1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2023 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/crash_dump.h> 38 #ifdef CONFIG_X86 39 #include <asm/set_memory.h> 40 #endif 41 42 #include "lpfc_hw4.h" 43 #include "lpfc_hw.h" 44 #include "lpfc_sli.h" 45 #include "lpfc_sli4.h" 46 #include "lpfc_nl.h" 47 #include "lpfc_disc.h" 48 #include "lpfc.h" 49 #include "lpfc_scsi.h" 50 #include "lpfc_nvme.h" 51 #include "lpfc_crtn.h" 52 #include "lpfc_logmsg.h" 53 #include "lpfc_compat.h" 54 #include "lpfc_debugfs.h" 55 #include "lpfc_vport.h" 56 #include "lpfc_version.h" 57 58 /* There are only four IOCB completion types. */ 59 typedef enum _lpfc_iocb_type { 60 LPFC_UNKNOWN_IOCB, 61 LPFC_UNSOL_IOCB, 62 LPFC_SOL_IOCB, 63 LPFC_ABORT_IOCB 64 } lpfc_iocb_type; 65 66 67 /* Provide function prototypes local to this module. */ 68 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 69 uint32_t); 70 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 71 uint8_t *, uint32_t *); 72 static struct lpfc_iocbq * 73 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 74 struct lpfc_iocbq *rspiocbq); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 80 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_queue *eq, 85 struct lpfc_eqe *eqe, 86 enum lpfc_poll_mode poll_mode); 87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 89 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 90 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 91 struct lpfc_queue *cq, 92 struct lpfc_cqe *cqe); 93 static uint16_t lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, 94 struct lpfc_iocbq *pwqeq, 95 struct lpfc_sglq *sglq); 96 97 union lpfc_wqe128 lpfc_iread_cmd_template; 98 union lpfc_wqe128 lpfc_iwrite_cmd_template; 99 union lpfc_wqe128 lpfc_icmnd_cmd_template; 100 101 /* Setup WQE templates for IOs */ 102 void lpfc_wqe_cmd_template(void) 103 { 104 union lpfc_wqe128 *wqe; 105 106 /* IREAD template */ 107 wqe = &lpfc_iread_cmd_template; 108 memset(wqe, 0, sizeof(union lpfc_wqe128)); 109 110 /* Word 0, 1, 2 - BDE is variable */ 111 112 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 113 114 /* Word 4 - total_xfer_len is variable */ 115 116 /* Word 5 - is zero */ 117 118 /* Word 6 - ctxt_tag, xri_tag is variable */ 119 120 /* Word 7 */ 121 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 122 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 123 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 124 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 125 126 /* Word 8 - abort_tag is variable */ 127 128 /* Word 9 - reqtag is variable */ 129 130 /* Word 10 - dbde, wqes is variable */ 131 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 132 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 133 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 134 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 135 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 136 137 /* Word 11 - pbde is variable */ 138 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 139 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 140 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 141 142 /* Word 12 - is zero */ 143 144 /* Word 13, 14, 15 - PBDE is variable */ 145 146 /* IWRITE template */ 147 wqe = &lpfc_iwrite_cmd_template; 148 memset(wqe, 0, sizeof(union lpfc_wqe128)); 149 150 /* Word 0, 1, 2 - BDE is variable */ 151 152 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 153 154 /* Word 4 - total_xfer_len is variable */ 155 156 /* Word 5 - initial_xfer_len is variable */ 157 158 /* Word 6 - ctxt_tag, xri_tag is variable */ 159 160 /* Word 7 */ 161 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 162 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 163 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 164 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 165 166 /* Word 8 - abort_tag is variable */ 167 168 /* Word 9 - reqtag is variable */ 169 170 /* Word 10 - dbde, wqes is variable */ 171 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 172 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 173 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 174 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 175 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 176 177 /* Word 11 - pbde is variable */ 178 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 179 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 180 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 181 182 /* Word 12 - is zero */ 183 184 /* Word 13, 14, 15 - PBDE is variable */ 185 186 /* ICMND template */ 187 wqe = &lpfc_icmnd_cmd_template; 188 memset(wqe, 0, sizeof(union lpfc_wqe128)); 189 190 /* Word 0, 1, 2 - BDE is variable */ 191 192 /* Word 3 - payload_offset_len is variable */ 193 194 /* Word 4, 5 - is zero */ 195 196 /* Word 6 - ctxt_tag, xri_tag is variable */ 197 198 /* Word 7 */ 199 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 200 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 201 