333 case FC_TYPE_NVME: 3334 lpfc_nvme_unsol_ls_handler(phba, saveq); 3335 return 1; 3336 default: 3337 break; 3338 } 3339 3340 /* unSolicited Responses */ 3341 if (pring->prt[0].profile) { 3342 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3343 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3344 saveq); 3345 return 1; 3346 } 3347 /* We must search, based on rctl / type 3348 for the right routine */ 3349 for (i = 0; i < pring->num_mask; i++) { 3350 if ((pring->prt[i].rctl == fch_r_ctl) && 3351 (pring->prt[i].type == fch_type)) { 3352 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3353 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3354 (phba, pring, saveq); 3355 return 1; 3356 } 3357 } 3358 return 0; 3359 } 3360 3361 /** 3362 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3363 * @phba: Pointer to HBA context object. 3364 * @pring: Pointer to driver SLI ring object. 3365 * @saveq: Pointer to the unsolicited iocb. 3366 * 3367 * This function is called with no lock held by the ring event handler 3368 * when there is an unsolicited iocb posted to the response ring by the 3369 * firmware. This function gets the buffer associated with the iocbs 3370 * and calls the event handler for the ring. This function handles both 3371 * qring buffers and hbq buffers. 3372 * When the function returns 1 the caller can free the iocb object otherwise 3373 * upper layer functions will free the iocb objects. 3374 **/ 3375 static int 3376 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3377 struct lpfc_iocbq *saveq) 3378 { 3379 IOCB_t * irsp; 3380 WORD5 * w5p; 3381 uint32_t Rctl, Type; 3382 struct lpfc_iocbq *iocbq; 3383 struct lpfc_dmabuf *dmzbuf; 3384 3385 irsp = &(saveq->iocb); 3386 3387 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3388 if (pring->lpfc_sli_rcv_async_status) 3389 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3390 else 3391 lpfc_printf_log(phba, 3392 KERN_WARNING, 3393 LOG_SLI, 3394 "0316 Ring %d handler: unexpected " 3395 "ASYNC_STATUS iocb received evt_code " 3396 "0x%x\n", 3397 pring->ringno, 3398 irsp->un.asyncstat.evt_code); 3399 return 1; 3400 } 3401 3402 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3403 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3404 if (irsp->ulpBdeCount > 0) { 3405 dmzbuf = lpfc_sli_get_buff(phba, pring, 3406 irsp->un.ulpWord[3]); 3407 lpfc_in_buf_free(phba, dmzbuf); 3408 } 3409 3410 if (irsp->ulpBdeCount > 1) { 3411 dmzbuf = lpfc_sli_get_buff(phba, pring, 3412 irsp->unsli3.sli3Words[3]); 3413 lpfc_in_buf_free(phba, dmzbuf); 3414 } 3415 3416 if (irsp->ulpBdeCount > 2) { 3417 dmzbuf = lpfc_sli_get_buff(phba, pring, 3418 irsp->unsli3.sli3Words[7]); 3419 lpfc_in_buf_free(phba, dmzbuf); 3420 } 3421 3422 return 1; 3423 } 3424 3425 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3426 if (irsp->ulpBdeCount != 0) { 3427 saveq->context2 = lpfc_sli_get_buff(phba, pring, 3428 irsp->un.ulpWord[3]); 3429 if (!saveq->context2) 3430 lpfc_printf_log(phba, 3431 KERN_ERR, 3432 LOG_SLI, 3433 "0341 Ring %d Cannot find buffer for " 3434 "an unsolicited iocb. tag 0x%x\n", 3435 pring->ringno, 3436 irsp->un.ulpWord[3]); 3437 } 3438 if (irsp->ulpBdeCount == 2) { 3439 saveq->context3 = lpfc_sli_get_buff(phba, pring, 3440 irsp->unsli3.sli3Words[7]); 3441 if (!saveq->context3) 3442 lpfc_printf_log(phba, 3443 KERN_ERR, 3444 LOG_SLI, 3445 "0342 Ring %d Cannot find buffer for an" 3446 " unsolicited iocb. tag 0x%x\n", 3447 pring->ringno, 3448 irsp->unsli3.sli3Words[7]); 3449 } 3450 list_for_each_entry(iocbq, &saveq->list, list) { 3451 irsp = &(iocbq->iocb); 3452 if (irsp->ulpBdeCount != 0) { 3453 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 3454 irsp->un.ulpWord[3]); 3455 if (!iocbq->context2) 3456 lpfc_printf_log(phba, 3457 KERN_ERR, 3458 LOG_SLI, 3459 "0343 Ring %d Cannot find " 3460 "buffer for an unsolicited iocb" 3461 ". tag 0x%x\n", pring->ringno, 3462 irsp->un.ulpWord[3]); 3463 } 3464 if (irsp->ulpBdeCount == 2) { 3465 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 3466 irsp->unsli3.sli3Words[7]); 3467 if (!iocbq->context3) 3468 lpfc_printf_log(phba, 3469 KERN_ERR, 3470 LOG_SLI, 3471 "0344 Ring %d Cannot find " 3472 "buffer for an unsolicited " 3473 "iocb. tag 0x%x\n", 3474 pring->ringno, 3475 irsp->unsli3.sli3Words[7]); 3476 } 3477 } 3478 } 3479 if (irsp->ulpBdeCount != 0 && 3480 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3481 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3482 int found = 0; 3483 3484 /* search continue save q for same XRI */ 3485 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3486 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3487 saveq->iocb.unsli3.rcvsli3.ox_id) { 3488 list_add_tail(&saveq->list, &iocbq->list); 3489 found = 1; 3490 break; 3491 } 3492 } 3493 if (!found) 3494 list_add_tail(&saveq->clist, 3495 &pring->iocb_continue_saveq); 3496 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3497 list_del_init(&iocbq->clist); 3498 saveq = iocbq; 3499 irsp = &(saveq->iocb); 3500 } else 3501 return 0; 3502 } 3503 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3504 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3505 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3506 Rctl = FC_RCTL_ELS_REQ; 3507 Type = FC_TYPE_ELS; 3508 } else { 3509 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3510 Rctl = w5p->hcsw.Rctl; 3511 Type = w5p->hcsw.Type; 3512 3513 /* Firmware Workaround */ 3514 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3515 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3516 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3517 Rctl = FC_RCTL_ELS_REQ; 3518 Type = FC_TYPE_ELS; 3519 w5p->hcsw.Rctl = Rctl; 3520 w5p->hcsw.Type = Type; 3521 } 3522 } 3523 3524 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3525 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3526 "0313 Ring %d handler: unexpected Rctl x%x " 3527 "Type x%x received\n", 3528 pring->ringno, Rctl, Type); 3529 3530 return 1; 3531 } 3532 3533 /** 3534 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3535 * @phba: Pointer to HBA context object. 3536 * @pring: Pointer to driver SLI ring object. 3537 * @prspiocb: Pointer to response iocb object. 3538 * 3539 * This function looks up the iocb_lookup table to get the command iocb 3540 * corresponding to the given response iocb using the iotag of the 3541 * response iocb. The driver calls this function with the hbalock held 3542 * for SLI3 ports or the ring lock held for SLI4 ports. 3543 * This function returns the command iocb object if it finds the command 3544 * iocb else returns NULL. 3545 **/ 3546 static struct lpfc_iocbq * 3547 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3548 struct lpfc_sli_ring *pring, 3549 struct lpfc_iocbq *prspiocb) 3550 { 3551 struct lpfc_iocbq *cmd_iocb = NULL; 3552 uint16_t iotag; 3553 spinlock_t *temp_lock = NULL; 3554 unsigned long iflag = 0; 3555 3556 if (phba->sli_rev == LPFC_SLI_REV4) 3557 temp_lock = &pring->ring_lock; 3558 else 3559 temp_lock = &phba->hbalock; 3560 3561 spin_lock_irqsave(temp_lock, iflag); 3562 iotag = prspiocb->iocb.ulpIoTag; 3563 3564 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3565 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3566 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3567 /* remove from txcmpl queue list */ 3568 list_del_init(&cmd_iocb->list); 3569 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3570 pring->txcmplq_cnt--; 3571 spin_unlock_irqrestore(temp_lock, iflag); 3572 return cmd_iocb; 3573 } 3574 } 3575 3576 spin_unlock_irqrestore(temp_lock, iflag); 3577 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3578 "0317 iotag x%x is out of " 3579 "range: max iotag x%x wd0 x%x\n", 3580 iotag, phba->sli.last_iotag, 3581 *(((uint32_t *) &prspiocb->iocb) + 7)); 3582 return NULL; 3583 } 3584 3585 /** 3586 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3587 * @phba: Pointer to HBA context object. 3588 * @pring: Pointer to driver SLI ring object. 3589 * @iotag: IOCB tag. 3590 * 3591 * This function looks up the iocb_lookup table to get the command iocb 3592 * corresponding to the given iotag. The driver calls this function with 3593 * the ring lock held because this function is an SLI4 port only helper. 3594 * This function returns the command iocb object if it finds the command 3595 * iocb else returns NULL. 3596 **/ 3597 static struct lpfc_iocbq * 3598 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3599 struct lpfc_sli_ring *pring, uint16_t iotag) 3600 { 3601 struct lpfc_iocbq *cmd_iocb = NULL; 3602 spinlock_t *temp_lock = NULL; 3603 unsigned long iflag = 0; 3604 3605 if (phba->sli_rev == LPFC_SLI_REV4) 3606 temp_lock = &pring->ring_lock; 3607 else 3608 temp_lock = &phba->hbalock; 3609 3610 spin_lock_irqsave(temp_lock, iflag); 3611 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3612 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3613 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3614 /* remove from txcmpl queue list */ 3615 list_del_init(&cmd_iocb->list); 3616 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3617 pring->txcmplq_cnt--; 3618 spin_unlock_irqrestore(temp_lock, iflag); 3619 return cmd_iocb; 3620 } 3621 } 3622 3623 spin_unlock_irqrestore(temp_lock, iflag); 3624 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3625 "0372 iotag x%x lookup error: max iotag (x%x) " 3626 "iocb_flag x%x\n", 3627 iotag, phba->sli.last_iotag, 3628 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); 3629 return NULL; 3630 } 3631 3632 /** 3633 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3634 * @phba: Pointer to HBA context object. 3635 * @pring: Pointer to driver SLI ring object. 3636 * @saveq: Pointer to the response iocb to be processed. 3637 * 3638 * This function is called by the ring event handler for non-fcp 3639 * rings when there is a new response iocb in the response ring. 3640 * The caller is not required to hold any locks. This function 3641 * gets the command iocb associated with the response iocb and 3642 * calls the completion handler for the command iocb. If there 3643 * is no completion handler, the function will free the resources 3644 * associated with command iocb. If the response iocb is for 3645 * an already aborted command iocb, the status of the completion 3646 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3647 * This function always returns 1. 3648 **/ 3649 static int 3650 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3651 struct lpfc_iocbq *saveq) 3652 { 3653 struct lpfc_iocbq *cmdiocbp; 3654 int rc = 1; 3655 unsigned long iflag; 3656 3657 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3658 if (cmdiocbp) { 3659 if (cmdiocbp->iocb_cmpl) { 3660 /* 3661 * If an ELS command failed send an event to mgmt 3662 * application. 3663 */ 3664 if (saveq->iocb.ulpStatus && 3665 (pring->ringno == LPFC_ELS_RING) && 3666 (cmdiocbp->iocb.ulpCommand == 3667 CMD_ELS_REQUEST64_CR)) 3668 lpfc_send_els_failure_event(phba, 3669 cmdiocbp, saveq); 3670 3671 /* 3672 * Post all ELS completions to the worker thread. 3673 * All other are passed to the completion callback. 3674 */ 3675 if (pring->ringno == LPFC_ELS_RING) { 3676 if ((phba->sli_rev < LPFC_SLI_REV4) && 3677 (cmdiocbp->iocb_flag & 3678 LPFC_DRIVER_ABORTED)) { 3679 spin_lock_irqsave(&phba->hbalock, 3680 iflag); 3681 cmdiocbp->iocb_flag &= 3682 ~LPFC_DRIVER_ABORTED; 3683 spin_unlock_irqrestore(&phba->hbalock, 3684 iflag); 3685 saveq->iocb.ulpStatus = 3686 IOSTAT_LOCAL_REJECT; 3687 saveq->iocb.un.ulpWord[4] = 3688 IOERR_SLI_ABORTED; 3689 3690 /* Firmware could still be in progress 3691 * of DMAing payload, so don't free data 3692 * buffer till after a hbeat. 3693 */ 3694 spin_lock_irqsave(&phba->hbalock, 3695 iflag); 3696 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 3697 spin_unlock_irqrestore(&phba->hbalock, 3698 iflag); 3699 } 3700 if (phba->sli_rev == LPFC_SLI_REV4) { 3701 if (saveq->iocb_flag & 3702 LPFC_EXCHANGE_BUSY) { 3703 /* Set cmdiocb flag for the 3704 * exchange busy so sgl (xri) 3705 * will not be released until 3706 * the abort xri is received 3707 * from hba. 3708 */ 3709 spin_lock_irqsave( 3710 &phba->hbalock, iflag); 3711 cmdiocbp->iocb_flag |= 3712 LPFC_EXCHANGE_BUSY; 3713 spin_unlock_irqrestore( 3714 &phba->hbalock, iflag); 3715 } 3716 if (cmdiocbp->iocb_flag & 3717 LPFC_DRIVER_ABORTED) { 3718 /* 3719 * Clear LPFC_DRIVER_ABORTED 3720 * bit in case it was driver 3721 * initiated abort. 3722 */ 3723 spin_lock_irqsave( 3724 &phba->hbalock, iflag); 3725 cmdiocbp->iocb_flag &= 3726 ~LPFC_DRIVER_ABORTED; 3727 spin_unlock_irqrestore( 3728 &phba->hbalock, iflag); 3729 cmdiocbp->iocb.ulpStatus = 3730 IOSTAT_LOCAL_REJECT; 3731 cmdiocbp->iocb.un.ulpWord[4] = 3732 IOERR_ABORT_REQUESTED; 3733 /* 3734 * For SLI4, irsiocb contains 3735 * NO_XRI in sli_xritag, it 3736 * shall not affect releasing 3737 * sgl (xri) process. 3738 */ 3739 saveq->iocb.ulpStatus = 3740 IOSTAT_LOCAL_REJECT; 3741 saveq->iocb.un.ulpWord[4] = 3742 IOERR_SLI_ABORTED; 3743 spin_lock_irqsave( 3744 &phba->hbalock, iflag); 3745 saveq->iocb_flag |= 3746 LPFC_DELAY_MEM_FREE; 3747 spin_unlock_irqrestore( 3748 &phba->hbalock, iflag); 3749 } 3750 } 3751 } 3752 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 3753 } else 3754 lpfc_sli_release_iocbq(phba, cmdiocbp); 3755 } else { 3756 /* 3757 * Unknown initiating command based on the response iotag. 3758 * This could be the case on the ELS ring because of 3759 * lpfc_els_abort(). 3760 */ 3761 if (pring->ringno != LPFC_ELS_RING) { 3762 /* 3763 * Ring <ringno> handler: unexpected completion IoTag 3764 * <IoTag> 3765 */ 3766 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3767 "0322 Ring %d handler: " 3768 "unexpected completion IoTag x%x " 3769 "Data: x%x x%x x%x x%x\n", 3770 pring->ringno, 3771 saveq->iocb.ulpIoTag, 3772 saveq->iocb.ulpStatus, 3773 saveq->iocb.un.ulpWord[4], 3774 saveq->iocb.ulpCommand, 3775 saveq->iocb.ulpContext); 3776 } 3777 } 3778 3779 return rc; 3780 } 3781 3782 /** 3783 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3784 * @phba: Pointer to HBA context object. 3785 * @pring: Pointer to driver SLI ring object. 3786 * 3787 * This function is called from the iocb ring event handlers when 3788 * put pointer is ahead of the get pointer for a ring. This function signal 3789 * an error attention condition to the worker thread and the worker 3790 * thread will transition the HBA to offline state. 3791 **/ 3792 static void 3793 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3794 { 3795 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3796 /* 3797 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3798 * rsp ring <portRspMax> 3799 */ 3800 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3801 "0312 Ring %d handler: portRspPut %d " 3802 "is bigger than rsp ring %d\n", 3803 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3804 pring->sli.sli3.numRiocb); 3805 3806 phba->link_state = LPFC_HBA_ERROR; 3807 3808 /* 3809 * All error attention handlers are posted to 3810 * worker thread 3811 */ 3812 phba->work_ha |= HA_ERATT; 3813 phba->work_hs = HS_FFER3; 3814 3815 lpfc_worker_wake_up(phba); 3816 3817 return; 3818 } 3819 3820 /** 3821 * lpfc_poll_eratt - Error attention polling timer timeout handler 3822 * @t: Context to fetch pointer to address of HBA context object from. 3823 * 3824 * This function is invoked by the Error Attention polling timer when the 3825 * timer times out. It will check the SLI Error Attention register for 3826 * possible attention events. If so, it will post an Error Attention event 3827 * and wake up worker thread to process it. Otherwise, it will set up the 3828 * Error Attention polling timer for the next poll. 3829 **/ 3830 void lpfc_poll_eratt(struct timer_list *t) 3831 { 3832 struct lpfc_hba *phba; 3833 uint32_t eratt = 0; 3834 uint64_t sli_intr, cnt; 3835 3836 phba = from_timer(phba, t, eratt_poll); 3837 3838 /* Here we will also keep track of interrupts per sec of the hba */ 3839 sli_intr = phba->sli.slistat.sli_intr; 3840 3841 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3842 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3843 sli_intr); 3844 else 3845 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3846 3847 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3848 do_div(cnt, phba->eratt_poll_interval); 3849 phba->sli.slistat.sli_ips = cnt; 3850 3851 phba->sli.slistat.sli_prev_intr = sli_intr; 3852 3853 /* Check chip HA register for error event */ 3854 eratt = lpfc_sli_check_eratt(phba); 3855 3856 if (eratt) 3857 /* Tell the worker thread there is work to do */ 3858 lpfc_worker_wake_up(phba); 3859 else 3860 /* Restart the timer for next eratt poll */ 3861 mod_timer(&phba->eratt_poll, 3862 jiffies + 3863 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3864 return; 3865 } 3866 3867 3868 /** 3869 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3870 * @phba: Pointer to HBA context object. 3871 * @pring: Pointer to driver SLI ring object. 3872 * @mask: Host attention register mask for this ring. 3873 * 3874 * This function is called from the interrupt context when there is a ring 3875 * event for the fcp ring. The caller does not hold any lock. 3876 * The function processes each response iocb in the response ring until it 3877 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3878 * LE bit set. The function will call the completion handler of the command iocb 3879 * if the response iocb indicates a completion for a command iocb or it is 3880 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3881 * function if this is an unsolicited iocb. 3882 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3883 * to check it explicitly. 3884 */ 3885 int 3886 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3887 struct lpfc_sli_ring *pring, uint32_t mask) 3888 { 3889 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3890 IOCB_t *irsp = NULL; 3891 IOCB_t *entry = NULL; 3892 struct lpfc_iocbq *cmdiocbq = NULL; 3893 struct lpfc_iocbq rspiocbq; 3894 uint32_t status; 3895 uint32_t portRspPut, portRspMax; 3896 int rc = 1; 3897 lpfc_iocb_type type; 3898 unsigned long iflag; 3899 uint32_t rsp_cmpl = 0; 3900 3901 spin_lock_irqsave(&phba->hbalock, iflag); 3902 pring->stats.iocb_event++; 3903 3904 /* 3905 * The next available response entry should never exceed the maximum 3906 * entries. If it does, treat it as an adapter hardware error. 3907 */ 3908 portRspMax = pring->sli.sli3.numRiocb; 3909 portRspPut = le32_to_cpu(pgp->rspPutInx); 3910 if (unlikely(portRspPut >= portRspMax)) { 3911 lpfc_sli_rsp_pointers_error(phba, pring); 3912 spin_unlock_irqrestore(&phba->hbalock, iflag); 3913 return 1; 3914 } 3915 if (phba->fcp_ring_in_use) { 3916 spin_unlock_irqrestore(&phba->hbalock, iflag); 3917 return 1; 3918 } else 3919 phba->fcp_ring_in_use = 1; 3920 3921 rmb(); 3922 while (pring->sli.sli3.rspidx != portRspPut) { 3923 /* 3924 * Fetch an entry off the ring and copy it into a local data 3925 * structure. The copy involves a byte-swap since the 3926 * network byte order and pci byte orders are different. 3927 */ 3928 entry = lpfc_resp_iocb(phba, pring); 3929 phba->last_completion_time = jiffies; 3930 3931 if (++pring->sli.sli3.rspidx >= portRspMax) 3932 pring->sli.sli3.rspidx = 0; 3933 3934 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3935 (uint32_t *) &rspiocbq.iocb, 3936 phba->iocb_rsp_size); 3937 INIT_LIST_HEAD(&(rspiocbq.list)); 3938 irsp = &rspiocbq.iocb; 3939 3940 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3941 pring->stats.iocb_rsp++; 3942 rsp_cmpl++; 3943 3944 if (unlikely(irsp->ulpStatus)) { 3945 /* 3946 * If resource errors reported from HBA, reduce 3947 * queuedepths of the SCSI device. 3948 */ 3949 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3950 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3951 IOERR_NO_RESOURCES)) { 3952 spin_unlock_irqrestore(&phba->hbalock, iflag); 3953 phba->lpfc_rampdown_queue_depth(phba); 3954 spin_lock_irqsave(&phba->hbalock, iflag); 3955 } 3956 3957 /* Rsp ring <ringno> error: IOCB */ 3958 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3959 "0336 Rsp Ring %d error: IOCB Data: " 3960 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3961 pring->ringno, 3962 irsp->un.ulpWord[0], 3963 irsp->un.ulpWord[1], 3964 irsp->un.ulpWord[2], 3965 irsp->un.ulpWord[3], 3966 irsp->un.ulpWord[4], 3967 irsp->un.ulpWord[5], 3968 *(uint32_t *)&irsp->un1, 3969 *((uint32_t *)&irsp->un1 + 1)); 3970 } 3971 3972 switch (type) { 3973 case LPFC_ABORT_IOCB: 3974 case LPFC_SOL_IOCB: 3975 /* 3976 * Idle exchange closed via ABTS from port. No iocb 3977 * resources need to be recovered. 3978 */ 3979 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3980 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3981 "0333 IOCB cmd 0x%x" 3982 " processed. Skipping" 3983 " completion\n", 3984 irsp->ulpCommand); 3985 break; 3986 } 3987 3988 spin_unlock_irqrestore(&phba->hbalock, iflag); 3989 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3990 &rspiocbq); 3991 spin_lock_irqsave(&phba->hbalock, iflag); 3992 if (unlikely(!cmdiocbq)) 3993 break; 3994 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3995 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3996 if (cmdiocbq->iocb_cmpl) { 3997 spin_unlock_irqrestore(&phba->hbalock, iflag); 3998 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3999 &rspiocbq); 4000 spin_lock_irqsave(&phba->hbalock, iflag); 4001 } 4002 break; 4003 case LPFC_UNSOL_IOCB: 4004 spin_unlock_irqrestore(&phba->hbalock, iflag); 4005 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 4006 spin_lock_irqsave(&phba->hbalock, iflag); 4007 break; 4008 default: 4009 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4010 char adaptermsg[LPFC_MAX_ADPTMSG]; 4011 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4012 memcpy(&adaptermsg[0], (uint8_t *) irsp, 4013 MAX_MSG_DATA); 4014 dev_warn(&((phba->pcidev)->dev), 4015 "lpfc%d: %s\n", 4016 phba->brd_no, adaptermsg); 4017 } else { 4018 /* Unknown IOCB command */ 4019 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4020 "0334 Unknown IOCB command " 4021 "Data: x%x, x%x x%x x%x x%x\n", 4022 type, irsp->ulpCommand, 4023 irsp->ulpStatus, 4024 irsp->ulpIoTag, 4025 irsp->ulpContext); 4026 } 4027 break; 4028 } 4029 4030 /* 4031 * The response IOCB has been processed. Update the ring 4032 * pointer in SLIM. If the port response put pointer has not 4033 * been updated, sync the pgp->rspPutInx and fetch the new port 4034 * response put pointer. 4035 */ 4036 writel(pring->sli.sli3.rspidx, 4037 &phba->host_gp[pring->ringno].rspGetInx); 4038 4039 if (pring->sli.sli3.rspidx == portRspPut) 4040 portRspPut = le32_to_cpu(pgp->rspPutInx); 4041 } 4042 4043 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 4044 pring->stats.iocb_rsp_full++; 4045 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4046 writel(status, phba->CAregaddr); 4047 readl(phba->CAregaddr); 4048 } 4049 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4050 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4051 pring->stats.iocb_cmd_empty++; 4052 4053 /* Force update of the local copy of cmdGetInx */ 4054 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4055 lpfc_sli_resume_iocb(phba, pring); 4056 4057 if ((pring->lpfc_sli_cmd_available)) 4058 (pring->lpfc_sli_cmd_available) (phba, pring); 4059 4060 } 4061 4062 phba->fcp_ring_in_use = 0; 4063 spin_unlock_irqrestore(&phba->hbalock, iflag); 4064 return rc; 4065 } 4066 4067 /** 4068 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 4069 * @phba: Pointer to HBA context object. 4070 * @pring: Pointer to driver SLI ring object. 4071 * @rspiocbp: Pointer to driver response IOCB object. 4072 * 4073 * This function is called from the worker thread when there is a slow-path 4074 * response IOCB to process. This function chains all the response iocbs until 4075 * seeing the iocb with the LE bit set. The function will call 4076 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 4077 * completion of a command iocb. The function will call the 4078 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 4079 * The function frees the resources or calls the completion handler if this 4080 * iocb is an abort completion. The function returns NULL when the response 4081 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 4082 * this function shall chain the iocb on to the iocb_continueq and return the 4083 * response iocb passed in. 4084 **/ 4085 static struct lpfc_iocbq * 4086 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 4087 struct lpfc_iocbq *rspiocbp) 4088 { 4089 struct lpfc_iocbq *saveq; 4090 struct lpfc_iocbq *cmdiocbp; 4091 struct lpfc_iocbq *next_iocb; 4092 IOCB_t *irsp = NULL; 4093 uint32_t free_saveq; 4094 uint8_t iocb_cmd_type; 4095 lpfc_iocb_type type; 4096 unsigned long iflag; 4097 int rc; 4098 4099 spin_lock_irqsave(&phba->hbalock, iflag); 4100 /* First add the response iocb to the countinueq list */ 4101 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 4102 pring->iocb_continueq_cnt++; 4103 4104 /* Now, determine whether the list is completed for processing */ 4105 irsp = &rspiocbp->iocb; 4106 if (irsp->ulpLe) { 4107 /* 4108 * By default, the driver expects to free all resources 4109 * associated with this iocb completion. 4110 */ 4111 free_saveq = 1; 4112 saveq = list_get_first(&pring->iocb_continueq, 4113 struct lpfc_iocbq, list); 4114 irsp = &(saveq->iocb); 4115 list_del_init(&pring->iocb_continueq); 4116 pring->iocb_continueq_cnt = 0; 4117 4118 pring->stats.iocb_rsp++; 4119 4120 /* 4121 * If resource errors reported from HBA, reduce 4122 * queuedepths of the SCSI device. 4123 */ 4124 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 4125 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 4126 IOERR_NO_RESOURCES)) { 4127 spin_unlock_irqrestore(&phba->hbalock, iflag); 4128 phba->lpfc_rampdown_queue_depth(phba); 4129 spin_lock_irqsave(&phba->hbalock, iflag); 4130 } 4131 4132 if (irsp->ulpStatus) { 4133 /* Rsp ring <ringno> error: IOCB */ 4134 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4135 "0328 Rsp Ring %d error: " 4136 "IOCB Data: " 4137 "x%x x%x x%x x%x " 4138 "x%x x%x x%x x%x " 4139 "x%x x%x x%x x%x " 4140 "x%x x%x x%x x%x\n", 4141 pring->ringno, 4142 irsp->un.ulpWord[0], 4143 irsp->un.ulpWord[1], 4144 irsp->un.ulpWord[2], 4145 irsp->un.ulpWord[3], 4146 irsp->un.ulpWord[4], 4147 irsp->un.ulpWord[5], 4148 *(((uint32_t *) irsp) + 6), 4149 *(((uint32_t *) irsp) + 7), 4150 *(((uint32_t *) irsp) + 8), 4151 *(((uint32_t *) irsp) + 9), 4152 *(((uint32_t *) irsp) + 10), 4153 *(((uint32_t *) irsp) + 11), 4154 *(((uint32_t *) irsp) + 12), 4155 *(((uint32_t *) irsp) + 13), 4156 *(((uint32_t *) irsp) + 14), 4157 *(((uint32_t *) irsp) + 15)); 4158 } 4159 4160 /* 4161 * Fetch the IOCB command type and call the correct completion 4162 * routine. Solicited and Unsolicited IOCBs on the ELS ring 4163 * get freed back to the lpfc_iocb_list by the discovery 4164 * kernel thread. 4165 */ 4166 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 4167 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 4168 switch (type) { 4169 case LPFC_SOL_IOCB: 4170 spin_unlock_irqrestore(&phba->hbalock, iflag); 4171 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 4172 spin_lock_irqsave(&phba->hbalock, iflag); 4173 break; 4174 4175 case LPFC_UNSOL_IOCB: 4176 spin_unlock_irqrestore(&phba->hbalock, iflag); 4177 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 4178 spin_lock_irqsave(&phba->hbalock, iflag); 4179 if (!rc) 4180 free_saveq = 0; 4181 break; 4182 4183 case LPFC_ABORT_IOCB: 4184 cmdiocbp = NULL; 4185 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) { 4186 spin_unlock_irqrestore(&phba->hbalock, iflag); 4187 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 4188 saveq); 4189 spin_lock_irqsave(&phba->hbalock, iflag); 4190 } 4191 if (cmdiocbp) { 4192 /* Call the specified completion routine */ 4193 if (cmdiocbp->iocb_cmpl) { 4194 spin_unlock_irqrestore(&phba->hbalock, 4195 iflag); 4196 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 4197 saveq); 4198 spin_lock_irqsave(&phba->hbalock, 4199 iflag); 4200 } else 4201 __lpfc_sli_release_iocbq(phba, 4202 cmdiocbp); 4203 } 4204 break; 4205 4206 case LPFC_UNKNOWN_IOCB: 4207 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4208 char adaptermsg[LPFC_MAX_ADPTMSG]; 4209 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4210 memcpy(&adaptermsg[0], (uint8_t *)irsp, 4211 MAX_MSG_DATA); 4212 dev_warn(&((phba->pcidev)->dev), 4213 "lpfc%d: %s\n", 4214 phba->brd_no, adaptermsg); 4215 } else { 4216 /* Unknown IOCB command */ 4217 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4218 "0335 Unknown IOCB " 4219 "command Data: x%x " 4220 "x%x x%x x%x\n", 4221 irsp->ulpCommand, 4222 irsp->ulpStatus, 4223 irsp->ulpIoTag, 4224 irsp->ulpContext); 4225 } 4226 break; 4227 } 4228 4229 if (free_saveq) { 4230 list_for_each_entry_safe(rspiocbp, next_iocb, 4231 &saveq->list, list) { 4232 list_del_init(&rspiocbp->list); 4233 __lpfc_sli_release_iocbq(phba, rspiocbp); 4234 } 4235 __lpfc_sli_release_iocbq(phba, saveq); 4236 } 4237 rspiocbp = NULL; 4238 } 4239 spin_unlock_irqrestore(&phba->hbalock, iflag); 4240 return rspiocbp; 4241 } 4242 4243 /** 4244 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 4245 * @phba: Pointer to HBA context object. 4246 * @pring: Pointer to driver SLI ring object. 4247 * @mask: Host attention register mask for this ring. 4248 * 4249 * This routine wraps the actual slow_ring event process routine from the 4250 * API jump table function pointer from the lpfc_hba struct. 4251 **/ 4252 void 4253 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4254 struct lpfc_sli_ring *pring, uint32_t mask) 4255 { 4256 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4257 } 4258 4259 /** 4260 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4261 * @phba: Pointer to HBA context object. 4262 * @pring: Pointer to driver SLI ring object. 4263 * @mask: Host attention register mask for this ring. 4264 * 4265 * This function is called from the worker thread when there is a ring event 4266 * for non-fcp rings. The caller does not hold any lock. The function will 4267 * remove each response iocb in the response ring and calls the handle 4268 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4269 **/ 4270 static void 4271 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4272 struct lpfc_sli_ring *pring, uint32_t mask) 4273 { 4274 struct lpfc_pgp *pgp; 4275 IOCB_t *entry; 4276 IOCB_t *irsp = NULL; 4277 struct lpfc_iocbq *rspiocbp = NULL; 4278 uint32_t portRspPut, portRspMax; 4279 unsigned long iflag; 4280 uint32_t status; 4281 4282 pgp = &phba->port_gp[pring->ringno]; 4283 spin_lock_irqsave(&phba->hbalock, iflag); 4284 pring->stats.iocb_event++; 4285 4286 /* 4287 * The next available response entry should never exceed the maximum 4288 * entries. If it does, treat it as an adapter hardware error. 4289 */ 4290 portRspMax = pring->sli.sli3.numRiocb; 4291 portRspPut = le32_to_cpu(pgp->rspPutInx); 4292 if (portRspPut >= portRspMax) { 4293 /* 4294 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4295 * rsp ring <portRspMax> 4296 */ 4297 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4298 "0303 Ring %d handler: portRspPut %d " 4299 "is bigger than rsp ring %d\n", 4300 pring->ringno, portRspPut, portRspMax); 4301 4302 phba->link_state = LPFC_HBA_ERROR; 4303 spin_unlock_irqrestore(&phba->hbalock, iflag); 4304 4305 phba->work_hs = HS_FFER3; 4306 lpfc_handle_eratt(phba); 4307 4308 return; 4309 } 4310 4311 rmb(); 4312 while (pring->sli.sli3.rspidx != portRspPut) { 4313 /* 4314 * Build a completion list and call the appropriate handler. 4315 * The process is to get the next available response iocb, get 4316 * a free iocb from the list, copy the response data into the 4317 * free iocb, insert to the continuation list, and update the 4318 * next response index to slim. This process makes response 4319 * iocb's in the ring available to DMA as fast as possible but 4320 * pays a penalty for a copy operation. Since the iocb is 4321 * only 32 bytes, this penalty is considered small relative to 4322 * the PCI reads for register values and a slim write. When 4323 * the ulpLe field is set, the entire Command has been 4324 * received. 4325 */ 4326 entry = lpfc_resp_iocb(phba, pring); 4327 4328 phba->last_completion_time = jiffies; 4329 rspiocbp = __lpfc_sli_get_iocbq(phba); 4330 if (rspiocbp == NULL) { 4331 printk(KERN_ERR "%s: out of buffers! Failing " 4332 "completion.\n", __func__); 4333 break; 4334 } 4335 4336 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4337 phba->iocb_rsp_size); 4338 irsp = &rspiocbp->iocb; 4339 4340 if (++pring->sli.sli3.rspidx >= portRspMax) 4341 pring->sli.sli3.rspidx = 0; 4342 4343 if (pring->ringno == LPFC_ELS_RING) { 4344 lpfc_debugfs_slow_ring_trc(phba, 4345 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4346 *(((uint32_t *) irsp) + 4), 4347 *(((uint32_t *) irsp) + 6), 4348 *(((uint32_t *) irsp) + 7)); 4349 } 4350 4351 writel(pring->sli.sli3.rspidx, 4352 &phba->host_gp[pring->ringno].rspGetInx); 4353 4354 spin_unlock_irqrestore(&phba->hbalock, iflag); 4355 /* Handle the response IOCB */ 4356 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4357 spin_lock_irqsave(&phba->hbalock, iflag); 4358 4359 /* 4360 * If the port response put pointer has not been updated, sync 4361 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4362 * response put pointer. 4363 */ 4364 if (pring->sli.sli3.rspidx == portRspPut) { 4365 portRspPut = le32_to_cpu(pgp->rspPutInx); 4366 } 4367 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4368 4369 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4370 /* At least one response entry has been freed */ 4371 pring->stats.iocb_rsp_full++; 4372 /* SET RxRE_RSP in Chip Att register */ 4373 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4374 writel(status, phba->CAregaddr); 4375 readl(phba->CAregaddr); /* flush */ 4376 } 4377 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4378 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4379 pring->stats.iocb_cmd_empty++; 4380 4381 /* Force update of the local copy of cmdGetInx */ 4382 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4383 lpfc_sli_resume_iocb(phba, pring); 4384 4385 if ((pring->lpfc_sli_cmd_available)) 4386 (pring->lpfc_sli_cmd_available) (phba, pring); 4387 4388 } 4389 4390 spin_unlock_irqrestore(&phba->hbalock, iflag); 4391 return; 4392 } 4393 4394 /** 4395 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4396 * @phba: Pointer to HBA context object. 4397 * @pring: Pointer to driver SLI ring object. 4398 * @mask: Host attention register mask for this ring. 4399 * 4400 * This function is called from the worker thread when there is a pending 4401 * ELS response iocb on the driver internal slow-path response iocb worker 4402 * queue. The caller does not hold any lock. The function will remove each 4403 * response iocb from the response worker queue and calls the handle 4404 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4405 **/ 4406 static void 4407 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4408 struct lpfc_sli_ring *pring, uint32_t mask) 4409 { 4410 struct lpfc_iocbq *irspiocbq; 4411 struct hbq_dmabuf *dmabuf; 4412 struct lpfc_cq_event *cq_event; 4413 unsigned long iflag; 4414 int count = 0; 4415 4416 spin_lock_irqsave(&phba->hbalock, iflag); 4417 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4418 spin_unlock_irqrestore(&phba->hbalock, iflag); 4419 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4420 /* Get the response iocb from the head of work queue */ 4421 spin_lock_irqsave(&phba->hbalock, iflag); 4422 list_remove_head(&phba->sli4_hba.sp_queue_event, 4423 cq_event, struct lpfc_cq_event, list); 4424 spin_unlock_irqrestore(&phba->hbalock, iflag); 4425 4426 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4427 case CQE_CODE_COMPL_WQE: 4428 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4429 cq_event); 4430 /* Translate ELS WCQE to response IOCBQ */ 4431 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 4432 irspiocbq); 4433 if (irspiocbq) 4434 lpfc_sli_sp_handle_rspiocb(phba, pring, 4435 irspiocbq); 4436 count++; 4437 break; 4438 case CQE_CODE_RECEIVE: 4439 case CQE_CODE_RECEIVE_V1: 4440 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4441 cq_event); 4442 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4443 count++; 4444 break; 4445 default: 4446 break; 4447 } 4448 4449 /* Limit the number of events to 64 to avoid soft lockups */ 4450 if (count == 64) 4451 break; 4452 } 4453 } 4454 4455 /** 4456 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4457 * @phba: Pointer to HBA context object. 4458 * @pring: Pointer to driver SLI ring object. 4459 * 4460 * This function aborts all iocbs in the given ring and frees all the iocb 4461 * objects in txq. This function issues an abort iocb for all the iocb commands 4462 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4463 * the return of this function. The caller is not required to hold any locks. 4464 **/ 4465 void 4466 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4467 { 4468 LIST_HEAD(completions); 4469 struct lpfc_iocbq *iocb, *next_iocb; 4470 4471 if (pring->ringno == LPFC_ELS_RING) { 4472 lpfc_fabric_abort_hba(phba); 4473 } 4474 4475 /* Error everything on txq and txcmplq 4476 * First do the txq. 4477 */ 4478 if (phba->sli_rev >= LPFC_SLI_REV4) { 4479 spin_lock_irq(&pring->ring_lock); 4480 list_splice_init(&pring->txq, &completions); 4481 pring->txq_cnt = 0; 4482 spin_unlock_irq(&pring->ring_lock); 4483 4484 spin_lock_irq(&phba->hbalock); 4485 /* Next issue ABTS for everything on the txcmplq */ 4486 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4487 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); 4488 spin_unlock_irq(&phba->hbalock); 4489 } else { 4490 spin_lock_irq(&phba->hbalock); 4491 list_splice_init(&pring->txq, &completions); 4492 pring->txq_cnt = 0; 4493 4494 /* Next issue ABTS for everything on the txcmplq */ 4495 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4496 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); 4497 spin_unlock_irq(&phba->hbalock); 4498 } 4499 /* Make sure HBA is alive */ 4500 lpfc_issue_hb_tmo(phba); 4501 4502 /* Cancel all the IOCBs from the completions list */ 4503 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 4504 IOERR_SLI_ABORTED); 4505 } 4506 4507 /** 4508 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4509 * @phba: Pointer to HBA context object. 4510 * 4511 * This function aborts all iocbs in FCP rings and frees all the iocb 4512 * objects in txq. This function issues an abort iocb for all the iocb commands 4513 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4514 * the return of this function. The caller is not required to hold any locks. 4515 **/ 4516 void 4517 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4518 { 4519 struct lpfc_sli *psli = &phba->sli; 4520 struct lpfc_sli_ring *pring; 4521 uint32_t i; 4522 4523 /* Look on all the FCP Rings for the iotag */ 4524 if (phba->sli_rev >= LPFC_SLI_REV4) { 4525 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4526 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4527 lpfc_sli_abort_iocb_ring(phba, pring); 4528 } 4529 } else { 4530 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4531 lpfc_sli_abort_iocb_ring(phba, pring); 4532 } 4533 } 4534 4535 /** 4536 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4537 * @phba: Pointer to HBA context object. 4538 * 4539 * This function flushes all iocbs in the IO ring and frees all the iocb 4540 * objects in txq and txcmplq. This function will not issue abort iocbs 4541 * for all the iocb commands in txcmplq, they will just be returned with 4542 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4543 * slot has been permanently disabled. 4544 **/ 4545 void 4546 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4547 { 4548 LIST_HEAD(txq); 4549 LIST_HEAD(txcmplq); 4550 struct lpfc_sli *psli = &phba->sli; 4551 struct lpfc_sli_ring *pring; 4552 uint32_t i; 4553 struct lpfc_iocbq *piocb, *next_iocb; 4554 4555 spin_lock_irq(&phba->hbalock); 4556 if (phba->hba_flag & HBA_IOQ_FLUSH || 4557 !phba->sli4_hba.hdwq) { 4558 spin_unlock_irq(&phba->hbalock); 4559 return; 4560 } 4561 /* Indicate the I/O queues are flushed */ 4562 phba->hba_flag |= HBA_IOQ_FLUSH; 4563 spin_unlock_irq(&phba->hbalock); 4564 4565 /* Look on all the FCP Rings for the iotag */ 4566 if (phba->sli_rev >= LPFC_SLI_REV4) { 4567 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4568 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4569 4570 spin_lock_irq(&pring->ring_lock); 4571 /* Retrieve everything on txq */ 4572 list_splice_init(&pring->txq, &txq); 4573 list_for_each_entry_safe(piocb, next_iocb, 4574 &pring->txcmplq, list) 4575 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4576 /* Retrieve everything on the txcmplq */ 4577 list_splice_init(&pring->txcmplq, &txcmplq); 4578 pring->txq_cnt = 0; 4579 pring->txcmplq_cnt = 0; 4580 spin_unlock_irq(&pring->ring_lock); 4581 4582 /* Flush the txq */ 4583 lpfc_sli_cancel_iocbs(phba, &txq, 4584 IOSTAT_LOCAL_REJECT, 4585 IOERR_SLI_DOWN); 4586 /* Flush the txcmpq */ 4587 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4588 IOSTAT_LOCAL_REJECT, 4589 IOERR_SLI_DOWN); 4590 } 4591 } else { 4592 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4593 4594 spin_lock_irq(&phba->hbalock); 4595 /* Retrieve everything on txq */ 4596 list_splice_init(&pring->txq, &txq); 4597 list_for_each_entry_safe(piocb, next_iocb, 4598 &pring->txcmplq, list) 4599 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4600 /* Retrieve everything on the txcmplq */ 4601 list_splice_init(&pring->txcmplq, &txcmplq); 4602 pring->txq_cnt = 0; 4603 pring->txcmplq_cnt = 0; 4604 spin_unlock_irq(&phba->hbalock); 4605 4606 /* Flush the txq */ 4607 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4608 IOERR_SLI_DOWN); 4609 /* Flush the txcmpq */ 4610 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4611 IOERR_SLI_DOWN); 4612 } 4613 } 4614 4615 /** 4616 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4617 * @phba: Pointer to HBA context object. 4618 * @mask: Bit mask to be checked. 4619 * 4620 * This function reads the host status register and compares 4621 * with the provided bit mask to check if HBA completed 4622 * the restart. This function will wait in a loop for the 4623 * HBA to complete restart. If the HBA does not restart within 4624 * 15 iterations, the function will reset the HBA again. The 4625 * function returns 1 when HBA fail to restart otherwise returns 4626 * zero. 4627 **/ 4628 static int 4629 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4630 { 4631 uint32_t status; 4632 int i = 0; 4633 int retval = 0; 4634 4635 /* Read the HBA Host Status Register */ 4636 if (lpfc_readl(phba->HSregaddr, &status)) 4637 return 1; 4638 4639 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4640 4641 /* 4642 * Check status register every 100ms for 5 retries, then every 4643 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4644 * every 2.5 sec for 4. 4645 * Break our of the loop if errors occurred during init. 4646 */ 4647 while (((status & mask) != mask) && 4648 !(status & HS_FFERM) && 4649 i++ < 20) { 4650 4651 if (i <= 5) 4652 msleep(10); 4653 else if (i <= 10) 4654 msleep(500); 4655 else 4656 msleep(2500); 4657 4658 if (i == 15) { 4659 /* Do post */ 4660 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4661 lpfc_sli_brdrestart(phba); 4662 } 4663 /* Read the HBA Host Status Register */ 4664 if (lpfc_readl(phba->HSregaddr, &status)) { 4665 retval = 1; 4666 break; 4667 } 4668 } 4669 4670 /* Check to see if any errors occurred during init */ 4671 if ((status & HS_FFERM) || (i >= 20)) { 4672 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4673 "2751 Adapter failed to restart, " 4674 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4675 status, 4676 readl(phba->MBslimaddr + 0xa8), 4677 readl(phba->MBslimaddr + 0xac)); 4678 phba->link_state = LPFC_HBA_ERROR; 4679 retval = 1; 4680 } 4681 4682 return retval; 4683 } 4684 4685 /** 4686 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4687 * @phba: Pointer to HBA context object. 4688 * @mask: Bit mask to be checked. 4689 * 4690 * This function checks the host status register to check if HBA is 4691 * ready. This function will wait in a loop for the HBA to be ready 4692 * If the HBA is not ready , the function will will reset the HBA PCI 4693 * function again. The function returns 1 when HBA fail to be ready 4694 * otherwise returns zero. 4695 **/ 4696 static int 4697 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4698 { 4699 uint32_t status; 4700 int retval = 0; 4701 4702 /* Read the HBA Host Status Register */ 4703 status = lpfc_sli4_post_status_check(phba); 4704 4705 if (status) { 4706 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4707 lpfc_sli_brdrestart(phba); 4708 status = lpfc_sli4_post_status_check(phba); 4709 } 4710 4711 /* Check to see if any errors occurred during init */ 4712 if (status) { 4713 phba->link_state = LPFC_HBA_ERROR; 4714 retval = 1; 4715 } else 4716 phba->sli4_hba.intr_enable = 0; 4717 4718 phba->hba_flag &= ~HBA_SETUP; 4719 return retval; 4720 } 4721 4722 /** 4723 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4724 * @phba: Pointer to HBA context object. 4725 * @mask: Bit mask to be checked. 4726 * 4727 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4728 * from the API jump table function pointer from the lpfc_hba struct. 4729 **/ 4730 int 4731 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4732 { 4733 return phba->lpfc_sli_brdready(phba, mask); 4734 } 4735 4736 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4737 4738 /** 4739 * lpfc_reset_barrier - Make HBA ready for HBA reset 4740 * @phba: Pointer to HBA context object. 4741 * 4742 * This function is called before resetting an HBA. This function is called 4743 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4744 **/ 4745 void lpfc_reset_barrier(struct lpfc_hba *phba) 4746 { 4747 uint32_t __iomem *resp_buf; 4748 uint32_t __iomem *mbox_buf; 4749 volatile uint32_t mbox; 4750 uint32_t hc_copy, ha_copy, resp_data; 4751 int i; 4752 uint8_t hdrtype; 4753 4754 lockdep_assert_held(&phba->hbalock); 4755 4756 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4757 if (hdrtype != 0x80 || 4758 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4759 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4760 return; 4761 4762 /* 4763 * Tell the other part of the chip to suspend temporarily all 4764 * its DMA activity. 4765 */ 4766 resp_buf = phba->MBslimaddr; 4767 4768 /* Disable the error attention */ 4769 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4770 return; 4771 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4772 readl(phba->HCregaddr); /* flush */ 4773 phba->link_flag |= LS_IGNORE_ERATT; 4774 4775 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4776 return; 4777 if (ha_copy & HA_ERATT) { 4778 /* Clear Chip error bit */ 4779 writel(HA_ERATT, phba->HAregaddr); 4780 phba->pport->stopped = 1; 4781 } 4782 4783 mbox = 0; 4784 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 4785 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 4786 4787 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4788 mbox_buf = phba->MBslimaddr; 4789 writel(mbox, mbox_buf); 4790 4791 for (i = 0; i < 50; i++) { 4792 if (lpfc_readl((resp_buf + 1), &resp_data)) 4793 return; 4794 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4795 mdelay(1); 4796 else 4797 break; 4798 } 4799 resp_data = 0; 4800 if (lpfc_readl((resp_buf + 1), &resp_data)) 4801 return; 4802 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4803 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4804 phba->pport->stopped) 4805 goto restore_hc; 4806 else 4807 goto clear_errat; 4808 } 4809 4810 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 4811 resp_data = 0; 4812 for (i = 0; i < 500; i++) { 4813 if (lpfc_readl(resp_buf, &resp_data)) 4814 return; 4815 if (resp_data != mbox) 4816 mdelay(1); 4817 else 4818 break; 4819 } 4820 4821 clear_errat: 4822 4823 while (++i < 500) { 4824 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4825 return; 4826 if (!(ha_copy & HA_ERATT)) 4827 mdelay(1); 4828 else 4829 break; 4830 } 4831 4832 if (readl(phba->HAregaddr) & HA_ERATT) { 4833 writel(HA_ERATT, phba->HAregaddr); 4834 phba->pport->stopped = 1; 4835 } 4836 4837 restore_hc: 4838 phba->link_flag &= ~LS_IGNORE_ERATT; 4839 writel(hc_copy, phba->HCregaddr); 4840 readl(phba->HCregaddr); /* flush */ 4841 } 4842 4843 /** 4844 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4845 * @phba: Pointer to HBA context object. 4846 * 4847 * This function issues a kill_board mailbox command and waits for 4848 * the error attention interrupt. This function is called for stopping 4849 * the firmware processing. The caller is not required to hold any 4850 * locks. This function calls lpfc_hba_down_post function to free 4851 * any pending commands after the kill. The function will return 1 when it 4852 * fails to kill the board else will return 0. 4853 **/ 4854 int 4855 lpfc_sli_brdkill(struct lpfc_hba *phba) 4856 { 4857 struct lpfc_sli *psli; 4858 LPFC_MBOXQ_t *pmb; 4859 uint32_t status; 4860 uint32_t ha_copy; 4861 int retval; 4862 int i = 0; 4863 4864 psli = &phba->sli; 4865 4866 /* Kill HBA */ 4867 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4868 "0329 Kill HBA Data: x%x x%x\n", 4869 phba->pport->port_state, psli->sli_flag); 4870 4871 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4872 if (!pmb) 4873 return 1; 4874 4875 /* Disable the error attention */ 4876 spin_lock_irq(&phba->hbalock); 4877 if (lpfc_readl(phba->HCregaddr, &status)) { 4878 spin_unlock_irq(&phba->hbalock); 4879 mempool_free(pmb, phba->mbox_mem_pool); 4880 return 1; 4881 } 4882 status &= ~HC_ERINT_ENA; 4883 writel(status, phba->HCregaddr); 4884 readl(phba->HCregaddr); /* flush */ 4885 phba->link_flag |= LS_IGNORE_ERATT; 4886 spin_unlock_irq(&phba->hbalock); 4887 4888 lpfc_kill_board(phba, pmb); 4889 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4890 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4891 4892 if (retval != MBX_SUCCESS) { 4893 if (retval != MBX_BUSY) 4894 mempool_free(pmb, phba->mbox_mem_pool); 4895 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4896 "2752 KILL_BOARD command failed retval %d\n", 4897 retval); 4898 spin_lock_irq(&phba->hbalock); 4899 phba->link_flag &= ~LS_IGNORE_ERATT; 4900 spin_unlock_irq(&phba->hbalock); 4901 return 1; 4902 } 4903 4904 spin_lock_irq(&phba->hbalock); 4905 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4906 spin_unlock_irq(&phba->hbalock); 4907 4908 mempool_free(pmb, phba->mbox_mem_pool); 4909 4910 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4911 * attention every 100ms for 3 seconds. If we don't get ERATT after 4912 * 3 seconds we still set HBA_ERROR state because the status of the 4913 * board is now undefined. 4914 */ 4915 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4916 return 1; 4917 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4918 mdelay(100); 4919 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4920 return 1; 4921 } 4922 4923 del_timer_sync(&psli->mbox_tmo); 4924 if (ha_copy & HA_ERATT) { 4925 writel(HA_ERATT, phba->HAregaddr); 4926 phba->pport->stopped = 1; 4927 } 4928 spin_lock_irq(&phba->hbalock); 4929 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4930 psli->mbox_active = NULL; 4931 phba->link_flag &= ~LS_IGNORE_ERATT; 4932 spin_unlock_irq(&phba->hbalock); 4933 4934 lpfc_hba_down_post(phba); 4935 phba->link_state = LPFC_HBA_ERROR; 4936 4937 return ha_copy & HA_ERATT ? 0 : 1; 4938 } 4939 4940 /** 4941 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4942 * @phba: Pointer to HBA context object. 4943 * 4944 * This function resets the HBA by writing HC_INITFF to the control 4945 * register. After the HBA resets, this function resets all the iocb ring 4946 * indices. This function disables PCI layer parity checking during 4947 * the reset. 4948 * This function returns 0 always. 4949 * The caller is not required to hold any locks. 4950 **/ 4951 int 4952 lpfc_sli_brdreset(struct lpfc_hba *phba) 4953 { 4954 struct lpfc_sli *psli; 4955 struct lpfc_sli_ring *pring; 4956 uint16_t cfg_value; 4957 int i; 4958 4959 psli = &phba->sli; 4960 4961 /* Reset HBA */ 4962 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4963 "0325 Reset HBA Data: x%x x%x\n", 4964 (phba->pport) ? phba->pport->port_state : 0, 4965 psli->sli_flag); 4966 4967 /* perform board reset */ 4968 phba->fc_eventTag = 0; 4969 phba->link_events = 0; 4970 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4971 if (phba->pport) { 4972 phba->pport->fc_myDID = 0; 4973 phba->pport->fc_prevDID = 0; 4974 } 4975 4976 /* Turn off parity checking and serr during the physical reset */ 4977 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 4978 return -EIO; 4979 4980 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4981 (cfg_value & 4982 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4983 4984 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4985 4986 /* Now toggle INITFF bit in the Host Control Register */ 4987 writel(HC_INITFF, phba->HCregaddr); 4988 mdelay(1); 4989 readl(phba->HCregaddr); /* flush */ 4990 writel(0, phba->HCregaddr); 4991 readl(phba->HCregaddr); /* flush */ 4992 4993 /* Restore PCI cmd register */ 4994 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4995 4996 /* Initialize relevant SLI info */ 4997 for (i = 0; i < psli->num_rings; i++) { 4998 pring = &psli->sli3_ring[i]; 4999 pring->flag = 0; 5000 pring->sli.sli3.rspidx = 0; 5001 pring->sli.sli3.next_cmdidx = 0; 5002 pring->sli.sli3.local_getidx = 0; 5003 pring->sli.sli3.cmdidx = 0; 5004 pring->missbufcnt = 0; 5005 } 5006 5007 phba->link_state = LPFC_WARM_START; 5008 return 0; 5009 } 5010 5011 /** 5012 * lpfc_sli4_brdreset - Reset a sli-4 HBA 5013 * @phba: Pointer to HBA context object. 5014 * 5015 * This function resets a SLI4 HBA. This function disables PCI layer parity 5016 * checking during resets the device. The caller is not required to hold 5017 * any locks. 5018 * 5019 * This function returns 0 on success else returns negative error code. 5020 **/ 5021 int 5022 lpfc_sli4_brdreset(struct lpfc_hba *phba) 5023 { 5024 struct lpfc_sli *psli = &phba->sli; 5025 uint16_t cfg_value; 5026 int rc = 0; 5027 5028 /* Reset HBA */ 5029 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5030 "0295 Reset HBA Data: x%x x%x x%x\n", 5031 phba->pport->port_state, psli->sli_flag, 5032 phba->hba_flag); 5033 5034 /* perform board reset */ 5035 phba->fc_eventTag = 0; 5036 phba->link_events = 0; 5037 phba->pport->fc_myDID = 0; 5038 phba->pport->fc_prevDID = 0; 5039 phba->hba_flag &= ~HBA_SETUP; 5040 5041 spin_lock_irq(&phba->hbalock); 5042 psli->sli_flag &= ~(LPFC_PROCESS_LA); 5043 phba->fcf.fcf_flag = 0; 5044 spin_unlock_irq(&phba->hbalock); 5045 5046 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 5047 if (phba->hba_flag & HBA_FW_DUMP_OP) { 5048 phba->hba_flag &= ~HBA_FW_DUMP_OP; 5049 return rc; 5050 } 5051 5052 /* Now physically reset the device */ 5053 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5054 "0389 Performing PCI function reset!\n"); 5055 5056 /* Turn off parity checking and serr during the physical reset */ 5057 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 5058 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5059 "3205 PCI read Config failed\n"); 5060 return -EIO; 5061 } 5062 5063 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 5064 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5065 5066 /* Perform FCoE PCI function reset before freeing queue memory */ 5067 rc = lpfc_pci_function_reset(phba); 5068 5069 /* Restore PCI cmd register */ 5070 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5071 5072 return rc; 5073 } 5074 5075 /** 5076 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 5077 * @phba: Pointer to HBA context object. 5078 * 5079 * This function is called in the SLI initialization code path to 5080 * restart the HBA. The caller is not required to hold any lock. 5081 * This function writes MBX_RESTART mailbox command to the SLIM and 5082 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 5083 * function to free any pending commands. The function enables 5084 * POST only during the first initialization. The function returns zero. 5085 * The function does not guarantee completion of MBX_RESTART mailbox 5086 * command before the return of this function. 5087 **/ 5088 static int 5089 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 5090 { 5091 MAILBOX_t *mb; 5092 struct lpfc_sli *psli; 5093 volatile uint32_t word0; 5094 void __iomem *to_slim; 5095 uint32_t hba_aer_enabled; 5096 5097 spin_lock_irq(&phba->hbalock); 5098 5099 /* Take PCIe device Advanced Error Reporting (AER) state */ 5100 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 5101 5102 psli = &phba->sli; 5103 5104 /* Restart HBA */ 5105 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5106 "0337 Restart HBA Data: x%x x%x\n", 5107 (phba->pport) ? phba->pport->port_state : 0, 5108 psli->sli_flag); 5109 5110 word0 = 0; 5111 mb = (MAILBOX_t *) &word0; 5112 mb->mbxCommand = MBX_RESTART; 5113 mb->mbxHc = 1; 5114 5115 lpfc_reset_barrier(phba); 5116 5117 to_slim = phba->MBslimaddr; 5118 writel(*(uint32_t *) mb, to_slim); 5119 readl(to_slim); /* flush */ 5120 5121 /* Only skip post after fc_ffinit is completed */ 5122 if (phba->pport && phba->pport->port_state) 5123 word0 = 1; /* This is really setting up word1 */ 5124 else 5125 word0 = 0; /* This is really setting up word1 */ 5126 to_slim = phba->MBslimaddr + sizeof (uint32_t); 5127 writel(*(uint32_t *) mb, to_slim); 5128 readl(to_slim); /* flush */ 5129 5130 lpfc_sli_brdreset(phba); 5131 if (phba->pport) 5132 phba->pport->stopped = 0; 5133 phba->link_state = LPFC_INIT_START; 5134 phba->hba_flag = 0; 5135 spin_unlock_irq(&phba->hbalock); 5136 5137 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5138 psli->stats_start = ktime_get_seconds(); 5139 5140 /* Give the INITFF and Post time to settle. */ 5141 mdelay(100); 5142 5143 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 5144 if (hba_aer_enabled) 5145 pci_disable_pcie_error_reporting(phba->pcidev); 5146 5147 lpfc_hba_down_post(phba); 5148 5149 return 0; 5150 } 5151 5152 /** 5153 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 5154 * @phba: Pointer to HBA context object. 5155 * 5156 * This function is called in the SLI initialization code path to restart 5157 * a SLI4 HBA. The caller is not required to hold any lock. 5158 * At the end of the function, it calls lpfc_hba_down_post function to 5159 * free any pending commands. 5160 **/ 5161 static int 5162 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 5163 { 5164 struct lpfc_sli *psli = &phba->sli; 5165 uint32_t hba_aer_enabled; 5166 int rc; 5167 5168 /* Restart HBA */ 5169 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5170 "0296 Restart HBA Data: x%x x%x\n", 5171 phba->pport->port_state, psli->sli_flag); 5172 5173 /* Take PCIe device Advanced Error Reporting (AER) state */ 5174 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 5175 5176 rc = lpfc_sli4_brdreset(phba); 5177 if (rc) { 5178 phba->link_state = LPFC_HBA_ERROR; 5179 goto hba_down_queue; 5180 } 5181 5182 spin_lock_irq(&phba->hbalock); 5183 phba->pport->stopped = 0; 5184 phba->link_state = LPFC_INIT_START; 5185 phba->hba_flag = 0; 5186 spin_unlock_irq(&phba->hbalock); 5187 5188 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5189 psli->stats_start = ktime_get_seconds(); 5190 5191 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 5192 if (hba_aer_enabled) 5193 pci_disable_pcie_error_reporting(phba->pcidev); 5194 5195 hba_down_queue: 5196 lpfc_hba_down_post(phba); 5197 lpfc_sli4_queue_destroy(phba); 5198 5199 return rc; 5200 } 5201 5202 /** 5203 * lpfc_sli_brdrestart - Wrapper func for restarting hba 5204 * @phba: Pointer to HBA context object. 5205 * 5206 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 5207 * API jump table function pointer from the lpfc_hba struct. 5208 **/ 5209 int 5210 lpfc_sli_brdrestart(struct lpfc_hba *phba) 5211 { 5212 return phba->lpfc_sli_brdrestart(phba); 5213 } 5214 5215 /** 5216 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 5217 * @phba: Pointer to HBA context object. 5218 * 5219 * This function is called after a HBA restart to wait for successful 5220 * restart of the HBA. Successful restart of the HBA is indicated by 5221 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 5222 * iteration, the function will restart the HBA again. The function returns 5223 * zero if HBA successfully restarted else returns negative error code. 5224 **/ 5225 int 5226 lpfc_sli_chipset_init(struct lpfc_hba *phba) 5227 { 5228 uint32_t status, i = 0; 5229 5230 /* Read the HBA Host Status Register */ 5231 if (lpfc_readl(phba->HSregaddr, &status)) 5232 return -EIO; 5233 5234 /* Check status register to see what current state is */ 5235 i = 0; 5236 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 5237 5238 /* Check every 10ms for 10 retries, then every 100ms for 90 5239 * retries, then every 1 sec for 50 retires for a total of 5240 * ~60 seconds before reset the board again and check every 5241 * 1 sec for 50 retries. The up to 60 seconds before the 5242 * board ready is required by the Falcon FIPS zeroization 5243 * complete, and any reset the board in between shall cause 5244 * restart of zeroization, further delay the board ready. 5245 */ 5246 if (i++ >= 200) { 5247 /* Adapter failed to init, timeout, status reg 5248 <status> */ 5249 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5250 "0436 Adapter failed to init, " 5251 "timeout, status reg x%x, " 5252 "FW Data: A8 x%x AC x%x\n", status, 5253 readl(phba->MBslimaddr + 0xa8), 5254 readl(phba->MBslimaddr + 0xac)); 5255 phba->link_state = LPFC_HBA_ERROR; 5256 return -ETIMEDOUT; 5257 } 5258 5259 /* Check to see if any errors occurred during init */ 5260 if (status & HS_FFERM) { 5261 /* ERROR: During chipset initialization */ 5262 /* Adapter failed to init, chipset, status reg 5263 <status> */ 5264 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5265 "0437 Adapter failed to init, " 5266 "chipset, status reg x%x, " 5267 "FW Data: A8 x%x AC x%x\n", status, 5268 readl(phba->MBslimaddr + 0xa8), 5269 readl(phba->MBslimaddr + 0xac)); 5270 phba->link_state = LPFC_HBA_ERROR; 5271 return -EIO; 5272 } 5273 5274 if (i <= 10) 5275 msleep(10); 5276 else if (i <= 100) 5277 msleep(100); 5278 else 5279 msleep(1000); 5280 5281 if (i == 150) { 5282 /* Do post */ 5283 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5284 lpfc_sli_brdrestart(phba); 5285 } 5286 /* Read the HBA Host Status Register */ 5287 if (lpfc_readl(phba->HSregaddr, &status)) 5288 return -EIO; 5289 } 5290 5291 /* Check to see if any errors occurred during init */ 5292 if (status & HS_FFERM) { 5293 /* ERROR: During chipset initialization */ 5294 /* Adapter failed to init, chipset, status reg <status> */ 5295 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5296 "0438 Adapter failed to init, chipset, " 5297 "status reg x%x, " 5298 "FW Data: A8 x%x AC x%x\n", status, 5299 readl(phba->MBslimaddr + 0xa8), 5300 readl(phba->MBslimaddr + 0xac)); 5301 phba->link_state = LPFC_HBA_ERROR; 5302 return -EIO; 5303 } 5304 5305 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5306 5307 /* Clear all interrupt enable conditions */ 5308 writel(0, phba->HCregaddr); 5309 readl(phba->HCregaddr); /* flush */ 5310 5311 /* setup host attn register */ 5312 writel(0xffffffff, phba->HAregaddr); 5313 readl(phba->HAregaddr); /* flush */ 5314 return 0; 5315 } 5316 5317 /** 5318 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5319 * 5320 * This function calculates and returns the number of HBQs required to be 5321 * configured. 5322 **/ 5323 int 5324 lpfc_sli_hbq_count(void) 5325 { 5326 return ARRAY_SIZE(lpfc_hbq_defs); 5327 } 5328 5329 /** 5330 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5331 * 5332 * This function adds the number of hbq entries in every HBQ to get 5333 * the total number of hbq entries required for the HBA and returns 5334 * the total count. 5335 **/ 5336 static int 5337 lpfc_sli_hbq_entry_count(void) 5338 { 5339 int hbq_count = lpfc_sli_hbq_count(); 5340 int count = 0; 5341 int i; 5342 5343 for (i = 0; i < hbq_count; ++i) 5344 count += lpfc_hbq_defs[i]->entry_count; 5345 return count; 5346 } 5347 5348 /** 5349 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5350 * 5351 * This function calculates amount of memory required for all hbq entries 5352 * to be configured and returns the total memory required. 5353 **/ 5354 int 5355 lpfc_sli_hbq_size(void) 5356 { 5357 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5358 } 5359 5360 /** 5361 * lpfc_sli_hbq_setup - configure and initialize HBQs 5362 * @phba: Pointer to HBA context object. 5363 * 5364 * This function is called during the SLI initialization to configure 5365 * all the HBQs and post buffers to the HBQ. The caller is not 5366 * required to hold any locks. This function will return zero if successful 5367 * else it will return negative error code. 5368 **/ 5369 static int 5370 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5371 { 5372 int hbq_count = lpfc_sli_hbq_count(); 5373 LPFC_MBOXQ_t *pmb; 5374 MAILBOX_t *pmbox; 5375 uint32_t hbqno; 5376 uint32_t hbq_entry_index; 5377 5378 /* Get a Mailbox buffer to setup mailbox 5379 * commands for HBA initialization 5380 */ 5381 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5382 5383 if (!pmb) 5384 return -ENOMEM; 5385 5386 pmbox = &pmb->u.mb; 5387 5388 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5389 phba->link_state = LPFC_INIT_MBX_CMDS; 5390 phba->hbq_in_use = 1; 5391 5392 hbq_entry_index = 0; 5393 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5394 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5395 phba->hbqs[hbqno].hbqPutIdx = 0; 5396 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5397 phba->hbqs[hbqno].entry_count = 5398 lpfc_hbq_defs[hbqno]->entry_count; 5399 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5400 hbq_entry_index, pmb); 5401 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5402 5403 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5404 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5405 mbxStatus <status>, ring <num> */ 5406 5407 lpfc_printf_log(phba, KERN_ERR, 5408 LOG_SLI | LOG_VPORT, 5409 "1805 Adapter failed to init. " 5410 "Data: x%x x%x x%x\n", 5411 pmbox->mbxCommand, 5412 pmbox->mbxStatus, hbqno); 5413 5414 phba->link_state = LPFC_HBA_ERROR; 5415 mempool_free(pmb, phba->mbox_mem_pool); 5416 return -ENXIO; 5417 } 5418 } 5419 phba->hbq_count = hbq_count; 5420 5421 mempool_free(pmb, phba->mbox_mem_pool); 5422 5423 /* Initially populate or replenish the HBQs */ 5424 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5425 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5426 return 0; 5427 } 5428 5429 /** 5430 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5431 * @phba: Pointer to HBA context object. 5432 * 5433 * This function is called during the SLI initialization to configure 5434 * all the HBQs and post buffers to the HBQ. The caller is not 5435 * required to hold any locks. This function will return zero if successful 5436 * else it will return negative error code. 5437 **/ 5438 static int 5439 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5440 { 5441 phba->hbq_in_use = 1; 5442 /** 5443 * Specific case when the MDS diagnostics is enabled and supported. 5444 * The receive buffer count is truncated to manage the incoming 5445 * traffic. 5446 **/ 5447 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5448 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5449 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5450 else 5451 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5452 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5453 phba->hbq_count = 1; 5454 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5455 /* Initially populate or replenish the HBQs */ 5456 return 0; 5457 } 5458 5459 /** 5460 * lpfc_sli_config_port - Issue config port mailbox command 5461 * @phba: Pointer to HBA context object. 5462 * @sli_mode: sli mode - 2/3 5463 * 5464 * This function is called by the sli initialization code path 5465 * to issue config_port mailbox command. This function restarts the 5466 * HBA firmware and issues a config_port mailbox command to configure 5467 * the SLI interface in the sli mode specified by sli_mode 5468 * variable. The caller is not required to hold any locks. 5469 * The function returns 0 if successful, else returns negative error 5470 * code. 5471 **/ 5472 int 5473 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5474 { 5475 LPFC_MBOXQ_t *pmb; 5476 uint32_t resetcount = 0, rc = 0, done = 0; 5477 5478 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5479 if (!pmb) { 5480 phba->link_state = LPFC_HBA_ERROR; 5481 return -ENOMEM; 5482 } 5483 5484 phba->sli_rev = sli_mode; 5485 while (resetcount < 2 && !done) { 5486 spin_lock_irq(&phba->hbalock); 5487 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5488 spin_unlock_irq(&phba->hbalock); 5489 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5490 lpfc_sli_brdrestart(phba); 5491 rc = lpfc_sli_chipset_init(phba); 5492 if (rc) 5493 break; 5494 5495 spin_lock_irq(&phba->hbalock); 5496 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5497 spin_unlock_irq(&phba->hbalock); 5498 resetcount++; 5499 5500 /* Call pre CONFIG_PORT mailbox command initialization. A 5501 * value of 0 means the call was successful. Any other 5502 * nonzero value is a failure, but if ERESTART is returned, 5503 * the driver may reset the HBA and try again. 5504 */ 5505 rc = lpfc_config_port_prep(phba); 5506 if (rc == -ERESTART) { 5507 phba->link_state = LPFC_LINK_UNKNOWN; 5508 continue; 5509 } else if (rc) 5510 break; 5511 5512 phba->link_state = LPFC_INIT_MBX_CMDS; 5513 lpfc_config_port(phba, pmb); 5514 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5515 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5516 LPFC_SLI3_HBQ_ENABLED | 5517 LPFC_SLI3_CRP_ENABLED | 5518 LPFC_SLI3_DSS_ENABLED); 5519 if (rc != MBX_SUCCESS) { 5520 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5521 "0442 Adapter failed to init, mbxCmd x%x " 5522 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5523 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5524 spin_lock_irq(&phba->hbalock); 5525 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5526 spin_unlock_irq(&phba->hbalock); 5527 rc = -ENXIO; 5528 } else { 5529 /* Allow asynchronous mailbox command to go through */ 5530 spin_lock_irq(&phba->hbalock); 5531 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5532 spin_unlock_irq(&phba->hbalock); 5533 done = 1; 5534 5535 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5536 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5537 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5538 "3110 Port did not grant ASABT\n"); 5539 } 5540 } 5541 if (!done) { 5542 rc = -EINVAL; 5543 goto do_prep_failed; 5544 } 5545 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5546 if (!pmb->u.mb.un.varCfgPort.cMA) { 5547 rc = -ENXIO; 5548 goto do_prep_failed; 5549 } 5550 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5551 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5552 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5553 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5554 phba->max_vpi : phba->max_vports; 5555 5556 } else 5557 phba->max_vpi = 0; 5558 if (pmb->u.mb.un.varCfgPort.gerbm) 5559 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5560 if (pmb->u.mb.un.varCfgPort.gcrp) 5561 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5562 5563 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5564 phba->port_gp = phba->mbox->us.s3_pgp.port; 5565 5566 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5567 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5568 phba->cfg_enable_bg = 0; 5569 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5570 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5571 "0443 Adapter did not grant " 5572 "BlockGuard\n"); 5573 } 5574 } 5575 } else { 5576 phba->hbq_get = NULL; 5577 phba->port_gp = phba->mbox->us.s2.port; 5578 phba->max_vpi = 0; 5579 } 5580 do_prep_failed: 5581 mempool_free(pmb, phba->mbox_mem_pool); 5582 return rc; 5583 } 5584 5585 5586 /** 5587 * lpfc_sli_hba_setup - SLI initialization function 5588 * @phba: Pointer to HBA context object. 5589 * 5590 * This function is the main SLI initialization function. This function 5591 * is called by the HBA initialization code, HBA reset code and HBA 5592 * error attention handler code. Caller is not required to hold any 5593 * locks. This function issues config_port mailbox command to configure 5594 * the SLI, setup iocb rings and HBQ rings. In the end the function 5595 * calls the config_port_post function to issue init_link mailbox 5596 * command and to start the discovery. The function will return zero 5597 * if successful, else it will return negative error code. 5598 **/ 5599 int 5600 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5601 { 5602 uint32_t rc; 5603 int i; 5604 int longs; 5605 5606 /* Enable ISR already does config_port because of config_msi mbx */ 5607 if (phba->hba_flag & HBA_NEEDS_CFG_PORT) { 5608 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5609 if (rc) 5610 return -EIO; 5611 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 5612 } 5613 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5614 5615 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5616 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5617 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5618 if (!rc) { 5619 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5620 "2709 This device supports " 5621 "Advanced Error Reporting (AER)\n"); 5622 spin_lock_irq(&phba->hbalock); 5623 phba->hba_flag |= HBA_AER_ENABLED; 5624 spin_unlock_irq(&phba->hbalock); 5625 } else { 5626 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5627 "2708 This device does not support " 5628 "Advanced Error Reporting (AER): %d\n", 5629 rc); 5630 phba->cfg_aer_support = 0; 5631 } 5632 } 5633 5634 if (phba->sli_rev == 3) { 5635 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5636 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5637 } else { 5638 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5639 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5640 phba->sli3_options = 0; 5641 } 5642 5643 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5644 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5645 phba->sli_rev, phba->max_vpi); 5646 rc = lpfc_sli_ring_map(phba); 5647 5648 if (rc) 5649 goto lpfc_sli_hba_setup_error; 5650 5651 /* Initialize VPIs. */ 5652 if (phba->sli_rev == LPFC_SLI_REV3) { 5653 /* 5654 * The VPI bitmask and physical ID array are allocated 5655 * and initialized once only - at driver load. A port 5656 * reset doesn't need to reinitialize this memory. 5657 */ 5658 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5659 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5660 phba->vpi_bmask = kcalloc(longs, 5661 sizeof(unsigned long), 5662 GFP_KERNEL); 5663 if (!phba->vpi_bmask) { 5664 rc = -ENOMEM; 5665 goto lpfc_sli_hba_setup_error; 5666 } 5667 5668 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5669 sizeof(uint16_t), 5670 GFP_KERNEL); 5671 if (!phba->vpi_ids) { 5672 kfree(phba->vpi_bmask); 5673 rc = -ENOMEM; 5674 goto lpfc_sli_hba_setup_error; 5675 } 5676 for (i = 0; i < phba->max_vpi; i++) 5677 phba->vpi_ids[i] = i; 5678 } 5679 } 5680 5681 /* Init HBQs */ 5682 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5683 rc = lpfc_sli_hbq_setup(phba); 5684 if (rc) 5685 goto lpfc_sli_hba_setup_error; 5686 } 5687 spin_lock_irq(&phba->hbalock); 5688 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5689 spin_unlock_irq(&phba->hbalock); 5690 5691 rc = lpfc_config_port_post(phba); 5692 if (rc) 5693 goto lpfc_sli_hba_setup_error; 5694 5695 return rc; 5696 5697 lpfc_sli_hba_setup_error: 5698 phba->link_state = LPFC_HBA_ERROR; 5699 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5700 "0445 Firmware initialization failed\n"); 5701 return rc; 5702 } 5703 5704 /** 5705 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5706 * @phba: Pointer to HBA context object. 5707 * 5708 * This function issue a dump mailbox command to read config region 5709 * 23 and parse the records in the region and populate driver 5710 * data structure. 5711 **/ 5712 static int 5713 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5714 { 5715 LPFC_MBOXQ_t *mboxq; 5716 struct lpfc_dmabuf *mp; 5717 struct lpfc_mqe *mqe; 5718 uint32_t data_length; 5719 int rc; 5720 5721 /* Program the default value of vlan_id and fc_map */ 5722 phba->valid_vlan = 0; 5723 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5724 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5725 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5726 5727 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5728 if (!mboxq) 5729 return -ENOMEM; 5730 5731 mqe = &mboxq->u.mqe; 5732 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5733 rc = -ENOMEM; 5734 goto out_free_mboxq; 5735 } 5736 5737 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5738 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5739 5740 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5741 "(%d):2571 Mailbox cmd x%x Status x%x " 5742 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5743 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5744 "CQ: x%x x%x x%x x%x\n", 5745 mboxq->vport ? mboxq->vport->vpi : 0, 5746 bf_get(lpfc_mqe_command, mqe), 5747 bf_get(lpfc_mqe_status, mqe), 5748 mqe->un.mb_words[0], mqe->un.mb_words[1], 5749 mqe->un.mb_words[2], mqe->un.mb_words[3], 5750 mqe->un.mb_words[4], mqe->un.mb_words[5], 5751 mqe->un.mb_words[6], mqe->un.mb_words[7], 5752 mqe->un.mb_words[8], mqe->un.mb_words[9], 5753 mqe->un.mb_words[10], mqe->un.mb_words[11], 5754 mqe->un.mb_words[12], mqe->un.mb_words[13], 5755 mqe->un.mb_words[14], mqe->un.mb_words[15], 5756 mqe->un.mb_words[16], mqe->un.mb_words[50], 5757 mboxq->mcqe.word0, 5758 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5759 mboxq->mcqe.trailer); 5760 5761 if (rc) { 5762 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5763 kfree(mp); 5764 rc = -EIO; 5765 goto out_free_mboxq; 5766 } 5767 data_length = mqe->un.mb_words[5]; 5768 if (data_length > DMP_RGN23_SIZE) { 5769 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5770 kfree(mp); 5771 rc = -EIO; 5772 goto out_free_mboxq; 5773 } 5774 5775 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5776 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5777 kfree(mp); 5778 rc = 0; 5779 5780 out_free_mboxq: 5781 mempool_free(mboxq, phba->mbox_mem_pool); 5782 return rc; 5783 } 5784 5785 /** 5786 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5787 * @phba: pointer to lpfc hba data structure. 5788 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5789 * @vpd: pointer to the memory to hold resulting port vpd data. 5790 * @vpd_size: On input, the number of bytes allocated to @vpd. 5791 * On output, the number of data bytes in @vpd. 5792 * 5793 * This routine executes a READ_REV SLI4 mailbox command. In 5794 * addition, this routine gets the port vpd data. 5795 * 5796 * Return codes 5797 * 0 - successful 5798 * -ENOMEM - could not allocated memory. 5799 **/ 5800 static int 5801 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5802 uint8_t *vpd, uint32_t *vpd_size) 5803 { 5804 int rc = 0; 5805 uint32_t dma_size; 5806 struct lpfc_dmabuf *dmabuf; 5807 struct lpfc_mqe *mqe; 5808 5809 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5810 if (!dmabuf) 5811 return -ENOMEM; 5812 5813 /* 5814 * Get a DMA buffer for the vpd data resulting from the READ_REV 5815 * mailbox command. 5816 */ 5817 dma_size = *vpd_size; 5818 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5819 &dmabuf->phys, GFP_KERNEL); 5820 if (!dmabuf->virt) { 5821 kfree(dmabuf); 5822 return -ENOMEM; 5823 } 5824 5825 /* 5826 * The SLI4 implementation of READ_REV conflicts at word1, 5827 * bits 31:16 and SLI4 adds vpd functionality not present 5828 * in SLI3. This code corrects the conflicts. 5829 */ 5830 lpfc_read_rev(phba, mboxq); 5831 mqe = &mboxq->u.mqe; 5832 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5833 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5834 mqe->un.read_rev.word1 &= 0x0000FFFF; 5835 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5836 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5837 5838 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5839 if (rc) { 5840 dma_free_coherent(&phba->pcidev->dev, dma_size, 5841 dmabuf->virt, dmabuf->phys); 5842 kfree(dmabuf); 5843 return -EIO; 5844 } 5845 5846 /* 5847 * The available vpd length cannot be bigger than the 5848 * DMA buffer passed to the port. Catch the less than 5849 * case and update the caller's size. 5850 */ 5851 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5852 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5853 5854 memcpy(vpd, dmabuf->virt, *vpd_size); 5855 5856 dma_free_coherent(&phba->pcidev->dev, dma_size, 5857 dmabuf->virt, dmabuf->phys); 5858 kfree(dmabuf); 5859 return 0; 5860 } 5861 5862 /** 5863 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5864 * @phba: pointer to lpfc hba data structure. 