1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2021 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 #include <linux/crash_dump.h> 39 #ifdef CONFIG_X86 40 #include <asm/set_memory.h> 41 #endif 42 43 #include "lpfc_hw4.h" 44 #include "lpfc_hw.h" 45 #include "lpfc_sli.h" 46 #include "lpfc_sli4.h" 47 #include "lpfc_nl.h" 48 #include "lpfc_disc.h" 49 #include "lpfc.h" 50 #include "lpfc_scsi.h" 51 #include "lpfc_nvme.h" 52 #include "lpfc_crtn.h" 53 #include "lpfc_logmsg.h" 54 #include "lpfc_compat.h" 55 #include "lpfc_debugfs.h" 56 #include "lpfc_vport.h" 57 #include "lpfc_version.h" 58 59 /* There are only four IOCB completion types. */ 60 typedef enum _lpfc_iocb_type { 61 LPFC_UNKNOWN_IOCB, 62 LPFC_UNSOL_IOCB, 63 LPFC_SOL_IOCB, 64 LPFC_ABORT_IOCB 65 } lpfc_iocb_type; 66 67 68 /* Provide function prototypes local to this module. */ 69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 70 uint32_t); 71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint8_t *, uint32_t *); 73 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 74 struct lpfc_iocbq *); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 80 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_queue *eq, 85 struct lpfc_eqe *eqe); 86 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 87 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 88 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 89 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 90 struct lpfc_queue *cq, 91 struct lpfc_cqe *cqe); 92 93 union lpfc_wqe128 lpfc_iread_cmd_template; 94 union lpfc_wqe128 lpfc_iwrite_cmd_template; 95 union lpfc_wqe128 lpfc_icmnd_cmd_template; 96 97 static IOCB_t * 98 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 99 { 100 return &iocbq->iocb; 101 } 102 103 /* Setup WQE templates for IOs */ 104 void lpfc_wqe_cmd_template(void) 105 { 106 union lpfc_wqe128 *wqe; 107 108 /* IREAD template */ 109 wqe = &lpfc_iread_cmd_template; 110 memset(wqe, 0, sizeof(union lpfc_wqe128)); 111 112 /* Word 0, 1, 2 - BDE is variable */ 113 114 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 115 116 /* Word 4 - total_xfer_len is variable */ 117 118 /* Word 5 - is zero */ 119 120 /* Word 6 - ctxt_tag, xri_tag is variable */ 121 122 /* Word 7 */ 123 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 124 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 125 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 126 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 127 128 /* Word 8 - abort_tag is variable */ 129 130 /* Word 9 - reqtag is variable */ 131 132 /* Word 10 - dbde, wqes is variable */ 133 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 134 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 135 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 136 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 137 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 138 139 /* Word 11 - pbde is variable */ 140 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 141 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 142 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 143 144 /* Word 12 - is zero */ 145 146 /* Word 13, 14, 15 - PBDE is variable */ 147 148 /* IWRITE template */ 149 wqe = &lpfc_iwrite_cmd_template; 150 memset(wqe, 0, sizeof(union lpfc_wqe128)); 151 152 /* Word 0, 1, 2 - BDE is variable */ 153 154 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 155 156 /* Word 4 - total_xfer_len is variable */ 157 158 /* Word 5 - initial_xfer_len is variable */ 159 160 /* Word 6 - ctxt_tag, xri_tag is variable */ 161 162 /* Word 7 */ 163 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 164 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 165 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 166 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 167 168 /* Word 8 - abort_tag is variable */ 169 170 /* Word 9 - reqtag is variable */ 171 172 /* Word 10 - dbde, wqes is variable */ 173 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 174 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 175 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 176 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 177 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 178 179 /* Word 11 - pbde is variable */ 180 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 181 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 182 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 183 184 /* Word 12 - is zero */ 185 186 /* Word 13, 14, 15 - PBDE is variable */ 187 188 /* ICMND template */ 189 wqe = &lpfc_icmnd_cmd_template; 190 memset(wqe, 0, sizeof(union lpfc_wqe128)); 191 192 /* Word 0, 1, 2 - BDE is variable */ 193 194 /* Word 3 - payload_offset_len is variable */ 195 196 /* Word 4, 5 - is zero */ 197 198 /* Word 6 - ctxt_tag, xri_tag is variable */ 199 200 /* Word 7 */ 201 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 202 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 203 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 204 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 205 206 /* Word 8 - abort_tag is variable */ 207 208 /* Word 9 - reqtag is variable */ 209 210 /* Word 10 - dbde, wqes is variable */ 211 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 212 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 213 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 214 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 215 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 216 217 /* Word 11 */ 218 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 219 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 220 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 221 222 /* Word 12, 13, 14, 15 - is zero */ 223 } 224 225 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 226 /** 227 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 228 * @srcp: Source memory pointer. 229 * @destp: Destination memory pointer. 230 * @cnt: Number of words required to be copied. 231 * Must be a multiple of sizeof(uint64_t) 232 * 233 * This function is used for copying data between driver memory 234 * and the SLI WQ. This function also changes the endianness 235 * of each word if native endianness is different from SLI 236 * endianness. This function can be called with or without 237 * lock. 238 **/ 239 static void 240 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 241 { 242 uint64_t *src = srcp; 243 uint64_t *dest = destp; 244 int i; 245 246 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 247 *dest++ = *src++; 248 } 249 #else 250 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 251 #endif 252 253 /** 254 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 255 * @q: The Work Queue to operate on. 256 * @wqe: The work Queue Entry to put on the Work queue. 257 * 258 * This routine will copy the contents of @wqe to the next available entry on 259 * the @q. This function will then ring the Work Queue Doorbell to signal the 260 * HBA to start processing the Work Queue Entry. This function returns 0 if 261 * successful. If no entries are available on @q then this function will return 262 * -ENOMEM. 263 * The caller is expected to hold the hbalock when calling this routine. 264 **/ 265 static int 266 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 267 { 268 union lpfc_wqe *temp_wqe; 269 struct lpfc_register doorbell; 270 uint32_t host_index; 271 uint32_t idx; 272 uint32_t i = 0; 273 uint8_t *tmp; 274 u32 if_type; 275 276 /* sanity check on queue memory */ 277 if (unlikely(!q)) 278 return -ENOMEM; 279 280 temp_wqe = lpfc_sli4_qe(q, q->host_index); 281 282 /* If the host has not yet processed the next entry then we are done */ 283 idx = ((q->host_index + 1) % q->entry_count); 284 if (idx == q->hba_index) { 285 q->WQ_overflow++; 286 return -EBUSY; 287 } 288 q->WQ_posted++; 289 /* set consumption flag every once in a while */ 290 if (!((q->host_index + 1) % q->notify_interval)) 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 292 else 293 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 294 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 295 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 296 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 297 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 298 /* write to DPP aperture taking advatage of Combined Writes */ 299 tmp = (uint8_t *)temp_wqe; 300 #ifdef __raw_writeq 301 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 302 __raw_writeq(*((uint64_t *)(tmp + i)), 303 q->dpp_regaddr + i); 304 #else 305 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 306 __raw_writel(*((uint32_t *)(tmp + i)), 307 q->dpp_regaddr + i); 308 #endif 309 } 310 /* ensure WQE bcopy and DPP flushed before doorbell write */ 311 wmb(); 312 313 /* Update the host index before invoking device */ 314 host_index = q->host_index; 315 316 q->host_index = idx; 317 318 /* Ring Doorbell */ 319 doorbell.word0 = 0; 320 if (q->db_format == LPFC_DB_LIST_FORMAT) { 321 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 322 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 323 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 324 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 325 q->dpp_id); 326 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 327 q->queue_id); 328 } else { 329 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 330 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 331 332 /* Leave bits <23:16> clear for if_type 6 dpp */ 333 if_type = bf_get(lpfc_sli_intf_if_type, 334 &q->phba->sli4_hba.sli_intf); 335 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 336 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 337 host_index); 338 } 339 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 340 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 341 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 342 } else { 343 return -EINVAL; 344 } 345 writel(doorbell.word0, q->db_regaddr); 346 347 return 0; 348 } 349 350 /** 351 * lpfc_sli4_wq_release - Updates internal hba index for WQ 352 * @q: The Work Queue to operate on. 353 * @index: The index to advance the hba index to. 354 * 355 * This routine will update the HBA index of a queue to reflect consumption of 356 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 357 * an entry the host calls this function to update the queue's internal 358 * pointers. 359 **/ 360 static void 361 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 362 { 363 /* sanity check on queue memory */ 364 if (unlikely(!q)) 365 return; 366 367 q->hba_index = index; 368 } 369 370 /** 371 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 372 * @q: The Mailbox Queue to operate on. 373 * @mqe: The Mailbox Queue Entry to put on the Work queue. 374 * 375 * This routine will copy the contents of @mqe to the next available entry on 376 * the @q. This function will then ring the Work Queue Doorbell to signal the 377 * HBA to start processing the Work Queue Entry. This function returns 0 if 378 * successful. If no entries are available on @q then this function will return 379 * -ENOMEM. 380 * The caller is expected to hold the hbalock when calling this routine. 381 **/ 382 static uint32_t 383 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 384 { 385 struct lpfc_mqe *temp_mqe; 386 struct lpfc_register doorbell; 387 388 /* sanity check on queue memory */ 389 if (unlikely(!q)) 390 return -ENOMEM; 391 temp_mqe = lpfc_sli4_qe(q, q->host_index); 392 393 /* If the host has not yet processed the next entry then we are done */ 394 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 395 return -ENOMEM; 396 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 397 /* Save off the mailbox pointer for completion */ 398 q->phba->mbox = (MAILBOX_t *)temp_mqe; 399 400 /* Update the host index before invoking device */ 401 q->host_index = ((q->host_index + 1) % q->entry_count); 402 403 /* Ring Doorbell */ 404 doorbell.word0 = 0; 405 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 406 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 407 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 408 return 0; 409 } 410 411 /** 412 * lpfc_sli4_mq_release - Updates internal hba index for MQ 413 * @q: The Mailbox Queue to operate on. 414 * 415 * This routine will update the HBA index of a queue to reflect consumption of 416 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 417 * an entry the host calls this function to update the queue's internal 418 * pointers. This routine returns the number of entries that were consumed by 419 * the HBA. 420 **/ 421 static uint32_t 422 lpfc_sli4_mq_release(struct lpfc_queue *q) 423 { 424 /* sanity check on queue memory */ 425 if (unlikely(!q)) 426 return 0; 427 428 /* Clear the mailbox pointer for completion */ 429 q->phba->mbox = NULL; 430 q->hba_index = ((q->hba_index + 1) % q->entry_count); 431 return 1; 432 } 433 434 /** 435 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 436 * @q: The Event Queue to get the first valid EQE from 437 * 438 * This routine will get the first valid Event Queue Entry from @q, update 439 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 440 * the Queue (no more work to do), or the Queue is full of EQEs that have been 441 * processed, but not popped back to the HBA then this routine will return NULL. 442 **/ 443 static struct lpfc_eqe * 444 lpfc_sli4_eq_get(struct lpfc_queue *q) 445 { 446 struct lpfc_eqe *eqe; 447 448 /* sanity check on queue memory */ 449 if (unlikely(!q)) 450 return NULL; 451 eqe = lpfc_sli4_qe(q, q->host_index); 452 453 /* If the next EQE is not valid then we are done */ 454 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 455 return NULL; 456 457 /* 458 * insert barrier for instruction interlock : data from the hardware 459 * must have the valid bit checked before it can be copied and acted 460 * upon. Speculative instructions were allowing a bcopy at the start 461 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 462 * after our return, to copy data before the valid bit check above 463 * was done. As such, some of the copied data was stale. The barrier 464 * ensures the check is before any data is copied. 465 */ 466 mb(); 467 return eqe; 468 } 469 470 /** 471 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 472 * @q: The Event Queue to disable interrupts 473 * 474 **/ 475 void 476 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 477 { 478 struct lpfc_register doorbell; 479 480 doorbell.word0 = 0; 481 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 482 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 483 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 484 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 485 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 486 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 487 } 488 489 /** 490 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 491 * @q: The Event Queue to disable interrupts 492 * 493 **/ 494 void 495 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 496 { 497 struct lpfc_register doorbell; 498 499 doorbell.word0 = 0; 500 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 501 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 502 } 503 504 /** 505 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 506 * @phba: adapter with EQ 507 * @q: The Event Queue that the host has completed processing for. 508 * @count: Number of elements that have been consumed 509 * @arm: Indicates whether the host wants to arms this CQ. 510 * 511 * This routine will notify the HBA, by ringing the doorbell, that count 512 * number of EQEs have been processed. The @arm parameter indicates whether 513 * the queue should be rearmed when ringing the doorbell. 514 **/ 515 void 516 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 517 uint32_t count, bool arm) 518 { 519 struct lpfc_register doorbell; 520 521 /* sanity check on queue memory */ 522 if (unlikely(!q || (count == 0 && !arm))) 523 return; 524 525 /* ring doorbell for number popped */ 526 doorbell.word0 = 0; 527 if (arm) { 528 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 529 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 530 } 531 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 532 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 533 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 534 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 535 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 536 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 537 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 538 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 539 readl(q->phba->sli4_hba.EQDBregaddr); 540 } 541 542 /** 543 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 544 * @phba: adapter with EQ 545 * @q: The Event Queue that the host has completed processing for. 546 * @count: Number of elements that have been consumed 547 * @arm: Indicates whether the host wants to arms this CQ. 548 * 549 * This routine will notify the HBA, by ringing the doorbell, that count 550 * number of EQEs have been processed. The @arm parameter indicates whether 551 * the queue should be rearmed when ringing the doorbell. 552 **/ 553 void 554 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 555 uint32_t count, bool arm) 556 { 557 struct lpfc_register doorbell; 558 559 /* sanity check on queue memory */ 560 if (unlikely(!q || (count == 0 && !arm))) 561 return; 562 563 /* ring doorbell for number popped */ 564 doorbell.word0 = 0; 565 if (arm) 566 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 567 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 568 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 569 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 570 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 571 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 572 readl(q->phba->sli4_hba.EQDBregaddr); 573 } 574 575 static void 576 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 577 struct lpfc_eqe *eqe) 578 { 579 if (!phba->sli4_hba.pc_sli4_params.eqav) 580 bf_set_le32(lpfc_eqe_valid, eqe, 0); 581 582 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 583 584 /* if the index wrapped around, toggle the valid bit */ 585 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 586 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 587 } 588 589 static void 590 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 591 { 592 struct lpfc_eqe *eqe = NULL; 593 u32 eq_count = 0, cq_count = 0; 594 struct lpfc_cqe *cqe = NULL; 595 struct lpfc_queue *cq = NULL, *childq = NULL; 596 int cqid = 0; 597 598 /* walk all the EQ entries and drop on the floor */ 599 eqe = lpfc_sli4_eq_get(eq); 600 while (eqe) { 601 /* Get the reference to the corresponding CQ */ 602 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 603 cq = NULL; 604 605 list_for_each_entry(childq, &eq->child_list, list) { 606 if (childq->queue_id == cqid) { 607 cq = childq; 608 break; 609 } 610 } 611 /* If CQ is valid, iterate through it and drop all the CQEs */ 612 if (cq) { 613 cqe = lpfc_sli4_cq_get(cq); 614 while (cqe) { 615 __lpfc_sli4_consume_cqe(phba, cq, cqe); 616 cq_count++; 617 cqe = lpfc_sli4_cq_get(cq); 618 } 619 /* Clear and re-arm the CQ */ 620 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 621 LPFC_QUEUE_REARM); 622 cq_count = 0; 623 } 624 __lpfc_sli4_consume_eqe(phba, eq, eqe); 625 eq_count++; 626 eqe = lpfc_sli4_eq_get(eq); 627 } 628 629 /* Clear and re-arm the EQ */ 630 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 631 } 632 633 static int 634 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 635 uint8_t rearm) 636 { 637 struct lpfc_eqe *eqe; 638 int count = 0, consumed = 0; 639 640 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 641 goto rearm_and_exit; 642 643 eqe = lpfc_sli4_eq_get(eq); 644 while (eqe) { 645 lpfc_sli4_hba_handle_eqe(phba, eq, eqe); 646 __lpfc_sli4_consume_eqe(phba, eq, eqe); 647 648 consumed++; 649 if (!(++count % eq->max_proc_limit)) 650 break; 651 652 if (!(count % eq->notify_interval)) { 653 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 654 LPFC_QUEUE_NOARM); 655 consumed = 0; 656 } 657 658 eqe = lpfc_sli4_eq_get(eq); 659 } 660 eq->EQ_processed += count; 661 662 /* Track the max number of EQEs processed in 1 intr */ 663 if (count > eq->EQ_max_eqe) 664 eq->EQ_max_eqe = count; 665 666 xchg(&eq->queue_claimed, 0); 667 668 rearm_and_exit: 669 /* Always clear the EQ. */ 670 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 671 672 return count; 673 } 674 675 /** 676 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 677 * @q: The Completion Queue to get the first valid CQE from 678 * 679 * This routine will get the first valid Completion Queue Entry from @q, update 680 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 681 * the Queue (no more work to do), or the Queue is full of CQEs that have been 682 * processed, but not popped back to the HBA then this routine will return NULL. 683 **/ 684 static struct lpfc_cqe * 685 lpfc_sli4_cq_get(struct lpfc_queue *q) 686 { 687 struct lpfc_cqe *cqe; 688 689 /* sanity check on queue memory */ 690 if (unlikely(!q)) 691 return NULL; 692 cqe = lpfc_sli4_qe(q, q->host_index); 693 694 /* If the next CQE is not valid then we are done */ 695 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 696 return NULL; 697 698 /* 699 * insert barrier for instruction interlock : data from the hardware 700 * must have the valid bit checked before it can be copied and acted 701 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 702 * instructions allowing action on content before valid bit checked, 703 * add barrier here as well. May not be needed as "content" is a 704 * single 32-bit entity here (vs multi word structure for cq's). 705 */ 706 mb(); 707 return cqe; 708 } 709 710 static void 711 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 712 struct lpfc_cqe *cqe) 713 { 714 if (!phba->sli4_hba.pc_sli4_params.cqav) 715 bf_set_le32(lpfc_cqe_valid, cqe, 0); 716 717 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 718 719 /* if the index wrapped around, toggle the valid bit */ 720 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 721 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 722 } 723 724 /** 725 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 726 * @phba: the adapter with the CQ 727 * @q: The Completion Queue that the host has completed processing for. 728 * @count: the number of elements that were consumed 729 * @arm: Indicates whether the host wants to arms this CQ. 730 * 731 * This routine will notify the HBA, by ringing the doorbell, that the 732 * CQEs have been processed. The @arm parameter specifies whether the 733 * queue should be rearmed when ringing the doorbell. 734 **/ 735 void 736 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 737 uint32_t count, bool arm) 738 { 739 struct lpfc_register doorbell; 740 741 /* sanity check on queue memory */ 742 if (unlikely(!q || (count == 0 && !arm))) 743 return; 744 745 /* ring doorbell for number popped */ 746 doorbell.word0 = 0; 747 if (arm) 748 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 749 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 750 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 751 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 752 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 753 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 754 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 755 } 756 757 /** 758 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 759 * @phba: the adapter with the CQ 760 * @q: The Completion Queue that the host has completed processing for. 761 * @count: the number of elements that were consumed 762 * @arm: Indicates whether the host wants to arms this CQ. 763 * 764 * This routine will notify the HBA, by ringing the doorbell, that the 765 * CQEs have been processed. The @arm parameter specifies whether the 766 * queue should be rearmed when ringing the doorbell. 767 **/ 768 void 769 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 770 uint32_t count, bool arm) 771 { 772 struct lpfc_register doorbell; 773 774 /* sanity check on queue memory */ 775 if (unlikely(!q || (count == 0 && !arm))) 776 return; 777 778 /* ring doorbell for number popped */ 779 doorbell.word0 = 0; 780 if (arm) 781 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 782 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 783 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 784 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 785 } 786 787 /* 788 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 789 * 790 * This routine will copy the contents of @wqe to the next available entry on 791 * the @q. This function will then ring the Receive Queue Doorbell to signal the 792 * HBA to start processing the Receive Queue Entry. This function returns the 793 * index that the rqe was copied to if successful. If no entries are available 794 * on @q then this function will return -ENOMEM. 795 * The caller is expected to hold the hbalock when calling this routine. 796 **/ 797 int 798 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 799 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 800 { 801 struct lpfc_rqe *temp_hrqe; 802 struct lpfc_rqe *temp_drqe; 803 struct lpfc_register doorbell; 804 int hq_put_index; 805 int dq_put_index; 806 807 /* sanity check on queue memory */ 808 if (unlikely(!hq) || unlikely(!dq)) 809 return -ENOMEM; 810 hq_put_index = hq->host_index; 811 dq_put_index = dq->host_index; 812 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 813 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 814 815 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 816 return -EINVAL; 817 if (hq_put_index != dq_put_index) 818 return -EINVAL; 819 /* If the host has not yet processed the next entry then we are done */ 820 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 821 return -EBUSY; 822 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 823 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 824 825 /* Update the host index to point to the next slot */ 826 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 827 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 828 hq->RQ_buf_posted++; 829 830 /* Ring The Header Receive Queue Doorbell */ 831 if (!(hq->host_index % hq->notify_interval)) { 832 doorbell.word0 = 0; 833 if (hq->db_format == LPFC_DB_RING_FORMAT) { 834 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 835 hq->notify_interval); 836 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 837 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 838 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 839 hq->notify_interval); 840 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 841 hq->host_index); 842 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 843 } else { 844 return -EINVAL; 845 } 846 writel(doorbell.word0, hq->db_regaddr); 847 } 848 return hq_put_index; 849 } 850 851 /* 852 * lpfc_sli4_rq_release - Updates internal hba index for RQ 853 * 854 * This routine will update the HBA index of a queue to reflect consumption of 855 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 856 * consumed an entry the host calls this function to update the queue's 857 * internal pointers. This routine returns the number of entries that were 858 * consumed by the HBA. 859 **/ 860 static uint32_t 861 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 862 { 863 /* sanity check on queue memory */ 864 if (unlikely(!hq) || unlikely(!dq)) 865 return 0; 866 867 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 868 return 0; 869 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 870 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 871 return 1; 872 } 873 874 /** 875 * lpfc_cmd_iocb - Get next command iocb entry in the ring 876 * @phba: Pointer to HBA context object. 877 * @pring: Pointer to driver SLI ring object. 878 * 879 * This function returns pointer to next command iocb entry 880 * in the command ring. The caller must hold hbalock to prevent 881 * other threads consume the next command iocb. 882 * SLI-2/SLI-3 provide different sized iocbs. 883 **/ 884 static inline IOCB_t * 885 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 886 { 887 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 888 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 889 } 890 891 /** 892 * lpfc_resp_iocb - Get next response iocb entry in the ring 893 * @phba: Pointer to HBA context object. 894 * @pring: Pointer to driver SLI ring object. 895 * 896 * This function returns pointer to next response iocb entry 897 * in the response ring. The caller must hold hbalock to make sure 898 * that no other thread consume the next response iocb. 899 * SLI-2/SLI-3 provide different sized iocbs. 900 **/ 901 static inline IOCB_t * 902 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 903 { 904 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 905 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 906 } 907 908 /** 909 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 910 * @phba: Pointer to HBA context object. 911 * 912 * This function is called with hbalock held. This function 913 * allocates a new driver iocb object from the iocb pool. If the 914 * allocation is successful, it returns pointer to the newly 915 * allocated iocb object else it returns NULL. 916 **/ 917 struct lpfc_iocbq * 918 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 919 { 920 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 921 struct lpfc_iocbq * iocbq = NULL; 922 923 lockdep_assert_held(&phba->hbalock); 924 925 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 926 if (iocbq) 927 phba->iocb_cnt++; 928 if (phba->iocb_cnt > phba->iocb_max) 929 phba->iocb_max = phba->iocb_cnt; 930 return iocbq; 931 } 932 933 /** 934 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 935 * @phba: Pointer to HBA context object. 936 * @xritag: XRI value. 937 * 938 * This function clears the sglq pointer from the array of active 939 * sglq's. The xritag that is passed in is used to index into the 940 * array. Before the xritag can be used it needs to be adjusted 941 * by subtracting the xribase. 942 * 943 * Returns sglq ponter = success, NULL = Failure. 944 **/ 945 struct lpfc_sglq * 946 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 947 { 948 struct lpfc_sglq *sglq; 949 950 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 951 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 952 return sglq; 953 } 954 955 /** 956 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 957 * @phba: Pointer to HBA context object. 958 * @xritag: XRI value. 959 * 960 * This function returns the sglq pointer from the array of active 961 * sglq's. The xritag that is passed in is used to index into the 962 * array. Before the xritag can be used it needs to be adjusted 963 * by subtracting the xribase. 964 * 965 * Returns sglq ponter = success, NULL = Failure. 966 **/ 967 struct lpfc_sglq * 968 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 969 { 970 struct lpfc_sglq *sglq; 971 972 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 973 return sglq; 974 } 975 976 /** 977 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 978 * @phba: Pointer to HBA context object. 979 * @xritag: xri used in this exchange. 980 * @rrq: The RRQ to be cleared. 981 * 982 **/ 983 void 984 lpfc_clr_rrq_active(struct lpfc_hba *phba, 985 uint16_t xritag, 986 struct lpfc_node_rrq *rrq) 987 { 988 struct lpfc_nodelist *ndlp = NULL; 989 990 /* Lookup did to verify if did is still active on this vport */ 991 if (rrq->vport) 992 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 993 994 if (!ndlp) 995 goto out; 996 997 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 998 rrq->send_rrq = 0; 999 rrq->xritag = 0; 1000 rrq->rrq_stop_time = 0; 1001 } 1002 out: 1003 mempool_free(rrq, phba->rrq_pool); 1004 } 1005 1006 /** 1007 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1008 * @phba: Pointer to HBA context object. 1009 * 1010 * This function is called with hbalock held. This function 1011 * Checks if stop_time (ratov from setting rrq active) has 1012 * been reached, if it has and the send_rrq flag is set then 1013 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1014 * then it will just call the routine to clear the rrq and 1015 * free the rrq resource. 1016 * The timer is set to the next rrq that is going to expire before 1017 * leaving the routine. 1018 * 1019 **/ 1020 void 1021 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1022 { 1023 struct lpfc_node_rrq *rrq; 1024 struct lpfc_node_rrq *nextrrq; 1025 unsigned long next_time; 1026 unsigned long iflags; 1027 LIST_HEAD(send_rrq); 1028 1029 spin_lock_irqsave(&phba->hbalock, iflags); 1030 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1031 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1032 list_for_each_entry_safe(rrq, nextrrq, 1033 &phba->active_rrq_list, list) { 1034 if (time_after(jiffies, rrq->rrq_stop_time)) 1035 list_move(&rrq->list, &send_rrq); 1036 else if (time_before(rrq->rrq_stop_time, next_time)) 1037 next_time = rrq->rrq_stop_time; 1038 } 1039 spin_unlock_irqrestore(&phba->hbalock, iflags); 1040 if ((!list_empty(&phba->active_rrq_list)) && 1041 (!(phba->pport->load_flag & FC_UNLOADING))) 1042 mod_timer(&phba->rrq_tmr, next_time); 1043 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1044 list_del(&rrq->list); 1045 if (!rrq->send_rrq) { 1046 /* this call will free the rrq */ 1047 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1048 } else if (lpfc_send_rrq(phba, rrq)) { 1049 /* if we send the rrq then the completion handler 1050 * will clear the bit in the xribitmap. 1051 */ 1052 lpfc_clr_rrq_active(phba, rrq->xritag, 1053 rrq); 1054 } 1055 } 1056 } 1057 1058 /** 1059 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1060 * @vport: Pointer to vport context object. 1061 * @xri: The xri used in the exchange. 1062 * @did: The targets DID for this exchange. 1063 * 1064 * returns NULL = rrq not found in the phba->active_rrq_list. 1065 * rrq = rrq for this xri and target. 1066 **/ 1067 struct lpfc_node_rrq * 1068 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1069 { 1070 struct lpfc_hba *phba = vport->phba; 1071 struct lpfc_node_rrq *rrq; 1072 struct lpfc_node_rrq *nextrrq; 1073 unsigned long iflags; 1074 1075 if (phba->sli_rev != LPFC_SLI_REV4) 1076 return NULL; 1077 spin_lock_irqsave(&phba->hbalock, iflags); 1078 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1079 if (rrq->vport == vport && rrq->xritag == xri && 1080 rrq->nlp_DID == did){ 1081 list_del(&rrq->list); 1082 spin_unlock_irqrestore(&phba->hbalock, iflags); 1083 return rrq; 1084 } 1085 } 1086 spin_unlock_irqrestore(&phba->hbalock, iflags); 1087 return NULL; 1088 } 1089 1090 /** 1091 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1092 * @vport: Pointer to vport context object. 1093 * @ndlp: Pointer to the lpfc_node_list structure. 1094 * If ndlp is NULL Remove all active RRQs for this vport from the 1095 * phba->active_rrq_list and clear the rrq. 1096 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1097 **/ 1098 void 1099 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1100 1101 { 1102 struct lpfc_hba *phba = vport->phba; 1103 struct lpfc_node_rrq *rrq; 1104 struct lpfc_node_rrq *nextrrq; 1105 unsigned long iflags; 1106 LIST_HEAD(rrq_list); 1107 1108 if (phba->sli_rev != LPFC_SLI_REV4) 1109 return; 1110 if (!ndlp) { 1111 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1112 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1113 } 1114 spin_lock_irqsave(&phba->hbalock, iflags); 1115 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1116 if (rrq->vport != vport) 1117 continue; 1118 1119 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1120 list_move(&rrq->list, &rrq_list); 1121 1122 } 1123 spin_unlock_irqrestore(&phba->hbalock, iflags); 1124 1125 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1126 list_del(&rrq->list); 1127 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1128 } 1129 } 1130 1131 /** 1132 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1133 * @phba: Pointer to HBA context object. 1134 * @ndlp: Targets nodelist pointer for this exchange. 1135 * @xritag: the xri in the bitmap to test. 1136 * 1137 * This function returns: 1138 * 0 = rrq not active for this xri 1139 * 1 = rrq is valid for this xri. 1140 **/ 1141 int 1142 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1143 uint16_t xritag) 1144 { 1145 if (!ndlp) 1146 return 0; 1147 if (!ndlp->active_rrqs_xri_bitmap) 1148 return 0; 1149 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1150 return 1; 1151 else 1152 return 0; 1153 } 1154 1155 /** 1156 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1157 * @phba: Pointer to HBA context object. 1158 * @ndlp: nodelist pointer for this target. 1159 * @xritag: xri used in this exchange. 1160 * @rxid: Remote Exchange ID. 1161 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1162 * 1163 * This function takes the hbalock. 1164 * The active bit is always set in the active rrq xri_bitmap even 1165 * if there is no slot avaiable for the other rrq information. 1166 * 1167 * returns 0 rrq actived for this xri 1168 * < 0 No memory or invalid ndlp. 1169 **/ 1170 int 1171 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1172 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1173 { 1174 unsigned long iflags; 1175 struct lpfc_node_rrq *rrq; 1176 int empty; 1177 1178 if (!ndlp) 1179 return -EINVAL; 1180 1181 if (!phba->cfg_enable_rrq) 1182 return -EINVAL; 1183 1184 spin_lock_irqsave(&phba->hbalock, iflags); 1185 if (phba->pport->load_flag & FC_UNLOADING) { 1186 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1187 goto out; 1188 } 1189 1190 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1191 goto out; 1192 1193 if (!ndlp->active_rrqs_xri_bitmap) 1194 goto out; 1195 1196 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1197 goto out; 1198 1199 spin_unlock_irqrestore(&phba->hbalock, iflags); 1200 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1201 if (!rrq) { 1202 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1203 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1204 " DID:0x%x Send:%d\n", 1205 xritag, rxid, ndlp->nlp_DID, send_rrq); 1206 return -EINVAL; 1207 } 1208 if (phba->cfg_enable_rrq == 1) 1209 rrq->send_rrq = send_rrq; 1210 else 1211 rrq->send_rrq = 0; 1212 rrq->xritag = xritag; 1213 rrq->rrq_stop_time = jiffies + 1214 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1215 rrq->nlp_DID = ndlp->nlp_DID; 1216 rrq->vport = ndlp->vport; 1217 rrq->rxid = rxid; 1218 spin_lock_irqsave(&phba->hbalock, iflags); 1219 empty = list_empty(&phba->active_rrq_list); 1220 list_add_tail(&rrq->list, &phba->active_rrq_list); 1221 phba->hba_flag |= HBA_RRQ_ACTIVE; 1222 if (empty) 1223 lpfc_worker_wake_up(phba); 1224 spin_unlock_irqrestore(&phba->hbalock, iflags); 1225 return 0; 1226 out: 1227 spin_unlock_irqrestore(&phba->hbalock, iflags); 1228 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1229 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1230 " DID:0x%x Send:%d\n", 1231 xritag, rxid, ndlp->nlp_DID, send_rrq); 1232 return -EINVAL; 1233 } 1234 1235 /** 1236 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1237 * @phba: Pointer to HBA context object. 1238 * @piocbq: Pointer to the iocbq. 1239 * 1240 * The driver calls this function with either the nvme ls ring lock 1241 * or the fc els ring lock held depending on the iocb usage. This function 1242 * gets a new driver sglq object from the sglq list. If the list is not empty 1243 * then it is successful, it returns pointer to the newly allocated sglq 1244 * object else it returns NULL. 1245 **/ 1246 static struct lpfc_sglq * 1247 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1248 { 1249 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1250 struct lpfc_sglq *sglq = NULL; 1251 struct lpfc_sglq *start_sglq = NULL; 1252 struct lpfc_io_buf *lpfc_cmd; 1253 struct lpfc_nodelist *ndlp; 1254 struct lpfc_sli_ring *pring = NULL; 1255 int found = 0; 1256 1257 if (piocbq->iocb_flag & LPFC_IO_NVME_LS) 1258 pring = phba->sli4_hba.nvmels_wq->pring; 1259 else 1260 pring = lpfc_phba_elsring(phba); 1261 1262 lockdep_assert_held(&pring->ring_lock); 1263 1264 if (piocbq->iocb_flag & LPFC_IO_FCP) { 1265 lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1; 1266 ndlp = lpfc_cmd->rdata->pnode; 1267 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 1268 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 1269 ndlp = piocbq->context_un.ndlp; 1270 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 1271 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 1272 ndlp = NULL; 1273 else 1274 ndlp = piocbq->context_un.ndlp; 1275 } else { 1276 ndlp = piocbq->context1; 1277 } 1278 1279 spin_lock(&phba->sli4_hba.sgl_list_lock); 1280 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1281 start_sglq = sglq; 1282 while (!found) { 1283 if (!sglq) 1284 break; 1285 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1286 test_bit(sglq->sli4_lxritag, 1287 ndlp->active_rrqs_xri_bitmap)) { 1288 /* This xri has an rrq outstanding for this DID. 1289 * put it back in the list and get another xri. 1290 */ 1291 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1292 sglq = NULL; 1293 list_remove_head(lpfc_els_sgl_list, sglq, 1294 struct lpfc_sglq, list); 1295 if (sglq == start_sglq) { 1296 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1297 sglq = NULL; 1298 break; 1299 } else 1300 continue; 1301 } 1302 sglq->ndlp = ndlp; 1303 found = 1; 1304 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1305 sglq->state = SGL_ALLOCATED; 1306 } 1307 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1308 return sglq; 1309 } 1310 1311 /** 1312 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1313 * @phba: Pointer to HBA context object. 1314 * @piocbq: Pointer to the iocbq. 1315 * 1316 * This function is called with the sgl_list lock held. This function 1317 * gets a new driver sglq object from the sglq list. If the 1318 * list is not empty then it is successful, it returns pointer to the newly 1319 * allocated sglq object else it returns NULL. 1320 **/ 1321 struct lpfc_sglq * 1322 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1323 { 1324 struct list_head *lpfc_nvmet_sgl_list; 1325 struct lpfc_sglq *sglq = NULL; 1326 1327 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1328 1329 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1330 1331 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1332 if (!sglq) 1333 return NULL; 1334 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1335 sglq->state = SGL_ALLOCATED; 1336 return sglq; 1337 } 1338 1339 /** 1340 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1341 * @phba: Pointer to HBA context object. 1342 * 1343 * This function is called with no lock held. This function 1344 * allocates a new driver iocb object from the iocb pool. If the 1345 * allocation is successful, it returns pointer to the newly 1346 * allocated iocb object else it returns NULL. 1347 **/ 1348 struct lpfc_iocbq * 1349 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1350 { 1351 struct lpfc_iocbq * iocbq = NULL; 1352 unsigned long iflags; 1353 1354 spin_lock_irqsave(&phba->hbalock, iflags); 1355 iocbq = __lpfc_sli_get_iocbq(phba); 1356 spin_unlock_irqrestore(&phba->hbalock, iflags); 1357 return iocbq; 1358 } 1359 1360 /** 1361 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1362 * @phba: Pointer to HBA context object. 1363 * @iocbq: Pointer to driver iocb object. 1364 * 1365 * This function is called to release the driver iocb object 1366 * to the iocb pool. The iotag in the iocb object 1367 * does not change for each use of the iocb object. This function 1368 * clears all other fields of the iocb object when it is freed. 1369 * The sqlq structure that holds the xritag and phys and virtual 1370 * mappings for the scatter gather list is retrieved from the 1371 * active array of sglq. The get of the sglq pointer also clears 1372 * the entry in the array. If the status of the IO indiactes that 1373 * this IO was aborted then the sglq entry it put on the 1374 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1375 * IO has good status or fails for any other reason then the sglq 1376 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1377 * asserted held in the code path calling this routine. 1378 **/ 1379 static void 1380 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1381 { 1382 struct lpfc_sglq *sglq; 1383 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1384 unsigned long iflag = 0; 1385 struct lpfc_sli_ring *pring; 1386 1387 if (iocbq->sli4_xritag == NO_XRI) 1388 sglq = NULL; 1389 else 1390 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1391 1392 1393 if (sglq) { 1394 if (iocbq->iocb_flag & LPFC_IO_NVMET) { 1395 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1396 iflag); 1397 sglq->state = SGL_FREED; 1398 sglq->ndlp = NULL; 1399 list_add_tail(&sglq->list, 1400 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1401 spin_unlock_irqrestore( 1402 &phba->sli4_hba.sgl_list_lock, iflag); 1403 goto out; 1404 } 1405 1406 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1407 (!(unlikely(pci_channel_offline(phba->pcidev)))) && 1408 sglq->state != SGL_XRI_ABORTED) { 1409 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1410 iflag); 1411 1412 /* Check if we can get a reference on ndlp */ 1413 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1414 sglq->ndlp = NULL; 1415 1416 list_add(&sglq->list, 1417 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1418 spin_unlock_irqrestore( 1419 &phba->sli4_hba.sgl_list_lock, iflag); 1420 } else { 1421 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1422 iflag); 1423 sglq->state = SGL_FREED; 1424 sglq->ndlp = NULL; 1425 list_add_tail(&sglq->list, 1426 &phba->sli4_hba.lpfc_els_sgl_list); 1427 spin_unlock_irqrestore( 1428 &phba->sli4_hba.sgl_list_lock, iflag); 1429 pring = lpfc_phba_elsring(phba); 1430 /* Check if TXQ queue needs to be serviced */ 1431 if (pring && (!list_empty(&pring->txq))) 1432 lpfc_worker_wake_up(phba); 1433 } 1434 } 1435 1436 out: 1437 /* 1438 * Clean all volatile data fields, preserve iotag and node struct. 1439 */ 1440 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1441 iocbq->sli4_lxritag = NO_XRI; 1442 iocbq->sli4_xritag = NO_XRI; 1443 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF | 1444 LPFC_IO_NVME_LS); 1445 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1446 } 1447 1448 1449 /** 1450 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1451 * @phba: Pointer to HBA context object. 1452 * @iocbq: Pointer to driver iocb object. 1453 * 1454 * This function is called to release the driver iocb object to the 1455 * iocb pool. The iotag in the iocb object does not change for each 1456 * use of the iocb object. This function clears all other fields of 1457 * the iocb object when it is freed. The hbalock is asserted held in 1458 * the code path calling this routine. 1459 **/ 1460 static void 1461 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1462 { 1463 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1464 1465 /* 1466 * Clean all volatile data fields, preserve iotag and node struct. 1467 */ 1468 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1469 iocbq->sli4_xritag = NO_XRI; 1470 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1471 } 1472 1473 /** 1474 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1475 * @phba: Pointer to HBA context object. 1476 * @iocbq: Pointer to driver iocb object. 1477 * 1478 * This function is called with hbalock held to release driver 1479 * iocb object to the iocb pool. The iotag in the iocb object 1480 * does not change for each use of the iocb object. This function 1481 * clears all other fields of the iocb object when it is freed. 1482 **/ 1483 static void 1484 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1485 { 1486 lockdep_assert_held(&phba->hbalock); 1487 1488 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1489 phba->iocb_cnt--; 1490 } 1491 1492 /** 1493 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1494 * @phba: Pointer to HBA context object. 1495 * @iocbq: Pointer to driver iocb object. 1496 * 1497 * This function is called with no lock held to release the iocb to 1498 * iocb pool. 1499 **/ 1500 void 1501 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1502 { 1503 unsigned long iflags; 1504 1505 /* 1506 * Clean all volatile data fields, preserve iotag and node struct. 1507 */ 1508 spin_lock_irqsave(&phba->hbalock, iflags); 1509 __lpfc_sli_release_iocbq(phba, iocbq); 1510 spin_unlock_irqrestore(&phba->hbalock, iflags); 1511 } 1512 1513 /** 1514 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1515 * @phba: Pointer to HBA context object. 1516 * @iocblist: List of IOCBs. 1517 * @ulpstatus: ULP status in IOCB command field. 1518 * @ulpWord4: ULP word-4 in IOCB command field. 1519 * 1520 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1521 * on the list by invoking the complete callback function associated with the 1522 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1523 * fields. 1524 **/ 1525 void 1526 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1527 uint32_t ulpstatus, uint32_t ulpWord4) 1528 { 1529 struct lpfc_iocbq *piocb; 1530 1531 while (!list_empty(iocblist)) { 1532 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1533 if (piocb->wqe_cmpl) { 1534 if (piocb->iocb_flag & LPFC_IO_NVME) 1535 lpfc_nvme_cancel_iocb(phba, piocb, 1536 ulpstatus, ulpWord4); 1537 else 1538 lpfc_sli_release_iocbq(phba, piocb); 1539 1540 } else if (piocb->iocb_cmpl) { 1541 piocb->iocb.ulpStatus = ulpstatus; 1542 piocb->iocb.un.ulpWord[4] = ulpWord4; 1543 (piocb->iocb_cmpl) (phba, piocb, piocb); 1544 } else { 1545 lpfc_sli_release_iocbq(phba, piocb); 1546 } 1547 } 1548 return; 1549 } 1550 1551 /** 1552 * lpfc_sli_iocb_cmd_type - Get the iocb type 1553 * @iocb_cmnd: iocb command code. 1554 * 1555 * This function is called by ring event handler function to get the iocb type. 1556 * This function translates the iocb command to an iocb command type used to 1557 * decide the final disposition of each completed IOCB. 1558 * The function returns 1559 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1560 * LPFC_SOL_IOCB if it is a solicited iocb completion 1561 * LPFC_ABORT_IOCB if it is an abort iocb 1562 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1563 * 1564 * The caller is not required to hold any lock. 1565 **/ 1566 static lpfc_iocb_type 1567 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1568 { 1569 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1570 1571 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1572 return 0; 1573 1574 switch (iocb_cmnd) { 1575 case CMD_XMIT_SEQUENCE_CR: 1576 case CMD_XMIT_SEQUENCE_CX: 1577 case CMD_XMIT_BCAST_CN: 1578 case CMD_XMIT_BCAST_CX: 1579 case CMD_ELS_REQUEST_CR: 1580 case CMD_ELS_REQUEST_CX: 1581 case CMD_CREATE_XRI_CR: 1582 case CMD_CREATE_XRI_CX: 1583 case CMD_GET_RPI_CN: 1584 case CMD_XMIT_ELS_RSP_CX: 1585 case CMD_GET_RPI_CR: 1586 case CMD_FCP_IWRITE_CR: 1587 case CMD_FCP_IWRITE_CX: 1588 case CMD_FCP_IREAD_CR: 1589 case CMD_FCP_IREAD_CX: 1590 case CMD_FCP_ICMND_CR: 1591 case CMD_FCP_ICMND_CX: 1592 case CMD_FCP_TSEND_CX: 1593 case CMD_FCP_TRSP_CX: 1594 case CMD_FCP_TRECEIVE_CX: 1595 case CMD_FCP_AUTO_TRSP_CX: 1596 case CMD_ADAPTER_MSG: 1597 case CMD_ADAPTER_DUMP: 1598 case CMD_XMIT_SEQUENCE64_CR: 1599 case CMD_XMIT_SEQUENCE64_CX: 1600 case CMD_XMIT_BCAST64_CN: 1601 case CMD_XMIT_BCAST64_CX: 1602 case CMD_ELS_REQUEST64_CR: 1603 case CMD_ELS_REQUEST64_CX: 1604 case CMD_FCP_IWRITE64_CR: 1605 case CMD_FCP_IWRITE64_CX: 1606 case CMD_FCP_IREAD64_CR: 1607 case CMD_FCP_IREAD64_CX: 1608 case CMD_FCP_ICMND64_CR: 1609 case CMD_FCP_ICMND64_CX: 1610 case CMD_FCP_TSEND64_CX: 1611 case CMD_FCP_TRSP64_CX: 1612 case CMD_FCP_TRECEIVE64_CX: 1613 case CMD_GEN_REQUEST64_CR: 1614 case CMD_GEN_REQUEST64_CX: 1615 case CMD_XMIT_ELS_RSP64_CX: 1616 case DSSCMD_IWRITE64_CR: 1617 case DSSCMD_IWRITE64_CX: 1618 case DSSCMD_IREAD64_CR: 1619 case DSSCMD_IREAD64_CX: 1620 case CMD_SEND_FRAME: 1621 type = LPFC_SOL_IOCB; 1622 break; 1623 case CMD_ABORT_XRI_CN: 1624 case CMD_ABORT_XRI_CX: 1625 case CMD_CLOSE_XRI_CN: 1626 case CMD_CLOSE_XRI_CX: 1627 case CMD_XRI_ABORTED_CX: 1628 case CMD_ABORT_MXRI64_CN: 1629 case CMD_XMIT_BLS_RSP64_CX: 1630 type = LPFC_ABORT_IOCB; 1631 break; 1632 case CMD_RCV_SEQUENCE_CX: 1633 case CMD_RCV_ELS_REQ_CX: 1634 case CMD_RCV_SEQUENCE64_CX: 1635 case CMD_RCV_ELS_REQ64_CX: 1636 case CMD_ASYNC_STATUS: 1637 case CMD_IOCB_RCV_SEQ64_CX: 1638 case CMD_IOCB_RCV_ELS64_CX: 1639 case CMD_IOCB_RCV_CONT64_CX: 1640 case CMD_IOCB_RET_XRI64_CX: 1641 type = LPFC_UNSOL_IOCB; 1642 break; 1643 case CMD_IOCB_XMIT_MSEQ64_CR: 1644 case CMD_IOCB_XMIT_MSEQ64_CX: 1645 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1646 case CMD_IOCB_RCV_ELS_LIST64_CX: 1647 case CMD_IOCB_CLOSE_EXTENDED_CN: 1648 case CMD_IOCB_ABORT_EXTENDED_CN: 1649 case CMD_IOCB_RET_HBQE64_CN: 1650 case CMD_IOCB_FCP_IBIDIR64_CR: 1651 case CMD_IOCB_FCP_IBIDIR64_CX: 1652 case CMD_IOCB_FCP_ITASKMGT64_CX: 1653 case CMD_IOCB_LOGENTRY_CN: 1654 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1655 printk("%s - Unhandled SLI-3 Command x%x\n", 1656 __func__, iocb_cmnd); 1657 type = LPFC_UNKNOWN_IOCB; 1658 break; 1659 default: 1660 type = LPFC_UNKNOWN_IOCB; 1661 break; 1662 } 1663 1664 return type; 1665 } 1666 1667 /** 1668 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1669 * @phba: Pointer to HBA context object. 1670 * 1671 * This function is called from SLI initialization code 1672 * to configure every ring of the HBA's SLI interface. The 1673 * caller is not required to hold any lock. This function issues 1674 * a config_ring mailbox command for each ring. 1675 * This function returns zero if successful else returns a negative 1676 * error code. 1677 **/ 1678 static int 1679 lpfc_sli_ring_map(struct lpfc_hba *phba) 1680 { 1681 struct lpfc_sli *psli = &phba->sli; 1682 LPFC_MBOXQ_t *pmb; 1683 MAILBOX_t *pmbox; 1684 int i, rc, ret = 0; 1685 1686 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1687 if (!pmb) 1688 return -ENOMEM; 1689 pmbox = &pmb->u.mb; 1690 phba->link_state = LPFC_INIT_MBX_CMDS; 1691 for (i = 0; i < psli->num_rings; i++) { 1692 lpfc_config_ring(phba, i, pmb); 1693 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1694 if (rc != MBX_SUCCESS) { 1695 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1696 "0446 Adapter failed to init (%d), " 1697 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1698 "ring %d\n", 1699 rc, pmbox->mbxCommand, 1700 pmbox->mbxStatus, i); 1701 phba->link_state = LPFC_HBA_ERROR; 1702 ret = -ENXIO; 1703 break; 1704 } 1705 } 1706 mempool_free(pmb, phba->mbox_mem_pool); 1707 return ret; 1708 } 1709 1710 /** 1711 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1712 * @phba: Pointer to HBA context object. 1713 * @pring: Pointer to driver SLI ring object. 1714 * @piocb: Pointer to the driver iocb object. 1715 * 1716 * The driver calls this function with the hbalock held for SLI3 ports or 1717 * the ring lock held for SLI4 ports. The function adds the 1718 * new iocb to txcmplq of the given ring. This function always returns 1719 * 0. If this function is called for ELS ring, this function checks if 1720 * there is a vport associated with the ELS command. This function also 1721 * starts els_tmofunc timer if this is an ELS command. 1722 **/ 1723 static int 1724 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1725 struct lpfc_iocbq *piocb) 1726 { 1727 if (phba->sli_rev == LPFC_SLI_REV4) 1728 lockdep_assert_held(&pring->ring_lock); 1729 else 1730 lockdep_assert_held(&phba->hbalock); 1731 1732 BUG_ON(!piocb); 1733 1734 list_add_tail(&piocb->list, &pring->txcmplq); 1735 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1736 pring->txcmplq_cnt++; 1737 1738 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1739 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1740 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1741 BUG_ON(!piocb->vport); 1742 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1743 mod_timer(&piocb->vport->els_tmofunc, 1744 jiffies + 1745 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1746 } 1747 1748 return 0; 1749 } 1750 1751 /** 1752 * lpfc_sli_ringtx_get - Get first element of the txq 1753 * @phba: Pointer to HBA context object. 1754 * @pring: Pointer to driver SLI ring object. 1755 * 1756 * This function is called with hbalock held to get next 1757 * iocb in txq of the given ring. If there is any iocb in 1758 * the txq, the function returns first iocb in the list after 1759 * removing the iocb from the list, else it returns NULL. 1760 **/ 1761 struct lpfc_iocbq * 1762 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1763 { 1764 struct lpfc_iocbq *cmd_iocb; 1765 1766 lockdep_assert_held(&phba->hbalock); 1767 1768 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1769 return cmd_iocb; 1770 } 1771 1772 /** 1773 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl 1774 * @phba: Pointer to HBA context object. 1775 * @cmdiocb: Pointer to driver command iocb object. 1776 * @cmf_cmpl: Pointer to completed WCQE. 1777 * 1778 * This routine will inform the driver of any BW adjustments we need 1779 * to make. These changes will be picked up during the next CMF 1780 * timer interrupt. In addition, any BW changes will be logged 1781 * with LOG_CGN_MGMT. 1782 **/ 1783 static void 1784 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 1785 struct lpfc_wcqe_complete *cmf_cmpl) 1786 { 1787 union lpfc_wqe128 *wqe; 1788 uint32_t status, info; 1789 uint64_t bw, bwdif, slop; 1790 uint64_t pcent, bwpcent; 1791 int asig, afpin, sigcnt, fpincnt; 1792 int wsigmax, wfpinmax, cg, tdp; 1793 char *s; 1794 1795 /* First check for error */ 1796 status = bf_get(lpfc_wcqe_c_status, cmf_cmpl); 1797 if (status) { 1798 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1799 "6211 CMF_SYNC_WQE Error " 1800 "req_tag x%x status x%x hwstatus x%x " 1801 "tdatap x%x parm x%x\n", 1802 bf_get(lpfc_wcqe_c_request_tag, cmf_cmpl), 1803 bf_get(lpfc_wcqe_c_status, cmf_cmpl), 1804 bf_get(lpfc_wcqe_c_hw_status, cmf_cmpl), 1805 cmf_cmpl->total_data_placed, 1806 cmf_cmpl->parameter); 1807 goto out; 1808 } 1809 1810 /* Gather congestion information on a successful cmpl */ 1811 info = cmf_cmpl->parameter; 1812 phba->cmf_active_info = info; 1813 1814 /* See if firmware info count is valid or has changed */ 1815 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info) 1816 info = 0; 1817 else 1818 phba->cmf_info_per_interval = info; 1819 1820 tdp = bf_get(lpfc_wcqe_c_cmf_bw, cmf_cmpl); 1821 cg = bf_get(lpfc_wcqe_c_cmf_cg, cmf_cmpl); 1822 1823 /* Get BW requirement from firmware */ 1824 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE; 1825 if (!bw) { 1826 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1827 "6212 CMF_SYNC_WQE x%x: NULL bw\n", 1828 bf_get(lpfc_wcqe_c_request_tag, cmf_cmpl)); 1829 goto out; 1830 } 1831 1832 /* Gather information needed for logging if a BW change is required */ 1833 wqe = &cmdiocb->wqe; 1834 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync); 1835 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync); 1836 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync); 1837 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync); 1838 if (phba->cmf_max_bytes_per_interval != bw || 1839 (asig || afpin || sigcnt || fpincnt)) { 1840 /* Are we increasing or decreasing BW */ 1841 if (phba->cmf_max_bytes_per_interval < bw) { 1842 bwdif = bw - phba->cmf_max_bytes_per_interval; 1843 s = "Increase"; 1844 } else { 1845 bwdif = phba->cmf_max_bytes_per_interval - bw; 1846 s = "Decrease"; 1847 } 1848 1849 /* What is the change percentage */ 1850 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/ 1851 pcent = div64_u64(bwdif * 100 + slop, 1852 phba->cmf_link_byte_count); 1853 bwpcent = div64_u64(bw * 100 + slop, 1854 phba->cmf_link_byte_count); 1855 if (asig) { 1856 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1857 "6237 BW Threshold %lld%% (%lld): " 1858 "%lld%% %s: Signal Alarm: cg:%d " 1859 "Info:%u\n", 1860 bwpcent, bw, pcent, s, cg, 1861 phba->cmf_active_info); 1862 } else if (afpin) { 1863 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1864 "6238 BW Threshold %lld%% (%lld): " 1865 "%lld%% %s: FPIN Alarm: cg:%d " 1866 "Info:%u\n", 1867 bwpcent, bw, pcent, s, cg, 1868 phba->cmf_active_info); 1869 } else if (sigcnt) { 1870 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync); 1871 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1872 "6239 BW Threshold %lld%% (%lld): " 1873 "%lld%% %s: Signal Warning: " 1874 "Cnt %d Max %d: cg:%d Info:%u\n", 1875 bwpcent, bw, pcent, s, sigcnt, 1876 wsigmax, cg, phba->cmf_active_info); 1877 } else if (fpincnt) { 1878 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync); 1879 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1880 "6240 BW Threshold %lld%% (%lld): " 1881 "%lld%% %s: FPIN Warning: " 1882 "Cnt %d Max %d: cg:%d Info:%u\n", 1883 bwpcent, bw, pcent, s, fpincnt, 1884 wfpinmax, cg, phba->cmf_active_info); 1885 } else { 1886 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1887 "6241 BW Threshold %lld%% (%lld): " 1888 "CMF %lld%% %s: cg:%d Info:%u\n", 1889 bwpcent, bw, pcent, s, cg, 1890 phba->cmf_active_info); 1891 } 1892 } else if (info) { 1893 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1894 "6246 Info Threshold %u\n", info); 1895 } 1896 1897 /* Save BW change to be picked up during next timer interrupt */ 1898 phba->cmf_last_sync_bw = bw; 1899 out: 1900 lpfc_sli_release_iocbq(phba, cmdiocb); 1901 } 1902 1903 /** 1904 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE 1905 * @phba: Pointer to HBA context object. 1906 * @ms: ms to set in WQE interval, 0 means use init op 1907 * @total: Total rcv bytes for this interval 1908 * 1909 * This routine is called every CMF timer interrupt. Its purpose is 1910 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events 1911 * that may indicate we have congestion (FPINs or Signals). Upon 1912 * completion, the firmware will indicate any BW restrictions the 1913 * driver may need to take. 1914 **/ 1915 int 1916 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total) 1917 { 1918 union lpfc_wqe128 *wqe; 1919 struct lpfc_iocbq *sync_buf; 1920 unsigned long iflags; 1921 u32 ret_val; 1922 u32 atot, wtot, max; 1923 1924 /* First address any alarm / warning activity */ 1925 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0); 1926 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0); 1927 1928 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */ 1929 if (phba->cmf_active_mode != LPFC_CFG_MANAGED || 1930 phba->link_state == LPFC_LINK_DOWN) 1931 return 0; 1932 1933 spin_lock_irqsave(&phba->hbalock, iflags); 1934 sync_buf = __lpfc_sli_get_iocbq(phba); 1935 if (!sync_buf) { 1936 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 1937 "6213 No available WQEs for CMF_SYNC_WQE\n"); 1938 ret_val = ENOMEM; 1939 goto out_unlock; 1940 } 1941 1942 wqe = &sync_buf->wqe; 1943 1944 /* WQEs are reused. Clear stale data and set key fields to zero */ 1945 memset(wqe, 0, sizeof(*wqe)); 1946 1947 /* If this is the very first CMF_SYNC_WQE, issue an init operation */ 1948 if (!ms) { 1949 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1950 "6441 CMF Init %d - CMF_SYNC_WQE\n", 1951 phba->fc_eventTag); 1952 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */ 1953 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL); 1954 goto initpath; 1955 } 1956 1957 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */ 1958 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms); 1959 1960 /* Check for alarms / warnings */ 1961 if (atot) { 1962 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1963 /* We hit an Signal alarm condition */ 1964 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1); 1965 } else { 1966 /* We hit a FPIN alarm condition */ 1967 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1); 1968 } 1969 } else if (wtot) { 1970 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 1971 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1972 /* We hit an Signal warning condition */ 1973 max = LPFC_SEC_TO_MSEC / lpfc_fabric_cgn_frequency * 1974 lpfc_acqe_cgn_frequency; 1975 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max); 1976 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot); 1977 } else { 1978 /* We hit a FPIN warning condition */ 1979 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1); 1980 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1); 1981 } 1982 } 1983 1984 /* Update total read blocks during previous timer interval */ 1985 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE); 1986 1987 initpath: 1988 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER); 1989 wqe->cmf_sync.event_tag = phba->fc_eventTag; 1990 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE); 1991 1992 /* Setup reqtag to match the wqe completion. */ 1993 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag); 1994 1995 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1); 1996 1997 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND); 1998 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1); 1999 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT); 2000 2001 sync_buf->vport = phba->pport; 2002 sync_buf->wqe_cmpl = lpfc_cmf_sync_cmpl; 2003 sync_buf->iocb_cmpl = NULL; 2004 sync_buf->context1 = NULL; 2005 sync_buf->context2 = NULL; 2006 sync_buf->context3 = NULL; 2007 sync_buf->sli4_xritag = NO_XRI; 2008 2009 sync_buf->iocb_flag |= LPFC_IO_CMF; 2010 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf); 2011 if (ret_val) 2012 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 2013 "6214 Cannot issue CMF_SYNC_WQE: x%x\n", 2014 ret_val); 2015 out_unlock: 2016 spin_unlock_irqrestore(&phba->hbalock, iflags); 2017 return ret_val; 2018 } 2019 2020 /** 2021 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 2022 * @phba: Pointer to HBA context object. 2023 * @pring: Pointer to driver SLI ring object. 2024 * 2025 * This function is called with hbalock held and the caller must post the 2026 * iocb without releasing the lock. If the caller releases the lock, 2027 * iocb slot returned by the function is not guaranteed to be available. 2028 * The function returns pointer to the next available iocb slot if there 2029 * is available slot in the ring, else it returns NULL. 2030 * If the get index of the ring is ahead of the put index, the function 2031 * will post an error attention event to the worker thread to take the 2032 * HBA to offline state. 2033 **/ 2034 static IOCB_t * 2035 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2036 { 2037 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2038 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 2039 2040 lockdep_assert_held(&phba->hbalock); 2041 2042 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 2043 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 2044 pring->sli.sli3.next_cmdidx = 0; 2045 2046 if (unlikely(pring->sli.sli3.local_getidx == 2047 pring->sli.sli3.next_cmdidx)) { 2048 2049 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 2050 2051 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 2052 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2053 "0315 Ring %d issue: portCmdGet %d " 2054 "is bigger than cmd ring %d\n", 2055 pring->ringno, 2056 pring->sli.sli3.local_getidx, 2057 max_cmd_idx); 2058 2059 phba->link_state = LPFC_HBA_ERROR; 2060 /* 2061 * All error attention handlers are posted to 2062 * worker thread 2063 */ 2064 phba->work_ha |= HA_ERATT; 2065 phba->work_hs = HS_FFER3; 2066 2067 lpfc_worker_wake_up(phba); 2068 2069 return NULL; 2070 } 2071 2072 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 2073 return NULL; 2074 } 2075 2076 return lpfc_cmd_iocb(phba, pring); 2077 } 2078 2079 /** 2080 * lpfc_sli_next_iotag - Get an iotag for the iocb 2081 * @phba: Pointer to HBA context object. 2082 * @iocbq: Pointer to driver iocb object. 2083 * 2084 * This function gets an iotag for the iocb. If there is no unused iotag and 2085 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 2086 * array and assigns a new iotag. 2087 * The function returns the allocated iotag if successful, else returns zero. 2088 * Zero is not a valid iotag. 2089 * The caller is not required to hold any lock. 2090 **/ 2091 uint16_t 2092 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 2093 { 2094 struct lpfc_iocbq **new_arr; 2095 struct lpfc_iocbq **old_arr; 2096 size_t new_len; 2097 struct lpfc_sli *psli = &phba->sli; 2098 uint16_t iotag; 2099 2100 spin_lock_irq(&phba->hbalock); 2101 iotag = psli->last_iotag; 2102 if(++iotag < psli->iocbq_lookup_len) { 2103 psli->last_iotag = iotag; 2104 psli->iocbq_lookup[iotag] = iocbq; 2105 spin_unlock_irq(&phba->hbalock); 2106 iocbq->iotag = iotag; 2107 return iotag; 2108 } else if (psli->iocbq_lookup_len < (0xffff 2109 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 2110 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 2111 spin_unlock_irq(&phba->hbalock); 2112 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 2113 GFP_KERNEL); 2114 if (new_arr) { 2115 spin_lock_irq(&phba->hbalock); 2116 old_arr = psli->iocbq_lookup; 2117 if (new_len <= psli->iocbq_lookup_len) { 2118 /* highly unprobable case */ 2119 kfree(new_arr); 2120 iotag = psli->last_iotag; 2121 if(++iotag < psli->iocbq_lookup_len) { 2122 psli->last_iotag = iotag; 2123 psli->iocbq_lookup[iotag] = iocbq; 2124 spin_unlock_irq(&phba->hbalock); 2125 iocbq->iotag = iotag; 2126 return iotag; 2127 } 2128 spin_unlock_irq(&phba->hbalock); 2129 return 0; 2130 } 2131 if (psli->iocbq_lookup) 2132 memcpy(new_arr, old_arr, 2133 ((psli->last_iotag + 1) * 2134 sizeof (struct lpfc_iocbq *))); 2135 psli->iocbq_lookup = new_arr; 2136 psli->iocbq_lookup_len = new_len; 2137 psli->last_iotag = iotag; 2138 psli->iocbq_lookup[iotag] = iocbq; 2139 spin_unlock_irq(&phba->hbalock); 2140 iocbq->iotag = iotag; 2141 kfree(old_arr); 2142 return iotag; 2143 } 2144 } else 2145 spin_unlock_irq(&phba->hbalock); 2146 2147 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2148 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 2149 psli->last_iotag); 2150 2151 return 0; 2152 } 2153 2154 /** 2155 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 2156 * @phba: Pointer to HBA context object. 2157 * @pring: Pointer to driver SLI ring object. 2158 * @iocb: Pointer to iocb slot in the ring. 2159 * @nextiocb: Pointer to driver iocb object which need to be 2160 * posted to firmware. 2161 * 2162 * This function is called to post a new iocb to the firmware. This 2163 * function copies the new iocb to ring iocb slot and updates the 2164 * ring pointers. It adds the new iocb to txcmplq if there is 2165 * a completion call back for this iocb else the function will free the 2166 * iocb object. The hbalock is asserted held in the code path calling 2167 * this routine. 2168 **/ 2169 static void 2170 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2171 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 2172 { 2173 /* 2174 * Set up an iotag 2175 */ 2176 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 2177 2178 2179 if (pring->ringno == LPFC_ELS_RING) { 2180 lpfc_debugfs_slow_ring_trc(phba, 2181 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 2182 *(((uint32_t *) &nextiocb->iocb) + 4), 2183 *(((uint32_t *) &nextiocb->iocb) + 6), 2184 *(((uint32_t *) &nextiocb->iocb) + 7)); 2185 } 2186 2187 /* 2188 * Issue iocb command to adapter 2189 */ 2190 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 2191 wmb(); 2192 pring->stats.iocb_cmd++; 2193 2194 /* 2195 * If there is no completion routine to call, we can release the 2196 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 2197 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 2198 */ 2199 if (nextiocb->iocb_cmpl) 2200 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 2201 else 2202 __lpfc_sli_release_iocbq(phba, nextiocb); 2203 2204 /* 2205 * Let the HBA know what IOCB slot will be the next one the 2206 * driver will put a command into. 2207 */ 2208 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 2209 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 2210 } 2211 2212 /** 2213 * lpfc_sli_update_full_ring - Update the chip attention register 2214 * @phba: Pointer to HBA context object. 2215 * @pring: Pointer to driver SLI ring object. 2216 * 2217 * The caller is not required to hold any lock for calling this function. 2218 * This function updates the chip attention bits for the ring to inform firmware 2219 * that there are pending work to be done for this ring and requests an 2220 * interrupt when there is space available in the ring. This function is 2221 * called when the driver is unable to post more iocbs to the ring due 2222 * to unavailability of space in the ring. 2223 **/ 2224 static void 2225 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2226 { 2227 int ringno = pring->ringno; 2228 2229 pring->flag |= LPFC_CALL_RING_AVAILABLE; 2230 2231 wmb(); 2232 2233 /* 2234 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 2235 * The HBA will tell us when an IOCB entry is available. 2236 */ 2237 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 2238 readl(phba->CAregaddr); /* flush */ 2239 2240 pring->stats.iocb_cmd_full++; 2241 } 2242 2243 /** 2244 * lpfc_sli_update_ring - Update chip attention register 2245 * @phba: Pointer to HBA context object. 2246 * @pring: Pointer to driver SLI ring object. 2247 * 2248 * This function updates the chip attention register bit for the 2249 * given ring to inform HBA that there is more work to be done 2250 * in this ring. The caller is not required to hold any lock. 2251 **/ 2252 static void 2253 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2254 { 2255 int ringno = pring->ringno; 2256 2257 /* 2258 * Tell the HBA that there is work to do in this ring. 2259 */ 2260 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2261 wmb(); 2262 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2263 readl(phba->CAregaddr); /* flush */ 2264 } 2265 } 2266 2267 /** 2268 * lpfc_sli_resume_iocb - Process iocbs in the txq 2269 * @phba: Pointer to HBA context object. 2270 * @pring: Pointer to driver SLI ring object. 2271 * 2272 * This function is called with hbalock held to post pending iocbs 2273 * in the txq to the firmware. This function is called when driver 2274 * detects space available in the ring. 2275 **/ 2276 static void 2277 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2278 { 2279 IOCB_t *iocb; 2280 struct lpfc_iocbq *nextiocb; 2281 2282 lockdep_assert_held(&phba->hbalock); 2283 2284 /* 2285 * Check to see if: 2286 * (a) there is anything on the txq to send 2287 * (b) link is up 2288 * (c) link attention events can be processed (fcp ring only) 2289 * (d) IOCB processing is not blocked by the outstanding mbox command. 2290 */ 2291 2292 if (lpfc_is_link_up(phba) && 2293 (!list_empty(&pring->txq)) && 2294 (pring->ringno != LPFC_FCP_RING || 2295 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2296 2297 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2298 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2299 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2300 2301 if (iocb) 2302 lpfc_sli_update_ring(phba, pring); 2303 else 2304 lpfc_sli_update_full_ring(phba, pring); 2305 } 2306 2307 return; 2308 } 2309 2310 /** 2311 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2312 * @phba: Pointer to HBA context object. 2313 * @hbqno: HBQ number. 2314 * 2315 * This function is called with hbalock held to get the next 2316 * available slot for the given HBQ. If there is free slot 2317 * available for the HBQ it will return pointer to the next available 2318 * HBQ entry else it will return NULL. 2319 **/ 2320 static struct lpfc_hbq_entry * 2321 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2322 { 2323 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2324 2325 lockdep_assert_held(&phba->hbalock); 2326 2327 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2328 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2329 hbqp->next_hbqPutIdx = 0; 2330 2331 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2332 uint32_t raw_index = phba->hbq_get[hbqno]; 2333 uint32_t getidx = le32_to_cpu(raw_index); 2334 2335 hbqp->local_hbqGetIdx = getidx; 2336 2337 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2338 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2339 "1802 HBQ %d: local_hbqGetIdx " 2340 "%u is > than hbqp->entry_count %u\n", 2341 hbqno, hbqp->local_hbqGetIdx, 2342 hbqp->entry_count); 2343 2344 phba->link_state = LPFC_HBA_ERROR; 2345 return NULL; 2346 } 2347 2348 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2349 return NULL; 2350 } 2351 2352 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2353 hbqp->hbqPutIdx; 2354 } 2355 2356 /** 2357 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2358 * @phba: Pointer to HBA context object. 2359 * 2360 * This function is called with no lock held to free all the 2361 * hbq buffers while uninitializing the SLI interface. It also 2362 * frees the HBQ buffers returned by the firmware but not yet 2363 * processed by the upper layers. 2364 **/ 2365 void 2366 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2367 { 2368 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2369 struct hbq_dmabuf *hbq_buf; 2370 unsigned long flags; 2371 int i, hbq_count; 2372 2373 hbq_count = lpfc_sli_hbq_count(); 2374 /* Return all memory used by all HBQs */ 2375 spin_lock_irqsave(&phba->hbalock, flags); 2376 for (i = 0; i < hbq_count; ++i) { 2377 list_for_each_entry_safe(dmabuf, next_dmabuf, 2378 &phba->hbqs[i].hbq_buffer_list, list) { 2379 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2380 list_del(&hbq_buf->dbuf.list); 2381 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2382 } 2383 phba->hbqs[i].buffer_count = 0; 2384 } 2385 2386 /* Mark the HBQs not in use */ 2387 phba->hbq_in_use = 0; 2388 spin_unlock_irqrestore(&phba->hbalock, flags); 2389 } 2390 2391 /** 2392 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2393 * @phba: Pointer to HBA context object. 2394 * @hbqno: HBQ number. 2395 * @hbq_buf: Pointer to HBQ buffer. 2396 * 2397 * This function is called with the hbalock held to post a 2398 * hbq buffer to the firmware. If the function finds an empty 2399 * slot in the HBQ, it will post the buffer. The function will return 2400 * pointer to the hbq entry if it successfully post the buffer 2401 * else it will return NULL. 2402 **/ 2403 static int 2404 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2405 struct hbq_dmabuf *hbq_buf) 2406 { 2407 lockdep_assert_held(&phba->hbalock); 2408 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2409 } 2410 2411 /** 2412 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2413 * @phba: Pointer to HBA context object. 2414 * @hbqno: HBQ number. 2415 * @hbq_buf: Pointer to HBQ buffer. 2416 * 2417 * This function is called with the hbalock held to post a hbq buffer to the 2418 * firmware. If the function finds an empty slot in the HBQ, it will post the 2419 * buffer and place it on the hbq_buffer_list. The function will return zero if 2420 * it successfully post the buffer else it will return an error. 2421 **/ 2422 static int 2423 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2424 struct hbq_dmabuf *hbq_buf) 2425 { 2426 struct lpfc_hbq_entry *hbqe; 2427 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2428 2429 lockdep_assert_held(&phba->hbalock); 2430 /* Get next HBQ entry slot to use */ 2431 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2432 if (hbqe) { 2433 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2434 2435 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2436 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2437 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2438 hbqe->bde.tus.f.bdeFlags = 0; 2439 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2440 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2441 /* Sync SLIM */ 2442 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2443 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2444 /* flush */ 2445 readl(phba->hbq_put + hbqno); 2446 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2447 return 0; 2448 } else 2449 return -ENOMEM; 2450 } 2451 2452 /** 2453 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2454 * @phba: Pointer to HBA context object. 2455 * @hbqno: HBQ number. 2456 * @hbq_buf: Pointer to HBQ buffer. 2457 * 2458 * This function is called with the hbalock held to post an RQE to the SLI4 2459 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2460 * the hbq_buffer_list and return zero, otherwise it will return an error. 2461 **/ 2462 static int 2463 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2464 struct hbq_dmabuf *hbq_buf) 2465 { 2466 int rc; 2467 struct lpfc_rqe hrqe; 2468 struct lpfc_rqe drqe; 2469 struct lpfc_queue *hrq; 2470 struct lpfc_queue *drq; 2471 2472 if (hbqno != LPFC_ELS_HBQ) 2473 return 1; 2474 hrq = phba->sli4_hba.hdr_rq; 2475 drq = phba->sli4_hba.dat_rq; 2476 2477 lockdep_assert_held(&phba->hbalock); 2478 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2479 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2480 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2481 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2482 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2483 if (rc < 0) 2484 return rc; 2485 hbq_buf->tag = (rc | (hbqno << 16)); 2486 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2487 return 0; 2488 } 2489 2490 /* HBQ for ELS and CT traffic. */ 2491 static struct lpfc_hbq_init lpfc_els_hbq = { 2492 .rn = 1, 2493 .entry_count = 256, 2494 .mask_count = 0, 2495 .profile = 0, 2496 .ring_mask = (1 << LPFC_ELS_RING), 2497 .buffer_count = 0, 2498 .init_count = 40, 2499 .add_count = 40, 2500 }; 2501 2502 /* Array of HBQs */ 2503 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2504 &lpfc_els_hbq, 2505 }; 2506 2507 /** 2508 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2509 * @phba: Pointer to HBA context object. 2510 * @hbqno: HBQ number. 2511 * @count: Number of HBQ buffers to be posted. 2512 * 2513 * This function is called with no lock held to post more hbq buffers to the 2514 * given HBQ. The function returns the number of HBQ buffers successfully 2515 * posted. 2516 **/ 2517 static int 2518 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2519 { 2520 uint32_t i, posted = 0; 2521 unsigned long flags; 2522 struct hbq_dmabuf *hbq_buffer; 2523 LIST_HEAD(hbq_buf_list); 2524 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2525 return 0; 2526 2527 if ((phba->hbqs[hbqno].buffer_count + count) > 2528 lpfc_hbq_defs[hbqno]->entry_count) 2529 count = lpfc_hbq_defs[hbqno]->entry_count - 2530 phba->hbqs[hbqno].buffer_count; 2531 if (!count) 2532 return 0; 2533 /* Allocate HBQ entries */ 2534 for (i = 0; i < count; i++) { 2535 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2536 if (!hbq_buffer) 2537 break; 2538 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2539 } 2540 /* Check whether HBQ is still in use */ 2541 spin_lock_irqsave(&phba->hbalock, flags); 2542 if (!phba->hbq_in_use) 2543 goto err; 2544 while (!list_empty(&hbq_buf_list)) { 2545 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2546 dbuf.list); 2547 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2548 (hbqno << 16)); 2549 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2550 phba->hbqs[hbqno].buffer_count++; 2551 posted++; 2552 } else 2553 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2554 } 2555 spin_unlock_irqrestore(&phba->hbalock, flags); 2556 return posted; 2557 err: 2558 spin_unlock_irqrestore(&phba->hbalock, flags); 2559 while (!list_empty(&hbq_buf_list)) { 2560 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2561 dbuf.list); 2562 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2563 } 2564 return 0; 2565 } 2566 2567 /** 2568 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2569 * @phba: Pointer to HBA context object. 2570 * @qno: HBQ number. 2571 * 2572 * This function posts more buffers to the HBQ. This function 2573 * is called with no lock held. The function returns the number of HBQ entries 2574 * successfully allocated. 2575 **/ 2576 int 2577 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2578 { 2579 if (phba->sli_rev == LPFC_SLI_REV4) 2580 return 0; 2581 else 2582 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2583 lpfc_hbq_defs[qno]->add_count); 2584 } 2585 2586 /** 2587 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2588 * @phba: Pointer to HBA context object. 2589 * @qno: HBQ queue number. 2590 * 2591 * This function is called from SLI initialization code path with 2592 * no lock held to post initial HBQ buffers to firmware. The 2593 * function returns the number of HBQ entries successfully allocated. 2594 **/ 2595 static int 2596 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2597 { 2598 if (phba->sli_rev == LPFC_SLI_REV4) 2599 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2600 lpfc_hbq_defs[qno]->entry_count); 2601 else 2602 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2603 lpfc_hbq_defs[qno]->init_count); 2604 } 2605 2606 /* 2607 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2608 * 2609 * This function removes the first hbq buffer on an hbq list and returns a 2610 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2611 **/ 2612 static struct hbq_dmabuf * 2613 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2614 { 2615 struct lpfc_dmabuf *d_buf; 2616 2617 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2618 if (!d_buf) 2619 return NULL; 2620 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2621 } 2622 2623 /** 2624 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2625 * @phba: Pointer to HBA context object. 2626 * @hrq: HBQ number. 2627 * 2628 * This function removes the first RQ buffer on an RQ buffer list and returns a 2629 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2630 **/ 2631 static struct rqb_dmabuf * 2632 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2633 { 2634 struct lpfc_dmabuf *h_buf; 2635 struct lpfc_rqb *rqbp; 2636 2637 rqbp = hrq->rqbp; 2638 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2639 struct lpfc_dmabuf, list); 2640 if (!h_buf) 2641 return NULL; 2642 rqbp->buffer_count--; 2643 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2644 } 2645 2646 /** 2647 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2648 * @phba: Pointer to HBA context object. 2649 * @tag: Tag of the hbq buffer. 2650 * 2651 * This function searches for the hbq buffer associated with the given tag in 2652 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2653 * otherwise it returns NULL. 2654 **/ 2655 static struct hbq_dmabuf * 2656 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2657 { 2658 struct lpfc_dmabuf *d_buf; 2659 struct hbq_dmabuf *hbq_buf; 2660 uint32_t hbqno; 2661 2662 hbqno = tag >> 16; 2663 if (hbqno >= LPFC_MAX_HBQS) 2664 return NULL; 2665 2666 spin_lock_irq(&phba->hbalock); 2667 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2668 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2669 if (hbq_buf->tag == tag) { 2670 spin_unlock_irq(&phba->hbalock); 2671 return hbq_buf; 2672 } 2673 } 2674 spin_unlock_irq(&phba->hbalock); 2675 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2676 "1803 Bad hbq tag. Data: x%x x%x\n", 2677 tag, phba->hbqs[tag >> 16].buffer_count); 2678 return NULL; 2679 } 2680 2681 /** 2682 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2683 * @phba: Pointer to HBA context object. 2684 * @hbq_buffer: Pointer to HBQ buffer. 2685 * 2686 * This function is called with hbalock. This function gives back 2687 * the hbq buffer to firmware. If the HBQ does not have space to 2688 * post the buffer, it will free the buffer. 2689 **/ 2690 void 2691 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2692 { 2693 uint32_t hbqno; 2694 2695 if (hbq_buffer) { 2696 hbqno = hbq_buffer->tag >> 16; 2697 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2698 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2699 } 2700 } 2701 2702 /** 2703 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2704 * @mbxCommand: mailbox command code. 2705 * 2706 * This function is called by the mailbox event handler function to verify 2707 * that the completed mailbox command is a legitimate mailbox command. If the 2708 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2709 * and the mailbox event handler will take the HBA offline. 2710 **/ 2711 static int 2712 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2713 { 2714 uint8_t ret; 2715 2716 switch (mbxCommand) { 2717 case MBX_LOAD_SM: 2718 case MBX_READ_NV: 2719 case MBX_WRITE_NV: 2720 case MBX_WRITE_VPARMS: 2721 case MBX_RUN_BIU_DIAG: 2722 case MBX_INIT_LINK: 2723 case MBX_DOWN_LINK: 2724 case MBX_CONFIG_LINK: 2725 case MBX_CONFIG_RING: 2726 case MBX_RESET_RING: 2727 case MBX_READ_CONFIG: 2728 case MBX_READ_RCONFIG: 2729 case MBX_READ_SPARM: 2730 case MBX_READ_STATUS: 2731 case MBX_READ_RPI: 2732 case MBX_READ_XRI: 2733 case MBX_READ_REV: 2734 case MBX_READ_LNK_STAT: 2735 case MBX_REG_LOGIN: 2736 case MBX_UNREG_LOGIN: 2737 case MBX_CLEAR_LA: 2738 case MBX_DUMP_MEMORY: 2739 case MBX_DUMP_CONTEXT: 2740 case MBX_RUN_DIAGS: 2741 case MBX_RESTART: 2742 case MBX_UPDATE_CFG: 2743 case MBX_DOWN_LOAD: 2744 case MBX_DEL_LD_ENTRY: 2745 case MBX_RUN_PROGRAM: 2746 case MBX_SET_MASK: 2747 case MBX_SET_VARIABLE: 2748 case MBX_UNREG_D_ID: 2749 case MBX_KILL_BOARD: 2750 case MBX_CONFIG_FARP: 2751 case MBX_BEACON: 2752 case MBX_LOAD_AREA: 2753 case MBX_RUN_BIU_DIAG64: 2754 case MBX_CONFIG_PORT: 2755 case MBX_READ_SPARM64: 2756 case MBX_READ_RPI64: 2757 case MBX_REG_LOGIN64: 2758 case MBX_READ_TOPOLOGY: 2759 case MBX_WRITE_WWN: 2760 case MBX_SET_DEBUG: 2761 case MBX_LOAD_EXP_ROM: 2762 case MBX_ASYNCEVT_ENABLE: 2763 case MBX_REG_VPI: 2764 case MBX_UNREG_VPI: 2765 case MBX_HEARTBEAT: 2766 case MBX_PORT_CAPABILITIES: 2767 case MBX_PORT_IOV_CONTROL: 2768 case MBX_SLI4_CONFIG: 2769 case MBX_SLI4_REQ_FTRS: 2770 case MBX_REG_FCFI: 2771 case MBX_UNREG_FCFI: 2772 case MBX_REG_VFI: 2773 case MBX_UNREG_VFI: 2774 case MBX_INIT_VPI: 2775 case MBX_INIT_VFI: 2776 case MBX_RESUME_RPI: 2777 case MBX_READ_EVENT_LOG_STATUS: 2778 case MBX_READ_EVENT_LOG: 2779 case MBX_SECURITY_MGMT: 2780 case MBX_AUTH_PORT: 2781 case MBX_ACCESS_VDATA: 2782 ret = mbxCommand; 2783 break; 2784 default: 2785 ret = MBX_SHUTDOWN; 2786 break; 2787 } 2788 return ret; 2789 } 2790 2791 /** 2792 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2793 * @phba: Pointer to HBA context object. 2794 * @pmboxq: Pointer to mailbox command. 2795 * 2796 * This is completion handler function for mailbox commands issued from 2797 * lpfc_sli_issue_mbox_wait function. This function is called by the 2798 * mailbox event handler function with no lock held. This function 2799 * will wake up thread waiting on the wait queue pointed by context1 2800 * of the mailbox. 2801 **/ 2802 void 2803 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2804 { 2805 unsigned long drvr_flag; 2806 struct completion *pmbox_done; 2807 2808 /* 2809 * If pmbox_done is empty, the driver thread gave up waiting and 2810 * continued running. 2811 */ 2812 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2813 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2814 pmbox_done = (struct completion *)pmboxq->context3; 2815 if (pmbox_done) 2816 complete(pmbox_done); 2817 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2818 return; 2819 } 2820 2821 static void 2822 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2823 { 2824 unsigned long iflags; 2825 2826 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2827 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2828 spin_lock_irqsave(&ndlp->lock, iflags); 2829 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2830 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2831 spin_unlock_irqrestore(&ndlp->lock, iflags); 2832 } 2833 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2834 } 2835 2836 /** 2837 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2838 * @phba: Pointer to HBA context object. 2839 * @pmb: Pointer to mailbox object. 2840 * 2841 * This function is the default mailbox completion handler. It 2842 * frees the memory resources associated with the completed mailbox 2843 * command. If the completed command is a REG_LOGIN mailbox command, 2844 * this function will issue a UREG_LOGIN to re-claim the RPI. 2845 **/ 2846 void 2847 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2848 { 2849 struct lpfc_vport *vport = pmb->vport; 2850 struct lpfc_dmabuf *mp; 2851 struct lpfc_nodelist *ndlp; 2852 struct Scsi_Host *shost; 2853 uint16_t rpi, vpi; 2854 int rc; 2855 2856 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 2857 2858 if (mp) { 2859 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2860 kfree(mp); 2861 } 2862 2863 /* 2864 * If a REG_LOGIN succeeded after node is destroyed or node 2865 * is in re-discovery driver need to cleanup the RPI. 2866 */ 2867 if (!(phba->pport->load_flag & FC_UNLOADING) && 2868 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2869 !pmb->u.mb.mbxStatus) { 2870 rpi = pmb->u.mb.un.varWords[0]; 2871 vpi = pmb->u.mb.un.varRegLogin.vpi; 2872 if (phba->sli_rev == LPFC_SLI_REV4) 2873 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2874 lpfc_unreg_login(phba, vpi, rpi, pmb); 2875 pmb->vport = vport; 2876 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2877 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2878 if (rc != MBX_NOT_FINISHED) 2879 return; 2880 } 2881 2882 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2883 !(phba->pport->load_flag & FC_UNLOADING) && 2884 !pmb->u.mb.mbxStatus) { 2885 shost = lpfc_shost_from_vport(vport); 2886 spin_lock_irq(shost->host_lock); 2887 vport->vpi_state |= LPFC_VPI_REGISTERED; 2888 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2889 spin_unlock_irq(shost->host_lock); 2890 } 2891 2892 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2893 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2894 lpfc_nlp_put(ndlp); 2895 pmb->ctx_buf = NULL; 2896 pmb->ctx_ndlp = NULL; 2897 } 2898 2899 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2900 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2901 2902 /* Check to see if there are any deferred events to process */ 2903 if (ndlp) { 2904 lpfc_printf_vlog( 2905 vport, 2906 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2907 "1438 UNREG cmpl deferred mbox x%x " 2908 "on NPort x%x Data: x%x x%x x%px x%x x%x\n", 2909 ndlp->nlp_rpi, ndlp->nlp_DID, 2910 ndlp->nlp_flag, ndlp->nlp_defer_did, 2911 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2912 2913 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2914 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2915 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2916 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2917 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2918 } else { 2919 __lpfc_sli_rpi_release(vport, ndlp); 2920 } 2921 2922 /* The unreg_login mailbox is complete and had a 2923 * reference that has to be released. The PLOGI 2924 * got its own ref. 2925 */ 2926 lpfc_nlp_put(ndlp); 2927 pmb->ctx_ndlp = NULL; 2928 } 2929 } 2930 2931 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2932 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2933 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2934 lpfc_nlp_put(ndlp); 2935 } 2936 2937 /* Check security permission status on INIT_LINK mailbox command */ 2938 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2939 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2940 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2941 "2860 SLI authentication is required " 2942 "for INIT_LINK but has not done yet\n"); 2943 2944 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2945 lpfc_sli4_mbox_cmd_free(phba, pmb); 2946 else 2947 mempool_free(pmb, phba->mbox_mem_pool); 2948 } 2949 /** 2950 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2951 * @phba: Pointer to HBA context object. 2952 * @pmb: Pointer to mailbox object. 