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 202 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 203 204 /* Word 8 - abort_tag is variable */ 205 206 /* Word 9 - reqtag is variable */ 207 208 /* Word 10 - dbde, wqes is variable */ 209 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 210 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 211 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 212 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 213 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 214 215 /* Word 11 */ 216 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 217 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 218 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 219 220 /* Word 12, 13, 14, 15 - is zero */ 221 } 222 223 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 224 /** 225 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 226 * @srcp: Source memory pointer. 227 * @destp: Destination memory pointer. 228 * @cnt: Number of words required to be copied. 229 * Must be a multiple of sizeof(uint64_t) 230 * 231 * This function is used for copying data between driver memory 232 * and the SLI WQ. This function also changes the endianness 233 * of each word if native endianness is different from SLI 234 * endianness. This function can be called with or without 235 * lock. 236 **/ 237 static void 238 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 239 { 240 uint64_t *src = srcp; 241 uint64_t *dest = destp; 242 int i; 243 244 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 245 *dest++ = *src++; 246 } 247 #else 248 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 249 #endif 250 251 /** 252 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 253 * @q: The Work Queue to operate on. 254 * @wqe: The work Queue Entry to put on the Work queue. 255 * 256 * This routine will copy the contents of @wqe to the next available entry on 257 * the @q. This function will then ring the Work Queue Doorbell to signal the 258 * HBA to start processing the Work Queue Entry. This function returns 0 if 259 * successful. If no entries are available on @q then this function will return 260 * -ENOMEM. 261 * The caller is expected to hold the hbalock when calling this routine. 262 **/ 263 static int 264 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 265 { 266 union lpfc_wqe *temp_wqe; 267 struct lpfc_register doorbell; 268 uint32_t host_index; 269 uint32_t idx; 270 uint32_t i = 0; 271 uint8_t *tmp; 272 u32 if_type; 273 274 /* sanity check on queue memory */ 275 if (unlikely(!q)) 276 return -ENOMEM; 277 278 temp_wqe = lpfc_sli4_qe(q, q->host_index); 279 280 /* If the host has not yet processed the next entry then we are done */ 281 idx = ((q->host_index + 1) % q->entry_count); 282 if (idx == q->hba_index) { 283 q->WQ_overflow++; 284 return -EBUSY; 285 } 286 q->WQ_posted++; 287 /* set consumption flag every once in a while */ 288 if (!((q->host_index + 1) % q->notify_interval)) 289 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 290 else 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 292 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 293 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 294 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 295 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 296 /* write to DPP aperture taking advatage of Combined Writes */ 297 tmp = (uint8_t *)temp_wqe; 298 #ifdef __raw_writeq 299 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 300 __raw_writeq(*((uint64_t *)(tmp + i)), 301 q->dpp_regaddr + i); 302 #else 303 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 304 __raw_writel(*((uint32_t *)(tmp + i)), 305 q->dpp_regaddr + i); 306 #endif 307 } 308 /* ensure WQE bcopy and DPP flushed before doorbell write */ 309 wmb(); 310 311 /* Update the host index before invoking device */ 312 host_index = q->host_index; 313 314 q->host_index = idx; 315 316 /* Ring Doorbell */ 317 doorbell.word0 = 0; 318 if (q->db_format == LPFC_DB_LIST_FORMAT) { 319 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 320 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 321 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 322 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 323 q->dpp_id); 324 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 325 q->queue_id); 326 } else { 327 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 328 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 329 330 /* Leave bits <23:16> clear for if_type 6 dpp */ 331 if_type = bf_get(lpfc_sli_intf_if_type, 332 &q->phba->sli4_hba.sli_intf); 333 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 334 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 335 host_index); 336 } 337 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 338 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 339 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 340 } else { 341 return -EINVAL; 342 } 343 writel(doorbell.word0, q->db_regaddr); 344 345 return 0; 346 } 347 348 /** 349 * lpfc_sli4_wq_release - Updates internal hba index for WQ 350 * @q: The Work Queue to operate on. 351 * @index: The index to advance the hba index to. 352 * 353 * This routine will update the HBA index of a queue to reflect consumption of 354 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 355 * an entry the host calls this function to update the queue's internal 356 * pointers. 