5865 * 5866 * This routine retrieves SLI4 device physical port name this PCI function 5867 * is attached to. 5868 * 5869 * Return codes 5870 * 0 - successful 5871 * otherwise - failed to retrieve controller attributes 5872 **/ 5873 static int 5874 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5875 { 5876 LPFC_MBOXQ_t *mboxq; 5877 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5878 struct lpfc_controller_attribute *cntl_attr; 5879 void *virtaddr = NULL; 5880 uint32_t alloclen, reqlen; 5881 uint32_t shdr_status, shdr_add_status; 5882 union lpfc_sli4_cfg_shdr *shdr; 5883 int rc; 5884 5885 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5886 if (!mboxq) 5887 return -ENOMEM; 5888 5889 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5890 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5891 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5892 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5893 LPFC_SLI4_MBX_NEMBED); 5894 5895 if (alloclen < reqlen) { 5896 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5897 "3084 Allocated DMA memory size (%d) is " 5898 "less than the requested DMA memory size " 5899 "(%d)\n", alloclen, reqlen); 5900 rc = -ENOMEM; 5901 goto out_free_mboxq; 5902 } 5903 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5904 virtaddr = mboxq->sge_array->addr[0]; 5905 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5906 shdr = &mbx_cntl_attr->cfg_shdr; 5907 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5908 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5909 if (shdr_status || shdr_add_status || rc) { 5910 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5911 "3085 Mailbox x%x (x%x/x%x) failed, " 5912 "rc:x%x, status:x%x, add_status:x%x\n", 5913 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5914 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5915 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5916 rc, shdr_status, shdr_add_status); 5917 rc = -ENXIO; 5918 goto out_free_mboxq; 5919 } 5920 5921 cntl_attr = &mbx_cntl_attr->cntl_attr; 5922 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5923 phba->sli4_hba.lnk_info.lnk_tp = 5924 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5925 phba->sli4_hba.lnk_info.lnk_no = 5926 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5927 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr); 5928 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr); 5929 5930 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 5931 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 5932 sizeof(phba->BIOSVersion)); 5933 5934 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5935 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, " 5936 "flash_id: x%02x, asic_rev: x%02x\n", 5937 phba->sli4_hba.lnk_info.lnk_tp, 5938 phba->sli4_hba.lnk_info.lnk_no, 5939 phba->BIOSVersion, phba->sli4_hba.flash_id, 5940 phba->sli4_hba.asic_rev); 5941 out_free_mboxq: 5942 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5943 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5944 else 5945 mempool_free(mboxq, phba->mbox_mem_pool); 5946 return rc; 5947 } 5948 5949 /** 5950 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 5951 * @phba: pointer to lpfc hba data structure. 5952 * 5953 * This routine retrieves SLI4 device physical port name this PCI function 5954 * is attached to. 5955 * 5956 * Return codes 5957 * 0 - successful 5958 * otherwise - failed to retrieve physical port name 5959 **/ 5960 static int 5961 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 5962 { 5963 LPFC_MBOXQ_t *mboxq; 5964 struct lpfc_mbx_get_port_name *get_port_name; 5965 uint32_t shdr_status, shdr_add_status; 5966 union lpfc_sli4_cfg_shdr *shdr; 5967 char cport_name = 0; 5968 int rc; 5969 5970 /* We assume nothing at this point */ 5971 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5972 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 5973 5974 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5975 if (!mboxq) 5976 return -ENOMEM; 5977 /* obtain link type and link number via READ_CONFIG */ 5978 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5979 lpfc_sli4_read_config(phba); 5980 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 5981 goto retrieve_ppname; 5982 5983 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 5984 rc = lpfc_sli4_get_ctl_attr(phba); 5985 if (rc) 5986 goto out_free_mboxq; 5987 5988 retrieve_ppname: 5989 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5990 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5991 sizeof(struct lpfc_mbx_get_port_name) - 5992 sizeof(struct lpfc_sli4_cfg_mhdr), 5993 LPFC_SLI4_MBX_EMBED); 5994 get_port_name = &mboxq->u.mqe.un.get_port_name; 5995 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5996 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5997 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5998 phba->sli4_hba.lnk_info.lnk_tp); 5999 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6000 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6001 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6002 if (shdr_status || shdr_add_status || rc) { 6003 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6004 "3087 Mailbox x%x (x%x/x%x) failed: " 6005 "rc:x%x, status:x%x, add_status:x%x\n", 6006 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6007 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6008 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6009 rc, shdr_status, shdr_add_status); 6010 rc = -ENXIO; 6011 goto out_free_mboxq; 6012 } 6013 switch (phba->sli4_hba.lnk_info.lnk_no) { 6014 case LPFC_LINK_NUMBER_0: 6015 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 6016 &get_port_name->u.response); 6017 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6018 break; 6019 case LPFC_LINK_NUMBER_1: 6020 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 6021 &get_port_name->u.response); 6022 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6023 break; 6024 case LPFC_LINK_NUMBER_2: 6025 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 6026 &get_port_name->u.response); 6027 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6028 break; 6029 case LPFC_LINK_NUMBER_3: 6030 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 6031 &get_port_name->u.response); 6032 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6033 break; 6034 default: 6035 break; 6036 } 6037 6038 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 6039 phba->Port[0] = cport_name; 6040 phba->Port[1] = '\0'; 6041 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6042 "3091 SLI get port name: %s\n", phba->Port); 6043 } 6044 6045 out_free_mboxq: 6046 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6047 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6048 else 6049 mempool_free(mboxq, phba->mbox_mem_pool); 6050 return rc; 6051 } 6052 6053 /** 6054 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 6055 * @phba: pointer to lpfc hba data structure. 6056 * 6057 * This routine is called to explicitly arm the SLI4 device's completion and 6058 * event queues 6059 **/ 6060 static void 6061 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 6062 { 6063 int qidx; 6064 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 6065 struct lpfc_sli4_hdw_queue *qp; 6066 struct lpfc_queue *eq; 6067 6068 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 6069 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 6070 if (sli4_hba->nvmels_cq) 6071 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 6072 LPFC_QUEUE_REARM); 6073 6074 if (sli4_hba->hdwq) { 6075 /* Loop thru all Hardware Queues */ 6076 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 6077 qp = &sli4_hba->hdwq[qidx]; 6078 /* ARM the corresponding CQ */ 6079 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 6080 LPFC_QUEUE_REARM); 6081 } 6082 6083 /* Loop thru all IRQ vectors */ 6084 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 6085 eq = sli4_hba->hba_eq_hdl[qidx].eq; 6086 /* ARM the corresponding EQ */ 6087 sli4_hba->sli4_write_eq_db(phba, eq, 6088 0, LPFC_QUEUE_REARM); 6089 } 6090 } 6091 6092 if (phba->nvmet_support) { 6093 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 6094 sli4_hba->sli4_write_cq_db(phba, 6095 sli4_hba->nvmet_cqset[qidx], 0, 6096 LPFC_QUEUE_REARM); 6097 } 6098 } 6099 } 6100 6101 /** 6102 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 6103 * @phba: Pointer to HBA context object. 6104 * @type: The resource extent type. 6105 * @extnt_count: buffer to hold port available extent count. 6106 * @extnt_size: buffer to hold element count per extent. 6107 * 6108 * This function calls the port and retrievs the number of available 6109 * extents and their size for a particular extent type. 6110 * 6111 * Returns: 0 if successful. Nonzero otherwise. 6112 **/ 6113 int 6114 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 6115 uint16_t *extnt_count, uint16_t *extnt_size) 6116 { 6117 int rc = 0; 6118 uint32_t length; 6119 uint32_t mbox_tmo; 6120 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 6121 LPFC_MBOXQ_t *mbox; 6122 6123 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6124 if (!mbox) 6125 return -ENOMEM; 6126 6127 /* Find out how many extents are available for this resource type */ 6128 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 6129 sizeof(struct lpfc_sli4_cfg_mhdr)); 6130 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6131 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 6132 length, LPFC_SLI4_MBX_EMBED); 6133 6134 /* Send an extents count of 0 - the GET doesn't use it. */ 6135 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6136 LPFC_SLI4_MBX_EMBED); 6137 if (unlikely(rc)) { 6138 rc = -EIO; 6139 goto err_exit; 6140 } 6141 6142 if (!phba->sli4_hba.intr_enable) 6143 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6144 else { 6145 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6146 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6147 } 6148 if (unlikely(rc)) { 6149 rc = -EIO; 6150 goto err_exit; 6151 } 6152 6153 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 6154 if (bf_get(lpfc_mbox_hdr_status, 6155 &rsrc_info->header.cfg_shdr.response)) { 6156 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6157 "2930 Failed to get resource extents " 6158 "Status 0x%x Add'l Status 0x%x\n", 6159 bf_get(lpfc_mbox_hdr_status, 6160 &rsrc_info->header.cfg_shdr.response), 6161 bf_get(lpfc_mbox_hdr_add_status, 6162 &rsrc_info->header.cfg_shdr.response)); 6163 rc = -EIO; 6164 goto err_exit; 6165 } 6166 6167 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 6168 &rsrc_info->u.rsp); 6169 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 6170 &rsrc_info->u.rsp); 6171 6172 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6173 "3162 Retrieved extents type-%d from port: count:%d, " 6174 "size:%d\n", type, *extnt_count, *extnt_size); 6175 6176 err_exit: 6177 mempool_free(mbox, phba->mbox_mem_pool); 6178 return rc; 6179 } 6180 6181 /** 6182 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 6183 * @phba: Pointer to HBA context object. 6184 * @type: The extent type to check. 6185 * 6186 * This function reads the current available extents from the port and checks 6187 * if the extent count or extent size has changed since the last access. 6188 * Callers use this routine post port reset to understand if there is a 6189 * extent reprovisioning requirement. 6190 * 6191 * Returns: 6192 * -Error: error indicates problem. 6193 * 1: Extent count or size has changed. 6194 * 0: No changes. 6195 **/ 6196 static int 6197 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 6198 { 6199 uint16_t curr_ext_cnt, rsrc_ext_cnt; 6200 uint16_t size_diff, rsrc_ext_size; 6201 int rc = 0; 6202 struct lpfc_rsrc_blks *rsrc_entry; 6203 struct list_head *rsrc_blk_list = NULL; 6204 6205 size_diff = 0; 6206 curr_ext_cnt = 0; 6207 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6208 &rsrc_ext_cnt, 6209 &rsrc_ext_size); 6210 if (unlikely(rc)) 6211 return -EIO; 6212 6213 switch (type) { 6214 case LPFC_RSC_TYPE_FCOE_RPI: 6215 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6216 break; 6217 case LPFC_RSC_TYPE_FCOE_VPI: 6218 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 6219 break; 6220 case LPFC_RSC_TYPE_FCOE_XRI: 6221 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6222 break; 6223 case LPFC_RSC_TYPE_FCOE_VFI: 6224 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6225 break; 6226 default: 6227 break; 6228 } 6229 6230 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 6231 curr_ext_cnt++; 6232 if (rsrc_entry->rsrc_size != rsrc_ext_size) 6233 size_diff++; 6234 } 6235 6236 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 6237 rc = 1; 6238 6239 return rc; 6240 } 6241 6242 /** 6243 * lpfc_sli4_cfg_post_extnts - 6244 * @phba: Pointer to HBA context object. 6245 * @extnt_cnt: number of available extents. 6246 * @type: the extent type (rpi, xri, vfi, vpi). 6247 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 6248 * @mbox: pointer to the caller's allocated mailbox structure. 6249 * 6250 * This function executes the extents allocation request. It also 6251 * takes care of the amount of memory needed to allocate or get the 6252 * allocated extents. It is the caller's responsibility to evaluate 6253 * the response. 6254 * 6255 * Returns: 6256 * -Error: Error value describes the condition found. 6257 * 0: if successful 6258 **/ 6259 static int 6260 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6261 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6262 { 6263 int rc = 0; 6264 uint32_t req_len; 6265 uint32_t emb_len; 6266 uint32_t alloc_len, mbox_tmo; 6267 6268 /* Calculate the total requested length of the dma memory */ 6269 req_len = extnt_cnt * sizeof(uint16_t); 6270 6271 /* 6272 * Calculate the size of an embedded mailbox. The uint32_t 6273 * accounts for extents-specific word. 6274 */ 6275 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6276 sizeof(uint32_t); 6277 6278 /* 6279 * Presume the allocation and response will fit into an embedded 6280 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6281 */ 6282 *emb = LPFC_SLI4_MBX_EMBED; 6283 if (req_len > emb_len) { 6284 req_len = extnt_cnt * sizeof(uint16_t) + 6285 sizeof(union lpfc_sli4_cfg_shdr) + 6286 sizeof(uint32_t); 6287 *emb = LPFC_SLI4_MBX_NEMBED; 6288 } 6289 6290 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6291 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6292 req_len, *emb); 6293 if (alloc_len < req_len) { 6294 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6295 "2982 Allocated DMA memory size (x%x) is " 6296 "less than the requested DMA memory " 6297 "size (x%x)\n", alloc_len, req_len); 6298 return -ENOMEM; 6299 } 6300 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6301 if (unlikely(rc)) 6302 return -EIO; 6303 6304 if (!phba->sli4_hba.intr_enable) 6305 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6306 else { 6307 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6308 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6309 } 6310 6311 if (unlikely(rc)) 6312 rc = -EIO; 6313 return rc; 6314 } 6315 6316 /** 6317 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6318 * @phba: Pointer to HBA context object. 6319 * @type: The resource extent type to allocate. 6320 * 6321 * This function allocates the number of elements for the specified 6322 * resource type. 6323 **/ 6324 static int 6325 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6326 { 6327 bool emb = false; 6328 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6329 uint16_t rsrc_id, rsrc_start, j, k; 6330 uint16_t *ids; 6331 int i, rc; 6332 unsigned long longs; 6333 unsigned long *bmask; 6334 struct lpfc_rsrc_blks *rsrc_blks; 6335 LPFC_MBOXQ_t *mbox; 6336 uint32_t length; 6337 struct lpfc_id_range *id_array = NULL; 6338 void *virtaddr = NULL; 6339 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6340 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6341 struct list_head *ext_blk_list; 6342 6343 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6344 &rsrc_cnt, 6345 &rsrc_size); 6346 if (unlikely(rc)) 6347 return -EIO; 6348 6349 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6350 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6351 "3009 No available Resource Extents " 6352 "for resource type 0x%x: Count: 0x%x, " 6353 "Size 0x%x\n", type, rsrc_cnt, 6354 rsrc_size); 6355 return -ENOMEM; 6356 } 6357 6358 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6359 "2903 Post resource extents type-0x%x: " 6360 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6361 6362 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6363 if (!mbox) 6364 return -ENOMEM; 6365 6366 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6367 if (unlikely(rc)) { 6368 rc = -EIO; 6369 goto err_exit; 6370 } 6371 6372 /* 6373 * Figure out where the response is located. Then get local pointers 6374 * to the response data. The port does not guarantee to respond to 6375 * all extents counts request so update the local variable with the 6376 * allocated count from the port. 6377 */ 6378 if (emb == LPFC_SLI4_MBX_EMBED) { 6379 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6380 id_array = &rsrc_ext->u.rsp.id[0]; 6381 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6382 } else { 6383 virtaddr = mbox->sge_array->addr[0]; 6384 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6385 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6386 id_array = &n_rsrc->id; 6387 } 6388 6389 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6390 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6391 6392 /* 6393 * Based on the resource size and count, correct the base and max 6394 * resource values. 6395 */ 6396 length = sizeof(struct lpfc_rsrc_blks); 6397 switch (type) { 6398 case LPFC_RSC_TYPE_FCOE_RPI: 6399 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6400 sizeof(unsigned long), 6401 GFP_KERNEL); 6402 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6403 rc = -ENOMEM; 6404 goto err_exit; 6405 } 6406 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6407 sizeof(uint16_t), 6408 GFP_KERNEL); 6409 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6410 kfree(phba->sli4_hba.rpi_bmask); 6411 rc = -ENOMEM; 6412 goto err_exit; 6413 } 6414 6415 /* 6416 * The next_rpi was initialized with the maximum available 6417 * count but the port may allocate a smaller number. Catch 6418 * that case and update the next_rpi. 6419 */ 6420 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6421 6422 /* Initialize local ptrs for common extent processing later. */ 6423 bmask = phba->sli4_hba.rpi_bmask; 6424 ids = phba->sli4_hba.rpi_ids; 6425 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6426 break; 6427 case LPFC_RSC_TYPE_FCOE_VPI: 6428 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6429 GFP_KERNEL); 6430 if (unlikely(!phba->vpi_bmask)) { 6431 rc = -ENOMEM; 6432 goto err_exit; 6433 } 6434 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6435 GFP_KERNEL); 6436 if (unlikely(!phba->vpi_ids)) { 6437 kfree(phba->vpi_bmask); 6438 rc = -ENOMEM; 6439 goto err_exit; 6440 } 6441 6442 /* Initialize local ptrs for common extent processing later. */ 6443 bmask = phba->vpi_bmask; 6444 ids = phba->vpi_ids; 6445 ext_blk_list = &phba->lpfc_vpi_blk_list; 6446 break; 6447 case LPFC_RSC_TYPE_FCOE_XRI: 6448 phba->sli4_hba.xri_bmask = kcalloc(longs, 6449 sizeof(unsigned long), 6450 GFP_KERNEL); 6451 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6452 rc = -ENOMEM; 6453 goto err_exit; 6454 } 6455 phba->sli4_hba.max_cfg_param.xri_used = 0; 6456 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6457 sizeof(uint16_t), 6458 GFP_KERNEL); 6459 if (unlikely(!phba->sli4_hba.xri_ids)) { 6460 kfree(phba->sli4_hba.xri_bmask); 6461 rc = -ENOMEM; 6462 goto err_exit; 6463 } 6464 6465 /* Initialize local ptrs for common extent processing later. */ 6466 bmask = phba->sli4_hba.xri_bmask; 6467 ids = phba->sli4_hba.xri_ids; 6468 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6469 break; 6470 case LPFC_RSC_TYPE_FCOE_VFI: 6471 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6472 sizeof(unsigned long), 6473 GFP_KERNEL); 6474 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6475 rc = -ENOMEM; 6476 goto err_exit; 6477 } 6478 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6479 sizeof(uint16_t), 6480 GFP_KERNEL); 6481 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6482 kfree(phba->sli4_hba.vfi_bmask); 6483 rc = -ENOMEM; 6484 goto err_exit; 6485 } 6486 6487 /* Initialize local ptrs for common extent processing later. */ 6488 bmask = phba->sli4_hba.vfi_bmask; 6489 ids = phba->sli4_hba.vfi_ids; 6490 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6491 break; 6492 default: 6493 /* Unsupported Opcode. Fail call. */ 6494 id_array = NULL; 6495 bmask = NULL; 6496 ids = NULL; 6497 ext_blk_list = NULL; 6498 goto err_exit; 6499 } 6500 6501 /* 6502 * Complete initializing the extent configuration with the 6503 * allocated ids assigned to this function. The bitmask serves 6504 * as an index into the array and manages the available ids. The 6505 * array just stores the ids communicated to the port via the wqes. 6506 */ 6507 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6508 if ((i % 2) == 0) 6509 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6510 &id_array[k]); 6511 else 6512 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6513 &id_array[k]); 6514 6515 rsrc_blks = kzalloc(length, GFP_KERNEL); 6516 if (unlikely(!rsrc_blks)) { 6517 rc = -ENOMEM; 6518 kfree(bmask); 6519 kfree(ids); 6520 goto err_exit; 6521 } 6522 rsrc_blks->rsrc_start = rsrc_id; 6523 rsrc_blks->rsrc_size = rsrc_size; 6524 list_add_tail(&rsrc_blks->list, ext_blk_list); 6525 rsrc_start = rsrc_id; 6526 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6527 phba->sli4_hba.io_xri_start = rsrc_start + 6528 lpfc_sli4_get_iocb_cnt(phba); 6529 } 6530 6531 while (rsrc_id < (rsrc_start + rsrc_size)) { 6532 ids[j] = rsrc_id; 6533 rsrc_id++; 6534 j++; 6535 } 6536 /* Entire word processed. Get next word.*/ 6537 if ((i % 2) == 1) 6538 k++; 6539 } 6540 err_exit: 6541 lpfc_sli4_mbox_cmd_free(phba, mbox); 6542 return rc; 6543 } 6544 6545 6546 6547 /** 6548 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6549 * @phba: Pointer to HBA context object. 6550 * @type: the extent's type. 6551 * 6552 * This function deallocates all extents of a particular resource type. 6553 * SLI4 does not allow for deallocating a particular extent range. It 6554 * is the caller's responsibility to release all kernel memory resources. 6555 **/ 6556 static int 6557 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6558 { 6559 int rc; 6560 uint32_t length, mbox_tmo = 0; 6561 LPFC_MBOXQ_t *mbox; 6562 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6563 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6564 6565 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6566 if (!mbox) 6567 return -ENOMEM; 6568 6569 /* 6570 * This function sends an embedded mailbox because it only sends the 6571 * the resource type. All extents of this type are released by the 6572 * port. 6573 */ 6574 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6575 sizeof(struct lpfc_sli4_cfg_mhdr)); 6576 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6577 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6578 length, LPFC_SLI4_MBX_EMBED); 6579 6580 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6581 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6582 LPFC_SLI4_MBX_EMBED); 6583 if (unlikely(rc)) { 6584 rc = -EIO; 6585 goto out_free_mbox; 6586 } 6587 if (!phba->sli4_hba.intr_enable) 6588 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6589 else { 6590 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6591 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6592 } 6593 if (unlikely(rc)) { 6594 rc = -EIO; 6595 goto out_free_mbox; 6596 } 6597 6598 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6599 if (bf_get(lpfc_mbox_hdr_status, 6600 &dealloc_rsrc->header.cfg_shdr.response)) { 6601 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6602 "2919 Failed to release resource extents " 6603 "for type %d - Status 0x%x Add'l Status 0x%x. " 6604 "Resource memory not released.\n", 6605 type, 6606 bf_get(lpfc_mbox_hdr_status, 6607 &dealloc_rsrc->header.cfg_shdr.response), 6608 bf_get(lpfc_mbox_hdr_add_status, 6609 &dealloc_rsrc->header.cfg_shdr.response)); 6610 rc = -EIO; 6611 goto out_free_mbox; 6612 } 6613 6614 /* Release kernel memory resources for the specific type. */ 6615 switch (type) { 6616 case LPFC_RSC_TYPE_FCOE_VPI: 6617 kfree(phba->vpi_bmask); 6618 kfree(phba->vpi_ids); 6619 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6620 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6621 &phba->lpfc_vpi_blk_list, list) { 6622 list_del_init(&rsrc_blk->list); 6623 kfree(rsrc_blk); 6624 } 6625 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6626 break; 6627 case LPFC_RSC_TYPE_FCOE_XRI: 6628 kfree(phba->sli4_hba.xri_bmask); 6629 kfree(phba->sli4_hba.xri_ids); 6630 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6631 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6632 list_del_init(&rsrc_blk->list); 6633 kfree(rsrc_blk); 6634 } 6635 break; 6636 case LPFC_RSC_TYPE_FCOE_VFI: 6637 kfree(phba->sli4_hba.vfi_bmask); 6638 kfree(phba->sli4_hba.vfi_ids); 6639 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6640 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6641 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6642 list_del_init(&rsrc_blk->list); 6643 kfree(rsrc_blk); 6644 } 6645 break; 6646 case LPFC_RSC_TYPE_FCOE_RPI: 6647 /* RPI bitmask and physical id array are cleaned up earlier. */ 6648 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6649 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6650 list_del_init(&rsrc_blk->list); 6651 kfree(rsrc_blk); 6652 } 6653 break; 6654 default: 6655 break; 6656 } 6657 6658 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6659 6660 out_free_mbox: 6661 mempool_free(mbox, phba->mbox_mem_pool); 6662 return rc; 6663 } 6664 6665 static void 6666 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6667 uint32_t feature) 6668 { 6669 uint32_t len; 6670 u32 sig_freq = 0; 6671 6672 len = sizeof(struct lpfc_mbx_set_feature) - 6673 sizeof(struct lpfc_sli4_cfg_mhdr); 6674 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6675 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6676 LPFC_SLI4_MBX_EMBED); 6677 6678 switch (feature) { 6679 case LPFC_SET_UE_RECOVERY: 6680 bf_set(lpfc_mbx_set_feature_UER, 6681 &mbox->u.mqe.un.set_feature, 1); 6682 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6683 mbox->u.mqe.un.set_feature.param_len = 8; 6684 break; 6685 case LPFC_SET_MDS_DIAGS: 6686 bf_set(lpfc_mbx_set_feature_mds, 6687 &mbox->u.mqe.un.set_feature, 1); 6688 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6689 &mbox->u.mqe.un.set_feature, 1); 6690 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6691 mbox->u.mqe.un.set_feature.param_len = 8; 6692 break; 6693 case LPFC_SET_CGN_SIGNAL: 6694 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6695 sig_freq = 0; 6696 else 6697 sig_freq = phba->cgn_sig_freq; 6698 6699 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6700 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq, 6701 &mbox->u.mqe.un.set_feature, sig_freq); 6702 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6703 &mbox->u.mqe.un.set_feature, sig_freq); 6704 } 6705 6706 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY) 6707 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6708 &mbox->u.mqe.un.set_feature, sig_freq); 6709 6710 if (phba->cmf_active_mode == LPFC_CFG_OFF || 6711 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED) 6712 sig_freq = 0; 6713 else 6714 sig_freq = lpfc_acqe_cgn_frequency; 6715 6716 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq, 6717 &mbox->u.mqe.un.set_feature, sig_freq); 6718 6719 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL; 6720 mbox->u.mqe.un.set_feature.param_len = 12; 6721 break; 6722 case LPFC_SET_DUAL_DUMP: 6723 bf_set(lpfc_mbx_set_feature_dd, 6724 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6725 bf_set(lpfc_mbx_set_feature_ddquery, 6726 &mbox->u.mqe.un.set_feature, 0); 6727 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6728 mbox->u.mqe.un.set_feature.param_len = 4; 6729 break; 6730 case LPFC_SET_ENABLE_MI: 6731 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI; 6732 mbox->u.mqe.un.set_feature.param_len = 4; 6733 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature, 6734 phba->pport->cfg_lun_queue_depth); 6735 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature, 6736 phba->sli4_hba.pc_sli4_params.mi_ver); 6737 break; 6738 case LPFC_SET_ENABLE_CMF: 6739 bf_set(lpfc_mbx_set_feature_dd, &mbox->u.mqe.un.set_feature, 1); 6740 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF; 6741 mbox->u.mqe.un.set_feature.param_len = 4; 6742 bf_set(lpfc_mbx_set_feature_cmf, 6743 &mbox->u.mqe.un.set_feature, 1); 6744 break; 6745 } 6746 return; 6747 } 6748 6749 /** 6750 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6751 * @phba: Pointer to HBA context object. 6752 * 6753 * Disable FW logging into host memory on the adapter. To 6754 * be done before reading logs from the host memory. 6755 **/ 6756 void 6757 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6758 { 6759 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6760 6761 spin_lock_irq(&phba->hbalock); 6762 ras_fwlog->state = INACTIVE; 6763 spin_unlock_irq(&phba->hbalock); 6764 6765 /* Disable FW logging to host memory */ 6766 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6767 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6768 6769 /* Wait 10ms for firmware to stop using DMA buffer */ 6770 usleep_range(10 * 1000, 20 * 1000); 6771 } 6772 6773 /** 6774 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6775 * @phba: Pointer to HBA context object. 6776 * 6777 * This function is called to free memory allocated for RAS FW logging 6778 * support in the driver. 6779 **/ 6780 void 6781 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6782 { 6783 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6784 struct lpfc_dmabuf *dmabuf, *next; 6785 6786 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6787 list_for_each_entry_safe(dmabuf, next, 6788 &ras_fwlog->fwlog_buff_list, 6789 list) { 6790 list_del(&dmabuf->list); 6791 dma_free_coherent(&phba->pcidev->dev, 6792 LPFC_RAS_MAX_ENTRY_SIZE, 6793 dmabuf->virt, dmabuf->phys); 6794 kfree(dmabuf); 6795 } 6796 } 6797 6798 if (ras_fwlog->lwpd.virt) { 6799 dma_free_coherent(&phba->pcidev->dev, 6800 sizeof(uint32_t) * 2, 6801 ras_fwlog->lwpd.virt, 6802 ras_fwlog->lwpd.phys); 6803 ras_fwlog->lwpd.virt = NULL; 6804 } 6805 6806 spin_lock_irq(&phba->hbalock); 6807 ras_fwlog->state = INACTIVE; 6808 spin_unlock_irq(&phba->hbalock); 6809 } 6810 6811 /** 6812 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6813 * @phba: Pointer to HBA context object. 6814 * @fwlog_buff_count: Count of buffers to be created. 6815 * 6816 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6817 * to update FW log is posted to the adapter. 6818 * Buffer count is calculated based on module param ras_fwlog_buffsize 6819 * Size of each buffer posted to FW is 64K. 6820 **/ 6821 6822 static int 6823 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6824 uint32_t fwlog_buff_count) 6825 { 6826 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6827 struct lpfc_dmabuf *dmabuf; 6828 int rc = 0, i = 0; 6829 6830 /* Initialize List */ 6831 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6832 6833 /* Allocate memory for the LWPD */ 6834 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6835 sizeof(uint32_t) * 2, 6836 &ras_fwlog->lwpd.phys, 6837 GFP_KERNEL); 6838 if (!ras_fwlog->lwpd.virt) { 6839 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6840 "6185 LWPD Memory Alloc Failed\n"); 6841 6842 return -ENOMEM; 6843 } 6844 6845 ras_fwlog->fw_buffcount = fwlog_buff_count; 6846 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6847 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6848 GFP_KERNEL); 6849 if (!dmabuf) { 6850 rc = -ENOMEM; 6851 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6852 "6186 Memory Alloc failed FW logging"); 6853 goto free_mem; 6854 } 6855 6856 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6857 LPFC_RAS_MAX_ENTRY_SIZE, 6858 &dmabuf->phys, GFP_KERNEL); 6859 if (!dmabuf->virt) { 6860 kfree(dmabuf); 6861 rc = -ENOMEM; 6862 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6863 "6187 DMA Alloc Failed FW logging"); 6864 goto free_mem; 6865 } 6866 dmabuf->buffer_tag = i; 6867 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6868 } 6869 6870 free_mem: 6871 if (rc) 6872 lpfc_sli4_ras_dma_free(phba); 6873 6874 return rc; 6875 } 6876 6877 /** 6878 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6879 * @phba: pointer to lpfc hba data structure. 6880 * @pmb: pointer to the driver internal queue element for mailbox command. 6881 * 6882 * Completion handler for driver's RAS MBX command to the device. 6883 **/ 6884 static void 6885 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6886 { 6887 MAILBOX_t *mb; 6888 union lpfc_sli4_cfg_shdr *shdr; 6889 uint32_t shdr_status, shdr_add_status; 6890 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6891 6892 mb = &pmb->u.mb; 6893 6894 shdr = (union lpfc_sli4_cfg_shdr *) 6895 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6896 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6897 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6898 6899 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6900 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6901 "6188 FW LOG mailbox " 6902 "completed with status x%x add_status x%x," 6903 " mbx status x%x\n", 6904 shdr_status, shdr_add_status, mb->mbxStatus); 6905 6906 ras_fwlog->ras_hwsupport = false; 6907 goto disable_ras; 6908 } 6909 6910 spin_lock_irq(&phba->hbalock); 6911 ras_fwlog->state = ACTIVE; 6912 spin_unlock_irq(&phba->hbalock); 6913 mempool_free(pmb, phba->mbox_mem_pool); 6914 6915 return; 6916 6917 disable_ras: 6918 /* Free RAS DMA memory */ 6919 lpfc_sli4_ras_dma_free(phba); 6920 mempool_free(pmb, phba->mbox_mem_pool); 6921 } 6922 6923 /** 6924 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 6925 * @phba: pointer to lpfc hba data structure. 6926 * @fwlog_level: Logging verbosity level. 6927 * @fwlog_enable: Enable/Disable logging. 6928 * 6929 * Initialize memory and post mailbox command to enable FW logging in host 6930 * memory. 6931 **/ 6932 int 6933 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 6934 uint32_t fwlog_level, 6935 uint32_t fwlog_enable) 6936 { 6937 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6938 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 6939 struct lpfc_dmabuf *dmabuf; 6940 LPFC_MBOXQ_t *mbox; 6941 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 6942 int rc = 0; 6943 6944 spin_lock_irq(&phba->hbalock); 6945 ras_fwlog->state = INACTIVE; 6946 spin_unlock_irq(&phba->hbalock); 6947 6948 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 6949 phba->cfg_ras_fwlog_buffsize); 6950 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 6951 6952 /* 6953 * If re-enabling FW logging support use earlier allocated 6954 * DMA buffers while posting MBX command. 6955 **/ 6956 if (!ras_fwlog->lwpd.virt) { 6957 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 6958 if (rc) { 6959 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6960 "6189 FW Log Memory Allocation Failed"); 6961 return rc; 6962 } 6963 } 6964 6965 /* Setup Mailbox command */ 6966 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6967 if (!mbox) { 6968 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6969 "6190 RAS MBX Alloc Failed"); 6970 rc = -ENOMEM; 6971 goto mem_free; 6972 } 6973 6974 ras_fwlog->fw_loglevel = fwlog_level; 6975 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 6976 sizeof(struct lpfc_sli4_cfg_mhdr)); 6977 6978 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 6979 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 6980 len, LPFC_SLI4_MBX_EMBED); 6981 6982 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 6983 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 6984 fwlog_enable); 6985 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 6986 ras_fwlog->fw_loglevel); 6987 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 6988 ras_fwlog->fw_buffcount); 6989 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 6990 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 6991 6992 /* Update DMA buffer address */ 6993 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 6994 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 6995 6996 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 6997 putPaddrLow(dmabuf->phys); 6998 6999 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 7000 putPaddrHigh(dmabuf->phys); 7001 } 7002 7003 /* Update LPWD address */ 7004 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 7005 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 7006 7007 spin_lock_irq(&phba->hbalock); 7008 ras_fwlog->state = REG_INPROGRESS; 7009 spin_unlock_irq(&phba->hbalock); 7010 mbox->vport = phba->pport; 7011 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 7012 7013 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 7014 7015 if (rc == MBX_NOT_FINISHED) { 7016 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7017 "6191 FW-Log Mailbox failed. " 7018 "status %d mbxStatus : x%x", rc, 7019 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 7020 mempool_free(mbox, phba->mbox_mem_pool); 7021 rc = -EIO; 7022 goto mem_free; 7023 } else 7024 rc = 0; 7025 mem_free: 7026 if (rc) 7027 lpfc_sli4_ras_dma_free(phba); 7028 7029 return rc; 7030 } 7031 7032 /** 7033 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 7034 * @phba: Pointer to HBA context object. 7035 * 7036 * Check if RAS is supported on the adapter and initialize it. 7037 **/ 7038 void 7039 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 7040 { 7041 /* Check RAS FW Log needs to be enabled or not */ 7042 if (lpfc_check_fwlog_support(phba)) 7043 return; 7044 7045 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 7046 LPFC_RAS_ENABLE_LOGGING); 7047 } 7048 7049 /** 7050 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 7051 * @phba: Pointer to HBA context object. 7052 * 7053 * This function allocates all SLI4 resource identifiers. 7054 **/ 7055 int 7056 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 7057 { 7058 int i, rc, error = 0; 7059 uint16_t count, base; 7060 unsigned long longs; 7061 7062 if (!phba->sli4_hba.rpi_hdrs_in_use) 7063 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 7064 if (phba->sli4_hba.extents_in_use) { 7065 /* 7066 * The port supports resource extents. The XRI, VPI, VFI, RPI 7067 * resource extent count must be read and allocated before 7068 * provisioning the resource id arrays. 7069 */ 7070 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7071 LPFC_IDX_RSRC_RDY) { 7072 /* 7073 * Extent-based resources are set - the driver could 7074 * be in a port reset. Figure out if any corrective 7075 * actions need to be taken. 7076 */ 7077 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7078 LPFC_RSC_TYPE_FCOE_VFI); 7079 if (rc != 0) 7080 error++; 7081 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7082 LPFC_RSC_TYPE_FCOE_VPI); 7083 if (rc != 0) 7084 error++; 7085 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7086 LPFC_RSC_TYPE_FCOE_XRI); 7087 if (rc != 0) 7088 error++; 7089 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7090 LPFC_RSC_TYPE_FCOE_RPI); 7091 if (rc != 0) 7092 error++; 7093 7094 /* 7095 * It's possible that the number of resources 7096 * provided to this port instance changed between 7097 * resets. Detect this condition and reallocate 7098 * resources. Otherwise, there is no action. 7099 */ 7100 if (error) { 7101 lpfc_printf_log(phba, KERN_INFO, 7102 LOG_MBOX | LOG_INIT, 7103 "2931 Detected extent resource " 7104 "change. Reallocating all " 7105 "extents.\n"); 7106 rc = lpfc_sli4_dealloc_extent(phba, 7107 LPFC_RSC_TYPE_FCOE_VFI); 7108 rc = lpfc_sli4_dealloc_extent(phba, 7109 LPFC_RSC_TYPE_FCOE_VPI); 7110 rc = lpfc_sli4_dealloc_extent(phba, 7111 LPFC_RSC_TYPE_FCOE_XRI); 7112 rc = lpfc_sli4_dealloc_extent(phba, 7113 LPFC_RSC_TYPE_FCOE_RPI); 7114 } else 7115 return 0; 7116 } 7117 7118 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7119 if (unlikely(rc)) 7120 goto err_exit; 7121 7122 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7123 if (unlikely(rc)) 7124 goto err_exit; 7125 7126 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7127 if (unlikely(rc)) 7128 goto err_exit; 7129 7130 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7131 if (unlikely(rc)) 7132 goto err_exit; 7133 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7134 LPFC_IDX_RSRC_RDY); 7135 return rc; 7136 } else { 7137 /* 7138 * The port does not support resource extents. The XRI, VPI, 7139 * VFI, RPI resource ids were determined from READ_CONFIG. 7140 * Just allocate the bitmasks and provision the resource id 7141 * arrays. If a port reset is active, the resources don't 7142 * need any action - just exit. 7143 */ 7144 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7145 LPFC_IDX_RSRC_RDY) { 7146 lpfc_sli4_dealloc_resource_identifiers(phba); 7147 lpfc_sli4_remove_rpis(phba); 7148 } 7149 /* RPIs. */ 7150 count = phba->sli4_hba.max_cfg_param.max_rpi; 7151 if (count <= 0) { 7152 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7153 "3279 Invalid provisioning of " 7154 "rpi:%d\n", count); 7155 rc = -EINVAL; 7156 goto err_exit; 7157 } 7158 base = phba->sli4_hba.max_cfg_param.rpi_base; 7159 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7160 phba->sli4_hba.rpi_bmask = kcalloc(longs, 7161 sizeof(unsigned long), 7162 GFP_KERNEL); 7163 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 7164 rc = -ENOMEM; 7165 goto err_exit; 7166 } 7167 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 7168 GFP_KERNEL); 7169 if (unlikely(!phba->sli4_hba.rpi_ids)) { 7170 rc = -ENOMEM; 7171 goto free_rpi_bmask; 7172 } 7173 7174 for (i = 0; i < count; i++) 7175 phba->sli4_hba.rpi_ids[i] = base + i; 7176 7177 /* VPIs. */ 7178 count = phba->sli4_hba.max_cfg_param.max_vpi; 7179 if (count <= 0) { 7180 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7181 "3280 Invalid provisioning of " 7182 "vpi:%d\n", count); 7183 rc = -EINVAL; 7184 goto free_rpi_ids; 7185 } 7186 base = phba->sli4_hba.max_cfg_param.vpi_base; 7187 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7188 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 7189 GFP_KERNEL); 7190 if (unlikely(!phba->vpi_bmask)) { 7191 rc = -ENOMEM; 7192 goto free_rpi_ids; 7193 } 7194 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 7195 GFP_KERNEL); 7196 if (unlikely(!phba->vpi_ids)) { 7197 rc = -ENOMEM; 7198 goto free_vpi_bmask; 7199 } 7200 7201 for (i = 0; i < count; i++) 7202 phba->vpi_ids[i] = base + i; 7203 7204 /* XRIs. */ 7205 count = phba->sli4_hba.max_cfg_param.max_xri; 7206 if (count <= 0) { 7207 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7208 "3281 Invalid provisioning of " 7209 "xri:%d\n", count); 7210 rc = -EINVAL; 7211 goto free_vpi_ids; 7212 } 7213 base = phba->sli4_hba.max_cfg_param.xri_base; 7214 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7215 phba->sli4_hba.xri_bmask = kcalloc(longs, 7216 sizeof(unsigned long), 7217 GFP_KERNEL); 7218 if (unlikely(!phba->sli4_hba.xri_bmask)) { 7219 rc = -ENOMEM; 7220 goto free_vpi_ids; 7221 } 7222 phba->sli4_hba.max_cfg_param.xri_used = 0; 7223 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 7224 GFP_KERNEL); 7225 if (unlikely(!phba->sli4_hba.xri_ids)) { 7226 rc = -ENOMEM; 7227 goto free_xri_bmask; 7228 } 7229 7230 for (i = 0; i < count; i++) 7231 phba->sli4_hba.xri_ids[i] = base + i; 7232 7233 /* VFIs. */ 7234 count = phba->sli4_hba.max_cfg_param.max_vfi; 7235 if (count <= 0) { 7236 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7237 "3282 Invalid provisioning of " 7238 "vfi:%d\n", count); 7239 rc = -EINVAL; 7240 goto free_xri_ids; 7241 } 7242 base = phba->sli4_hba.max_cfg_param.vfi_base; 7243 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7244 phba->sli4_hba.vfi_bmask = kcalloc(longs, 7245 sizeof(unsigned long), 7246 GFP_KERNEL); 7247 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 7248 rc = -ENOMEM; 7249 goto free_xri_ids; 7250 } 7251 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 7252 GFP_KERNEL); 7253 if (unlikely(!phba->sli4_hba.vfi_ids)) { 7254 rc = -ENOMEM; 7255 goto free_vfi_bmask; 7256 } 7257 7258 for (i = 0; i < count; i++) 7259 phba->sli4_hba.vfi_ids[i] = base + i; 7260 7261 /* 7262 * Mark all resources ready. An HBA reset doesn't need 7263 * to reset the initialization. 7264 */ 7265 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7266 LPFC_IDX_RSRC_RDY); 7267 return 0; 7268 } 7269 7270 free_vfi_bmask: 7271 kfree(phba->sli4_hba.vfi_bmask); 7272 phba->sli4_hba.vfi_bmask = NULL; 7273 free_xri_ids: 7274 kfree(phba->sli4_hba.xri_ids); 7275 phba->sli4_hba.xri_ids = NULL; 7276 free_xri_bmask: 7277 kfree(phba->sli4_hba.xri_bmask); 7278 phba->sli4_hba.xri_bmask = NULL; 7279 free_vpi_ids: 7280 kfree(phba->vpi_ids); 7281 phba->vpi_ids = NULL; 7282 free_vpi_bmask: 7283 kfree(phba->vpi_bmask); 7284 phba->vpi_bmask = NULL; 7285 free_rpi_ids: 7286 kfree(phba->sli4_hba.rpi_ids); 7287 phba->sli4_hba.rpi_ids = NULL; 7288 free_rpi_bmask: 7289 kfree(phba->sli4_hba.rpi_bmask); 7290 phba->sli4_hba.rpi_bmask = NULL; 7291 err_exit: 7292 return rc; 7293 } 7294 7295 /** 7296 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 7297 * @phba: Pointer to HBA context object. 7298 * 7299 * This function allocates the number of elements for the specified 7300 * resource type. 7301 **/ 7302 int 7303 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7304 { 7305 if (phba->sli4_hba.extents_in_use) { 7306 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7307 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7308 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7309 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7310 } else { 7311 kfree(phba->vpi_bmask); 7312 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7313 kfree(phba->vpi_ids); 7314 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7315 kfree(phba->sli4_hba.xri_bmask); 7316 kfree(phba->sli4_hba.xri_ids); 7317 kfree(phba->sli4_hba.vfi_bmask); 7318 kfree(phba->sli4_hba.vfi_ids); 7319 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7320 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7321 } 7322 7323 return 0; 7324 } 7325 7326 /** 7327 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7328 * @phba: Pointer to HBA context object. 7329 * @type: The resource extent type. 7330 * @extnt_cnt: buffer to hold port extent count response 7331 * @extnt_size: buffer to hold port extent size response. 7332 * 7333 * This function calls the port to read the host allocated extents 7334 * for a particular type. 7335 **/ 7336 int 7337 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7338 uint16_t *extnt_cnt, uint16_t *extnt_size) 7339 { 7340 bool emb; 7341 int rc = 0; 7342 uint16_t curr_blks = 0; 7343 uint32_t req_len, emb_len; 7344 uint32_t alloc_len, mbox_tmo; 7345 struct list_head *blk_list_head; 7346 struct lpfc_rsrc_blks *rsrc_blk; 7347 LPFC_MBOXQ_t *mbox; 7348 void *virtaddr = NULL; 7349 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7350 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7351 union lpfc_sli4_cfg_shdr *shdr; 7352 7353 switch (type) { 7354 case LPFC_RSC_TYPE_FCOE_VPI: 7355 blk_list_head = &phba->lpfc_vpi_blk_list; 7356 break; 7357 case LPFC_RSC_TYPE_FCOE_XRI: 7358 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7359 break; 7360 case LPFC_RSC_TYPE_FCOE_VFI: 7361 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7362 break; 7363 case LPFC_RSC_TYPE_FCOE_RPI: 7364 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7365 break; 7366 default: 7367 return -EIO; 7368 } 7369 7370 /* Count the number of extents currently allocatd for this type. */ 7371 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7372 if (curr_blks == 0) { 7373 /* 7374 * The GET_ALLOCATED mailbox does not return the size, 7375 * just the count. The size should be just the size 7376 * stored in the current allocated block and all sizes 7377 * for an extent type are the same so set the return 7378 * value now. 7379 */ 7380 *extnt_size = rsrc_blk->rsrc_size; 7381 } 7382 curr_blks++; 7383 } 7384 7385 /* 7386 * Calculate the size of an embedded mailbox. The uint32_t 7387 * accounts for extents-specific word. 7388 */ 7389 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7390 sizeof(uint32_t); 7391 7392 /* 7393 * Presume the allocation and response will fit into an embedded 7394 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7395 */ 7396 emb = LPFC_SLI4_MBX_EMBED; 7397 req_len = emb_len; 7398 if (req_len > emb_len) { 7399 req_len = curr_blks * sizeof(uint16_t) + 7400 sizeof(union lpfc_sli4_cfg_shdr) + 7401 sizeof(uint32_t); 7402 emb = LPFC_SLI4_MBX_NEMBED; 7403 } 7404 7405 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7406 if (!mbox) 7407 return -ENOMEM; 7408 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7409 7410 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7411 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7412 req_len, emb); 7413 if (alloc_len < req_len) { 7414 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7415 "2983 Allocated DMA memory size (x%x) is " 7416 "less than the requested DMA memory " 7417 "size (x%x)\n", alloc_len, req_len); 7418 rc = -ENOMEM; 7419 goto err_exit; 7420 } 7421 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7422 if (unlikely(rc)) { 7423 rc = -EIO; 7424 goto err_exit; 7425 } 7426 7427 if (!phba->sli4_hba.intr_enable) 7428 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7429 else { 7430 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7431 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7432 } 7433 7434 if (unlikely(rc)) { 7435 rc = -EIO; 7436 goto err_exit; 7437 } 7438 7439 /* 7440 * Figure out where the response is located. Then get local pointers 7441 * to the response data. The port does not guarantee to respond to 7442 * all extents counts request so update the local variable with the 7443 * allocated count from the port. 7444 */ 7445 if (emb == LPFC_SLI4_MBX_EMBED) { 7446 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7447 shdr = &rsrc_ext->header.cfg_shdr; 7448 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7449 } else { 7450 virtaddr = mbox->sge_array->addr[0]; 7451 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7452 shdr = &n_rsrc->cfg_shdr; 7453 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7454 } 7455 7456 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7457 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7458 "2984 Failed to read allocated resources " 7459 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7460 type, 7461 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7462 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7463 rc = -EIO; 7464 goto err_exit; 7465 } 7466 err_exit: 7467 lpfc_sli4_mbox_cmd_free(phba, mbox); 7468 return rc; 7469 } 7470 7471 /** 7472 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7473 * @phba: pointer to lpfc hba data structure. 7474 * @sgl_list: linked link of sgl buffers to post 7475 * @cnt: number of linked list buffers 7476 * 7477 * This routine walks the list of buffers that have been allocated and 7478 * repost them to the port by using SGL block post. This is needed after a 7479 * pci_function_reset/warm_start or start. It attempts to construct blocks 7480 * of buffer sgls which contains contiguous xris and uses the non-embedded 7481 * SGL block post mailbox commands to post them to the port. For single 7482 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7483 * mailbox command for posting. 7484 * 7485 * Returns: 0 = success, non-zero failure. 7486 **/ 7487 static int 7488 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7489 struct list_head *sgl_list, int cnt) 7490 { 7491 struct lpfc_sglq *sglq_entry = NULL; 7492 struct lpfc_sglq *sglq_entry_next = NULL; 7493 struct lpfc_sglq *sglq_entry_first = NULL; 7494 int status, total_cnt; 7495 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7496 int last_xritag = NO_XRI; 7497 LIST_HEAD(prep_sgl_list); 7498 LIST_HEAD(blck_sgl_list); 7499 LIST_HEAD(allc_sgl_list); 7500 LIST_HEAD(post_sgl_list); 7501 LIST_HEAD(free_sgl_list); 7502 7503 spin_lock_irq(&phba->hbalock); 7504 spin_lock(&phba->sli4_hba.sgl_list_lock); 7505 list_splice_init(sgl_list, &allc_sgl_list); 7506 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7507 spin_unlock_irq(&phba->hbalock); 7508 7509 total_cnt = cnt; 7510 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7511 &allc_sgl_list, list) { 7512 list_del_init(&sglq_entry->list); 7513 block_cnt++; 7514 if ((last_xritag != NO_XRI) && 7515 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7516 /* a hole in xri block, form a sgl posting block */ 7517 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7518 post_cnt = block_cnt - 1; 7519 /* prepare list for next posting block */ 7520 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7521 block_cnt = 1; 7522 } else { 7523 /* prepare list for next posting block */ 7524 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7525 /* enough sgls for non-embed sgl mbox command */ 7526 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7527 list_splice_init(&prep_sgl_list, 7528 &blck_sgl_list); 7529 post_cnt = block_cnt; 7530 block_cnt = 0; 7531 } 7532 } 7533 num_posted++; 7534 7535 /* keep track of last sgl's xritag */ 7536 last_xritag = sglq_entry->sli4_xritag; 7537 7538 /* end of repost sgl list condition for buffers */ 7539 if (num_posted == total_cnt) { 7540 if (post_cnt == 0) { 7541 list_splice_init(&prep_sgl_list, 7542 &blck_sgl_list); 7543 post_cnt = block_cnt; 7544 } else if (block_cnt == 1) { 7545 status = lpfc_sli4_post_sgl(phba, 7546 sglq_entry->phys, 0, 7547 sglq_entry->sli4_xritag); 7548 if (!status) { 7549 /* successful, put sgl to posted list */ 7550 list_add_tail(&sglq_entry->list, 7551 &post_sgl_list); 7552 } else { 7553 /* Failure, put sgl to free list */ 7554 lpfc_printf_log(phba, KERN_WARNING, 7555 LOG_SLI, 7556 "3159 Failed to post " 7557 "sgl, xritag:x%x\n", 7558 sglq_entry->sli4_xritag); 7559 list_add_tail(&sglq_entry->list, 7560 &free_sgl_list); 7561 total_cnt--; 7562 } 7563 } 7564 } 7565 7566 /* continue until a nembed page worth of sgls */ 7567 if (post_cnt == 0) 7568 continue; 7569 7570 /* post the buffer list sgls as a block */ 7571 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7572 post_cnt); 7573 7574 if (!status) { 7575 /* success, put sgl list to posted sgl list */ 7576 list_splice_init(&blck_sgl_list, &post_sgl_list); 7577 } else { 7578 /* Failure, put sgl list to free sgl list */ 7579 sglq_entry_first = list_first_entry(&blck_sgl_list, 7580 struct lpfc_sglq, 7581 list); 7582 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7583 "3160 Failed to post sgl-list, " 7584 "xritag:x%x-x%x\n", 7585 sglq_entry_first->sli4_xritag, 7586 (sglq_entry_first->sli4_xritag + 7587 post_cnt - 1)); 7588 list_splice_init(&blck_sgl_list, &free_sgl_list); 7589 total_cnt -= post_cnt; 7590 } 7591 7592 /* don't reset xirtag due to hole in xri block */ 7593 if (block_cnt == 0) 7594 last_xritag = NO_XRI; 7595 7596 /* reset sgl post count for next round of posting */ 7597 post_cnt = 0; 7598 } 7599 7600 /* free the sgls failed to post */ 7601 lpfc_free_sgl_list(phba, &free_sgl_list); 7602 7603 /* push sgls posted to the available list */ 7604 if (!list_empty(&post_sgl_list)) { 7605 spin_lock_irq(&phba->hbalock); 7606 spin_lock(&phba->sli4_hba.sgl_list_lock); 7607 list_splice_init(&post_sgl_list, sgl_list); 7608 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7609 spin_unlock_irq(&phba->hbalock); 7610 } else { 7611 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7612 "3161 Failure to post sgl to port.\n"); 7613 return -EIO; 7614 } 7615 7616 /* return the number of XRIs actually posted */ 7617 return total_cnt; 7618 } 7619 7620 /** 7621 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7622 * @phba: pointer to lpfc hba data structure. 7623 * 7624 * This routine walks the list of nvme buffers that have been allocated and 7625 * repost them to the port by using SGL block post. This is needed after a 7626 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7627 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7628 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7629 * 7630 * Returns: 0 = success, non-zero failure. 7631 **/ 7632 static int 7633 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7634 { 7635 LIST_HEAD(post_nblist); 7636 int num_posted, rc = 0; 7637 7638 /* get all NVME buffers need to repost to a local list */ 7639 lpfc_io_buf_flush(phba, &post_nblist); 7640 7641 /* post the list of nvme buffer sgls to port if available */ 7642 if (!list_empty(&post_nblist)) { 7643 num_posted = lpfc_sli4_post_io_sgl_list( 7644 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7645 /* failed to post any nvme buffer, return error */ 7646 if (num_posted == 0) 7647 rc = -EIO; 7648 } 7649 return rc; 7650 } 7651 7652 static void 7653 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7654 { 7655 uint32_t len; 7656 7657 len = sizeof(struct lpfc_mbx_set_host_data) - 7658 sizeof(struct lpfc_sli4_cfg_mhdr); 7659 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7660 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7661 LPFC_SLI4_MBX_EMBED); 7662 7663 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7664 mbox->u.mqe.un.set_host_data.param_len = 7665 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7666 snprintf(mbox->u.mqe.un.set_host_data.un.data, 7667 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7668 "Linux %s v"LPFC_DRIVER_VERSION, 7669 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7670 } 7671 7672 int 7673 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7674 struct lpfc_queue *drq, int count, int idx) 7675 { 7676 int rc, i; 7677 struct lpfc_rqe hrqe; 7678 struct lpfc_rqe drqe; 7679 struct lpfc_rqb *rqbp; 7680 unsigned long flags; 7681 struct rqb_dmabuf *rqb_buffer; 7682 LIST_HEAD(rqb_buf_list); 7683 7684 rqbp = hrq->rqbp; 7685 for (i = 0; i < count; i++) { 7686 spin_lock_irqsave(&phba->hbalock, flags); 7687 /* IF RQ is already full, don't bother */ 7688 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7689 spin_unlock_irqrestore(&phba->hbalock, flags); 7690 break; 7691 } 7692 spin_unlock_irqrestore(&phba->hbalock, flags); 7693 7694 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7695 if (!rqb_buffer) 7696 break; 7697 rqb_buffer->hrq = hrq; 7698 rqb_buffer->drq = drq; 7699 rqb_buffer->idx = idx; 7700 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7701 } 7702 7703 spin_lock_irqsave(&phba->hbalock, flags); 7704 while (!list_empty(&rqb_buf_list)) { 7705 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7706 hbuf.list); 7707 7708 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7709 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7710 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7711 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7712 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7713 if (rc < 0) { 7714 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7715 "6421 Cannot post to HRQ %d: %x %x %x " 7716 "DRQ %x %x\n", 7717 hrq->queue_id, 7718 hrq->host_index, 7719 hrq->hba_index, 7720 hrq->entry_count, 7721 drq->host_index, 7722 drq->hba_index); 7723 rqbp->rqb_free_buffer(phba, rqb_buffer); 7724 } else { 7725 list_add_tail(&rqb_buffer->hbuf.list, 7726 &rqbp->rqb_buffer_list); 7727 rqbp->buffer_count++; 7728 } 7729 } 7730 spin_unlock_irqrestore(&phba->hbalock, flags); 7731 return 1; 7732 } 7733 7734 static void 7735 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7736 { 7737 struct lpfc_vport *vport = pmb->vport; 7738 union lpfc_sli4_cfg_shdr *shdr; 7739 u32 shdr_status, shdr_add_status; 7740 u32 sig, acqe; 7741 7742 /* Two outcomes. (1) Set featurs was successul and EDC negotiation 7743 * is done. (2) Mailbox failed and send FPIN support only. 7744 */ 7745 shdr = (union lpfc_sli4_cfg_shdr *) 7746 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7747 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7748 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7749 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7750 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 7751 "2516 CGN SET_FEATURE mbox failed with " 7752 "status x%x add_status x%x, mbx status x%x " 7753 "Reset Congestion to FPINs only\n", 7754 shdr_status, shdr_add_status, 7755 pmb->u.mb.mbxStatus); 7756 /* If there is a mbox error, move on to RDF */ 7757 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7758 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7759 goto out; 7760 } 7761 7762 /* Zero out Congestion Signal ACQE counter */ 7763 phba->cgn_acqe_cnt = 0; 7764 atomic64_set(&phba->cgn_acqe_stat.warn, 0); 7765 atomic64_set(&phba->cgn_acqe_stat.alarm, 0); 7766 7767 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq, 7768 &pmb->u.mqe.un.set_feature); 7769 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq, 7770 &pmb->u.mqe.un.set_feature); 7771 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7772 "4620 SET_FEATURES Success: Freq: %ds %dms " 7773 " Reg: x%x x%x\n", acqe, sig, 7774 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7775 out: 7776 mempool_free(pmb, phba->mbox_mem_pool); 7777 7778 /* Register for FPIN events from the fabric now that the 7779 * EDC common_set_features has completed. 7780 */ 7781 lpfc_issue_els_rdf(vport, 0); 7782 } 7783 7784 int 7785 lpfc_config_cgn_signal(struct lpfc_hba *phba) 7786 { 7787 LPFC_MBOXQ_t *mboxq; 7788 u32 rc; 7789 7790 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7791 if (!mboxq) 7792 goto out_rdf; 7793 7794 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL); 7795 mboxq->vport = phba->pport; 7796 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs; 7797 7798 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7799 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: " 7800 "Reg: x%x x%x\n", 7801 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency, 7802 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7803 7804 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7805 if (rc == MBX_NOT_FINISHED) 7806 goto out; 7807 return 0; 7808 7809 out: 7810 mempool_free(mboxq, phba->mbox_mem_pool); 7811 out_rdf: 7812 /* If there is a mbox error, move on to RDF */ 7813 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7814 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7815 lpfc_issue_els_rdf(phba->pport, 0); 7816 return -EIO; 7817 } 7818 7819 /** 7820 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7821 * @phba: pointer to lpfc hba data structure. 7822 * 7823 * This routine initializes the per-cq idle_stat to dynamically dictate 7824 * polling decisions. 7825 * 7826 * Return codes: 7827 * None 7828 **/ 7829 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7830 { 7831 int i; 7832 struct lpfc_sli4_hdw_queue *hdwq; 7833 struct lpfc_queue *cq; 7834 struct lpfc_idle_stat *idle_stat; 7835 u64 wall; 7836 7837 for_each_present_cpu(i) { 7838 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7839 cq = hdwq->io_cq; 7840 7841 /* Skip if we've already handled this cq's primary CPU */ 7842 if (cq->chann != i) 7843 continue; 7844 7845 idle_stat = &phba->sli4_hba.idle_stat[i]; 7846 7847 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 7848 idle_stat->prev_wall = wall; 7849 7850 if (phba->nvmet_support || 7851 phba->cmf_active_mode != LPFC_CFG_OFF) 7852 cq->poll_mode = LPFC_QUEUE_WORK; 7853 else 7854 cq->poll_mode = LPFC_IRQ_POLL; 7855 } 7856 7857 if (!phba->nvmet_support) 7858 schedule_delayed_work(&phba->idle_stat_delay_work, 7859 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 7860 } 7861 7862 static void lpfc_sli4_dip(struct lpfc_hba *phba) 7863 { 7864 uint32_t if_type; 7865 7866 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 7867 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 7868 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 7869 struct lpfc_register reg_data; 7870 7871 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 7872 ®_data.word0)) 7873 return; 7874 7875 if (bf_get(lpfc_sliport_status_dip, ®_data)) 7876 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7877 "2904 Firmware Dump Image Present" 7878 " on Adapter"); 7879 } 7880 } 7881 7882 /** 7883 * lpfc_cmf_setup - Initialize idle_stat tracking 7884 * @phba: Pointer to HBA context object. 7885 * 7886 * This is called from HBA setup during driver load or when the HBA 7887 * comes online. this does all the initialization to support CMF and MI. 7888 **/ 7889 static int 7890 lpfc_cmf_setup(struct lpfc_hba *phba) 7891 { 7892 LPFC_MBOXQ_t *mboxq; 7893 struct lpfc_mqe *mqe; 7894 struct lpfc_dmabuf *mp; 7895 struct lpfc_pc_sli4_params *sli4_params; 7896 struct lpfc_sli4_parameters *mbx_sli4_parameters; 7897 int length; 7898 int rc, cmf, mi_ver; 7899 7900 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7901 if (!mboxq) 7902 return -ENOMEM; 7903 mqe = &mboxq->u.mqe; 7904 7905 /* Read the port's SLI4 Config Parameters */ 7906 length = (sizeof(struct lpfc_mbx_get_sli4_parameters) - 7907 sizeof(struct lpfc_sli4_cfg_mhdr)); 7908 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 7909 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS, 7910 length, LPFC_SLI4_MBX_EMBED); 7911 7912 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7913 if (unlikely(rc)) { 7914 mempool_free(mboxq, phba->mbox_mem_pool); 7915 return rc; 7916 } 7917 7918 /* Gather info on CMF and MI support */ 7919 sli4_params = &phba->sli4_hba.pc_sli4_params; 7920 mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters; 7921 sli4_params->mi_ver = bf_get(cfg_mi_ver, mbx_sli4_parameters); 7922 sli4_params->cmf = bf_get(cfg_cmf, mbx_sli4_parameters); 7923 7924 /* Are we forcing MI off via module parameter? */ 7925 if (!phba->cfg_enable_mi) 7926 sli4_params->mi_ver = 0; 7927 7928 /* Always try to enable MI feature if we can */ 7929 if (sli4_params->mi_ver) { 7930 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI); 7931 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7932 mi_ver = bf_get(lpfc_mbx_set_feature_mi, 7933 &mboxq->u.mqe.un.set_feature); 7934 7935 if (rc == MBX_SUCCESS) { 7936 if (mi_ver) { 7937 lpfc_printf_log(phba, 7938 KERN_WARNING, LOG_CGN_MGMT, 7939 "6215 MI is enabled\n"); 7940 sli4_params->mi_ver = mi_ver; 7941 } else { 7942 lpfc_printf_log(phba, 7943 KERN_WARNING, LOG_CGN_MGMT, 7944 "6338 MI is disabled\n"); 7945 sli4_params->mi_ver = 0; 7946 } 7947 } else { 7948 /* mi_ver is already set from GET_SLI4_PARAMETERS */ 7949 lpfc_printf_log(phba, KERN_INFO, 7950 LOG_CGN_MGMT | LOG_INIT, 7951 "6245 Enable MI Mailbox x%x (x%x/x%x) " 7952 "failed, rc:x%x mi:x%x\n", 7953 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7954 lpfc_sli_config_mbox_subsys_get 7955 (phba, mboxq), 7956 lpfc_sli_config_mbox_opcode_get 7957 (phba, mboxq), 7958 rc, sli4_params->mi_ver); 7959 } 7960 } else { 7961 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 7962 "6217 MI is disabled\n"); 7963 } 7964 7965 /* Ensure FDMI is enabled for MI if enable_mi is set */ 7966 if (sli4_params->mi_ver) 7967 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT; 7968 7969 /* Always try to enable CMF feature if we can */ 7970 if (sli4_params->cmf) { 7971 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF); 7972 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7973 cmf = bf_get(lpfc_mbx_set_feature_cmf, 7974 &mboxq->u.mqe.un.set_feature); 7975 if (rc == MBX_SUCCESS && cmf) { 7976 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 7977 "6218 CMF is enabled: mode %d\n", 7978 phba->cmf_active_mode); 7979 } else { 7980 lpfc_printf_log(phba, KERN_WARNING, 7981 LOG_CGN_MGMT | LOG_INIT, 7982 "6219 Enable CMF Mailbox x%x (x%x/x%x) " 7983 "failed, rc:x%x dd:x%x\n", 7984 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7985 lpfc_sli_config_mbox_subsys_get 7986 (phba, mboxq), 7987 lpfc_sli_config_mbox_opcode_get 7988 (phba, mboxq), 7989 rc, cmf); 7990 sli4_params->cmf = 0; 7991 phba->cmf_active_mode = LPFC_CFG_OFF; 7992 goto no_cmf; 7993 } 7994 7995 /* Allocate Congestion Information Buffer */ 7996 if (!phba->cgn_i) { 7997 mp = kmalloc(sizeof(*mp), GFP_KERNEL); 7998 if (mp) 7999 mp->virt = dma_alloc_coherent 8000 (&phba->pcidev->dev, 8001 sizeof(struct lpfc_cgn_info), 8002 &mp->phys, GFP_KERNEL); 8003 if (!mp || !mp->virt) { 8004 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8005 "2640 Failed to alloc memory " 8006 "for Congestion Info\n"); 8007 kfree(mp); 8008 sli4_params->cmf = 0; 8009 phba->cmf_active_mode = LPFC_CFG_OFF; 8010 goto no_cmf; 8011 } 8012 phba->cgn_i = mp; 8013 8014 /* initialize congestion buffer info */ 8015 lpfc_init_congestion_buf(phba); 8016 lpfc_init_congestion_stat(phba); 8017 } 8018 8019 rc = lpfc_sli4_cgn_params_read(phba); 8020 if (rc < 0) { 8021 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8022 "6242 Error reading Cgn Params (%d)\n", 8023 rc); 8024 /* Ensure CGN Mode is off */ 8025 sli4_params->cmf = 0; 8026 } else if (!rc) { 8027 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8028 "6243 CGN Event empty object.\n"); 8029 /* Ensure CGN Mode is off */ 8030 sli4_params->cmf = 0; 8031 } 8032 } else { 8033 no_cmf: 8034 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8035 "6220 CMF is disabled\n"); 8036 } 8037 8038 /* Only register congestion buffer with firmware if BOTH 8039 * CMF and E2E are enabled. 8040 */ 8041 if (sli4_params->cmf && sli4_params->mi_ver) { 8042 rc = lpfc_reg_congestion_buf(phba); 8043 if (rc) { 8044 dma_free_coherent(&phba->pcidev->dev, 8045 sizeof(struct lpfc_cgn_info), 8046 phba->cgn_i->virt, phba->cgn_i->phys); 8047 kfree(phba->cgn_i); 8048 phba->cgn_i = NULL; 8049 /* Ensure CGN Mode is off */ 8050 phba->cmf_active_mode = LPFC_CFG_OFF; 8051 return 0; 8052 } 8053 } 8054 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8055 "6470 Setup MI version %d CMF %d mode %d\n", 8056 sli4_params->mi_ver, sli4_params->cmf, 8057 phba->cmf_active_mode); 8058 8059 mempool_free(mboxq, phba->mbox_mem_pool); 8060 8061 /* Initialize atomic counters */ 8062 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 8063 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 8064 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 8065 atomic_set(&phba->cgn_sync_warn_cnt, 0); 8066 atomic_set(&phba->cgn_driver_evt_cnt, 0); 8067 atomic_set(&phba->cgn_latency_evt_cnt, 0); 8068 atomic64_set(&phba->cgn_latency_evt, 0); 8069 8070 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 8071 8072 /* Allocate RX Monitor Buffer */ 8073 if (!phba->rxtable) { 8074 phba->rxtable = kmalloc_array(LPFC_MAX_RXMONITOR_ENTRY, 8075 sizeof(struct rxtable_entry), 8076 GFP_KERNEL); 8077 if (!phba->rxtable) { 8078 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8079 "2644 Failed to alloc memory " 8080 "for RX Monitor Buffer\n"); 8081 return -ENOMEM; 8082 } 8083 } 8084 atomic_set(&phba->rxtable_idx_head, 0); 8085 atomic_set(&phba->rxtable_idx_tail, 0); 8086 return 0; 8087 } 8088 8089 static int 8090 lpfc_set_host_tm(struct lpfc_hba *phba) 8091 { 8092 LPFC_MBOXQ_t *mboxq; 8093 uint32_t len, rc; 8094 struct timespec64 cur_time; 8095 struct tm broken; 8096 uint32_t month, day, year; 8097 uint32_t hour, minute, second; 8098 struct lpfc_mbx_set_host_date_time *tm; 8099 8100 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8101 if (!mboxq) 8102 return -ENOMEM; 8103 8104 len = sizeof(struct lpfc_mbx_set_host_data) - 8105 sizeof(struct lpfc_sli4_cfg_mhdr); 8106 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 8107 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 8108 LPFC_SLI4_MBX_EMBED); 8109 8110 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME; 8111 mboxq->u.mqe.un.set_host_data.param_len = 8112 sizeof(struct lpfc_mbx_set_host_date_time); 8113 tm = &mboxq->u.mqe.un.set_host_data.un.tm; 8114 ktime_get_real_ts64(&cur_time); 8115 time64_to_tm(cur_time.tv_sec, 0, &broken); 8116 month = broken.tm_mon + 1; 8117 day = broken.tm_mday; 8118 year = broken.tm_year - 100; 8119 hour = broken.tm_hour; 8120 minute = broken.tm_min; 8121 second = broken.tm_sec; 8122 bf_set(lpfc_mbx_set_host_month, tm, month); 8123 bf_set(lpfc_mbx_set_host_day, tm, day); 8124 bf_set(lpfc_mbx_set_host_year, tm, year); 8125 bf_set(lpfc_mbx_set_host_hour, tm, hour); 8126 bf_set(lpfc_mbx_set_host_min, tm, minute); 8127 bf_set(lpfc_mbx_set_host_sec, tm, second); 8128 8129 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8130 mempool_free(mboxq, phba->mbox_mem_pool); 8131 return rc; 8132 } 8133 8134 /** 8135 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 8136 * @phba: Pointer to HBA context object. 8137 * 8138 * This function is the main SLI4 device initialization PCI function. This 8139 * function is called by the HBA initialization code, HBA reset code and 8140 * HBA error attention handler code. Caller is not required to hold any 8141 * locks. 8142 **/ 8143 int 8144 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 8145 { 8146 int rc, i, cnt, len, dd; 8147 LPFC_MBOXQ_t *mboxq; 8148 struct lpfc_mqe *mqe; 8149 uint8_t *vpd; 8150 uint32_t vpd_size; 8151 uint32_t ftr_rsp = 0; 8152 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 8153 struct lpfc_vport *vport = phba->pport; 8154 struct lpfc_dmabuf *mp; 8155 struct lpfc_rqb *rqbp; 8156 8157 /* Perform a PCI function reset to start from clean */ 8158 rc = lpfc_pci_function_reset(phba); 8159 if (unlikely(rc)) 8160 return -ENODEV; 8161 8162 /* Check the HBA Host Status Register for readyness */ 8163 rc = lpfc_sli4_post_status_check(phba); 8164 if (unlikely(rc)) 8165 return -ENODEV; 8166 else { 8167 spin_lock_irq(&phba->hbalock); 8168 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 8169 spin_unlock_irq(&phba->hbalock); 8170 } 8171 8172 lpfc_sli4_dip(phba); 8173 8174 /* 8175 * Allocate a single mailbox container for initializing the 8176 * port. 8177 */ 8178 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8179 if (!mboxq) 8180 return -ENOMEM; 8181 8182 /* Issue READ_REV to collect vpd and FW information. */ 8183 vpd_size = SLI4_PAGE_SIZE; 8184 vpd = kzalloc(vpd_size, GFP_KERNEL); 8185 if (!vpd) { 8186 rc = -ENOMEM; 8187 goto out_free_mbox; 8188 } 8189 8190 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 8191 if (unlikely(rc)) { 8192 kfree(vpd); 8193 goto out_free_mbox; 8194 } 8195 8196 mqe = &mboxq->u.mqe; 8197 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 8198 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 8199 phba->hba_flag |= HBA_FCOE_MODE; 8200 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 8201 } else { 8202 phba->hba_flag &= ~HBA_FCOE_MODE; 8203 } 8204 8205 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 8206 LPFC_DCBX_CEE_MODE) 8207 phba->hba_flag |= HBA_FIP_SUPPORT; 8208 else 8209 phba->hba_flag &= ~HBA_FIP_SUPPORT; 8210 8211 phba->hba_flag &= ~HBA_IOQ_FLUSH; 8212 8213 if (phba->sli_rev != LPFC_SLI_REV4) { 8214 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8215 "0376 READ_REV Error. SLI Level %d " 8216 "FCoE enabled %d\n", 8217 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 8218 rc = -EIO; 8219 kfree(vpd); 8220 goto out_free_mbox; 8221 } 8222 8223 rc = lpfc_set_host_tm(phba); 8224 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 8225 "6468 Set host date / time: Status x%x:\n", rc); 8226 8227 /* 8228 * Continue initialization with default values even if driver failed 8229 * to read FCoE param config regions, only read parameters if the 8230 * board is FCoE 8231 */ 8232 if (phba->hba_flag & HBA_FCOE_MODE && 8233 lpfc_sli4_read_fcoe_params(phba)) 8234 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 8235 "2570 Failed to read FCoE parameters\n"); 8236 8237 /* 8238 * Retrieve sli4 device physical port name, failure of doing it 8239 * is considered as non-fatal. 8240 */ 8241 rc = lpfc_sli4_retrieve_pport_name(phba); 8242 if (!rc) 8243 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8244 "3080 Successful retrieving SLI4 device " 8245 "physical port name: %s.\n", phba->Port); 8246 8247 rc = lpfc_sli4_get_ctl_attr(phba); 8248 if (!rc) 8249 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8250 "8351 Successful retrieving SLI4 device " 8251 "CTL ATTR\n"); 8252 8253 /* 8254 * Evaluate the read rev and vpd data. Populate the driver 8255 * state with the results. If this routine fails, the failure 8256 * is not fatal as the driver will use generic values. 8257 */ 8258 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 8259 if (unlikely(!rc)) { 8260 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8261 "0377 Error %d parsing vpd. " 8262 "Using defaults.\n", rc); 8263 rc = 0; 8264 } 8265 kfree(vpd); 8266 8267 /* Save information as VPD data */ 8268 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 8269 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 8270 8271 /* 8272 * This is because first G7 ASIC doesn't support the standard 8273 * 0x5a NVME cmd descriptor type/subtype 8274 */ 8275 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8276 LPFC_SLI_INTF_IF_TYPE_6) && 8277 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 8278 (phba->vpd.rev.smRev == 0) && 8279 (phba->cfg_nvme_embed_cmd == 1)) 8280 phba->cfg_nvme_embed_cmd = 0; 8281 8282 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 8283 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 8284 &mqe->un.read_rev); 8285 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 8286 &mqe->un.read_rev); 8287 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 8288 &mqe->un.read_rev); 8289 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 8290 &mqe->un.read_rev); 8291 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 8292 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 8293 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 8294 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 8295 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 8296 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 8297 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8298 "(%d):0380 READ_REV Status x%x " 8299 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 8300 mboxq->vport ? mboxq->vport->vpi : 0, 8301 bf_get(lpfc_mqe_status, mqe), 8302 phba->vpd.rev.opFwName, 8303 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 8304 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 8305 8306 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8307 LPFC_SLI_INTF_IF_TYPE_0) { 8308 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 8309 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8310 if (rc == MBX_SUCCESS) { 8311 phba->hba_flag |= HBA_RECOVERABLE_UE; 8312 /* Set 1Sec interval to detect UE */ 8313 phba->eratt_poll_interval = 1; 8314 phba->sli4_hba.ue_to_sr = bf_get( 8315 lpfc_mbx_set_feature_UESR, 8316 &mboxq->u.mqe.un.set_feature); 8317 phba->sli4_hba.ue_to_rp = bf_get( 8318 lpfc_mbx_set_feature_UERP, 8319 &mboxq->u.mqe.un.set_feature); 8320 } 8321 } 8322 8323 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 8324 /* Enable MDS Diagnostics only if the SLI Port supports it */ 8325 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 8326 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8327 if (rc != MBX_SUCCESS) 8328 phba->mds_diags_support = 0; 8329 } 8330 8331 /* 8332 * Discover the port's supported feature set and match it against the 8333 * hosts requests. 8334 */ 8335 lpfc_request_features(phba, mboxq); 8336 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8337 if (unlikely(rc)) { 8338 rc = -EIO; 8339 goto out_free_mbox; 8340 } 8341 8342 /* Disable VMID if app header is not supported */ 8343 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, 8344 &mqe->un.req_ftrs))) { 8345 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); 8346 phba->cfg_vmid_app_header = 0; 8347 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, 8348 "1242 vmid feature not supported\n"); 8349 } 8350 8351 /* 8352 * The port must support FCP initiator mode as this is the 8353 * only mode running in the host. 8354 */ 8355 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 8356 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8357 "0378 No support for fcpi mode.\n"); 8358 ftr_rsp++; 8359 } 8360 8361 /* Performance Hints are ONLY for FCoE */ 8362 if (phba->hba_flag & HBA_FCOE_MODE) { 8363 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 8364 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 8365 else 8366 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 8367 } 8368 8369 /* 8370 * If the port cannot support the host's requested features 8371 * then turn off the global config parameters to disable the 8372 * feature in the driver. This is not a fatal error. 8373 */ 8374 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8375 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 8376 phba->cfg_enable_bg = 0; 8377 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 8378 ftr_rsp++; 8379 } 8380 } 8381 8382 if (phba->max_vpi && phba->cfg_enable_npiv && 8383 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8384 ftr_rsp++; 8385 8386 if (ftr_rsp) { 8387 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8388 "0379 Feature Mismatch Data: x%08x %08x " 8389 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 8390 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 8391 phba->cfg_enable_npiv, phba->max_vpi); 8392 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 8393 phba->cfg_enable_bg = 0; 8394 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8395 phba->cfg_enable_npiv = 0; 8396 } 8397 8398 /* These SLI3 features are assumed in SLI4 */ 8399 spin_lock_irq(&phba->hbalock); 8400 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 8401 spin_unlock_irq(&phba->hbalock); 8402 8403 /* Always try to enable dual dump feature if we can */ 8404 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 8405 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8406 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 8407 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 8408 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8409 "6448 Dual Dump is enabled\n"); 8410 else 8411 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 8412 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 8413 "rc:x%x dd:x%x\n", 8414 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8415 lpfc_sli_config_mbox_subsys_get( 8416 phba, mboxq), 8417 lpfc_sli_config_mbox_opcode_get( 8418 phba, mboxq), 8419 rc, dd); 8420 /* 8421 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 8422 * calls depends on these resources to complete port setup. 8423 */ 8424 rc = lpfc_sli4_alloc_resource_identifiers(phba); 8425 if (rc) { 8426 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8427 "2920 Failed to alloc Resource IDs " 8428 "rc = x%x\n", rc); 8429 goto out_free_mbox; 8430 } 8431 8432 lpfc_set_host_data(phba, mboxq); 8433 8434 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8435 if (rc) { 8436 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8437 "2134 Failed to set host os driver version %x", 8438 rc); 8439 } 8440 8441 /* Read the port's service parameters. */ 8442 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 8443 if (rc) { 8444 phba->link_state = LPFC_HBA_ERROR; 8445 rc = -ENOMEM; 8446 goto out_free_mbox; 8447 } 8448 8449 mboxq->vport = vport; 8450 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8451 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 8452 if (rc == MBX_SUCCESS) { 8453 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 8454 rc = 0; 8455 } 8456 8457 /* 8458 * This memory was allocated by the lpfc_read_sparam routine. Release 8459 * it to the mbuf pool. 8460 */ 8461 lpfc_mbuf_free(phba, mp->virt, mp->phys); 8462 kfree(mp); 8463 mboxq->ctx_buf = NULL; 8464 if (unlikely(rc)) { 8465 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8466 "0382 READ_SPARAM command failed " 8467 "status %d, mbxStatus x%x\n", 8468 rc, bf_get(lpfc_mqe_status, mqe)); 8469 phba->link_state = LPFC_HBA_ERROR; 8470 rc = -EIO; 8471 goto out_free_mbox; 8472 } 8473 8474 lpfc_update_vport_wwn(vport); 8475 8476 /* Update the fc_host data structures with new wwn. */ 8477 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 8478 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 8479 8480 /* Create all the SLI4 queues */ 8481 rc = lpfc_sli4_queue_create(phba); 8482 if (rc) { 8483 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8484 "3089 Failed to allocate queues\n"); 8485 rc = -ENODEV; 8486 goto out_free_mbox; 8487 } 8488 /* Set up all the queues to the device */ 8489 rc = lpfc_sli4_queue_setup(phba); 8490 if (unlikely(rc)) { 8491 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8492 "0381 Error %d during queue setup.