2953 * 2954 * This function is the unreg rpi mailbox completion handler. It 2955 * frees the memory resources associated with the completed mailbox 2956 * command. An additional reference is put on the ndlp to prevent 2957 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2958 * the unreg mailbox command completes, this routine puts the 2959 * reference back. 2960 * 2961 **/ 2962 void 2963 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2964 { 2965 struct lpfc_vport *vport = pmb->vport; 2966 struct lpfc_nodelist *ndlp; 2967 2968 ndlp = pmb->ctx_ndlp; 2969 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2970 if (phba->sli_rev == LPFC_SLI_REV4 && 2971 (bf_get(lpfc_sli_intf_if_type, 2972 &phba->sli4_hba.sli_intf) >= 2973 LPFC_SLI_INTF_IF_TYPE_2)) { 2974 if (ndlp) { 2975 lpfc_printf_vlog( 2976 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2977 "0010 UNREG_LOGIN vpi:%x " 2978 "rpi:%x DID:%x defer x%x flg x%x " 2979 "x%px\n", 2980 vport->vpi, ndlp->nlp_rpi, 2981 ndlp->nlp_DID, ndlp->nlp_defer_did, 2982 ndlp->nlp_flag, 2983 ndlp); 2984 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2985 2986 /* Check to see if there are any deferred 2987 * events to process 2988 */ 2989 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2990 (ndlp->nlp_defer_did != 2991 NLP_EVT_NOTHING_PENDING)) { 2992 lpfc_printf_vlog( 2993 vport, KERN_INFO, LOG_DISCOVERY, 2994 "4111 UNREG cmpl deferred " 2995 "clr x%x on " 2996 "NPort x%x Data: x%x x%px\n", 2997 ndlp->nlp_rpi, ndlp->nlp_DID, 2998 ndlp->nlp_defer_did, ndlp); 2999 ndlp->nlp_flag &= ~NLP_UNREG_INP; 3000 ndlp->nlp_defer_did = 3001 NLP_EVT_NOTHING_PENDING; 3002 lpfc_issue_els_plogi( 3003 vport, ndlp->nlp_DID, 0); 3004 } else { 3005 __lpfc_sli_rpi_release(vport, ndlp); 3006 } 3007 lpfc_nlp_put(ndlp); 3008 } 3009 } 3010 } 3011 3012 mempool_free(pmb, phba->mbox_mem_pool); 3013 } 3014 3015 /** 3016 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 3017 * @phba: Pointer to HBA context object. 3018 * 3019 * This function is called with no lock held. This function processes all 3020 * the completed mailbox commands and gives it to upper layers. The interrupt 3021 * service routine processes mailbox completion interrupt and adds completed 3022 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 3023 * Worker thread call lpfc_sli_handle_mb_event, which will return the 3024 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 3025 * function returns the mailbox commands to the upper layer by calling the 3026 * completion handler function of each mailbox. 3027 **/ 3028 int 3029 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 3030 { 3031 MAILBOX_t *pmbox; 3032 LPFC_MBOXQ_t *pmb; 3033 int rc; 3034 LIST_HEAD(cmplq); 3035 3036 phba->sli.slistat.mbox_event++; 3037 3038 /* Get all completed mailboxe buffers into the cmplq */ 3039 spin_lock_irq(&phba->hbalock); 3040 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 3041 spin_unlock_irq(&phba->hbalock); 3042 3043 /* Get a Mailbox buffer to setup mailbox commands for callback */ 3044 do { 3045 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 3046 if (pmb == NULL) 3047 break; 3048 3049 pmbox = &pmb->u.mb; 3050 3051 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 3052 if (pmb->vport) { 3053 lpfc_debugfs_disc_trc(pmb->vport, 3054 LPFC_DISC_TRC_MBOX_VPORT, 3055 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 3056 (uint32_t)pmbox->mbxCommand, 3057 pmbox->un.varWords[0], 3058 pmbox->un.varWords[1]); 3059 } 3060 else { 3061 lpfc_debugfs_disc_trc(phba->pport, 3062 LPFC_DISC_TRC_MBOX, 3063 "MBOX cmpl: cmd:x%x mb:x%x x%x", 3064 (uint32_t)pmbox->mbxCommand, 3065 pmbox->un.varWords[0], 3066 pmbox->un.varWords[1]); 3067 } 3068 } 3069 3070 /* 3071 * It is a fatal error if unknown mbox command completion. 3072 */ 3073 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 3074 MBX_SHUTDOWN) { 3075 /* Unknown mailbox command compl */ 3076 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3077 "(%d):0323 Unknown Mailbox command " 3078 "x%x (x%x/x%x) Cmpl\n", 3079 pmb->vport ? pmb->vport->vpi : 3080 LPFC_VPORT_UNKNOWN, 3081 pmbox->mbxCommand, 3082 lpfc_sli_config_mbox_subsys_get(phba, 3083 pmb), 3084 lpfc_sli_config_mbox_opcode_get(phba, 3085 pmb)); 3086 phba->link_state = LPFC_HBA_ERROR; 3087 phba->work_hs = HS_FFER3; 3088 lpfc_handle_eratt(phba); 3089 continue; 3090 } 3091 3092 if (pmbox->mbxStatus) { 3093 phba->sli.slistat.mbox_stat_err++; 3094 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 3095 /* Mbox cmd cmpl error - RETRYing */ 3096 lpfc_printf_log(phba, KERN_INFO, 3097 LOG_MBOX | LOG_SLI, 3098 "(%d):0305 Mbox cmd cmpl " 3099 "error - RETRYing Data: x%x " 3100 "(x%x/x%x) x%x x%x x%x\n", 3101 pmb->vport ? pmb->vport->vpi : 3102 LPFC_VPORT_UNKNOWN, 3103 pmbox->mbxCommand, 3104 lpfc_sli_config_mbox_subsys_get(phba, 3105 pmb), 3106 lpfc_sli_config_mbox_opcode_get(phba, 3107 pmb), 3108 pmbox->mbxStatus, 3109 pmbox->un.varWords[0], 3110 pmb->vport ? pmb->vport->port_state : 3111 LPFC_VPORT_UNKNOWN); 3112 pmbox->mbxStatus = 0; 3113 pmbox->mbxOwner = OWN_HOST; 3114 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3115 if (rc != MBX_NOT_FINISHED) 3116 continue; 3117 } 3118 } 3119 3120 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 3121 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 3122 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 3123 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 3124 "x%x x%x x%x\n", 3125 pmb->vport ? pmb->vport->vpi : 0, 3126 pmbox->mbxCommand, 3127 lpfc_sli_config_mbox_subsys_get(phba, pmb), 3128 lpfc_sli_config_mbox_opcode_get(phba, pmb), 3129 pmb->mbox_cmpl, 3130 *((uint32_t *) pmbox), 3131 pmbox->un.varWords[0], 3132 pmbox->un.varWords[1], 3133 pmbox->un.varWords[2], 3134 pmbox->un.varWords[3], 3135 pmbox->un.varWords[4], 3136 pmbox->un.varWords[5], 3137 pmbox->un.varWords[6], 3138 pmbox->un.varWords[7], 3139 pmbox->un.varWords[8], 3140 pmbox->un.varWords[9], 3141 pmbox->un.varWords[10]); 3142 3143 if (pmb->mbox_cmpl) 3144 pmb->mbox_cmpl(phba,pmb); 3145 } while (1); 3146 return 0; 3147 } 3148 3149 /** 3150 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 3151 * @phba: Pointer to HBA context object. 3152 * @pring: Pointer to driver SLI ring object. 3153 * @tag: buffer tag. 3154 * 3155 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 3156 * is set in the tag the buffer is posted for a particular exchange, 3157 * the function will return the buffer without replacing the buffer. 3158 * If the buffer is for unsolicited ELS or CT traffic, this function 3159 * returns the buffer and also posts another buffer to the firmware. 3160 **/ 3161 static struct lpfc_dmabuf * 3162 lpfc_sli_get_buff(struct lpfc_hba *phba, 3163 struct lpfc_sli_ring *pring, 3164 uint32_t tag) 3165 { 3166 struct hbq_dmabuf *hbq_entry; 3167 3168 if (tag & QUE_BUFTAG_BIT) 3169 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 3170 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 3171 if (!hbq_entry) 3172 return NULL; 3173 return &hbq_entry->dbuf; 3174 } 3175 3176 /** 3177 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 3178 * containing a NVME LS request. 3179 * @phba: pointer to lpfc hba data structure. 3180 * @piocb: pointer to the iocbq struct representing the sequence starting 3181 * frame. 3182 * 3183 * This routine initially validates the NVME LS, validates there is a login 3184 * with the port that sent the LS, and then calls the appropriate nvme host 3185 * or target LS request handler. 3186 **/ 3187 static void 3188 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 3189 { 3190 struct lpfc_nodelist *ndlp; 3191 struct lpfc_dmabuf *d_buf; 3192 struct hbq_dmabuf *nvmebuf; 3193 struct fc_frame_header *fc_hdr; 3194 struct lpfc_async_xchg_ctx *axchg = NULL; 3195 char *failwhy = NULL; 3196 uint32_t oxid, sid, did, fctl, size; 3197 int ret = 1; 3198 3199 d_buf = piocb->context2; 3200 3201 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 3202 fc_hdr = nvmebuf->hbuf.virt; 3203 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 3204 sid = sli4_sid_from_fc_hdr(fc_hdr); 3205 did = sli4_did_from_fc_hdr(fc_hdr); 3206 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 3207 fc_hdr->fh_f_ctl[1] << 8 | 3208 fc_hdr->fh_f_ctl[2]); 3209 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 3210 3211 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 3212 oxid, size, sid); 3213 3214 if (phba->pport->load_flag & FC_UNLOADING) { 3215 failwhy = "Driver Unloading"; 3216 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 3217 failwhy = "NVME FC4 Disabled"; 3218 } else if (!phba->nvmet_support && !phba->pport->localport) { 3219 failwhy = "No Localport"; 3220 } else if (phba->nvmet_support && !phba->targetport) { 3221 failwhy = "No Targetport"; 3222 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 3223 failwhy = "Bad NVME LS R_CTL"; 3224 } else if (unlikely((fctl & 0x00FF0000) != 3225 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 3226 failwhy = "Bad NVME LS F_CTL"; 3227 } else { 3228 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 3229 if (!axchg) 3230 failwhy = "No CTX memory"; 3231 } 3232 3233 if (unlikely(failwhy)) { 3234 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3235 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 3236 sid, oxid, failwhy); 3237 goto out_fail; 3238 } 3239 3240 /* validate the source of the LS is logged in */ 3241 ndlp = lpfc_findnode_did(phba->pport, sid); 3242 if (!ndlp || 3243 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3244 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3245 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 3246 "6216 NVME Unsol rcv: No ndlp: " 3247 "NPort_ID x%x oxid x%x\n", 3248 sid, oxid); 3249 goto out_fail; 3250 } 3251 3252 axchg->phba = phba; 3253 axchg->ndlp = ndlp; 3254 axchg->size = size; 3255 axchg->oxid = oxid; 3256 axchg->sid = sid; 3257 axchg->wqeq = NULL; 3258 axchg->state = LPFC_NVME_STE_LS_RCV; 3259 axchg->entry_cnt = 1; 3260 axchg->rqb_buffer = (void *)nvmebuf; 3261 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3262 axchg->payload = nvmebuf->dbuf.virt; 3263 INIT_LIST_HEAD(&axchg->list); 3264 3265 if (phba->nvmet_support) { 3266 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3267 spin_lock_irq(&ndlp->lock); 3268 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3269 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3270 spin_unlock_irq(&ndlp->lock); 3271 3272 /* This reference is a single occurrence to hold the 3273 * node valid until the nvmet transport calls 3274 * host_release. 3275 */ 3276 if (!lpfc_nlp_get(ndlp)) 3277 goto out_fail; 3278 3279 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3280 "6206 NVMET unsol ls_req ndlp x%px " 3281 "DID x%x xflags x%x refcnt %d\n", 3282 ndlp, ndlp->nlp_DID, 3283 ndlp->fc4_xpt_flags, 3284 kref_read(&ndlp->kref)); 3285 } else { 3286 spin_unlock_irq(&ndlp->lock); 3287 } 3288 } else { 3289 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3290 } 3291 3292 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3293 if (!ret) 3294 return; 3295 3296 out_fail: 3297 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3298 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3299 "NVMe%s handler failed %d\n", 3300 did, sid, oxid, 3301 (phba->nvmet_support) ? "T" : "I", ret); 3302 3303 /* recycle receive buffer */ 3304 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3305 3306 /* If start of new exchange, abort it */ 3307 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3308 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3309 3310 if (ret) 3311 kfree(axchg); 3312 } 3313 3314 /** 3315 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3316 * @phba: Pointer to HBA context object. 3317 * @pring: Pointer to driver SLI ring object. 3318 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3319 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3320 * @fch_type: the type for the first frame of the sequence. 3321 * 3322 * This function is called with no lock held. This function uses the r_ctl and 3323 * type of the received sequence to find the correct callback function to call 3324 * to process the sequence. 3325 **/ 3326 static int 3327 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3328 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3329 uint32_t fch_type) 3330 { 3331 int i; 3332 3333 switch (fch_type) { 3334 case FC_TYPE_NVME: 3335 lpfc_nvme_unsol_ls_handler(phba, saveq); 3336 return 1; 3337 default: 3338 break; 3339 } 3340 3341 /* unSolicited Responses */ 3342 if (pring->prt[0].profile) { 3343 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3344 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3345 saveq); 3346 return 1; 3347 } 3348 /* We must search, based on rctl / type 3349 for the right routine */ 3350 for (i = 0; i < pring->num_mask; i++) { 3351 if ((pring->prt[i].rctl == fch_r_ctl) && 3352 (pring->prt[i].type == fch_type)) { 3353 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3354 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3355 (phba, pring, saveq); 3356 return 1; 3357 } 3358 } 3359 return 0; 3360 } 3361 3362 /** 3363 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3364 * @phba: Pointer to HBA context object. 3365 * @pring: Pointer to driver SLI ring object. 3366 * @saveq: Pointer to the unsolicited iocb. 3367 * 3368 * This function is called with no lock held by the ring event handler 3369 * when there is an unsolicited iocb posted to the response ring by the 3370 * firmware. This function gets the buffer associated with the iocbs 3371 * and calls the event handler for the ring. This function handles both 3372 * qring buffers and hbq buffers. 3373 * When the function returns 1 the caller can free the iocb object otherwise 3374 * upper layer functions will free the iocb objects. 3375 **/ 3376 static int 3377 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3378 struct lpfc_iocbq *saveq) 3379 { 3380 IOCB_t * irsp; 3381 WORD5 * w5p; 3382 uint32_t Rctl, Type; 3383 struct lpfc_iocbq *iocbq; 3384 struct lpfc_dmabuf *dmzbuf; 3385 3386 irsp = &(saveq->iocb); 3387 3388 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3389 if (pring->lpfc_sli_rcv_async_status) 3390 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3391 else 3392 lpfc_printf_log(phba, 3393 KERN_WARNING, 3394 LOG_SLI, 3395 "0316 Ring %d handler: unexpected " 3396 "ASYNC_STATUS iocb received evt_code " 3397 "0x%x\n", 3398 pring->ringno, 3399 irsp->un.asyncstat.evt_code); 3400 return 1; 3401 } 3402 3403 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3404 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3405 if (irsp->ulpBdeCount > 0) { 3406 dmzbuf = lpfc_sli_get_buff(phba, pring, 3407 irsp->un.ulpWord[3]); 3408 lpfc_in_buf_free(phba, dmzbuf); 3409 } 3410 3411 if (irsp->ulpBdeCount > 1) { 3412 dmzbuf = lpfc_sli_get_buff(phba, pring, 3413 irsp->unsli3.sli3Words[3]); 3414 lpfc_in_buf_free(phba, dmzbuf); 3415 } 3416 3417 if (irsp->ulpBdeCount > 2) { 3418 dmzbuf = lpfc_sli_get_buff(phba, pring, 3419 irsp->unsli3.sli3Words[7]); 3420 lpfc_in_buf_free(phba, dmzbuf); 3421 } 3422 3423 return 1; 3424 } 3425 3426 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3427 if (irsp->ulpBdeCount != 0) { 3428 saveq->context2 = lpfc_sli_get_buff(phba, pring, 3429 irsp->un.ulpWord[3]); 3430 if (!saveq->context2) 3431 lpfc_printf_log(phba, 3432 KERN_ERR, 3433 LOG_SLI, 3434 "0341 Ring %d Cannot find buffer for " 3435 "an unsolicited iocb. tag 0x%x\n", 3436 pring->ringno, 3437 irsp->un.ulpWord[3]); 3438 } 3439 if (irsp->ulpBdeCount == 2) { 3440 saveq->context3 = lpfc_sli_get_buff(phba, pring, 3441 irsp->unsli3.sli3Words[7]); 3442 if (!saveq->context3) 3443 lpfc_printf_log(phba, 3444 KERN_ERR, 3445 LOG_SLI, 3446 "0342 Ring %d Cannot find buffer for an" 3447 " unsolicited iocb. tag 0x%x\n", 3448 pring->ringno, 3449 irsp->unsli3.sli3Words[7]); 3450 } 3451 list_for_each_entry(iocbq, &saveq->list, list) { 3452 irsp = &(iocbq->iocb); 3453 if (irsp->ulpBdeCount != 0) { 3454 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 3455 irsp->un.ulpWord[3]); 3456 if (!iocbq->context2) 3457 lpfc_printf_log(phba, 3458 KERN_ERR, 3459 LOG_SLI, 3460 "0343 Ring %d Cannot find " 3461 "buffer for an unsolicited iocb" 3462 ". tag 0x%x\n", pring->ringno, 3463 irsp->un.ulpWord[3]); 3464 } 3465 if (irsp->ulpBdeCount == 2) { 3466 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 3467 irsp->unsli3.sli3Words[7]); 3468 if (!iocbq->context3) 3469 lpfc_printf_log(phba, 3470 KERN_ERR, 3471 LOG_SLI, 3472 "0344 Ring %d Cannot find " 3473 "buffer for an unsolicited " 3474 "iocb. tag 0x%x\n", 3475 pring->ringno, 3476 irsp->unsli3.sli3Words[7]); 3477 } 3478 } 3479 } 3480 if (irsp->ulpBdeCount != 0 && 3481 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3482 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3483 int found = 0; 3484 3485 /* search continue save q for same XRI */ 3486 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3487 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3488 saveq->iocb.unsli3.rcvsli3.ox_id) { 3489 list_add_tail(&saveq->list, &iocbq->list); 3490 found = 1; 3491 break; 3492 } 3493 } 3494 if (!found) 3495 list_add_tail(&saveq->clist, 3496 &pring->iocb_continue_saveq); 3497 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3498 list_del_init(&iocbq->clist); 3499 saveq = iocbq; 3500 irsp = &(saveq->iocb); 3501 } else 3502 return 0; 3503 } 3504 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3505 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3506 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3507 Rctl = FC_RCTL_ELS_REQ; 3508 Type = FC_TYPE_ELS; 3509 } else { 3510 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3511 Rctl = w5p->hcsw.Rctl; 3512 Type = w5p->hcsw.Type; 3513 3514 /* Firmware Workaround */ 3515 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3516 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3517 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3518 Rctl = FC_RCTL_ELS_REQ; 3519 Type = FC_TYPE_ELS; 3520 w5p->hcsw.Rctl = Rctl; 3521 w5p->hcsw.Type = Type; 3522 } 3523 } 3524 3525 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3526 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3527 "0313 Ring %d handler: unexpected Rctl x%x " 3528 "Type x%x received\n", 3529 pring->ringno, Rctl, Type); 3530 3531 return 1; 3532 } 3533 3534 /** 3535 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3536 * @phba: Pointer to HBA context object. 3537 * @pring: Pointer to driver SLI ring object. 3538 * @prspiocb: Pointer to response iocb object. 3539 * 3540 * This function looks up the iocb_lookup table to get the command iocb 3541 * corresponding to the given response iocb using the iotag of the 3542 * response iocb. The driver calls this function with the hbalock held 3543 * for SLI3 ports or the ring lock held for SLI4 ports. 3544 * This function returns the command iocb object if it finds the command 3545 * iocb else returns NULL. 3546 **/ 3547 static struct lpfc_iocbq * 3548 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3549 struct lpfc_sli_ring *pring, 3550 struct lpfc_iocbq *prspiocb) 3551 { 3552 struct lpfc_iocbq *cmd_iocb = NULL; 3553 uint16_t iotag; 3554 spinlock_t *temp_lock = NULL; 3555 unsigned long iflag = 0; 3556 3557 if (phba->sli_rev == LPFC_SLI_REV4) 3558 temp_lock = &pring->ring_lock; 3559 else 3560 temp_lock = &phba->hbalock; 3561 3562 spin_lock_irqsave(temp_lock, iflag); 3563 iotag = prspiocb->iocb.ulpIoTag; 3564 3565 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3566 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3567 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3568 /* remove from txcmpl queue list */ 3569 list_del_init(&cmd_iocb->list); 3570 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3571 pring->txcmplq_cnt--; 3572 spin_unlock_irqrestore(temp_lock, iflag); 3573 return cmd_iocb; 3574 } 3575 } 3576 3577 spin_unlock_irqrestore(temp_lock, iflag); 3578 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3579 "0317 iotag x%x is out of " 3580 "range: max iotag x%x wd0 x%x\n", 3581 iotag, phba->sli.last_iotag, 3582 *(((uint32_t *) &prspiocb->iocb) + 7)); 3583 return NULL; 3584 } 3585 3586 /** 3587 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3588 * @phba: Pointer to HBA context object. 3589 * @pring: Pointer to driver SLI ring object. 3590 * @iotag: IOCB tag. 3591 * 3592 * This function looks up the iocb_lookup table to get the command iocb 3593 * corresponding to the given iotag. The driver calls this function with 3594 * the ring lock held because this function is an SLI4 port only helper. 3595 * This function returns the command iocb object if it finds the command 3596 * iocb else returns NULL. 3597 **/ 3598 static struct lpfc_iocbq * 3599 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3600 struct lpfc_sli_ring *pring, uint16_t iotag) 3601 { 3602 struct lpfc_iocbq *cmd_iocb = NULL; 3603 spinlock_t *temp_lock = NULL; 3604 unsigned long iflag = 0; 3605 3606 if (phba->sli_rev == LPFC_SLI_REV4) 3607 temp_lock = &pring->ring_lock; 3608 else 3609 temp_lock = &phba->hbalock; 3610 3611 spin_lock_irqsave(temp_lock, iflag); 3612 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3613 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3614 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3615 /* remove from txcmpl queue list */ 3616 list_del_init(&cmd_iocb->list); 3617 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3618 pring->txcmplq_cnt--; 3619 spin_unlock_irqrestore(temp_lock, iflag); 3620 return cmd_iocb; 3621 } 3622 } 3623 3624 spin_unlock_irqrestore(temp_lock, iflag); 3625 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3626 "0372 iotag x%x lookup error: max iotag (x%x) " 3627 "iocb_flag x%x\n", 3628 iotag, phba->sli.last_iotag, 3629 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); 3630 return NULL; 3631 } 3632 3633 /** 3634 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3635 * @phba: Pointer to HBA context object. 3636 * @pring: Pointer to driver SLI ring object. 3637 * @saveq: Pointer to the response iocb to be processed. 3638 * 3639 * This function is called by the ring event handler for non-fcp 3640 * rings when there is a new response iocb in the response ring. 3641 * The caller is not required to hold any locks. This function 3642 * gets the command iocb associated with the response iocb and 3643 * calls the completion handler for the command iocb. If there 3644 * is no completion handler, the function will free the resources 3645 * associated with command iocb. If the response iocb is for 3646 * an already aborted command iocb, the status of the completion 3647 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3648 * This function always returns 1. 3649 **/ 3650 static int 3651 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3652 struct lpfc_iocbq *saveq) 3653 { 3654 struct lpfc_iocbq *cmdiocbp; 3655 int rc = 1; 3656 unsigned long iflag; 3657 3658 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3659 if (cmdiocbp) { 3660 if (cmdiocbp->iocb_cmpl) { 3661 /* 3662 * If an ELS command failed send an event to mgmt 3663 * application. 3664 */ 3665 if (saveq->iocb.ulpStatus && 3666 (pring->ringno == LPFC_ELS_RING) && 3667 (cmdiocbp->iocb.ulpCommand == 3668 CMD_ELS_REQUEST64_CR)) 3669 lpfc_send_els_failure_event(phba, 3670 cmdiocbp, saveq); 3671 3672 /* 3673 * Post all ELS completions to the worker thread. 3674 * All other are passed to the completion callback. 3675 */ 3676 if (pring->ringno == LPFC_ELS_RING) { 3677 if ((phba->sli_rev < LPFC_SLI_REV4) && 3678 (cmdiocbp->iocb_flag & 3679 LPFC_DRIVER_ABORTED)) { 3680 spin_lock_irqsave(&phba->hbalock, 3681 iflag); 3682 cmdiocbp->iocb_flag &= 3683 ~LPFC_DRIVER_ABORTED; 3684 spin_unlock_irqrestore(&phba->hbalock, 3685 iflag); 3686 saveq->iocb.ulpStatus = 3687 IOSTAT_LOCAL_REJECT; 3688 saveq->iocb.un.ulpWord[4] = 3689 IOERR_SLI_ABORTED; 3690 3691 /* Firmware could still be in progress 3692 * of DMAing payload, so don't free data 3693 * buffer till after a hbeat. 3694 */ 3695 spin_lock_irqsave(&phba->hbalock, 3696 iflag); 3697 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 3698 spin_unlock_irqrestore(&phba->hbalock, 3699 iflag); 3700 } 3701 if (phba->sli_rev == LPFC_SLI_REV4) { 3702 if (saveq->iocb_flag & 3703 LPFC_EXCHANGE_BUSY) { 3704 /* Set cmdiocb flag for the 3705 * exchange busy so sgl (xri) 3706 * will not be released until 3707 * the abort xri is received 3708 * from hba. 3709 */ 3710 spin_lock_irqsave( 3711 &phba->hbalock, iflag); 3712 cmdiocbp->iocb_flag |= 3713 LPFC_EXCHANGE_BUSY; 3714 spin_unlock_irqrestore( 3715 &phba->hbalock, iflag); 3716 } 3717 if (cmdiocbp->iocb_flag & 3718 LPFC_DRIVER_ABORTED) { 3719 /* 3720 * Clear LPFC_DRIVER_ABORTED 3721 * bit in case it was driver 3722 * initiated abort. 3723 */ 3724 spin_lock_irqsave( 3725 &phba->hbalock, iflag); 3726 cmdiocbp->iocb_flag &= 3727 ~LPFC_DRIVER_ABORTED; 3728 spin_unlock_irqrestore( 3729 &phba->hbalock, iflag); 3730 cmdiocbp->iocb.ulpStatus = 3731 IOSTAT_LOCAL_REJECT; 3732 cmdiocbp->iocb.un.ulpWord[4] = 3733 IOERR_ABORT_REQUESTED; 3734 /* 3735 * For SLI4, irsiocb contains 3736 * NO_XRI in sli_xritag, it 3737 * shall not affect releasing 3738 * sgl (xri) process. 3739 */ 3740 saveq->iocb.ulpStatus = 3741 IOSTAT_LOCAL_REJECT; 3742 saveq->iocb.un.ulpWord[4] = 3743 IOERR_SLI_ABORTED; 3744 spin_lock_irqsave( 3745 &phba->hbalock, iflag); 3746 saveq->iocb_flag |= 3747 LPFC_DELAY_MEM_FREE; 3748 spin_unlock_irqrestore( 3749 &phba->hbalock, iflag); 3750 } 3751 } 3752 } 3753 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 3754 } else 3755 lpfc_sli_release_iocbq(phba, cmdiocbp); 3756 } else { 3757 /* 3758 * Unknown initiating command based on the response iotag. 3759 * This could be the case on the ELS ring because of 3760 * lpfc_els_abort(). 3761 */ 3762 if (pring->ringno != LPFC_ELS_RING) { 3763 /* 3764 * Ring <ringno> handler: unexpected completion IoTag 3765 * <IoTag> 3766 */ 3767 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3768 "0322 Ring %d handler: " 3769 "unexpected completion IoTag x%x " 3770 "Data: x%x x%x x%x x%x\n", 3771 pring->ringno, 3772 saveq->iocb.ulpIoTag, 3773 saveq->iocb.ulpStatus, 3774 saveq->iocb.un.ulpWord[4], 3775 saveq->iocb.ulpCommand, 3776 saveq->iocb.ulpContext); 3777 } 3778 } 3779 3780 return rc; 3781 } 3782 3783 /** 3784 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3785 * @phba: Pointer to HBA context object. 3786 * @pring: Pointer to driver SLI ring object. 3787 * 3788 * This function is called from the iocb ring event handlers when 3789 * put pointer is ahead of the get pointer for a ring. This function signal 3790 * an error attention condition to the worker thread and the worker 3791 * thread will transition the HBA to offline state. 3792 **/ 3793 static void 3794 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3795 { 3796 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3797 /* 3798 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3799 * rsp ring <portRspMax> 3800 */ 3801 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3802 "0312 Ring %d handler: portRspPut %d " 3803 "is bigger than rsp ring %d\n", 3804 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3805 pring->sli.sli3.numRiocb); 3806 3807 phba->link_state = LPFC_HBA_ERROR; 3808 3809 /* 3810 * All error attention handlers are posted to 3811 * worker thread 3812 */ 3813 phba->work_ha |= HA_ERATT; 3814 phba->work_hs = HS_FFER3; 3815 3816 lpfc_worker_wake_up(phba); 3817 3818 return; 3819 } 3820 3821 /** 3822 * lpfc_poll_eratt - Error attention polling timer timeout handler 3823 * @t: Context to fetch pointer to address of HBA context object from. 3824 * 3825 * This function is invoked by the Error Attention polling timer when the 3826 * timer times out. It will check the SLI Error Attention register for 3827 * possible attention events. If so, it will post an Error Attention event 3828 * and wake up worker thread to process it. Otherwise, it will set up the 3829 * Error Attention polling timer for the next poll. 3830 **/ 3831 void lpfc_poll_eratt(struct timer_list *t) 3832 { 3833 struct lpfc_hba *phba; 3834 uint32_t eratt = 0; 3835 uint64_t sli_intr, cnt; 3836 3837 phba = from_timer(phba, t, eratt_poll); 3838 3839 /* Here we will also keep track of interrupts per sec of the hba */ 3840 sli_intr = phba->sli.slistat.sli_intr; 3841 3842 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3843 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3844 sli_intr); 3845 else 3846 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3847 3848 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3849 do_div(cnt, phba->eratt_poll_interval); 3850 phba->sli.slistat.sli_ips = cnt; 3851 3852 phba->sli.slistat.sli_prev_intr = sli_intr; 3853 3854 /* Check chip HA register for error event */ 3855 eratt = lpfc_sli_check_eratt(phba); 3856 3857 if (eratt) 3858 /* Tell the worker thread there is work to do */ 3859 lpfc_worker_wake_up(phba); 3860 else 3861 /* Restart the timer for next eratt poll */ 3862 mod_timer(&phba->eratt_poll, 3863 jiffies + 3864 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3865 return; 3866 } 3867 3868 3869 /** 3870 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3871 * @phba: Pointer to HBA context object. 3872 * @pring: Pointer to driver SLI ring object. 3873 * @mask: Host attention register mask for this ring. 3874 * 3875 * This function is called from the interrupt context when there is a ring 3876 * event for the fcp ring. The caller does not hold any lock. 3877 * The function processes each response iocb in the response ring until it 3878 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3879 * LE bit set. The function will call the completion handler of the command iocb 3880 * if the response iocb indicates a completion for a command iocb or it is 3881 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3882 * function if this is an unsolicited iocb. 3883 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3884 * to check it explicitly. 3885 */ 3886 int 3887 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3888 struct lpfc_sli_ring *pring, uint32_t mask) 3889 { 3890 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3891 IOCB_t *irsp = NULL; 3892 IOCB_t *entry = NULL; 3893 struct lpfc_iocbq *cmdiocbq = NULL; 3894 struct lpfc_iocbq rspiocbq; 3895 uint32_t status; 3896 uint32_t portRspPut, portRspMax; 3897 int rc = 1; 3898 lpfc_iocb_type type; 3899 unsigned long iflag; 3900 uint32_t rsp_cmpl = 0; 3901 3902 spin_lock_irqsave(&phba->hbalock, iflag); 3903 pring->stats.iocb_event++; 3904 3905 /* 3906 * The next available response entry should never exceed the maximum 3907 * entries. If it does, treat it as an adapter hardware error. 3908 */ 3909 portRspMax = pring->sli.sli3.numRiocb; 3910 portRspPut = le32_to_cpu(pgp->rspPutInx); 3911 if (unlikely(portRspPut >= portRspMax)) { 3912 lpfc_sli_rsp_pointers_error(phba, pring); 3913 spin_unlock_irqrestore(&phba->hbalock, iflag); 3914 return 1; 3915 } 3916 if (phba->fcp_ring_in_use) { 3917 spin_unlock_irqrestore(&phba->hbalock, iflag); 3918 return 1; 3919 } else 3920 phba->fcp_ring_in_use = 1; 3921 3922 rmb(); 3923 while (pring->sli.sli3.rspidx != portRspPut) { 3924 /* 3925 * Fetch an entry off the ring and copy it into a local data 3926 * structure. The copy involves a byte-swap since the 3927 * network byte order and pci byte orders are different. 3928 */ 3929 entry = lpfc_resp_iocb(phba, pring); 3930 phba->last_completion_time = jiffies; 3931 3932 if (++pring->sli.sli3.rspidx >= portRspMax) 3933 pring->sli.sli3.rspidx = 0; 3934 3935 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3936 (uint32_t *) &rspiocbq.iocb, 3937 phba->iocb_rsp_size); 3938 INIT_LIST_HEAD(&(rspiocbq.list)); 3939 irsp = &rspiocbq.iocb; 3940 3941 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3942 pring->stats.iocb_rsp++; 3943 rsp_cmpl++; 3944 3945 if (unlikely(irsp->ulpStatus)) { 3946 /* 3947 * If resource errors reported from HBA, reduce 3948 * queuedepths of the SCSI device. 3949 */ 3950 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3951 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3952 IOERR_NO_RESOURCES)) { 3953 spin_unlock_irqrestore(&phba->hbalock, iflag); 3954 phba->lpfc_rampdown_queue_depth(phba); 3955 spin_lock_irqsave(&phba->hbalock, iflag); 3956 } 3957 3958 /* Rsp ring <ringno> error: IOCB */ 3959 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3960 "0336 Rsp Ring %d error: IOCB Data: " 3961 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3962 pring->ringno, 3963 irsp->un.ulpWord[0], 3964 irsp->un.ulpWord[1], 3965 irsp->un.ulpWord[2], 3966 irsp->un.ulpWord[3], 3967 irsp->un.ulpWord[4], 3968 irsp->un.ulpWord[5], 3969 *(uint32_t *)&irsp->un1, 3970 *((uint32_t *)&irsp->un1 + 1)); 3971 } 3972 3973 switch (type) { 3974 case LPFC_ABORT_IOCB: 3975 case LPFC_SOL_IOCB: 3976 /* 3977 * Idle exchange closed via ABTS from port. No iocb 3978 * resources need to be recovered. 3979 */ 3980 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3981 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3982 "0333 IOCB cmd 0x%x" 3983 " processed. Skipping" 3984 " completion\n", 3985 irsp->ulpCommand); 3986 break; 3987 } 3988 3989 spin_unlock_irqrestore(&phba->hbalock, iflag); 3990 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3991 &rspiocbq); 3992 spin_lock_irqsave(&phba->hbalock, iflag); 3993 if (unlikely(!cmdiocbq)) 3994 break; 3995 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3996 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3997 if (cmdiocbq->iocb_cmpl) { 3998 spin_unlock_irqrestore(&phba->hbalock, iflag); 3999 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 4000 &rspiocbq); 4001 spin_lock_irqsave(&phba->hbalock, iflag); 4002 } 4003 break; 4004 case LPFC_UNSOL_IOCB: 4005 spin_unlock_irqrestore(&phba->hbalock, iflag); 4006 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 4007 spin_lock_irqsave(&phba->hbalock, iflag); 4008 break; 4009 default: 4010 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4011 char adaptermsg[LPFC_MAX_ADPTMSG]; 4012 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4013 memcpy(&adaptermsg[0], (uint8_t *) irsp, 4014 MAX_MSG_DATA); 4015 dev_warn(&((phba->pcidev)->dev), 4016 "lpfc%d: %s\n", 4017 phba->brd_no, adaptermsg); 4018 } else { 4019 /* Unknown IOCB command */ 4020 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4021 "0334 Unknown IOCB command " 4022 "Data: x%x, x%x x%x x%x x%x\n", 4023 type, irsp->ulpCommand, 4024 irsp->ulpStatus, 4025 irsp->ulpIoTag, 4026 irsp->ulpContext); 4027 } 4028 break; 4029 } 4030 4031 /* 4032 * The response IOCB has been processed. Update the ring 4033 * pointer in SLIM. If the port response put pointer has not 4034 * been updated, sync the pgp->rspPutInx and fetch the new port 4035 * response put pointer. 4036 */ 4037 writel(pring->sli.sli3.rspidx, 4038 &phba->host_gp[pring->ringno].rspGetInx); 4039 4040 if (pring->sli.sli3.rspidx == portRspPut) 4041 portRspPut = le32_to_cpu(pgp->rspPutInx); 4042 } 4043 4044 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 4045 pring->stats.iocb_rsp_full++; 4046 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4047 writel(status, phba->CAregaddr); 4048 readl(phba->CAregaddr); 4049 } 4050 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4051 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4052 pring->stats.iocb_cmd_empty++; 4053 4054 /* Force update of the local copy of cmdGetInx */ 4055 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4056 lpfc_sli_resume_iocb(phba, pring); 4057 4058 if ((pring->lpfc_sli_cmd_available)) 4059 (pring->lpfc_sli_cmd_available) (phba, pring); 4060 4061 } 4062 4063 phba->fcp_ring_in_use = 0; 4064 spin_unlock_irqrestore(&phba->hbalock, iflag); 4065 return rc; 4066 } 4067 4068 /** 4069 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 4070 * @phba: Pointer to HBA context object. 4071 * @pring: Pointer to driver SLI ring object. 4072 * @rspiocbp: Pointer to driver response IOCB object. 4073 * 4074 * This function is called from the worker thread when there is a slow-path 4075 * response IOCB to process. This function chains all the response iocbs until 4076 * seeing the iocb with the LE bit set. The function will call 4077 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 4078 * completion of a command iocb. The function will call the 4079 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 4080 * The function frees the resources or calls the completion handler if this 4081 * iocb is an abort completion. The function returns NULL when the response 4082 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 4083 * this function shall chain the iocb on to the iocb_continueq and return the 4084 * response iocb passed in. 4085 **/ 4086 static struct lpfc_iocbq * 4087 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 4088 struct lpfc_iocbq *rspiocbp) 4089 { 4090 struct lpfc_iocbq *saveq; 4091 struct lpfc_iocbq *cmdiocbp; 4092 struct lpfc_iocbq *next_iocb; 4093 IOCB_t *irsp = NULL; 4094 uint32_t free_saveq; 4095 uint8_t iocb_cmd_type; 4096 lpfc_iocb_type type; 4097 unsigned long iflag; 4098 int rc; 4099 4100 spin_lock_irqsave(&phba->hbalock, iflag); 4101 /* First add the response iocb to the countinueq list */ 4102 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 4103 pring->iocb_continueq_cnt++; 4104 4105 /* Now, determine whether the list is completed for processing */ 4106 irsp = &rspiocbp->iocb; 4107 if (irsp->ulpLe) { 4108 /* 4109 * By default, the driver expects to free all resources 4110 * associated with this iocb completion. 4111 */ 4112 free_saveq = 1; 4113 saveq = list_get_first(&pring->iocb_continueq, 4114 struct lpfc_iocbq, list); 4115 irsp = &(saveq->iocb); 4116 list_del_init(&pring->iocb_continueq); 4117 pring->iocb_continueq_cnt = 0; 4118 4119 pring->stats.iocb_rsp++; 4120 4121 /* 4122 * If resource errors reported from HBA, reduce 4123 * queuedepths of the SCSI device. 4124 */ 4125 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 4126 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 4127 IOERR_NO_RESOURCES)) { 4128 spin_unlock_irqrestore(&phba->hbalock, iflag); 4129 phba->lpfc_rampdown_queue_depth(phba); 4130 spin_lock_irqsave(&phba->hbalock, iflag); 4131 } 4132 4133 if (irsp->ulpStatus) { 4134 /* Rsp ring <ringno> error: IOCB */ 4135 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4136 "0328 Rsp Ring %d error: " 4137 "IOCB Data: " 4138 "x%x x%x x%x x%x " 4139 "x%x x%x x%x x%x " 4140 "x%x x%x x%x x%x " 4141 "x%x x%x x%x x%x\n", 4142 pring->ringno, 4143 irsp->un.ulpWord[0], 4144 irsp->un.ulpWord[1], 4145 irsp->un.ulpWord[2], 4146 irsp->un.ulpWord[3], 4147 irsp->un.ulpWord[4], 4148 irsp->un.ulpWord[5], 4149 *(((uint32_t *) irsp) + 6), 4150 *(((uint32_t *) irsp) + 7), 4151 *(((uint32_t *) irsp) + 8), 4152 *(((uint32_t *) irsp) + 9), 4153 *(((uint32_t *) irsp) + 10), 4154 *(((uint32_t *) irsp) + 11), 4155 *(((uint32_t *) irsp) + 12), 4156 *(((uint32_t *) irsp) + 13), 4157 *(((uint32_t *) irsp) + 14), 4158 *(((uint32_t *) irsp) + 15)); 4159 } 4160 4161 /* 4162 * Fetch the IOCB command type and call the correct completion 4163 * routine. Solicited and Unsolicited IOCBs on the ELS ring 4164 * get freed back to the lpfc_iocb_list by the discovery 4165 * kernel thread. 4166 */ 4167 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 4168 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 4169 switch (type) { 4170 case LPFC_SOL_IOCB: 4171 spin_unlock_irqrestore(&phba->hbalock, iflag); 4172 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 4173 spin_lock_irqsave(&phba->hbalock, iflag); 4174 break; 4175 4176 case LPFC_UNSOL_IOCB: 4177 spin_unlock_irqrestore(&phba->hbalock, iflag); 4178 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 4179 spin_lock_irqsave(&phba->hbalock, iflag); 4180 if (!rc) 4181 free_saveq = 0; 4182 break; 4183 4184 case LPFC_ABORT_IOCB: 4185 cmdiocbp = NULL; 4186 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) { 4187 spin_unlock_irqrestore(&phba->hbalock, iflag); 4188 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 4189 saveq); 4190 spin_lock_irqsave(&phba->hbalock, iflag); 4191 } 4192 if (cmdiocbp) { 4193 /* Call the specified completion routine */ 4194 if (cmdiocbp->iocb_cmpl) { 4195 spin_unlock_irqrestore(&phba->hbalock, 4196 iflag); 4197 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 4198 saveq); 4199 spin_lock_irqsave(&phba->hbalock, 4200 iflag); 4201 } else 4202 __lpfc_sli_release_iocbq(phba, 4203 cmdiocbp); 4204 } 4205 break; 4206 4207 case LPFC_UNKNOWN_IOCB: 4208 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4209 char adaptermsg[LPFC_MAX_ADPTMSG]; 4210 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4211 memcpy(&adaptermsg[0], (uint8_t *)irsp, 4212 MAX_MSG_DATA); 4213 dev_warn(&((phba->pcidev)->dev), 4214 "lpfc%d: %s\n", 4215 phba->brd_no, adaptermsg); 4216 } else { 4217 /* Unknown IOCB command */ 4218 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4219 "0335 Unknown IOCB " 4220 "command Data: x%x " 4221 "x%x x%x x%x\n", 4222 irsp->ulpCommand, 4223 irsp->ulpStatus, 4224 irsp->ulpIoTag, 4225 irsp->ulpContext); 4226 } 4227 break; 4228 } 4229 4230 if (free_saveq) { 4231 list_for_each_entry_safe(rspiocbp, next_iocb, 4232 &saveq->list, list) { 4233 list_del_init(&rspiocbp->list); 4234 __lpfc_sli_release_iocbq(phba, rspiocbp); 4235 } 4236 __lpfc_sli_release_iocbq(phba, saveq); 4237 } 4238 rspiocbp = NULL; 4239 } 4240 spin_unlock_irqrestore(&phba->hbalock, iflag); 4241 return rspiocbp; 4242 } 4243 4244 /** 4245 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 4246 * @phba: Pointer to HBA context object. 4247 * @pring: Pointer to driver SLI ring object. 4248 * @mask: Host attention register mask for this ring. 4249 * 4250 * This routine wraps the actual slow_ring event process routine from the 4251 * API jump table function pointer from the lpfc_hba struct. 4252 **/ 4253 void 4254 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4255 struct lpfc_sli_ring *pring, uint32_t mask) 4256 { 4257 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4258 } 4259 4260 /** 4261 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4262 * @phba: Pointer to HBA context object. 4263 * @pring: Pointer to driver SLI ring object. 4264 * @mask: Host attention register mask for this ring. 4265 * 4266 * This function is called from the worker thread when there is a ring event 4267 * for non-fcp rings. The caller does not hold any lock. The function will 4268 * remove each response iocb in the response ring and calls the handle 4269 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4270 **/ 4271 static void 4272 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4273 struct lpfc_sli_ring *pring, uint32_t mask) 4274 { 4275 struct lpfc_pgp *pgp; 4276 IOCB_t *entry; 4277 IOCB_t *irsp = NULL; 4278 struct lpfc_iocbq *rspiocbp = NULL; 4279 uint32_t portRspPut, portRspMax; 4280 unsigned long iflag; 4281 uint32_t status; 4282 4283 pgp = &phba->port_gp[pring->ringno]; 4284 spin_lock_irqsave(&phba->hbalock, iflag); 4285 pring->stats.iocb_event++; 4286 4287 /* 4288 * The next available response entry should never exceed the maximum 4289 * entries. If it does, treat it as an adapter hardware error. 4290 */ 4291 portRspMax = pring->sli.sli3.numRiocb; 4292 portRspPut = le32_to_cpu(pgp->rspPutInx); 4293 if (portRspPut >= portRspMax) { 4294 /* 4295 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4296 * rsp ring <portRspMax> 4297 */ 4298 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4299 "0303 Ring %d handler: portRspPut %d " 4300 "is bigger than rsp ring %d\n", 4301 pring->ringno, portRspPut, portRspMax); 4302 4303 phba->link_state = LPFC_HBA_ERROR; 4304 spin_unlock_irqrestore(&phba->hbalock, iflag); 4305 4306 phba->work_hs = HS_FFER3; 4307 lpfc_handle_eratt(phba); 4308 4309 return; 4310 } 4311 4312 rmb(); 4313 while (pring->sli.sli3.rspidx != portRspPut) { 4314 /* 4315 * Build a completion list and call the appropriate handler. 4316 * The process is to get the next available response iocb, get 4317 * a free iocb from the list, copy the response data into the 4318 * free iocb, insert to the continuation list, and update the 4319 * next response index to slim. This process makes response 4320 * iocb's in the ring available to DMA as fast as possible but 4321 * pays a penalty for a copy operation. Since the iocb is 4322 * only 32 bytes, this penalty is considered small relative to 4323 * the PCI reads for register values and a slim write. When 4324 * the ulpLe field is set, the entire Command has been 4325 * received. 4326 */ 4327 entry = lpfc_resp_iocb(phba, pring); 4328 4329 phba->last_completion_time = jiffies; 4330 rspiocbp = __lpfc_sli_get_iocbq(phba); 4331 if (rspiocbp == NULL) { 4332 printk(KERN_ERR "%s: out of buffers! Failing " 4333 "completion.\n", __func__); 4334 break; 4335 } 4336 4337 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4338 phba->iocb_rsp_size); 4339 irsp = &rspiocbp->iocb; 4340 4341 if (++pring->sli.sli3.rspidx >= portRspMax) 4342 pring->sli.sli3.rspidx = 0; 4343 4344 if (pring->ringno == LPFC_ELS_RING) { 4345 lpfc_debugfs_slow_ring_trc(phba, 4346 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4347 *(((uint32_t *) irsp) + 4), 4348 *(((uint32_t *) irsp) + 6), 4349 *(((uint32_t *) irsp) + 7)); 4350 } 4351 4352 writel(pring->sli.sli3.rspidx, 4353 &phba->host_gp[pring->ringno].rspGetInx); 4354 4355 spin_unlock_irqrestore(&phba->hbalock, iflag); 4356 /* Handle the response IOCB */ 4357 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4358 spin_lock_irqsave(&phba->hbalock, iflag); 4359 4360 /* 4361 * If the port response put pointer has not been updated, sync 4362 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4363 * response put pointer. 4364 */ 4365 if (pring->sli.sli3.rspidx == portRspPut) { 4366 portRspPut = le32_to_cpu(pgp->rspPutInx); 4367 } 4368 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4369 4370 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4371 /* At least one response entry has been freed */ 4372 pring->stats.iocb_rsp_full++; 4373 /* SET RxRE_RSP in Chip Att register */ 4374 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4375 writel(status, phba->CAregaddr); 4376 readl(phba->CAregaddr); /* flush */ 4377 } 4378 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4379 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4380 pring->stats.iocb_cmd_empty++; 4381 4382 /* Force update of the local copy of cmdGetInx */ 4383 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4384 lpfc_sli_resume_iocb(phba, pring); 4385 4386 if ((pring->lpfc_sli_cmd_available)) 4387 (pring->lpfc_sli_cmd_available) (phba, pring); 4388 4389 } 4390 4391 spin_unlock_irqrestore(&phba->hbalock, iflag); 4392 return; 4393 } 4394 4395 /** 4396 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4397 * @phba: Pointer to HBA context object. 4398 * @pring: Pointer to driver SLI ring object. 4399 * @mask: Host attention register mask for this ring. 4400 * 4401 * This function is called from the worker thread when there is a pending 4402 * ELS response iocb on the driver internal slow-path response iocb worker 4403 * queue. The caller does not hold any lock. The function will remove each 4404 * response iocb from the response worker queue and calls the handle 4405 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4406 **/ 4407 static void 4408 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4409 struct lpfc_sli_ring *pring, uint32_t mask) 4410 { 4411 struct lpfc_iocbq *irspiocbq; 4412 struct hbq_dmabuf *dmabuf; 4413 struct lpfc_cq_event *cq_event; 4414 unsigned long iflag; 4415 int count = 0; 4416 4417 spin_lock_irqsave(&phba->hbalock, iflag); 4418 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4419 spin_unlock_irqrestore(&phba->hbalock, iflag); 4420 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4421 /* Get the response iocb from the head of work queue */ 4422 spin_lock_irqsave(&phba->hbalock, iflag); 4423 list_remove_head(&phba->sli4_hba.sp_queue_event, 4424 cq_event, struct lpfc_cq_event, list); 4425 spin_unlock_irqrestore(&phba->hbalock, iflag); 4426 4427 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4428 case CQE_CODE_COMPL_WQE: 4429 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4430 cq_event); 4431 /* Translate ELS WCQE to response IOCBQ */ 4432 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 4433 irspiocbq); 4434 if (irspiocbq) 4435 lpfc_sli_sp_handle_rspiocb(phba, pring, 4436 irspiocbq); 4437 count++; 4438 break; 4439 case CQE_CODE_RECEIVE: 4440 case CQE_CODE_RECEIVE_V1: 4441 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4442 cq_event); 4443 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4444 count++; 4445 break; 4446 default: 4447 break; 4448 } 4449 4450 /* Limit the number of events to 64 to avoid soft lockups */ 4451 if (count == 64) 4452 break; 4453 } 4454 } 4455 4456 /** 4457 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4458 * @phba: Pointer to HBA context object. 4459 * @pring: Pointer to driver SLI ring object. 4460 * 4461 * This function aborts all iocbs in the given ring and frees all the iocb 4462 * objects in txq. This function issues an abort iocb for all the iocb commands 4463 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4464 * the return of this function. The caller is not required to hold any locks. 4465 **/ 4466 void 4467 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4468 { 4469 LIST_HEAD(completions); 4470 struct lpfc_iocbq *iocb, *next_iocb; 4471 4472 if (pring->ringno == LPFC_ELS_RING) { 4473 lpfc_fabric_abort_hba(phba); 4474 } 4475 4476 /* Error everything on txq and txcmplq 4477 * First do the txq. 4478 */ 4479 if (phba->sli_rev >= LPFC_SLI_REV4) { 4480 spin_lock_irq(&pring->ring_lock); 4481 list_splice_init(&pring->txq, &completions); 4482 pring->txq_cnt = 0; 4483 spin_unlock_irq(&pring->ring_lock); 4484 4485 spin_lock_irq(&phba->hbalock); 4486 /* Next issue ABTS for everything on the txcmplq */ 4487 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4488 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); 4489 spin_unlock_irq(&phba->hbalock); 4490 } else { 4491 spin_lock_irq(&phba->hbalock); 4492 list_splice_init(&pring->txq, &completions); 4493 pring->txq_cnt = 0; 4494 4495 /* Next issue ABTS for everything on the txcmplq */ 4496 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4497 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); 4498 spin_unlock_irq(&phba->hbalock); 4499 } 4500 /* Make sure HBA is alive */ 4501 lpfc_issue_hb_tmo(phba); 4502 4503 /* Cancel all the IOCBs from the completions list */ 4504 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 4505 IOERR_SLI_ABORTED); 4506 } 4507 4508 /** 4509 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4510 * @phba: Pointer to HBA context object. 4511 * 4512 * This function aborts all iocbs in FCP rings and frees all the iocb 4513 * objects in txq. This function issues an abort iocb for all the iocb commands 4514 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4515 * the return of this function. The caller is not required to hold any locks. 4516 **/ 4517 void 4518 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4519 { 4520 struct lpfc_sli *psli = &phba->sli; 4521 struct lpfc_sli_ring *pring; 4522 uint32_t i; 4523 4524 /* Look on all the FCP Rings for the iotag */ 4525 if (phba->sli_rev >= LPFC_SLI_REV4) { 4526 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4527 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4528 lpfc_sli_abort_iocb_ring(phba, pring); 4529 } 4530 } else { 4531 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4532 lpfc_sli_abort_iocb_ring(phba, pring); 4533 } 4534 } 4535 4536 /** 4537 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4538 * @phba: Pointer to HBA context object. 4539 * 4540 * This function flushes all iocbs in the IO ring and frees all the iocb 4541 * objects in txq and txcmplq. This function will not issue abort iocbs 4542 * for all the iocb commands in txcmplq, they will just be returned with 4543 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4544 * slot has been permanently disabled. 4545 **/ 4546 void 4547 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4548 { 4549 LIST_HEAD(txq); 4550 LIST_HEAD(txcmplq); 4551 struct lpfc_sli *psli = &phba->sli; 4552 struct lpfc_sli_ring *pring; 4553 uint32_t i; 4554 struct lpfc_iocbq *piocb, *next_iocb; 4555 4556 spin_lock_irq(&phba->hbalock); 4557 if (phba->hba_flag & HBA_IOQ_FLUSH || 4558 !phba->sli4_hba.hdwq) { 4559 spin_unlock_irq(&phba->hbalock); 4560 return; 4561 } 4562 /* Indicate the I/O queues are flushed */ 4563 phba->hba_flag |= HBA_IOQ_FLUSH; 4564 spin_unlock_irq(&phba->hbalock); 4565 4566 /* Look on all the FCP Rings for the iotag */ 4567 if (phba->sli_rev >= LPFC_SLI_REV4) { 4568 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4569 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4570 4571 spin_lock_irq(&pring->ring_lock); 4572 /* Retrieve everything on txq */ 4573 list_splice_init(&pring->txq, &txq); 4574 list_for_each_entry_safe(piocb, next_iocb, 4575 &pring->txcmplq, list) 4576 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4577 /* Retrieve everything on the txcmplq */ 4578 list_splice_init(&pring->txcmplq, &txcmplq); 4579 pring->txq_cnt = 0; 4580 pring->txcmplq_cnt = 0; 4581 spin_unlock_irq(&pring->ring_lock); 4582 4583 /* Flush the txq */ 4584 lpfc_sli_cancel_iocbs(phba, &txq, 4585 IOSTAT_LOCAL_REJECT, 4586 IOERR_SLI_DOWN); 4587 /* Flush the txcmplq */ 4588 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4589 IOSTAT_LOCAL_REJECT, 4590 IOERR_SLI_DOWN); 4591 if (unlikely(pci_channel_offline(phba->pcidev))) 4592 lpfc_sli4_io_xri_aborted(phba, NULL, 0); 4593 } 4594 } else { 4595 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4596 4597 spin_lock_irq(&phba->hbalock); 4598 /* Retrieve everything on txq */ 4599 list_splice_init(&pring->txq, &txq); 4600 list_for_each_entry_safe(piocb, next_iocb, 4601 &pring->txcmplq, list) 4602 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4603 /* Retrieve everything on the txcmplq */ 4604 list_splice_init(&pring->txcmplq, &txcmplq); 4605 pring->txq_cnt = 0; 4606 pring->txcmplq_cnt = 0; 4607 spin_unlock_irq(&phba->hbalock); 4608 4609 /* Flush the txq */ 4610 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4611 IOERR_SLI_DOWN); 4612 /* Flush the txcmpq */ 4613 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4614 IOERR_SLI_DOWN); 4615 } 4616 } 4617 4618 /** 4619 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4620 * @phba: Pointer to HBA context object. 4621 * @mask: Bit mask to be checked. 4622 * 4623 * This function reads the host status register and compares 4624 * with the provided bit mask to check if HBA completed 4625 * the restart. This function will wait in a loop for the 4626 * HBA to complete restart. If the HBA does not restart within 4627 * 15 iterations, the function will reset the HBA again. The 4628 * function returns 1 when HBA fail to restart otherwise returns 4629 * zero. 4630 **/ 4631 static int 4632 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4633 { 4634 uint32_t status; 4635 int i = 0; 4636 int retval = 0; 4637 4638 /* Read the HBA Host Status Register */ 4639 if (lpfc_readl(phba->HSregaddr, &status)) 4640 return 1; 4641 4642 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4643 4644 /* 4645 * Check status register every 100ms for 5 retries, then every 4646 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4647 * every 2.5 sec for 4. 4648 * Break our of the loop if errors occurred during init. 4649 */ 4650 while (((status & mask) != mask) && 4651 !(status & HS_FFERM) && 4652 i++ < 20) { 4653 4654 if (i <= 5) 4655 msleep(10); 4656 else if (i <= 10) 4657 msleep(500); 4658 else 4659 msleep(2500); 4660 4661 if (i == 15) { 4662 /* Do post */ 4663 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4664 lpfc_sli_brdrestart(phba); 4665 } 4666 /* Read the HBA Host Status Register */ 4667 if (lpfc_readl(phba->HSregaddr, &status)) { 4668 retval = 1; 4669 break; 4670 } 4671 } 4672 4673 /* Check to see if any errors occurred during init */ 4674 if ((status & HS_FFERM) || (i >= 20)) { 4675 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4676 "2751 Adapter failed to restart, " 4677 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4678 status, 4679 readl(phba->MBslimaddr + 0xa8), 4680 readl(phba->MBslimaddr + 0xac)); 4681 phba->link_state = LPFC_HBA_ERROR; 4682 retval = 1; 4683 } 4684 4685 return retval; 4686 } 4687 4688 /** 4689 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4690 * @phba: Pointer to HBA context object. 4691 * @mask: Bit mask to be checked. 4692 * 4693 * This function checks the host status register to check if HBA is 4694 * ready. This function will wait in a loop for the HBA to be ready 4695 * If the HBA is not ready , the function will will reset the HBA PCI 4696 * function again. The function returns 1 when HBA fail to be ready 4697 * otherwise returns zero. 4698 **/ 4699 static int 4700 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4701 { 4702 uint32_t status; 4703 int retval = 0; 4704 4705 /* Read the HBA Host Status Register */ 4706 status = lpfc_sli4_post_status_check(phba); 4707 4708 if (status) { 4709 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4710 lpfc_sli_brdrestart(phba); 4711 status = lpfc_sli4_post_status_check(phba); 4712 } 4713 4714 /* Check to see if any errors occurred during init */ 4715 if (status) { 4716 phba->link_state = LPFC_HBA_ERROR; 4717 retval = 1; 4718 } else 4719 phba->sli4_hba.intr_enable = 0; 4720 4721 phba->hba_flag &= ~HBA_SETUP; 4722 return retval; 4723 } 4724 4725 /** 4726 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4727 * @phba: Pointer to HBA context object. 4728 * @mask: Bit mask to be checked. 4729 * 4730 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4731 * from the API jump table function pointer from the lpfc_hba struct. 4732 **/ 4733 int 4734 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4735 { 4736 return phba->lpfc_sli_brdready(phba, mask); 4737 } 4738 4739 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4740 4741 /** 4742 * lpfc_reset_barrier - Make HBA ready for HBA reset 4743 * @phba: Pointer to HBA context object. 4744 * 4745 * This function is called before resetting an HBA. This function is called 4746 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4747 **/ 4748 void lpfc_reset_barrier(struct lpfc_hba *phba) 4749 { 4750 uint32_t __iomem *resp_buf; 4751 uint32_t __iomem *mbox_buf; 4752 volatile struct MAILBOX_word0 mbox; 4753 uint32_t hc_copy, ha_copy, resp_data; 4754 int i; 4755 uint8_t hdrtype; 4756 4757 lockdep_assert_held(&phba->hbalock); 4758 4759 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4760 if (hdrtype != 0x80 || 4761 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4762 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4763 return; 4764 4765 /* 4766 * Tell the other part of the chip to suspend temporarily all 4767 * its DMA activity. 4768 */ 4769 resp_buf = phba->MBslimaddr; 4770 4771 /* Disable the error attention */ 4772 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4773 return; 4774 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4775 readl(phba->HCregaddr); /* flush */ 4776 phba->link_flag |= LS_IGNORE_ERATT; 4777 4778 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4779 return; 4780 if (ha_copy & HA_ERATT) { 4781 /* Clear Chip error bit */ 4782 writel(HA_ERATT, phba->HAregaddr); 4783 phba->pport->stopped = 1; 4784 } 4785 4786 mbox.word0 = 0; 4787 mbox.mbxCommand = MBX_KILL_BOARD; 4788 mbox.mbxOwner = OWN_CHIP; 4789 4790 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4791 mbox_buf = phba->MBslimaddr; 4792 writel(mbox.word0, mbox_buf); 4793 4794 for (i = 0; i < 50; i++) { 4795 if (lpfc_readl((resp_buf + 1), &resp_data)) 4796 return; 4797 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4798 mdelay(1); 4799 else 4800 break; 4801 } 4802 resp_data = 0; 4803 if (lpfc_readl((resp_buf + 1), &resp_data)) 4804 return; 4805 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4806 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4807 phba->pport->stopped) 4808 goto restore_hc; 4809 else 4810 goto clear_errat; 4811 } 4812 4813 mbox.mbxOwner = OWN_HOST; 4814 resp_data = 0; 4815 for (i = 0; i < 500; i++) { 4816 if (lpfc_readl(resp_buf, &resp_data)) 4817 return; 4818 if (resp_data != mbox.word0) 4819 mdelay(1); 4820 else 4821 break; 4822 } 4823 4824 clear_errat: 4825 4826 while (++i < 500) { 4827 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4828 return; 4829 if (!(ha_copy & HA_ERATT)) 4830 mdelay(1); 4831 else 4832 break; 4833 } 4834 4835 if (readl(phba->HAregaddr) & HA_ERATT) { 4836 writel(HA_ERATT, phba->HAregaddr); 4837 phba->pport->stopped = 1; 4838 } 4839 4840 restore_hc: 4841 phba->link_flag &= ~LS_IGNORE_ERATT; 4842 writel(hc_copy, phba->HCregaddr); 4843 readl(phba->HCregaddr); /* flush */ 4844 } 4845 4846 /** 4847 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4848 * @phba: Pointer to HBA context object. 4849 * 4850 * This function issues a kill_board mailbox command and waits for 4851 * the error attention interrupt. This function is called for stopping 4852 * the firmware processing. The caller is not required to hold any 4853 * locks. This function calls lpfc_hba_down_post function to free 4854 * any pending commands after the kill. The function will return 1 when it 4855 * fails to kill the board else will return 0. 4856 **/ 4857 int 4858 lpfc_sli_brdkill(struct lpfc_hba *phba) 4859 { 4860 struct lpfc_sli *psli; 4861 LPFC_MBOXQ_t *pmb; 4862 uint32_t status; 4863 uint32_t ha_copy; 4864 int retval; 4865 int i = 0; 4866 4867 psli = &phba->sli; 4868 4869 /* Kill HBA */ 4870 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4871 "0329 Kill HBA Data: x%x x%x\n", 4872 phba->pport->port_state, psli->sli_flag); 4873 4874 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4875 if (!pmb) 4876 return 1; 4877 4878 /* Disable the error attention */ 4879 spin_lock_irq(&phba->hbalock); 4880 if (lpfc_readl(phba->HCregaddr, &status)) { 4881 spin_unlock_irq(&phba->hbalock); 4882 mempool_free(pmb, phba->mbox_mem_pool); 4883 return 1; 4884 } 4885 status &= ~HC_ERINT_ENA; 4886 writel(status, phba->HCregaddr); 4887 readl(phba->HCregaddr); /* flush */ 4888 phba->link_flag |= LS_IGNORE_ERATT; 4889 spin_unlock_irq(&phba->hbalock); 4890 4891 lpfc_kill_board(phba, pmb); 4892 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4893 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4894 4895 if (retval != MBX_SUCCESS) { 4896 if (retval != MBX_BUSY) 4897 mempool_free(pmb, phba->mbox_mem_pool); 4898 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4899 "2752 KILL_BOARD command failed retval %d\n", 4900 retval); 4901 spin_lock_irq(&phba->hbalock); 4902 phba->link_flag &= ~LS_IGNORE_ERATT; 4903 spin_unlock_irq(&phba->hbalock); 4904 return 1; 4905 } 4906 4907 spin_lock_irq(&phba->hbalock); 4908 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4909 spin_unlock_irq(&phba->hbalock); 4910 4911 mempool_free(pmb, phba->mbox_mem_pool); 4912 4913 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4914 * attention every 100ms for 3 seconds. If we don't get ERATT after 4915 * 3 seconds we still set HBA_ERROR state because the status of the 4916 * board is now undefined. 4917 */ 4918 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4919 return 1; 4920 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4921 mdelay(100); 4922 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4923 return 1; 4924 } 4925 4926 del_timer_sync(&psli->mbox_tmo); 4927 if (ha_copy & HA_ERATT) { 4928 writel(HA_ERATT, phba->HAregaddr); 4929 phba->pport->stopped = 1; 4930 } 4931 spin_lock_irq(&phba->hbalock); 4932 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4933 psli->mbox_active = NULL; 4934 phba->link_flag &= ~LS_IGNORE_ERATT; 4935 spin_unlock_irq(&phba->hbalock); 4936 4937 lpfc_hba_down_post(phba); 4938 phba->link_state = LPFC_HBA_ERROR; 4939 4940 return ha_copy & HA_ERATT ? 0 : 1; 4941 } 4942 4943 /** 4944 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4945 * @phba: Pointer to HBA context object. 4946 * 4947 * This function resets the HBA by writing HC_INITFF to the control 4948 * register. After the HBA resets, this function resets all the iocb ring 4949 * indices. This function disables PCI layer parity checking during 4950 * the reset. 4951 * This function returns 0 always. 4952 * The caller is not required to hold any locks. 4953 **/ 4954 int 4955 lpfc_sli_brdreset(struct lpfc_hba *phba) 4956 { 4957 struct lpfc_sli *psli; 4958 struct lpfc_sli_ring *pring; 4959 uint16_t cfg_value; 4960 int i; 4961 4962 psli = &phba->sli; 4963 4964 /* Reset HBA */ 4965 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4966 "0325 Reset HBA Data: x%x x%x\n", 4967 (phba->pport) ? phba->pport->port_state : 0, 4968 psli->sli_flag); 4969 4970 /* perform board reset */ 4971 phba->fc_eventTag = 0; 4972 phba->link_events = 0; 4973 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4974 if (phba->pport) { 4975 phba->pport->fc_myDID = 0; 4976 phba->pport->fc_prevDID = 0; 4977 } 4978 4979 /* Turn off parity checking and serr during the physical reset */ 4980 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 4981 return -EIO; 4982 4983 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4984 (cfg_value & 4985 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4986 4987 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4988 4989 /* Now toggle INITFF bit in the Host Control Register */ 4990 writel(HC_INITFF, phba->HCregaddr); 4991 mdelay(1); 4992 readl(phba->HCregaddr); /* flush */ 4993 writel(0, phba->HCregaddr); 4994 readl(phba->HCregaddr); /* flush */ 4995 4996 /* Restore PCI cmd register */ 4997 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4998 4999 /* Initialize relevant SLI info */ 5000 for (i = 0; i < psli->num_rings; i++) { 5001 pring = &psli->sli3_ring[i]; 5002 pring->flag = 0; 5003 pring->sli.sli3.rspidx = 0; 5004 pring->sli.sli3.next_cmdidx = 0; 5005 pring->sli.sli3.local_getidx = 0; 5006 pring->sli.sli3.cmdidx = 0; 5007 pring->missbufcnt = 0; 5008 } 5009 5010 phba->link_state = LPFC_WARM_START; 5011 return 0; 5012 } 5013 5014 /** 5015 * lpfc_sli4_brdreset - Reset a sli-4 HBA 5016 * @phba: Pointer to HBA context object. 5017 * 5018 * This function resets a SLI4 HBA. This function disables PCI layer parity 5019 * checking during resets the device. The caller is not required to hold 5020 * any locks. 5021 * 5022 * This function returns 0 on success else returns negative error code. 5023 **/ 5024 int 5025 lpfc_sli4_brdreset(struct lpfc_hba *phba) 5026 { 5027 struct lpfc_sli *psli = &phba->sli; 5028 uint16_t cfg_value; 5029 int rc = 0; 5030 5031 /* Reset HBA */ 5032 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5033 "0295 Reset HBA Data: x%x x%x x%x\n", 5034 phba->pport->port_state, psli->sli_flag, 5035 phba->hba_flag); 5036 5037 /* perform board reset */ 5038 phba->fc_eventTag = 0; 5039 phba->link_events = 0; 5040 phba->pport->fc_myDID = 0; 5041 phba->pport->fc_prevDID = 0; 5042 phba->hba_flag &= ~HBA_SETUP; 5043 5044 spin_lock_irq(&phba->hbalock); 5045 psli->sli_flag &= ~(LPFC_PROCESS_LA); 5046 phba->fcf.fcf_flag = 0; 5047 spin_unlock_irq(&phba->hbalock); 5048 5049 /* Now physically reset the device */ 5050 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5051 "0389 Performing PCI function reset!\n"); 5052 5053 /* Turn off parity checking and serr during the physical reset */ 5054 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 5055 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5056 "3205 PCI read Config failed\n"); 5057 return -EIO; 5058 } 5059 5060 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 5061 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5062 5063 /* Perform FCoE PCI function reset before freeing queue memory */ 5064 rc = lpfc_pci_function_reset(phba); 5065 5066 /* Restore PCI cmd register */ 5067 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5068 5069 return rc; 5070 } 5071 5072 /** 5073 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 5074 * @phba: Pointer to HBA context object. 5075 * 5076 * This function is called in the SLI initialization code path to 5077 * restart the HBA. The caller is not required to hold any lock. 5078 * This function writes MBX_RESTART mailbox command to the SLIM and 5079 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 5080 * function to free any pending commands. The function enables 5081 * POST only during the first initialization. The function returns zero. 5082 * The function does not guarantee completion of MBX_RESTART mailbox 5083 * command before the return of this function. 5084 **/ 5085 static int 5086 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 5087 { 5088 volatile struct MAILBOX_word0 mb; 5089 struct lpfc_sli *psli; 5090 void __iomem *to_slim; 5091 uint32_t hba_aer_enabled; 5092 5093 spin_lock_irq(&phba->hbalock); 5094 5095 /* Take PCIe device Advanced Error Reporting (AER) state */ 5096 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 5097 5098 psli = &phba->sli; 5099 5100 /* Restart HBA */ 5101 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5102 "0337 Restart HBA Data: x%x x%x\n", 5103 (phba->pport) ? phba->pport->port_state : 0, 5104 psli->sli_flag); 5105 5106 mb.word0 = 0; 5107 mb.mbxCommand = MBX_RESTART; 5108 mb.mbxHc = 1; 5109 5110 lpfc_reset_barrier(phba); 5111 5112 to_slim = phba->MBslimaddr; 5113 writel(mb.word0, to_slim); 5114 readl(to_slim); /* flush */ 5115 5116 /* Only skip post after fc_ffinit is completed */ 5117 if (phba->pport && phba->pport->port_state) 5118 mb.word0 = 1; /* This is really setting up word1 */ 5119 else 5120 mb.word0 = 0; /* This is really setting up word1 */ 5121 to_slim = phba->MBslimaddr + sizeof (uint32_t); 5122 writel(mb.word0, to_slim); 5123 readl(to_slim); /* flush */ 5124 5125 lpfc_sli_brdreset(phba); 5126 if (phba->pport) 5127 phba->pport->stopped = 0; 5128 phba->link_state = LPFC_INIT_START; 5129 phba->hba_flag = 0; 5130 spin_unlock_irq(&phba->hbalock); 5131 5132 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5133 psli->stats_start = ktime_get_seconds(); 5134 5135 /* Give the INITFF and Post time to settle. */ 5136 mdelay(100); 5137 5138 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 5139 if (hba_aer_enabled) 5140 pci_disable_pcie_error_reporting(phba->pcidev); 5141 5142 lpfc_hba_down_post(phba); 5143 5144 return 0; 5145 } 5146 5147 /** 5148 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 5149 * @phba: Pointer to HBA context object. 5150 * 5151 * This function is called in the SLI initialization code path to restart 5152 * a SLI4 HBA. The caller is not required to hold any lock. 5153 * At the end of the function, it calls lpfc_hba_down_post function to 5154 * free any pending commands. 5155 **/ 5156 static int 5157 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 5158 { 5159 struct lpfc_sli *psli = &phba->sli; 5160 uint32_t hba_aer_enabled; 5161 int rc; 5162 5163 /* Restart HBA */ 5164 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5165 "0296 Restart HBA Data: x%x x%x\n", 5166 phba->pport->port_state, psli->sli_flag); 5167 5168 /* Take PCIe device Advanced Error Reporting (AER) state */ 5169 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 5170 5171 rc = lpfc_sli4_brdreset(phba); 5172 if (rc) { 5173 phba->link_state = LPFC_HBA_ERROR; 5174 goto hba_down_queue; 5175 } 5176 5177 spin_lock_irq(&phba->hbalock); 5178 phba->pport->stopped = 0; 5179 phba->link_state = LPFC_INIT_START; 5180 phba->hba_flag = 0; 5181 spin_unlock_irq(&phba->hbalock); 5182 5183 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5184 psli->stats_start = ktime_get_seconds(); 5185 5186 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 5187 if (hba_aer_enabled) 5188 pci_disable_pcie_error_reporting(phba->pcidev); 5189 5190 hba_down_queue: 5191 lpfc_hba_down_post(phba); 5192 lpfc_sli4_queue_destroy(phba); 5193 5194 return rc; 5195 } 5196 5197 /** 5198 * lpfc_sli_brdrestart - Wrapper func for restarting hba 5199 * @phba: Pointer to HBA context object. 5200 * 5201 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 5202 * API jump table function pointer from the lpfc_hba struct. 5203 **/ 5204 int 5205 lpfc_sli_brdrestart(struct lpfc_hba *phba) 5206 { 5207 return phba->lpfc_sli_brdrestart(phba); 5208 } 5209 5210 /** 5211 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 5212 * @phba: Pointer to HBA context object. 5213 * 5214 * This function is called after a HBA restart to wait for successful 5215 * restart of the HBA. Successful restart of the HBA is indicated by 5216 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 5217 * iteration, the function will restart the HBA again. The function returns 5218 * zero if HBA successfully restarted else returns negative error code. 5219 **/ 5220 int 5221 lpfc_sli_chipset_init(struct lpfc_hba *phba) 5222 { 5223 uint32_t status, i = 0; 5224 5225 /* Read the HBA Host Status Register */ 5226 if (lpfc_readl(phba->HSregaddr, &status)) 5227 return -EIO; 5228 5229 /* Check status register to see what current state is */ 5230 i = 0; 5231 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 5232 5233 /* Check every 10ms for 10 retries, then every 100ms for 90 5234 * retries, then every 1 sec for 50 retires for a total of 5235 * ~60 seconds before reset the board again and check every 5236 * 1 sec for 50 retries. The up to 60 seconds before the 5237 * board ready is required by the Falcon FIPS zeroization 5238 * complete, and any reset the board in between shall cause 5239 * restart of zeroization, further delay the board ready. 5240 */ 5241 if (i++ >= 200) { 5242 /* Adapter failed to init, timeout, status reg 5243 <status> */ 5244 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5245 "0436 Adapter failed to init, " 5246 "timeout, status reg x%x, " 5247 "FW Data: A8 x%x AC x%x\n", status, 5248 readl(phba->MBslimaddr + 0xa8), 5249 readl(phba->MBslimaddr + 0xac)); 5250 phba->link_state = LPFC_HBA_ERROR; 5251 return -ETIMEDOUT; 5252 } 5253 5254 /* Check to see if any errors occurred during init */ 5255 if (status & HS_FFERM) { 5256 /* ERROR: During chipset initialization */ 5257 /* Adapter failed to init, chipset, status reg 5258 <status> */ 5259 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5260 "0437 Adapter failed to init, " 5261 "chipset, status reg x%x, " 5262 "FW Data: A8 x%x AC x%x\n", status, 5263 readl(phba->MBslimaddr + 0xa8), 5264 readl(phba->MBslimaddr + 0xac)); 5265 phba->link_state = LPFC_HBA_ERROR; 5266 return -EIO; 5267 } 5268 5269 if (i <= 10) 5270 msleep(10); 5271 else if (i <= 100) 5272 msleep(100); 5273 else 5274 msleep(1000); 5275 5276 if (i == 150) { 5277 /* Do post */ 5278 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5279 lpfc_sli_brdrestart(phba); 5280 } 5281 /* Read the HBA Host Status Register */ 5282 if (lpfc_readl(phba->HSregaddr, &status)) 5283 return -EIO; 5284 } 5285 5286 /* Check to see if any errors occurred during init */ 5287 if (status & HS_FFERM) { 5288 /* ERROR: During chipset initialization */ 5289 /* Adapter failed to init, chipset, status reg <status> */ 5290 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5291 "0438 Adapter failed to init, chipset, " 5292 "status reg x%x, " 5293 "FW Data: A8 x%x AC x%x\n", status, 5294 readl(phba->MBslimaddr + 0xa8), 5295 readl(phba->MBslimaddr + 0xac)); 5296 phba->link_state = LPFC_HBA_ERROR; 5297 return -EIO; 5298 } 5299 5300 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5301 5302 /* Clear all interrupt enable conditions */ 5303 writel(0, phba->HCregaddr); 5304 readl(phba->HCregaddr); /* flush */ 5305 5306 /* setup host attn register */ 5307 writel(0xffffffff, phba->HAregaddr); 5308 readl(phba->HAregaddr); /* flush */ 5309 return 0; 5310 } 5311 5312 /** 5313 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5314 * 5315 * This function calculates and returns the number of HBQs required to be 5316 * configured. 5317 **/ 5318 int 5319 lpfc_sli_hbq_count(void) 5320 { 5321 return ARRAY_SIZE(lpfc_hbq_defs); 5322 } 5323 5324 /** 5325 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5326 * 5327 * This function adds the number of hbq entries in every HBQ to get 5328 * the total number of hbq entries required for the HBA and returns 5329 * the total count. 5330 **/ 5331 static int 5332 lpfc_sli_hbq_entry_count(void) 5333 { 5334 int hbq_count = lpfc_sli_hbq_count(); 5335 int count = 0; 5336 int i; 5337 5338 for (i = 0; i < hbq_count; ++i) 5339 count += lpfc_hbq_defs[i]->entry_count; 5340 return count; 5341 } 5342 5343 /** 5344 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5345 * 5346 * This function calculates amount of memory required for all hbq entries 5347 * to be configured and returns the total memory required. 5348 **/ 5349 int 5350 lpfc_sli_hbq_size(void) 5351 { 5352 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5353 } 5354 5355 /** 5356 * lpfc_sli_hbq_setup - configure and initialize HBQs 5357 * @phba: Pointer to HBA context object. 5358 * 5359 * This function is called during the SLI initialization to configure 5360 * all the HBQs and post buffers to the HBQ. The caller is not 5361 * required to hold any locks. This function will return zero if successful 5362 * else it will return negative error code. 5363 **/ 5364 static int 5365 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5366 { 5367 int hbq_count = lpfc_sli_hbq_count(); 5368 LPFC_MBOXQ_t *pmb; 5369 MAILBOX_t *pmbox; 5370 uint32_t hbqno; 5371 uint32_t hbq_entry_index; 5372 5373 /* Get a Mailbox buffer to setup mailbox 5374 * commands for HBA initialization 5375 */ 5376 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5377 5378 if (!pmb) 5379 return -ENOMEM; 5380 5381 pmbox = &pmb->u.mb; 5382 5383 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5384 phba->link_state = LPFC_INIT_MBX_CMDS; 5385 phba->hbq_in_use = 1; 5386 5387 hbq_entry_index = 0; 5388 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5389 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5390 phba->hbqs[hbqno].hbqPutIdx = 0; 5391 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5392 phba->hbqs[hbqno].entry_count = 5393 lpfc_hbq_defs[hbqno]->entry_count; 5394 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5395 hbq_entry_index, pmb); 5396 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5397 5398 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5399 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5400 mbxStatus <status>, ring <num> */ 5401 5402 lpfc_printf_log(phba, KERN_ERR, 5403 LOG_SLI | LOG_VPORT, 5404 "1805 Adapter failed to init. " 5405 "Data: x%x x%x x%x\n", 5406 pmbox->mbxCommand, 5407 pmbox->mbxStatus, hbqno); 5408 5409 phba->link_state = LPFC_HBA_ERROR; 5410 mempool_free(pmb, phba->mbox_mem_pool); 5411 return -ENXIO; 5412 } 5413 } 5414 phba->hbq_count = hbq_count; 5415 5416 mempool_free(pmb, phba->mbox_mem_pool); 5417 5418 /* Initially populate or replenish the HBQs */ 5419 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5420 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5421 return 0; 5422 } 5423 5424 /** 5425 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5426 * @phba: Pointer to HBA context object. 5427 * 5428 * This function is called during the SLI initialization to configure 5429 * all the HBQs and post buffers to the HBQ. The caller is not 5430 * required to hold any locks. This function will return zero if successful 5431 * else it will return negative error code. 5432 **/ 5433 static int 5434 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5435 { 5436 phba->hbq_in_use = 1; 5437 /** 5438 * Specific case when the MDS diagnostics is enabled and supported. 5439 * The receive buffer count is truncated to manage the incoming 5440 * traffic. 5441 **/ 5442 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5443 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5444 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5445 else 5446 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5447 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5448 phba->hbq_count = 1; 5449 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5450 /* Initially populate or replenish the HBQs */ 5451 return 0; 5452 } 5453 5454 /** 5455 * lpfc_sli_config_port - Issue config port mailbox command 5456 * @phba: Pointer to HBA context object. 5457 * @sli_mode: sli mode - 2/3 5458 * 5459 * This function is called by the sli initialization code path 5460 * to issue config_port mailbox command. This function restarts the 5461 * HBA firmware and issues a config_port mailbox command to configure 5462 * the SLI interface in the sli mode specified by sli_mode 5463 * variable. The caller is not required to hold any locks. 5464 * The function returns 0 if successful, else returns negative error 5465 * code. 5466 **/ 5467 int 5468 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5469 { 5470 LPFC_MBOXQ_t *pmb; 5471 uint32_t resetcount = 0, rc = 0, done = 0; 5472 5473 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5474 if (!pmb) { 5475 phba->link_state = LPFC_HBA_ERROR; 5476 return -ENOMEM; 5477 } 5478 5479 phba->sli_rev = sli_mode; 5480 while (resetcount < 2 && !done) { 5481 spin_lock_irq(&phba->hbalock); 5482 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5483 spin_unlock_irq(&phba->hbalock); 5484 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5485 lpfc_sli_brdrestart(phba); 5486 rc = lpfc_sli_chipset_init(phba); 5487 if (rc) 5488 break; 5489 5490 spin_lock_irq(&phba->hbalock); 5491 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5492 spin_unlock_irq(&phba->hbalock); 5493 resetcount++; 5494 5495 /* Call pre CONFIG_PORT mailbox command initialization. A 5496 * value of 0 means the call was successful. Any other 5497 * nonzero value is a failure, but if ERESTART is returned, 5498 * the driver may reset the HBA and try again. 5499 */ 5500 rc = lpfc_config_port_prep(phba); 5501 if (rc == -ERESTART) { 5502 phba->link_state = LPFC_LINK_UNKNOWN; 5503 continue; 5504 } else if (rc) 5505 break; 5506 5507 phba->link_state = LPFC_INIT_MBX_CMDS; 5508 lpfc_config_port(phba, pmb); 5509 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5510 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5511 LPFC_SLI3_HBQ_ENABLED | 5512 LPFC_SLI3_CRP_ENABLED | 5513 LPFC_SLI3_DSS_ENABLED); 5514 if (rc != MBX_SUCCESS) { 5515 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5516 "0442 Adapter failed to init, mbxCmd x%x " 5517 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5518 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5519 spin_lock_irq(&phba->hbalock); 5520 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5521 spin_unlock_irq(&phba->hbalock); 5522 rc = -ENXIO; 5523 } else { 5524 /* Allow asynchronous mailbox command to go through */ 5525 spin_lock_irq(&phba->hbalock); 5526 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5527 spin_unlock_irq(&phba->hbalock); 5528 done = 1; 5529 5530 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5531 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5532 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5533 "3110 Port did not grant ASABT\n"); 5534 } 5535 } 5536 if (!done) { 5537 rc = -EINVAL; 5538 goto do_prep_failed; 5539 } 5540 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5541 if (!pmb->u.mb.un.varCfgPort.cMA) { 5542 rc = -ENXIO; 5543 goto do_prep_failed; 5544 } 5545 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5546 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5547 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5548 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5549 phba->max_vpi : phba->max_vports; 5550 5551 } else 5552 phba->max_vpi = 0; 5553 if (pmb->u.mb.un.varCfgPort.gerbm) 5554 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5555 if (pmb->u.mb.un.varCfgPort.gcrp) 5556 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5557 5558 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5559 phba->port_gp = phba->mbox->us.s3_pgp.port; 5560 5561 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5562 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5563 phba->cfg_enable_bg = 0; 5564 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5565 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5566 "0443 Adapter did not grant " 5567 "BlockGuard\n"); 5568 } 5569 } 5570 } else { 5571 phba->hbq_get = NULL; 5572 phba->port_gp = phba->mbox->us.s2.port; 5573 phba->max_vpi = 0; 5574 } 5575 do_prep_failed: 5576 mempool_free(pmb, phba->mbox_mem_pool); 5577 return rc; 5578 } 5579 5580 5581 /** 5582 * lpfc_sli_hba_setup - SLI initialization function 5583 * @phba: Pointer to HBA context object. 5584 * 5585 * This function is the main SLI initialization function. This function 5586 * is called by the HBA initialization code, HBA reset code and HBA 5587 * error attention handler code. Caller is not required to hold any 5588 * locks. This function issues config_port mailbox command to configure 5589 * the SLI, setup iocb rings and HBQ rings. In the end the function 5590 * calls the config_port_post function to issue init_link mailbox 5591 * command and to start the discovery. The function will return zero 5592 * if successful, else it will return negative error code. 5593 **/ 5594 int 5595 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5596 { 5597 uint32_t rc; 5598 int i; 5599 int longs; 5600 5601 /* Enable ISR already does config_port because of config_msi mbx */ 5602 if (phba->hba_flag & HBA_NEEDS_CFG_PORT) { 5603 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5604 if (rc) 5605 return -EIO; 5606 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 5607 } 5608 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5609 5610 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5611 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5612 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5613 if (!rc) { 5614 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5615 "2709 This device supports " 5616 "Advanced Error Reporting (AER)\n"); 5617 spin_lock_irq(&phba->hbalock); 5618 phba->hba_flag |= HBA_AER_ENABLED; 5619 spin_unlock_irq(&phba->hbalock); 5620 } else { 5621 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5622 "2708 This device does not support " 5623 "Advanced Error Reporting (AER): %d\n", 5624 rc); 5625 phba->cfg_aer_support = 0; 5626 } 5627 } 5628 5629 if (phba->sli_rev == 3) { 5630 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5631 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5632 } else { 5633 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5634 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5635 phba->sli3_options = 0; 5636 } 5637 5638 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5639 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5640 phba->sli_rev, phba->max_vpi); 5641 rc = lpfc_sli_ring_map(phba); 5642 5643 if (rc) 5644 goto lpfc_sli_hba_setup_error; 5645 5646 /* Initialize VPIs. */ 5647 if (phba->sli_rev == LPFC_SLI_REV3) { 5648 /* 5649 * The VPI bitmask and physical ID array are allocated 5650 * and initialized once only - at driver load. A port 5651 * reset doesn't need to reinitialize this memory. 5652 */ 5653 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5654 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5655 phba->vpi_bmask = kcalloc(longs, 5656 sizeof(unsigned long), 5657 GFP_KERNEL); 5658 if (!phba->vpi_bmask) { 5659 rc = -ENOMEM; 5660 goto lpfc_sli_hba_setup_error; 5661 } 5662 5663 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5664 sizeof(uint16_t), 5665 GFP_KERNEL); 5666 if (!phba->vpi_ids) { 5667 kfree(phba->vpi_bmask); 5668 rc = -ENOMEM; 5669 goto lpfc_sli_hba_setup_error; 5670 } 5671 for (i = 0; i < phba->max_vpi; i++) 5672 phba->vpi_ids[i] = i; 5673 } 5674 } 5675 5676 /* Init HBQs */ 5677 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5678 rc = lpfc_sli_hbq_setup(phba); 5679 if (rc) 5680 goto lpfc_sli_hba_setup_error; 5681 } 5682 spin_lock_irq(&phba->hbalock); 5683 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5684 spin_unlock_irq(&phba->hbalock); 5685 5686 rc = lpfc_config_port_post(phba); 5687 if (rc) 5688 goto lpfc_sli_hba_setup_error; 5689 5690 return rc; 5691 5692 lpfc_sli_hba_setup_error: 5693 phba->link_state = LPFC_HBA_ERROR; 5694 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5695 "0445 Firmware initialization failed\n"); 5696 return rc; 5697 } 5698 5699 /** 5700 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5701 * @phba: Pointer to HBA context object. 5702 * 5703 * This function issue a dump mailbox command to read config region 5704 * 23 and parse the records in the region and populate driver 5705 * data structure. 5706 **/ 5707 static int 5708 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5709 { 5710 LPFC_MBOXQ_t *mboxq; 5711 struct lpfc_dmabuf *mp; 5712 struct lpfc_mqe *mqe; 5713 uint32_t data_length; 5714 int rc; 5715 5716 /* Program the default value of vlan_id and fc_map */ 5717 phba->valid_vlan = 0; 5718 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5719 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5720 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5721 5722 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5723 if (!mboxq) 5724 return -ENOMEM; 5725 5726 mqe = &mboxq->u.mqe; 5727 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5728 rc = -ENOMEM; 5729 goto out_free_mboxq; 5730 } 5731 5732 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5733 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5734 5735 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5736 "(%d):2571 Mailbox cmd x%x Status x%x " 5737 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5738 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5739 "CQ: x%x x%x x%x x%x\n", 5740 mboxq->vport ? mboxq->vport->vpi : 0, 5741 bf_get(lpfc_mqe_command, mqe), 5742 bf_get(lpfc_mqe_status, mqe), 5743 mqe->un.mb_words[0], mqe->un.mb_words[1], 5744 mqe->un.mb_words[2], mqe->un.mb_words[3], 5745 mqe->un.mb_words[4], mqe->un.mb_words[5], 5746 mqe->un.mb_words[6], mqe->un.mb_words[7], 5747 mqe->un.mb_words[8], mqe->un.mb_words[9], 5748 mqe->un.mb_words[10], mqe->un.mb_words[11], 5749 mqe->un.mb_words[12], mqe->un.mb_words[13], 5750 mqe->un.mb_words[14], mqe->un.mb_words[15], 5751 mqe->un.mb_words[16], mqe->un.mb_words[50], 5752 mboxq->mcqe.word0, 5753 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5754 mboxq->mcqe.trailer); 5755 5756 if (rc) { 5757 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5758 kfree(mp); 5759 rc = -EIO; 5760 goto out_free_mboxq; 5761 } 5762 data_length = mqe->un.mb_words[5]; 5763 if (data_length > DMP_RGN23_SIZE) { 5764 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5765 kfree(mp); 5766 rc = -EIO; 5767 goto out_free_mboxq; 5768 } 5769 5770 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5771 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5772 kfree(mp); 5773 rc = 0; 5774 5775 out_free_mboxq: 5776 mempool_free(mboxq, phba->mbox_mem_pool); 5777 return rc; 5778 } 5779 5780 /** 5781 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5782 * @phba: pointer to lpfc hba data structure. 5783 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5784 * @vpd: pointer to the memory to hold resulting port vpd data. 5785 * @vpd_size: On input, the number of bytes allocated to @vpd. 5786 * On output, the number of data bytes in @vpd. 5787 * 5788 * This routine executes a READ_REV SLI4 mailbox command. In 5789 * addition, this routine gets the port vpd data. 5790 * 5791 * Return codes 5792 * 0 - successful 5793 * -ENOMEM - could not allocated memory. 5794 **/ 5795 static int 5796 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5797 uint8_t *vpd, uint32_t *vpd_size) 5798 { 5799 int rc = 0; 5800 uint32_t dma_size; 5801 struct lpfc_dmabuf *dmabuf; 5802 struct lpfc_mqe *mqe; 5803 5804 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5805 if (!dmabuf) 5806 return -ENOMEM; 5807 5808 /* 5809 * Get a DMA buffer for the vpd data resulting from the READ_REV 5810 * mailbox command. 5811 */ 5812 dma_size = *vpd_size; 5813 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5814 &dmabuf->phys, GFP_KERNEL); 5815 if (!dmabuf->virt) { 5816 kfree(dmabuf); 5817 return -ENOMEM; 5818 } 5819 5820 /* 5821 * The SLI4 implementation of READ_REV conflicts at word1, 5822 * bits 31:16 and SLI4 adds vpd functionality not present 5823 * in SLI3. This code corrects the conflicts. 5824 */ 5825 lpfc_read_rev(phba, mboxq); 5826 mqe = &mboxq->u.mqe; 5827 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5828 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5829 mqe->un.read_rev.word1 &= 0x0000FFFF; 5830 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5831 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5832 5833 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5834 if (rc) { 5835 dma_free_coherent(&phba->pcidev->dev, dma_size, 5836 dmabuf->virt, dmabuf->phys); 5837 kfree(dmabuf); 5838 return -EIO; 5839 } 5840 5841 /* 5842 * The available vpd length cannot be bigger than the 5843 * DMA buffer passed to the port. Catch the less than 5844 * case and update the caller's size. 5845 */ 5846 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5847 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5848 5849 memcpy(vpd, dmabuf->virt, *vpd_size); 5850 5851 dma_free_coherent(&phba->pcidev->dev, dma_size, 5852 dmabuf->virt, dmabuf->phys); 5853 kfree(dmabuf); 5854 return 0; 5855 } 5856 5857 /** 5858 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5859 * @phba: pointer to lpfc hba data structure. 5860 * 5861 * This routine retrieves SLI4 device physical port name this PCI function 5862 * is attached to. 5863 * 5864 * Return codes 5865 * 0 - successful 5866 * otherwise - failed to retrieve controller attributes 5867 **/ 5868 static int 5869 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5870 { 5871 LPFC_MBOXQ_t *mboxq; 5872 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5873 struct lpfc_controller_attribute *cntl_attr; 5874 void *virtaddr = NULL; 5875 uint32_t alloclen, reqlen; 5876 uint32_t shdr_status, shdr_add_status; 5877 union lpfc_sli4_cfg_shdr *shdr; 5878 int rc; 5879 5880 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5881 if (!mboxq) 5882 return -ENOMEM; 5883 5884 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5885 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5886 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5887 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5888 LPFC_SLI4_MBX_NEMBED); 5889 5890 if (alloclen < reqlen) { 5891 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5892 "3084 Allocated DMA memory size (%d) is " 5893 "less than the requested DMA memory size " 5894 "(%d)\n", alloclen, reqlen); 5895 rc = -ENOMEM; 5896 goto out_free_mboxq; 5897 } 5898 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5899 virtaddr = mboxq->sge_array->addr[0]; 5900 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5901 shdr = &mbx_cntl_attr->cfg_shdr; 5902 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5903 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5904 if (shdr_status || shdr_add_status || rc) { 5905 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5906 "3085 Mailbox x%x (x%x/x%x) failed, " 5907 "rc:x%x, status:x%x, add_status:x%x\n", 5908 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5909 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5910 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5911 rc, shdr_status, shdr_add_status); 5912 rc = -ENXIO; 5913 goto out_free_mboxq; 5914 } 5915 5916 cntl_attr = &mbx_cntl_attr->cntl_attr; 5917 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5918 phba->sli4_hba.lnk_info.lnk_tp = 5919 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5920 phba->sli4_hba.lnk_info.lnk_no = 5921 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5922 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr); 5923 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr); 5924 5925 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 5926 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 5927 sizeof(phba->BIOSVersion)); 5928 5929 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5930 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, " 5931 "flash_id: x%02x, asic_rev: x%02x\n", 5932 phba->sli4_hba.lnk_info.lnk_tp, 5933 phba->sli4_hba.lnk_info.lnk_no, 5934 phba->BIOSVersion, phba->sli4_hba.flash_id, 5935 phba->sli4_hba.asic_rev); 5936 out_free_mboxq: 5937 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5938 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5939 else 5940 mempool_free(mboxq, phba->mbox_mem_pool); 5941 return rc; 5942 } 5943 5944 /** 5945 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 5946 * @phba: pointer to lpfc hba data structure. 