357 **/ 358 static void 359 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 360 { 361 /* sanity check on queue memory */ 362 if (unlikely(!q)) 363 return; 364 365 q->hba_index = index; 366 } 367 368 /** 369 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 370 * @q: The Mailbox Queue to operate on. 371 * @mqe: The Mailbox Queue Entry to put on the Work queue. 372 * 373 * This routine will copy the contents of @mqe to the next available entry on 374 * the @q. This function will then ring the Work Queue Doorbell to signal the 375 * HBA to start processing the Work Queue Entry. This function returns 0 if 376 * successful. If no entries are available on @q then this function will return 377 * -ENOMEM. 378 * The caller is expected to hold the hbalock when calling this routine. 379 **/ 380 static uint32_t 381 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 382 { 383 struct lpfc_mqe *temp_mqe; 384 struct lpfc_register doorbell; 385 386 /* sanity check on queue memory */ 387 if (unlikely(!q)) 388 return -ENOMEM; 389 temp_mqe = lpfc_sli4_qe(q, q->host_index); 390 391 /* If the host has not yet processed the next entry then we are done */ 392 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 393 return -ENOMEM; 394 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 395 /* Save off the mailbox pointer for completion */ 396 q->phba->mbox = (MAILBOX_t *)temp_mqe; 397 398 /* Update the host index before invoking device */ 399 q->host_index = ((q->host_index + 1) % q->entry_count); 400 401 /* Ring Doorbell */ 402 doorbell.word0 = 0; 403 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 404 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 405 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 406 return 0; 407 } 408 409 /** 410 * lpfc_sli4_mq_release - Updates internal hba index for MQ 411 * @q: The Mailbox Queue to operate on. 412 * 413 * This routine will update the HBA index of a queue to reflect consumption of 414 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 415 * an entry the host calls this function to update the queue's internal 416 * pointers. This routine returns the number of entries that were consumed by 417 * the HBA. 418 **/ 419 static uint32_t 420 lpfc_sli4_mq_release(struct lpfc_queue *q) 421 { 422 /* sanity check on queue memory */ 423 if (unlikely(!q)) 424 return 0; 425 426 /* Clear the mailbox pointer for completion */ 427 q->phba->mbox = NULL; 428 q->hba_index = ((q->hba_index + 1) % q->entry_count); 429 return 1; 430 } 431 432 /** 433 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 434 * @q: The Event Queue to get the first valid EQE from 435 * 436 * This routine will get the first valid Event Queue Entry from @q, update 437 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 438 * the Queue (no more work to do), or the Queue is full of EQEs that have been 439 * processed, but not popped back to the HBA then this routine will return NULL. 440 **/ 441 static struct lpfc_eqe * 442 lpfc_sli4_eq_get(struct lpfc_queue *q) 443 { 444 struct lpfc_eqe *eqe; 445 446 /* sanity check on queue memory */ 447 if (unlikely(!q)) 448 return NULL; 449 eqe = lpfc_sli4_qe(q, q->host_index); 450 451 /* If the next EQE is not valid then we are done */ 452 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 453 return NULL; 454 455 /* 456 * insert barrier for instruction interlock : data from the hardware 457 * must have the valid bit checked before it can be copied and acted 458 * upon. Speculative instructions were allowing a bcopy at the start 459 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 460 * after our return, to copy data before the valid bit check above 461 * was done. As such, some of the copied data was stale. The barrier 462 * ensures the check is before any data is copied. 463 */ 464 mb(); 465 return eqe; 466 } 467 468 /** 469 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 470 * @q: The Event Queue to disable interrupts 471 * 472 **/ 473 void 474 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 475 { 476 struct lpfc_register doorbell; 477 478 doorbell.word0 = 0; 479 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 480 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 481 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 482 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 483 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 484 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 485 } 486 487 /** 488 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 489 * @q: The Event Queue to disable interrupts 490 * 491 **/ 492 void 493 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 494 { 495 struct lpfc_register doorbell; 496 497 doorbell.word0 = 0; 498 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 499 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 500 } 501 502 /** 503 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 504 * @phba: adapter with EQ 505 * @q: The Event Queue that the host has completed processing for. 506 * @count: Number of elements that have been consumed 507 * @arm: Indicates whether the host wants to arms this CQ. 508 * 509 * This routine will notify the HBA, by ringing the doorbell, that count 510 * number of EQEs have been processed. The @arm parameter indicates whether 511 * the queue should be rearmed when ringing the doorbell. 