\n ", rc); 8493 goto out_stop_timers; 8494 } 8495 /* Initialize the driver internal SLI layer lists. */ 8496 lpfc_sli4_setup(phba); 8497 lpfc_sli4_queue_init(phba); 8498 8499 /* update host els xri-sgl sizes and mappings */ 8500 rc = lpfc_sli4_els_sgl_update(phba); 8501 if (unlikely(rc)) { 8502 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8503 "1400 Failed to update xri-sgl size and " 8504 "mapping: %d\n", rc); 8505 goto out_destroy_queue; 8506 } 8507 8508 /* register the els sgl pool to the port */ 8509 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 8510 phba->sli4_hba.els_xri_cnt); 8511 if (unlikely(rc < 0)) { 8512 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8513 "0582 Error %d during els sgl post " 8514 "operation\n", rc); 8515 rc = -ENODEV; 8516 goto out_destroy_queue; 8517 } 8518 phba->sli4_hba.els_xri_cnt = rc; 8519 8520 if (phba->nvmet_support) { 8521 /* update host nvmet xri-sgl sizes and mappings */ 8522 rc = lpfc_sli4_nvmet_sgl_update(phba); 8523 if (unlikely(rc)) { 8524 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8525 "6308 Failed to update nvmet-sgl size " 8526 "and mapping: %d\n", rc); 8527 goto out_destroy_queue; 8528 } 8529 8530 /* register the nvmet sgl pool to the port */ 8531 rc = lpfc_sli4_repost_sgl_list( 8532 phba, 8533 &phba->sli4_hba.lpfc_nvmet_sgl_list, 8534 phba->sli4_hba.nvmet_xri_cnt); 8535 if (unlikely(rc < 0)) { 8536 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8537 "3117 Error %d during nvmet " 8538 "sgl post\n", rc); 8539 rc = -ENODEV; 8540 goto out_destroy_queue; 8541 } 8542 phba->sli4_hba.nvmet_xri_cnt = rc; 8543 8544 /* We allocate an iocbq for every receive context SGL. 8545 * The additional allocation is for abort and ls handling. 8546 */ 8547 cnt = phba->sli4_hba.nvmet_xri_cnt + 8548 phba->sli4_hba.max_cfg_param.max_xri; 8549 } else { 8550 /* update host common xri-sgl sizes and mappings */ 8551 rc = lpfc_sli4_io_sgl_update(phba); 8552 if (unlikely(rc)) { 8553 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8554 "6082 Failed to update nvme-sgl size " 8555 "and mapping: %d\n", rc); 8556 goto out_destroy_queue; 8557 } 8558 8559 /* register the allocated common sgl pool to the port */ 8560 rc = lpfc_sli4_repost_io_sgl_list(phba); 8561 if (unlikely(rc)) { 8562 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8563 "6116 Error %d during nvme sgl post " 8564 "operation\n", rc); 8565 /* Some NVME buffers were moved to abort nvme list */ 8566 /* A pci function reset will repost them */ 8567 rc = -ENODEV; 8568 goto out_destroy_queue; 8569 } 8570 /* Each lpfc_io_buf job structure has an iocbq element. 8571 * This cnt provides for abort, els, ct and ls requests. 8572 */ 8573 cnt = phba->sli4_hba.max_cfg_param.max_xri; 8574 } 8575 8576 if (!phba->sli.iocbq_lookup) { 8577 /* Initialize and populate the iocb list per host */ 8578 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8579 "2821 initialize iocb list with %d entries\n", 8580 cnt); 8581 rc = lpfc_init_iocb_list(phba, cnt); 8582 if (rc) { 8583 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8584 "1413 Failed to init iocb list.\n"); 8585 goto out_destroy_queue; 8586 } 8587 } 8588 8589 if (phba->nvmet_support) 8590 lpfc_nvmet_create_targetport(phba); 8591 8592 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 8593 /* Post initial buffers to all RQs created */ 8594 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 8595 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 8596 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 8597 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 8598 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 8599 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 8600 rqbp->buffer_count = 0; 8601 8602 lpfc_post_rq_buffer( 8603 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 8604 phba->sli4_hba.nvmet_mrq_data[i], 8605 phba->cfg_nvmet_mrq_post, i); 8606 } 8607 } 8608 8609 /* Post the rpi header region to the device. */ 8610 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 8611 if (unlikely(rc)) { 8612 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8613 "0393 Error %d during rpi post operation\n", 8614 rc); 8615 rc = -ENODEV; 8616 goto out_free_iocblist; 8617 } 8618 lpfc_sli4_node_prep(phba); 8619 8620 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 8621 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 8622 /* 8623 * The FC Port needs to register FCFI (index 0) 8624 */ 8625 lpfc_reg_fcfi(phba, mboxq); 8626 mboxq->vport = phba->pport; 8627 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8628 if (rc != MBX_SUCCESS) 8629 goto out_unset_queue; 8630 rc = 0; 8631 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 8632 &mboxq->u.mqe.un.reg_fcfi); 8633 } else { 8634 /* We are a NVME Target mode with MRQ > 1 */ 8635 8636 /* First register the FCFI */ 8637 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 8638 mboxq->vport = phba->pport; 8639 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8640 if (rc != MBX_SUCCESS) 8641 goto out_unset_queue; 8642 rc = 0; 8643 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 8644 &mboxq->u.mqe.un.reg_fcfi_mrq); 8645 8646 /* Next register the MRQs */ 8647 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 8648 mboxq->vport = phba->pport; 8649 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8650 if (rc != MBX_SUCCESS) 8651 goto out_unset_queue; 8652 rc = 0; 8653 } 8654 /* Check if the port is configured to be disabled */ 8655 lpfc_sli_read_link_ste(phba); 8656 } 8657 8658 /* Don't post more new bufs if repost already recovered 8659 * the nvme sgls. 8660 */ 8661 if (phba->nvmet_support == 0) { 8662 if (phba->sli4_hba.io_xri_cnt == 0) { 8663 len = lpfc_new_io_buf( 8664 phba, phba->sli4_hba.io_xri_max); 8665 if (len == 0) { 8666 rc = -ENOMEM; 8667 goto out_unset_queue; 8668 } 8669 8670 if (phba->cfg_xri_rebalancing) 8671 lpfc_create_multixri_pools(phba); 8672 } 8673 } else { 8674 phba->cfg_xri_rebalancing = 0; 8675 } 8676 8677 /* Allow asynchronous mailbox command to go through */ 8678 spin_lock_irq(&phba->hbalock); 8679 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8680 spin_unlock_irq(&phba->hbalock); 8681 8682 /* Post receive buffers to the device */ 8683 lpfc_sli4_rb_setup(phba); 8684 8685 /* Reset HBA FCF states after HBA reset */ 8686 phba->fcf.fcf_flag = 0; 8687 phba->fcf.current_rec.flag = 0; 8688 8689 /* Start the ELS watchdog timer */ 8690 mod_timer(&vport->els_tmofunc, 8691 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 8692 8693 /* Start heart beat timer */ 8694 mod_timer(&phba->hb_tmofunc, 8695 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 8696 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 8697 phba->last_completion_time = jiffies; 8698 8699 /* start eq_delay heartbeat */ 8700 if (phba->cfg_auto_imax) 8701 queue_delayed_work(phba->wq, &phba->eq_delay_work, 8702 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 8703 8704 /* start per phba idle_stat_delay heartbeat */ 8705 lpfc_init_idle_stat_hb(phba); 8706 8707 /* Start error attention (ERATT) polling timer */ 8708 mod_timer(&phba->eratt_poll, 8709 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 8710 8711 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 8712 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 8713 rc = pci_enable_pcie_error_reporting(phba->pcidev); 8714 if (!rc) { 8715 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8716 "2829 This device supports " 8717 "Advanced Error Reporting (AER)\n"); 8718 spin_lock_irq(&phba->hbalock); 8719 phba->hba_flag |= HBA_AER_ENABLED; 8720 spin_unlock_irq(&phba->hbalock); 8721 } else { 8722 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8723 "2830 This device does not support " 8724 "Advanced Error Reporting (AER)\n"); 8725 phba->cfg_aer_support = 0; 8726 } 8727 rc = 0; 8728 } 8729 8730 /* 8731 * The port is ready, set the host's link state to LINK_DOWN 8732 * in preparation for link interrupts. 8733 */ 8734 spin_lock_irq(&phba->hbalock); 8735 phba->link_state = LPFC_LINK_DOWN; 8736 8737 /* Check if physical ports are trunked */ 8738 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 8739 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 8740 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 8741 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 8742 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 8743 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 8744 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 8745 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 8746 spin_unlock_irq(&phba->hbalock); 8747 8748 /* Arm the CQs and then EQs on device */ 8749 lpfc_sli4_arm_cqeq_intr(phba); 8750 8751 /* Indicate device interrupt mode */ 8752 phba->sli4_hba.intr_enable = 1; 8753 8754 /* Setup CMF after HBA is initialized */ 8755 lpfc_cmf_setup(phba); 8756 8757 if (!(phba->hba_flag & HBA_FCOE_MODE) && 8758 (phba->hba_flag & LINK_DISABLED)) { 8759 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8760 "3103 Adapter Link is disabled.\n"); 8761 lpfc_down_link(phba, mboxq); 8762 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8763 if (rc != MBX_SUCCESS) { 8764 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8765 "3104 Adapter failed to issue " 8766 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 8767 goto out_io_buff_free; 8768 } 8769 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 8770 /* don't perform init_link on SLI4 FC port loopback test */ 8771 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 8772 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 8773 if (rc) 8774 goto out_io_buff_free; 8775 } 8776 } 8777 mempool_free(mboxq, phba->mbox_mem_pool); 8778 8779 phba->hba_flag |= HBA_SETUP; 8780 return rc; 8781 8782 out_io_buff_free: 8783 /* Free allocated IO Buffers */ 8784 lpfc_io_free(phba); 8785 out_unset_queue: 8786 /* Unset all the queues set up in this routine when error out */ 8787 lpfc_sli4_queue_unset(phba); 8788 out_free_iocblist: 8789 lpfc_free_iocb_list(phba); 8790 out_destroy_queue: 8791 lpfc_sli4_queue_destroy(phba); 8792 out_stop_timers: 8793 lpfc_stop_hba_timers(phba); 8794 out_free_mbox: 8795 mempool_free(mboxq, phba->mbox_mem_pool); 8796 return rc; 8797 } 8798 8799 /** 8800 * lpfc_mbox_timeout - Timeout call back function for mbox timer 8801 * @t: Context to fetch pointer to hba structure from. 8802 * 8803 * This is the callback function for mailbox timer. The mailbox 8804 * timer is armed when a new mailbox command is issued and the timer 8805 * is deleted when the mailbox complete. The function is called by 8806 * the kernel timer code when a mailbox does not complete within 8807 * expected time. This function wakes up the worker thread to 8808 * process the mailbox timeout and returns. All the processing is 8809 * done by the worker thread function lpfc_mbox_timeout_handler. 8810 **/ 8811 void 8812 lpfc_mbox_timeout(struct timer_list *t) 8813 { 8814 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 8815 unsigned long iflag; 8816 uint32_t tmo_posted; 8817 8818 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 8819 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 8820 if (!tmo_posted) 8821 phba->pport->work_port_events |= WORKER_MBOX_TMO; 8822 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 8823 8824 if (!tmo_posted) 8825 lpfc_worker_wake_up(phba); 8826 return; 8827 } 8828 8829 /** 8830 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 8831 * are pending 8832 * @phba: Pointer to HBA context object. 8833 * 8834 * This function checks if any mailbox completions are present on the mailbox 8835 * completion queue. 8836 **/ 8837 static bool 8838 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 8839 { 8840 8841 uint32_t idx; 8842 struct lpfc_queue *mcq; 8843 struct lpfc_mcqe *mcqe; 8844 bool pending_completions = false; 8845 uint8_t qe_valid; 8846 8847 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8848 return false; 8849 8850 /* Check for completions on mailbox completion queue */ 8851 8852 mcq = phba->sli4_hba.mbx_cq; 8853 idx = mcq->hba_index; 8854 qe_valid = mcq->qe_valid; 8855 while (bf_get_le32(lpfc_cqe_valid, 8856 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 8857 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 8858 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 8859 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 8860 pending_completions = true; 8861 break; 8862 } 8863 idx = (idx + 1) % mcq->entry_count; 8864 if (mcq->hba_index == idx) 8865 break; 8866 8867 /* if the index wrapped around, toggle the valid bit */ 8868 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 8869 qe_valid = (qe_valid) ? 0 : 1; 8870 } 8871 return pending_completions; 8872 8873 } 8874 8875 /** 8876 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 8877 * that were missed. 8878 * @phba: Pointer to HBA context object. 8879 * 8880 * For sli4, it is possible to miss an interrupt. As such mbox completions 8881 * maybe missed causing erroneous mailbox timeouts to occur. This function 8882 * checks to see if mbox completions are on the mailbox completion queue 8883 * and will process all the completions associated with the eq for the 8884 * mailbox completion queue. 8885 **/ 8886 static bool 8887 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 8888 { 8889 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 8890 uint32_t eqidx; 8891 struct lpfc_queue *fpeq = NULL; 8892 struct lpfc_queue *eq; 8893 bool mbox_pending; 8894 8895 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8896 return false; 8897 8898 /* Find the EQ associated with the mbox CQ */ 8899 if (sli4_hba->hdwq) { 8900 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 8901 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 8902 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 8903 fpeq = eq; 8904 break; 8905 } 8906 } 8907 } 8908 if (!fpeq) 8909 return false; 8910 8911 /* Turn off interrupts from this EQ */ 8912 8913 sli4_hba->sli4_eq_clr_intr(fpeq); 8914 8915 /* Check to see if a mbox completion is pending */ 8916 8917 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 8918 8919 /* 8920 * If a mbox completion is pending, process all the events on EQ 8921 * associated with the mbox completion queue (this could include 8922 * mailbox commands, async events, els commands, receive queue data 8923 * and fcp commands) 8924 */ 8925 8926 if (mbox_pending) 8927 /* process and rearm the EQ */ 8928 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 8929 else 8930 /* Always clear and re-arm the EQ */ 8931 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 8932 8933 return mbox_pending; 8934 8935 } 8936 8937 /** 8938 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 8939 * @phba: Pointer to HBA context object. 8940 * 8941 * This function is called from worker thread when a mailbox command times out. 8942 * The caller is not required to hold any locks. This function will reset the 8943 * HBA and recover all the pending commands. 8944 **/ 8945 void 8946 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 8947 { 8948 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 8949 MAILBOX_t *mb = NULL; 8950 8951 struct lpfc_sli *psli = &phba->sli; 8952 8953 /* If the mailbox completed, process the completion */ 8954 lpfc_sli4_process_missed_mbox_completions(phba); 8955 8956 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 8957 return; 8958 8959 if (pmbox != NULL) 8960 mb = &pmbox->u.mb; 8961 /* Check the pmbox pointer first. There is a race condition 8962 * between the mbox timeout handler getting executed in the 8963 * worklist and the mailbox actually completing. When this 8964 * race condition occurs, the mbox_active will be NULL. 8965 */ 8966 spin_lock_irq(&phba->hbalock); 8967 if (pmbox == NULL) { 8968 lpfc_printf_log(phba, KERN_WARNING, 8969 LOG_MBOX | LOG_SLI, 8970 "0353 Active Mailbox cleared - mailbox timeout " 8971 "exiting\n"); 8972 spin_unlock_irq(&phba->hbalock); 8973 return; 8974 } 8975 8976 /* Mbox cmd <mbxCommand> timeout */ 8977 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8978 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 8979 mb->mbxCommand, 8980 phba->pport->port_state, 8981 phba->sli.sli_flag, 8982 phba->sli.mbox_active); 8983 spin_unlock_irq(&phba->hbalock); 8984 8985 /* Setting state unknown so lpfc_sli_abort_iocb_ring 8986 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 8987 * it to fail all outstanding SCSI IO. 8988 */ 8989 spin_lock_irq(&phba->pport->work_port_lock); 8990 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 8991 spin_unlock_irq(&phba->pport->work_port_lock); 8992 spin_lock_irq(&phba->hbalock); 8993 phba->link_state = LPFC_LINK_UNKNOWN; 8994 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 8995 spin_unlock_irq(&phba->hbalock); 8996 8997 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8998 "0345 Resetting board due to mailbox timeout\n"); 8999 9000 /* Reset the HBA device */ 9001 lpfc_reset_hba(phba); 9002 } 9003 9004 /** 9005 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 9006 * @phba: Pointer to HBA context object. 9007 * @pmbox: Pointer to mailbox object. 9008 * @flag: Flag indicating how the mailbox need to be processed. 9009 * 9010 * This function is called by discovery code and HBA management code 9011 * to submit a mailbox command to firmware with SLI-3 interface spec. This 9012 * function gets the hbalock to protect the data structures. 9013 * The mailbox command can be submitted in polling mode, in which case 9014 * this function will wait in a polling loop for the completion of the 9015 * mailbox. 9016 * If the mailbox is submitted in no_wait mode (not polling) the 9017 * function will submit the command and returns immediately without waiting 9018 * for the mailbox completion. The no_wait is supported only when HBA 9019 * is in SLI2/SLI3 mode - interrupts are enabled. 9020 * The SLI interface allows only one mailbox pending at a time. If the 9021 * mailbox is issued in polling mode and there is already a mailbox 9022 * pending, then the function will return an error. If the mailbox is issued 9023 * in NO_WAIT mode and there is a mailbox pending already, the function 9024 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 9025 * The sli layer owns the mailbox object until the completion of mailbox 9026 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 9027 * return codes the caller owns the mailbox command after the return of 9028 * the function. 9029 **/ 9030 static int 9031 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 9032 uint32_t flag) 9033 { 9034 MAILBOX_t *mbx; 9035 struct lpfc_sli *psli = &phba->sli; 9036 uint32_t status, evtctr; 9037 uint32_t ha_copy, hc_copy; 9038 int i; 9039 unsigned long timeout; 9040 unsigned long drvr_flag = 0; 9041 uint32_t word0, ldata; 9042 void __iomem *to_slim; 9043 int processing_queue = 0; 9044 9045 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9046 if (!pmbox) { 9047 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9048 /* processing mbox queue from intr_handler */ 9049 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9050 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9051 return MBX_SUCCESS; 9052 } 9053 processing_queue = 1; 9054 pmbox = lpfc_mbox_get(phba); 9055 if (!pmbox) { 9056 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9057 return MBX_SUCCESS; 9058 } 9059 } 9060 9061 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 9062 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 9063 if(!pmbox->vport) { 9064 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9065 lpfc_printf_log(phba, KERN_ERR, 9066 LOG_MBOX | LOG_VPORT, 9067 "1806 Mbox x%x failed. No vport\n", 9068 pmbox->u.mb.mbxCommand); 9069 dump_stack(); 9070 goto out_not_finished; 9071 } 9072 } 9073 9074 /* If the PCI channel is in offline state, do not post mbox. */ 9075 if (unlikely(pci_channel_offline(phba->pcidev))) { 9076 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9077 goto out_not_finished; 9078 } 9079 9080 /* If HBA has a deferred error attention, fail the iocb. */ 9081 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 9082 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9083 goto out_not_finished; 9084 } 9085 9086 psli = &phba->sli; 9087 9088 mbx = &pmbox->u.mb; 9089 status = MBX_SUCCESS; 9090 9091 if (phba->link_state == LPFC_HBA_ERROR) { 9092 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9093 9094 /* Mbox command <mbxCommand> cannot issue */ 9095 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9096 "(%d):0311 Mailbox command x%x cannot " 9097 "issue Data: x%x x%x\n", 9098 pmbox->vport ? pmbox->vport->vpi : 0, 9099 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9100 goto out_not_finished; 9101 } 9102 9103 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 9104 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 9105 !(hc_copy & HC_MBINT_ENA)) { 9106 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9107 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9108 "(%d):2528 Mailbox command x%x cannot " 9109 "issue Data: x%x x%x\n", 9110 pmbox->vport ? pmbox->vport->vpi : 0, 9111 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9112 goto out_not_finished; 9113 } 9114 } 9115 9116 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9117 /* Polling for a mbox command when another one is already active 9118 * is not allowed in SLI. Also, the driver must have established 9119 * SLI2 mode to queue and process multiple mbox commands. 9120 */ 9121 9122 if (flag & MBX_POLL) { 9123 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9124 9125 /* Mbox command <mbxCommand> cannot issue */ 9126 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9127 "(%d):2529 Mailbox command x%x " 9128 "cannot issue Data: x%x x%x\n", 9129 pmbox->vport ? pmbox->vport->vpi : 0, 9130 pmbox->u.mb.mbxCommand, 9131 psli->sli_flag, flag); 9132 goto out_not_finished; 9133 } 9134 9135 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 9136 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9137 /* Mbox command <mbxCommand> cannot issue */ 9138 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9139 "(%d):2530 Mailbox command x%x " 9140 "cannot issue Data: x%x x%x\n", 9141 pmbox->vport ? pmbox->vport->vpi : 0, 9142 pmbox->u.mb.mbxCommand, 9143 psli->sli_flag, flag); 9144 goto out_not_finished; 9145 } 9146 9147 /* Another mailbox command is still being processed, queue this 9148 * command to be processed later. 9149 */ 9150 lpfc_mbox_put(phba, pmbox); 9151 9152 /* Mbox cmd issue - BUSY */ 9153 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9154 "(%d):0308 Mbox cmd issue - BUSY Data: " 9155 "x%x x%x x%x x%x\n", 9156 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 9157 mbx->mbxCommand, 9158 phba->pport ? phba->pport->port_state : 0xff, 9159 psli->sli_flag, flag); 9160 9161 psli->slistat.mbox_busy++; 9162 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9163 9164 if (pmbox->vport) { 9165 lpfc_debugfs_disc_trc(pmbox->vport, 9166 LPFC_DISC_TRC_MBOX_VPORT, 9167 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 9168 (uint32_t)mbx->mbxCommand, 9169 mbx->un.varWords[0], mbx->un.varWords[1]); 9170 } 9171 else { 9172 lpfc_debugfs_disc_trc(phba->pport, 9173 LPFC_DISC_TRC_MBOX, 9174 "MBOX Bsy: cmd:x%x mb:x%x x%x", 9175 (uint32_t)mbx->mbxCommand, 9176 mbx->un.varWords[0], mbx->un.varWords[1]); 9177 } 9178 9179 return MBX_BUSY; 9180 } 9181 9182 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9183 9184 /* If we are not polling, we MUST be in SLI2 mode */ 9185 if (flag != MBX_POLL) { 9186 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 9187 (mbx->mbxCommand != MBX_KILL_BOARD)) { 9188 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9189 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9190 /* Mbox command <mbxCommand> cannot issue */ 9191 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9192 "(%d):2531 Mailbox command x%x " 9193 "cannot issue Data: x%x x%x\n", 9194 pmbox->vport ? pmbox->vport->vpi : 0, 9195 pmbox->u.mb.mbxCommand, 9196 psli->sli_flag, flag); 9197 goto out_not_finished; 9198 } 9199 /* timeout active mbox command */ 9200 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9201 1000); 9202 mod_timer(&psli->mbox_tmo, jiffies + timeout); 9203 } 9204 9205 /* Mailbox cmd <cmd> issue */ 9206 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9207 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 9208 "x%x\n", 9209 pmbox->vport ? pmbox->vport->vpi : 0, 9210 mbx->mbxCommand, 9211 phba->pport ? phba->pport->port_state : 0xff, 9212 psli->sli_flag, flag); 9213 9214 if (mbx->mbxCommand != MBX_HEARTBEAT) { 9215 if (pmbox->vport) { 9216 lpfc_debugfs_disc_trc(pmbox->vport, 9217 LPFC_DISC_TRC_MBOX_VPORT, 9218 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9219 (uint32_t)mbx->mbxCommand, 9220 mbx->un.varWords[0], mbx->un.varWords[1]); 9221 } 9222 else { 9223 lpfc_debugfs_disc_trc(phba->pport, 9224 LPFC_DISC_TRC_MBOX, 9225 "MBOX Send: cmd:x%x mb:x%x x%x", 9226 (uint32_t)mbx->mbxCommand, 9227 mbx->un.varWords[0], mbx->un.varWords[1]); 9228 } 9229 } 9230 9231 psli->slistat.mbox_cmd++; 9232 evtctr = psli->slistat.mbox_event; 9233 9234 /* next set own bit for the adapter and copy over command word */ 9235 mbx->mbxOwner = OWN_CHIP; 9236 9237 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9238 /* Populate mbox extension offset word. */ 9239 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 9240 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9241 = (uint8_t *)phba->mbox_ext 9242 - (uint8_t *)phba->mbox; 9243 } 9244 9245 /* Copy the mailbox extension data */ 9246 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 9247 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 9248 (uint8_t *)phba->mbox_ext, 9249 pmbox->in_ext_byte_len); 9250 } 9251 /* Copy command data to host SLIM area */ 9252 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 9253 } else { 9254 /* Populate mbox extension offset word. */ 9255 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 9256 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9257 = MAILBOX_HBA_EXT_OFFSET; 9258 9259 /* Copy the mailbox extension data */ 9260 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 9261 lpfc_memcpy_to_slim(phba->MBslimaddr + 9262 MAILBOX_HBA_EXT_OFFSET, 9263 pmbox->ctx_buf, pmbox->in_ext_byte_len); 9264 9265 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9266 /* copy command data into host mbox for cmpl */ 9267 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 9268 MAILBOX_CMD_SIZE); 9269 9270 /* First copy mbox command data to HBA SLIM, skip past first 9271 word */ 9272 to_slim = phba->MBslimaddr + sizeof (uint32_t); 9273 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 9274 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 9275 9276 /* Next copy over first word, with mbxOwner set */ 9277 ldata = *((uint32_t *)mbx); 9278 to_slim = phba->MBslimaddr; 9279 writel(ldata, to_slim); 9280 readl(to_slim); /* flush */ 9281 9282 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9283 /* switch over to host mailbox */ 9284 psli->sli_flag |= LPFC_SLI_ACTIVE; 9285 } 9286 9287 wmb(); 9288 9289 switch (flag) { 9290 case MBX_NOWAIT: 9291 /* Set up reference to mailbox command */ 9292 psli->mbox_active = pmbox; 9293 /* Interrupt board to do it */ 9294 writel(CA_MBATT, phba->CAregaddr); 9295 readl(phba->CAregaddr); /* flush */ 9296 /* Don't wait for it to finish, just return */ 9297 break; 9298 9299 case MBX_POLL: 9300 /* Set up null reference to mailbox command */ 9301 psli->mbox_active = NULL; 9302 /* Interrupt board to do it */ 9303 writel(CA_MBATT, phba->CAregaddr); 9304 readl(phba->CAregaddr); /* flush */ 9305 9306 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9307 /* First read mbox status word */ 9308 word0 = *((uint32_t *)phba->mbox); 9309 word0 = le32_to_cpu(word0); 9310 } else { 9311 /* First read mbox status word */ 9312 if (lpfc_readl(phba->MBslimaddr, &word0)) { 9313 spin_unlock_irqrestore(&phba->hbalock, 9314 drvr_flag); 9315 goto out_not_finished; 9316 } 9317 } 9318 9319 /* Read the HBA Host Attention Register */ 9320 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9321 spin_unlock_irqrestore(&phba->hbalock, 9322 drvr_flag); 9323 goto out_not_finished; 9324 } 9325 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9326 1000) + jiffies; 9327 i = 0; 9328 /* Wait for command to complete */ 9329 while (((word0 & OWN_CHIP) == OWN_CHIP) || 9330 (!(ha_copy & HA_MBATT) && 9331 (phba->link_state > LPFC_WARM_START))) { 9332 if (time_after(jiffies, timeout)) { 9333 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9334 spin_unlock_irqrestore(&phba->hbalock, 9335 drvr_flag); 9336 goto out_not_finished; 9337 } 9338 9339 /* Check if we took a mbox interrupt while we were 9340 polling */ 9341 if (((word0 & OWN_CHIP) != OWN_CHIP) 9342 && (evtctr != psli->slistat.mbox_event)) 9343 break; 9344 9345 if (i++ > 10) { 9346 spin_unlock_irqrestore(&phba->hbalock, 9347 drvr_flag); 9348 msleep(1); 9349 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9350 } 9351 9352 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9353 /* First copy command data */ 9354 word0 = *((uint32_t *)phba->mbox); 9355 word0 = le32_to_cpu(word0); 9356 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 9357 MAILBOX_t *slimmb; 9358 uint32_t slimword0; 9359 /* Check real SLIM for any errors */ 9360 slimword0 = readl(phba->MBslimaddr); 9361 slimmb = (MAILBOX_t *) & slimword0; 9362 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 9363 && slimmb->mbxStatus) { 9364 psli->sli_flag &= 9365 ~LPFC_SLI_ACTIVE; 9366 word0 = slimword0; 9367 } 9368 } 9369 } else { 9370 /* First copy command data */ 9371 word0 = readl(phba->MBslimaddr); 9372 } 9373 /* Read the HBA Host Attention Register */ 9374 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9375 spin_unlock_irqrestore(&phba->hbalock, 9376 drvr_flag); 9377 goto out_not_finished; 9378 } 9379 } 9380 9381 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9382 /* copy results back to user */ 9383 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 9384 MAILBOX_CMD_SIZE); 9385 /* Copy the mailbox extension data */ 9386 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9387 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 9388 pmbox->ctx_buf, 9389 pmbox->out_ext_byte_len); 9390 } 9391 } else { 9392 /* First copy command data */ 9393 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 9394 MAILBOX_CMD_SIZE); 9395 /* Copy the mailbox extension data */ 9396 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9397 lpfc_memcpy_from_slim( 9398 pmbox->ctx_buf, 9399 phba->MBslimaddr + 9400 MAILBOX_HBA_EXT_OFFSET, 9401 pmbox->out_ext_byte_len); 9402 } 9403 } 9404 9405 writel(HA_MBATT, phba->HAregaddr); 9406 readl(phba->HAregaddr); /* flush */ 9407 9408 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9409 status = mbx->mbxStatus; 9410 } 9411 9412 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9413 return status; 9414 9415 out_not_finished: 9416 if (processing_queue) { 9417 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 9418 lpfc_mbox_cmpl_put(phba, pmbox); 9419 } 9420 return MBX_NOT_FINISHED; 9421 } 9422 9423 /** 9424 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 9425 * @phba: Pointer to HBA context object. 9426 * 9427 * The function blocks the posting of SLI4 asynchronous mailbox commands from 9428 * the driver internal pending mailbox queue. It will then try to wait out the 9429 * possible outstanding mailbox command before return. 9430 * 9431 * Returns: 9432 * 0 - the outstanding mailbox command completed; otherwise, the wait for 9433 * the outstanding mailbox command timed out. 9434 **/ 9435 static int 9436 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 9437 { 9438 struct lpfc_sli *psli = &phba->sli; 9439 LPFC_MBOXQ_t *mboxq; 9440 int rc = 0; 9441 unsigned long timeout = 0; 9442 u32 sli_flag; 9443 u8 cmd, subsys, opcode; 9444 9445 /* Mark the asynchronous mailbox command posting as blocked */ 9446 spin_lock_irq(&phba->hbalock); 9447 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 9448 /* Determine how long we might wait for the active mailbox 9449 * command to be gracefully completed by firmware. 9450 */ 9451 if (phba->sli.mbox_active) 9452 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 9453 phba->sli.mbox_active) * 9454 1000) + jiffies; 9455 spin_unlock_irq(&phba->hbalock); 9456 9457 /* Make sure the mailbox is really active */ 9458 if (timeout) 9459 lpfc_sli4_process_missed_mbox_completions(phba); 9460 9461 /* Wait for the outstanding mailbox command to complete */ 9462 while (phba->sli.mbox_active) { 9463 /* Check active mailbox complete status every 2ms */ 9464 msleep(2); 9465 if (time_after(jiffies, timeout)) { 9466 /* Timeout, mark the outstanding cmd not complete */ 9467 9468 /* Sanity check sli.mbox_active has not completed or 9469 * cancelled from another context during last 2ms sleep, 9470 * so take hbalock to be sure before logging. 9471 */ 9472 spin_lock_irq(&phba->hbalock); 9473 if (phba->sli.mbox_active) { 9474 mboxq = phba->sli.mbox_active; 9475 cmd = mboxq->u.mb.mbxCommand; 9476 subsys = lpfc_sli_config_mbox_subsys_get(phba, 9477 mboxq); 9478 opcode = lpfc_sli_config_mbox_opcode_get(phba, 9479 mboxq); 9480 sli_flag = psli->sli_flag; 9481 spin_unlock_irq(&phba->hbalock); 9482 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9483 "2352 Mailbox command x%x " 9484 "(x%x/x%x) sli_flag x%x could " 9485 "not complete\n", 9486 cmd, subsys, opcode, 9487 sli_flag); 9488 } else { 9489 spin_unlock_irq(&phba->hbalock); 9490 } 9491 9492 rc = 1; 9493 break; 9494 } 9495 } 9496 9497 /* Can not cleanly block async mailbox command, fails it */ 9498 if (rc) { 9499 spin_lock_irq(&phba->hbalock); 9500 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9501 spin_unlock_irq(&phba->hbalock); 9502 } 9503 return rc; 9504 } 9505 9506 /** 9507 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 9508 * @phba: Pointer to HBA context object. 9509 * 9510 * The function unblocks and resume posting of SLI4 asynchronous mailbox 9511 * commands from the driver internal pending mailbox queue. It makes sure 9512 * that there is no outstanding mailbox command before resuming posting 9513 * asynchronous mailbox commands. If, for any reason, there is outstanding 9514 * mailbox command, it will try to wait it out before resuming asynchronous 9515 * mailbox command posting. 9516 **/ 9517 static void 9518 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 9519 { 9520 struct lpfc_sli *psli = &phba->sli; 9521 9522 spin_lock_irq(&phba->hbalock); 9523 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9524 /* Asynchronous mailbox posting is not blocked, do nothing */ 9525 spin_unlock_irq(&phba->hbalock); 9526 return; 9527 } 9528 9529 /* Outstanding synchronous mailbox command is guaranteed to be done, 9530 * successful or timeout, after timing-out the outstanding mailbox 9531 * command shall always be removed, so just unblock posting async 9532 * mailbox command and resume 9533 */ 9534 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9535 spin_unlock_irq(&phba->hbalock); 9536 9537 /* wake up worker thread to post asynchronous mailbox command */ 9538 lpfc_worker_wake_up(phba); 9539 } 9540 9541 /** 9542 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 9543 * @phba: Pointer to HBA context object. 9544 * @mboxq: Pointer to mailbox object. 9545 * 9546 * The function waits for the bootstrap mailbox register ready bit from 9547 * port for twice the regular mailbox command timeout value. 9548 * 9549 * 0 - no timeout on waiting for bootstrap mailbox register ready. 9550 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 9551 **/ 9552 static int 9553 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9554 { 9555 uint32_t db_ready; 9556 unsigned long timeout; 9557 struct lpfc_register bmbx_reg; 9558 9559 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 9560 * 1000) + jiffies; 9561 9562 do { 9563 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 9564 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 9565 if (!db_ready) 9566 mdelay(2); 9567 9568 if (time_after(jiffies, timeout)) 9569 return MBXERR_ERROR; 9570 } while (!db_ready); 9571 9572 return 0; 9573 } 9574 9575 /** 9576 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 9577 * @phba: Pointer to HBA context object. 9578 * @mboxq: Pointer to mailbox object. 9579 * 9580 * The function posts a mailbox to the port. The mailbox is expected 9581 * to be comletely filled in and ready for the port to operate on it. 9582 * This routine executes a synchronous completion operation on the 9583 * mailbox by polling for its completion. 9584 * 9585 * The caller must not be holding any locks when calling this routine. 9586 * 9587 * Returns: 9588 * MBX_SUCCESS - mailbox posted successfully 9589 * Any of the MBX error values. 9590 **/ 9591 static int 9592 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9593 { 9594 int rc = MBX_SUCCESS; 9595 unsigned long iflag; 9596 uint32_t mcqe_status; 9597 uint32_t mbx_cmnd; 9598 struct lpfc_sli *psli = &phba->sli; 9599 struct lpfc_mqe *mb = &mboxq->u.mqe; 9600 struct lpfc_bmbx_create *mbox_rgn; 9601 struct dma_address *dma_address; 9602 9603 /* 9604 * Only one mailbox can be active to the bootstrap mailbox region 9605 * at a time and there is no queueing provided. 9606 */ 9607 spin_lock_irqsave(&phba->hbalock, iflag); 9608 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9609 spin_unlock_irqrestore(&phba->hbalock, iflag); 9610 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9611 "(%d):2532 Mailbox command x%x (x%x/x%x) " 9612 "cannot issue Data: x%x x%x\n", 9613 mboxq->vport ? mboxq->vport->vpi : 0, 9614 mboxq->u.mb.mbxCommand, 9615 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9616 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9617 psli->sli_flag, MBX_POLL); 9618 return MBXERR_ERROR; 9619 } 9620 /* The server grabs the token and owns it until release */ 9621 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9622 phba->sli.mbox_active = mboxq; 9623 spin_unlock_irqrestore(&phba->hbalock, iflag); 9624 9625 /* wait for bootstrap mbox register for readyness */ 9626 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9627 if (rc) 9628 goto exit; 9629 /* 9630 * Initialize the bootstrap memory region to avoid stale data areas 9631 * in the mailbox post. Then copy the caller's mailbox contents to 9632 * the bmbx mailbox region. 9633 */ 9634 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 9635 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 9636 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 9637 sizeof(struct lpfc_mqe)); 9638 9639 /* Post the high mailbox dma address to the port and wait for ready. */ 9640 dma_address = &phba->sli4_hba.bmbx.dma_address; 9641 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 9642 9643 /* wait for bootstrap mbox register for hi-address write done */ 9644 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9645 if (rc) 9646 goto exit; 9647 9648 /* Post the low mailbox dma address to the port. */ 9649 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 9650 9651 /* wait for bootstrap mbox register for low address write done */ 9652 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9653 if (rc) 9654 goto exit; 9655 9656 /* 9657 * Read the CQ to ensure the mailbox has completed. 9658 * If so, update the mailbox status so that the upper layers 9659 * can complete the request normally. 9660 */ 9661 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 9662 sizeof(struct lpfc_mqe)); 9663 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 9664 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 9665 sizeof(struct lpfc_mcqe)); 9666 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 9667 /* 9668 * When the CQE status indicates a failure and the mailbox status 9669 * indicates success then copy the CQE status into the mailbox status 9670 * (and prefix it with x4000). 9671 */ 9672 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 9673 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 9674 bf_set(lpfc_mqe_status, mb, 9675 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 9676 rc = MBXERR_ERROR; 9677 } else 9678 lpfc_sli4_swap_str(phba, mboxq); 9679 9680 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9681 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 9682 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 9683 " x%x x%x CQ: x%x x%x x%x x%x\n", 9684 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9685 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9686 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9687 bf_get(lpfc_mqe_status, mb), 9688 mb->un.mb_words[0], mb->un.mb_words[1], 9689 mb->un.mb_words[2], mb->un.mb_words[3], 9690 mb->un.mb_words[4], mb->un.mb_words[5], 9691 mb->un.mb_words[6], mb->un.mb_words[7], 9692 mb->un.mb_words[8], mb->un.mb_words[9], 9693 mb->un.mb_words[10], mb->un.mb_words[11], 9694 mb->un.mb_words[12], mboxq->mcqe.word0, 9695 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 9696 mboxq->mcqe.trailer); 9697 exit: 9698 /* We are holding the token, no needed for lock when release */ 9699 spin_lock_irqsave(&phba->hbalock, iflag); 9700 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9701 phba->sli.mbox_active = NULL; 9702 spin_unlock_irqrestore(&phba->hbalock, iflag); 9703 return rc; 9704 } 9705 9706 /** 9707 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 9708 * @phba: Pointer to HBA context object. 9709 * @mboxq: Pointer to mailbox object. 9710 * @flag: Flag indicating how the mailbox need to be processed. 9711 * 9712 * This function is called by discovery code and HBA management code to submit 9713 * a mailbox command to firmware with SLI-4 interface spec. 9714 * 9715 * Return codes the caller owns the mailbox command after the return of the 9716 * function. 9717 **/ 9718 static int 9719 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 9720 uint32_t flag) 9721 { 9722 struct lpfc_sli *psli = &phba->sli; 9723 unsigned long iflags; 9724 int rc; 9725 9726 /* dump from issue mailbox command if setup */ 9727 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 9728 9729 rc = lpfc_mbox_dev_check(phba); 9730 if (unlikely(rc)) { 9731 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9732 "(%d):2544 Mailbox command x%x (x%x/x%x) " 9733 "cannot issue Data: x%x x%x\n", 9734 mboxq->vport ? mboxq->vport->vpi : 0, 9735 mboxq->u.mb.mbxCommand, 9736 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9737 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9738 psli->sli_flag, flag); 9739 goto out_not_finished; 9740 } 9741 9742 /* Detect polling mode and jump to a handler */ 9743 if (!phba->sli4_hba.intr_enable) { 9744 if (flag == MBX_POLL) 9745 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9746 else 9747 rc = -EIO; 9748 if (rc != MBX_SUCCESS) 9749 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9750 "(%d):2541 Mailbox command x%x " 9751 "(x%x/x%x) failure: " 9752 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9753 "Data: x%x x%x\n,", 9754 mboxq->vport ? mboxq->vport->vpi : 0, 9755 mboxq->u.mb.mbxCommand, 9756 lpfc_sli_config_mbox_subsys_get(phba, 9757 mboxq), 9758 lpfc_sli_config_mbox_opcode_get(phba, 9759 mboxq), 9760 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9761 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9762 bf_get(lpfc_mcqe_ext_status, 9763 &mboxq->mcqe), 9764 psli->sli_flag, flag); 9765 return rc; 9766 } else if (flag == MBX_POLL) { 9767 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9768 "(%d):2542 Try to issue mailbox command " 9769 "x%x (x%x/x%x) synchronously ahead of async " 9770 "mailbox command queue: x%x x%x\n", 9771 mboxq->vport ? mboxq->vport->vpi : 0, 9772 mboxq->u.mb.mbxCommand, 9773 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9774 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9775 psli->sli_flag, flag); 9776 /* Try to block the asynchronous mailbox posting */ 9777 rc = lpfc_sli4_async_mbox_block(phba); 9778 if (!rc) { 9779 /* Successfully blocked, now issue sync mbox cmd */ 9780 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9781 if (rc != MBX_SUCCESS) 9782 lpfc_printf_log(phba, KERN_WARNING, 9783 LOG_MBOX | LOG_SLI, 9784 "(%d):2597 Sync Mailbox command " 9785 "x%x (x%x/x%x) failure: " 9786 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9787 "Data: x%x x%x\n,", 9788 mboxq->vport ? mboxq->vport->vpi : 0, 9789 mboxq->u.mb.mbxCommand, 9790 lpfc_sli_config_mbox_subsys_get(phba, 9791 mboxq), 9792 lpfc_sli_config_mbox_opcode_get(phba, 9793 mboxq), 9794 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9795 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9796 bf_get(lpfc_mcqe_ext_status, 9797 &mboxq->mcqe), 9798 psli->sli_flag, flag); 9799 /* Unblock the async mailbox posting afterward */ 9800 lpfc_sli4_async_mbox_unblock(phba); 9801 } 9802 return rc; 9803 } 9804 9805 /* Now, interrupt mode asynchronous mailbox command */ 9806 rc = lpfc_mbox_cmd_check(phba, mboxq); 9807 if (rc) { 9808 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9809 "(%d):2543 Mailbox command x%x (x%x/x%x) " 9810 "cannot issue Data: x%x x%x\n", 9811 mboxq->vport ? mboxq->vport->vpi : 0, 9812 mboxq->u.mb.mbxCommand, 9813 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9814 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9815 psli->sli_flag, flag); 9816 goto out_not_finished; 9817 } 9818 9819 /* Put the mailbox command to the driver internal FIFO */ 9820 psli->slistat.mbox_busy++; 9821 spin_lock_irqsave(&phba->hbalock, iflags); 9822 lpfc_mbox_put(phba, mboxq); 9823 spin_unlock_irqrestore(&phba->hbalock, iflags); 9824 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9825 "(%d):0354 Mbox cmd issue - Enqueue Data: " 9826 "x%x (x%x/x%x) x%x x%x x%x\n", 9827 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 9828 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 9829 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9830 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9831 phba->pport->port_state, 9832 psli->sli_flag, MBX_NOWAIT); 9833 /* Wake up worker thread to transport mailbox command from head */ 9834 lpfc_worker_wake_up(phba); 9835 9836 return MBX_BUSY; 9837 9838 out_not_finished: 9839 return MBX_NOT_FINISHED; 9840 } 9841 9842 /** 9843 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 9844 * @phba: Pointer to HBA context object. 9845 * 9846 * This function is called by worker thread to send a mailbox command to 9847 * SLI4 HBA firmware. 9848 * 9849 **/ 9850 int 9851 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 9852 { 9853 struct lpfc_sli *psli = &phba->sli; 9854 LPFC_MBOXQ_t *mboxq; 9855 int rc = MBX_SUCCESS; 9856 unsigned long iflags; 9857 struct lpfc_mqe *mqe; 9858 uint32_t mbx_cmnd; 9859 9860 /* Check interrupt mode before post async mailbox command */ 9861 if (unlikely(!phba->sli4_hba.intr_enable)) 9862 return MBX_NOT_FINISHED; 9863 9864 /* Check for mailbox command service token */ 9865 spin_lock_irqsave(&phba->hbalock, iflags); 9866 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9867 spin_unlock_irqrestore(&phba->hbalock, iflags); 9868 return MBX_NOT_FINISHED; 9869 } 9870 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9871 spin_unlock_irqrestore(&phba->hbalock, iflags); 9872 return MBX_NOT_FINISHED; 9873 } 9874 if (unlikely(phba->sli.mbox_active)) { 9875 spin_unlock_irqrestore(&phba->hbalock, iflags); 9876 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9877 "0384 There is pending active mailbox cmd\n"); 9878 return MBX_NOT_FINISHED; 9879 } 9880 /* Take the mailbox command service token */ 9881 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9882 9883 /* Get the next mailbox command from head of queue */ 9884 mboxq = lpfc_mbox_get(phba); 9885 9886 /* If no more mailbox command waiting for post, we're done */ 9887 if (!mboxq) { 9888 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9889 spin_unlock_irqrestore(&phba->hbalock, iflags); 9890 return MBX_SUCCESS; 9891 } 9892 phba->sli.mbox_active = mboxq; 9893 spin_unlock_irqrestore(&phba->hbalock, iflags); 9894 9895 /* Check device readiness for posting mailbox command */ 9896 rc = lpfc_mbox_dev_check(phba); 9897 if (unlikely(rc)) 9898 /* Driver clean routine will clean up pending mailbox */ 9899 goto out_not_finished; 9900 9901 /* Prepare the mbox command to be posted */ 9902 mqe = &mboxq->u.mqe; 9903 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 9904 9905 /* Start timer for the mbox_tmo and log some mailbox post messages */ 9906 mod_timer(&psli->mbox_tmo, (jiffies + 9907 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 9908 9909 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9910 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 9911 "x%x x%x\n", 9912 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9913 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9914 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9915 phba->pport->port_state, psli->sli_flag); 9916 9917 if (mbx_cmnd != MBX_HEARTBEAT) { 9918 if (mboxq->vport) { 9919 lpfc_debugfs_disc_trc(mboxq->vport, 9920 LPFC_DISC_TRC_MBOX_VPORT, 9921 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9922 mbx_cmnd, mqe->un.mb_words[0], 9923 mqe->un.mb_words[1]); 9924 } else { 9925 lpfc_debugfs_disc_trc(phba->pport, 9926 LPFC_DISC_TRC_MBOX, 9927 "MBOX Send: cmd:x%x mb:x%x x%x", 9928 mbx_cmnd, mqe->un.mb_words[0], 9929 mqe->un.mb_words[1]); 9930 } 9931 } 9932 psli->slistat.mbox_cmd++; 9933 9934 /* Post the mailbox command to the port */ 9935 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 9936 if (rc != MBX_SUCCESS) { 9937 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9938 "(%d):2533 Mailbox command x%x (x%x/x%x) " 9939 "cannot issue Data: x%x x%x\n", 9940 mboxq->vport ? mboxq->vport->vpi : 0, 9941 mboxq->u.mb.mbxCommand, 9942 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9943 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9944 psli->sli_flag, MBX_NOWAIT); 9945 goto out_not_finished; 9946 } 9947 9948 return rc; 9949 9950 out_not_finished: 9951 spin_lock_irqsave(&phba->hbalock, iflags); 9952 if (phba->sli.mbox_active) { 9953 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 9954 __lpfc_mbox_cmpl_put(phba, mboxq); 9955 /* Release the token */ 9956 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9957 phba->sli.mbox_active = NULL; 9958 } 9959 spin_unlock_irqrestore(&phba->hbalock, iflags); 9960 9961 return MBX_NOT_FINISHED; 9962 } 9963 9964 /** 9965 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 9966 * @phba: Pointer to HBA context object. 9967 * @pmbox: Pointer to mailbox object. 9968 * @flag: Flag indicating how the mailbox need to be processed. 9969 * 9970 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 9971 * the API jump table function pointer from the lpfc_hba struct. 9972 * 9973 * Return codes the caller owns the mailbox command after the return of the 9974 * function. 9975 **/ 9976 int 9977 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 9978 { 9979 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 9980 } 9981 9982 /** 9983 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 9984 * @phba: The hba struct for which this call is being executed. 9985 * @dev_grp: The HBA PCI-Device group number. 9986 * 9987 * This routine sets up the mbox interface API function jump table in @phba 9988 * struct. 9989 * Returns: 0 - success, -ENODEV - failure. 9990 **/ 9991 int 9992 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 9993 { 9994 9995 switch (dev_grp) { 9996 case LPFC_PCI_DEV_LP: 9997 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 9998 phba->lpfc_sli_handle_slow_ring_event = 9999 lpfc_sli_handle_slow_ring_event_s3; 10000 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 10001 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 10002 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 10003 break; 10004 case LPFC_PCI_DEV_OC: 10005 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 10006 phba->lpfc_sli_handle_slow_ring_event = 10007 lpfc_sli_handle_slow_ring_event_s4; 10008 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 10009 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 10010 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 10011 break; 10012 default: 10013 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10014 "1420 Invalid HBA PCI-device group: 0x%x\n", 10015 dev_grp); 10016 return -ENODEV; 10017 } 10018 return 0; 10019 } 10020 10021 /** 10022 * __lpfc_sli_ringtx_put - Add an iocb to the txq 10023 * @phba: Pointer to HBA context object. 10024 * @pring: Pointer to driver SLI ring object. 10025 * @piocb: Pointer to address of newly added command iocb. 10026 * 10027 * This function is called with hbalock held for SLI3 ports or 10028 * the ring lock held for SLI4 ports to add a command 10029 * iocb to the txq when SLI layer cannot submit the command iocb 10030 * to the ring. 10031 **/ 10032 void 10033 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10034 struct lpfc_iocbq *piocb) 10035 { 10036 if (phba->sli_rev == LPFC_SLI_REV4) 10037 lockdep_assert_held(&pring->ring_lock); 10038 else 10039 lockdep_assert_held(&phba->hbalock); 10040 /* Insert the caller's iocb in the txq tail for later processing. */ 10041 list_add_tail(&piocb->list, &pring->txq); 10042 } 10043 10044 /** 10045 * lpfc_sli_next_iocb - Get the next iocb in the txq 10046 * @phba: Pointer to HBA context object. 10047 * @pring: Pointer to driver SLI ring object. 10048 * @piocb: Pointer to address of newly added command iocb. 10049 * 10050 * This function is called with hbalock held before a new 10051 * iocb is submitted to the firmware. This function checks 10052 * txq to flush the iocbs in txq to Firmware before 10053 * submitting new iocbs to the Firmware. 10054 * If there are iocbs in the txq which need to be submitted 10055 * to firmware, lpfc_sli_next_iocb returns the first element 10056 * of the txq after dequeuing it from txq. 10057 * If there is no iocb in the txq then the function will return 10058 * *piocb and *piocb is set to NULL. Caller needs to check 10059 * *piocb to find if there are more commands in the txq. 10060 **/ 10061 static struct lpfc_iocbq * 10062 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10063 struct lpfc_iocbq **piocb) 10064 { 10065 struct lpfc_iocbq * nextiocb; 10066 10067 lockdep_assert_held(&phba->hbalock); 10068 10069 nextiocb = lpfc_sli_ringtx_get(phba, pring); 10070 if (!nextiocb) { 10071 nextiocb = *piocb; 10072 *piocb = NULL; 10073 } 10074 10075 return nextiocb; 10076 } 10077 10078 /** 10079 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 10080 * @phba: Pointer to HBA context object. 10081 * @ring_number: SLI ring number to issue iocb on. 10082 * @piocb: Pointer to command iocb. 10083 * @flag: Flag indicating if this command can be put into txq. 10084 * 10085 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 10086 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 10087 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 10088 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 10089 * this function allows only iocbs for posting buffers. This function finds 10090 * next available slot in the command ring and posts the command to the 10091 * available slot and writes the port attention register to request HBA start 10092 * processing new iocb. If there is no slot available in the ring and 10093 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 10094 * the function returns IOCB_BUSY. 10095 * 10096 * This function is called with hbalock held. The function will return success 10097 * after it successfully submit the iocb to firmware or after adding to the 10098 * txq. 10099 **/ 10100 static int 10101 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 10102 struct lpfc_iocbq *piocb, uint32_t flag) 10103 { 10104 struct lpfc_iocbq *nextiocb; 10105 IOCB_t *iocb; 10106 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 10107 10108 lockdep_assert_held(&phba->hbalock); 10109 10110 if (piocb->iocb_cmpl && (!piocb->vport) && 10111 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 10112 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 10113 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10114 "1807 IOCB x%x failed. No vport\n", 10115 piocb->iocb.ulpCommand); 10116 dump_stack(); 10117 return IOCB_ERROR; 10118 } 10119 10120 10121 /* If the PCI channel is in offline state, do not post iocbs. */ 10122 if (unlikely(pci_channel_offline(phba->pcidev))) 10123 return IOCB_ERROR; 10124 10125 /* If HBA has a deferred error attention, fail the iocb. */ 10126 if (unlikely(phba->hba_flag & DEFER_ERATT)) 10127 return IOCB_ERROR; 10128 10129 /* 10130 * We should never get an IOCB if we are in a < LINK_DOWN state 10131 */ 10132 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10133 return IOCB_ERROR; 10134 10135 /* 10136 * Check to see if we are blocking IOCB processing because of a 10137 * outstanding event. 10138 */ 10139 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 10140 goto iocb_busy; 10141 10142 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 10143 /* 10144 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 10145 * can be issued if the link is not up. 10146 */ 10147 switch (piocb->iocb.ulpCommand) { 10148 case CMD_GEN_REQUEST64_CR: 10149 case CMD_GEN_REQUEST64_CX: 10150 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 10151 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 10152 FC_RCTL_DD_UNSOL_CMD) || 10153 (piocb->iocb.un.genreq64.w5.hcsw.Type != 10154 MENLO_TRANSPORT_TYPE)) 10155 10156 goto iocb_busy; 10157 break; 10158 case CMD_QUE_RING_BUF_CN: 10159 case CMD_QUE_RING_BUF64_CN: 10160 /* 10161 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 10162 * completion, iocb_cmpl MUST be 0. 10163 */ 10164 if (piocb->iocb_cmpl) 10165 piocb->iocb_cmpl = NULL; 10166 fallthrough; 10167 case CMD_CREATE_XRI_CR: 10168 case CMD_CLOSE_XRI_CN: 10169 case CMD_CLOSE_XRI_CX: 10170 break; 10171 default: 10172 goto iocb_busy; 10173 } 10174 10175 /* 10176 * For FCP commands, we must be in a state where we can process link 10177 * attention events. 10178 */ 10179 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 10180 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 10181 goto iocb_busy; 10182 } 10183 10184 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 10185 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 10186 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 10187 10188 if (iocb) 10189 lpfc_sli_update_ring(phba, pring); 10190 else 10191 lpfc_sli_update_full_ring(phba, pring); 10192 10193 if (!piocb) 10194 return IOCB_SUCCESS; 10195 10196 goto out_busy; 10197 10198 iocb_busy: 10199 pring->stats.iocb_cmd_delay++; 10200 10201 out_busy: 10202 10203 if (!(flag & SLI_IOCB_RET_IOCB)) { 10204 __lpfc_sli_ringtx_put(phba, pring, piocb); 10205 return IOCB_SUCCESS; 10206 } 10207 10208 return IOCB_BUSY; 10209 } 10210 10211 /** 10212 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 10213 * @phba: Pointer to HBA context object. 10214 * @piocbq: Pointer to command iocb. 10215 * @sglq: Pointer to the scatter gather queue object. 10216 * 10217 * This routine converts the bpl or bde that is in the IOCB 10218 * to a sgl list for the sli4 hardware. The physical address 10219 * of the bpl/bde is converted back to a virtual address. 10220 * If the IOCB contains a BPL then the list of BDE's is 10221 * converted to sli4_sge's. If the IOCB contains a single 10222 * BDE then it is converted to a single sli_sge. 10223 * The IOCB is still in cpu endianess so the contents of 10224 * the bpl can be used without byte swapping. 10225 * 10226 * Returns valid XRI = Success, NO_XRI = Failure. 10227 **/ 10228 static uint16_t 10229 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 10230 struct lpfc_sglq *sglq) 10231 { 10232 uint16_t xritag = NO_XRI; 10233 struct ulp_bde64 *bpl = NULL; 10234 struct ulp_bde64 bde; 10235 struct sli4_sge *sgl = NULL; 10236 struct lpfc_dmabuf *dmabuf; 10237 IOCB_t *icmd; 10238 int numBdes = 0; 10239 int i = 0; 10240 uint32_t offset = 0; /* accumulated offset in the sg request list */ 10241 int inbound = 0; /* number of sg reply entries inbound from firmware */ 10242 10243 if (!piocbq || !sglq) 10244 return xritag; 10245 10246 sgl = (struct sli4_sge *)sglq->sgl; 10247 icmd = &piocbq->iocb; 10248 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 10249 return sglq->sli4_xritag; 10250 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 10251 numBdes = icmd->un.genreq64.bdl.bdeSize / 10252 sizeof(struct ulp_bde64); 10253 /* The addrHigh and addrLow fields within the IOCB 10254 * have not been byteswapped yet so there is no 10255 * need to swap them back. 10256 */ 10257 if (piocbq->context3) 10258 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 10259 else 10260 return xritag; 10261 10262 bpl = (struct ulp_bde64 *)dmabuf->virt; 10263 if (!bpl) 10264 return xritag; 10265 10266 for (i = 0; i < numBdes; i++) { 10267 /* Should already be byte swapped. */ 10268 sgl->addr_hi = bpl->addrHigh; 10269 sgl->addr_lo = bpl->addrLow; 10270 10271 sgl->word2 = le32_to_cpu(sgl->word2); 10272 if ((i+1) == numBdes) 10273 bf_set(lpfc_sli4_sge_last, sgl, 1); 10274 else 10275 bf_set(lpfc_sli4_sge_last, sgl, 0); 10276 /* swap the size field back to the cpu so we 10277 * can assign it to the sgl. 10278 */ 10279 bde.tus.w = le32_to_cpu(bpl->tus.w); 10280 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 10281 /* The offsets in the sgl need to be accumulated 10282 * separately for the request and reply lists. 10283 * The request is always first, the reply follows. 10284 */ 10285 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 10286 /* add up the reply sg entries */ 10287 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 10288 inbound++; 10289 /* first inbound? reset the offset */ 10290 if (inbound == 1) 10291 offset = 0; 10292 bf_set(lpfc_sli4_sge_offset, sgl, offset); 10293 bf_set(lpfc_sli4_sge_type, sgl, 10294 LPFC_SGE_TYPE_DATA); 10295 offset += bde.tus.f.bdeSize; 10296 } 10297 sgl->word2 = cpu_to_le32(sgl->word2); 10298 bpl++; 10299 sgl++; 10300 } 10301 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 10302 /* The addrHigh and addrLow fields of the BDE have not 10303 * been byteswapped yet so they need to be swapped 10304 * before putting them in the sgl. 10305 */ 10306 sgl->addr_hi = 10307 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 10308 sgl->addr_lo = 10309 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 10310 sgl->word2 = le32_to_cpu(sgl->word2); 10311 bf_set(lpfc_sli4_sge_last, sgl, 1); 10312 sgl->word2 = cpu_to_le32(sgl->word2); 10313 sgl->sge_len = 10314 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 10315 } 10316 return sglq->sli4_xritag; 10317 } 10318 10319 /** 10320 * lpfc_sli4_iocb2wqe - Convert the IOCB to a work queue entry. 10321 * @phba: Pointer to HBA context object. 10322 * @iocbq: Pointer to command iocb. 10323 * @wqe: Pointer to the work queue entry. 10324 * 10325 * This routine converts the iocb command to its Work Queue Entry 10326 * equivalent. The wqe pointer should not have any fields set when 10327 * this routine is called because it will memcpy over them. 10328 * This routine does not set the CQ_ID or the WQEC bits in the 10329 * wqe. 10330 * 10331 * Returns: 0 = Success, IOCB_ERROR = Failure. 10332 **/ 10333 static int 10334 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 10335 union lpfc_wqe128 *wqe) 10336 { 10337 uint32_t xmit_len = 0, total_len = 0; 10338 uint8_t ct = 0; 10339 uint32_t fip; 10340 uint32_t abort_tag; 10341 uint8_t command_type = ELS_COMMAND_NON_FIP; 10342 uint8_t cmnd; 10343 uint16_t xritag; 10344 uint16_t abrt_iotag; 10345 struct lpfc_iocbq *abrtiocbq; 10346 struct ulp_bde64 *bpl = NULL; 10347 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 10348 int numBdes, i; 10349 struct ulp_bde64 bde; 10350 struct lpfc_nodelist *ndlp; 10351 uint32_t *pcmd; 10352 uint32_t if_type; 10353 10354 fip = phba->hba_flag & HBA_FIP_SUPPORT; 10355 /* The fcp commands will set command type */ 10356 if (iocbq->iocb_flag & LPFC_IO_FCP) 10357 command_type = FCP_COMMAND; 10358 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 10359 command_type = ELS_COMMAND_FIP; 10360 else 10361 command_type = ELS_COMMAND_NON_FIP; 10362 10363 if (phba->fcp_embed_io) 10364 memset(wqe, 0, sizeof(union lpfc_wqe128)); 10365 /* Some of the fields are in the right position already */ 10366 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 10367 /* The ct field has moved so reset */ 10368 wqe->generic.wqe_com.word7 = 0; 10369 wqe->generic.wqe_com.word10 = 0; 10370 10371 abort_tag = (uint32_t) iocbq->iotag; 10372 xritag = iocbq->sli4_xritag; 10373 /* words0-2 bpl convert bde */ 10374 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 10375 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 10376 sizeof(struct ulp_bde64); 10377 bpl = (struct ulp_bde64 *) 10378 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 10379 if (!bpl) 10380 return IOCB_ERROR; 10381 10382 /* Should already be byte swapped. */ 10383 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 10384 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 10385 /* swap the size field back to the cpu so we 10386 * can assign it to the sgl. 10387 */ 10388 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 10389 xmit_len = wqe->generic.bde.tus.f.bdeSize; 10390 total_len = 0; 10391 for (i = 0; i < numBdes; i++) { 10392 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 10393 total_len += bde.tus.f.bdeSize; 10394 } 10395 } else 10396 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 10397 10398 iocbq->iocb.ulpIoTag = iocbq->iotag; 10399 cmnd = iocbq->iocb.ulpCommand; 10400 10401 switch (iocbq->iocb.ulpCommand) { 10402 case CMD_ELS_REQUEST64_CR: 10403 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 10404 ndlp = iocbq->context_un.ndlp; 10405 else 10406 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10407 if (!iocbq->iocb.ulpLe) { 10408 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10409 "2007 Only Limited Edition cmd Format" 10410 " supported 0x%x\n", 10411 iocbq->iocb.ulpCommand); 10412 return IOCB_ERROR; 10413 } 10414 10415 wqe->els_req.payload_len = xmit_len; 10416 /* Els_reguest64 has a TMO */ 10417 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 10418 iocbq->iocb.ulpTimeout); 10419 /* Need a VF for word 4 set the vf bit*/ 10420 bf_set(els_req64_vf, &wqe->els_req, 0); 10421 /* And a VFID for word 12 */ 10422 bf_set(els_req64_vfid, &wqe->els_req, 0); 10423 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 10424 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10425 iocbq->iocb.ulpContext); 10426 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 10427 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 10428 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 10429 if (command_type == ELS_COMMAND_FIP) 10430 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 10431 >> LPFC_FIP_ELS_ID_SHIFT); 10432 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 10433 iocbq->context2)->virt); 10434 if_type = bf_get(lpfc_sli_intf_if_type, 10435 &phba->sli4_hba.sli_intf); 10436 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 10437 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 10438 *pcmd == ELS_CMD_SCR || 10439 *pcmd == ELS_CMD_RDF || 10440 *pcmd == ELS_CMD_EDC || 10441 *pcmd == ELS_CMD_RSCN_XMT || 10442 *pcmd == ELS_CMD_FDISC || 10443 *pcmd == ELS_CMD_LOGO || 10444 *pcmd == ELS_CMD_QFPA || 10445 *pcmd == ELS_CMD_UVEM || 10446 *pcmd == ELS_CMD_PLOGI)) { 10447 bf_set(els_req64_sp, &wqe->els_req, 1); 10448 bf_set(els_req64_sid, &wqe->els_req, 10449 iocbq->vport->fc_myDID); 10450 if ((*pcmd == ELS_CMD_FLOGI) && 10451 !(phba->fc_topology == 10452 LPFC_TOPOLOGY_LOOP)) 10453 bf_set(els_req64_sid, &wqe->els_req, 0); 10454 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 10455 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10456 phba->vpi_ids[iocbq->vport->vpi]); 10457 } else if (pcmd && iocbq->context1) { 10458 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 10459 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10460 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 10461 } 10462 } 10463 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 10464 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 10465 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 10466 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 10467 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 10468 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 10469 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 10470 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 10471 wqe->els_req.max_response_payload_len = total_len - xmit_len; 10472 break; 10473 case CMD_XMIT_SEQUENCE64_CX: 10474 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 10475 iocbq->iocb.un.ulpWord[3]); 10476 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 10477 iocbq->iocb.unsli3.rcvsli3.ox_id); 10478 /* The entire sequence is transmitted for this IOCB */ 10479 xmit_len = total_len; 10480 cmnd = CMD_XMIT_SEQUENCE64_CR; 10481 if (phba->link_flag & LS_LOOPBACK_MODE) 10482 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 10483 fallthrough; 10484 case CMD_XMIT_SEQUENCE64_CR: 10485 /* word3 iocb=io_tag32 wqe=reserved */ 10486 wqe->xmit_sequence.rsvd3 = 0; 10487 /* word4 relative_offset memcpy */ 10488 /* word5 r_ctl/df_ctl memcpy */ 10489 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 10490 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 10491 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 10492 LPFC_WQE_IOD_WRITE); 10493 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 10494 LPFC_WQE_LENLOC_WORD12); 10495 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 10496 wqe->xmit_sequence.xmit_len = xmit_len; 10497 command_type = OTHER_COMMAND; 10498 break; 10499 case CMD_XMIT_BCAST64_CN: 10500 /* word3 iocb=iotag32 wqe=seq_payload_len */ 10501 wqe->xmit_bcast64.seq_payload_len = xmit_len; 10502 /* word4 iocb=rsvd wqe=rsvd */ 10503 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 10504 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 10505 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 10506 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10507 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 10508 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 10509 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 10510 LPFC_WQE_LENLOC_WORD3); 10511 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 10512 break; 10513 case CMD_FCP_IWRITE64_CR: 10514 command_type = FCP_COMMAND_DATA_OUT; 10515 /* word3 iocb=iotag wqe=payload_offset_len */ 10516 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 10517 bf_set(payload_offset_len, &wqe->fcp_iwrite, 10518 xmit_len + sizeof(struct fcp_rsp)); 10519 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 10520 0); 10521 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 10522 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 10523 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 10524 iocbq->iocb.ulpFCP2Rcvy); 10525 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 10526 /* Always open the exchange */ 10527 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 10528 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 10529 LPFC_WQE_LENLOC_WORD4); 10530 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 10531 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 10532 if (iocbq->iocb_flag & LPFC_IO_OAS) { 10533 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 10534 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 10535 if (iocbq->priority) { 10536 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10537 (iocbq->priority << 1)); 10538 } else { 10539 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10540 (phba->cfg_XLanePriority << 1)); 10541 } 10542 } 10543 /* Note, word 10 is already initialized to 0 */ 10544 10545 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 10546 if (phba->cfg_enable_pbde) 10547 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1); 10548 else 10549 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 10550 10551 if (phba->fcp_embed_io) { 10552 struct lpfc_io_buf *lpfc_cmd; 10553 struct sli4_sge *sgl; 10554 struct fcp_cmnd *fcp_cmnd; 10555 uint32_t *ptr; 10556 10557 /* 128 byte wqe support here */ 10558 10559 lpfc_cmd = iocbq->context1; 10560 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10561 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10562 10563 /* Word 0-2 - FCP_CMND */ 10564 wqe->generic.bde.tus.f.bdeFlags = 10565 BUFF_TYPE_BDE_IMMED; 10566 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10567 wqe->generic.bde.addrHigh = 0; 10568 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10569 10570 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10571 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10572 10573 /* Word 22-29 FCP CMND Payload */ 10574 ptr = &wqe->words[22]; 10575 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10576 } 10577 break; 10578 case CMD_FCP_IREAD64_CR: 10579 /* word3 iocb=iotag wqe=payload_offset_len */ 10580 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 10581 bf_set(payload_offset_len, &wqe->fcp_iread, 10582 xmit_len + sizeof(struct fcp_rsp)); 10583 bf_set(cmd_buff_len, &wqe->fcp_iread, 10584 0); 10585 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 10586 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 10587 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 10588 iocbq->iocb.ulpFCP2Rcvy); 10589 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 10590 /* Always open the exchange */ 10591 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 10592 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 10593 LPFC_WQE_LENLOC_WORD4); 10594 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 10595 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 10596 if (iocbq->iocb_flag & LPFC_IO_OAS) { 10597 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 10598 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 10599 if (iocbq->priority) { 10600 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 10601 (iocbq->priority << 1)); 10602 } else { 10603 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 10604 (phba->cfg_XLanePriority << 1)); 10605 } 10606 } 10607 /* Note, word 10 is already initialized to 0 */ 10608 10609 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 10610 if (phba->cfg_enable_pbde) 10611 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1); 10612 else 10613 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 10614 10615 if (phba->fcp_embed_io) { 10616 struct lpfc_io_buf *lpfc_cmd; 10617 struct sli4_sge *sgl; 10618 struct fcp_cmnd *fcp_cmnd; 10619 uint32_t *ptr; 10620 10621 /* 128 byte wqe support here */ 10622 10623 lpfc_cmd = iocbq->context1; 10624 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10625 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10626 10627 /* Word 0-2 - FCP_CMND */ 10628 wqe->generic.bde.tus.f.bdeFlags = 10629 BUFF_TYPE_BDE_IMMED; 10630 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10631 wqe->generic.bde.addrHigh = 0; 10632 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10633 10634 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 10635 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 10636 10637 /* Word 22-29 FCP CMND Payload */ 10638 ptr = &wqe->words[22]; 10639 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10640 } 10641 break; 10642 case CMD_FCP_ICMND64_CR: 10643 /* word3 iocb=iotag wqe=payload_offset_len */ 10644 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 10645 bf_set(payload_offset_len, &wqe->fcp_icmd, 10646 xmit_len + sizeof(struct fcp_rsp)); 10647 bf_set(cmd_buff_len, &wqe->fcp_icmd, 10648 0); 10649 /* word3 iocb=IO_TAG wqe=reserved */ 10650 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 10651 /* Always open the exchange */ 10652 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 10653 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 10654 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 10655 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 10656 LPFC_WQE_LENLOC_NONE); 10657 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 10658 iocbq->iocb.ulpFCP2Rcvy); 10659 if (iocbq->iocb_flag & LPFC_IO_OAS) { 10660 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 10661 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 10662 if (iocbq->priority) { 10663 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 10664 (iocbq->priority << 1)); 10665 } else { 10666 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 10667 (phba->cfg_XLanePriority << 1)); 10668 } 10669 } 10670 /* Note, word 10 is already initialized to 0 */ 10671 10672 if (phba->fcp_embed_io) { 10673 struct lpfc_io_buf *lpfc_cmd; 10674 struct sli4_sge *sgl; 10675 struct fcp_cmnd *fcp_cmnd; 10676 uint32_t *ptr; 10677 10678 /* 128 byte wqe support here */ 10679 10680 lpfc_cmd = iocbq->context1; 10681 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10682 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10683 10684 /* Word 0-2 - FCP_CMND */ 10685 wqe->generic.bde.tus.f.bdeFlags = 10686 BUFF_TYPE_BDE_IMMED; 10687 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10688 wqe->generic.bde.addrHigh = 0; 10689 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10690 10691 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 10692 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 10693 10694 /* Word 22-29 FCP CMND Payload */ 10695 ptr = &wqe->words[22]; 10696 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10697 } 10698 break; 10699 case CMD_GEN_REQUEST64_CR: 10700 /* For this command calculate the xmit length of the 10701 * request bde. 10702 */ 10703 xmit_len = 0; 10704 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 10705 sizeof(struct ulp_bde64); 10706 for (i = 0; i < numBdes; i++) { 10707 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 10708 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 10709 break; 10710 xmit_len += bde.tus.f.bdeSize; 10711 } 10712 /* word3 iocb=IO_TAG wqe=request_payload_len */ 10713 wqe->gen_req.request_payload_len = xmit_len; 10714 /* word4 iocb=parameter wqe=relative_offset memcpy */ 10715 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 10716 /* word6 context tag copied in memcpy */ 10717 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 10718 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 10719 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10720 "2015 Invalid CT %x command 0x%x\n", 10721 ct, iocbq->iocb.ulpCommand); 10722 return IOCB_ERROR; 10723 } 10724 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 10725 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 10726 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 10727 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 10728 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 10729 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 10730 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 10731 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 10732 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 10733 command_type = OTHER_COMMAND; 10734 break; 10735 case CMD_XMIT_ELS_RSP64_CX: 10736 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10737 /* words0-2 BDE memcpy */ 10738 /* word3 iocb=iotag32 wqe=response_payload_len */ 10739 wqe->xmit_els_rsp.response_payload_len = xmit_len; 10740 /* word4 */ 10741 wqe->xmit_els_rsp.word4 = 0; 10742 /* word5 iocb=rsvd wge=did */ 10743 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 10744 iocbq->iocb.un.xseq64.xmit_els_remoteID); 10745 10746 if_type = bf_get(lpfc_sli_intf_if_type, 10747 &phba->sli4_hba.sli_intf); 10748 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 10749 if (iocbq->vport->fc_flag & FC_PT2PT) { 10750 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 10751 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 10752 iocbq->vport->fc_myDID); 10753 if (iocbq->vport->fc_myDID == Fabric_DID) { 10754 bf_set(wqe_els_did, 10755 &wqe->xmit_els_rsp.wqe_dest, 0); 10756 } 10757 } 10758 } 10759 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 10760 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10761 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 10762 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 10763 iocbq->iocb.unsli3.rcvsli3.ox_id); 10764 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 10765 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 10766 phba->vpi_ids[iocbq->vport->vpi]); 10767 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 10768 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 10769 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 10770 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 10771 LPFC_WQE_LENLOC_WORD3); 10772 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 10773 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 10774 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 10775 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 10776 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 10777 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 10778 iocbq->vport->fc_myDID); 10779 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 10780 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 10781 phba->vpi_ids[phba->pport->vpi]); 10782 } 10783 command_type = OTHER_COMMAND; 10784 break; 10785 case CMD_CLOSE_XRI_CN: 10786 case CMD_ABORT_XRI_CN: 10787 case CMD_ABORT_XRI_CX: 10788 /* words 0-2 memcpy should be 0 rserved */ 10789 /* port will send abts */ 10790 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 10791 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 10792 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 10793 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 10794 } else 10795 fip = 0; 10796 10797 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 10798 /* 10799 * The link is down, or the command was ELS_FIP 10800 * so the fw does not need to send abts 10801 * on the wire. 10802 */ 10803 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 10804 else 10805 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 10806 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 10807 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 10808 wqe->abort_cmd.rsrvd5 = 0; 10809 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 10810 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10811 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 10812 /* 10813 * The abort handler will send us CMD_ABORT_XRI_CN or 10814 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 10815 */ 10816 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 10817 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 10818 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 10819 LPFC_WQE_LENLOC_NONE); 10820 cmnd = CMD_ABORT_XRI_CX; 10821 command_type = OTHER_COMMAND; 10822 xritag = 0; 10823 break; 10824 case CMD_XMIT_BLS_RSP64_CX: 10825 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10826 /* As BLS ABTS RSP WQE is very different from other WQEs, 10827 * we re-construct this WQE here based on information in 10828 * iocbq from scratch. 