5947 * 5948 * This routine retrieves SLI4 device physical port name this PCI function 5949 * is attached to. 5950 * 5951 * Return codes 5952 * 0 - successful 5953 * otherwise - failed to retrieve physical port name 5954 **/ 5955 static int 5956 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 5957 { 5958 LPFC_MBOXQ_t *mboxq; 5959 struct lpfc_mbx_get_port_name *get_port_name; 5960 uint32_t shdr_status, shdr_add_status; 5961 union lpfc_sli4_cfg_shdr *shdr; 5962 char cport_name = 0; 5963 int rc; 5964 5965 /* We assume nothing at this point */ 5966 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5967 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 5968 5969 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5970 if (!mboxq) 5971 return -ENOMEM; 5972 /* obtain link type and link number via READ_CONFIG */ 5973 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5974 lpfc_sli4_read_config(phba); 5975 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 5976 goto retrieve_ppname; 5977 5978 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 5979 rc = lpfc_sli4_get_ctl_attr(phba); 5980 if (rc) 5981 goto out_free_mboxq; 5982 5983 retrieve_ppname: 5984 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5985 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5986 sizeof(struct lpfc_mbx_get_port_name) - 5987 sizeof(struct lpfc_sli4_cfg_mhdr), 5988 LPFC_SLI4_MBX_EMBED); 5989 get_port_name = &mboxq->u.mqe.un.get_port_name; 5990 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5991 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5992 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5993 phba->sli4_hba.lnk_info.lnk_tp); 5994 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5995 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5996 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5997 if (shdr_status || shdr_add_status || rc) { 5998 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5999 "3087 Mailbox x%x (x%x/x%x) failed: " 6000 "rc:x%x, status:x%x, add_status:x%x\n", 6001 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6002 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6003 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6004 rc, shdr_status, shdr_add_status); 6005 rc = -ENXIO; 6006 goto out_free_mboxq; 6007 } 6008 switch (phba->sli4_hba.lnk_info.lnk_no) { 6009 case LPFC_LINK_NUMBER_0: 6010 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 6011 &get_port_name->u.response); 6012 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6013 break; 6014 case LPFC_LINK_NUMBER_1: 6015 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 6016 &get_port_name->u.response); 6017 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6018 break; 6019 case LPFC_LINK_NUMBER_2: 6020 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 6021 &get_port_name->u.response); 6022 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6023 break; 6024 case LPFC_LINK_NUMBER_3: 6025 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 6026 &get_port_name->u.response); 6027 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6028 break; 6029 default: 6030 break; 6031 } 6032 6033 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 6034 phba->Port[0] = cport_name; 6035 phba->Port[1] = '\0'; 6036 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6037 "3091 SLI get port name: %s\n", phba->Port); 6038 } 6039 6040 out_free_mboxq: 6041 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6042 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6043 else 6044 mempool_free(mboxq, phba->mbox_mem_pool); 6045 return rc; 6046 } 6047 6048 /** 6049 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 6050 * @phba: pointer to lpfc hba data structure. 6051 * 6052 * This routine is called to explicitly arm the SLI4 device's completion and 6053 * event queues 6054 **/ 6055 static void 6056 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 6057 { 6058 int qidx; 6059 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 6060 struct lpfc_sli4_hdw_queue *qp; 6061 struct lpfc_queue *eq; 6062 6063 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 6064 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 6065 if (sli4_hba->nvmels_cq) 6066 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 6067 LPFC_QUEUE_REARM); 6068 6069 if (sli4_hba->hdwq) { 6070 /* Loop thru all Hardware Queues */ 6071 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 6072 qp = &sli4_hba->hdwq[qidx]; 6073 /* ARM the corresponding CQ */ 6074 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 6075 LPFC_QUEUE_REARM); 6076 } 6077 6078 /* Loop thru all IRQ vectors */ 6079 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 6080 eq = sli4_hba->hba_eq_hdl[qidx].eq; 6081 /* ARM the corresponding EQ */ 6082 sli4_hba->sli4_write_eq_db(phba, eq, 6083 0, LPFC_QUEUE_REARM); 6084 } 6085 } 6086 6087 if (phba->nvmet_support) { 6088 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 6089 sli4_hba->sli4_write_cq_db(phba, 6090 sli4_hba->nvmet_cqset[qidx], 0, 6091 LPFC_QUEUE_REARM); 6092 } 6093 } 6094 } 6095 6096 /** 6097 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 6098 * @phba: Pointer to HBA context object. 6099 * @type: The resource extent type. 6100 * @extnt_count: buffer to hold port available extent count. 6101 * @extnt_size: buffer to hold element count per extent. 6102 * 6103 * This function calls the port and retrievs the number of available 6104 * extents and their size for a particular extent type. 6105 * 6106 * Returns: 0 if successful. Nonzero otherwise. 6107 **/ 6108 int 6109 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 6110 uint16_t *extnt_count, uint16_t *extnt_size) 6111 { 6112 int rc = 0; 6113 uint32_t length; 6114 uint32_t mbox_tmo; 6115 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 6116 LPFC_MBOXQ_t *mbox; 6117 6118 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6119 if (!mbox) 6120 return -ENOMEM; 6121 6122 /* Find out how many extents are available for this resource type */ 6123 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 6124 sizeof(struct lpfc_sli4_cfg_mhdr)); 6125 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6126 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 6127 length, LPFC_SLI4_MBX_EMBED); 6128 6129 /* Send an extents count of 0 - the GET doesn't use it. */ 6130 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6131 LPFC_SLI4_MBX_EMBED); 6132 if (unlikely(rc)) { 6133 rc = -EIO; 6134 goto err_exit; 6135 } 6136 6137 if (!phba->sli4_hba.intr_enable) 6138 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6139 else { 6140 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6141 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6142 } 6143 if (unlikely(rc)) { 6144 rc = -EIO; 6145 goto err_exit; 6146 } 6147 6148 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 6149 if (bf_get(lpfc_mbox_hdr_status, 6150 &rsrc_info->header.cfg_shdr.response)) { 6151 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6152 "2930 Failed to get resource extents " 6153 "Status 0x%x Add'l Status 0x%x\n", 6154 bf_get(lpfc_mbox_hdr_status, 6155 &rsrc_info->header.cfg_shdr.response), 6156 bf_get(lpfc_mbox_hdr_add_status, 6157 &rsrc_info->header.cfg_shdr.response)); 6158 rc = -EIO; 6159 goto err_exit; 6160 } 6161 6162 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 6163 &rsrc_info->u.rsp); 6164 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 6165 &rsrc_info->u.rsp); 6166 6167 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6168 "3162 Retrieved extents type-%d from port: count:%d, " 6169 "size:%d\n", type, *extnt_count, *extnt_size); 6170 6171 err_exit: 6172 mempool_free(mbox, phba->mbox_mem_pool); 6173 return rc; 6174 } 6175 6176 /** 6177 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 6178 * @phba: Pointer to HBA context object. 6179 * @type: The extent type to check. 6180 * 6181 * This function reads the current available extents from the port and checks 6182 * if the extent count or extent size has changed since the last access. 6183 * Callers use this routine post port reset to understand if there is a 6184 * extent reprovisioning requirement. 6185 * 6186 * Returns: 6187 * -Error: error indicates problem. 6188 * 1: Extent count or size has changed. 6189 * 0: No changes. 6190 **/ 6191 static int 6192 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 6193 { 6194 uint16_t curr_ext_cnt, rsrc_ext_cnt; 6195 uint16_t size_diff, rsrc_ext_size; 6196 int rc = 0; 6197 struct lpfc_rsrc_blks *rsrc_entry; 6198 struct list_head *rsrc_blk_list = NULL; 6199 6200 size_diff = 0; 6201 curr_ext_cnt = 0; 6202 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6203 &rsrc_ext_cnt, 6204 &rsrc_ext_size); 6205 if (unlikely(rc)) 6206 return -EIO; 6207 6208 switch (type) { 6209 case LPFC_RSC_TYPE_FCOE_RPI: 6210 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6211 break; 6212 case LPFC_RSC_TYPE_FCOE_VPI: 6213 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 6214 break; 6215 case LPFC_RSC_TYPE_FCOE_XRI: 6216 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6217 break; 6218 case LPFC_RSC_TYPE_FCOE_VFI: 6219 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6220 break; 6221 default: 6222 break; 6223 } 6224 6225 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 6226 curr_ext_cnt++; 6227 if (rsrc_entry->rsrc_size != rsrc_ext_size) 6228 size_diff++; 6229 } 6230 6231 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 6232 rc = 1; 6233 6234 return rc; 6235 } 6236 6237 /** 6238 * lpfc_sli4_cfg_post_extnts - 6239 * @phba: Pointer to HBA context object. 6240 * @extnt_cnt: number of available extents. 6241 * @type: the extent type (rpi, xri, vfi, vpi). 6242 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 6243 * @mbox: pointer to the caller's allocated mailbox structure. 6244 * 6245 * This function executes the extents allocation request. It also 6246 * takes care of the amount of memory needed to allocate or get the 6247 * allocated extents. It is the caller's responsibility to evaluate 6248 * the response. 6249 * 6250 * Returns: 6251 * -Error: Error value describes the condition found. 6252 * 0: if successful 6253 **/ 6254 static int 6255 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6256 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6257 { 6258 int rc = 0; 6259 uint32_t req_len; 6260 uint32_t emb_len; 6261 uint32_t alloc_len, mbox_tmo; 6262 6263 /* Calculate the total requested length of the dma memory */ 6264 req_len = extnt_cnt * sizeof(uint16_t); 6265 6266 /* 6267 * Calculate the size of an embedded mailbox. The uint32_t 6268 * accounts for extents-specific word. 6269 */ 6270 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6271 sizeof(uint32_t); 6272 6273 /* 6274 * Presume the allocation and response will fit into an embedded 6275 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6276 */ 6277 *emb = LPFC_SLI4_MBX_EMBED; 6278 if (req_len > emb_len) { 6279 req_len = extnt_cnt * sizeof(uint16_t) + 6280 sizeof(union lpfc_sli4_cfg_shdr) + 6281 sizeof(uint32_t); 6282 *emb = LPFC_SLI4_MBX_NEMBED; 6283 } 6284 6285 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6286 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6287 req_len, *emb); 6288 if (alloc_len < req_len) { 6289 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6290 "2982 Allocated DMA memory size (x%x) is " 6291 "less than the requested DMA memory " 6292 "size (x%x)\n", alloc_len, req_len); 6293 return -ENOMEM; 6294 } 6295 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6296 if (unlikely(rc)) 6297 return -EIO; 6298 6299 if (!phba->sli4_hba.intr_enable) 6300 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6301 else { 6302 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6303 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6304 } 6305 6306 if (unlikely(rc)) 6307 rc = -EIO; 6308 return rc; 6309 } 6310 6311 /** 6312 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6313 * @phba: Pointer to HBA context object. 6314 * @type: The resource extent type to allocate. 6315 * 6316 * This function allocates the number of elements for the specified 6317 * resource type. 6318 **/ 6319 static int 6320 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6321 { 6322 bool emb = false; 6323 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6324 uint16_t rsrc_id, rsrc_start, j, k; 6325 uint16_t *ids; 6326 int i, rc; 6327 unsigned long longs; 6328 unsigned long *bmask; 6329 struct lpfc_rsrc_blks *rsrc_blks; 6330 LPFC_MBOXQ_t *mbox; 6331 uint32_t length; 6332 struct lpfc_id_range *id_array = NULL; 6333 void *virtaddr = NULL; 6334 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6335 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6336 struct list_head *ext_blk_list; 6337 6338 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6339 &rsrc_cnt, 6340 &rsrc_size); 6341 if (unlikely(rc)) 6342 return -EIO; 6343 6344 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6345 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6346 "3009 No available Resource Extents " 6347 "for resource type 0x%x: Count: 0x%x, " 6348 "Size 0x%x\n", type, rsrc_cnt, 6349 rsrc_size); 6350 return -ENOMEM; 6351 } 6352 6353 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6354 "2903 Post resource extents type-0x%x: " 6355 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6356 6357 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6358 if (!mbox) 6359 return -ENOMEM; 6360 6361 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6362 if (unlikely(rc)) { 6363 rc = -EIO; 6364 goto err_exit; 6365 } 6366 6367 /* 6368 * Figure out where the response is located. Then get local pointers 6369 * to the response data. The port does not guarantee to respond to 6370 * all extents counts request so update the local variable with the 6371 * allocated count from the port. 6372 */ 6373 if (emb == LPFC_SLI4_MBX_EMBED) { 6374 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6375 id_array = &rsrc_ext->u.rsp.id[0]; 6376 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6377 } else { 6378 virtaddr = mbox->sge_array->addr[0]; 6379 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6380 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6381 id_array = &n_rsrc->id; 6382 } 6383 6384 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6385 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6386 6387 /* 6388 * Based on the resource size and count, correct the base and max 6389 * resource values. 6390 */ 6391 length = sizeof(struct lpfc_rsrc_blks); 6392 switch (type) { 6393 case LPFC_RSC_TYPE_FCOE_RPI: 6394 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6395 sizeof(unsigned long), 6396 GFP_KERNEL); 6397 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6398 rc = -ENOMEM; 6399 goto err_exit; 6400 } 6401 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6402 sizeof(uint16_t), 6403 GFP_KERNEL); 6404 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6405 kfree(phba->sli4_hba.rpi_bmask); 6406 rc = -ENOMEM; 6407 goto err_exit; 6408 } 6409 6410 /* 6411 * The next_rpi was initialized with the maximum available 6412 * count but the port may allocate a smaller number. Catch 6413 * that case and update the next_rpi. 6414 */ 6415 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6416 6417 /* Initialize local ptrs for common extent processing later. */ 6418 bmask = phba->sli4_hba.rpi_bmask; 6419 ids = phba->sli4_hba.rpi_ids; 6420 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6421 break; 6422 case LPFC_RSC_TYPE_FCOE_VPI: 6423 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6424 GFP_KERNEL); 6425 if (unlikely(!phba->vpi_bmask)) { 6426 rc = -ENOMEM; 6427 goto err_exit; 6428 } 6429 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6430 GFP_KERNEL); 6431 if (unlikely(!phba->vpi_ids)) { 6432 kfree(phba->vpi_bmask); 6433 rc = -ENOMEM; 6434 goto err_exit; 6435 } 6436 6437 /* Initialize local ptrs for common extent processing later. */ 6438 bmask = phba->vpi_bmask; 6439 ids = phba->vpi_ids; 6440 ext_blk_list = &phba->lpfc_vpi_blk_list; 6441 break; 6442 case LPFC_RSC_TYPE_FCOE_XRI: 6443 phba->sli4_hba.xri_bmask = kcalloc(longs, 6444 sizeof(unsigned long), 6445 GFP_KERNEL); 6446 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6447 rc = -ENOMEM; 6448 goto err_exit; 6449 } 6450 phba->sli4_hba.max_cfg_param.xri_used = 0; 6451 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6452 sizeof(uint16_t), 6453 GFP_KERNEL); 6454 if (unlikely(!phba->sli4_hba.xri_ids)) { 6455 kfree(phba->sli4_hba.xri_bmask); 6456 rc = -ENOMEM; 6457 goto err_exit; 6458 } 6459 6460 /* Initialize local ptrs for common extent processing later. */ 6461 bmask = phba->sli4_hba.xri_bmask; 6462 ids = phba->sli4_hba.xri_ids; 6463 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6464 break; 6465 case LPFC_RSC_TYPE_FCOE_VFI: 6466 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6467 sizeof(unsigned long), 6468 GFP_KERNEL); 6469 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6470 rc = -ENOMEM; 6471 goto err_exit; 6472 } 6473 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6474 sizeof(uint16_t), 6475 GFP_KERNEL); 6476 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6477 kfree(phba->sli4_hba.vfi_bmask); 6478 rc = -ENOMEM; 6479 goto err_exit; 6480 } 6481 6482 /* Initialize local ptrs for common extent processing later. */ 6483 bmask = phba->sli4_hba.vfi_bmask; 6484 ids = phba->sli4_hba.vfi_ids; 6485 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6486 break; 6487 default: 6488 /* Unsupported Opcode. Fail call. */ 6489 id_array = NULL; 6490 bmask = NULL; 6491 ids = NULL; 6492 ext_blk_list = NULL; 6493 goto err_exit; 6494 } 6495 6496 /* 6497 * Complete initializing the extent configuration with the 6498 * allocated ids assigned to this function. The bitmask serves 6499 * as an index into the array and manages the available ids. The 6500 * array just stores the ids communicated to the port via the wqes. 6501 */ 6502 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6503 if ((i % 2) == 0) 6504 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6505 &id_array[k]); 6506 else 6507 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6508 &id_array[k]); 6509 6510 rsrc_blks = kzalloc(length, GFP_KERNEL); 6511 if (unlikely(!rsrc_blks)) { 6512 rc = -ENOMEM; 6513 kfree(bmask); 6514 kfree(ids); 6515 goto err_exit; 6516 } 6517 rsrc_blks->rsrc_start = rsrc_id; 6518 rsrc_blks->rsrc_size = rsrc_size; 6519 list_add_tail(&rsrc_blks->list, ext_blk_list); 6520 rsrc_start = rsrc_id; 6521 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6522 phba->sli4_hba.io_xri_start = rsrc_start + 6523 lpfc_sli4_get_iocb_cnt(phba); 6524 } 6525 6526 while (rsrc_id < (rsrc_start + rsrc_size)) { 6527 ids[j] = rsrc_id; 6528 rsrc_id++; 6529 j++; 6530 } 6531 /* Entire word processed. Get next word.*/ 6532 if ((i % 2) == 1) 6533 k++; 6534 } 6535 err_exit: 6536 lpfc_sli4_mbox_cmd_free(phba, mbox); 6537 return rc; 6538 } 6539 6540 6541 6542 /** 6543 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6544 * @phba: Pointer to HBA context object. 6545 * @type: the extent's type. 6546 * 6547 * This function deallocates all extents of a particular resource type. 6548 * SLI4 does not allow for deallocating a particular extent range. It 6549 * is the caller's responsibility to release all kernel memory resources. 6550 **/ 6551 static int 6552 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6553 { 6554 int rc; 6555 uint32_t length, mbox_tmo = 0; 6556 LPFC_MBOXQ_t *mbox; 6557 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6558 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6559 6560 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6561 if (!mbox) 6562 return -ENOMEM; 6563 6564 /* 6565 * This function sends an embedded mailbox because it only sends the 6566 * the resource type. All extents of this type are released by the 6567 * port. 6568 */ 6569 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6570 sizeof(struct lpfc_sli4_cfg_mhdr)); 6571 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6572 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6573 length, LPFC_SLI4_MBX_EMBED); 6574 6575 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6576 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6577 LPFC_SLI4_MBX_EMBED); 6578 if (unlikely(rc)) { 6579 rc = -EIO; 6580 goto out_free_mbox; 6581 } 6582 if (!phba->sli4_hba.intr_enable) 6583 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6584 else { 6585 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6586 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6587 } 6588 if (unlikely(rc)) { 6589 rc = -EIO; 6590 goto out_free_mbox; 6591 } 6592 6593 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6594 if (bf_get(lpfc_mbox_hdr_status, 6595 &dealloc_rsrc->header.cfg_shdr.response)) { 6596 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6597 "2919 Failed to release resource extents " 6598 "for type %d - Status 0x%x Add'l Status 0x%x. " 6599 "Resource memory not released.\n", 6600 type, 6601 bf_get(lpfc_mbox_hdr_status, 6602 &dealloc_rsrc->header.cfg_shdr.response), 6603 bf_get(lpfc_mbox_hdr_add_status, 6604 &dealloc_rsrc->header.cfg_shdr.response)); 6605 rc = -EIO; 6606 goto out_free_mbox; 6607 } 6608 6609 /* Release kernel memory resources for the specific type. */ 6610 switch (type) { 6611 case LPFC_RSC_TYPE_FCOE_VPI: 6612 kfree(phba->vpi_bmask); 6613 kfree(phba->vpi_ids); 6614 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6615 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6616 &phba->lpfc_vpi_blk_list, list) { 6617 list_del_init(&rsrc_blk->list); 6618 kfree(rsrc_blk); 6619 } 6620 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6621 break; 6622 case LPFC_RSC_TYPE_FCOE_XRI: 6623 kfree(phba->sli4_hba.xri_bmask); 6624 kfree(phba->sli4_hba.xri_ids); 6625 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6626 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6627 list_del_init(&rsrc_blk->list); 6628 kfree(rsrc_blk); 6629 } 6630 break; 6631 case LPFC_RSC_TYPE_FCOE_VFI: 6632 kfree(phba->sli4_hba.vfi_bmask); 6633 kfree(phba->sli4_hba.vfi_ids); 6634 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6635 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6636 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6637 list_del_init(&rsrc_blk->list); 6638 kfree(rsrc_blk); 6639 } 6640 break; 6641 case LPFC_RSC_TYPE_FCOE_RPI: 6642 /* RPI bitmask and physical id array are cleaned up earlier. */ 6643 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6644 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6645 list_del_init(&rsrc_blk->list); 6646 kfree(rsrc_blk); 6647 } 6648 break; 6649 default: 6650 break; 6651 } 6652 6653 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6654 6655 out_free_mbox: 6656 mempool_free(mbox, phba->mbox_mem_pool); 6657 return rc; 6658 } 6659 6660 static void 6661 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6662 uint32_t feature) 6663 { 6664 uint32_t len; 6665 u32 sig_freq = 0; 6666 6667 len = sizeof(struct lpfc_mbx_set_feature) - 6668 sizeof(struct lpfc_sli4_cfg_mhdr); 6669 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6670 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6671 LPFC_SLI4_MBX_EMBED); 6672 6673 switch (feature) { 6674 case LPFC_SET_UE_RECOVERY: 6675 bf_set(lpfc_mbx_set_feature_UER, 6676 &mbox->u.mqe.un.set_feature, 1); 6677 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6678 mbox->u.mqe.un.set_feature.param_len = 8; 6679 break; 6680 case LPFC_SET_MDS_DIAGS: 6681 bf_set(lpfc_mbx_set_feature_mds, 6682 &mbox->u.mqe.un.set_feature, 1); 6683 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6684 &mbox->u.mqe.un.set_feature, 1); 6685 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6686 mbox->u.mqe.un.set_feature.param_len = 8; 6687 break; 6688 case LPFC_SET_CGN_SIGNAL: 6689 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6690 sig_freq = 0; 6691 else 6692 sig_freq = phba->cgn_sig_freq; 6693 6694 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6695 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq, 6696 &mbox->u.mqe.un.set_feature, sig_freq); 6697 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6698 &mbox->u.mqe.un.set_feature, sig_freq); 6699 } 6700 6701 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY) 6702 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6703 &mbox->u.mqe.un.set_feature, sig_freq); 6704 6705 if (phba->cmf_active_mode == LPFC_CFG_OFF || 6706 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED) 6707 sig_freq = 0; 6708 else 6709 sig_freq = lpfc_acqe_cgn_frequency; 6710 6711 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq, 6712 &mbox->u.mqe.un.set_feature, sig_freq); 6713 6714 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL; 6715 mbox->u.mqe.un.set_feature.param_len = 12; 6716 break; 6717 case LPFC_SET_DUAL_DUMP: 6718 bf_set(lpfc_mbx_set_feature_dd, 6719 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6720 bf_set(lpfc_mbx_set_feature_ddquery, 6721 &mbox->u.mqe.un.set_feature, 0); 6722 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6723 mbox->u.mqe.un.set_feature.param_len = 4; 6724 break; 6725 case LPFC_SET_ENABLE_MI: 6726 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI; 6727 mbox->u.mqe.un.set_feature.param_len = 4; 6728 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature, 6729 phba->pport->cfg_lun_queue_depth); 6730 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature, 6731 phba->sli4_hba.pc_sli4_params.mi_ver); 6732 break; 6733 case LPFC_SET_ENABLE_CMF: 6734 bf_set(lpfc_mbx_set_feature_dd, &mbox->u.mqe.un.set_feature, 1); 6735 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF; 6736 mbox->u.mqe.un.set_feature.param_len = 4; 6737 bf_set(lpfc_mbx_set_feature_cmf, 6738 &mbox->u.mqe.un.set_feature, 1); 6739 break; 6740 } 6741 return; 6742 } 6743 6744 /** 6745 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6746 * @phba: Pointer to HBA context object. 6747 * 6748 * Disable FW logging into host memory on the adapter. To 6749 * be done before reading logs from the host memory. 6750 **/ 6751 void 6752 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6753 { 6754 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6755 6756 spin_lock_irq(&phba->hbalock); 6757 ras_fwlog->state = INACTIVE; 6758 spin_unlock_irq(&phba->hbalock); 6759 6760 /* Disable FW logging to host memory */ 6761 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6762 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6763 6764 /* Wait 10ms for firmware to stop using DMA buffer */ 6765 usleep_range(10 * 1000, 20 * 1000); 6766 } 6767 6768 /** 6769 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6770 * @phba: Pointer to HBA context object. 6771 * 6772 * This function is called to free memory allocated for RAS FW logging 6773 * support in the driver. 6774 **/ 6775 void 6776 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6777 { 6778 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6779 struct lpfc_dmabuf *dmabuf, *next; 6780 6781 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6782 list_for_each_entry_safe(dmabuf, next, 6783 &ras_fwlog->fwlog_buff_list, 6784 list) { 6785 list_del(&dmabuf->list); 6786 dma_free_coherent(&phba->pcidev->dev, 6787 LPFC_RAS_MAX_ENTRY_SIZE, 6788 dmabuf->virt, dmabuf->phys); 6789 kfree(dmabuf); 6790 } 6791 } 6792 6793 if (ras_fwlog->lwpd.virt) { 6794 dma_free_coherent(&phba->pcidev->dev, 6795 sizeof(uint32_t) * 2, 6796 ras_fwlog->lwpd.virt, 6797 ras_fwlog->lwpd.phys); 6798 ras_fwlog->lwpd.virt = NULL; 6799 } 6800 6801 spin_lock_irq(&phba->hbalock); 6802 ras_fwlog->state = INACTIVE; 6803 spin_unlock_irq(&phba->hbalock); 6804 } 6805 6806 /** 6807 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6808 * @phba: Pointer to HBA context object. 6809 * @fwlog_buff_count: Count of buffers to be created. 6810 * 6811 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6812 * to update FW log is posted to the adapter. 6813 * Buffer count is calculated based on module param ras_fwlog_buffsize 6814 * Size of each buffer posted to FW is 64K. 6815 **/ 6816 6817 static int 6818 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6819 uint32_t fwlog_buff_count) 6820 { 6821 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6822 struct lpfc_dmabuf *dmabuf; 6823 int rc = 0, i = 0; 6824 6825 /* Initialize List */ 6826 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6827 6828 /* Allocate memory for the LWPD */ 6829 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6830 sizeof(uint32_t) * 2, 6831 &ras_fwlog->lwpd.phys, 6832 GFP_KERNEL); 6833 if (!ras_fwlog->lwpd.virt) { 6834 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6835 "6185 LWPD Memory Alloc Failed\n"); 6836 6837 return -ENOMEM; 6838 } 6839 6840 ras_fwlog->fw_buffcount = fwlog_buff_count; 6841 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6842 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6843 GFP_KERNEL); 6844 if (!dmabuf) { 6845 rc = -ENOMEM; 6846 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6847 "6186 Memory Alloc failed FW logging"); 6848 goto free_mem; 6849 } 6850 6851 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6852 LPFC_RAS_MAX_ENTRY_SIZE, 6853 &dmabuf->phys, GFP_KERNEL); 6854 if (!dmabuf->virt) { 6855 kfree(dmabuf); 6856 rc = -ENOMEM; 6857 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6858 "6187 DMA Alloc Failed FW logging"); 6859 goto free_mem; 6860 } 6861 dmabuf->buffer_tag = i; 6862 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6863 } 6864 6865 free_mem: 6866 if (rc) 6867 lpfc_sli4_ras_dma_free(phba); 6868 6869 return rc; 6870 } 6871 6872 /** 6873 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6874 * @phba: pointer to lpfc hba data structure. 6875 * @pmb: pointer to the driver internal queue element for mailbox command. 6876 * 6877 * Completion handler for driver's RAS MBX command to the device. 6878 **/ 6879 static void 6880 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6881 { 6882 MAILBOX_t *mb; 6883 union lpfc_sli4_cfg_shdr *shdr; 6884 uint32_t shdr_status, shdr_add_status; 6885 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6886 6887 mb = &pmb->u.mb; 6888 6889 shdr = (union lpfc_sli4_cfg_shdr *) 6890 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6891 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6892 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6893 6894 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6895 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6896 "6188 FW LOG mailbox " 6897 "completed with status x%x add_status x%x," 6898 " mbx status x%x\n", 6899 shdr_status, shdr_add_status, mb->mbxStatus); 6900 6901 ras_fwlog->ras_hwsupport = false; 6902 goto disable_ras; 6903 } 6904 6905 spin_lock_irq(&phba->hbalock); 6906 ras_fwlog->state = ACTIVE; 6907 spin_unlock_irq(&phba->hbalock); 6908 mempool_free(pmb, phba->mbox_mem_pool); 6909 6910 return; 6911 6912 disable_ras: 6913 /* Free RAS DMA memory */ 6914 lpfc_sli4_ras_dma_free(phba); 6915 mempool_free(pmb, phba->mbox_mem_pool); 6916 } 6917 6918 /** 6919 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 6920 * @phba: pointer to lpfc hba data structure. 6921 * @fwlog_level: Logging verbosity level. 6922 * @fwlog_enable: Enable/Disable logging. 6923 * 6924 * Initialize memory and post mailbox command to enable FW logging in host 6925 * memory. 6926 **/ 6927 int 6928 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 6929 uint32_t fwlog_level, 6930 uint32_t fwlog_enable) 6931 { 6932 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6933 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 6934 struct lpfc_dmabuf *dmabuf; 6935 LPFC_MBOXQ_t *mbox; 6936 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 6937 int rc = 0; 6938 6939 spin_lock_irq(&phba->hbalock); 6940 ras_fwlog->state = INACTIVE; 6941 spin_unlock_irq(&phba->hbalock); 6942 6943 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 6944 phba->cfg_ras_fwlog_buffsize); 6945 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 6946 6947 /* 6948 * If re-enabling FW logging support use earlier allocated 6949 * DMA buffers while posting MBX command. 6950 **/ 6951 if (!ras_fwlog->lwpd.virt) { 6952 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 6953 if (rc) { 6954 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6955 "6189 FW Log Memory Allocation Failed"); 6956 return rc; 6957 } 6958 } 6959 6960 /* Setup Mailbox command */ 6961 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6962 if (!mbox) { 6963 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6964 "6190 RAS MBX Alloc Failed"); 6965 rc = -ENOMEM; 6966 goto mem_free; 6967 } 6968 6969 ras_fwlog->fw_loglevel = fwlog_level; 6970 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 6971 sizeof(struct lpfc_sli4_cfg_mhdr)); 6972 6973 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 6974 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 6975 len, LPFC_SLI4_MBX_EMBED); 6976 6977 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 6978 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 6979 fwlog_enable); 6980 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 6981 ras_fwlog->fw_loglevel); 6982 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 6983 ras_fwlog->fw_buffcount); 6984 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 6985 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 6986 6987 /* Update DMA buffer address */ 6988 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 6989 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 6990 6991 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 6992 putPaddrLow(dmabuf->phys); 6993 6994 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 6995 putPaddrHigh(dmabuf->phys); 6996 } 6997 6998 /* Update LPWD address */ 6999 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 7000 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 7001 7002 spin_lock_irq(&phba->hbalock); 7003 ras_fwlog->state = REG_INPROGRESS; 7004 spin_unlock_irq(&phba->hbalock); 7005 mbox->vport = phba->pport; 7006 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 7007 7008 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 7009 7010 if (rc == MBX_NOT_FINISHED) { 7011 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7012 "6191 FW-Log Mailbox failed. " 7013 "status %d mbxStatus : x%x", rc, 7014 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 7015 mempool_free(mbox, phba->mbox_mem_pool); 7016 rc = -EIO; 7017 goto mem_free; 7018 } else 7019 rc = 0; 7020 mem_free: 7021 if (rc) 7022 lpfc_sli4_ras_dma_free(phba); 7023 7024 return rc; 7025 } 7026 7027 /** 7028 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 7029 * @phba: Pointer to HBA context object. 7030 * 7031 * Check if RAS is supported on the adapter and initialize it. 7032 **/ 7033 void 7034 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 7035 { 7036 /* Check RAS FW Log needs to be enabled or not */ 7037 if (lpfc_check_fwlog_support(phba)) 7038 return; 7039 7040 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 7041 LPFC_RAS_ENABLE_LOGGING); 7042 } 7043 7044 /** 7045 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 7046 * @phba: Pointer to HBA context object. 7047 * 7048 * This function allocates all SLI4 resource identifiers. 7049 **/ 7050 int 7051 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 7052 { 7053 int i, rc, error = 0; 7054 uint16_t count, base; 7055 unsigned long longs; 7056 7057 if (!phba->sli4_hba.rpi_hdrs_in_use) 7058 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 7059 if (phba->sli4_hba.extents_in_use) { 7060 /* 7061 * The port supports resource extents. The XRI, VPI, VFI, RPI 7062 * resource extent count must be read and allocated before 7063 * provisioning the resource id arrays. 7064 */ 7065 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7066 LPFC_IDX_RSRC_RDY) { 7067 /* 7068 * Extent-based resources are set - the driver could 7069 * be in a port reset. Figure out if any corrective 7070 * actions need to be taken. 7071 */ 7072 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7073 LPFC_RSC_TYPE_FCOE_VFI); 7074 if (rc != 0) 7075 error++; 7076 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7077 LPFC_RSC_TYPE_FCOE_VPI); 7078 if (rc != 0) 7079 error++; 7080 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7081 LPFC_RSC_TYPE_FCOE_XRI); 7082 if (rc != 0) 7083 error++; 7084 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7085 LPFC_RSC_TYPE_FCOE_RPI); 7086 if (rc != 0) 7087 error++; 7088 7089 /* 7090 * It's possible that the number of resources 7091 * provided to this port instance changed between 7092 * resets. Detect this condition and reallocate 7093 * resources. Otherwise, there is no action. 7094 */ 7095 if (error) { 7096 lpfc_printf_log(phba, KERN_INFO, 7097 LOG_MBOX | LOG_INIT, 7098 "2931 Detected extent resource " 7099 "change. Reallocating all " 7100 "extents.\n"); 7101 rc = lpfc_sli4_dealloc_extent(phba, 7102 LPFC_RSC_TYPE_FCOE_VFI); 7103 rc = lpfc_sli4_dealloc_extent(phba, 7104 LPFC_RSC_TYPE_FCOE_VPI); 7105 rc = lpfc_sli4_dealloc_extent(phba, 7106 LPFC_RSC_TYPE_FCOE_XRI); 7107 rc = lpfc_sli4_dealloc_extent(phba, 7108 LPFC_RSC_TYPE_FCOE_RPI); 7109 } else 7110 return 0; 7111 } 7112 7113 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7114 if (unlikely(rc)) 7115 goto err_exit; 7116 7117 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7118 if (unlikely(rc)) 7119 goto err_exit; 7120 7121 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7122 if (unlikely(rc)) 7123 goto err_exit; 7124 7125 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7126 if (unlikely(rc)) 7127 goto err_exit; 7128 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7129 LPFC_IDX_RSRC_RDY); 7130 return rc; 7131 } else { 7132 /* 7133 * The port does not support resource extents. The XRI, VPI, 7134 * VFI, RPI resource ids were determined from READ_CONFIG. 7135 * Just allocate the bitmasks and provision the resource id 7136 * arrays. If a port reset is active, the resources don't 7137 * need any action - just exit. 7138 */ 7139 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7140 LPFC_IDX_RSRC_RDY) { 7141 lpfc_sli4_dealloc_resource_identifiers(phba); 7142 lpfc_sli4_remove_rpis(phba); 7143 } 7144 /* RPIs. */ 7145 count = phba->sli4_hba.max_cfg_param.max_rpi; 7146 if (count <= 0) { 7147 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7148 "3279 Invalid provisioning of " 7149 "rpi:%d\n", count); 7150 rc = -EINVAL; 7151 goto err_exit; 7152 } 7153 base = phba->sli4_hba.max_cfg_param.rpi_base; 7154 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7155 phba->sli4_hba.rpi_bmask = kcalloc(longs, 7156 sizeof(unsigned long), 7157 GFP_KERNEL); 7158 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 7159 rc = -ENOMEM; 7160 goto err_exit; 7161 } 7162 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 7163 GFP_KERNEL); 7164 if (unlikely(!phba->sli4_hba.rpi_ids)) { 7165 rc = -ENOMEM; 7166 goto free_rpi_bmask; 7167 } 7168 7169 for (i = 0; i < count; i++) 7170 phba->sli4_hba.rpi_ids[i] = base + i; 7171 7172 /* VPIs. */ 7173 count = phba->sli4_hba.max_cfg_param.max_vpi; 7174 if (count <= 0) { 7175 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7176 "3280 Invalid provisioning of " 7177 "vpi:%d\n", count); 7178 rc = -EINVAL; 7179 goto free_rpi_ids; 7180 } 7181 base = phba->sli4_hba.max_cfg_param.vpi_base; 7182 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7183 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 7184 GFP_KERNEL); 7185 if (unlikely(!phba->vpi_bmask)) { 7186 rc = -ENOMEM; 7187 goto free_rpi_ids; 7188 } 7189 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 7190 GFP_KERNEL); 7191 if (unlikely(!phba->vpi_ids)) { 7192 rc = -ENOMEM; 7193 goto free_vpi_bmask; 7194 } 7195 7196 for (i = 0; i < count; i++) 7197 phba->vpi_ids[i] = base + i; 7198 7199 /* XRIs. */ 7200 count = phba->sli4_hba.max_cfg_param.max_xri; 7201 if (count <= 0) { 7202 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7203 "3281 Invalid provisioning of " 7204 "xri:%d\n", count); 7205 rc = -EINVAL; 7206 goto free_vpi_ids; 7207 } 7208 base = phba->sli4_hba.max_cfg_param.xri_base; 7209 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7210 phba->sli4_hba.xri_bmask = kcalloc(longs, 7211 sizeof(unsigned long), 7212 GFP_KERNEL); 7213 if (unlikely(!phba->sli4_hba.xri_bmask)) { 7214 rc = -ENOMEM; 7215 goto free_vpi_ids; 7216 } 7217 phba->sli4_hba.max_cfg_param.xri_used = 0; 7218 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 7219 GFP_KERNEL); 7220 if (unlikely(!phba->sli4_hba.xri_ids)) { 7221 rc = -ENOMEM; 7222 goto free_xri_bmask; 7223 } 7224 7225 for (i = 0; i < count; i++) 7226 phba->sli4_hba.xri_ids[i] = base + i; 7227 7228 /* VFIs. */ 7229 count = phba->sli4_hba.max_cfg_param.max_vfi; 7230 if (count <= 0) { 7231 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7232 "3282 Invalid provisioning of " 7233 "vfi:%d\n", count); 7234 rc = -EINVAL; 7235 goto free_xri_ids; 7236 } 7237 base = phba->sli4_hba.max_cfg_param.vfi_base; 7238 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7239 phba->sli4_hba.vfi_bmask = kcalloc(longs, 7240 sizeof(unsigned long), 7241 GFP_KERNEL); 7242 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 7243 rc = -ENOMEM; 7244 goto free_xri_ids; 7245 } 7246 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 7247 GFP_KERNEL); 7248 if (unlikely(!phba->sli4_hba.vfi_ids)) { 7249 rc = -ENOMEM; 7250 goto free_vfi_bmask; 7251 } 7252 7253 for (i = 0; i < count; i++) 7254 phba->sli4_hba.vfi_ids[i] = base + i; 7255 7256 /* 7257 * Mark all resources ready. An HBA reset doesn't need 7258 * to reset the initialization. 7259 */ 7260 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7261 LPFC_IDX_RSRC_RDY); 7262 return 0; 7263 } 7264 7265 free_vfi_bmask: 7266 kfree(phba->sli4_hba.vfi_bmask); 7267 phba->sli4_hba.vfi_bmask = NULL; 7268 free_xri_ids: 7269 kfree(phba->sli4_hba.xri_ids); 7270 phba->sli4_hba.xri_ids = NULL; 7271 free_xri_bmask: 7272 kfree(phba->sli4_hba.xri_bmask); 7273 phba->sli4_hba.xri_bmask = NULL; 7274 free_vpi_ids: 7275 kfree(phba->vpi_ids); 7276 phba->vpi_ids = NULL; 7277 free_vpi_bmask: 7278 kfree(phba->vpi_bmask); 7279 phba->vpi_bmask = NULL; 7280 free_rpi_ids: 7281 kfree(phba->sli4_hba.rpi_ids); 7282 phba->sli4_hba.rpi_ids = NULL; 7283 free_rpi_bmask: 7284 kfree(phba->sli4_hba.rpi_bmask); 7285 phba->sli4_hba.rpi_bmask = NULL; 7286 err_exit: 7287 return rc; 7288 } 7289 7290 /** 7291 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 7292 * @phba: Pointer to HBA context object. 7293 * 7294 * This function allocates the number of elements for the specified 7295 * resource type. 7296 **/ 7297 int 7298 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7299 { 7300 if (phba->sli4_hba.extents_in_use) { 7301 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7302 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7303 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7304 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7305 } else { 7306 kfree(phba->vpi_bmask); 7307 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7308 kfree(phba->vpi_ids); 7309 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7310 kfree(phba->sli4_hba.xri_bmask); 7311 kfree(phba->sli4_hba.xri_ids); 7312 kfree(phba->sli4_hba.vfi_bmask); 7313 kfree(phba->sli4_hba.vfi_ids); 7314 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7315 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7316 } 7317 7318 return 0; 7319 } 7320 7321 /** 7322 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7323 * @phba: Pointer to HBA context object. 7324 * @type: The resource extent type. 7325 * @extnt_cnt: buffer to hold port extent count response 7326 * @extnt_size: buffer to hold port extent size response. 7327 * 7328 * This function calls the port to read the host allocated extents 7329 * for a particular type. 7330 **/ 7331 int 7332 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7333 uint16_t *extnt_cnt, uint16_t *extnt_size) 7334 { 7335 bool emb; 7336 int rc = 0; 7337 uint16_t curr_blks = 0; 7338 uint32_t req_len, emb_len; 7339 uint32_t alloc_len, mbox_tmo; 7340 struct list_head *blk_list_head; 7341 struct lpfc_rsrc_blks *rsrc_blk; 7342 LPFC_MBOXQ_t *mbox; 7343 void *virtaddr = NULL; 7344 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7345 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7346 union lpfc_sli4_cfg_shdr *shdr; 7347 7348 switch (type) { 7349 case LPFC_RSC_TYPE_FCOE_VPI: 7350 blk_list_head = &phba->lpfc_vpi_blk_list; 7351 break; 7352 case LPFC_RSC_TYPE_FCOE_XRI: 7353 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7354 break; 7355 case LPFC_RSC_TYPE_FCOE_VFI: 7356 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7357 break; 7358 case LPFC_RSC_TYPE_FCOE_RPI: 7359 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7360 break; 7361 default: 7362 return -EIO; 7363 } 7364 7365 /* Count the number of extents currently allocatd for this type. */ 7366 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7367 if (curr_blks == 0) { 7368 /* 7369 * The GET_ALLOCATED mailbox does not return the size, 7370 * just the count. The size should be just the size 7371 * stored in the current allocated block and all sizes 7372 * for an extent type are the same so set the return 7373 * value now. 7374 */ 7375 *extnt_size = rsrc_blk->rsrc_size; 7376 } 7377 curr_blks++; 7378 } 7379 7380 /* 7381 * Calculate the size of an embedded mailbox. The uint32_t 7382 * accounts for extents-specific word. 7383 */ 7384 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7385 sizeof(uint32_t); 7386 7387 /* 7388 * Presume the allocation and response will fit into an embedded 7389 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7390 */ 7391 emb = LPFC_SLI4_MBX_EMBED; 7392 req_len = emb_len; 7393 if (req_len > emb_len) { 7394 req_len = curr_blks * sizeof(uint16_t) + 7395 sizeof(union lpfc_sli4_cfg_shdr) + 7396 sizeof(uint32_t); 7397 emb = LPFC_SLI4_MBX_NEMBED; 7398 } 7399 7400 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7401 if (!mbox) 7402 return -ENOMEM; 7403 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7404 7405 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7406 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7407 req_len, emb); 7408 if (alloc_len < req_len) { 7409 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7410 "2983 Allocated DMA memory size (x%x) is " 7411 "less than the requested DMA memory " 7412 "size (x%x)\n", alloc_len, req_len); 7413 rc = -ENOMEM; 7414 goto err_exit; 7415 } 7416 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7417 if (unlikely(rc)) { 7418 rc = -EIO; 7419 goto err_exit; 7420 } 7421 7422 if (!phba->sli4_hba.intr_enable) 7423 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7424 else { 7425 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7426 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7427 } 7428 7429 if (unlikely(rc)) { 7430 rc = -EIO; 7431 goto err_exit; 7432 } 7433 7434 /* 7435 * Figure out where the response is located. Then get local pointers 7436 * to the response data. The port does not guarantee to respond to 7437 * all extents counts request so update the local variable with the 7438 * allocated count from the port. 7439 */ 7440 if (emb == LPFC_SLI4_MBX_EMBED) { 7441 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7442 shdr = &rsrc_ext->header.cfg_shdr; 7443 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7444 } else { 7445 virtaddr = mbox->sge_array->addr[0]; 7446 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7447 shdr = &n_rsrc->cfg_shdr; 7448 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7449 } 7450 7451 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7452 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7453 "2984 Failed to read allocated resources " 7454 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7455 type, 7456 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7457 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7458 rc = -EIO; 7459 goto err_exit; 7460 } 7461 err_exit: 7462 lpfc_sli4_mbox_cmd_free(phba, mbox); 7463 return rc; 7464 } 7465 7466 /** 7467 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7468 * @phba: pointer to lpfc hba data structure. 7469 * @sgl_list: linked link of sgl buffers to post 7470 * @cnt: number of linked list buffers 7471 * 7472 * This routine walks the list of buffers that have been allocated and 7473 * repost them to the port by using SGL block post. This is needed after a 7474 * pci_function_reset/warm_start or start. It attempts to construct blocks 7475 * of buffer sgls which contains contiguous xris and uses the non-embedded 7476 * SGL block post mailbox commands to post them to the port. For single 7477 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7478 * mailbox command for posting. 7479 * 7480 * Returns: 0 = success, non-zero failure. 7481 **/ 7482 static int 7483 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7484 struct list_head *sgl_list, int cnt) 7485 { 7486 struct lpfc_sglq *sglq_entry = NULL; 7487 struct lpfc_sglq *sglq_entry_next = NULL; 7488 struct lpfc_sglq *sglq_entry_first = NULL; 7489 int status, total_cnt; 7490 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7491 int last_xritag = NO_XRI; 7492 LIST_HEAD(prep_sgl_list); 7493 LIST_HEAD(blck_sgl_list); 7494 LIST_HEAD(allc_sgl_list); 7495 LIST_HEAD(post_sgl_list); 7496 LIST_HEAD(free_sgl_list); 7497 7498 spin_lock_irq(&phba->hbalock); 7499 spin_lock(&phba->sli4_hba.sgl_list_lock); 7500 list_splice_init(sgl_list, &allc_sgl_list); 7501 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7502 spin_unlock_irq(&phba->hbalock); 7503 7504 total_cnt = cnt; 7505 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7506 &allc_sgl_list, list) { 7507 list_del_init(&sglq_entry->list); 7508 block_cnt++; 7509 if ((last_xritag != NO_XRI) && 7510 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7511 /* a hole in xri block, form a sgl posting block */ 7512 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7513 post_cnt = block_cnt - 1; 7514 /* prepare list for next posting block */ 7515 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7516 block_cnt = 1; 7517 } else { 7518 /* prepare list for next posting block */ 7519 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7520 /* enough sgls for non-embed sgl mbox command */ 7521 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7522 list_splice_init(&prep_sgl_list, 7523 &blck_sgl_list); 7524 post_cnt = block_cnt; 7525 block_cnt = 0; 7526 } 7527 } 7528 num_posted++; 7529 7530 /* keep track of last sgl's xritag */ 7531 last_xritag = sglq_entry->sli4_xritag; 7532 7533 /* end of repost sgl list condition for buffers */ 7534 if (num_posted == total_cnt) { 7535 if (post_cnt == 0) { 7536 list_splice_init(&prep_sgl_list, 7537 &blck_sgl_list); 7538 post_cnt = block_cnt; 7539 } else if (block_cnt == 1) { 7540 status = lpfc_sli4_post_sgl(phba, 7541 sglq_entry->phys, 0, 7542 sglq_entry->sli4_xritag); 7543 if (!status) { 7544 /* successful, put sgl to posted list */ 7545 list_add_tail(&sglq_entry->list, 7546 &post_sgl_list); 7547 } else { 7548 /* Failure, put sgl to free list */ 7549 lpfc_printf_log(phba, KERN_WARNING, 7550 LOG_SLI, 7551 "3159 Failed to post " 7552 "sgl, xritag:x%x\n", 7553 sglq_entry->sli4_xritag); 7554 list_add_tail(&sglq_entry->list, 7555 &free_sgl_list); 7556 total_cnt--; 7557 } 7558 } 7559 } 7560 7561 /* continue until a nembed page worth of sgls */ 7562 if (post_cnt == 0) 7563 continue; 7564 7565 /* post the buffer list sgls as a block */ 7566 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7567 post_cnt); 7568 7569 if (!status) { 7570 /* success, put sgl list to posted sgl list */ 7571 list_splice_init(&blck_sgl_list, &post_sgl_list); 7572 } else { 7573 /* Failure, put sgl list to free sgl list */ 7574 sglq_entry_first = list_first_entry(&blck_sgl_list, 7575 struct lpfc_sglq, 7576 list); 7577 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7578 "3160 Failed to post sgl-list, " 7579 "xritag:x%x-x%x\n", 7580 sglq_entry_first->sli4_xritag, 7581 (sglq_entry_first->sli4_xritag + 7582 post_cnt - 1)); 7583 list_splice_init(&blck_sgl_list, &free_sgl_list); 7584 total_cnt -= post_cnt; 7585 } 7586 7587 /* don't reset xirtag due to hole in xri block */ 7588 if (block_cnt == 0) 7589 last_xritag = NO_XRI; 7590 7591 /* reset sgl post count for next round of posting */ 7592 post_cnt = 0; 7593 } 7594 7595 /* free the sgls failed to post */ 7596 lpfc_free_sgl_list(phba, &free_sgl_list); 7597 7598 /* push sgls posted to the available list */ 7599 if (!list_empty(&post_sgl_list)) { 7600 spin_lock_irq(&phba->hbalock); 7601 spin_lock(&phba->sli4_hba.sgl_list_lock); 7602 list_splice_init(&post_sgl_list, sgl_list); 7603 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7604 spin_unlock_irq(&phba->hbalock); 7605 } else { 7606 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7607 "3161 Failure to post sgl to port.\n"); 7608 return -EIO; 7609 } 7610 7611 /* return the number of XRIs actually posted */ 7612 return total_cnt; 7613 } 7614 7615 /** 7616 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7617 * @phba: pointer to lpfc hba data structure. 7618 * 7619 * This routine walks the list of nvme buffers that have been allocated and 7620 * repost them to the port by using SGL block post. This is needed after a 7621 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7622 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7623 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7624 * 7625 * Returns: 0 = success, non-zero failure. 7626 **/ 7627 static int 7628 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7629 { 7630 LIST_HEAD(post_nblist); 7631 int num_posted, rc = 0; 7632 7633 /* get all NVME buffers need to repost to a local list */ 7634 lpfc_io_buf_flush(phba, &post_nblist); 7635 7636 /* post the list of nvme buffer sgls to port if available */ 7637 if (!list_empty(&post_nblist)) { 7638 num_posted = lpfc_sli4_post_io_sgl_list( 7639 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7640 /* failed to post any nvme buffer, return error */ 7641 if (num_posted == 0) 7642 rc = -EIO; 7643 } 7644 return rc; 7645 } 7646 7647 static void 7648 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7649 { 7650 uint32_t len; 7651 7652 len = sizeof(struct lpfc_mbx_set_host_data) - 7653 sizeof(struct lpfc_sli4_cfg_mhdr); 7654 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7655 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7656 LPFC_SLI4_MBX_EMBED); 7657 7658 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7659 mbox->u.mqe.un.set_host_data.param_len = 7660 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7661 snprintf(mbox->u.mqe.un.set_host_data.un.data, 7662 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7663 "Linux %s v"LPFC_DRIVER_VERSION, 7664 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7665 } 7666 7667 int 7668 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7669 struct lpfc_queue *drq, int count, int idx) 7670 { 7671 int rc, i; 7672 struct lpfc_rqe hrqe; 7673 struct lpfc_rqe drqe; 7674 struct lpfc_rqb *rqbp; 7675 unsigned long flags; 7676 struct rqb_dmabuf *rqb_buffer; 7677 LIST_HEAD(rqb_buf_list); 7678 7679 rqbp = hrq->rqbp; 7680 for (i = 0; i < count; i++) { 7681 spin_lock_irqsave(&phba->hbalock, flags); 7682 /* IF RQ is already full, don't bother */ 7683 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7684 spin_unlock_irqrestore(&phba->hbalock, flags); 7685 break; 7686 } 7687 spin_unlock_irqrestore(&phba->hbalock, flags); 7688 7689 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7690 if (!rqb_buffer) 7691 break; 7692 rqb_buffer->hrq = hrq; 7693 rqb_buffer->drq = drq; 7694 rqb_buffer->idx = idx; 7695 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7696 } 7697 7698 spin_lock_irqsave(&phba->hbalock, flags); 7699 while (!list_empty(&rqb_buf_list)) { 7700 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7701 hbuf.list); 7702 7703 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7704 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7705 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7706 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7707 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7708 if (rc < 0) { 7709 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7710 "6421 Cannot post to HRQ %d: %x %x %x " 7711 "DRQ %x %x\n", 7712 hrq->queue_id, 7713 hrq->host_index, 7714 hrq->hba_index, 7715 hrq->entry_count, 7716 drq->host_index, 7717 drq->hba_index); 7718 rqbp->rqb_free_buffer(phba, rqb_buffer); 7719 } else { 7720 list_add_tail(&rqb_buffer->hbuf.list, 7721 &rqbp->rqb_buffer_list); 7722 rqbp->buffer_count++; 7723 } 7724 } 7725 spin_unlock_irqrestore(&phba->hbalock, flags); 7726 return 1; 7727 } 7728 7729 static void 7730 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7731 { 7732 struct lpfc_vport *vport = pmb->vport; 7733 union lpfc_sli4_cfg_shdr *shdr; 7734 u32 shdr_status, shdr_add_status; 7735 u32 sig, acqe; 7736 7737 /* Two outcomes. (1) Set featurs was successul and EDC negotiation 7738 * is done. (2) Mailbox failed and send FPIN support only. 7739 */ 7740 shdr = (union lpfc_sli4_cfg_shdr *) 7741 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7742 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7743 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7744 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7745 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 7746 "2516 CGN SET_FEATURE mbox failed with " 7747 "status x%x add_status x%x, mbx status x%x " 7748 "Reset Congestion to FPINs only\n", 7749 shdr_status, shdr_add_status, 7750 pmb->u.mb.mbxStatus); 7751 /* If there is a mbox error, move on to RDF */ 7752 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7753 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7754 goto out; 7755 } 7756 7757 /* Zero out Congestion Signal ACQE counter */ 7758 phba->cgn_acqe_cnt = 0; 7759 7760 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq, 7761 &pmb->u.mqe.un.set_feature); 7762 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq, 7763 &pmb->u.mqe.un.set_feature); 7764 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7765 "4620 SET_FEATURES Success: Freq: %ds %dms " 7766 " Reg: x%x x%x\n", acqe, sig, 7767 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7768 out: 7769 mempool_free(pmb, phba->mbox_mem_pool); 7770 7771 /* Register for FPIN events from the fabric now that the 7772 * EDC common_set_features has completed. 7773 */ 7774 lpfc_issue_els_rdf(vport, 0); 7775 } 7776 7777 int 7778 lpfc_config_cgn_signal(struct lpfc_hba *phba) 7779 { 7780 LPFC_MBOXQ_t *mboxq; 7781 u32 rc; 7782 7783 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7784 if (!mboxq) 7785 goto out_rdf; 7786 7787 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL); 7788 mboxq->vport = phba->pport; 7789 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs; 7790 7791 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7792 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: " 7793 "Reg: x%x x%x\n", 7794 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency, 7795 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7796 7797 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7798 if (rc == MBX_NOT_FINISHED) 7799 goto out; 7800 return 0; 7801 7802 out: 7803 mempool_free(mboxq, phba->mbox_mem_pool); 7804 out_rdf: 7805 /* If there is a mbox error, move on to RDF */ 7806 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7807 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7808 lpfc_issue_els_rdf(phba->pport, 0); 7809 return -EIO; 7810 } 7811 7812 /** 7813 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7814 * @phba: pointer to lpfc hba data structure. 7815 * 7816 * This routine initializes the per-cq idle_stat to dynamically dictate 7817 * polling decisions. 7818 * 7819 * Return codes: 7820 * None 7821 **/ 7822 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7823 { 7824 int i; 7825 struct lpfc_sli4_hdw_queue *hdwq; 7826 struct lpfc_queue *cq; 7827 struct lpfc_idle_stat *idle_stat; 7828 u64 wall; 7829 7830 for_each_present_cpu(i) { 7831 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7832 cq = hdwq->io_cq; 7833 7834 /* Skip if we've already handled this cq's primary CPU */ 7835 if (cq->chann != i) 7836 continue; 7837 7838 idle_stat = &phba->sli4_hba.idle_stat[i]; 7839 7840 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 7841 idle_stat->prev_wall = wall; 7842 7843 if (phba->nvmet_support || 7844 phba->cmf_active_mode != LPFC_CFG_OFF) 7845 cq->poll_mode = LPFC_QUEUE_WORK; 7846 else 7847 cq->poll_mode = LPFC_IRQ_POLL; 7848 } 7849 7850 if (!phba->nvmet_support) 7851 schedule_delayed_work(&phba->idle_stat_delay_work, 7852 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 7853 } 7854 7855 static void lpfc_sli4_dip(struct lpfc_hba *phba) 7856 { 7857 uint32_t if_type; 7858 7859 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 7860 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 7861 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 7862 struct lpfc_register reg_data; 7863 7864 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 7865 ®_data.word0)) 7866 return; 7867 7868 if (bf_get(lpfc_sliport_status_dip, ®_data)) 7869 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7870 "2904 Firmware Dump Image Present" 7871 " on Adapter"); 7872 } 7873 } 7874 7875 /** 7876 * lpfc_cmf_setup - Initialize idle_stat tracking 7877 * @phba: Pointer to HBA context object. 7878 * 7879 * This is called from HBA setup during driver load or when the HBA 7880 * comes online. this does all the initialization to support CMF and MI. 7881 **/ 7882 static int 7883 lpfc_cmf_setup(struct lpfc_hba *phba) 7884 { 7885 LPFC_MBOXQ_t *mboxq; 7886 struct lpfc_dmabuf *mp; 7887 struct lpfc_pc_sli4_params *sli4_params; 7888 int rc, cmf, mi_ver; 7889 7890 rc = lpfc_sli4_refresh_params(phba); 7891 if (unlikely(rc)) 7892 return rc; 7893 7894 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7895 if (!mboxq) 7896 return -ENOMEM; 7897 7898 sli4_params = &phba->sli4_hba.pc_sli4_params; 7899 7900 /* Are we forcing MI off via module parameter? */ 7901 if (!phba->cfg_enable_mi) 7902 sli4_params->mi_ver = 0; 7903 7904 /* Always try to enable MI feature if we can */ 7905 if (sli4_params->mi_ver) { 7906 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI); 7907 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7908 mi_ver = bf_get(lpfc_mbx_set_feature_mi, 7909 &mboxq->u.mqe.un.set_feature); 7910 7911 if (rc == MBX_SUCCESS) { 7912 if (mi_ver) { 7913 lpfc_printf_log(phba, 7914 KERN_WARNING, LOG_CGN_MGMT, 7915 "6215 MI is enabled\n"); 7916 sli4_params->mi_ver = mi_ver; 7917 } else { 7918 lpfc_printf_log(phba, 7919 KERN_WARNING, LOG_CGN_MGMT, 7920 "6338 MI is disabled\n"); 7921 sli4_params->mi_ver = 0; 7922 } 7923 } else { 7924 /* mi_ver is already set from GET_SLI4_PARAMETERS */ 7925 lpfc_printf_log(phba, KERN_INFO, 7926 LOG_CGN_MGMT | LOG_INIT, 7927 "6245 Enable MI Mailbox x%x (x%x/x%x) " 7928 "failed, rc:x%x mi:x%x\n", 7929 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7930 lpfc_sli_config_mbox_subsys_get 7931 (phba, mboxq), 7932 lpfc_sli_config_mbox_opcode_get 7933 (phba, mboxq), 7934 rc, sli4_params->mi_ver); 7935 } 7936 } else { 7937 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 7938 "6217 MI is disabled\n"); 7939 } 7940 7941 /* Ensure FDMI is enabled for MI if enable_mi is set */ 7942 if (sli4_params->mi_ver) 7943 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT; 7944 7945 /* Always try to enable CMF feature if we can */ 7946 if (sli4_params->cmf) { 7947 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF); 7948 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7949 cmf = bf_get(lpfc_mbx_set_feature_cmf, 7950 &mboxq->u.mqe.un.set_feature); 7951 if (rc == MBX_SUCCESS && cmf) { 7952 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 7953 "6218 CMF is enabled: mode %d\n", 7954 phba->cmf_active_mode); 7955 } else { 7956 lpfc_printf_log(phba, KERN_WARNING, 7957 LOG_CGN_MGMT | LOG_INIT, 7958 "6219 Enable CMF Mailbox x%x (x%x/x%x) " 7959 "failed, rc:x%x dd:x%x\n", 7960 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7961 lpfc_sli_config_mbox_subsys_get 7962 (phba, mboxq), 7963 lpfc_sli_config_mbox_opcode_get 7964 (phba, mboxq), 7965 rc, cmf); 7966 sli4_params->cmf = 0; 7967 phba->cmf_active_mode = LPFC_CFG_OFF; 7968 goto no_cmf; 7969 } 7970 7971 /* Allocate Congestion Information Buffer */ 7972 if (!phba->cgn_i) { 7973 mp = kmalloc(sizeof(*mp), GFP_KERNEL); 7974 if (mp) 7975 mp->virt = dma_alloc_coherent 7976 (&phba->pcidev->dev, 7977 sizeof(struct lpfc_cgn_info), 7978 &mp->phys, GFP_KERNEL); 7979 if (!mp || !mp->virt) { 7980 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7981 "2640 Failed to alloc memory " 7982 "for Congestion Info\n"); 7983 kfree(mp); 7984 sli4_params->cmf = 0; 7985 phba->cmf_active_mode = LPFC_CFG_OFF; 7986 goto no_cmf; 7987 } 7988 phba->cgn_i = mp; 7989 7990 /* initialize congestion buffer info */ 7991 lpfc_init_congestion_buf(phba); 7992 lpfc_init_congestion_stat(phba); 7993 7994 /* Zero out Congestion Signal counters */ 7995 atomic64_set(&phba->cgn_acqe_stat.alarm, 0); 7996 atomic64_set(&phba->cgn_acqe_stat.warn, 0); 7997 } 7998 7999 rc = lpfc_sli4_cgn_params_read(phba); 8000 if (rc < 0) { 8001 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8002 "6242 Error reading Cgn Params (%d)\n", 8003 rc); 8004 /* Ensure CGN Mode is off */ 8005 sli4_params->cmf = 0; 8006 } else if (!rc) { 8007 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8008 "6243 CGN Event empty object.\n"); 8009 /* Ensure CGN Mode is off */ 8010 sli4_params->cmf = 0; 8011 } 8012 } else { 8013 no_cmf: 8014 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8015 "6220 CMF is disabled\n"); 8016 } 8017 8018 /* Only register congestion buffer with firmware if BOTH 8019 * CMF and E2E are enabled. 8020 */ 8021 if (sli4_params->cmf && sli4_params->mi_ver) { 8022 rc = lpfc_reg_congestion_buf(phba); 8023 if (rc) { 8024 dma_free_coherent(&phba->pcidev->dev, 8025 sizeof(struct lpfc_cgn_info), 8026 phba->cgn_i->virt, phba->cgn_i->phys); 8027 kfree(phba->cgn_i); 8028 phba->cgn_i = NULL; 8029 /* Ensure CGN Mode is off */ 8030 phba->cmf_active_mode = LPFC_CFG_OFF; 8031 return 0; 8032 } 8033 } 8034 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8035 "6470 Setup MI version %d CMF %d mode %d\n", 8036 sli4_params->mi_ver, sli4_params->cmf, 8037 phba->cmf_active_mode); 8038 8039 mempool_free(mboxq, phba->mbox_mem_pool); 8040 8041 /* Initialize atomic counters */ 8042 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 8043 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 8044 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 8045 atomic_set(&phba->cgn_sync_warn_cnt, 0); 8046 atomic_set(&phba->cgn_driver_evt_cnt, 0); 8047 atomic_set(&phba->cgn_latency_evt_cnt, 0); 8048 atomic64_set(&phba->cgn_latency_evt, 0); 8049 8050 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 8051 8052 /* Allocate RX Monitor Buffer */ 8053 if (!phba->rxtable) { 8054 phba->rxtable = kmalloc_array(LPFC_MAX_RXMONITOR_ENTRY, 8055 sizeof(struct rxtable_entry), 8056 GFP_KERNEL); 8057 if (!phba->rxtable) { 8058 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8059 "2644 Failed to alloc memory " 8060 "for RX Monitor Buffer\n"); 8061 return -ENOMEM; 8062 } 8063 } 8064 atomic_set(&phba->rxtable_idx_head, 0); 8065 atomic_set(&phba->rxtable_idx_tail, 0); 8066 return 0; 8067 } 8068 8069 static int 8070 lpfc_set_host_tm(struct lpfc_hba *phba) 8071 { 8072 LPFC_MBOXQ_t *mboxq; 8073 uint32_t len, rc; 8074 struct timespec64 cur_time; 8075 struct tm broken; 8076 uint32_t month, day, year; 8077 uint32_t hour, minute, second; 8078 struct lpfc_mbx_set_host_date_time *tm; 8079 8080 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8081 if (!mboxq) 8082 return -ENOMEM; 8083 8084 len = sizeof(struct lpfc_mbx_set_host_data) - 8085 sizeof(struct lpfc_sli4_cfg_mhdr); 8086 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 8087 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 8088 LPFC_SLI4_MBX_EMBED); 8089 8090 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME; 8091 mboxq->u.mqe.un.set_host_data.param_len = 8092 sizeof(struct lpfc_mbx_set_host_date_time); 8093 tm = &mboxq->u.mqe.un.set_host_data.un.tm; 8094 ktime_get_real_ts64(&cur_time); 8095 time64_to_tm(cur_time.tv_sec, 0, &broken); 8096 month = broken.tm_mon + 1; 8097 day = broken.tm_mday; 8098 year = broken.tm_year - 100; 8099 hour = broken.tm_hour; 8100 minute = broken.tm_min; 8101 second = broken.tm_sec; 8102 bf_set(lpfc_mbx_set_host_month, tm, month); 8103 bf_set(lpfc_mbx_set_host_day, tm, day); 8104 bf_set(lpfc_mbx_set_host_year, tm, year); 8105 bf_set(lpfc_mbx_set_host_hour, tm, hour); 8106 bf_set(lpfc_mbx_set_host_min, tm, minute); 8107 bf_set(lpfc_mbx_set_host_sec, tm, second); 8108 8109 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8110 mempool_free(mboxq, phba->mbox_mem_pool); 8111 return rc; 8112 } 8113 8114 /** 8115 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 8116 * @phba: Pointer to HBA context object. 8117 * 8118 * This function is the main SLI4 device initialization PCI function. This 8119 * function is called by the HBA initialization code, HBA reset code and 8120 * HBA error attention handler code. Caller is not required to hold any 8121 * locks. 8122 **/ 8123 int 8124 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 8125 { 8126 int rc, i, cnt, len, dd; 8127 LPFC_MBOXQ_t *mboxq; 8128 struct lpfc_mqe *mqe; 8129 uint8_t *vpd; 8130 uint32_t vpd_size; 8131 uint32_t ftr_rsp = 0; 8132 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 8133 struct lpfc_vport *vport = phba->pport; 8134 struct lpfc_dmabuf *mp; 8135 struct lpfc_rqb *rqbp; 8136 u32 flg; 8137 8138 /* Perform a PCI function reset to start from clean */ 8139 rc = lpfc_pci_function_reset(phba); 8140 if (unlikely(rc)) 8141 return -ENODEV; 8142 8143 /* Check the HBA Host Status Register for readyness */ 8144 rc = lpfc_sli4_post_status_check(phba); 8145 if (unlikely(rc)) 8146 return -ENODEV; 8147 else { 8148 spin_lock_irq(&phba->hbalock); 8149 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 8150 flg = phba->sli.sli_flag; 8151 spin_unlock_irq(&phba->hbalock); 8152 /* Allow a little time after setting SLI_ACTIVE for any polled 8153 * MBX commands to complete via BSG. 8154 */ 8155 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) { 8156 msleep(20); 8157 spin_lock_irq(&phba->hbalock); 8158 flg = phba->sli.sli_flag; 8159 spin_unlock_irq(&phba->hbalock); 8160 } 8161 } 8162 8163 lpfc_sli4_dip(phba); 8164 8165 /* 8166 * Allocate a single mailbox container for initializing the 8167 * port. 8168 */ 8169 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8170 if (!mboxq) 8171 return -ENOMEM; 8172 8173 /* Issue READ_REV to collect vpd and FW information. */ 8174 vpd_size = SLI4_PAGE_SIZE; 8175 vpd = kzalloc(vpd_size, GFP_KERNEL); 8176 if (!vpd) { 8177 rc = -ENOMEM; 8178 goto out_free_mbox; 8179 } 8180 8181 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 8182 if (unlikely(rc)) { 8183 kfree(vpd); 8184 goto out_free_mbox; 8185 } 8186 8187 mqe = &mboxq->u.mqe; 8188 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 8189 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 8190 phba->hba_flag |= HBA_FCOE_MODE; 8191 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 8192 } else { 8193 phba->hba_flag &= ~HBA_FCOE_MODE; 8194 } 8195 8196 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 8197 LPFC_DCBX_CEE_MODE) 8198 phba->hba_flag |= HBA_FIP_SUPPORT; 8199 else 8200 phba->hba_flag &= ~HBA_FIP_SUPPORT; 8201 8202 phba->hba_flag &= ~HBA_IOQ_FLUSH; 8203 8204 if (phba->sli_rev != LPFC_SLI_REV4) { 8205 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8206 "0376 READ_REV Error. SLI Level %d " 8207 "FCoE enabled %d\n", 8208 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 8209 rc = -EIO; 8210 kfree(vpd); 8211 goto out_free_mbox; 8212 } 8213 8214 rc = lpfc_set_host_tm(phba); 8215 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 8216 "6468 Set host date / time: Status x%x:\n", rc); 8217 8218 /* 8219 * Continue initialization with default values even if driver failed 8220 * to read FCoE param config regions, only read parameters if the 8221 * board is FCoE 8222 */ 8223 if (phba->hba_flag & HBA_FCOE_MODE && 8224 lpfc_sli4_read_fcoe_params(phba)) 8225 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 8226 "2570 Failed to read FCoE parameters\n"); 8227 8228 /* 8229 * Retrieve sli4 device physical port name, failure of doing it 8230 * is considered as non-fatal. 8231 */ 8232 rc = lpfc_sli4_retrieve_pport_name(phba); 8233 if (!rc) 8234 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8235 "3080 Successful retrieving SLI4 device " 8236 "physical port name: %s.\n", phba->Port); 8237 8238 rc = lpfc_sli4_get_ctl_attr(phba); 8239 if (!rc) 8240 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8241 "8351 Successful retrieving SLI4 device " 8242 "CTL ATTR\n"); 8243 8244 /* 8245 * Evaluate the read rev and vpd data. Populate the driver 8246 * state with the results. If this routine fails, the failure 8247 * is not fatal as the driver will use generic values. 8248 */ 8249 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 8250 if (unlikely(!rc)) { 8251 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8252 "0377 Error %d parsing vpd. " 8253 "Using defaults.\n", rc); 8254 rc = 0; 8255 } 8256 kfree(vpd); 8257 8258 /* Save information as VPD data */ 8259 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 8260 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 8261 8262 /* 8263 * This is because first G7 ASIC doesn't support the standard 8264 * 0x5a NVME cmd descriptor type/subtype 8265 */ 8266 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8267 LPFC_SLI_INTF_IF_TYPE_6) && 8268 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 8269 (phba->vpd.rev.smRev == 0) && 8270 (phba->cfg_nvme_embed_cmd == 1)) 8271 phba->cfg_nvme_embed_cmd = 0; 8272 8273 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 8274 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 8275 &mqe->un.read_rev); 8276 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 8277 &mqe->un.read_rev); 8278 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 8279 &mqe->un.read_rev); 8280 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 8281 &mqe->un.read_rev); 8282 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 8283 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 8284 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 8285 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 8286 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 8287 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 8288 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8289 "(%d):0380 READ_REV Status x%x " 8290 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 8291 mboxq->vport ? mboxq->vport->vpi : 0, 8292 bf_get(lpfc_mqe_status, mqe), 8293 phba->vpd.rev.opFwName, 8294 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 8295 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 8296 8297 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8298 LPFC_SLI_INTF_IF_TYPE_0) { 8299 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 8300 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8301 if (rc == MBX_SUCCESS) { 8302 phba->hba_flag |= HBA_RECOVERABLE_UE; 8303 /* Set 1Sec interval to detect UE */ 8304 phba->eratt_poll_interval = 1; 8305 phba->sli4_hba.ue_to_sr = bf_get( 8306 lpfc_mbx_set_feature_UESR, 8307 &mboxq->u.mqe.un.set_feature); 8308 phba->sli4_hba.ue_to_rp = bf_get( 8309 lpfc_mbx_set_feature_UERP, 8310 &mboxq->u.mqe.un.set_feature); 8311 } 8312 } 8313 8314 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 8315 /* Enable MDS Diagnostics only if the SLI Port supports it */ 8316 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 8317 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8318 if (rc != MBX_SUCCESS) 8319 phba->mds_diags_support = 0; 8320 } 8321 8322 /* 8323 * Discover the port's supported feature set and match it against the 8324 * hosts requests. 8325 */ 8326 lpfc_request_features(phba, mboxq); 8327 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8328 if (unlikely(rc)) { 8329 rc = -EIO; 8330 goto out_free_mbox; 8331 } 8332 8333 /* Disable VMID if app header is not supported */ 8334 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, 8335 &mqe->un.req_ftrs))) { 8336 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); 8337 phba->cfg_vmid_app_header = 0; 8338 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, 8339 "1242 vmid feature not supported\n"); 8340 } 8341 8342 /* 8343 * The port must support FCP initiator mode as this is the 8344 * only mode running in the host. 8345 */ 8346 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 8347 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8348 "0378 No support for fcpi mode.\n"); 8349 ftr_rsp++; 8350 } 8351 8352 /* Performance Hints are ONLY for FCoE */ 8353 if (phba->hba_flag & HBA_FCOE_MODE) { 8354 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 8355 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 8356 else 8357 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 8358 } 8359 8360 /* 8361 * If the port cannot support the host's requested features 8362 * then turn off the global config parameters to disable the 8363 * feature in the driver. This is not a fatal error. 8364 */ 8365 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8366 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 8367 phba->cfg_enable_bg = 0; 8368 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 8369 ftr_rsp++; 8370 } 8371 } 8372 8373 if (phba->max_vpi && phba->cfg_enable_npiv && 8374 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8375 ftr_rsp++; 8376 8377 if (ftr_rsp) { 8378 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8379 "0379 Feature Mismatch Data: x%08x %08x " 8380 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 8381 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 8382 phba->cfg_enable_npiv, phba->max_vpi); 8383 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 8384 phba->cfg_enable_bg = 0; 8385 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8386 phba->cfg_enable_npiv = 0; 8387 } 8388 8389 /* These SLI3 features are assumed in SLI4 */ 8390 spin_lock_irq(&phba->hbalock); 8391 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 8392 spin_unlock_irq(&phba->hbalock); 8393 8394 /* Always try to enable dual dump feature if we can */ 8395 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 8396 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8397 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 8398 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 8399 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8400 "6448 Dual Dump is enabled\n"); 8401 else 8402 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 8403 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 8404 "rc:x%x dd:x%x\n", 8405 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8406 lpfc_sli_config_mbox_subsys_get( 8407 phba, mboxq), 8408 lpfc_sli_config_mbox_opcode_get( 8409 phba, mboxq), 8410 rc, dd); 8411 /* 8412 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 8413 * calls depends on these resources to complete port setup. 8414 */ 8415 rc = lpfc_sli4_alloc_resource_identifiers(phba); 8416 if (rc) { 8417 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8418 "2920 Failed to alloc Resource IDs " 8419 "rc = x%x\n", rc); 8420 goto out_free_mbox; 8421 } 8422 8423 lpfc_set_host_data(phba, mboxq); 8424 8425 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8426 if (rc) { 8427 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8428 "2134 Failed to set host os driver version %x", 8429 rc); 8430 } 8431 8432 /* Read the port's service parameters. */ 8433 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 8434 if (rc) { 8435 phba->link_state = LPFC_HBA_ERROR; 8436 rc = -ENOMEM; 8437 goto out_free_mbox; 8438 } 8439 8440 mboxq->vport = vport; 8441 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8442 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 8443 if (rc == MBX_SUCCESS) { 8444 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 8445 rc = 0; 8446 } 8447 8448 /* 8449 * This memory was allocated by the lpfc_read_sparam routine. Release 8450 * it to the mbuf pool. 8451 */ 8452 lpfc_mbuf_free(phba, mp->virt, mp->phys); 8453 kfree(mp); 8454 mboxq->ctx_buf = NULL; 8455 if (unlikely(rc)) { 8456 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8457 "0382 READ_SPARAM command failed " 8458 "status %d, mbxStatus x%x\n", 8459 rc, bf_get(lpfc_mqe_status, mqe)); 8460 phba->link_state = LPFC_HBA_ERROR; 8461 rc = -EIO; 8462 goto out_free_mbox; 8463 } 8464 8465 lpfc_update_vport_wwn(vport); 8466 8467 /* Update the fc_host data structures with new wwn. */ 8468 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 8469 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 8470 8471 /* Create all the SLI4 queues */ 8472 rc = lpfc_sli4_queue_create(phba); 8473 if (rc) { 8474 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8475 "3089 Failed to allocate queues\n"); 8476 rc = -ENODEV; 8477 goto out_free_mbox; 8478 } 8479 /* Set up all the queues to the device */ 8480 rc = lpfc_sli4_queue_setup(phba); 8481 if (unlikely(rc)) { 8482 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8483 "0381 Error %d during queue setup.\n ", rc); 8484 goto out_stop_timers; 8485 } 8486 /* Initialize the driver internal SLI layer lists. */ 8487 lpfc_sli4_setup(phba); 8488 lpfc_sli4_queue_init(phba); 8489 8490 /* update host els xri-sgl sizes and mappings */ 8491 rc = lpfc_sli4_els_sgl_update(phba); 8492 if (unlikely(rc)) { 8493 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8494 "1400 Failed to update xri-sgl size and " 8495 "mapping: %d\n", rc); 8496 goto out_destroy_queue; 8497 } 8498 8499 /* register the els sgl pool to the port */ 8500 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 8501 phba->sli4_hba.els_xri_cnt); 8502 if (unlikely(rc < 0)) { 8503 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8504 "0582 Error %d during els sgl post " 8505 "operation\n", rc); 8506 rc = -ENODEV; 8507 goto out_destroy_queue; 8508 } 8509 phba->sli4_hba.els_xri_cnt = rc; 8510 8511 if (phba->nvmet_support) { 8512 /* update host nvmet xri-sgl sizes and mappings */ 8513 rc = lpfc_sli4_nvmet_sgl_update(phba); 8514 if (unlikely(rc)) { 8515 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8516 "6308 Failed to update nvmet-sgl size " 8517 "and mapping: %d\n", rc); 8518 goto out_destroy_queue; 8519 } 8520 8521 /* register the nvmet sgl pool to the port */ 8522 rc = lpfc_sli4_repost_sgl_list( 8523 phba, 8524 &phba->sli4_hba.lpfc_nvmet_sgl_list, 8525 phba->sli4_hba.nvmet_xri_cnt); 8526 if (unlikely(rc < 0)) { 8527 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8528 "3117 Error %d during nvmet " 8529 "sgl post\n", rc); 8530 rc = -ENODEV; 8531 goto out_destroy_queue; 8532 } 8533 phba->sli4_hba.nvmet_xri_cnt = rc; 8534 8535 /* We allocate an iocbq for every receive context SGL. 8536 * The additional allocation is for abort and ls handling. 8537 */ 8538 cnt = phba->sli4_hba.nvmet_xri_cnt + 8539 phba->sli4_hba.max_cfg_param.max_xri; 8540 } else { 8541 /* update host common xri-sgl sizes and mappings */ 8542 rc = lpfc_sli4_io_sgl_update(phba); 8543 if (unlikely(rc)) { 8544 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8545 "6082 Failed to update nvme-sgl size " 8546 "and mapping: %d\n", rc); 8547 goto out_destroy_queue; 8548 } 8549 8550 /* register the allocated common sgl pool to the port */ 8551 rc = lpfc_sli4_repost_io_sgl_list(phba); 8552 if (unlikely(rc)) { 8553 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8554 "6116 Error %d during nvme sgl post " 8555 "operation\n", rc); 8556 /* Some NVME buffers were moved to abort nvme list */ 8557 /* A pci function reset will repost them */ 8558 rc = -ENODEV; 8559 goto out_destroy_queue; 8560 } 8561 /* Each lpfc_io_buf job structure has an iocbq element. 8562 * This cnt provides for abort, els, ct and ls requests. 8563 */ 8564 cnt = phba->sli4_hba.max_cfg_param.max_xri; 8565 } 8566 8567 if (!phba->sli.iocbq_lookup) { 8568 /* Initialize and populate the iocb list per host */ 8569 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8570 "2821 initialize iocb list with %d entries\n", 8571 cnt); 8572 rc = lpfc_init_iocb_list(phba, cnt); 8573 if (rc) { 8574 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8575 "1413 Failed to init iocb list.\n"); 8576 goto out_destroy_queue; 8577 } 8578 } 8579 8580 if (phba->nvmet_support) 8581 lpfc_nvmet_create_targetport(phba); 8582 8583 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 8584 /* Post initial buffers to all RQs created */ 8585 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 8586 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 8587 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 8588 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 8589 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 8590 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 8591 rqbp->buffer_count = 0; 8592 8593 lpfc_post_rq_buffer( 8594 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 8595 phba->sli4_hba.nvmet_mrq_data[i], 8596 phba->cfg_nvmet_mrq_post, i); 8597 } 8598 } 8599 8600 /* Post the rpi header region to the device. */ 8601 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 8602 if (unlikely(rc)) { 8603 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8604 "0393 Error %d during rpi post operation\n", 8605 rc); 8606 rc = -ENODEV; 8607 goto out_free_iocblist; 8608 } 8609 lpfc_sli4_node_prep(phba); 8610 8611 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 8612 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 8613 /* 8614 * The FC Port needs to register FCFI (index 0) 8615 */ 8616 lpfc_reg_fcfi(phba, mboxq); 8617 mboxq->vport = phba->pport; 8618 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8619 if (rc != MBX_SUCCESS) 8620 goto out_unset_queue; 8621 rc = 0; 8622 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 8623 &mboxq->u.mqe.un.reg_fcfi); 8624 } else { 8625 /* We are a NVME Target mode with MRQ > 1 */ 8626 8627 /* First register the FCFI */ 8628 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 8629 mboxq->vport = phba->pport; 8630 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8631 if (rc != MBX_SUCCESS) 8632 goto out_unset_queue; 8633 rc = 0; 8634 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 8635 &mboxq->u.mqe.un.reg_fcfi_mrq); 8636 8637 /* Next register the MRQs */ 8638 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 8639 mboxq->vport = phba->pport; 8640 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8641 if (rc != MBX_SUCCESS) 8642 goto out_unset_queue; 8643 rc = 0; 8644 } 8645 /* Check if the port is configured to be disabled */ 8646 lpfc_sli_read_link_ste(phba); 8647 } 8648 8649 /* Don't post more new bufs if repost already recovered 8650 * the nvme sgls. 8651 */ 8652 if (phba->nvmet_support == 0) { 8653 if (phba->sli4_hba.io_xri_cnt == 0) { 8654 len = lpfc_new_io_buf( 8655 phba, phba->sli4_hba.io_xri_max); 8656 if (len == 0) { 8657 rc = -ENOMEM; 8658 goto out_unset_queue; 8659 } 8660 8661 if (phba->cfg_xri_rebalancing) 8662 lpfc_create_multixri_pools(phba); 8663 } 8664 } else { 8665 phba->cfg_xri_rebalancing = 0; 8666 } 8667 8668 /* Allow asynchronous mailbox command to go through */ 8669 spin_lock_irq(&phba->hbalock); 8670 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8671 spin_unlock_irq(&phba->hbalock); 8672 8673 /* Post receive buffers to the device */ 8674 lpfc_sli4_rb_setup(phba); 8675 8676 /* Reset HBA FCF states after HBA reset */ 8677 phba->fcf.fcf_flag = 0; 8678 phba->fcf.current_rec.flag = 0; 8679 8680 /* Start the ELS watchdog timer */ 8681 mod_timer(&vport->els_tmofunc, 8682 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 8683 8684 /* Start heart beat timer */ 8685 mod_timer(&phba->hb_tmofunc, 8686 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 8687 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 8688 phba->last_completion_time = jiffies; 8689 8690 /* start eq_delay heartbeat */ 8691 if (phba->cfg_auto_imax) 8692 queue_delayed_work(phba->wq, &phba->eq_delay_work, 8693 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 8694 8695 /* start per phba idle_stat_delay heartbeat */ 8696 lpfc_init_idle_stat_hb(phba); 8697 8698 /* Start error attention (ERATT) polling timer */ 8699 mod_timer(&phba->eratt_poll, 8700 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 8701 8702 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 8703 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 8704 rc = pci_enable_pcie_error_reporting(phba->pcidev); 8705 if (!rc) { 8706 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8707 "2829 This device supports " 8708 "Advanced Error Reporting (AER)\n"); 8709 spin_lock_irq(&phba->hbalock); 8710 phba->hba_flag |= HBA_AER_ENABLED; 8711 spin_unlock_irq(&phba->hbalock); 8712 } else { 8713 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8714 "2830 This device does not support " 8715 "Advanced Error Reporting (AER)\n"); 8716 phba->cfg_aer_support = 0; 8717 } 8718 rc = 0; 8719 } 8720 8721 /* 8722 * The port is ready, set the host's link state to LINK_DOWN 8723 * in preparation for link interrupts. 8724 */ 8725 spin_lock_irq(&phba->hbalock); 8726 phba->link_state = LPFC_LINK_DOWN; 8727 8728 /* Check if physical ports are trunked */ 8729 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 8730 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 8731 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 8732 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 8733 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 8734 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 8735 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 8736 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 8737 spin_unlock_irq(&phba->hbalock); 8738 8739 /* Arm the CQs and then EQs on device */ 8740 lpfc_sli4_arm_cqeq_intr(phba); 8741 8742 /* Indicate device interrupt mode */ 8743 phba->sli4_hba.intr_enable = 1; 8744 8745 /* Setup CMF after HBA is initialized */ 8746 lpfc_cmf_setup(phba); 8747 8748 if (!(phba->hba_flag & HBA_FCOE_MODE) && 8749 (phba->hba_flag & LINK_DISABLED)) { 8750 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8751 "3103 Adapter Link is disabled.\n"); 8752 lpfc_down_link(phba, mboxq); 8753 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8754 if (rc != MBX_SUCCESS) { 8755 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8756 "3104 Adapter failed to issue " 8757 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 8758 goto out_io_buff_free; 8759 } 8760 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 8761 /* don't perform init_link on SLI4 FC port loopback test */ 8762 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 8763 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 8764 if (rc) 8765 goto out_io_buff_free; 8766 } 8767 } 8768 mempool_free(mboxq, phba->mbox_mem_pool); 8769 8770 phba->hba_flag |= HBA_SETUP; 8771 return rc; 8772 8773 out_io_buff_free: 8774 /* Free allocated IO Buffers */ 8775 lpfc_io_free(phba); 8776 out_unset_queue: 8777 /* Unset all the queues set up in this routine when error out */ 8778 lpfc_sli4_queue_unset(phba); 8779 out_free_iocblist: 8780 lpfc_free_iocb_list(phba); 8781 out_destroy_queue: 8782 lpfc_sli4_queue_destroy(phba); 8783 out_stop_timers: 8784 lpfc_stop_hba_timers(phba); 8785 out_free_mbox: 8786 mempool_free(mboxq, phba->mbox_mem_pool); 8787 return rc; 8788 } 8789 8790 /** 8791 * lpfc_mbox_timeout - Timeout call back function for mbox timer 8792 * @t: Context to fetch pointer to hba structure from. 8793 * 8794 * This is the callback function for mailbox timer. The mailbox 8795 * timer is armed when a new mailbox command is issued and the timer 8796 * is deleted when the mailbox complete. The function is called by 8797 * the kernel timer code when a mailbox does not complete within 8798 * expected time. This function wakes up the worker thread to 8799 * process the mailbox timeout and returns. All the processing is 8800 * done by the worker thread function lpfc_mbox_timeout_handler. 8801 **/ 8802 void 8803 lpfc_mbox_timeout(struct timer_list *t) 8804 { 8805 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 8806 unsigned long iflag; 8807 uint32_t tmo_posted; 8808 8809 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 8810 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 8811 if (!tmo_posted) 8812 phba->pport->work_port_events |= WORKER_MBOX_TMO; 8813 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 8814 8815 if (!tmo_posted) 8816 lpfc_worker_wake_up(phba); 8817 return; 8818 } 8819 8820 /** 8821 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 8822 * are pending 8823 * @phba: Pointer to HBA context object. 8824 * 8825 * This function checks if any mailbox completions are present on the mailbox 8826 * completion queue. 8827 **/ 8828 static bool 8829 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 8830 { 8831 8832 uint32_t idx; 8833 struct lpfc_queue *mcq; 8834 struct lpfc_mcqe *mcqe; 8835 bool pending_completions = false; 8836 uint8_t qe_valid; 8837 8838 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8839 return false; 8840 8841 /* Check for completions on mailbox completion queue */ 8842 8843 mcq = phba->sli4_hba.mbx_cq; 8844 idx = mcq->hba_index; 8845 qe_valid = mcq->qe_valid; 8846 while (bf_get_le32(lpfc_cqe_valid, 8847 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 8848 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 8849 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 8850 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 8851 pending_completions = true; 8852 break; 8853 } 8854 idx = (idx + 1) % mcq->entry_count; 8855 if (mcq->hba_index == idx) 8856 break; 8857 8858 /* if the index wrapped around, toggle the valid bit */ 8859 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 8860 qe_valid = (qe_valid) ? 0 : 1; 8861 } 8862 return pending_completions; 8863 8864 } 8865 8866 /** 8867 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 8868 * that were missed. 8869 * @phba: Pointer to HBA context object. 8870 * 8871 * For sli4, it is possible to miss an interrupt. As such mbox completions 8872 * maybe missed causing erroneous mailbox timeouts to occur. This function 8873 * checks to see if mbox completions are on the mailbox completion queue 8874 * and will process all the completions associated with the eq for the 8875 * mailbox completion queue. 8876 **/ 8877 static bool 8878 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 8879 { 8880 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 8881 uint32_t eqidx; 8882 struct lpfc_queue *fpeq = NULL; 8883 struct lpfc_queue *eq; 8884 bool mbox_pending; 8885 8886 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8887 return false; 8888 8889 /* Find the EQ associated with the mbox CQ */ 8890 if (sli4_hba->hdwq) { 8891 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 8892 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 8893 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 8894 fpeq = eq; 8895 break; 8896 } 8897 } 8898 } 8899 if (!fpeq) 8900 return false; 8901 8902 /* Turn off interrupts from this EQ */ 8903 8904 sli4_hba->sli4_eq_clr_intr(fpeq); 8905 8906 /* Check to see if a mbox completion is pending */ 8907 8908 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 8909 8910 /* 8911 * If a mbox completion is pending, process all the events on EQ 8912 * associated with the mbox completion queue (this could include 8913 * mailbox commands, async events, els commands, receive queue data 8914 * and fcp commands) 8915 */ 8916 8917 if (mbox_pending) 8918 /* process and rearm the EQ */ 8919 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 8920 else 8921 /* Always clear and re-arm the EQ */ 8922 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 8923 8924 return mbox_pending; 8925 8926 } 8927 8928 /** 8929 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 8930 * @phba: Pointer to HBA context object. 8931 * 8932 * This function is called from worker thread when a mailbox command times out. 8933 * The caller is not required to hold any locks. This function will reset the 8934 * HBA and recover all the pending commands. 