512 **/ 513 void 514 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 515 uint32_t count, bool arm) 516 { 517 struct lpfc_register doorbell; 518 519 /* sanity check on queue memory */ 520 if (unlikely(!q || (count == 0 && !arm))) 521 return; 522 523 /* ring doorbell for number popped */ 524 doorbell.word0 = 0; 525 if (arm) { 526 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 527 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 528 } 529 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 530 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 531 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 532 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 533 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 534 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 535 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 536 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 537 readl(q->phba->sli4_hba.EQDBregaddr); 538 } 539 540 /** 541 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 542 * @phba: adapter with EQ 543 * @q: The Event Queue that the host has completed processing for. 544 * @count: Number of elements that have been consumed 545 * @arm: Indicates whether the host wants to arms this CQ. 546 * 547 * This routine will notify the HBA, by ringing the doorbell, that count 548 * number of EQEs have been processed. The @arm parameter indicates whether 549 * the queue should be rearmed when ringing the doorbell. 550 **/ 551 void 552 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 553 uint32_t count, bool arm) 554 { 555 struct lpfc_register doorbell; 556 557 /* sanity check on queue memory */ 558 if (unlikely(!q || (count == 0 && !arm))) 559 return; 560 561 /* ring doorbell for number popped */ 562 doorbell.word0 = 0; 563 if (arm) 564 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 565 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 566 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 567 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 568 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 569 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 570 readl(q->phba->sli4_hba.EQDBregaddr); 571 } 572 573 static void 574 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 575 struct lpfc_eqe *eqe) 576 { 577 if (!phba->sli4_hba.pc_sli4_params.eqav) 578 bf_set_le32(lpfc_eqe_valid, eqe, 0); 579 580 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 581 582 /* if the index wrapped around, toggle the valid bit */ 583 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 584 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 585 } 586 587 static void 588 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 589 { 590 struct lpfc_eqe *eqe = NULL; 591 u32 eq_count = 0, cq_count = 0; 592 struct lpfc_cqe *cqe = NULL; 593 struct lpfc_queue *cq = NULL, *childq = NULL; 594 int cqid = 0; 595 596 /* walk all the EQ entries and drop on the floor */ 597 eqe = lpfc_sli4_eq_get(eq); 598 while (eqe) { 599 /* Get the reference to the corresponding CQ */ 600 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 601 cq = NULL; 602 603 list_for_each_entry(childq, &eq->child_list, list) { 604 if (childq->queue_id == cqid) { 605 cq = childq; 606 break; 607 } 608 } 609 /* If CQ is valid, iterate through it and drop all the CQEs */ 610 if (cq) { 611 cqe = lpfc_sli4_cq_get(cq); 612 while (cqe) { 613 __lpfc_sli4_consume_cqe(phba, cq, cqe); 614 cq_count++; 615 cqe = lpfc_sli4_cq_get(cq); 616 } 617 /* Clear and re-arm the CQ */ 618 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 619 LPFC_QUEUE_REARM); 620 cq_count = 0; 621 } 622 __lpfc_sli4_consume_eqe(phba, eq, eqe); 623 eq_count++; 624 eqe = lpfc_sli4_eq_get(eq); 625 } 626 627 /* Clear and re-arm the EQ */ 628 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 629 } 630 631 static int 632 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 633 u8 rearm, enum lpfc_poll_mode poll_mode) 634 { 635 struct lpfc_eqe *eqe; 636 int count = 0, consumed = 0; 637 638 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 639 goto rearm_and_exit; 640 641 eqe = lpfc_sli4_eq_get(eq); 642 while (eqe) { 643 lpfc_sli4_hba_handle_eqe(phba, eq, eqe, poll_mode); 644 __lpfc_sli4_consume_eqe(phba, eq, eqe); 645 646 consumed++; 647 if (!(++count % eq->max_proc_limit)) 648 break; 649 650 if (!