10829 */ 10830 memset(wqe, 0, sizeof(*wqe)); 10831 /* OX_ID is invariable to who sent ABTS to CT exchange */ 10832 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 10833 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 10834 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 10835 LPFC_ABTS_UNSOL_INT) { 10836 /* ABTS sent by initiator to CT exchange, the 10837 * RX_ID field will be filled with the newly 10838 * allocated responder XRI. 10839 */ 10840 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10841 iocbq->sli4_xritag); 10842 } else { 10843 /* ABTS sent by responder to CT exchange, the 10844 * RX_ID field will be filled with the responder 10845 * RX_ID from ABTS. 10846 */ 10847 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10848 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 10849 } 10850 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 10851 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 10852 10853 /* Use CT=VPI */ 10854 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 10855 ndlp->nlp_DID); 10856 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 10857 iocbq->iocb.ulpContext); 10858 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 10859 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 10860 phba->vpi_ids[phba->pport->vpi]); 10861 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 10862 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 10863 LPFC_WQE_LENLOC_NONE); 10864 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 10865 command_type = OTHER_COMMAND; 10866 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 10867 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 10868 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 10869 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 10870 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 10871 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 10872 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 10873 } 10874 10875 break; 10876 case CMD_SEND_FRAME: 10877 bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME); 10878 bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */ 10879 bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */ 10880 bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1); 10881 bf_set(wqe_xbl, &wqe->generic.wqe_com, 1); 10882 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10883 bf_set(wqe_xc, &wqe->generic.wqe_com, 1); 10884 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA); 10885 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10886 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10887 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10888 return 0; 10889 case CMD_XRI_ABORTED_CX: 10890 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 10891 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 10892 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 10893 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 10894 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 10895 default: 10896 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10897 "2014 Invalid command 0x%x\n", 10898 iocbq->iocb.ulpCommand); 10899 return IOCB_ERROR; 10900 } 10901 10902 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 10903 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 10904 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 10905 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 10906 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 10907 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 10908 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 10909 LPFC_IO_DIF_INSERT); 10910 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10911 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10912 wqe->generic.wqe_com.abort_tag = abort_tag; 10913 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 10914 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 10915 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 10916 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10917 return 0; 10918 } 10919 10920 /** 10921 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10922 * @phba: Pointer to HBA context object. 10923 * @ring_number: SLI ring number to issue wqe on. 10924 * @piocb: Pointer to command iocb. 10925 * @flag: Flag indicating if this command can be put into txq. 10926 * 10927 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10928 * send an iocb command to an HBA with SLI-4 interface spec. 10929 * 10930 * This function takes the hbalock before invoking the lockless version. 10931 * The function will return success after it successfully submit the wqe to 10932 * firmware or after adding to the txq. 10933 **/ 10934 static int 10935 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10936 struct lpfc_iocbq *piocb, uint32_t flag) 10937 { 10938 unsigned long iflags; 10939 int rc; 10940 10941 spin_lock_irqsave(&phba->hbalock, iflags); 10942 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10943 spin_unlock_irqrestore(&phba->hbalock, iflags); 10944 10945 return rc; 10946 } 10947 10948 /** 10949 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10950 * @phba: Pointer to HBA context object. 10951 * @ring_number: SLI ring number to issue wqe on. 10952 * @piocb: Pointer to command iocb. 10953 * @flag: Flag indicating if this command can be put into txq. 10954 * 10955 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10956 * an wqe command to an HBA with SLI-4 interface spec. 10957 * 10958 * This function is a lockless version. The function will return success 10959 * after it successfully submit the wqe to firmware or after adding to the 10960 * txq. 10961 **/ 10962 static int 10963 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10964 struct lpfc_iocbq *piocb, uint32_t flag) 10965 { 10966 int rc; 10967 struct lpfc_io_buf *lpfc_cmd = 10968 (struct lpfc_io_buf *)piocb->context1; 10969 union lpfc_wqe128 *wqe = &piocb->wqe; 10970 struct sli4_sge *sgl; 10971 10972 /* 128 byte wqe support here */ 10973 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10974 10975 if (phba->fcp_embed_io) { 10976 struct fcp_cmnd *fcp_cmnd; 10977 u32 *ptr; 10978 10979 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10980 10981 /* Word 0-2 - FCP_CMND */ 10982 wqe->generic.bde.tus.f.bdeFlags = 10983 BUFF_TYPE_BDE_IMMED; 10984 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10985 wqe->generic.bde.addrHigh = 0; 10986 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10987 10988 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10989 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10990 10991 /* Word 22-29 FCP CMND Payload */ 10992 ptr = &wqe->words[22]; 10993 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10994 } else { 10995 /* Word 0-2 - Inline BDE */ 10996 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10997 wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd); 10998 wqe->generic.bde.addrHigh = sgl->addr_hi; 10999 wqe->generic.bde.addrLow = sgl->addr_lo; 11000 11001 /* Word 10 */ 11002 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 11003 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 11004 } 11005 11006 /* add the VMID tags as per switch response */ 11007 if (unlikely(piocb->iocb_flag & LPFC_IO_VMID)) { 11008 if (phba->pport->vmid_priority_tagging) { 11009 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 11010 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 11011 (piocb->vmid_tag.cs_ctl_vmid)); 11012 } else { 11013 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); 11014 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 11015 wqe->words[31] = piocb->vmid_tag.app_id; 11016 } 11017 } 11018 rc = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 11019 return rc; 11020 } 11021 11022 /** 11023 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 11024 * @phba: Pointer to HBA context object. 11025 * @ring_number: SLI ring number to issue iocb on. 11026 * @piocb: Pointer to command iocb. 11027 * @flag: Flag indicating if this command can be put into txq. 11028 * 11029 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 11030 * an iocb command to an HBA with SLI-4 interface spec. 11031 * 11032 * This function is called with ringlock held. The function will return success 11033 * after it successfully submit the iocb to firmware or after adding to the 11034 * txq. 11035 **/ 11036 static int 11037 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 11038 struct lpfc_iocbq *piocb, uint32_t flag) 11039 { 11040 struct lpfc_sglq *sglq; 11041 union lpfc_wqe128 wqe; 11042 struct lpfc_queue *wq; 11043 struct lpfc_sli_ring *pring; 11044 11045 /* Get the WQ */ 11046 if ((piocb->iocb_flag & LPFC_IO_FCP) || 11047 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 11048 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 11049 } else { 11050 wq = phba->sli4_hba.els_wq; 11051 } 11052 11053 /* Get corresponding ring */ 11054 pring = wq->pring; 11055 11056 /* 11057 * The WQE can be either 64 or 128 bytes, 11058 */ 11059 11060 lockdep_assert_held(&pring->ring_lock); 11061 11062 if (piocb->sli4_xritag == NO_XRI) { 11063 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 11064 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 11065 sglq = NULL; 11066 else { 11067 if (!list_empty(&pring->txq)) { 11068 if (!(flag & SLI_IOCB_RET_IOCB)) { 11069 __lpfc_sli_ringtx_put(phba, 11070 pring, piocb); 11071 return IOCB_SUCCESS; 11072 } else { 11073 return IOCB_BUSY; 11074 } 11075 } else { 11076 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 11077 if (!sglq) { 11078 if (!(flag & SLI_IOCB_RET_IOCB)) { 11079 __lpfc_sli_ringtx_put(phba, 11080 pring, 11081 piocb); 11082 return IOCB_SUCCESS; 11083 } else 11084 return IOCB_BUSY; 11085 } 11086 } 11087 } 11088 } else if (piocb->iocb_flag & LPFC_IO_FCP) { 11089 /* These IO's already have an XRI and a mapped sgl. */ 11090 sglq = NULL; 11091 } 11092 else { 11093 /* 11094 * This is a continuation of a commandi,(CX) so this 11095 * sglq is on the active list 11096 */ 11097 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 11098 if (!sglq) 11099 return IOCB_ERROR; 11100 } 11101 11102 if (sglq) { 11103 piocb->sli4_lxritag = sglq->sli4_lxritag; 11104 piocb->sli4_xritag = sglq->sli4_xritag; 11105 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 11106 return IOCB_ERROR; 11107 } 11108 11109 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe)) 11110 return IOCB_ERROR; 11111 11112 if (lpfc_sli4_wq_put(wq, &wqe)) 11113 return IOCB_ERROR; 11114 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 11115 11116 return 0; 11117 } 11118 11119 /* 11120 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 11121 * 11122 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 11123 * or IOCB for sli-3 function. 11124 * pointer from the lpfc_hba struct. 11125 * 11126 * Return codes: 11127 * IOCB_ERROR - Error 11128 * IOCB_SUCCESS - Success 11129 * IOCB_BUSY - Busy 11130 **/ 11131 int 11132 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 11133 struct lpfc_iocbq *piocb, uint32_t flag) 11134 { 11135 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 11136 } 11137 11138 /* 11139 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 11140 * 11141 * This routine wraps the actual lockless version for issusing IOCB function 11142 * pointer from the lpfc_hba struct. 11143 * 11144 * Return codes: 11145 * IOCB_ERROR - Error 11146 * IOCB_SUCCESS - Success 11147 * IOCB_BUSY - Busy 11148 **/ 11149 int 11150 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11151 struct lpfc_iocbq *piocb, uint32_t flag) 11152 { 11153 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11154 } 11155 11156 /** 11157 * lpfc_sli_api_table_setup - Set up sli api function jump table 11158 * @phba: The hba struct for which this call is being executed. 11159 * @dev_grp: The HBA PCI-Device group number. 11160 * 11161 * This routine sets up the SLI interface API function jump table in @phba 11162 * struct. 11163 * Returns: 0 - success, -ENODEV - failure. 11164 **/ 11165 int 11166 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 11167 { 11168 11169 switch (dev_grp) { 11170 case LPFC_PCI_DEV_LP: 11171 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 11172 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 11173 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 11174 break; 11175 case LPFC_PCI_DEV_OC: 11176 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 11177 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 11178 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 11179 break; 11180 default: 11181 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11182 "1419 Invalid HBA PCI-device group: 0x%x\n", 11183 dev_grp); 11184 return -ENODEV; 11185 } 11186 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 11187 return 0; 11188 } 11189 11190 /** 11191 * lpfc_sli4_calc_ring - Calculates which ring to use 11192 * @phba: Pointer to HBA context object. 11193 * @piocb: Pointer to command iocb. 11194 * 11195 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 11196 * hba_wqidx, thus we need to calculate the corresponding ring. 11197 * Since ABORTS must go on the same WQ of the command they are 11198 * aborting, we use command's hba_wqidx. 11199 */ 11200 struct lpfc_sli_ring * 11201 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 11202 { 11203 struct lpfc_io_buf *lpfc_cmd; 11204 11205 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 11206 if (unlikely(!phba->sli4_hba.hdwq)) 11207 return NULL; 11208 /* 11209 * for abort iocb hba_wqidx should already 11210 * be setup based on what work queue we used. 11211 */ 11212 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 11213 lpfc_cmd = (struct lpfc_io_buf *)piocb->context1; 11214 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 11215 } 11216 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 11217 } else { 11218 if (unlikely(!phba->sli4_hba.els_wq)) 11219 return NULL; 11220 piocb->hba_wqidx = 0; 11221 return phba->sli4_hba.els_wq->pring; 11222 } 11223 } 11224 11225 /** 11226 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 11227 * @phba: Pointer to HBA context object. 11228 * @ring_number: Ring number 11229 * @piocb: Pointer to command iocb. 11230 * @flag: Flag indicating if this command can be put into txq. 11231 * 11232 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 11233 * function. This function gets the hbalock and calls 11234 * __lpfc_sli_issue_iocb function and will return the error returned 11235 * by __lpfc_sli_issue_iocb function. This wrapper is used by 11236 * functions which do not hold hbalock. 11237 **/ 11238 int 11239 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11240 struct lpfc_iocbq *piocb, uint32_t flag) 11241 { 11242 struct lpfc_sli_ring *pring; 11243 struct lpfc_queue *eq; 11244 unsigned long iflags; 11245 int rc; 11246 11247 if (phba->sli_rev == LPFC_SLI_REV4) { 11248 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 11249 11250 pring = lpfc_sli4_calc_ring(phba, piocb); 11251 if (unlikely(pring == NULL)) 11252 return IOCB_ERROR; 11253 11254 spin_lock_irqsave(&pring->ring_lock, iflags); 11255 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11256 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11257 11258 lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH); 11259 } else { 11260 /* For now, SLI2/3 will still use hbalock */ 11261 spin_lock_irqsave(&phba->hbalock, iflags); 11262 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11263 spin_unlock_irqrestore(&phba->hbalock, iflags); 11264 } 11265 return rc; 11266 } 11267 11268 /** 11269 * lpfc_extra_ring_setup - Extra ring setup function 11270 * @phba: Pointer to HBA context object. 11271 * 11272 * This function is called while driver attaches with the 11273 * HBA to setup the extra ring. The extra ring is used 11274 * only when driver needs to support target mode functionality 11275 * or IP over FC functionalities. 11276 * 11277 * This function is called with no lock held. SLI3 only. 11278 **/ 11279 static int 11280 lpfc_extra_ring_setup( struct lpfc_hba *phba) 11281 { 11282 struct lpfc_sli *psli; 11283 struct lpfc_sli_ring *pring; 11284 11285 psli = &phba->sli; 11286 11287 /* Adjust cmd/rsp ring iocb entries more evenly */ 11288 11289 /* Take some away from the FCP ring */ 11290 pring = &psli->sli3_ring[LPFC_FCP_RING]; 11291 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11292 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11293 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11294 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11295 11296 /* and give them to the extra ring */ 11297 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 11298 11299 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11300 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11301 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11302 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11303 11304 /* Setup default profile for this ring */ 11305 pring->iotag_max = 4096; 11306 pring->num_mask = 1; 11307 pring->prt[0].profile = 0; /* Mask 0 */ 11308 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 11309 pring->prt[0].type = phba->cfg_multi_ring_type; 11310 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 11311 return 0; 11312 } 11313 11314 static void 11315 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 11316 struct lpfc_nodelist *ndlp) 11317 { 11318 unsigned long iflags; 11319 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 11320 11321 spin_lock_irqsave(&phba->hbalock, iflags); 11322 if (!list_empty(&evtp->evt_listp)) { 11323 spin_unlock_irqrestore(&phba->hbalock, iflags); 11324 return; 11325 } 11326 11327 /* Incrementing the reference count until the queued work is done. */ 11328 evtp->evt_arg1 = lpfc_nlp_get(ndlp); 11329 if (!evtp->evt_arg1) { 11330 spin_unlock_irqrestore(&phba->hbalock, iflags); 11331 return; 11332 } 11333 evtp->evt = LPFC_EVT_RECOVER_PORT; 11334 list_add_tail(&evtp->evt_listp, &phba->work_list); 11335 spin_unlock_irqrestore(&phba->hbalock, iflags); 11336 11337 lpfc_worker_wake_up(phba); 11338 } 11339 11340 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 11341 * @phba: Pointer to HBA context object. 11342 * @iocbq: Pointer to iocb object. 11343 * 11344 * The async_event handler calls this routine when it receives 11345 * an ASYNC_STATUS_CN event from the port. The port generates 11346 * this event when an Abort Sequence request to an rport fails 11347 * twice in succession. The abort could be originated by the 11348 * driver or by the port. The ABTS could have been for an ELS 11349 * or FCP IO. The port only generates this event when an ABTS 11350 * fails to complete after one retry. 11351 */ 11352 static void 11353 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 11354 struct lpfc_iocbq *iocbq) 11355 { 11356 struct lpfc_nodelist *ndlp = NULL; 11357 uint16_t rpi = 0, vpi = 0; 11358 struct lpfc_vport *vport = NULL; 11359 11360 /* The rpi in the ulpContext is vport-sensitive. */ 11361 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 11362 rpi = iocbq->iocb.ulpContext; 11363 11364 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11365 "3092 Port generated ABTS async event " 11366 "on vpi %d rpi %d status 0x%x\n", 11367 vpi, rpi, iocbq->iocb.ulpStatus); 11368 11369 vport = lpfc_find_vport_by_vpid(phba, vpi); 11370 if (!vport) 11371 goto err_exit; 11372 ndlp = lpfc_findnode_rpi(vport, rpi); 11373 if (!ndlp) 11374 goto err_exit; 11375 11376 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 11377 lpfc_sli_abts_recover_port(vport, ndlp); 11378 return; 11379 11380 err_exit: 11381 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11382 "3095 Event Context not found, no " 11383 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 11384 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 11385 vpi, rpi); 11386 } 11387 11388 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 11389 * @phba: pointer to HBA context object. 11390 * @ndlp: nodelist pointer for the impacted rport. 11391 * @axri: pointer to the wcqe containing the failed exchange. 11392 * 11393 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 11394 * port. The port generates this event when an abort exchange request to an 11395 * rport fails twice in succession with no reply. The abort could be originated 11396 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 11397 */ 11398 void 11399 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 11400 struct lpfc_nodelist *ndlp, 11401 struct sli4_wcqe_xri_aborted *axri) 11402 { 11403 uint32_t ext_status = 0; 11404 11405 if (!ndlp) { 11406 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11407 "3115 Node Context not found, driver " 11408 "ignoring abts err event\n"); 11409 return; 11410 } 11411 11412 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11413 "3116 Port generated FCP XRI ABORT event on " 11414 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 11415 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 11416 bf_get(lpfc_wcqe_xa_xri, axri), 11417 bf_get(lpfc_wcqe_xa_status, axri), 11418 axri->parameter); 11419 11420 /* 11421 * Catch the ABTS protocol failure case. Older OCe FW releases returned 11422 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 11423 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 11424 */ 11425 ext_status = axri->parameter & IOERR_PARAM_MASK; 11426 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 11427 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 11428 lpfc_sli_post_recovery_event(phba, ndlp); 11429 } 11430 11431 /** 11432 * lpfc_sli_async_event_handler - ASYNC iocb handler function 11433 * @phba: Pointer to HBA context object. 11434 * @pring: Pointer to driver SLI ring object. 11435 * @iocbq: Pointer to iocb object. 11436 * 11437 * This function is called by the slow ring event handler 11438 * function when there is an ASYNC event iocb in the ring. 11439 * This function is called with no lock held. 11440 * Currently this function handles only temperature related 11441 * ASYNC events. The function decodes the temperature sensor 11442 * event message and posts events for the management applications. 11443 **/ 11444 static void 11445 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 11446 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 11447 { 11448 IOCB_t *icmd; 11449 uint16_t evt_code; 11450 struct temp_event temp_event_data; 11451 struct Scsi_Host *shost; 11452 uint32_t *iocb_w; 11453 11454 icmd = &iocbq->iocb; 11455 evt_code = icmd->un.asyncstat.evt_code; 11456 11457 switch (evt_code) { 11458 case ASYNC_TEMP_WARN: 11459 case ASYNC_TEMP_SAFE: 11460 temp_event_data.data = (uint32_t) icmd->ulpContext; 11461 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 11462 if (evt_code == ASYNC_TEMP_WARN) { 11463 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 11464 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11465 "0347 Adapter is very hot, please take " 11466 "corrective action. temperature : %d Celsius\n", 11467 (uint32_t) icmd->ulpContext); 11468 } else { 11469 temp_event_data.event_code = LPFC_NORMAL_TEMP; 11470 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11471 "0340 Adapter temperature is OK now. " 11472 "temperature : %d Celsius\n", 11473 (uint32_t) icmd->ulpContext); 11474 } 11475 11476 /* Send temperature change event to applications */ 11477 shost = lpfc_shost_from_vport(phba->pport); 11478 fc_host_post_vendor_event(shost, fc_get_event_number(), 11479 sizeof(temp_event_data), (char *) &temp_event_data, 11480 LPFC_NL_VENDOR_ID); 11481 break; 11482 case ASYNC_STATUS_CN: 11483 lpfc_sli_abts_err_handler(phba, iocbq); 11484 break; 11485 default: 11486 iocb_w = (uint32_t *) icmd; 11487 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11488 "0346 Ring %d handler: unexpected ASYNC_STATUS" 11489 " evt_code 0x%x\n" 11490 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 11491 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 11492 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 11493 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 11494 pring->ringno, icmd->un.asyncstat.evt_code, 11495 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 11496 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 11497 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 11498 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 11499 11500 break; 11501 } 11502 } 11503 11504 11505 /** 11506 * lpfc_sli4_setup - SLI ring setup function 11507 * @phba: Pointer to HBA context object. 11508 * 11509 * lpfc_sli_setup sets up rings of the SLI interface with 11510 * number of iocbs per ring and iotags. This function is 11511 * called while driver attach to the HBA and before the 11512 * interrupts are enabled. So there is no need for locking. 11513 * 11514 * This function always returns 0. 11515 **/ 11516 int 11517 lpfc_sli4_setup(struct lpfc_hba *phba) 11518 { 11519 struct lpfc_sli_ring *pring; 11520 11521 pring = phba->sli4_hba.els_wq->pring; 11522 pring->num_mask = LPFC_MAX_RING_MASK; 11523 pring->prt[0].profile = 0; /* Mask 0 */ 11524 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11525 pring->prt[0].type = FC_TYPE_ELS; 11526 pring->prt[0].lpfc_sli_rcv_unsol_event = 11527 lpfc_els_unsol_event; 11528 pring->prt[1].profile = 0; /* Mask 1 */ 11529 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11530 pring->prt[1].type = FC_TYPE_ELS; 11531 pring->prt[1].lpfc_sli_rcv_unsol_event = 11532 lpfc_els_unsol_event; 11533 pring->prt[2].profile = 0; /* Mask 2 */ 11534 /* NameServer Inquiry */ 11535 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11536 /* NameServer */ 11537 pring->prt[2].type = FC_TYPE_CT; 11538 pring->prt[2].lpfc_sli_rcv_unsol_event = 11539 lpfc_ct_unsol_event; 11540 pring->prt[3].profile = 0; /* Mask 3 */ 11541 /* NameServer response */ 11542 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11543 /* NameServer */ 11544 pring->prt[3].type = FC_TYPE_CT; 11545 pring->prt[3].lpfc_sli_rcv_unsol_event = 11546 lpfc_ct_unsol_event; 11547 return 0; 11548 } 11549 11550 /** 11551 * lpfc_sli_setup - SLI ring setup function 11552 * @phba: Pointer to HBA context object. 11553 * 11554 * lpfc_sli_setup sets up rings of the SLI interface with 11555 * number of iocbs per ring and iotags. This function is 11556 * called while driver attach to the HBA and before the 11557 * interrupts are enabled. So there is no need for locking. 11558 * 11559 * This function always returns 0. SLI3 only. 11560 **/ 11561 int 11562 lpfc_sli_setup(struct lpfc_hba *phba) 11563 { 11564 int i, totiocbsize = 0; 11565 struct lpfc_sli *psli = &phba->sli; 11566 struct lpfc_sli_ring *pring; 11567 11568 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 11569 psli->sli_flag = 0; 11570 11571 psli->iocbq_lookup = NULL; 11572 psli->iocbq_lookup_len = 0; 11573 psli->last_iotag = 0; 11574 11575 for (i = 0; i < psli->num_rings; i++) { 11576 pring = &psli->sli3_ring[i]; 11577 switch (i) { 11578 case LPFC_FCP_RING: /* ring 0 - FCP */ 11579 /* numCiocb and numRiocb are used in config_port */ 11580 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 11581 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 11582 pring->sli.sli3.numCiocb += 11583 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11584 pring->sli.sli3.numRiocb += 11585 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11586 pring->sli.sli3.numCiocb += 11587 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11588 pring->sli.sli3.numRiocb += 11589 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11590 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11591 SLI3_IOCB_CMD_SIZE : 11592 SLI2_IOCB_CMD_SIZE; 11593 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11594 SLI3_IOCB_RSP_SIZE : 11595 SLI2_IOCB_RSP_SIZE; 11596 pring->iotag_ctr = 0; 11597 pring->iotag_max = 11598 (phba->cfg_hba_queue_depth * 2); 11599 pring->fast_iotag = pring->iotag_max; 11600 pring->num_mask = 0; 11601 break; 11602 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 11603 /* numCiocb and numRiocb are used in config_port */ 11604 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 11605 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 11606 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11607 SLI3_IOCB_CMD_SIZE : 11608 SLI2_IOCB_CMD_SIZE; 11609 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11610 SLI3_IOCB_RSP_SIZE : 11611 SLI2_IOCB_RSP_SIZE; 11612 pring->iotag_max = phba->cfg_hba_queue_depth; 11613 pring->num_mask = 0; 11614 break; 11615 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 11616 /* numCiocb and numRiocb are used in config_port */ 11617 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 11618 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 11619 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11620 SLI3_IOCB_CMD_SIZE : 11621 SLI2_IOCB_CMD_SIZE; 11622 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11623 SLI3_IOCB_RSP_SIZE : 11624 SLI2_IOCB_RSP_SIZE; 11625 pring->fast_iotag = 0; 11626 pring->iotag_ctr = 0; 11627 pring->iotag_max = 4096; 11628 pring->lpfc_sli_rcv_async_status = 11629 lpfc_sli_async_event_handler; 11630 pring->num_mask = LPFC_MAX_RING_MASK; 11631 pring->prt[0].profile = 0; /* Mask 0 */ 11632 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11633 pring->prt[0].type = FC_TYPE_ELS; 11634 pring->prt[0].lpfc_sli_rcv_unsol_event = 11635 lpfc_els_unsol_event; 11636 pring->prt[1].profile = 0; /* Mask 1 */ 11637 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11638 pring->prt[1].type = FC_TYPE_ELS; 11639 pring->prt[1].lpfc_sli_rcv_unsol_event = 11640 lpfc_els_unsol_event; 11641 pring->prt[2].profile = 0; /* Mask 2 */ 11642 /* NameServer Inquiry */ 11643 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11644 /* NameServer */ 11645 pring->prt[2].type = FC_TYPE_CT; 11646 pring->prt[2].lpfc_sli_rcv_unsol_event = 11647 lpfc_ct_unsol_event; 11648 pring->prt[3].profile = 0; /* Mask 3 */ 11649 /* NameServer response */ 11650 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11651 /* NameServer */ 11652 pring->prt[3].type = FC_TYPE_CT; 11653 pring->prt[3].lpfc_sli_rcv_unsol_event = 11654 lpfc_ct_unsol_event; 11655 break; 11656 } 11657 totiocbsize += (pring->sli.sli3.numCiocb * 11658 pring->sli.sli3.sizeCiocb) + 11659 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 11660 } 11661 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 11662 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 11663 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 11664 "SLI2 SLIM Data: x%x x%lx\n", 11665 phba->brd_no, totiocbsize, 11666 (unsigned long) MAX_SLIM_IOCB_SIZE); 11667 } 11668 if (phba->cfg_multi_ring_support == 2) 11669 lpfc_extra_ring_setup(phba); 11670 11671 return 0; 11672 } 11673 11674 /** 11675 * lpfc_sli4_queue_init - Queue initialization function 11676 * @phba: Pointer to HBA context object. 11677 * 11678 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 11679 * ring. This function also initializes ring indices of each ring. 11680 * This function is called during the initialization of the SLI 11681 * interface of an HBA. 11682 * This function is called with no lock held and always returns 11683 * 1. 11684 **/ 11685 void 11686 lpfc_sli4_queue_init(struct lpfc_hba *phba) 11687 { 11688 struct lpfc_sli *psli; 11689 struct lpfc_sli_ring *pring; 11690 int i; 11691 11692 psli = &phba->sli; 11693 spin_lock_irq(&phba->hbalock); 11694 INIT_LIST_HEAD(&psli->mboxq); 11695 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11696 /* Initialize list headers for txq and txcmplq as double linked lists */ 11697 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11698 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11699 pring->flag = 0; 11700 pring->ringno = LPFC_FCP_RING; 11701 pring->txcmplq_cnt = 0; 11702 INIT_LIST_HEAD(&pring->txq); 11703 INIT_LIST_HEAD(&pring->txcmplq); 11704 INIT_LIST_HEAD(&pring->iocb_continueq); 11705 spin_lock_init(&pring->ring_lock); 11706 } 11707 pring = phba->sli4_hba.els_wq->pring; 11708 pring->flag = 0; 11709 pring->ringno = LPFC_ELS_RING; 11710 pring->txcmplq_cnt = 0; 11711 INIT_LIST_HEAD(&pring->txq); 11712 INIT_LIST_HEAD(&pring->txcmplq); 11713 INIT_LIST_HEAD(&pring->iocb_continueq); 11714 spin_lock_init(&pring->ring_lock); 11715 11716 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11717 pring = phba->sli4_hba.nvmels_wq->pring; 11718 pring->flag = 0; 11719 pring->ringno = LPFC_ELS_RING; 11720 pring->txcmplq_cnt = 0; 11721 INIT_LIST_HEAD(&pring->txq); 11722 INIT_LIST_HEAD(&pring->txcmplq); 11723 INIT_LIST_HEAD(&pring->iocb_continueq); 11724 spin_lock_init(&pring->ring_lock); 11725 } 11726 11727 spin_unlock_irq(&phba->hbalock); 11728 } 11729 11730 /** 11731 * lpfc_sli_queue_init - Queue initialization function 11732 * @phba: Pointer to HBA context object. 11733 * 11734 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11735 * ring. This function also initializes ring indices of each ring. 11736 * This function is called during the initialization of the SLI 11737 * interface of an HBA. 11738 * This function is called with no lock held and always returns 11739 * 1. 11740 **/ 11741 void 11742 lpfc_sli_queue_init(struct lpfc_hba *phba) 11743 { 11744 struct lpfc_sli *psli; 11745 struct lpfc_sli_ring *pring; 11746 int i; 11747 11748 psli = &phba->sli; 11749 spin_lock_irq(&phba->hbalock); 11750 INIT_LIST_HEAD(&psli->mboxq); 11751 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11752 /* Initialize list headers for txq and txcmplq as double linked lists */ 11753 for (i = 0; i < psli->num_rings; i++) { 11754 pring = &psli->sli3_ring[i]; 11755 pring->ringno = i; 11756 pring->sli.sli3.next_cmdidx = 0; 11757 pring->sli.sli3.local_getidx = 0; 11758 pring->sli.sli3.cmdidx = 0; 11759 INIT_LIST_HEAD(&pring->iocb_continueq); 11760 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11761 INIT_LIST_HEAD(&pring->postbufq); 11762 pring->flag = 0; 11763 INIT_LIST_HEAD(&pring->txq); 11764 INIT_LIST_HEAD(&pring->txcmplq); 11765 spin_lock_init(&pring->ring_lock); 11766 } 11767 spin_unlock_irq(&phba->hbalock); 11768 } 11769 11770 /** 11771 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11772 * @phba: Pointer to HBA context object. 11773 * 11774 * This routine flushes the mailbox command subsystem. It will unconditionally 11775 * flush all the mailbox commands in the three possible stages in the mailbox 11776 * command sub-system: pending mailbox command queue; the outstanding mailbox 11777 * command; and completed mailbox command queue. It is caller's responsibility 11778 * to make sure that the driver is in the proper state to flush the mailbox 11779 * command sub-system. Namely, the posting of mailbox commands into the 11780 * pending mailbox command queue from the various clients must be stopped; 11781 * either the HBA is in a state that it will never works on the outstanding 11782 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11783 * mailbox command has been completed. 11784 **/ 11785 static void 11786 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11787 { 11788 LIST_HEAD(completions); 11789 struct lpfc_sli *psli = &phba->sli; 11790 LPFC_MBOXQ_t *pmb; 11791 unsigned long iflag; 11792 11793 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11794 local_bh_disable(); 11795 11796 /* Flush all the mailbox commands in the mbox system */ 11797 spin_lock_irqsave(&phba->hbalock, iflag); 11798 11799 /* The pending mailbox command queue */ 11800 list_splice_init(&phba->sli.mboxq, &completions); 11801 /* The outstanding active mailbox command */ 11802 if (psli->mbox_active) { 11803 list_add_tail(&psli->mbox_active->list, &completions); 11804 psli->mbox_active = NULL; 11805 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11806 } 11807 /* The completed mailbox command queue */ 11808 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11809 spin_unlock_irqrestore(&phba->hbalock, iflag); 11810 11811 /* Enable softirqs again, done with phba->hbalock */ 11812 local_bh_enable(); 11813 11814 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11815 while (!list_empty(&completions)) { 11816 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11817 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11818 if (pmb->mbox_cmpl) 11819 pmb->mbox_cmpl(phba, pmb); 11820 } 11821 } 11822 11823 /** 11824 * lpfc_sli_host_down - Vport cleanup function 11825 * @vport: Pointer to virtual port object. 11826 * 11827 * lpfc_sli_host_down is called to clean up the resources 11828 * associated with a vport before destroying virtual 11829 * port data structures. 11830 * This function does following operations: 11831 * - Free discovery resources associated with this virtual 11832 * port. 11833 * - Free iocbs associated with this virtual port in 11834 * the txq. 11835 * - Send abort for all iocb commands associated with this 11836 * vport in txcmplq. 11837 * 11838 * This function is called with no lock held and always returns 1. 11839 **/ 11840 int 11841 lpfc_sli_host_down(struct lpfc_vport *vport) 11842 { 11843 LIST_HEAD(completions); 11844 struct lpfc_hba *phba = vport->phba; 11845 struct lpfc_sli *psli = &phba->sli; 11846 struct lpfc_queue *qp = NULL; 11847 struct lpfc_sli_ring *pring; 11848 struct lpfc_iocbq *iocb, *next_iocb; 11849 int i; 11850 unsigned long flags = 0; 11851 uint16_t prev_pring_flag; 11852 11853 lpfc_cleanup_discovery_resources(vport); 11854 11855 spin_lock_irqsave(&phba->hbalock, flags); 11856 11857 /* 11858 * Error everything on the txq since these iocbs 11859 * have not been given to the FW yet. 11860 * Also issue ABTS for everything on the txcmplq 11861 */ 11862 if (phba->sli_rev != LPFC_SLI_REV4) { 11863 for (i = 0; i < psli->num_rings; i++) { 11864 pring = &psli->sli3_ring[i]; 11865 prev_pring_flag = pring->flag; 11866 /* Only slow rings */ 11867 if (pring->ringno == LPFC_ELS_RING) { 11868 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11869 /* Set the lpfc data pending flag */ 11870 set_bit(LPFC_DATA_READY, &phba->data_flags); 11871 } 11872 list_for_each_entry_safe(iocb, next_iocb, 11873 &pring->txq, list) { 11874 if (iocb->vport != vport) 11875 continue; 11876 list_move_tail(&iocb->list, &completions); 11877 } 11878 list_for_each_entry_safe(iocb, next_iocb, 11879 &pring->txcmplq, list) { 11880 if (iocb->vport != vport) 11881 continue; 11882 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11883 NULL); 11884 } 11885 pring->flag = prev_pring_flag; 11886 } 11887 } else { 11888 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11889 pring = qp->pring; 11890 if (!pring) 11891 continue; 11892 if (pring == phba->sli4_hba.els_wq->pring) { 11893 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11894 /* Set the lpfc data pending flag */ 11895 set_bit(LPFC_DATA_READY, &phba->data_flags); 11896 } 11897 prev_pring_flag = pring->flag; 11898 spin_lock(&pring->ring_lock); 11899 list_for_each_entry_safe(iocb, next_iocb, 11900 &pring->txq, list) { 11901 if (iocb->vport != vport) 11902 continue; 11903 list_move_tail(&iocb->list, &completions); 11904 } 11905 spin_unlock(&pring->ring_lock); 11906 list_for_each_entry_safe(iocb, next_iocb, 11907 &pring->txcmplq, list) { 11908 if (iocb->vport != vport) 11909 continue; 11910 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11911 NULL); 11912 } 11913 pring->flag = prev_pring_flag; 11914 } 11915 } 11916 spin_unlock_irqrestore(&phba->hbalock, flags); 11917 11918 /* Make sure HBA is alive */ 11919 lpfc_issue_hb_tmo(phba); 11920 11921 /* Cancel all the IOCBs from the completions list */ 11922 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11923 IOERR_SLI_DOWN); 11924 return 1; 11925 } 11926 11927 /** 11928 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11929 * @phba: Pointer to HBA context object. 11930 * 11931 * This function cleans up all iocb, buffers, mailbox commands 11932 * while shutting down the HBA. This function is called with no 11933 * lock held and always returns 1. 11934 * This function does the following to cleanup driver resources: 11935 * - Free discovery resources for each virtual port 11936 * - Cleanup any pending fabric iocbs 11937 * - Iterate through the iocb txq and free each entry 11938 * in the list. 11939 * - Free up any buffer posted to the HBA 11940 * - Free mailbox commands in the mailbox queue. 11941 **/ 11942 int 11943 lpfc_sli_hba_down(struct lpfc_hba *phba) 11944 { 11945 LIST_HEAD(completions); 11946 struct lpfc_sli *psli = &phba->sli; 11947 struct lpfc_queue *qp = NULL; 11948 struct lpfc_sli_ring *pring; 11949 struct lpfc_dmabuf *buf_ptr; 11950 unsigned long flags = 0; 11951 int i; 11952 11953 /* Shutdown the mailbox command sub-system */ 11954 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 11955 11956 lpfc_hba_down_prep(phba); 11957 11958 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11959 local_bh_disable(); 11960 11961 lpfc_fabric_abort_hba(phba); 11962 11963 spin_lock_irqsave(&phba->hbalock, flags); 11964 11965 /* 11966 * Error everything on the txq since these iocbs 11967 * have not been given to the FW yet. 11968 */ 11969 if (phba->sli_rev != LPFC_SLI_REV4) { 11970 for (i = 0; i < psli->num_rings; i++) { 11971 pring = &psli->sli3_ring[i]; 11972 /* Only slow rings */ 11973 if (pring->ringno == LPFC_ELS_RING) { 11974 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11975 /* Set the lpfc data pending flag */ 11976 set_bit(LPFC_DATA_READY, &phba->data_flags); 11977 } 11978 list_splice_init(&pring->txq, &completions); 11979 } 11980 } else { 11981 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11982 pring = qp->pring; 11983 if (!pring) 11984 continue; 11985 spin_lock(&pring->ring_lock); 11986 list_splice_init(&pring->txq, &completions); 11987 spin_unlock(&pring->ring_lock); 11988 if (pring == phba->sli4_hba.els_wq->pring) { 11989 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11990 /* Set the lpfc data pending flag */ 11991 set_bit(LPFC_DATA_READY, &phba->data_flags); 11992 } 11993 } 11994 } 11995 spin_unlock_irqrestore(&phba->hbalock, flags); 11996 11997 /* Cancel all the IOCBs from the completions list */ 11998 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11999 IOERR_SLI_DOWN); 12000 12001 spin_lock_irqsave(&phba->hbalock, flags); 12002 list_splice_init(&phba->elsbuf, &completions); 12003 phba->elsbuf_cnt = 0; 12004 phba->elsbuf_prev_cnt = 0; 12005 spin_unlock_irqrestore(&phba->hbalock, flags); 12006 12007 while (!list_empty(&completions)) { 12008 list_remove_head(&completions, buf_ptr, 12009 struct lpfc_dmabuf, list); 12010 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 12011 kfree(buf_ptr); 12012 } 12013 12014 /* Enable softirqs again, done with phba->hbalock */ 12015 local_bh_enable(); 12016 12017 /* Return any active mbox cmds */ 12018 del_timer_sync(&psli->mbox_tmo); 12019 12020 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 12021 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12022 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 12023 12024 return 1; 12025 } 12026 12027 /** 12028 * lpfc_sli_pcimem_bcopy - SLI memory copy function 12029 * @srcp: Source memory pointer. 12030 * @destp: Destination memory pointer. 12031 * @cnt: Number of words required to be copied. 12032 * 12033 * This function is used for copying data between driver memory 12034 * and the SLI memory. This function also changes the endianness 12035 * of each word if native endianness is different from SLI 12036 * endianness. This function can be called with or without 12037 * lock. 12038 **/ 12039 void 12040 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 12041 { 12042 uint32_t *src = srcp; 12043 uint32_t *dest = destp; 12044 uint32_t ldata; 12045 int i; 12046 12047 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 12048 ldata = *src; 12049 ldata = le32_to_cpu(ldata); 12050 *dest = ldata; 12051 src++; 12052 dest++; 12053 } 12054 } 12055 12056 12057 /** 12058 * lpfc_sli_bemem_bcopy - SLI memory copy function 12059 * @srcp: Source memory pointer. 12060 * @destp: Destination memory pointer. 12061 * @cnt: Number of words required to be copied. 12062 * 12063 * This function is used for copying data between a data structure 12064 * with big endian representation to local endianness. 12065 * This function can be called with or without lock. 12066 **/ 12067 void 12068 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 12069 { 12070 uint32_t *src = srcp; 12071 uint32_t *dest = destp; 12072 uint32_t ldata; 12073 int i; 12074 12075 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 12076 ldata = *src; 12077 ldata = be32_to_cpu(ldata); 12078 *dest = ldata; 12079 src++; 12080 dest++; 12081 } 12082 } 12083 12084 /** 12085 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 12086 * @phba: Pointer to HBA context object. 12087 * @pring: Pointer to driver SLI ring object. 12088 * @mp: Pointer to driver buffer object. 12089 * 12090 * This function is called with no lock held. 12091 * It always return zero after adding the buffer to the postbufq 12092 * buffer list. 12093 **/ 12094 int 12095 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12096 struct lpfc_dmabuf *mp) 12097 { 12098 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 12099 later */ 12100 spin_lock_irq(&phba->hbalock); 12101 list_add_tail(&mp->list, &pring->postbufq); 12102 pring->postbufq_cnt++; 12103 spin_unlock_irq(&phba->hbalock); 12104 return 0; 12105 } 12106 12107 /** 12108 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 12109 * @phba: Pointer to HBA context object. 12110 * 12111 * When HBQ is enabled, buffers are searched based on tags. This function 12112 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 12113 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 12114 * does not conflict with tags of buffer posted for unsolicited events. 12115 * The function returns the allocated tag. The function is called with 12116 * no locks held. 12117 **/ 12118 uint32_t 12119 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 12120 { 12121 spin_lock_irq(&phba->hbalock); 12122 phba->buffer_tag_count++; 12123 /* 12124 * Always set the QUE_BUFTAG_BIT to distiguish between 12125 * a tag assigned by HBQ. 12126 */ 12127 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 12128 spin_unlock_irq(&phba->hbalock); 12129 return phba->buffer_tag_count; 12130 } 12131 12132 /** 12133 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 12134 * @phba: Pointer to HBA context object. 12135 * @pring: Pointer to driver SLI ring object. 12136 * @tag: Buffer tag. 12137 * 12138 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 12139 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 12140 * iocb is posted to the response ring with the tag of the buffer. 12141 * This function searches the pring->postbufq list using the tag 12142 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 12143 * iocb. If the buffer is found then lpfc_dmabuf object of the 12144 * buffer is returned to the caller else NULL is returned. 12145 * This function is called with no lock held. 12146 **/ 12147 struct lpfc_dmabuf * 12148 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12149 uint32_t tag) 12150 { 12151 struct lpfc_dmabuf *mp, *next_mp; 12152 struct list_head *slp = &pring->postbufq; 12153 12154 /* Search postbufq, from the beginning, looking for a match on tag */ 12155 spin_lock_irq(&phba->hbalock); 12156 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12157 if (mp->buffer_tag == tag) { 12158 list_del_init(&mp->list); 12159 pring->postbufq_cnt--; 12160 spin_unlock_irq(&phba->hbalock); 12161 return mp; 12162 } 12163 } 12164 12165 spin_unlock_irq(&phba->hbalock); 12166 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12167 "0402 Cannot find virtual addr for buffer tag on " 12168 "ring %d Data x%lx x%px x%px x%x\n", 12169 pring->ringno, (unsigned long) tag, 12170 slp->next, slp->prev, pring->postbufq_cnt); 12171 12172 return NULL; 12173 } 12174 12175 /** 12176 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 12177 * @phba: Pointer to HBA context object. 12178 * @pring: Pointer to driver SLI ring object. 12179 * @phys: DMA address of the buffer. 12180 * 12181 * This function searches the buffer list using the dma_address 12182 * of unsolicited event to find the driver's lpfc_dmabuf object 12183 * corresponding to the dma_address. The function returns the 12184 * lpfc_dmabuf object if a buffer is found else it returns NULL. 12185 * This function is called by the ct and els unsolicited event 12186 * handlers to get the buffer associated with the unsolicited 12187 * event. 12188 * 12189 * This function is called with no lock held. 12190 **/ 12191 struct lpfc_dmabuf * 12192 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12193 dma_addr_t phys) 12194 { 12195 struct lpfc_dmabuf *mp, *next_mp; 12196 struct list_head *slp = &pring->postbufq; 12197 12198 /* Search postbufq, from the beginning, looking for a match on phys */ 12199 spin_lock_irq(&phba->hbalock); 12200 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12201 if (mp->phys == phys) { 12202 list_del_init(&mp->list); 12203 pring->postbufq_cnt--; 12204 spin_unlock_irq(&phba->hbalock); 12205 return mp; 12206 } 12207 } 12208 12209 spin_unlock_irq(&phba->hbalock); 12210 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12211 "0410 Cannot find virtual addr for mapped buf on " 12212 "ring %d Data x%llx x%px x%px x%x\n", 12213 pring->ringno, (unsigned long long)phys, 12214 slp->next, slp->prev, pring->postbufq_cnt); 12215 return NULL; 12216 } 12217 12218 /** 12219 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 12220 * @phba: Pointer to HBA context object. 12221 * @cmdiocb: Pointer to driver command iocb object. 12222 * @rspiocb: Pointer to driver response iocb object. 12223 * 12224 * This function is the completion handler for the abort iocbs for 12225 * ELS commands. This function is called from the ELS ring event 12226 * handler with no lock held. This function frees memory resources 12227 * associated with the abort iocb. 12228 **/ 12229 static void 12230 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12231 struct lpfc_iocbq *rspiocb) 12232 { 12233 IOCB_t *irsp = &rspiocb->iocb; 12234 uint16_t abort_iotag, abort_context; 12235 struct lpfc_iocbq *abort_iocb = NULL; 12236 12237 if (irsp->ulpStatus) { 12238 12239 /* 12240 * Assume that the port already completed and returned, or 12241 * will return the iocb. Just Log the message. 12242 */ 12243 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 12244 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 12245 12246 spin_lock_irq(&phba->hbalock); 12247 if (phba->sli_rev < LPFC_SLI_REV4) { 12248 if (irsp->ulpCommand == CMD_ABORT_XRI_CX && 12249 irsp->ulpStatus == IOSTAT_LOCAL_REJECT && 12250 irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) { 12251 spin_unlock_irq(&phba->hbalock); 12252 goto release_iocb; 12253 } 12254 if (abort_iotag != 0 && 12255 abort_iotag <= phba->sli.last_iotag) 12256 abort_iocb = 12257 phba->sli.iocbq_lookup[abort_iotag]; 12258 } else 12259 /* For sli4 the abort_tag is the XRI, 12260 * so the abort routine puts the iotag of the iocb 12261 * being aborted in the context field of the abort 12262 * IOCB. 12263 */ 12264 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 12265 12266 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 12267 "0327 Cannot abort els iocb x%px " 12268 "with tag %x context %x, abort status %x, " 12269 "abort code %x\n", 12270 abort_iocb, abort_iotag, abort_context, 12271 irsp->ulpStatus, irsp->un.ulpWord[4]); 12272 12273 spin_unlock_irq(&phba->hbalock); 12274 } 12275 release_iocb: 12276 lpfc_sli_release_iocbq(phba, cmdiocb); 12277 return; 12278 } 12279 12280 /** 12281 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 12282 * @phba: Pointer to HBA context object. 12283 * @cmdiocb: Pointer to driver command iocb object. 12284 * @rspiocb: Pointer to driver response iocb object. 12285 * 12286 * The function is called from SLI ring event handler with no 12287 * lock held. This function is the completion handler for ELS commands 12288 * which are aborted. The function frees memory resources used for 12289 * the aborted ELS commands. 12290 **/ 12291 void 12292 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12293 struct lpfc_iocbq *rspiocb) 12294 { 12295 struct lpfc_nodelist *ndlp = NULL; 12296 IOCB_t *irsp = &rspiocb->iocb; 12297 12298 /* ELS cmd tag <ulpIoTag> completes */ 12299 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 12300 "0139 Ignoring ELS cmd code x%x completion Data: " 12301 "x%x x%x x%x\n", 12302 irsp->ulpIoTag, irsp->ulpStatus, 12303 irsp->un.ulpWord[4], irsp->ulpTimeout); 12304 /* 12305 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp 12306 * if exchange is busy. 12307 */ 12308 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 12309 ndlp = cmdiocb->context_un.ndlp; 12310 lpfc_ct_free_iocb(phba, cmdiocb); 12311 } else { 12312 ndlp = (struct lpfc_nodelist *) cmdiocb->context1; 12313 lpfc_els_free_iocb(phba, cmdiocb); 12314 } 12315 12316 lpfc_nlp_put(ndlp); 12317 } 12318 12319 /** 12320 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 12321 * @phba: Pointer to HBA context object. 12322 * @pring: Pointer to driver SLI ring object. 12323 * @cmdiocb: Pointer to driver command iocb object. 12324 * @cmpl: completion function. 12325 * 12326 * This function issues an abort iocb for the provided command iocb. In case 12327 * of unloading, the abort iocb will not be issued to commands on the ELS 12328 * ring. Instead, the callback function shall be changed to those commands 12329 * so that nothing happens when them finishes. This function is called with 12330 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 12331 * when the command iocb is an abort request. 12332 * 12333 **/ 12334 int 12335 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12336 struct lpfc_iocbq *cmdiocb, void *cmpl) 12337 { 12338 struct lpfc_vport *vport = cmdiocb->vport; 12339 struct lpfc_iocbq *abtsiocbp; 12340 IOCB_t *icmd = NULL; 12341 IOCB_t *iabt = NULL; 12342 int retval = IOCB_ERROR; 12343 unsigned long iflags; 12344 struct lpfc_nodelist *ndlp; 12345 12346 /* 12347 * There are certain command types we don't want to abort. And we 12348 * don't want to abort commands that are already in the process of 12349 * being aborted. 12350 */ 12351 icmd = &cmdiocb->iocb; 12352 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 12353 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 12354 cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) 12355 return IOCB_ABORTING; 12356 12357 if (!pring) { 12358 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 12359 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 12360 else 12361 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 12362 return retval; 12363 } 12364 12365 /* 12366 * If we're unloading, don't abort iocb on the ELS ring, but change 12367 * the callback so that nothing happens when it finishes. 12368 */ 12369 if ((vport->load_flag & FC_UNLOADING) && 12370 pring->ringno == LPFC_ELS_RING) { 12371 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 12372 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 12373 else 12374 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 12375 return retval; 12376 } 12377 12378 /* issue ABTS for this IOCB based on iotag */ 12379 abtsiocbp = __lpfc_sli_get_iocbq(phba); 12380 if (abtsiocbp == NULL) 12381 return IOCB_NORESOURCE; 12382 12383 /* This signals the response to set the correct status 12384 * before calling the completion handler 12385 */ 12386 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 12387 12388 iabt = &abtsiocbp->iocb; 12389 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 12390 iabt->un.acxri.abortContextTag = icmd->ulpContext; 12391 if (phba->sli_rev == LPFC_SLI_REV4) { 12392 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 12393 if (pring->ringno == LPFC_ELS_RING) 12394 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 12395 } else { 12396 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 12397 if (pring->ringno == LPFC_ELS_RING) { 12398 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1); 12399 iabt->un.acxri.abortContextTag = ndlp->nlp_rpi; 12400 } 12401 } 12402 iabt->ulpLe = 1; 12403 iabt->ulpClass = icmd->ulpClass; 12404 12405 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12406 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 12407 if (cmdiocb->iocb_flag & LPFC_IO_FCP) { 12408 abtsiocbp->iocb_flag |= LPFC_IO_FCP; 12409 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 12410 } 12411 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 12412 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 12413 12414 if (phba->link_state >= LPFC_LINK_UP) 12415 iabt->ulpCommand = CMD_ABORT_XRI_CN; 12416 else 12417 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 12418 12419 if (cmpl) 12420 abtsiocbp->iocb_cmpl = cmpl; 12421 else 12422 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 12423 abtsiocbp->vport = vport; 12424 12425 if (phba->sli_rev == LPFC_SLI_REV4) { 12426 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 12427 if (unlikely(pring == NULL)) 12428 goto abort_iotag_exit; 12429 /* Note: both hbalock and ring_lock need to be set here */ 12430 spin_lock_irqsave(&pring->ring_lock, iflags); 12431 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12432 abtsiocbp, 0); 12433 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12434 } else { 12435 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12436 abtsiocbp, 0); 12437 } 12438 12439 abort_iotag_exit: 12440 12441 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 12442 "0339 Abort xri x%x, original iotag x%x, " 12443 "abort cmd iotag x%x retval x%x\n", 12444 iabt->un.acxri.abortIoTag, 12445 iabt->un.acxri.abortContextTag, 12446 abtsiocbp->iotag, retval); 12447 12448 if (retval) { 12449 cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED; 12450 __lpfc_sli_release_iocbq(phba, abtsiocbp); 12451 } 12452 12453 /* 12454 * Caller to this routine should check for IOCB_ERROR 12455 * and handle it properly. This routine no longer removes 12456 * iocb off txcmplq and call compl in case of IOCB_ERROR. 12457 */ 12458 return retval; 12459 } 12460 12461 /** 12462 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 12463 * @phba: pointer to lpfc HBA data structure. 12464 * 12465 * This routine will abort all pending and outstanding iocbs to an HBA. 12466 **/ 12467 void 12468 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 12469 { 12470 struct lpfc_sli *psli = &phba->sli; 12471 struct lpfc_sli_ring *pring; 12472 struct lpfc_queue *qp = NULL; 12473 int i; 12474 12475 if (phba->sli_rev != LPFC_SLI_REV4) { 12476 for (i = 0; i < psli->num_rings; i++) { 12477 pring = &psli->sli3_ring[i]; 12478 lpfc_sli_abort_iocb_ring(phba, pring); 12479 } 12480 return; 12481 } 12482 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12483 pring = qp->pring; 12484 if (!pring) 12485 continue; 12486 lpfc_sli_abort_iocb_ring(phba, pring); 12487 } 12488 } 12489 12490 /** 12491 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 12492 * @iocbq: Pointer to driver iocb object. 12493 * @vport: Pointer to driver virtual port object. 12494 * @tgt_id: SCSI ID of the target. 12495 * @lun_id: LUN ID of the scsi device. 12496 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 12497 * 12498 * This function acts as an iocb filter for functions which abort or count 12499 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 12500 * 0 if the filtering criteria is met for the given iocb and will return 12501 * 1 if the filtering criteria is not met. 12502 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 12503 * given iocb is for the SCSI device specified by vport, tgt_id and 12504 * lun_id parameter. 12505 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 12506 * given iocb is for the SCSI target specified by vport and tgt_id 12507 * parameters. 12508 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 12509 * given iocb is for the SCSI host associated with the given vport. 12510 * This function is called with no locks held. 12511 **/ 12512 static int 12513 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 12514 uint16_t tgt_id, uint64_t lun_id, 12515 lpfc_ctx_cmd ctx_cmd) 12516 { 12517 struct lpfc_io_buf *lpfc_cmd; 12518 IOCB_t *icmd = NULL; 12519 int rc = 1; 12520 12521 if (!iocbq || iocbq->vport != vport) 12522 return rc; 12523 12524 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 12525 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ) || 12526 iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 12527 return rc; 12528 12529 icmd = &iocbq->iocb; 12530 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 12531 icmd->ulpCommand == CMD_CLOSE_XRI_CN) 12532 return rc; 12533 12534 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12535 12536 if (lpfc_cmd->pCmd == NULL) 12537 return rc; 12538 12539 switch (ctx_cmd) { 12540 case LPFC_CTX_LUN: 12541 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12542 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 12543 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 12544 rc = 0; 12545 break; 12546 case LPFC_CTX_TGT: 12547 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12548 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 12549 rc = 0; 12550 break; 12551 case LPFC_CTX_HOST: 12552 rc = 0; 12553 break; 12554 default: 12555 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 12556 __func__, ctx_cmd); 12557 break; 12558 } 12559 12560 return rc; 12561 } 12562 12563 /** 12564 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 12565 * @vport: Pointer to virtual port. 12566 * @tgt_id: SCSI ID of the target. 12567 * @lun_id: LUN ID of the scsi device. 12568 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12569 * 12570 * This function returns number of FCP commands pending for the vport. 12571 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 12572 * commands pending on the vport associated with SCSI device specified 12573 * by tgt_id and lun_id parameters. 12574 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 12575 * commands pending on the vport associated with SCSI target specified 12576 * by tgt_id parameter. 12577 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 12578 * commands pending on the vport. 12579 * This function returns the number of iocbs which satisfy the filter. 12580 * This function is called without any lock held. 12581 **/ 12582 int 12583 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 12584 lpfc_ctx_cmd ctx_cmd) 12585 { 12586 struct lpfc_hba *phba = vport->phba; 12587 struct lpfc_iocbq *iocbq; 12588 int sum, i; 12589 12590 spin_lock_irq(&phba->hbalock); 12591 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 12592 iocbq = phba->sli.iocbq_lookup[i]; 12593 12594 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 12595 ctx_cmd) == 0) 12596 sum++; 12597 } 12598 spin_unlock_irq(&phba->hbalock); 12599 12600 return sum; 12601 } 12602 12603 /** 12604 * lpfc_sli4_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12605 * @phba: Pointer to HBA context object 12606 * @cmdiocb: Pointer to command iocb object. 12607 * @wcqe: pointer to the complete wcqe 12608 * 12609 * This function is called when an aborted FCP iocb completes. This 12610 * function is called by the ring event handler with no lock held. 12611 * This function frees the iocb. It is called for sli-4 adapters. 12612 **/ 12613 void 12614 lpfc_sli4_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12615 struct lpfc_wcqe_complete *wcqe) 12616 { 12617 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12618 "3017 ABORT_XRI_CN completing on rpi x%x " 12619 "original iotag x%x, abort cmd iotag x%x " 12620 "status 0x%x, reason 0x%x\n", 12621 cmdiocb->iocb.un.acxri.abortContextTag, 12622 cmdiocb->iocb.un.acxri.abortIoTag, 12623 cmdiocb->iotag, 12624 (bf_get(lpfc_wcqe_c_status, wcqe) 12625 & LPFC_IOCB_STATUS_MASK), 12626 wcqe->parameter); 12627 lpfc_sli_release_iocbq(phba, cmdiocb); 12628 } 12629 12630 /** 12631 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12632 * @phba: Pointer to HBA context object 12633 * @cmdiocb: Pointer to command iocb object. 12634 * @rspiocb: Pointer to response iocb object. 12635 * 12636 * This function is called when an aborted FCP iocb completes. This 12637 * function is called by the ring event handler with no lock held. 12638 * This function frees the iocb. 12639 **/ 12640 void 12641 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12642 struct lpfc_iocbq *rspiocb) 12643 { 12644 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12645 "3096 ABORT_XRI_CN completing on rpi x%x " 12646 "original iotag x%x, abort cmd iotag x%x " 12647 "status 0x%x, reason 0x%x\n", 12648 cmdiocb->iocb.un.acxri.abortContextTag, 12649 cmdiocb->iocb.un.acxri.abortIoTag, 12650 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 12651 rspiocb->iocb.un.ulpWord[4]); 12652 lpfc_sli_release_iocbq(phba, cmdiocb); 12653 return; 12654 } 12655 12656 /** 12657 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 12658 * @vport: Pointer to virtual port. 12659 * @tgt_id: SCSI ID of the target. 12660 * @lun_id: LUN ID of the scsi device. 12661 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12662 * 12663 * This function sends an abort command for every SCSI command 12664 * associated with the given virtual port pending on the ring 12665 * filtered by lpfc_sli_validate_fcp_iocb function. 12666 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 12667 * FCP iocbs associated with lun specified by tgt_id and lun_id 12668 * parameters 12669 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 12670 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12671 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 12672 * FCP iocbs associated with virtual port. 12673 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 12674 * lpfc_sli4_calc_ring is used. 12675 * This function returns number of iocbs it failed to abort. 12676 * This function is called with no locks held. 12677 **/ 12678 int 12679 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 12680 lpfc_ctx_cmd abort_cmd) 12681 { 12682 struct lpfc_hba *phba = vport->phba; 12683 struct lpfc_sli_ring *pring = NULL; 12684 struct lpfc_iocbq *iocbq; 12685 int errcnt = 0, ret_val = 0; 12686 unsigned long iflags; 12687 int i; 12688 void *fcp_cmpl = NULL; 12689 12690 /* all I/Os are in process of being flushed */ 12691 if (phba->hba_flag & HBA_IOQ_FLUSH) 12692 return errcnt; 12693 12694 for (i = 1; i <= phba->sli.last_iotag; i++) { 12695 iocbq = phba->sli.iocbq_lookup[i]; 12696 12697 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12698 abort_cmd) != 0) 12699 continue; 12700 12701 spin_lock_irqsave(&phba->hbalock, iflags); 12702 if (phba->sli_rev == LPFC_SLI_REV3) { 12703 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12704 fcp_cmpl = lpfc_sli_abort_fcp_cmpl; 12705 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12706 pring = lpfc_sli4_calc_ring(phba, iocbq); 12707 fcp_cmpl = lpfc_sli4_abort_fcp_cmpl; 12708 } 12709 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12710 fcp_cmpl); 12711 spin_unlock_irqrestore(&phba->hbalock, iflags); 12712 if (ret_val != IOCB_SUCCESS) 12713 errcnt++; 12714 } 12715 12716 return errcnt; 12717 } 12718 12719 /** 12720 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12721 * @vport: Pointer to virtual port. 12722 * @pring: Pointer to driver SLI ring object. 12723 * @tgt_id: SCSI ID of the target. 12724 * @lun_id: LUN ID of the scsi device. 12725 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12726 * 12727 * This function sends an abort command for every SCSI command 12728 * associated with the given virtual port pending on the ring 12729 * filtered by lpfc_sli_validate_fcp_iocb function. 12730 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12731 * FCP iocbs associated with lun specified by tgt_id and lun_id 12732 * parameters 12733 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12734 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12735 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12736 * FCP iocbs associated with virtual port. 12737 * This function returns number of iocbs it aborted . 12738 * This function is called with no locks held right after a taskmgmt 12739 * command is sent. 12740 **/ 12741 int 12742 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12743 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12744 { 12745 struct lpfc_hba *phba = vport->phba; 12746 struct lpfc_io_buf *lpfc_cmd; 12747 struct lpfc_iocbq *abtsiocbq; 12748 struct lpfc_nodelist *ndlp; 12749 struct lpfc_iocbq *iocbq; 12750 IOCB_t *icmd; 12751 int sum, i, ret_val; 12752 unsigned long iflags; 12753 struct lpfc_sli_ring *pring_s4 = NULL; 12754 12755 spin_lock_irqsave(&phba->hbalock, iflags); 12756 12757 /* all I/Os are in process of being flushed */ 12758 if (phba->hba_flag & HBA_IOQ_FLUSH) { 12759 spin_unlock_irqrestore(&phba->hbalock, iflags); 12760 return 0; 12761 } 12762 sum = 0; 12763 12764 for (i = 1; i <= phba->sli.last_iotag; i++) { 12765 iocbq = phba->sli.iocbq_lookup[i]; 12766 12767 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12768 cmd) != 0) 12769 continue; 12770 12771 /* Guard against IO completion being called at same time */ 12772 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12773 spin_lock(&lpfc_cmd->buf_lock); 12774 12775 if (!lpfc_cmd->pCmd) { 12776 spin_unlock(&lpfc_cmd->buf_lock); 12777 continue; 12778 } 12779 12780 if (phba->sli_rev == LPFC_SLI_REV4) { 12781 pring_s4 = 12782 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12783 if (!pring_s4) { 12784 spin_unlock(&lpfc_cmd->buf_lock); 12785 continue; 12786 } 12787 /* Note: both hbalock and ring_lock must be set here */ 12788 spin_lock(&pring_s4->ring_lock); 12789 } 12790 12791 /* 12792 * If the iocbq is already being aborted, don't take a second 12793 * action, but do count it. 12794 */ 12795 if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) || 12796 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) { 12797 if (phba->sli_rev == LPFC_SLI_REV4) 12798 spin_unlock(&pring_s4->ring_lock); 12799 spin_unlock(&lpfc_cmd->buf_lock); 12800 continue; 12801 } 12802 12803 /* issue ABTS for this IOCB based on iotag */ 12804 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12805 if (!abtsiocbq) { 12806 if (phba->sli_rev == LPFC_SLI_REV4) 12807 spin_unlock(&pring_s4->ring_lock); 12808 spin_unlock(&lpfc_cmd->buf_lock); 12809 continue; 12810 } 12811 12812 icmd = &iocbq->iocb; 12813 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 12814 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 12815 if (phba->sli_rev == LPFC_SLI_REV4) 12816 abtsiocbq->iocb.un.acxri.abortIoTag = 12817 iocbq->sli4_xritag; 12818 else 12819 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 12820 abtsiocbq->iocb.ulpLe = 1; 12821 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 12822 abtsiocbq->vport = vport; 12823 12824 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12825 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12826 if (iocbq->iocb_flag & LPFC_IO_FCP) 12827 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 12828 if (iocbq->iocb_flag & LPFC_IO_FOF) 12829 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 12830 12831 ndlp = lpfc_cmd->rdata->pnode; 12832 12833 if (lpfc_is_link_up(phba) && 12834 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 12835 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 12836 else 12837 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 12838 12839 /* Setup callback routine and issue the command. */ 12840 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 12841 12842 /* 12843 * Indicate the IO is being aborted by the driver and set 12844 * the caller's flag into the aborted IO. 12845 */ 12846 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 12847 12848 if (phba->sli_rev == LPFC_SLI_REV4) { 12849 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12850 abtsiocbq, 0); 12851 spin_unlock(&pring_s4->ring_lock); 12852 } else { 12853 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12854 abtsiocbq, 0); 12855 } 12856 12857 spin_unlock(&lpfc_cmd->buf_lock); 12858 12859 if (ret_val == IOCB_ERROR) 12860 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12861 else 12862 sum++; 12863 } 12864 spin_unlock_irqrestore(&phba->hbalock, iflags); 12865 return sum; 12866 } 12867 12868 /** 12869 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12870 * @phba: Pointer to HBA context object. 12871 * @cmdiocbq: Pointer to command iocb. 12872 * @rspiocbq: Pointer to response iocb. 12873 * 12874 * This function is the completion handler for iocbs issued using 12875 * lpfc_sli_issue_iocb_wait function. This function is called by the 12876 * ring event handler function without any lock held. This function 12877 * can be called from both worker thread context and interrupt 12878 * context. This function also can be called from other thread which 12879 * cleans up the SLI layer objects. 12880 * This function copy the contents of the response iocb to the 12881 * response iocb memory object provided by the caller of 12882 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12883 * sleeps for the iocb completion. 12884 **/ 12885 static void 12886 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12887 struct lpfc_iocbq *cmdiocbq, 12888 struct lpfc_iocbq *rspiocbq) 12889 { 12890 wait_queue_head_t *pdone_q; 12891 unsigned long iflags; 12892 struct lpfc_io_buf *lpfc_cmd; 12893 12894 spin_lock_irqsave(&phba->hbalock, iflags); 12895 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 12896 12897 /* 12898 * A time out has occurred for the iocb. If a time out 12899 * completion handler has been supplied, call it. Otherwise, 12900 * just free the iocbq. 12901 */ 12902 12903 spin_unlock_irqrestore(&phba->hbalock, iflags); 12904 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 12905 cmdiocbq->wait_iocb_cmpl = NULL; 12906 if (cmdiocbq->iocb_cmpl) 12907 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 12908 else 12909 lpfc_sli_release_iocbq(phba, cmdiocbq); 12910 return; 12911 } 12912 12913 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 12914 if (cmdiocbq->context2 && rspiocbq) 12915 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 12916 &rspiocbq->iocb, sizeof(IOCB_t)); 12917 12918 /* Set the exchange busy flag for task management commands */ 12919 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 12920 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 12921 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 12922 cur_iocbq); 12923 if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY)) 12924 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 12925 else 12926 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 12927 } 12928 12929 pdone_q = cmdiocbq->context_un.wait_queue; 12930 if (pdone_q) 12931 wake_up(pdone_q); 12932 spin_unlock_irqrestore(&phba->hbalock, iflags); 12933 return; 12934 } 12935 12936 /** 12937 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 12938 * @phba: Pointer to HBA context object.. 12939 * @piocbq: Pointer to command iocb. 12940 * @flag: Flag to test. 12941 * 12942 * This routine grabs the hbalock and then test the iocb_flag to 12943 * see if the passed in flag is set. 12944 * Returns: 12945 * 1 if flag is set. 12946 * 0 if flag is not set. 12947 **/ 12948 static int 12949 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 12950 struct lpfc_iocbq *piocbq, uint32_t flag) 12951 { 12952 unsigned long iflags; 12953 int ret; 12954 12955 spin_lock_irqsave(&phba->hbalock, iflags); 12956 ret = piocbq->iocb_flag & flag; 12957 spin_unlock_irqrestore(&phba->hbalock, iflags); 12958 return ret; 12959 12960 } 12961 12962 /** 12963 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 12964 * @phba: Pointer to HBA context object.. 12965 * @ring_number: Ring number 12966 * @piocb: Pointer to command iocb. 12967 * @prspiocbq: Pointer to response iocb. 12968 * @timeout: Timeout in number of seconds. 12969 * 12970 * This function issues the iocb to firmware and waits for the 12971 * iocb to complete. The iocb_cmpl field of the shall be used 12972 * to handle iocbs which time out. If the field is NULL, the 12973 * function shall free the iocbq structure. If more clean up is 12974 * needed, the caller is expected to provide a completion function 12975 * that will provide the needed clean up. If the iocb command is 12976 * not completed within timeout seconds, the function will either 12977 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 12978 * completion function set in the iocb_cmpl field and then return 12979 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 12980 * resources if this function returns IOCB_TIMEDOUT. 12981 * The function waits for the iocb completion using an 12982 * non-interruptible wait. 12983 * This function will sleep while waiting for iocb completion. 12984 * So, this function should not be called from any context which 12985 * does not allow sleeping. Due to the same reason, this function 12986 * cannot be called with interrupt disabled. 12987 * This function assumes that the iocb completions occur while 12988 * this function sleep. So, this function cannot be called from 12989 * the thread which process iocb completion for this ring. 12990 * This function clears the iocb_flag of the iocb object before 12991 * issuing the iocb and the iocb completion handler sets this 12992 * flag and wakes this thread when the iocb completes. 12993 * The contents of the response iocb will be copied to prspiocbq 12994 * by the completion handler when the command completes. 12995 * This function returns IOCB_SUCCESS when success. 12996 * This function is called with no lock held. 12997 **/ 12998 int 12999 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 13000 uint32_t ring_number, 13001 struct lpfc_iocbq *piocb, 13002 struct lpfc_iocbq *prspiocbq, 13003 uint32_t timeout) 13004 { 13005 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 13006 long timeleft, timeout_req = 0; 13007 int retval = IOCB_SUCCESS; 13008 uint32_t creg_val; 13009 struct lpfc_iocbq *iocb; 13010 int txq_cnt = 0; 13011 int txcmplq_cnt = 0; 13012 struct lpfc_sli_ring *pring; 13013 unsigned long iflags; 13014 bool iocb_completed = true; 13015 13016 if (phba->sli_rev >= LPFC_SLI_REV4) 13017 pring = lpfc_sli4_calc_ring(phba, piocb); 13018 else 13019 pring = &phba->sli.sli3_ring[ring_number]; 13020 /* 13021 * If the caller has provided a response iocbq buffer, then context2 13022 * is NULL or its an error. 13023 */ 13024 if (prspiocbq) { 13025 if (piocb->context2) 13026 return IOCB_ERROR; 13027 piocb->context2 = prspiocbq; 13028 } 13029 13030 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 13031 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 13032 piocb->context_un.wait_queue = &done_q; 13033 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 13034 13035 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13036 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13037 return IOCB_ERROR; 13038 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 13039 writel(creg_val, phba->HCregaddr); 13040 readl(phba->HCregaddr); /* flush */ 13041 } 13042 13043 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 13044 SLI_IOCB_RET_IOCB); 13045 if (retval == IOCB_SUCCESS) { 13046 timeout_req = msecs_to_jiffies(timeout * 1000); 13047 timeleft = wait_event_timeout(done_q, 13048 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 13049 timeout_req); 13050 spin_lock_irqsave(&phba->hbalock, iflags); 13051 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 13052 13053 /* 13054 * IOCB timed out. Inform the wake iocb wait 13055 * completion function and set local status 13056 */ 13057 13058 iocb_completed = false; 13059 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 13060 } 13061 spin_unlock_irqrestore(&phba->hbalock, iflags); 13062 if (iocb_completed) { 13063 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13064 "0331 IOCB wake signaled\n"); 13065 /* Note: we are not indicating if the IOCB has a success 13066 * status or not - that's for the caller to check. 13067 * IOCB_SUCCESS means just that the command was sent and 13068 * completed. Not that it completed successfully. 13069 * */ 13070 } else if (timeleft == 0) { 13071 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13072 "0338 IOCB wait timeout error - no " 13073 "wake response Data x%x\n", timeout); 13074 retval = IOCB_TIMEDOUT; 13075 } else { 13076 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13077 "0330 IOCB wake NOT set, " 13078 "Data x%x x%lx\n", 13079 timeout, (timeleft / jiffies)); 13080 retval = IOCB_TIMEDOUT; 13081 } 13082 } else if (retval == IOCB_BUSY) { 13083 if (phba->cfg_log_verbose & LOG_SLI) { 13084 list_for_each_entry(iocb, &pring->txq, list) { 13085 txq_cnt++; 13086 } 13087 list_for_each_entry(iocb, &pring->txcmplq, list) { 13088 txcmplq_cnt++; 13089 } 13090 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13091 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 13092 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 13093 } 13094 return retval; 13095 } else { 13096 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13097 "0332 IOCB wait issue failed, Data x%x\n", 13098 retval); 13099 retval = IOCB_ERROR; 13100 } 13101 13102 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13103 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13104 return IOCB_ERROR; 13105 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 13106 writel(creg_val, phba->HCregaddr); 13107 readl(phba->HCregaddr); /* flush */ 13108 } 13109 13110 if (prspiocbq) 13111 piocb->context2 = NULL; 13112 13113 piocb->context_un.wait_queue = NULL; 13114 piocb->iocb_cmpl = NULL; 13115 return retval; 13116 } 13117 13118 /** 13119 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 13120 * @phba: Pointer to HBA context object. 