8935 **/ 8936 void 8937 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 8938 { 8939 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 8940 MAILBOX_t *mb = NULL; 8941 8942 struct lpfc_sli *psli = &phba->sli; 8943 8944 /* If the mailbox completed, process the completion */ 8945 lpfc_sli4_process_missed_mbox_completions(phba); 8946 8947 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 8948 return; 8949 8950 if (pmbox != NULL) 8951 mb = &pmbox->u.mb; 8952 /* Check the pmbox pointer first. There is a race condition 8953 * between the mbox timeout handler getting executed in the 8954 * worklist and the mailbox actually completing. When this 8955 * race condition occurs, the mbox_active will be NULL. 8956 */ 8957 spin_lock_irq(&phba->hbalock); 8958 if (pmbox == NULL) { 8959 lpfc_printf_log(phba, KERN_WARNING, 8960 LOG_MBOX | LOG_SLI, 8961 "0353 Active Mailbox cleared - mailbox timeout " 8962 "exiting\n"); 8963 spin_unlock_irq(&phba->hbalock); 8964 return; 8965 } 8966 8967 /* Mbox cmd <mbxCommand> timeout */ 8968 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8969 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 8970 mb->mbxCommand, 8971 phba->pport->port_state, 8972 phba->sli.sli_flag, 8973 phba->sli.mbox_active); 8974 spin_unlock_irq(&phba->hbalock); 8975 8976 /* Setting state unknown so lpfc_sli_abort_iocb_ring 8977 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 8978 * it to fail all outstanding SCSI IO. 8979 */ 8980 spin_lock_irq(&phba->pport->work_port_lock); 8981 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 8982 spin_unlock_irq(&phba->pport->work_port_lock); 8983 spin_lock_irq(&phba->hbalock); 8984 phba->link_state = LPFC_LINK_UNKNOWN; 8985 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 8986 spin_unlock_irq(&phba->hbalock); 8987 8988 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8989 "0345 Resetting board due to mailbox timeout\n"); 8990 8991 /* Reset the HBA device */ 8992 lpfc_reset_hba(phba); 8993 } 8994 8995 /** 8996 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 8997 * @phba: Pointer to HBA context object. 8998 * @pmbox: Pointer to mailbox object. 8999 * @flag: Flag indicating how the mailbox need to be processed. 9000 * 9001 * This function is called by discovery code and HBA management code 9002 * to submit a mailbox command to firmware with SLI-3 interface spec. This 9003 * function gets the hbalock to protect the data structures. 9004 * The mailbox command can be submitted in polling mode, in which case 9005 * this function will wait in a polling loop for the completion of the 9006 * mailbox. 9007 * If the mailbox is submitted in no_wait mode (not polling) the 9008 * function will submit the command and returns immediately without waiting 9009 * for the mailbox completion. The no_wait is supported only when HBA 9010 * is in SLI2/SLI3 mode - interrupts are enabled. 9011 * The SLI interface allows only one mailbox pending at a time. If the 9012 * mailbox is issued in polling mode and there is already a mailbox 9013 * pending, then the function will return an error. If the mailbox is issued 9014 * in NO_WAIT mode and there is a mailbox pending already, the function 9015 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 9016 * The sli layer owns the mailbox object until the completion of mailbox 9017 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 9018 * return codes the caller owns the mailbox command after the return of 9019 * the function. 9020 **/ 9021 static int 9022 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 9023 uint32_t flag) 9024 { 9025 MAILBOX_t *mbx; 9026 struct lpfc_sli *psli = &phba->sli; 9027 uint32_t status, evtctr; 9028 uint32_t ha_copy, hc_copy; 9029 int i; 9030 unsigned long timeout; 9031 unsigned long drvr_flag = 0; 9032 uint32_t word0, ldata; 9033 void __iomem *to_slim; 9034 int processing_queue = 0; 9035 9036 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9037 if (!pmbox) { 9038 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9039 /* processing mbox queue from intr_handler */ 9040 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9041 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9042 return MBX_SUCCESS; 9043 } 9044 processing_queue = 1; 9045 pmbox = lpfc_mbox_get(phba); 9046 if (!pmbox) { 9047 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9048 return MBX_SUCCESS; 9049 } 9050 } 9051 9052 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 9053 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 9054 if(!pmbox->vport) { 9055 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9056 lpfc_printf_log(phba, KERN_ERR, 9057 LOG_MBOX | LOG_VPORT, 9058 "1806 Mbox x%x failed. No vport\n", 9059 pmbox->u.mb.mbxCommand); 9060 dump_stack(); 9061 goto out_not_finished; 9062 } 9063 } 9064 9065 /* If the PCI channel is in offline state, do not post mbox. */ 9066 if (unlikely(pci_channel_offline(phba->pcidev))) { 9067 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9068 goto out_not_finished; 9069 } 9070 9071 /* If HBA has a deferred error attention, fail the iocb. */ 9072 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 9073 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9074 goto out_not_finished; 9075 } 9076 9077 psli = &phba->sli; 9078 9079 mbx = &pmbox->u.mb; 9080 status = MBX_SUCCESS; 9081 9082 if (phba->link_state == LPFC_HBA_ERROR) { 9083 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9084 9085 /* Mbox command <mbxCommand> cannot issue */ 9086 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9087 "(%d):0311 Mailbox command x%x cannot " 9088 "issue Data: x%x x%x\n", 9089 pmbox->vport ? pmbox->vport->vpi : 0, 9090 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9091 goto out_not_finished; 9092 } 9093 9094 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 9095 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 9096 !(hc_copy & HC_MBINT_ENA)) { 9097 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9098 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9099 "(%d):2528 Mailbox command x%x cannot " 9100 "issue Data: x%x x%x\n", 9101 pmbox->vport ? pmbox->vport->vpi : 0, 9102 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9103 goto out_not_finished; 9104 } 9105 } 9106 9107 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9108 /* Polling for a mbox command when another one is already active 9109 * is not allowed in SLI. Also, the driver must have established 9110 * SLI2 mode to queue and process multiple mbox commands. 9111 */ 9112 9113 if (flag & MBX_POLL) { 9114 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9115 9116 /* Mbox command <mbxCommand> cannot issue */ 9117 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9118 "(%d):2529 Mailbox command x%x " 9119 "cannot issue Data: x%x x%x\n", 9120 pmbox->vport ? pmbox->vport->vpi : 0, 9121 pmbox->u.mb.mbxCommand, 9122 psli->sli_flag, flag); 9123 goto out_not_finished; 9124 } 9125 9126 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 9127 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9128 /* Mbox command <mbxCommand> cannot issue */ 9129 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9130 "(%d):2530 Mailbox command x%x " 9131 "cannot issue Data: x%x x%x\n", 9132 pmbox->vport ? pmbox->vport->vpi : 0, 9133 pmbox->u.mb.mbxCommand, 9134 psli->sli_flag, flag); 9135 goto out_not_finished; 9136 } 9137 9138 /* Another mailbox command is still being processed, queue this 9139 * command to be processed later. 9140 */ 9141 lpfc_mbox_put(phba, pmbox); 9142 9143 /* Mbox cmd issue - BUSY */ 9144 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9145 "(%d):0308 Mbox cmd issue - BUSY Data: " 9146 "x%x x%x x%x x%x\n", 9147 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 9148 mbx->mbxCommand, 9149 phba->pport ? phba->pport->port_state : 0xff, 9150 psli->sli_flag, flag); 9151 9152 psli->slistat.mbox_busy++; 9153 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9154 9155 if (pmbox->vport) { 9156 lpfc_debugfs_disc_trc(pmbox->vport, 9157 LPFC_DISC_TRC_MBOX_VPORT, 9158 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 9159 (uint32_t)mbx->mbxCommand, 9160 mbx->un.varWords[0], mbx->un.varWords[1]); 9161 } 9162 else { 9163 lpfc_debugfs_disc_trc(phba->pport, 9164 LPFC_DISC_TRC_MBOX, 9165 "MBOX Bsy: cmd:x%x mb:x%x x%x", 9166 (uint32_t)mbx->mbxCommand, 9167 mbx->un.varWords[0], mbx->un.varWords[1]); 9168 } 9169 9170 return MBX_BUSY; 9171 } 9172 9173 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9174 9175 /* If we are not polling, we MUST be in SLI2 mode */ 9176 if (flag != MBX_POLL) { 9177 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 9178 (mbx->mbxCommand != MBX_KILL_BOARD)) { 9179 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9180 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9181 /* Mbox command <mbxCommand> cannot issue */ 9182 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9183 "(%d):2531 Mailbox command x%x " 9184 "cannot issue Data: x%x x%x\n", 9185 pmbox->vport ? pmbox->vport->vpi : 0, 9186 pmbox->u.mb.mbxCommand, 9187 psli->sli_flag, flag); 9188 goto out_not_finished; 9189 } 9190 /* timeout active mbox command */ 9191 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9192 1000); 9193 mod_timer(&psli->mbox_tmo, jiffies + timeout); 9194 } 9195 9196 /* Mailbox cmd <cmd> issue */ 9197 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9198 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 9199 "x%x\n", 9200 pmbox->vport ? pmbox->vport->vpi : 0, 9201 mbx->mbxCommand, 9202 phba->pport ? phba->pport->port_state : 0xff, 9203 psli->sli_flag, flag); 9204 9205 if (mbx->mbxCommand != MBX_HEARTBEAT) { 9206 if (pmbox->vport) { 9207 lpfc_debugfs_disc_trc(pmbox->vport, 9208 LPFC_DISC_TRC_MBOX_VPORT, 9209 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9210 (uint32_t)mbx->mbxCommand, 9211 mbx->un.varWords[0], mbx->un.varWords[1]); 9212 } 9213 else { 9214 lpfc_debugfs_disc_trc(phba->pport, 9215 LPFC_DISC_TRC_MBOX, 9216 "MBOX Send: cmd:x%x mb:x%x x%x", 9217 (uint32_t)mbx->mbxCommand, 9218 mbx->un.varWords[0], mbx->un.varWords[1]); 9219 } 9220 } 9221 9222 psli->slistat.mbox_cmd++; 9223 evtctr = psli->slistat.mbox_event; 9224 9225 /* next set own bit for the adapter and copy over command word */ 9226 mbx->mbxOwner = OWN_CHIP; 9227 9228 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9229 /* Populate mbox extension offset word. */ 9230 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 9231 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9232 = (uint8_t *)phba->mbox_ext 9233 - (uint8_t *)phba->mbox; 9234 } 9235 9236 /* Copy the mailbox extension data */ 9237 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 9238 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 9239 (uint8_t *)phba->mbox_ext, 9240 pmbox->in_ext_byte_len); 9241 } 9242 /* Copy command data to host SLIM area */ 9243 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 9244 } else { 9245 /* Populate mbox extension offset word. */ 9246 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 9247 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9248 = MAILBOX_HBA_EXT_OFFSET; 9249 9250 /* Copy the mailbox extension data */ 9251 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 9252 lpfc_memcpy_to_slim(phba->MBslimaddr + 9253 MAILBOX_HBA_EXT_OFFSET, 9254 pmbox->ctx_buf, pmbox->in_ext_byte_len); 9255 9256 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9257 /* copy command data into host mbox for cmpl */ 9258 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 9259 MAILBOX_CMD_SIZE); 9260 9261 /* First copy mbox command data to HBA SLIM, skip past first 9262 word */ 9263 to_slim = phba->MBslimaddr + sizeof (uint32_t); 9264 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 9265 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 9266 9267 /* Next copy over first word, with mbxOwner set */ 9268 ldata = *((uint32_t *)mbx); 9269 to_slim = phba->MBslimaddr; 9270 writel(ldata, to_slim); 9271 readl(to_slim); /* flush */ 9272 9273 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9274 /* switch over to host mailbox */ 9275 psli->sli_flag |= LPFC_SLI_ACTIVE; 9276 } 9277 9278 wmb(); 9279 9280 switch (flag) { 9281 case MBX_NOWAIT: 9282 /* Set up reference to mailbox command */ 9283 psli->mbox_active = pmbox; 9284 /* Interrupt board to do it */ 9285 writel(CA_MBATT, phba->CAregaddr); 9286 readl(phba->CAregaddr); /* flush */ 9287 /* Don't wait for it to finish, just return */ 9288 break; 9289 9290 case MBX_POLL: 9291 /* Set up null reference to mailbox command */ 9292 psli->mbox_active = NULL; 9293 /* Interrupt board to do it */ 9294 writel(CA_MBATT, phba->CAregaddr); 9295 readl(phba->CAregaddr); /* flush */ 9296 9297 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9298 /* First read mbox status word */ 9299 word0 = *((uint32_t *)phba->mbox); 9300 word0 = le32_to_cpu(word0); 9301 } else { 9302 /* First read mbox status word */ 9303 if (lpfc_readl(phba->MBslimaddr, &word0)) { 9304 spin_unlock_irqrestore(&phba->hbalock, 9305 drvr_flag); 9306 goto out_not_finished; 9307 } 9308 } 9309 9310 /* Read the HBA Host Attention Register */ 9311 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9312 spin_unlock_irqrestore(&phba->hbalock, 9313 drvr_flag); 9314 goto out_not_finished; 9315 } 9316 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9317 1000) + jiffies; 9318 i = 0; 9319 /* Wait for command to complete */ 9320 while (((word0 & OWN_CHIP) == OWN_CHIP) || 9321 (!(ha_copy & HA_MBATT) && 9322 (phba->link_state > LPFC_WARM_START))) { 9323 if (time_after(jiffies, timeout)) { 9324 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9325 spin_unlock_irqrestore(&phba->hbalock, 9326 drvr_flag); 9327 goto out_not_finished; 9328 } 9329 9330 /* Check if we took a mbox interrupt while we were 9331 polling */ 9332 if (((word0 & OWN_CHIP) != OWN_CHIP) 9333 && (evtctr != psli->slistat.mbox_event)) 9334 break; 9335 9336 if (i++ > 10) { 9337 spin_unlock_irqrestore(&phba->hbalock, 9338 drvr_flag); 9339 msleep(1); 9340 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9341 } 9342 9343 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9344 /* First copy command data */ 9345 word0 = *((uint32_t *)phba->mbox); 9346 word0 = le32_to_cpu(word0); 9347 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 9348 MAILBOX_t *slimmb; 9349 uint32_t slimword0; 9350 /* Check real SLIM for any errors */ 9351 slimword0 = readl(phba->MBslimaddr); 9352 slimmb = (MAILBOX_t *) & slimword0; 9353 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 9354 && slimmb->mbxStatus) { 9355 psli->sli_flag &= 9356 ~LPFC_SLI_ACTIVE; 9357 word0 = slimword0; 9358 } 9359 } 9360 } else { 9361 /* First copy command data */ 9362 word0 = readl(phba->MBslimaddr); 9363 } 9364 /* Read the HBA Host Attention Register */ 9365 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9366 spin_unlock_irqrestore(&phba->hbalock, 9367 drvr_flag); 9368 goto out_not_finished; 9369 } 9370 } 9371 9372 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9373 /* copy results back to user */ 9374 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 9375 MAILBOX_CMD_SIZE); 9376 /* Copy the mailbox extension data */ 9377 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9378 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 9379 pmbox->ctx_buf, 9380 pmbox->out_ext_byte_len); 9381 } 9382 } else { 9383 /* First copy command data */ 9384 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 9385 MAILBOX_CMD_SIZE); 9386 /* Copy the mailbox extension data */ 9387 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9388 lpfc_memcpy_from_slim( 9389 pmbox->ctx_buf, 9390 phba->MBslimaddr + 9391 MAILBOX_HBA_EXT_OFFSET, 9392 pmbox->out_ext_byte_len); 9393 } 9394 } 9395 9396 writel(HA_MBATT, phba->HAregaddr); 9397 readl(phba->HAregaddr); /* flush */ 9398 9399 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9400 status = mbx->mbxStatus; 9401 } 9402 9403 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9404 return status; 9405 9406 out_not_finished: 9407 if (processing_queue) { 9408 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 9409 lpfc_mbox_cmpl_put(phba, pmbox); 9410 } 9411 return MBX_NOT_FINISHED; 9412 } 9413 9414 /** 9415 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 9416 * @phba: Pointer to HBA context object. 9417 * 9418 * The function blocks the posting of SLI4 asynchronous mailbox commands from 9419 * the driver internal pending mailbox queue. It will then try to wait out the 9420 * possible outstanding mailbox command before return. 9421 * 9422 * Returns: 9423 * 0 - the outstanding mailbox command completed; otherwise, the wait for 9424 * the outstanding mailbox command timed out. 9425 **/ 9426 static int 9427 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 9428 { 9429 struct lpfc_sli *psli = &phba->sli; 9430 LPFC_MBOXQ_t *mboxq; 9431 int rc = 0; 9432 unsigned long timeout = 0; 9433 u32 sli_flag; 9434 u8 cmd, subsys, opcode; 9435 9436 /* Mark the asynchronous mailbox command posting as blocked */ 9437 spin_lock_irq(&phba->hbalock); 9438 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 9439 /* Determine how long we might wait for the active mailbox 9440 * command to be gracefully completed by firmware. 9441 */ 9442 if (phba->sli.mbox_active) 9443 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 9444 phba->sli.mbox_active) * 9445 1000) + jiffies; 9446 spin_unlock_irq(&phba->hbalock); 9447 9448 /* Make sure the mailbox is really active */ 9449 if (timeout) 9450 lpfc_sli4_process_missed_mbox_completions(phba); 9451 9452 /* Wait for the outstanding mailbox command to complete */ 9453 while (phba->sli.mbox_active) { 9454 /* Check active mailbox complete status every 2ms */ 9455 msleep(2); 9456 if (time_after(jiffies, timeout)) { 9457 /* Timeout, mark the outstanding cmd not complete */ 9458 9459 /* Sanity check sli.mbox_active has not completed or 9460 * cancelled from another context during last 2ms sleep, 9461 * so take hbalock to be sure before logging. 9462 */ 9463 spin_lock_irq(&phba->hbalock); 9464 if (phba->sli.mbox_active) { 9465 mboxq = phba->sli.mbox_active; 9466 cmd = mboxq->u.mb.mbxCommand; 9467 subsys = lpfc_sli_config_mbox_subsys_get(phba, 9468 mboxq); 9469 opcode = lpfc_sli_config_mbox_opcode_get(phba, 9470 mboxq); 9471 sli_flag = psli->sli_flag; 9472 spin_unlock_irq(&phba->hbalock); 9473 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9474 "2352 Mailbox command x%x " 9475 "(x%x/x%x) sli_flag x%x could " 9476 "not complete\n", 9477 cmd, subsys, opcode, 9478 sli_flag); 9479 } else { 9480 spin_unlock_irq(&phba->hbalock); 9481 } 9482 9483 rc = 1; 9484 break; 9485 } 9486 } 9487 9488 /* Can not cleanly block async mailbox command, fails it */ 9489 if (rc) { 9490 spin_lock_irq(&phba->hbalock); 9491 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9492 spin_unlock_irq(&phba->hbalock); 9493 } 9494 return rc; 9495 } 9496 9497 /** 9498 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 9499 * @phba: Pointer to HBA context object. 9500 * 9501 * The function unblocks and resume posting of SLI4 asynchronous mailbox 9502 * commands from the driver internal pending mailbox queue. It makes sure 9503 * that there is no outstanding mailbox command before resuming posting 9504 * asynchronous mailbox commands. If, for any reason, there is outstanding 9505 * mailbox command, it will try to wait it out before resuming asynchronous 9506 * mailbox command posting. 9507 **/ 9508 static void 9509 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 9510 { 9511 struct lpfc_sli *psli = &phba->sli; 9512 9513 spin_lock_irq(&phba->hbalock); 9514 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9515 /* Asynchronous mailbox posting is not blocked, do nothing */ 9516 spin_unlock_irq(&phba->hbalock); 9517 return; 9518 } 9519 9520 /* Outstanding synchronous mailbox command is guaranteed to be done, 9521 * successful or timeout, after timing-out the outstanding mailbox 9522 * command shall always be removed, so just unblock posting async 9523 * mailbox command and resume 9524 */ 9525 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9526 spin_unlock_irq(&phba->hbalock); 9527 9528 /* wake up worker thread to post asynchronous mailbox command */ 9529 lpfc_worker_wake_up(phba); 9530 } 9531 9532 /** 9533 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 9534 * @phba: Pointer to HBA context object. 9535 * @mboxq: Pointer to mailbox object. 9536 * 9537 * The function waits for the bootstrap mailbox register ready bit from 9538 * port for twice the regular mailbox command timeout value. 9539 * 9540 * 0 - no timeout on waiting for bootstrap mailbox register ready. 9541 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 9542 **/ 9543 static int 9544 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9545 { 9546 uint32_t db_ready; 9547 unsigned long timeout; 9548 struct lpfc_register bmbx_reg; 9549 9550 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 9551 * 1000) + jiffies; 9552 9553 do { 9554 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 9555 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 9556 if (!db_ready) 9557 mdelay(2); 9558 9559 if (time_after(jiffies, timeout)) 9560 return MBXERR_ERROR; 9561 } while (!db_ready); 9562 9563 return 0; 9564 } 9565 9566 /** 9567 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 9568 * @phba: Pointer to HBA context object. 9569 * @mboxq: Pointer to mailbox object. 9570 * 9571 * The function posts a mailbox to the port. The mailbox is expected 9572 * to be comletely filled in and ready for the port to operate on it. 9573 * This routine executes a synchronous completion operation on the 9574 * mailbox by polling for its completion. 9575 * 9576 * The caller must not be holding any locks when calling this routine. 9577 * 9578 * Returns: 9579 * MBX_SUCCESS - mailbox posted successfully 9580 * Any of the MBX error values. 9581 **/ 9582 static int 9583 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9584 { 9585 int rc = MBX_SUCCESS; 9586 unsigned long iflag; 9587 uint32_t mcqe_status; 9588 uint32_t mbx_cmnd; 9589 struct lpfc_sli *psli = &phba->sli; 9590 struct lpfc_mqe *mb = &mboxq->u.mqe; 9591 struct lpfc_bmbx_create *mbox_rgn; 9592 struct dma_address *dma_address; 9593 9594 /* 9595 * Only one mailbox can be active to the bootstrap mailbox region 9596 * at a time and there is no queueing provided. 9597 */ 9598 spin_lock_irqsave(&phba->hbalock, iflag); 9599 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9600 spin_unlock_irqrestore(&phba->hbalock, iflag); 9601 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9602 "(%d):2532 Mailbox command x%x (x%x/x%x) " 9603 "cannot issue Data: x%x x%x\n", 9604 mboxq->vport ? mboxq->vport->vpi : 0, 9605 mboxq->u.mb.mbxCommand, 9606 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9607 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9608 psli->sli_flag, MBX_POLL); 9609 return MBXERR_ERROR; 9610 } 9611 /* The server grabs the token and owns it until release */ 9612 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9613 phba->sli.mbox_active = mboxq; 9614 spin_unlock_irqrestore(&phba->hbalock, iflag); 9615 9616 /* wait for bootstrap mbox register for readyness */ 9617 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9618 if (rc) 9619 goto exit; 9620 /* 9621 * Initialize the bootstrap memory region to avoid stale data areas 9622 * in the mailbox post. Then copy the caller's mailbox contents to 9623 * the bmbx mailbox region. 9624 */ 9625 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 9626 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 9627 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 9628 sizeof(struct lpfc_mqe)); 9629 9630 /* Post the high mailbox dma address to the port and wait for ready. */ 9631 dma_address = &phba->sli4_hba.bmbx.dma_address; 9632 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 9633 9634 /* wait for bootstrap mbox register for hi-address write done */ 9635 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9636 if (rc) 9637 goto exit; 9638 9639 /* Post the low mailbox dma address to the port. */ 9640 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 9641 9642 /* wait for bootstrap mbox register for low address write done */ 9643 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9644 if (rc) 9645 goto exit; 9646 9647 /* 9648 * Read the CQ to ensure the mailbox has completed. 9649 * If so, update the mailbox status so that the upper layers 9650 * can complete the request normally. 9651 */ 9652 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 9653 sizeof(struct lpfc_mqe)); 9654 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 9655 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 9656 sizeof(struct lpfc_mcqe)); 9657 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 9658 /* 9659 * When the CQE status indicates a failure and the mailbox status 9660 * indicates success then copy the CQE status into the mailbox status 9661 * (and prefix it with x4000). 9662 */ 9663 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 9664 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 9665 bf_set(lpfc_mqe_status, mb, 9666 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 9667 rc = MBXERR_ERROR; 9668 } else 9669 lpfc_sli4_swap_str(phba, mboxq); 9670 9671 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9672 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 9673 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 9674 " x%x x%x CQ: x%x x%x x%x x%x\n", 9675 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9676 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9677 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9678 bf_get(lpfc_mqe_status, mb), 9679 mb->un.mb_words[0], mb->un.mb_words[1], 9680 mb->un.mb_words[2], mb->un.mb_words[3], 9681 mb->un.mb_words[4], mb->un.mb_words[5], 9682 mb->un.mb_words[6], mb->un.mb_words[7], 9683 mb->un.mb_words[8], mb->un.mb_words[9], 9684 mb->un.mb_words[10], mb->un.mb_words[11], 9685 mb->un.mb_words[12], mboxq->mcqe.word0, 9686 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 9687 mboxq->mcqe.trailer); 9688 exit: 9689 /* We are holding the token, no needed for lock when release */ 9690 spin_lock_irqsave(&phba->hbalock, iflag); 9691 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9692 phba->sli.mbox_active = NULL; 9693 spin_unlock_irqrestore(&phba->hbalock, iflag); 9694 return rc; 9695 } 9696 9697 /** 9698 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 9699 * @phba: Pointer to HBA context object. 9700 * @mboxq: Pointer to mailbox object. 9701 * @flag: Flag indicating how the mailbox need to be processed. 9702 * 9703 * This function is called by discovery code and HBA management code to submit 9704 * a mailbox command to firmware with SLI-4 interface spec. 9705 * 9706 * Return codes the caller owns the mailbox command after the return of the 9707 * function. 9708 **/ 9709 static int 9710 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 9711 uint32_t flag) 9712 { 9713 struct lpfc_sli *psli = &phba->sli; 9714 unsigned long iflags; 9715 int rc; 9716 9717 /* dump from issue mailbox command if setup */ 9718 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 9719 9720 rc = lpfc_mbox_dev_check(phba); 9721 if (unlikely(rc)) { 9722 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9723 "(%d):2544 Mailbox command x%x (x%x/x%x) " 9724 "cannot issue Data: x%x x%x\n", 9725 mboxq->vport ? mboxq->vport->vpi : 0, 9726 mboxq->u.mb.mbxCommand, 9727 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9728 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9729 psli->sli_flag, flag); 9730 goto out_not_finished; 9731 } 9732 9733 /* Detect polling mode and jump to a handler */ 9734 if (!phba->sli4_hba.intr_enable) { 9735 if (flag == MBX_POLL) 9736 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9737 else 9738 rc = -EIO; 9739 if (rc != MBX_SUCCESS) 9740 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9741 "(%d):2541 Mailbox command x%x " 9742 "(x%x/x%x) failure: " 9743 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9744 "Data: x%x x%x\n", 9745 mboxq->vport ? mboxq->vport->vpi : 0, 9746 mboxq->u.mb.mbxCommand, 9747 lpfc_sli_config_mbox_subsys_get(phba, 9748 mboxq), 9749 lpfc_sli_config_mbox_opcode_get(phba, 9750 mboxq), 9751 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9752 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9753 bf_get(lpfc_mcqe_ext_status, 9754 &mboxq->mcqe), 9755 psli->sli_flag, flag); 9756 return rc; 9757 } else if (flag == MBX_POLL) { 9758 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9759 "(%d):2542 Try to issue mailbox command " 9760 "x%x (x%x/x%x) synchronously ahead of async " 9761 "mailbox command queue: x%x x%x\n", 9762 mboxq->vport ? mboxq->vport->vpi : 0, 9763 mboxq->u.mb.mbxCommand, 9764 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9765 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9766 psli->sli_flag, flag); 9767 /* Try to block the asynchronous mailbox posting */ 9768 rc = lpfc_sli4_async_mbox_block(phba); 9769 if (!rc) { 9770 /* Successfully blocked, now issue sync mbox cmd */ 9771 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9772 if (rc != MBX_SUCCESS) 9773 lpfc_printf_log(phba, KERN_WARNING, 9774 LOG_MBOX | LOG_SLI, 9775 "(%d):2597 Sync Mailbox command " 9776 "x%x (x%x/x%x) failure: " 9777 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9778 "Data: x%x x%x\n", 9779 mboxq->vport ? mboxq->vport->vpi : 0, 9780 mboxq->u.mb.mbxCommand, 9781 lpfc_sli_config_mbox_subsys_get(phba, 9782 mboxq), 9783 lpfc_sli_config_mbox_opcode_get(phba, 9784 mboxq), 9785 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9786 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9787 bf_get(lpfc_mcqe_ext_status, 9788 &mboxq->mcqe), 9789 psli->sli_flag, flag); 9790 /* Unblock the async mailbox posting afterward */ 9791 lpfc_sli4_async_mbox_unblock(phba); 9792 } 9793 return rc; 9794 } 9795 9796 /* Now, interrupt mode asynchronous mailbox command */ 9797 rc = lpfc_mbox_cmd_check(phba, mboxq); 9798 if (rc) { 9799 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9800 "(%d):2543 Mailbox command x%x (x%x/x%x) " 9801 "cannot issue Data: x%x x%x\n", 9802 mboxq->vport ? mboxq->vport->vpi : 0, 9803 mboxq->u.mb.mbxCommand, 9804 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9805 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9806 psli->sli_flag, flag); 9807 goto out_not_finished; 9808 } 9809 9810 /* Put the mailbox command to the driver internal FIFO */ 9811 psli->slistat.mbox_busy++; 9812 spin_lock_irqsave(&phba->hbalock, iflags); 9813 lpfc_mbox_put(phba, mboxq); 9814 spin_unlock_irqrestore(&phba->hbalock, iflags); 9815 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9816 "(%d):0354 Mbox cmd issue - Enqueue Data: " 9817 "x%x (x%x/x%x) x%x x%x x%x\n", 9818 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 9819 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 9820 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9821 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9822 phba->pport->port_state, 9823 psli->sli_flag, MBX_NOWAIT); 9824 /* Wake up worker thread to transport mailbox command from head */ 9825 lpfc_worker_wake_up(phba); 9826 9827 return MBX_BUSY; 9828 9829 out_not_finished: 9830 return MBX_NOT_FINISHED; 9831 } 9832 9833 /** 9834 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 9835 * @phba: Pointer to HBA context object. 9836 * 9837 * This function is called by worker thread to send a mailbox command to 9838 * SLI4 HBA firmware. 9839 * 9840 **/ 9841 int 9842 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 9843 { 9844 struct lpfc_sli *psli = &phba->sli; 9845 LPFC_MBOXQ_t *mboxq; 9846 int rc = MBX_SUCCESS; 9847 unsigned long iflags; 9848 struct lpfc_mqe *mqe; 9849 uint32_t mbx_cmnd; 9850 9851 /* Check interrupt mode before post async mailbox command */ 9852 if (unlikely(!phba->sli4_hba.intr_enable)) 9853 return MBX_NOT_FINISHED; 9854 9855 /* Check for mailbox command service token */ 9856 spin_lock_irqsave(&phba->hbalock, iflags); 9857 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9858 spin_unlock_irqrestore(&phba->hbalock, iflags); 9859 return MBX_NOT_FINISHED; 9860 } 9861 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9862 spin_unlock_irqrestore(&phba->hbalock, iflags); 9863 return MBX_NOT_FINISHED; 9864 } 9865 if (unlikely(phba->sli.mbox_active)) { 9866 spin_unlock_irqrestore(&phba->hbalock, iflags); 9867 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9868 "0384 There is pending active mailbox cmd\n"); 9869 return MBX_NOT_FINISHED; 9870 } 9871 /* Take the mailbox command service token */ 9872 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9873 9874 /* Get the next mailbox command from head of queue */ 9875 mboxq = lpfc_mbox_get(phba); 9876 9877 /* If no more mailbox command waiting for post, we're done */ 9878 if (!mboxq) { 9879 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9880 spin_unlock_irqrestore(&phba->hbalock, iflags); 9881 return MBX_SUCCESS; 9882 } 9883 phba->sli.mbox_active = mboxq; 9884 spin_unlock_irqrestore(&phba->hbalock, iflags); 9885 9886 /* Check device readiness for posting mailbox command */ 9887 rc = lpfc_mbox_dev_check(phba); 9888 if (unlikely(rc)) 9889 /* Driver clean routine will clean up pending mailbox */ 9890 goto out_not_finished; 9891 9892 /* Prepare the mbox command to be posted */ 9893 mqe = &mboxq->u.mqe; 9894 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 9895 9896 /* Start timer for the mbox_tmo and log some mailbox post messages */ 9897 mod_timer(&psli->mbox_tmo, (jiffies + 9898 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 9899 9900 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9901 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 9902 "x%x x%x\n", 9903 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9904 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9905 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9906 phba->pport->port_state, psli->sli_flag); 9907 9908 if (mbx_cmnd != MBX_HEARTBEAT) { 9909 if (mboxq->vport) { 9910 lpfc_debugfs_disc_trc(mboxq->vport, 9911 LPFC_DISC_TRC_MBOX_VPORT, 9912 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9913 mbx_cmnd, mqe->un.mb_words[0], 9914 mqe->un.mb_words[1]); 9915 } else { 9916 lpfc_debugfs_disc_trc(phba->pport, 9917 LPFC_DISC_TRC_MBOX, 9918 "MBOX Send: cmd:x%x mb:x%x x%x", 9919 mbx_cmnd, mqe->un.mb_words[0], 9920 mqe->un.mb_words[1]); 9921 } 9922 } 9923 psli->slistat.mbox_cmd++; 9924 9925 /* Post the mailbox command to the port */ 9926 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 9927 if (rc != MBX_SUCCESS) { 9928 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9929 "(%d):2533 Mailbox command x%x (x%x/x%x) " 9930 "cannot issue Data: x%x x%x\n", 9931 mboxq->vport ? mboxq->vport->vpi : 0, 9932 mboxq->u.mb.mbxCommand, 9933 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9934 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9935 psli->sli_flag, MBX_NOWAIT); 9936 goto out_not_finished; 9937 } 9938 9939 return rc; 9940 9941 out_not_finished: 9942 spin_lock_irqsave(&phba->hbalock, iflags); 9943 if (phba->sli.mbox_active) { 9944 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 9945 __lpfc_mbox_cmpl_put(phba, mboxq); 9946 /* Release the token */ 9947 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9948 phba->sli.mbox_active = NULL; 9949 } 9950 spin_unlock_irqrestore(&phba->hbalock, iflags); 9951 9952 return MBX_NOT_FINISHED; 9953 } 9954 9955 /** 9956 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 9957 * @phba: Pointer to HBA context object. 9958 * @pmbox: Pointer to mailbox object. 9959 * @flag: Flag indicating how the mailbox need to be processed. 9960 * 9961 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 9962 * the API jump table function pointer from the lpfc_hba struct. 9963 * 9964 * Return codes the caller owns the mailbox command after the return of the 9965 * function. 9966 **/ 9967 int 9968 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 9969 { 9970 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 9971 } 9972 9973 /** 9974 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 9975 * @phba: The hba struct for which this call is being executed. 9976 * @dev_grp: The HBA PCI-Device group number. 9977 * 9978 * This routine sets up the mbox interface API function jump table in @phba 9979 * struct. 9980 * Returns: 0 - success, -ENODEV - failure. 9981 **/ 9982 int 9983 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 9984 { 9985 9986 switch (dev_grp) { 9987 case LPFC_PCI_DEV_LP: 9988 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 9989 phba->lpfc_sli_handle_slow_ring_event = 9990 lpfc_sli_handle_slow_ring_event_s3; 9991 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 9992 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 9993 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 9994 break; 9995 case LPFC_PCI_DEV_OC: 9996 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 9997 phba->lpfc_sli_handle_slow_ring_event = 9998 lpfc_sli_handle_slow_ring_event_s4; 9999 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 10000 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 10001 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 10002 break; 10003 default: 10004 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10005 "1420 Invalid HBA PCI-device group: 0x%x\n", 10006 dev_grp); 10007 return -ENODEV; 10008 } 10009 return 0; 10010 } 10011 10012 /** 10013 * __lpfc_sli_ringtx_put - Add an iocb to the txq 10014 * @phba: Pointer to HBA context object. 10015 * @pring: Pointer to driver SLI ring object. 10016 * @piocb: Pointer to address of newly added command iocb. 10017 * 10018 * This function is called with hbalock held for SLI3 ports or 10019 * the ring lock held for SLI4 ports to add a command 10020 * iocb to the txq when SLI layer cannot submit the command iocb 10021 * to the ring. 10022 **/ 10023 void 10024 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10025 struct lpfc_iocbq *piocb) 10026 { 10027 if (phba->sli_rev == LPFC_SLI_REV4) 10028 lockdep_assert_held(&pring->ring_lock); 10029 else 10030 lockdep_assert_held(&phba->hbalock); 10031 /* Insert the caller's iocb in the txq tail for later processing. */ 10032 list_add_tail(&piocb->list, &pring->txq); 10033 } 10034 10035 /** 10036 * lpfc_sli_next_iocb - Get the next iocb in the txq 10037 * @phba: Pointer to HBA context object. 10038 * @pring: Pointer to driver SLI ring object. 10039 * @piocb: Pointer to address of newly added command iocb. 10040 * 10041 * This function is called with hbalock held before a new 10042 * iocb is submitted to the firmware. This function checks 10043 * txq to flush the iocbs in txq to Firmware before 10044 * submitting new iocbs to the Firmware. 10045 * If there are iocbs in the txq which need to be submitted 10046 * to firmware, lpfc_sli_next_iocb returns the first element 10047 * of the txq after dequeuing it from txq. 10048 * If there is no iocb in the txq then the function will return 10049 * *piocb and *piocb is set to NULL. Caller needs to check 10050 * *piocb to find if there are more commands in the txq. 10051 **/ 10052 static struct lpfc_iocbq * 10053 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10054 struct lpfc_iocbq **piocb) 10055 { 10056 struct lpfc_iocbq * nextiocb; 10057 10058 lockdep_assert_held(&phba->hbalock); 10059 10060 nextiocb = lpfc_sli_ringtx_get(phba, pring); 10061 if (!nextiocb) { 10062 nextiocb = *piocb; 10063 *piocb = NULL; 10064 } 10065 10066 return nextiocb; 10067 } 10068 10069 /** 10070 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 10071 * @phba: Pointer to HBA context object. 10072 * @ring_number: SLI ring number to issue iocb on. 10073 * @piocb: Pointer to command iocb. 10074 * @flag: Flag indicating if this command can be put into txq. 10075 * 10076 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 10077 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 10078 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 10079 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 10080 * this function allows only iocbs for posting buffers. This function finds 10081 * next available slot in the command ring and posts the command to the 10082 * available slot and writes the port attention register to request HBA start 10083 * processing new iocb. If there is no slot available in the ring and 10084 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 10085 * the function returns IOCB_BUSY. 10086 * 10087 * This function is called with hbalock held. The function will return success 10088 * after it successfully submit the iocb to firmware or after adding to the 10089 * txq. 10090 **/ 10091 static int 10092 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 10093 struct lpfc_iocbq *piocb, uint32_t flag) 10094 { 10095 struct lpfc_iocbq *nextiocb; 10096 IOCB_t *iocb; 10097 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 10098 10099 lockdep_assert_held(&phba->hbalock); 10100 10101 if (piocb->iocb_cmpl && (!piocb->vport) && 10102 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 10103 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 10104 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10105 "1807 IOCB x%x failed. No vport\n", 10106 piocb->iocb.ulpCommand); 10107 dump_stack(); 10108 return IOCB_ERROR; 10109 } 10110 10111 10112 /* If the PCI channel is in offline state, do not post iocbs. */ 10113 if (unlikely(pci_channel_offline(phba->pcidev))) 10114 return IOCB_ERROR; 10115 10116 /* If HBA has a deferred error attention, fail the iocb. */ 10117 if (unlikely(phba->hba_flag & DEFER_ERATT)) 10118 return IOCB_ERROR; 10119 10120 /* 10121 * We should never get an IOCB if we are in a < LINK_DOWN state 10122 */ 10123 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10124 return IOCB_ERROR; 10125 10126 /* 10127 * Check to see if we are blocking IOCB processing because of a 10128 * outstanding event. 10129 */ 10130 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 10131 goto iocb_busy; 10132 10133 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 10134 /* 10135 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 10136 * can be issued if the link is not up. 10137 */ 10138 switch (piocb->iocb.ulpCommand) { 10139 case CMD_GEN_REQUEST64_CR: 10140 case CMD_GEN_REQUEST64_CX: 10141 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 10142 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 10143 FC_RCTL_DD_UNSOL_CMD) || 10144 (piocb->iocb.un.genreq64.w5.hcsw.Type != 10145 MENLO_TRANSPORT_TYPE)) 10146 10147 goto iocb_busy; 10148 break; 10149 case CMD_QUE_RING_BUF_CN: 10150 case CMD_QUE_RING_BUF64_CN: 10151 /* 10152 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 10153 * completion, iocb_cmpl MUST be 0. 10154 */ 10155 if (piocb->iocb_cmpl) 10156 piocb->iocb_cmpl = NULL; 10157 fallthrough; 10158 case CMD_CREATE_XRI_CR: 10159 case CMD_CLOSE_XRI_CN: 10160 case CMD_CLOSE_XRI_CX: 10161 break; 10162 default: 10163 goto iocb_busy; 10164 } 10165 10166 /* 10167 * For FCP commands, we must be in a state where we can process link 10168 * attention events. 10169 */ 10170 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 10171 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 10172 goto iocb_busy; 10173 } 10174 10175 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 10176 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 10177 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 10178 10179 if (iocb) 10180 lpfc_sli_update_ring(phba, pring); 10181 else 10182 lpfc_sli_update_full_ring(phba, pring); 10183 10184 if (!piocb) 10185 return IOCB_SUCCESS; 10186 10187 goto out_busy; 10188 10189 iocb_busy: 10190 pring->stats.iocb_cmd_delay++; 10191 10192 out_busy: 10193 10194 if (!(flag & SLI_IOCB_RET_IOCB)) { 10195 __lpfc_sli_ringtx_put(phba, pring, piocb); 10196 return IOCB_SUCCESS; 10197 } 10198 10199 return IOCB_BUSY; 10200 } 10201 10202 /** 10203 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 10204 * @phba: Pointer to HBA context object. 10205 * @piocbq: Pointer to command iocb. 10206 * @sglq: Pointer to the scatter gather queue object. 10207 * 10208 * This routine converts the bpl or bde that is in the IOCB 10209 * to a sgl list for the sli4 hardware. The physical address 10210 * of the bpl/bde is converted back to a virtual address. 10211 * If the IOCB contains a BPL then the list of BDE's is 10212 * converted to sli4_sge's. If the IOCB contains a single 10213 * BDE then it is converted to a single sli_sge. 10214 * The IOCB is still in cpu endianess so the contents of 10215 * the bpl can be used without byte swapping. 10216 * 10217 * Returns valid XRI = Success, NO_XRI = Failure. 10218 **/ 10219 static uint16_t 10220 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 10221 struct lpfc_sglq *sglq) 10222 { 10223 uint16_t xritag = NO_XRI; 10224 struct ulp_bde64 *bpl = NULL; 10225 struct ulp_bde64 bde; 10226 struct sli4_sge *sgl = NULL; 10227 struct lpfc_dmabuf *dmabuf; 10228 IOCB_t *icmd; 10229 int numBdes = 0; 10230 int i = 0; 10231 uint32_t offset = 0; /* accumulated offset in the sg request list */ 10232 int inbound = 0; /* number of sg reply entries inbound from firmware */ 10233 10234 if (!piocbq || !sglq) 10235 return xritag; 10236 10237 sgl = (struct sli4_sge *)sglq->sgl; 10238 icmd = &piocbq->iocb; 10239 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 10240 return sglq->sli4_xritag; 10241 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 10242 numBdes = icmd->un.genreq64.bdl.bdeSize / 10243 sizeof(struct ulp_bde64); 10244 /* The addrHigh and addrLow fields within the IOCB 10245 * have not been byteswapped yet so there is no 10246 * need to swap them back. 10247 */ 10248 if (piocbq->context3) 10249 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 10250 else 10251 return xritag; 10252 10253 bpl = (struct ulp_bde64 *)dmabuf->virt; 10254 if (!bpl) 10255 return xritag; 10256 10257 for (i = 0; i < numBdes; i++) { 10258 /* Should already be byte swapped. */ 10259 sgl->addr_hi = bpl->addrHigh; 10260 sgl->addr_lo = bpl->addrLow; 10261 10262 sgl->word2 = le32_to_cpu(sgl->word2); 10263 if ((i+1) == numBdes) 10264 bf_set(lpfc_sli4_sge_last, sgl, 1); 10265 else 10266 bf_set(lpfc_sli4_sge_last, sgl, 0); 10267 /* swap the size field back to the cpu so we 10268 * can assign it to the sgl. 10269 */ 10270 bde.tus.w = le32_to_cpu(bpl->tus.w); 10271 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 10272 /* The offsets in the sgl need to be accumulated 10273 * separately for the request and reply lists. 10274 * The request is always first, the reply follows. 10275 */ 10276 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 10277 /* add up the reply sg entries */ 10278 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 10279 inbound++; 10280 /* first inbound? reset the offset */ 10281 if (inbound == 1) 10282 offset = 0; 10283 bf_set(lpfc_sli4_sge_offset, sgl, offset); 10284 bf_set(lpfc_sli4_sge_type, sgl, 10285 LPFC_SGE_TYPE_DATA); 10286 offset += bde.tus.f.bdeSize; 10287 } 10288 sgl->word2 = cpu_to_le32(sgl->word2); 10289 bpl++; 10290 sgl++; 10291 } 10292 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 10293 /* The addrHigh and addrLow fields of the BDE have not 10294 * been byteswapped yet so they need to be swapped 10295 * before putting them in the sgl. 10296 */ 10297 sgl->addr_hi = 10298 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 10299 sgl->addr_lo = 10300 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 10301 sgl->word2 = le32_to_cpu(sgl->word2); 10302 bf_set(lpfc_sli4_sge_last, sgl, 1); 10303 sgl->word2 = cpu_to_le32(sgl->word2); 10304 sgl->sge_len = 10305 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 10306 } 10307 return sglq->sli4_xritag; 10308 } 10309 10310 /** 10311 * lpfc_sli4_iocb2wqe - Convert the IOCB to a work queue entry. 10312 * @phba: Pointer to HBA context object. 10313 * @iocbq: Pointer to command iocb. 10314 * @wqe: Pointer to the work queue entry. 10315 * 10316 * This routine converts the iocb command to its Work Queue Entry 10317 * equivalent. The wqe pointer should not have any fields set when 10318 * this routine is called because it will memcpy over them. 10319 * This routine does not set the CQ_ID or the WQEC bits in the 10320 * wqe. 10321 * 10322 * Returns: 0 = Success, IOCB_ERROR = Failure. 10323 **/ 10324 static int 10325 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 10326 union lpfc_wqe128 *wqe) 10327 { 10328 uint32_t xmit_len = 0, total_len = 0; 10329 uint8_t ct = 0; 10330 uint32_t fip; 10331 uint32_t abort_tag; 10332 uint8_t command_type = ELS_COMMAND_NON_FIP; 10333 uint8_t cmnd; 10334 uint16_t xritag; 10335 uint16_t abrt_iotag; 10336 struct lpfc_iocbq *abrtiocbq; 10337 struct ulp_bde64 *bpl = NULL; 10338 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 10339 int numBdes, i; 10340 struct ulp_bde64 bde; 10341 struct lpfc_nodelist *ndlp; 10342 uint32_t *pcmd; 10343 uint32_t if_type; 10344 10345 fip = phba->hba_flag & HBA_FIP_SUPPORT; 10346 /* The fcp commands will set command type */ 10347 if (iocbq->iocb_flag & LPFC_IO_FCP) 10348 command_type = FCP_COMMAND; 10349 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 10350 command_type = ELS_COMMAND_FIP; 10351 else 10352 command_type = ELS_COMMAND_NON_FIP; 10353 10354 if (phba->fcp_embed_io) 10355 memset(wqe, 0, sizeof(union lpfc_wqe128)); 10356 /* Some of the fields are in the right position already */ 10357 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 10358 /* The ct field has moved so reset */ 10359 wqe->generic.wqe_com.word7 = 0; 10360 wqe->generic.wqe_com.word10 = 0; 10361 10362 abort_tag = (uint32_t) iocbq->iotag; 10363 xritag = iocbq->sli4_xritag; 10364 /* words0-2 bpl convert bde */ 10365 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 10366 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 10367 sizeof(struct ulp_bde64); 10368 bpl = (struct ulp_bde64 *) 10369 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 10370 if (!bpl) 10371 return IOCB_ERROR; 10372 10373 /* Should already be byte swapped. */ 10374 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 10375 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 10376 /* swap the size field back to the cpu so we 10377 * can assign it to the sgl. 10378 */ 10379 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 10380 xmit_len = wqe->generic.bde.tus.f.bdeSize; 10381 total_len = 0; 10382 for (i = 0; i < numBdes; i++) { 10383 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 10384 total_len += bde.tus.f.bdeSize; 10385 } 10386 } else 10387 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 10388 10389 iocbq->iocb.ulpIoTag = iocbq->iotag; 10390 cmnd = iocbq->iocb.ulpCommand; 10391 10392 switch (iocbq->iocb.ulpCommand) { 10393 case CMD_ELS_REQUEST64_CR: 10394 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 10395 ndlp = iocbq->context_un.ndlp; 10396 else 10397 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10398 if (!iocbq->iocb.ulpLe) { 10399 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10400 "2007 Only Limited Edition cmd Format" 10401 " supported 0x%x\n", 10402 iocbq->iocb.ulpCommand); 10403 return IOCB_ERROR; 10404 } 10405 10406 wqe->els_req.payload_len = xmit_len; 10407 /* Els_reguest64 has a TMO */ 10408 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 10409 iocbq->iocb.ulpTimeout); 10410 /* Need a VF for word 4 set the vf bit*/ 10411 bf_set(els_req64_vf, &wqe->els_req, 0); 10412 /* And a VFID for word 12 */ 10413 bf_set(els_req64_vfid, &wqe->els_req, 0); 10414 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 10415 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10416 iocbq->iocb.ulpContext); 10417 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 10418 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 10419 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 10420 if (command_type == ELS_COMMAND_FIP) 10421 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 10422 >> LPFC_FIP_ELS_ID_SHIFT); 10423 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 10424 iocbq->context2)->virt); 10425 if_type = bf_get(lpfc_sli_intf_if_type, 10426 &phba->sli4_hba.sli_intf); 10427 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 10428 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 10429 *pcmd == ELS_CMD_SCR || 10430 *pcmd == ELS_CMD_RDF || 10431 *pcmd == ELS_CMD_EDC || 10432 *pcmd == ELS_CMD_RSCN_XMT || 10433 *pcmd == ELS_CMD_FDISC || 10434 *pcmd == ELS_CMD_LOGO || 10435 *pcmd == ELS_CMD_QFPA || 10436 *pcmd == ELS_CMD_UVEM || 10437 *pcmd == ELS_CMD_PLOGI)) { 10438 bf_set(els_req64_sp, &wqe->els_req, 1); 10439 bf_set(els_req64_sid, &wqe->els_req, 10440 iocbq->vport->fc_myDID); 10441 if ((*pcmd == ELS_CMD_FLOGI) && 10442 !(phba->fc_topology == 10443 LPFC_TOPOLOGY_LOOP)) 10444 bf_set(els_req64_sid, &wqe->els_req, 0); 10445 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 10446 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10447 phba->vpi_ids[iocbq->vport->vpi]); 10448 } else if (pcmd && iocbq->context1) { 10449 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 10450 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10451 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 10452 } 10453 } 10454 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 10455 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 10456 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 10457 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 10458 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 10459 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 10460 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 10461 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 10462 wqe->els_req.max_response_payload_len = total_len - xmit_len; 10463 break; 10464 case CMD_XMIT_SEQUENCE64_CX: 10465 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 10466 iocbq->iocb.un.ulpWord[3]); 10467 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 10468 iocbq->iocb.unsli3.rcvsli3.ox_id); 10469 /* The entire sequence is transmitted for this IOCB */ 10470 xmit_len = total_len; 10471 cmnd = CMD_XMIT_SEQUENCE64_CR; 10472 if (phba->link_flag & LS_LOOPBACK_MODE) 10473 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 10474 fallthrough; 10475 case CMD_XMIT_SEQUENCE64_CR: 10476 /* word3 iocb=io_tag32 wqe=reserved */ 10477 wqe->xmit_sequence.rsvd3 = 0; 10478 /* word4 relative_offset memcpy */ 10479 /* word5 r_ctl/df_ctl memcpy */ 10480 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 10481 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 10482 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 10483 LPFC_WQE_IOD_WRITE); 10484 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 10485 LPFC_WQE_LENLOC_WORD12); 10486 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 10487 wqe->xmit_sequence.xmit_len = xmit_len; 10488 command_type = OTHER_COMMAND; 10489 break; 10490 case CMD_XMIT_BCAST64_CN: 10491 /* word3 iocb=iotag32 wqe=seq_payload_len */ 10492 wqe->xmit_bcast64.seq_payload_len = xmit_len; 10493 /* word4 iocb=rsvd wqe=rsvd */ 10494 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 10495 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 10496 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 10497 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10498 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 10499 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 10500 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 10501 LPFC_WQE_LENLOC_WORD3); 10502 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 10503 break; 10504 case CMD_FCP_IWRITE64_CR: 10505 command_type = FCP_COMMAND_DATA_OUT; 10506 /* word3 iocb=iotag wqe=payload_offset_len */ 10507 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 10508 bf_set(payload_offset_len, &wqe->fcp_iwrite, 10509 xmit_len + sizeof(struct fcp_rsp)); 10510 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 10511 0); 10512 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 10513 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 10514 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 10515 iocbq->iocb.ulpFCP2Rcvy); 10516 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 10517 /* Always open the exchange */ 10518 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 10519 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 10520 LPFC_WQE_LENLOC_WORD4); 10521 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 10522 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 10523 if (iocbq->iocb_flag & LPFC_IO_OAS) { 10524 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 10525 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 10526 if (iocbq->priority) { 10527 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10528 (iocbq->priority << 1)); 10529 } else { 10530 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10531 (phba->cfg_XLanePriority << 1)); 10532 } 10533 } 10534 /* Note, word 10 is already initialized to 0 */ 10535 10536 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 10537 if (phba->cfg_enable_pbde) 10538 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1); 10539 else 10540 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 10541 10542 if (phba->fcp_embed_io) { 10543 struct lpfc_io_buf *lpfc_cmd; 10544 struct sli4_sge *sgl; 10545 struct fcp_cmnd *fcp_cmnd; 10546 uint32_t *ptr; 10547 10548 /* 128 byte wqe support here */ 10549 10550 lpfc_cmd = iocbq->context1; 10551 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10552 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10553 10554 /* Word 0-2 - FCP_CMND */ 10555 wqe->generic.bde.tus.f.bdeFlags = 10556 BUFF_TYPE_BDE_IMMED; 10557 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10558 wqe->generic.bde.addrHigh = 0; 10559 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10560 10561 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10562 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10563 10564 /* Word 22-29 FCP CMND Payload */ 10565 ptr = &wqe->words[22]; 10566 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10567 } 10568 break; 10569 case CMD_FCP_IREAD64_CR: 10570 /* word3 iocb=iotag wqe=payload_offset_len */ 10571 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 10572 bf_set(payload_offset_len, &wqe->fcp_iread, 10573 xmit_len + sizeof(struct fcp_rsp)); 10574 bf_set(cmd_buff_len, &wqe->fcp_iread, 10575 0); 10576 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 10577 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 10578 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 10579 iocbq->iocb.ulpFCP2Rcvy); 10580 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 10581 /* Always open the exchange */ 10582 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 10583 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 10584 LPFC_WQE_LENLOC_WORD4); 10585 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 10586 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 10587 if (iocbq->iocb_flag & LPFC_IO_OAS) { 10588 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 10589 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 10590 if (iocbq->priority) { 10591 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 10592 (iocbq->priority << 1)); 10593 } else { 10594 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 10595 (phba->cfg_XLanePriority << 1)); 10596 } 10597 } 10598 /* Note, word 10 is already initialized to 0 */ 10599 10600 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 10601 if (phba->cfg_enable_pbde) 10602 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1); 10603 else 10604 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 10605 10606 if (phba->fcp_embed_io) { 10607 struct lpfc_io_buf *lpfc_cmd; 10608 struct sli4_sge *sgl; 10609 struct fcp_cmnd *fcp_cmnd; 10610 uint32_t *ptr; 10611 10612 /* 128 byte wqe support here */ 10613 10614 lpfc_cmd = iocbq->context1; 10615 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10616 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10617 10618 /* Word 0-2 - FCP_CMND */ 10619 wqe->generic.bde.tus.f.bdeFlags = 10620 BUFF_TYPE_BDE_IMMED; 10621 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10622 wqe->generic.bde.addrHigh = 0; 10623 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10624 10625 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 10626 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 10627 10628 /* Word 22-29 FCP CMND Payload */ 10629 ptr = &wqe->words[22]; 10630 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10631 } 10632 break; 10633 case CMD_FCP_ICMND64_CR: 10634 /* word3 iocb=iotag wqe=payload_offset_len */ 10635 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 10636 bf_set(payload_offset_len, &wqe->fcp_icmd, 10637 xmit_len + sizeof(struct fcp_rsp)); 10638 bf_set(cmd_buff_len, &wqe->fcp_icmd, 10639 0); 10640 /* word3 iocb=IO_TAG wqe=reserved */ 10641 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 10642 /* Always open the exchange */ 10643 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 10644 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 10645 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 10646 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 10647 LPFC_WQE_LENLOC_NONE); 10648 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 10649 iocbq->iocb.ulpFCP2Rcvy); 10650 if (iocbq->iocb_flag & LPFC_IO_OAS) { 10651 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 10652 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 10653 if (iocbq->priority) { 10654 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 10655 (iocbq->priority << 1)); 10656 } else { 10657 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 10658 (phba->cfg_XLanePriority << 1)); 10659 } 10660 } 10661 /* Note, word 10 is already initialized to 0 */ 10662 10663 if (phba->fcp_embed_io) { 10664 struct lpfc_io_buf *lpfc_cmd; 10665 struct sli4_sge *sgl; 10666 struct fcp_cmnd *fcp_cmnd; 10667 uint32_t *ptr; 10668 10669 /* 128 byte wqe support here */ 10670 10671 lpfc_cmd = iocbq->context1; 10672 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10673 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10674 10675 /* Word 0-2 - FCP_CMND */ 10676 wqe->generic.bde.tus.f.bdeFlags = 10677 BUFF_TYPE_BDE_IMMED; 10678 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10679 wqe->generic.bde.addrHigh = 0; 10680 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10681 10682 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 10683 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 10684 10685 /* Word 22-29 FCP CMND Payload */ 10686 ptr = &wqe->words[22]; 10687 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10688 } 10689 break; 10690 case CMD_GEN_REQUEST64_CR: 10691 /* For this command calculate the xmit length of the 10692 * request bde. 10693 */ 10694 xmit_len = 0; 10695 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 10696 sizeof(struct ulp_bde64); 10697 for (i = 0; i < numBdes; i++) { 10698 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 10699 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 10700 break; 10701 xmit_len += bde.tus.f.bdeSize; 10702 } 10703 /* word3 iocb=IO_TAG wqe=request_payload_len */ 10704 wqe->gen_req.request_payload_len = xmit_len; 10705 /* word4 iocb=parameter wqe=relative_offset memcpy */ 10706 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 10707 /* word6 context tag copied in memcpy */ 10708 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 10709 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 10710 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10711 "2015 Invalid CT %x command 0x%x\n", 10712 ct, iocbq->iocb.ulpCommand); 10713 return IOCB_ERROR; 10714 } 10715 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 10716 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 10717 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 10718 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 10719 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 10720 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 10721 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 10722 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 10723 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 10724 command_type = OTHER_COMMAND; 10725 break; 10726 case CMD_XMIT_ELS_RSP64_CX: 10727 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10728 /* words0-2 BDE memcpy */ 10729 /* word3 iocb=iotag32 wqe=response_payload_len */ 10730 wqe->xmit_els_rsp.response_payload_len = xmit_len; 10731 /* word4 */ 10732 wqe->xmit_els_rsp.word4 = 0; 10733 /* word5 iocb=rsvd wge=did */ 10734 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 10735 iocbq->iocb.un.xseq64.xmit_els_remoteID); 10736 10737 if_type = bf_get(lpfc_sli_intf_if_type, 10738 &phba->sli4_hba.sli_intf); 10739 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 10740 if (iocbq->vport->fc_flag & FC_PT2PT) { 10741 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 10742 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 10743 iocbq->vport->fc_myDID); 10744 if (iocbq->vport->fc_myDID == Fabric_DID) { 10745 bf_set(wqe_els_did, 10746 &wqe->xmit_els_rsp.wqe_dest, 0); 10747 } 10748 } 10749 } 10750 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 10751 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10752 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 10753 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 10754 iocbq->iocb.unsli3.rcvsli3.ox_id); 10755 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 10756 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 10757 phba->vpi_ids[iocbq->vport->vpi]); 10758 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 10759 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 10760 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 10761 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 10762 LPFC_WQE_LENLOC_WORD3); 10763 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 10764 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 10765 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 10766 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 10767 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 10768 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 10769 iocbq->vport->fc_myDID); 10770 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 10771 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 10772 phba->vpi_ids[phba->pport->vpi]); 10773 } 10774 command_type = OTHER_COMMAND; 10775 break; 10776 case CMD_CLOSE_XRI_CN: 10777 case CMD_ABORT_XRI_CN: 10778 case CMD_ABORT_XRI_CX: 10779 /* words 0-2 memcpy should be 0 rserved */ 10780 /* port will send abts */ 10781 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 10782 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 10783 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 10784 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 10785 } else 10786 fip = 0; 10787 10788 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 10789 /* 10790 * The link is down, or the command was ELS_FIP 10791 * so the fw does not need to send abts 10792 * on the wire. 10793 */ 10794 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 10795 else 10796 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 10797 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 10798 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 10799 wqe->abort_cmd.rsrvd5 = 0; 10800 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 10801 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10802 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 10803 /* 10804 * The abort handler will send us CMD_ABORT_XRI_CN or 10805 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 10806 */ 10807 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 10808 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 10809 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 10810 LPFC_WQE_LENLOC_NONE); 10811 cmnd = CMD_ABORT_XRI_CX; 10812 command_type = OTHER_COMMAND; 10813 xritag = 0; 10814 break; 10815 case CMD_XMIT_BLS_RSP64_CX: 10816 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10817 /* As BLS ABTS RSP WQE is very different from other WQEs, 10818 * we re-construct this WQE here based on information in 10819 * iocbq from scratch. 10820 */ 10821 memset(wqe, 0, sizeof(*wqe)); 10822 /* OX_ID is invariable to who sent ABTS to CT exchange */ 10823 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 10824 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 10825 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 10826 LPFC_ABTS_UNSOL_INT) { 10827 /* ABTS sent by initiator to CT exchange, the 10828 * RX_ID field will be filled with the newly 10829 * allocated responder XRI. 10830 */ 10831 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10832 iocbq->sli4_xritag); 10833 } else { 10834 /* ABTS sent by responder to CT exchange, the 10835 * RX_ID field will be filled with the responder 10836 * RX_ID from ABTS. 10837 */ 10838 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10839 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 10840 } 10841 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 10842 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 10843 10844 /* Use CT=VPI */ 10845 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 10846 ndlp->nlp_DID); 10847 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 10848 iocbq->iocb.ulpContext); 10849 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 10850 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 10851 phba->vpi_ids[phba->pport->vpi]); 10852 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 10853 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 10854 LPFC_WQE_LENLOC_NONE); 10855 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 10856 command_type = OTHER_COMMAND; 10857 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 10858 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 10859 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 10860 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 10861 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 10862 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 10863 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 10864 } 10865 10866 break; 10867 case CMD_SEND_FRAME: 10868 bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME); 10869 bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */ 10870 bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */ 10871 bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1); 10872 bf_set(wqe_xbl, &wqe->generic.wqe_com, 1); 10873 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10874 bf_set(wqe_xc, &wqe->generic.wqe_com, 1); 10875 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA); 10876 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10877 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10878 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10879 return 0; 10880 case CMD_XRI_ABORTED_CX: 10881 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 10882 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 10883 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 10884 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 10885 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 10886 default: 10887 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10888 "2014 Invalid command 0x%x\n", 10889 iocbq->iocb.ulpCommand); 10890 return IOCB_ERROR; 10891 } 10892 10893 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 10894 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 10895 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 10896 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 10897 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 10898 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 10899 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 10900 LPFC_IO_DIF_INSERT); 10901 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10902 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10903 wqe->generic.wqe_com.abort_tag = abort_tag; 10904 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 10905 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 10906 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 10907 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10908 return 0; 10909 } 10910 10911 /** 10912 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10913 * @phba: Pointer to HBA context object. 10914 * @ring_number: SLI ring number to issue wqe on. 10915 * @piocb: Pointer to command iocb. 10916 * @flag: Flag indicating if this command can be put into txq. 10917 * 10918 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10919 * send an iocb command to an HBA with SLI-4 interface spec. 10920 * 10921 * This function takes the hbalock before invoking the lockless version. 10922 * The function will return success after it successfully submit the wqe to 10923 * firmware or after adding to the txq. 10924 **/ 10925 static int 10926 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10927 struct lpfc_iocbq *piocb, uint32_t flag) 10928 { 10929 unsigned long iflags; 10930 int rc; 10931 10932 spin_lock_irqsave(&phba->hbalock, iflags); 10933 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10934 spin_unlock_irqrestore(&phba->hbalock, iflags); 10935 10936 return rc; 10937 } 10938 10939 /** 10940 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10941 * @phba: Pointer to HBA context object. 10942 * @ring_number: SLI ring number to issue wqe on. 10943 * @piocb: Pointer to command iocb. 10944 * @flag: Flag indicating if this command can be put into txq. 10945 * 10946 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10947 * an wqe command to an HBA with SLI-4 interface spec. 10948 * 10949 * This function is a lockless version. The function will return success 10950 * after it successfully submit the wqe to firmware or after adding to the 10951 * txq. 10952 **/ 10953 static int 10954 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10955 struct lpfc_iocbq *piocb, uint32_t flag) 10956 { 10957 int rc; 10958 struct lpfc_io_buf *lpfc_cmd = 10959 (struct lpfc_io_buf *)piocb->context1; 10960 union lpfc_wqe128 *wqe = &piocb->wqe; 10961 struct sli4_sge *sgl; 10962 10963 /* 128 byte wqe support here */ 10964 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10965 10966 if (phba->fcp_embed_io) { 10967 struct fcp_cmnd *fcp_cmnd; 10968 u32 *ptr; 10969 10970 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10971 10972 /* Word 0-2 - FCP_CMND */ 10973 wqe->generic.bde.tus.f.bdeFlags = 10974 BUFF_TYPE_BDE_IMMED; 10975 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10976 wqe->generic.bde.addrHigh = 0; 10977 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10978 10979 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10980 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10981 10982 /* Word 22-29 FCP CMND Payload */ 10983 ptr = &wqe->words[22]; 10984 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10985 } else { 10986 /* Word 0-2 - Inline BDE */ 10987 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10988 wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd); 10989 wqe->generic.bde.addrHigh = sgl->addr_hi; 10990 wqe->generic.bde.addrLow = sgl->addr_lo; 10991 10992 /* Word 10 */ 10993 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10994 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10995 } 10996 10997 /* add the VMID tags as per switch response */ 10998 if (unlikely(piocb->iocb_flag & LPFC_IO_VMID)) { 10999 if (phba->pport->vmid_priority_tagging) { 11000 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 11001 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 11002 (piocb->vmid_tag.cs_ctl_vmid)); 11003 } else { 11004 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); 11005 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 11006 wqe->words[31] = piocb->vmid_tag.app_id; 11007 } 11008 } 11009 rc = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 11010 return rc; 11011 } 11012 11013 /** 11014 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 11015 * @phba: Pointer to HBA context object. 11016 * @ring_number: SLI ring number to issue iocb on. 11017 * @piocb: Pointer to command iocb. 11018 * @flag: Flag indicating if this command can be put into txq. 11019 * 11020 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 11021 * an iocb command to an HBA with SLI-4 interface spec. 11022 * 11023 * This function is called with ringlock held. The function will return success 11024 * after it successfully submit the iocb to firmware or after adding to the 11025 * txq. 11026 **/ 11027 static int 11028 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 11029 struct lpfc_iocbq *piocb, uint32_t flag) 11030 { 11031 struct lpfc_sglq *sglq; 11032 union lpfc_wqe128 wqe; 11033 struct lpfc_queue *wq; 11034 struct lpfc_sli_ring *pring; 11035 11036 /* Get the WQ */ 11037 if ((piocb->iocb_flag & LPFC_IO_FCP) || 11038 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 11039 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 11040 } else { 11041 wq = phba->sli4_hba.els_wq; 11042 } 11043 11044 /* Get corresponding ring */ 11045 pring = wq->pring; 11046 11047 /* 11048 * The WQE can be either 64 or 128 bytes, 11049 */ 11050 11051 lockdep_assert_held(&pring->ring_lock); 11052 11053 if (piocb->sli4_xritag == NO_XRI) { 11054 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 11055 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 11056 sglq = NULL; 11057 else { 11058 if (!list_empty(&pring->txq)) { 11059 if (!(flag & SLI_IOCB_RET_IOCB)) { 11060 __lpfc_sli_ringtx_put(phba, 11061 pring, piocb); 11062 return IOCB_SUCCESS; 11063 } else { 11064 return IOCB_BUSY; 11065 } 11066 } else { 11067 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 11068 if (!sglq) { 11069 if (!(flag & SLI_IOCB_RET_IOCB)) { 11070 __lpfc_sli_ringtx_put(phba, 11071 pring, 11072 piocb); 11073 return IOCB_SUCCESS; 11074 } else 11075 return IOCB_BUSY; 11076 } 11077 } 11078 } 11079 } else if (piocb->iocb_flag & LPFC_IO_FCP) { 11080 /* These IO's already have an XRI and a mapped sgl. */ 11081 sglq = NULL; 11082 } 11083 else { 11084 /* 11085 * This is a continuation of a commandi,(CX) so this 11086 * sglq is on the active list 11087 */ 11088 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 11089 if (!sglq) 11090 return IOCB_ERROR; 11091 } 11092 11093 if (sglq) { 11094 piocb->sli4_lxritag = sglq->sli4_lxritag; 11095 piocb->sli4_xritag = sglq->sli4_xritag; 11096 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 11097 return IOCB_ERROR; 11098 } 11099 11100 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe)) 11101 return IOCB_ERROR; 11102 11103 if (lpfc_sli4_wq_put(wq, &wqe)) 11104 return IOCB_ERROR; 11105 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 11106 11107 return 0; 11108 } 11109 11110 /* 11111 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 11112 * 11113 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 11114 * or IOCB for sli-3 function. 11115 * pointer from the lpfc_hba struct. 11116 * 11117 * Return codes: 11118 * IOCB_ERROR - Error 11119 * IOCB_SUCCESS - Success 11120 * IOCB_BUSY - Busy 11121 **/ 11122 int 11123 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 11124 struct lpfc_iocbq *piocb, uint32_t flag) 11125 { 11126 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 11127 } 11128 11129 /* 11130 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 11131 * 11132 * This routine wraps the actual lockless version for issusing IOCB function 11133 * pointer from the lpfc_hba struct. 11134 * 11135 * Return codes: 11136 * IOCB_ERROR - Error 11137 * IOCB_SUCCESS - Success 11138 * IOCB_BUSY - Busy 11139 **/ 11140 int 11141 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11142 struct lpfc_iocbq *piocb, uint32_t flag) 11143 { 11144 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11145 } 11146 11147 /** 11148 * lpfc_sli_api_table_setup - Set up sli api function jump table 11149 * @phba: The hba struct for which this call is being executed. 11150 * @dev_grp: The HBA PCI-Device group number. 11151 * 11152 * This routine sets up the SLI interface API function jump table in @phba 11153 * struct. 11154 * Returns: 0 - success, -ENODEV - failure. 11155 **/ 11156 int 11157 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 11158 { 11159 11160 switch (dev_grp) { 11161 case LPFC_PCI_DEV_LP: 11162 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 11163 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 11164 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 11165 break; 11166 case LPFC_PCI_DEV_OC: 11167 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 11168 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 11169 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 11170 break; 11171 default: 11172 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11173 "1419 Invalid HBA PCI-device group: 0x%x\n", 11174 dev_grp); 11175 return -ENODEV; 11176 } 11177 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 11178 return 0; 11179 } 11180 11181 /** 11182 * lpfc_sli4_calc_ring - Calculates which ring to use 11183 * @phba: Pointer to HBA context object. 11184 * @piocb: Pointer to command iocb. 11185 * 11186 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 11187 * hba_wqidx, thus we need to calculate the corresponding ring. 11188 * Since ABORTS must go on the same WQ of the command they are 11189 * aborting, we use command's hba_wqidx. 11190 */ 11191 struct lpfc_sli_ring * 11192 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 11193 { 11194 struct lpfc_io_buf *lpfc_cmd; 11195 11196 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 11197 if (unlikely(!phba->sli4_hba.hdwq)) 11198 return NULL; 11199 /* 11200 * for abort iocb hba_wqidx should already 11201 * be setup based on what work queue we used. 11202 */ 11203 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 11204 lpfc_cmd = (struct lpfc_io_buf *)piocb->context1; 11205 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 11206 } 11207 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 11208 } else { 11209 if (unlikely(!phba->sli4_hba.els_wq)) 11210 return NULL; 11211 piocb->hba_wqidx = 0; 11212 return phba->sli4_hba.els_wq->pring; 11213 } 11214 } 11215 11216 /** 11217 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 11218 * @phba: Pointer to HBA context object. 11219 * @ring_number: Ring number 11220 * @piocb: Pointer to command iocb. 11221 * @flag: Flag indicating if this command can be put into txq. 11222 * 11223 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 11224 * function. This function gets the hbalock and calls 11225 * __lpfc_sli_issue_iocb function and will return the error returned 11226 * by __lpfc_sli_issue_iocb function. This wrapper is used by 11227 * functions which do not hold hbalock. 11228 **/ 11229 int 11230 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11231 struct lpfc_iocbq *piocb, uint32_t flag) 11232 { 11233 struct lpfc_sli_ring *pring; 11234 struct lpfc_queue *eq; 11235 unsigned long iflags; 11236 int rc; 11237 11238 if (phba->sli_rev == LPFC_SLI_REV4) { 11239 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 11240 11241 pring = lpfc_sli4_calc_ring(phba, piocb); 11242 if (unlikely(pring == NULL)) 11243 return IOCB_ERROR; 11244 11245 spin_lock_irqsave(&pring->ring_lock, iflags); 11246 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11247 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11248 11249 lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH); 11250 } else { 11251 /* For now, SLI2/3 will still use hbalock */ 11252 spin_lock_irqsave(&phba->hbalock, iflags); 11253 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11254 spin_unlock_irqrestore(&phba->hbalock, iflags); 11255 } 11256 return rc; 11257 } 11258 11259 /** 11260 * lpfc_extra_ring_setup - Extra ring setup function 11261 * @phba: Pointer to HBA context object. 11262 * 11263 * This function is called while driver attaches with the 11264 * HBA to setup the extra ring. The extra ring is used 11265 * only when driver needs to support target mode functionality 11266 * or IP over FC functionalities. 11267 * 11268 * This function is called with no lock held. SLI3 only. 11269 **/ 11270 static int 11271 lpfc_extra_ring_setup( struct lpfc_hba *phba) 11272 { 11273 struct lpfc_sli *psli; 11274 struct lpfc_sli_ring *pring; 11275 11276 psli = &phba->sli; 11277 11278 /* Adjust cmd/rsp ring iocb entries more evenly */ 11279 11280 /* Take some away from the FCP ring */ 11281 pring = &psli->sli3_ring[LPFC_FCP_RING]; 11282 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11283 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11284 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11285 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11286 11287 /* and give them to the extra ring */ 11288 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 11289 11290 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11291 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11292 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11293 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11294 11295 /* Setup default profile for this ring */ 11296 pring->iotag_max = 4096; 11297 pring->num_mask = 1; 11298 pring->prt[0].profile = 0; /* Mask 0 */ 11299 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 11300 pring->prt[0].type = phba->cfg_multi_ring_type; 11301 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 11302 return 0; 11303 } 11304 11305 static void 11306 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 11307 struct lpfc_nodelist *ndlp) 11308 { 11309 unsigned long iflags; 11310 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 11311 11312 spin_lock_irqsave(&phba->hbalock, iflags); 11313 if (!list_empty(&evtp->evt_listp)) { 11314 spin_unlock_irqrestore(&phba->hbalock, iflags); 11315 return; 11316 } 11317 11318 /* Incrementing the reference count until the queued work is done. */ 11319 evtp->evt_arg1 = lpfc_nlp_get(ndlp); 11320 if (!evtp->evt_arg1) { 11321 spin_unlock_irqrestore(&phba->hbalock, iflags); 11322 return; 11323 } 11324 evtp->evt = LPFC_EVT_RECOVER_PORT; 11325 list_add_tail(&evtp->evt_listp, &phba->work_list); 11326 spin_unlock_irqrestore(&phba->hbalock, iflags); 11327 11328 lpfc_worker_wake_up(phba); 11329 } 11330 11331 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 11332 * @phba: Pointer to HBA context object. 11333 * @iocbq: Pointer to iocb object. 11334 * 11335 * The async_event handler calls this routine when it receives 11336 * an ASYNC_STATUS_CN event from the port. The port generates 11337 * this event when an Abort Sequence request to an rport fails 11338 * twice in succession. The abort could be originated by the 11339 * driver or by the port. The ABTS could have been for an ELS 11340 * or FCP IO. The port only generates this event when an ABTS 11341 * fails to complete after one retry. 11342 */ 11343 static void 11344 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 11345 struct lpfc_iocbq *iocbq) 11346 { 11347 struct lpfc_nodelist *ndlp = NULL; 11348 uint16_t rpi = 0, vpi = 0; 11349 struct lpfc_vport *vport = NULL; 11350 11351 /* The rpi in the ulpContext is vport-sensitive. */ 11352 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 11353 rpi = iocbq->iocb.ulpContext; 11354 11355 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11356 "3092 Port generated ABTS async event " 11357 "on vpi %d rpi %d status 0x%x\n", 11358 vpi, rpi, iocbq->iocb.ulpStatus); 11359 11360 vport = lpfc_find_vport_by_vpid(phba, vpi); 11361 if (!vport) 11362 goto err_exit; 11363 ndlp = lpfc_findnode_rpi(vport, rpi); 11364 if (!ndlp) 11365 goto err_exit; 11366 11367 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 11368 lpfc_sli_abts_recover_port(vport, ndlp); 11369 return; 11370 11371 err_exit: 11372 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11373 "3095 Event Context not found, no " 11374 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 11375 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 11376 vpi, rpi); 11377 } 11378 11379 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 11380 * @phba: pointer to HBA context object. 11381 * @ndlp: nodelist pointer for the impacted rport. 11382 * @axri: pointer to the wcqe containing the failed exchange. 11383 * 11384 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 11385 * port. The port generates this event when an abort exchange request to an 11386 * rport fails twice in succession with no reply. The abort could be originated 11387 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 11388 */ 11389 void 11390 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 11391 struct lpfc_nodelist *ndlp, 11392 struct sli4_wcqe_xri_aborted *axri) 11393 { 11394 uint32_t ext_status = 0; 11395 11396 if (!ndlp) { 11397 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11398 "3115 Node Context not found, driver " 11399 "ignoring abts err event\n"); 11400 return; 11401 } 11402 11403 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11404 "3116 Port generated FCP XRI ABORT event on " 11405 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 11406 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 11407 bf_get(lpfc_wcqe_xa_xri, axri), 11408 bf_get(lpfc_wcqe_xa_status, axri), 11409 axri->parameter); 11410 11411 /* 11412 * Catch the ABTS protocol failure case. Older OCe FW releases returned 11413 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 11414 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 11415 */ 11416 ext_status = axri->parameter & IOERR_PARAM_MASK; 11417 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 11418 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 11419 lpfc_sli_post_recovery_event(phba, ndlp); 11420 } 11421 11422 /** 11423 * lpfc_sli_async_event_handler - ASYNC iocb handler function 11424 * @phba: Pointer to HBA context object. 11425 * @pring: Pointer to driver SLI ring object. 11426 * @iocbq: Pointer to iocb object. 11427 * 11428 * This function is called by the slow ring event handler 11429 * function when there is an ASYNC event iocb in the ring. 11430 * This function is called with no lock held. 11431 * Currently this function handles only temperature related 11432 * ASYNC events. The function decodes the temperature sensor 11433 * event message and posts events for the management applications. 11434 **/ 11435 static void 11436 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 11437 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 11438 { 11439 IOCB_t *icmd; 11440 uint16_t evt_code; 11441 struct temp_event temp_event_data; 11442 struct Scsi_Host *shost; 11443 uint32_t *iocb_w; 11444 11445 icmd = &iocbq->iocb; 11446 evt_code = icmd->un.asyncstat.evt_code; 11447 11448 switch (evt_code) { 11449 case ASYNC_TEMP_WARN: 11450 case ASYNC_TEMP_SAFE: 11451 temp_event_data.data = (uint32_t) icmd->ulpContext; 11452 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 11453 if (evt_code == ASYNC_TEMP_WARN) { 11454 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 11455 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11456 "0347 Adapter is very hot, please take " 11457 "corrective action. temperature : %d Celsius\n", 11458 (uint32_t) icmd->ulpContext); 11459 } else { 11460 temp_event_data.event_code = LPFC_NORMAL_TEMP; 11461 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11462 "0340 Adapter temperature is OK now. " 11463 "temperature : %d Celsius\n", 11464 (uint32_t) icmd->ulpContext); 11465 } 11466 11467 /* Send temperature change event to applications */ 11468 shost = lpfc_shost_from_vport(phba->pport); 11469 fc_host_post_vendor_event(shost, fc_get_event_number(), 11470 sizeof(temp_event_data), (char *) &temp_event_data, 11471 LPFC_NL_VENDOR_ID); 11472 break; 11473 case ASYNC_STATUS_CN: 11474 lpfc_sli_abts_err_handler(phba, iocbq); 11475 break; 11476 default: 11477 iocb_w = (uint32_t *) icmd; 11478 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11479 "0346 Ring %d handler: unexpected ASYNC_STATUS" 11480 " evt_code 0x%x\n" 11481 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 11482 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 11483 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 11484 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 11485 pring->ringno, icmd->un.asyncstat.evt_code, 11486 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 11487 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 11488 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 11489 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 11490 11491 break; 11492 } 11493 } 11494 11495 11496 /** 11497 * lpfc_sli4_setup - SLI ring setup function 11498 * @phba: Pointer to HBA context object. 11499 * 11500 * lpfc_sli_setup sets up rings of the SLI interface with 11501 * number of iocbs per ring and iotags. This function is 11502 * called while driver attach to the HBA and before the 11503 * interrupts are enabled. So there is no need for locking. 11504 * 11505 * This function always returns 0. 11506 **/ 11507 int 11508 lpfc_sli4_setup(struct lpfc_hba *phba) 11509 { 11510 struct lpfc_sli_ring *pring; 11511 11512 pring = phba->sli4_hba.els_wq->pring; 11513 pring->num_mask = LPFC_MAX_RING_MASK; 11514 pring->prt[0].profile = 0; /* Mask 0 */ 11515 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11516 pring->prt[0].type = FC_TYPE_ELS; 11517 pring->prt[0].lpfc_sli_rcv_unsol_event = 11518 lpfc_els_unsol_event; 11519 pring->prt[1].profile = 0; /* Mask 1 */ 11520 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11521 pring->prt[1].type = FC_TYPE_ELS; 11522 pring->prt[1].lpfc_sli_rcv_unsol_event = 11523 lpfc_els_unsol_event; 11524 pring->prt[2].profile = 0; /* Mask 2 */ 11525 /* NameServer Inquiry */ 11526 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11527 /* NameServer */ 11528 pring->prt[2].type = FC_TYPE_CT; 11529 pring->prt[2].lpfc_sli_rcv_unsol_event = 11530 lpfc_ct_unsol_event; 11531 pring->prt[3].profile = 0; /* Mask 3 */ 11532 /* NameServer response */ 11533 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11534 /* NameServer */ 11535 pring->prt[3].type = FC_TYPE_CT; 11536 pring->prt[3].lpfc_sli_rcv_unsol_event = 11537 lpfc_ct_unsol_event; 11538 return 0; 11539 } 11540 11541 /** 11542 * lpfc_sli_setup - SLI ring setup function 11543 * @phba: Pointer to HBA context object. 11544 * 11545 * lpfc_sli_setup sets up rings of the SLI interface with 11546 * number of iocbs per ring and iotags. This function is 11547 * called while driver attach to the HBA and before the 11548 * interrupts are enabled. So there is no need for locking. 11549 * 11550 * This function always returns 0. SLI3 only. 11551 **/ 11552 int 11553 lpfc_sli_setup(struct lpfc_hba *phba) 11554 { 11555 int i, totiocbsize = 0; 11556 struct lpfc_sli *psli = &phba->sli; 11557 struct lpfc_sli_ring *pring; 11558 11559 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 11560 psli->sli_flag = 0; 11561 11562 psli->iocbq_lookup = NULL; 11563 psli->iocbq_lookup_len = 0; 11564 psli->last_iotag = 0; 11565 11566 for (i = 0; i < psli->num_rings; i++) { 11567 pring = &psli->sli3_ring[i]; 11568 switch (i) { 11569 case LPFC_FCP_RING: /* ring 0 - FCP */ 11570 /* numCiocb and numRiocb are used in config_port */ 11571 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 11572 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 11573 pring->sli.sli3.numCiocb += 11574 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11575 pring->sli.sli3.numRiocb += 11576 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11577 pring->sli.sli3.numCiocb += 11578 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11579 pring->sli.sli3.numRiocb += 11580 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11581 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11582 SLI3_IOCB_CMD_SIZE : 11583 SLI2_IOCB_CMD_SIZE; 11584 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11585 SLI3_IOCB_RSP_SIZE : 11586 SLI2_IOCB_RSP_SIZE; 11587 pring->iotag_ctr = 0; 11588 pring->iotag_max = 11589 (phba->cfg_hba_queue_depth * 2); 11590 pring->fast_iotag = pring->iotag_max; 11591 pring->num_mask = 0; 11592 break; 11593 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 11594 /* numCiocb and numRiocb are used in config_port */ 11595 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 11596 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 11597 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11598 SLI3_IOCB_CMD_SIZE : 11599 SLI2_IOCB_CMD_SIZE; 11600 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11601 SLI3_IOCB_RSP_SIZE : 11602 SLI2_IOCB_RSP_SIZE; 11603 pring->iotag_max = phba->cfg_hba_queue_depth; 11604 pring->num_mask = 0; 11605 break; 11606 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 11607 /* numCiocb and numRiocb are used in config_port */ 11608 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 11609 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 11610 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11611 SLI3_IOCB_CMD_SIZE : 11612 SLI2_IOCB_CMD_SIZE; 11613 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11614 SLI3_IOCB_RSP_SIZE : 11615 SLI2_IOCB_RSP_SIZE; 11616 pring->fast_iotag = 0; 11617 pring->iotag_ctr = 0; 11618 pring->iotag_max = 4096; 11619 pring->lpfc_sli_rcv_async_status = 11620 lpfc_sli_async_event_handler; 11621 pring->num_mask = LPFC_MAX_RING_MASK; 11622 pring->prt[0].profile = 0; /* Mask 0 */ 11623 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11624 pring->prt[0].type = FC_TYPE_ELS; 11625 pring->prt[0].lpfc_sli_rcv_unsol_event = 11626 lpfc_els_unsol_event; 11627 pring->prt[1].profile = 0; /* Mask 1 */ 11628 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11629 pring->prt[1].type = FC_TYPE_ELS; 11630 pring->prt[1].lpfc_sli_rcv_unsol_event = 11631 lpfc_els_unsol_event; 11632 pring->prt[2].profile = 0; /* Mask 2 */ 11633 /* NameServer Inquiry */ 11634 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11635 /* NameServer */ 11636 pring->prt[2].type = FC_TYPE_CT; 11637 pring->prt[2].lpfc_sli_rcv_unsol_event = 11638 lpfc_ct_unsol_event; 11639 pring->prt[3].profile = 0; /* Mask 3 */ 11640 /* NameServer response */ 11641 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11642 /* NameServer */ 11643 pring->prt[3].type = FC_TYPE_CT; 11644 pring->prt[3].lpfc_sli_rcv_unsol_event = 11645 lpfc_ct_unsol_event; 11646 break; 11647 } 11648 totiocbsize += (pring->sli.sli3.numCiocb * 11649 pring->sli.sli3.sizeCiocb) + 11650 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 11651 } 11652 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 11653 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 11654 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 11655 "SLI2 SLIM Data: x%x x%lx\n", 11656 phba->brd_no, totiocbsize, 11657 (unsigned long) MAX_SLIM_IOCB_SIZE); 11658 } 11659 if (phba->cfg_multi_ring_support == 2) 11660 lpfc_extra_ring_setup(phba); 11661 11662 return 0; 11663 } 11664 11665 /** 11666 * lpfc_sli4_queue_init - Queue initialization function 11667 * @phba: Pointer to HBA context object. 