(count % eq->notify_interval)) { 651 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 652 LPFC_QUEUE_NOARM); 653 consumed = 0; 654 } 655 656 eqe = lpfc_sli4_eq_get(eq); 657 } 658 eq->EQ_processed += count; 659 660 /* Track the max number of EQEs processed in 1 intr */ 661 if (count > eq->EQ_max_eqe) 662 eq->EQ_max_eqe = count; 663 664 xchg(&eq->queue_claimed, 0); 665 666 rearm_and_exit: 667 /* Always clear the EQ. */ 668 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 669 670 return count; 671 } 672 673 /** 674 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 675 * @q: The Completion Queue to get the first valid CQE from 676 * 677 * This routine will get the first valid Completion Queue Entry from @q, update 678 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 679 * the Queue (no more work to do), or the Queue is full of CQEs that have been 680 * processed, but not popped back to the HBA then this routine will return NULL. 681 **/ 682 static struct lpfc_cqe * 683 lpfc_sli4_cq_get(struct lpfc_queue *q) 684 { 685 struct lpfc_cqe *cqe; 686 687 /* sanity check on queue memory */ 688 if (unlikely(!q)) 689 return NULL; 690 cqe = lpfc_sli4_qe(q, q->host_index); 691 692 /* If the next CQE is not valid then we are done */ 693 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 694 return NULL; 695 696 /* 697 * insert barrier for instruction interlock : data from the hardware 698 * must have the valid bit checked before it can be copied and acted 699 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 700 * instructions allowing action on content before valid bit checked, 701 * add barrier here as well. May not be needed as "content" is a 702 * single 32-bit entity here (vs multi word structure for cq's). 703 */ 704 mb(); 705 return cqe; 706 } 707 708 static void 709 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 710 struct lpfc_cqe *cqe) 711 { 712 if (!phba->sli4_hba.pc_sli4_params.cqav) 713 bf_set_le32(lpfc_cqe_valid, cqe, 0); 714 715 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 716 717 /* if the index wrapped around, toggle the valid bit */ 718 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 719 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 720 } 721 722 /** 723 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 724 * @phba: the adapter with the CQ 725 * @q: The Completion Queue that the host has completed processing for. 726 * @count: the number of elements that were consumed 727 * @arm: Indicates whether the host wants to arms this CQ. 728 * 729 * This routine will notify the HBA, by ringing the doorbell, that the 730 * CQEs have been processed. The @arm parameter specifies whether the 731 * queue should be rearmed when ringing the doorbell. 732 **/ 733 void 734 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 735 uint32_t count, bool arm) 736 { 737 struct lpfc_register doorbell; 738 739 /* sanity check on queue memory */ 740 if (unlikely(!q || (count == 0 && !arm))) 741 return; 742 743 /* ring doorbell for number popped */ 744 doorbell.word0 = 0; 745 if (arm) 746 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 747 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 748 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 749 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 750 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 751 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 752 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 753 } 754 755 /** 756 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 757 * @phba: the adapter with the CQ 758 * @q: The Completion Queue that the host has completed processing for. 759 * @count: the number of elements that were consumed 760 * @arm: Indicates whether the host wants to arms this CQ. 761 * 762 * This routine will notify the HBA, by ringing the doorbell, that the 763 * CQEs have been processed. The @arm parameter specifies whether the 764 * queue should be rearmed when ringing the doorbell. 765 **/ 766 void 767 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 768 uint32_t count, bool arm) 769 { 770 struct lpfc_register doorbell; 771 772 /* sanity check on queue memory */ 773 if (unlikely(!q || (count == 0 && !arm))) 774 return; 775 776 /* ring doorbell for number popped */ 777 doorbell.word0 = 0; 778 if (arm) 779 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 780 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 781 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 782 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 783 } 784 785 /* 786 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 787 * 788 * This routine will copy the contents of @wqe to the next available entry on 789 * the @q. This function will then ring the Receive Queue Doorbell to signal the 790 * HBA to start processing the Receive Queue Entry. This function returns the 791 * index that the rqe was copied to if successful. If no entries are available 792 * on @q then this function will return -ENOMEM. 