13121 * @pmboxq: Pointer to driver mailbox object. 13122 * @timeout: Timeout in number of seconds. 13123 * 13124 * This function issues the mailbox to firmware and waits for the 13125 * mailbox command to complete. If the mailbox command is not 13126 * completed within timeout seconds, it returns MBX_TIMEOUT. 13127 * The function waits for the mailbox completion using an 13128 * interruptible wait. If the thread is woken up due to a 13129 * signal, MBX_TIMEOUT error is returned to the caller. Caller 13130 * should not free the mailbox resources, if this function returns 13131 * MBX_TIMEOUT. 13132 * This function will sleep while waiting for mailbox completion. 13133 * So, this function should not be called from any context which 13134 * does not allow sleeping. Due to the same reason, this function 13135 * cannot be called with interrupt disabled. 13136 * This function assumes that the mailbox completion occurs while 13137 * this function sleep. So, this function cannot be called from 13138 * the worker thread which processes mailbox completion. 13139 * This function is called in the context of HBA management 13140 * applications. 13141 * This function returns MBX_SUCCESS when successful. 13142 * This function is called with no lock held. 13143 **/ 13144 int 13145 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 13146 uint32_t timeout) 13147 { 13148 struct completion mbox_done; 13149 int retval; 13150 unsigned long flag; 13151 13152 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 13153 /* setup wake call as IOCB callback */ 13154 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 13155 13156 /* setup context3 field to pass wait_queue pointer to wake function */ 13157 init_completion(&mbox_done); 13158 pmboxq->context3 = &mbox_done; 13159 /* now issue the command */ 13160 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 13161 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 13162 wait_for_completion_timeout(&mbox_done, 13163 msecs_to_jiffies(timeout * 1000)); 13164 13165 spin_lock_irqsave(&phba->hbalock, flag); 13166 pmboxq->context3 = NULL; 13167 /* 13168 * if LPFC_MBX_WAKE flag is set the mailbox is completed 13169 * else do not free the resources. 13170 */ 13171 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 13172 retval = MBX_SUCCESS; 13173 } else { 13174 retval = MBX_TIMEOUT; 13175 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13176 } 13177 spin_unlock_irqrestore(&phba->hbalock, flag); 13178 } 13179 return retval; 13180 } 13181 13182 /** 13183 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 13184 * @phba: Pointer to HBA context. 13185 * @mbx_action: Mailbox shutdown options. 13186 * 13187 * This function is called to shutdown the driver's mailbox sub-system. 13188 * It first marks the mailbox sub-system is in a block state to prevent 13189 * the asynchronous mailbox command from issued off the pending mailbox 13190 * command queue. If the mailbox command sub-system shutdown is due to 13191 * HBA error conditions such as EEH or ERATT, this routine shall invoke 13192 * the mailbox sub-system flush routine to forcefully bring down the 13193 * mailbox sub-system. Otherwise, if it is due to normal condition (such 13194 * as with offline or HBA function reset), this routine will wait for the 13195 * outstanding mailbox command to complete before invoking the mailbox 13196 * sub-system flush routine to gracefully bring down mailbox sub-system. 13197 **/ 13198 void 13199 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 13200 { 13201 struct lpfc_sli *psli = &phba->sli; 13202 unsigned long timeout; 13203 13204 if (mbx_action == LPFC_MBX_NO_WAIT) { 13205 /* delay 100ms for port state */ 13206 msleep(100); 13207 lpfc_sli_mbox_sys_flush(phba); 13208 return; 13209 } 13210 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 13211 13212 /* Disable softirqs, including timers from obtaining phba->hbalock */ 13213 local_bh_disable(); 13214 13215 spin_lock_irq(&phba->hbalock); 13216 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13217 13218 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 13219 /* Determine how long we might wait for the active mailbox 13220 * command to be gracefully completed by firmware. 13221 */ 13222 if (phba->sli.mbox_active) 13223 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 13224 phba->sli.mbox_active) * 13225 1000) + jiffies; 13226 spin_unlock_irq(&phba->hbalock); 13227 13228 /* Enable softirqs again, done with phba->hbalock */ 13229 local_bh_enable(); 13230 13231 while (phba->sli.mbox_active) { 13232 /* Check active mailbox complete status every 2ms */ 13233 msleep(2); 13234 if (time_after(jiffies, timeout)) 13235 /* Timeout, let the mailbox flush routine to 13236 * forcefully release active mailbox command 13237 */ 13238 break; 13239 } 13240 } else { 13241 spin_unlock_irq(&phba->hbalock); 13242 13243 /* Enable softirqs again, done with phba->hbalock */ 13244 local_bh_enable(); 13245 } 13246 13247 lpfc_sli_mbox_sys_flush(phba); 13248 } 13249 13250 /** 13251 * lpfc_sli_eratt_read - read sli-3 error attention events 13252 * @phba: Pointer to HBA context. 13253 * 13254 * This function is called to read the SLI3 device error attention registers 13255 * for possible error attention events. The caller must hold the hostlock 13256 * with spin_lock_irq(). 13257 * 13258 * This function returns 1 when there is Error Attention in the Host Attention 13259 * Register and returns 0 otherwise. 13260 **/ 13261 static int 13262 lpfc_sli_eratt_read(struct lpfc_hba *phba) 13263 { 13264 uint32_t ha_copy; 13265 13266 /* Read chip Host Attention (HA) register */ 13267 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13268 goto unplug_err; 13269 13270 if (ha_copy & HA_ERATT) { 13271 /* Read host status register to retrieve error event */ 13272 if (lpfc_sli_read_hs(phba)) 13273 goto unplug_err; 13274 13275 /* Check if there is a deferred error condition is active */ 13276 if ((HS_FFER1 & phba->work_hs) && 13277 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13278 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 13279 phba->hba_flag |= DEFER_ERATT; 13280 /* Clear all interrupt enable conditions */ 13281 writel(0, phba->HCregaddr); 13282 readl(phba->HCregaddr); 13283 } 13284 13285 /* Set the driver HA work bitmap */ 13286 phba->work_ha |= HA_ERATT; 13287 /* Indicate polling handles this ERATT */ 13288 phba->hba_flag |= HBA_ERATT_HANDLED; 13289 return 1; 13290 } 13291 return 0; 13292 13293 unplug_err: 13294 /* Set the driver HS work bitmap */ 13295 phba->work_hs |= UNPLUG_ERR; 13296 /* Set the driver HA work bitmap */ 13297 phba->work_ha |= HA_ERATT; 13298 /* Indicate polling handles this ERATT */ 13299 phba->hba_flag |= HBA_ERATT_HANDLED; 13300 return 1; 13301 } 13302 13303 /** 13304 * lpfc_sli4_eratt_read - read sli-4 error attention events 13305 * @phba: Pointer to HBA context. 13306 * 13307 * This function is called to read the SLI4 device error attention registers 13308 * for possible error attention events. The caller must hold the hostlock 13309 * with spin_lock_irq(). 13310 * 13311 * This function returns 1 when there is Error Attention in the Host Attention 13312 * Register and returns 0 otherwise. 13313 **/ 13314 static int 13315 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 13316 { 13317 uint32_t uerr_sta_hi, uerr_sta_lo; 13318 uint32_t if_type, portsmphr; 13319 struct lpfc_register portstat_reg; 13320 13321 /* 13322 * For now, use the SLI4 device internal unrecoverable error 13323 * registers for error attention. This can be changed later. 13324 */ 13325 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 13326 switch (if_type) { 13327 case LPFC_SLI_INTF_IF_TYPE_0: 13328 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 13329 &uerr_sta_lo) || 13330 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 13331 &uerr_sta_hi)) { 13332 phba->work_hs |= UNPLUG_ERR; 13333 phba->work_ha |= HA_ERATT; 13334 phba->hba_flag |= HBA_ERATT_HANDLED; 13335 return 1; 13336 } 13337 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 13338 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 13339 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13340 "1423 HBA Unrecoverable error: " 13341 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 13342 "ue_mask_lo_reg=0x%x, " 13343 "ue_mask_hi_reg=0x%x\n", 13344 uerr_sta_lo, uerr_sta_hi, 13345 phba->sli4_hba.ue_mask_lo, 13346 phba->sli4_hba.ue_mask_hi); 13347 phba->work_status[0] = uerr_sta_lo; 13348 phba->work_status[1] = uerr_sta_hi; 13349 phba->work_ha |= HA_ERATT; 13350 phba->hba_flag |= HBA_ERATT_HANDLED; 13351 return 1; 13352 } 13353 break; 13354 case LPFC_SLI_INTF_IF_TYPE_2: 13355 case LPFC_SLI_INTF_IF_TYPE_6: 13356 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 13357 &portstat_reg.word0) || 13358 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 13359 &portsmphr)){ 13360 phba->work_hs |= UNPLUG_ERR; 13361 phba->work_ha |= HA_ERATT; 13362 phba->hba_flag |= HBA_ERATT_HANDLED; 13363 return 1; 13364 } 13365 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 13366 phba->work_status[0] = 13367 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 13368 phba->work_status[1] = 13369 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 13370 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13371 "2885 Port Status Event: " 13372 "port status reg 0x%x, " 13373 "port smphr reg 0x%x, " 13374 "error 1=0x%x, error 2=0x%x\n", 13375 portstat_reg.word0, 13376 portsmphr, 13377 phba->work_status[0], 13378 phba->work_status[1]); 13379 phba->work_ha |= HA_ERATT; 13380 phba->hba_flag |= HBA_ERATT_HANDLED; 13381 return 1; 13382 } 13383 break; 13384 case LPFC_SLI_INTF_IF_TYPE_1: 13385 default: 13386 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13387 "2886 HBA Error Attention on unsupported " 13388 "if type %d.", if_type); 13389 return 1; 13390 } 13391 13392 return 0; 13393 } 13394 13395 /** 13396 * lpfc_sli_check_eratt - check error attention events 13397 * @phba: Pointer to HBA context. 13398 * 13399 * This function is called from timer soft interrupt context to check HBA's 13400 * error attention register bit for error attention events. 13401 * 13402 * This function returns 1 when there is Error Attention in the Host Attention 13403 * Register and returns 0 otherwise. 13404 **/ 13405 int 13406 lpfc_sli_check_eratt(struct lpfc_hba *phba) 13407 { 13408 uint32_t ha_copy; 13409 13410 /* If somebody is waiting to handle an eratt, don't process it 13411 * here. The brdkill function will do this. 13412 */ 13413 if (phba->link_flag & LS_IGNORE_ERATT) 13414 return 0; 13415 13416 /* Check if interrupt handler handles this ERATT */ 13417 spin_lock_irq(&phba->hbalock); 13418 if (phba->hba_flag & HBA_ERATT_HANDLED) { 13419 /* Interrupt handler has handled ERATT */ 13420 spin_unlock_irq(&phba->hbalock); 13421 return 0; 13422 } 13423 13424 /* 13425 * If there is deferred error attention, do not check for error 13426 * attention 13427 */ 13428 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13429 spin_unlock_irq(&phba->hbalock); 13430 return 0; 13431 } 13432 13433 /* If PCI channel is offline, don't process it */ 13434 if (unlikely(pci_channel_offline(phba->pcidev))) { 13435 spin_unlock_irq(&phba->hbalock); 13436 return 0; 13437 } 13438 13439 switch (phba->sli_rev) { 13440 case LPFC_SLI_REV2: 13441 case LPFC_SLI_REV3: 13442 /* Read chip Host Attention (HA) register */ 13443 ha_copy = lpfc_sli_eratt_read(phba); 13444 break; 13445 case LPFC_SLI_REV4: 13446 /* Read device Uncoverable Error (UERR) registers */ 13447 ha_copy = lpfc_sli4_eratt_read(phba); 13448 break; 13449 default: 13450 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13451 "0299 Invalid SLI revision (%d)\n", 13452 phba->sli_rev); 13453 ha_copy = 0; 13454 break; 13455 } 13456 spin_unlock_irq(&phba->hbalock); 13457 13458 return ha_copy; 13459 } 13460 13461 /** 13462 * lpfc_intr_state_check - Check device state for interrupt handling 13463 * @phba: Pointer to HBA context. 13464 * 13465 * This inline routine checks whether a device or its PCI slot is in a state 13466 * that the interrupt should be handled. 13467 * 13468 * This function returns 0 if the device or the PCI slot is in a state that 13469 * interrupt should be handled, otherwise -EIO. 13470 */ 13471 static inline int 13472 lpfc_intr_state_check(struct lpfc_hba *phba) 13473 { 13474 /* If the pci channel is offline, ignore all the interrupts */ 13475 if (unlikely(pci_channel_offline(phba->pcidev))) 13476 return -EIO; 13477 13478 /* Update device level interrupt statistics */ 13479 phba->sli.slistat.sli_intr++; 13480 13481 /* Ignore all interrupts during initialization. */ 13482 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 13483 return -EIO; 13484 13485 return 0; 13486 } 13487 13488 /** 13489 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 13490 * @irq: Interrupt number. 13491 * @dev_id: The device context pointer. 13492 * 13493 * This function is directly called from the PCI layer as an interrupt 13494 * service routine when device with SLI-3 interface spec is enabled with 13495 * MSI-X multi-message interrupt mode and there are slow-path events in 13496 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 13497 * interrupt mode, this function is called as part of the device-level 13498 * interrupt handler. When the PCI slot is in error recovery or the HBA 13499 * is undergoing initialization, the interrupt handler will not process 13500 * the interrupt. The link attention and ELS ring attention events are 13501 * handled by the worker thread. The interrupt handler signals the worker 13502 * thread and returns for these events. This function is called without 13503 * any lock held. It gets the hbalock to access and update SLI data 13504 * structures. 13505 * 13506 * This function returns IRQ_HANDLED when interrupt is handled else it 13507 * returns IRQ_NONE. 13508 **/ 13509 irqreturn_t 13510 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 13511 { 13512 struct lpfc_hba *phba; 13513 uint32_t ha_copy, hc_copy; 13514 uint32_t work_ha_copy; 13515 unsigned long status; 13516 unsigned long iflag; 13517 uint32_t control; 13518 13519 MAILBOX_t *mbox, *pmbox; 13520 struct lpfc_vport *vport; 13521 struct lpfc_nodelist *ndlp; 13522 struct lpfc_dmabuf *mp; 13523 LPFC_MBOXQ_t *pmb; 13524 int rc; 13525 13526 /* 13527 * Get the driver's phba structure from the dev_id and 13528 * assume the HBA is not interrupting. 13529 */ 13530 phba = (struct lpfc_hba *)dev_id; 13531 13532 if (unlikely(!phba)) 13533 return IRQ_NONE; 13534 13535 /* 13536 * Stuff needs to be attented to when this function is invoked as an 13537 * individual interrupt handler in MSI-X multi-message interrupt mode 13538 */ 13539 if (phba->intr_type == MSIX) { 13540 /* Check device state for handling interrupt */ 13541 if (lpfc_intr_state_check(phba)) 13542 return IRQ_NONE; 13543 /* Need to read HA REG for slow-path events */ 13544 spin_lock_irqsave(&phba->hbalock, iflag); 13545 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13546 goto unplug_error; 13547 /* If somebody is waiting to handle an eratt don't process it 13548 * here. The brdkill function will do this. 13549 */ 13550 if (phba->link_flag & LS_IGNORE_ERATT) 13551 ha_copy &= ~HA_ERATT; 13552 /* Check the need for handling ERATT in interrupt handler */ 13553 if (ha_copy & HA_ERATT) { 13554 if (phba->hba_flag & HBA_ERATT_HANDLED) 13555 /* ERATT polling has handled ERATT */ 13556 ha_copy &= ~HA_ERATT; 13557 else 13558 /* Indicate interrupt handler handles ERATT */ 13559 phba->hba_flag |= HBA_ERATT_HANDLED; 13560 } 13561 13562 /* 13563 * If there is deferred error attention, do not check for any 13564 * interrupt. 13565 */ 13566 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13567 spin_unlock_irqrestore(&phba->hbalock, iflag); 13568 return IRQ_NONE; 13569 } 13570 13571 /* Clear up only attention source related to slow-path */ 13572 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 13573 goto unplug_error; 13574 13575 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 13576 HC_LAINT_ENA | HC_ERINT_ENA), 13577 phba->HCregaddr); 13578 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 13579 phba->HAregaddr); 13580 writel(hc_copy, phba->HCregaddr); 13581 readl(phba->HAregaddr); /* flush */ 13582 spin_unlock_irqrestore(&phba->hbalock, iflag); 13583 } else 13584 ha_copy = phba->ha_copy; 13585 13586 work_ha_copy = ha_copy & phba->work_ha_mask; 13587 13588 if (work_ha_copy) { 13589 if (work_ha_copy & HA_LATT) { 13590 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 13591 /* 13592 * Turn off Link Attention interrupts 13593 * until CLEAR_LA done 13594 */ 13595 spin_lock_irqsave(&phba->hbalock, iflag); 13596 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 13597 if (lpfc_readl(phba->HCregaddr, &control)) 13598 goto unplug_error; 13599 control &= ~HC_LAINT_ENA; 13600 writel(control, phba->HCregaddr); 13601 readl(phba->HCregaddr); /* flush */ 13602 spin_unlock_irqrestore(&phba->hbalock, iflag); 13603 } 13604 else 13605 work_ha_copy &= ~HA_LATT; 13606 } 13607 13608 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 13609 /* 13610 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 13611 * the only slow ring. 13612 */ 13613 status = (work_ha_copy & 13614 (HA_RXMASK << (4*LPFC_ELS_RING))); 13615 status >>= (4*LPFC_ELS_RING); 13616 if (status & HA_RXMASK) { 13617 spin_lock_irqsave(&phba->hbalock, iflag); 13618 if (lpfc_readl(phba->HCregaddr, &control)) 13619 goto unplug_error; 13620 13621 lpfc_debugfs_slow_ring_trc(phba, 13622 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 13623 control, status, 13624 (uint32_t)phba->sli.slistat.sli_intr); 13625 13626 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 13627 lpfc_debugfs_slow_ring_trc(phba, 13628 "ISR Disable ring:" 13629 "pwork:x%x hawork:x%x wait:x%x", 13630 phba->work_ha, work_ha_copy, 13631 (uint32_t)((unsigned long) 13632 &phba->work_waitq)); 13633 13634 control &= 13635 ~(HC_R0INT_ENA << LPFC_ELS_RING); 13636 writel(control, phba->HCregaddr); 13637 readl(phba->HCregaddr); /* flush */ 13638 } 13639 else { 13640 lpfc_debugfs_slow_ring_trc(phba, 13641 "ISR slow ring: pwork:" 13642 "x%x hawork:x%x wait:x%x", 13643 phba->work_ha, work_ha_copy, 13644 (uint32_t)((unsigned long) 13645 &phba->work_waitq)); 13646 } 13647 spin_unlock_irqrestore(&phba->hbalock, iflag); 13648 } 13649 } 13650 spin_lock_irqsave(&phba->hbalock, iflag); 13651 if (work_ha_copy & HA_ERATT) { 13652 if (lpfc_sli_read_hs(phba)) 13653 goto unplug_error; 13654 /* 13655 * Check if there is a deferred error condition 13656 * is active 13657 */ 13658 if ((HS_FFER1 & phba->work_hs) && 13659 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13660 HS_FFER6 | HS_FFER7 | HS_FFER8) & 13661 phba->work_hs)) { 13662 phba->hba_flag |= DEFER_ERATT; 13663 /* Clear all interrupt enable conditions */ 13664 writel(0, phba->HCregaddr); 13665 readl(phba->HCregaddr); 13666 } 13667 } 13668 13669 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 13670 pmb = phba->sli.mbox_active; 13671 pmbox = &pmb->u.mb; 13672 mbox = phba->mbox; 13673 vport = pmb->vport; 13674 13675 /* First check out the status word */ 13676 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 13677 if (pmbox->mbxOwner != OWN_HOST) { 13678 spin_unlock_irqrestore(&phba->hbalock, iflag); 13679 /* 13680 * Stray Mailbox Interrupt, mbxCommand <cmd> 13681 * mbxStatus <status> 13682 */ 13683 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13684 "(%d):0304 Stray Mailbox " 13685 "Interrupt mbxCommand x%x " 13686 "mbxStatus x%x\n", 13687 (vport ? vport->vpi : 0), 13688 pmbox->mbxCommand, 13689 pmbox->mbxStatus); 13690 /* clear mailbox attention bit */ 13691 work_ha_copy &= ~HA_MBATT; 13692 } else { 13693 phba->sli.mbox_active = NULL; 13694 spin_unlock_irqrestore(&phba->hbalock, iflag); 13695 phba->last_completion_time = jiffies; 13696 del_timer(&phba->sli.mbox_tmo); 13697 if (pmb->mbox_cmpl) { 13698 lpfc_sli_pcimem_bcopy(mbox, pmbox, 13699 MAILBOX_CMD_SIZE); 13700 if (pmb->out_ext_byte_len && 13701 pmb->ctx_buf) 13702 lpfc_sli_pcimem_bcopy( 13703 phba->mbox_ext, 13704 pmb->ctx_buf, 13705 pmb->out_ext_byte_len); 13706 } 13707 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13708 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13709 13710 lpfc_debugfs_disc_trc(vport, 13711 LPFC_DISC_TRC_MBOX_VPORT, 13712 "MBOX dflt rpi: : " 13713 "status:x%x rpi:x%x", 13714 (uint32_t)pmbox->mbxStatus, 13715 pmbox->un.varWords[0], 0); 13716 13717 if (!pmbox->mbxStatus) { 13718 mp = (struct lpfc_dmabuf *) 13719 (pmb->ctx_buf); 13720 ndlp = (struct lpfc_nodelist *) 13721 pmb->ctx_ndlp; 13722 13723 /* Reg_LOGIN of dflt RPI was 13724 * successful. new lets get 13725 * rid of the RPI using the 13726 * same mbox buffer. 13727 */ 13728 lpfc_unreg_login(phba, 13729 vport->vpi, 13730 pmbox->un.varWords[0], 13731 pmb); 13732 pmb->mbox_cmpl = 13733 lpfc_mbx_cmpl_dflt_rpi; 13734 pmb->ctx_buf = mp; 13735 pmb->ctx_ndlp = ndlp; 13736 pmb->vport = vport; 13737 rc = lpfc_sli_issue_mbox(phba, 13738 pmb, 13739 MBX_NOWAIT); 13740 if (rc != MBX_BUSY) 13741 lpfc_printf_log(phba, 13742 KERN_ERR, 13743 LOG_TRACE_EVENT, 13744 "0350 rc should have" 13745 "been MBX_BUSY\n"); 13746 if (rc != MBX_NOT_FINISHED) 13747 goto send_current_mbox; 13748 } 13749 } 13750 spin_lock_irqsave( 13751 &phba->pport->work_port_lock, 13752 iflag); 13753 phba->pport->work_port_events &= 13754 ~WORKER_MBOX_TMO; 13755 spin_unlock_irqrestore( 13756 &phba->pport->work_port_lock, 13757 iflag); 13758 13759 /* Do NOT queue MBX_HEARTBEAT to the worker 13760 * thread for processing. 13761 */ 13762 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13763 /* Process mbox now */ 13764 phba->sli.mbox_active = NULL; 13765 phba->sli.sli_flag &= 13766 ~LPFC_SLI_MBOX_ACTIVE; 13767 if (pmb->mbox_cmpl) 13768 pmb->mbox_cmpl(phba, pmb); 13769 } else { 13770 /* Queue to worker thread to process */ 13771 lpfc_mbox_cmpl_put(phba, pmb); 13772 } 13773 } 13774 } else 13775 spin_unlock_irqrestore(&phba->hbalock, iflag); 13776 13777 if ((work_ha_copy & HA_MBATT) && 13778 (phba->sli.mbox_active == NULL)) { 13779 send_current_mbox: 13780 /* Process next mailbox command if there is one */ 13781 do { 13782 rc = lpfc_sli_issue_mbox(phba, NULL, 13783 MBX_NOWAIT); 13784 } while (rc == MBX_NOT_FINISHED); 13785 if (rc != MBX_SUCCESS) 13786 lpfc_printf_log(phba, KERN_ERR, 13787 LOG_TRACE_EVENT, 13788 "0349 rc should be " 13789 "MBX_SUCCESS\n"); 13790 } 13791 13792 spin_lock_irqsave(&phba->hbalock, iflag); 13793 phba->work_ha |= work_ha_copy; 13794 spin_unlock_irqrestore(&phba->hbalock, iflag); 13795 lpfc_worker_wake_up(phba); 13796 } 13797 return IRQ_HANDLED; 13798 unplug_error: 13799 spin_unlock_irqrestore(&phba->hbalock, iflag); 13800 return IRQ_HANDLED; 13801 13802 } /* lpfc_sli_sp_intr_handler */ 13803 13804 /** 13805 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13806 * @irq: Interrupt number. 13807 * @dev_id: The device context pointer. 13808 * 13809 * This function is directly called from the PCI layer as an interrupt 13810 * service routine when device with SLI-3 interface spec is enabled with 13811 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13812 * ring event in the HBA. However, when the device is enabled with either 13813 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13814 * device-level interrupt handler. When the PCI slot is in error recovery 13815 * or the HBA is undergoing initialization, the interrupt handler will not 13816 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13817 * the intrrupt context. This function is called without any lock held. 13818 * It gets the hbalock to access and update SLI data structures. 13819 * 13820 * This function returns IRQ_HANDLED when interrupt is handled else it 13821 * returns IRQ_NONE. 13822 **/ 13823 irqreturn_t 13824 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13825 { 13826 struct lpfc_hba *phba; 13827 uint32_t ha_copy; 13828 unsigned long status; 13829 unsigned long iflag; 13830 struct lpfc_sli_ring *pring; 13831 13832 /* Get the driver's phba structure from the dev_id and 13833 * assume the HBA is not interrupting. 13834 */ 13835 phba = (struct lpfc_hba *) dev_id; 13836 13837 if (unlikely(!phba)) 13838 return IRQ_NONE; 13839 13840 /* 13841 * Stuff needs to be attented to when this function is invoked as an 13842 * individual interrupt handler in MSI-X multi-message interrupt mode 13843 */ 13844 if (phba->intr_type == MSIX) { 13845 /* Check device state for handling interrupt */ 13846 if (lpfc_intr_state_check(phba)) 13847 return IRQ_NONE; 13848 /* Need to read HA REG for FCP ring and other ring events */ 13849 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13850 return IRQ_HANDLED; 13851 /* Clear up only attention source related to fast-path */ 13852 spin_lock_irqsave(&phba->hbalock, iflag); 13853 /* 13854 * If there is deferred error attention, do not check for 13855 * any interrupt. 13856 */ 13857 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13858 spin_unlock_irqrestore(&phba->hbalock, iflag); 13859 return IRQ_NONE; 13860 } 13861 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13862 phba->HAregaddr); 13863 readl(phba->HAregaddr); /* flush */ 13864 spin_unlock_irqrestore(&phba->hbalock, iflag); 13865 } else 13866 ha_copy = phba->ha_copy; 13867 13868 /* 13869 * Process all events on FCP ring. Take the optimized path for FCP IO. 13870 */ 13871 ha_copy &= ~(phba->work_ha_mask); 13872 13873 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13874 status >>= (4*LPFC_FCP_RING); 13875 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13876 if (status & HA_RXMASK) 13877 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13878 13879 if (phba->cfg_multi_ring_support == 2) { 13880 /* 13881 * Process all events on extra ring. Take the optimized path 13882 * for extra ring IO. 13883 */ 13884 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13885 status >>= (4*LPFC_EXTRA_RING); 13886 if (status & HA_RXMASK) { 13887 lpfc_sli_handle_fast_ring_event(phba, 13888 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 13889 status); 13890 } 13891 } 13892 return IRQ_HANDLED; 13893 } /* lpfc_sli_fp_intr_handler */ 13894 13895 /** 13896 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 13897 * @irq: Interrupt number. 13898 * @dev_id: The device context pointer. 13899 * 13900 * This function is the HBA device-level interrupt handler to device with 13901 * SLI-3 interface spec, called from the PCI layer when either MSI or 13902 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 13903 * requires driver attention. This function invokes the slow-path interrupt 13904 * attention handling function and fast-path interrupt attention handling 13905 * function in turn to process the relevant HBA attention events. This 13906 * function is called without any lock held. It gets the hbalock to access 13907 * and update SLI data structures. 13908 * 13909 * This function returns IRQ_HANDLED when interrupt is handled, else it 13910 * returns IRQ_NONE. 13911 **/ 13912 irqreturn_t 13913 lpfc_sli_intr_handler(int irq, void *dev_id) 13914 { 13915 struct lpfc_hba *phba; 13916 irqreturn_t sp_irq_rc, fp_irq_rc; 13917 unsigned long status1, status2; 13918 uint32_t hc_copy; 13919 13920 /* 13921 * Get the driver's phba structure from the dev_id and 13922 * assume the HBA is not interrupting. 13923 */ 13924 phba = (struct lpfc_hba *) dev_id; 13925 13926 if (unlikely(!phba)) 13927 return IRQ_NONE; 13928 13929 /* Check device state for handling interrupt */ 13930 if (lpfc_intr_state_check(phba)) 13931 return IRQ_NONE; 13932 13933 spin_lock(&phba->hbalock); 13934 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 13935 spin_unlock(&phba->hbalock); 13936 return IRQ_HANDLED; 13937 } 13938 13939 if (unlikely(!phba->ha_copy)) { 13940 spin_unlock(&phba->hbalock); 13941 return IRQ_NONE; 13942 } else if (phba->ha_copy & HA_ERATT) { 13943 if (phba->hba_flag & HBA_ERATT_HANDLED) 13944 /* ERATT polling has handled ERATT */ 13945 phba->ha_copy &= ~HA_ERATT; 13946 else 13947 /* Indicate interrupt handler handles ERATT */ 13948 phba->hba_flag |= HBA_ERATT_HANDLED; 13949 } 13950 13951 /* 13952 * If there is deferred error attention, do not check for any interrupt. 13953 */ 13954 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13955 spin_unlock(&phba->hbalock); 13956 return IRQ_NONE; 13957 } 13958 13959 /* Clear attention sources except link and error attentions */ 13960 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 13961 spin_unlock(&phba->hbalock); 13962 return IRQ_HANDLED; 13963 } 13964 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 13965 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 13966 phba->HCregaddr); 13967 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 13968 writel(hc_copy, phba->HCregaddr); 13969 readl(phba->HAregaddr); /* flush */ 13970 spin_unlock(&phba->hbalock); 13971 13972 /* 13973 * Invokes slow-path host attention interrupt handling as appropriate. 13974 */ 13975 13976 /* status of events with mailbox and link attention */ 13977 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 13978 13979 /* status of events with ELS ring */ 13980 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 13981 status2 >>= (4*LPFC_ELS_RING); 13982 13983 if (status1 || (status2 & HA_RXMASK)) 13984 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 13985 else 13986 sp_irq_rc = IRQ_NONE; 13987 13988 /* 13989 * Invoke fast-path host attention interrupt handling as appropriate. 13990 */ 13991 13992 /* status of events with FCP ring */ 13993 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13994 status1 >>= (4*LPFC_FCP_RING); 13995 13996 /* status of events with extra ring */ 13997 if (phba->cfg_multi_ring_support == 2) { 13998 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13999 status2 >>= (4*LPFC_EXTRA_RING); 14000 } else 14001 status2 = 0; 14002 14003 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 14004 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 14005 else 14006 fp_irq_rc = IRQ_NONE; 14007 14008 /* Return device-level interrupt handling status */ 14009 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 14010 } /* lpfc_sli_intr_handler */ 14011 14012 /** 14013 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 14014 * @phba: pointer to lpfc hba data structure. 14015 * 14016 * This routine is invoked by the worker thread to process all the pending 14017 * SLI4 els abort xri events. 14018 **/ 14019 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 14020 { 14021 struct lpfc_cq_event *cq_event; 14022 unsigned long iflags; 14023 14024 /* First, declare the els xri abort event has been handled */ 14025 spin_lock_irqsave(&phba->hbalock, iflags); 14026 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 14027 spin_unlock_irqrestore(&phba->hbalock, iflags); 14028 14029 /* Now, handle all the els xri abort events */ 14030 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14031 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 14032 /* Get the first event from the head of the event queue */ 14033 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 14034 cq_event, struct lpfc_cq_event, list); 14035 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14036 iflags); 14037 /* Notify aborted XRI for ELS work queue */ 14038 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 14039 14040 /* Free the event processed back to the free pool */ 14041 lpfc_sli4_cq_event_release(phba, cq_event); 14042 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14043 iflags); 14044 } 14045 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14046 } 14047 14048 /** 14049 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 14050 * @phba: pointer to lpfc hba data structure 14051 * @pIocbIn: pointer to the rspiocbq 14052 * @pIocbOut: pointer to the cmdiocbq 14053 * @wcqe: pointer to the complete wcqe 14054 * 14055 * This routine transfers the fields of a command iocbq to a response iocbq 14056 * by copying all the IOCB fields from command iocbq and transferring the 14057 * completion status information from the complete wcqe. 14058 **/ 14059 static void 14060 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 14061 struct lpfc_iocbq *pIocbIn, 14062 struct lpfc_iocbq *pIocbOut, 14063 struct lpfc_wcqe_complete *wcqe) 14064 { 14065 int numBdes, i; 14066 unsigned long iflags; 14067 uint32_t status, max_response; 14068 struct lpfc_dmabuf *dmabuf; 14069 struct ulp_bde64 *bpl, bde; 14070 size_t offset = offsetof(struct lpfc_iocbq, iocb); 14071 14072 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 14073 sizeof(struct lpfc_iocbq) - offset); 14074 /* Map WCQE parameters into irspiocb parameters */ 14075 status = bf_get(lpfc_wcqe_c_status, wcqe); 14076 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 14077 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 14078 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 14079 pIocbIn->iocb.un.fcpi.fcpi_parm = 14080 pIocbOut->iocb.un.fcpi.fcpi_parm - 14081 wcqe->total_data_placed; 14082 else 14083 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 14084 else { 14085 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 14086 switch (pIocbOut->iocb.ulpCommand) { 14087 case CMD_ELS_REQUEST64_CR: 14088 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 14089 bpl = (struct ulp_bde64 *)dmabuf->virt; 14090 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 14091 max_response = bde.tus.f.bdeSize; 14092 break; 14093 case CMD_GEN_REQUEST64_CR: 14094 max_response = 0; 14095 if (!pIocbOut->context3) 14096 break; 14097 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 14098 sizeof(struct ulp_bde64); 14099 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 14100 bpl = (struct ulp_bde64 *)dmabuf->virt; 14101 for (i = 0; i < numBdes; i++) { 14102 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 14103 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 14104 max_response += bde.tus.f.bdeSize; 14105 } 14106 break; 14107 default: 14108 max_response = wcqe->total_data_placed; 14109 break; 14110 } 14111 if (max_response < wcqe->total_data_placed) 14112 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 14113 else 14114 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 14115 wcqe->total_data_placed; 14116 } 14117 14118 /* Convert BG errors for completion status */ 14119 if (status == CQE_STATUS_DI_ERROR) { 14120 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 14121 14122 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 14123 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 14124 else 14125 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 14126 14127 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 14128 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 14129 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14130 BGS_GUARD_ERR_MASK; 14131 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 14132 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14133 BGS_APPTAG_ERR_MASK; 14134 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 14135 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14136 BGS_REFTAG_ERR_MASK; 14137 14138 /* Check to see if there was any good data before the error */ 14139 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 14140 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14141 BGS_HI_WATER_MARK_PRESENT_MASK; 14142 pIocbIn->iocb.unsli3.sli3_bg.bghm = 14143 wcqe->total_data_placed; 14144 } 14145 14146 /* 14147 * Set ALL the error bits to indicate we don't know what 14148 * type of error it is. 14149 */ 14150 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 14151 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14152 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 14153 BGS_GUARD_ERR_MASK); 14154 } 14155 14156 /* Pick up HBA exchange busy condition */ 14157 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 14158 spin_lock_irqsave(&phba->hbalock, iflags); 14159 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 14160 spin_unlock_irqrestore(&phba->hbalock, iflags); 14161 } 14162 } 14163 14164 /** 14165 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 14166 * @phba: Pointer to HBA context object. 14167 * @irspiocbq: Pointer to work-queue completion queue entry. 14168 * 14169 * This routine handles an ELS work-queue completion event and construct 14170 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 14171 * discovery engine to handle. 14172 * 14173 * Return: Pointer to the receive IOCBQ, NULL otherwise. 14174 **/ 14175 static struct lpfc_iocbq * 14176 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 14177 struct lpfc_iocbq *irspiocbq) 14178 { 14179 struct lpfc_sli_ring *pring; 14180 struct lpfc_iocbq *cmdiocbq; 14181 struct lpfc_wcqe_complete *wcqe; 14182 unsigned long iflags; 14183 14184 pring = lpfc_phba_elsring(phba); 14185 if (unlikely(!pring)) 14186 return NULL; 14187 14188 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 14189 pring->stats.iocb_event++; 14190 /* Look up the ELS command IOCB and create pseudo response IOCB */ 14191 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14192 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14193 if (unlikely(!cmdiocbq)) { 14194 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14195 "0386 ELS complete with no corresponding " 14196 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 14197 wcqe->word0, wcqe->total_data_placed, 14198 wcqe->parameter, wcqe->word3); 14199 lpfc_sli_release_iocbq(phba, irspiocbq); 14200 return NULL; 14201 } 14202 14203 spin_lock_irqsave(&pring->ring_lock, iflags); 14204 /* Put the iocb back on the txcmplq */ 14205 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 14206 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14207 14208 /* Fake the irspiocbq and copy necessary response information */ 14209 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 14210 14211 return irspiocbq; 14212 } 14213 14214 inline struct lpfc_cq_event * 14215 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 14216 { 14217 struct lpfc_cq_event *cq_event; 14218 14219 /* Allocate a new internal CQ_EVENT entry */ 14220 cq_event = lpfc_sli4_cq_event_alloc(phba); 14221 if (!cq_event) { 14222 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14223 "0602 Failed to alloc CQ_EVENT entry\n"); 14224 return NULL; 14225 } 14226 14227 /* Move the CQE into the event */ 14228 memcpy(&cq_event->cqe, entry, size); 14229 return cq_event; 14230 } 14231 14232 /** 14233 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 14234 * @phba: Pointer to HBA context object. 14235 * @mcqe: Pointer to mailbox completion queue entry. 14236 * 14237 * This routine process a mailbox completion queue entry with asynchronous 14238 * event. 14239 * 14240 * Return: true if work posted to worker thread, otherwise false. 14241 **/ 14242 static bool 14243 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14244 { 14245 struct lpfc_cq_event *cq_event; 14246 unsigned long iflags; 14247 14248 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14249 "0392 Async Event: word0:x%x, word1:x%x, " 14250 "word2:x%x, word3:x%x\n", mcqe->word0, 14251 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 14252 14253 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 14254 if (!cq_event) 14255 return false; 14256 14257 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 14258 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 14259 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 14260 14261 /* Set the async event flag */ 14262 spin_lock_irqsave(&phba->hbalock, iflags); 14263 phba->hba_flag |= ASYNC_EVENT; 14264 spin_unlock_irqrestore(&phba->hbalock, iflags); 14265 14266 return true; 14267 } 14268 14269 /** 14270 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 14271 * @phba: Pointer to HBA context object. 14272 * @mcqe: Pointer to mailbox completion queue entry. 14273 * 14274 * This routine process a mailbox completion queue entry with mailbox 14275 * completion event. 14276 * 14277 * Return: true if work posted to worker thread, otherwise false. 14278 **/ 14279 static bool 14280 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14281 { 14282 uint32_t mcqe_status; 14283 MAILBOX_t *mbox, *pmbox; 14284 struct lpfc_mqe *mqe; 14285 struct lpfc_vport *vport; 14286 struct lpfc_nodelist *ndlp; 14287 struct lpfc_dmabuf *mp; 14288 unsigned long iflags; 14289 LPFC_MBOXQ_t *pmb; 14290 bool workposted = false; 14291 int rc; 14292 14293 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 14294 if (!bf_get(lpfc_trailer_completed, mcqe)) 14295 goto out_no_mqe_complete; 14296 14297 /* Get the reference to the active mbox command */ 14298 spin_lock_irqsave(&phba->hbalock, iflags); 14299 pmb = phba->sli.mbox_active; 14300 if (unlikely(!pmb)) { 14301 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14302 "1832 No pending MBOX command to handle\n"); 14303 spin_unlock_irqrestore(&phba->hbalock, iflags); 14304 goto out_no_mqe_complete; 14305 } 14306 spin_unlock_irqrestore(&phba->hbalock, iflags); 14307 mqe = &pmb->u.mqe; 14308 pmbox = (MAILBOX_t *)&pmb->u.mqe; 14309 mbox = phba->mbox; 14310 vport = pmb->vport; 14311 14312 /* Reset heartbeat timer */ 14313 phba->last_completion_time = jiffies; 14314 del_timer(&phba->sli.mbox_tmo); 14315 14316 /* Move mbox data to caller's mailbox region, do endian swapping */ 14317 if (pmb->mbox_cmpl && mbox) 14318 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 14319 14320 /* 14321 * For mcqe errors, conditionally move a modified error code to 14322 * the mbox so that the error will not be missed. 14323 */ 14324 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 14325 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 14326 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 14327 bf_set(lpfc_mqe_status, mqe, 14328 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 14329 } 14330 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 14331 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 14332 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 14333 "MBOX dflt rpi: status:x%x rpi:x%x", 14334 mcqe_status, 14335 pmbox->un.varWords[0], 0); 14336 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 14337 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 14338 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 14339 14340 /* Reg_LOGIN of dflt RPI was successful. Mark the 14341 * node as having an UNREG_LOGIN in progress to stop 14342 * an unsolicited PLOGI from the same NPortId from 14343 * starting another mailbox transaction. 14344 */ 14345 spin_lock_irqsave(&ndlp->lock, iflags); 14346 ndlp->nlp_flag |= NLP_UNREG_INP; 14347 spin_unlock_irqrestore(&ndlp->lock, iflags); 14348 lpfc_unreg_login(phba, vport->vpi, 14349 pmbox->un.varWords[0], pmb); 14350 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 14351 pmb->ctx_buf = mp; 14352 14353 /* No reference taken here. This is a default 14354 * RPI reg/immediate unreg cycle. The reference was 14355 * taken in the reg rpi path and is released when 14356 * this mailbox completes. 14357 */ 14358 pmb->ctx_ndlp = ndlp; 14359 pmb->vport = vport; 14360 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 14361 if (rc != MBX_BUSY) 14362 lpfc_printf_log(phba, KERN_ERR, 14363 LOG_TRACE_EVENT, 14364 "0385 rc should " 14365 "have been MBX_BUSY\n"); 14366 if (rc != MBX_NOT_FINISHED) 14367 goto send_current_mbox; 14368 } 14369 } 14370 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 14371 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 14372 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 14373 14374 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 14375 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 14376 spin_lock_irqsave(&phba->hbalock, iflags); 14377 /* Release the mailbox command posting token */ 14378 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14379 phba->sli.mbox_active = NULL; 14380 if (bf_get(lpfc_trailer_consumed, mcqe)) 14381 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14382 spin_unlock_irqrestore(&phba->hbalock, iflags); 14383 14384 /* Post the next mbox command, if there is one */ 14385 lpfc_sli4_post_async_mbox(phba); 14386 14387 /* Process cmpl now */ 14388 if (pmb->mbox_cmpl) 14389 pmb->mbox_cmpl(phba, pmb); 14390 return false; 14391 } 14392 14393 /* There is mailbox completion work to queue to the worker thread */ 14394 spin_lock_irqsave(&phba->hbalock, iflags); 14395 __lpfc_mbox_cmpl_put(phba, pmb); 14396 phba->work_ha |= HA_MBATT; 14397 spin_unlock_irqrestore(&phba->hbalock, iflags); 14398 workposted = true; 14399 14400 send_current_mbox: 14401 spin_lock_irqsave(&phba->hbalock, iflags); 14402 /* Release the mailbox command posting token */ 14403 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14404 /* Setting active mailbox pointer need to be in sync to flag clear */ 14405 phba->sli.mbox_active = NULL; 14406 if (bf_get(lpfc_trailer_consumed, mcqe)) 14407 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14408 spin_unlock_irqrestore(&phba->hbalock, iflags); 14409 /* Wake up worker thread to post the next pending mailbox command */ 14410 lpfc_worker_wake_up(phba); 14411 return workposted; 14412 14413 out_no_mqe_complete: 14414 spin_lock_irqsave(&phba->hbalock, iflags); 14415 if (bf_get(lpfc_trailer_consumed, mcqe)) 14416 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14417 spin_unlock_irqrestore(&phba->hbalock, iflags); 14418 return false; 14419 } 14420 14421 /** 14422 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 14423 * @phba: Pointer to HBA context object. 14424 * @cq: Pointer to associated CQ 14425 * @cqe: Pointer to mailbox completion queue entry. 14426 * 14427 * This routine process a mailbox completion queue entry, it invokes the 14428 * proper mailbox complete handling or asynchronous event handling routine 14429 * according to the MCQE's async bit. 14430 * 14431 * Return: true if work posted to worker thread, otherwise false. 14432 **/ 14433 static bool 14434 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14435 struct lpfc_cqe *cqe) 14436 { 14437 struct lpfc_mcqe mcqe; 14438 bool workposted; 14439 14440 cq->CQ_mbox++; 14441 14442 /* Copy the mailbox MCQE and convert endian order as needed */ 14443 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 14444 14445 /* Invoke the proper event handling routine */ 14446 if (!bf_get(lpfc_trailer_async, &mcqe)) 14447 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 14448 else 14449 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 14450 return workposted; 14451 } 14452 14453 /** 14454 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 14455 * @phba: Pointer to HBA context object. 14456 * @cq: Pointer to associated CQ 14457 * @wcqe: Pointer to work-queue completion queue entry. 14458 * 14459 * This routine handles an ELS work-queue completion event. 14460 * 14461 * Return: true if work posted to worker thread, otherwise false. 14462 **/ 14463 static bool 14464 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14465 struct lpfc_wcqe_complete *wcqe) 14466 { 14467 struct lpfc_iocbq *irspiocbq; 14468 unsigned long iflags; 14469 struct lpfc_sli_ring *pring = cq->pring; 14470 int txq_cnt = 0; 14471 int txcmplq_cnt = 0; 14472 14473 /* Check for response status */ 14474 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14475 /* Log the error status */ 14476 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14477 "0357 ELS CQE error: status=x%x: " 14478 "CQE: %08x %08x %08x %08x\n", 14479 bf_get(lpfc_wcqe_c_status, wcqe), 14480 wcqe->word0, wcqe->total_data_placed, 14481 wcqe->parameter, wcqe->word3); 14482 } 14483 14484 /* Get an irspiocbq for later ELS response processing use */ 14485 irspiocbq = lpfc_sli_get_iocbq(phba); 14486 if (!irspiocbq) { 14487 if (!list_empty(&pring->txq)) 14488 txq_cnt++; 14489 if (!list_empty(&pring->txcmplq)) 14490 txcmplq_cnt++; 14491 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14492 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 14493 "els_txcmplq_cnt=%d\n", 14494 txq_cnt, phba->iocb_cnt, 14495 txcmplq_cnt); 14496 return false; 14497 } 14498 14499 /* Save off the slow-path queue event for work thread to process */ 14500 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 14501 spin_lock_irqsave(&phba->hbalock, iflags); 14502 list_add_tail(&irspiocbq->cq_event.list, 14503 &phba->sli4_hba.sp_queue_event); 14504 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14505 spin_unlock_irqrestore(&phba->hbalock, iflags); 14506 14507 return true; 14508 } 14509 14510 /** 14511 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 14512 * @phba: Pointer to HBA context object. 14513 * @wcqe: Pointer to work-queue completion queue entry. 14514 * 14515 * This routine handles slow-path WQ entry consumed event by invoking the 14516 * proper WQ release routine to the slow-path WQ. 14517 **/ 14518 static void 14519 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 14520 struct lpfc_wcqe_release *wcqe) 14521 { 14522 /* sanity check on queue memory */ 14523 if (unlikely(!phba->sli4_hba.els_wq)) 14524 return; 14525 /* Check for the slow-path ELS work queue */ 14526 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 14527 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 14528 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14529 else 14530 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14531 "2579 Slow-path wqe consume event carries " 14532 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 14533 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 14534 phba->sli4_hba.els_wq->queue_id); 14535 } 14536 14537 /** 14538 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 14539 * @phba: Pointer to HBA context object. 14540 * @cq: Pointer to a WQ completion queue. 14541 * @wcqe: Pointer to work-queue completion queue entry. 14542 * 14543 * This routine handles an XRI abort event. 14544 * 14545 * Return: true if work posted to worker thread, otherwise false. 14546 **/ 14547 static bool 14548 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 14549 struct lpfc_queue *cq, 14550 struct sli4_wcqe_xri_aborted *wcqe) 14551 { 14552 bool workposted = false; 14553 struct lpfc_cq_event *cq_event; 14554 unsigned long iflags; 14555 14556 switch (cq->subtype) { 14557 case LPFC_IO: 14558 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 14559 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14560 /* Notify aborted XRI for NVME work queue */ 14561 if (phba->nvmet_support) 14562 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 14563 } 14564 workposted = false; 14565 break; 14566 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 14567 case LPFC_ELS: 14568 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 14569 if (!cq_event) { 14570 workposted = false; 14571 break; 14572 } 14573 cq_event->hdwq = cq->hdwq; 14574 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14575 iflags); 14576 list_add_tail(&cq_event->list, 14577 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 14578 /* Set the els xri abort event flag */ 14579 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 14580 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14581 iflags); 14582 workposted = true; 14583 break; 14584 default: 14585 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14586 "0603 Invalid CQ subtype %d: " 14587 "%08x %08x %08x %08x\n", 14588 cq->subtype, wcqe->word0, wcqe->parameter, 14589 wcqe->word2, wcqe->word3); 14590 workposted = false; 14591 break; 14592 } 14593 return workposted; 14594 } 14595 14596 #define FC_RCTL_MDS_DIAGS 0xF4 14597 14598 /** 14599 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 14600 * @phba: Pointer to HBA context object. 14601 * @rcqe: Pointer to receive-queue completion queue entry. 14602 * 14603 * This routine process a receive-queue completion queue entry. 14604 * 14605 * Return: true if work posted to worker thread, otherwise false. 14606 **/ 14607 static bool 14608 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 14609 { 14610 bool workposted = false; 14611 struct fc_frame_header *fc_hdr; 14612 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 14613 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 14614 struct lpfc_nvmet_tgtport *tgtp; 14615 struct hbq_dmabuf *dma_buf; 14616 uint32_t status, rq_id; 14617 unsigned long iflags; 14618 14619 /* sanity check on queue memory */ 14620 if (unlikely(!hrq) || unlikely(!drq)) 14621 return workposted; 14622 14623 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14624 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14625 else 14626 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14627 if (rq_id != hrq->queue_id) 14628 goto out; 14629 14630 status = bf_get(lpfc_rcqe_status, rcqe); 14631 switch (status) { 14632 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14633 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14634 "2537 Receive Frame Truncated!!\n"); 14635 fallthrough; 14636 case FC_STATUS_RQ_SUCCESS: 14637 spin_lock_irqsave(&phba->hbalock, iflags); 14638 lpfc_sli4_rq_release(hrq, drq); 14639 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14640 if (!dma_buf) { 14641 hrq->RQ_no_buf_found++; 14642 spin_unlock_irqrestore(&phba->hbalock, iflags); 14643 goto out; 14644 } 14645 hrq->RQ_rcv_buf++; 14646 hrq->RQ_buf_posted--; 14647 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 14648 14649 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14650 14651 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 14652 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 14653 spin_unlock_irqrestore(&phba->hbalock, iflags); 14654 /* Handle MDS Loopback frames */ 14655 if (!(phba->pport->load_flag & FC_UNLOADING)) 14656 lpfc_sli4_handle_mds_loopback(phba->pport, 14657 dma_buf); 14658 else 14659 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14660 break; 14661 } 14662 14663 /* save off the frame for the work thread to process */ 14664 list_add_tail(&dma_buf->cq_event.list, 14665 &phba->sli4_hba.sp_queue_event); 14666 /* Frame received */ 14667 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14668 spin_unlock_irqrestore(&phba->hbalock, iflags); 14669 workposted = true; 14670 break; 14671 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14672 if (phba->nvmet_support) { 14673 tgtp = phba->targetport->private; 14674 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14675 "6402 RQE Error x%x, posted %d err_cnt " 14676 "%d: %x %x %x\n", 14677 status, hrq->RQ_buf_posted, 14678 hrq->RQ_no_posted_buf, 14679 atomic_read(&tgtp->rcv_fcp_cmd_in), 14680 atomic_read(&tgtp->rcv_fcp_cmd_out), 14681 atomic_read(&tgtp->xmt_fcp_release)); 14682 } 14683 fallthrough; 14684 14685 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14686 hrq->RQ_no_posted_buf++; 14687 /* Post more buffers if possible */ 14688 spin_lock_irqsave(&phba->hbalock, iflags); 14689 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 14690 spin_unlock_irqrestore(&phba->hbalock, iflags); 14691 workposted = true; 14692 break; 14693 } 14694 out: 14695 return workposted; 14696 } 14697 14698 /** 14699 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 14700 * @phba: Pointer to HBA context object. 14701 * @cq: Pointer to the completion queue. 14702 * @cqe: Pointer to a completion queue entry. 14703 * 14704 * This routine process a slow-path work-queue or receive queue completion queue 14705 * entry. 14706 * 14707 * Return: true if work posted to worker thread, otherwise false. 14708 **/ 14709 static bool 14710 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14711 struct lpfc_cqe *cqe) 14712 { 14713 struct lpfc_cqe cqevt; 14714 bool workposted = false; 14715 14716 /* Copy the work queue CQE and convert endian order if needed */ 14717 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14718 14719 /* Check and process for different type of WCQE and dispatch */ 14720 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14721 case CQE_CODE_COMPL_WQE: 14722 /* Process the WQ/RQ complete event */ 14723 phba->last_completion_time = jiffies; 14724 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14725 (struct lpfc_wcqe_complete *)&cqevt); 14726 break; 14727 case CQE_CODE_RELEASE_WQE: 14728 /* Process the WQ release event */ 14729 lpfc_sli4_sp_handle_rel_wcqe(phba, 14730 (struct lpfc_wcqe_release *)&cqevt); 14731 break; 14732 case CQE_CODE_XRI_ABORTED: 14733 /* Process the WQ XRI abort event */ 14734 phba->last_completion_time = jiffies; 14735 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14736 (struct sli4_wcqe_xri_aborted *)&cqevt); 14737 break; 14738 case CQE_CODE_RECEIVE: 14739 case CQE_CODE_RECEIVE_V1: 14740 /* Process the RQ event */ 14741 phba->last_completion_time = jiffies; 14742 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14743 (struct lpfc_rcqe *)&cqevt); 14744 break; 14745 default: 14746 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14747 "0388 Not a valid WCQE code: x%x\n", 14748 bf_get(lpfc_cqe_code, &cqevt)); 14749 break; 14750 } 14751 return workposted; 14752 } 14753 14754 /** 14755 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14756 * @phba: Pointer to HBA context object. 14757 * @eqe: Pointer to fast-path event queue entry. 14758 * @speq: Pointer to slow-path event queue. 14759 * 14760 * This routine process a event queue entry from the slow-path event queue. 14761 * It will check the MajorCode and MinorCode to determine this is for a 14762 * completion event on a completion queue, if not, an error shall be logged 14763 * and just return. Otherwise, it will get to the corresponding completion 14764 * queue and process all the entries on that completion queue, rearm the 14765 * completion queue, and then return. 14766 * 14767 **/ 14768 static void 14769 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14770 struct lpfc_queue *speq) 14771 { 14772 struct lpfc_queue *cq = NULL, *childq; 14773 uint16_t cqid; 14774 int ret = 0; 14775 14776 /* Get the reference to the corresponding CQ */ 14777 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14778 14779 list_for_each_entry(childq, &speq->child_list, list) { 14780 if (childq->queue_id == cqid) { 14781 cq = childq; 14782 break; 14783 } 14784 } 14785 if (unlikely(!cq)) { 14786 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14787 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14788 "0365 Slow-path CQ identifier " 14789 "(%d) does not exist\n", cqid); 14790 return; 14791 } 14792 14793 /* Save EQ associated with this CQ */ 14794 cq->assoc_qp = speq; 14795 14796 if (is_kdump_kernel()) 14797 ret = queue_work(phba->wq, &cq->spwork); 14798 else 14799 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14800 14801 if (!ret) 14802 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14803 "0390 Cannot schedule queue work " 14804 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14805 cqid, cq->queue_id, raw_smp_processor_id()); 14806 } 14807 14808 /** 14809 * __lpfc_sli4_process_cq - Process elements of a CQ 14810 * @phba: Pointer to HBA context object. 14811 * @cq: Pointer to CQ to be processed 14812 * @handler: Routine to process each cqe 14813 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14814 * @poll_mode: Polling mode we were called from 14815 * 14816 * This routine processes completion queue entries in a CQ. While a valid 14817 * queue element is found, the handler is called. During processing checks 14818 * are made for periodic doorbell writes to let the hardware know of 14819 * element consumption. 14820 * 14821 * If the max limit on cqes to process is hit, or there are no more valid 14822 * entries, the loop stops. If we processed a sufficient number of elements, 14823 * meaning there is sufficient load, rather than rearming and generating 14824 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14825 * indicates no rescheduling. 14826 * 14827 * Returns True if work scheduled, False otherwise. 14828 **/ 14829 static bool 14830 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14831 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14832 struct lpfc_cqe *), unsigned long *delay, 14833 enum lpfc_poll_mode poll_mode) 14834 { 14835 struct lpfc_cqe *cqe; 14836 bool workposted = false; 14837 int count = 0, consumed = 0; 14838 bool arm = true; 14839 14840 /* default - no reschedule */ 14841 *delay = 0; 14842 14843 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14844 goto rearm_and_exit; 14845 14846 /* Process all the entries to the CQ */ 14847 cq->q_flag = 0; 14848 cqe = lpfc_sli4_cq_get(cq); 14849 while (cqe) { 14850 workposted |= handler(phba, cq, cqe); 14851 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14852 14853 consumed++; 14854 if (!(++count % cq->max_proc_limit)) 14855 break; 14856 14857 if (!(count % cq->notify_interval)) { 14858 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14859 LPFC_QUEUE_NOARM); 14860 consumed = 0; 14861 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14862 } 14863 14864 if (count == LPFC_NVMET_CQ_NOTIFY) 14865 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14866 14867 cqe = lpfc_sli4_cq_get(cq); 14868 } 14869 if (count >= phba->cfg_cq_poll_threshold) { 14870 *delay = 1; 14871 arm = false; 14872 } 14873 14874 /* Note: complete the irq_poll softirq before rearming CQ */ 14875 if (poll_mode == LPFC_IRQ_POLL) 14876 irq_poll_complete(&cq->iop); 14877 14878 /* Track the max number of CQEs processed in 1 EQ */ 14879 if (count > cq->CQ_max_cqe) 14880 cq->CQ_max_cqe = count; 14881 14882 cq->assoc_qp->EQ_cqe_cnt += count; 14883 14884 /* Catch the no cq entry condition */ 14885 if (unlikely(count == 0)) 14886 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14887 "0369 No entry from completion queue " 14888 "qid=%d\n", cq->queue_id); 14889 14890 xchg(&cq->queue_claimed, 0); 14891 14892 rearm_and_exit: 14893 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14894 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14895 14896 return workposted; 14897 } 14898 14899 /** 14900 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14901 * @cq: pointer to CQ to process 14902 * 14903 * This routine calls the cq processing routine with a handler specific 14904 * to the type of queue bound to it. 14905 * 14906 * The CQ routine returns two values: the first is the calling status, 14907 * which indicates whether work was queued to the background discovery 14908 * thread. If true, the routine should wakeup the discovery thread; 14909 * the second is the delay parameter. If non-zero, rather than rearming 14910 * the CQ and yet another interrupt, the CQ handler should be queued so 14911 * that it is processed in a subsequent polling action. The value of 14912 * the delay indicates when to reschedule it. 14913 **/ 14914 static void 14915 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14916 { 14917 struct lpfc_hba *phba = cq->phba; 14918 unsigned long delay; 14919 bool workposted = false; 14920 int ret = 0; 14921 14922 /* Process and rearm the CQ */ 14923 switch (cq->type) { 14924 case LPFC_MCQ: 14925 workposted |= __lpfc_sli4_process_cq(phba, cq, 14926 lpfc_sli4_sp_handle_mcqe, 14927 &delay, LPFC_QUEUE_WORK); 14928 break; 14929 case LPFC_WCQ: 14930 if (cq->subtype == LPFC_IO) 14931 workposted |= __lpfc_sli4_process_cq(phba, cq, 14932 lpfc_sli4_fp_handle_cqe, 14933 &delay, LPFC_QUEUE_WORK); 14934 else 14935 workposted |= __lpfc_sli4_process_cq(phba, cq, 14936 lpfc_sli4_sp_handle_cqe, 14937 &delay, LPFC_QUEUE_WORK); 14938 break; 14939 default: 14940 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14941 "0370 Invalid completion queue type (%d)\n", 14942 cq->type); 14943 return; 14944 } 14945 14946 if (delay) { 14947 if (is_kdump_kernel()) 14948 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14949 delay); 14950 else 14951 ret = queue_delayed_work_on(cq->chann, phba->wq, 14952 &cq->sched_spwork, delay); 14953 if (!ret) 14954 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14955 "0394 Cannot schedule queue work " 14956 "for cqid=%d on CPU %d\n", 14957 cq->queue_id, cq->chann); 14958 } 14959 14960 /* wake up worker thread if there are works to be done */ 14961 if (workposted) 14962 lpfc_worker_wake_up(phba); 14963 } 14964 14965 /** 14966 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 14967 * interrupt 14968 * @work: pointer to work element 14969 * 14970 * translates from the work handler and calls the slow-path handler. 14971 **/ 14972 static void 14973 lpfc_sli4_sp_process_cq(struct work_struct *work) 14974 { 14975 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 14976 14977 __lpfc_sli4_sp_process_cq(cq); 14978 } 14979 14980 /** 14981 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 14982 * @work: pointer to work element 14983 * 14984 * translates from the work handler and calls the slow-path handler. 14985 **/ 14986 static void 14987 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 14988 { 14989 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14990 struct lpfc_queue, sched_spwork); 14991 14992 __lpfc_sli4_sp_process_cq(cq); 14993 } 14994 14995 /** 14996 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 14997 * @phba: Pointer to HBA context object. 14998 * @cq: Pointer to associated CQ 14999 * @wcqe: Pointer to work-queue completion queue entry. 15000 * 15001 * This routine process a fast-path work queue completion entry from fast-path 15002 * event queue for FCP command response completion. 15003 **/ 15004 static void 15005 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15006 struct lpfc_wcqe_complete *wcqe) 15007 { 15008 struct lpfc_sli_ring *pring = cq->pring; 15009 struct lpfc_iocbq *cmdiocbq; 15010 struct lpfc_iocbq irspiocbq; 15011 unsigned long iflags; 15012 15013 /* Check for response status */ 15014 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 15015 /* If resource errors reported from HBA, reduce queue 15016 * depth of the SCSI device. 15017 */ 15018 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 15019 IOSTAT_LOCAL_REJECT)) && 15020 ((wcqe->parameter & IOERR_PARAM_MASK) == 15021 IOERR_NO_RESOURCES)) 15022 phba->lpfc_rampdown_queue_depth(phba); 15023 15024 /* Log the cmpl status */ 15025 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 15026 "0373 FCP CQE cmpl: status=x%x: " 15027 "CQE: %08x %08x %08x %08x\n", 15028 bf_get(lpfc_wcqe_c_status, wcqe), 15029 wcqe->word0, wcqe->total_data_placed, 15030 wcqe->parameter, wcqe->word3); 15031 } 15032 15033 /* Look up the FCP command IOCB and create pseudo response IOCB */ 15034 spin_lock_irqsave(&pring->ring_lock, iflags); 15035 pring->stats.iocb_event++; 15036 spin_unlock_irqrestore(&pring->ring_lock, iflags); 15037 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 15038 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15039 if (unlikely(!cmdiocbq)) { 15040 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15041 "0374 FCP complete with no corresponding " 15042 "cmdiocb: iotag (%d)\n", 15043 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15044 return; 15045 } 15046 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 15047 cmdiocbq->isr_timestamp = cq->isr_timestamp; 15048 #endif 15049 if (cmdiocbq->iocb_cmpl == NULL) { 15050 if (cmdiocbq->wqe_cmpl) { 15051 /* For FCP the flag is cleared in wqe_cmpl */ 15052 if (!(cmdiocbq->iocb_flag & LPFC_IO_FCP) && 15053 cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 15054 spin_lock_irqsave(&phba->hbalock, iflags); 15055 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 15056 spin_unlock_irqrestore(&phba->hbalock, iflags); 15057 } 15058 15059 /* Pass the cmd_iocb and the wcqe to the upper layer */ 15060 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); 15061 return; 15062 } 15063 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15064 "0375 FCP cmdiocb not callback function " 15065 "iotag: (%d)\n", 15066 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15067 return; 15068 } 15069 15070 /* Only SLI4 non-IO commands stil use IOCB */ 15071 /* Fake the irspiocb and copy necessary response information */ 15072 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 15073 15074 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 15075 spin_lock_irqsave(&phba->hbalock, iflags); 15076 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 15077 spin_unlock_irqrestore(&phba->hbalock, iflags); 15078 } 15079 15080 /* Pass the cmd_iocb and the rsp state to the upper layer */ 15081 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 15082 } 15083 15084 /** 15085 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 15086 * @phba: Pointer to HBA context object. 15087 * @cq: Pointer to completion queue. 15088 * @wcqe: Pointer to work-queue completion queue entry. 15089 * 15090 * This routine handles an fast-path WQ entry consumed event by invoking the 15091 * proper WQ release routine to the slow-path WQ. 15092 **/ 15093 static void 15094 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15095 struct lpfc_wcqe_release *wcqe) 15096 { 15097 struct lpfc_queue *childwq; 15098 bool wqid_matched = false; 15099 uint16_t hba_wqid; 15100 15101 /* Check for fast-path FCP work queue release */ 15102 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 15103 list_for_each_entry(childwq, &cq->child_list, list) { 15104 if (childwq->queue_id == hba_wqid) { 15105 lpfc_sli4_wq_release(childwq, 15106 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 15107 if (childwq->q_flag & HBA_NVMET_WQFULL) 15108 lpfc_nvmet_wqfull_process(phba, childwq); 15109 wqid_matched = true; 15110 break; 15111 } 15112 } 15113 /* Report warning log message if no match found */ 15114 if (wqid_matched != true) 15115 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15116 "2580 Fast-path wqe consume event carries " 15117 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 15118 } 15119 15120 /** 15121 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 15122 * @phba: Pointer to HBA context object. 15123 * @cq: Pointer to completion queue. 15124 * @rcqe: Pointer to receive-queue completion queue entry. 15125 * 15126 * This routine process a receive-queue completion queue entry. 15127 * 15128 * Return: true if work posted to worker thread, otherwise false. 15129 **/ 15130 static bool 15131 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15132 struct lpfc_rcqe *rcqe) 15133 { 15134 bool workposted = false; 15135 struct lpfc_queue *hrq; 15136 struct lpfc_queue *drq; 15137 struct rqb_dmabuf *dma_buf; 15138 struct fc_frame_header *fc_hdr; 15139 struct lpfc_nvmet_tgtport *tgtp; 15140 uint32_t status, rq_id; 15141 unsigned long iflags; 15142 uint32_t fctl, idx; 15143 15144 if ((phba->nvmet_support == 0) || 15145 (phba->sli4_hba.nvmet_cqset == NULL)) 15146 return workposted; 15147 15148 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 15149 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 15150 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 15151 15152 /* sanity check on queue memory */ 15153 if (unlikely(!hrq) || unlikely(!drq)) 15154 return workposted; 15155 15156 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 15157 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 15158 else 15159 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 15160 15161 if ((phba->nvmet_support == 0) || 15162 (rq_id != hrq->queue_id)) 15163 return workposted; 15164 15165 status = bf_get(lpfc_rcqe_status, rcqe); 15166 switch (status) { 15167 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 15168 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15169 "6126 Receive Frame Truncated!!\n"); 15170 fallthrough; 15171 case FC_STATUS_RQ_SUCCESS: 15172 spin_lock_irqsave(&phba->hbalock, iflags); 15173 lpfc_sli4_rq_release(hrq, drq); 15174 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15175 if (!dma_buf) { 15176 hrq->RQ_no_buf_found++; 15177 spin_unlock_irqrestore(&phba->hbalock, iflags); 15178 goto out; 15179 } 15180 spin_unlock_irqrestore(&phba->hbalock, iflags); 15181 hrq->RQ_rcv_buf++; 15182 hrq->RQ_buf_posted--; 15183 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 15184 15185 /* Just some basic sanity checks on FCP Command frame */ 15186 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 15187 fc_hdr->fh_f_ctl[1] << 8 | 15188 fc_hdr->fh_f_ctl[2]); 15189 if (((fctl & 15190 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 15191 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 15192 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 15193 goto drop; 15194 15195 if (fc_hdr->fh_type == FC_TYPE_FCP) { 15196 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 15197 lpfc_nvmet_unsol_fcp_event( 15198 phba, idx, dma_buf, cq->isr_timestamp, 15199 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 15200 return false; 15201 } 15202 drop: 15203 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15204 break; 15205 case FC_STATUS_INSUFF_BUF_FRM_DISC: 15206 if (phba->nvmet_support) { 15207 tgtp = phba->targetport->private; 15208 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15209 "6401 RQE Error x%x, posted %d err_cnt " 15210 "%d: %x %x %x\n", 15211 status, hrq->RQ_buf_posted, 15212 hrq->RQ_no_posted_buf, 15213 atomic_read(&tgtp->rcv_fcp_cmd_in), 15214 atomic_read(&tgtp->rcv_fcp_cmd_out), 15215 atomic_read(&tgtp->xmt_fcp_release)); 15216 } 15217 fallthrough; 15218 15219 case FC_STATUS_INSUFF_BUF_NEED_BUF: 15220 hrq->RQ_no_posted_buf++; 15221 /* Post more buffers if possible */ 15222 break; 15223 } 15224 out: 15225 return workposted; 15226 } 15227 15228 /** 15229 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 15230 * @phba: adapter with cq 15231 * @cq: Pointer to the completion queue. 15232 * @cqe: Pointer to fast-path completion queue entry. 15233 * 15234 * This routine process a fast-path work queue completion entry from fast-path 15235 * event queue for FCP command response completion. 15236 * 15237 * Return: true if work posted to worker thread, otherwise false. 15238 **/ 15239 static bool 15240 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15241 struct lpfc_cqe *cqe) 15242 { 15243 struct lpfc_wcqe_release wcqe; 15244 bool workposted = false; 15245 15246 /* Copy the work queue CQE and convert endian order if needed */ 15247 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 15248 15249 /* Check and process for different type of WCQE and dispatch */ 15250 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 15251 case CQE_CODE_COMPL_WQE: 15252 case CQE_CODE_NVME_ERSP: 15253 cq->CQ_wq++; 15254 /* Process the WQ complete event */ 15255 phba->last_completion_time = jiffies; 15256 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 15257 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 15258 (struct lpfc_wcqe_complete *)&wcqe); 15259 break; 15260 case CQE_CODE_RELEASE_WQE: 15261 cq->CQ_release_wqe++; 15262 /* Process the WQ release event */ 15263 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 15264 (struct lpfc_wcqe_release *)&wcqe); 15265 break; 15266 case CQE_CODE_XRI_ABORTED: 15267 cq->CQ_xri_aborted++; 15268 /* Process the WQ XRI abort event */ 15269 phba->last_completion_time = jiffies; 15270 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 15271 (struct sli4_wcqe_xri_aborted *)&wcqe); 15272 break; 15273 case CQE_CODE_RECEIVE_V1: 15274 case CQE_CODE_RECEIVE: 15275 phba->last_completion_time = jiffies; 15276 if (cq->subtype == LPFC_NVMET) { 15277 workposted = lpfc_sli4_nvmet_handle_rcqe( 15278 phba, cq, (struct lpfc_rcqe *)&wcqe); 15279 } 15280 break; 15281 default: 15282 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15283 "0144 Not a valid CQE code: x%x\n", 15284 bf_get(lpfc_wcqe_c_code, &wcqe)); 15285 break; 15286 } 15287 return workposted; 15288 } 15289 15290 /** 15291 * lpfc_sli4_sched_cq_work - Schedules cq work 15292 * @phba: Pointer to HBA context object. 15293 * @cq: Pointer to CQ 15294 * @cqid: CQ ID 15295 * 15296 * This routine checks the poll mode of the CQ corresponding to 15297 * cq->chann, then either schedules a softirq or queue_work to complete 15298 * cq work. 15299 * 15300 * queue_work path is taken if in NVMET mode, or if poll_mode is in 15301 * LPFC_QUEUE_WORK mode. Otherwise, softirq path is taken. 15302 * 15303 **/ 15304 static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba, 15305 struct lpfc_queue *cq, uint16_t cqid) 15306 { 15307 int ret = 0; 15308 15309 switch (cq->poll_mode) { 15310 case LPFC_IRQ_POLL: 15311 /* CGN mgmt is mutually exclusive from softirq processing */ 15312 if (phba->cmf_active_mode == LPFC_CFG_OFF) { 15313 irq_poll_sched(&cq->iop); 15314 break; 15315 } 15316 fallthrough; 15317 case LPFC_QUEUE_WORK: 15318 default: 15319 if (is_kdump_kernel()) 15320 ret = queue_work(phba->wq, &cq->irqwork); 15321 else 15322 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 15323 if (!ret) 15324 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15325 "0383 Cannot schedule queue work " 15326 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 15327 cqid, cq->queue_id, 15328 raw_smp_processor_id()); 15329 } 15330 } 15331 15332 /** 15333 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 15334 * @phba: Pointer to HBA context object. 15335 * @eq: Pointer to the queue structure. 15336 * @eqe: Pointer to fast-path event queue entry. 15337 * 15338 * This routine process a event queue entry from the fast-path event queue. 15339 * It will check the MajorCode and MinorCode to determine this is for a 15340 * completion event on a completion queue, if not, an error shall be logged 15341 * and just return. Otherwise, it will get to the corresponding completion 15342 * queue and process all the entries on the completion queue, rearm the 15343 * completion queue, and then return. 15344 **/ 15345 static void 15346 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 15347 struct lpfc_eqe *eqe) 15348 { 15349 struct lpfc_queue *cq = NULL; 15350 uint32_t qidx = eq->hdwq; 15351 uint16_t cqid, id; 15352 15353 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 15354 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15355 "0366 Not a valid completion " 15356 "event: majorcode=x%x, minorcode=x%x\n", 15357 bf_get_le32(lpfc_eqe_major_code, eqe), 15358 bf_get_le32(lpfc_eqe_minor_code, eqe)); 15359 return; 15360 } 15361 15362 /* Get the reference to the corresponding CQ */ 15363 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 15364 15365 /* Use the fast lookup method first */ 15366 if (cqid <= phba->sli4_hba.cq_max) { 15367 cq = phba->sli4_hba.cq_lookup[cqid]; 15368 if (cq) 15369 goto work_cq; 15370 } 15371 15372 /* Next check for NVMET completion */ 15373 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 15374 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 15375 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 15376 /* Process NVMET unsol rcv */ 15377 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 15378 goto process_cq; 15379 } 15380 } 15381 15382 if (phba->sli4_hba.nvmels_cq && 15383 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 15384 /* Process NVME unsol rcv */ 15385 cq = phba->sli4_hba.nvmels_cq; 15386 } 15387 15388 /* Otherwise this is a Slow path event */ 15389 if (cq == NULL) { 15390 lpfc_sli4_sp_handle_eqe(phba, eqe, 15391 phba->sli4_hba.hdwq[qidx].hba_eq); 15392 return; 15393 } 15394 15395 process_cq: 15396 if (unlikely(cqid != cq->queue_id)) { 15397 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15398 "0368 Miss-matched fast-path completion " 15399 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 15400 cqid, cq->queue_id); 15401 return; 15402 } 15403 15404 work_cq: 15405 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 15406 if (phba->ktime_on) 15407 cq->isr_timestamp = ktime_get_ns(); 15408 else 15409 cq->isr_timestamp = 0; 15410 #endif 15411 lpfc_sli4_sched_cq_work(phba, cq, cqid); 15412 } 15413 15414 /** 15415 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 15416 * @cq: Pointer to CQ to be processed 15417 * @poll_mode: Enum lpfc_poll_state to determine poll mode 15418 * 15419 * This routine calls the cq processing routine with the handler for 15420 * fast path CQEs. 15421 * 15422 * The CQ routine returns two values: the first is the calling status, 15423 * which indicates whether work was queued to the background discovery 15424 * thread. If true, the routine should wakeup the discovery thread; 15425 * the second is the delay parameter. If non-zero, rather than rearming 15426 * the CQ and yet another interrupt, the CQ handler should be queued so 15427 * that it is processed in a subsequent polling action. The value of 15428 * the delay indicates when to reschedule it. 15429 **/ 15430 static void 15431 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq, 15432 enum lpfc_poll_mode poll_mode) 15433 { 15434 struct lpfc_hba *phba = cq->phba; 15435 unsigned long delay; 15436 bool workposted = false; 15437 int ret = 0; 15438 15439 /* process and rearm the CQ */ 15440 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 15441 &delay, poll_mode); 15442 15443 if (delay) { 15444 if (is_kdump_kernel()) 15445 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 15446 delay); 15447 else 15448 ret = queue_delayed_work_on(cq->chann, phba->wq, 15449 &cq->sched_irqwork, delay); 15450 if (!ret) 15451 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15452 "0367 Cannot schedule queue work " 15453 "for cqid=%d on CPU %d\n", 15454 cq->queue_id, cq->chann); 15455 } 15456 15457 /* wake up worker thread if there are works to be done */ 15458 if (workposted) 15459 lpfc_worker_wake_up(phba); 15460 } 15461 15462 /** 15463 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 15464 * interrupt 15465 * @work: pointer to work element 15466 * 15467 * translates from the work handler and calls the fast-path handler. 15468 **/ 15469 static void 15470 lpfc_sli4_hba_process_cq(struct work_struct *work) 15471 { 15472 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 15473 15474 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 15475 } 15476 15477 /** 15478 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 15479 * @work: pointer to work element 15480 * 15481 * translates from the work handler and calls the fast-path handler. 15482 **/ 15483 static void 15484 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 15485 { 15486 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15487 struct lpfc_queue, sched_irqwork); 15488 15489 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 15490 } 15491 15492 /** 15493 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 15494 * @irq: Interrupt number. 15495 * @dev_id: The device context pointer. 15496 * 15497 * This function is directly called from the PCI layer as an interrupt 15498 * service routine when device with SLI-4 interface spec is enabled with 15499 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 15500 * ring event in the HBA. However, when the device is enabled with either 15501 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 15502 * device-level interrupt handler. When the PCI slot is in error recovery 15503 * or the HBA is undergoing initialization, the interrupt handler will not 15504 * process the interrupt. The SCSI FCP fast-path ring event are handled in 15505 * the intrrupt context. This function is called without any lock held. 15506 * It gets the hbalock to access and update SLI data structures. Note that, 15507 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 15508 * equal to that of FCP CQ index. 