11668 * 11669 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 11670 * ring. This function also initializes ring indices of each ring. 11671 * This function is called during the initialization of the SLI 11672 * interface of an HBA. 11673 * This function is called with no lock held and always returns 11674 * 1. 11675 **/ 11676 void 11677 lpfc_sli4_queue_init(struct lpfc_hba *phba) 11678 { 11679 struct lpfc_sli *psli; 11680 struct lpfc_sli_ring *pring; 11681 int i; 11682 11683 psli = &phba->sli; 11684 spin_lock_irq(&phba->hbalock); 11685 INIT_LIST_HEAD(&psli->mboxq); 11686 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11687 /* Initialize list headers for txq and txcmplq as double linked lists */ 11688 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11689 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11690 pring->flag = 0; 11691 pring->ringno = LPFC_FCP_RING; 11692 pring->txcmplq_cnt = 0; 11693 INIT_LIST_HEAD(&pring->txq); 11694 INIT_LIST_HEAD(&pring->txcmplq); 11695 INIT_LIST_HEAD(&pring->iocb_continueq); 11696 spin_lock_init(&pring->ring_lock); 11697 } 11698 pring = phba->sli4_hba.els_wq->pring; 11699 pring->flag = 0; 11700 pring->ringno = LPFC_ELS_RING; 11701 pring->txcmplq_cnt = 0; 11702 INIT_LIST_HEAD(&pring->txq); 11703 INIT_LIST_HEAD(&pring->txcmplq); 11704 INIT_LIST_HEAD(&pring->iocb_continueq); 11705 spin_lock_init(&pring->ring_lock); 11706 11707 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11708 pring = phba->sli4_hba.nvmels_wq->pring; 11709 pring->flag = 0; 11710 pring->ringno = LPFC_ELS_RING; 11711 pring->txcmplq_cnt = 0; 11712 INIT_LIST_HEAD(&pring->txq); 11713 INIT_LIST_HEAD(&pring->txcmplq); 11714 INIT_LIST_HEAD(&pring->iocb_continueq); 11715 spin_lock_init(&pring->ring_lock); 11716 } 11717 11718 spin_unlock_irq(&phba->hbalock); 11719 } 11720 11721 /** 11722 * lpfc_sli_queue_init - Queue initialization function 11723 * @phba: Pointer to HBA context object. 11724 * 11725 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11726 * ring. This function also initializes ring indices of each ring. 11727 * This function is called during the initialization of the SLI 11728 * interface of an HBA. 11729 * This function is called with no lock held and always returns 11730 * 1. 11731 **/ 11732 void 11733 lpfc_sli_queue_init(struct lpfc_hba *phba) 11734 { 11735 struct lpfc_sli *psli; 11736 struct lpfc_sli_ring *pring; 11737 int i; 11738 11739 psli = &phba->sli; 11740 spin_lock_irq(&phba->hbalock); 11741 INIT_LIST_HEAD(&psli->mboxq); 11742 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11743 /* Initialize list headers for txq and txcmplq as double linked lists */ 11744 for (i = 0; i < psli->num_rings; i++) { 11745 pring = &psli->sli3_ring[i]; 11746 pring->ringno = i; 11747 pring->sli.sli3.next_cmdidx = 0; 11748 pring->sli.sli3.local_getidx = 0; 11749 pring->sli.sli3.cmdidx = 0; 11750 INIT_LIST_HEAD(&pring->iocb_continueq); 11751 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11752 INIT_LIST_HEAD(&pring->postbufq); 11753 pring->flag = 0; 11754 INIT_LIST_HEAD(&pring->txq); 11755 INIT_LIST_HEAD(&pring->txcmplq); 11756 spin_lock_init(&pring->ring_lock); 11757 } 11758 spin_unlock_irq(&phba->hbalock); 11759 } 11760 11761 /** 11762 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11763 * @phba: Pointer to HBA context object. 11764 * 11765 * This routine flushes the mailbox command subsystem. It will unconditionally 11766 * flush all the mailbox commands in the three possible stages in the mailbox 11767 * command sub-system: pending mailbox command queue; the outstanding mailbox 11768 * command; and completed mailbox command queue. It is caller's responsibility 11769 * to make sure that the driver is in the proper state to flush the mailbox 11770 * command sub-system. Namely, the posting of mailbox commands into the 11771 * pending mailbox command queue from the various clients must be stopped; 11772 * either the HBA is in a state that it will never works on the outstanding 11773 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11774 * mailbox command has been completed. 11775 **/ 11776 static void 11777 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11778 { 11779 LIST_HEAD(completions); 11780 struct lpfc_sli *psli = &phba->sli; 11781 LPFC_MBOXQ_t *pmb; 11782 unsigned long iflag; 11783 11784 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11785 local_bh_disable(); 11786 11787 /* Flush all the mailbox commands in the mbox system */ 11788 spin_lock_irqsave(&phba->hbalock, iflag); 11789 11790 /* The pending mailbox command queue */ 11791 list_splice_init(&phba->sli.mboxq, &completions); 11792 /* The outstanding active mailbox command */ 11793 if (psli->mbox_active) { 11794 list_add_tail(&psli->mbox_active->list, &completions); 11795 psli->mbox_active = NULL; 11796 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11797 } 11798 /* The completed mailbox command queue */ 11799 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11800 spin_unlock_irqrestore(&phba->hbalock, iflag); 11801 11802 /* Enable softirqs again, done with phba->hbalock */ 11803 local_bh_enable(); 11804 11805 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11806 while (!list_empty(&completions)) { 11807 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11808 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11809 if (pmb->mbox_cmpl) 11810 pmb->mbox_cmpl(phba, pmb); 11811 } 11812 } 11813 11814 /** 11815 * lpfc_sli_host_down - Vport cleanup function 11816 * @vport: Pointer to virtual port object. 11817 * 11818 * lpfc_sli_host_down is called to clean up the resources 11819 * associated with a vport before destroying virtual 11820 * port data structures. 11821 * This function does following operations: 11822 * - Free discovery resources associated with this virtual 11823 * port. 11824 * - Free iocbs associated with this virtual port in 11825 * the txq. 11826 * - Send abort for all iocb commands associated with this 11827 * vport in txcmplq. 11828 * 11829 * This function is called with no lock held and always returns 1. 11830 **/ 11831 int 11832 lpfc_sli_host_down(struct lpfc_vport *vport) 11833 { 11834 LIST_HEAD(completions); 11835 struct lpfc_hba *phba = vport->phba; 11836 struct lpfc_sli *psli = &phba->sli; 11837 struct lpfc_queue *qp = NULL; 11838 struct lpfc_sli_ring *pring; 11839 struct lpfc_iocbq *iocb, *next_iocb; 11840 int i; 11841 unsigned long flags = 0; 11842 uint16_t prev_pring_flag; 11843 11844 lpfc_cleanup_discovery_resources(vport); 11845 11846 spin_lock_irqsave(&phba->hbalock, flags); 11847 11848 /* 11849 * Error everything on the txq since these iocbs 11850 * have not been given to the FW yet. 11851 * Also issue ABTS for everything on the txcmplq 11852 */ 11853 if (phba->sli_rev != LPFC_SLI_REV4) { 11854 for (i = 0; i < psli->num_rings; i++) { 11855 pring = &psli->sli3_ring[i]; 11856 prev_pring_flag = pring->flag; 11857 /* Only slow rings */ 11858 if (pring->ringno == LPFC_ELS_RING) { 11859 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11860 /* Set the lpfc data pending flag */ 11861 set_bit(LPFC_DATA_READY, &phba->data_flags); 11862 } 11863 list_for_each_entry_safe(iocb, next_iocb, 11864 &pring->txq, list) { 11865 if (iocb->vport != vport) 11866 continue; 11867 list_move_tail(&iocb->list, &completions); 11868 } 11869 list_for_each_entry_safe(iocb, next_iocb, 11870 &pring->txcmplq, list) { 11871 if (iocb->vport != vport) 11872 continue; 11873 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11874 NULL); 11875 } 11876 pring->flag = prev_pring_flag; 11877 } 11878 } else { 11879 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11880 pring = qp->pring; 11881 if (!pring) 11882 continue; 11883 if (pring == phba->sli4_hba.els_wq->pring) { 11884 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11885 /* Set the lpfc data pending flag */ 11886 set_bit(LPFC_DATA_READY, &phba->data_flags); 11887 } 11888 prev_pring_flag = pring->flag; 11889 spin_lock(&pring->ring_lock); 11890 list_for_each_entry_safe(iocb, next_iocb, 11891 &pring->txq, list) { 11892 if (iocb->vport != vport) 11893 continue; 11894 list_move_tail(&iocb->list, &completions); 11895 } 11896 spin_unlock(&pring->ring_lock); 11897 list_for_each_entry_safe(iocb, next_iocb, 11898 &pring->txcmplq, list) { 11899 if (iocb->vport != vport) 11900 continue; 11901 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11902 NULL); 11903 } 11904 pring->flag = prev_pring_flag; 11905 } 11906 } 11907 spin_unlock_irqrestore(&phba->hbalock, flags); 11908 11909 /* Make sure HBA is alive */ 11910 lpfc_issue_hb_tmo(phba); 11911 11912 /* Cancel all the IOCBs from the completions list */ 11913 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11914 IOERR_SLI_DOWN); 11915 return 1; 11916 } 11917 11918 /** 11919 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11920 * @phba: Pointer to HBA context object. 11921 * 11922 * This function cleans up all iocb, buffers, mailbox commands 11923 * while shutting down the HBA. This function is called with no 11924 * lock held and always returns 1. 11925 * This function does the following to cleanup driver resources: 11926 * - Free discovery resources for each virtual port 11927 * - Cleanup any pending fabric iocbs 11928 * - Iterate through the iocb txq and free each entry 11929 * in the list. 11930 * - Free up any buffer posted to the HBA 11931 * - Free mailbox commands in the mailbox queue. 11932 **/ 11933 int 11934 lpfc_sli_hba_down(struct lpfc_hba *phba) 11935 { 11936 LIST_HEAD(completions); 11937 struct lpfc_sli *psli = &phba->sli; 11938 struct lpfc_queue *qp = NULL; 11939 struct lpfc_sli_ring *pring; 11940 struct lpfc_dmabuf *buf_ptr; 11941 unsigned long flags = 0; 11942 int i; 11943 11944 /* Shutdown the mailbox command sub-system */ 11945 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 11946 11947 lpfc_hba_down_prep(phba); 11948 11949 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11950 local_bh_disable(); 11951 11952 lpfc_fabric_abort_hba(phba); 11953 11954 spin_lock_irqsave(&phba->hbalock, flags); 11955 11956 /* 11957 * Error everything on the txq since these iocbs 11958 * have not been given to the FW yet. 11959 */ 11960 if (phba->sli_rev != LPFC_SLI_REV4) { 11961 for (i = 0; i < psli->num_rings; i++) { 11962 pring = &psli->sli3_ring[i]; 11963 /* Only slow rings */ 11964 if (pring->ringno == LPFC_ELS_RING) { 11965 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11966 /* Set the lpfc data pending flag */ 11967 set_bit(LPFC_DATA_READY, &phba->data_flags); 11968 } 11969 list_splice_init(&pring->txq, &completions); 11970 } 11971 } else { 11972 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11973 pring = qp->pring; 11974 if (!pring) 11975 continue; 11976 spin_lock(&pring->ring_lock); 11977 list_splice_init(&pring->txq, &completions); 11978 spin_unlock(&pring->ring_lock); 11979 if (pring == phba->sli4_hba.els_wq->pring) { 11980 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11981 /* Set the lpfc data pending flag */ 11982 set_bit(LPFC_DATA_READY, &phba->data_flags); 11983 } 11984 } 11985 } 11986 spin_unlock_irqrestore(&phba->hbalock, flags); 11987 11988 /* Cancel all the IOCBs from the completions list */ 11989 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11990 IOERR_SLI_DOWN); 11991 11992 spin_lock_irqsave(&phba->hbalock, flags); 11993 list_splice_init(&phba->elsbuf, &completions); 11994 phba->elsbuf_cnt = 0; 11995 phba->elsbuf_prev_cnt = 0; 11996 spin_unlock_irqrestore(&phba->hbalock, flags); 11997 11998 while (!list_empty(&completions)) { 11999 list_remove_head(&completions, buf_ptr, 12000 struct lpfc_dmabuf, list); 12001 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 12002 kfree(buf_ptr); 12003 } 12004 12005 /* Enable softirqs again, done with phba->hbalock */ 12006 local_bh_enable(); 12007 12008 /* Return any active mbox cmds */ 12009 del_timer_sync(&psli->mbox_tmo); 12010 12011 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 12012 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12013 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 12014 12015 return 1; 12016 } 12017 12018 /** 12019 * lpfc_sli_pcimem_bcopy - SLI memory copy function 12020 * @srcp: Source memory pointer. 12021 * @destp: Destination memory pointer. 12022 * @cnt: Number of words required to be copied. 12023 * 12024 * This function is used for copying data between driver memory 12025 * and the SLI memory. This function also changes the endianness 12026 * of each word if native endianness is different from SLI 12027 * endianness. This function can be called with or without 12028 * lock. 12029 **/ 12030 void 12031 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 12032 { 12033 uint32_t *src = srcp; 12034 uint32_t *dest = destp; 12035 uint32_t ldata; 12036 int i; 12037 12038 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 12039 ldata = *src; 12040 ldata = le32_to_cpu(ldata); 12041 *dest = ldata; 12042 src++; 12043 dest++; 12044 } 12045 } 12046 12047 12048 /** 12049 * lpfc_sli_bemem_bcopy - SLI memory copy function 12050 * @srcp: Source memory pointer. 12051 * @destp: Destination memory pointer. 12052 * @cnt: Number of words required to be copied. 12053 * 12054 * This function is used for copying data between a data structure 12055 * with big endian representation to local endianness. 12056 * This function can be called with or without lock. 12057 **/ 12058 void 12059 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 12060 { 12061 uint32_t *src = srcp; 12062 uint32_t *dest = destp; 12063 uint32_t ldata; 12064 int i; 12065 12066 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 12067 ldata = *src; 12068 ldata = be32_to_cpu(ldata); 12069 *dest = ldata; 12070 src++; 12071 dest++; 12072 } 12073 } 12074 12075 /** 12076 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 12077 * @phba: Pointer to HBA context object. 12078 * @pring: Pointer to driver SLI ring object. 12079 * @mp: Pointer to driver buffer object. 12080 * 12081 * This function is called with no lock held. 12082 * It always return zero after adding the buffer to the postbufq 12083 * buffer list. 12084 **/ 12085 int 12086 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12087 struct lpfc_dmabuf *mp) 12088 { 12089 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 12090 later */ 12091 spin_lock_irq(&phba->hbalock); 12092 list_add_tail(&mp->list, &pring->postbufq); 12093 pring->postbufq_cnt++; 12094 spin_unlock_irq(&phba->hbalock); 12095 return 0; 12096 } 12097 12098 /** 12099 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 12100 * @phba: Pointer to HBA context object. 12101 * 12102 * When HBQ is enabled, buffers are searched based on tags. This function 12103 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 12104 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 12105 * does not conflict with tags of buffer posted for unsolicited events. 12106 * The function returns the allocated tag. The function is called with 12107 * no locks held. 12108 **/ 12109 uint32_t 12110 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 12111 { 12112 spin_lock_irq(&phba->hbalock); 12113 phba->buffer_tag_count++; 12114 /* 12115 * Always set the QUE_BUFTAG_BIT to distiguish between 12116 * a tag assigned by HBQ. 12117 */ 12118 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 12119 spin_unlock_irq(&phba->hbalock); 12120 return phba->buffer_tag_count; 12121 } 12122 12123 /** 12124 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 12125 * @phba: Pointer to HBA context object. 12126 * @pring: Pointer to driver SLI ring object. 12127 * @tag: Buffer tag. 12128 * 12129 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 12130 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 12131 * iocb is posted to the response ring with the tag of the buffer. 12132 * This function searches the pring->postbufq list using the tag 12133 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 12134 * iocb. If the buffer is found then lpfc_dmabuf object of the 12135 * buffer is returned to the caller else NULL is returned. 12136 * This function is called with no lock held. 12137 **/ 12138 struct lpfc_dmabuf * 12139 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12140 uint32_t tag) 12141 { 12142 struct lpfc_dmabuf *mp, *next_mp; 12143 struct list_head *slp = &pring->postbufq; 12144 12145 /* Search postbufq, from the beginning, looking for a match on tag */ 12146 spin_lock_irq(&phba->hbalock); 12147 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12148 if (mp->buffer_tag == tag) { 12149 list_del_init(&mp->list); 12150 pring->postbufq_cnt--; 12151 spin_unlock_irq(&phba->hbalock); 12152 return mp; 12153 } 12154 } 12155 12156 spin_unlock_irq(&phba->hbalock); 12157 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12158 "0402 Cannot find virtual addr for buffer tag on " 12159 "ring %d Data x%lx x%px x%px x%x\n", 12160 pring->ringno, (unsigned long) tag, 12161 slp->next, slp->prev, pring->postbufq_cnt); 12162 12163 return NULL; 12164 } 12165 12166 /** 12167 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 12168 * @phba: Pointer to HBA context object. 12169 * @pring: Pointer to driver SLI ring object. 12170 * @phys: DMA address of the buffer. 12171 * 12172 * This function searches the buffer list using the dma_address 12173 * of unsolicited event to find the driver's lpfc_dmabuf object 12174 * corresponding to the dma_address. The function returns the 12175 * lpfc_dmabuf object if a buffer is found else it returns NULL. 12176 * This function is called by the ct and els unsolicited event 12177 * handlers to get the buffer associated with the unsolicited 12178 * event. 12179 * 12180 * This function is called with no lock held. 12181 **/ 12182 struct lpfc_dmabuf * 12183 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12184 dma_addr_t phys) 12185 { 12186 struct lpfc_dmabuf *mp, *next_mp; 12187 struct list_head *slp = &pring->postbufq; 12188 12189 /* Search postbufq, from the beginning, looking for a match on phys */ 12190 spin_lock_irq(&phba->hbalock); 12191 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12192 if (mp->phys == phys) { 12193 list_del_init(&mp->list); 12194 pring->postbufq_cnt--; 12195 spin_unlock_irq(&phba->hbalock); 12196 return mp; 12197 } 12198 } 12199 12200 spin_unlock_irq(&phba->hbalock); 12201 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12202 "0410 Cannot find virtual addr for mapped buf on " 12203 "ring %d Data x%llx x%px x%px x%x\n", 12204 pring->ringno, (unsigned long long)phys, 12205 slp->next, slp->prev, pring->postbufq_cnt); 12206 return NULL; 12207 } 12208 12209 /** 12210 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 12211 * @phba: Pointer to HBA context object. 12212 * @cmdiocb: Pointer to driver command iocb object. 12213 * @rspiocb: Pointer to driver response iocb object. 12214 * 12215 * This function is the completion handler for the abort iocbs for 12216 * ELS commands. This function is called from the ELS ring event 12217 * handler with no lock held. This function frees memory resources 12218 * associated with the abort iocb. 12219 **/ 12220 static void 12221 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12222 struct lpfc_iocbq *rspiocb) 12223 { 12224 IOCB_t *irsp = &rspiocb->iocb; 12225 uint16_t abort_iotag, abort_context; 12226 struct lpfc_iocbq *abort_iocb = NULL; 12227 12228 if (irsp->ulpStatus) { 12229 12230 /* 12231 * Assume that the port already completed and returned, or 12232 * will return the iocb. Just Log the message. 12233 */ 12234 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 12235 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 12236 12237 spin_lock_irq(&phba->hbalock); 12238 if (phba->sli_rev < LPFC_SLI_REV4) { 12239 if (irsp->ulpCommand == CMD_ABORT_XRI_CX && 12240 irsp->ulpStatus == IOSTAT_LOCAL_REJECT && 12241 irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) { 12242 spin_unlock_irq(&phba->hbalock); 12243 goto release_iocb; 12244 } 12245 if (abort_iotag != 0 && 12246 abort_iotag <= phba->sli.last_iotag) 12247 abort_iocb = 12248 phba->sli.iocbq_lookup[abort_iotag]; 12249 } else 12250 /* For sli4 the abort_tag is the XRI, 12251 * so the abort routine puts the iotag of the iocb 12252 * being aborted in the context field of the abort 12253 * IOCB. 12254 */ 12255 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 12256 12257 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 12258 "0327 Cannot abort els iocb x%px " 12259 "with tag %x context %x, abort status %x, " 12260 "abort code %x\n", 12261 abort_iocb, abort_iotag, abort_context, 12262 irsp->ulpStatus, irsp->un.ulpWord[4]); 12263 12264 spin_unlock_irq(&phba->hbalock); 12265 } 12266 release_iocb: 12267 lpfc_sli_release_iocbq(phba, cmdiocb); 12268 return; 12269 } 12270 12271 /** 12272 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 12273 * @phba: Pointer to HBA context object. 12274 * @cmdiocb: Pointer to driver command iocb object. 12275 * @rspiocb: Pointer to driver response iocb object. 12276 * 12277 * The function is called from SLI ring event handler with no 12278 * lock held. This function is the completion handler for ELS commands 12279 * which are aborted. The function frees memory resources used for 12280 * the aborted ELS commands. 12281 **/ 12282 void 12283 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12284 struct lpfc_iocbq *rspiocb) 12285 { 12286 struct lpfc_nodelist *ndlp = NULL; 12287 IOCB_t *irsp = &rspiocb->iocb; 12288 12289 /* ELS cmd tag <ulpIoTag> completes */ 12290 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 12291 "0139 Ignoring ELS cmd code x%x completion Data: " 12292 "x%x x%x x%x\n", 12293 irsp->ulpIoTag, irsp->ulpStatus, 12294 irsp->un.ulpWord[4], irsp->ulpTimeout); 12295 /* 12296 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp 12297 * if exchange is busy. 12298 */ 12299 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 12300 ndlp = cmdiocb->context_un.ndlp; 12301 lpfc_ct_free_iocb(phba, cmdiocb); 12302 } else { 12303 ndlp = (struct lpfc_nodelist *) cmdiocb->context1; 12304 lpfc_els_free_iocb(phba, cmdiocb); 12305 } 12306 12307 lpfc_nlp_put(ndlp); 12308 } 12309 12310 /** 12311 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 12312 * @phba: Pointer to HBA context object. 12313 * @pring: Pointer to driver SLI ring object. 12314 * @cmdiocb: Pointer to driver command iocb object. 12315 * @cmpl: completion function. 12316 * 12317 * This function issues an abort iocb for the provided command iocb. In case 12318 * of unloading, the abort iocb will not be issued to commands on the ELS 12319 * ring. Instead, the callback function shall be changed to those commands 12320 * so that nothing happens when them finishes. This function is called with 12321 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 12322 * when the command iocb is an abort request. 12323 * 12324 **/ 12325 int 12326 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12327 struct lpfc_iocbq *cmdiocb, void *cmpl) 12328 { 12329 struct lpfc_vport *vport = cmdiocb->vport; 12330 struct lpfc_iocbq *abtsiocbp; 12331 IOCB_t *icmd = NULL; 12332 IOCB_t *iabt = NULL; 12333 int retval = IOCB_ERROR; 12334 unsigned long iflags; 12335 struct lpfc_nodelist *ndlp; 12336 12337 /* 12338 * There are certain command types we don't want to abort. And we 12339 * don't want to abort commands that are already in the process of 12340 * being aborted. 12341 */ 12342 icmd = &cmdiocb->iocb; 12343 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 12344 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 12345 cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) 12346 return IOCB_ABORTING; 12347 12348 if (!pring) { 12349 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 12350 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 12351 else 12352 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 12353 return retval; 12354 } 12355 12356 /* 12357 * If we're unloading, don't abort iocb on the ELS ring, but change 12358 * the callback so that nothing happens when it finishes. 12359 */ 12360 if ((vport->load_flag & FC_UNLOADING) && 12361 pring->ringno == LPFC_ELS_RING) { 12362 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 12363 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 12364 else 12365 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 12366 return retval; 12367 } 12368 12369 /* issue ABTS for this IOCB based on iotag */ 12370 abtsiocbp = __lpfc_sli_get_iocbq(phba); 12371 if (abtsiocbp == NULL) 12372 return IOCB_NORESOURCE; 12373 12374 /* This signals the response to set the correct status 12375 * before calling the completion handler 12376 */ 12377 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 12378 12379 iabt = &abtsiocbp->iocb; 12380 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 12381 iabt->un.acxri.abortContextTag = icmd->ulpContext; 12382 if (phba->sli_rev == LPFC_SLI_REV4) { 12383 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 12384 if (pring->ringno == LPFC_ELS_RING) 12385 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 12386 } else { 12387 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 12388 if (pring->ringno == LPFC_ELS_RING) { 12389 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1); 12390 iabt->un.acxri.abortContextTag = ndlp->nlp_rpi; 12391 } 12392 } 12393 iabt->ulpLe = 1; 12394 iabt->ulpClass = icmd->ulpClass; 12395 12396 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12397 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 12398 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 12399 abtsiocbp->iocb_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX); 12400 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 12401 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 12402 12403 if (phba->link_state < LPFC_LINK_UP || 12404 (phba->sli_rev == LPFC_SLI_REV4 && 12405 phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN)) 12406 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 12407 else 12408 iabt->ulpCommand = CMD_ABORT_XRI_CN; 12409 12410 if (cmpl) 12411 abtsiocbp->iocb_cmpl = cmpl; 12412 else 12413 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 12414 abtsiocbp->vport = vport; 12415 12416 if (phba->sli_rev == LPFC_SLI_REV4) { 12417 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 12418 if (unlikely(pring == NULL)) 12419 goto abort_iotag_exit; 12420 /* Note: both hbalock and ring_lock need to be set here */ 12421 spin_lock_irqsave(&pring->ring_lock, iflags); 12422 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12423 abtsiocbp, 0); 12424 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12425 } else { 12426 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12427 abtsiocbp, 0); 12428 } 12429 12430 abort_iotag_exit: 12431 12432 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 12433 "0339 Abort xri x%x, original iotag x%x, " 12434 "abort cmd iotag x%x retval x%x\n", 12435 iabt->un.acxri.abortIoTag, 12436 iabt->un.acxri.abortContextTag, 12437 abtsiocbp->iotag, retval); 12438 12439 if (retval) { 12440 cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED; 12441 __lpfc_sli_release_iocbq(phba, abtsiocbp); 12442 } 12443 12444 /* 12445 * Caller to this routine should check for IOCB_ERROR 12446 * and handle it properly. This routine no longer removes 12447 * iocb off txcmplq and call compl in case of IOCB_ERROR. 12448 */ 12449 return retval; 12450 } 12451 12452 /** 12453 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 12454 * @phba: pointer to lpfc HBA data structure. 12455 * 12456 * This routine will abort all pending and outstanding iocbs to an HBA. 12457 **/ 12458 void 12459 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 12460 { 12461 struct lpfc_sli *psli = &phba->sli; 12462 struct lpfc_sli_ring *pring; 12463 struct lpfc_queue *qp = NULL; 12464 int i; 12465 12466 if (phba->sli_rev != LPFC_SLI_REV4) { 12467 for (i = 0; i < psli->num_rings; i++) { 12468 pring = &psli->sli3_ring[i]; 12469 lpfc_sli_abort_iocb_ring(phba, pring); 12470 } 12471 return; 12472 } 12473 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12474 pring = qp->pring; 12475 if (!pring) 12476 continue; 12477 lpfc_sli_abort_iocb_ring(phba, pring); 12478 } 12479 } 12480 12481 /** 12482 * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts 12483 * @iocbq: Pointer to iocb object. 12484 * @vport: Pointer to driver virtual port object. 12485 * 12486 * This function acts as an iocb filter for functions which abort FCP iocbs. 12487 * 12488 * Return values 12489 * -ENODEV, if a null iocb or vport ptr is encountered 12490 * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as 12491 * driver already started the abort process, or is an abort iocb itself 12492 * 0, passes criteria for aborting the FCP I/O iocb 12493 **/ 12494 static int 12495 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq, 12496 struct lpfc_vport *vport) 12497 { 12498 IOCB_t *icmd = NULL; 12499 12500 /* No null ptr vports */ 12501 if (!iocbq || iocbq->vport != vport) 12502 return -ENODEV; 12503 12504 /* iocb must be for FCP IO, already exists on the TX cmpl queue, 12505 * can't be premarked as driver aborted, nor be an ABORT iocb itself 12506 */ 12507 icmd = &iocbq->iocb; 12508 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 12509 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ) || 12510 (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) || 12511 (icmd->ulpCommand == CMD_ABORT_XRI_CN || 12512 icmd->ulpCommand == CMD_CLOSE_XRI_CN)) 12513 return -EINVAL; 12514 12515 return 0; 12516 } 12517 12518 /** 12519 * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target 12520 * @iocbq: Pointer to driver iocb object. 12521 * @vport: Pointer to driver virtual port object. 12522 * @tgt_id: SCSI ID of the target. 12523 * @lun_id: LUN ID of the scsi device. 12524 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 12525 * 12526 * This function acts as an iocb filter for validating a lun/SCSI target/SCSI 12527 * host. 12528 * 12529 * It will return 12530 * 0 if the filtering criteria is met for the given iocb and will return 12531 * 1 if the filtering criteria is not met. 12532 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 12533 * given iocb is for the SCSI device specified by vport, tgt_id and 12534 * lun_id parameter. 12535 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 12536 * given iocb is for the SCSI target specified by vport and tgt_id 12537 * parameters. 12538 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 12539 * given iocb is for the SCSI host associated with the given vport. 12540 * This function is called with no locks held. 12541 **/ 12542 static int 12543 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 12544 uint16_t tgt_id, uint64_t lun_id, 12545 lpfc_ctx_cmd ctx_cmd) 12546 { 12547 struct lpfc_io_buf *lpfc_cmd; 12548 int rc = 1; 12549 12550 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12551 12552 if (lpfc_cmd->pCmd == NULL) 12553 return rc; 12554 12555 switch (ctx_cmd) { 12556 case LPFC_CTX_LUN: 12557 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12558 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 12559 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 12560 rc = 0; 12561 break; 12562 case LPFC_CTX_TGT: 12563 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12564 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 12565 rc = 0; 12566 break; 12567 case LPFC_CTX_HOST: 12568 rc = 0; 12569 break; 12570 default: 12571 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 12572 __func__, ctx_cmd); 12573 break; 12574 } 12575 12576 return rc; 12577 } 12578 12579 /** 12580 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 12581 * @vport: Pointer to virtual port. 12582 * @tgt_id: SCSI ID of the target. 12583 * @lun_id: LUN ID of the scsi device. 12584 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12585 * 12586 * This function returns number of FCP commands pending for the vport. 12587 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 12588 * commands pending on the vport associated with SCSI device specified 12589 * by tgt_id and lun_id parameters. 12590 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 12591 * commands pending on the vport associated with SCSI target specified 12592 * by tgt_id parameter. 12593 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 12594 * commands pending on the vport. 12595 * This function returns the number of iocbs which satisfy the filter. 12596 * This function is called without any lock held. 12597 **/ 12598 int 12599 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 12600 lpfc_ctx_cmd ctx_cmd) 12601 { 12602 struct lpfc_hba *phba = vport->phba; 12603 struct lpfc_iocbq *iocbq; 12604 IOCB_t *icmd = NULL; 12605 int sum, i; 12606 unsigned long iflags; 12607 12608 spin_lock_irqsave(&phba->hbalock, iflags); 12609 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 12610 iocbq = phba->sli.iocbq_lookup[i]; 12611 12612 if (!iocbq || iocbq->vport != vport) 12613 continue; 12614 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 12615 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) 12616 continue; 12617 12618 /* Include counting outstanding aborts */ 12619 icmd = &iocbq->iocb; 12620 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 12621 icmd->ulpCommand == CMD_CLOSE_XRI_CN) { 12622 sum++; 12623 continue; 12624 } 12625 12626 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12627 ctx_cmd) == 0) 12628 sum++; 12629 } 12630 spin_unlock_irqrestore(&phba->hbalock, iflags); 12631 12632 return sum; 12633 } 12634 12635 /** 12636 * lpfc_sli4_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12637 * @phba: Pointer to HBA context object 12638 * @cmdiocb: Pointer to command iocb object. 12639 * @wcqe: pointer to the complete wcqe 12640 * 12641 * This function is called when an aborted FCP iocb completes. This 12642 * function is called by the ring event handler with no lock held. 12643 * This function frees the iocb. It is called for sli-4 adapters. 12644 **/ 12645 void 12646 lpfc_sli4_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12647 struct lpfc_wcqe_complete *wcqe) 12648 { 12649 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12650 "3017 ABORT_XRI_CN completing on rpi x%x " 12651 "original iotag x%x, abort cmd iotag x%x " 12652 "status 0x%x, reason 0x%x\n", 12653 cmdiocb->iocb.un.acxri.abortContextTag, 12654 cmdiocb->iocb.un.acxri.abortIoTag, 12655 cmdiocb->iotag, 12656 (bf_get(lpfc_wcqe_c_status, wcqe) 12657 & LPFC_IOCB_STATUS_MASK), 12658 wcqe->parameter); 12659 lpfc_sli_release_iocbq(phba, cmdiocb); 12660 } 12661 12662 /** 12663 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12664 * @phba: Pointer to HBA context object 12665 * @cmdiocb: Pointer to command iocb object. 12666 * @rspiocb: Pointer to response iocb object. 12667 * 12668 * This function is called when an aborted FCP iocb completes. This 12669 * function is called by the ring event handler with no lock held. 12670 * This function frees the iocb. 12671 **/ 12672 void 12673 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12674 struct lpfc_iocbq *rspiocb) 12675 { 12676 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12677 "3096 ABORT_XRI_CN completing on rpi x%x " 12678 "original iotag x%x, abort cmd iotag x%x " 12679 "status 0x%x, reason 0x%x\n", 12680 cmdiocb->iocb.un.acxri.abortContextTag, 12681 cmdiocb->iocb.un.acxri.abortIoTag, 12682 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 12683 rspiocb->iocb.un.ulpWord[4]); 12684 lpfc_sli_release_iocbq(phba, cmdiocb); 12685 return; 12686 } 12687 12688 /** 12689 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 12690 * @vport: Pointer to virtual port. 12691 * @tgt_id: SCSI ID of the target. 12692 * @lun_id: LUN ID of the scsi device. 12693 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12694 * 12695 * This function sends an abort command for every SCSI command 12696 * associated with the given virtual port pending on the ring 12697 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12698 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12699 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12700 * followed by lpfc_sli_validate_fcp_iocb. 12701 * 12702 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 12703 * FCP iocbs associated with lun specified by tgt_id and lun_id 12704 * parameters 12705 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 12706 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12707 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 12708 * FCP iocbs associated with virtual port. 12709 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 12710 * lpfc_sli4_calc_ring is used. 12711 * This function returns number of iocbs it failed to abort. 12712 * This function is called with no locks held. 12713 **/ 12714 int 12715 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 12716 lpfc_ctx_cmd abort_cmd) 12717 { 12718 struct lpfc_hba *phba = vport->phba; 12719 struct lpfc_sli_ring *pring = NULL; 12720 struct lpfc_iocbq *iocbq; 12721 int errcnt = 0, ret_val = 0; 12722 unsigned long iflags; 12723 int i; 12724 void *fcp_cmpl = NULL; 12725 12726 /* all I/Os are in process of being flushed */ 12727 if (phba->hba_flag & HBA_IOQ_FLUSH) 12728 return errcnt; 12729 12730 for (i = 1; i <= phba->sli.last_iotag; i++) { 12731 iocbq = phba->sli.iocbq_lookup[i]; 12732 12733 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12734 continue; 12735 12736 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12737 abort_cmd) != 0) 12738 continue; 12739 12740 spin_lock_irqsave(&phba->hbalock, iflags); 12741 if (phba->sli_rev == LPFC_SLI_REV3) { 12742 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12743 fcp_cmpl = lpfc_sli_abort_fcp_cmpl; 12744 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12745 pring = lpfc_sli4_calc_ring(phba, iocbq); 12746 fcp_cmpl = lpfc_sli4_abort_fcp_cmpl; 12747 } 12748 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12749 fcp_cmpl); 12750 spin_unlock_irqrestore(&phba->hbalock, iflags); 12751 if (ret_val != IOCB_SUCCESS) 12752 errcnt++; 12753 } 12754 12755 return errcnt; 12756 } 12757 12758 /** 12759 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12760 * @vport: Pointer to virtual port. 12761 * @pring: Pointer to driver SLI ring object. 12762 * @tgt_id: SCSI ID of the target. 12763 * @lun_id: LUN ID of the scsi device. 12764 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12765 * 12766 * This function sends an abort command for every SCSI command 12767 * associated with the given virtual port pending on the ring 12768 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12769 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12770 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12771 * followed by lpfc_sli_validate_fcp_iocb. 12772 * 12773 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12774 * FCP iocbs associated with lun specified by tgt_id and lun_id 12775 * parameters 12776 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12777 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12778 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12779 * FCP iocbs associated with virtual port. 12780 * This function returns number of iocbs it aborted . 12781 * This function is called with no locks held right after a taskmgmt 12782 * command is sent. 12783 **/ 12784 int 12785 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12786 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12787 { 12788 struct lpfc_hba *phba = vport->phba; 12789 struct lpfc_io_buf *lpfc_cmd; 12790 struct lpfc_iocbq *abtsiocbq; 12791 struct lpfc_nodelist *ndlp; 12792 struct lpfc_iocbq *iocbq; 12793 IOCB_t *icmd; 12794 int sum, i, ret_val; 12795 unsigned long iflags; 12796 struct lpfc_sli_ring *pring_s4 = NULL; 12797 12798 spin_lock_irqsave(&phba->hbalock, iflags); 12799 12800 /* all I/Os are in process of being flushed */ 12801 if (phba->hba_flag & HBA_IOQ_FLUSH) { 12802 spin_unlock_irqrestore(&phba->hbalock, iflags); 12803 return 0; 12804 } 12805 sum = 0; 12806 12807 for (i = 1; i <= phba->sli.last_iotag; i++) { 12808 iocbq = phba->sli.iocbq_lookup[i]; 12809 12810 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12811 continue; 12812 12813 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12814 cmd) != 0) 12815 continue; 12816 12817 /* Guard against IO completion being called at same time */ 12818 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12819 spin_lock(&lpfc_cmd->buf_lock); 12820 12821 if (!lpfc_cmd->pCmd) { 12822 spin_unlock(&lpfc_cmd->buf_lock); 12823 continue; 12824 } 12825 12826 if (phba->sli_rev == LPFC_SLI_REV4) { 12827 pring_s4 = 12828 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12829 if (!pring_s4) { 12830 spin_unlock(&lpfc_cmd->buf_lock); 12831 continue; 12832 } 12833 /* Note: both hbalock and ring_lock must be set here */ 12834 spin_lock(&pring_s4->ring_lock); 12835 } 12836 12837 /* 12838 * If the iocbq is already being aborted, don't take a second 12839 * action, but do count it. 12840 */ 12841 if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) || 12842 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) { 12843 if (phba->sli_rev == LPFC_SLI_REV4) 12844 spin_unlock(&pring_s4->ring_lock); 12845 spin_unlock(&lpfc_cmd->buf_lock); 12846 continue; 12847 } 12848 12849 /* issue ABTS for this IOCB based on iotag */ 12850 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12851 if (!abtsiocbq) { 12852 if (phba->sli_rev == LPFC_SLI_REV4) 12853 spin_unlock(&pring_s4->ring_lock); 12854 spin_unlock(&lpfc_cmd->buf_lock); 12855 continue; 12856 } 12857 12858 icmd = &iocbq->iocb; 12859 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 12860 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 12861 if (phba->sli_rev == LPFC_SLI_REV4) 12862 abtsiocbq->iocb.un.acxri.abortIoTag = 12863 iocbq->sli4_xritag; 12864 else 12865 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 12866 abtsiocbq->iocb.ulpLe = 1; 12867 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 12868 abtsiocbq->vport = vport; 12869 12870 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12871 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12872 if (iocbq->iocb_flag & LPFC_IO_FCP) 12873 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 12874 if (iocbq->iocb_flag & LPFC_IO_FOF) 12875 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 12876 12877 ndlp = lpfc_cmd->rdata->pnode; 12878 12879 if (lpfc_is_link_up(phba) && 12880 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 12881 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 12882 else 12883 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 12884 12885 /* Setup callback routine and issue the command. */ 12886 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 12887 12888 /* 12889 * Indicate the IO is being aborted by the driver and set 12890 * the caller's flag into the aborted IO. 12891 */ 12892 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 12893 12894 if (phba->sli_rev == LPFC_SLI_REV4) { 12895 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12896 abtsiocbq, 0); 12897 spin_unlock(&pring_s4->ring_lock); 12898 } else { 12899 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12900 abtsiocbq, 0); 12901 } 12902 12903 spin_unlock(&lpfc_cmd->buf_lock); 12904 12905 if (ret_val == IOCB_ERROR) 12906 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12907 else 12908 sum++; 12909 } 12910 spin_unlock_irqrestore(&phba->hbalock, iflags); 12911 return sum; 12912 } 12913 12914 /** 12915 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12916 * @phba: Pointer to HBA context object. 12917 * @cmdiocbq: Pointer to command iocb. 12918 * @rspiocbq: Pointer to response iocb. 12919 * 12920 * This function is the completion handler for iocbs issued using 12921 * lpfc_sli_issue_iocb_wait function. This function is called by the 12922 * ring event handler function without any lock held. This function 12923 * can be called from both worker thread context and interrupt 12924 * context. This function also can be called from other thread which 12925 * cleans up the SLI layer objects. 12926 * This function copy the contents of the response iocb to the 12927 * response iocb memory object provided by the caller of 12928 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12929 * sleeps for the iocb completion. 12930 **/ 12931 static void 12932 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12933 struct lpfc_iocbq *cmdiocbq, 12934 struct lpfc_iocbq *rspiocbq) 12935 { 12936 wait_queue_head_t *pdone_q; 12937 unsigned long iflags; 12938 struct lpfc_io_buf *lpfc_cmd; 12939 12940 spin_lock_irqsave(&phba->hbalock, iflags); 12941 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 12942 12943 /* 12944 * A time out has occurred for the iocb. If a time out 12945 * completion handler has been supplied, call it. Otherwise, 12946 * just free the iocbq. 12947 */ 12948 12949 spin_unlock_irqrestore(&phba->hbalock, iflags); 12950 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 12951 cmdiocbq->wait_iocb_cmpl = NULL; 12952 if (cmdiocbq->iocb_cmpl) 12953 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 12954 else 12955 lpfc_sli_release_iocbq(phba, cmdiocbq); 12956 return; 12957 } 12958 12959 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 12960 if (cmdiocbq->context2 && rspiocbq) 12961 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 12962 &rspiocbq->iocb, sizeof(IOCB_t)); 12963 12964 /* Set the exchange busy flag for task management commands */ 12965 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 12966 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 12967 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 12968 cur_iocbq); 12969 if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY)) 12970 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 12971 else 12972 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 12973 } 12974 12975 pdone_q = cmdiocbq->context_un.wait_queue; 12976 if (pdone_q) 12977 wake_up(pdone_q); 12978 spin_unlock_irqrestore(&phba->hbalock, iflags); 12979 return; 12980 } 12981 12982 /** 12983 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 12984 * @phba: Pointer to HBA context object.. 12985 * @piocbq: Pointer to command iocb. 12986 * @flag: Flag to test. 12987 * 12988 * This routine grabs the hbalock and then test the iocb_flag to 12989 * see if the passed in flag is set. 12990 * Returns: 12991 * 1 if flag is set. 12992 * 0 if flag is not set. 12993 **/ 12994 static int 12995 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 12996 struct lpfc_iocbq *piocbq, uint32_t flag) 12997 { 12998 unsigned long iflags; 12999 int ret; 13000 13001 spin_lock_irqsave(&phba->hbalock, iflags); 13002 ret = piocbq->iocb_flag & flag; 13003 spin_unlock_irqrestore(&phba->hbalock, iflags); 13004 return ret; 13005 13006 } 13007 13008 /** 13009 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 13010 * @phba: Pointer to HBA context object.. 13011 * @ring_number: Ring number 13012 * @piocb: Pointer to command iocb. 13013 * @prspiocbq: Pointer to response iocb. 13014 * @timeout: Timeout in number of seconds. 13015 * 13016 * This function issues the iocb to firmware and waits for the 13017 * iocb to complete. The iocb_cmpl field of the shall be used 13018 * to handle iocbs which time out. If the field is NULL, the 13019 * function shall free the iocbq structure. If more clean up is 13020 * needed, the caller is expected to provide a completion function 13021 * that will provide the needed clean up. If the iocb command is 13022 * not completed within timeout seconds, the function will either 13023 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 13024 * completion function set in the iocb_cmpl field and then return 13025 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 13026 * resources if this function returns IOCB_TIMEDOUT. 13027 * The function waits for the iocb completion using an 13028 * non-interruptible wait. 13029 * This function will sleep while waiting for iocb completion. 13030 * So, this function should not be called from any context which 13031 * does not allow sleeping. Due to the same reason, this function 13032 * cannot be called with interrupt disabled. 13033 * This function assumes that the iocb completions occur while 13034 * this function sleep. So, this function cannot be called from 13035 * the thread which process iocb completion for this ring. 13036 * This function clears the iocb_flag of the iocb object before 13037 * issuing the iocb and the iocb completion handler sets this 13038 * flag and wakes this thread when the iocb completes. 13039 * The contents of the response iocb will be copied to prspiocbq 13040 * by the completion handler when the command completes. 13041 * This function returns IOCB_SUCCESS when success. 13042 * This function is called with no lock held. 13043 **/ 13044 int 13045 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 13046 uint32_t ring_number, 13047 struct lpfc_iocbq *piocb, 13048 struct lpfc_iocbq *prspiocbq, 13049 uint32_t timeout) 13050 { 13051 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 13052 long timeleft, timeout_req = 0; 13053 int retval = IOCB_SUCCESS; 13054 uint32_t creg_val; 13055 struct lpfc_iocbq *iocb; 13056 int txq_cnt = 0; 13057 int txcmplq_cnt = 0; 13058 struct lpfc_sli_ring *pring; 13059 unsigned long iflags; 13060 bool iocb_completed = true; 13061 13062 if (phba->sli_rev >= LPFC_SLI_REV4) 13063 pring = lpfc_sli4_calc_ring(phba, piocb); 13064 else 13065 pring = &phba->sli.sli3_ring[ring_number]; 13066 /* 13067 * If the caller has provided a response iocbq buffer, then context2 13068 * is NULL or its an error. 13069 */ 13070 if (prspiocbq) { 13071 if (piocb->context2) 13072 return IOCB_ERROR; 13073 piocb->context2 = prspiocbq; 13074 } 13075 13076 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 13077 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 13078 piocb->context_un.wait_queue = &done_q; 13079 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 13080 13081 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13082 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13083 return IOCB_ERROR; 13084 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 13085 writel(creg_val, phba->HCregaddr); 13086 readl(phba->HCregaddr); /* flush */ 13087 } 13088 13089 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 13090 SLI_IOCB_RET_IOCB); 13091 if (retval == IOCB_SUCCESS) { 13092 timeout_req = msecs_to_jiffies(timeout * 1000); 13093 timeleft = wait_event_timeout(done_q, 13094 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 13095 timeout_req); 13096 spin_lock_irqsave(&phba->hbalock, iflags); 13097 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 13098 13099 /* 13100 * IOCB timed out. Inform the wake iocb wait 13101 * completion function and set local status 13102 */ 13103 13104 iocb_completed = false; 13105 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 13106 } 13107 spin_unlock_irqrestore(&phba->hbalock, iflags); 13108 if (iocb_completed) { 13109 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13110 "0331 IOCB wake signaled\n"); 13111 /* Note: we are not indicating if the IOCB has a success 13112 * status or not - that's for the caller to check. 13113 * IOCB_SUCCESS means just that the command was sent and 13114 * completed. Not that it completed successfully. 13115 * */ 13116 } else if (timeleft == 0) { 13117 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13118 "0338 IOCB wait timeout error - no " 13119 "wake response Data x%x\n", timeout); 13120 retval = IOCB_TIMEDOUT; 13121 } else { 13122 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13123 "0330 IOCB wake NOT set, " 13124 "Data x%x x%lx\n", 13125 timeout, (timeleft / jiffies)); 13126 retval = IOCB_TIMEDOUT; 13127 } 13128 } else if (retval == IOCB_BUSY) { 13129 if (phba->cfg_log_verbose & LOG_SLI) { 13130 list_for_each_entry(iocb, &pring->txq, list) { 13131 txq_cnt++; 13132 } 13133 list_for_each_entry(iocb, &pring->txcmplq, list) { 13134 txcmplq_cnt++; 13135 } 13136 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13137 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 13138 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 13139 } 13140 return retval; 13141 } else { 13142 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13143 "0332 IOCB wait issue failed, Data x%x\n", 13144 retval); 13145 retval = IOCB_ERROR; 13146 } 13147 13148 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13149 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13150 return IOCB_ERROR; 13151 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 13152 writel(creg_val, phba->HCregaddr); 13153 readl(phba->HCregaddr); /* flush */ 13154 } 13155 13156 if (prspiocbq) 13157 piocb->context2 = NULL; 13158 13159 piocb->context_un.wait_queue = NULL; 13160 piocb->iocb_cmpl = NULL; 13161 return retval; 13162 } 13163 13164 /** 13165 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 13166 * @phba: Pointer to HBA context object. 13167 * @pmboxq: Pointer to driver mailbox object. 13168 * @timeout: Timeout in number of seconds. 13169 * 13170 * This function issues the mailbox to firmware and waits for the 13171 * mailbox command to complete. If the mailbox command is not 13172 * completed within timeout seconds, it returns MBX_TIMEOUT. 13173 * The function waits for the mailbox completion using an 13174 * interruptible wait. If the thread is woken up due to a 13175 * signal, MBX_TIMEOUT error is returned to the caller. Caller 13176 * should not free the mailbox resources, if this function returns 13177 * MBX_TIMEOUT. 13178 * This function will sleep while waiting for mailbox completion. 13179 * So, this function should not be called from any context which 13180 * does not allow sleeping. Due to the same reason, this function 13181 * cannot be called with interrupt disabled. 13182 * This function assumes that the mailbox completion occurs while 13183 * this function sleep. So, this function cannot be called from 13184 * the worker thread which processes mailbox completion. 13185 * This function is called in the context of HBA management 13186 * applications. 13187 * This function returns MBX_SUCCESS when successful. 13188 * This function is called with no lock held. 13189 **/ 13190 int 13191 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 13192 uint32_t timeout) 13193 { 13194 struct completion mbox_done; 13195 int retval; 13196 unsigned long flag; 13197 13198 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 13199 /* setup wake call as IOCB callback */ 13200 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 13201 13202 /* setup context3 field to pass wait_queue pointer to wake function */ 13203 init_completion(&mbox_done); 13204 pmboxq->context3 = &mbox_done; 13205 /* now issue the command */ 13206 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 13207 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 13208 wait_for_completion_timeout(&mbox_done, 13209 msecs_to_jiffies(timeout * 1000)); 13210 13211 spin_lock_irqsave(&phba->hbalock, flag); 13212 pmboxq->context3 = NULL; 13213 /* 13214 * if LPFC_MBX_WAKE flag is set the mailbox is completed 13215 * else do not free the resources. 13216 */ 13217 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 13218 retval = MBX_SUCCESS; 13219 } else { 13220 retval = MBX_TIMEOUT; 13221 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13222 } 13223 spin_unlock_irqrestore(&phba->hbalock, flag); 13224 } 13225 return retval; 13226 } 13227 13228 /** 13229 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 13230 * @phba: Pointer to HBA context. 13231 * @mbx_action: Mailbox shutdown options. 13232 * 13233 * This function is called to shutdown the driver's mailbox sub-system. 13234 * It first marks the mailbox sub-system is in a block state to prevent 13235 * the asynchronous mailbox command from issued off the pending mailbox 13236 * command queue. If the mailbox command sub-system shutdown is due to 13237 * HBA error conditions such as EEH or ERATT, this routine shall invoke 13238 * the mailbox sub-system flush routine to forcefully bring down the 13239 * mailbox sub-system. Otherwise, if it is due to normal condition (such 13240 * as with offline or HBA function reset), this routine will wait for the 13241 * outstanding mailbox command to complete before invoking the mailbox 13242 * sub-system flush routine to gracefully bring down mailbox sub-system. 13243 **/ 13244 void 13245 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 13246 { 13247 struct lpfc_sli *psli = &phba->sli; 13248 unsigned long timeout; 13249 13250 if (mbx_action == LPFC_MBX_NO_WAIT) { 13251 /* delay 100ms for port state */ 13252 msleep(100); 13253 lpfc_sli_mbox_sys_flush(phba); 13254 return; 13255 } 13256 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 13257 13258 /* Disable softirqs, including timers from obtaining phba->hbalock */ 13259 local_bh_disable(); 13260 13261 spin_lock_irq(&phba->hbalock); 13262 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13263 13264 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 13265 /* Determine how long we might wait for the active mailbox 13266 * command to be gracefully completed by firmware. 13267 */ 13268 if (phba->sli.mbox_active) 13269 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 13270 phba->sli.mbox_active) * 13271 1000) + jiffies; 13272 spin_unlock_irq(&phba->hbalock); 13273 13274 /* Enable softirqs again, done with phba->hbalock */ 13275 local_bh_enable(); 13276 13277 while (phba->sli.mbox_active) { 13278 /* Check active mailbox complete status every 2ms */ 13279 msleep(2); 13280 if (time_after(jiffies, timeout)) 13281 /* Timeout, let the mailbox flush routine to 13282 * forcefully release active mailbox command 13283 */ 13284 break; 13285 } 13286 } else { 13287 spin_unlock_irq(&phba->hbalock); 13288 13289 /* Enable softirqs again, done with phba->hbalock */ 13290 local_bh_enable(); 13291 } 13292 13293 lpfc_sli_mbox_sys_flush(phba); 13294 } 13295 13296 /** 13297 * lpfc_sli_eratt_read - read sli-3 error attention events 13298 * @phba: Pointer to HBA context. 13299 * 13300 * This function is called to read the SLI3 device error attention registers 13301 * for possible error attention events. The caller must hold the hostlock 13302 * with spin_lock_irq(). 13303 * 13304 * This function returns 1 when there is Error Attention in the Host Attention 13305 * Register and returns 0 otherwise. 13306 **/ 13307 static int 13308 lpfc_sli_eratt_read(struct lpfc_hba *phba) 13309 { 13310 uint32_t ha_copy; 13311 13312 /* Read chip Host Attention (HA) register */ 13313 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13314 goto unplug_err; 13315 13316 if (ha_copy & HA_ERATT) { 13317 /* Read host status register to retrieve error event */ 13318 if (lpfc_sli_read_hs(phba)) 13319 goto unplug_err; 13320 13321 /* Check if there is a deferred error condition is active */ 13322 if ((HS_FFER1 & phba->work_hs) && 13323 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13324 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 13325 phba->hba_flag |= DEFER_ERATT; 13326 /* Clear all interrupt enable conditions */ 13327 writel(0, phba->HCregaddr); 13328 readl(phba->HCregaddr); 13329 } 13330 13331 /* Set the driver HA work bitmap */ 13332 phba->work_ha |= HA_ERATT; 13333 /* Indicate polling handles this ERATT */ 13334 phba->hba_flag |= HBA_ERATT_HANDLED; 13335 return 1; 13336 } 13337 return 0; 13338 13339 unplug_err: 13340 /* Set the driver HS work bitmap */ 13341 phba->work_hs |= UNPLUG_ERR; 13342 /* Set the driver HA work bitmap */ 13343 phba->work_ha |= HA_ERATT; 13344 /* Indicate polling handles this ERATT */ 13345 phba->hba_flag |= HBA_ERATT_HANDLED; 13346 return 1; 13347 } 13348 13349 /** 13350 * lpfc_sli4_eratt_read - read sli-4 error attention events 13351 * @phba: Pointer to HBA context. 13352 * 13353 * This function is called to read the SLI4 device error attention registers 13354 * for possible error attention events. The caller must hold the hostlock 13355 * with spin_lock_irq(). 13356 * 13357 * This function returns 1 when there is Error Attention in the Host Attention 13358 * Register and returns 0 otherwise. 13359 **/ 13360 static int 13361 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 13362 { 13363 uint32_t uerr_sta_hi, uerr_sta_lo; 13364 uint32_t if_type, portsmphr; 13365 struct lpfc_register portstat_reg; 13366 13367 /* 13368 * For now, use the SLI4 device internal unrecoverable error 13369 * registers for error attention. This can be changed later. 13370 */ 13371 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 13372 switch (if_type) { 13373 case LPFC_SLI_INTF_IF_TYPE_0: 13374 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 13375 &uerr_sta_lo) || 13376 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 13377 &uerr_sta_hi)) { 13378 phba->work_hs |= UNPLUG_ERR; 13379 phba->work_ha |= HA_ERATT; 13380 phba->hba_flag |= HBA_ERATT_HANDLED; 13381 return 1; 13382 } 13383 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 13384 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 13385 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13386 "1423 HBA Unrecoverable error: " 13387 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 13388 "ue_mask_lo_reg=0x%x, " 13389 "ue_mask_hi_reg=0x%x\n", 13390 uerr_sta_lo, uerr_sta_hi, 13391 phba->sli4_hba.ue_mask_lo, 13392 phba->sli4_hba.ue_mask_hi); 13393 phba->work_status[0] = uerr_sta_lo; 13394 phba->work_status[1] = uerr_sta_hi; 13395 phba->work_ha |= HA_ERATT; 13396 phba->hba_flag |= HBA_ERATT_HANDLED; 13397 return 1; 13398 } 13399 break; 13400 case LPFC_SLI_INTF_IF_TYPE_2: 13401 case LPFC_SLI_INTF_IF_TYPE_6: 13402 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 13403 &portstat_reg.word0) || 13404 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 13405 &portsmphr)){ 13406 phba->work_hs |= UNPLUG_ERR; 13407 phba->work_ha |= HA_ERATT; 13408 phba->hba_flag |= HBA_ERATT_HANDLED; 13409 return 1; 13410 } 13411 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 13412 phba->work_status[0] = 13413 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 13414 phba->work_status[1] = 13415 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 13416 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13417 "2885 Port Status Event: " 13418 "port status reg 0x%x, " 13419 "port smphr reg 0x%x, " 13420 "error 1=0x%x, error 2=0x%x\n", 13421 portstat_reg.word0, 13422 portsmphr, 13423 phba->work_status[0], 13424 phba->work_status[1]); 13425 phba->work_ha |= HA_ERATT; 13426 phba->hba_flag |= HBA_ERATT_HANDLED; 13427 return 1; 13428 } 13429 break; 13430 case LPFC_SLI_INTF_IF_TYPE_1: 13431 default: 13432 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13433 "2886 HBA Error Attention on unsupported " 13434 "if type %d.", if_type); 13435 return 1; 13436 } 13437 13438 return 0; 13439 } 13440 13441 /** 13442 * lpfc_sli_check_eratt - check error attention events 13443 * @phba: Pointer to HBA context. 13444 * 13445 * This function is called from timer soft interrupt context to check HBA's 13446 * error attention register bit for error attention events. 13447 * 13448 * This function returns 1 when there is Error Attention in the Host Attention 13449 * Register and returns 0 otherwise. 13450 **/ 13451 int 13452 lpfc_sli_check_eratt(struct lpfc_hba *phba) 13453 { 13454 uint32_t ha_copy; 13455 13456 /* If somebody is waiting to handle an eratt, don't process it 13457 * here. The brdkill function will do this. 13458 */ 13459 if (phba->link_flag & LS_IGNORE_ERATT) 13460 return 0; 13461 13462 /* Check if interrupt handler handles this ERATT */ 13463 spin_lock_irq(&phba->hbalock); 13464 if (phba->hba_flag & HBA_ERATT_HANDLED) { 13465 /* Interrupt handler has handled ERATT */ 13466 spin_unlock_irq(&phba->hbalock); 13467 return 0; 13468 } 13469 13470 /* 13471 * If there is deferred error attention, do not check for error 13472 * attention 13473 */ 13474 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13475 spin_unlock_irq(&phba->hbalock); 13476 return 0; 13477 } 13478 13479 /* If PCI channel is offline, don't process it */ 13480 if (unlikely(pci_channel_offline(phba->pcidev))) { 13481 spin_unlock_irq(&phba->hbalock); 13482 return 0; 13483 } 13484 13485 switch (phba->sli_rev) { 13486 case LPFC_SLI_REV2: 13487 case LPFC_SLI_REV3: 13488 /* Read chip Host Attention (HA) register */ 13489 ha_copy = lpfc_sli_eratt_read(phba); 13490 break; 13491 case LPFC_SLI_REV4: 13492 /* Read device Uncoverable Error (UERR) registers */ 13493 ha_copy = lpfc_sli4_eratt_read(phba); 13494 break; 13495 default: 13496 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13497 "0299 Invalid SLI revision (%d)\n", 13498 phba->sli_rev); 13499 ha_copy = 0; 13500 break; 13501 } 13502 spin_unlock_irq(&phba->hbalock); 13503 13504 return ha_copy; 13505 } 13506 13507 /** 13508 * lpfc_intr_state_check - Check device state for interrupt handling 13509 * @phba: Pointer to HBA context. 13510 * 13511 * This inline routine checks whether a device or its PCI slot is in a state 13512 * that the interrupt should be handled. 13513 * 13514 * This function returns 0 if the device or the PCI slot is in a state that 13515 * interrupt should be handled, otherwise -EIO. 13516 */ 13517 static inline int 13518 lpfc_intr_state_check(struct lpfc_hba *phba) 13519 { 13520 /* If the pci channel is offline, ignore all the interrupts */ 13521 if (unlikely(pci_channel_offline(phba->pcidev))) 13522 return -EIO; 13523 13524 /* Update device level interrupt statistics */ 13525 phba->sli.slistat.sli_intr++; 13526 13527 /* Ignore all interrupts during initialization. */ 13528 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 13529 return -EIO; 13530 13531 return 0; 13532 } 13533 13534 /** 13535 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 13536 * @irq: Interrupt number. 13537 * @dev_id: The device context pointer. 13538 * 13539 * This function is directly called from the PCI layer as an interrupt 13540 * service routine when device with SLI-3 interface spec is enabled with 13541 * MSI-X multi-message interrupt mode and there are slow-path events in 13542 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 13543 * interrupt mode, this function is called as part of the device-level 13544 * interrupt handler. When the PCI slot is in error recovery or the HBA 13545 * is undergoing initialization, the interrupt handler will not process 13546 * the interrupt. The link attention and ELS ring attention events are 13547 * handled by the worker thread. The interrupt handler signals the worker 13548 * thread and returns for these events. This function is called without 13549 * any lock held. It gets the hbalock to access and update SLI data 13550 * structures. 13551 * 13552 * This function returns IRQ_HANDLED when interrupt is handled else it 13553 * returns IRQ_NONE. 13554 **/ 13555 irqreturn_t 13556 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 13557 { 13558 struct lpfc_hba *phba; 13559 uint32_t ha_copy, hc_copy; 13560 uint32_t work_ha_copy; 13561 unsigned long status; 13562 unsigned long iflag; 13563 uint32_t control; 13564 13565 MAILBOX_t *mbox, *pmbox; 13566 struct lpfc_vport *vport; 13567 struct lpfc_nodelist *ndlp; 13568 struct lpfc_dmabuf *mp; 13569 LPFC_MBOXQ_t *pmb; 13570 int rc; 13571 13572 /* 13573 * Get the driver's phba structure from the dev_id and 13574 * assume the HBA is not interrupting. 13575 */ 13576 phba = (struct lpfc_hba *)dev_id; 13577 13578 if (unlikely(!phba)) 13579 return IRQ_NONE; 13580 13581 /* 13582 * Stuff needs to be attented to when this function is invoked as an 13583 * individual interrupt handler in MSI-X multi-message interrupt mode 13584 */ 13585 if (phba->intr_type == MSIX) { 13586 /* Check device state for handling interrupt */ 13587 if (lpfc_intr_state_check(phba)) 13588 return IRQ_NONE; 13589 /* Need to read HA REG for slow-path events */ 13590 spin_lock_irqsave(&phba->hbalock, iflag); 13591 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13592 goto unplug_error; 13593 /* If somebody is waiting to handle an eratt don't process it 13594 * here. The brdkill function will do this. 13595 */ 13596 if (phba->link_flag & LS_IGNORE_ERATT) 13597 ha_copy &= ~HA_ERATT; 13598 /* Check the need for handling ERATT in interrupt handler */ 13599 if (ha_copy & HA_ERATT) { 13600 if (phba->hba_flag & HBA_ERATT_HANDLED) 13601 /* ERATT polling has handled ERATT */ 13602 ha_copy &= ~HA_ERATT; 13603 else 13604 /* Indicate interrupt handler handles ERATT */ 13605 phba->hba_flag |= HBA_ERATT_HANDLED; 13606 } 13607 13608 /* 13609 * If there is deferred error attention, do not check for any 13610 * interrupt. 13611 */ 13612 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13613 spin_unlock_irqrestore(&phba->hbalock, iflag); 13614 return IRQ_NONE; 13615 } 13616 13617 /* Clear up only attention source related to slow-path */ 13618 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 13619 goto unplug_error; 13620 13621 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 13622 HC_LAINT_ENA | HC_ERINT_ENA), 13623 phba->HCregaddr); 13624 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 13625 phba->HAregaddr); 13626 writel(hc_copy, phba->HCregaddr); 13627 readl(phba->HAregaddr); /* flush */ 13628 spin_unlock_irqrestore(&phba->hbalock, iflag); 13629 } else 13630 ha_copy = phba->ha_copy; 13631 13632 work_ha_copy = ha_copy & phba->work_ha_mask; 13633 13634 if (work_ha_copy) { 13635 if (work_ha_copy & HA_LATT) { 13636 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 13637 /* 13638 * Turn off Link Attention interrupts 13639 * until CLEAR_LA done 13640 */ 13641 spin_lock_irqsave(&phba->hbalock, iflag); 13642 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 13643 if (lpfc_readl(phba->HCregaddr, &control)) 13644 goto unplug_error; 13645 control &= ~HC_LAINT_ENA; 13646 writel(control, phba->HCregaddr); 13647 readl(phba->HCregaddr); /* flush */ 13648 spin_unlock_irqrestore(&phba->hbalock, iflag); 13649 } 13650 else 13651 work_ha_copy &= ~HA_LATT; 13652 } 13653 13654 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 13655 /* 13656 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 13657 * the only slow ring. 13658 */ 13659 status = (work_ha_copy & 13660 (HA_RXMASK << (4*LPFC_ELS_RING))); 13661 status >>= (4*LPFC_ELS_RING); 13662 if (status & HA_RXMASK) { 13663 spin_lock_irqsave(&phba->hbalock, iflag); 13664 if (lpfc_readl(phba->HCregaddr, &control)) 13665 goto unplug_error; 13666 13667 lpfc_debugfs_slow_ring_trc(phba, 13668 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 13669 control, status, 13670 (uint32_t)phba->sli.slistat.sli_intr); 13671 13672 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 13673 lpfc_debugfs_slow_ring_trc(phba, 13674 "ISR Disable ring:" 13675 "pwork:x%x hawork:x%x wait:x%x", 13676 phba->work_ha, work_ha_copy, 13677 (uint32_t)((unsigned long) 13678 &phba->work_waitq)); 13679 13680 control &= 13681 ~(HC_R0INT_ENA << LPFC_ELS_RING); 13682 writel(control, phba->HCregaddr); 13683 readl(phba->HCregaddr); /* flush */ 13684 } 13685 else { 13686 lpfc_debugfs_slow_ring_trc(phba, 13687 "ISR slow ring: pwork:" 13688 "x%x hawork:x%x wait:x%x", 13689 phba->work_ha, work_ha_copy, 13690 (uint32_t)((unsigned long) 13691 &phba->work_waitq)); 13692 } 13693 spin_unlock_irqrestore(&phba->hbalock, iflag); 13694 } 13695 } 13696 spin_lock_irqsave(&phba->hbalock, iflag); 13697 if (work_ha_copy & HA_ERATT) { 13698 if (lpfc_sli_read_hs(phba)) 13699 goto unplug_error; 13700 /* 13701 * Check if there is a deferred error condition 13702 * is active 13703 */ 13704 if ((HS_FFER1 & phba->work_hs) && 13705 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13706 HS_FFER6 | HS_FFER7 | HS_FFER8) & 13707 phba->work_hs)) { 13708 phba->hba_flag |= DEFER_ERATT; 13709 /* Clear all interrupt enable conditions */ 13710 writel(0, phba->HCregaddr); 13711 readl(phba->HCregaddr); 13712 } 13713 } 13714 13715 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 13716 pmb = phba->sli.mbox_active; 13717 pmbox = &pmb->u.mb; 13718 mbox = phba->mbox; 13719 vport = pmb->vport; 13720 13721 /* First check out the status word */ 13722 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 13723 if (pmbox->mbxOwner != OWN_HOST) { 13724 spin_unlock_irqrestore(&phba->hbalock, iflag); 13725 /* 13726 * Stray Mailbox Interrupt, mbxCommand <cmd> 13727 * mbxStatus <status> 13728 */ 13729 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13730 "(%d):0304 Stray Mailbox " 13731 "Interrupt mbxCommand x%x " 13732 "mbxStatus x%x\n", 13733 (vport ? vport->vpi : 0), 13734 pmbox->mbxCommand, 13735 pmbox->mbxStatus); 13736 /* clear mailbox attention bit */ 13737 work_ha_copy &= ~HA_MBATT; 13738 } else { 13739 phba->sli.mbox_active = NULL; 13740 spin_unlock_irqrestore(&phba->hbalock, iflag); 13741 phba->last_completion_time = jiffies; 13742 del_timer(&phba->sli.mbox_tmo); 13743 if (pmb->mbox_cmpl) { 13744 lpfc_sli_pcimem_bcopy(mbox, pmbox, 13745 MAILBOX_CMD_SIZE); 13746 if (pmb->out_ext_byte_len && 13747 pmb->ctx_buf) 13748 lpfc_sli_pcimem_bcopy( 13749 phba->mbox_ext, 13750 pmb->ctx_buf, 13751 pmb->out_ext_byte_len); 13752 } 13753 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13754 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13755 13756 lpfc_debugfs_disc_trc(vport, 13757 LPFC_DISC_TRC_MBOX_VPORT, 13758 "MBOX dflt rpi: : " 13759 "status:x%x rpi:x%x", 13760 (uint32_t)pmbox->mbxStatus, 13761 pmbox->un.varWords[0], 0); 13762 13763 if (!pmbox->mbxStatus) { 13764 mp = (struct lpfc_dmabuf *) 13765 (pmb->ctx_buf); 13766 ndlp = (struct lpfc_nodelist *) 13767 pmb->ctx_ndlp; 13768 13769 /* Reg_LOGIN of dflt RPI was 13770 * successful. new lets get 13771 * rid of the RPI using the 13772 * same mbox buffer. 13773 */ 13774 lpfc_unreg_login(phba, 13775 vport->vpi, 13776 pmbox->un.varWords[0], 13777 pmb); 13778 pmb->mbox_cmpl = 13779 lpfc_mbx_cmpl_dflt_rpi; 13780 pmb->ctx_buf = mp; 13781 pmb->ctx_ndlp = ndlp; 13782 pmb->vport = vport; 13783 rc = lpfc_sli_issue_mbox(phba, 13784 pmb, 13785 MBX_NOWAIT); 13786 if (rc != MBX_BUSY) 13787 lpfc_printf_log(phba, 13788 KERN_ERR, 13789 LOG_TRACE_EVENT, 13790 "0350 rc should have" 13791 "been MBX_BUSY\n"); 13792 if (rc != MBX_NOT_FINISHED) 13793 goto send_current_mbox; 13794 } 13795 } 13796 spin_lock_irqsave( 13797 &phba->pport->work_port_lock, 13798 iflag); 13799 phba->pport->work_port_events &= 13800 ~WORKER_MBOX_TMO; 13801 spin_unlock_irqrestore( 13802 &phba->pport->work_port_lock, 13803 iflag); 13804 13805 /* Do NOT queue MBX_HEARTBEAT to the worker 13806 * thread for processing. 13807 */ 13808 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13809 /* Process mbox now */ 13810 phba->sli.mbox_active = NULL; 13811 phba->sli.sli_flag &= 13812 ~LPFC_SLI_MBOX_ACTIVE; 13813 if (pmb->mbox_cmpl) 13814 pmb->mbox_cmpl(phba, pmb); 13815 } else { 13816 /* Queue to worker thread to process */ 13817 lpfc_mbox_cmpl_put(phba, pmb); 13818 } 13819 } 13820 } else 13821 spin_unlock_irqrestore(&phba->hbalock, iflag); 13822 13823 if ((work_ha_copy & HA_MBATT) && 13824 (phba->sli.mbox_active == NULL)) { 13825 send_current_mbox: 13826 /* Process next mailbox command if there is one */ 13827 do { 13828 rc = lpfc_sli_issue_mbox(phba, NULL, 13829 MBX_NOWAIT); 13830 } while (rc == MBX_NOT_FINISHED); 13831 if (rc != MBX_SUCCESS) 13832 lpfc_printf_log(phba, KERN_ERR, 13833 LOG_TRACE_EVENT, 13834 "0349 rc should be " 13835 "MBX_SUCCESS\n"); 13836 } 13837 13838 spin_lock_irqsave(&phba->hbalock, iflag); 13839 phba->work_ha |= work_ha_copy; 13840 spin_unlock_irqrestore(&phba->hbalock, iflag); 13841 lpfc_worker_wake_up(phba); 13842 } 13843 return IRQ_HANDLED; 13844 unplug_error: 13845 spin_unlock_irqrestore(&phba->hbalock, iflag); 13846 return IRQ_HANDLED; 13847 13848 } /* lpfc_sli_sp_intr_handler */ 13849 13850 /** 13851 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13852 * @irq: Interrupt number. 13853 * @dev_id: The device context pointer. 13854 * 13855 * This function is directly called from the PCI layer as an interrupt 13856 * service routine when device with SLI-3 interface spec is enabled with 13857 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13858 * ring event in the HBA. However, when the device is enabled with either 13859 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13860 * device-level interrupt handler. When the PCI slot is in error recovery 13861 * or the HBA is undergoing initialization, the interrupt handler will not 13862 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13863 * the intrrupt context. This function is called without any lock held. 13864 * It gets the hbalock to access and update SLI data structures. 13865 * 13866 * This function returns IRQ_HANDLED when interrupt is handled else it 13867 * returns IRQ_NONE. 13868 **/ 13869 irqreturn_t 13870 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13871 { 13872 struct lpfc_hba *phba; 13873 uint32_t ha_copy; 13874 unsigned long status; 13875 unsigned long iflag; 13876 struct lpfc_sli_ring *pring; 13877 13878 /* Get the driver's phba structure from the dev_id and 13879 * assume the HBA is not interrupting. 13880 */ 13881 phba = (struct lpfc_hba *) dev_id; 13882 13883 if (unlikely(!phba)) 13884 return IRQ_NONE; 13885 13886 /* 13887 * Stuff needs to be attented to when this function is invoked as an 13888 * individual interrupt handler in MSI-X multi-message interrupt mode 13889 */ 13890 if (phba->intr_type == MSIX) { 13891 /* Check device state for handling interrupt */ 13892 if (lpfc_intr_state_check(phba)) 13893 return IRQ_NONE; 13894 /* Need to read HA REG for FCP ring and other ring events */ 13895 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13896 return IRQ_HANDLED; 13897 /* Clear up only attention source related to fast-path */ 13898 spin_lock_irqsave(&phba->hbalock, iflag); 13899 /* 13900 * If there is deferred error attention, do not check for 13901 * any interrupt. 13902 */ 13903 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13904 spin_unlock_irqrestore(&phba->hbalock, iflag); 13905 return IRQ_NONE; 13906 } 13907 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13908 phba->HAregaddr); 13909 readl(phba->HAregaddr); /* flush */ 13910 spin_unlock_irqrestore(&phba->hbalock, iflag); 13911 } else 13912 ha_copy = phba->ha_copy; 13913 13914 /* 13915 * Process all events on FCP ring. Take the optimized path for FCP IO. 13916 */ 13917 ha_copy &= ~(phba->work_ha_mask); 13918 13919 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13920 status >>= (4*LPFC_FCP_RING); 13921 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13922 if (status & HA_RXMASK) 13923 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13924 13925 if (phba->cfg_multi_ring_support == 2) { 13926 /* 13927 * Process all events on extra ring. Take the optimized path 13928 * for extra ring IO. 13929 */ 13930 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13931 status >>= (4*LPFC_EXTRA_RING); 13932 if (status & HA_RXMASK) { 13933 lpfc_sli_handle_fast_ring_event(phba, 13934 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 13935 status); 13936 } 13937 } 13938 return IRQ_HANDLED; 13939 } /* lpfc_sli_fp_intr_handler */ 13940 13941 /** 13942 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 13943 * @irq: Interrupt number. 13944 * @dev_id: The device context pointer. 13945 * 13946 * This function is the HBA device-level interrupt handler to device with 13947 * SLI-3 interface spec, called from the PCI layer when either MSI or 13948 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 13949 * requires driver attention. This function invokes the slow-path interrupt 13950 * attention handling function and fast-path interrupt attention handling 13951 * function in turn to process the relevant HBA attention events. This 13952 * function is called without any lock held. It gets the hbalock to access 13953 * and update SLI data structures. 13954 * 13955 * This function returns IRQ_HANDLED when interrupt is handled, else it 13956 * returns IRQ_NONE. 13957 **/ 13958 irqreturn_t 13959 lpfc_sli_intr_handler(int irq, void *dev_id) 13960 { 13961 struct lpfc_hba *phba; 13962 irqreturn_t sp_irq_rc, fp_irq_rc; 13963 unsigned long status1, status2; 13964 uint32_t hc_copy; 13965 13966 /* 13967 * Get the driver's phba structure from the dev_id and 13968 * assume the HBA is not interrupting. 13969 */ 13970 phba = (struct lpfc_hba *) dev_id; 13971 13972 if (unlikely(!phba)) 13973 return IRQ_NONE; 13974 13975 /* Check device state for handling interrupt */ 13976 if (lpfc_intr_state_check(phba)) 13977 return IRQ_NONE; 13978 13979 spin_lock(&phba->hbalock); 13980 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 13981 spin_unlock(&phba->hbalock); 13982 return IRQ_HANDLED; 13983 } 13984 13985 if (unlikely(!phba->ha_copy)) { 13986 spin_unlock(&phba->hbalock); 13987 return IRQ_NONE; 13988 } else if (phba->ha_copy & HA_ERATT) { 13989 if (phba->hba_flag & HBA_ERATT_HANDLED) 13990 /* ERATT polling has handled ERATT */ 13991 phba->ha_copy &= ~HA_ERATT; 13992 else 13993 /* Indicate interrupt handler handles ERATT */ 13994 phba->hba_flag |= HBA_ERATT_HANDLED; 13995 } 13996 13997 /* 13998 * If there is deferred error attention, do not check for any interrupt. 13999 */ 14000 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 14001 spin_unlock(&phba->hbalock); 14002 return IRQ_NONE; 14003 } 14004 14005 /* Clear attention sources except link and error attentions */ 14006 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 14007 spin_unlock(&phba->hbalock); 14008 return IRQ_HANDLED; 14009 } 14010 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 14011 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 14012 phba->HCregaddr); 14013 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 14014 writel(hc_copy, phba->HCregaddr); 14015 readl(phba->HAregaddr); /* flush */ 14016 spin_unlock(&phba->hbalock); 14017 14018 /* 14019 * Invokes slow-path host attention interrupt handling as appropriate. 14020 */ 14021 14022 /* status of events with mailbox and link attention */ 14023 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 14024 14025 /* status of events with ELS ring */ 14026 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 14027 status2 >>= (4*LPFC_ELS_RING); 14028 14029 if (status1 || (status2 & HA_RXMASK)) 14030 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 14031 else 14032 sp_irq_rc = IRQ_NONE; 14033 14034 /* 14035 * Invoke fast-path host attention interrupt handling as appropriate. 14036 */ 14037 14038 /* status of events with FCP ring */ 14039 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 14040 status1 >>= (4*LPFC_FCP_RING); 14041 14042 /* status of events with extra ring */ 14043 if (phba->cfg_multi_ring_support == 2) { 14044 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 14045 status2 >>= (4*LPFC_EXTRA_RING); 14046 } else 14047 status2 = 0; 14048 14049 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 14050 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 14051 else 14052 fp_irq_rc = IRQ_NONE; 14053 14054 /* Return device-level interrupt handling status */ 14055 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 14056 } /* lpfc_sli_intr_handler */ 14057 14058 /** 14059 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 14060 * @phba: pointer to lpfc hba data structure. 14061 * 14062 * This routine is invoked by the worker thread to process all the pending 14063 * SLI4 els abort xri events. 14064 **/ 14065 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 14066 { 14067 struct lpfc_cq_event *cq_event; 14068 unsigned long iflags; 14069 14070 /* First, declare the els xri abort event has been handled */ 14071 spin_lock_irqsave(&phba->hbalock, iflags); 14072 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 14073 spin_unlock_irqrestore(&phba->hbalock, iflags); 14074 14075 /* Now, handle all the els xri abort events */ 14076 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14077 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 14078 /* Get the first event from the head of the event queue */ 14079 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 14080 cq_event, struct lpfc_cq_event, list); 14081 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14082 iflags); 14083 /* Notify aborted XRI for ELS work queue */ 14084 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 14085 14086 /* Free the event processed back to the free pool */ 14087 lpfc_sli4_cq_event_release(phba, cq_event); 14088 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14089 iflags); 14090 } 14091 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14092 } 14093 14094 /** 14095 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 14096 * @phba: pointer to lpfc hba data structure 14097 * @pIocbIn: pointer to the rspiocbq 14098 * @pIocbOut: pointer to the cmdiocbq 14099 * @wcqe: pointer to the complete wcqe 14100 * 14101 * This routine transfers the fields of a command iocbq to a response iocbq 14102 * by copying all the IOCB fields from command iocbq and transferring the 14103 * completion status information from the complete wcqe. 14104 **/ 14105 static void 14106 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 14107 struct lpfc_iocbq *pIocbIn, 14108 struct lpfc_iocbq *pIocbOut, 14109 struct lpfc_wcqe_complete *wcqe) 14110 { 14111 int numBdes, i; 14112 unsigned long iflags; 14113 uint32_t status, max_response; 14114 struct lpfc_dmabuf *dmabuf; 14115 struct ulp_bde64 *bpl, bde; 14116 size_t offset = offsetof(struct lpfc_iocbq, iocb); 14117 14118 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 14119 sizeof(struct lpfc_iocbq) - offset); 14120 /* Map WCQE parameters into irspiocb parameters */ 14121 status = bf_get(lpfc_wcqe_c_status, wcqe); 14122 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 14123 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 14124 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 14125 pIocbIn->iocb.un.fcpi.fcpi_parm = 14126 pIocbOut->iocb.un.fcpi.fcpi_parm - 14127 wcqe->total_data_placed; 14128 else 14129 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 14130 else { 14131 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 14132 switch (pIocbOut->iocb.ulpCommand) { 14133 case CMD_ELS_REQUEST64_CR: 14134 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 14135 bpl = (struct ulp_bde64 *)dmabuf->virt; 14136 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 14137 max_response = bde.tus.f.bdeSize; 14138 break; 14139 case CMD_GEN_REQUEST64_CR: 14140 max_response = 0; 14141 if (!pIocbOut->context3) 14142 break; 14143 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 14144 sizeof(struct ulp_bde64); 14145 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 14146 bpl = (struct ulp_bde64 *)dmabuf->virt; 14147 for (i = 0; i < numBdes; i++) { 14148 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 14149 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 14150 max_response += bde.tus.f.bdeSize; 14151 } 14152 break; 14153 default: 14154 max_response = wcqe->total_data_placed; 14155 break; 14156 } 14157 if (max_response < wcqe->total_data_placed) 14158 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 14159 else 14160 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 14161 wcqe->total_data_placed; 14162 } 14163 14164 /* Convert BG errors for completion status */ 14165 if (status == CQE_STATUS_DI_ERROR) { 14166 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 14167 14168 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 14169 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 14170 else 14171 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 14172 14173 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 14174 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 14175 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14176 BGS_GUARD_ERR_MASK; 14177 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 14178 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14179 BGS_APPTAG_ERR_MASK; 14180 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 14181 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14182 BGS_REFTAG_ERR_MASK; 14183 14184 /* Check to see if there was any good data before the error */ 14185 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 14186 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14187 BGS_HI_WATER_MARK_PRESENT_MASK; 14188 pIocbIn->iocb.unsli3.sli3_bg.bghm = 14189 wcqe->total_data_placed; 14190 } 14191 14192 /* 14193 * Set ALL the error bits to indicate we don't know what 14194 * type of error it is. 14195 */ 14196 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 14197 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14198 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 14199 BGS_GUARD_ERR_MASK); 14200 } 14201 14202 /* Pick up HBA exchange busy condition */ 14203 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 14204 spin_lock_irqsave(&phba->hbalock, iflags); 14205 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 14206 spin_unlock_irqrestore(&phba->hbalock, iflags); 14207 } 14208 } 14209 14210 /** 14211 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 14212 * @phba: Pointer to HBA context object. 14213 * @irspiocbq: Pointer to work-queue completion queue entry. 14214 * 14215 * This routine handles an ELS work-queue completion event and construct 14216 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 14217 * discovery engine to handle. 14218 * 14219 * Return: Pointer to the receive IOCBQ, NULL otherwise. 14220 **/ 14221 static struct lpfc_iocbq * 14222 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 14223 struct lpfc_iocbq *irspiocbq) 14224 { 14225 struct lpfc_sli_ring *pring; 14226 struct lpfc_iocbq *cmdiocbq; 14227 struct lpfc_wcqe_complete *wcqe; 14228 unsigned long iflags; 14229 14230 pring = lpfc_phba_elsring(phba); 14231 if (unlikely(!pring)) 14232 return NULL; 14233 14234 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 14235 pring->stats.iocb_event++; 14236 /* Look up the ELS command IOCB and create pseudo response IOCB */ 14237 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14238 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14239 if (unlikely(!cmdiocbq)) { 14240 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14241 "0386 ELS complete with no corresponding " 14242 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 14243 wcqe->word0, wcqe->total_data_placed, 14244 wcqe->parameter, wcqe->word3); 14245 lpfc_sli_release_iocbq(phba, irspiocbq); 14246 return NULL; 14247 } 14248 14249 spin_lock_irqsave(&pring->ring_lock, iflags); 14250 /* Put the iocb back on the txcmplq */ 14251 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 14252 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14253 14254 /* Fake the irspiocbq and copy necessary response information */ 14255 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 14256 14257 return irspiocbq; 14258 } 14259 14260 inline struct lpfc_cq_event * 14261 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 14262 { 14263 struct lpfc_cq_event *cq_event; 14264 14265 /* Allocate a new internal CQ_EVENT entry */ 14266 cq_event = lpfc_sli4_cq_event_alloc(phba); 14267 if (!cq_event) { 14268 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14269 "0602 Failed to alloc CQ_EVENT entry\n"); 14270 return NULL; 14271 } 14272 14273 /* Move the CQE into the event */ 14274 memcpy(&cq_event->cqe, entry, size); 14275 return cq_event; 14276 } 14277 14278 /** 14279 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 14280 * @phba: Pointer to HBA context object. 14281 * @mcqe: Pointer to mailbox completion queue entry. 14282 * 14283 * This routine process a mailbox completion queue entry with asynchronous 14284 * event. 14285 * 14286 * Return: true if work posted to worker thread, otherwise false. 14287 **/ 14288 static bool 14289 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14290 { 14291 struct lpfc_cq_event *cq_event; 14292 unsigned long iflags; 14293 14294 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14295 "0392 Async Event: word0:x%x, word1:x%x, " 14296 "word2:x%x, word3:x%x\n", mcqe->word0, 14297 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 14298 14299 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 14300 if (!cq_event) 14301 return false; 14302 14303 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 14304 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 14305 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 14306 14307 /* Set the async event flag */ 14308 spin_lock_irqsave(&phba->hbalock, iflags); 14309 phba->hba_flag |= ASYNC_EVENT; 14310 spin_unlock_irqrestore(&phba->hbalock, iflags); 14311 14312 return true; 14313 } 14314 14315 /** 14316 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 14317 * @phba: Pointer to HBA context object. 14318 * @mcqe: Pointer to mailbox completion queue entry. 14319 * 14320 * This routine process a mailbox completion queue entry with mailbox 14321 * completion event. 14322 * 14323 * Return: true if work posted to worker thread, otherwise false. 14324 **/ 14325 static bool 14326 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14327 { 14328 uint32_t mcqe_status; 14329 MAILBOX_t *mbox, *pmbox; 14330 struct lpfc_mqe *mqe; 14331 struct lpfc_vport *vport; 14332 struct lpfc_nodelist *ndlp; 14333 struct lpfc_dmabuf *mp; 14334 unsigned long iflags; 14335 LPFC_MBOXQ_t *pmb; 14336 bool workposted = false; 14337 int rc; 14338 14339 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 14340 if (!bf_get(lpfc_trailer_completed, mcqe)) 14341 goto out_no_mqe_complete; 14342 14343 /* Get the reference to the active mbox command */ 14344 spin_lock_irqsave(&phba->hbalock, iflags); 14345 pmb = phba->sli.mbox_active; 14346 if (unlikely(!pmb)) { 14347 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14348 "1832 No pending MBOX command to handle\n"); 14349 spin_unlock_irqrestore(&phba->hbalock, iflags); 14350 goto out_no_mqe_complete; 14351 } 14352 spin_unlock_irqrestore(&phba->hbalock, iflags); 14353 mqe = &pmb->u.mqe; 14354 pmbox = (MAILBOX_t *)&pmb->u.mqe; 14355 mbox = phba->mbox; 14356 vport = pmb->vport; 14357 14358 /* Reset heartbeat timer */ 14359 phba->last_completion_time = jiffies; 14360 del_timer(&phba->sli.mbox_tmo); 14361 14362 /* Move mbox data to caller's mailbox region, do endian swapping */ 14363 if (pmb->mbox_cmpl && mbox) 14364 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 14365 14366 /* 14367 * For mcqe errors, conditionally move a modified error code to 14368 * the mbox so that the error will not be missed. 