793 * The caller is expected to hold the hbalock when calling this routine. 794 **/ 795 int 796 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 797 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 798 { 799 struct lpfc_rqe *temp_hrqe; 800 struct lpfc_rqe *temp_drqe; 801 struct lpfc_register doorbell; 802 int hq_put_index; 803 int dq_put_index; 804 805 /* sanity check on queue memory */ 806 if (unlikely(!hq) || unlikely(!dq)) 807 return -ENOMEM; 808 hq_put_index = hq->host_index; 809 dq_put_index = dq->host_index; 810 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 811 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 812 813 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 814 return -EINVAL; 815 if (hq_put_index != dq_put_index) 816 return -EINVAL; 817 /* If the host has not yet processed the next entry then we are done */ 818 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 819 return -EBUSY; 820 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 821 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 822 823 /* Update the host index to point to the next slot */ 824 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 825 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 826 hq->RQ_buf_posted++; 827 828 /* Ring The Header Receive Queue Doorbell */ 829 if (!(hq->host_index % hq->notify_interval)) { 830 doorbell.word0 = 0; 831 if (hq->db_format == LPFC_DB_RING_FORMAT) { 832 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 833 hq->notify_interval); 834 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 835 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 836 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 837 hq->notify_interval); 838 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 839 hq->host_index); 840 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 841 } else { 842 return -EINVAL; 843 } 844 writel(doorbell.word0, hq->db_regaddr); 845 } 846 return hq_put_index; 847 } 848 849 /* 850 * lpfc_sli4_rq_release - Updates internal hba index for RQ 851 * 852 * This routine will update the HBA index of a queue to reflect consumption of 853 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 854 * consumed an entry the host calls this function to update the queue's 855 * internal pointers. This routine returns the number of entries that were 856 * consumed by the HBA. 857 **/ 858 static uint32_t 859 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 860 { 861 /* sanity check on queue memory */ 862 if (unlikely(!hq) || unlikely(!dq)) 863 return 0; 864 865 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 866 return 0; 867 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 868 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 869 return 1; 870 } 871 872 /** 873 * lpfc_cmd_iocb - Get next command iocb entry in the ring 874 * @phba: Pointer to HBA context object. 875 * @pring: Pointer to driver SLI ring object. 876 * 877 * This function returns pointer to next command iocb entry 878 * in the command ring. The caller must hold hbalock to prevent 879 * other threads consume the next command iocb. 880 * SLI-2/SLI-3 provide different sized iocbs. 881 **/ 882 static inline IOCB_t * 883 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 884 { 885 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 886 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 887 } 888 889 /** 890 * lpfc_resp_iocb - Get next response iocb entry in the ring 891 * @phba: Pointer to HBA context object. 892 * @pring: Pointer to driver SLI ring object. 893 * 894 * This function returns pointer to next response iocb entry 895 * in the response ring. The caller must hold hbalock to make sure 896 * that no other thread consume the next response iocb. 897 * SLI-2/SLI-3 provide different sized iocbs. 898 **/ 899 static inline IOCB_t * 900 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 901 { 902 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 903 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 904 } 905 906 /** 907 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 908 * @phba: Pointer to HBA context object. 909 * 910 * This function is called with hbalock held. This function 911 * allocates a new driver iocb object from the iocb pool. If the 912 * allocation is successful, it returns pointer to the newly 913 * allocated iocb object else it returns NULL. 914 **/ 915 struct lpfc_iocbq * 916 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 917 { 918 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 919 struct lpfc_iocbq * iocbq = NULL; 920 921 lockdep_assert_held(&phba->hbalock); 922 923 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 924 if (iocbq) 925 phba->iocb_cnt++; 926 if (phba->iocb_cnt > phba->iocb_max) 927 phba->iocb_max = phba->iocb_cnt; 928 return iocbq; 929 } 930 931 /** 932 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 933 * @phba: Pointer to HBA context object. 934 * @xritag: XRI value. 