15509 * 15510 * The link attention and ELS ring attention events are handled 15511 * by the worker thread. The interrupt handler signals the worker thread 15512 * and returns for these events. This function is called without any lock 15513 * held. It gets the hbalock to access and update SLI data structures. 15514 * 15515 * This function returns IRQ_HANDLED when interrupt is handled else it 15516 * returns IRQ_NONE. 15517 **/ 15518 irqreturn_t 15519 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 15520 { 15521 struct lpfc_hba *phba; 15522 struct lpfc_hba_eq_hdl *hba_eq_hdl; 15523 struct lpfc_queue *fpeq; 15524 unsigned long iflag; 15525 int ecount = 0; 15526 int hba_eqidx; 15527 struct lpfc_eq_intr_info *eqi; 15528 15529 /* Get the driver's phba structure from the dev_id */ 15530 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 15531 phba = hba_eq_hdl->phba; 15532 hba_eqidx = hba_eq_hdl->idx; 15533 15534 if (unlikely(!phba)) 15535 return IRQ_NONE; 15536 if (unlikely(!phba->sli4_hba.hdwq)) 15537 return IRQ_NONE; 15538 15539 /* Get to the EQ struct associated with this vector */ 15540 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 15541 if (unlikely(!fpeq)) 15542 return IRQ_NONE; 15543 15544 /* Check device state for handling interrupt */ 15545 if (unlikely(lpfc_intr_state_check(phba))) { 15546 /* Check again for link_state with lock held */ 15547 spin_lock_irqsave(&phba->hbalock, iflag); 15548 if (phba->link_state < LPFC_LINK_DOWN) 15549 /* Flush, clear interrupt, and rearm the EQ */ 15550 lpfc_sli4_eqcq_flush(phba, fpeq); 15551 spin_unlock_irqrestore(&phba->hbalock, iflag); 15552 return IRQ_NONE; 15553 } 15554 15555 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 15556 eqi->icnt++; 15557 15558 fpeq->last_cpu = raw_smp_processor_id(); 15559 15560 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 15561 fpeq->q_flag & HBA_EQ_DELAY_CHK && 15562 phba->cfg_auto_imax && 15563 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 15564 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 15565 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 15566 15567 /* process and rearm the EQ */ 15568 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 15569 15570 if (unlikely(ecount == 0)) { 15571 fpeq->EQ_no_entry++; 15572 if (phba->intr_type == MSIX) 15573 /* MSI-X treated interrupt served as no EQ share INT */ 15574 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15575 "0358 MSI-X interrupt with no EQE\n"); 15576 else 15577 /* Non MSI-X treated on interrupt as EQ share INT */ 15578 return IRQ_NONE; 15579 } 15580 15581 return IRQ_HANDLED; 15582 } /* lpfc_sli4_hba_intr_handler */ 15583 15584 /** 15585 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 15586 * @irq: Interrupt number. 15587 * @dev_id: The device context pointer. 15588 * 15589 * This function is the device-level interrupt handler to device with SLI-4 15590 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 15591 * interrupt mode is enabled and there is an event in the HBA which requires 15592 * driver attention. This function invokes the slow-path interrupt attention 15593 * handling function and fast-path interrupt attention handling function in 15594 * turn to process the relevant HBA attention events. This function is called 15595 * without any lock held. It gets the hbalock to access and update SLI data 15596 * structures. 15597 * 15598 * This function returns IRQ_HANDLED when interrupt is handled, else it 15599 * returns IRQ_NONE. 15600 **/ 15601 irqreturn_t 15602 lpfc_sli4_intr_handler(int irq, void *dev_id) 15603 { 15604 struct lpfc_hba *phba; 15605 irqreturn_t hba_irq_rc; 15606 bool hba_handled = false; 15607 int qidx; 15608 15609 /* Get the driver's phba structure from the dev_id */ 15610 phba = (struct lpfc_hba *)dev_id; 15611 15612 if (unlikely(!phba)) 15613 return IRQ_NONE; 15614 15615 /* 15616 * Invoke fast-path host attention interrupt handling as appropriate. 15617 */ 15618 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 15619 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 15620 &phba->sli4_hba.hba_eq_hdl[qidx]); 15621 if (hba_irq_rc == IRQ_HANDLED) 15622 hba_handled |= true; 15623 } 15624 15625 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 15626 } /* lpfc_sli4_intr_handler */ 15627 15628 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 15629 { 15630 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 15631 struct lpfc_queue *eq; 15632 int i = 0; 15633 15634 rcu_read_lock(); 15635 15636 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 15637 i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH); 15638 if (!list_empty(&phba->poll_list)) 15639 mod_timer(&phba->cpuhp_poll_timer, 15640 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15641 15642 rcu_read_unlock(); 15643 } 15644 15645 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path) 15646 { 15647 struct lpfc_hba *phba = eq->phba; 15648 int i = 0; 15649 15650 /* 15651 * Unlocking an irq is one of the entry point to check 15652 * for re-schedule, but we are good for io submission 15653 * path as midlayer does a get_cpu to glue us in. Flush 15654 * out the invalidate queue so we can see the updated 15655 * value for flag. 15656 */ 15657 smp_rmb(); 15658 15659 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 15660 /* We will not likely get the completion for the caller 15661 * during this iteration but i guess that's fine. 15662 * Future io's coming on this eq should be able to 15663 * pick it up. As for the case of single io's, they 15664 * will be handled through a sched from polling timer 15665 * function which is currently triggered every 1msec. 15666 */ 15667 i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM); 15668 15669 return i; 15670 } 15671 15672 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 15673 { 15674 struct lpfc_hba *phba = eq->phba; 15675 15676 /* kickstart slowpath processing if needed */ 15677 if (list_empty(&phba->poll_list)) 15678 mod_timer(&phba->cpuhp_poll_timer, 15679 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15680 15681 list_add_rcu(&eq->_poll_list, &phba->poll_list); 15682 synchronize_rcu(); 15683 } 15684 15685 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 15686 { 15687 struct lpfc_hba *phba = eq->phba; 15688 15689 /* Disable slowpath processing for this eq. Kick start the eq 15690 * by RE-ARMING the eq's ASAP 15691 */ 15692 list_del_rcu(&eq->_poll_list); 15693 synchronize_rcu(); 15694 15695 if (list_empty(&phba->poll_list)) 15696 del_timer_sync(&phba->cpuhp_poll_timer); 15697 } 15698 15699 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 15700 { 15701 struct lpfc_queue *eq, *next; 15702 15703 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 15704 list_del(&eq->_poll_list); 15705 15706 INIT_LIST_HEAD(&phba->poll_list); 15707 synchronize_rcu(); 15708 } 15709 15710 static inline void 15711 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15712 { 15713 if (mode == eq->mode) 15714 return; 15715 /* 15716 * currently this function is only called during a hotplug 15717 * event and the cpu on which this function is executing 15718 * is going offline. By now the hotplug has instructed 15719 * the scheduler to remove this cpu from cpu active mask. 15720 * So we don't need to work about being put aside by the 15721 * scheduler for a high priority process. Yes, the inte- 15722 * rrupts could come but they are known to retire ASAP. 15723 */ 15724 15725 /* Disable polling in the fastpath */ 15726 WRITE_ONCE(eq->mode, mode); 15727 /* flush out the store buffer */ 15728 smp_wmb(); 15729 15730 /* 15731 * Add this eq to the polling list and start polling. For 15732 * a grace period both interrupt handler and poller will 15733 * try to process the eq _but_ that's fine. We have a 15734 * synchronization mechanism in place (queue_claimed) to 15735 * deal with it. This is just a draining phase for int- 15736 * errupt handler (not eq's) as we have guranteed through 15737 * barrier that all the CPUs have seen the new CQ_POLLED 15738 * state. which will effectively disable the REARMING of 15739 * the EQ. The whole idea is eq's die off eventually as 15740 * we are not rearming EQ's anymore. 15741 */ 15742 mode ? lpfc_sli4_add_to_poll_list(eq) : 15743 lpfc_sli4_remove_from_poll_list(eq); 15744 } 15745 15746 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15747 { 15748 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15749 } 15750 15751 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15752 { 15753 struct lpfc_hba *phba = eq->phba; 15754 15755 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15756 15757 /* Kick start for the pending io's in h/w. 15758 * Once we switch back to interrupt processing on a eq 15759 * the io path completion will only arm eq's when it 15760 * receives a completion. But since eq's are in disa- 15761 * rmed state it doesn't receive a completion. This 15762 * creates a deadlock scenaro. 15763 */ 15764 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15765 } 15766 15767 /** 15768 * lpfc_sli4_queue_free - free a queue structure and associated memory 15769 * @queue: The queue structure to free. 15770 * 15771 * This function frees a queue structure and the DMAable memory used for 15772 * the host resident queue. This function must be called after destroying the 15773 * queue on the HBA. 15774 **/ 15775 void 15776 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15777 { 15778 struct lpfc_dmabuf *dmabuf; 15779 15780 if (!queue) 15781 return; 15782 15783 if (!list_empty(&queue->wq_list)) 15784 list_del(&queue->wq_list); 15785 15786 while (!list_empty(&queue->page_list)) { 15787 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15788 list); 15789 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15790 dmabuf->virt, dmabuf->phys); 15791 kfree(dmabuf); 15792 } 15793 if (queue->rqbp) { 15794 lpfc_free_rq_buffer(queue->phba, queue); 15795 kfree(queue->rqbp); 15796 } 15797 15798 if (!list_empty(&queue->cpu_list)) 15799 list_del(&queue->cpu_list); 15800 15801 kfree(queue); 15802 return; 15803 } 15804 15805 /** 15806 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15807 * @phba: The HBA that this queue is being created on. 15808 * @page_size: The size of a queue page 15809 * @entry_size: The size of each queue entry for this queue. 15810 * @entry_count: The number of entries that this queue will handle. 15811 * @cpu: The cpu that will primarily utilize this queue. 15812 * 15813 * This function allocates a queue structure and the DMAable memory used for 15814 * the host resident queue. This function must be called before creating the 15815 * queue on the HBA. 15816 **/ 15817 struct lpfc_queue * 15818 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15819 uint32_t entry_size, uint32_t entry_count, int cpu) 15820 { 15821 struct lpfc_queue *queue; 15822 struct lpfc_dmabuf *dmabuf; 15823 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15824 uint16_t x, pgcnt; 15825 15826 if (!phba->sli4_hba.pc_sli4_params.supported) 15827 hw_page_size = page_size; 15828 15829 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15830 15831 /* If needed, Adjust page count to match the max the adapter supports */ 15832 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15833 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15834 15835 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15836 GFP_KERNEL, cpu_to_node(cpu)); 15837 if (!queue) 15838 return NULL; 15839 15840 INIT_LIST_HEAD(&queue->list); 15841 INIT_LIST_HEAD(&queue->_poll_list); 15842 INIT_LIST_HEAD(&queue->wq_list); 15843 INIT_LIST_HEAD(&queue->wqfull_list); 15844 INIT_LIST_HEAD(&queue->page_list); 15845 INIT_LIST_HEAD(&queue->child_list); 15846 INIT_LIST_HEAD(&queue->cpu_list); 15847 15848 /* Set queue parameters now. If the system cannot provide memory 15849 * resources, the free routine needs to know what was allocated. 15850 */ 15851 queue->page_count = pgcnt; 15852 queue->q_pgs = (void **)&queue[1]; 15853 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15854 queue->entry_size = entry_size; 15855 queue->entry_count = entry_count; 15856 queue->page_size = hw_page_size; 15857 queue->phba = phba; 15858 15859 for (x = 0; x < queue->page_count; x++) { 15860 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15861 dev_to_node(&phba->pcidev->dev)); 15862 if (!dmabuf) 15863 goto out_fail; 15864 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15865 hw_page_size, &dmabuf->phys, 15866 GFP_KERNEL); 15867 if (!dmabuf->virt) { 15868 kfree(dmabuf); 15869 goto out_fail; 15870 } 15871 dmabuf->buffer_tag = x; 15872 list_add_tail(&dmabuf->list, &queue->page_list); 15873 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15874 queue->q_pgs[x] = dmabuf->virt; 15875 } 15876 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15877 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15878 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15879 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15880 15881 /* notify_interval will be set during q creation */ 15882 15883 return queue; 15884 out_fail: 15885 lpfc_sli4_queue_free(queue); 15886 return NULL; 15887 } 15888 15889 /** 15890 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15891 * @phba: HBA structure that indicates port to create a queue on. 15892 * @pci_barset: PCI BAR set flag. 15893 * 15894 * This function shall perform iomap of the specified PCI BAR address to host 15895 * memory address if not already done so and return it. The returned host 15896 * memory address can be NULL. 15897 */ 15898 static void __iomem * 15899 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15900 { 15901 if (!phba->pcidev) 15902 return NULL; 15903 15904 switch (pci_barset) { 15905 case WQ_PCI_BAR_0_AND_1: 15906 return phba->pci_bar0_memmap_p; 15907 case WQ_PCI_BAR_2_AND_3: 15908 return phba->pci_bar2_memmap_p; 15909 case WQ_PCI_BAR_4_AND_5: 15910 return phba->pci_bar4_memmap_p; 15911 default: 15912 break; 15913 } 15914 return NULL; 15915 } 15916 15917 /** 15918 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15919 * @phba: HBA structure that EQs are on. 15920 * @startq: The starting EQ index to modify 15921 * @numq: The number of EQs (consecutive indexes) to modify 15922 * @usdelay: amount of delay 15923 * 15924 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15925 * is set either by writing to a register (if supported by the SLI Port) 15926 * or by mailbox command. The mailbox command allows several EQs to be 15927 * updated at once. 15928 * 15929 * The @phba struct is used to send a mailbox command to HBA. The @startq 15930 * is used to get the starting EQ index to change. The @numq value is 15931 * used to specify how many consecutive EQ indexes, starting at EQ index, 15932 * are to be changed. This function is asynchronous and will wait for any 15933 * mailbox commands to finish before returning. 15934 * 15935 * On success this function will return a zero. If unable to allocate 15936 * enough memory this function will return -ENOMEM. If a mailbox command 15937 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15938 * have had their delay multipler changed. 15939 **/ 15940 void 15941 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15942 uint32_t numq, uint32_t usdelay) 15943 { 15944 struct lpfc_mbx_modify_eq_delay *eq_delay; 15945 LPFC_MBOXQ_t *mbox; 15946 struct lpfc_queue *eq; 15947 int cnt = 0, rc, length; 15948 uint32_t shdr_status, shdr_add_status; 15949 uint32_t dmult; 15950 int qidx; 15951 union lpfc_sli4_cfg_shdr *shdr; 15952 15953 if (startq >= phba->cfg_irq_chann) 15954 return; 15955 15956 if (usdelay > 0xFFFF) { 15957 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15958 "6429 usdelay %d too large. Scaled down to " 15959 "0xFFFF.\n", usdelay); 15960 usdelay = 0xFFFF; 15961 } 15962 15963 /* set values by EQ_DELAY register if supported */ 15964 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15965 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15966 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15967 if (!eq) 15968 continue; 15969 15970 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15971 15972 if (++cnt >= numq) 15973 break; 15974 } 15975 return; 15976 } 15977 15978 /* Otherwise, set values by mailbox cmd */ 15979 15980 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15981 if (!mbox) { 15982 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15983 "6428 Failed allocating mailbox cmd buffer." 15984 " EQ delay was not set.\n"); 15985 return; 15986 } 15987 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 15988 sizeof(struct lpfc_sli4_cfg_mhdr)); 15989 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15990 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 15991 length, LPFC_SLI4_MBX_EMBED); 15992 eq_delay = &mbox->u.mqe.un.eq_delay; 15993 15994 /* Calculate delay multiper from maximum interrupt per second */ 15995 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 15996 if (dmult) 15997 dmult--; 15998 if (dmult > LPFC_DMULT_MAX) 15999 dmult = LPFC_DMULT_MAX; 16000 16001 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 16002 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 16003 if (!eq) 16004 continue; 16005 eq->q_mode = usdelay; 16006 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 16007 eq_delay->u.request.eq[cnt].phase = 0; 16008 eq_delay->u.request.eq[cnt].delay_multi = dmult; 16009 16010 if (++cnt >= numq) 16011 break; 16012 } 16013 eq_delay->u.request.num_eq = cnt; 16014 16015 mbox->vport = phba->pport; 16016 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16017 mbox->ctx_buf = NULL; 16018 mbox->ctx_ndlp = NULL; 16019 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16020 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 16021 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16022 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16023 if (shdr_status || shdr_add_status || rc) { 16024 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16025 "2512 MODIFY_EQ_DELAY mailbox failed with " 16026 "status x%x add_status x%x, mbx status x%x\n", 16027 shdr_status, shdr_add_status, rc); 16028 } 16029 mempool_free(mbox, phba->mbox_mem_pool); 16030 return; 16031 } 16032 16033 /** 16034 * lpfc_eq_create - Create an Event Queue on the HBA 16035 * @phba: HBA structure that indicates port to create a queue on. 16036 * @eq: The queue structure to use to create the event queue. 16037 * @imax: The maximum interrupt per second limit. 16038 * 16039 * This function creates an event queue, as detailed in @eq, on a port, 16040 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 16041 * 16042 * The @phba struct is used to send mailbox command to HBA. The @eq struct 16043 * is used to get the entry count and entry size that are necessary to 16044 * determine the number of pages to allocate and use for this queue. This 16045 * function will send the EQ_CREATE mailbox command to the HBA to setup the 16046 * event queue. This function is asynchronous and will wait for the mailbox 16047 * command to finish before continuing. 16048 * 16049 * On success this function will return a zero. If unable to allocate enough 16050 * memory this function will return -ENOMEM. If the queue create mailbox command 16051 * fails this function will return -ENXIO. 16052 **/ 16053 int 16054 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 16055 { 16056 struct lpfc_mbx_eq_create *eq_create; 16057 LPFC_MBOXQ_t *mbox; 16058 int rc, length, status = 0; 16059 struct lpfc_dmabuf *dmabuf; 16060 uint32_t shdr_status, shdr_add_status; 16061 union lpfc_sli4_cfg_shdr *shdr; 16062 uint16_t dmult; 16063 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16064 16065 /* sanity check on queue memory */ 16066 if (!eq) 16067 return -ENODEV; 16068 if (!phba->sli4_hba.pc_sli4_params.supported) 16069 hw_page_size = SLI4_PAGE_SIZE; 16070 16071 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16072 if (!mbox) 16073 return -ENOMEM; 16074 length = (sizeof(struct lpfc_mbx_eq_create) - 16075 sizeof(struct lpfc_sli4_cfg_mhdr)); 16076 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16077 LPFC_MBOX_OPCODE_EQ_CREATE, 16078 length, LPFC_SLI4_MBX_EMBED); 16079 eq_create = &mbox->u.mqe.un.eq_create; 16080 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 16081 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 16082 eq->page_count); 16083 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 16084 LPFC_EQE_SIZE); 16085 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 16086 16087 /* Use version 2 of CREATE_EQ if eqav is set */ 16088 if (phba->sli4_hba.pc_sli4_params.eqav) { 16089 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16090 LPFC_Q_CREATE_VERSION_2); 16091 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 16092 phba->sli4_hba.pc_sli4_params.eqav); 16093 } 16094 16095 /* don't setup delay multiplier using EQ_CREATE */ 16096 dmult = 0; 16097 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 16098 dmult); 16099 switch (eq->entry_count) { 16100 default: 16101 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16102 "0360 Unsupported EQ count. (%d)\n", 16103 eq->entry_count); 16104 if (eq->entry_count < 256) { 16105 status = -EINVAL; 16106 goto out; 16107 } 16108 fallthrough; /* otherwise default to smallest count */ 16109 case 256: 16110 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16111 LPFC_EQ_CNT_256); 16112 break; 16113 case 512: 16114 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16115 LPFC_EQ_CNT_512); 16116 break; 16117 case 1024: 16118 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16119 LPFC_EQ_CNT_1024); 16120 break; 16121 case 2048: 16122 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16123 LPFC_EQ_CNT_2048); 16124 break; 16125 case 4096: 16126 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16127 LPFC_EQ_CNT_4096); 16128 break; 16129 } 16130 list_for_each_entry(dmabuf, &eq->page_list, list) { 16131 memset(dmabuf->virt, 0, hw_page_size); 16132 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16133 putPaddrLow(dmabuf->phys); 16134 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16135 putPaddrHigh(dmabuf->phys); 16136 } 16137 mbox->vport = phba->pport; 16138 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16139 mbox->ctx_buf = NULL; 16140 mbox->ctx_ndlp = NULL; 16141 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16142 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16143 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16144 if (shdr_status || shdr_add_status || rc) { 16145 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16146 "2500 EQ_CREATE mailbox failed with " 16147 "status x%x add_status x%x, mbx status x%x\n", 16148 shdr_status, shdr_add_status, rc); 16149 status = -ENXIO; 16150 } 16151 eq->type = LPFC_EQ; 16152 eq->subtype = LPFC_NONE; 16153 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 16154 if (eq->queue_id == 0xFFFF) 16155 status = -ENXIO; 16156 eq->host_index = 0; 16157 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 16158 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 16159 out: 16160 mempool_free(mbox, phba->mbox_mem_pool); 16161 return status; 16162 } 16163 16164 static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget) 16165 { 16166 struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop); 16167 16168 __lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL); 16169 16170 return 1; 16171 } 16172 16173 /** 16174 * lpfc_cq_create - Create a Completion Queue on the HBA 16175 * @phba: HBA structure that indicates port to create a queue on. 16176 * @cq: The queue structure to use to create the completion queue. 16177 * @eq: The event queue to bind this completion queue to. 16178 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16179 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16180 * 16181 * This function creates a completion queue, as detailed in @wq, on a port, 16182 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 16183 * 16184 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16185 * is used to get the entry count and entry size that are necessary to 16186 * determine the number of pages to allocate and use for this queue. The @eq 16187 * is used to indicate which event queue to bind this completion queue to. This 16188 * function will send the CQ_CREATE mailbox command to the HBA to setup the 16189 * completion queue. This function is asynchronous and will wait for the mailbox 16190 * command to finish before continuing. 16191 * 16192 * On success this function will return a zero. If unable to allocate enough 16193 * memory this function will return -ENOMEM. If the queue create mailbox command 16194 * fails this function will return -ENXIO. 16195 **/ 16196 int 16197 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 16198 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 16199 { 16200 struct lpfc_mbx_cq_create *cq_create; 16201 struct lpfc_dmabuf *dmabuf; 16202 LPFC_MBOXQ_t *mbox; 16203 int rc, length, status = 0; 16204 uint32_t shdr_status, shdr_add_status; 16205 union lpfc_sli4_cfg_shdr *shdr; 16206 16207 /* sanity check on queue memory */ 16208 if (!cq || !eq) 16209 return -ENODEV; 16210 16211 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16212 if (!mbox) 16213 return -ENOMEM; 16214 length = (sizeof(struct lpfc_mbx_cq_create) - 16215 sizeof(struct lpfc_sli4_cfg_mhdr)); 16216 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16217 LPFC_MBOX_OPCODE_CQ_CREATE, 16218 length, LPFC_SLI4_MBX_EMBED); 16219 cq_create = &mbox->u.mqe.un.cq_create; 16220 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 16221 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 16222 cq->page_count); 16223 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 16224 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 16225 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16226 phba->sli4_hba.pc_sli4_params.cqv); 16227 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 16228 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 16229 (cq->page_size / SLI4_PAGE_SIZE)); 16230 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 16231 eq->queue_id); 16232 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 16233 phba->sli4_hba.pc_sli4_params.cqav); 16234 } else { 16235 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 16236 eq->queue_id); 16237 } 16238 switch (cq->entry_count) { 16239 case 2048: 16240 case 4096: 16241 if (phba->sli4_hba.pc_sli4_params.cqv == 16242 LPFC_Q_CREATE_VERSION_2) { 16243 cq_create->u.request.context.lpfc_cq_context_count = 16244 cq->entry_count; 16245 bf_set(lpfc_cq_context_count, 16246 &cq_create->u.request.context, 16247 LPFC_CQ_CNT_WORD7); 16248 break; 16249 } 16250 fallthrough; 16251 default: 16252 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16253 "0361 Unsupported CQ count: " 16254 "entry cnt %d sz %d pg cnt %d\n", 16255 cq->entry_count, cq->entry_size, 16256 cq->page_count); 16257 if (cq->entry_count < 256) { 16258 status = -EINVAL; 16259 goto out; 16260 } 16261 fallthrough; /* otherwise default to smallest count */ 16262 case 256: 16263 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16264 LPFC_CQ_CNT_256); 16265 break; 16266 case 512: 16267 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16268 LPFC_CQ_CNT_512); 16269 break; 16270 case 1024: 16271 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16272 LPFC_CQ_CNT_1024); 16273 break; 16274 } 16275 list_for_each_entry(dmabuf, &cq->page_list, list) { 16276 memset(dmabuf->virt, 0, cq->page_size); 16277 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16278 putPaddrLow(dmabuf->phys); 16279 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16280 putPaddrHigh(dmabuf->phys); 16281 } 16282 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16283 16284 /* The IOCTL status is embedded in the mailbox subheader. */ 16285 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16286 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16287 if (shdr_status || shdr_add_status || rc) { 16288 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16289 "2501 CQ_CREATE mailbox failed with " 16290 "status x%x add_status x%x, mbx status x%x\n", 16291 shdr_status, shdr_add_status, rc); 16292 status = -ENXIO; 16293 goto out; 16294 } 16295 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16296 if (cq->queue_id == 0xFFFF) { 16297 status = -ENXIO; 16298 goto out; 16299 } 16300 /* link the cq onto the parent eq child list */ 16301 list_add_tail(&cq->list, &eq->child_list); 16302 /* Set up completion queue's type and subtype */ 16303 cq->type = type; 16304 cq->subtype = subtype; 16305 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16306 cq->assoc_qid = eq->queue_id; 16307 cq->assoc_qp = eq; 16308 cq->host_index = 0; 16309 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16310 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 16311 16312 if (cq->queue_id > phba->sli4_hba.cq_max) 16313 phba->sli4_hba.cq_max = cq->queue_id; 16314 16315 irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler); 16316 out: 16317 mempool_free(mbox, phba->mbox_mem_pool); 16318 return status; 16319 } 16320 16321 /** 16322 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 16323 * @phba: HBA structure that indicates port to create a queue on. 16324 * @cqp: The queue structure array to use to create the completion queues. 16325 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 16326 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16327 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16328 * 16329 * This function creates a set of completion queue, s to support MRQ 16330 * as detailed in @cqp, on a port, 16331 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 16332 * 16333 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16334 * is used to get the entry count and entry size that are necessary to 16335 * determine the number of pages to allocate and use for this queue. The @eq 16336 * is used to indicate which event queue to bind this completion queue to. This 16337 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 16338 * completion queue. This function is asynchronous and will wait for the mailbox 16339 * command to finish before continuing. 16340 * 16341 * On success this function will return a zero. If unable to allocate enough 16342 * memory this function will return -ENOMEM. If the queue create mailbox command 16343 * fails this function will return -ENXIO. 16344 **/ 16345 int 16346 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 16347 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 16348 uint32_t subtype) 16349 { 16350 struct lpfc_queue *cq; 16351 struct lpfc_queue *eq; 16352 struct lpfc_mbx_cq_create_set *cq_set; 16353 struct lpfc_dmabuf *dmabuf; 16354 LPFC_MBOXQ_t *mbox; 16355 int rc, length, alloclen, status = 0; 16356 int cnt, idx, numcq, page_idx = 0; 16357 uint32_t shdr_status, shdr_add_status; 16358 union lpfc_sli4_cfg_shdr *shdr; 16359 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16360 16361 /* sanity check on queue memory */ 16362 numcq = phba->cfg_nvmet_mrq; 16363 if (!cqp || !hdwq || !numcq) 16364 return -ENODEV; 16365 16366 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16367 if (!mbox) 16368 return -ENOMEM; 16369 16370 length = sizeof(struct lpfc_mbx_cq_create_set); 16371 length += ((numcq * cqp[0]->page_count) * 16372 sizeof(struct dma_address)); 16373 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16374 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 16375 LPFC_SLI4_MBX_NEMBED); 16376 if (alloclen < length) { 16377 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16378 "3098 Allocated DMA memory size (%d) is " 16379 "less than the requested DMA memory size " 16380 "(%d)\n", alloclen, length); 16381 status = -ENOMEM; 16382 goto out; 16383 } 16384 cq_set = mbox->sge_array->addr[0]; 16385 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 16386 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 16387 16388 for (idx = 0; idx < numcq; idx++) { 16389 cq = cqp[idx]; 16390 eq = hdwq[idx].hba_eq; 16391 if (!cq || !eq) { 16392 status = -ENOMEM; 16393 goto out; 16394 } 16395 if (!phba->sli4_hba.pc_sli4_params.supported) 16396 hw_page_size = cq->page_size; 16397 16398 switch (idx) { 16399 case 0: 16400 bf_set(lpfc_mbx_cq_create_set_page_size, 16401 &cq_set->u.request, 16402 (hw_page_size / SLI4_PAGE_SIZE)); 16403 bf_set(lpfc_mbx_cq_create_set_num_pages, 16404 &cq_set->u.request, cq->page_count); 16405 bf_set(lpfc_mbx_cq_create_set_evt, 16406 &cq_set->u.request, 1); 16407 bf_set(lpfc_mbx_cq_create_set_valid, 16408 &cq_set->u.request, 1); 16409 bf_set(lpfc_mbx_cq_create_set_cqe_size, 16410 &cq_set->u.request, 0); 16411 bf_set(lpfc_mbx_cq_create_set_num_cq, 16412 &cq_set->u.request, numcq); 16413 bf_set(lpfc_mbx_cq_create_set_autovalid, 16414 &cq_set->u.request, 16415 phba->sli4_hba.pc_sli4_params.cqav); 16416 switch (cq->entry_count) { 16417 case 2048: 16418 case 4096: 16419 if (phba->sli4_hba.pc_sli4_params.cqv == 16420 LPFC_Q_CREATE_VERSION_2) { 16421 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16422 &cq_set->u.request, 16423 cq->entry_count); 16424 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16425 &cq_set->u.request, 16426 LPFC_CQ_CNT_WORD7); 16427 break; 16428 } 16429 fallthrough; 16430 default: 16431 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16432 "3118 Bad CQ count. (%d)\n", 16433 cq->entry_count); 16434 if (cq->entry_count < 256) { 16435 status = -EINVAL; 16436 goto out; 16437 } 16438 fallthrough; /* otherwise default to smallest */ 16439 case 256: 16440 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16441 &cq_set->u.request, LPFC_CQ_CNT_256); 16442 break; 16443 case 512: 16444 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16445 &cq_set->u.request, LPFC_CQ_CNT_512); 16446 break; 16447 case 1024: 16448 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16449 &cq_set->u.request, LPFC_CQ_CNT_1024); 16450 break; 16451 } 16452 bf_set(lpfc_mbx_cq_create_set_eq_id0, 16453 &cq_set->u.request, eq->queue_id); 16454 break; 16455 case 1: 16456 bf_set(lpfc_mbx_cq_create_set_eq_id1, 16457 &cq_set->u.request, eq->queue_id); 16458 break; 16459 case 2: 16460 bf_set(lpfc_mbx_cq_create_set_eq_id2, 16461 &cq_set->u.request, eq->queue_id); 16462 break; 16463 case 3: 16464 bf_set(lpfc_mbx_cq_create_set_eq_id3, 16465 &cq_set->u.request, eq->queue_id); 16466 break; 16467 case 4: 16468 bf_set(lpfc_mbx_cq_create_set_eq_id4, 16469 &cq_set->u.request, eq->queue_id); 16470 break; 16471 case 5: 16472 bf_set(lpfc_mbx_cq_create_set_eq_id5, 16473 &cq_set->u.request, eq->queue_id); 16474 break; 16475 case 6: 16476 bf_set(lpfc_mbx_cq_create_set_eq_id6, 16477 &cq_set->u.request, eq->queue_id); 16478 break; 16479 case 7: 16480 bf_set(lpfc_mbx_cq_create_set_eq_id7, 16481 &cq_set->u.request, eq->queue_id); 16482 break; 16483 case 8: 16484 bf_set(lpfc_mbx_cq_create_set_eq_id8, 16485 &cq_set->u.request, eq->queue_id); 16486 break; 16487 case 9: 16488 bf_set(lpfc_mbx_cq_create_set_eq_id9, 16489 &cq_set->u.request, eq->queue_id); 16490 break; 16491 case 10: 16492 bf_set(lpfc_mbx_cq_create_set_eq_id10, 16493 &cq_set->u.request, eq->queue_id); 16494 break; 16495 case 11: 16496 bf_set(lpfc_mbx_cq_create_set_eq_id11, 16497 &cq_set->u.request, eq->queue_id); 16498 break; 16499 case 12: 16500 bf_set(lpfc_mbx_cq_create_set_eq_id12, 16501 &cq_set->u.request, eq->queue_id); 16502 break; 16503 case 13: 16504 bf_set(lpfc_mbx_cq_create_set_eq_id13, 16505 &cq_set->u.request, eq->queue_id); 16506 break; 16507 case 14: 16508 bf_set(lpfc_mbx_cq_create_set_eq_id14, 16509 &cq_set->u.request, eq->queue_id); 16510 break; 16511 case 15: 16512 bf_set(lpfc_mbx_cq_create_set_eq_id15, 16513 &cq_set->u.request, eq->queue_id); 16514 break; 16515 } 16516 16517 /* link the cq onto the parent eq child list */ 16518 list_add_tail(&cq->list, &eq->child_list); 16519 /* Set up completion queue's type and subtype */ 16520 cq->type = type; 16521 cq->subtype = subtype; 16522 cq->assoc_qid = eq->queue_id; 16523 cq->assoc_qp = eq; 16524 cq->host_index = 0; 16525 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16526 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 16527 cq->entry_count); 16528 cq->chann = idx; 16529 16530 rc = 0; 16531 list_for_each_entry(dmabuf, &cq->page_list, list) { 16532 memset(dmabuf->virt, 0, hw_page_size); 16533 cnt = page_idx + dmabuf->buffer_tag; 16534 cq_set->u.request.page[cnt].addr_lo = 16535 putPaddrLow(dmabuf->phys); 16536 cq_set->u.request.page[cnt].addr_hi = 16537 putPaddrHigh(dmabuf->phys); 16538 rc++; 16539 } 16540 page_idx += rc; 16541 } 16542 16543 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16544 16545 /* The IOCTL status is embedded in the mailbox subheader. */ 16546 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16547 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16548 if (shdr_status || shdr_add_status || rc) { 16549 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16550 "3119 CQ_CREATE_SET mailbox failed with " 16551 "status x%x add_status x%x, mbx status x%x\n", 16552 shdr_status, shdr_add_status, rc); 16553 status = -ENXIO; 16554 goto out; 16555 } 16556 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 16557 if (rc == 0xFFFF) { 16558 status = -ENXIO; 16559 goto out; 16560 } 16561 16562 for (idx = 0; idx < numcq; idx++) { 16563 cq = cqp[idx]; 16564 cq->queue_id = rc + idx; 16565 if (cq->queue_id > phba->sli4_hba.cq_max) 16566 phba->sli4_hba.cq_max = cq->queue_id; 16567 } 16568 16569 out: 16570 lpfc_sli4_mbox_cmd_free(phba, mbox); 16571 return status; 16572 } 16573 16574 /** 16575 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 16576 * @phba: HBA structure that indicates port to create a queue on. 16577 * @mq: The queue structure to use to create the mailbox queue. 16578 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 16579 * @cq: The completion queue to associate with this cq. 16580 * 16581 * This function provides failback (fb) functionality when the 16582 * mq_create_ext fails on older FW generations. It's purpose is identical 16583 * to mq_create_ext otherwise. 16584 * 16585 * This routine cannot fail as all attributes were previously accessed and 16586 * initialized in mq_create_ext. 16587 **/ 16588 static void 16589 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 16590 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 16591 { 16592 struct lpfc_mbx_mq_create *mq_create; 16593 struct lpfc_dmabuf *dmabuf; 16594 int length; 16595 16596 length = (sizeof(struct lpfc_mbx_mq_create) - 16597 sizeof(struct lpfc_sli4_cfg_mhdr)); 16598 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16599 LPFC_MBOX_OPCODE_MQ_CREATE, 16600 length, LPFC_SLI4_MBX_EMBED); 16601 mq_create = &mbox->u.mqe.un.mq_create; 16602 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 16603 mq->page_count); 16604 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 16605 cq->queue_id); 16606 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 16607 switch (mq->entry_count) { 16608 case 16: 16609 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16610 LPFC_MQ_RING_SIZE_16); 16611 break; 16612 case 32: 16613 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16614 LPFC_MQ_RING_SIZE_32); 16615 break; 16616 case 64: 16617 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16618 LPFC_MQ_RING_SIZE_64); 16619 break; 16620 case 128: 16621 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16622 LPFC_MQ_RING_SIZE_128); 16623 break; 16624 } 16625 list_for_each_entry(dmabuf, &mq->page_list, list) { 16626 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16627 putPaddrLow(dmabuf->phys); 16628 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16629 putPaddrHigh(dmabuf->phys); 16630 } 16631 } 16632 16633 /** 16634 * lpfc_mq_create - Create a mailbox Queue on the HBA 16635 * @phba: HBA structure that indicates port to create a queue on. 16636 * @mq: The queue structure to use to create the mailbox queue. 16637 * @cq: The completion queue to associate with this cq. 16638 * @subtype: The queue's subtype. 16639 * 16640 * This function creates a mailbox queue, as detailed in @mq, on a port, 16641 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 16642 * 16643 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16644 * is used to get the entry count and entry size that are necessary to 16645 * determine the number of pages to allocate and use for this queue. This 16646 * function will send the MQ_CREATE mailbox command to the HBA to setup the 16647 * mailbox queue. This function is asynchronous and will wait for the mailbox 16648 * command to finish before continuing. 16649 * 16650 * On success this function will return a zero. If unable to allocate enough 16651 * memory this function will return -ENOMEM. If the queue create mailbox command 16652 * fails this function will return -ENXIO. 16653 **/ 16654 int32_t 16655 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 16656 struct lpfc_queue *cq, uint32_t subtype) 16657 { 16658 struct lpfc_mbx_mq_create *mq_create; 16659 struct lpfc_mbx_mq_create_ext *mq_create_ext; 16660 struct lpfc_dmabuf *dmabuf; 16661 LPFC_MBOXQ_t *mbox; 16662 int rc, length, status = 0; 16663 uint32_t shdr_status, shdr_add_status; 16664 union lpfc_sli4_cfg_shdr *shdr; 16665 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16666 16667 /* sanity check on queue memory */ 16668 if (!mq || !cq) 16669 return -ENODEV; 16670 if (!phba->sli4_hba.pc_sli4_params.supported) 16671 hw_page_size = SLI4_PAGE_SIZE; 16672 16673 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16674 if (!mbox) 16675 return -ENOMEM; 16676 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 16677 sizeof(struct lpfc_sli4_cfg_mhdr)); 16678 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16679 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 16680 length, LPFC_SLI4_MBX_EMBED); 16681 16682 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 16683 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 16684 bf_set(lpfc_mbx_mq_create_ext_num_pages, 16685 &mq_create_ext->u.request, mq->page_count); 16686 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 16687 &mq_create_ext->u.request, 1); 16688 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 16689 &mq_create_ext->u.request, 1); 16690 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 16691 &mq_create_ext->u.request, 1); 16692 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 16693 &mq_create_ext->u.request, 1); 16694 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 16695 &mq_create_ext->u.request, 1); 16696 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 16697 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16698 phba->sli4_hba.pc_sli4_params.mqv); 16699 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 16700 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 16701 cq->queue_id); 16702 else 16703 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 16704 cq->queue_id); 16705 switch (mq->entry_count) { 16706 default: 16707 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16708 "0362 Unsupported MQ count. (%d)\n", 16709 mq->entry_count); 16710 if (mq->entry_count < 16) { 16711 status = -EINVAL; 16712 goto out; 16713 } 16714 fallthrough; /* otherwise default to smallest count */ 16715 case 16: 16716 bf_set(lpfc_mq_context_ring_size, 16717 &mq_create_ext->u.request.context, 16718 LPFC_MQ_RING_SIZE_16); 16719 break; 16720 case 32: 16721 bf_set(lpfc_mq_context_ring_size, 16722 &mq_create_ext->u.request.context, 16723 LPFC_MQ_RING_SIZE_32); 16724 break; 16725 case 64: 16726 bf_set(lpfc_mq_context_ring_size, 16727 &mq_create_ext->u.request.context, 16728 LPFC_MQ_RING_SIZE_64); 16729 break; 16730 case 128: 16731 bf_set(lpfc_mq_context_ring_size, 16732 &mq_create_ext->u.request.context, 16733 LPFC_MQ_RING_SIZE_128); 16734 break; 16735 } 16736 list_for_each_entry(dmabuf, &mq->page_list, list) { 16737 memset(dmabuf->virt, 0, hw_page_size); 16738 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16739 putPaddrLow(dmabuf->phys); 16740 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16741 putPaddrHigh(dmabuf->phys); 16742 } 16743 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16744 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16745 &mq_create_ext->u.response); 16746 if (rc != MBX_SUCCESS) { 16747 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16748 "2795 MQ_CREATE_EXT failed with " 16749 "status x%x. Failback to MQ_CREATE.\n", 16750 rc); 16751 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16752 mq_create = &mbox->u.mqe.un.mq_create; 16753 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16754 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16755 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16756 &mq_create->u.response); 16757 } 16758 16759 /* The IOCTL status is embedded in the mailbox subheader. */ 16760 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16761 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16762 if (shdr_status || shdr_add_status || rc) { 16763 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16764 "2502 MQ_CREATE mailbox failed with " 16765 "status x%x add_status x%x, mbx status x%x\n", 16766 shdr_status, shdr_add_status, rc); 16767 status = -ENXIO; 16768 goto out; 16769 } 16770 if (mq->queue_id == 0xFFFF) { 16771 status = -ENXIO; 16772 goto out; 16773 } 16774 mq->type = LPFC_MQ; 16775 mq->assoc_qid = cq->queue_id; 16776 mq->subtype = subtype; 16777 mq->host_index = 0; 16778 mq->hba_index = 0; 16779 16780 /* link the mq onto the parent cq child list */ 16781 list_add_tail(&mq->list, &cq->child_list); 16782 out: 16783 mempool_free(mbox, phba->mbox_mem_pool); 16784 return status; 16785 } 16786 16787 /** 16788 * lpfc_wq_create - Create a Work Queue on the HBA 16789 * @phba: HBA structure that indicates port to create a queue on. 16790 * @wq: The queue structure to use to create the work queue. 16791 * @cq: The completion queue to bind this work queue to. 16792 * @subtype: The subtype of the work queue indicating its functionality. 16793 * 16794 * This function creates a work queue, as detailed in @wq, on a port, described 16795 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16796 * 16797 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16798 * is used to get the entry count and entry size that are necessary to 16799 * determine the number of pages to allocate and use for this queue. The @cq 16800 * is used to indicate which completion queue to bind this work queue to. This 16801 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16802 * work queue. This function is asynchronous and will wait for the mailbox 16803 * command to finish before continuing. 16804 * 16805 * On success this function will return a zero. If unable to allocate enough 16806 * memory this function will return -ENOMEM. If the queue create mailbox command 16807 * fails this function will return -ENXIO. 16808 **/ 16809 int 16810 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16811 struct lpfc_queue *cq, uint32_t subtype) 16812 { 16813 struct lpfc_mbx_wq_create *wq_create; 16814 struct lpfc_dmabuf *dmabuf; 16815 LPFC_MBOXQ_t *mbox; 16816 int rc, length, status = 0; 16817 uint32_t shdr_status, shdr_add_status; 16818 union lpfc_sli4_cfg_shdr *shdr; 16819 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16820 struct dma_address *page; 16821 void __iomem *bar_memmap_p; 16822 uint32_t db_offset; 16823 uint16_t pci_barset; 16824 uint8_t dpp_barset; 16825 uint32_t dpp_offset; 16826 uint8_t wq_create_version; 16827 #ifdef CONFIG_X86 16828 unsigned long pg_addr; 16829 #endif 16830 16831 /* sanity check on queue memory */ 16832 if (!wq || !cq) 16833 return -ENODEV; 16834 if (!phba->sli4_hba.pc_sli4_params.supported) 16835 hw_page_size = wq->page_size; 16836 16837 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16838 if (!mbox) 16839 return -ENOMEM; 16840 length = (sizeof(struct lpfc_mbx_wq_create) - 16841 sizeof(struct lpfc_sli4_cfg_mhdr)); 16842 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16843 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16844 length, LPFC_SLI4_MBX_EMBED); 16845 wq_create = &mbox->u.mqe.un.wq_create; 16846 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16847 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16848 wq->page_count); 16849 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16850 cq->queue_id); 16851 16852 /* wqv is the earliest version supported, NOT the latest */ 16853 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16854 phba->sli4_hba.pc_sli4_params.wqv); 16855 16856 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16857 (wq->page_size > SLI4_PAGE_SIZE)) 16858 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16859 else 16860 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16861 16862 switch (wq_create_version) { 16863 case LPFC_Q_CREATE_VERSION_1: 16864 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16865 wq->entry_count); 16866 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16867 LPFC_Q_CREATE_VERSION_1); 16868 16869 switch (wq->entry_size) { 16870 default: 16871 case 64: 16872 bf_set(lpfc_mbx_wq_create_wqe_size, 16873 &wq_create->u.request_1, 16874 LPFC_WQ_WQE_SIZE_64); 16875 break; 16876 case 128: 16877 bf_set(lpfc_mbx_wq_create_wqe_size, 16878 &wq_create->u.request_1, 16879 LPFC_WQ_WQE_SIZE_128); 16880 break; 16881 } 16882 /* Request DPP by default */ 16883 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16884 bf_set(lpfc_mbx_wq_create_page_size, 16885 &wq_create->u.request_1, 16886 (wq->page_size / SLI4_PAGE_SIZE)); 16887 page = wq_create->u.request_1.page; 16888 break; 16889 default: 16890 page = wq_create->u.request.page; 16891 break; 16892 } 16893 16894 list_for_each_entry(dmabuf, &wq->page_list, list) { 16895 memset(dmabuf->virt, 0, hw_page_size); 16896 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16897 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16898 } 16899 16900 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16901 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16902 16903 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16904 /* The IOCTL status is embedded in the mailbox subheader. */ 16905 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16906 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16907 if (shdr_status || shdr_add_status || rc) { 16908 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16909 "2503 WQ_CREATE mailbox failed with " 16910 "status x%x add_status x%x, mbx status x%x\n", 16911 shdr_status, shdr_add_status, rc); 16912 status = -ENXIO; 16913 goto out; 16914 } 16915 16916 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16917 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16918 &wq_create->u.response); 16919 else 16920 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16921 &wq_create->u.response_1); 16922 16923 if (wq->queue_id == 0xFFFF) { 16924 status = -ENXIO; 16925 goto out; 16926 } 16927 16928 wq->db_format = LPFC_DB_LIST_FORMAT; 16929 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 16930 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16931 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 16932 &wq_create->u.response); 16933 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 16934 (wq->db_format != LPFC_DB_RING_FORMAT)) { 16935 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16936 "3265 WQ[%d] doorbell format " 16937 "not supported: x%x\n", 16938 wq->queue_id, wq->db_format); 16939 status = -EINVAL; 16940 goto out; 16941 } 16942 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 16943 &wq_create->u.response); 16944 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16945 pci_barset); 16946 if (!bar_memmap_p) { 16947 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16948 "3263 WQ[%d] failed to memmap " 16949 "pci barset:x%x\n", 16950 wq->queue_id, pci_barset); 16951 status = -ENOMEM; 16952 goto out; 16953 } 16954 db_offset = wq_create->u.response.doorbell_offset; 16955 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 16956 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 16957 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16958 "3252 WQ[%d] doorbell offset " 16959 "not supported: x%x\n", 16960 wq->queue_id, db_offset); 16961 status = -EINVAL; 16962 goto out; 16963 } 16964 wq->db_regaddr = bar_memmap_p + db_offset; 16965 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16966 "3264 WQ[%d]: barset:x%x, offset:x%x, " 16967 "format:x%x\n", wq->queue_id, 16968 pci_barset, db_offset, wq->db_format); 16969 } else 16970 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16971 } else { 16972 /* Check if DPP was honored by the firmware */ 16973 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 16974 &wq_create->u.response_1); 16975 if (wq->dpp_enable) { 16976 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 16977 &wq_create->u.response_1); 16978 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16979 pci_barset); 16980 if (!bar_memmap_p) { 16981 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16982 "3267 WQ[%d] failed to memmap " 16983 "pci barset:x%x\n", 16984 wq->queue_id, pci_barset); 16985 status = -ENOMEM; 16986 goto out; 16987 } 16988 db_offset = wq_create->u.response_1.doorbell_offset; 16989 wq->db_regaddr = bar_memmap_p + db_offset; 16990 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 16991 &wq_create->u.response_1); 16992 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 16993 &wq_create->u.response_1); 16994 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16995 dpp_barset); 16996 if (!bar_memmap_p) { 16997 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16998 "3268 WQ[%d] failed to memmap " 16999 "pci barset:x%x\n", 17000 wq->queue_id, dpp_barset); 17001 status = -ENOMEM; 17002 goto out; 17003 } 17004 dpp_offset = wq_create->u.response_1.dpp_offset; 17005 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 17006 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17007 "3271 WQ[%d]: barset:x%x, offset:x%x, " 17008 "dpp_id:x%x dpp_barset:x%x " 17009 "dpp_offset:x%x\n", 17010 wq->queue_id, pci_barset, db_offset, 17011 wq->dpp_id, dpp_barset, dpp_offset); 17012 17013 #ifdef CONFIG_X86 17014 /* Enable combined writes for DPP aperture */ 17015 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 17016 rc = set_memory_wc(pg_addr, 1); 17017 if (rc) { 17018 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17019 "3272 Cannot setup Combined " 17020 "Write on WQ[%d] - disable DPP\n", 17021 wq->queue_id); 17022 phba->cfg_enable_dpp = 0; 17023 } 17024 #else 17025 phba->cfg_enable_dpp = 0; 17026 #endif 17027 } else 17028 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17029 } 17030 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 17031 if (wq->pring == NULL) { 17032 status = -ENOMEM; 17033 goto out; 17034 } 17035 wq->type = LPFC_WQ; 17036 wq->assoc_qid = cq->queue_id; 17037 wq->subtype = subtype; 17038 wq->host_index = 0; 17039 wq->hba_index = 0; 17040 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 17041 17042 /* link the wq onto the parent cq child list */ 17043 list_add_tail(&wq->list, &cq->child_list); 17044 out: 17045 mempool_free(mbox, phba->mbox_mem_pool); 17046 return status; 17047 } 17048 17049 /** 17050 * lpfc_rq_create - Create a Receive Queue on the HBA 17051 * @phba: HBA structure that indicates port to create a queue on. 17052 * @hrq: The queue structure to use to create the header receive queue. 17053 * @drq: The queue structure to use to create the data receive queue. 17054 * @cq: The completion queue to bind this work queue to. 17055 * @subtype: The subtype of the work queue indicating its functionality. 17056 * 17057 * This function creates a receive buffer queue pair , as detailed in @hrq and 17058 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17059 * to the HBA. 17060 * 17061 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17062 * struct is used to get the entry count that is necessary to determine the 17063 * number of pages to use for this queue. The @cq is used to indicate which 17064 * completion queue to bind received buffers that are posted to these queues to. 17065 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17066 * receive queue pair. This function is asynchronous and will wait for the 17067 * mailbox command to finish before continuing. 17068 * 17069 * On success this function will return a zero. If unable to allocate enough 17070 * memory this function will return -ENOMEM. If the queue create mailbox command 17071 * fails this function will return -ENXIO. 17072 **/ 17073 int 17074 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17075 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 17076 { 17077 struct lpfc_mbx_rq_create *rq_create; 17078 struct lpfc_dmabuf *dmabuf; 17079 LPFC_MBOXQ_t *mbox; 17080 int rc, length, status = 0; 17081 uint32_t shdr_status, shdr_add_status; 17082 union lpfc_sli4_cfg_shdr *shdr; 17083 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17084 void __iomem *bar_memmap_p; 17085 uint32_t db_offset; 17086 uint16_t pci_barset; 17087 17088 /* sanity check on queue memory */ 17089 if (!hrq || !drq || !cq) 17090 return -ENODEV; 17091 if (!phba->sli4_hba.pc_sli4_params.supported) 17092 hw_page_size = SLI4_PAGE_SIZE; 17093 17094 if (hrq->entry_count != drq->entry_count) 17095 return -EINVAL; 17096 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17097 if (!mbox) 17098 return -ENOMEM; 17099 length = (sizeof(struct lpfc_mbx_rq_create) - 17100 sizeof(struct lpfc_sli4_cfg_mhdr)); 17101 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17102 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17103 length, LPFC_SLI4_MBX_EMBED); 17104 rq_create = &mbox->u.mqe.un.rq_create; 17105 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17106 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17107 phba->sli4_hba.pc_sli4_params.rqv); 17108 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17109 bf_set(lpfc_rq_context_rqe_count_1, 17110 &rq_create->u.request.context, 17111 hrq->entry_count); 17112 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 17113 bf_set(lpfc_rq_context_rqe_size, 17114 &rq_create->u.request.context, 17115 LPFC_RQE_SIZE_8); 17116 bf_set(lpfc_rq_context_page_size, 17117 &rq_create->u.request.context, 17118 LPFC_RQ_PAGE_SIZE_4096); 17119 } else { 17120 switch (hrq->entry_count) { 17121 default: 17122 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17123 "2535 Unsupported RQ count. (%d)\n", 17124 hrq->entry_count); 17125 if (hrq->entry_count < 512) { 17126 status = -EINVAL; 17127 goto out; 17128 } 17129 fallthrough; /* otherwise default to smallest count */ 17130 case 512: 17131 bf_set(lpfc_rq_context_rqe_count, 17132 &rq_create->u.request.context, 17133 LPFC_RQ_RING_SIZE_512); 17134 break; 17135 case 1024: 17136 bf_set(lpfc_rq_context_rqe_count, 17137 &rq_create->u.request.context, 17138 LPFC_RQ_RING_SIZE_1024); 17139 break; 17140 case 2048: 17141 bf_set(lpfc_rq_context_rqe_count, 17142 &rq_create->u.request.context, 17143 LPFC_RQ_RING_SIZE_2048); 17144 break; 17145 case 4096: 17146 bf_set(lpfc_rq_context_rqe_count, 17147 &rq_create->u.request.context, 17148 LPFC_RQ_RING_SIZE_4096); 17149 break; 17150 } 17151 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 17152 LPFC_HDR_BUF_SIZE); 17153 } 17154 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17155 cq->queue_id); 17156 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17157 hrq->page_count); 17158 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17159 memset(dmabuf->virt, 0, hw_page_size); 17160 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17161 putPaddrLow(dmabuf->phys); 17162 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17163 putPaddrHigh(dmabuf->phys); 17164 } 17165 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17166 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17167 17168 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17169 /* The IOCTL status is embedded in the mailbox subheader. */ 17170 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17171 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17172 if (shdr_status || shdr_add_status || rc) { 17173 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17174 "2504 RQ_CREATE mailbox failed with " 17175 "status x%x add_status x%x, mbx status x%x\n", 17176 shdr_status, shdr_add_status, rc); 17177 status = -ENXIO; 17178 goto out; 17179 } 17180 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17181 if (hrq->queue_id == 0xFFFF) { 17182 status = -ENXIO; 17183 goto out; 17184 } 17185 17186 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 17187 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 17188 &rq_create->u.response); 17189 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 17190 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 17191 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17192 "3262 RQ [%d] doorbell format not " 17193 "supported: x%x\n", hrq->queue_id, 17194 hrq->db_format); 17195 status = -EINVAL; 17196 goto out; 17197 } 17198 17199 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 17200 &rq_create->u.response); 17201 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 17202 if (!bar_memmap_p) { 17203 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17204 "3269 RQ[%d] failed to memmap pci " 17205 "barset:x%x\n", hrq->queue_id, 17206 pci_barset); 17207 status = -ENOMEM; 17208 goto out; 17209 } 17210 17211 db_offset = rq_create->u.response.doorbell_offset; 17212 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 17213 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 17214 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17215 "3270 RQ[%d] doorbell offset not " 17216 "supported: x%x\n", hrq->queue_id, 17217 db_offset); 17218 status = -EINVAL; 17219 goto out; 17220 } 17221 hrq->db_regaddr = bar_memmap_p + db_offset; 17222 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17223 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 17224 "format:x%x\n", hrq->queue_id, pci_barset, 17225 db_offset, hrq->db_format); 17226 } else { 17227 hrq->db_format = LPFC_DB_RING_FORMAT; 17228 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17229 } 17230 hrq->type = LPFC_HRQ; 17231 hrq->assoc_qid = cq->queue_id; 17232 hrq->subtype = subtype; 17233 hrq->host_index = 0; 17234 hrq->hba_index = 0; 17235 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17236 17237 /* now create the data queue */ 17238 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17239 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17240 length, LPFC_SLI4_MBX_EMBED); 17241 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17242 phba->sli4_hba.pc_sli4_params.rqv); 17243 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17244 bf_set(lpfc_rq_context_rqe_count_1, 17245 &rq_create->u.request.context, hrq->entry_count); 17246 if (subtype == LPFC_NVMET) 17247 rq_create->u.request.context.buffer_size = 17248 LPFC_NVMET_DATA_BUF_SIZE; 17249 else 17250 rq_create->u.request.context.buffer_size = 17251 LPFC_DATA_BUF_SIZE; 17252 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 17253 LPFC_RQE_SIZE_8); 17254 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 17255 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17256 } else { 17257 switch (drq->entry_count) { 17258 default: 17259 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17260 "2536 Unsupported RQ count. (%d)\n", 17261 drq->entry_count); 17262 if (drq->entry_count < 512) { 17263 status = -EINVAL; 17264 goto out; 17265 } 17266 fallthrough; /* otherwise default to smallest count */ 17267 case 512: 17268 bf_set(lpfc_rq_context_rqe_count, 17269 &rq_create->u.request.context, 17270 LPFC_RQ_RING_SIZE_512); 17271 break; 17272 case 1024: 17273 bf_set(lpfc_rq_context_rqe_count, 17274 &rq_create->u.request.context, 17275 LPFC_RQ_RING_SIZE_1024); 17276 break; 17277 case 2048: 17278 bf_set(lpfc_rq_context_rqe_count, 17279 &rq_create->u.request.context, 17280 LPFC_RQ_RING_SIZE_2048); 17281 break; 17282 case 4096: 17283 bf_set(lpfc_rq_context_rqe_count, 17284 &rq_create->u.request.context, 17285 LPFC_RQ_RING_SIZE_4096); 17286 break; 17287 } 17288 if (subtype == LPFC_NVMET) 17289 bf_set(lpfc_rq_context_buf_size, 17290 &rq_create->u.request.context, 17291 LPFC_NVMET_DATA_BUF_SIZE); 17292 else 17293 bf_set(lpfc_rq_context_buf_size, 17294 &rq_create->u.request.context, 17295 LPFC_DATA_BUF_SIZE); 17296 } 17297 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17298 cq->queue_id); 17299 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17300 drq->page_count); 17301 list_for_each_entry(dmabuf, &drq->page_list, list) { 17302 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17303 putPaddrLow(dmabuf->phys); 17304 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17305 putPaddrHigh(dmabuf->phys); 17306 } 17307 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17308 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17309 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17310 /* The IOCTL status is embedded in the mailbox subheader. */ 17311 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17312 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17313 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17314 if (shdr_status || shdr_add_status || rc) { 17315 status = -ENXIO; 17316 goto out; 17317 } 17318 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17319 if (drq->queue_id == 0xFFFF) { 17320 status = -ENXIO; 17321 goto out; 17322 } 17323 drq->type = LPFC_DRQ; 17324 drq->assoc_qid = cq->queue_id; 17325 drq->subtype = subtype; 17326 drq->host_index = 0; 17327 drq->hba_index = 0; 17328 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17329 17330 /* link the header and data RQs onto the parent cq child list */ 17331 list_add_tail(&hrq->list, &cq->child_list); 17332 list_add_tail(&drq->list, &cq->child_list); 17333 17334 out: 17335 mempool_free(mbox, phba->mbox_mem_pool); 17336 return status; 17337 } 17338 17339 /** 17340 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 17341 * @phba: HBA structure that indicates port to create a queue on. 17342 * @hrqp: The queue structure array to use to create the header receive queues. 17343 * @drqp: The queue structure array to use to create the data receive queues. 17344 * @cqp: The completion queue array to bind these receive queues to. 17345 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 17346 * 17347 * This function creates a receive buffer queue pair , as detailed in @hrq and 17348 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17349 * to the HBA. 17350 * 17351 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17352 * struct is used to get the entry count that is necessary to determine the 17353 * number of pages to use for this queue. The @cq is used to indicate which 17354 * completion queue to bind received buffers that are posted to these queues to. 17355 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17356 * receive queue pair. This function is asynchronous and will wait for the 17357 * mailbox command to finish before continuing. 17358 * 17359 * On success this function will return a zero. If unable to allocate enough 17360 * memory this function will return -ENOMEM. If the queue create mailbox command 17361 * fails this function will return -ENXIO. 17362 **/ 17363 int 17364 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 17365 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 17366 uint32_t subtype) 17367 { 17368 struct lpfc_queue *hrq, *drq, *cq; 17369 struct lpfc_mbx_rq_create_v2 *rq_create; 17370 struct lpfc_dmabuf *dmabuf; 17371 LPFC_MBOXQ_t *mbox; 17372 int rc, length, alloclen, status = 0; 17373 int cnt, idx, numrq, page_idx = 0; 17374 uint32_t shdr_status, shdr_add_status; 17375 union lpfc_sli4_cfg_shdr *shdr; 17376 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17377 17378 numrq = phba->cfg_nvmet_mrq; 17379 /* sanity check on array memory */ 17380 if (!hrqp || !drqp || !cqp || !numrq) 17381 return -ENODEV; 17382 if (!phba->sli4_hba.pc_sli4_params.supported) 17383 hw_page_size = SLI4_PAGE_SIZE; 17384 17385 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17386 if (!mbox) 17387 return -ENOMEM; 17388 17389 length = sizeof(struct lpfc_mbx_rq_create_v2); 17390 length += ((2 * numrq * hrqp[0]->page_count) * 17391 sizeof(struct dma_address)); 17392 17393 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17394 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 17395 LPFC_SLI4_MBX_NEMBED); 17396 if (alloclen < length) { 17397 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17398 "3099 Allocated DMA memory size (%d) is " 17399 "less than the requested DMA memory size " 17400 "(%d)\n", alloclen, length); 17401 status = -ENOMEM; 17402 goto out; 17403 } 17404 17405 17406 17407 rq_create = mbox->sge_array->addr[0]; 17408 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 17409 17410 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 17411 cnt = 0; 17412 17413 for (idx = 0; idx < numrq; idx++) { 17414 hrq = hrqp[idx]; 17415 drq = drqp[idx]; 17416 cq = cqp[idx]; 17417 17418 /* sanity check on queue memory */ 17419 if (!hrq || !drq || !cq) { 17420 status = -ENODEV; 17421 goto out; 17422 } 17423 17424 if (hrq->entry_count != drq->entry_count) { 17425 status = -EINVAL; 17426 goto out; 17427 } 17428 17429 if (idx == 0) { 17430 bf_set(lpfc_mbx_rq_create_num_pages, 17431 &rq_create->u.request, 17432 hrq->page_count); 17433 bf_set(lpfc_mbx_rq_create_rq_cnt, 17434 &rq_create->u.request, (numrq * 2)); 17435 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 17436 1); 17437 bf_set(lpfc_rq_context_base_cq, 17438 &rq_create->u.request.context, 17439 cq->queue_id); 17440 bf_set(lpfc_rq_context_data_size, 17441 &rq_create->u.request.context, 17442 LPFC_NVMET_DATA_BUF_SIZE); 17443 bf_set(lpfc_rq_context_hdr_size, 17444 &rq_create->u.request.context, 17445 LPFC_HDR_BUF_SIZE); 17446 bf_set(lpfc_rq_context_rqe_count_1, 17447 &rq_create->u.request.context, 17448 hrq->entry_count); 17449 bf_set(lpfc_rq_context_rqe_size, 17450 &rq_create->u.request.context, 17451 LPFC_RQE_SIZE_8); 17452 bf_set(lpfc_rq_context_page_size, 17453 &rq_create->u.request.context, 17454 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17455 } 17456 rc = 0; 17457 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17458 memset(dmabuf->virt, 0, hw_page_size); 17459 cnt = page_idx + dmabuf->buffer_tag; 17460 rq_create->u.request.page[cnt].addr_lo = 17461 putPaddrLow(dmabuf->phys); 17462 rq_create->u.request.page[cnt].addr_hi = 17463 putPaddrHigh(dmabuf->phys); 17464 rc++; 17465 } 17466 page_idx += rc; 17467 17468 rc = 0; 17469 list_for_each_entry(dmabuf, &drq->page_list, list) { 17470 memset(dmabuf->virt, 0, hw_page_size); 17471 cnt = page_idx + dmabuf->buffer_tag; 17472 rq_create->u.request.page[cnt].addr_lo = 17473 putPaddrLow(dmabuf->phys); 17474 rq_create->u.request.page[cnt].addr_hi = 17475 putPaddrHigh(dmabuf->phys); 17476 rc++; 17477 } 17478 page_idx += rc; 17479 17480 hrq->db_format = LPFC_DB_RING_FORMAT; 17481 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17482 hrq->type = LPFC_HRQ; 17483 hrq->assoc_qid = cq->queue_id; 17484 hrq->subtype = subtype; 17485 hrq->host_index = 0; 17486 hrq->hba_index = 0; 17487 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17488 17489 drq->db_format = LPFC_DB_RING_FORMAT; 17490 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17491 drq->type = LPFC_DRQ; 17492 drq->assoc_qid = cq->queue_id; 17493 drq->subtype = subtype; 17494 drq->host_index = 0; 17495 drq->hba_index = 0; 17496 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17497 17498 list_add_tail(&hrq->list, &cq->child_list); 17499 list_add_tail(&drq->list, &cq->child_list); 17500 } 17501 17502 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17503 /* The IOCTL status is embedded in the mailbox subheader. */ 17504 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17505 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17506 if (shdr_status || shdr_add_status || rc) { 17507 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17508 "3120 RQ_CREATE mailbox failed with " 17509 "status x%x add_status x%x, mbx status x%x\n", 17510 shdr_status, shdr_add_status, rc); 17511 status = -ENXIO; 17512 goto out; 17513 } 17514 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17515 if (rc == 0xFFFF) { 17516 status = -ENXIO; 17517 goto out; 17518 } 17519 17520 /* Initialize all RQs with associated queue id */ 17521 for (idx = 0; idx < numrq; idx++) { 17522 hrq = hrqp[idx]; 17523 hrq->queue_id = rc + (2 * idx); 17524 drq = drqp[idx]; 17525 drq->queue_id = rc + (2 * idx) + 1; 17526 } 17527 17528 out: 17529 lpfc_sli4_mbox_cmd_free(phba, mbox); 17530 return status; 17531 } 17532 17533 /** 17534 * lpfc_eq_destroy - Destroy an event Queue on the HBA 17535 * @phba: HBA structure that indicates port to destroy a queue on. 17536 * @eq: The queue structure associated with the queue to destroy. 17537 * 17538 * This function destroys a queue, as detailed in @eq by sending an mailbox 17539 * command, specific to the type of queue, to the HBA. 17540 * 17541 * The @eq struct is used to get the queue ID of the queue to destroy. 17542 * 17543 * On success this function will return a zero. If the queue destroy mailbox 17544 * command fails this function will return -ENXIO. 17545 **/ 17546 int 17547 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 17548 { 17549 LPFC_MBOXQ_t *mbox; 17550 int rc, length, status = 0; 17551 uint32_t shdr_status, shdr_add_status; 17552 union lpfc_sli4_cfg_shdr *shdr; 17553 17554 /* sanity check on queue memory */ 17555 if (!eq) 17556 return -ENODEV; 17557 17558 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 17559 if (!mbox) 17560 return -ENOMEM; 17561 length = (sizeof(struct lpfc_mbx_eq_destroy) - 17562 sizeof(struct lpfc_sli4_cfg_mhdr)); 17563 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17564 LPFC_MBOX_OPCODE_EQ_DESTROY, 17565 length, LPFC_SLI4_MBX_EMBED); 17566 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 17567 eq->queue_id); 17568 mbox->vport = eq->phba->pport; 17569 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17570 17571 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 17572 /* The IOCTL status is embedded in the mailbox subheader. */ 17573 shdr = (union lpfc_sli4_cfg_shdr *) 17574 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 17575 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17576 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17577 if (shdr_status || shdr_add_status || rc) { 17578 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17579 "2505 EQ_DESTROY mailbox failed with " 17580 "status x%x add_status x%x, mbx status x%x\n", 17581 shdr_status, shdr_add_status, rc); 17582 status = -ENXIO; 17583 } 17584 17585 /* Remove eq from any list */ 17586 list_del_init(&eq->list); 17587 mempool_free(mbox, eq->phba->mbox_mem_pool); 17588 return status; 17589 } 17590 17591 /** 17592 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 17593 * @phba: HBA structure that indicates port to destroy a queue on. 17594 * @cq: The queue structure associated with the queue to destroy. 17595 * 17596 * This function destroys a queue, as detailed in @cq by sending an mailbox 17597 * command, specific to the type of queue, to the HBA. 17598 * 17599 * The @cq struct is used to get the queue ID of the queue to destroy. 17600 * 17601 * On success this function will return a zero. If the queue destroy mailbox 17602 * command fails this function will return -ENXIO. 17603 **/ 17604 int 17605 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 17606 { 17607 LPFC_MBOXQ_t *mbox; 17608 int rc, length, status = 0; 17609 uint32_t shdr_status, shdr_add_status; 17610 union lpfc_sli4_cfg_shdr *shdr; 17611 17612 /* sanity check on queue memory */ 17613 if (!cq) 17614 return -ENODEV; 17615 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 17616 if (!mbox) 17617 return -ENOMEM; 17618 length = (sizeof(struct lpfc_mbx_cq_destroy) - 17619 sizeof(struct lpfc_sli4_cfg_mhdr)); 17620 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17621 LPFC_MBOX_OPCODE_CQ_DESTROY, 17622 length, LPFC_SLI4_MBX_EMBED); 17623 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 17624 cq->queue_id); 17625 mbox->vport = cq->phba->pport; 17626 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17627 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 17628 /* The IOCTL status is embedded in the mailbox subheader. */ 17629 shdr = (union lpfc_sli4_cfg_shdr *) 17630 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 17631 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17632 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17633 if (shdr_status || shdr_add_status || rc) { 17634 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17635 "2506 CQ_DESTROY mailbox failed with " 17636 "status x%x add_status x%x, mbx status x%x\n", 17637 shdr_status, shdr_add_status, rc); 17638 status = -ENXIO; 17639 } 17640 /* Remove cq from any list */ 17641 list_del_init(&cq->list); 17642 mempool_free(mbox, cq->phba->mbox_mem_pool); 17643 return status; 17644 } 17645 17646 /** 17647 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 17648 * @phba: HBA structure that indicates port to destroy a queue on. 17649 * @mq: The queue structure associated with the queue to destroy. 17650 * 17651 * This function destroys a queue, as detailed in @mq by sending an mailbox 17652 * command, specific to the type of queue, to the HBA. 17653 * 17654 * The @mq struct is used to get the queue ID of the queue to destroy. 17655 * 17656 * On success this function will return a zero. If the queue destroy mailbox 17657 * command fails this function will return -ENXIO. 17658 **/ 17659 int 17660 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 17661 { 17662 LPFC_MBOXQ_t *mbox; 17663 int rc, length, status = 0; 17664 uint32_t shdr_status, shdr_add_status; 17665 union lpfc_sli4_cfg_shdr *shdr; 17666 17667 /* sanity check on queue memory */ 17668 if (!mq) 17669 return -ENODEV; 17670 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 17671 if (!mbox) 17672 return -ENOMEM; 17673 length = (sizeof(struct lpfc_mbx_mq_destroy) - 17674 sizeof(struct lpfc_sli4_cfg_mhdr)); 17675 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17676 LPFC_MBOX_OPCODE_MQ_DESTROY, 17677 length, LPFC_SLI4_MBX_EMBED); 17678 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 17679 mq->queue_id); 17680 mbox->vport = mq->phba->pport; 17681 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17682 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 17683 /* The IOCTL status is embedded in the mailbox subheader. */ 17684 shdr = (union lpfc_sli4_cfg_shdr *) 17685 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 17686 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17687 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17688 if (shdr_status || shdr_add_status || rc) { 17689 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17690 "2507 MQ_DESTROY mailbox failed with " 17691 "status x%x add_status x%x, mbx status x%x\n", 17692 shdr_status, shdr_add_status, rc); 17693 status = -ENXIO; 17694 } 17695 /* Remove mq from any list */ 17696 list_del_init(&mq->list); 17697 mempool_free(mbox, mq->phba->mbox_mem_pool); 17698 return status; 17699 } 17700 17701 /** 17702 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 17703 * @phba: HBA structure that indicates port to destroy a queue on. 17704 * @wq: The queue structure associated with the queue to destroy. 17705 * 17706 * This function destroys a queue, as detailed in @wq by sending an mailbox 17707 * command, specific to the type of queue, to the HBA. 17708 * 17709 * The @wq struct is used to get the queue ID of the queue to destroy. 17710 * 17711 * On success this function will return a zero. If the queue destroy mailbox 17712 * command fails this function will return -ENXIO. 17713 **/ 17714 int 17715 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17716 { 17717 LPFC_MBOXQ_t *mbox; 17718 int rc, length, status = 0; 17719 uint32_t shdr_status, shdr_add_status; 17720 union lpfc_sli4_cfg_shdr *shdr; 17721 17722 /* sanity check on queue memory */ 17723 if (!wq) 17724 return -ENODEV; 17725 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17726 if (!mbox) 17727 return -ENOMEM; 17728 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17729 sizeof(struct lpfc_sli4_cfg_mhdr)); 17730 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17731 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17732 length, LPFC_SLI4_MBX_EMBED); 17733 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17734 wq->queue_id); 17735 mbox->vport = wq->phba->pport; 17736 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17737 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17738 shdr = (union lpfc_sli4_cfg_shdr *) 17739 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17740 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17741 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17742 if (shdr_status || shdr_add_status || rc) { 17743 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17744 "2508 WQ_DESTROY mailbox failed with " 17745 "status x%x add_status x%x, mbx status x%x\n", 17746 shdr_status, shdr_add_status, rc); 17747 status = -ENXIO; 17748 } 17749 /* Remove wq from any list */ 17750 list_del_init(&wq->list); 17751 kfree(wq->pring); 17752 wq->pring = NULL; 17753 mempool_free(mbox, wq->phba->mbox_mem_pool); 17754 return status; 17755 } 17756 17757 /** 17758 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17759 * @phba: HBA structure that indicates port to destroy a queue on. 17760 * @hrq: The queue structure associated with the queue to destroy. 17761 * @drq: The queue structure associated with the queue to destroy. 17762 * 17763 * This function destroys a queue, as detailed in @rq by sending an mailbox 17764 * command, specific to the type of queue, to the HBA. 17765 * 17766 * The @rq struct is used to get the queue ID of the queue to destroy. 17767 * 17768 * On success this function will return a zero. If the queue destroy mailbox 17769 * command fails this function will return -ENXIO. 