14369 */ 14370 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 14371 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 14372 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 14373 bf_set(lpfc_mqe_status, mqe, 14374 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 14375 } 14376 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 14377 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 14378 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 14379 "MBOX dflt rpi: status:x%x rpi:x%x", 14380 mcqe_status, 14381 pmbox->un.varWords[0], 0); 14382 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 14383 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 14384 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 14385 14386 /* Reg_LOGIN of dflt RPI was successful. Mark the 14387 * node as having an UNREG_LOGIN in progress to stop 14388 * an unsolicited PLOGI from the same NPortId from 14389 * starting another mailbox transaction. 14390 */ 14391 spin_lock_irqsave(&ndlp->lock, iflags); 14392 ndlp->nlp_flag |= NLP_UNREG_INP; 14393 spin_unlock_irqrestore(&ndlp->lock, iflags); 14394 lpfc_unreg_login(phba, vport->vpi, 14395 pmbox->un.varWords[0], pmb); 14396 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 14397 pmb->ctx_buf = mp; 14398 14399 /* No reference taken here. This is a default 14400 * RPI reg/immediate unreg cycle. The reference was 14401 * taken in the reg rpi path and is released when 14402 * this mailbox completes. 14403 */ 14404 pmb->ctx_ndlp = ndlp; 14405 pmb->vport = vport; 14406 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 14407 if (rc != MBX_BUSY) 14408 lpfc_printf_log(phba, KERN_ERR, 14409 LOG_TRACE_EVENT, 14410 "0385 rc should " 14411 "have been MBX_BUSY\n"); 14412 if (rc != MBX_NOT_FINISHED) 14413 goto send_current_mbox; 14414 } 14415 } 14416 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 14417 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 14418 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 14419 14420 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 14421 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 14422 spin_lock_irqsave(&phba->hbalock, iflags); 14423 /* Release the mailbox command posting token */ 14424 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14425 phba->sli.mbox_active = NULL; 14426 if (bf_get(lpfc_trailer_consumed, mcqe)) 14427 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14428 spin_unlock_irqrestore(&phba->hbalock, iflags); 14429 14430 /* Post the next mbox command, if there is one */ 14431 lpfc_sli4_post_async_mbox(phba); 14432 14433 /* Process cmpl now */ 14434 if (pmb->mbox_cmpl) 14435 pmb->mbox_cmpl(phba, pmb); 14436 return false; 14437 } 14438 14439 /* There is mailbox completion work to queue to the worker thread */ 14440 spin_lock_irqsave(&phba->hbalock, iflags); 14441 __lpfc_mbox_cmpl_put(phba, pmb); 14442 phba->work_ha |= HA_MBATT; 14443 spin_unlock_irqrestore(&phba->hbalock, iflags); 14444 workposted = true; 14445 14446 send_current_mbox: 14447 spin_lock_irqsave(&phba->hbalock, iflags); 14448 /* Release the mailbox command posting token */ 14449 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14450 /* Setting active mailbox pointer need to be in sync to flag clear */ 14451 phba->sli.mbox_active = NULL; 14452 if (bf_get(lpfc_trailer_consumed, mcqe)) 14453 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14454 spin_unlock_irqrestore(&phba->hbalock, iflags); 14455 /* Wake up worker thread to post the next pending mailbox command */ 14456 lpfc_worker_wake_up(phba); 14457 return workposted; 14458 14459 out_no_mqe_complete: 14460 spin_lock_irqsave(&phba->hbalock, iflags); 14461 if (bf_get(lpfc_trailer_consumed, mcqe)) 14462 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14463 spin_unlock_irqrestore(&phba->hbalock, iflags); 14464 return false; 14465 } 14466 14467 /** 14468 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 14469 * @phba: Pointer to HBA context object. 14470 * @cq: Pointer to associated CQ 14471 * @cqe: Pointer to mailbox completion queue entry. 14472 * 14473 * This routine process a mailbox completion queue entry, it invokes the 14474 * proper mailbox complete handling or asynchronous event handling routine 14475 * according to the MCQE's async bit. 14476 * 14477 * Return: true if work posted to worker thread, otherwise false. 14478 **/ 14479 static bool 14480 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14481 struct lpfc_cqe *cqe) 14482 { 14483 struct lpfc_mcqe mcqe; 14484 bool workposted; 14485 14486 cq->CQ_mbox++; 14487 14488 /* Copy the mailbox MCQE and convert endian order as needed */ 14489 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 14490 14491 /* Invoke the proper event handling routine */ 14492 if (!bf_get(lpfc_trailer_async, &mcqe)) 14493 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 14494 else 14495 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 14496 return workposted; 14497 } 14498 14499 /** 14500 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 14501 * @phba: Pointer to HBA context object. 14502 * @cq: Pointer to associated CQ 14503 * @wcqe: Pointer to work-queue completion queue entry. 14504 * 14505 * This routine handles an ELS work-queue completion event. 14506 * 14507 * Return: true if work posted to worker thread, otherwise false. 14508 **/ 14509 static bool 14510 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14511 struct lpfc_wcqe_complete *wcqe) 14512 { 14513 struct lpfc_iocbq *irspiocbq; 14514 unsigned long iflags; 14515 struct lpfc_sli_ring *pring = cq->pring; 14516 int txq_cnt = 0; 14517 int txcmplq_cnt = 0; 14518 14519 /* Check for response status */ 14520 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14521 /* Log the error status */ 14522 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14523 "0357 ELS CQE error: status=x%x: " 14524 "CQE: %08x %08x %08x %08x\n", 14525 bf_get(lpfc_wcqe_c_status, wcqe), 14526 wcqe->word0, wcqe->total_data_placed, 14527 wcqe->parameter, wcqe->word3); 14528 } 14529 14530 /* Get an irspiocbq for later ELS response processing use */ 14531 irspiocbq = lpfc_sli_get_iocbq(phba); 14532 if (!irspiocbq) { 14533 if (!list_empty(&pring->txq)) 14534 txq_cnt++; 14535 if (!list_empty(&pring->txcmplq)) 14536 txcmplq_cnt++; 14537 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14538 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 14539 "els_txcmplq_cnt=%d\n", 14540 txq_cnt, phba->iocb_cnt, 14541 txcmplq_cnt); 14542 return false; 14543 } 14544 14545 /* Save off the slow-path queue event for work thread to process */ 14546 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 14547 spin_lock_irqsave(&phba->hbalock, iflags); 14548 list_add_tail(&irspiocbq->cq_event.list, 14549 &phba->sli4_hba.sp_queue_event); 14550 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14551 spin_unlock_irqrestore(&phba->hbalock, iflags); 14552 14553 return true; 14554 } 14555 14556 /** 14557 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 14558 * @phba: Pointer to HBA context object. 14559 * @wcqe: Pointer to work-queue completion queue entry. 14560 * 14561 * This routine handles slow-path WQ entry consumed event by invoking the 14562 * proper WQ release routine to the slow-path WQ. 14563 **/ 14564 static void 14565 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 14566 struct lpfc_wcqe_release *wcqe) 14567 { 14568 /* sanity check on queue memory */ 14569 if (unlikely(!phba->sli4_hba.els_wq)) 14570 return; 14571 /* Check for the slow-path ELS work queue */ 14572 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 14573 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 14574 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14575 else 14576 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14577 "2579 Slow-path wqe consume event carries " 14578 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 14579 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 14580 phba->sli4_hba.els_wq->queue_id); 14581 } 14582 14583 /** 14584 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 14585 * @phba: Pointer to HBA context object. 14586 * @cq: Pointer to a WQ completion queue. 14587 * @wcqe: Pointer to work-queue completion queue entry. 14588 * 14589 * This routine handles an XRI abort event. 14590 * 14591 * Return: true if work posted to worker thread, otherwise false. 14592 **/ 14593 static bool 14594 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 14595 struct lpfc_queue *cq, 14596 struct sli4_wcqe_xri_aborted *wcqe) 14597 { 14598 bool workposted = false; 14599 struct lpfc_cq_event *cq_event; 14600 unsigned long iflags; 14601 14602 switch (cq->subtype) { 14603 case LPFC_IO: 14604 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 14605 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14606 /* Notify aborted XRI for NVME work queue */ 14607 if (phba->nvmet_support) 14608 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 14609 } 14610 workposted = false; 14611 break; 14612 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 14613 case LPFC_ELS: 14614 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 14615 if (!cq_event) { 14616 workposted = false; 14617 break; 14618 } 14619 cq_event->hdwq = cq->hdwq; 14620 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14621 iflags); 14622 list_add_tail(&cq_event->list, 14623 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 14624 /* Set the els xri abort event flag */ 14625 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 14626 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14627 iflags); 14628 workposted = true; 14629 break; 14630 default: 14631 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14632 "0603 Invalid CQ subtype %d: " 14633 "%08x %08x %08x %08x\n", 14634 cq->subtype, wcqe->word0, wcqe->parameter, 14635 wcqe->word2, wcqe->word3); 14636 workposted = false; 14637 break; 14638 } 14639 return workposted; 14640 } 14641 14642 #define FC_RCTL_MDS_DIAGS 0xF4 14643 14644 /** 14645 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 14646 * @phba: Pointer to HBA context object. 14647 * @rcqe: Pointer to receive-queue completion queue entry. 14648 * 14649 * This routine process a receive-queue completion queue entry. 14650 * 14651 * Return: true if work posted to worker thread, otherwise false. 14652 **/ 14653 static bool 14654 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 14655 { 14656 bool workposted = false; 14657 struct fc_frame_header *fc_hdr; 14658 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 14659 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 14660 struct lpfc_nvmet_tgtport *tgtp; 14661 struct hbq_dmabuf *dma_buf; 14662 uint32_t status, rq_id; 14663 unsigned long iflags; 14664 14665 /* sanity check on queue memory */ 14666 if (unlikely(!hrq) || unlikely(!drq)) 14667 return workposted; 14668 14669 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14670 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14671 else 14672 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14673 if (rq_id != hrq->queue_id) 14674 goto out; 14675 14676 status = bf_get(lpfc_rcqe_status, rcqe); 14677 switch (status) { 14678 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14679 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14680 "2537 Receive Frame Truncated!!\n"); 14681 fallthrough; 14682 case FC_STATUS_RQ_SUCCESS: 14683 spin_lock_irqsave(&phba->hbalock, iflags); 14684 lpfc_sli4_rq_release(hrq, drq); 14685 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14686 if (!dma_buf) { 14687 hrq->RQ_no_buf_found++; 14688 spin_unlock_irqrestore(&phba->hbalock, iflags); 14689 goto out; 14690 } 14691 hrq->RQ_rcv_buf++; 14692 hrq->RQ_buf_posted--; 14693 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 14694 14695 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14696 14697 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 14698 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 14699 spin_unlock_irqrestore(&phba->hbalock, iflags); 14700 /* Handle MDS Loopback frames */ 14701 if (!(phba->pport->load_flag & FC_UNLOADING)) 14702 lpfc_sli4_handle_mds_loopback(phba->pport, 14703 dma_buf); 14704 else 14705 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14706 break; 14707 } 14708 14709 /* save off the frame for the work thread to process */ 14710 list_add_tail(&dma_buf->cq_event.list, 14711 &phba->sli4_hba.sp_queue_event); 14712 /* Frame received */ 14713 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14714 spin_unlock_irqrestore(&phba->hbalock, iflags); 14715 workposted = true; 14716 break; 14717 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14718 if (phba->nvmet_support) { 14719 tgtp = phba->targetport->private; 14720 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14721 "6402 RQE Error x%x, posted %d err_cnt " 14722 "%d: %x %x %x\n", 14723 status, hrq->RQ_buf_posted, 14724 hrq->RQ_no_posted_buf, 14725 atomic_read(&tgtp->rcv_fcp_cmd_in), 14726 atomic_read(&tgtp->rcv_fcp_cmd_out), 14727 atomic_read(&tgtp->xmt_fcp_release)); 14728 } 14729 fallthrough; 14730 14731 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14732 hrq->RQ_no_posted_buf++; 14733 /* Post more buffers if possible */ 14734 spin_lock_irqsave(&phba->hbalock, iflags); 14735 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 14736 spin_unlock_irqrestore(&phba->hbalock, iflags); 14737 workposted = true; 14738 break; 14739 } 14740 out: 14741 return workposted; 14742 } 14743 14744 /** 14745 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 14746 * @phba: Pointer to HBA context object. 14747 * @cq: Pointer to the completion queue. 14748 * @cqe: Pointer to a completion queue entry. 14749 * 14750 * This routine process a slow-path work-queue or receive queue completion queue 14751 * entry. 14752 * 14753 * Return: true if work posted to worker thread, otherwise false. 14754 **/ 14755 static bool 14756 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14757 struct lpfc_cqe *cqe) 14758 { 14759 struct lpfc_cqe cqevt; 14760 bool workposted = false; 14761 14762 /* Copy the work queue CQE and convert endian order if needed */ 14763 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14764 14765 /* Check and process for different type of WCQE and dispatch */ 14766 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14767 case CQE_CODE_COMPL_WQE: 14768 /* Process the WQ/RQ complete event */ 14769 phba->last_completion_time = jiffies; 14770 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14771 (struct lpfc_wcqe_complete *)&cqevt); 14772 break; 14773 case CQE_CODE_RELEASE_WQE: 14774 /* Process the WQ release event */ 14775 lpfc_sli4_sp_handle_rel_wcqe(phba, 14776 (struct lpfc_wcqe_release *)&cqevt); 14777 break; 14778 case CQE_CODE_XRI_ABORTED: 14779 /* Process the WQ XRI abort event */ 14780 phba->last_completion_time = jiffies; 14781 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14782 (struct sli4_wcqe_xri_aborted *)&cqevt); 14783 break; 14784 case CQE_CODE_RECEIVE: 14785 case CQE_CODE_RECEIVE_V1: 14786 /* Process the RQ event */ 14787 phba->last_completion_time = jiffies; 14788 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14789 (struct lpfc_rcqe *)&cqevt); 14790 break; 14791 default: 14792 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14793 "0388 Not a valid WCQE code: x%x\n", 14794 bf_get(lpfc_cqe_code, &cqevt)); 14795 break; 14796 } 14797 return workposted; 14798 } 14799 14800 /** 14801 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14802 * @phba: Pointer to HBA context object. 14803 * @eqe: Pointer to fast-path event queue entry. 14804 * @speq: Pointer to slow-path event queue. 14805 * 14806 * This routine process a event queue entry from the slow-path event queue. 14807 * It will check the MajorCode and MinorCode to determine this is for a 14808 * completion event on a completion queue, if not, an error shall be logged 14809 * and just return. Otherwise, it will get to the corresponding completion 14810 * queue and process all the entries on that completion queue, rearm the 14811 * completion queue, and then return. 14812 * 14813 **/ 14814 static void 14815 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14816 struct lpfc_queue *speq) 14817 { 14818 struct lpfc_queue *cq = NULL, *childq; 14819 uint16_t cqid; 14820 int ret = 0; 14821 14822 /* Get the reference to the corresponding CQ */ 14823 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14824 14825 list_for_each_entry(childq, &speq->child_list, list) { 14826 if (childq->queue_id == cqid) { 14827 cq = childq; 14828 break; 14829 } 14830 } 14831 if (unlikely(!cq)) { 14832 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14833 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14834 "0365 Slow-path CQ identifier " 14835 "(%d) does not exist\n", cqid); 14836 return; 14837 } 14838 14839 /* Save EQ associated with this CQ */ 14840 cq->assoc_qp = speq; 14841 14842 if (is_kdump_kernel()) 14843 ret = queue_work(phba->wq, &cq->spwork); 14844 else 14845 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14846 14847 if (!ret) 14848 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14849 "0390 Cannot schedule queue work " 14850 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14851 cqid, cq->queue_id, raw_smp_processor_id()); 14852 } 14853 14854 /** 14855 * __lpfc_sli4_process_cq - Process elements of a CQ 14856 * @phba: Pointer to HBA context object. 14857 * @cq: Pointer to CQ to be processed 14858 * @handler: Routine to process each cqe 14859 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14860 * @poll_mode: Polling mode we were called from 14861 * 14862 * This routine processes completion queue entries in a CQ. While a valid 14863 * queue element is found, the handler is called. During processing checks 14864 * are made for periodic doorbell writes to let the hardware know of 14865 * element consumption. 14866 * 14867 * If the max limit on cqes to process is hit, or there are no more valid 14868 * entries, the loop stops. If we processed a sufficient number of elements, 14869 * meaning there is sufficient load, rather than rearming and generating 14870 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14871 * indicates no rescheduling. 14872 * 14873 * Returns True if work scheduled, False otherwise. 14874 **/ 14875 static bool 14876 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14877 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14878 struct lpfc_cqe *), unsigned long *delay, 14879 enum lpfc_poll_mode poll_mode) 14880 { 14881 struct lpfc_cqe *cqe; 14882 bool workposted = false; 14883 int count = 0, consumed = 0; 14884 bool arm = true; 14885 14886 /* default - no reschedule */ 14887 *delay = 0; 14888 14889 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14890 goto rearm_and_exit; 14891 14892 /* Process all the entries to the CQ */ 14893 cq->q_flag = 0; 14894 cqe = lpfc_sli4_cq_get(cq); 14895 while (cqe) { 14896 workposted |= handler(phba, cq, cqe); 14897 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14898 14899 consumed++; 14900 if (!(++count % cq->max_proc_limit)) 14901 break; 14902 14903 if (!(count % cq->notify_interval)) { 14904 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14905 LPFC_QUEUE_NOARM); 14906 consumed = 0; 14907 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14908 } 14909 14910 if (count == LPFC_NVMET_CQ_NOTIFY) 14911 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14912 14913 cqe = lpfc_sli4_cq_get(cq); 14914 } 14915 if (count >= phba->cfg_cq_poll_threshold) { 14916 *delay = 1; 14917 arm = false; 14918 } 14919 14920 /* Note: complete the irq_poll softirq before rearming CQ */ 14921 if (poll_mode == LPFC_IRQ_POLL) 14922 irq_poll_complete(&cq->iop); 14923 14924 /* Track the max number of CQEs processed in 1 EQ */ 14925 if (count > cq->CQ_max_cqe) 14926 cq->CQ_max_cqe = count; 14927 14928 cq->assoc_qp->EQ_cqe_cnt += count; 14929 14930 /* Catch the no cq entry condition */ 14931 if (unlikely(count == 0)) 14932 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14933 "0369 No entry from completion queue " 14934 "qid=%d\n", cq->queue_id); 14935 14936 xchg(&cq->queue_claimed, 0); 14937 14938 rearm_and_exit: 14939 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14940 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14941 14942 return workposted; 14943 } 14944 14945 /** 14946 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14947 * @cq: pointer to CQ to process 14948 * 14949 * This routine calls the cq processing routine with a handler specific 14950 * to the type of queue bound to it. 14951 * 14952 * The CQ routine returns two values: the first is the calling status, 14953 * which indicates whether work was queued to the background discovery 14954 * thread. If true, the routine should wakeup the discovery thread; 14955 * the second is the delay parameter. If non-zero, rather than rearming 14956 * the CQ and yet another interrupt, the CQ handler should be queued so 14957 * that it is processed in a subsequent polling action. The value of 14958 * the delay indicates when to reschedule it. 14959 **/ 14960 static void 14961 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14962 { 14963 struct lpfc_hba *phba = cq->phba; 14964 unsigned long delay; 14965 bool workposted = false; 14966 int ret = 0; 14967 14968 /* Process and rearm the CQ */ 14969 switch (cq->type) { 14970 case LPFC_MCQ: 14971 workposted |= __lpfc_sli4_process_cq(phba, cq, 14972 lpfc_sli4_sp_handle_mcqe, 14973 &delay, LPFC_QUEUE_WORK); 14974 break; 14975 case LPFC_WCQ: 14976 if (cq->subtype == LPFC_IO) 14977 workposted |= __lpfc_sli4_process_cq(phba, cq, 14978 lpfc_sli4_fp_handle_cqe, 14979 &delay, LPFC_QUEUE_WORK); 14980 else 14981 workposted |= __lpfc_sli4_process_cq(phba, cq, 14982 lpfc_sli4_sp_handle_cqe, 14983 &delay, LPFC_QUEUE_WORK); 14984 break; 14985 default: 14986 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14987 "0370 Invalid completion queue type (%d)\n", 14988 cq->type); 14989 return; 14990 } 14991 14992 if (delay) { 14993 if (is_kdump_kernel()) 14994 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14995 delay); 14996 else 14997 ret = queue_delayed_work_on(cq->chann, phba->wq, 14998 &cq->sched_spwork, delay); 14999 if (!ret) 15000 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15001 "0394 Cannot schedule queue work " 15002 "for cqid=%d on CPU %d\n", 15003 cq->queue_id, cq->chann); 15004 } 15005 15006 /* wake up worker thread if there are works to be done */ 15007 if (workposted) 15008 lpfc_worker_wake_up(phba); 15009 } 15010 15011 /** 15012 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 15013 * interrupt 15014 * @work: pointer to work element 15015 * 15016 * translates from the work handler and calls the slow-path handler. 15017 **/ 15018 static void 15019 lpfc_sli4_sp_process_cq(struct work_struct *work) 15020 { 15021 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 15022 15023 __lpfc_sli4_sp_process_cq(cq); 15024 } 15025 15026 /** 15027 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 15028 * @work: pointer to work element 15029 * 15030 * translates from the work handler and calls the slow-path handler. 15031 **/ 15032 static void 15033 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 15034 { 15035 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15036 struct lpfc_queue, sched_spwork); 15037 15038 __lpfc_sli4_sp_process_cq(cq); 15039 } 15040 15041 /** 15042 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 15043 * @phba: Pointer to HBA context object. 15044 * @cq: Pointer to associated CQ 15045 * @wcqe: Pointer to work-queue completion queue entry. 15046 * 15047 * This routine process a fast-path work queue completion entry from fast-path 15048 * event queue for FCP command response completion. 15049 **/ 15050 static void 15051 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15052 struct lpfc_wcqe_complete *wcqe) 15053 { 15054 struct lpfc_sli_ring *pring = cq->pring; 15055 struct lpfc_iocbq *cmdiocbq; 15056 struct lpfc_iocbq irspiocbq; 15057 unsigned long iflags; 15058 15059 /* Check for response status */ 15060 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 15061 /* If resource errors reported from HBA, reduce queue 15062 * depth of the SCSI device. 15063 */ 15064 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 15065 IOSTAT_LOCAL_REJECT)) && 15066 ((wcqe->parameter & IOERR_PARAM_MASK) == 15067 IOERR_NO_RESOURCES)) 15068 phba->lpfc_rampdown_queue_depth(phba); 15069 15070 /* Log the cmpl status */ 15071 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 15072 "0373 FCP CQE cmpl: status=x%x: " 15073 "CQE: %08x %08x %08x %08x\n", 15074 bf_get(lpfc_wcqe_c_status, wcqe), 15075 wcqe->word0, wcqe->total_data_placed, 15076 wcqe->parameter, wcqe->word3); 15077 } 15078 15079 /* Look up the FCP command IOCB and create pseudo response IOCB */ 15080 spin_lock_irqsave(&pring->ring_lock, iflags); 15081 pring->stats.iocb_event++; 15082 spin_unlock_irqrestore(&pring->ring_lock, iflags); 15083 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 15084 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15085 if (unlikely(!cmdiocbq)) { 15086 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15087 "0374 FCP complete with no corresponding " 15088 "cmdiocb: iotag (%d)\n", 15089 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15090 return; 15091 } 15092 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 15093 cmdiocbq->isr_timestamp = cq->isr_timestamp; 15094 #endif 15095 if (cmdiocbq->iocb_cmpl == NULL) { 15096 if (cmdiocbq->wqe_cmpl) { 15097 /* For FCP the flag is cleared in wqe_cmpl */ 15098 if (!(cmdiocbq->iocb_flag & LPFC_IO_FCP) && 15099 cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 15100 spin_lock_irqsave(&phba->hbalock, iflags); 15101 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 15102 spin_unlock_irqrestore(&phba->hbalock, iflags); 15103 } 15104 15105 /* Pass the cmd_iocb and the wcqe to the upper layer */ 15106 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); 15107 return; 15108 } 15109 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15110 "0375 FCP cmdiocb not callback function " 15111 "iotag: (%d)\n", 15112 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15113 return; 15114 } 15115 15116 /* Only SLI4 non-IO commands stil use IOCB */ 15117 /* Fake the irspiocb and copy necessary response information */ 15118 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 15119 15120 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 15121 spin_lock_irqsave(&phba->hbalock, iflags); 15122 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 15123 spin_unlock_irqrestore(&phba->hbalock, iflags); 15124 } 15125 15126 /* Pass the cmd_iocb and the rsp state to the upper layer */ 15127 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 15128 } 15129 15130 /** 15131 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 15132 * @phba: Pointer to HBA context object. 15133 * @cq: Pointer to completion queue. 15134 * @wcqe: Pointer to work-queue completion queue entry. 15135 * 15136 * This routine handles an fast-path WQ entry consumed event by invoking the 15137 * proper WQ release routine to the slow-path WQ. 15138 **/ 15139 static void 15140 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15141 struct lpfc_wcqe_release *wcqe) 15142 { 15143 struct lpfc_queue *childwq; 15144 bool wqid_matched = false; 15145 uint16_t hba_wqid; 15146 15147 /* Check for fast-path FCP work queue release */ 15148 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 15149 list_for_each_entry(childwq, &cq->child_list, list) { 15150 if (childwq->queue_id == hba_wqid) { 15151 lpfc_sli4_wq_release(childwq, 15152 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 15153 if (childwq->q_flag & HBA_NVMET_WQFULL) 15154 lpfc_nvmet_wqfull_process(phba, childwq); 15155 wqid_matched = true; 15156 break; 15157 } 15158 } 15159 /* Report warning log message if no match found */ 15160 if (wqid_matched != true) 15161 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15162 "2580 Fast-path wqe consume event carries " 15163 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 15164 } 15165 15166 /** 15167 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 15168 * @phba: Pointer to HBA context object. 15169 * @cq: Pointer to completion queue. 15170 * @rcqe: Pointer to receive-queue completion queue entry. 15171 * 15172 * This routine process a receive-queue completion queue entry. 15173 * 15174 * Return: true if work posted to worker thread, otherwise false. 15175 **/ 15176 static bool 15177 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15178 struct lpfc_rcqe *rcqe) 15179 { 15180 bool workposted = false; 15181 struct lpfc_queue *hrq; 15182 struct lpfc_queue *drq; 15183 struct rqb_dmabuf *dma_buf; 15184 struct fc_frame_header *fc_hdr; 15185 struct lpfc_nvmet_tgtport *tgtp; 15186 uint32_t status, rq_id; 15187 unsigned long iflags; 15188 uint32_t fctl, idx; 15189 15190 if ((phba->nvmet_support == 0) || 15191 (phba->sli4_hba.nvmet_cqset == NULL)) 15192 return workposted; 15193 15194 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 15195 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 15196 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 15197 15198 /* sanity check on queue memory */ 15199 if (unlikely(!hrq) || unlikely(!drq)) 15200 return workposted; 15201 15202 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 15203 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 15204 else 15205 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 15206 15207 if ((phba->nvmet_support == 0) || 15208 (rq_id != hrq->queue_id)) 15209 return workposted; 15210 15211 status = bf_get(lpfc_rcqe_status, rcqe); 15212 switch (status) { 15213 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 15214 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15215 "6126 Receive Frame Truncated!!\n"); 15216 fallthrough; 15217 case FC_STATUS_RQ_SUCCESS: 15218 spin_lock_irqsave(&phba->hbalock, iflags); 15219 lpfc_sli4_rq_release(hrq, drq); 15220 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15221 if (!dma_buf) { 15222 hrq->RQ_no_buf_found++; 15223 spin_unlock_irqrestore(&phba->hbalock, iflags); 15224 goto out; 15225 } 15226 spin_unlock_irqrestore(&phba->hbalock, iflags); 15227 hrq->RQ_rcv_buf++; 15228 hrq->RQ_buf_posted--; 15229 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 15230 15231 /* Just some basic sanity checks on FCP Command frame */ 15232 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 15233 fc_hdr->fh_f_ctl[1] << 8 | 15234 fc_hdr->fh_f_ctl[2]); 15235 if (((fctl & 15236 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 15237 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 15238 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 15239 goto drop; 15240 15241 if (fc_hdr->fh_type == FC_TYPE_FCP) { 15242 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 15243 lpfc_nvmet_unsol_fcp_event( 15244 phba, idx, dma_buf, cq->isr_timestamp, 15245 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 15246 return false; 15247 } 15248 drop: 15249 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15250 break; 15251 case FC_STATUS_INSUFF_BUF_FRM_DISC: 15252 if (phba->nvmet_support) { 15253 tgtp = phba->targetport->private; 15254 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15255 "6401 RQE Error x%x, posted %d err_cnt " 15256 "%d: %x %x %x\n", 15257 status, hrq->RQ_buf_posted, 15258 hrq->RQ_no_posted_buf, 15259 atomic_read(&tgtp->rcv_fcp_cmd_in), 15260 atomic_read(&tgtp->rcv_fcp_cmd_out), 15261 atomic_read(&tgtp->xmt_fcp_release)); 15262 } 15263 fallthrough; 15264 15265 case FC_STATUS_INSUFF_BUF_NEED_BUF: 15266 hrq->RQ_no_posted_buf++; 15267 /* Post more buffers if possible */ 15268 break; 15269 } 15270 out: 15271 return workposted; 15272 } 15273 15274 /** 15275 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 15276 * @phba: adapter with cq 15277 * @cq: Pointer to the completion queue. 15278 * @cqe: Pointer to fast-path completion queue entry. 15279 * 15280 * This routine process a fast-path work queue completion entry from fast-path 15281 * event queue for FCP command response completion. 15282 * 15283 * Return: true if work posted to worker thread, otherwise false. 15284 **/ 15285 static bool 15286 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15287 struct lpfc_cqe *cqe) 15288 { 15289 struct lpfc_wcqe_release wcqe; 15290 bool workposted = false; 15291 15292 /* Copy the work queue CQE and convert endian order if needed */ 15293 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 15294 15295 /* Check and process for different type of WCQE and dispatch */ 15296 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 15297 case CQE_CODE_COMPL_WQE: 15298 case CQE_CODE_NVME_ERSP: 15299 cq->CQ_wq++; 15300 /* Process the WQ complete event */ 15301 phba->last_completion_time = jiffies; 15302 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 15303 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 15304 (struct lpfc_wcqe_complete *)&wcqe); 15305 break; 15306 case CQE_CODE_RELEASE_WQE: 15307 cq->CQ_release_wqe++; 15308 /* Process the WQ release event */ 15309 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 15310 (struct lpfc_wcqe_release *)&wcqe); 15311 break; 15312 case CQE_CODE_XRI_ABORTED: 15313 cq->CQ_xri_aborted++; 15314 /* Process the WQ XRI abort event */ 15315 phba->last_completion_time = jiffies; 15316 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 15317 (struct sli4_wcqe_xri_aborted *)&wcqe); 15318 break; 15319 case CQE_CODE_RECEIVE_V1: 15320 case CQE_CODE_RECEIVE: 15321 phba->last_completion_time = jiffies; 15322 if (cq->subtype == LPFC_NVMET) { 15323 workposted = lpfc_sli4_nvmet_handle_rcqe( 15324 phba, cq, (struct lpfc_rcqe *)&wcqe); 15325 } 15326 break; 15327 default: 15328 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15329 "0144 Not a valid CQE code: x%x\n", 15330 bf_get(lpfc_wcqe_c_code, &wcqe)); 15331 break; 15332 } 15333 return workposted; 15334 } 15335 15336 /** 15337 * lpfc_sli4_sched_cq_work - Schedules cq work 15338 * @phba: Pointer to HBA context object. 15339 * @cq: Pointer to CQ 15340 * @cqid: CQ ID 15341 * 15342 * This routine checks the poll mode of the CQ corresponding to 15343 * cq->chann, then either schedules a softirq or queue_work to complete 15344 * cq work. 15345 * 15346 * queue_work path is taken if in NVMET mode, or if poll_mode is in 15347 * LPFC_QUEUE_WORK mode. Otherwise, softirq path is taken. 15348 * 15349 **/ 15350 static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba, 15351 struct lpfc_queue *cq, uint16_t cqid) 15352 { 15353 int ret = 0; 15354 15355 switch (cq->poll_mode) { 15356 case LPFC_IRQ_POLL: 15357 /* CGN mgmt is mutually exclusive from softirq processing */ 15358 if (phba->cmf_active_mode == LPFC_CFG_OFF) { 15359 irq_poll_sched(&cq->iop); 15360 break; 15361 } 15362 fallthrough; 15363 case LPFC_QUEUE_WORK: 15364 default: 15365 if (is_kdump_kernel()) 15366 ret = queue_work(phba->wq, &cq->irqwork); 15367 else 15368 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 15369 if (!ret) 15370 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15371 "0383 Cannot schedule queue work " 15372 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 15373 cqid, cq->queue_id, 15374 raw_smp_processor_id()); 15375 } 15376 } 15377 15378 /** 15379 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 15380 * @phba: Pointer to HBA context object. 15381 * @eq: Pointer to the queue structure. 15382 * @eqe: Pointer to fast-path event queue entry. 15383 * 15384 * This routine process a event queue entry from the fast-path event queue. 15385 * It will check the MajorCode and MinorCode to determine this is for a 15386 * completion event on a completion queue, if not, an error shall be logged 15387 * and just return. Otherwise, it will get to the corresponding completion 15388 * queue and process all the entries on the completion queue, rearm the 15389 * completion queue, and then return. 15390 **/ 15391 static void 15392 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 15393 struct lpfc_eqe *eqe) 15394 { 15395 struct lpfc_queue *cq = NULL; 15396 uint32_t qidx = eq->hdwq; 15397 uint16_t cqid, id; 15398 15399 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 15400 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15401 "0366 Not a valid completion " 15402 "event: majorcode=x%x, minorcode=x%x\n", 15403 bf_get_le32(lpfc_eqe_major_code, eqe), 15404 bf_get_le32(lpfc_eqe_minor_code, eqe)); 15405 return; 15406 } 15407 15408 /* Get the reference to the corresponding CQ */ 15409 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 15410 15411 /* Use the fast lookup method first */ 15412 if (cqid <= phba->sli4_hba.cq_max) { 15413 cq = phba->sli4_hba.cq_lookup[cqid]; 15414 if (cq) 15415 goto work_cq; 15416 } 15417 15418 /* Next check for NVMET completion */ 15419 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 15420 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 15421 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 15422 /* Process NVMET unsol rcv */ 15423 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 15424 goto process_cq; 15425 } 15426 } 15427 15428 if (phba->sli4_hba.nvmels_cq && 15429 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 15430 /* Process NVME unsol rcv */ 15431 cq = phba->sli4_hba.nvmels_cq; 15432 } 15433 15434 /* Otherwise this is a Slow path event */ 15435 if (cq == NULL) { 15436 lpfc_sli4_sp_handle_eqe(phba, eqe, 15437 phba->sli4_hba.hdwq[qidx].hba_eq); 15438 return; 15439 } 15440 15441 process_cq: 15442 if (unlikely(cqid != cq->queue_id)) { 15443 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15444 "0368 Miss-matched fast-path completion " 15445 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 15446 cqid, cq->queue_id); 15447 return; 15448 } 15449 15450 work_cq: 15451 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 15452 if (phba->ktime_on) 15453 cq->isr_timestamp = ktime_get_ns(); 15454 else 15455 cq->isr_timestamp = 0; 15456 #endif 15457 lpfc_sli4_sched_cq_work(phba, cq, cqid); 15458 } 15459 15460 /** 15461 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 15462 * @cq: Pointer to CQ to be processed 15463 * @poll_mode: Enum lpfc_poll_state to determine poll mode 15464 * 15465 * This routine calls the cq processing routine with the handler for 15466 * fast path CQEs. 15467 * 15468 * The CQ routine returns two values: the first is the calling status, 15469 * which indicates whether work was queued to the background discovery 15470 * thread. If true, the routine should wakeup the discovery thread; 15471 * the second is the delay parameter. If non-zero, rather than rearming 15472 * the CQ and yet another interrupt, the CQ handler should be queued so 15473 * that it is processed in a subsequent polling action. The value of 15474 * the delay indicates when to reschedule it. 15475 **/ 15476 static void 15477 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq, 15478 enum lpfc_poll_mode poll_mode) 15479 { 15480 struct lpfc_hba *phba = cq->phba; 15481 unsigned long delay; 15482 bool workposted = false; 15483 int ret = 0; 15484 15485 /* process and rearm the CQ */ 15486 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 15487 &delay, poll_mode); 15488 15489 if (delay) { 15490 if (is_kdump_kernel()) 15491 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 15492 delay); 15493 else 15494 ret = queue_delayed_work_on(cq->chann, phba->wq, 15495 &cq->sched_irqwork, delay); 15496 if (!ret) 15497 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15498 "0367 Cannot schedule queue work " 15499 "for cqid=%d on CPU %d\n", 15500 cq->queue_id, cq->chann); 15501 } 15502 15503 /* wake up worker thread if there are works to be done */ 15504 if (workposted) 15505 lpfc_worker_wake_up(phba); 15506 } 15507 15508 /** 15509 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 15510 * interrupt 15511 * @work: pointer to work element 15512 * 15513 * translates from the work handler and calls the fast-path handler. 15514 **/ 15515 static void 15516 lpfc_sli4_hba_process_cq(struct work_struct *work) 15517 { 15518 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 15519 15520 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 15521 } 15522 15523 /** 15524 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 15525 * @work: pointer to work element 15526 * 15527 * translates from the work handler and calls the fast-path handler. 15528 **/ 15529 static void 15530 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 15531 { 15532 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15533 struct lpfc_queue, sched_irqwork); 15534 15535 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 15536 } 15537 15538 /** 15539 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 15540 * @irq: Interrupt number. 15541 * @dev_id: The device context pointer. 15542 * 15543 * This function is directly called from the PCI layer as an interrupt 15544 * service routine when device with SLI-4 interface spec is enabled with 15545 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 15546 * ring event in the HBA. However, when the device is enabled with either 15547 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 15548 * device-level interrupt handler. When the PCI slot is in error recovery 15549 * or the HBA is undergoing initialization, the interrupt handler will not 15550 * process the interrupt. The SCSI FCP fast-path ring event are handled in 15551 * the intrrupt context. This function is called without any lock held. 15552 * It gets the hbalock to access and update SLI data structures. Note that, 15553 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 15554 * equal to that of FCP CQ index. 15555 * 15556 * The link attention and ELS ring attention events are handled 15557 * by the worker thread. The interrupt handler signals the worker thread 15558 * and returns for these events. This function is called without any lock 15559 * held. It gets the hbalock to access and update SLI data structures. 15560 * 15561 * This function returns IRQ_HANDLED when interrupt is handled else it 15562 * returns IRQ_NONE. 15563 **/ 15564 irqreturn_t 15565 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 15566 { 15567 struct lpfc_hba *phba; 15568 struct lpfc_hba_eq_hdl *hba_eq_hdl; 15569 struct lpfc_queue *fpeq; 15570 unsigned long iflag; 15571 int ecount = 0; 15572 int hba_eqidx; 15573 struct lpfc_eq_intr_info *eqi; 15574 15575 /* Get the driver's phba structure from the dev_id */ 15576 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 15577 phba = hba_eq_hdl->phba; 15578 hba_eqidx = hba_eq_hdl->idx; 15579 15580 if (unlikely(!phba)) 15581 return IRQ_NONE; 15582 if (unlikely(!phba->sli4_hba.hdwq)) 15583 return IRQ_NONE; 15584 15585 /* Get to the EQ struct associated with this vector */ 15586 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 15587 if (unlikely(!fpeq)) 15588 return IRQ_NONE; 15589 15590 /* Check device state for handling interrupt */ 15591 if (unlikely(lpfc_intr_state_check(phba))) { 15592 /* Check again for link_state with lock held */ 15593 spin_lock_irqsave(&phba->hbalock, iflag); 15594 if (phba->link_state < LPFC_LINK_DOWN) 15595 /* Flush, clear interrupt, and rearm the EQ */ 15596 lpfc_sli4_eqcq_flush(phba, fpeq); 15597 spin_unlock_irqrestore(&phba->hbalock, iflag); 15598 return IRQ_NONE; 15599 } 15600 15601 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 15602 eqi->icnt++; 15603 15604 fpeq->last_cpu = raw_smp_processor_id(); 15605 15606 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 15607 fpeq->q_flag & HBA_EQ_DELAY_CHK && 15608 phba->cfg_auto_imax && 15609 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 15610 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 15611 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 15612 15613 /* process and rearm the EQ */ 15614 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 15615 15616 if (unlikely(ecount == 0)) { 15617 fpeq->EQ_no_entry++; 15618 if (phba->intr_type == MSIX) 15619 /* MSI-X treated interrupt served as no EQ share INT */ 15620 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15621 "0358 MSI-X interrupt with no EQE\n"); 15622 else 15623 /* Non MSI-X treated on interrupt as EQ share INT */ 15624 return IRQ_NONE; 15625 } 15626 15627 return IRQ_HANDLED; 15628 } /* lpfc_sli4_hba_intr_handler */ 15629 15630 /** 15631 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 15632 * @irq: Interrupt number. 15633 * @dev_id: The device context pointer. 15634 * 15635 * This function is the device-level interrupt handler to device with SLI-4 15636 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 15637 * interrupt mode is enabled and there is an event in the HBA which requires 15638 * driver attention. This function invokes the slow-path interrupt attention 15639 * handling function and fast-path interrupt attention handling function in 15640 * turn to process the relevant HBA attention events. This function is called 15641 * without any lock held. It gets the hbalock to access and update SLI data 15642 * structures. 15643 * 15644 * This function returns IRQ_HANDLED when interrupt is handled, else it 15645 * returns IRQ_NONE. 15646 **/ 15647 irqreturn_t 15648 lpfc_sli4_intr_handler(int irq, void *dev_id) 15649 { 15650 struct lpfc_hba *phba; 15651 irqreturn_t hba_irq_rc; 15652 bool hba_handled = false; 15653 int qidx; 15654 15655 /* Get the driver's phba structure from the dev_id */ 15656 phba = (struct lpfc_hba *)dev_id; 15657 15658 if (unlikely(!phba)) 15659 return IRQ_NONE; 15660 15661 /* 15662 * Invoke fast-path host attention interrupt handling as appropriate. 15663 */ 15664 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 15665 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 15666 &phba->sli4_hba.hba_eq_hdl[qidx]); 15667 if (hba_irq_rc == IRQ_HANDLED) 15668 hba_handled |= true; 15669 } 15670 15671 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 15672 } /* lpfc_sli4_intr_handler */ 15673 15674 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 15675 { 15676 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 15677 struct lpfc_queue *eq; 15678 int i = 0; 15679 15680 rcu_read_lock(); 15681 15682 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 15683 i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH); 15684 if (!list_empty(&phba->poll_list)) 15685 mod_timer(&phba->cpuhp_poll_timer, 15686 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15687 15688 rcu_read_unlock(); 15689 } 15690 15691 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path) 15692 { 15693 struct lpfc_hba *phba = eq->phba; 15694 int i = 0; 15695 15696 /* 15697 * Unlocking an irq is one of the entry point to check 15698 * for re-schedule, but we are good for io submission 15699 * path as midlayer does a get_cpu to glue us in. Flush 15700 * out the invalidate queue so we can see the updated 15701 * value for flag. 15702 */ 15703 smp_rmb(); 15704 15705 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 15706 /* We will not likely get the completion for the caller 15707 * during this iteration but i guess that's fine. 15708 * Future io's coming on this eq should be able to 15709 * pick it up. As for the case of single io's, they 15710 * will be handled through a sched from polling timer 15711 * function which is currently triggered every 1msec. 15712 */ 15713 i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM); 15714 15715 return i; 15716 } 15717 15718 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 15719 { 15720 struct lpfc_hba *phba = eq->phba; 15721 15722 /* kickstart slowpath processing if needed */ 15723 if (list_empty(&phba->poll_list)) 15724 mod_timer(&phba->cpuhp_poll_timer, 15725 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15726 15727 list_add_rcu(&eq->_poll_list, &phba->poll_list); 15728 synchronize_rcu(); 15729 } 15730 15731 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 15732 { 15733 struct lpfc_hba *phba = eq->phba; 15734 15735 /* Disable slowpath processing for this eq. Kick start the eq 15736 * by RE-ARMING the eq's ASAP 15737 */ 15738 list_del_rcu(&eq->_poll_list); 15739 synchronize_rcu(); 15740 15741 if (list_empty(&phba->poll_list)) 15742 del_timer_sync(&phba->cpuhp_poll_timer); 15743 } 15744 15745 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 15746 { 15747 struct lpfc_queue *eq, *next; 15748 15749 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 15750 list_del(&eq->_poll_list); 15751 15752 INIT_LIST_HEAD(&phba->poll_list); 15753 synchronize_rcu(); 15754 } 15755 15756 static inline void 15757 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15758 { 15759 if (mode == eq->mode) 15760 return; 15761 /* 15762 * currently this function is only called during a hotplug 15763 * event and the cpu on which this function is executing 15764 * is going offline. By now the hotplug has instructed 15765 * the scheduler to remove this cpu from cpu active mask. 15766 * So we don't need to work about being put aside by the 15767 * scheduler for a high priority process. Yes, the inte- 15768 * rrupts could come but they are known to retire ASAP. 15769 */ 15770 15771 /* Disable polling in the fastpath */ 15772 WRITE_ONCE(eq->mode, mode); 15773 /* flush out the store buffer */ 15774 smp_wmb(); 15775 15776 /* 15777 * Add this eq to the polling list and start polling. For 15778 * a grace period both interrupt handler and poller will 15779 * try to process the eq _but_ that's fine. We have a 15780 * synchronization mechanism in place (queue_claimed) to 15781 * deal with it. This is just a draining phase for int- 15782 * errupt handler (not eq's) as we have guranteed through 15783 * barrier that all the CPUs have seen the new CQ_POLLED 15784 * state. which will effectively disable the REARMING of 15785 * the EQ. The whole idea is eq's die off eventually as 15786 * we are not rearming EQ's anymore. 15787 */ 15788 mode ? lpfc_sli4_add_to_poll_list(eq) : 15789 lpfc_sli4_remove_from_poll_list(eq); 15790 } 15791 15792 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15793 { 15794 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15795 } 15796 15797 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15798 { 15799 struct lpfc_hba *phba = eq->phba; 15800 15801 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15802 15803 /* Kick start for the pending io's in h/w. 15804 * Once we switch back to interrupt processing on a eq 15805 * the io path completion will only arm eq's when it 15806 * receives a completion. But since eq's are in disa- 15807 * rmed state it doesn't receive a completion. This 15808 * creates a deadlock scenaro. 15809 */ 15810 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15811 } 15812 15813 /** 15814 * lpfc_sli4_queue_free - free a queue structure and associated memory 15815 * @queue: The queue structure to free. 15816 * 15817 * This function frees a queue structure and the DMAable memory used for 15818 * the host resident queue. This function must be called after destroying the 15819 * queue on the HBA. 15820 **/ 15821 void 15822 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15823 { 15824 struct lpfc_dmabuf *dmabuf; 15825 15826 if (!queue) 15827 return; 15828 15829 if (!list_empty(&queue->wq_list)) 15830 list_del(&queue->wq_list); 15831 15832 while (!list_empty(&queue->page_list)) { 15833 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15834 list); 15835 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15836 dmabuf->virt, dmabuf->phys); 15837 kfree(dmabuf); 15838 } 15839 if (queue->rqbp) { 15840 lpfc_free_rq_buffer(queue->phba, queue); 15841 kfree(queue->rqbp); 15842 } 15843 15844 if (!list_empty(&queue->cpu_list)) 15845 list_del(&queue->cpu_list); 15846 15847 kfree(queue); 15848 return; 15849 } 15850 15851 /** 15852 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15853 * @phba: The HBA that this queue is being created on. 15854 * @page_size: The size of a queue page 15855 * @entry_size: The size of each queue entry for this queue. 15856 * @entry_count: The number of entries that this queue will handle. 15857 * @cpu: The cpu that will primarily utilize this queue. 15858 * 15859 * This function allocates a queue structure and the DMAable memory used for 15860 * the host resident queue. This function must be called before creating the 15861 * queue on the HBA. 15862 **/ 15863 struct lpfc_queue * 15864 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15865 uint32_t entry_size, uint32_t entry_count, int cpu) 15866 { 15867 struct lpfc_queue *queue; 15868 struct lpfc_dmabuf *dmabuf; 15869 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15870 uint16_t x, pgcnt; 15871 15872 if (!phba->sli4_hba.pc_sli4_params.supported) 15873 hw_page_size = page_size; 15874 15875 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15876 15877 /* If needed, Adjust page count to match the max the adapter supports */ 15878 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15879 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15880 15881 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15882 GFP_KERNEL, cpu_to_node(cpu)); 15883 if (!queue) 15884 return NULL; 15885 15886 INIT_LIST_HEAD(&queue->list); 15887 INIT_LIST_HEAD(&queue->_poll_list); 15888 INIT_LIST_HEAD(&queue->wq_list); 15889 INIT_LIST_HEAD(&queue->wqfull_list); 15890 INIT_LIST_HEAD(&queue->page_list); 15891 INIT_LIST_HEAD(&queue->child_list); 15892 INIT_LIST_HEAD(&queue->cpu_list); 15893 15894 /* Set queue parameters now. If the system cannot provide memory 15895 * resources, the free routine needs to know what was allocated. 15896 */ 15897 queue->page_count = pgcnt; 15898 queue->q_pgs = (void **)&queue[1]; 15899 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15900 queue->entry_size = entry_size; 15901 queue->entry_count = entry_count; 15902 queue->page_size = hw_page_size; 15903 queue->phba = phba; 15904 15905 for (x = 0; x < queue->page_count; x++) { 15906 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15907 dev_to_node(&phba->pcidev->dev)); 15908 if (!dmabuf) 15909 goto out_fail; 15910 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15911 hw_page_size, &dmabuf->phys, 15912 GFP_KERNEL); 15913 if (!dmabuf->virt) { 15914 kfree(dmabuf); 15915 goto out_fail; 15916 } 15917 dmabuf->buffer_tag = x; 15918 list_add_tail(&dmabuf->list, &queue->page_list); 15919 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15920 queue->q_pgs[x] = dmabuf->virt; 15921 } 15922 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15923 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15924 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15925 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15926 15927 /* notify_interval will be set during q creation */ 15928 15929 return queue; 15930 out_fail: 15931 lpfc_sli4_queue_free(queue); 15932 return NULL; 15933 } 15934 15935 /** 15936 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15937 * @phba: HBA structure that indicates port to create a queue on. 15938 * @pci_barset: PCI BAR set flag. 15939 * 15940 * This function shall perform iomap of the specified PCI BAR address to host 15941 * memory address if not already done so and return it. The returned host 15942 * memory address can be NULL. 15943 */ 15944 static void __iomem * 15945 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15946 { 15947 if (!phba->pcidev) 15948 return NULL; 15949 15950 switch (pci_barset) { 15951 case WQ_PCI_BAR_0_AND_1: 15952 return phba->pci_bar0_memmap_p; 15953 case WQ_PCI_BAR_2_AND_3: 15954 return phba->pci_bar2_memmap_p; 15955 case WQ_PCI_BAR_4_AND_5: 15956 return phba->pci_bar4_memmap_p; 15957 default: 15958 break; 15959 } 15960 return NULL; 15961 } 15962 15963 /** 15964 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15965 * @phba: HBA structure that EQs are on. 15966 * @startq: The starting EQ index to modify 15967 * @numq: The number of EQs (consecutive indexes) to modify 15968 * @usdelay: amount of delay 15969 * 15970 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15971 * is set either by writing to a register (if supported by the SLI Port) 15972 * or by mailbox command. The mailbox command allows several EQs to be 15973 * updated at once. 15974 * 15975 * The @phba struct is used to send a mailbox command to HBA. The @startq 15976 * is used to get the starting EQ index to change. The @numq value is 15977 * used to specify how many consecutive EQ indexes, starting at EQ index, 15978 * are to be changed. This function is asynchronous and will wait for any 15979 * mailbox commands to finish before returning. 15980 * 15981 * On success this function will return a zero. If unable to allocate 15982 * enough memory this function will return -ENOMEM. If a mailbox command 15983 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15984 * have had their delay multipler changed. 15985 **/ 15986 void 15987 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15988 uint32_t numq, uint32_t usdelay) 15989 { 15990 struct lpfc_mbx_modify_eq_delay *eq_delay; 15991 LPFC_MBOXQ_t *mbox; 15992 struct lpfc_queue *eq; 15993 int cnt = 0, rc, length; 15994 uint32_t shdr_status, shdr_add_status; 15995 uint32_t dmult; 15996 int qidx; 15997 union lpfc_sli4_cfg_shdr *shdr; 15998 15999 if (startq >= phba->cfg_irq_chann) 16000 return; 16001 16002 if (usdelay > 0xFFFF) { 16003 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 16004 "6429 usdelay %d too large. Scaled down to " 16005 "0xFFFF.\n", usdelay); 16006 usdelay = 0xFFFF; 16007 } 16008 16009 /* set values by EQ_DELAY register if supported */ 16010 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 16011 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 16012 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 16013 if (!eq) 16014 continue; 16015 16016 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 16017 16018 if (++cnt >= numq) 16019 break; 16020 } 16021 return; 16022 } 16023 16024 /* Otherwise, set values by mailbox cmd */ 16025 16026 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16027 if (!mbox) { 16028 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16029 "6428 Failed allocating mailbox cmd buffer." 16030 " EQ delay was not set.\n"); 16031 return; 16032 } 16033 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 16034 sizeof(struct lpfc_sli4_cfg_mhdr)); 16035 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16036 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 16037 length, LPFC_SLI4_MBX_EMBED); 16038 eq_delay = &mbox->u.mqe.un.eq_delay; 16039 16040 /* Calculate delay multiper from maximum interrupt per second */ 16041 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 16042 if (dmult) 16043 dmult--; 16044 if (dmult > LPFC_DMULT_MAX) 16045 dmult = LPFC_DMULT_MAX; 16046 16047 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 16048 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 16049 if (!eq) 16050 continue; 16051 eq->q_mode = usdelay; 16052 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 16053 eq_delay->u.request.eq[cnt].phase = 0; 16054 eq_delay->u.request.eq[cnt].delay_multi = dmult; 16055 16056 if (++cnt >= numq) 16057 break; 16058 } 16059 eq_delay->u.request.num_eq = cnt; 16060 16061 mbox->vport = phba->pport; 16062 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16063 mbox->ctx_buf = NULL; 16064 mbox->ctx_ndlp = NULL; 16065 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16066 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 16067 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16068 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16069 if (shdr_status || shdr_add_status || rc) { 16070 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16071 "2512 MODIFY_EQ_DELAY mailbox failed with " 16072 "status x%x add_status x%x, mbx status x%x\n", 16073 shdr_status, shdr_add_status, rc); 16074 } 16075 mempool_free(mbox, phba->mbox_mem_pool); 16076 return; 16077 } 16078 16079 /** 16080 * lpfc_eq_create - Create an Event Queue on the HBA 16081 * @phba: HBA structure that indicates port to create a queue on. 16082 * @eq: The queue structure to use to create the event queue. 16083 * @imax: The maximum interrupt per second limit. 16084 * 16085 * This function creates an event queue, as detailed in @eq, on a port, 16086 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 16087 * 16088 * The @phba struct is used to send mailbox command to HBA. The @eq struct 16089 * is used to get the entry count and entry size that are necessary to 16090 * determine the number of pages to allocate and use for this queue. This 16091 * function will send the EQ_CREATE mailbox command to the HBA to setup the 16092 * event queue. This function is asynchronous and will wait for the mailbox 16093 * command to finish before continuing. 16094 * 16095 * On success this function will return a zero. If unable to allocate enough 16096 * memory this function will return -ENOMEM. If the queue create mailbox command 16097 * fails this function will return -ENXIO. 16098 **/ 16099 int 16100 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 16101 { 16102 struct lpfc_mbx_eq_create *eq_create; 16103 LPFC_MBOXQ_t *mbox; 16104 int rc, length, status = 0; 16105 struct lpfc_dmabuf *dmabuf; 16106 uint32_t shdr_status, shdr_add_status; 16107 union lpfc_sli4_cfg_shdr *shdr; 16108 uint16_t dmult; 16109 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16110 16111 /* sanity check on queue memory */ 16112 if (!eq) 16113 return -ENODEV; 16114 if (!phba->sli4_hba.pc_sli4_params.supported) 16115 hw_page_size = SLI4_PAGE_SIZE; 16116 16117 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16118 if (!mbox) 16119 return -ENOMEM; 16120 length = (sizeof(struct lpfc_mbx_eq_create) - 16121 sizeof(struct lpfc_sli4_cfg_mhdr)); 16122 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16123 LPFC_MBOX_OPCODE_EQ_CREATE, 16124 length, LPFC_SLI4_MBX_EMBED); 16125 eq_create = &mbox->u.mqe.un.eq_create; 16126 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 16127 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 16128 eq->page_count); 16129 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 16130 LPFC_EQE_SIZE); 16131 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 16132 16133 /* Use version 2 of CREATE_EQ if eqav is set */ 16134 if (phba->sli4_hba.pc_sli4_params.eqav) { 16135 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16136 LPFC_Q_CREATE_VERSION_2); 16137 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 16138 phba->sli4_hba.pc_sli4_params.eqav); 16139 } 16140 16141 /* don't setup delay multiplier using EQ_CREATE */ 16142 dmult = 0; 16143 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 16144 dmult); 16145 switch (eq->entry_count) { 16146 default: 16147 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16148 "0360 Unsupported EQ count. (%d)\n", 16149 eq->entry_count); 16150 if (eq->entry_count < 256) { 16151 status = -EINVAL; 16152 goto out; 16153 } 16154 fallthrough; /* otherwise default to smallest count */ 16155 case 256: 16156 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16157 LPFC_EQ_CNT_256); 16158 break; 16159 case 512: 16160 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16161 LPFC_EQ_CNT_512); 16162 break; 16163 case 1024: 16164 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16165 LPFC_EQ_CNT_1024); 16166 break; 16167 case 2048: 16168 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16169 LPFC_EQ_CNT_2048); 16170 break; 16171 case 4096: 16172 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16173 LPFC_EQ_CNT_4096); 16174 break; 16175 } 16176 list_for_each_entry(dmabuf, &eq->page_list, list) { 16177 memset(dmabuf->virt, 0, hw_page_size); 16178 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16179 putPaddrLow(dmabuf->phys); 16180 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16181 putPaddrHigh(dmabuf->phys); 16182 } 16183 mbox->vport = phba->pport; 16184 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16185 mbox->ctx_buf = NULL; 16186 mbox->ctx_ndlp = NULL; 16187 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16188 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16189 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16190 if (shdr_status || shdr_add_status || rc) { 16191 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16192 "2500 EQ_CREATE mailbox failed with " 16193 "status x%x add_status x%x, mbx status x%x\n", 16194 shdr_status, shdr_add_status, rc); 16195 status = -ENXIO; 16196 } 16197 eq->type = LPFC_EQ; 16198 eq->subtype = LPFC_NONE; 16199 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 16200 if (eq->queue_id == 0xFFFF) 16201 status = -ENXIO; 16202 eq->host_index = 0; 16203 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 16204 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 16205 out: 16206 mempool_free(mbox, phba->mbox_mem_pool); 16207 return status; 16208 } 16209 16210 static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget) 16211 { 16212 struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop); 16213 16214 __lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL); 16215 16216 return 1; 16217 } 16218 16219 /** 16220 * lpfc_cq_create - Create a Completion Queue on the HBA 16221 * @phba: HBA structure that indicates port to create a queue on. 16222 * @cq: The queue structure to use to create the completion queue. 16223 * @eq: The event queue to bind this completion queue to. 16224 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16225 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16226 * 16227 * This function creates a completion queue, as detailed in @wq, on a port, 16228 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 16229 * 16230 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16231 * is used to get the entry count and entry size that are necessary to 16232 * determine the number of pages to allocate and use for this queue. The @eq 16233 * is used to indicate which event queue to bind this completion queue to. This 16234 * function will send the CQ_CREATE mailbox command to the HBA to setup the 16235 * completion queue. This function is asynchronous and will wait for the mailbox 16236 * command to finish before continuing. 16237 * 16238 * On success this function will return a zero. If unable to allocate enough 16239 * memory this function will return -ENOMEM. If the queue create mailbox command 16240 * fails this function will return -ENXIO. 16241 **/ 16242 int 16243 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 16244 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 16245 { 16246 struct lpfc_mbx_cq_create *cq_create; 16247 struct lpfc_dmabuf *dmabuf; 16248 LPFC_MBOXQ_t *mbox; 16249 int rc, length, status = 0; 16250 uint32_t shdr_status, shdr_add_status; 16251 union lpfc_sli4_cfg_shdr *shdr; 16252 16253 /* sanity check on queue memory */ 16254 if (!cq || !eq) 16255 return -ENODEV; 16256 16257 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16258 if (!mbox) 16259 return -ENOMEM; 16260 length = (sizeof(struct lpfc_mbx_cq_create) - 16261 sizeof(struct lpfc_sli4_cfg_mhdr)); 16262 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16263 LPFC_MBOX_OPCODE_CQ_CREATE, 16264 length, LPFC_SLI4_MBX_EMBED); 16265 cq_create = &mbox->u.mqe.un.cq_create; 16266 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 16267 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 16268 cq->page_count); 16269 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 16270 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 16271 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16272 phba->sli4_hba.pc_sli4_params.cqv); 16273 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 16274 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 16275 (cq->page_size / SLI4_PAGE_SIZE)); 16276 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 16277 eq->queue_id); 16278 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 16279 phba->sli4_hba.pc_sli4_params.cqav); 16280 } else { 16281 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 16282 eq->queue_id); 16283 } 16284 switch (cq->entry_count) { 16285 case 2048: 16286 case 4096: 16287 if (phba->sli4_hba.pc_sli4_params.cqv == 16288 LPFC_Q_CREATE_VERSION_2) { 16289 cq_create->u.request.context.lpfc_cq_context_count = 16290 cq->entry_count; 16291 bf_set(lpfc_cq_context_count, 16292 &cq_create->u.request.context, 16293 LPFC_CQ_CNT_WORD7); 16294 break; 16295 } 16296 fallthrough; 16297 default: 16298 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16299 "0361 Unsupported CQ count: " 16300 "entry cnt %d sz %d pg cnt %d\n", 16301 cq->entry_count, cq->entry_size, 16302 cq->page_count); 16303 if (cq->entry_count < 256) { 16304 status = -EINVAL; 16305 goto out; 16306 } 16307 fallthrough; /* otherwise default to smallest count */ 16308 case 256: 16309 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16310 LPFC_CQ_CNT_256); 16311 break; 16312 case 512: 16313 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16314 LPFC_CQ_CNT_512); 16315 break; 16316 case 1024: 16317 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16318 LPFC_CQ_CNT_1024); 16319 break; 16320 } 16321 list_for_each_entry(dmabuf, &cq->page_list, list) { 16322 memset(dmabuf->virt, 0, cq->page_size); 16323 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16324 putPaddrLow(dmabuf->phys); 16325 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16326 putPaddrHigh(dmabuf->phys); 16327 } 16328 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16329 16330 /* The IOCTL status is embedded in the mailbox subheader. */ 16331 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16332 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16333 if (shdr_status || shdr_add_status || rc) { 16334 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16335 "2501 CQ_CREATE mailbox failed with " 16336 "status x%x add_status x%x, mbx status x%x\n", 16337 shdr_status, shdr_add_status, rc); 16338 status = -ENXIO; 16339 goto out; 16340 } 16341 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16342 if (cq->queue_id == 0xFFFF) { 16343 status = -ENXIO; 16344 goto out; 16345 } 16346 /* link the cq onto the parent eq child list */ 16347 list_add_tail(&cq->list, &eq->child_list); 16348 /* Set up completion queue's type and subtype */ 16349 cq->type = type; 16350 cq->subtype = subtype; 16351 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16352 cq->assoc_qid = eq->queue_id; 16353 cq->assoc_qp = eq; 16354 cq->host_index = 0; 16355 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16356 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 16357 16358 if (cq->queue_id > phba->sli4_hba.cq_max) 16359 phba->sli4_hba.cq_max = cq->queue_id; 16360 16361 irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler); 16362 out: 16363 mempool_free(mbox, phba->mbox_mem_pool); 16364 return status; 16365 } 16366 16367 /** 16368 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 16369 * @phba: HBA structure that indicates port to create a queue on. 16370 * @cqp: The queue structure array to use to create the completion queues. 16371 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 16372 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16373 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16374 * 16375 * This function creates a set of completion queue, s to support MRQ 16376 * as detailed in @cqp, on a port, 16377 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 16378 * 16379 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16380 * is used to get the entry count and entry size that are necessary to 16381 * determine the number of pages to allocate and use for this queue. The @eq 16382 * is used to indicate which event queue to bind this completion queue to. This 16383 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 16384 * completion queue. This function is asynchronous and will wait for the mailbox 16385 * command to finish before continuing. 16386 * 16387 * On success this function will return a zero. If unable to allocate enough 16388 * memory this function will return -ENOMEM. If the queue create mailbox command 16389 * fails this function will return -ENXIO. 16390 **/ 16391 int 16392 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 16393 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 16394 uint32_t subtype) 16395 { 16396 struct lpfc_queue *cq; 16397 struct lpfc_queue *eq; 16398 struct lpfc_mbx_cq_create_set *cq_set; 16399 struct lpfc_dmabuf *dmabuf; 16400 LPFC_MBOXQ_t *mbox; 16401 int rc, length, alloclen, status = 0; 16402 int cnt, idx, numcq, page_idx = 0; 16403 uint32_t shdr_status, shdr_add_status; 16404 union lpfc_sli4_cfg_shdr *shdr; 16405 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16406 16407 /* sanity check on queue memory */ 16408 numcq = phba->cfg_nvmet_mrq; 16409 if (!cqp || !hdwq || !numcq) 16410 return -ENODEV; 16411 16412 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16413 if (!mbox) 16414 return -ENOMEM; 16415 16416 length = sizeof(struct lpfc_mbx_cq_create_set); 16417 length += ((numcq * cqp[0]->page_count) * 16418 sizeof(struct dma_address)); 16419 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16420 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 16421 LPFC_SLI4_MBX_NEMBED); 16422 if (alloclen < length) { 16423 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16424 "3098 Allocated DMA memory size (%d) is " 16425 "less than the requested DMA memory size " 16426 "(%d)\n", alloclen, length); 16427 status = -ENOMEM; 16428 goto out; 16429 } 16430 cq_set = mbox->sge_array->addr[0]; 16431 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 16432 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 16433 16434 for (idx = 0; idx < numcq; idx++) { 16435 cq = cqp[idx]; 16436 eq = hdwq[idx].hba_eq; 16437 if (!cq || !eq) { 16438 status = -ENOMEM; 16439 goto out; 16440 } 16441 if (!phba->sli4_hba.pc_sli4_params.supported) 16442 hw_page_size = cq->page_size; 16443 16444 switch (idx) { 16445 case 0: 16446 bf_set(lpfc_mbx_cq_create_set_page_size, 16447 &cq_set->u.request, 16448 (hw_page_size / SLI4_PAGE_SIZE)); 16449 bf_set(lpfc_mbx_cq_create_set_num_pages, 16450 &cq_set->u.request, cq->page_count); 16451 bf_set(lpfc_mbx_cq_create_set_evt, 16452 &cq_set->u.request, 1); 16453 bf_set(lpfc_mbx_cq_create_set_valid, 16454 &cq_set->u.request, 1); 16455 bf_set(lpfc_mbx_cq_create_set_cqe_size, 16456 &cq_set->u.request, 0); 16457 bf_set(lpfc_mbx_cq_create_set_num_cq, 16458 &cq_set->u.request, numcq); 16459 bf_set(lpfc_mbx_cq_create_set_autovalid, 16460 &cq_set->u.request, 16461 phba->sli4_hba.pc_sli4_params.cqav); 16462 switch (cq->entry_count) { 16463 case 2048: 16464 case 4096: 16465 if (phba->sli4_hba.pc_sli4_params.cqv == 16466 LPFC_Q_CREATE_VERSION_2) { 16467 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16468 &cq_set->u.request, 16469 cq->entry_count); 16470 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16471 &cq_set->u.request, 16472 LPFC_CQ_CNT_WORD7); 16473 break; 16474 } 16475 fallthrough; 16476 default: 16477 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16478 "3118 Bad CQ count. (%d)\n", 16479 cq->entry_count); 16480 if (cq->entry_count < 256) { 16481 status = -EINVAL; 16482 goto out; 16483 } 16484 fallthrough; /* otherwise default to smallest */ 16485 case 256: 16486 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16487 &cq_set->u.request, LPFC_CQ_CNT_256); 16488 break; 16489 case 512: 16490 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16491 &cq_set->u.request, LPFC_CQ_CNT_512); 16492 break; 16493 case 1024: 16494 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16495 &cq_set->u.request, LPFC_CQ_CNT_1024); 16496 break; 16497 } 16498 bf_set(lpfc_mbx_cq_create_set_eq_id0, 16499 &cq_set->u.request, eq->queue_id); 16500 break; 16501 case 1: 16502 bf_set(lpfc_mbx_cq_create_set_eq_id1, 16503 &cq_set->u.request, eq->queue_id); 16504 break; 16505 case 2: 16506 bf_set(lpfc_mbx_cq_create_set_eq_id2, 16507 &cq_set->u.request, eq->queue_id); 16508 break; 16509 case 3: 16510 bf_set(lpfc_mbx_cq_create_set_eq_id3, 16511 &cq_set->u.request, eq->queue_id); 16512 break; 16513 case 4: 16514 bf_set(lpfc_mbx_cq_create_set_eq_id4, 16515 &cq_set->u.request, eq->queue_id); 16516 break; 16517 case 5: 16518 bf_set(lpfc_mbx_cq_create_set_eq_id5, 16519 &cq_set->u.request, eq->queue_id); 16520 break; 16521 case 6: 16522 bf_set(lpfc_mbx_cq_create_set_eq_id6, 16523 &cq_set->u.request, eq->queue_id); 16524 break; 16525 case 7: 16526 bf_set(lpfc_mbx_cq_create_set_eq_id7, 16527 &cq_set->u.request, eq->queue_id); 16528 break; 16529 case 8: 16530 bf_set(lpfc_mbx_cq_create_set_eq_id8, 16531 &cq_set->u.request, eq->queue_id); 16532 break; 16533 case 9: 16534 bf_set(lpfc_mbx_cq_create_set_eq_id9, 16535 &cq_set->u.request, eq->queue_id); 16536 break; 16537 case 10: 16538 bf_set(lpfc_mbx_cq_create_set_eq_id10, 16539 &cq_set->u.request, eq->queue_id); 16540 break; 16541 case 11: 16542 bf_set(lpfc_mbx_cq_create_set_eq_id11, 16543 &cq_set->u.request, eq->queue_id); 16544 break; 16545 case 12: 16546 bf_set(lpfc_mbx_cq_create_set_eq_id12, 16547 &cq_set->u.request, eq->queue_id); 16548 break; 16549 case 13: 16550 bf_set(lpfc_mbx_cq_create_set_eq_id13, 16551 &cq_set->u.request, eq->queue_id); 16552 break; 16553 case 14: 16554 bf_set(lpfc_mbx_cq_create_set_eq_id14, 16555 &cq_set->u.request, eq->queue_id); 16556 break; 16557 case 15: 16558 bf_set(lpfc_mbx_cq_create_set_eq_id15, 16559 &cq_set->u.request, eq->queue_id); 16560 break; 16561 } 16562 16563 /* link the cq onto the parent eq child list */ 16564 list_add_tail(&cq->list, &eq->child_list); 16565 /* Set up completion queue's type and subtype */ 16566 cq->type = type; 16567 cq->subtype = subtype; 16568 cq->assoc_qid = eq->queue_id; 16569 cq->assoc_qp = eq; 16570 cq->host_index = 0; 16571 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16572 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 16573 cq->entry_count); 16574 cq->chann = idx; 16575 16576 rc = 0; 16577 list_for_each_entry(dmabuf, &cq->page_list, list) { 16578 memset(dmabuf->virt, 0, hw_page_size); 16579 cnt = page_idx + dmabuf->buffer_tag; 16580 cq_set->u.request.page[cnt].addr_lo = 16581 putPaddrLow(dmabuf->phys); 16582 cq_set->u.request.page[cnt].addr_hi = 16583 putPaddrHigh(dmabuf->phys); 16584 rc++; 16585 } 16586 page_idx += rc; 16587 } 16588 16589 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16590 16591 /* The IOCTL status is embedded in the mailbox subheader. */ 16592 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16593 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16594 if (shdr_status || shdr_add_status || rc) { 16595 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16596 "3119 CQ_CREATE_SET mailbox failed with " 16597 "status x%x add_status x%x, mbx status x%x\n", 16598 shdr_status, shdr_add_status, rc); 16599 status = -ENXIO; 16600 goto out; 16601 } 16602 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 16603 if (rc == 0xFFFF) { 16604 status = -ENXIO; 16605 goto out; 16606 } 16607 16608 for (idx = 0; idx < numcq; idx++) { 16609 cq = cqp[idx]; 16610 cq->queue_id = rc + idx; 16611 if (cq->queue_id > phba->sli4_hba.cq_max) 16612 phba->sli4_hba.cq_max = cq->queue_id; 16613 } 16614 16615 out: 16616 lpfc_sli4_mbox_cmd_free(phba, mbox); 16617 return status; 16618 } 16619 16620 /** 16621 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 16622 * @phba: HBA structure that indicates port to create a queue on. 16623 * @mq: The queue structure to use to create the mailbox queue. 16624 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 16625 * @cq: The completion queue to associate with this cq. 16626 * 16627 * This function provides failback (fb) functionality when the 16628 * mq_create_ext fails on older FW generations. It's purpose is identical 16629 * to mq_create_ext otherwise. 16630 * 16631 * This routine cannot fail as all attributes were previously accessed and 16632 * initialized in mq_create_ext. 16633 **/ 16634 static void 16635 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 16636 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 16637 { 16638 struct lpfc_mbx_mq_create *mq_create; 16639 struct lpfc_dmabuf *dmabuf; 16640 int length; 16641 16642 length = (sizeof(struct lpfc_mbx_mq_create) - 16643 sizeof(struct lpfc_sli4_cfg_mhdr)); 16644 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16645 LPFC_MBOX_OPCODE_MQ_CREATE, 16646 length, LPFC_SLI4_MBX_EMBED); 16647 mq_create = &mbox->u.mqe.un.mq_create; 16648 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 16649 mq->page_count); 16650 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 16651 cq->queue_id); 16652 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 16653 switch (mq->entry_count) { 16654 case 16: 16655 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16656 LPFC_MQ_RING_SIZE_16); 16657 break; 16658 case 32: 16659 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16660 LPFC_MQ_RING_SIZE_32); 16661 break; 16662 case 64: 16663 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16664 LPFC_MQ_RING_SIZE_64); 16665 break; 16666 case 128: 16667 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16668 LPFC_MQ_RING_SIZE_128); 16669 break; 16670 } 16671 list_for_each_entry(dmabuf, &mq->page_list, list) { 16672 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16673 putPaddrLow(dmabuf->phys); 16674 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16675 putPaddrHigh(dmabuf->phys); 16676 } 16677 } 16678 16679 /** 16680 * lpfc_mq_create - Create a mailbox Queue on the HBA 16681 * @phba: HBA structure that indicates port to create a queue on. 16682 * @mq: The queue structure to use to create the mailbox queue. 16683 * @cq: The completion queue to associate with this cq. 16684 * @subtype: The queue's subtype. 16685 * 16686 * This function creates a mailbox queue, as detailed in @mq, on a port, 16687 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 16688 * 16689 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16690 * is used to get the entry count and entry size that are necessary to 16691 * determine the number of pages to allocate and use for this queue. This 16692 * function will send the MQ_CREATE mailbox command to the HBA to setup the 16693 * mailbox queue. This function is asynchronous and will wait for the mailbox 16694 * command to finish before continuing. 16695 * 16696 * On success this function will return a zero. If unable to allocate enough 16697 * memory this function will return -ENOMEM. If the queue create mailbox command 16698 * fails this function will return -ENXIO. 16699 **/ 16700 int32_t 16701 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 16702 struct lpfc_queue *cq, uint32_t subtype) 16703 { 16704 struct lpfc_mbx_mq_create *mq_create; 16705 struct lpfc_mbx_mq_create_ext *mq_create_ext; 16706 struct lpfc_dmabuf *dmabuf; 16707 LPFC_MBOXQ_t *mbox; 16708 int rc, length, status = 0; 16709 uint32_t shdr_status, shdr_add_status; 16710 union lpfc_sli4_cfg_shdr *shdr; 16711 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16712 16713 /* sanity check on queue memory */ 16714 if (!mq || !cq) 16715 return -ENODEV; 16716 if (!phba->sli4_hba.pc_sli4_params.supported) 16717 hw_page_size = SLI4_PAGE_SIZE; 16718 16719 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16720 if (!mbox) 16721 return -ENOMEM; 16722 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 16723 sizeof(struct lpfc_sli4_cfg_mhdr)); 16724 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16725 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 16726 length, LPFC_SLI4_MBX_EMBED); 16727 16728 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 16729 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 16730 bf_set(lpfc_mbx_mq_create_ext_num_pages, 16731 &mq_create_ext->u.request, mq->page_count); 16732 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 16733 &mq_create_ext->u.request, 1); 16734 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 16735 &mq_create_ext->u.request, 1); 16736 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 16737 &mq_create_ext->u.request, 1); 16738 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 16739 &mq_create_ext->u.request, 1); 16740 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 16741 &mq_create_ext->u.request, 1); 16742 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 16743 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16744 phba->sli4_hba.pc_sli4_params.mqv); 16745 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 16746 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 16747 cq->queue_id); 16748 else 16749 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 16750 cq->queue_id); 16751 switch (mq->entry_count) { 16752 default: 16753 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16754 "0362 Unsupported MQ count. (%d)\n", 16755 mq->entry_count); 16756 if (mq->entry_count < 16) { 16757 status = -EINVAL; 16758 goto out; 16759 } 16760 fallthrough; /* otherwise default to smallest count */ 16761 case 16: 16762 bf_set(lpfc_mq_context_ring_size, 16763 &mq_create_ext->u.request.context, 16764 LPFC_MQ_RING_SIZE_16); 16765 break; 16766 case 32: 16767 bf_set(lpfc_mq_context_ring_size, 16768 &mq_create_ext->u.request.context, 16769 LPFC_MQ_RING_SIZE_32); 16770 break; 16771 case 64: 16772 bf_set(lpfc_mq_context_ring_size, 16773 &mq_create_ext->u.request.context, 16774 LPFC_MQ_RING_SIZE_64); 16775 break; 16776 case 128: 16777 bf_set(lpfc_mq_context_ring_size, 16778 &mq_create_ext->u.request.context, 16779 LPFC_MQ_RING_SIZE_128); 16780 break; 16781 } 16782 list_for_each_entry(dmabuf, &mq->page_list, list) { 16783 memset(dmabuf->virt, 0, hw_page_size); 16784 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16785 putPaddrLow(dmabuf->phys); 16786 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16787 putPaddrHigh(dmabuf->phys); 16788 } 16789 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16790 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16791 &mq_create_ext->u.response); 16792 if (rc != MBX_SUCCESS) { 16793 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16794 "2795 MQ_CREATE_EXT failed with " 16795 "status x%x. Failback to MQ_CREATE.\n", 16796 rc); 16797 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16798 mq_create = &mbox->u.mqe.un.mq_create; 16799 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16800 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16801 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16802 &mq_create->u.response); 16803 } 16804 16805 /* The IOCTL status is embedded in the mailbox subheader. */ 16806 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16807 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16808 if (shdr_status || shdr_add_status || rc) { 16809 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16810 "2502 MQ_CREATE mailbox failed with " 16811 "status x%x add_status x%x, mbx status x%x\n", 16812 shdr_status, shdr_add_status, rc); 16813 status = -ENXIO; 16814 goto out; 16815 } 16816 if (mq->queue_id == 0xFFFF) { 16817 status = -ENXIO; 16818 goto out; 16819 } 16820 mq->type = LPFC_MQ; 16821 mq->assoc_qid = cq->queue_id; 16822 mq->subtype = subtype; 16823 mq->host_index = 0; 16824 mq->hba_index = 0; 16825 16826 /* link the mq onto the parent cq child list */ 16827 list_add_tail(&mq->list, &cq->child_list); 16828 out: 16829 mempool_free(mbox, phba->mbox_mem_pool); 16830 return status; 16831 } 16832 16833 /** 16834 * lpfc_wq_create - Create a Work Queue on the HBA 16835 * @phba: HBA structure that indicates port to create a queue on. 16836 * @wq: The queue structure to use to create the work queue. 16837 * @cq: The completion queue to bind this work queue to. 16838 * @subtype: The subtype of the work queue indicating its functionality. 16839 * 16840 * This function creates a work queue, as detailed in @wq, on a port, described 16841 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16842 * 16843 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16844 * is used to get the entry count and entry size that are necessary to 16845 * determine the number of pages to allocate and use for this queue. The @cq 16846 * is used to indicate which completion queue to bind this work queue to. This 16847 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16848 * work queue. This function is asynchronous and will wait for the mailbox 16849 * command to finish before continuing. 16850 * 16851 * On success this function will return a zero. If unable to allocate enough 16852 * memory this function will return -ENOMEM. If the queue create mailbox command 16853 * fails this function will return -ENXIO. 16854 **/ 16855 int 16856 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16857 struct lpfc_queue *cq, uint32_t subtype) 16858 { 16859 struct lpfc_mbx_wq_create *wq_create; 16860 struct lpfc_dmabuf *dmabuf; 16861 LPFC_MBOXQ_t *mbox; 16862 int rc, length, status = 0; 16863 uint32_t shdr_status, shdr_add_status; 16864 union lpfc_sli4_cfg_shdr *shdr; 16865 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16866 struct dma_address *page; 16867 void __iomem *bar_memmap_p; 16868 uint32_t db_offset; 16869 uint16_t pci_barset; 16870 uint8_t dpp_barset; 16871 uint32_t dpp_offset; 16872 uint8_t wq_create_version; 16873 #ifdef CONFIG_X86 16874 unsigned long pg_addr; 16875 #endif 16876 16877 /* sanity check on queue memory */ 16878 if (!wq || !cq) 16879 return -ENODEV; 16880 if (!phba->sli4_hba.pc_sli4_params.supported) 16881 hw_page_size = wq->page_size; 16882 16883 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16884 if (!mbox) 16885 return -ENOMEM; 16886 length = (sizeof(struct lpfc_mbx_wq_create) - 16887 sizeof(struct lpfc_sli4_cfg_mhdr)); 16888 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16889 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16890 length, LPFC_SLI4_MBX_EMBED); 16891 wq_create = &mbox->u.mqe.un.wq_create; 16892 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16893 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16894 wq->page_count); 16895 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16896 cq->queue_id); 16897 16898 /* wqv is the earliest version supported, NOT the latest */ 16899 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16900 phba->sli4_hba.pc_sli4_params.wqv); 16901 16902 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16903 (wq->page_size > SLI4_PAGE_SIZE)) 16904 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16905 else 16906 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16907 16908 switch (wq_create_version) { 16909 case LPFC_Q_CREATE_VERSION_1: 16910 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16911 wq->entry_count); 16912 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16913 LPFC_Q_CREATE_VERSION_1); 16914 16915 switch (wq->entry_size) { 16916 default: 16917 case 64: 16918 bf_set(lpfc_mbx_wq_create_wqe_size, 16919 &wq_create->u.request_1, 16920 LPFC_WQ_WQE_SIZE_64); 16921 break; 16922 case 128: 16923 bf_set(lpfc_mbx_wq_create_wqe_size, 16924 &wq_create->u.request_1, 16925 LPFC_WQ_WQE_SIZE_128); 16926 break; 16927 } 16928 /* Request DPP by default */ 16929 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16930 bf_set(lpfc_mbx_wq_create_page_size, 16931 &wq_create->u.request_1, 16932 (wq->page_size / SLI4_PAGE_SIZE)); 16933 page = wq_create->u.request_1.page; 16934 break; 16935 default: 16936 page = wq_create->u.request.page; 16937 break; 16938 } 16939 16940 list_for_each_entry(dmabuf, &wq->page_list, list) { 16941 memset(dmabuf->virt, 0, hw_page_size); 16942 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16943 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16944 } 16945 16946 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16947 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16948 16949 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16950 /* The IOCTL status is embedded in the mailbox subheader. */ 16951 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16952 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16953 if (shdr_status || shdr_add_status || rc) { 16954 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16955 "2503 WQ_CREATE mailbox failed with " 16956 "status x%x add_status x%x, mbx status x%x\n", 16957 shdr_status, shdr_add_status, rc); 16958 status = -ENXIO; 16959 goto out; 16960 } 16961 16962 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16963 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16964 &wq_create->u.response); 16965 else 16966 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16967 &wq_create->u.response_1); 16968 16969 if (wq->queue_id == 0xFFFF) { 16970 status = -ENXIO; 16971 goto out; 16972 } 16973 16974 wq->db_format = LPFC_DB_LIST_FORMAT; 16975 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 16976 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16977 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 16978 &wq_create->u.response); 16979 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 16980 (wq->db_format != LPFC_DB_RING_FORMAT)) { 16981 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16982 "3265 WQ[%d] doorbell format " 16983 "not supported: x%x\n", 16984 wq->queue_id, wq->db_format); 16985 status = -EINVAL; 16986 goto out; 16987 } 16988 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 16989 &wq_create->u.response); 16990 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16991 pci_barset); 16992 if (!bar_memmap_p) { 16993 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16994 "3263 WQ[%d] failed to memmap " 16995 "pci barset:x%x\n", 16996 wq->queue_id, pci_barset); 16997 status = -ENOMEM; 16998 goto out; 16999 } 17000 db_offset = wq_create->u.response.doorbell_offset; 17001 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 17002 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 17003 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17004 "3252 WQ[%d] doorbell offset " 17005 "not supported: x%x\n", 17006 wq->queue_id, db_offset); 17007 status = -EINVAL; 17008 goto out; 17009 } 17010 wq->db_regaddr = bar_memmap_p + db_offset; 17011 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17012 "3264 WQ[%d]: barset:x%x, offset:x%x, " 17013 "format:x%x\n", wq->queue_id, 17014 pci_barset, db_offset, wq->db_format); 17015 } else 17016 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17017 } else { 17018 /* Check if DPP was honored by the firmware */ 17019 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 17020 &wq_create->u.response_1); 17021 if (wq->dpp_enable) { 17022 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 17023 &wq_create->u.response_1); 17024 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17025 pci_barset); 17026 if (!bar_memmap_p) { 17027 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17028 "3267 WQ[%d] failed to memmap " 17029 "pci barset:x%x\n", 17030 wq->queue_id, pci_barset); 17031 status = -ENOMEM; 17032 goto out; 17033 } 17034 db_offset = wq_create->u.response_1.doorbell_offset; 17035 wq->db_regaddr = bar_memmap_p + db_offset; 17036 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 17037 &wq_create->u.response_1); 17038 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 17039 &wq_create->u.response_1); 17040 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17041 dpp_barset); 17042 if (!bar_memmap_p) { 17043 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17044 "3268 WQ[%d] failed to memmap " 17045 "pci barset:x%x\n", 17046 wq->queue_id, dpp_barset); 17047 status = -ENOMEM; 17048 goto out; 17049 } 17050 dpp_offset = wq_create->u.response_1.dpp_offset; 17051 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 17052 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17053 "3271 WQ[%d]: barset:x%x, offset:x%x, " 17054 "dpp_id:x%x dpp_barset:x%x " 17055 "dpp_offset:x%x\n", 17056 wq->queue_id, pci_barset, db_offset, 17057 wq->dpp_id, dpp_barset, dpp_offset); 17058 17059 #ifdef CONFIG_X86 17060 /* Enable combined writes for DPP aperture */ 17061 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 17062 rc = set_memory_wc(pg_addr, 1); 17063 if (rc) { 17064 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17065 "3272 Cannot setup Combined " 17066 "Write on WQ[%d] - disable DPP\n", 17067 wq->queue_id); 17068 phba->cfg_enable_dpp = 0; 17069 } 17070 #else 17071 phba->cfg_enable_dpp = 0; 17072 #endif 17073 } else 17074 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17075 } 17076 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 17077 if (wq->pring == NULL) { 17078 status = -ENOMEM; 17079 goto out; 17080 } 17081 wq->type = LPFC_WQ; 17082 wq->assoc_qid = cq->queue_id; 17083 wq->subtype = subtype; 17084 wq->host_index = 0; 17085 wq->hba_index = 0; 17086 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 17087 17088 /* link the wq onto the parent cq child list */ 17089 list_add_tail(&wq->list, &cq->child_list); 17090 out: 17091 mempool_free(mbox, phba->mbox_mem_pool); 17092 return status; 17093 } 17094 17095 /** 17096 * lpfc_rq_create - Create a Receive Queue on the HBA 17097 * @phba: HBA structure that indicates port to create a queue on. 17098 * @hrq: The queue structure to use to create the header receive queue. 17099 * @drq: The queue structure to use to create the data receive queue. 