935 * 936 * This function clears the sglq pointer from the array of active 937 * sglq's. The xritag that is passed in is used to index into the 938 * array. Before the xritag can be used it needs to be adjusted 939 * by subtracting the xribase. 940 * 941 * Returns sglq ponter = success, NULL = Failure. 942 **/ 943 struct lpfc_sglq * 944 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 945 { 946 struct lpfc_sglq *sglq; 947 948 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 949 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 950 return sglq; 951 } 952 953 /** 954 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 955 * @phba: Pointer to HBA context object. 956 * @xritag: XRI value. 957 * 958 * This function returns the sglq pointer from the array of active 959 * sglq's. The xritag that is passed in is used to index into the 960 * array. Before the xritag can be used it needs to be adjusted 961 * by subtracting the xribase. 962 * 963 * Returns sglq ponter = success, NULL = Failure. 964 **/ 965 struct lpfc_sglq * 966 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 967 { 968 struct lpfc_sglq *sglq; 969 970 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 971 return sglq; 972 } 973 974 /** 975 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 976 * @phba: Pointer to HBA context object. 977 * @xritag: xri used in this exchange. 978 * @rrq: The RRQ to be cleared. 979 * 980 **/ 981 void 982 lpfc_clr_rrq_active(struct lpfc_hba *phba, 983 uint16_t xritag, 984 struct lpfc_node_rrq *rrq) 985 { 986 struct lpfc_nodelist *ndlp = NULL; 987 988 /* Lookup did to verify if did is still active on this vport */ 989 if (rrq->vport) 990 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 991 992 if (!ndlp) 993 goto out; 994 995 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 996 rrq->send_rrq = 0; 997 rrq->xritag = 0; 998 rrq->rrq_stop_time = 0; 999 } 1000 out: 1001 mempool_free(rrq, phba->rrq_pool); 1002 } 1003 1004 /** 1005 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1006 * @phba: Pointer to HBA context object. 1007 * 1008 * This function is called with hbalock held. This function 1009 * Checks if stop_time (ratov from setting rrq active) has 1010 * been reached, if it has and the send_rrq flag is set then 1011 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1012 * then it will just call the routine to clear the rrq and 1013 * free the rrq resource. 1014 * The timer is set to the next rrq that is going to expire before 1015 * leaving the routine. 1016 * 1017 **/ 1018 void 1019 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1020 { 1021 struct lpfc_node_rrq *rrq; 1022 struct lpfc_node_rrq *nextrrq; 1023 unsigned long next_time; 1024 unsigned long iflags; 1025 LIST_HEAD(send_rrq); 1026 1027 spin_lock_irqsave(&phba->hbalock, iflags); 1028 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1029 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1030 list_for_each_entry_safe(rrq, nextrrq, 1031 &phba->active_rrq_list, list) { 1032 if (time_after(jiffies, rrq->rrq_stop_time)) 1033 list_move(&rrq->list, &send_rrq); 1034 else if (time_before(rrq->rrq_stop_time, next_time)) 1035 next_time = rrq->rrq_stop_time; 1036 } 1037 spin_unlock_irqrestore(&phba->hbalock, iflags); 1038 if ((!list_empty(&phba->active_rrq_list)) && 1039 (!(phba->pport->load_flag & FC_UNLOADING))) 1040 mod_timer(&phba->rrq_tmr, next_time); 1041 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1042 list_del(&rrq->list); 1043 if (!rrq->send_rrq) { 1044 /* this call will free the rrq */ 1045 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1046 } else if (lpfc_send_rrq(phba, rrq)) { 1047 /* if we send the rrq then the completion handler 1048 * will clear the bit in the xribitmap. 1049 */ 1050 lpfc_clr_rrq_active(phba, rrq->xritag, 1051 rrq); 1052 } 1053 } 1054 } 1055 1056 /** 1057 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1058 * @vport: Pointer to vport context object. 1059 * @xri: The xri used in the exchange. 1060 * @did: The targets DID for this exchange. 1061 * 1062 * returns NULL = rrq not found in the phba->active_rrq_list. 1063 * rrq = rrq for this xri and target. 1064 **/ 1065 struct lpfc_node_rrq * 1066 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1067 { 1068 struct lpfc_hba *phba = vport->phba; 1069 struct lpfc_node_rrq *rrq; 1070 struct lpfc_node_rrq *nextrrq; 1071 unsigned long iflags; 1072 1073 if (phba->sli_rev != LPFC_SLI_REV4) 1074 return NULL; 1075 spin_lock_irqsave(&phba->hbalock, iflags); 1076 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1077 if (rrq->vport == vport && rrq->xritag == xri && 1078 rrq->nlp_DID == did){ 1079 list_del(&rrq->list); 1080 spin_unlock_irqrestore(&phba->hbalock, iflags); 1081 return rrq; 1082 } 1083 } 1084 spin_unlock_irqrestore(&phba->hbalock, iflags); 1085 return NULL; 1086 } 1087 1088 /** 1089 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1090 * @vport: Pointer to vport context object. 1091 * @ndlp: Pointer to the lpfc_node_list structure. 