17770 **/ 17771 int 17772 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17773 struct lpfc_queue *drq) 17774 { 17775 LPFC_MBOXQ_t *mbox; 17776 int rc, length, status = 0; 17777 uint32_t shdr_status, shdr_add_status; 17778 union lpfc_sli4_cfg_shdr *shdr; 17779 17780 /* sanity check on queue memory */ 17781 if (!hrq || !drq) 17782 return -ENODEV; 17783 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17784 if (!mbox) 17785 return -ENOMEM; 17786 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17787 sizeof(struct lpfc_sli4_cfg_mhdr)); 17788 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17789 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17790 length, LPFC_SLI4_MBX_EMBED); 17791 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17792 hrq->queue_id); 17793 mbox->vport = hrq->phba->pport; 17794 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17795 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17796 /* The IOCTL status is embedded in the mailbox subheader. */ 17797 shdr = (union lpfc_sli4_cfg_shdr *) 17798 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17799 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17800 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17801 if (shdr_status || shdr_add_status || rc) { 17802 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17803 "2509 RQ_DESTROY mailbox failed with " 17804 "status x%x add_status x%x, mbx status x%x\n", 17805 shdr_status, shdr_add_status, rc); 17806 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17807 return -ENXIO; 17808 } 17809 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17810 drq->queue_id); 17811 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17812 shdr = (union lpfc_sli4_cfg_shdr *) 17813 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17814 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17815 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17816 if (shdr_status || shdr_add_status || rc) { 17817 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17818 "2510 RQ_DESTROY mailbox failed with " 17819 "status x%x add_status x%x, mbx status x%x\n", 17820 shdr_status, shdr_add_status, rc); 17821 status = -ENXIO; 17822 } 17823 list_del_init(&hrq->list); 17824 list_del_init(&drq->list); 17825 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17826 return status; 17827 } 17828 17829 /** 17830 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17831 * @phba: The virtual port for which this call being executed. 17832 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17833 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17834 * @xritag: the xritag that ties this io to the SGL pages. 17835 * 17836 * This routine will post the sgl pages for the IO that has the xritag 17837 * that is in the iocbq structure. The xritag is assigned during iocbq 17838 * creation and persists for as long as the driver is loaded. 17839 * if the caller has fewer than 256 scatter gather segments to map then 17840 * pdma_phys_addr1 should be 0. 17841 * If the caller needs to map more than 256 scatter gather segment then 17842 * pdma_phys_addr1 should be a valid physical address. 17843 * physical address for SGLs must be 64 byte aligned. 17844 * If you are going to map 2 SGL's then the first one must have 256 entries 17845 * the second sgl can have between 1 and 256 entries. 17846 * 17847 * Return codes: 17848 * 0 - Success 17849 * -ENXIO, -ENOMEM - Failure 17850 **/ 17851 int 17852 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17853 dma_addr_t pdma_phys_addr0, 17854 dma_addr_t pdma_phys_addr1, 17855 uint16_t xritag) 17856 { 17857 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17858 LPFC_MBOXQ_t *mbox; 17859 int rc; 17860 uint32_t shdr_status, shdr_add_status; 17861 uint32_t mbox_tmo; 17862 union lpfc_sli4_cfg_shdr *shdr; 17863 17864 if (xritag == NO_XRI) { 17865 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17866 "0364 Invalid param:\n"); 17867 return -EINVAL; 17868 } 17869 17870 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17871 if (!mbox) 17872 return -ENOMEM; 17873 17874 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17875 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17876 sizeof(struct lpfc_mbx_post_sgl_pages) - 17877 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17878 17879 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17880 &mbox->u.mqe.un.post_sgl_pages; 17881 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17882 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17883 17884 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17885 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17886 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17887 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17888 17889 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17890 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17891 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17892 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17893 if (!phba->sli4_hba.intr_enable) 17894 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17895 else { 17896 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17897 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17898 } 17899 /* The IOCTL status is embedded in the mailbox subheader. */ 17900 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17901 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17902 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17903 if (!phba->sli4_hba.intr_enable) 17904 mempool_free(mbox, phba->mbox_mem_pool); 17905 else if (rc != MBX_TIMEOUT) 17906 mempool_free(mbox, phba->mbox_mem_pool); 17907 if (shdr_status || shdr_add_status || rc) { 17908 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17909 "2511 POST_SGL mailbox failed with " 17910 "status x%x add_status x%x, mbx status x%x\n", 17911 shdr_status, shdr_add_status, rc); 17912 } 17913 return 0; 17914 } 17915 17916 /** 17917 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17918 * @phba: pointer to lpfc hba data structure. 17919 * 17920 * This routine is invoked to post rpi header templates to the 17921 * HBA consistent with the SLI-4 interface spec. This routine 17922 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17923 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17924 * 17925 * Returns 17926 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17927 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17928 **/ 17929 static uint16_t 17930 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 17931 { 17932 unsigned long xri; 17933 17934 /* 17935 * Fetch the next logical xri. Because this index is logical, 17936 * the driver starts at 0 each time. 17937 */ 17938 spin_lock_irq(&phba->hbalock); 17939 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 17940 phba->sli4_hba.max_cfg_param.max_xri, 0); 17941 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 17942 spin_unlock_irq(&phba->hbalock); 17943 return NO_XRI; 17944 } else { 17945 set_bit(xri, phba->sli4_hba.xri_bmask); 17946 phba->sli4_hba.max_cfg_param.xri_used++; 17947 } 17948 spin_unlock_irq(&phba->hbalock); 17949 return xri; 17950 } 17951 17952 /** 17953 * __lpfc_sli4_free_xri - Release an xri for reuse. 17954 * @phba: pointer to lpfc hba data structure. 17955 * @xri: xri to release. 17956 * 17957 * This routine is invoked to release an xri to the pool of 17958 * available rpis maintained by the driver. 17959 **/ 17960 static void 17961 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17962 { 17963 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 17964 phba->sli4_hba.max_cfg_param.xri_used--; 17965 } 17966 } 17967 17968 /** 17969 * lpfc_sli4_free_xri - Release an xri for reuse. 17970 * @phba: pointer to lpfc hba data structure. 17971 * @xri: xri to release. 17972 * 17973 * This routine is invoked to release an xri to the pool of 17974 * available rpis maintained by the driver. 17975 **/ 17976 void 17977 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17978 { 17979 spin_lock_irq(&phba->hbalock); 17980 __lpfc_sli4_free_xri(phba, xri); 17981 spin_unlock_irq(&phba->hbalock); 17982 } 17983 17984 /** 17985 * lpfc_sli4_next_xritag - Get an xritag for the io 17986 * @phba: Pointer to HBA context object. 17987 * 17988 * This function gets an xritag for the iocb. If there is no unused xritag 17989 * it will return 0xffff. 17990 * The function returns the allocated xritag if successful, else returns zero. 17991 * Zero is not a valid xritag. 17992 * The caller is not required to hold any lock. 17993 **/ 17994 uint16_t 17995 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 17996 { 17997 uint16_t xri_index; 17998 17999 xri_index = lpfc_sli4_alloc_xri(phba); 18000 if (xri_index == NO_XRI) 18001 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18002 "2004 Failed to allocate XRI.last XRITAG is %d" 18003 " Max XRI is %d, Used XRI is %d\n", 18004 xri_index, 18005 phba->sli4_hba.max_cfg_param.max_xri, 18006 phba->sli4_hba.max_cfg_param.xri_used); 18007 return xri_index; 18008 } 18009 18010 /** 18011 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 18012 * @phba: pointer to lpfc hba data structure. 18013 * @post_sgl_list: pointer to els sgl entry list. 18014 * @post_cnt: number of els sgl entries on the list. 18015 * 18016 * This routine is invoked to post a block of driver's sgl pages to the 18017 * HBA using non-embedded mailbox command. No Lock is held. This routine 18018 * is only called when the driver is loading and after all IO has been 18019 * stopped. 18020 **/ 18021 static int 18022 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 18023 struct list_head *post_sgl_list, 18024 int post_cnt) 18025 { 18026 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 18027 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18028 struct sgl_page_pairs *sgl_pg_pairs; 18029 void *viraddr; 18030 LPFC_MBOXQ_t *mbox; 18031 uint32_t reqlen, alloclen, pg_pairs; 18032 uint32_t mbox_tmo; 18033 uint16_t xritag_start = 0; 18034 int rc = 0; 18035 uint32_t shdr_status, shdr_add_status; 18036 union lpfc_sli4_cfg_shdr *shdr; 18037 18038 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 18039 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18040 if (reqlen > SLI4_PAGE_SIZE) { 18041 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18042 "2559 Block sgl registration required DMA " 18043 "size (%d) great than a page\n", reqlen); 18044 return -ENOMEM; 18045 } 18046 18047 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18048 if (!mbox) 18049 return -ENOMEM; 18050 18051 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18052 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18053 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 18054 LPFC_SLI4_MBX_NEMBED); 18055 18056 if (alloclen < reqlen) { 18057 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18058 "0285 Allocated DMA memory size (%d) is " 18059 "less than the requested DMA memory " 18060 "size (%d)\n", alloclen, reqlen); 18061 lpfc_sli4_mbox_cmd_free(phba, mbox); 18062 return -ENOMEM; 18063 } 18064 /* Set up the SGL pages in the non-embedded DMA pages */ 18065 viraddr = mbox->sge_array->addr[0]; 18066 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18067 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18068 18069 pg_pairs = 0; 18070 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 18071 /* Set up the sge entry */ 18072 sgl_pg_pairs->sgl_pg0_addr_lo = 18073 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 18074 sgl_pg_pairs->sgl_pg0_addr_hi = 18075 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 18076 sgl_pg_pairs->sgl_pg1_addr_lo = 18077 cpu_to_le32(putPaddrLow(0)); 18078 sgl_pg_pairs->sgl_pg1_addr_hi = 18079 cpu_to_le32(putPaddrHigh(0)); 18080 18081 /* Keep the first xritag on the list */ 18082 if (pg_pairs == 0) 18083 xritag_start = sglq_entry->sli4_xritag; 18084 sgl_pg_pairs++; 18085 pg_pairs++; 18086 } 18087 18088 /* Complete initialization and perform endian conversion. */ 18089 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18090 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 18091 sgl->word0 = cpu_to_le32(sgl->word0); 18092 18093 if (!phba->sli4_hba.intr_enable) 18094 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18095 else { 18096 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18097 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18098 } 18099 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 18100 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18101 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18102 if (!phba->sli4_hba.intr_enable) 18103 lpfc_sli4_mbox_cmd_free(phba, mbox); 18104 else if (rc != MBX_TIMEOUT) 18105 lpfc_sli4_mbox_cmd_free(phba, mbox); 18106 if (shdr_status || shdr_add_status || rc) { 18107 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18108 "2513 POST_SGL_BLOCK mailbox command failed " 18109 "status x%x add_status x%x mbx status x%x\n", 18110 shdr_status, shdr_add_status, rc); 18111 rc = -ENXIO; 18112 } 18113 return rc; 18114 } 18115 18116 /** 18117 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 18118 * @phba: pointer to lpfc hba data structure. 18119 * @nblist: pointer to nvme buffer list. 18120 * @count: number of scsi buffers on the list. 18121 * 18122 * This routine is invoked to post a block of @count scsi sgl pages from a 18123 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 18124 * No Lock is held. 18125 * 18126 **/ 18127 static int 18128 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 18129 int count) 18130 { 18131 struct lpfc_io_buf *lpfc_ncmd; 18132 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18133 struct sgl_page_pairs *sgl_pg_pairs; 18134 void *viraddr; 18135 LPFC_MBOXQ_t *mbox; 18136 uint32_t reqlen, alloclen, pg_pairs; 18137 uint32_t mbox_tmo; 18138 uint16_t xritag_start = 0; 18139 int rc = 0; 18140 uint32_t shdr_status, shdr_add_status; 18141 dma_addr_t pdma_phys_bpl1; 18142 union lpfc_sli4_cfg_shdr *shdr; 18143 18144 /* Calculate the requested length of the dma memory */ 18145 reqlen = count * sizeof(struct sgl_page_pairs) + 18146 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18147 if (reqlen > SLI4_PAGE_SIZE) { 18148 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 18149 "6118 Block sgl registration required DMA " 18150 "size (%d) great than a page\n", reqlen); 18151 return -ENOMEM; 18152 } 18153 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18154 if (!mbox) { 18155 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18156 "6119 Failed to allocate mbox cmd memory\n"); 18157 return -ENOMEM; 18158 } 18159 18160 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18161 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18162 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 18163 reqlen, LPFC_SLI4_MBX_NEMBED); 18164 18165 if (alloclen < reqlen) { 18166 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18167 "6120 Allocated DMA memory size (%d) is " 18168 "less than the requested DMA memory " 18169 "size (%d)\n", alloclen, reqlen); 18170 lpfc_sli4_mbox_cmd_free(phba, mbox); 18171 return -ENOMEM; 18172 } 18173 18174 /* Get the first SGE entry from the non-embedded DMA memory */ 18175 viraddr = mbox->sge_array->addr[0]; 18176 18177 /* Set up the SGL pages in the non-embedded DMA pages */ 18178 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18179 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18180 18181 pg_pairs = 0; 18182 list_for_each_entry(lpfc_ncmd, nblist, list) { 18183 /* Set up the sge entry */ 18184 sgl_pg_pairs->sgl_pg0_addr_lo = 18185 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 18186 sgl_pg_pairs->sgl_pg0_addr_hi = 18187 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 18188 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 18189 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 18190 SGL_PAGE_SIZE; 18191 else 18192 pdma_phys_bpl1 = 0; 18193 sgl_pg_pairs->sgl_pg1_addr_lo = 18194 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 18195 sgl_pg_pairs->sgl_pg1_addr_hi = 18196 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 18197 /* Keep the first xritag on the list */ 18198 if (pg_pairs == 0) 18199 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 18200 sgl_pg_pairs++; 18201 pg_pairs++; 18202 } 18203 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18204 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 18205 /* Perform endian conversion if necessary */ 18206 sgl->word0 = cpu_to_le32(sgl->word0); 18207 18208 if (!phba->sli4_hba.intr_enable) { 18209 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18210 } else { 18211 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18212 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18213 } 18214 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 18215 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18216 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18217 if (!phba->sli4_hba.intr_enable) 18218 lpfc_sli4_mbox_cmd_free(phba, mbox); 18219 else if (rc != MBX_TIMEOUT) 18220 lpfc_sli4_mbox_cmd_free(phba, mbox); 18221 if (shdr_status || shdr_add_status || rc) { 18222 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18223 "6125 POST_SGL_BLOCK mailbox command failed " 18224 "status x%x add_status x%x mbx status x%x\n", 18225 shdr_status, shdr_add_status, rc); 18226 rc = -ENXIO; 18227 } 18228 return rc; 18229 } 18230 18231 /** 18232 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 18233 * @phba: pointer to lpfc hba data structure. 18234 * @post_nblist: pointer to the nvme buffer list. 18235 * @sb_count: number of nvme buffers. 18236 * 18237 * This routine walks a list of nvme buffers that was passed in. It attempts 18238 * to construct blocks of nvme buffer sgls which contains contiguous xris and 18239 * uses the non-embedded SGL block post mailbox commands to post to the port. 18240 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 18241 * embedded SGL post mailbox command for posting. The @post_nblist passed in 18242 * must be local list, thus no lock is needed when manipulate the list. 18243 * 18244 * Returns: 0 = failure, non-zero number of successfully posted buffers. 18245 **/ 18246 int 18247 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 18248 struct list_head *post_nblist, int sb_count) 18249 { 18250 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 18251 int status, sgl_size; 18252 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 18253 dma_addr_t pdma_phys_sgl1; 18254 int last_xritag = NO_XRI; 18255 int cur_xritag; 18256 LIST_HEAD(prep_nblist); 18257 LIST_HEAD(blck_nblist); 18258 LIST_HEAD(nvme_nblist); 18259 18260 /* sanity check */ 18261 if (sb_count <= 0) 18262 return -EINVAL; 18263 18264 sgl_size = phba->cfg_sg_dma_buf_size; 18265 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 18266 list_del_init(&lpfc_ncmd->list); 18267 block_cnt++; 18268 if ((last_xritag != NO_XRI) && 18269 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 18270 /* a hole in xri block, form a sgl posting block */ 18271 list_splice_init(&prep_nblist, &blck_nblist); 18272 post_cnt = block_cnt - 1; 18273 /* prepare list for next posting block */ 18274 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18275 block_cnt = 1; 18276 } else { 18277 /* prepare list for next posting block */ 18278 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18279 /* enough sgls for non-embed sgl mbox command */ 18280 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 18281 list_splice_init(&prep_nblist, &blck_nblist); 18282 post_cnt = block_cnt; 18283 block_cnt = 0; 18284 } 18285 } 18286 num_posting++; 18287 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18288 18289 /* end of repost sgl list condition for NVME buffers */ 18290 if (num_posting == sb_count) { 18291 if (post_cnt == 0) { 18292 /* last sgl posting block */ 18293 list_splice_init(&prep_nblist, &blck_nblist); 18294 post_cnt = block_cnt; 18295 } else if (block_cnt == 1) { 18296 /* last single sgl with non-contiguous xri */ 18297 if (sgl_size > SGL_PAGE_SIZE) 18298 pdma_phys_sgl1 = 18299 lpfc_ncmd->dma_phys_sgl + 18300 SGL_PAGE_SIZE; 18301 else 18302 pdma_phys_sgl1 = 0; 18303 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18304 status = lpfc_sli4_post_sgl( 18305 phba, lpfc_ncmd->dma_phys_sgl, 18306 pdma_phys_sgl1, cur_xritag); 18307 if (status) { 18308 /* Post error. Buffer unavailable. */ 18309 lpfc_ncmd->flags |= 18310 LPFC_SBUF_NOT_POSTED; 18311 } else { 18312 /* Post success. Bffer available. */ 18313 lpfc_ncmd->flags &= 18314 ~LPFC_SBUF_NOT_POSTED; 18315 lpfc_ncmd->status = IOSTAT_SUCCESS; 18316 num_posted++; 18317 } 18318 /* success, put on NVME buffer sgl list */ 18319 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18320 } 18321 } 18322 18323 /* continue until a nembed page worth of sgls */ 18324 if (post_cnt == 0) 18325 continue; 18326 18327 /* post block of NVME buffer list sgls */ 18328 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 18329 post_cnt); 18330 18331 /* don't reset xirtag due to hole in xri block */ 18332 if (block_cnt == 0) 18333 last_xritag = NO_XRI; 18334 18335 /* reset NVME buffer post count for next round of posting */ 18336 post_cnt = 0; 18337 18338 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 18339 while (!list_empty(&blck_nblist)) { 18340 list_remove_head(&blck_nblist, lpfc_ncmd, 18341 struct lpfc_io_buf, list); 18342 if (status) { 18343 /* Post error. Mark buffer unavailable. */ 18344 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 18345 } else { 18346 /* Post success, Mark buffer available. */ 18347 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 18348 lpfc_ncmd->status = IOSTAT_SUCCESS; 18349 num_posted++; 18350 } 18351 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18352 } 18353 } 18354 /* Push NVME buffers with sgl posted to the available list */ 18355 lpfc_io_buf_replenish(phba, &nvme_nblist); 18356 18357 return num_posted; 18358 } 18359 18360 /** 18361 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 18362 * @phba: pointer to lpfc_hba struct that the frame was received on 18363 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18364 * 18365 * This function checks the fields in the @fc_hdr to see if the FC frame is a 18366 * valid type of frame that the LPFC driver will handle. This function will 18367 * return a zero if the frame is a valid frame or a non zero value when the 18368 * frame does not pass the check. 18369 **/ 18370 static int 18371 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 18372 { 18373 /* make rctl_names static to save stack space */ 18374 struct fc_vft_header *fc_vft_hdr; 18375 uint32_t *header = (uint32_t *) fc_hdr; 18376 18377 #define FC_RCTL_MDS_DIAGS 0xF4 18378 18379 switch (fc_hdr->fh_r_ctl) { 18380 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 18381 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 18382 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 18383 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 18384 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 18385 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 18386 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 18387 case FC_RCTL_DD_CMD_STATUS: /* command status */ 18388 case FC_RCTL_ELS_REQ: /* extended link services request */ 18389 case FC_RCTL_ELS_REP: /* extended link services reply */ 18390 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 18391 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 18392 case FC_RCTL_BA_NOP: /* basic link service NOP */ 18393 case FC_RCTL_BA_ABTS: /* basic link service abort */ 18394 case FC_RCTL_BA_RMC: /* remove connection */ 18395 case FC_RCTL_BA_ACC: /* basic accept */ 18396 case FC_RCTL_BA_RJT: /* basic reject */ 18397 case FC_RCTL_BA_PRMT: 18398 case FC_RCTL_ACK_1: /* acknowledge_1 */ 18399 case FC_RCTL_ACK_0: /* acknowledge_0 */ 18400 case FC_RCTL_P_RJT: /* port reject */ 18401 case FC_RCTL_F_RJT: /* fabric reject */ 18402 case FC_RCTL_P_BSY: /* port busy */ 18403 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 18404 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 18405 case FC_RCTL_LCR: /* link credit reset */ 18406 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 18407 case FC_RCTL_END: /* end */ 18408 break; 18409 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 18410 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18411 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 18412 return lpfc_fc_frame_check(phba, fc_hdr); 18413 default: 18414 goto drop; 18415 } 18416 18417 switch (fc_hdr->fh_type) { 18418 case FC_TYPE_BLS: 18419 case FC_TYPE_ELS: 18420 case FC_TYPE_FCP: 18421 case FC_TYPE_CT: 18422 case FC_TYPE_NVME: 18423 break; 18424 case FC_TYPE_IP: 18425 case FC_TYPE_ILS: 18426 default: 18427 goto drop; 18428 } 18429 18430 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 18431 "2538 Received frame rctl:x%x, type:x%x, " 18432 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 18433 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 18434 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 18435 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 18436 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 18437 be32_to_cpu(header[6])); 18438 return 0; 18439 drop: 18440 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 18441 "2539 Dropped frame rctl:x%x type:x%x\n", 18442 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18443 return 1; 18444 } 18445 18446 /** 18447 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 18448 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18449 * 18450 * This function processes the FC header to retrieve the VFI from the VF 18451 * header, if one exists. This function will return the VFI if one exists 18452 * or 0 if no VSAN Header exists. 18453 **/ 18454 static uint32_t 18455 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 18456 { 18457 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18458 18459 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 18460 return 0; 18461 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 18462 } 18463 18464 /** 18465 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 18466 * @phba: Pointer to the HBA structure to search for the vport on 18467 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18468 * @fcfi: The FC Fabric ID that the frame came from 18469 * @did: Destination ID to match against 18470 * 18471 * This function searches the @phba for a vport that matches the content of the 18472 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 18473 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 18474 * returns the matching vport pointer or NULL if unable to match frame to a 18475 * vport. 18476 **/ 18477 static struct lpfc_vport * 18478 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 18479 uint16_t fcfi, uint32_t did) 18480 { 18481 struct lpfc_vport **vports; 18482 struct lpfc_vport *vport = NULL; 18483 int i; 18484 18485 if (did == Fabric_DID) 18486 return phba->pport; 18487 if ((phba->pport->fc_flag & FC_PT2PT) && 18488 !(phba->link_state == LPFC_HBA_READY)) 18489 return phba->pport; 18490 18491 vports = lpfc_create_vport_work_array(phba); 18492 if (vports != NULL) { 18493 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 18494 if (phba->fcf.fcfi == fcfi && 18495 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 18496 vports[i]->fc_myDID == did) { 18497 vport = vports[i]; 18498 break; 18499 } 18500 } 18501 } 18502 lpfc_destroy_vport_work_array(phba, vports); 18503 return vport; 18504 } 18505 18506 /** 18507 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 18508 * @vport: The vport to work on. 18509 * 18510 * This function updates the receive sequence time stamp for this vport. The 18511 * receive sequence time stamp indicates the time that the last frame of the 18512 * the sequence that has been idle for the longest amount of time was received. 18513 * the driver uses this time stamp to indicate if any received sequences have 18514 * timed out. 18515 **/ 18516 static void 18517 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 18518 { 18519 struct lpfc_dmabuf *h_buf; 18520 struct hbq_dmabuf *dmabuf = NULL; 18521 18522 /* get the oldest sequence on the rcv list */ 18523 h_buf = list_get_first(&vport->rcv_buffer_list, 18524 struct lpfc_dmabuf, list); 18525 if (!h_buf) 18526 return; 18527 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18528 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 18529 } 18530 18531 /** 18532 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 18533 * @vport: The vport that the received sequences were sent to. 18534 * 18535 * This function cleans up all outstanding received sequences. This is called 18536 * by the driver when a link event or user action invalidates all the received 18537 * sequences. 18538 **/ 18539 void 18540 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 18541 { 18542 struct lpfc_dmabuf *h_buf, *hnext; 18543 struct lpfc_dmabuf *d_buf, *dnext; 18544 struct hbq_dmabuf *dmabuf = NULL; 18545 18546 /* start with the oldest sequence on the rcv list */ 18547 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18548 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18549 list_del_init(&dmabuf->hbuf.list); 18550 list_for_each_entry_safe(d_buf, dnext, 18551 &dmabuf->dbuf.list, list) { 18552 list_del_init(&d_buf->list); 18553 lpfc_in_buf_free(vport->phba, d_buf); 18554 } 18555 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18556 } 18557 } 18558 18559 /** 18560 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 18561 * @vport: The vport that the received sequences were sent to. 18562 * 18563 * This function determines whether any received sequences have timed out by 18564 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 18565 * indicates that there is at least one timed out sequence this routine will 18566 * go through the received sequences one at a time from most inactive to most 18567 * active to determine which ones need to be cleaned up. Once it has determined 18568 * that a sequence needs to be cleaned up it will simply free up the resources 18569 * without sending an abort. 18570 **/ 18571 void 18572 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 18573 { 18574 struct lpfc_dmabuf *h_buf, *hnext; 18575 struct lpfc_dmabuf *d_buf, *dnext; 18576 struct hbq_dmabuf *dmabuf = NULL; 18577 unsigned long timeout; 18578 int abort_count = 0; 18579 18580 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18581 vport->rcv_buffer_time_stamp); 18582 if (list_empty(&vport->rcv_buffer_list) || 18583 time_before(jiffies, timeout)) 18584 return; 18585 /* start with the oldest sequence on the rcv list */ 18586 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18587 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18588 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18589 dmabuf->time_stamp); 18590 if (time_before(jiffies, timeout)) 18591 break; 18592 abort_count++; 18593 list_del_init(&dmabuf->hbuf.list); 18594 list_for_each_entry_safe(d_buf, dnext, 18595 &dmabuf->dbuf.list, list) { 18596 list_del_init(&d_buf->list); 18597 lpfc_in_buf_free(vport->phba, d_buf); 18598 } 18599 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18600 } 18601 if (abort_count) 18602 lpfc_update_rcv_time_stamp(vport); 18603 } 18604 18605 /** 18606 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 18607 * @vport: pointer to a vitural port 18608 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 18609 * 18610 * This function searches through the existing incomplete sequences that have 18611 * been sent to this @vport. If the frame matches one of the incomplete 18612 * sequences then the dbuf in the @dmabuf is added to the list of frames that 18613 * make up that sequence. If no sequence is found that matches this frame then 18614 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 18615 * This function returns a pointer to the first dmabuf in the sequence list that 18616 * the frame was linked to. 18617 **/ 18618 static struct hbq_dmabuf * 18619 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18620 { 18621 struct fc_frame_header *new_hdr; 18622 struct fc_frame_header *temp_hdr; 18623 struct lpfc_dmabuf *d_buf; 18624 struct lpfc_dmabuf *h_buf; 18625 struct hbq_dmabuf *seq_dmabuf = NULL; 18626 struct hbq_dmabuf *temp_dmabuf = NULL; 18627 uint8_t found = 0; 18628 18629 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18630 dmabuf->time_stamp = jiffies; 18631 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18632 18633 /* Use the hdr_buf to find the sequence that this frame belongs to */ 18634 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18635 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18636 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18637 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18638 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18639 continue; 18640 /* found a pending sequence that matches this frame */ 18641 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18642 break; 18643 } 18644 if (!seq_dmabuf) { 18645 /* 18646 * This indicates first frame received for this sequence. 18647 * Queue the buffer on the vport's rcv_buffer_list. 18648 */ 18649 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18650 lpfc_update_rcv_time_stamp(vport); 18651 return dmabuf; 18652 } 18653 temp_hdr = seq_dmabuf->hbuf.virt; 18654 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 18655 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18656 list_del_init(&seq_dmabuf->hbuf.list); 18657 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18658 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18659 lpfc_update_rcv_time_stamp(vport); 18660 return dmabuf; 18661 } 18662 /* move this sequence to the tail to indicate a young sequence */ 18663 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 18664 seq_dmabuf->time_stamp = jiffies; 18665 lpfc_update_rcv_time_stamp(vport); 18666 if (list_empty(&seq_dmabuf->dbuf.list)) { 18667 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18668 return seq_dmabuf; 18669 } 18670 /* find the correct place in the sequence to insert this frame */ 18671 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 18672 while (!found) { 18673 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18674 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 18675 /* 18676 * If the frame's sequence count is greater than the frame on 18677 * the list then insert the frame right after this frame 18678 */ 18679 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 18680 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18681 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 18682 found = 1; 18683 break; 18684 } 18685 18686 if (&d_buf->list == &seq_dmabuf->dbuf.list) 18687 break; 18688 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 18689 } 18690 18691 if (found) 18692 return seq_dmabuf; 18693 return NULL; 18694 } 18695 18696 /** 18697 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 18698 * @vport: pointer to a vitural port 18699 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18700 * 18701 * This function tries to abort from the partially assembed sequence, described 18702 * by the information from basic abbort @dmabuf. It checks to see whether such 18703 * partially assembled sequence held by the driver. If so, it shall free up all 18704 * the frames from the partially assembled sequence. 18705 * 18706 * Return 18707 * true -- if there is matching partially assembled sequence present and all 18708 * the frames freed with the sequence; 18709 * false -- if there is no matching partially assembled sequence present so 18710 * nothing got aborted in the lower layer driver 18711 **/ 18712 static bool 18713 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18714 struct hbq_dmabuf *dmabuf) 18715 { 18716 struct fc_frame_header *new_hdr; 18717 struct fc_frame_header *temp_hdr; 18718 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18719 struct hbq_dmabuf *seq_dmabuf = NULL; 18720 18721 /* Use the hdr_buf to find the sequence that matches this frame */ 18722 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18723 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18724 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18725 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18726 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18727 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18728 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18729 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18730 continue; 18731 /* found a pending sequence that matches this frame */ 18732 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18733 break; 18734 } 18735 18736 /* Free up all the frames from the partially assembled sequence */ 18737 if (seq_dmabuf) { 18738 list_for_each_entry_safe(d_buf, n_buf, 18739 &seq_dmabuf->dbuf.list, list) { 18740 list_del_init(&d_buf->list); 18741 lpfc_in_buf_free(vport->phba, d_buf); 18742 } 18743 return true; 18744 } 18745 return false; 18746 } 18747 18748 /** 18749 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18750 * @vport: pointer to a vitural port 18751 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18752 * 18753 * This function tries to abort from the assembed sequence from upper level 18754 * protocol, described by the information from basic abbort @dmabuf. It 18755 * checks to see whether such pending context exists at upper level protocol. 18756 * If so, it shall clean up the pending context. 18757 * 18758 * Return 18759 * true -- if there is matching pending context of the sequence cleaned 18760 * at ulp; 18761 * false -- if there is no matching pending context of the sequence present 18762 * at ulp. 18763 **/ 18764 static bool 18765 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18766 { 18767 struct lpfc_hba *phba = vport->phba; 18768 int handled; 18769 18770 /* Accepting abort at ulp with SLI4 only */ 18771 if (phba->sli_rev < LPFC_SLI_REV4) 18772 return false; 18773 18774 /* Register all caring upper level protocols to attend abort */ 18775 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18776 if (handled) 18777 return true; 18778 18779 return false; 18780 } 18781 18782 /** 18783 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18784 * @phba: Pointer to HBA context object. 18785 * @cmd_iocbq: pointer to the command iocbq structure. 18786 * @rsp_iocbq: pointer to the response iocbq structure. 18787 * 18788 * This function handles the sequence abort response iocb command complete 18789 * event. It properly releases the memory allocated to the sequence abort 18790 * accept iocb. 18791 **/ 18792 static void 18793 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18794 struct lpfc_iocbq *cmd_iocbq, 18795 struct lpfc_iocbq *rsp_iocbq) 18796 { 18797 struct lpfc_nodelist *ndlp; 18798 18799 if (cmd_iocbq) { 18800 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 18801 lpfc_nlp_put(ndlp); 18802 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18803 } 18804 18805 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18806 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18807 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18808 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18809 rsp_iocbq->iocb.ulpStatus, 18810 rsp_iocbq->iocb.un.ulpWord[4]); 18811 } 18812 18813 /** 18814 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18815 * @phba: Pointer to HBA context object. 18816 * @xri: xri id in transaction. 18817 * 18818 * This function validates the xri maps to the known range of XRIs allocated an 18819 * used by the driver. 18820 **/ 18821 uint16_t 18822 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18823 uint16_t xri) 18824 { 18825 uint16_t i; 18826 18827 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18828 if (xri == phba->sli4_hba.xri_ids[i]) 18829 return i; 18830 } 18831 return NO_XRI; 18832 } 18833 18834 /** 18835 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18836 * @vport: pointer to a virtual port. 18837 * @fc_hdr: pointer to a FC frame header. 18838 * @aborted: was the partially assembled receive sequence successfully aborted 18839 * 18840 * This function sends a basic response to a previous unsol sequence abort 18841 * event after aborting the sequence handling. 18842 **/ 18843 void 18844 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18845 struct fc_frame_header *fc_hdr, bool aborted) 18846 { 18847 struct lpfc_hba *phba = vport->phba; 18848 struct lpfc_iocbq *ctiocb = NULL; 18849 struct lpfc_nodelist *ndlp; 18850 uint16_t oxid, rxid, xri, lxri; 18851 uint32_t sid, fctl; 18852 IOCB_t *icmd; 18853 int rc; 18854 18855 if (!lpfc_is_link_up(phba)) 18856 return; 18857 18858 sid = sli4_sid_from_fc_hdr(fc_hdr); 18859 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18860 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18861 18862 ndlp = lpfc_findnode_did(vport, sid); 18863 if (!ndlp) { 18864 ndlp = lpfc_nlp_init(vport, sid); 18865 if (!ndlp) { 18866 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18867 "1268 Failed to allocate ndlp for " 18868 "oxid:x%x SID:x%x\n", oxid, sid); 18869 return; 18870 } 18871 /* Put ndlp onto pport node list */ 18872 lpfc_enqueue_node(vport, ndlp); 18873 } 18874 18875 /* Allocate buffer for rsp iocb */ 18876 ctiocb = lpfc_sli_get_iocbq(phba); 18877 if (!ctiocb) 18878 return; 18879 18880 /* Extract the F_CTL field from FC_HDR */ 18881 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18882 18883 icmd = &ctiocb->iocb; 18884 icmd->un.xseq64.bdl.bdeSize = 0; 18885 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 18886 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 18887 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 18888 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 18889 18890 /* Fill in the rest of iocb fields */ 18891 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 18892 icmd->ulpBdeCount = 0; 18893 icmd->ulpLe = 1; 18894 icmd->ulpClass = CLASS3; 18895 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 18896 ctiocb->context1 = lpfc_nlp_get(ndlp); 18897 if (!ctiocb->context1) { 18898 lpfc_sli_release_iocbq(phba, ctiocb); 18899 return; 18900 } 18901 18902 ctiocb->vport = phba->pport; 18903 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18904 ctiocb->sli4_lxritag = NO_XRI; 18905 ctiocb->sli4_xritag = NO_XRI; 18906 18907 if (fctl & FC_FC_EX_CTX) 18908 /* Exchange responder sent the abort so we 18909 * own the oxid. 18910 */ 18911 xri = oxid; 18912 else 18913 xri = rxid; 18914 lxri = lpfc_sli4_xri_inrange(phba, xri); 18915 if (lxri != NO_XRI) 18916 lpfc_set_rrq_active(phba, ndlp, lxri, 18917 (xri == oxid) ? rxid : oxid, 0); 18918 /* For BA_ABTS from exchange responder, if the logical xri with 18919 * the oxid maps to the FCP XRI range, the port no longer has 18920 * that exchange context, send a BLS_RJT. Override the IOCB for 18921 * a BA_RJT. 18922 */ 18923 if ((fctl & FC_FC_EX_CTX) && 18924 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 18925 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 18926 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 18927 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 18928 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 18929 } 18930 18931 /* If BA_ABTS failed to abort a partially assembled receive sequence, 18932 * the driver no longer has that exchange, send a BLS_RJT. Override 18933 * the IOCB for a BA_RJT. 18934 */ 18935 if (aborted == false) { 18936 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 18937 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 18938 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 18939 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 18940 } 18941 18942 if (fctl & FC_FC_EX_CTX) { 18943 /* ABTS sent by responder to CT exchange, construction 18944 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 18945 * field and RX_ID from ABTS for RX_ID field. 18946 */ 18947 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 18948 } else { 18949 /* ABTS sent by initiator to CT exchange, construction 18950 * of BA_ACC will need to allocate a new XRI as for the 18951 * XRI_TAG field. 18952 */ 18953 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 18954 } 18955 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 18956 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 18957 18958 /* Xmit CT abts response on exchange <xid> */ 18959 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 18960 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 18961 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 18962 18963 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 18964 if (rc == IOCB_ERROR) { 18965 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 18966 "2925 Failed to issue CT ABTS RSP x%x on " 18967 "xri x%x, Data x%x\n", 18968 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 18969 phba->link_state); 18970 lpfc_nlp_put(ndlp); 18971 ctiocb->context1 = NULL; 18972 lpfc_sli_release_iocbq(phba, ctiocb); 18973 } 18974 } 18975 18976 /** 18977 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 18978 * @vport: Pointer to the vport on which this sequence was received 18979 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18980 * 18981 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 18982 * receive sequence is only partially assembed by the driver, it shall abort 18983 * the partially assembled frames for the sequence. Otherwise, if the 18984 * unsolicited receive sequence has been completely assembled and passed to 18985 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 18986 * unsolicited sequence has been aborted. After that, it will issue a basic 18987 * accept to accept the abort. 18988 **/ 18989 static void 18990 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 18991 struct hbq_dmabuf *dmabuf) 18992 { 18993 struct lpfc_hba *phba = vport->phba; 18994 struct fc_frame_header fc_hdr; 18995 uint32_t fctl; 18996 bool aborted; 18997 18998 /* Make a copy of fc_hdr before the dmabuf being released */ 18999 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 19000 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 19001 19002 if (fctl & FC_FC_EX_CTX) { 19003 /* ABTS by responder to exchange, no cleanup needed */ 19004 aborted = true; 19005 } else { 19006 /* ABTS by initiator to exchange, need to do cleanup */ 19007 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 19008 if (aborted == false) 19009 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 19010 } 19011 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19012 19013 if (phba->nvmet_support) { 19014 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 19015 return; 19016 } 19017 19018 /* Respond with BA_ACC or BA_RJT accordingly */ 19019 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 19020 } 19021 19022 /** 19023 * lpfc_seq_complete - Indicates if a sequence is complete 19024 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19025 * 19026 * This function checks the sequence, starting with the frame described by 19027 * @dmabuf, to see if all the frames associated with this sequence are present. 19028 * the frames associated with this sequence are linked to the @dmabuf using the 19029 * dbuf list. This function looks for two major things. 1) That the first frame 19030 * has a sequence count of zero. 2) There is a frame with last frame of sequence 19031 * set. 3) That there are no holes in the sequence count. The function will 19032 * return 1 when the sequence is complete, otherwise it will return 0. 19033 **/ 19034 static int 19035 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 19036 { 19037 struct fc_frame_header *hdr; 19038 struct lpfc_dmabuf *d_buf; 19039 struct hbq_dmabuf *seq_dmabuf; 19040 uint32_t fctl; 19041 int seq_count = 0; 19042 19043 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19044 /* make sure first fame of sequence has a sequence count of zero */ 19045 if (hdr->fh_seq_cnt != seq_count) 19046 return 0; 19047 fctl = (hdr->fh_f_ctl[0] << 16 | 19048 hdr->fh_f_ctl[1] << 8 | 19049 hdr->fh_f_ctl[2]); 19050 /* If last frame of sequence we can return success. */ 19051 if (fctl & FC_FC_END_SEQ) 19052 return 1; 19053 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 19054 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19055 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19056 /* If there is a hole in the sequence count then fail. */ 19057 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 19058 return 0; 19059 fctl = (hdr->fh_f_ctl[0] << 16 | 19060 hdr->fh_f_ctl[1] << 8 | 19061 hdr->fh_f_ctl[2]); 19062 /* If last frame of sequence we can return success. */ 19063 if (fctl & FC_FC_END_SEQ) 19064 return 1; 19065 } 19066 return 0; 19067 } 19068 19069 /** 19070 * lpfc_prep_seq - Prep sequence for ULP processing 19071 * @vport: Pointer to the vport on which this sequence was received 19072 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 19073 * 19074 * This function takes a sequence, described by a list of frames, and creates 19075 * a list of iocbq structures to describe the sequence. This iocbq list will be 19076 * used to issue to the generic unsolicited sequence handler. This routine 19077 * returns a pointer to the first iocbq in the list. If the function is unable 19078 * to allocate an iocbq then it throw out the received frames that were not 19079 * able to be described and return a pointer to the first iocbq. If unable to 19080 * allocate any iocbqs (including the first) this function will return NULL. 19081 **/ 19082 static struct lpfc_iocbq * 19083 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 19084 { 19085 struct hbq_dmabuf *hbq_buf; 19086 struct lpfc_dmabuf *d_buf, *n_buf; 19087 struct lpfc_iocbq *first_iocbq, *iocbq; 19088 struct fc_frame_header *fc_hdr; 19089 uint32_t sid; 19090 uint32_t len, tot_len; 19091 struct ulp_bde64 *pbde; 19092 19093 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19094 /* remove from receive buffer list */ 19095 list_del_init(&seq_dmabuf->hbuf.list); 19096 lpfc_update_rcv_time_stamp(vport); 19097 /* get the Remote Port's SID */ 19098 sid = sli4_sid_from_fc_hdr(fc_hdr); 19099 tot_len = 0; 19100 /* Get an iocbq struct to fill in. */ 19101 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 19102 if (first_iocbq) { 19103 /* Initialize the first IOCB. */ 19104 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 19105 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 19106 first_iocbq->vport = vport; 19107 19108 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 19109 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 19110 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 19111 first_iocbq->iocb.un.rcvels.parmRo = 19112 sli4_did_from_fc_hdr(fc_hdr); 19113 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 19114 } else 19115 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 19116 first_iocbq->iocb.ulpContext = NO_XRI; 19117 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 19118 be16_to_cpu(fc_hdr->fh_ox_id); 19119 /* iocbq is prepped for internal consumption. Physical vpi. */ 19120 first_iocbq->iocb.unsli3.rcvsli3.vpi = 19121 vport->phba->vpi_ids[vport->vpi]; 19122 /* put the first buffer into the first IOCBq */ 19123 tot_len = bf_get(lpfc_rcqe_length, 19124 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 19125 19126 first_iocbq->context2 = &seq_dmabuf->dbuf; 19127 first_iocbq->context3 = NULL; 19128 first_iocbq->iocb.ulpBdeCount = 1; 19129 if (tot_len > LPFC_DATA_BUF_SIZE) 19130 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 19131 LPFC_DATA_BUF_SIZE; 19132 else 19133 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 19134 19135 first_iocbq->iocb.un.rcvels.remoteID = sid; 19136 19137 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 19138 } 19139 iocbq = first_iocbq; 19140 /* 19141 * Each IOCBq can have two Buffers assigned, so go through the list 19142 * of buffers for this sequence and save two buffers in each IOCBq 19143 */ 19144 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 19145 if (!iocbq) { 19146 lpfc_in_buf_free(vport->phba, d_buf); 19147 continue; 19148 } 19149 if (!iocbq->context3) { 19150 iocbq->context3 = d_buf; 19151 iocbq->iocb.ulpBdeCount++; 19152 /* We need to get the size out of the right CQE */ 19153 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19154 len = bf_get(lpfc_rcqe_length, 19155 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19156 pbde = (struct ulp_bde64 *) 19157 &iocbq->iocb.unsli3.sli3Words[4]; 19158 if (len > LPFC_DATA_BUF_SIZE) 19159 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 19160 else 19161 pbde->tus.f.bdeSize = len; 19162 19163 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 19164 tot_len += len; 19165 } else { 19166 iocbq = lpfc_sli_get_iocbq(vport->phba); 19167 if (!iocbq) { 19168 if (first_iocbq) { 19169 first_iocbq->iocb.ulpStatus = 19170 IOSTAT_FCP_RSP_ERROR; 19171 first_iocbq->iocb.un.ulpWord[4] = 19172 IOERR_NO_RESOURCES; 19173 } 19174 lpfc_in_buf_free(vport->phba, d_buf); 19175 continue; 19176 } 19177 /* We need to get the size out of the right CQE */ 19178 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19179 len = bf_get(lpfc_rcqe_length, 19180 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19181 iocbq->context2 = d_buf; 19182 iocbq->context3 = NULL; 19183 iocbq->iocb.ulpBdeCount = 1; 19184 if (len > LPFC_DATA_BUF_SIZE) 19185 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 19186 LPFC_DATA_BUF_SIZE; 19187 else 19188 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 19189 19190 tot_len += len; 19191 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 19192 19193 iocbq->iocb.un.rcvels.remoteID = sid; 19194 list_add_tail(&iocbq->list, &first_iocbq->list); 19195 } 19196 } 19197 /* Free the sequence's header buffer */ 19198 if (!first_iocbq) 19199 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 19200 19201 return first_iocbq; 19202 } 19203 19204 static void 19205 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 19206 struct hbq_dmabuf *seq_dmabuf) 19207 { 19208 struct fc_frame_header *fc_hdr; 19209 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 19210 struct lpfc_hba *phba = vport->phba; 19211 19212 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19213 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 19214 if (!iocbq) { 19215 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19216 "2707 Ring %d handler: Failed to allocate " 19217 "iocb Rctl x%x Type x%x received\n", 19218 LPFC_ELS_RING, 19219 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19220 return; 19221 } 19222 if (!lpfc_complete_unsol_iocb(phba, 19223 phba->sli4_hba.els_wq->pring, 19224 iocbq, fc_hdr->fh_r_ctl, 19225 fc_hdr->fh_type)) 19226 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19227 "2540 Ring %d handler: unexpected Rctl " 19228 "x%x Type x%x received\n", 19229 LPFC_ELS_RING, 19230 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19231 19232 /* Free iocb created in lpfc_prep_seq */ 19233 list_for_each_entry_safe(curr_iocb, next_iocb, 19234 &iocbq->list, list) { 19235 list_del_init(&curr_iocb->list); 19236 lpfc_sli_release_iocbq(phba, curr_iocb); 19237 } 19238 lpfc_sli_release_iocbq(phba, iocbq); 19239 } 19240 19241 static void 19242 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 19243 struct lpfc_iocbq *rspiocb) 19244 { 19245 struct lpfc_dmabuf *pcmd = cmdiocb->context2; 19246 19247 if (pcmd && pcmd->virt) 19248 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19249 kfree(pcmd); 19250 lpfc_sli_release_iocbq(phba, cmdiocb); 19251 lpfc_drain_txq(phba); 19252 } 19253 19254 static void 19255 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 19256 struct hbq_dmabuf *dmabuf) 19257 { 19258 struct fc_frame_header *fc_hdr; 19259 struct lpfc_hba *phba = vport->phba; 19260 struct lpfc_iocbq *iocbq = NULL; 19261 union lpfc_wqe *wqe; 19262 struct lpfc_dmabuf *pcmd = NULL; 19263 uint32_t frame_len; 19264 int rc; 19265 unsigned long iflags; 19266 19267 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19268 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 19269 19270 /* Send the received frame back */ 19271 iocbq = lpfc_sli_get_iocbq(phba); 19272 if (!iocbq) { 19273 /* Queue cq event and wakeup worker thread to process it */ 19274 spin_lock_irqsave(&phba->hbalock, iflags); 19275 list_add_tail(&dmabuf->cq_event.list, 19276 &phba->sli4_hba.sp_queue_event); 19277 phba->hba_flag |= HBA_SP_QUEUE_EVT; 19278 spin_unlock_irqrestore(&phba->hbalock, iflags); 19279 lpfc_worker_wake_up(phba); 19280 return; 19281 } 19282 19283 /* Allocate buffer for command payload */ 19284 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 19285 if (pcmd) 19286 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 19287 &pcmd->phys); 19288 if (!pcmd || !pcmd->virt) 19289 goto exit; 19290 19291 INIT_LIST_HEAD(&pcmd->list); 19292 19293 /* copyin the payload */ 19294 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 19295 19296 /* fill in BDE's for command */ 19297 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys); 19298 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys); 19299 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 19300 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len; 19301 19302 iocbq->context2 = pcmd; 19303 iocbq->vport = vport; 19304 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK; 19305 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 19306 19307 /* 19308 * Setup rest of the iocb as though it were a WQE 19309 * Build the SEND_FRAME WQE 19310 */ 19311 wqe = (union lpfc_wqe *)&iocbq->iocb; 19312 19313 wqe->send_frame.frame_len = frame_len; 19314 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr)); 19315 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1)); 19316 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2)); 19317 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3)); 19318 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4)); 19319 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5)); 19320 19321 iocbq->iocb.ulpCommand = CMD_SEND_FRAME; 19322 iocbq->iocb.ulpLe = 1; 19323 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl; 19324 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 19325 if (rc == IOCB_ERROR) 19326 goto exit; 19327 19328 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19329 return; 19330 19331 exit: 19332 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 19333 "2023 Unable to process MDS loopback frame\n"); 19334 if (pcmd && pcmd->virt) 19335 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19336 kfree(pcmd); 19337 if (iocbq) 19338 lpfc_sli_release_iocbq(phba, iocbq); 19339 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19340 } 19341 19342 /** 19343 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 19344 * @phba: Pointer to HBA context object. 19345 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 19346 * 19347 * This function is called with no lock held. This function processes all 19348 * the received buffers and gives it to upper layers when a received buffer 19349 * indicates that it is the final frame in the sequence. The interrupt 19350 * service routine processes received buffers at interrupt contexts. 19351 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 19352 * appropriate receive function when the final frame in a sequence is received. 19353 **/ 19354 void 19355 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 19356 struct hbq_dmabuf *dmabuf) 19357 { 19358 struct hbq_dmabuf *seq_dmabuf; 19359 struct fc_frame_header *fc_hdr; 19360 struct lpfc_vport *vport; 19361 uint32_t fcfi; 19362 uint32_t did; 19363 19364 /* Process each received buffer */ 19365 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19366 19367 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 19368 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 19369 vport = phba->pport; 19370 /* Handle MDS Loopback frames */ 19371 if (!(phba->pport->load_flag & FC_UNLOADING)) 19372 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19373 else 19374 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19375 return; 19376 } 19377 19378 /* check to see if this a valid type of frame */ 19379 if (lpfc_fc_frame_check(phba, fc_hdr)) { 19380 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19381 return; 19382 } 19383 19384 if ((bf_get(lpfc_cqe_code, 19385 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 19386 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 19387 &dmabuf->cq_event.cqe.rcqe_cmpl); 19388 else 19389 fcfi = bf_get(lpfc_rcqe_fcf_id, 19390 &dmabuf->cq_event.cqe.rcqe_cmpl); 19391 19392 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 19393 vport = phba->pport; 19394 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 19395 "2023 MDS Loopback %d bytes\n", 19396 bf_get(lpfc_rcqe_length, 19397 &dmabuf->cq_event.cqe.rcqe_cmpl)); 19398 /* Handle MDS Loopback frames */ 19399 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19400 return; 19401 } 19402 19403 /* d_id this frame is directed to */ 19404 did = sli4_did_from_fc_hdr(fc_hdr); 19405 19406 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 19407 if (!vport) { 19408 /* throw out the frame */ 19409 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19410 return; 19411 } 19412 19413 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 19414 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 19415 (did != Fabric_DID)) { 19416 /* 19417 * Throw out the frame if we are not pt2pt. 19418 * The pt2pt protocol allows for discovery frames 19419 * to be received without a registered VPI. 19420 */ 19421 if (!(vport->fc_flag & FC_PT2PT) || 19422 (phba->link_state == LPFC_HBA_READY)) { 19423 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19424 return; 19425 } 19426 } 19427 19428 /* Handle the basic abort sequence (BA_ABTS) event */ 19429 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 19430 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 19431 return; 19432 } 19433 19434 /* Link this frame */ 19435 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 19436 if (!seq_dmabuf) { 19437 /* unable to add frame to vport - throw it out */ 19438 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19439 return; 19440 } 19441 /* If not last frame in sequence continue processing frames. */ 19442 if (!lpfc_seq_complete(seq_dmabuf)) 19443 return; 19444 19445 /* Send the complete sequence to the upper layer protocol */ 19446 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 19447 } 19448 19449 /** 19450 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 19451 * @phba: pointer to lpfc hba data structure. 19452 * 19453 * This routine is invoked to post rpi header templates to the 19454 * HBA consistent with the SLI-4 interface spec. This routine 19455 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19456 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19457 * 19458 * This routine does not require any locks. It's usage is expected 19459 * to be driver load or reset recovery when the driver is 19460 * sequential. 19461 * 19462 * Return codes 19463 * 0 - successful 19464 * -EIO - The mailbox failed to complete successfully. 19465 * When this error occurs, the driver is not guaranteed 19466 * to have any rpi regions posted to the device and 19467 * must either attempt to repost the regions or take a 19468 * fatal error. 19469 **/ 19470 int 19471 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 19472 { 19473 struct lpfc_rpi_hdr *rpi_page; 19474 uint32_t rc = 0; 19475 uint16_t lrpi = 0; 19476 19477 /* SLI4 ports that support extents do not require RPI headers. */ 19478 if (!phba->sli4_hba.rpi_hdrs_in_use) 19479 goto exit; 19480 if (phba->sli4_hba.extents_in_use) 19481 return -EIO; 19482 19483 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 19484 /* 19485 * Assign the rpi headers a physical rpi only if the driver 19486 * has not initialized those resources. A port reset only 19487 * needs the headers posted. 19488 */ 19489 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 19490 LPFC_RPI_RSRC_RDY) 19491 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19492 19493 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 19494 if (rc != MBX_SUCCESS) { 19495 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19496 "2008 Error %d posting all rpi " 19497 "headers\n", rc); 19498 rc = -EIO; 19499 break; 19500 } 19501 } 19502 19503 exit: 19504 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 19505 LPFC_RPI_RSRC_RDY); 19506 return rc; 19507 } 19508 19509 /** 19510 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 19511 * @phba: pointer to lpfc hba data structure. 19512 * @rpi_page: pointer to the rpi memory region. 19513 * 19514 * This routine is invoked to post a single rpi header to the 19515 * HBA consistent with the SLI-4 interface spec. This memory region 19516 * maps up to 64 rpi context regions. 19517 * 19518 * Return codes 19519 * 0 - successful 19520 * -ENOMEM - No available memory 19521 * -EIO - The mailbox failed to complete successfully. 19522 **/ 19523 int 19524 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 19525 { 19526 LPFC_MBOXQ_t *mboxq; 19527 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 19528 uint32_t rc = 0; 19529 uint32_t shdr_status, shdr_add_status; 19530 union lpfc_sli4_cfg_shdr *shdr; 19531 19532 /* SLI4 ports that support extents do not require RPI headers. */ 19533 if (!phba->sli4_hba.rpi_hdrs_in_use) 19534 return rc; 19535 if (phba->sli4_hba.extents_in_use) 19536 return -EIO; 19537 19538 /* The port is notified of the header region via a mailbox command. */ 19539 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19540 if (!mboxq) { 19541 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19542 "2001 Unable to allocate memory for issuing " 19543 "SLI_CONFIG_SPECIAL mailbox command\n"); 19544 return -ENOMEM; 19545 } 19546 19547 /* Post all rpi memory regions to the port. */ 19548 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 19549 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19550 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 19551 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 19552 sizeof(struct lpfc_sli4_cfg_mhdr), 19553 LPFC_SLI4_MBX_EMBED); 19554 19555 19556 /* Post the physical rpi to the port for this rpi header. */ 19557 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 19558 rpi_page->start_rpi); 19559 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 19560 hdr_tmpl, rpi_page->page_count); 19561 19562 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 19563 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 19564 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19565 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 19566 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19567 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19568 mempool_free(mboxq, phba->mbox_mem_pool); 19569 if (shdr_status || shdr_add_status || rc) { 19570 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19571 "2514 POST_RPI_HDR mailbox failed with " 19572 "status x%x add_status x%x, mbx status x%x\n", 19573 shdr_status, shdr_add_status, rc); 19574 rc = -ENXIO; 19575 } else { 19576 /* 19577 * The next_rpi stores the next logical module-64 rpi value used 19578 * to post physical rpis in subsequent rpi postings. 19579 */ 19580 spin_lock_irq(&phba->hbalock); 19581 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 19582 spin_unlock_irq(&phba->hbalock); 19583 } 19584 return rc; 19585 } 19586 19587 /** 19588 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 19589 * @phba: pointer to lpfc hba data structure. 19590 * 19591 * This routine is invoked to post rpi header templates to the 19592 * HBA consistent with the SLI-4 interface spec. This routine 19593 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19594 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19595 * 19596 * Returns 19597 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 19598 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 19599 **/ 19600 int 19601 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 19602 { 19603 unsigned long rpi; 19604 uint16_t max_rpi, rpi_limit; 19605 uint16_t rpi_remaining, lrpi = 0; 19606 struct lpfc_rpi_hdr *rpi_hdr; 19607 unsigned long iflag; 19608 19609 /* 19610 * Fetch the next logical rpi. Because this index is logical, 19611 * the driver starts at 0 each time. 19612 */ 19613 spin_lock_irqsave(&phba->hbalock, iflag); 19614 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 19615 rpi_limit = phba->sli4_hba.next_rpi; 19616 19617 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 19618 if (rpi >= rpi_limit) 19619 rpi = LPFC_RPI_ALLOC_ERROR; 19620 else { 19621 set_bit(rpi, phba->sli4_hba.rpi_bmask); 19622 phba->sli4_hba.max_cfg_param.rpi_used++; 19623 phba->sli4_hba.rpi_count++; 19624 } 19625 lpfc_printf_log(phba, KERN_INFO, 19626 LOG_NODE | LOG_DISCOVERY, 19627 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 19628 (int) rpi, max_rpi, rpi_limit); 19629 19630 /* 19631 * Don't try to allocate more rpi header regions if the device limit 19632 * has been exhausted. 19633 */ 19634 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 19635 (phba->sli4_hba.rpi_count >= max_rpi)) { 19636 spin_unlock_irqrestore(&phba->hbalock, iflag); 19637 return rpi; 19638 } 19639 19640 /* 19641 * RPI header postings are not required for SLI4 ports capable of 19642 * extents. 19643 */ 19644 if (!phba->sli4_hba.rpi_hdrs_in_use) { 19645 spin_unlock_irqrestore(&phba->hbalock, iflag); 19646 return rpi; 19647 } 19648 19649 /* 19650 * If the driver is running low on rpi resources, allocate another 19651 * page now. Note that the next_rpi value is used because 19652 * it represents how many are actually in use whereas max_rpi notes 19653 * how many are supported max by the device. 19654 */ 19655 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 19656 spin_unlock_irqrestore(&phba->hbalock, iflag); 19657 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 19658 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 19659 if (!rpi_hdr) { 19660 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19661 "2002 Error Could not grow rpi " 19662 "count\n"); 19663 } else { 19664 lrpi = rpi_hdr->start_rpi; 19665 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19666 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 19667 } 19668 } 19669 19670 return rpi; 19671 } 19672 19673 /** 19674 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 19675 * @phba: pointer to lpfc hba data structure. 19676 * @rpi: rpi to free 19677 * 19678 * This routine is invoked to release an rpi to the pool of 19679 * available rpis maintained by the driver. 19680 **/ 19681 static void 19682 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19683 { 19684 /* 19685 * if the rpi value indicates a prior unreg has already 19686 * been done, skip the unreg. 19687 */ 19688 if (rpi == LPFC_RPI_ALLOC_ERROR) 19689 return; 19690 19691 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 19692 phba->sli4_hba.rpi_count--; 19693 phba->sli4_hba.max_cfg_param.rpi_used--; 19694 } else { 19695 lpfc_printf_log(phba, KERN_INFO, 19696 LOG_NODE | LOG_DISCOVERY, 19697 "2016 rpi %x not inuse\n", 19698 rpi); 19699 } 19700 } 19701 19702 /** 19703 * lpfc_sli4_free_rpi - Release an rpi for reuse. 19704 * @phba: pointer to lpfc hba data structure. 19705 * @rpi: rpi to free 19706 * 19707 * This routine is invoked to release an rpi to the pool of 19708 * available rpis maintained by the driver. 19709 **/ 19710 void 19711 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19712 { 19713 spin_lock_irq(&phba->hbalock); 19714 __lpfc_sli4_free_rpi(phba, rpi); 19715 spin_unlock_irq(&phba->hbalock); 19716 } 19717 19718 /** 19719 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19720 * @phba: pointer to lpfc hba data structure. 19721 * 19722 * This routine is invoked to remove the memory region that 19723 * provided rpi via a bitmask. 19724 **/ 19725 void 19726 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19727 { 19728 kfree(phba->sli4_hba.rpi_bmask); 19729 kfree(phba->sli4_hba.rpi_ids); 19730 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19731 } 19732 19733 /** 19734 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19735 * @ndlp: pointer to lpfc nodelist data structure. 19736 * @cmpl: completion call-back. 19737 * @arg: data to load as MBox 'caller buffer information' 19738 * 19739 * This routine is invoked to remove the memory region that 19740 * provided rpi via a bitmask. 19741 **/ 19742 int 19743 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19744 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 19745 { 19746 LPFC_MBOXQ_t *mboxq; 19747 struct lpfc_hba *phba = ndlp->phba; 19748 int rc; 19749 19750 /* The port is notified of the header region via a mailbox command. */ 19751 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19752 if (!mboxq) 19753 return -ENOMEM; 19754 19755 /* If cmpl assigned, then this nlp_get pairs with 19756 * lpfc_mbx_cmpl_resume_rpi. 19757 * 19758 * Else cmpl is NULL, then this nlp_get pairs with 19759 * lpfc_sli_def_mbox_cmpl. 19760 */ 19761 if (!lpfc_nlp_get(ndlp)) { 19762 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19763 "2122 %s: Failed to get nlp ref\n", 19764 __func__); 19765 mempool_free(mboxq, phba->mbox_mem_pool); 19766 return -EIO; 19767 } 19768 19769 /* Post all rpi memory regions to the port. */ 19770 lpfc_resume_rpi(mboxq, ndlp); 19771 if (cmpl) { 19772 mboxq->mbox_cmpl = cmpl; 19773 mboxq->ctx_buf = arg; 19774 } else 19775 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19776 mboxq->ctx_ndlp = ndlp; 19777 mboxq->vport = ndlp->vport; 19778 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19779 if (rc == MBX_NOT_FINISHED) { 19780 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19781 "2010 Resume RPI Mailbox failed " 19782 "status %d, mbxStatus x%x\n", rc, 19783 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19784 lpfc_nlp_put(ndlp); 19785 mempool_free(mboxq, phba->mbox_mem_pool); 19786 return -EIO; 19787 } 19788 return 0; 19789 } 19790 19791 /** 19792 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19793 * @vport: Pointer to the vport for which the vpi is being initialized 19794 * 19795 * This routine is invoked to activate a vpi with the port. 19796 * 19797 * Returns: 19798 * 0 success 19799 * -Evalue otherwise 19800 **/ 19801 int 19802 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19803 { 19804 LPFC_MBOXQ_t *mboxq; 19805 int rc = 0; 19806 int retval = MBX_SUCCESS; 19807 uint32_t mbox_tmo; 19808 struct lpfc_hba *phba = vport->phba; 19809 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19810 if (!mboxq) 19811 return -ENOMEM; 19812 lpfc_init_vpi(phba, mboxq, vport->vpi); 19813 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19814 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19815 if (rc != MBX_SUCCESS) { 19816 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19817 "2022 INIT VPI Mailbox failed " 19818 "status %d, mbxStatus x%x\n", rc, 19819 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19820 retval = -EIO; 19821 } 19822 if (rc != MBX_TIMEOUT) 19823 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19824 19825 return retval; 19826 } 19827 19828 /** 19829 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19830 * @phba: pointer to lpfc hba data structure. 19831 * @mboxq: Pointer to mailbox object. 19832 * 19833 * This routine is invoked to manually add a single FCF record. The caller 19834 * must pass a completely initialized FCF_Record. This routine takes 19835 * care of the nonembedded mailbox operations. 19836 **/ 19837 static void 19838 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19839 { 19840 void *virt_addr; 19841 union lpfc_sli4_cfg_shdr *shdr; 19842 uint32_t shdr_status, shdr_add_status; 19843 19844 virt_addr = mboxq->sge_array->addr[0]; 19845 /* The IOCTL status is embedded in the mailbox subheader. */ 19846 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19847 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19848 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19849 19850 if ((shdr_status || shdr_add_status) && 19851 (shdr_status != STATUS_FCF_IN_USE)) 19852 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19853 "2558 ADD_FCF_RECORD mailbox failed with " 19854 "status x%x add_status x%x\n", 19855 shdr_status, shdr_add_status); 19856 19857 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19858 } 19859 19860 /** 19861 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19862 * @phba: pointer to lpfc hba data structure. 19863 * @fcf_record: pointer to the initialized fcf record to add. 19864 * 19865 * This routine is invoked to manually add a single FCF record. The caller 19866 * must pass a completely initialized FCF_Record. This routine takes 19867 * care of the nonembedded mailbox operations. 19868 **/ 19869 int 19870 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19871 { 19872 int rc = 0; 19873 LPFC_MBOXQ_t *mboxq; 19874 uint8_t *bytep; 19875 void *virt_addr; 19876 struct lpfc_mbx_sge sge; 19877 uint32_t alloc_len, req_len; 19878 uint32_t fcfindex; 19879 19880 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19881 if (!mboxq) { 19882 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19883 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 19884 return -ENOMEM; 19885 } 19886 19887 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 19888 sizeof(uint32_t); 19889 19890 /* Allocate DMA memory and set up the non-embedded mailbox command */ 19891 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19892 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 19893 req_len, LPFC_SLI4_MBX_NEMBED); 19894 if (alloc_len < req_len) { 19895 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19896 "2523 Allocated DMA memory size (x%x) is " 19897 "less than the requested DMA memory " 19898 "size (x%x)\n", alloc_len, req_len); 19899 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19900 return -ENOMEM; 19901 } 19902 19903 /* 19904 * Get the first SGE entry from the non-embedded DMA memory. This 19905 * routine only uses a single SGE. 19906 */ 19907 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 19908 virt_addr = mboxq->sge_array->addr[0]; 19909 /* 19910 * Configure the FCF record for FCFI 0. This is the driver's 19911 * hardcoded default and gets used in nonFIP mode. 19912 */ 19913 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 19914 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 19915 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 19916 19917 /* 19918 * Copy the fcf_index and the FCF Record Data. The data starts after 19919 * the FCoE header plus word10. The data copy needs to be endian 19920 * correct. 19921 */ 19922 bytep += sizeof(uint32_t); 19923 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 19924 mboxq->vport = phba->pport; 19925 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 19926 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19927 if (rc == MBX_NOT_FINISHED) { 19928 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19929 "2515 ADD_FCF_RECORD mailbox failed with " 19930 "status 0x%x\n", rc); 19931 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19932 rc = -EIO; 19933 } else 19934 rc = 0; 19935 19936 return rc; 19937 } 19938 19939 /** 19940 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 19941 * @phba: pointer to lpfc hba data structure. 19942 * @fcf_record: pointer to the fcf record to write the default data. 19943 * @fcf_index: FCF table entry index. 19944 * 19945 * This routine is invoked to build the driver's default FCF record. The 19946 * values used are hardcoded. This routine handles memory initialization. 19947 * 19948 **/ 19949 void 19950 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 19951 struct fcf_record *fcf_record, 19952 uint16_t fcf_index) 19953 { 19954 memset(fcf_record, 0, sizeof(struct fcf_record)); 19955 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 19956 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 19957 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 19958 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 19959 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 19960 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 19961 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 19962 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 19963 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 19964 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 19965 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 19966 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 19967 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 19968 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 19969 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 19970 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 19971 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 19972 /* Set the VLAN bit map */ 19973 if (phba->valid_vlan) { 19974 fcf_record->vlan_bitmap[phba->vlan_id / 8] 19975 = 1 << (phba->vlan_id % 8); 19976 } 19977 } 19978 19979 /** 19980 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 19981 * @phba: pointer to lpfc hba data structure. 19982 * @fcf_index: FCF table entry offset. 19983 * 19984 * This routine is invoked to scan the entire FCF table by reading FCF 19985 * record and processing it one at a time starting from the @fcf_index 19986 * for initial FCF discovery or fast FCF failover rediscovery. 19987 * 19988 * Return 0 if the mailbox command is submitted successfully, none 0 19989 * otherwise. 19990 **/ 19991 int 19992 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19993 { 19994 int rc = 0, error; 19995 LPFC_MBOXQ_t *mboxq; 19996 19997 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 19998 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 19999 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20000 if (!mboxq) { 20001 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20002 "2000 Failed to allocate mbox for " 20003 "READ_FCF cmd\n"); 20004 error = -ENOMEM; 20005 goto fail_fcf_scan; 20006 } 20007 /* Construct the read FCF record mailbox command */ 20008 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20009 if (rc) { 20010 error = -EINVAL; 20011 goto fail_fcf_scan; 20012 } 20013 /* Issue the mailbox command asynchronously */ 20014 mboxq->vport = phba->pport; 20015 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 20016 20017 spin_lock_irq(&phba->hbalock); 20018 phba->hba_flag |= FCF_TS_INPROG; 20019 spin_unlock_irq(&phba->hbalock); 20020 20021 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20022 if (rc == MBX_NOT_FINISHED) 20023 error = -EIO; 20024 else { 20025 /* Reset eligible FCF count for new scan */ 20026 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 20027 phba->fcf.eligible_fcf_cnt = 0; 20028 error = 0; 20029 } 20030 fail_fcf_scan: 20031 if (error) { 20032 if (mboxq) 20033 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20034 /* FCF scan failed, clear FCF_TS_INPROG flag */ 20035 spin_lock_irq(&phba->hbalock); 20036 phba->hba_flag &= ~FCF_TS_INPROG; 20037 spin_unlock_irq(&phba->hbalock); 20038 } 20039 return error; 20040 } 20041 20042 /** 20043 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 20044 * @phba: pointer to lpfc hba data structure. 