17100 * @cq: The completion queue to bind this work queue to. 17101 * @subtype: The subtype of the work queue indicating its functionality. 17102 * 17103 * This function creates a receive buffer queue pair , as detailed in @hrq and 17104 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17105 * to the HBA. 17106 * 17107 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17108 * struct is used to get the entry count that is necessary to determine the 17109 * number of pages to use for this queue. The @cq is used to indicate which 17110 * completion queue to bind received buffers that are posted to these queues to. 17111 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17112 * receive queue pair. This function is asynchronous and will wait for the 17113 * mailbox command to finish before continuing. 17114 * 17115 * On success this function will return a zero. If unable to allocate enough 17116 * memory this function will return -ENOMEM. If the queue create mailbox command 17117 * fails this function will return -ENXIO. 17118 **/ 17119 int 17120 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17121 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 17122 { 17123 struct lpfc_mbx_rq_create *rq_create; 17124 struct lpfc_dmabuf *dmabuf; 17125 LPFC_MBOXQ_t *mbox; 17126 int rc, length, status = 0; 17127 uint32_t shdr_status, shdr_add_status; 17128 union lpfc_sli4_cfg_shdr *shdr; 17129 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17130 void __iomem *bar_memmap_p; 17131 uint32_t db_offset; 17132 uint16_t pci_barset; 17133 17134 /* sanity check on queue memory */ 17135 if (!hrq || !drq || !cq) 17136 return -ENODEV; 17137 if (!phba->sli4_hba.pc_sli4_params.supported) 17138 hw_page_size = SLI4_PAGE_SIZE; 17139 17140 if (hrq->entry_count != drq->entry_count) 17141 return -EINVAL; 17142 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17143 if (!mbox) 17144 return -ENOMEM; 17145 length = (sizeof(struct lpfc_mbx_rq_create) - 17146 sizeof(struct lpfc_sli4_cfg_mhdr)); 17147 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17148 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17149 length, LPFC_SLI4_MBX_EMBED); 17150 rq_create = &mbox->u.mqe.un.rq_create; 17151 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17152 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17153 phba->sli4_hba.pc_sli4_params.rqv); 17154 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17155 bf_set(lpfc_rq_context_rqe_count_1, 17156 &rq_create->u.request.context, 17157 hrq->entry_count); 17158 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 17159 bf_set(lpfc_rq_context_rqe_size, 17160 &rq_create->u.request.context, 17161 LPFC_RQE_SIZE_8); 17162 bf_set(lpfc_rq_context_page_size, 17163 &rq_create->u.request.context, 17164 LPFC_RQ_PAGE_SIZE_4096); 17165 } else { 17166 switch (hrq->entry_count) { 17167 default: 17168 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17169 "2535 Unsupported RQ count. (%d)\n", 17170 hrq->entry_count); 17171 if (hrq->entry_count < 512) { 17172 status = -EINVAL; 17173 goto out; 17174 } 17175 fallthrough; /* otherwise default to smallest count */ 17176 case 512: 17177 bf_set(lpfc_rq_context_rqe_count, 17178 &rq_create->u.request.context, 17179 LPFC_RQ_RING_SIZE_512); 17180 break; 17181 case 1024: 17182 bf_set(lpfc_rq_context_rqe_count, 17183 &rq_create->u.request.context, 17184 LPFC_RQ_RING_SIZE_1024); 17185 break; 17186 case 2048: 17187 bf_set(lpfc_rq_context_rqe_count, 17188 &rq_create->u.request.context, 17189 LPFC_RQ_RING_SIZE_2048); 17190 break; 17191 case 4096: 17192 bf_set(lpfc_rq_context_rqe_count, 17193 &rq_create->u.request.context, 17194 LPFC_RQ_RING_SIZE_4096); 17195 break; 17196 } 17197 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 17198 LPFC_HDR_BUF_SIZE); 17199 } 17200 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17201 cq->queue_id); 17202 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17203 hrq->page_count); 17204 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17205 memset(dmabuf->virt, 0, hw_page_size); 17206 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17207 putPaddrLow(dmabuf->phys); 17208 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17209 putPaddrHigh(dmabuf->phys); 17210 } 17211 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17212 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17213 17214 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17215 /* The IOCTL status is embedded in the mailbox subheader. */ 17216 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17217 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17218 if (shdr_status || shdr_add_status || rc) { 17219 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17220 "2504 RQ_CREATE mailbox failed with " 17221 "status x%x add_status x%x, mbx status x%x\n", 17222 shdr_status, shdr_add_status, rc); 17223 status = -ENXIO; 17224 goto out; 17225 } 17226 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17227 if (hrq->queue_id == 0xFFFF) { 17228 status = -ENXIO; 17229 goto out; 17230 } 17231 17232 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 17233 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 17234 &rq_create->u.response); 17235 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 17236 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 17237 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17238 "3262 RQ [%d] doorbell format not " 17239 "supported: x%x\n", hrq->queue_id, 17240 hrq->db_format); 17241 status = -EINVAL; 17242 goto out; 17243 } 17244 17245 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 17246 &rq_create->u.response); 17247 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 17248 if (!bar_memmap_p) { 17249 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17250 "3269 RQ[%d] failed to memmap pci " 17251 "barset:x%x\n", hrq->queue_id, 17252 pci_barset); 17253 status = -ENOMEM; 17254 goto out; 17255 } 17256 17257 db_offset = rq_create->u.response.doorbell_offset; 17258 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 17259 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 17260 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17261 "3270 RQ[%d] doorbell offset not " 17262 "supported: x%x\n", hrq->queue_id, 17263 db_offset); 17264 status = -EINVAL; 17265 goto out; 17266 } 17267 hrq->db_regaddr = bar_memmap_p + db_offset; 17268 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17269 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 17270 "format:x%x\n", hrq->queue_id, pci_barset, 17271 db_offset, hrq->db_format); 17272 } else { 17273 hrq->db_format = LPFC_DB_RING_FORMAT; 17274 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17275 } 17276 hrq->type = LPFC_HRQ; 17277 hrq->assoc_qid = cq->queue_id; 17278 hrq->subtype = subtype; 17279 hrq->host_index = 0; 17280 hrq->hba_index = 0; 17281 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17282 17283 /* now create the data queue */ 17284 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17285 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17286 length, LPFC_SLI4_MBX_EMBED); 17287 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17288 phba->sli4_hba.pc_sli4_params.rqv); 17289 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17290 bf_set(lpfc_rq_context_rqe_count_1, 17291 &rq_create->u.request.context, hrq->entry_count); 17292 if (subtype == LPFC_NVMET) 17293 rq_create->u.request.context.buffer_size = 17294 LPFC_NVMET_DATA_BUF_SIZE; 17295 else 17296 rq_create->u.request.context.buffer_size = 17297 LPFC_DATA_BUF_SIZE; 17298 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 17299 LPFC_RQE_SIZE_8); 17300 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 17301 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17302 } else { 17303 switch (drq->entry_count) { 17304 default: 17305 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17306 "2536 Unsupported RQ count. (%d)\n", 17307 drq->entry_count); 17308 if (drq->entry_count < 512) { 17309 status = -EINVAL; 17310 goto out; 17311 } 17312 fallthrough; /* otherwise default to smallest count */ 17313 case 512: 17314 bf_set(lpfc_rq_context_rqe_count, 17315 &rq_create->u.request.context, 17316 LPFC_RQ_RING_SIZE_512); 17317 break; 17318 case 1024: 17319 bf_set(lpfc_rq_context_rqe_count, 17320 &rq_create->u.request.context, 17321 LPFC_RQ_RING_SIZE_1024); 17322 break; 17323 case 2048: 17324 bf_set(lpfc_rq_context_rqe_count, 17325 &rq_create->u.request.context, 17326 LPFC_RQ_RING_SIZE_2048); 17327 break; 17328 case 4096: 17329 bf_set(lpfc_rq_context_rqe_count, 17330 &rq_create->u.request.context, 17331 LPFC_RQ_RING_SIZE_4096); 17332 break; 17333 } 17334 if (subtype == LPFC_NVMET) 17335 bf_set(lpfc_rq_context_buf_size, 17336 &rq_create->u.request.context, 17337 LPFC_NVMET_DATA_BUF_SIZE); 17338 else 17339 bf_set(lpfc_rq_context_buf_size, 17340 &rq_create->u.request.context, 17341 LPFC_DATA_BUF_SIZE); 17342 } 17343 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17344 cq->queue_id); 17345 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17346 drq->page_count); 17347 list_for_each_entry(dmabuf, &drq->page_list, list) { 17348 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17349 putPaddrLow(dmabuf->phys); 17350 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17351 putPaddrHigh(dmabuf->phys); 17352 } 17353 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17354 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17355 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17356 /* The IOCTL status is embedded in the mailbox subheader. */ 17357 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17358 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17359 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17360 if (shdr_status || shdr_add_status || rc) { 17361 status = -ENXIO; 17362 goto out; 17363 } 17364 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17365 if (drq->queue_id == 0xFFFF) { 17366 status = -ENXIO; 17367 goto out; 17368 } 17369 drq->type = LPFC_DRQ; 17370 drq->assoc_qid = cq->queue_id; 17371 drq->subtype = subtype; 17372 drq->host_index = 0; 17373 drq->hba_index = 0; 17374 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17375 17376 /* link the header and data RQs onto the parent cq child list */ 17377 list_add_tail(&hrq->list, &cq->child_list); 17378 list_add_tail(&drq->list, &cq->child_list); 17379 17380 out: 17381 mempool_free(mbox, phba->mbox_mem_pool); 17382 return status; 17383 } 17384 17385 /** 17386 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 17387 * @phba: HBA structure that indicates port to create a queue on. 17388 * @hrqp: The queue structure array to use to create the header receive queues. 17389 * @drqp: The queue structure array to use to create the data receive queues. 17390 * @cqp: The completion queue array to bind these receive queues to. 17391 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 17392 * 17393 * This function creates a receive buffer queue pair , as detailed in @hrq and 17394 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17395 * to the HBA. 17396 * 17397 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17398 * struct is used to get the entry count that is necessary to determine the 17399 * number of pages to use for this queue. The @cq is used to indicate which 17400 * completion queue to bind received buffers that are posted to these queues to. 17401 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17402 * receive queue pair. This function is asynchronous and will wait for the 17403 * mailbox command to finish before continuing. 17404 * 17405 * On success this function will return a zero. If unable to allocate enough 17406 * memory this function will return -ENOMEM. If the queue create mailbox command 17407 * fails this function will return -ENXIO. 17408 **/ 17409 int 17410 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 17411 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 17412 uint32_t subtype) 17413 { 17414 struct lpfc_queue *hrq, *drq, *cq; 17415 struct lpfc_mbx_rq_create_v2 *rq_create; 17416 struct lpfc_dmabuf *dmabuf; 17417 LPFC_MBOXQ_t *mbox; 17418 int rc, length, alloclen, status = 0; 17419 int cnt, idx, numrq, page_idx = 0; 17420 uint32_t shdr_status, shdr_add_status; 17421 union lpfc_sli4_cfg_shdr *shdr; 17422 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17423 17424 numrq = phba->cfg_nvmet_mrq; 17425 /* sanity check on array memory */ 17426 if (!hrqp || !drqp || !cqp || !numrq) 17427 return -ENODEV; 17428 if (!phba->sli4_hba.pc_sli4_params.supported) 17429 hw_page_size = SLI4_PAGE_SIZE; 17430 17431 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17432 if (!mbox) 17433 return -ENOMEM; 17434 17435 length = sizeof(struct lpfc_mbx_rq_create_v2); 17436 length += ((2 * numrq * hrqp[0]->page_count) * 17437 sizeof(struct dma_address)); 17438 17439 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17440 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 17441 LPFC_SLI4_MBX_NEMBED); 17442 if (alloclen < length) { 17443 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17444 "3099 Allocated DMA memory size (%d) is " 17445 "less than the requested DMA memory size " 17446 "(%d)\n", alloclen, length); 17447 status = -ENOMEM; 17448 goto out; 17449 } 17450 17451 17452 17453 rq_create = mbox->sge_array->addr[0]; 17454 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 17455 17456 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 17457 cnt = 0; 17458 17459 for (idx = 0; idx < numrq; idx++) { 17460 hrq = hrqp[idx]; 17461 drq = drqp[idx]; 17462 cq = cqp[idx]; 17463 17464 /* sanity check on queue memory */ 17465 if (!hrq || !drq || !cq) { 17466 status = -ENODEV; 17467 goto out; 17468 } 17469 17470 if (hrq->entry_count != drq->entry_count) { 17471 status = -EINVAL; 17472 goto out; 17473 } 17474 17475 if (idx == 0) { 17476 bf_set(lpfc_mbx_rq_create_num_pages, 17477 &rq_create->u.request, 17478 hrq->page_count); 17479 bf_set(lpfc_mbx_rq_create_rq_cnt, 17480 &rq_create->u.request, (numrq * 2)); 17481 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 17482 1); 17483 bf_set(lpfc_rq_context_base_cq, 17484 &rq_create->u.request.context, 17485 cq->queue_id); 17486 bf_set(lpfc_rq_context_data_size, 17487 &rq_create->u.request.context, 17488 LPFC_NVMET_DATA_BUF_SIZE); 17489 bf_set(lpfc_rq_context_hdr_size, 17490 &rq_create->u.request.context, 17491 LPFC_HDR_BUF_SIZE); 17492 bf_set(lpfc_rq_context_rqe_count_1, 17493 &rq_create->u.request.context, 17494 hrq->entry_count); 17495 bf_set(lpfc_rq_context_rqe_size, 17496 &rq_create->u.request.context, 17497 LPFC_RQE_SIZE_8); 17498 bf_set(lpfc_rq_context_page_size, 17499 &rq_create->u.request.context, 17500 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17501 } 17502 rc = 0; 17503 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17504 memset(dmabuf->virt, 0, hw_page_size); 17505 cnt = page_idx + dmabuf->buffer_tag; 17506 rq_create->u.request.page[cnt].addr_lo = 17507 putPaddrLow(dmabuf->phys); 17508 rq_create->u.request.page[cnt].addr_hi = 17509 putPaddrHigh(dmabuf->phys); 17510 rc++; 17511 } 17512 page_idx += rc; 17513 17514 rc = 0; 17515 list_for_each_entry(dmabuf, &drq->page_list, list) { 17516 memset(dmabuf->virt, 0, hw_page_size); 17517 cnt = page_idx + dmabuf->buffer_tag; 17518 rq_create->u.request.page[cnt].addr_lo = 17519 putPaddrLow(dmabuf->phys); 17520 rq_create->u.request.page[cnt].addr_hi = 17521 putPaddrHigh(dmabuf->phys); 17522 rc++; 17523 } 17524 page_idx += rc; 17525 17526 hrq->db_format = LPFC_DB_RING_FORMAT; 17527 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17528 hrq->type = LPFC_HRQ; 17529 hrq->assoc_qid = cq->queue_id; 17530 hrq->subtype = subtype; 17531 hrq->host_index = 0; 17532 hrq->hba_index = 0; 17533 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17534 17535 drq->db_format = LPFC_DB_RING_FORMAT; 17536 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17537 drq->type = LPFC_DRQ; 17538 drq->assoc_qid = cq->queue_id; 17539 drq->subtype = subtype; 17540 drq->host_index = 0; 17541 drq->hba_index = 0; 17542 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17543 17544 list_add_tail(&hrq->list, &cq->child_list); 17545 list_add_tail(&drq->list, &cq->child_list); 17546 } 17547 17548 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17549 /* The IOCTL status is embedded in the mailbox subheader. */ 17550 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17551 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17552 if (shdr_status || shdr_add_status || rc) { 17553 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17554 "3120 RQ_CREATE mailbox failed with " 17555 "status x%x add_status x%x, mbx status x%x\n", 17556 shdr_status, shdr_add_status, rc); 17557 status = -ENXIO; 17558 goto out; 17559 } 17560 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17561 if (rc == 0xFFFF) { 17562 status = -ENXIO; 17563 goto out; 17564 } 17565 17566 /* Initialize all RQs with associated queue id */ 17567 for (idx = 0; idx < numrq; idx++) { 17568 hrq = hrqp[idx]; 17569 hrq->queue_id = rc + (2 * idx); 17570 drq = drqp[idx]; 17571 drq->queue_id = rc + (2 * idx) + 1; 17572 } 17573 17574 out: 17575 lpfc_sli4_mbox_cmd_free(phba, mbox); 17576 return status; 17577 } 17578 17579 /** 17580 * lpfc_eq_destroy - Destroy an event Queue on the HBA 17581 * @phba: HBA structure that indicates port to destroy a queue on. 17582 * @eq: The queue structure associated with the queue to destroy. 17583 * 17584 * This function destroys a queue, as detailed in @eq by sending an mailbox 17585 * command, specific to the type of queue, to the HBA. 17586 * 17587 * The @eq struct is used to get the queue ID of the queue to destroy. 17588 * 17589 * On success this function will return a zero. If the queue destroy mailbox 17590 * command fails this function will return -ENXIO. 17591 **/ 17592 int 17593 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 17594 { 17595 LPFC_MBOXQ_t *mbox; 17596 int rc, length, status = 0; 17597 uint32_t shdr_status, shdr_add_status; 17598 union lpfc_sli4_cfg_shdr *shdr; 17599 17600 /* sanity check on queue memory */ 17601 if (!eq) 17602 return -ENODEV; 17603 17604 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 17605 if (!mbox) 17606 return -ENOMEM; 17607 length = (sizeof(struct lpfc_mbx_eq_destroy) - 17608 sizeof(struct lpfc_sli4_cfg_mhdr)); 17609 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17610 LPFC_MBOX_OPCODE_EQ_DESTROY, 17611 length, LPFC_SLI4_MBX_EMBED); 17612 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 17613 eq->queue_id); 17614 mbox->vport = eq->phba->pport; 17615 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17616 17617 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 17618 /* The IOCTL status is embedded in the mailbox subheader. */ 17619 shdr = (union lpfc_sli4_cfg_shdr *) 17620 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 17621 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17622 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17623 if (shdr_status || shdr_add_status || rc) { 17624 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17625 "2505 EQ_DESTROY mailbox failed with " 17626 "status x%x add_status x%x, mbx status x%x\n", 17627 shdr_status, shdr_add_status, rc); 17628 status = -ENXIO; 17629 } 17630 17631 /* Remove eq from any list */ 17632 list_del_init(&eq->list); 17633 mempool_free(mbox, eq->phba->mbox_mem_pool); 17634 return status; 17635 } 17636 17637 /** 17638 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 17639 * @phba: HBA structure that indicates port to destroy a queue on. 17640 * @cq: The queue structure associated with the queue to destroy. 17641 * 17642 * This function destroys a queue, as detailed in @cq by sending an mailbox 17643 * command, specific to the type of queue, to the HBA. 17644 * 17645 * The @cq struct is used to get the queue ID of the queue to destroy. 17646 * 17647 * On success this function will return a zero. If the queue destroy mailbox 17648 * command fails this function will return -ENXIO. 17649 **/ 17650 int 17651 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 17652 { 17653 LPFC_MBOXQ_t *mbox; 17654 int rc, length, status = 0; 17655 uint32_t shdr_status, shdr_add_status; 17656 union lpfc_sli4_cfg_shdr *shdr; 17657 17658 /* sanity check on queue memory */ 17659 if (!cq) 17660 return -ENODEV; 17661 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 17662 if (!mbox) 17663 return -ENOMEM; 17664 length = (sizeof(struct lpfc_mbx_cq_destroy) - 17665 sizeof(struct lpfc_sli4_cfg_mhdr)); 17666 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17667 LPFC_MBOX_OPCODE_CQ_DESTROY, 17668 length, LPFC_SLI4_MBX_EMBED); 17669 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 17670 cq->queue_id); 17671 mbox->vport = cq->phba->pport; 17672 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17673 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 17674 /* The IOCTL status is embedded in the mailbox subheader. */ 17675 shdr = (union lpfc_sli4_cfg_shdr *) 17676 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 17677 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17678 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17679 if (shdr_status || shdr_add_status || rc) { 17680 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17681 "2506 CQ_DESTROY mailbox failed with " 17682 "status x%x add_status x%x, mbx status x%x\n", 17683 shdr_status, shdr_add_status, rc); 17684 status = -ENXIO; 17685 } 17686 /* Remove cq from any list */ 17687 list_del_init(&cq->list); 17688 mempool_free(mbox, cq->phba->mbox_mem_pool); 17689 return status; 17690 } 17691 17692 /** 17693 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 17694 * @phba: HBA structure that indicates port to destroy a queue on. 17695 * @mq: The queue structure associated with the queue to destroy. 17696 * 17697 * This function destroys a queue, as detailed in @mq by sending an mailbox 17698 * command, specific to the type of queue, to the HBA. 17699 * 17700 * The @mq struct is used to get the queue ID of the queue to destroy. 17701 * 17702 * On success this function will return a zero. If the queue destroy mailbox 17703 * command fails this function will return -ENXIO. 17704 **/ 17705 int 17706 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 17707 { 17708 LPFC_MBOXQ_t *mbox; 17709 int rc, length, status = 0; 17710 uint32_t shdr_status, shdr_add_status; 17711 union lpfc_sli4_cfg_shdr *shdr; 17712 17713 /* sanity check on queue memory */ 17714 if (!mq) 17715 return -ENODEV; 17716 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 17717 if (!mbox) 17718 return -ENOMEM; 17719 length = (sizeof(struct lpfc_mbx_mq_destroy) - 17720 sizeof(struct lpfc_sli4_cfg_mhdr)); 17721 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17722 LPFC_MBOX_OPCODE_MQ_DESTROY, 17723 length, LPFC_SLI4_MBX_EMBED); 17724 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 17725 mq->queue_id); 17726 mbox->vport = mq->phba->pport; 17727 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17728 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 17729 /* The IOCTL status is embedded in the mailbox subheader. */ 17730 shdr = (union lpfc_sli4_cfg_shdr *) 17731 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 17732 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17733 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17734 if (shdr_status || shdr_add_status || rc) { 17735 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17736 "2507 MQ_DESTROY mailbox failed with " 17737 "status x%x add_status x%x, mbx status x%x\n", 17738 shdr_status, shdr_add_status, rc); 17739 status = -ENXIO; 17740 } 17741 /* Remove mq from any list */ 17742 list_del_init(&mq->list); 17743 mempool_free(mbox, mq->phba->mbox_mem_pool); 17744 return status; 17745 } 17746 17747 /** 17748 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 17749 * @phba: HBA structure that indicates port to destroy a queue on. 17750 * @wq: The queue structure associated with the queue to destroy. 17751 * 17752 * This function destroys a queue, as detailed in @wq by sending an mailbox 17753 * command, specific to the type of queue, to the HBA. 17754 * 17755 * The @wq struct is used to get the queue ID of the queue to destroy. 17756 * 17757 * On success this function will return a zero. If the queue destroy mailbox 17758 * command fails this function will return -ENXIO. 17759 **/ 17760 int 17761 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17762 { 17763 LPFC_MBOXQ_t *mbox; 17764 int rc, length, status = 0; 17765 uint32_t shdr_status, shdr_add_status; 17766 union lpfc_sli4_cfg_shdr *shdr; 17767 17768 /* sanity check on queue memory */ 17769 if (!wq) 17770 return -ENODEV; 17771 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17772 if (!mbox) 17773 return -ENOMEM; 17774 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17775 sizeof(struct lpfc_sli4_cfg_mhdr)); 17776 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17777 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17778 length, LPFC_SLI4_MBX_EMBED); 17779 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17780 wq->queue_id); 17781 mbox->vport = wq->phba->pport; 17782 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17783 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17784 shdr = (union lpfc_sli4_cfg_shdr *) 17785 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17786 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17787 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17788 if (shdr_status || shdr_add_status || rc) { 17789 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17790 "2508 WQ_DESTROY mailbox failed with " 17791 "status x%x add_status x%x, mbx status x%x\n", 17792 shdr_status, shdr_add_status, rc); 17793 status = -ENXIO; 17794 } 17795 /* Remove wq from any list */ 17796 list_del_init(&wq->list); 17797 kfree(wq->pring); 17798 wq->pring = NULL; 17799 mempool_free(mbox, wq->phba->mbox_mem_pool); 17800 return status; 17801 } 17802 17803 /** 17804 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17805 * @phba: HBA structure that indicates port to destroy a queue on. 17806 * @hrq: The queue structure associated with the queue to destroy. 17807 * @drq: The queue structure associated with the queue to destroy. 17808 * 17809 * This function destroys a queue, as detailed in @rq by sending an mailbox 17810 * command, specific to the type of queue, to the HBA. 17811 * 17812 * The @rq struct is used to get the queue ID of the queue to destroy. 17813 * 17814 * On success this function will return a zero. If the queue destroy mailbox 17815 * command fails this function will return -ENXIO. 17816 **/ 17817 int 17818 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17819 struct lpfc_queue *drq) 17820 { 17821 LPFC_MBOXQ_t *mbox; 17822 int rc, length, status = 0; 17823 uint32_t shdr_status, shdr_add_status; 17824 union lpfc_sli4_cfg_shdr *shdr; 17825 17826 /* sanity check on queue memory */ 17827 if (!hrq || !drq) 17828 return -ENODEV; 17829 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17830 if (!mbox) 17831 return -ENOMEM; 17832 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17833 sizeof(struct lpfc_sli4_cfg_mhdr)); 17834 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17835 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17836 length, LPFC_SLI4_MBX_EMBED); 17837 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17838 hrq->queue_id); 17839 mbox->vport = hrq->phba->pport; 17840 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17841 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17842 /* The IOCTL status is embedded in the mailbox subheader. */ 17843 shdr = (union lpfc_sli4_cfg_shdr *) 17844 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17845 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17846 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17847 if (shdr_status || shdr_add_status || rc) { 17848 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17849 "2509 RQ_DESTROY mailbox failed with " 17850 "status x%x add_status x%x, mbx status x%x\n", 17851 shdr_status, shdr_add_status, rc); 17852 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17853 return -ENXIO; 17854 } 17855 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17856 drq->queue_id); 17857 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17858 shdr = (union lpfc_sli4_cfg_shdr *) 17859 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17860 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17861 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17862 if (shdr_status || shdr_add_status || rc) { 17863 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17864 "2510 RQ_DESTROY mailbox failed with " 17865 "status x%x add_status x%x, mbx status x%x\n", 17866 shdr_status, shdr_add_status, rc); 17867 status = -ENXIO; 17868 } 17869 list_del_init(&hrq->list); 17870 list_del_init(&drq->list); 17871 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17872 return status; 17873 } 17874 17875 /** 17876 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17877 * @phba: The virtual port for which this call being executed. 17878 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17879 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17880 * @xritag: the xritag that ties this io to the SGL pages. 17881 * 17882 * This routine will post the sgl pages for the IO that has the xritag 17883 * that is in the iocbq structure. The xritag is assigned during iocbq 17884 * creation and persists for as long as the driver is loaded. 17885 * if the caller has fewer than 256 scatter gather segments to map then 17886 * pdma_phys_addr1 should be 0. 17887 * If the caller needs to map more than 256 scatter gather segment then 17888 * pdma_phys_addr1 should be a valid physical address. 17889 * physical address for SGLs must be 64 byte aligned. 17890 * If you are going to map 2 SGL's then the first one must have 256 entries 17891 * the second sgl can have between 1 and 256 entries. 17892 * 17893 * Return codes: 17894 * 0 - Success 17895 * -ENXIO, -ENOMEM - Failure 17896 **/ 17897 int 17898 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17899 dma_addr_t pdma_phys_addr0, 17900 dma_addr_t pdma_phys_addr1, 17901 uint16_t xritag) 17902 { 17903 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17904 LPFC_MBOXQ_t *mbox; 17905 int rc; 17906 uint32_t shdr_status, shdr_add_status; 17907 uint32_t mbox_tmo; 17908 union lpfc_sli4_cfg_shdr *shdr; 17909 17910 if (xritag == NO_XRI) { 17911 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17912 "0364 Invalid param:\n"); 17913 return -EINVAL; 17914 } 17915 17916 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17917 if (!mbox) 17918 return -ENOMEM; 17919 17920 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17921 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17922 sizeof(struct lpfc_mbx_post_sgl_pages) - 17923 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17924 17925 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17926 &mbox->u.mqe.un.post_sgl_pages; 17927 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17928 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17929 17930 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17931 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17932 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17933 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17934 17935 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17936 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17937 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17938 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17939 if (!phba->sli4_hba.intr_enable) 17940 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17941 else { 17942 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17943 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17944 } 17945 /* The IOCTL status is embedded in the mailbox subheader. */ 17946 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17947 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17948 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17949 if (!phba->sli4_hba.intr_enable) 17950 mempool_free(mbox, phba->mbox_mem_pool); 17951 else if (rc != MBX_TIMEOUT) 17952 mempool_free(mbox, phba->mbox_mem_pool); 17953 if (shdr_status || shdr_add_status || rc) { 17954 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17955 "2511 POST_SGL mailbox failed with " 17956 "status x%x add_status x%x, mbx status x%x\n", 17957 shdr_status, shdr_add_status, rc); 17958 } 17959 return 0; 17960 } 17961 17962 /** 17963 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17964 * @phba: pointer to lpfc hba data structure. 17965 * 17966 * This routine is invoked to post rpi header templates to the 17967 * HBA consistent with the SLI-4 interface spec. This routine 17968 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17969 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17970 * 17971 * Returns 17972 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17973 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17974 **/ 17975 static uint16_t 17976 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 17977 { 17978 unsigned long xri; 17979 17980 /* 17981 * Fetch the next logical xri. Because this index is logical, 17982 * the driver starts at 0 each time. 17983 */ 17984 spin_lock_irq(&phba->hbalock); 17985 xri = find_first_zero_bit(phba->sli4_hba.xri_bmask, 17986 phba->sli4_hba.max_cfg_param.max_xri); 17987 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 17988 spin_unlock_irq(&phba->hbalock); 17989 return NO_XRI; 17990 } else { 17991 set_bit(xri, phba->sli4_hba.xri_bmask); 17992 phba->sli4_hba.max_cfg_param.xri_used++; 17993 } 17994 spin_unlock_irq(&phba->hbalock); 17995 return xri; 17996 } 17997 17998 /** 17999 * __lpfc_sli4_free_xri - Release an xri for reuse. 18000 * @phba: pointer to lpfc hba data structure. 18001 * @xri: xri to release. 18002 * 18003 * This routine is invoked to release an xri to the pool of 18004 * available rpis maintained by the driver. 18005 **/ 18006 static void 18007 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18008 { 18009 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 18010 phba->sli4_hba.max_cfg_param.xri_used--; 18011 } 18012 } 18013 18014 /** 18015 * lpfc_sli4_free_xri - Release an xri for reuse. 18016 * @phba: pointer to lpfc hba data structure. 18017 * @xri: xri to release. 18018 * 18019 * This routine is invoked to release an xri to the pool of 18020 * available rpis maintained by the driver. 18021 **/ 18022 void 18023 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18024 { 18025 spin_lock_irq(&phba->hbalock); 18026 __lpfc_sli4_free_xri(phba, xri); 18027 spin_unlock_irq(&phba->hbalock); 18028 } 18029 18030 /** 18031 * lpfc_sli4_next_xritag - Get an xritag for the io 18032 * @phba: Pointer to HBA context object. 18033 * 18034 * This function gets an xritag for the iocb. If there is no unused xritag 18035 * it will return 0xffff. 18036 * The function returns the allocated xritag if successful, else returns zero. 18037 * Zero is not a valid xritag. 18038 * The caller is not required to hold any lock. 18039 **/ 18040 uint16_t 18041 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 18042 { 18043 uint16_t xri_index; 18044 18045 xri_index = lpfc_sli4_alloc_xri(phba); 18046 if (xri_index == NO_XRI) 18047 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18048 "2004 Failed to allocate XRI.last XRITAG is %d" 18049 " Max XRI is %d, Used XRI is %d\n", 18050 xri_index, 18051 phba->sli4_hba.max_cfg_param.max_xri, 18052 phba->sli4_hba.max_cfg_param.xri_used); 18053 return xri_index; 18054 } 18055 18056 /** 18057 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 18058 * @phba: pointer to lpfc hba data structure. 18059 * @post_sgl_list: pointer to els sgl entry list. 18060 * @post_cnt: number of els sgl entries on the list. 18061 * 18062 * This routine is invoked to post a block of driver's sgl pages to the 18063 * HBA using non-embedded mailbox command. No Lock is held. This routine 18064 * is only called when the driver is loading and after all IO has been 18065 * stopped. 18066 **/ 18067 static int 18068 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 18069 struct list_head *post_sgl_list, 18070 int post_cnt) 18071 { 18072 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 18073 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18074 struct sgl_page_pairs *sgl_pg_pairs; 18075 void *viraddr; 18076 LPFC_MBOXQ_t *mbox; 18077 uint32_t reqlen, alloclen, pg_pairs; 18078 uint32_t mbox_tmo; 18079 uint16_t xritag_start = 0; 18080 int rc = 0; 18081 uint32_t shdr_status, shdr_add_status; 18082 union lpfc_sli4_cfg_shdr *shdr; 18083 18084 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 18085 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18086 if (reqlen > SLI4_PAGE_SIZE) { 18087 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18088 "2559 Block sgl registration required DMA " 18089 "size (%d) great than a page\n", reqlen); 18090 return -ENOMEM; 18091 } 18092 18093 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18094 if (!mbox) 18095 return -ENOMEM; 18096 18097 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18098 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18099 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 18100 LPFC_SLI4_MBX_NEMBED); 18101 18102 if (alloclen < reqlen) { 18103 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18104 "0285 Allocated DMA memory size (%d) is " 18105 "less than the requested DMA memory " 18106 "size (%d)\n", alloclen, reqlen); 18107 lpfc_sli4_mbox_cmd_free(phba, mbox); 18108 return -ENOMEM; 18109 } 18110 /* Set up the SGL pages in the non-embedded DMA pages */ 18111 viraddr = mbox->sge_array->addr[0]; 18112 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18113 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18114 18115 pg_pairs = 0; 18116 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 18117 /* Set up the sge entry */ 18118 sgl_pg_pairs->sgl_pg0_addr_lo = 18119 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 18120 sgl_pg_pairs->sgl_pg0_addr_hi = 18121 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 18122 sgl_pg_pairs->sgl_pg1_addr_lo = 18123 cpu_to_le32(putPaddrLow(0)); 18124 sgl_pg_pairs->sgl_pg1_addr_hi = 18125 cpu_to_le32(putPaddrHigh(0)); 18126 18127 /* Keep the first xritag on the list */ 18128 if (pg_pairs == 0) 18129 xritag_start = sglq_entry->sli4_xritag; 18130 sgl_pg_pairs++; 18131 pg_pairs++; 18132 } 18133 18134 /* Complete initialization and perform endian conversion. */ 18135 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18136 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 18137 sgl->word0 = cpu_to_le32(sgl->word0); 18138 18139 if (!phba->sli4_hba.intr_enable) 18140 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18141 else { 18142 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18143 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18144 } 18145 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 18146 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18147 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18148 if (!phba->sli4_hba.intr_enable) 18149 lpfc_sli4_mbox_cmd_free(phba, mbox); 18150 else if (rc != MBX_TIMEOUT) 18151 lpfc_sli4_mbox_cmd_free(phba, mbox); 18152 if (shdr_status || shdr_add_status || rc) { 18153 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18154 "2513 POST_SGL_BLOCK mailbox command failed " 18155 "status x%x add_status x%x mbx status x%x\n", 18156 shdr_status, shdr_add_status, rc); 18157 rc = -ENXIO; 18158 } 18159 return rc; 18160 } 18161 18162 /** 18163 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 18164 * @phba: pointer to lpfc hba data structure. 18165 * @nblist: pointer to nvme buffer list. 18166 * @count: number of scsi buffers on the list. 18167 * 18168 * This routine is invoked to post a block of @count scsi sgl pages from a 18169 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 18170 * No Lock is held. 18171 * 18172 **/ 18173 static int 18174 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 18175 int count) 18176 { 18177 struct lpfc_io_buf *lpfc_ncmd; 18178 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18179 struct sgl_page_pairs *sgl_pg_pairs; 18180 void *viraddr; 18181 LPFC_MBOXQ_t *mbox; 18182 uint32_t reqlen, alloclen, pg_pairs; 18183 uint32_t mbox_tmo; 18184 uint16_t xritag_start = 0; 18185 int rc = 0; 18186 uint32_t shdr_status, shdr_add_status; 18187 dma_addr_t pdma_phys_bpl1; 18188 union lpfc_sli4_cfg_shdr *shdr; 18189 18190 /* Calculate the requested length of the dma memory */ 18191 reqlen = count * sizeof(struct sgl_page_pairs) + 18192 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18193 if (reqlen > SLI4_PAGE_SIZE) { 18194 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 18195 "6118 Block sgl registration required DMA " 18196 "size (%d) great than a page\n", reqlen); 18197 return -ENOMEM; 18198 } 18199 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18200 if (!mbox) { 18201 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18202 "6119 Failed to allocate mbox cmd memory\n"); 18203 return -ENOMEM; 18204 } 18205 18206 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18207 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18208 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 18209 reqlen, LPFC_SLI4_MBX_NEMBED); 18210 18211 if (alloclen < reqlen) { 18212 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18213 "6120 Allocated DMA memory size (%d) is " 18214 "less than the requested DMA memory " 18215 "size (%d)\n", alloclen, reqlen); 18216 lpfc_sli4_mbox_cmd_free(phba, mbox); 18217 return -ENOMEM; 18218 } 18219 18220 /* Get the first SGE entry from the non-embedded DMA memory */ 18221 viraddr = mbox->sge_array->addr[0]; 18222 18223 /* Set up the SGL pages in the non-embedded DMA pages */ 18224 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18225 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18226 18227 pg_pairs = 0; 18228 list_for_each_entry(lpfc_ncmd, nblist, list) { 18229 /* Set up the sge entry */ 18230 sgl_pg_pairs->sgl_pg0_addr_lo = 18231 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 18232 sgl_pg_pairs->sgl_pg0_addr_hi = 18233 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 18234 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 18235 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 18236 SGL_PAGE_SIZE; 18237 else 18238 pdma_phys_bpl1 = 0; 18239 sgl_pg_pairs->sgl_pg1_addr_lo = 18240 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 18241 sgl_pg_pairs->sgl_pg1_addr_hi = 18242 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 18243 /* Keep the first xritag on the list */ 18244 if (pg_pairs == 0) 18245 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 18246 sgl_pg_pairs++; 18247 pg_pairs++; 18248 } 18249 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18250 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 18251 /* Perform endian conversion if necessary */ 18252 sgl->word0 = cpu_to_le32(sgl->word0); 18253 18254 if (!phba->sli4_hba.intr_enable) { 18255 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18256 } else { 18257 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18258 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18259 } 18260 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 18261 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18262 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18263 if (!phba->sli4_hba.intr_enable) 18264 lpfc_sli4_mbox_cmd_free(phba, mbox); 18265 else if (rc != MBX_TIMEOUT) 18266 lpfc_sli4_mbox_cmd_free(phba, mbox); 18267 if (shdr_status || shdr_add_status || rc) { 18268 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18269 "6125 POST_SGL_BLOCK mailbox command failed " 18270 "status x%x add_status x%x mbx status x%x\n", 18271 shdr_status, shdr_add_status, rc); 18272 rc = -ENXIO; 18273 } 18274 return rc; 18275 } 18276 18277 /** 18278 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 18279 * @phba: pointer to lpfc hba data structure. 18280 * @post_nblist: pointer to the nvme buffer list. 18281 * @sb_count: number of nvme buffers. 18282 * 18283 * This routine walks a list of nvme buffers that was passed in. It attempts 18284 * to construct blocks of nvme buffer sgls which contains contiguous xris and 18285 * uses the non-embedded SGL block post mailbox commands to post to the port. 18286 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 18287 * embedded SGL post mailbox command for posting. The @post_nblist passed in 18288 * must be local list, thus no lock is needed when manipulate the list. 18289 * 18290 * Returns: 0 = failure, non-zero number of successfully posted buffers. 18291 **/ 18292 int 18293 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 18294 struct list_head *post_nblist, int sb_count) 18295 { 18296 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 18297 int status, sgl_size; 18298 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 18299 dma_addr_t pdma_phys_sgl1; 18300 int last_xritag = NO_XRI; 18301 int cur_xritag; 18302 LIST_HEAD(prep_nblist); 18303 LIST_HEAD(blck_nblist); 18304 LIST_HEAD(nvme_nblist); 18305 18306 /* sanity check */ 18307 if (sb_count <= 0) 18308 return -EINVAL; 18309 18310 sgl_size = phba->cfg_sg_dma_buf_size; 18311 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 18312 list_del_init(&lpfc_ncmd->list); 18313 block_cnt++; 18314 if ((last_xritag != NO_XRI) && 18315 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 18316 /* a hole in xri block, form a sgl posting block */ 18317 list_splice_init(&prep_nblist, &blck_nblist); 18318 post_cnt = block_cnt - 1; 18319 /* prepare list for next posting block */ 18320 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18321 block_cnt = 1; 18322 } else { 18323 /* prepare list for next posting block */ 18324 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18325 /* enough sgls for non-embed sgl mbox command */ 18326 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 18327 list_splice_init(&prep_nblist, &blck_nblist); 18328 post_cnt = block_cnt; 18329 block_cnt = 0; 18330 } 18331 } 18332 num_posting++; 18333 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18334 18335 /* end of repost sgl list condition for NVME buffers */ 18336 if (num_posting == sb_count) { 18337 if (post_cnt == 0) { 18338 /* last sgl posting block */ 18339 list_splice_init(&prep_nblist, &blck_nblist); 18340 post_cnt = block_cnt; 18341 } else if (block_cnt == 1) { 18342 /* last single sgl with non-contiguous xri */ 18343 if (sgl_size > SGL_PAGE_SIZE) 18344 pdma_phys_sgl1 = 18345 lpfc_ncmd->dma_phys_sgl + 18346 SGL_PAGE_SIZE; 18347 else 18348 pdma_phys_sgl1 = 0; 18349 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18350 status = lpfc_sli4_post_sgl( 18351 phba, lpfc_ncmd->dma_phys_sgl, 18352 pdma_phys_sgl1, cur_xritag); 18353 if (status) { 18354 /* Post error. Buffer unavailable. */ 18355 lpfc_ncmd->flags |= 18356 LPFC_SBUF_NOT_POSTED; 18357 } else { 18358 /* Post success. Bffer available. */ 18359 lpfc_ncmd->flags &= 18360 ~LPFC_SBUF_NOT_POSTED; 18361 lpfc_ncmd->status = IOSTAT_SUCCESS; 18362 num_posted++; 18363 } 18364 /* success, put on NVME buffer sgl list */ 18365 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18366 } 18367 } 18368 18369 /* continue until a nembed page worth of sgls */ 18370 if (post_cnt == 0) 18371 continue; 18372 18373 /* post block of NVME buffer list sgls */ 18374 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 18375 post_cnt); 18376 18377 /* don't reset xirtag due to hole in xri block */ 18378 if (block_cnt == 0) 18379 last_xritag = NO_XRI; 18380 18381 /* reset NVME buffer post count for next round of posting */ 18382 post_cnt = 0; 18383 18384 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 18385 while (!list_empty(&blck_nblist)) { 18386 list_remove_head(&blck_nblist, lpfc_ncmd, 18387 struct lpfc_io_buf, list); 18388 if (status) { 18389 /* Post error. Mark buffer unavailable. */ 18390 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 18391 } else { 18392 /* Post success, Mark buffer available. */ 18393 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 18394 lpfc_ncmd->status = IOSTAT_SUCCESS; 18395 num_posted++; 18396 } 18397 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18398 } 18399 } 18400 /* Push NVME buffers with sgl posted to the available list */ 18401 lpfc_io_buf_replenish(phba, &nvme_nblist); 18402 18403 return num_posted; 18404 } 18405 18406 /** 18407 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 18408 * @phba: pointer to lpfc_hba struct that the frame was received on 18409 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18410 * 18411 * This function checks the fields in the @fc_hdr to see if the FC frame is a 18412 * valid type of frame that the LPFC driver will handle. This function will 18413 * return a zero if the frame is a valid frame or a non zero value when the 18414 * frame does not pass the check. 18415 **/ 18416 static int 18417 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 18418 { 18419 /* make rctl_names static to save stack space */ 18420 struct fc_vft_header *fc_vft_hdr; 18421 uint32_t *header = (uint32_t *) fc_hdr; 18422 18423 #define FC_RCTL_MDS_DIAGS 0xF4 18424 18425 switch (fc_hdr->fh_r_ctl) { 18426 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 18427 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 18428 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 18429 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 18430 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 18431 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 18432 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 18433 case FC_RCTL_DD_CMD_STATUS: /* command status */ 18434 case FC_RCTL_ELS_REQ: /* extended link services request */ 18435 case FC_RCTL_ELS_REP: /* extended link services reply */ 18436 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 18437 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 18438 case FC_RCTL_BA_NOP: /* basic link service NOP */ 18439 case FC_RCTL_BA_ABTS: /* basic link service abort */ 18440 case FC_RCTL_BA_RMC: /* remove connection */ 18441 case FC_RCTL_BA_ACC: /* basic accept */ 18442 case FC_RCTL_BA_RJT: /* basic reject */ 18443 case FC_RCTL_BA_PRMT: 18444 case FC_RCTL_ACK_1: /* acknowledge_1 */ 18445 case FC_RCTL_ACK_0: /* acknowledge_0 */ 18446 case FC_RCTL_P_RJT: /* port reject */ 18447 case FC_RCTL_F_RJT: /* fabric reject */ 18448 case FC_RCTL_P_BSY: /* port busy */ 18449 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 18450 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 18451 case FC_RCTL_LCR: /* link credit reset */ 18452 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 18453 case FC_RCTL_END: /* end */ 18454 break; 18455 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 18456 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18457 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 18458 return lpfc_fc_frame_check(phba, fc_hdr); 18459 default: 18460 goto drop; 18461 } 18462 18463 switch (fc_hdr->fh_type) { 18464 case FC_TYPE_BLS: 18465 case FC_TYPE_ELS: 18466 case FC_TYPE_FCP: 18467 case FC_TYPE_CT: 18468 case FC_TYPE_NVME: 18469 break; 18470 case FC_TYPE_IP: 18471 case FC_TYPE_ILS: 18472 default: 18473 goto drop; 18474 } 18475 18476 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 18477 "2538 Received frame rctl:x%x, type:x%x, " 18478 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 18479 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 18480 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 18481 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 18482 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 18483 be32_to_cpu(header[6])); 18484 return 0; 18485 drop: 18486 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 18487 "2539 Dropped frame rctl:x%x type:x%x\n", 18488 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18489 return 1; 18490 } 18491 18492 /** 18493 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 18494 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18495 * 18496 * This function processes the FC header to retrieve the VFI from the VF 18497 * header, if one exists. This function will return the VFI if one exists 18498 * or 0 if no VSAN Header exists. 18499 **/ 18500 static uint32_t 18501 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 18502 { 18503 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18504 18505 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 18506 return 0; 18507 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 18508 } 18509 18510 /** 18511 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 18512 * @phba: Pointer to the HBA structure to search for the vport on 18513 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18514 * @fcfi: The FC Fabric ID that the frame came from 18515 * @did: Destination ID to match against 18516 * 18517 * This function searches the @phba for a vport that matches the content of the 18518 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 18519 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 18520 * returns the matching vport pointer or NULL if unable to match frame to a 18521 * vport. 18522 **/ 18523 static struct lpfc_vport * 18524 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 18525 uint16_t fcfi, uint32_t did) 18526 { 18527 struct lpfc_vport **vports; 18528 struct lpfc_vport *vport = NULL; 18529 int i; 18530 18531 if (did == Fabric_DID) 18532 return phba->pport; 18533 if ((phba->pport->fc_flag & FC_PT2PT) && 18534 !(phba->link_state == LPFC_HBA_READY)) 18535 return phba->pport; 18536 18537 vports = lpfc_create_vport_work_array(phba); 18538 if (vports != NULL) { 18539 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 18540 if (phba->fcf.fcfi == fcfi && 18541 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 18542 vports[i]->fc_myDID == did) { 18543 vport = vports[i]; 18544 break; 18545 } 18546 } 18547 } 18548 lpfc_destroy_vport_work_array(phba, vports); 18549 return vport; 18550 } 18551 18552 /** 18553 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 18554 * @vport: The vport to work on. 18555 * 18556 * This function updates the receive sequence time stamp for this vport. The 18557 * receive sequence time stamp indicates the time that the last frame of the 18558 * the sequence that has been idle for the longest amount of time was received. 18559 * the driver uses this time stamp to indicate if any received sequences have 18560 * timed out. 18561 **/ 18562 static void 18563 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 18564 { 18565 struct lpfc_dmabuf *h_buf; 18566 struct hbq_dmabuf *dmabuf = NULL; 18567 18568 /* get the oldest sequence on the rcv list */ 18569 h_buf = list_get_first(&vport->rcv_buffer_list, 18570 struct lpfc_dmabuf, list); 18571 if (!h_buf) 18572 return; 18573 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18574 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 18575 } 18576 18577 /** 18578 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 18579 * @vport: The vport that the received sequences were sent to. 18580 * 18581 * This function cleans up all outstanding received sequences. This is called 18582 * by the driver when a link event or user action invalidates all the received 18583 * sequences. 18584 **/ 18585 void 18586 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 18587 { 18588 struct lpfc_dmabuf *h_buf, *hnext; 18589 struct lpfc_dmabuf *d_buf, *dnext; 18590 struct hbq_dmabuf *dmabuf = NULL; 18591 18592 /* start with the oldest sequence on the rcv list */ 18593 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18594 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18595 list_del_init(&dmabuf->hbuf.list); 18596 list_for_each_entry_safe(d_buf, dnext, 18597 &dmabuf->dbuf.list, list) { 18598 list_del_init(&d_buf->list); 18599 lpfc_in_buf_free(vport->phba, d_buf); 18600 } 18601 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18602 } 18603 } 18604 18605 /** 18606 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 18607 * @vport: The vport that the received sequences were sent to. 18608 * 18609 * This function determines whether any received sequences have timed out by 18610 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 18611 * indicates that there is at least one timed out sequence this routine will 18612 * go through the received sequences one at a time from most inactive to most 18613 * active to determine which ones need to be cleaned up. Once it has determined 18614 * that a sequence needs to be cleaned up it will simply free up the resources 18615 * without sending an abort. 18616 **/ 18617 void 18618 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 18619 { 18620 struct lpfc_dmabuf *h_buf, *hnext; 18621 struct lpfc_dmabuf *d_buf, *dnext; 18622 struct hbq_dmabuf *dmabuf = NULL; 18623 unsigned long timeout; 18624 int abort_count = 0; 18625 18626 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18627 vport->rcv_buffer_time_stamp); 18628 if (list_empty(&vport->rcv_buffer_list) || 18629 time_before(jiffies, timeout)) 18630 return; 18631 /* start with the oldest sequence on the rcv list */ 18632 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18633 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18634 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18635 dmabuf->time_stamp); 18636 if (time_before(jiffies, timeout)) 18637 break; 18638 abort_count++; 18639 list_del_init(&dmabuf->hbuf.list); 18640 list_for_each_entry_safe(d_buf, dnext, 18641 &dmabuf->dbuf.list, list) { 18642 list_del_init(&d_buf->list); 18643 lpfc_in_buf_free(vport->phba, d_buf); 18644 } 18645 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18646 } 18647 if (abort_count) 18648 lpfc_update_rcv_time_stamp(vport); 18649 } 18650 18651 /** 18652 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 18653 * @vport: pointer to a vitural port 18654 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 18655 * 18656 * This function searches through the existing incomplete sequences that have 18657 * been sent to this @vport. If the frame matches one of the incomplete 18658 * sequences then the dbuf in the @dmabuf is added to the list of frames that 18659 * make up that sequence. If no sequence is found that matches this frame then 18660 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 18661 * This function returns a pointer to the first dmabuf in the sequence list that 18662 * the frame was linked to. 18663 **/ 18664 static struct hbq_dmabuf * 18665 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18666 { 18667 struct fc_frame_header *new_hdr; 18668 struct fc_frame_header *temp_hdr; 18669 struct lpfc_dmabuf *d_buf; 18670 struct lpfc_dmabuf *h_buf; 18671 struct hbq_dmabuf *seq_dmabuf = NULL; 18672 struct hbq_dmabuf *temp_dmabuf = NULL; 18673 uint8_t found = 0; 18674 18675 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18676 dmabuf->time_stamp = jiffies; 18677 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18678 18679 /* Use the hdr_buf to find the sequence that this frame belongs to */ 18680 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18681 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18682 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18683 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18684 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18685 continue; 18686 /* found a pending sequence that matches this frame */ 18687 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18688 break; 18689 } 18690 if (!seq_dmabuf) { 18691 /* 18692 * This indicates first frame received for this sequence. 18693 * Queue the buffer on the vport's rcv_buffer_list. 18694 */ 18695 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18696 lpfc_update_rcv_time_stamp(vport); 18697 return dmabuf; 18698 } 18699 temp_hdr = seq_dmabuf->hbuf.virt; 18700 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 18701 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18702 list_del_init(&seq_dmabuf->hbuf.list); 18703 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18704 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18705 lpfc_update_rcv_time_stamp(vport); 18706 return dmabuf; 18707 } 18708 /* move this sequence to the tail to indicate a young sequence */ 18709 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 18710 seq_dmabuf->time_stamp = jiffies; 18711 lpfc_update_rcv_time_stamp(vport); 18712 if (list_empty(&seq_dmabuf->dbuf.list)) { 18713 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18714 return seq_dmabuf; 18715 } 18716 /* find the correct place in the sequence to insert this frame */ 18717 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 18718 while (!found) { 18719 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18720 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 18721 /* 18722 * If the frame's sequence count is greater than the frame on 18723 * the list then insert the frame right after this frame 18724 */ 18725 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 18726 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18727 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 18728 found = 1; 18729 break; 18730 } 18731 18732 if (&d_buf->list == &seq_dmabuf->dbuf.list) 18733 break; 18734 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 18735 } 18736 18737 if (found) 18738 return seq_dmabuf; 18739 return NULL; 18740 } 18741 18742 /** 18743 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 18744 * @vport: pointer to a vitural port 18745 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18746 * 18747 * This function tries to abort from the partially assembed sequence, described 18748 * by the information from basic abbort @dmabuf. It checks to see whether such 18749 * partially assembled sequence held by the driver. If so, it shall free up all 18750 * the frames from the partially assembled sequence. 18751 * 18752 * Return 18753 * true -- if there is matching partially assembled sequence present and all 18754 * the frames freed with the sequence; 18755 * false -- if there is no matching partially assembled sequence present so 18756 * nothing got aborted in the lower layer driver 18757 **/ 18758 static bool 18759 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18760 struct hbq_dmabuf *dmabuf) 18761 { 18762 struct fc_frame_header *new_hdr; 18763 struct fc_frame_header *temp_hdr; 18764 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18765 struct hbq_dmabuf *seq_dmabuf = NULL; 18766 18767 /* Use the hdr_buf to find the sequence that matches this frame */ 18768 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18769 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18770 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18771 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18772 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18773 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18774 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18775 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18776 continue; 18777 /* found a pending sequence that matches this frame */ 18778 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18779 break; 18780 } 18781 18782 /* Free up all the frames from the partially assembled sequence */ 18783 if (seq_dmabuf) { 18784 list_for_each_entry_safe(d_buf, n_buf, 18785 &seq_dmabuf->dbuf.list, list) { 18786 list_del_init(&d_buf->list); 18787 lpfc_in_buf_free(vport->phba, d_buf); 18788 } 18789 return true; 18790 } 18791 return false; 18792 } 18793 18794 /** 18795 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18796 * @vport: pointer to a vitural port 18797 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18798 * 18799 * This function tries to abort from the assembed sequence from upper level 18800 * protocol, described by the information from basic abbort @dmabuf. It 18801 * checks to see whether such pending context exists at upper level protocol. 18802 * If so, it shall clean up the pending context. 18803 * 18804 * Return 18805 * true -- if there is matching pending context of the sequence cleaned 18806 * at ulp; 18807 * false -- if there is no matching pending context of the sequence present 18808 * at ulp. 18809 **/ 18810 static bool 18811 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18812 { 18813 struct lpfc_hba *phba = vport->phba; 18814 int handled; 18815 18816 /* Accepting abort at ulp with SLI4 only */ 18817 if (phba->sli_rev < LPFC_SLI_REV4) 18818 return false; 18819 18820 /* Register all caring upper level protocols to attend abort */ 18821 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18822 if (handled) 18823 return true; 18824 18825 return false; 18826 } 18827 18828 /** 18829 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18830 * @phba: Pointer to HBA context object. 18831 * @cmd_iocbq: pointer to the command iocbq structure. 18832 * @rsp_iocbq: pointer to the response iocbq structure. 18833 * 18834 * This function handles the sequence abort response iocb command complete 18835 * event. It properly releases the memory allocated to the sequence abort 18836 * accept iocb. 18837 **/ 18838 static void 18839 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18840 struct lpfc_iocbq *cmd_iocbq, 18841 struct lpfc_iocbq *rsp_iocbq) 18842 { 18843 struct lpfc_nodelist *ndlp; 18844 18845 if (cmd_iocbq) { 18846 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 18847 lpfc_nlp_put(ndlp); 18848 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18849 } 18850 18851 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18852 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18853 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18854 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18855 rsp_iocbq->iocb.ulpStatus, 18856 rsp_iocbq->iocb.un.ulpWord[4]); 18857 } 18858 18859 /** 18860 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18861 * @phba: Pointer to HBA context object. 18862 * @xri: xri id in transaction. 18863 * 18864 * This function validates the xri maps to the known range of XRIs allocated an 18865 * used by the driver. 18866 **/ 18867 uint16_t 18868 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18869 uint16_t xri) 18870 { 18871 uint16_t i; 18872 18873 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18874 if (xri == phba->sli4_hba.xri_ids[i]) 18875 return i; 18876 } 18877 return NO_XRI; 18878 } 18879 18880 /** 18881 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18882 * @vport: pointer to a virtual port. 18883 * @fc_hdr: pointer to a FC frame header. 18884 * @aborted: was the partially assembled receive sequence successfully aborted 18885 * 18886 * This function sends a basic response to a previous unsol sequence abort 18887 * event after aborting the sequence handling. 18888 **/ 18889 void 18890 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18891 struct fc_frame_header *fc_hdr, bool aborted) 18892 { 18893 struct lpfc_hba *phba = vport->phba; 18894 struct lpfc_iocbq *ctiocb = NULL; 18895 struct lpfc_nodelist *ndlp; 18896 uint16_t oxid, rxid, xri, lxri; 18897 uint32_t sid, fctl; 18898 IOCB_t *icmd; 18899 int rc; 18900 18901 if (!lpfc_is_link_up(phba)) 18902 return; 18903 18904 sid = sli4_sid_from_fc_hdr(fc_hdr); 18905 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18906 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18907 18908 ndlp = lpfc_findnode_did(vport, sid); 18909 if (!ndlp) { 18910 ndlp = lpfc_nlp_init(vport, sid); 18911 if (!ndlp) { 18912 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18913 "1268 Failed to allocate ndlp for " 18914 "oxid:x%x SID:x%x\n", oxid, sid); 18915 return; 18916 } 18917 /* Put ndlp onto pport node list */ 18918 lpfc_enqueue_node(vport, ndlp); 18919 } 18920 18921 /* Allocate buffer for rsp iocb */ 18922 ctiocb = lpfc_sli_get_iocbq(phba); 18923 if (!ctiocb) 18924 return; 18925 18926 /* Extract the F_CTL field from FC_HDR */ 18927 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18928 18929 icmd = &ctiocb->iocb; 18930 icmd->un.xseq64.bdl.bdeSize = 0; 18931 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 18932 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 18933 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 18934 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 18935 18936 /* Fill in the rest of iocb fields */ 18937 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 18938 icmd->ulpBdeCount = 0; 18939 icmd->ulpLe = 1; 18940 icmd->ulpClass = CLASS3; 18941 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 18942 ctiocb->context1 = lpfc_nlp_get(ndlp); 18943 if (!ctiocb->context1) { 18944 lpfc_sli_release_iocbq(phba, ctiocb); 18945 return; 18946 } 18947 18948 ctiocb->vport = phba->pport; 18949 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18950 ctiocb->sli4_lxritag = NO_XRI; 18951 ctiocb->sli4_xritag = NO_XRI; 18952 18953 if (fctl & FC_FC_EX_CTX) 18954 /* Exchange responder sent the abort so we 18955 * own the oxid. 18956 */ 18957 xri = oxid; 18958 else 18959 xri = rxid; 18960 lxri = lpfc_sli4_xri_inrange(phba, xri); 18961 if (lxri != NO_XRI) 18962 lpfc_set_rrq_active(phba, ndlp, lxri, 18963 (xri == oxid) ? rxid : oxid, 0); 18964 /* For BA_ABTS from exchange responder, if the logical xri with 18965 * the oxid maps to the FCP XRI range, the port no longer has 18966 * that exchange context, send a BLS_RJT. Override the IOCB for 18967 * a BA_RJT. 18968 */ 18969 if ((fctl & FC_FC_EX_CTX) && 18970 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 18971 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 18972 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 18973 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 18974 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 18975 } 18976 18977 /* If BA_ABTS failed to abort a partially assembled receive sequence, 18978 * the driver no longer has that exchange, send a BLS_RJT. Override 18979 * the IOCB for a BA_RJT. 18980 */ 18981 if (aborted == false) { 18982 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 18983 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 18984 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 18985 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 18986 } 18987 18988 if (fctl & FC_FC_EX_CTX) { 18989 /* ABTS sent by responder to CT exchange, construction 18990 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 18991 * field and RX_ID from ABTS for RX_ID field. 18992 */ 18993 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 18994 } else { 18995 /* ABTS sent by initiator to CT exchange, construction 18996 * of BA_ACC will need to allocate a new XRI as for the 18997 * XRI_TAG field. 18998 */ 18999 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 19000 } 19001 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 19002 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 19003 19004 /* Xmit CT abts response on exchange <xid> */ 19005 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 19006 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 19007 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 19008 19009 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 19010 if (rc == IOCB_ERROR) { 19011 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19012 "2925 Failed to issue CT ABTS RSP x%x on " 19013 "xri x%x, Data x%x\n", 19014 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 19015 phba->link_state); 19016 lpfc_nlp_put(ndlp); 19017 ctiocb->context1 = NULL; 19018 lpfc_sli_release_iocbq(phba, ctiocb); 19019 } 19020 } 19021 19022 /** 19023 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 19024 * @vport: Pointer to the vport on which this sequence was received 19025 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19026 * 19027 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 19028 * receive sequence is only partially assembed by the driver, it shall abort 19029 * the partially assembled frames for the sequence. Otherwise, if the 19030 * unsolicited receive sequence has been completely assembled and passed to 19031 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 19032 * unsolicited sequence has been aborted. After that, it will issue a basic 19033 * accept to accept the abort. 19034 **/ 19035 static void 19036 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 19037 struct hbq_dmabuf *dmabuf) 19038 { 19039 struct lpfc_hba *phba = vport->phba; 19040 struct fc_frame_header fc_hdr; 19041 uint32_t fctl; 19042 bool aborted; 19043 19044 /* Make a copy of fc_hdr before the dmabuf being released */ 19045 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 19046 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 19047 19048 if (fctl & FC_FC_EX_CTX) { 19049 /* ABTS by responder to exchange, no cleanup needed */ 19050 aborted = true; 19051 } else { 19052 /* ABTS by initiator to exchange, need to do cleanup */ 19053 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 19054 if (aborted == false) 19055 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 19056 } 19057 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19058 19059 if (phba->nvmet_support) { 19060 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 19061 return; 19062 } 19063 19064 /* Respond with BA_ACC or BA_RJT accordingly */ 19065 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 19066 } 19067 19068 /** 19069 * lpfc_seq_complete - Indicates if a sequence is complete 19070 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19071 * 19072 * This function checks the sequence, starting with the frame described by 19073 * @dmabuf, to see if all the frames associated with this sequence are present. 19074 * the frames associated with this sequence are linked to the @dmabuf using the 19075 * dbuf list. This function looks for two major things. 1) That the first frame 19076 * has a sequence count of zero. 2) There is a frame with last frame of sequence 19077 * set. 3) That there are no holes in the sequence count. The function will 19078 * return 1 when the sequence is complete, otherwise it will return 0. 19079 **/ 19080 static int 19081 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 19082 { 19083 struct fc_frame_header *hdr; 19084 struct lpfc_dmabuf *d_buf; 19085 struct hbq_dmabuf *seq_dmabuf; 19086 uint32_t fctl; 19087 int seq_count = 0; 19088 19089 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19090 /* make sure first fame of sequence has a sequence count of zero */ 19091 if (hdr->fh_seq_cnt != seq_count) 19092 return 0; 19093 fctl = (hdr->fh_f_ctl[0] << 16 | 19094 hdr->fh_f_ctl[1] << 8 | 19095 hdr->fh_f_ctl[2]); 19096 /* If last frame of sequence we can return success. */ 19097 if (fctl & FC_FC_END_SEQ) 19098 return 1; 19099 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 19100 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19101 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19102 /* If there is a hole in the sequence count then fail. */ 19103 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 19104 return 0; 19105 fctl = (hdr->fh_f_ctl[0] << 16 | 19106 hdr->fh_f_ctl[1] << 8 | 19107 hdr->fh_f_ctl[2]); 19108 /* If last frame of sequence we can return success. */ 19109 if (fctl & FC_FC_END_SEQ) 19110 return 1; 19111 } 19112 return 0; 19113 } 19114 19115 /** 19116 * lpfc_prep_seq - Prep sequence for ULP processing 19117 * @vport: Pointer to the vport on which this sequence was received 19118 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 19119 * 19120 * This function takes a sequence, described by a list of frames, and creates 19121 * a list of iocbq structures to describe the sequence. This iocbq list will be 19122 * used to issue to the generic unsolicited sequence handler. This routine 19123 * returns a pointer to the first iocbq in the list. If the function is unable 19124 * to allocate an iocbq then it throw out the received frames that were not 19125 * able to be described and return a pointer to the first iocbq. If unable to 19126 * allocate any iocbqs (including the first) this function will return NULL. 19127 **/ 19128 static struct lpfc_iocbq * 19129 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 19130 { 19131 struct hbq_dmabuf *hbq_buf; 19132 struct lpfc_dmabuf *d_buf, *n_buf; 19133 struct lpfc_iocbq *first_iocbq, *iocbq; 19134 struct fc_frame_header *fc_hdr; 19135 uint32_t sid; 19136 uint32_t len, tot_len; 19137 struct ulp_bde64 *pbde; 19138 19139 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19140 /* remove from receive buffer list */ 19141 list_del_init(&seq_dmabuf->hbuf.list); 19142 lpfc_update_rcv_time_stamp(vport); 19143 /* get the Remote Port's SID */ 19144 sid = sli4_sid_from_fc_hdr(fc_hdr); 19145 tot_len = 0; 19146 /* Get an iocbq struct to fill in. */ 19147 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 19148 if (first_iocbq) { 19149 /* Initialize the first IOCB. */ 19150 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 19151 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 19152 first_iocbq->vport = vport; 19153 19154 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 19155 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 19156 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 19157 first_iocbq->iocb.un.rcvels.parmRo = 19158 sli4_did_from_fc_hdr(fc_hdr); 19159 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 19160 } else 19161 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 19162 first_iocbq->iocb.ulpContext = NO_XRI; 19163 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 19164 be16_to_cpu(fc_hdr->fh_ox_id); 19165 /* iocbq is prepped for internal consumption. Physical vpi. */ 19166 first_iocbq->iocb.unsli3.rcvsli3.vpi = 19167 vport->phba->vpi_ids[vport->vpi]; 19168 /* put the first buffer into the first IOCBq */ 19169 tot_len = bf_get(lpfc_rcqe_length, 19170 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 19171 19172 first_iocbq->context2 = &seq_dmabuf->dbuf; 19173 first_iocbq->context3 = NULL; 19174 first_iocbq->iocb.ulpBdeCount = 1; 19175 if (tot_len > LPFC_DATA_BUF_SIZE) 19176 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 19177 LPFC_DATA_BUF_SIZE; 19178 else 19179 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 19180 19181 first_iocbq->iocb.un.rcvels.remoteID = sid; 19182 19183 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 19184 } 19185 iocbq = first_iocbq; 19186 /* 19187 * Each IOCBq can have two Buffers assigned, so go through the list 19188 * of buffers for this sequence and save two buffers in each IOCBq 19189 */ 19190 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 19191 if (!iocbq) { 19192 lpfc_in_buf_free(vport->phba, d_buf); 19193 continue; 19194 } 19195 if (!iocbq->context3) { 19196 iocbq->context3 = d_buf; 19197 iocbq->iocb.ulpBdeCount++; 19198 /* We need to get the size out of the right CQE */ 19199 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19200 len = bf_get(lpfc_rcqe_length, 19201 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19202 pbde = (struct ulp_bde64 *) 19203 &iocbq->iocb.unsli3.sli3Words[4]; 19204 if (len > LPFC_DATA_BUF_SIZE) 19205 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 19206 else 19207 pbde->tus.f.bdeSize = len; 19208 19209 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 19210 tot_len += len; 19211 } else { 19212 iocbq = lpfc_sli_get_iocbq(vport->phba); 19213 if (!iocbq) { 19214 if (first_iocbq) { 19215 first_iocbq->iocb.ulpStatus = 19216 IOSTAT_FCP_RSP_ERROR; 19217 first_iocbq->iocb.un.ulpWord[4] = 19218 IOERR_NO_RESOURCES; 19219 } 19220 lpfc_in_buf_free(vport->phba, d_buf); 19221 continue; 19222 } 19223 /* We need to get the size out of the right CQE */ 19224 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19225 len = bf_get(lpfc_rcqe_length, 19226 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19227 iocbq->context2 = d_buf; 19228 iocbq->context3 = NULL; 19229 iocbq->iocb.ulpBdeCount = 1; 19230 if (len > LPFC_DATA_BUF_SIZE) 19231 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 19232 LPFC_DATA_BUF_SIZE; 19233 else 19234 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 19235 19236 tot_len += len; 19237 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 19238 19239 iocbq->iocb.un.rcvels.remoteID = sid; 19240 list_add_tail(&iocbq->list, &first_iocbq->list); 19241 } 19242 } 19243 /* Free the sequence's header buffer */ 19244 if (!first_iocbq) 19245 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 19246 19247 return first_iocbq; 19248 } 19249 19250 static void 19251 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 19252 struct hbq_dmabuf *seq_dmabuf) 19253 { 19254 struct fc_frame_header *fc_hdr; 19255 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 19256 struct lpfc_hba *phba = vport->phba; 19257 19258 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19259 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 19260 if (!iocbq) { 19261 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19262 "2707 Ring %d handler: Failed to allocate " 19263 "iocb Rctl x%x Type x%x received\n", 19264 LPFC_ELS_RING, 19265 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19266 return; 19267 } 19268 if (!lpfc_complete_unsol_iocb(phba, 19269 phba->sli4_hba.els_wq->pring, 19270 iocbq, fc_hdr->fh_r_ctl, 19271 fc_hdr->fh_type)) 19272 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19273 "2540 Ring %d handler: unexpected Rctl " 19274 "x%x Type x%x received\n", 19275 LPFC_ELS_RING, 19276 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19277 19278 /* Free iocb created in lpfc_prep_seq */ 19279 list_for_each_entry_safe(curr_iocb, next_iocb, 19280 &iocbq->list, list) { 19281 list_del_init(&curr_iocb->list); 19282 lpfc_sli_release_iocbq(phba, curr_iocb); 19283 } 19284 lpfc_sli_release_iocbq(phba, iocbq); 19285 } 19286 19287 static void 19288 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 19289 struct lpfc_iocbq *rspiocb) 19290 { 19291 struct lpfc_dmabuf *pcmd = cmdiocb->context2; 19292 19293 if (pcmd && pcmd->virt) 19294 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19295 kfree(pcmd); 19296 lpfc_sli_release_iocbq(phba, cmdiocb); 19297 lpfc_drain_txq(phba); 19298 } 19299 19300 static void 19301 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 19302 struct hbq_dmabuf *dmabuf) 19303 { 19304 struct fc_frame_header *fc_hdr; 19305 struct lpfc_hba *phba = vport->phba; 19306 struct lpfc_iocbq *iocbq = NULL; 19307 union lpfc_wqe *wqe; 19308 struct lpfc_dmabuf *pcmd = NULL; 19309 uint32_t frame_len; 19310 int rc; 19311 unsigned long iflags; 19312 19313 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19314 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 19315 19316 /* Send the received frame back */ 19317 iocbq = lpfc_sli_get_iocbq(phba); 19318 if (!iocbq) { 19319 /* Queue cq event and wakeup worker thread to process it */ 19320 spin_lock_irqsave(&phba->hbalock, iflags); 19321 list_add_tail(&dmabuf->cq_event.list, 19322 &phba->sli4_hba.sp_queue_event); 19323 phba->hba_flag |= HBA_SP_QUEUE_EVT; 19324 spin_unlock_irqrestore(&phba->hbalock, iflags); 19325 lpfc_worker_wake_up(phba); 19326 return; 19327 } 19328 19329 /* Allocate buffer for command payload */ 19330 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 19331 if (pcmd) 19332 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 19333 &pcmd->phys); 19334 if (!pcmd || !pcmd->virt) 19335 goto exit; 19336 19337 INIT_LIST_HEAD(&pcmd->list); 19338 19339 /* copyin the payload */ 19340 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 19341 19342 /* fill in BDE's for command */ 19343 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys); 19344 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys); 19345 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 19346 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len; 19347 19348 iocbq->context2 = pcmd; 19349 iocbq->vport = vport; 19350 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK; 19351 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 19352 19353 /* 19354 * Setup rest of the iocb as though it were a WQE 19355 * Build the SEND_FRAME WQE 19356 */ 19357 wqe = (union lpfc_wqe *)&iocbq->iocb; 19358 19359 wqe->send_frame.frame_len = frame_len; 19360 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr)); 19361 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1)); 19362 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2)); 19363 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3)); 19364 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4)); 19365 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5)); 19366 19367 iocbq->iocb.ulpCommand = CMD_SEND_FRAME; 19368 iocbq->iocb.ulpLe = 1; 19369 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl; 19370 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 19371 if (rc == IOCB_ERROR) 19372 goto exit; 19373 19374 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19375 return; 19376 19377 exit: 19378 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 19379 "2023 Unable to process MDS loopback frame\n"); 19380 if (pcmd && pcmd->virt) 19381 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19382 kfree(pcmd); 19383 if (iocbq) 19384 lpfc_sli_release_iocbq(phba, iocbq); 19385 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19386 } 19387 19388 /** 19389 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 19390 * @phba: Pointer to HBA context object. 19391 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 19392 * 19393 * This function is called with no lock held. This function processes all 19394 * the received buffers and gives it to upper layers when a received buffer 19395 * indicates that it is the final frame in the sequence. The interrupt 19396 * service routine processes received buffers at interrupt contexts. 19397 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 19398 * appropriate receive function when the final frame in a sequence is received. 19399 **/ 19400 void 19401 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 19402 struct hbq_dmabuf *dmabuf) 19403 { 19404 struct hbq_dmabuf *seq_dmabuf; 19405 struct fc_frame_header *fc_hdr; 19406 struct lpfc_vport *vport; 19407 uint32_t fcfi; 19408 uint32_t did; 19409 19410 /* Process each received buffer */ 19411 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19412 19413 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 19414 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 19415 vport = phba->pport; 19416 /* Handle MDS Loopback frames */ 19417 if (!(phba->pport->load_flag & FC_UNLOADING)) 19418 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19419 else 19420 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19421 return; 19422 } 19423 19424 /* check to see if this a valid type of frame */ 19425 if (lpfc_fc_frame_check(phba, fc_hdr)) { 19426 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19427 return; 19428 } 19429 19430 if ((bf_get(lpfc_cqe_code, 19431 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 19432 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 19433 &dmabuf->cq_event.cqe.rcqe_cmpl); 19434 else 19435 fcfi = bf_get(lpfc_rcqe_fcf_id, 19436 &dmabuf->cq_event.cqe.rcqe_cmpl); 19437 19438 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 19439 vport = phba->pport; 19440 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 19441 "2023 MDS Loopback %d bytes\n", 19442 bf_get(lpfc_rcqe_length, 19443 &dmabuf->cq_event.cqe.rcqe_cmpl)); 19444 /* Handle MDS Loopback frames */ 19445 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19446 return; 19447 } 19448 19449 /* d_id this frame is directed to */ 19450 did = sli4_did_from_fc_hdr(fc_hdr); 19451 19452 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 19453 if (!vport) { 19454 /* throw out the frame */ 19455 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19456 return; 19457 } 19458 19459 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 19460 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 19461 (did != Fabric_DID)) { 19462 /* 19463 * Throw out the frame if we are not pt2pt. 19464 * The pt2pt protocol allows for discovery frames 19465 * to be received without a registered VPI. 19466 */ 19467 if (!(vport->fc_flag & FC_PT2PT) || 19468 (phba->link_state == LPFC_HBA_READY)) { 19469 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19470 return; 19471 } 19472 } 19473 19474 /* Handle the basic abort sequence (BA_ABTS) event */ 19475 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 19476 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 19477 return; 19478 } 19479 19480 /* Link this frame */ 19481 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 19482 if (!seq_dmabuf) { 19483 /* unable to add frame to vport - throw it out */ 19484 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19485 return; 19486 } 19487 /* If not last frame in sequence continue processing frames. */ 19488 if (!lpfc_seq_complete(seq_dmabuf)) 19489 return; 19490 19491 /* Send the complete sequence to the upper layer protocol */ 19492 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 19493 } 19494 19495 /** 19496 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 19497 * @phba: pointer to lpfc hba data structure. 19498 * 19499 * This routine is invoked to post rpi header templates to the 19500 * HBA consistent with the SLI-4 interface spec. This routine 19501 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19502 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19503 * 19504 * This routine does not require any locks. It's usage is expected 19505 * to be driver load or reset recovery when the driver is 19506 * sequential. 19507 * 19508 * Return codes 19509 * 0 - successful 19510 * -EIO - The mailbox failed to complete successfully. 19511 * When this error occurs, the driver is not guaranteed 19512 * to have any rpi regions posted to the device and 19513 * must either attempt to repost the regions or take a 19514 * fatal error. 19515 **/ 19516 int 19517 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 19518 { 19519 struct lpfc_rpi_hdr *rpi_page; 19520 uint32_t rc = 0; 19521 uint16_t lrpi = 0; 19522 19523 /* SLI4 ports that support extents do not require RPI headers. */ 19524 if (!phba->sli4_hba.rpi_hdrs_in_use) 19525 goto exit; 19526 if (phba->sli4_hba.extents_in_use) 19527 return -EIO; 19528 19529 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 19530 /* 19531 * Assign the rpi headers a physical rpi only if the driver 19532 * has not initialized those resources. A port reset only 19533 * needs the headers posted. 19534 */ 19535 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 19536 LPFC_RPI_RSRC_RDY) 19537 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19538 19539 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 19540 if (rc != MBX_SUCCESS) { 19541 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19542 "2008 Error %d posting all rpi " 19543 "headers\n", rc); 19544 rc = -EIO; 19545 break; 19546 } 19547 } 19548 19549 exit: 19550 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 19551 LPFC_RPI_RSRC_RDY); 19552 return rc; 19553 } 19554 19555 /** 19556 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 19557 * @phba: pointer to lpfc hba data structure. 19558 * @rpi_page: pointer to the rpi memory region. 19559 * 19560 * This routine is invoked to post a single rpi header to the 19561 * HBA consistent with the SLI-4 interface spec. This memory region 19562 * maps up to 64 rpi context regions. 19563 * 19564 * Return codes 19565 * 0 - successful 19566 * -ENOMEM - No available memory 19567 * -EIO - The mailbox failed to complete successfully. 19568 **/ 19569 int 19570 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 19571 { 19572 LPFC_MBOXQ_t *mboxq; 19573 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 19574 uint32_t rc = 0; 19575 uint32_t shdr_status, shdr_add_status; 19576 union lpfc_sli4_cfg_shdr *shdr; 19577 19578 /* SLI4 ports that support extents do not require RPI headers. */ 19579 if (!phba->sli4_hba.rpi_hdrs_in_use) 19580 return rc; 19581 if (phba->sli4_hba.extents_in_use) 19582 return -EIO; 19583 19584 /* The port is notified of the header region via a mailbox command. */ 19585 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19586 if (!mboxq) { 19587 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19588 "2001 Unable to allocate memory for issuing " 19589 "SLI_CONFIG_SPECIAL mailbox command\n"); 19590 return -ENOMEM; 19591 } 19592 19593 /* Post all rpi memory regions to the port. */ 19594 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 19595 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19596 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 19597 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 19598 sizeof(struct lpfc_sli4_cfg_mhdr), 19599 LPFC_SLI4_MBX_EMBED); 19600 19601 19602 /* Post the physical rpi to the port for this rpi header. */ 19603 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 19604 rpi_page->start_rpi); 19605 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 19606 hdr_tmpl, rpi_page->page_count); 19607 19608 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 19609 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 19610 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19611 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 19612 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19613 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19614 mempool_free(mboxq, phba->mbox_mem_pool); 19615 if (shdr_status || shdr_add_status || rc) { 19616 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19617 "2514 POST_RPI_HDR mailbox failed with " 19618 "status x%x add_status x%x, mbx status x%x\n", 19619 shdr_status, shdr_add_status, rc); 19620 rc = -ENXIO; 19621 } else { 19622 /* 19623 * The next_rpi stores the next logical module-64 rpi value used 19624 * to post physical rpis in subsequent rpi postings. 19625 */ 19626 spin_lock_irq(&phba->hbalock); 19627 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 19628 spin_unlock_irq(&phba->hbalock); 19629 } 19630 return rc; 19631 } 19632 19633 /** 19634 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 19635 * @phba: pointer to lpfc hba data structure. 19636 * 19637 * This routine is invoked to post rpi header templates to the 19638 * HBA consistent with the SLI-4 interface spec. This routine 19639 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19640 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19641 * 19642 * Returns 19643 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 19644 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 19645 **/ 19646 int 19647 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 19648 { 19649 unsigned long rpi; 19650 uint16_t max_rpi, rpi_limit; 19651 uint16_t rpi_remaining, lrpi = 0; 19652 struct lpfc_rpi_hdr *rpi_hdr; 19653 unsigned long iflag; 19654 19655 /* 19656 * Fetch the next logical rpi. Because this index is logical, 19657 * the driver starts at 0 each time. 19658 */ 19659 spin_lock_irqsave(&phba->hbalock, iflag); 19660 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 19661 rpi_limit = phba->sli4_hba.next_rpi; 19662 19663 rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit); 19664 if (rpi >= rpi_limit) 19665 rpi = LPFC_RPI_ALLOC_ERROR; 19666 else { 19667 set_bit(rpi, phba->sli4_hba.rpi_bmask); 19668 phba->sli4_hba.max_cfg_param.rpi_used++; 19669 phba->sli4_hba.rpi_count++; 19670 } 19671 lpfc_printf_log(phba, KERN_INFO, 19672 LOG_NODE | LOG_DISCOVERY, 19673 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 19674 (int) rpi, max_rpi, rpi_limit); 19675 19676 /* 19677 * Don't try to allocate more rpi header regions if the device limit 19678 * has been exhausted. 19679 */ 19680 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 19681 (phba->sli4_hba.rpi_count >= max_rpi)) { 19682 spin_unlock_irqrestore(&phba->hbalock, iflag); 19683 return rpi; 19684 } 19685 19686 /* 19687 * RPI header postings are not required for SLI4 ports capable of 19688 * extents. 19689 */ 19690 if (!phba->sli4_hba.rpi_hdrs_in_use) { 19691 spin_unlock_irqrestore(&phba->hbalock, iflag); 19692 return rpi; 19693 } 19694 19695 /* 19696 * If the driver is running low on rpi resources, allocate another 19697 * page now. Note that the next_rpi value is used because 19698 * it represents how many are actually in use whereas max_rpi notes 19699 * how many are supported max by the device. 19700 */ 19701 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 19702 spin_unlock_irqrestore(&phba->hbalock, iflag); 19703 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 19704 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 19705 if (!rpi_hdr) { 19706 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19707 "2002 Error Could not grow rpi " 19708 "count\n"); 19709 } else { 19710 lrpi = rpi_hdr->start_rpi; 19711 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19712 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 19713 } 19714 } 19715 19716 return rpi; 19717 } 19718 19719 /** 19720 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 19721 * @phba: pointer to lpfc hba data structure. 