20045 * @fcf_index: FCF table entry offset. 20046 * 20047 * This routine is invoked to read an FCF record indicated by @fcf_index 20048 * and to use it for FLOGI roundrobin FCF failover. 20049 * 20050 * Return 0 if the mailbox command is submitted successfully, none 0 20051 * otherwise. 20052 **/ 20053 int 20054 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20055 { 20056 int rc = 0, error; 20057 LPFC_MBOXQ_t *mboxq; 20058 20059 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20060 if (!mboxq) { 20061 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20062 "2763 Failed to allocate mbox for " 20063 "READ_FCF cmd\n"); 20064 error = -ENOMEM; 20065 goto fail_fcf_read; 20066 } 20067 /* Construct the read FCF record mailbox command */ 20068 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20069 if (rc) { 20070 error = -EINVAL; 20071 goto fail_fcf_read; 20072 } 20073 /* Issue the mailbox command asynchronously */ 20074 mboxq->vport = phba->pport; 20075 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 20076 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20077 if (rc == MBX_NOT_FINISHED) 20078 error = -EIO; 20079 else 20080 error = 0; 20081 20082 fail_fcf_read: 20083 if (error && mboxq) 20084 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20085 return error; 20086 } 20087 20088 /** 20089 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 20090 * @phba: pointer to lpfc hba data structure. 20091 * @fcf_index: FCF table entry offset. 20092 * 20093 * This routine is invoked to read an FCF record indicated by @fcf_index to 20094 * determine whether it's eligible for FLOGI roundrobin failover list. 20095 * 20096 * Return 0 if the mailbox command is submitted successfully, none 0 20097 * otherwise. 20098 **/ 20099 int 20100 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20101 { 20102 int rc = 0, error; 20103 LPFC_MBOXQ_t *mboxq; 20104 20105 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20106 if (!mboxq) { 20107 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20108 "2758 Failed to allocate mbox for " 20109 "READ_FCF cmd\n"); 20110 error = -ENOMEM; 20111 goto fail_fcf_read; 20112 } 20113 /* Construct the read FCF record mailbox command */ 20114 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20115 if (rc) { 20116 error = -EINVAL; 20117 goto fail_fcf_read; 20118 } 20119 /* Issue the mailbox command asynchronously */ 20120 mboxq->vport = phba->pport; 20121 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 20122 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20123 if (rc == MBX_NOT_FINISHED) 20124 error = -EIO; 20125 else 20126 error = 0; 20127 20128 fail_fcf_read: 20129 if (error && mboxq) 20130 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20131 return error; 20132 } 20133 20134 /** 20135 * lpfc_check_next_fcf_pri_level 20136 * @phba: pointer to the lpfc_hba struct for this port. 20137 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 20138 * routine when the rr_bmask is empty. The FCF indecies are put into the 20139 * rr_bmask based on their priority level. Starting from the highest priority 20140 * to the lowest. The most likely FCF candidate will be in the highest 20141 * priority group. When this routine is called it searches the fcf_pri list for 20142 * next lowest priority group and repopulates the rr_bmask with only those 20143 * fcf_indexes. 20144 * returns: 20145 * 1=success 0=failure 20146 **/ 20147 static int 20148 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 20149 { 20150 uint16_t next_fcf_pri; 20151 uint16_t last_index; 20152 struct lpfc_fcf_pri *fcf_pri; 20153 int rc; 20154 int ret = 0; 20155 20156 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20157 LPFC_SLI4_FCF_TBL_INDX_MAX); 20158 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20159 "3060 Last IDX %d\n", last_index); 20160 20161 /* Verify the priority list has 2 or more entries */ 20162 spin_lock_irq(&phba->hbalock); 20163 if (list_empty(&phba->fcf.fcf_pri_list) || 20164 list_is_singular(&phba->fcf.fcf_pri_list)) { 20165 spin_unlock_irq(&phba->hbalock); 20166 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20167 "3061 Last IDX %d\n", last_index); 20168 return 0; /* Empty rr list */ 20169 } 20170 spin_unlock_irq(&phba->hbalock); 20171 20172 next_fcf_pri = 0; 20173 /* 20174 * Clear the rr_bmask and set all of the bits that are at this 20175 * priority. 20176 */ 20177 memset(phba->fcf.fcf_rr_bmask, 0, 20178 sizeof(*phba->fcf.fcf_rr_bmask)); 20179 spin_lock_irq(&phba->hbalock); 20180 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20181 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 20182 continue; 20183 /* 20184 * the 1st priority that has not FLOGI failed 20185 * will be the highest. 20186 */ 20187 if (!next_fcf_pri) 20188 next_fcf_pri = fcf_pri->fcf_rec.priority; 20189 spin_unlock_irq(&phba->hbalock); 20190 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20191 rc = lpfc_sli4_fcf_rr_index_set(phba, 20192 fcf_pri->fcf_rec.fcf_index); 20193 if (rc) 20194 return 0; 20195 } 20196 spin_lock_irq(&phba->hbalock); 20197 } 20198 /* 20199 * if next_fcf_pri was not set above and the list is not empty then 20200 * we have failed flogis on all of them. So reset flogi failed 20201 * and start at the beginning. 20202 */ 20203 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 20204 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20205 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 20206 /* 20207 * the 1st priority that has not FLOGI failed 20208 * will be the highest. 20209 */ 20210 if (!next_fcf_pri) 20211 next_fcf_pri = fcf_pri->fcf_rec.priority; 20212 spin_unlock_irq(&phba->hbalock); 20213 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20214 rc = lpfc_sli4_fcf_rr_index_set(phba, 20215 fcf_pri->fcf_rec.fcf_index); 20216 if (rc) 20217 return 0; 20218 } 20219 spin_lock_irq(&phba->hbalock); 20220 } 20221 } else 20222 ret = 1; 20223 spin_unlock_irq(&phba->hbalock); 20224 20225 return ret; 20226 } 20227 /** 20228 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 20229 * @phba: pointer to lpfc hba data structure. 20230 * 20231 * This routine is to get the next eligible FCF record index in a round 20232 * robin fashion. If the next eligible FCF record index equals to the 20233 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 20234 * shall be returned, otherwise, the next eligible FCF record's index 20235 * shall be returned. 20236 **/ 20237 uint16_t 20238 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 20239 { 20240 uint16_t next_fcf_index; 20241 20242 initial_priority: 20243 /* Search start from next bit of currently registered FCF index */ 20244 next_fcf_index = phba->fcf.current_rec.fcf_indx; 20245 20246 next_priority: 20247 /* Determine the next fcf index to check */ 20248 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 20249 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 20250 LPFC_SLI4_FCF_TBL_INDX_MAX, 20251 next_fcf_index); 20252 20253 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 20254 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20255 /* 20256 * If we have wrapped then we need to clear the bits that 20257 * have been tested so that we can detect when we should 20258 * change the priority level. 20259 */ 20260 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 20261 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 20262 } 20263 20264 20265 /* Check roundrobin failover list empty condition */ 20266 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 20267 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 20268 /* 20269 * If next fcf index is not found check if there are lower 20270 * Priority level fcf's in the fcf_priority list. 20271 * Set up the rr_bmask with all of the avaiable fcf bits 20272 * at that level and continue the selection process. 20273 */ 20274 if (lpfc_check_next_fcf_pri_level(phba)) 20275 goto initial_priority; 20276 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 20277 "2844 No roundrobin failover FCF available\n"); 20278 20279 return LPFC_FCOE_FCF_NEXT_NONE; 20280 } 20281 20282 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 20283 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 20284 LPFC_FCF_FLOGI_FAILED) { 20285 if (list_is_singular(&phba->fcf.fcf_pri_list)) 20286 return LPFC_FCOE_FCF_NEXT_NONE; 20287 20288 goto next_priority; 20289 } 20290 20291 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20292 "2845 Get next roundrobin failover FCF (x%x)\n", 20293 next_fcf_index); 20294 20295 return next_fcf_index; 20296 } 20297 20298 /** 20299 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 20300 * @phba: pointer to lpfc hba data structure. 20301 * @fcf_index: index into the FCF table to 'set' 20302 * 20303 * This routine sets the FCF record index in to the eligible bmask for 20304 * roundrobin failover search. It checks to make sure that the index 20305 * does not go beyond the range of the driver allocated bmask dimension 20306 * before setting the bit. 20307 * 20308 * Returns 0 if the index bit successfully set, otherwise, it returns 20309 * -EINVAL. 20310 **/ 20311 int 20312 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 20313 { 20314 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20315 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20316 "2610 FCF (x%x) reached driver's book " 20317 "keeping dimension:x%x\n", 20318 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20319 return -EINVAL; 20320 } 20321 /* Set the eligible FCF record index bmask */ 20322 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20323 20324 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20325 "2790 Set FCF (x%x) to roundrobin FCF failover " 20326 "bmask\n", fcf_index); 20327 20328 return 0; 20329 } 20330 20331 /** 20332 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 20333 * @phba: pointer to lpfc hba data structure. 20334 * @fcf_index: index into the FCF table to 'clear' 20335 * 20336 * This routine clears the FCF record index from the eligible bmask for 20337 * roundrobin failover search. It checks to make sure that the index 20338 * does not go beyond the range of the driver allocated bmask dimension 20339 * before clearing the bit. 20340 **/ 20341 void 20342 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 20343 { 20344 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 20345 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20346 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20347 "2762 FCF (x%x) reached driver's book " 20348 "keeping dimension:x%x\n", 20349 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20350 return; 20351 } 20352 /* Clear the eligible FCF record index bmask */ 20353 spin_lock_irq(&phba->hbalock); 20354 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 20355 list) { 20356 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 20357 list_del_init(&fcf_pri->list); 20358 break; 20359 } 20360 } 20361 spin_unlock_irq(&phba->hbalock); 20362 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20363 20364 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20365 "2791 Clear FCF (x%x) from roundrobin failover " 20366 "bmask\n", fcf_index); 20367 } 20368 20369 /** 20370 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 20371 * @phba: pointer to lpfc hba data structure. 20372 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 20373 * 20374 * This routine is the completion routine for the rediscover FCF table mailbox 20375 * command. If the mailbox command returned failure, it will try to stop the 20376 * FCF rediscover wait timer. 20377 **/ 20378 static void 20379 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 20380 { 20381 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20382 uint32_t shdr_status, shdr_add_status; 20383 20384 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20385 20386 shdr_status = bf_get(lpfc_mbox_hdr_status, 20387 &redisc_fcf->header.cfg_shdr.response); 20388 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20389 &redisc_fcf->header.cfg_shdr.response); 20390 if (shdr_status || shdr_add_status) { 20391 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20392 "2746 Requesting for FCF rediscovery failed " 20393 "status x%x add_status x%x\n", 20394 shdr_status, shdr_add_status); 20395 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 20396 spin_lock_irq(&phba->hbalock); 20397 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 20398 spin_unlock_irq(&phba->hbalock); 20399 /* 20400 * CVL event triggered FCF rediscover request failed, 20401 * last resort to re-try current registered FCF entry. 20402 */ 20403 lpfc_retry_pport_discovery(phba); 20404 } else { 20405 spin_lock_irq(&phba->hbalock); 20406 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 20407 spin_unlock_irq(&phba->hbalock); 20408 /* 20409 * DEAD FCF event triggered FCF rediscover request 20410 * failed, last resort to fail over as a link down 20411 * to FCF registration. 20412 */ 20413 lpfc_sli4_fcf_dead_failthrough(phba); 20414 } 20415 } else { 20416 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20417 "2775 Start FCF rediscover quiescent timer\n"); 20418 /* 20419 * Start FCF rediscovery wait timer for pending FCF 20420 * before rescan FCF record table. 20421 */ 20422 lpfc_fcf_redisc_wait_start_timer(phba); 20423 } 20424 20425 mempool_free(mbox, phba->mbox_mem_pool); 20426 } 20427 20428 /** 20429 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 20430 * @phba: pointer to lpfc hba data structure. 20431 * 20432 * This routine is invoked to request for rediscovery of the entire FCF table 20433 * by the port. 20434 **/ 20435 int 20436 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 20437 { 20438 LPFC_MBOXQ_t *mbox; 20439 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20440 int rc, length; 20441 20442 /* Cancel retry delay timers to all vports before FCF rediscover */ 20443 lpfc_cancel_all_vport_retry_delay_timer(phba); 20444 20445 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20446 if (!mbox) { 20447 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20448 "2745 Failed to allocate mbox for " 20449 "requesting FCF rediscover.\n"); 20450 return -ENOMEM; 20451 } 20452 20453 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 20454 sizeof(struct lpfc_sli4_cfg_mhdr)); 20455 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 20456 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 20457 length, LPFC_SLI4_MBX_EMBED); 20458 20459 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20460 /* Set count to 0 for invalidating the entire FCF database */ 20461 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 20462 20463 /* Issue the mailbox command asynchronously */ 20464 mbox->vport = phba->pport; 20465 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 20466 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 20467 20468 if (rc == MBX_NOT_FINISHED) { 20469 mempool_free(mbox, phba->mbox_mem_pool); 20470 return -EIO; 20471 } 20472 return 0; 20473 } 20474 20475 /** 20476 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 20477 * @phba: pointer to lpfc hba data structure. 20478 * 20479 * This function is the failover routine as a last resort to the FCF DEAD 20480 * event when driver failed to perform fast FCF failover. 20481 **/ 20482 void 20483 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 20484 { 20485 uint32_t link_state; 20486 20487 /* 20488 * Last resort as FCF DEAD event failover will treat this as 20489 * a link down, but save the link state because we don't want 20490 * it to be changed to Link Down unless it is already down. 20491 */ 20492 link_state = phba->link_state; 20493 lpfc_linkdown(phba); 20494 phba->link_state = link_state; 20495 20496 /* Unregister FCF if no devices connected to it */ 20497 lpfc_unregister_unused_fcf(phba); 20498 } 20499 20500 /** 20501 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 20502 * @phba: pointer to lpfc hba data structure. 20503 * @rgn23_data: pointer to configure region 23 data. 20504 * 20505 * This function gets SLI3 port configure region 23 data through memory dump 20506 * mailbox command. When it successfully retrieves data, the size of the data 20507 * will be returned, otherwise, 0 will be returned. 20508 **/ 20509 static uint32_t 20510 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20511 { 20512 LPFC_MBOXQ_t *pmb = NULL; 20513 MAILBOX_t *mb; 20514 uint32_t offset = 0; 20515 int rc; 20516 20517 if (!rgn23_data) 20518 return 0; 20519 20520 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20521 if (!pmb) { 20522 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20523 "2600 failed to allocate mailbox memory\n"); 20524 return 0; 20525 } 20526 mb = &pmb->u.mb; 20527 20528 do { 20529 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 20530 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 20531 20532 if (rc != MBX_SUCCESS) { 20533 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20534 "2601 failed to read config " 20535 "region 23, rc 0x%x Status 0x%x\n", 20536 rc, mb->mbxStatus); 20537 mb->un.varDmp.word_cnt = 0; 20538 } 20539 /* 20540 * dump mem may return a zero when finished or we got a 20541 * mailbox error, either way we are done. 20542 */ 20543 if (mb->un.varDmp.word_cnt == 0) 20544 break; 20545 20546 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 20547 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 20548 20549 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 20550 rgn23_data + offset, 20551 mb->un.varDmp.word_cnt); 20552 offset += mb->un.varDmp.word_cnt; 20553 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 20554 20555 mempool_free(pmb, phba->mbox_mem_pool); 20556 return offset; 20557 } 20558 20559 /** 20560 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 20561 * @phba: pointer to lpfc hba data structure. 20562 * @rgn23_data: pointer to configure region 23 data. 20563 * 20564 * This function gets SLI4 port configure region 23 data through memory dump 20565 * mailbox command. When it successfully retrieves data, the size of the data 20566 * will be returned, otherwise, 0 will be returned. 20567 **/ 20568 static uint32_t 20569 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20570 { 20571 LPFC_MBOXQ_t *mboxq = NULL; 20572 struct lpfc_dmabuf *mp = NULL; 20573 struct lpfc_mqe *mqe; 20574 uint32_t data_length = 0; 20575 int rc; 20576 20577 if (!rgn23_data) 20578 return 0; 20579 20580 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20581 if (!mboxq) { 20582 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20583 "3105 failed to allocate mailbox memory\n"); 20584 return 0; 20585 } 20586 20587 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 20588 goto out; 20589 mqe = &mboxq->u.mqe; 20590 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 20591 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 20592 if (rc) 20593 goto out; 20594 data_length = mqe->un.mb_words[5]; 20595 if (data_length == 0) 20596 goto out; 20597 if (data_length > DMP_RGN23_SIZE) { 20598 data_length = 0; 20599 goto out; 20600 } 20601 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 20602 out: 20603 mempool_free(mboxq, phba->mbox_mem_pool); 20604 if (mp) { 20605 lpfc_mbuf_free(phba, mp->virt, mp->phys); 20606 kfree(mp); 20607 } 20608 return data_length; 20609 } 20610 20611 /** 20612 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 20613 * @phba: pointer to lpfc hba data structure. 20614 * 20615 * This function read region 23 and parse TLV for port status to 20616 * decide if the user disaled the port. If the TLV indicates the 20617 * port is disabled, the hba_flag is set accordingly. 20618 **/ 20619 void 20620 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 20621 { 20622 uint8_t *rgn23_data = NULL; 20623 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 20624 uint32_t offset = 0; 20625 20626 /* Get adapter Region 23 data */ 20627 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 20628 if (!rgn23_data) 20629 goto out; 20630 20631 if (phba->sli_rev < LPFC_SLI_REV4) 20632 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 20633 else { 20634 if_type = bf_get(lpfc_sli_intf_if_type, 20635 &phba->sli4_hba.sli_intf); 20636 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 20637 goto out; 20638 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 20639 } 20640 20641 if (!data_size) 20642 goto out; 20643 20644 /* Check the region signature first */ 20645 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 20646 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20647 "2619 Config region 23 has bad signature\n"); 20648 goto out; 20649 } 20650 offset += 4; 20651 20652 /* Check the data structure version */ 20653 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 20654 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20655 "2620 Config region 23 has bad version\n"); 20656 goto out; 20657 } 20658 offset += 4; 20659 20660 /* Parse TLV entries in the region */ 20661 while (offset < data_size) { 20662 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 20663 break; 20664 /* 20665 * If the TLV is not driver specific TLV or driver id is 20666 * not linux driver id, skip the record. 20667 */ 20668 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 20669 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 20670 (rgn23_data[offset + 3] != 0)) { 20671 offset += rgn23_data[offset + 1] * 4 + 4; 20672 continue; 20673 } 20674 20675 /* Driver found a driver specific TLV in the config region */ 20676 sub_tlv_len = rgn23_data[offset + 1] * 4; 20677 offset += 4; 20678 tlv_offset = 0; 20679 20680 /* 20681 * Search for configured port state sub-TLV. 20682 */ 20683 while ((offset < data_size) && 20684 (tlv_offset < sub_tlv_len)) { 20685 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 20686 offset += 4; 20687 tlv_offset += 4; 20688 break; 20689 } 20690 if (rgn23_data[offset] != PORT_STE_TYPE) { 20691 offset += rgn23_data[offset + 1] * 4 + 4; 20692 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 20693 continue; 20694 } 20695 20696 /* This HBA contains PORT_STE configured */ 20697 if (!rgn23_data[offset + 2]) 20698 phba->hba_flag |= LINK_DISABLED; 20699 20700 goto out; 20701 } 20702 } 20703 20704 out: 20705 kfree(rgn23_data); 20706 return; 20707 } 20708 20709 /** 20710 * lpfc_log_fw_write_cmpl - logs firmware write completion status 20711 * @phba: pointer to lpfc hba data structure 20712 * @shdr_status: wr_object rsp's status field 20713 * @shdr_add_status: wr_object rsp's add_status field 20714 * @shdr_add_status_2: wr_object rsp's add_status_2 field 20715 * @shdr_change_status: wr_object rsp's change_status field 20716 * @shdr_csf: wr_object rsp's csf bit 20717 * 20718 * This routine is intended to be called after a firmware write completes. 20719 * It will log next action items to be performed by the user to instantiate 20720 * the newly downloaded firmware or reason for incompatibility. 20721 **/ 20722 static void 20723 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status, 20724 u32 shdr_add_status, u32 shdr_add_status_2, 20725 u32 shdr_change_status, u32 shdr_csf) 20726 { 20727 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20728 "4198 %s: flash_id x%02x, asic_rev x%02x, " 20729 "status x%02x, add_status x%02x, add_status_2 x%02x, " 20730 "change_status x%02x, csf %01x\n", __func__, 20731 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev, 20732 shdr_status, shdr_add_status, shdr_add_status_2, 20733 shdr_change_status, shdr_csf); 20734 20735 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) { 20736 switch (shdr_add_status_2) { 20737 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH: 20738 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20739 "4199 Firmware write failed: " 20740 "image incompatible with flash x%02x\n", 20741 phba->sli4_hba.flash_id); 20742 break; 20743 case LPFC_ADD_STATUS_2_INCORRECT_ASIC: 20744 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20745 "4200 Firmware write failed: " 20746 "image incompatible with ASIC " 20747 "architecture x%02x\n", 20748 phba->sli4_hba.asic_rev); 20749 break; 20750 default: 20751 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20752 "4210 Firmware write failed: " 20753 "add_status_2 x%02x\n", 20754 shdr_add_status_2); 20755 break; 20756 } 20757 } else if (!shdr_status && !shdr_add_status) { 20758 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20759 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20760 if (shdr_csf) 20761 shdr_change_status = 20762 LPFC_CHANGE_STATUS_PCI_RESET; 20763 } 20764 20765 switch (shdr_change_status) { 20766 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20767 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20768 "3198 Firmware write complete: System " 20769 "reboot required to instantiate\n"); 20770 break; 20771 case (LPFC_CHANGE_STATUS_FW_RESET): 20772 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20773 "3199 Firmware write complete: " 20774 "Firmware reset required to " 20775 "instantiate\n"); 20776 break; 20777 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20778 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20779 "3200 Firmware write complete: Port " 20780 "Migration or PCI Reset required to " 20781 "instantiate\n"); 20782 break; 20783 case (LPFC_CHANGE_STATUS_PCI_RESET): 20784 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20785 "3201 Firmware write complete: PCI " 20786 "Reset required to instantiate\n"); 20787 break; 20788 default: 20789 break; 20790 } 20791 } 20792 } 20793 20794 /** 20795 * lpfc_wr_object - write an object to the firmware 20796 * @phba: HBA structure that indicates port to create a queue on. 20797 * @dmabuf_list: list of dmabufs to write to the port. 20798 * @size: the total byte value of the objects to write to the port. 20799 * @offset: the current offset to be used to start the transfer. 20800 * 20801 * This routine will create a wr_object mailbox command to send to the port. 20802 * the mailbox command will be constructed using the dma buffers described in 20803 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20804 * BDEs that the imbedded mailbox can support. The @offset variable will be 20805 * used to indicate the starting offset of the transfer and will also return 20806 * the offset after the write object mailbox has completed. @size is used to 20807 * determine the end of the object and whether the eof bit should be set. 20808 * 20809 * Return 0 is successful and offset will contain the the new offset to use 20810 * for the next write. 20811 * Return negative value for error cases. 20812 **/ 20813 int 20814 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20815 uint32_t size, uint32_t *offset) 20816 { 20817 struct lpfc_mbx_wr_object *wr_object; 20818 LPFC_MBOXQ_t *mbox; 20819 int rc = 0, i = 0; 20820 uint32_t shdr_status, shdr_add_status, shdr_add_status_2; 20821 uint32_t shdr_change_status = 0, shdr_csf = 0; 20822 uint32_t mbox_tmo; 20823 struct lpfc_dmabuf *dmabuf; 20824 uint32_t written = 0; 20825 bool check_change_status = false; 20826 20827 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20828 if (!mbox) 20829 return -ENOMEM; 20830 20831 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20832 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20833 sizeof(struct lpfc_mbx_wr_object) - 20834 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20835 20836 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20837 wr_object->u.request.write_offset = *offset; 20838 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20839 wr_object->u.request.object_name[0] = 20840 cpu_to_le32(wr_object->u.request.object_name[0]); 20841 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20842 list_for_each_entry(dmabuf, dmabuf_list, list) { 20843 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20844 break; 20845 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20846 wr_object->u.request.bde[i].addrHigh = 20847 putPaddrHigh(dmabuf->phys); 20848 if (written + SLI4_PAGE_SIZE >= size) { 20849 wr_object->u.request.bde[i].tus.f.bdeSize = 20850 (size - written); 20851 written += (size - written); 20852 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20853 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20854 check_change_status = true; 20855 } else { 20856 wr_object->u.request.bde[i].tus.f.bdeSize = 20857 SLI4_PAGE_SIZE; 20858 written += SLI4_PAGE_SIZE; 20859 } 20860 i++; 20861 } 20862 wr_object->u.request.bde_count = i; 20863 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20864 if (!phba->sli4_hba.intr_enable) 20865 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20866 else { 20867 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20868 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20869 } 20870 /* The IOCTL status is embedded in the mailbox subheader. */ 20871 shdr_status = bf_get(lpfc_mbox_hdr_status, 20872 &wr_object->header.cfg_shdr.response); 20873 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20874 &wr_object->header.cfg_shdr.response); 20875 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2, 20876 &wr_object->header.cfg_shdr.response); 20877 if (check_change_status) { 20878 shdr_change_status = bf_get(lpfc_wr_object_change_status, 20879 &wr_object->u.response); 20880 shdr_csf = bf_get(lpfc_wr_object_csf, 20881 &wr_object->u.response); 20882 } 20883 20884 if (!phba->sli4_hba.intr_enable) 20885 mempool_free(mbox, phba->mbox_mem_pool); 20886 else if (rc != MBX_TIMEOUT) 20887 mempool_free(mbox, phba->mbox_mem_pool); 20888 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) { 20889 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20890 "3025 Write Object mailbox failed with " 20891 "status x%x add_status x%x, add_status_2 x%x, " 20892 "mbx status x%x\n", 20893 shdr_status, shdr_add_status, shdr_add_status_2, 20894 rc); 20895 rc = -ENXIO; 20896 *offset = shdr_add_status; 20897 } else { 20898 *offset += wr_object->u.response.actual_write_length; 20899 } 20900 20901 if (rc || check_change_status) 20902 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status, 20903 shdr_add_status_2, shdr_change_status, 20904 shdr_csf); 20905 return rc; 20906 } 20907 20908 /** 20909 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 20910 * @vport: pointer to vport data structure. 20911 * 20912 * This function iterate through the mailboxq and clean up all REG_LOGIN 20913 * and REG_VPI mailbox commands associated with the vport. This function 20914 * is called when driver want to restart discovery of the vport due to 20915 * a Clear Virtual Link event. 20916 **/ 20917 void 20918 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 20919 { 20920 struct lpfc_hba *phba = vport->phba; 20921 LPFC_MBOXQ_t *mb, *nextmb; 20922 struct lpfc_dmabuf *mp; 20923 struct lpfc_nodelist *ndlp; 20924 struct lpfc_nodelist *act_mbx_ndlp = NULL; 20925 LIST_HEAD(mbox_cmd_list); 20926 uint8_t restart_loop; 20927 20928 /* Clean up internally queued mailbox commands with the vport */ 20929 spin_lock_irq(&phba->hbalock); 20930 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 20931 if (mb->vport != vport) 20932 continue; 20933 20934 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20935 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20936 continue; 20937 20938 list_move_tail(&mb->list, &mbox_cmd_list); 20939 } 20940 /* Clean up active mailbox command with the vport */ 20941 mb = phba->sli.mbox_active; 20942 if (mb && (mb->vport == vport)) { 20943 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 20944 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 20945 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20946 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20947 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20948 /* Put reference count for delayed processing */ 20949 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 20950 /* Unregister the RPI when mailbox complete */ 20951 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20952 } 20953 } 20954 /* Cleanup any mailbox completions which are not yet processed */ 20955 do { 20956 restart_loop = 0; 20957 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 20958 /* 20959 * If this mailox is already processed or it is 20960 * for another vport ignore it. 20961 */ 20962 if ((mb->vport != vport) || 20963 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 20964 continue; 20965 20966 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20967 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20968 continue; 20969 20970 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20971 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20972 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20973 /* Unregister the RPI when mailbox complete */ 20974 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20975 restart_loop = 1; 20976 spin_unlock_irq(&phba->hbalock); 20977 spin_lock(&ndlp->lock); 20978 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20979 spin_unlock(&ndlp->lock); 20980 spin_lock_irq(&phba->hbalock); 20981 break; 20982 } 20983 } 20984 } while (restart_loop); 20985 20986 spin_unlock_irq(&phba->hbalock); 20987 20988 /* Release the cleaned-up mailbox commands */ 20989 while (!list_empty(&mbox_cmd_list)) { 20990 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 20991 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20992 mp = (struct lpfc_dmabuf *)(mb->ctx_buf); 20993 if (mp) { 20994 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 20995 kfree(mp); 20996 } 20997 mb->ctx_buf = NULL; 20998 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20999 mb->ctx_ndlp = NULL; 21000 if (ndlp) { 21001 spin_lock(&ndlp->lock); 21002 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21003 spin_unlock(&ndlp->lock); 21004 lpfc_nlp_put(ndlp); 21005 } 21006 } 21007 mempool_free(mb, phba->mbox_mem_pool); 21008 } 21009 21010 /* Release the ndlp with the cleaned-up active mailbox command */ 21011 if (act_mbx_ndlp) { 21012 spin_lock(&act_mbx_ndlp->lock); 21013 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21014 spin_unlock(&act_mbx_ndlp->lock); 21015 lpfc_nlp_put(act_mbx_ndlp); 21016 } 21017 } 21018 21019 /** 21020 * lpfc_drain_txq - Drain the txq 21021 * @phba: Pointer to HBA context object. 21022 * 21023 * This function attempt to submit IOCBs on the txq 21024 * to the adapter. For SLI4 adapters, the txq contains 21025 * ELS IOCBs that have been deferred because the there 21026 * are no SGLs. This congestion can occur with large 21027 * vport counts during node discovery. 21028 **/ 21029 21030 uint32_t 21031 lpfc_drain_txq(struct lpfc_hba *phba) 21032 { 21033 LIST_HEAD(completions); 21034 struct lpfc_sli_ring *pring; 21035 struct lpfc_iocbq *piocbq = NULL; 21036 unsigned long iflags = 0; 21037 char *fail_msg = NULL; 21038 struct lpfc_sglq *sglq; 21039 union lpfc_wqe128 wqe; 21040 uint32_t txq_cnt = 0; 21041 struct lpfc_queue *wq; 21042 21043 if (phba->link_flag & LS_MDS_LOOPBACK) { 21044 /* MDS WQE are posted only to first WQ*/ 21045 wq = phba->sli4_hba.hdwq[0].io_wq; 21046 if (unlikely(!wq)) 21047 return 0; 21048 pring = wq->pring; 21049 } else { 21050 wq = phba->sli4_hba.els_wq; 21051 if (unlikely(!wq)) 21052 return 0; 21053 pring = lpfc_phba_elsring(phba); 21054 } 21055 21056 if (unlikely(!pring) || list_empty(&pring->txq)) 21057 return 0; 21058 21059 spin_lock_irqsave(&pring->ring_lock, iflags); 21060 list_for_each_entry(piocbq, &pring->txq, list) { 21061 txq_cnt++; 21062 } 21063 21064 if (txq_cnt > pring->txq_max) 21065 pring->txq_max = txq_cnt; 21066 21067 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21068 21069 while (!list_empty(&pring->txq)) { 21070 spin_lock_irqsave(&pring->ring_lock, iflags); 21071 21072 piocbq = lpfc_sli_ringtx_get(phba, pring); 21073 if (!piocbq) { 21074 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21075 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21076 "2823 txq empty and txq_cnt is %d\n ", 21077 txq_cnt); 21078 break; 21079 } 21080 sglq = __lpfc_sli_get_els_sglq(phba, piocbq); 21081 if (!sglq) { 21082 __lpfc_sli_ringtx_put(phba, pring, piocbq); 21083 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21084 break; 21085 } 21086 txq_cnt--; 21087 21088 /* The xri and iocb resources secured, 21089 * attempt to issue request 21090 */ 21091 piocbq->sli4_lxritag = sglq->sli4_lxritag; 21092 piocbq->sli4_xritag = sglq->sli4_xritag; 21093 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 21094 fail_msg = "to convert bpl to sgl"; 21095 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 21096 fail_msg = "to convert iocb to wqe"; 21097 else if (lpfc_sli4_wq_put(wq, &wqe)) 21098 fail_msg = " - Wq is full"; 21099 else 21100 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 21101 21102 if (fail_msg) { 21103 /* Failed means we can't issue and need to cancel */ 21104 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21105 "2822 IOCB failed %s iotag 0x%x " 21106 "xri 0x%x\n", 21107 fail_msg, 21108 piocbq->iotag, piocbq->sli4_xritag); 21109 list_add_tail(&piocbq->list, &completions); 21110 } 21111 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21112 } 21113 21114 /* Cancel all the IOCBs that cannot be issued */ 21115 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 21116 IOERR_SLI_ABORTED); 21117 21118 return txq_cnt; 21119 } 21120 21121 /** 21122 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 21123 * @phba: Pointer to HBA context object. 21124 * @pwqeq: Pointer to command WQE. 21125 * @sglq: Pointer to the scatter gather queue object. 21126 * 21127 * This routine converts the bpl or bde that is in the WQE 21128 * to a sgl list for the sli4 hardware. The physical address 21129 * of the bpl/bde is converted back to a virtual address. 21130 * If the WQE contains a BPL then the list of BDE's is 21131 * converted to sli4_sge's. If the WQE contains a single 21132 * BDE then it is converted to a single sli_sge. 21133 * The WQE is still in cpu endianness so the contents of 21134 * the bpl can be used without byte swapping. 21135 * 21136 * Returns valid XRI = Success, NO_XRI = Failure. 21137 */ 21138 static uint16_t 21139 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 21140 struct lpfc_sglq *sglq) 21141 { 21142 uint16_t xritag = NO_XRI; 21143 struct ulp_bde64 *bpl = NULL; 21144 struct ulp_bde64 bde; 21145 struct sli4_sge *sgl = NULL; 21146 struct lpfc_dmabuf *dmabuf; 21147 union lpfc_wqe128 *wqe; 21148 int numBdes = 0; 21149 int i = 0; 21150 uint32_t offset = 0; /* accumulated offset in the sg request list */ 21151 int inbound = 0; /* number of sg reply entries inbound from firmware */ 21152 uint32_t cmd; 21153 21154 if (!pwqeq || !sglq) 21155 return xritag; 21156 21157 sgl = (struct sli4_sge *)sglq->sgl; 21158 wqe = &pwqeq->wqe; 21159 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 21160 21161 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 21162 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 21163 return sglq->sli4_xritag; 21164 numBdes = pwqeq->rsvd2; 21165 if (numBdes) { 21166 /* The addrHigh and addrLow fields within the WQE 21167 * have not been byteswapped yet so there is no 21168 * need to swap them back. 21169 */ 21170 if (pwqeq->context3) 21171 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 21172 else 21173 return xritag; 21174 21175 bpl = (struct ulp_bde64 *)dmabuf->virt; 21176 if (!bpl) 21177 return xritag; 21178 21179 for (i = 0; i < numBdes; i++) { 21180 /* Should already be byte swapped. */ 21181 sgl->addr_hi = bpl->addrHigh; 21182 sgl->addr_lo = bpl->addrLow; 21183 21184 sgl->word2 = le32_to_cpu(sgl->word2); 21185 if ((i+1) == numBdes) 21186 bf_set(lpfc_sli4_sge_last, sgl, 1); 21187 else 21188 bf_set(lpfc_sli4_sge_last, sgl, 0); 21189 /* swap the size field back to the cpu so we 21190 * can assign it to the sgl. 21191 */ 21192 bde.tus.w = le32_to_cpu(bpl->tus.w); 21193 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 21194 /* The offsets in the sgl need to be accumulated 21195 * separately for the request and reply lists. 21196 * The request is always first, the reply follows. 21197 */ 21198 switch (cmd) { 21199 case CMD_GEN_REQUEST64_WQE: 21200 /* add up the reply sg entries */ 21201 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 21202 inbound++; 21203 /* first inbound? reset the offset */ 21204 if (inbound == 1) 21205 offset = 0; 21206 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21207 bf_set(lpfc_sli4_sge_type, sgl, 21208 LPFC_SGE_TYPE_DATA); 21209 offset += bde.tus.f.bdeSize; 21210 break; 21211 case CMD_FCP_TRSP64_WQE: 21212 bf_set(lpfc_sli4_sge_offset, sgl, 0); 21213 bf_set(lpfc_sli4_sge_type, sgl, 21214 LPFC_SGE_TYPE_DATA); 21215 break; 21216 case CMD_FCP_TSEND64_WQE: 21217 case CMD_FCP_TRECEIVE64_WQE: 21218 bf_set(lpfc_sli4_sge_type, sgl, 21219 bpl->tus.f.bdeFlags); 21220 if (i < 3) 21221 offset = 0; 21222 else 21223 offset += bde.tus.f.bdeSize; 21224 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21225 break; 21226 } 21227 sgl->word2 = cpu_to_le32(sgl->word2); 21228 bpl++; 21229 sgl++; 21230 } 21231 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 21232 /* The addrHigh and addrLow fields of the BDE have not 21233 * been byteswapped yet so they need to be swapped 21234 * before putting them in the sgl. 21235 */ 21236 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 21237 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 21238 sgl->word2 = le32_to_cpu(sgl->word2); 21239 bf_set(lpfc_sli4_sge_last, sgl, 1); 21240 sgl->word2 = cpu_to_le32(sgl->word2); 21241 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 21242 } 21243 return sglq->sli4_xritag; 21244 } 21245 21246 /** 21247 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 21248 * @phba: Pointer to HBA context object. 21249 * @qp: Pointer to HDW queue. 21250 * @pwqe: Pointer to command WQE. 21251 **/ 21252 int 21253 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21254 struct lpfc_iocbq *pwqe) 21255 { 21256 union lpfc_wqe128 *wqe = &pwqe->wqe; 21257 struct lpfc_async_xchg_ctx *ctxp; 21258 struct lpfc_queue *wq; 21259 struct lpfc_sglq *sglq; 21260 struct lpfc_sli_ring *pring; 21261 unsigned long iflags; 21262 uint32_t ret = 0; 21263 21264 /* NVME_LS and NVME_LS ABTS requests. */ 21265 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { 21266 pring = phba->sli4_hba.nvmels_wq->pring; 21267 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21268 qp, wq_access); 21269 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 21270 if (!sglq) { 21271 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21272 return WQE_BUSY; 21273 } 21274 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21275 pwqe->sli4_xritag = sglq->sli4_xritag; 21276 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 21277 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21278 return WQE_ERROR; 21279 } 21280 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21281 pwqe->sli4_xritag); 21282 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 21283 if (ret) { 21284 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21285 return ret; 21286 } 21287 21288 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21289 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21290 21291 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21292 return 0; 21293 } 21294 21295 /* NVME_FCREQ and NVME_ABTS requests */ 21296 if (pwqe->iocb_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) { 21297 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21298 wq = qp->io_wq; 21299 pring = wq->pring; 21300 21301 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21302 21303 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21304 qp, wq_access); 21305 ret = lpfc_sli4_wq_put(wq, wqe); 21306 if (ret) { 21307 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21308 return ret; 21309 } 21310 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21311 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21312 21313 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21314 return 0; 21315 } 21316 21317 /* NVMET requests */ 21318 if (pwqe->iocb_flag & LPFC_IO_NVMET) { 21319 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21320 wq = qp->io_wq; 21321 pring = wq->pring; 21322 21323 ctxp = pwqe->context2; 21324 sglq = ctxp->ctxbuf->sglq; 21325 if (pwqe->sli4_xritag == NO_XRI) { 21326 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21327 pwqe->sli4_xritag = sglq->sli4_xritag; 21328 } 21329 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21330 pwqe->sli4_xritag); 21331 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21332 21333 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21334 qp, wq_access); 21335 ret = lpfc_sli4_wq_put(wq, wqe); 21336 if (ret) { 21337 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21338 return ret; 21339 } 21340 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21341 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21342 21343 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21344 return 0; 21345 } 21346 return WQE_ERROR; 21347 } 21348 21349 /** 21350 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 21351 * @phba: Pointer to HBA context object. 21352 * @cmdiocb: Pointer to driver command iocb object. 21353 * @cmpl: completion function. 21354 * 21355 * Fill the appropriate fields for the abort WQE and call 21356 * internal routine lpfc_sli4_issue_wqe to send the WQE 21357 * This function is called with hbalock held and no ring_lock held. 21358 * 21359 * RETURNS 0 - SUCCESS 21360 **/ 21361 21362 int 21363 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 21364 void *cmpl) 21365 { 21366 struct lpfc_vport *vport = cmdiocb->vport; 21367 struct lpfc_iocbq *abtsiocb = NULL; 21368 union lpfc_wqe128 *abtswqe; 21369 struct lpfc_io_buf *lpfc_cmd; 21370 int retval = IOCB_ERROR; 21371 u16 xritag = cmdiocb->sli4_xritag; 21372 21373 /* 21374 * The scsi command can not be in txq and it is in flight because the 21375 * pCmd is still pointing at the SCSI command we have to abort. There 21376 * is no need to search the txcmplq. Just send an abort to the FW. 21377 */ 21378 21379 abtsiocb = __lpfc_sli_get_iocbq(phba); 21380 if (!abtsiocb) 21381 return WQE_NORESOURCE; 21382 21383 /* Indicate the IO is being aborted by the driver. */ 21384 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 21385 21386 abtswqe = &abtsiocb->wqe; 21387 memset(abtswqe, 0, sizeof(*abtswqe)); 21388 21389 if (!lpfc_is_link_up(phba)) 21390 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 21391 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 21392 abtswqe->abort_cmd.rsrvd5 = 0; 21393 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 21394 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 21395 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 21396 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 21397 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 21398 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 21399 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 21400 21401 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 21402 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 21403 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 21404 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 21405 abtsiocb->iocb_flag |= LPFC_IO_FCP; 21406 if (cmdiocb->iocb_flag & LPFC_IO_NVME) 21407 abtsiocb->iocb_flag |= LPFC_IO_NVME; 21408 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 21409 abtsiocb->iocb_flag |= LPFC_IO_FOF; 21410 abtsiocb->vport = vport; 21411 abtsiocb->wqe_cmpl = cmpl; 21412 21413 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 21414 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 21415 21416 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21417 "0359 Abort xri x%x, original iotag x%x, " 21418 "abort cmd iotag x%x retval x%x\n", 21419 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 21420 21421 if (retval) { 21422 cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED; 21423 __lpfc_sli_release_iocbq(phba, abtsiocb); 21424 } 21425 21426 return retval; 21427 } 21428 21429 #ifdef LPFC_MXP_STAT 21430 /** 21431 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 21432 * @phba: pointer to lpfc hba data structure. 21433 * @hwqid: belong to which HWQ. 21434 * 21435 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 21436 * 15 seconds after a test case is running. 21437 * 21438 * The user should call lpfc_debugfs_multixripools_write before running a test 21439 * case to clear stat_snapshot_taken. Then the user starts a test case. During 21440 * test case is running, stat_snapshot_taken is incremented by 1 every time when 21441 * this routine is called from heartbeat timer. When stat_snapshot_taken is 21442 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 21443 **/ 21444 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 21445 { 21446 struct lpfc_sli4_hdw_queue *qp; 21447 struct lpfc_multixri_pool *multixri_pool; 21448 struct lpfc_pvt_pool *pvt_pool; 21449 struct lpfc_pbl_pool *pbl_pool; 21450 u32 txcmplq_cnt; 21451 21452 qp = &phba->sli4_hba.hdwq[hwqid]; 21453 multixri_pool = qp->p_multixri_pool; 21454 if (!multixri_pool) 21455 return; 21456 21457 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 21458 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21459 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21460 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21461 21462 multixri_pool->stat_pbl_count = pbl_pool->count; 21463 multixri_pool->stat_pvt_count = pvt_pool->count; 21464 multixri_pool->stat_busy_count = txcmplq_cnt; 21465 } 21466 21467 multixri_pool->stat_snapshot_taken++; 21468 } 21469 #endif 21470 21471 /** 21472 * lpfc_adjust_pvt_pool_count - Adjust private pool count 21473 * @phba: pointer to lpfc hba data structure. 21474 * @hwqid: belong to which HWQ. 21475 * 21476 * This routine moves some XRIs from private to public pool when private pool 21477 * is not busy. 21478 **/ 21479 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 21480 { 21481 struct lpfc_multixri_pool *multixri_pool; 21482 u32 io_req_count; 21483 u32 prev_io_req_count; 21484 21485 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21486 if (!multixri_pool) 21487 return; 21488 io_req_count = multixri_pool->io_req_count; 21489 prev_io_req_count = multixri_pool->prev_io_req_count; 21490 21491 if (prev_io_req_count != io_req_count) { 21492 /* Private pool is busy */ 21493 multixri_pool->prev_io_req_count = io_req_count; 21494 } else { 21495 /* Private pool is not busy. 21496 * Move XRIs from private to public pool. 21497 */ 21498 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 21499 } 21500 } 21501 21502 /** 21503 * lpfc_adjust_high_watermark - Adjust high watermark 21504 * @phba: pointer to lpfc hba data structure. 21505 * @hwqid: belong to which HWQ. 21506 * 21507 * This routine sets high watermark as number of outstanding XRIs, 21508 * but make sure the new value is between xri_limit/2 and xri_limit. 21509 **/ 21510 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 21511 { 21512 u32 new_watermark; 21513 u32 watermark_max; 21514 u32 watermark_min; 21515 u32 xri_limit; 21516 u32 txcmplq_cnt; 21517 u32 abts_io_bufs; 21518 struct lpfc_multixri_pool *multixri_pool; 21519 struct lpfc_sli4_hdw_queue *qp; 21520 21521 qp = &phba->sli4_hba.hdwq[hwqid]; 21522 multixri_pool = qp->p_multixri_pool; 21523 if (!multixri_pool) 21524 return; 21525 xri_limit = multixri_pool->xri_limit; 21526 21527 watermark_max = xri_limit; 21528 watermark_min = xri_limit / 2; 21529 21530 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21531 abts_io_bufs = qp->abts_scsi_io_bufs; 21532 abts_io_bufs += qp->abts_nvme_io_bufs; 21533 21534 new_watermark = txcmplq_cnt + abts_io_bufs; 21535 new_watermark = min(watermark_max, new_watermark); 21536 new_watermark = max(watermark_min, new_watermark); 21537 multixri_pool->pvt_pool.high_watermark = new_watermark; 21538 21539 #ifdef LPFC_MXP_STAT 21540 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 21541 new_watermark); 21542 #endif 21543 } 21544 21545 /** 21546 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 21547 * @phba: pointer to lpfc hba data structure. 21548 * @hwqid: belong to which HWQ. 21549 * 21550 * This routine is called from hearbeat timer when pvt_pool is idle. 21551 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 21552 * The first step moves (all - low_watermark) amount of XRIs. 21553 * The second step moves the rest of XRIs. 21554 **/ 21555 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 21556 { 21557 struct lpfc_pbl_pool *pbl_pool; 21558 struct lpfc_pvt_pool *pvt_pool; 21559 struct lpfc_sli4_hdw_queue *qp; 21560 struct lpfc_io_buf *lpfc_ncmd; 21561 struct lpfc_io_buf *lpfc_ncmd_next; 21562 unsigned long iflag; 21563 struct list_head tmp_list; 21564 u32 tmp_count; 21565 21566 qp = &phba->sli4_hba.hdwq[hwqid]; 21567 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21568 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21569 tmp_count = 0; 21570 21571 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 21572 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 21573 21574 if (pvt_pool->count > pvt_pool->low_watermark) { 21575 /* Step 1: move (all - low_watermark) from pvt_pool 21576 * to pbl_pool 21577 */ 21578 21579 /* Move low watermark of bufs from pvt_pool to tmp_list */ 21580 INIT_LIST_HEAD(&tmp_list); 21581 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21582 &pvt_pool->list, list) { 21583 list_move_tail(&lpfc_ncmd->list, &tmp_list); 21584 tmp_count++; 21585 if (tmp_count >= pvt_pool->low_watermark) 21586 break; 21587 } 21588 21589 /* Move all bufs from pvt_pool to pbl_pool */ 21590 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21591 21592 /* Move all bufs from tmp_list to pvt_pool */ 21593 list_splice(&tmp_list, &pvt_pool->list); 21594 21595 pbl_pool->count += (pvt_pool->count - tmp_count); 21596 pvt_pool->count = tmp_count; 21597 } else { 21598 /* Step 2: move the rest from pvt_pool to pbl_pool */ 21599 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21600 pbl_pool->count += pvt_pool->count; 21601 pvt_pool->count = 0; 21602 } 21603 21604 spin_unlock(&pvt_pool->lock); 21605 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21606 } 21607 21608 /** 21609 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21610 * @phba: pointer to lpfc hba data structure 21611 * @qp: pointer to HDW queue 21612 * @pbl_pool: specified public free XRI pool 21613 * @pvt_pool: specified private free XRI pool 21614 * @count: number of XRIs to move 21615 * 21616 * This routine tries to move some free common bufs from the specified pbl_pool 21617 * to the specified pvt_pool. It might move less than count XRIs if there's not 21618 * enough in public pool. 21619 * 21620 * Return: 21621 * true - if XRIs are successfully moved from the specified pbl_pool to the 21622 * specified pvt_pool 21623 * false - if the specified pbl_pool is empty or locked by someone else 21624 **/ 21625 static bool 21626 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21627 struct lpfc_pbl_pool *pbl_pool, 21628 struct lpfc_pvt_pool *pvt_pool, u32 count) 21629 { 21630 struct lpfc_io_buf *lpfc_ncmd; 21631 struct lpfc_io_buf *lpfc_ncmd_next; 21632 unsigned long iflag; 21633 int ret; 21634 21635 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 21636 if (ret) { 21637 if (pbl_pool->count) { 21638 /* Move a batch of XRIs from public to private pool */ 21639 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 21640 list_for_each_entry_safe(lpfc_ncmd, 21641 lpfc_ncmd_next, 21642 &pbl_pool->list, 21643 list) { 21644 list_move_tail(&lpfc_ncmd->list, 21645 &pvt_pool->list); 21646 pvt_pool->count++; 21647 pbl_pool->count--; 21648 count--; 21649 if (count == 0) 21650 break; 21651 } 21652 21653 spin_unlock(&pvt_pool->lock); 21654 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21655 return true; 21656 } 21657 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21658 } 21659 21660 return false; 21661 } 21662 21663 /** 21664 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21665 * @phba: pointer to lpfc hba data structure. 21666 * @hwqid: belong to which HWQ. 21667 * @count: number of XRIs to move 21668 * 21669 * This routine tries to find some free common bufs in one of public pools with 21670 * Round Robin method. The search always starts from local hwqid, then the next 21671 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 21672 * a batch of free common bufs are moved to private pool on hwqid. 21673 * It might move less than count XRIs if there's not enough in public pool. 21674 **/ 21675 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 21676 { 21677 struct lpfc_multixri_pool *multixri_pool; 21678 struct lpfc_multixri_pool *next_multixri_pool; 21679 struct lpfc_pvt_pool *pvt_pool; 21680 struct lpfc_pbl_pool *pbl_pool; 21681 struct lpfc_sli4_hdw_queue *qp; 21682 u32 next_hwqid; 21683 u32 hwq_count; 21684 int ret; 21685 21686 qp = &phba->sli4_hba.hdwq[hwqid]; 21687 multixri_pool = qp->p_multixri_pool; 21688 pvt_pool = &multixri_pool->pvt_pool; 21689 pbl_pool = &multixri_pool->pbl_pool; 21690 21691 /* Check if local pbl_pool is available */ 21692 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 21693 if (ret) { 21694 #ifdef LPFC_MXP_STAT 21695 multixri_pool->local_pbl_hit_count++; 21696 #endif 21697 return; 21698 } 21699 21700 hwq_count = phba->cfg_hdw_queue; 21701 21702 /* Get the next hwqid which was found last time */ 21703 next_hwqid = multixri_pool->rrb_next_hwqid; 21704 21705 do { 21706 /* Go to next hwq */ 21707 next_hwqid = (next_hwqid + 1) % hwq_count; 21708 21709 next_multixri_pool = 21710 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 21711 pbl_pool = &next_multixri_pool->pbl_pool; 21712 21713 /* Check if the public free xri pool is available */ 21714 ret = _lpfc_move_xri_pbl_to_pvt( 21715 phba, qp, pbl_pool, pvt_pool, count); 21716 21717 /* Exit while-loop if success or all hwqid are checked */ 21718 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 21719 21720 /* Starting point for the next time */ 21721 multixri_pool->rrb_next_hwqid = next_hwqid; 21722 21723 if (!ret) { 21724 /* stats: all public pools are empty*/ 21725 multixri_pool->pbl_empty_count++; 21726 } 21727 21728 #ifdef LPFC_MXP_STAT 21729 if (ret) { 21730 if (next_hwqid == hwqid) 21731 multixri_pool->local_pbl_hit_count++; 21732 else 21733 multixri_pool->other_pbl_hit_count++; 21734 } 21735 #endif 21736 } 21737 21738 /** 21739 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 21740 * @phba: pointer to lpfc hba data structure. 21741 * @hwqid: belong to which HWQ. 21742 * 21743 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 21744 * low watermark. 21745 **/ 21746 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 21747 { 21748 struct lpfc_multixri_pool *multixri_pool; 21749 struct lpfc_pvt_pool *pvt_pool; 21750 21751 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21752 pvt_pool = &multixri_pool->pvt_pool; 21753 21754 if (pvt_pool->count < pvt_pool->low_watermark) 21755 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21756 } 21757 21758 /** 21759 * lpfc_release_io_buf - Return one IO buf back to free pool 21760 * @phba: pointer to lpfc hba data structure. 21761 * @lpfc_ncmd: IO buf to be returned. 21762 * @qp: belong to which HWQ. 21763 * 21764 * This routine returns one IO buf back to free pool. If this is an urgent IO, 21765 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 21766 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 21767 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 21768 * lpfc_io_buf_list_put. 21769 **/ 21770 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21771 struct lpfc_sli4_hdw_queue *qp) 21772 { 21773 unsigned long iflag; 21774 struct lpfc_pbl_pool *pbl_pool; 21775 struct lpfc_pvt_pool *pvt_pool; 21776 struct lpfc_epd_pool *epd_pool; 21777 u32 txcmplq_cnt; 21778 u32 xri_owned; 21779 u32 xri_limit; 21780 u32 abts_io_bufs; 21781 21782 /* MUST zero fields if buffer is reused by another protocol */ 21783 lpfc_ncmd->nvmeCmd = NULL; 21784 lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL; 21785 lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL; 21786 21787 if (phba->cfg_xpsgl && !phba->nvmet_support && 21788 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21789 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21790 21791 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21792 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21793 21794 if (phba->cfg_xri_rebalancing) { 21795 if (lpfc_ncmd->expedite) { 21796 /* Return to expedite pool */ 21797 epd_pool = &phba->epd_pool; 21798 spin_lock_irqsave(&epd_pool->lock, iflag); 21799 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21800 epd_pool->count++; 21801 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21802 return; 21803 } 21804 21805 /* Avoid invalid access if an IO sneaks in and is being rejected 21806 * just _after_ xri pools are destroyed in lpfc_offline. 21807 * Nothing much can be done at this point. 21808 */ 21809 if (!qp->p_multixri_pool) 21810 return; 21811 21812 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21813 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21814 21815 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21816 abts_io_bufs = qp->abts_scsi_io_bufs; 21817 abts_io_bufs += qp->abts_nvme_io_bufs; 21818 21819 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21820 xri_limit = qp->p_multixri_pool->xri_limit; 21821 21822 #ifdef LPFC_MXP_STAT 21823 if (xri_owned <= xri_limit) 21824 qp->p_multixri_pool->below_limit_count++; 21825 else 21826 qp->p_multixri_pool->above_limit_count++; 21827 #endif 21828 21829 /* XRI goes to either public or private free xri pool 21830 * based on watermark and xri_limit 21831 */ 21832 if ((pvt_pool->count < pvt_pool->low_watermark) || 21833 (xri_owned < xri_limit && 21834 pvt_pool->count < pvt_pool->high_watermark)) { 21835 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21836 qp, free_pvt_pool); 21837 list_add_tail(&lpfc_ncmd->list, 21838 &pvt_pool->list); 21839 pvt_pool->count++; 21840 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21841 } else { 21842 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21843 qp, free_pub_pool); 21844 list_add_tail(&lpfc_ncmd->list, 21845 &pbl_pool->list); 21846 pbl_pool->count++; 21847 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21848 } 21849 } else { 21850 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21851 qp, free_xri); 21852 list_add_tail(&lpfc_ncmd->list, 21853 &qp->lpfc_io_buf_list_put); 21854 qp->put_io_bufs++; 21855 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21856 iflag); 21857 } 21858 } 21859 21860 /** 21861 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21862 * @phba: pointer to lpfc hba data structure. 21863 * @qp: pointer to HDW queue 21864 * @pvt_pool: pointer to private pool data structure. 21865 * @ndlp: pointer to lpfc nodelist data structure. 21866 * 21867 * This routine tries to get one free IO buf from private pool. 21868 * 21869 * Return: 21870 * pointer to one free IO buf - if private pool is not empty 21871 * NULL - if private pool is empty 21872 **/ 21873 static struct lpfc_io_buf * 21874 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21875 struct lpfc_sli4_hdw_queue *qp, 21876 struct lpfc_pvt_pool *pvt_pool, 21877 struct lpfc_nodelist *ndlp) 21878 { 21879 struct lpfc_io_buf *lpfc_ncmd; 21880 struct lpfc_io_buf *lpfc_ncmd_next; 21881 unsigned long iflag; 21882 21883 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21884 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21885 &pvt_pool->list, list) { 21886 if (lpfc_test_rrq_active( 21887 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21888 continue; 21889 list_del(&lpfc_ncmd->list); 21890 pvt_pool->count--; 21891 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21892 return lpfc_ncmd; 21893 } 21894 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21895 21896 return NULL; 21897 } 21898 21899 /** 21900 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 21901 * @phba: pointer to lpfc hba data structure. 21902 * 21903 * This routine tries to get one free IO buf from expedite pool. 21904 * 21905 * Return: 21906 * pointer to one free IO buf - if expedite pool is not empty 21907 * NULL - if expedite pool is empty 21908 **/ 21909 static struct lpfc_io_buf * 21910 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 21911 { 21912 struct lpfc_io_buf *lpfc_ncmd; 21913 struct lpfc_io_buf *lpfc_ncmd_next; 21914 unsigned long iflag; 21915 struct lpfc_epd_pool *epd_pool; 21916 21917 epd_pool = &phba->epd_pool; 21918 lpfc_ncmd = NULL; 21919 21920 spin_lock_irqsave(&epd_pool->lock, iflag); 21921 if (epd_pool->count > 0) { 21922 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21923 &epd_pool->list, list) { 21924 list_del(&lpfc_ncmd->list); 21925 epd_pool->count--; 21926 break; 21927 } 21928 } 21929 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21930 21931 return lpfc_ncmd; 21932 } 21933 21934 /** 21935 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 21936 * @phba: pointer to lpfc hba data structure. 21937 * @ndlp: pointer to lpfc nodelist data structure. 21938 * @hwqid: belong to which HWQ 21939 * @expedite: 1 means this request is urgent. 21940 * 21941 * This routine will do the following actions and then return a pointer to 21942 * one free IO buf. 21943 * 21944 * 1. If private free xri count is empty, move some XRIs from public to 21945 * private pool. 21946 * 2. Get one XRI from private free xri pool. 21947 * 3. If we fail to get one from pvt_pool and this is an expedite request, 21948 * get one free xri from expedite pool. 21949 * 21950 * Note: ndlp is only used on SCSI side for RRQ testing. 21951 * The caller should pass NULL for ndlp on NVME side. 21952 * 21953 * Return: 21954 * pointer to one free IO buf - if private pool is not empty 21955 * NULL - if private pool is empty 21956 **/ 21957 static struct lpfc_io_buf * 21958 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 21959 struct lpfc_nodelist *ndlp, 21960 int hwqid, int expedite) 21961 { 21962 struct lpfc_sli4_hdw_queue *qp; 21963 struct lpfc_multixri_pool *multixri_pool; 21964 struct lpfc_pvt_pool *pvt_pool; 21965 struct lpfc_io_buf *lpfc_ncmd; 21966 21967 qp = &phba->sli4_hba.hdwq[hwqid]; 21968 lpfc_ncmd = NULL; 21969 multixri_pool = qp->p_multixri_pool; 21970 pvt_pool = &multixri_pool->pvt_pool; 21971 multixri_pool->io_req_count++; 21972 21973 /* If pvt_pool is empty, move some XRIs from public to private pool */ 21974 if (pvt_pool->count == 0) 21975 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21976 21977 /* Get one XRI from private free xri pool */ 21978 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 21979 21980 if (lpfc_ncmd) { 21981 lpfc_ncmd->hdwq = qp; 21982 lpfc_ncmd->hdwq_no = hwqid; 21983 } else if (expedite) { 21984 /* If we fail to get one from pvt_pool and this is an expedite 21985 * request, get one free xri from expedite pool. 21986 */ 21987 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 21988 } 21989 21990 return lpfc_ncmd; 21991 } 21992 21993 static inline struct lpfc_io_buf * 21994 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 21995 { 21996 struct lpfc_sli4_hdw_queue *qp; 21997 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 21998 21999 qp = &phba->sli4_hba.hdwq[idx]; 22000 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 22001 &qp->lpfc_io_buf_list_get, list) { 22002 if (lpfc_test_rrq_active(phba, ndlp, 22003 lpfc_cmd->cur_iocbq.sli4_lxritag)) 22004 continue; 22005 22006 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 22007 continue; 22008 22009 list_del_init(&lpfc_cmd->list); 22010 qp->get_io_bufs--; 22011 lpfc_cmd->hdwq = qp; 22012 lpfc_cmd->hdwq_no = idx; 22013 return lpfc_cmd; 22014 } 22015 return NULL; 22016 } 22017 22018 /** 22019 * lpfc_get_io_buf - Get one IO buffer from free pool 22020 * @phba: The HBA for which this call is being executed. 22021 * @ndlp: pointer to lpfc nodelist data structure. 22022 * @hwqid: belong to which HWQ 22023 * @expedite: 1 means this request is urgent. 22024 * 22025 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 22026 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 22027 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 22028 * 22029 * Note: ndlp is only used on SCSI side for RRQ testing. 22030 * The caller should pass NULL for ndlp on NVME side. 22031 * 22032 * Return codes: 22033 * NULL - Error 22034 * Pointer to lpfc_io_buf - Success 22035 **/ 22036 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 22037 struct lpfc_nodelist *ndlp, 22038 u32 hwqid, int expedite) 22039 { 22040 struct lpfc_sli4_hdw_queue *qp; 22041 unsigned long iflag; 22042 struct lpfc_io_buf *lpfc_cmd; 22043 22044 qp = &phba->sli4_hba.hdwq[hwqid]; 22045 lpfc_cmd = NULL; 22046 22047 if (phba->cfg_xri_rebalancing) 22048 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 22049 phba, ndlp, hwqid, expedite); 22050 else { 22051 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 22052 qp, alloc_xri_get); 22053 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 22054 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22055 if (!lpfc_cmd) { 22056 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 22057 qp, alloc_xri_put); 22058 list_splice(&qp->lpfc_io_buf_list_put, 22059 &qp->lpfc_io_buf_list_get); 22060 qp->get_io_bufs += qp->put_io_bufs; 22061 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 22062 qp->put_io_bufs = 0; 22063 spin_unlock(&qp->io_buf_list_put_lock); 22064 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 22065 expedite) 22066 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22067 } 22068 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 22069 } 22070 22071 return lpfc_cmd; 22072 } 22073 22074 /** 22075 * lpfc_read_object - Retrieve object data from HBA 22076 * @phba: The HBA for which this call is being executed. 22077 * @rdobject: Pathname of object data we want to read. 22078 * @datap: Pointer to where data will be copied to. 22079 * @datasz: size of data area 22080 * 22081 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less. 22082 * The data will be truncated if datasz is not large enough. 22083 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0. 22084 * Returns the actual bytes read from the object. 22085 */ 22086 int 22087 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap, 22088 uint32_t datasz) 22089 { 22090 struct lpfc_mbx_read_object *read_object; 22091 LPFC_MBOXQ_t *mbox; 22092 int rc, length, eof, j, byte_cnt = 0; 22093 uint32_t shdr_status, shdr_add_status; 22094 union lpfc_sli4_cfg_shdr *shdr; 22095 struct lpfc_dmabuf *pcmd; 22096 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0}; 22097 22098 /* sanity check on queue memory */ 22099 if (!datap) 22100 return -ENODEV; 22101 22102 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 22103 if (!mbox) 22104 return -ENOMEM; 22105 length = (sizeof(struct lpfc_mbx_read_object) - 22106 sizeof(struct lpfc_sli4_cfg_mhdr)); 22107 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 22108 LPFC_MBOX_OPCODE_READ_OBJECT, 22109 length, LPFC_SLI4_MBX_EMBED); 22110 read_object = &mbox->u.mqe.un.read_object; 22111 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr; 22112 22113 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0); 22114 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz); 22115 read_object->u.request.rd_object_offset = 0; 22116 read_object->u.request.rd_object_cnt = 1; 22117 22118 memset((void *)read_object->u.request.rd_object_name, 0, 22119 LPFC_OBJ_NAME_SZ); 22120 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject); 22121 for (j = 0; j < strlen(rdobject); j++) 22122 read_object->u.request.rd_object_name[j] = 22123 cpu_to_le32(rd_object_name[j]); 22124 22125 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL); 22126 if (pcmd) 22127 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys); 22128 if (!pcmd || !pcmd->virt) { 22129 kfree(pcmd); 22130 mempool_free(mbox, phba->mbox_mem_pool); 22131 return -ENOMEM; 22132 } 22133 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE); 22134 read_object->u.request.rd_object_hbuf[0].pa_lo = 22135 putPaddrLow(pcmd->phys); 22136 read_object->u.request.rd_object_hbuf[0].pa_hi = 22137 putPaddrHigh(pcmd->phys); 22138 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE; 22139 22140 mbox->vport = phba->pport; 22141 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 22142 mbox->ctx_buf = NULL; 22143 mbox->ctx_ndlp = NULL; 22144 22145 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 22146 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 22147 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 22148 22149 if (shdr_status == STATUS_FAILED && 22150 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) { 22151 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22152 "4674 No port cfg file in FW.\n"); 22153 byte_cnt = -ENOENT; 22154 } else if (shdr_status || shdr_add_status || rc) { 22155 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22156 "2625 READ_OBJECT mailbox failed with " 22157 "status x%x add_status x%x, mbx status x%x\n", 22158 shdr_status, shdr_add_status, rc); 22159 byte_cnt = -ENXIO; 22160 } else { 22161 /* Success */ 22162 length = read_object->u.response.rd_object_actual_rlen; 22163 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response); 22164 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT, 22165 "2626 READ_OBJECT Success len %d:%d, EOF %d\n", 22166 length, datasz, eof); 22167 22168 /* Detect the port config file exists but is empty */ 22169 if (!length && eof) { 22170 byte_cnt = 0; 22171 goto exit; 22172 } 22173 22174 byte_cnt = length; 22175 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt); 22176 } 22177 22178 exit: 22179 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys); 22180 kfree(pcmd); 22181 mempool_free(mbox, phba->mbox_mem_pool); 22182 return byte_cnt; 22183 } 22184 22185 /** 22186 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 22187 * @phba: The HBA for which this call is being executed. 22188 * @lpfc_buf: IO buf structure to append the SGL chunk 22189 * 22190 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 22191 * and will allocate an SGL chunk if the pool is empty. 22192 * 22193 * Return codes: 22194 * NULL - Error 22195 * Pointer to sli4_hybrid_sgl - Success 22196 **/ 22197 struct sli4_hybrid_sgl * 22198 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22199 { 22200 struct sli4_hybrid_sgl *list_entry = NULL; 22201 struct sli4_hybrid_sgl *tmp = NULL; 22202 struct sli4_hybrid_sgl *allocated_sgl = NULL; 22203 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22204 struct list_head *buf_list = &hdwq->sgl_list; 22205 unsigned long iflags; 22206 22207 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22208 22209 if (likely(!list_empty(buf_list))) { 22210 /* break off 1 chunk from the sgl_list */ 22211 list_for_each_entry_safe(list_entry, tmp, 22212 buf_list, list_node) { 22213 list_move_tail(&list_entry->list_node, 22214 &lpfc_buf->dma_sgl_xtra_list); 22215 break; 22216 } 22217 } else { 22218 /* allocate more */ 22219 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22220 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22221 cpu_to_node(hdwq->io_wq->chann)); 22222 if (!tmp) { 22223 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22224 "8353 error kmalloc memory for HDWQ " 22225 "%d %s\n", 22226 lpfc_buf->hdwq_no, __func__); 22227 return NULL; 22228 } 22229 22230 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 22231 GFP_ATOMIC, &tmp->dma_phys_sgl); 22232 if (!tmp->dma_sgl) { 22233 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22234 "8354 error pool_alloc memory for HDWQ " 22235 "%d %s\n", 22236 lpfc_buf->hdwq_no, __func__); 22237 kfree(tmp); 22238 return NULL; 22239 } 22240 22241 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22242 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 22243 } 22244 22245 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 22246 struct sli4_hybrid_sgl, 22247 list_node); 22248 22249 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22250 22251 return allocated_sgl; 22252 } 22253 22254 /** 22255 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 22256 * @phba: The HBA for which this call is being executed. 22257 * @lpfc_buf: IO buf structure with the SGL chunk 22258 * 22259 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 22260 * 22261 * Return codes: 22262 * 0 - Success 22263 * -EINVAL - Error 22264 **/ 22265 int 22266 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22267 { 22268 int rc = 0; 22269 struct sli4_hybrid_sgl *list_entry = NULL; 22270 struct sli4_hybrid_sgl *tmp = NULL; 22271 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22272 struct list_head *buf_list = &hdwq->sgl_list; 22273 unsigned long iflags; 22274 22275 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22276 22277 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 22278 list_for_each_entry_safe(list_entry, tmp, 22279 &lpfc_buf->dma_sgl_xtra_list, 22280 list_node) { 22281 list_move_tail(&list_entry->list_node, 22282 buf_list); 22283 } 22284 } else { 22285 rc = -EINVAL; 22286 } 22287 22288 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22289 return rc; 22290 } 22291 22292 /** 22293 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 22294 * @phba: phba object 22295 * @hdwq: hdwq to cleanup sgl buff resources on 22296 * 22297 * This routine frees all SGL chunks of hdwq SGL chunk pool. 22298 * 22299 * Return codes: 22300 * None 22301 **/ 22302 void 22303 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 22304 struct lpfc_sli4_hdw_queue *hdwq) 22305 { 22306 struct list_head *buf_list = &hdwq->sgl_list; 22307 struct sli4_hybrid_sgl *list_entry = NULL; 22308 struct sli4_hybrid_sgl *tmp = NULL; 22309 unsigned long iflags; 22310 22311 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22312 22313 /* Free sgl pool */ 22314 list_for_each_entry_safe(list_entry, tmp, 22315 buf_list, list_node) { 22316 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 22317 list_entry->dma_sgl, 22318 list_entry->dma_phys_sgl); 22319 list_del(&list_entry->list_node); 22320 kfree(list_entry); 22321 } 22322 22323 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22324 } 22325 22326 /** 22327 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 22328 * @phba: The HBA for which this call is being executed. 22329 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 22330 * 22331 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 22332 * and will allocate an CMD/RSP buffer if the pool is empty. 22333 * 22334 * Return codes: 22335 * NULL - Error 22336 * Pointer to fcp_cmd_rsp_buf - Success 22337 **/ 22338 struct fcp_cmd_rsp_buf * 22339 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22340 struct lpfc_io_buf *lpfc_buf) 22341 { 22342 struct fcp_cmd_rsp_buf *list_entry = NULL; 22343 struct fcp_cmd_rsp_buf *tmp = NULL; 22344 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 22345 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22346 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22347 unsigned long iflags; 22348 22349 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22350 22351 if (likely(!list_empty(buf_list))) { 22352 /* break off 1 chunk from the list */ 22353 list_for_each_entry_safe(list_entry, tmp, 22354 buf_list, 22355 list_node) { 22356 list_move_tail(&list_entry->list_node, 22357 &lpfc_buf->dma_cmd_rsp_list); 22358 break; 22359 } 22360 } else { 22361 /* allocate more */ 22362 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22363 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22364 cpu_to_node(hdwq->io_wq->chann)); 22365 if (!tmp) { 22366 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22367 "8355 error kmalloc memory for HDWQ " 22368 "%d %s\n", 22369 lpfc_buf->hdwq_no, __func__); 22370 return NULL; 22371 } 22372 22373 tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool, 22374 GFP_ATOMIC, 22375 &tmp->fcp_cmd_rsp_dma_handle); 22376 22377 if (!tmp->fcp_cmnd) { 22378 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22379 "8356 error pool_alloc memory for HDWQ " 22380 "%d %s\n", 22381 lpfc_buf->hdwq_no, __func__); 22382 kfree(tmp); 22383 return NULL; 22384 } 22385 22386 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 22387 sizeof(struct fcp_cmnd)); 22388 22389 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22390 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 22391 } 22392 22393 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 22394 struct fcp_cmd_rsp_buf, 22395 list_node); 22396 22397 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22398 22399 return allocated_buf; 22400 } 22401 22402 /** 22403 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 22404 * @phba: The HBA for which this call is being executed. 22405 * @lpfc_buf: IO buf structure with the CMD/RSP buf 22406 * 22407 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 22408 * 22409 * Return codes: 22410 * 0 - Success 22411 * -EINVAL - Error 22412 **/ 22413 int 22414 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22415 struct lpfc_io_buf *lpfc_buf) 22416 { 22417 int rc = 0; 22418 struct fcp_cmd_rsp_buf *list_entry = NULL; 22419 struct fcp_cmd_rsp_buf *tmp = NULL; 22420 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22421 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22422 unsigned long iflags; 22423 22424 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22425 22426 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 22427 list_for_each_entry_safe(list_entry, tmp, 22428 &lpfc_buf->dma_cmd_rsp_list, 22429 list_node) { 22430 list_move_tail(&list_entry->list_node, 22431 buf_list); 22432 } 22433 } else { 22434 rc = -EINVAL; 22435 } 22436 22437 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22438 return rc; 22439 } 22440 22441 /** 22442 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 22443 * @phba: phba object 22444 * @hdwq: hdwq to cleanup cmd rsp buff resources on 22445 * 22446 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 22447 * 22448 * Return codes: 22449 * None 22450 **/ 22451 void 22452 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22453 struct lpfc_sli4_hdw_queue *hdwq) 22454 { 22455 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22456 struct fcp_cmd_rsp_buf *list_entry = NULL; 22457 struct fcp_cmd_rsp_buf *tmp = NULL; 22458 unsigned long iflags; 22459 22460 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22461 22462 /* Free cmd_rsp buf pool */ 22463 list_for_each_entry_safe(list_entry, tmp, 22464 buf_list, 22465 list_node) { 22466 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 22467 list_entry->fcp_cmnd, 22468 list_entry->fcp_cmd_rsp_dma_handle); 22469 list_del(&list_entry->list_node); 22470 kfree(list_entry); 22471 } 22472 22473 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22474 } 22475