19722 * @rpi: rpi to free 19723 * 19724 * This routine is invoked to release an rpi to the pool of 19725 * available rpis maintained by the driver. 19726 **/ 19727 static void 19728 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19729 { 19730 /* 19731 * if the rpi value indicates a prior unreg has already 19732 * been done, skip the unreg. 19733 */ 19734 if (rpi == LPFC_RPI_ALLOC_ERROR) 19735 return; 19736 19737 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 19738 phba->sli4_hba.rpi_count--; 19739 phba->sli4_hba.max_cfg_param.rpi_used--; 19740 } else { 19741 lpfc_printf_log(phba, KERN_INFO, 19742 LOG_NODE | LOG_DISCOVERY, 19743 "2016 rpi %x not inuse\n", 19744 rpi); 19745 } 19746 } 19747 19748 /** 19749 * lpfc_sli4_free_rpi - Release an rpi for reuse. 19750 * @phba: pointer to lpfc hba data structure. 19751 * @rpi: rpi to free 19752 * 19753 * This routine is invoked to release an rpi to the pool of 19754 * available rpis maintained by the driver. 19755 **/ 19756 void 19757 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19758 { 19759 spin_lock_irq(&phba->hbalock); 19760 __lpfc_sli4_free_rpi(phba, rpi); 19761 spin_unlock_irq(&phba->hbalock); 19762 } 19763 19764 /** 19765 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19766 * @phba: pointer to lpfc hba data structure. 19767 * 19768 * This routine is invoked to remove the memory region that 19769 * provided rpi via a bitmask. 19770 **/ 19771 void 19772 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19773 { 19774 kfree(phba->sli4_hba.rpi_bmask); 19775 kfree(phba->sli4_hba.rpi_ids); 19776 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19777 } 19778 19779 /** 19780 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19781 * @ndlp: pointer to lpfc nodelist data structure. 19782 * @cmpl: completion call-back. 19783 * @arg: data to load as MBox 'caller buffer information' 19784 * 19785 * This routine is invoked to remove the memory region that 19786 * provided rpi via a bitmask. 19787 **/ 19788 int 19789 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19790 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 19791 { 19792 LPFC_MBOXQ_t *mboxq; 19793 struct lpfc_hba *phba = ndlp->phba; 19794 int rc; 19795 19796 /* The port is notified of the header region via a mailbox command. */ 19797 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19798 if (!mboxq) 19799 return -ENOMEM; 19800 19801 /* If cmpl assigned, then this nlp_get pairs with 19802 * lpfc_mbx_cmpl_resume_rpi. 19803 * 19804 * Else cmpl is NULL, then this nlp_get pairs with 19805 * lpfc_sli_def_mbox_cmpl. 19806 */ 19807 if (!lpfc_nlp_get(ndlp)) { 19808 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19809 "2122 %s: Failed to get nlp ref\n", 19810 __func__); 19811 mempool_free(mboxq, phba->mbox_mem_pool); 19812 return -EIO; 19813 } 19814 19815 /* Post all rpi memory regions to the port. */ 19816 lpfc_resume_rpi(mboxq, ndlp); 19817 if (cmpl) { 19818 mboxq->mbox_cmpl = cmpl; 19819 mboxq->ctx_buf = arg; 19820 } else 19821 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19822 mboxq->ctx_ndlp = ndlp; 19823 mboxq->vport = ndlp->vport; 19824 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19825 if (rc == MBX_NOT_FINISHED) { 19826 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19827 "2010 Resume RPI Mailbox failed " 19828 "status %d, mbxStatus x%x\n", rc, 19829 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19830 lpfc_nlp_put(ndlp); 19831 mempool_free(mboxq, phba->mbox_mem_pool); 19832 return -EIO; 19833 } 19834 return 0; 19835 } 19836 19837 /** 19838 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19839 * @vport: Pointer to the vport for which the vpi is being initialized 19840 * 19841 * This routine is invoked to activate a vpi with the port. 19842 * 19843 * Returns: 19844 * 0 success 19845 * -Evalue otherwise 19846 **/ 19847 int 19848 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19849 { 19850 LPFC_MBOXQ_t *mboxq; 19851 int rc = 0; 19852 int retval = MBX_SUCCESS; 19853 uint32_t mbox_tmo; 19854 struct lpfc_hba *phba = vport->phba; 19855 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19856 if (!mboxq) 19857 return -ENOMEM; 19858 lpfc_init_vpi(phba, mboxq, vport->vpi); 19859 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19860 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19861 if (rc != MBX_SUCCESS) { 19862 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19863 "2022 INIT VPI Mailbox failed " 19864 "status %d, mbxStatus x%x\n", rc, 19865 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19866 retval = -EIO; 19867 } 19868 if (rc != MBX_TIMEOUT) 19869 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19870 19871 return retval; 19872 } 19873 19874 /** 19875 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19876 * @phba: pointer to lpfc hba data structure. 19877 * @mboxq: Pointer to mailbox object. 19878 * 19879 * This routine is invoked to manually add a single FCF record. The caller 19880 * must pass a completely initialized FCF_Record. This routine takes 19881 * care of the nonembedded mailbox operations. 19882 **/ 19883 static void 19884 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19885 { 19886 void *virt_addr; 19887 union lpfc_sli4_cfg_shdr *shdr; 19888 uint32_t shdr_status, shdr_add_status; 19889 19890 virt_addr = mboxq->sge_array->addr[0]; 19891 /* The IOCTL status is embedded in the mailbox subheader. */ 19892 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19893 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19894 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19895 19896 if ((shdr_status || shdr_add_status) && 19897 (shdr_status != STATUS_FCF_IN_USE)) 19898 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19899 "2558 ADD_FCF_RECORD mailbox failed with " 19900 "status x%x add_status x%x\n", 19901 shdr_status, shdr_add_status); 19902 19903 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19904 } 19905 19906 /** 19907 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19908 * @phba: pointer to lpfc hba data structure. 19909 * @fcf_record: pointer to the initialized fcf record to add. 19910 * 19911 * This routine is invoked to manually add a single FCF record. The caller 19912 * must pass a completely initialized FCF_Record. This routine takes 19913 * care of the nonembedded mailbox operations. 19914 **/ 19915 int 19916 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19917 { 19918 int rc = 0; 19919 LPFC_MBOXQ_t *mboxq; 19920 uint8_t *bytep; 19921 void *virt_addr; 19922 struct lpfc_mbx_sge sge; 19923 uint32_t alloc_len, req_len; 19924 uint32_t fcfindex; 19925 19926 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19927 if (!mboxq) { 19928 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19929 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 19930 return -ENOMEM; 19931 } 19932 19933 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 19934 sizeof(uint32_t); 19935 19936 /* Allocate DMA memory and set up the non-embedded mailbox command */ 19937 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19938 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 19939 req_len, LPFC_SLI4_MBX_NEMBED); 19940 if (alloc_len < req_len) { 19941 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19942 "2523 Allocated DMA memory size (x%x) is " 19943 "less than the requested DMA memory " 19944 "size (x%x)\n", alloc_len, req_len); 19945 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19946 return -ENOMEM; 19947 } 19948 19949 /* 19950 * Get the first SGE entry from the non-embedded DMA memory. This 19951 * routine only uses a single SGE. 19952 */ 19953 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 19954 virt_addr = mboxq->sge_array->addr[0]; 19955 /* 19956 * Configure the FCF record for FCFI 0. This is the driver's 19957 * hardcoded default and gets used in nonFIP mode. 19958 */ 19959 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 19960 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 19961 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 19962 19963 /* 19964 * Copy the fcf_index and the FCF Record Data. The data starts after 19965 * the FCoE header plus word10. The data copy needs to be endian 19966 * correct. 19967 */ 19968 bytep += sizeof(uint32_t); 19969 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 19970 mboxq->vport = phba->pport; 19971 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 19972 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19973 if (rc == MBX_NOT_FINISHED) { 19974 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19975 "2515 ADD_FCF_RECORD mailbox failed with " 19976 "status 0x%x\n", rc); 19977 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19978 rc = -EIO; 19979 } else 19980 rc = 0; 19981 19982 return rc; 19983 } 19984 19985 /** 19986 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 19987 * @phba: pointer to lpfc hba data structure. 19988 * @fcf_record: pointer to the fcf record to write the default data. 19989 * @fcf_index: FCF table entry index. 19990 * 19991 * This routine is invoked to build the driver's default FCF record. The 19992 * values used are hardcoded. This routine handles memory initialization. 19993 * 19994 **/ 19995 void 19996 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 19997 struct fcf_record *fcf_record, 19998 uint16_t fcf_index) 19999 { 20000 memset(fcf_record, 0, sizeof(struct fcf_record)); 20001 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 20002 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 20003 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 20004 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 20005 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 20006 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 20007 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 20008 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 20009 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 20010 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 20011 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 20012 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 20013 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 20014 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 20015 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 20016 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 20017 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 20018 /* Set the VLAN bit map */ 20019 if (phba->valid_vlan) { 20020 fcf_record->vlan_bitmap[phba->vlan_id / 8] 20021 = 1 << (phba->vlan_id % 8); 20022 } 20023 } 20024 20025 /** 20026 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 20027 * @phba: pointer to lpfc hba data structure. 20028 * @fcf_index: FCF table entry offset. 20029 * 20030 * This routine is invoked to scan the entire FCF table by reading FCF 20031 * record and processing it one at a time starting from the @fcf_index 20032 * for initial FCF discovery or fast FCF failover rediscovery. 20033 * 20034 * Return 0 if the mailbox command is submitted successfully, none 0 20035 * otherwise. 20036 **/ 20037 int 20038 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20039 { 20040 int rc = 0, error; 20041 LPFC_MBOXQ_t *mboxq; 20042 20043 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 20044 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 20045 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20046 if (!mboxq) { 20047 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20048 "2000 Failed to allocate mbox for " 20049 "READ_FCF cmd\n"); 20050 error = -ENOMEM; 20051 goto fail_fcf_scan; 20052 } 20053 /* Construct the read FCF record mailbox command */ 20054 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20055 if (rc) { 20056 error = -EINVAL; 20057 goto fail_fcf_scan; 20058 } 20059 /* Issue the mailbox command asynchronously */ 20060 mboxq->vport = phba->pport; 20061 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 20062 20063 spin_lock_irq(&phba->hbalock); 20064 phba->hba_flag |= FCF_TS_INPROG; 20065 spin_unlock_irq(&phba->hbalock); 20066 20067 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20068 if (rc == MBX_NOT_FINISHED) 20069 error = -EIO; 20070 else { 20071 /* Reset eligible FCF count for new scan */ 20072 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 20073 phba->fcf.eligible_fcf_cnt = 0; 20074 error = 0; 20075 } 20076 fail_fcf_scan: 20077 if (error) { 20078 if (mboxq) 20079 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20080 /* FCF scan failed, clear FCF_TS_INPROG flag */ 20081 spin_lock_irq(&phba->hbalock); 20082 phba->hba_flag &= ~FCF_TS_INPROG; 20083 spin_unlock_irq(&phba->hbalock); 20084 } 20085 return error; 20086 } 20087 20088 /** 20089 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 20090 * @phba: pointer to lpfc hba data structure. 20091 * @fcf_index: FCF table entry offset. 20092 * 20093 * This routine is invoked to read an FCF record indicated by @fcf_index 20094 * and to use it for FLOGI roundrobin FCF failover. 20095 * 20096 * Return 0 if the mailbox command is submitted successfully, none 0 20097 * otherwise. 20098 **/ 20099 int 20100 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20101 { 20102 int rc = 0, error; 20103 LPFC_MBOXQ_t *mboxq; 20104 20105 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20106 if (!mboxq) { 20107 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20108 "2763 Failed to allocate mbox for " 20109 "READ_FCF cmd\n"); 20110 error = -ENOMEM; 20111 goto fail_fcf_read; 20112 } 20113 /* Construct the read FCF record mailbox command */ 20114 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20115 if (rc) { 20116 error = -EINVAL; 20117 goto fail_fcf_read; 20118 } 20119 /* Issue the mailbox command asynchronously */ 20120 mboxq->vport = phba->pport; 20121 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 20122 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20123 if (rc == MBX_NOT_FINISHED) 20124 error = -EIO; 20125 else 20126 error = 0; 20127 20128 fail_fcf_read: 20129 if (error && mboxq) 20130 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20131 return error; 20132 } 20133 20134 /** 20135 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 20136 * @phba: pointer to lpfc hba data structure. 20137 * @fcf_index: FCF table entry offset. 20138 * 20139 * This routine is invoked to read an FCF record indicated by @fcf_index to 20140 * determine whether it's eligible for FLOGI roundrobin failover list. 20141 * 20142 * Return 0 if the mailbox command is submitted successfully, none 0 20143 * otherwise. 20144 **/ 20145 int 20146 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20147 { 20148 int rc = 0, error; 20149 LPFC_MBOXQ_t *mboxq; 20150 20151 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20152 if (!mboxq) { 20153 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20154 "2758 Failed to allocate mbox for " 20155 "READ_FCF cmd\n"); 20156 error = -ENOMEM; 20157 goto fail_fcf_read; 20158 } 20159 /* Construct the read FCF record mailbox command */ 20160 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20161 if (rc) { 20162 error = -EINVAL; 20163 goto fail_fcf_read; 20164 } 20165 /* Issue the mailbox command asynchronously */ 20166 mboxq->vport = phba->pport; 20167 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 20168 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20169 if (rc == MBX_NOT_FINISHED) 20170 error = -EIO; 20171 else 20172 error = 0; 20173 20174 fail_fcf_read: 20175 if (error && mboxq) 20176 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20177 return error; 20178 } 20179 20180 /** 20181 * lpfc_check_next_fcf_pri_level 20182 * @phba: pointer to the lpfc_hba struct for this port. 20183 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 20184 * routine when the rr_bmask is empty. The FCF indecies are put into the 20185 * rr_bmask based on their priority level. Starting from the highest priority 20186 * to the lowest. The most likely FCF candidate will be in the highest 20187 * priority group. When this routine is called it searches the fcf_pri list for 20188 * next lowest priority group and repopulates the rr_bmask with only those 20189 * fcf_indexes. 20190 * returns: 20191 * 1=success 0=failure 20192 **/ 20193 static int 20194 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 20195 { 20196 uint16_t next_fcf_pri; 20197 uint16_t last_index; 20198 struct lpfc_fcf_pri *fcf_pri; 20199 int rc; 20200 int ret = 0; 20201 20202 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20203 LPFC_SLI4_FCF_TBL_INDX_MAX); 20204 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20205 "3060 Last IDX %d\n", last_index); 20206 20207 /* Verify the priority list has 2 or more entries */ 20208 spin_lock_irq(&phba->hbalock); 20209 if (list_empty(&phba->fcf.fcf_pri_list) || 20210 list_is_singular(&phba->fcf.fcf_pri_list)) { 20211 spin_unlock_irq(&phba->hbalock); 20212 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20213 "3061 Last IDX %d\n", last_index); 20214 return 0; /* Empty rr list */ 20215 } 20216 spin_unlock_irq(&phba->hbalock); 20217 20218 next_fcf_pri = 0; 20219 /* 20220 * Clear the rr_bmask and set all of the bits that are at this 20221 * priority. 20222 */ 20223 memset(phba->fcf.fcf_rr_bmask, 0, 20224 sizeof(*phba->fcf.fcf_rr_bmask)); 20225 spin_lock_irq(&phba->hbalock); 20226 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20227 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 20228 continue; 20229 /* 20230 * the 1st priority that has not FLOGI failed 20231 * will be the highest. 20232 */ 20233 if (!next_fcf_pri) 20234 next_fcf_pri = fcf_pri->fcf_rec.priority; 20235 spin_unlock_irq(&phba->hbalock); 20236 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20237 rc = lpfc_sli4_fcf_rr_index_set(phba, 20238 fcf_pri->fcf_rec.fcf_index); 20239 if (rc) 20240 return 0; 20241 } 20242 spin_lock_irq(&phba->hbalock); 20243 } 20244 /* 20245 * if next_fcf_pri was not set above and the list is not empty then 20246 * we have failed flogis on all of them. So reset flogi failed 20247 * and start at the beginning. 20248 */ 20249 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 20250 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20251 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 20252 /* 20253 * the 1st priority that has not FLOGI failed 20254 * will be the highest. 20255 */ 20256 if (!next_fcf_pri) 20257 next_fcf_pri = fcf_pri->fcf_rec.priority; 20258 spin_unlock_irq(&phba->hbalock); 20259 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20260 rc = lpfc_sli4_fcf_rr_index_set(phba, 20261 fcf_pri->fcf_rec.fcf_index); 20262 if (rc) 20263 return 0; 20264 } 20265 spin_lock_irq(&phba->hbalock); 20266 } 20267 } else 20268 ret = 1; 20269 spin_unlock_irq(&phba->hbalock); 20270 20271 return ret; 20272 } 20273 /** 20274 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 20275 * @phba: pointer to lpfc hba data structure. 20276 * 20277 * This routine is to get the next eligible FCF record index in a round 20278 * robin fashion. If the next eligible FCF record index equals to the 20279 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 20280 * shall be returned, otherwise, the next eligible FCF record's index 20281 * shall be returned. 20282 **/ 20283 uint16_t 20284 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 20285 { 20286 uint16_t next_fcf_index; 20287 20288 initial_priority: 20289 /* Search start from next bit of currently registered FCF index */ 20290 next_fcf_index = phba->fcf.current_rec.fcf_indx; 20291 20292 next_priority: 20293 /* Determine the next fcf index to check */ 20294 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 20295 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 20296 LPFC_SLI4_FCF_TBL_INDX_MAX, 20297 next_fcf_index); 20298 20299 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 20300 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20301 /* 20302 * If we have wrapped then we need to clear the bits that 20303 * have been tested so that we can detect when we should 20304 * change the priority level. 20305 */ 20306 next_fcf_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20307 LPFC_SLI4_FCF_TBL_INDX_MAX); 20308 } 20309 20310 20311 /* Check roundrobin failover list empty condition */ 20312 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 20313 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 20314 /* 20315 * If next fcf index is not found check if there are lower 20316 * Priority level fcf's in the fcf_priority list. 20317 * Set up the rr_bmask with all of the avaiable fcf bits 20318 * at that level and continue the selection process. 20319 */ 20320 if (lpfc_check_next_fcf_pri_level(phba)) 20321 goto initial_priority; 20322 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 20323 "2844 No roundrobin failover FCF available\n"); 20324 20325 return LPFC_FCOE_FCF_NEXT_NONE; 20326 } 20327 20328 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 20329 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 20330 LPFC_FCF_FLOGI_FAILED) { 20331 if (list_is_singular(&phba->fcf.fcf_pri_list)) 20332 return LPFC_FCOE_FCF_NEXT_NONE; 20333 20334 goto next_priority; 20335 } 20336 20337 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20338 "2845 Get next roundrobin failover FCF (x%x)\n", 20339 next_fcf_index); 20340 20341 return next_fcf_index; 20342 } 20343 20344 /** 20345 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 20346 * @phba: pointer to lpfc hba data structure. 20347 * @fcf_index: index into the FCF table to 'set' 20348 * 20349 * This routine sets the FCF record index in to the eligible bmask for 20350 * roundrobin failover search. It checks to make sure that the index 20351 * does not go beyond the range of the driver allocated bmask dimension 20352 * before setting the bit. 20353 * 20354 * Returns 0 if the index bit successfully set, otherwise, it returns 20355 * -EINVAL. 20356 **/ 20357 int 20358 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 20359 { 20360 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20361 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20362 "2610 FCF (x%x) reached driver's book " 20363 "keeping dimension:x%x\n", 20364 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20365 return -EINVAL; 20366 } 20367 /* Set the eligible FCF record index bmask */ 20368 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20369 20370 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20371 "2790 Set FCF (x%x) to roundrobin FCF failover " 20372 "bmask\n", fcf_index); 20373 20374 return 0; 20375 } 20376 20377 /** 20378 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 20379 * @phba: pointer to lpfc hba data structure. 20380 * @fcf_index: index into the FCF table to 'clear' 20381 * 20382 * This routine clears the FCF record index from the eligible bmask for 20383 * roundrobin failover search. It checks to make sure that the index 20384 * does not go beyond the range of the driver allocated bmask dimension 20385 * before clearing the bit. 20386 **/ 20387 void 20388 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 20389 { 20390 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 20391 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20392 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20393 "2762 FCF (x%x) reached driver's book " 20394 "keeping dimension:x%x\n", 20395 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20396 return; 20397 } 20398 /* Clear the eligible FCF record index bmask */ 20399 spin_lock_irq(&phba->hbalock); 20400 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 20401 list) { 20402 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 20403 list_del_init(&fcf_pri->list); 20404 break; 20405 } 20406 } 20407 spin_unlock_irq(&phba->hbalock); 20408 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20409 20410 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20411 "2791 Clear FCF (x%x) from roundrobin failover " 20412 "bmask\n", fcf_index); 20413 } 20414 20415 /** 20416 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 20417 * @phba: pointer to lpfc hba data structure. 20418 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 20419 * 20420 * This routine is the completion routine for the rediscover FCF table mailbox 20421 * command. If the mailbox command returned failure, it will try to stop the 20422 * FCF rediscover wait timer. 20423 **/ 20424 static void 20425 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 20426 { 20427 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20428 uint32_t shdr_status, shdr_add_status; 20429 20430 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20431 20432 shdr_status = bf_get(lpfc_mbox_hdr_status, 20433 &redisc_fcf->header.cfg_shdr.response); 20434 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20435 &redisc_fcf->header.cfg_shdr.response); 20436 if (shdr_status || shdr_add_status) { 20437 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20438 "2746 Requesting for FCF rediscovery failed " 20439 "status x%x add_status x%x\n", 20440 shdr_status, shdr_add_status); 20441 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 20442 spin_lock_irq(&phba->hbalock); 20443 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 20444 spin_unlock_irq(&phba->hbalock); 20445 /* 20446 * CVL event triggered FCF rediscover request failed, 20447 * last resort to re-try current registered FCF entry. 20448 */ 20449 lpfc_retry_pport_discovery(phba); 20450 } else { 20451 spin_lock_irq(&phba->hbalock); 20452 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 20453 spin_unlock_irq(&phba->hbalock); 20454 /* 20455 * DEAD FCF event triggered FCF rediscover request 20456 * failed, last resort to fail over as a link down 20457 * to FCF registration. 20458 */ 20459 lpfc_sli4_fcf_dead_failthrough(phba); 20460 } 20461 } else { 20462 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20463 "2775 Start FCF rediscover quiescent timer\n"); 20464 /* 20465 * Start FCF rediscovery wait timer for pending FCF 20466 * before rescan FCF record table. 20467 */ 20468 lpfc_fcf_redisc_wait_start_timer(phba); 20469 } 20470 20471 mempool_free(mbox, phba->mbox_mem_pool); 20472 } 20473 20474 /** 20475 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 20476 * @phba: pointer to lpfc hba data structure. 20477 * 20478 * This routine is invoked to request for rediscovery of the entire FCF table 20479 * by the port. 20480 **/ 20481 int 20482 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 20483 { 20484 LPFC_MBOXQ_t *mbox; 20485 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20486 int rc, length; 20487 20488 /* Cancel retry delay timers to all vports before FCF rediscover */ 20489 lpfc_cancel_all_vport_retry_delay_timer(phba); 20490 20491 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20492 if (!mbox) { 20493 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20494 "2745 Failed to allocate mbox for " 20495 "requesting FCF rediscover.\n"); 20496 return -ENOMEM; 20497 } 20498 20499 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 20500 sizeof(struct lpfc_sli4_cfg_mhdr)); 20501 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 20502 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 20503 length, LPFC_SLI4_MBX_EMBED); 20504 20505 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20506 /* Set count to 0 for invalidating the entire FCF database */ 20507 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 20508 20509 /* Issue the mailbox command asynchronously */ 20510 mbox->vport = phba->pport; 20511 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 20512 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 20513 20514 if (rc == MBX_NOT_FINISHED) { 20515 mempool_free(mbox, phba->mbox_mem_pool); 20516 return -EIO; 20517 } 20518 return 0; 20519 } 20520 20521 /** 20522 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 20523 * @phba: pointer to lpfc hba data structure. 20524 * 20525 * This function is the failover routine as a last resort to the FCF DEAD 20526 * event when driver failed to perform fast FCF failover. 20527 **/ 20528 void 20529 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 20530 { 20531 uint32_t link_state; 20532 20533 /* 20534 * Last resort as FCF DEAD event failover will treat this as 20535 * a link down, but save the link state because we don't want 20536 * it to be changed to Link Down unless it is already down. 20537 */ 20538 link_state = phba->link_state; 20539 lpfc_linkdown(phba); 20540 phba->link_state = link_state; 20541 20542 /* Unregister FCF if no devices connected to it */ 20543 lpfc_unregister_unused_fcf(phba); 20544 } 20545 20546 /** 20547 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 20548 * @phba: pointer to lpfc hba data structure. 20549 * @rgn23_data: pointer to configure region 23 data. 20550 * 20551 * This function gets SLI3 port configure region 23 data through memory dump 20552 * mailbox command. When it successfully retrieves data, the size of the data 20553 * will be returned, otherwise, 0 will be returned. 20554 **/ 20555 static uint32_t 20556 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20557 { 20558 LPFC_MBOXQ_t *pmb = NULL; 20559 MAILBOX_t *mb; 20560 uint32_t offset = 0; 20561 int rc; 20562 20563 if (!rgn23_data) 20564 return 0; 20565 20566 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20567 if (!pmb) { 20568 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20569 "2600 failed to allocate mailbox memory\n"); 20570 return 0; 20571 } 20572 mb = &pmb->u.mb; 20573 20574 do { 20575 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 20576 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 20577 20578 if (rc != MBX_SUCCESS) { 20579 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20580 "2601 failed to read config " 20581 "region 23, rc 0x%x Status 0x%x\n", 20582 rc, mb->mbxStatus); 20583 mb->un.varDmp.word_cnt = 0; 20584 } 20585 /* 20586 * dump mem may return a zero when finished or we got a 20587 * mailbox error, either way we are done. 20588 */ 20589 if (mb->un.varDmp.word_cnt == 0) 20590 break; 20591 20592 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 20593 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 20594 20595 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 20596 rgn23_data + offset, 20597 mb->un.varDmp.word_cnt); 20598 offset += mb->un.varDmp.word_cnt; 20599 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 20600 20601 mempool_free(pmb, phba->mbox_mem_pool); 20602 return offset; 20603 } 20604 20605 /** 20606 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 20607 * @phba: pointer to lpfc hba data structure. 20608 * @rgn23_data: pointer to configure region 23 data. 20609 * 20610 * This function gets SLI4 port configure region 23 data through memory dump 20611 * mailbox command. When it successfully retrieves data, the size of the data 20612 * will be returned, otherwise, 0 will be returned. 20613 **/ 20614 static uint32_t 20615 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20616 { 20617 LPFC_MBOXQ_t *mboxq = NULL; 20618 struct lpfc_dmabuf *mp = NULL; 20619 struct lpfc_mqe *mqe; 20620 uint32_t data_length = 0; 20621 int rc; 20622 20623 if (!rgn23_data) 20624 return 0; 20625 20626 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20627 if (!mboxq) { 20628 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20629 "3105 failed to allocate mailbox memory\n"); 20630 return 0; 20631 } 20632 20633 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 20634 goto out; 20635 mqe = &mboxq->u.mqe; 20636 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 20637 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 20638 if (rc) 20639 goto out; 20640 data_length = mqe->un.mb_words[5]; 20641 if (data_length == 0) 20642 goto out; 20643 if (data_length > DMP_RGN23_SIZE) { 20644 data_length = 0; 20645 goto out; 20646 } 20647 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 20648 out: 20649 mempool_free(mboxq, phba->mbox_mem_pool); 20650 if (mp) { 20651 lpfc_mbuf_free(phba, mp->virt, mp->phys); 20652 kfree(mp); 20653 } 20654 return data_length; 20655 } 20656 20657 /** 20658 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 20659 * @phba: pointer to lpfc hba data structure. 20660 * 20661 * This function read region 23 and parse TLV for port status to 20662 * decide if the user disaled the port. If the TLV indicates the 20663 * port is disabled, the hba_flag is set accordingly. 20664 **/ 20665 void 20666 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 20667 { 20668 uint8_t *rgn23_data = NULL; 20669 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 20670 uint32_t offset = 0; 20671 20672 /* Get adapter Region 23 data */ 20673 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 20674 if (!rgn23_data) 20675 goto out; 20676 20677 if (phba->sli_rev < LPFC_SLI_REV4) 20678 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 20679 else { 20680 if_type = bf_get(lpfc_sli_intf_if_type, 20681 &phba->sli4_hba.sli_intf); 20682 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 20683 goto out; 20684 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 20685 } 20686 20687 if (!data_size) 20688 goto out; 20689 20690 /* Check the region signature first */ 20691 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 20692 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20693 "2619 Config region 23 has bad signature\n"); 20694 goto out; 20695 } 20696 offset += 4; 20697 20698 /* Check the data structure version */ 20699 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 20700 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20701 "2620 Config region 23 has bad version\n"); 20702 goto out; 20703 } 20704 offset += 4; 20705 20706 /* Parse TLV entries in the region */ 20707 while (offset < data_size) { 20708 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 20709 break; 20710 /* 20711 * If the TLV is not driver specific TLV or driver id is 20712 * not linux driver id, skip the record. 20713 */ 20714 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 20715 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 20716 (rgn23_data[offset + 3] != 0)) { 20717 offset += rgn23_data[offset + 1] * 4 + 4; 20718 continue; 20719 } 20720 20721 /* Driver found a driver specific TLV in the config region */ 20722 sub_tlv_len = rgn23_data[offset + 1] * 4; 20723 offset += 4; 20724 tlv_offset = 0; 20725 20726 /* 20727 * Search for configured port state sub-TLV. 20728 */ 20729 while ((offset < data_size) && 20730 (tlv_offset < sub_tlv_len)) { 20731 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 20732 offset += 4; 20733 tlv_offset += 4; 20734 break; 20735 } 20736 if (rgn23_data[offset] != PORT_STE_TYPE) { 20737 offset += rgn23_data[offset + 1] * 4 + 4; 20738 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 20739 continue; 20740 } 20741 20742 /* This HBA contains PORT_STE configured */ 20743 if (!rgn23_data[offset + 2]) 20744 phba->hba_flag |= LINK_DISABLED; 20745 20746 goto out; 20747 } 20748 } 20749 20750 out: 20751 kfree(rgn23_data); 20752 return; 20753 } 20754 20755 /** 20756 * lpfc_log_fw_write_cmpl - logs firmware write completion status 20757 * @phba: pointer to lpfc hba data structure 20758 * @shdr_status: wr_object rsp's status field 20759 * @shdr_add_status: wr_object rsp's add_status field 20760 * @shdr_add_status_2: wr_object rsp's add_status_2 field 20761 * @shdr_change_status: wr_object rsp's change_status field 20762 * @shdr_csf: wr_object rsp's csf bit 20763 * 20764 * This routine is intended to be called after a firmware write completes. 20765 * It will log next action items to be performed by the user to instantiate 20766 * the newly downloaded firmware or reason for incompatibility. 20767 **/ 20768 static void 20769 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status, 20770 u32 shdr_add_status, u32 shdr_add_status_2, 20771 u32 shdr_change_status, u32 shdr_csf) 20772 { 20773 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20774 "4198 %s: flash_id x%02x, asic_rev x%02x, " 20775 "status x%02x, add_status x%02x, add_status_2 x%02x, " 20776 "change_status x%02x, csf %01x\n", __func__, 20777 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev, 20778 shdr_status, shdr_add_status, shdr_add_status_2, 20779 shdr_change_status, shdr_csf); 20780 20781 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) { 20782 switch (shdr_add_status_2) { 20783 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH: 20784 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20785 "4199 Firmware write failed: " 20786 "image incompatible with flash x%02x\n", 20787 phba->sli4_hba.flash_id); 20788 break; 20789 case LPFC_ADD_STATUS_2_INCORRECT_ASIC: 20790 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20791 "4200 Firmware write failed: " 20792 "image incompatible with ASIC " 20793 "architecture x%02x\n", 20794 phba->sli4_hba.asic_rev); 20795 break; 20796 default: 20797 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20798 "4210 Firmware write failed: " 20799 "add_status_2 x%02x\n", 20800 shdr_add_status_2); 20801 break; 20802 } 20803 } else if (!shdr_status && !shdr_add_status) { 20804 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20805 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20806 if (shdr_csf) 20807 shdr_change_status = 20808 LPFC_CHANGE_STATUS_PCI_RESET; 20809 } 20810 20811 switch (shdr_change_status) { 20812 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20813 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20814 "3198 Firmware write complete: System " 20815 "reboot required to instantiate\n"); 20816 break; 20817 case (LPFC_CHANGE_STATUS_FW_RESET): 20818 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20819 "3199 Firmware write complete: " 20820 "Firmware reset required to " 20821 "instantiate\n"); 20822 break; 20823 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20824 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20825 "3200 Firmware write complete: Port " 20826 "Migration or PCI Reset required to " 20827 "instantiate\n"); 20828 break; 20829 case (LPFC_CHANGE_STATUS_PCI_RESET): 20830 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20831 "3201 Firmware write complete: PCI " 20832 "Reset required to instantiate\n"); 20833 break; 20834 default: 20835 break; 20836 } 20837 } 20838 } 20839 20840 /** 20841 * lpfc_wr_object - write an object to the firmware 20842 * @phba: HBA structure that indicates port to create a queue on. 20843 * @dmabuf_list: list of dmabufs to write to the port. 20844 * @size: the total byte value of the objects to write to the port. 20845 * @offset: the current offset to be used to start the transfer. 20846 * 20847 * This routine will create a wr_object mailbox command to send to the port. 20848 * the mailbox command will be constructed using the dma buffers described in 20849 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20850 * BDEs that the imbedded mailbox can support. The @offset variable will be 20851 * used to indicate the starting offset of the transfer and will also return 20852 * the offset after the write object mailbox has completed. @size is used to 20853 * determine the end of the object and whether the eof bit should be set. 20854 * 20855 * Return 0 is successful and offset will contain the the new offset to use 20856 * for the next write. 20857 * Return negative value for error cases. 20858 **/ 20859 int 20860 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20861 uint32_t size, uint32_t *offset) 20862 { 20863 struct lpfc_mbx_wr_object *wr_object; 20864 LPFC_MBOXQ_t *mbox; 20865 int rc = 0, i = 0; 20866 uint32_t shdr_status, shdr_add_status, shdr_add_status_2; 20867 uint32_t shdr_change_status = 0, shdr_csf = 0; 20868 uint32_t mbox_tmo; 20869 struct lpfc_dmabuf *dmabuf; 20870 uint32_t written = 0; 20871 bool check_change_status = false; 20872 20873 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20874 if (!mbox) 20875 return -ENOMEM; 20876 20877 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20878 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20879 sizeof(struct lpfc_mbx_wr_object) - 20880 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20881 20882 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20883 wr_object->u.request.write_offset = *offset; 20884 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20885 wr_object->u.request.object_name[0] = 20886 cpu_to_le32(wr_object->u.request.object_name[0]); 20887 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20888 list_for_each_entry(dmabuf, dmabuf_list, list) { 20889 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20890 break; 20891 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20892 wr_object->u.request.bde[i].addrHigh = 20893 putPaddrHigh(dmabuf->phys); 20894 if (written + SLI4_PAGE_SIZE >= size) { 20895 wr_object->u.request.bde[i].tus.f.bdeSize = 20896 (size - written); 20897 written += (size - written); 20898 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20899 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20900 check_change_status = true; 20901 } else { 20902 wr_object->u.request.bde[i].tus.f.bdeSize = 20903 SLI4_PAGE_SIZE; 20904 written += SLI4_PAGE_SIZE; 20905 } 20906 i++; 20907 } 20908 wr_object->u.request.bde_count = i; 20909 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20910 if (!phba->sli4_hba.intr_enable) 20911 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20912 else { 20913 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20914 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20915 } 20916 /* The IOCTL status is embedded in the mailbox subheader. */ 20917 shdr_status = bf_get(lpfc_mbox_hdr_status, 20918 &wr_object->header.cfg_shdr.response); 20919 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20920 &wr_object->header.cfg_shdr.response); 20921 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2, 20922 &wr_object->header.cfg_shdr.response); 20923 if (check_change_status) { 20924 shdr_change_status = bf_get(lpfc_wr_object_change_status, 20925 &wr_object->u.response); 20926 shdr_csf = bf_get(lpfc_wr_object_csf, 20927 &wr_object->u.response); 20928 } 20929 20930 if (!phba->sli4_hba.intr_enable) 20931 mempool_free(mbox, phba->mbox_mem_pool); 20932 else if (rc != MBX_TIMEOUT) 20933 mempool_free(mbox, phba->mbox_mem_pool); 20934 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) { 20935 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20936 "3025 Write Object mailbox failed with " 20937 "status x%x add_status x%x, add_status_2 x%x, " 20938 "mbx status x%x\n", 20939 shdr_status, shdr_add_status, shdr_add_status_2, 20940 rc); 20941 rc = -ENXIO; 20942 *offset = shdr_add_status; 20943 } else { 20944 *offset += wr_object->u.response.actual_write_length; 20945 } 20946 20947 if (rc || check_change_status) 20948 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status, 20949 shdr_add_status_2, shdr_change_status, 20950 shdr_csf); 20951 return rc; 20952 } 20953 20954 /** 20955 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 20956 * @vport: pointer to vport data structure. 20957 * 20958 * This function iterate through the mailboxq and clean up all REG_LOGIN 20959 * and REG_VPI mailbox commands associated with the vport. This function 20960 * is called when driver want to restart discovery of the vport due to 20961 * a Clear Virtual Link event. 20962 **/ 20963 void 20964 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 20965 { 20966 struct lpfc_hba *phba = vport->phba; 20967 LPFC_MBOXQ_t *mb, *nextmb; 20968 struct lpfc_dmabuf *mp; 20969 struct lpfc_nodelist *ndlp; 20970 struct lpfc_nodelist *act_mbx_ndlp = NULL; 20971 LIST_HEAD(mbox_cmd_list); 20972 uint8_t restart_loop; 20973 20974 /* Clean up internally queued mailbox commands with the vport */ 20975 spin_lock_irq(&phba->hbalock); 20976 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 20977 if (mb->vport != vport) 20978 continue; 20979 20980 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20981 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20982 continue; 20983 20984 list_move_tail(&mb->list, &mbox_cmd_list); 20985 } 20986 /* Clean up active mailbox command with the vport */ 20987 mb = phba->sli.mbox_active; 20988 if (mb && (mb->vport == vport)) { 20989 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 20990 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 20991 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20992 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20993 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20994 /* Put reference count for delayed processing */ 20995 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 20996 /* Unregister the RPI when mailbox complete */ 20997 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20998 } 20999 } 21000 /* Cleanup any mailbox completions which are not yet processed */ 21001 do { 21002 restart_loop = 0; 21003 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 21004 /* 21005 * If this mailox is already processed or it is 21006 * for another vport ignore it. 21007 */ 21008 if ((mb->vport != vport) || 21009 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 21010 continue; 21011 21012 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21013 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21014 continue; 21015 21016 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21017 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21018 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 21019 /* Unregister the RPI when mailbox complete */ 21020 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21021 restart_loop = 1; 21022 spin_unlock_irq(&phba->hbalock); 21023 spin_lock(&ndlp->lock); 21024 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21025 spin_unlock(&ndlp->lock); 21026 spin_lock_irq(&phba->hbalock); 21027 break; 21028 } 21029 } 21030 } while (restart_loop); 21031 21032 spin_unlock_irq(&phba->hbalock); 21033 21034 /* Release the cleaned-up mailbox commands */ 21035 while (!list_empty(&mbox_cmd_list)) { 21036 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 21037 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21038 mp = (struct lpfc_dmabuf *)(mb->ctx_buf); 21039 if (mp) { 21040 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 21041 kfree(mp); 21042 } 21043 mb->ctx_buf = NULL; 21044 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 21045 mb->ctx_ndlp = NULL; 21046 if (ndlp) { 21047 spin_lock(&ndlp->lock); 21048 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21049 spin_unlock(&ndlp->lock); 21050 lpfc_nlp_put(ndlp); 21051 } 21052 } 21053 mempool_free(mb, phba->mbox_mem_pool); 21054 } 21055 21056 /* Release the ndlp with the cleaned-up active mailbox command */ 21057 if (act_mbx_ndlp) { 21058 spin_lock(&act_mbx_ndlp->lock); 21059 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21060 spin_unlock(&act_mbx_ndlp->lock); 21061 lpfc_nlp_put(act_mbx_ndlp); 21062 } 21063 } 21064 21065 /** 21066 * lpfc_drain_txq - Drain the txq 21067 * @phba: Pointer to HBA context object. 21068 * 21069 * This function attempt to submit IOCBs on the txq 21070 * to the adapter. For SLI4 adapters, the txq contains 21071 * ELS IOCBs that have been deferred because the there 21072 * are no SGLs. This congestion can occur with large 21073 * vport counts during node discovery. 21074 **/ 21075 21076 uint32_t 21077 lpfc_drain_txq(struct lpfc_hba *phba) 21078 { 21079 LIST_HEAD(completions); 21080 struct lpfc_sli_ring *pring; 21081 struct lpfc_iocbq *piocbq = NULL; 21082 unsigned long iflags = 0; 21083 char *fail_msg = NULL; 21084 struct lpfc_sglq *sglq; 21085 union lpfc_wqe128 wqe; 21086 uint32_t txq_cnt = 0; 21087 struct lpfc_queue *wq; 21088 21089 if (phba->link_flag & LS_MDS_LOOPBACK) { 21090 /* MDS WQE are posted only to first WQ*/ 21091 wq = phba->sli4_hba.hdwq[0].io_wq; 21092 if (unlikely(!wq)) 21093 return 0; 21094 pring = wq->pring; 21095 } else { 21096 wq = phba->sli4_hba.els_wq; 21097 if (unlikely(!wq)) 21098 return 0; 21099 pring = lpfc_phba_elsring(phba); 21100 } 21101 21102 if (unlikely(!pring) || list_empty(&pring->txq)) 21103 return 0; 21104 21105 spin_lock_irqsave(&pring->ring_lock, iflags); 21106 list_for_each_entry(piocbq, &pring->txq, list) { 21107 txq_cnt++; 21108 } 21109 21110 if (txq_cnt > pring->txq_max) 21111 pring->txq_max = txq_cnt; 21112 21113 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21114 21115 while (!list_empty(&pring->txq)) { 21116 spin_lock_irqsave(&pring->ring_lock, iflags); 21117 21118 piocbq = lpfc_sli_ringtx_get(phba, pring); 21119 if (!piocbq) { 21120 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21121 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21122 "2823 txq empty and txq_cnt is %d\n ", 21123 txq_cnt); 21124 break; 21125 } 21126 sglq = __lpfc_sli_get_els_sglq(phba, piocbq); 21127 if (!sglq) { 21128 __lpfc_sli_ringtx_put(phba, pring, piocbq); 21129 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21130 break; 21131 } 21132 txq_cnt--; 21133 21134 /* The xri and iocb resources secured, 21135 * attempt to issue request 21136 */ 21137 piocbq->sli4_lxritag = sglq->sli4_lxritag; 21138 piocbq->sli4_xritag = sglq->sli4_xritag; 21139 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 21140 fail_msg = "to convert bpl to sgl"; 21141 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 21142 fail_msg = "to convert iocb to wqe"; 21143 else if (lpfc_sli4_wq_put(wq, &wqe)) 21144 fail_msg = " - Wq is full"; 21145 else 21146 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 21147 21148 if (fail_msg) { 21149 /* Failed means we can't issue and need to cancel */ 21150 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21151 "2822 IOCB failed %s iotag 0x%x " 21152 "xri 0x%x\n", 21153 fail_msg, 21154 piocbq->iotag, piocbq->sli4_xritag); 21155 list_add_tail(&piocbq->list, &completions); 21156 fail_msg = NULL; 21157 } 21158 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21159 } 21160 21161 /* Cancel all the IOCBs that cannot be issued */ 21162 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 21163 IOERR_SLI_ABORTED); 21164 21165 return txq_cnt; 21166 } 21167 21168 /** 21169 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 21170 * @phba: Pointer to HBA context object. 21171 * @pwqeq: Pointer to command WQE. 21172 * @sglq: Pointer to the scatter gather queue object. 21173 * 21174 * This routine converts the bpl or bde that is in the WQE 21175 * to a sgl list for the sli4 hardware. The physical address 21176 * of the bpl/bde is converted back to a virtual address. 21177 * If the WQE contains a BPL then the list of BDE's is 21178 * converted to sli4_sge's. If the WQE contains a single 21179 * BDE then it is converted to a single sli_sge. 21180 * The WQE is still in cpu endianness so the contents of 21181 * the bpl can be used without byte swapping. 21182 * 21183 * Returns valid XRI = Success, NO_XRI = Failure. 21184 */ 21185 static uint16_t 21186 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 21187 struct lpfc_sglq *sglq) 21188 { 21189 uint16_t xritag = NO_XRI; 21190 struct ulp_bde64 *bpl = NULL; 21191 struct ulp_bde64 bde; 21192 struct sli4_sge *sgl = NULL; 21193 struct lpfc_dmabuf *dmabuf; 21194 union lpfc_wqe128 *wqe; 21195 int numBdes = 0; 21196 int i = 0; 21197 uint32_t offset = 0; /* accumulated offset in the sg request list */ 21198 int inbound = 0; /* number of sg reply entries inbound from firmware */ 21199 uint32_t cmd; 21200 21201 if (!pwqeq || !sglq) 21202 return xritag; 21203 21204 sgl = (struct sli4_sge *)sglq->sgl; 21205 wqe = &pwqeq->wqe; 21206 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 21207 21208 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 21209 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 21210 return sglq->sli4_xritag; 21211 numBdes = pwqeq->rsvd2; 21212 if (numBdes) { 21213 /* The addrHigh and addrLow fields within the WQE 21214 * have not been byteswapped yet so there is no 21215 * need to swap them back. 21216 */ 21217 if (pwqeq->context3) 21218 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 21219 else 21220 return xritag; 21221 21222 bpl = (struct ulp_bde64 *)dmabuf->virt; 21223 if (!bpl) 21224 return xritag; 21225 21226 for (i = 0; i < numBdes; i++) { 21227 /* Should already be byte swapped. */ 21228 sgl->addr_hi = bpl->addrHigh; 21229 sgl->addr_lo = bpl->addrLow; 21230 21231 sgl->word2 = le32_to_cpu(sgl->word2); 21232 if ((i+1) == numBdes) 21233 bf_set(lpfc_sli4_sge_last, sgl, 1); 21234 else 21235 bf_set(lpfc_sli4_sge_last, sgl, 0); 21236 /* swap the size field back to the cpu so we 21237 * can assign it to the sgl. 21238 */ 21239 bde.tus.w = le32_to_cpu(bpl->tus.w); 21240 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 21241 /* The offsets in the sgl need to be accumulated 21242 * separately for the request and reply lists. 21243 * The request is always first, the reply follows. 21244 */ 21245 switch (cmd) { 21246 case CMD_GEN_REQUEST64_WQE: 21247 /* add up the reply sg entries */ 21248 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 21249 inbound++; 21250 /* first inbound? reset the offset */ 21251 if (inbound == 1) 21252 offset = 0; 21253 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21254 bf_set(lpfc_sli4_sge_type, sgl, 21255 LPFC_SGE_TYPE_DATA); 21256 offset += bde.tus.f.bdeSize; 21257 break; 21258 case CMD_FCP_TRSP64_WQE: 21259 bf_set(lpfc_sli4_sge_offset, sgl, 0); 21260 bf_set(lpfc_sli4_sge_type, sgl, 21261 LPFC_SGE_TYPE_DATA); 21262 break; 21263 case CMD_FCP_TSEND64_WQE: 21264 case CMD_FCP_TRECEIVE64_WQE: 21265 bf_set(lpfc_sli4_sge_type, sgl, 21266 bpl->tus.f.bdeFlags); 21267 if (i < 3) 21268 offset = 0; 21269 else 21270 offset += bde.tus.f.bdeSize; 21271 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21272 break; 21273 } 21274 sgl->word2 = cpu_to_le32(sgl->word2); 21275 bpl++; 21276 sgl++; 21277 } 21278 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 21279 /* The addrHigh and addrLow fields of the BDE have not 21280 * been byteswapped yet so they need to be swapped 21281 * before putting them in the sgl. 21282 */ 21283 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 21284 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 21285 sgl->word2 = le32_to_cpu(sgl->word2); 21286 bf_set(lpfc_sli4_sge_last, sgl, 1); 21287 sgl->word2 = cpu_to_le32(sgl->word2); 21288 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 21289 } 21290 return sglq->sli4_xritag; 21291 } 21292 21293 /** 21294 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 21295 * @phba: Pointer to HBA context object. 21296 * @qp: Pointer to HDW queue. 21297 * @pwqe: Pointer to command WQE. 21298 **/ 21299 int 21300 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21301 struct lpfc_iocbq *pwqe) 21302 { 21303 union lpfc_wqe128 *wqe = &pwqe->wqe; 21304 struct lpfc_async_xchg_ctx *ctxp; 21305 struct lpfc_queue *wq; 21306 struct lpfc_sglq *sglq; 21307 struct lpfc_sli_ring *pring; 21308 unsigned long iflags; 21309 uint32_t ret = 0; 21310 21311 /* NVME_LS and NVME_LS ABTS requests. */ 21312 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { 21313 pring = phba->sli4_hba.nvmels_wq->pring; 21314 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21315 qp, wq_access); 21316 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 21317 if (!sglq) { 21318 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21319 return WQE_BUSY; 21320 } 21321 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21322 pwqe->sli4_xritag = sglq->sli4_xritag; 21323 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 21324 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21325 return WQE_ERROR; 21326 } 21327 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21328 pwqe->sli4_xritag); 21329 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 21330 if (ret) { 21331 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21332 return ret; 21333 } 21334 21335 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21336 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21337 21338 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21339 return 0; 21340 } 21341 21342 /* NVME_FCREQ and NVME_ABTS requests */ 21343 if (pwqe->iocb_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) { 21344 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21345 wq = qp->io_wq; 21346 pring = wq->pring; 21347 21348 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21349 21350 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21351 qp, wq_access); 21352 ret = lpfc_sli4_wq_put(wq, wqe); 21353 if (ret) { 21354 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21355 return ret; 21356 } 21357 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21358 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21359 21360 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21361 return 0; 21362 } 21363 21364 /* NVMET requests */ 21365 if (pwqe->iocb_flag & LPFC_IO_NVMET) { 21366 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21367 wq = qp->io_wq; 21368 pring = wq->pring; 21369 21370 ctxp = pwqe->context2; 21371 sglq = ctxp->ctxbuf->sglq; 21372 if (pwqe->sli4_xritag == NO_XRI) { 21373 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21374 pwqe->sli4_xritag = sglq->sli4_xritag; 21375 } 21376 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21377 pwqe->sli4_xritag); 21378 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21379 21380 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21381 qp, wq_access); 21382 ret = lpfc_sli4_wq_put(wq, wqe); 21383 if (ret) { 21384 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21385 return ret; 21386 } 21387 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21388 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21389 21390 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21391 return 0; 21392 } 21393 return WQE_ERROR; 21394 } 21395 21396 /** 21397 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 21398 * @phba: Pointer to HBA context object. 21399 * @cmdiocb: Pointer to driver command iocb object. 21400 * @cmpl: completion function. 21401 * 21402 * Fill the appropriate fields for the abort WQE and call 21403 * internal routine lpfc_sli4_issue_wqe to send the WQE 21404 * This function is called with hbalock held and no ring_lock held. 21405 * 21406 * RETURNS 0 - SUCCESS 21407 **/ 21408 21409 int 21410 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 21411 void *cmpl) 21412 { 21413 struct lpfc_vport *vport = cmdiocb->vport; 21414 struct lpfc_iocbq *abtsiocb = NULL; 21415 union lpfc_wqe128 *abtswqe; 21416 struct lpfc_io_buf *lpfc_cmd; 21417 int retval = IOCB_ERROR; 21418 u16 xritag = cmdiocb->sli4_xritag; 21419 21420 /* 21421 * The scsi command can not be in txq and it is in flight because the 21422 * pCmd is still pointing at the SCSI command we have to abort. There 21423 * is no need to search the txcmplq. Just send an abort to the FW. 21424 */ 21425 21426 abtsiocb = __lpfc_sli_get_iocbq(phba); 21427 if (!abtsiocb) 21428 return WQE_NORESOURCE; 21429 21430 /* Indicate the IO is being aborted by the driver. */ 21431 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 21432 21433 abtswqe = &abtsiocb->wqe; 21434 memset(abtswqe, 0, sizeof(*abtswqe)); 21435 21436 if (!lpfc_is_link_up(phba)) 21437 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 21438 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 21439 abtswqe->abort_cmd.rsrvd5 = 0; 21440 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 21441 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 21442 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 21443 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 21444 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 21445 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 21446 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 21447 21448 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 21449 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 21450 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 21451 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 21452 abtsiocb->iocb_flag |= LPFC_IO_FCP; 21453 if (cmdiocb->iocb_flag & LPFC_IO_NVME) 21454 abtsiocb->iocb_flag |= LPFC_IO_NVME; 21455 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 21456 abtsiocb->iocb_flag |= LPFC_IO_FOF; 21457 abtsiocb->vport = vport; 21458 abtsiocb->wqe_cmpl = cmpl; 21459 21460 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 21461 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 21462 21463 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21464 "0359 Abort xri x%x, original iotag x%x, " 21465 "abort cmd iotag x%x retval x%x\n", 21466 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 21467 21468 if (retval) { 21469 cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED; 21470 __lpfc_sli_release_iocbq(phba, abtsiocb); 21471 } 21472 21473 return retval; 21474 } 21475 21476 #ifdef LPFC_MXP_STAT 21477 /** 21478 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 21479 * @phba: pointer to lpfc hba data structure. 21480 * @hwqid: belong to which HWQ. 21481 * 21482 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 21483 * 15 seconds after a test case is running. 21484 * 21485 * The user should call lpfc_debugfs_multixripools_write before running a test 21486 * case to clear stat_snapshot_taken. Then the user starts a test case. During 21487 * test case is running, stat_snapshot_taken is incremented by 1 every time when 21488 * this routine is called from heartbeat timer. When stat_snapshot_taken is 21489 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 21490 **/ 21491 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 21492 { 21493 struct lpfc_sli4_hdw_queue *qp; 21494 struct lpfc_multixri_pool *multixri_pool; 21495 struct lpfc_pvt_pool *pvt_pool; 21496 struct lpfc_pbl_pool *pbl_pool; 21497 u32 txcmplq_cnt; 21498 21499 qp = &phba->sli4_hba.hdwq[hwqid]; 21500 multixri_pool = qp->p_multixri_pool; 21501 if (!multixri_pool) 21502 return; 21503 21504 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 21505 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21506 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21507 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21508 21509 multixri_pool->stat_pbl_count = pbl_pool->count; 21510 multixri_pool->stat_pvt_count = pvt_pool->count; 21511 multixri_pool->stat_busy_count = txcmplq_cnt; 21512 } 21513 21514 multixri_pool->stat_snapshot_taken++; 21515 } 21516 #endif 21517 21518 /** 21519 * lpfc_adjust_pvt_pool_count - Adjust private pool count 21520 * @phba: pointer to lpfc hba data structure. 21521 * @hwqid: belong to which HWQ. 21522 * 21523 * This routine moves some XRIs from private to public pool when private pool 21524 * is not busy. 21525 **/ 21526 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 21527 { 21528 struct lpfc_multixri_pool *multixri_pool; 21529 u32 io_req_count; 21530 u32 prev_io_req_count; 21531 21532 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21533 if (!multixri_pool) 21534 return; 21535 io_req_count = multixri_pool->io_req_count; 21536 prev_io_req_count = multixri_pool->prev_io_req_count; 21537 21538 if (prev_io_req_count != io_req_count) { 21539 /* Private pool is busy */ 21540 multixri_pool->prev_io_req_count = io_req_count; 21541 } else { 21542 /* Private pool is not busy. 21543 * Move XRIs from private to public pool. 21544 */ 21545 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 21546 } 21547 } 21548 21549 /** 21550 * lpfc_adjust_high_watermark - Adjust high watermark 21551 * @phba: pointer to lpfc hba data structure. 21552 * @hwqid: belong to which HWQ. 21553 * 21554 * This routine sets high watermark as number of outstanding XRIs, 21555 * but make sure the new value is between xri_limit/2 and xri_limit. 21556 **/ 21557 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 21558 { 21559 u32 new_watermark; 21560 u32 watermark_max; 21561 u32 watermark_min; 21562 u32 xri_limit; 21563 u32 txcmplq_cnt; 21564 u32 abts_io_bufs; 21565 struct lpfc_multixri_pool *multixri_pool; 21566 struct lpfc_sli4_hdw_queue *qp; 21567 21568 qp = &phba->sli4_hba.hdwq[hwqid]; 21569 multixri_pool = qp->p_multixri_pool; 21570 if (!multixri_pool) 21571 return; 21572 xri_limit = multixri_pool->xri_limit; 21573 21574 watermark_max = xri_limit; 21575 watermark_min = xri_limit / 2; 21576 21577 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21578 abts_io_bufs = qp->abts_scsi_io_bufs; 21579 abts_io_bufs += qp->abts_nvme_io_bufs; 21580 21581 new_watermark = txcmplq_cnt + abts_io_bufs; 21582 new_watermark = min(watermark_max, new_watermark); 21583 new_watermark = max(watermark_min, new_watermark); 21584 multixri_pool->pvt_pool.high_watermark = new_watermark; 21585 21586 #ifdef LPFC_MXP_STAT 21587 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 21588 new_watermark); 21589 #endif 21590 } 21591 21592 /** 21593 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 21594 * @phba: pointer to lpfc hba data structure. 21595 * @hwqid: belong to which HWQ. 21596 * 21597 * This routine is called from hearbeat timer when pvt_pool is idle. 21598 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 21599 * The first step moves (all - low_watermark) amount of XRIs. 21600 * The second step moves the rest of XRIs. 21601 **/ 21602 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 21603 { 21604 struct lpfc_pbl_pool *pbl_pool; 21605 struct lpfc_pvt_pool *pvt_pool; 21606 struct lpfc_sli4_hdw_queue *qp; 21607 struct lpfc_io_buf *lpfc_ncmd; 21608 struct lpfc_io_buf *lpfc_ncmd_next; 21609 unsigned long iflag; 21610 struct list_head tmp_list; 21611 u32 tmp_count; 21612 21613 qp = &phba->sli4_hba.hdwq[hwqid]; 21614 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21615 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21616 tmp_count = 0; 21617 21618 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 21619 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 21620 21621 if (pvt_pool->count > pvt_pool->low_watermark) { 21622 /* Step 1: move (all - low_watermark) from pvt_pool 21623 * to pbl_pool 21624 */ 21625 21626 /* Move low watermark of bufs from pvt_pool to tmp_list */ 21627 INIT_LIST_HEAD(&tmp_list); 21628 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21629 &pvt_pool->list, list) { 21630 list_move_tail(&lpfc_ncmd->list, &tmp_list); 21631 tmp_count++; 21632 if (tmp_count >= pvt_pool->low_watermark) 21633 break; 21634 } 21635 21636 /* Move all bufs from pvt_pool to pbl_pool */ 21637 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21638 21639 /* Move all bufs from tmp_list to pvt_pool */ 21640 list_splice(&tmp_list, &pvt_pool->list); 21641 21642 pbl_pool->count += (pvt_pool->count - tmp_count); 21643 pvt_pool->count = tmp_count; 21644 } else { 21645 /* Step 2: move the rest from pvt_pool to pbl_pool */ 21646 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21647 pbl_pool->count += pvt_pool->count; 21648 pvt_pool->count = 0; 21649 } 21650 21651 spin_unlock(&pvt_pool->lock); 21652 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21653 } 21654 21655 /** 21656 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21657 * @phba: pointer to lpfc hba data structure 21658 * @qp: pointer to HDW queue 21659 * @pbl_pool: specified public free XRI pool 21660 * @pvt_pool: specified private free XRI pool 21661 * @count: number of XRIs to move 21662 * 21663 * This routine tries to move some free common bufs from the specified pbl_pool 21664 * to the specified pvt_pool. It might move less than count XRIs if there's not 21665 * enough in public pool. 21666 * 21667 * Return: 21668 * true - if XRIs are successfully moved from the specified pbl_pool to the 21669 * specified pvt_pool 21670 * false - if the specified pbl_pool is empty or locked by someone else 21671 **/ 21672 static bool 21673 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21674 struct lpfc_pbl_pool *pbl_pool, 21675 struct lpfc_pvt_pool *pvt_pool, u32 count) 21676 { 21677 struct lpfc_io_buf *lpfc_ncmd; 21678 struct lpfc_io_buf *lpfc_ncmd_next; 21679 unsigned long iflag; 21680 int ret; 21681 21682 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 21683 if (ret) { 21684 if (pbl_pool->count) { 21685 /* Move a batch of XRIs from public to private pool */ 21686 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 21687 list_for_each_entry_safe(lpfc_ncmd, 21688 lpfc_ncmd_next, 21689 &pbl_pool->list, 21690 list) { 21691 list_move_tail(&lpfc_ncmd->list, 21692 &pvt_pool->list); 21693 pvt_pool->count++; 21694 pbl_pool->count--; 21695 count--; 21696 if (count == 0) 21697 break; 21698 } 21699 21700 spin_unlock(&pvt_pool->lock); 21701 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21702 return true; 21703 } 21704 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21705 } 21706 21707 return false; 21708 } 21709 21710 /** 21711 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21712 * @phba: pointer to lpfc hba data structure. 21713 * @hwqid: belong to which HWQ. 21714 * @count: number of XRIs to move 21715 * 21716 * This routine tries to find some free common bufs in one of public pools with 21717 * Round Robin method. The search always starts from local hwqid, then the next 21718 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 21719 * a batch of free common bufs are moved to private pool on hwqid. 21720 * It might move less than count XRIs if there's not enough in public pool. 21721 **/ 21722 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 21723 { 21724 struct lpfc_multixri_pool *multixri_pool; 21725 struct lpfc_multixri_pool *next_multixri_pool; 21726 struct lpfc_pvt_pool *pvt_pool; 21727 struct lpfc_pbl_pool *pbl_pool; 21728 struct lpfc_sli4_hdw_queue *qp; 21729 u32 next_hwqid; 21730 u32 hwq_count; 21731 int ret; 21732 21733 qp = &phba->sli4_hba.hdwq[hwqid]; 21734 multixri_pool = qp->p_multixri_pool; 21735 pvt_pool = &multixri_pool->pvt_pool; 21736 pbl_pool = &multixri_pool->pbl_pool; 21737 21738 /* Check if local pbl_pool is available */ 21739 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 21740 if (ret) { 21741 #ifdef LPFC_MXP_STAT 21742 multixri_pool->local_pbl_hit_count++; 21743 #endif 21744 return; 21745 } 21746 21747 hwq_count = phba->cfg_hdw_queue; 21748 21749 /* Get the next hwqid which was found last time */ 21750 next_hwqid = multixri_pool->rrb_next_hwqid; 21751 21752 do { 21753 /* Go to next hwq */ 21754 next_hwqid = (next_hwqid + 1) % hwq_count; 21755 21756 next_multixri_pool = 21757 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 21758 pbl_pool = &next_multixri_pool->pbl_pool; 21759 21760 /* Check if the public free xri pool is available */ 21761 ret = _lpfc_move_xri_pbl_to_pvt( 21762 phba, qp, pbl_pool, pvt_pool, count); 21763 21764 /* Exit while-loop if success or all hwqid are checked */ 21765 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 21766 21767 /* Starting point for the next time */ 21768 multixri_pool->rrb_next_hwqid = next_hwqid; 21769 21770 if (!ret) { 21771 /* stats: all public pools are empty*/ 21772 multixri_pool->pbl_empty_count++; 21773 } 21774 21775 #ifdef LPFC_MXP_STAT 21776 if (ret) { 21777 if (next_hwqid == hwqid) 21778 multixri_pool->local_pbl_hit_count++; 21779 else 21780 multixri_pool->other_pbl_hit_count++; 21781 } 21782 #endif 21783 } 21784 21785 /** 21786 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 21787 * @phba: pointer to lpfc hba data structure. 21788 * @hwqid: belong to which HWQ. 21789 * 21790 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 21791 * low watermark. 21792 **/ 21793 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 21794 { 21795 struct lpfc_multixri_pool *multixri_pool; 21796 struct lpfc_pvt_pool *pvt_pool; 21797 21798 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21799 pvt_pool = &multixri_pool->pvt_pool; 21800 21801 if (pvt_pool->count < pvt_pool->low_watermark) 21802 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21803 } 21804 21805 /** 21806 * lpfc_release_io_buf - Return one IO buf back to free pool 21807 * @phba: pointer to lpfc hba data structure. 21808 * @lpfc_ncmd: IO buf to be returned. 21809 * @qp: belong to which HWQ. 21810 * 21811 * This routine returns one IO buf back to free pool. If this is an urgent IO, 21812 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 21813 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 21814 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 21815 * lpfc_io_buf_list_put. 21816 **/ 21817 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21818 struct lpfc_sli4_hdw_queue *qp) 21819 { 21820 unsigned long iflag; 21821 struct lpfc_pbl_pool *pbl_pool; 21822 struct lpfc_pvt_pool *pvt_pool; 21823 struct lpfc_epd_pool *epd_pool; 21824 u32 txcmplq_cnt; 21825 u32 xri_owned; 21826 u32 xri_limit; 21827 u32 abts_io_bufs; 21828 21829 /* MUST zero fields if buffer is reused by another protocol */ 21830 lpfc_ncmd->nvmeCmd = NULL; 21831 lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL; 21832 lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL; 21833 21834 if (phba->cfg_xpsgl && !phba->nvmet_support && 21835 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21836 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21837 21838 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21839 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21840 21841 if (phba->cfg_xri_rebalancing) { 21842 if (lpfc_ncmd->expedite) { 21843 /* Return to expedite pool */ 21844 epd_pool = &phba->epd_pool; 21845 spin_lock_irqsave(&epd_pool->lock, iflag); 21846 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21847 epd_pool->count++; 21848 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21849 return; 21850 } 21851 21852 /* Avoid invalid access if an IO sneaks in and is being rejected 21853 * just _after_ xri pools are destroyed in lpfc_offline. 21854 * Nothing much can be done at this point. 21855 */ 21856 if (!qp->p_multixri_pool) 21857 return; 21858 21859 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21860 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21861 21862 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21863 abts_io_bufs = qp->abts_scsi_io_bufs; 21864 abts_io_bufs += qp->abts_nvme_io_bufs; 21865 21866 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21867 xri_limit = qp->p_multixri_pool->xri_limit; 21868 21869 #ifdef LPFC_MXP_STAT 21870 if (xri_owned <= xri_limit) 21871 qp->p_multixri_pool->below_limit_count++; 21872 else 21873 qp->p_multixri_pool->above_limit_count++; 21874 #endif 21875 21876 /* XRI goes to either public or private free xri pool 21877 * based on watermark and xri_limit 21878 */ 21879 if ((pvt_pool->count < pvt_pool->low_watermark) || 21880 (xri_owned < xri_limit && 21881 pvt_pool->count < pvt_pool->high_watermark)) { 21882 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21883 qp, free_pvt_pool); 21884 list_add_tail(&lpfc_ncmd->list, 21885 &pvt_pool->list); 21886 pvt_pool->count++; 21887 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21888 } else { 21889 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21890 qp, free_pub_pool); 21891 list_add_tail(&lpfc_ncmd->list, 21892 &pbl_pool->list); 21893 pbl_pool->count++; 21894 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21895 } 21896 } else { 21897 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21898 qp, free_xri); 21899 list_add_tail(&lpfc_ncmd->list, 21900 &qp->lpfc_io_buf_list_put); 21901 qp->put_io_bufs++; 21902 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21903 iflag); 21904 } 21905 } 21906 21907 /** 21908 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21909 * @phba: pointer to lpfc hba data structure. 21910 * @qp: pointer to HDW queue 21911 * @pvt_pool: pointer to private pool data structure. 21912 * @ndlp: pointer to lpfc nodelist data structure. 21913 * 21914 * This routine tries to get one free IO buf from private pool. 21915 * 21916 * Return: 21917 * pointer to one free IO buf - if private pool is not empty 21918 * NULL - if private pool is empty 21919 **/ 21920 static struct lpfc_io_buf * 21921 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21922 struct lpfc_sli4_hdw_queue *qp, 21923 struct lpfc_pvt_pool *pvt_pool, 21924 struct lpfc_nodelist *ndlp) 21925 { 21926 struct lpfc_io_buf *lpfc_ncmd; 21927 struct lpfc_io_buf *lpfc_ncmd_next; 21928 unsigned long iflag; 21929 21930 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21931 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21932 &pvt_pool->list, list) { 21933 if (lpfc_test_rrq_active( 21934 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21935 continue; 21936 list_del(&lpfc_ncmd->list); 21937 pvt_pool->count--; 21938 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21939 return lpfc_ncmd; 21940 } 21941 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21942 21943 return NULL; 21944 } 21945 21946 /** 21947 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 21948 * @phba: pointer to lpfc hba data structure. 21949 * 21950 * This routine tries to get one free IO buf from expedite pool. 21951 * 21952 * Return: 21953 * pointer to one free IO buf - if expedite pool is not empty 21954 * NULL - if expedite pool is empty 21955 **/ 21956 static struct lpfc_io_buf * 21957 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 21958 { 21959 struct lpfc_io_buf *lpfc_ncmd; 21960 struct lpfc_io_buf *lpfc_ncmd_next; 21961 unsigned long iflag; 21962 struct lpfc_epd_pool *epd_pool; 21963 21964 epd_pool = &phba->epd_pool; 21965 lpfc_ncmd = NULL; 21966 21967 spin_lock_irqsave(&epd_pool->lock, iflag); 21968 if (epd_pool->count > 0) { 21969 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21970 &epd_pool->list, list) { 21971 list_del(&lpfc_ncmd->list); 21972 epd_pool->count--; 21973 break; 21974 } 21975 } 21976 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21977 21978 return lpfc_ncmd; 21979 } 21980 21981 /** 21982 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 21983 * @phba: pointer to lpfc hba data structure. 21984 * @ndlp: pointer to lpfc nodelist data structure. 21985 * @hwqid: belong to which HWQ 21986 * @expedite: 1 means this request is urgent. 21987 * 21988 * This routine will do the following actions and then return a pointer to 21989 * one free IO buf. 21990 * 21991 * 1. If private free xri count is empty, move some XRIs from public to 21992 * private pool. 21993 * 2. Get one XRI from private free xri pool. 21994 * 3. If we fail to get one from pvt_pool and this is an expedite request, 21995 * get one free xri from expedite pool. 21996 * 21997 * Note: ndlp is only used on SCSI side for RRQ testing. 21998 * The caller should pass NULL for ndlp on NVME side. 21999 * 22000 * Return: 22001 * pointer to one free IO buf - if private pool is not empty 22002 * NULL - if private pool is empty 22003 **/ 22004 static struct lpfc_io_buf * 22005 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 22006 struct lpfc_nodelist *ndlp, 22007 int hwqid, int expedite) 22008 { 22009 struct lpfc_sli4_hdw_queue *qp; 22010 struct lpfc_multixri_pool *multixri_pool; 22011 struct lpfc_pvt_pool *pvt_pool; 22012 struct lpfc_io_buf *lpfc_ncmd; 22013 22014 qp = &phba->sli4_hba.hdwq[hwqid]; 22015 lpfc_ncmd = NULL; 22016 if (!qp) { 22017 lpfc_printf_log(phba, KERN_INFO, 22018 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22019 "5556 NULL qp for hwqid x%x\n", hwqid); 22020 return lpfc_ncmd; 22021 } 22022 multixri_pool = qp->p_multixri_pool; 22023 if (!multixri_pool) { 22024 lpfc_printf_log(phba, KERN_INFO, 22025 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22026 "5557 NULL multixri for hwqid x%x\n", hwqid); 22027 return lpfc_ncmd; 22028 } 22029 pvt_pool = &multixri_pool->pvt_pool; 22030 if (!pvt_pool) { 22031 lpfc_printf_log(phba, KERN_INFO, 22032 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22033 "5558 NULL pvt_pool for hwqid x%x\n", hwqid); 22034 return lpfc_ncmd; 22035 } 22036 multixri_pool->io_req_count++; 22037 22038 /* If pvt_pool is empty, move some XRIs from public to private pool */ 22039 if (pvt_pool->count == 0) 22040 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 22041 22042 /* Get one XRI from private free xri pool */ 22043 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 22044 22045 if (lpfc_ncmd) { 22046 lpfc_ncmd->hdwq = qp; 22047 lpfc_ncmd->hdwq_no = hwqid; 22048 } else if (expedite) { 22049 /* If we fail to get one from pvt_pool and this is an expedite 22050 * request, get one free xri from expedite pool. 22051 */ 22052 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 22053 } 22054 22055 return lpfc_ncmd; 22056 } 22057 22058 static inline struct lpfc_io_buf * 22059 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 22060 { 22061 struct lpfc_sli4_hdw_queue *qp; 22062 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 22063 22064 qp = &phba->sli4_hba.hdwq[idx]; 22065 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 22066 &qp->lpfc_io_buf_list_get, list) { 22067 if (lpfc_test_rrq_active(phba, ndlp, 22068 lpfc_cmd->cur_iocbq.sli4_lxritag)) 22069 continue; 22070 22071 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 22072 continue; 22073 22074 list_del_init(&lpfc_cmd->list); 22075 qp->get_io_bufs--; 22076 lpfc_cmd->hdwq = qp; 22077 lpfc_cmd->hdwq_no = idx; 22078 return lpfc_cmd; 22079 } 22080 return NULL; 22081 } 22082 22083 /** 22084 * lpfc_get_io_buf - Get one IO buffer from free pool 22085 * @phba: The HBA for which this call is being executed. 22086 * @ndlp: pointer to lpfc nodelist data structure. 22087 * @hwqid: belong to which HWQ 22088 * @expedite: 1 means this request is urgent. 22089 * 22090 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 22091 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 22092 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 22093 * 22094 * Note: ndlp is only used on SCSI side for RRQ testing. 22095 * The caller should pass NULL for ndlp on NVME side. 22096 * 22097 * Return codes: 22098 * NULL - Error 22099 * Pointer to lpfc_io_buf - Success 22100 **/ 22101 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 22102 struct lpfc_nodelist *ndlp, 22103 u32 hwqid, int expedite) 22104 { 22105 struct lpfc_sli4_hdw_queue *qp; 22106 unsigned long iflag; 22107 struct lpfc_io_buf *lpfc_cmd; 22108 22109 qp = &phba->sli4_hba.hdwq[hwqid]; 22110 lpfc_cmd = NULL; 22111 if (!qp) { 22112 lpfc_printf_log(phba, KERN_WARNING, 22113 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22114 "5555 NULL qp for hwqid x%x\n", hwqid); 22115 return lpfc_cmd; 22116 } 22117 22118 if (phba->cfg_xri_rebalancing) 22119 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 22120 phba, ndlp, hwqid, expedite); 22121 else { 22122 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 22123 qp, alloc_xri_get); 22124 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 22125 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22126 if (!lpfc_cmd) { 22127 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 22128 qp, alloc_xri_put); 22129 list_splice(&qp->lpfc_io_buf_list_put, 22130 &qp->lpfc_io_buf_list_get); 22131 qp->get_io_bufs += qp->put_io_bufs; 22132 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 22133 qp->put_io_bufs = 0; 22134 spin_unlock(&qp->io_buf_list_put_lock); 22135 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 22136 expedite) 22137 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22138 } 22139 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 22140 } 22141 22142 return lpfc_cmd; 22143 } 22144 22145 /** 22146 * lpfc_read_object - Retrieve object data from HBA 22147 * @phba: The HBA for which this call is being executed. 22148 * @rdobject: Pathname of object data we want to read. 22149 * @datap: Pointer to where data will be copied to. 22150 * @datasz: size of data area 22151 * 22152 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less. 22153 * The data will be truncated if datasz is not large enough. 22154 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0. 22155 * Returns the actual bytes read from the object. 22156 */ 22157 int 22158 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap, 22159 uint32_t datasz) 22160 { 22161 struct lpfc_mbx_read_object *read_object; 22162 LPFC_MBOXQ_t *mbox; 22163 int rc, length, eof, j, byte_cnt = 0; 22164 uint32_t shdr_status, shdr_add_status; 22165 union lpfc_sli4_cfg_shdr *shdr; 22166 struct lpfc_dmabuf *pcmd; 22167 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0}; 22168 22169 /* sanity check on queue memory */ 22170 if (!datap) 22171 return -ENODEV; 22172 22173 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 22174 if (!mbox) 22175 return -ENOMEM; 22176 length = (sizeof(struct lpfc_mbx_read_object) - 22177 sizeof(struct lpfc_sli4_cfg_mhdr)); 22178 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 22179 LPFC_MBOX_OPCODE_READ_OBJECT, 22180 length, LPFC_SLI4_MBX_EMBED); 22181 read_object = &mbox->u.mqe.un.read_object; 22182 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr; 22183 22184 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0); 22185 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz); 22186 read_object->u.request.rd_object_offset = 0; 22187 read_object->u.request.rd_object_cnt = 1; 22188 22189 memset((void *)read_object->u.request.rd_object_name, 0, 22190 LPFC_OBJ_NAME_SZ); 22191 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject); 22192 for (j = 0; j < strlen(rdobject); j++) 22193 read_object->u.request.rd_object_name[j] = 22194 cpu_to_le32(rd_object_name[j]); 22195 22196 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL); 22197 if (pcmd) 22198 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys); 22199 if (!pcmd || !pcmd->virt) { 22200 kfree(pcmd); 22201 mempool_free(mbox, phba->mbox_mem_pool); 22202 return -ENOMEM; 22203 } 22204 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE); 22205 read_object->u.request.rd_object_hbuf[0].pa_lo = 22206 putPaddrLow(pcmd->phys); 22207 read_object->u.request.rd_object_hbuf[0].pa_hi = 22208 putPaddrHigh(pcmd->phys); 22209 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE; 22210 22211 mbox->vport = phba->pport; 22212 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 22213 mbox->ctx_buf = NULL; 22214 mbox->ctx_ndlp = NULL; 22215 22216 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 22217 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 22218 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 22219 22220 if (shdr_status == STATUS_FAILED && 22221 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) { 22222 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22223 "4674 No port cfg file in FW.\n"); 22224 byte_cnt = -ENOENT; 22225 } else if (shdr_status || shdr_add_status || rc) { 22226 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22227 "2625 READ_OBJECT mailbox failed with " 22228 "status x%x add_status x%x, mbx status x%x\n", 22229 shdr_status, shdr_add_status, rc); 22230 byte_cnt = -ENXIO; 22231 } else { 22232 /* Success */ 22233 length = read_object->u.response.rd_object_actual_rlen; 22234 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response); 22235 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT, 22236 "2626 READ_OBJECT Success len %d:%d, EOF %d\n", 22237 length, datasz, eof); 22238 22239 /* Detect the port config file exists but is empty */ 22240 if (!length && eof) { 22241 byte_cnt = 0; 22242 goto exit; 22243 } 22244 22245 byte_cnt = length; 22246 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt); 22247 } 22248 22249 exit: 22250 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys); 22251 kfree(pcmd); 22252 mempool_free(mbox, phba->mbox_mem_pool); 22253 return byte_cnt; 22254 } 22255 22256 /** 22257 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 22258 * @phba: The HBA for which this call is being executed. 22259 * @lpfc_buf: IO buf structure to append the SGL chunk 22260 * 22261 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 22262 * and will allocate an SGL chunk if the pool is empty. 22263 * 22264 * Return codes: 22265 * NULL - Error 22266 * Pointer to sli4_hybrid_sgl - Success 22267 **/ 22268 struct sli4_hybrid_sgl * 22269 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22270 { 22271 struct sli4_hybrid_sgl *list_entry = NULL; 22272 struct sli4_hybrid_sgl *tmp = NULL; 22273 struct sli4_hybrid_sgl *allocated_sgl = NULL; 22274 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22275 struct list_head *buf_list = &hdwq->sgl_list; 22276 unsigned long iflags; 22277 22278 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22279 22280 if (likely(!list_empty(buf_list))) { 22281 /* break off 1 chunk from the sgl_list */ 22282 list_for_each_entry_safe(list_entry, tmp, 22283 buf_list, list_node) { 22284 list_move_tail(&list_entry->list_node, 22285 &lpfc_buf->dma_sgl_xtra_list); 22286 break; 22287 } 22288 } else { 22289 /* allocate more */ 22290 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22291 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22292 cpu_to_node(hdwq->io_wq->chann)); 22293 if (!tmp) { 22294 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22295 "8353 error kmalloc memory for HDWQ " 22296 "%d %s\n", 22297 lpfc_buf->hdwq_no, __func__); 22298 return NULL; 22299 } 22300 22301 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 22302 GFP_ATOMIC, &tmp->dma_phys_sgl); 22303 if (!tmp->dma_sgl) { 22304 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22305 "8354 error pool_alloc memory for HDWQ " 22306 "%d %s\n", 22307 lpfc_buf->hdwq_no, __func__); 22308 kfree(tmp); 22309 return NULL; 22310 } 22311 22312 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22313 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 22314 } 22315 22316 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 22317 struct sli4_hybrid_sgl, 22318 list_node); 22319 22320 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22321 22322 return allocated_sgl; 22323 } 22324 22325 /** 22326 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 22327 * @phba: The HBA for which this call is being executed. 22328 * @lpfc_buf: IO buf structure with the SGL chunk 22329 * 22330 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 22331 * 22332 * Return codes: 22333 * 0 - Success 22334 * -EINVAL - Error 22335 **/ 22336 int 22337 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22338 { 22339 int rc = 0; 22340 struct sli4_hybrid_sgl *list_entry = NULL; 22341 struct sli4_hybrid_sgl *tmp = NULL; 22342 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22343 struct list_head *buf_list = &hdwq->sgl_list; 22344 unsigned long iflags; 22345 22346 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22347 22348 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 22349 list_for_each_entry_safe(list_entry, tmp, 22350 &lpfc_buf->dma_sgl_xtra_list, 22351 list_node) { 22352 list_move_tail(&list_entry->list_node, 22353 buf_list); 22354 } 22355 } else { 22356 rc = -EINVAL; 22357 } 22358 22359 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22360 return rc; 22361 } 22362 22363 /** 22364 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 22365 * @phba: phba object 22366 * @hdwq: hdwq to cleanup sgl buff resources on 22367 * 22368 * This routine frees all SGL chunks of hdwq SGL chunk pool. 22369 * 22370 * Return codes: 22371 * None 22372 **/ 22373 void 22374 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 22375 struct lpfc_sli4_hdw_queue *hdwq) 22376 { 22377 struct list_head *buf_list = &hdwq->sgl_list; 22378 struct sli4_hybrid_sgl *list_entry = NULL; 22379 struct sli4_hybrid_sgl *tmp = NULL; 22380 unsigned long iflags; 22381 22382 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22383 22384 /* Free sgl pool */ 22385 list_for_each_entry_safe(list_entry, tmp, 22386 buf_list, list_node) { 22387 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 22388 list_entry->dma_sgl, 22389 list_entry->dma_phys_sgl); 22390 list_del(&list_entry->list_node); 22391 kfree(list_entry); 22392 } 22393 22394 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22395 } 22396 22397 /** 22398 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 22399 * @phba: The HBA for which this call is being executed. 22400 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 22401 * 22402 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 22403 * and will allocate an CMD/RSP buffer if the pool is empty. 22404 * 22405 * Return codes: 22406 * NULL - Error 22407 * Pointer to fcp_cmd_rsp_buf - Success 22408 **/ 22409 struct fcp_cmd_rsp_buf * 22410 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22411 struct lpfc_io_buf *lpfc_buf) 22412 { 22413 struct fcp_cmd_rsp_buf *list_entry = NULL; 22414 struct fcp_cmd_rsp_buf *tmp = NULL; 22415 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 22416 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22417 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22418 unsigned long iflags; 22419 22420 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22421 22422 if (likely(!list_empty(buf_list))) { 22423 /* break off 1 chunk from the list */ 22424 list_for_each_entry_safe(list_entry, tmp, 22425 buf_list, 22426 list_node) { 22427 list_move_tail(&list_entry->list_node, 22428 &lpfc_buf->dma_cmd_rsp_list); 22429 break; 22430 } 22431 } else { 22432 /* allocate more */ 22433 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22434 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22435 cpu_to_node(hdwq->io_wq->chann)); 22436 if (!tmp) { 22437 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22438 "8355 error kmalloc memory for HDWQ " 22439 "%d %s\n", 22440 lpfc_buf->hdwq_no, __func__); 22441 return NULL; 22442 } 22443 22444 tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool, 22445 GFP_ATOMIC, 22446 &tmp->fcp_cmd_rsp_dma_handle); 22447 22448 if (!tmp->fcp_cmnd) { 22449 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22450 "8356 error pool_alloc memory for HDWQ " 22451 "%d %s\n", 22452 lpfc_buf->hdwq_no, __func__); 22453 kfree(tmp); 22454 return NULL; 22455 } 22456 22457 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 22458 sizeof(struct fcp_cmnd)); 22459 22460 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22461 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 22462 } 22463 22464 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 22465 struct fcp_cmd_rsp_buf, 22466 list_node); 22467 22468 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22469 22470 return allocated_buf; 22471 } 22472 22473 /** 22474 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 22475 * @phba: The HBA for which this call is being executed. 22476 * @lpfc_buf: IO buf structure with the CMD/RSP buf 22477 * 22478 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 22479 * 22480 * Return codes: 22481 * 0 - Success 22482 * -EINVAL - Error 22483 **/ 22484 int 22485 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22486 struct lpfc_io_buf *lpfc_buf) 22487 { 22488 int rc = 0; 22489 struct fcp_cmd_rsp_buf *list_entry = NULL; 22490 struct fcp_cmd_rsp_buf *tmp = NULL; 22491 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22492 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22493 unsigned long iflags; 22494 22495 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22496 22497 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 22498 list_for_each_entry_safe(list_entry, tmp, 22499 &lpfc_buf->dma_cmd_rsp_list, 22500 list_node) { 22501 list_move_tail(&list_entry->list_node, 22502 buf_list); 22503 } 22504 } else { 22505 rc = -EINVAL; 22506 } 22507 22508 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22509 return rc; 22510 } 22511 22512 /** 22513 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 22514 * @phba: phba object 22515 * @hdwq: hdwq to cleanup cmd rsp buff resources on 22516 * 22517 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 22518 * 22519 * Return codes: 22520 * None 22521 **/ 22522 void 22523 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22524 struct lpfc_sli4_hdw_queue *hdwq) 22525 { 22526 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22527 struct fcp_cmd_rsp_buf *list_entry = NULL; 22528 struct fcp_cmd_rsp_buf *tmp = NULL; 22529 unsigned long iflags; 22530 22531 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22532 22533 /* Free cmd_rsp buf pool */ 22534 list_for_each_entry_safe(list_entry, tmp, 22535 buf_list, 22536 list_node) { 22537 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 22538 list_entry->fcp_cmnd, 22539 list_entry->fcp_cmd_rsp_dma_handle); 22540 list_del(&list_entry->list_node); 22541 kfree(list_entry); 22542 } 22543 22544 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22545 } 22546