1092 * If ndlp is NULL Remove all active RRQs for this vport from the 1093 * phba->active_rrq_list and clear the rrq. 1094 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1095 **/ 1096 void 1097 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1098 1099 { 1100 struct lpfc_hba *phba = vport->phba; 1101 struct lpfc_node_rrq *rrq; 1102 struct lpfc_node_rrq *nextrrq; 1103 unsigned long iflags; 1104 LIST_HEAD(rrq_list); 1105 1106 if (phba->sli_rev != LPFC_SLI_REV4) 1107 return; 1108 if (!ndlp) { 1109 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1110 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1111 } 1112 spin_lock_irqsave(&phba->hbalock, iflags); 1113 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1114 if (rrq->vport != vport) 1115 continue; 1116 1117 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1118 list_move(&rrq->list, &rrq_list); 1119 1120 } 1121 spin_unlock_irqrestore(&phba->hbalock, iflags); 1122 1123 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1124 list_del(&rrq->list); 1125 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1126 } 1127 } 1128 1129 /** 1130 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1131 * @phba: Pointer to HBA context object. 1132 * @ndlp: Targets nodelist pointer for this exchange. 1133 * @xritag: the xri in the bitmap to test. 1134 * 1135 * This function returns: 1136 * 0 = rrq not active for this xri 1137 * 1 = rrq is valid for this xri. 1138 **/ 1139 int 1140 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1141 uint16_t xritag) 1142 { 1143 if (!ndlp) 1144 return 0; 1145 if (!ndlp->active_rrqs_xri_bitmap) 1146 return 0; 1147 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1148 return 1; 1149 else 1150 return 0; 1151 } 1152 1153 /** 1154 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1155 * @phba: Pointer to HBA context object. 1156 * @ndlp: nodelist pointer for this target. 1157 * @xritag: xri used in this exchange. 1158 * @rxid: Remote Exchange ID. 1159 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1160 * 1161 * This function takes the hbalock. 1162 * The active bit is always set in the active rrq xri_bitmap even 1163 * if there is no slot avaiable for the other rrq information. 1164 * 1165 * returns 0 rrq actived for this xri 1166 * < 0 No memory or invalid ndlp. 1167 **/ 1168 int 1169 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1170 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1171 { 1172 unsigned long iflags; 1173 struct lpfc_node_rrq *rrq; 1174 int empty; 1175 1176 if (!ndlp) 1177 return -EINVAL; 1178 1179 if (!phba->cfg_enable_rrq) 1180 return -EINVAL; 1181 1182 spin_lock_irqsave(&phba->hbalock, iflags); 1183 if (phba->pport->load_flag & FC_UNLOADING) { 1184 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1185 goto out; 1186 } 1187 1188 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1189 goto out; 1190 1191 if (!ndlp->active_rrqs_xri_bitmap) 1192 goto out; 1193 1194 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1195 goto out; 1196 1197 spin_unlock_irqrestore(&phba->hbalock, iflags); 1198 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1199 if (!rrq) { 1200 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1201 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1202 " DID:0x%x Send:%d\n", 1203 xritag, rxid, ndlp->nlp_DID, send_rrq); 1204 return -EINVAL; 1205 } 1206 if (phba->cfg_enable_rrq == 1) 1207 rrq->send_rrq = send_rrq; 1208 else 1209 rrq->send_rrq = 0; 1210 rrq->xritag = xritag; 1211 rrq->rrq_stop_time = jiffies + 1212 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1213 rrq->nlp_DID = ndlp->nlp_DID; 1214 rrq->vport = ndlp->vport; 1215 rrq->rxid = rxid; 1216 spin_lock_irqsave(&phba->hbalock, iflags); 1217 empty = list_empty(&phba->active_rrq_list); 1218 list_add_tail(&rrq->list, &phba->active_rrq_list); 1219 phba->hba_flag |= HBA_RRQ_ACTIVE; 1220 spin_unlock_irqrestore(&phba->hbalock, iflags); 1221 if (empty) 1222 lpfc_worker_wake_up(phba); 1223 return 0; 1224 out: 1225 spin_unlock_irqrestore(&phba->hbalock, iflags); 1226 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1227 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1228 " DID:0x%x Send:%d\n", 1229 xritag, rxid, ndlp->nlp_DID, send_rrq); 1230 return -EINVAL; 1231 } 1232 1233 /** 1234 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1235 * @phba: Pointer to HBA context object. 1236 * @piocbq: Pointer to the iocbq. 1237 * 1238 * The driver calls this function with either the nvme ls ring lock 1239 * or the fc els ring lock held depending on the iocb usage. This function 1240 * gets a new driver sglq object from the sglq list. If the list is not empty 1241 * then it is successful, it returns pointer to the newly allocated sglq 1242 * object else it returns NULL. 1243 **/ 1244 static struct lpfc_sglq * 1245 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1246 { 1247 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1248 struct lpfc_sglq *sglq = NULL; 1249 struct lpfc_sglq *start_sglq = NULL; 1250 struct lpfc_io_buf *lpfc_cmd; 1251 struct lpfc_nodelist *ndlp; 1252 int found = 0; 1253 u8 cmnd; 1254 1255 cmnd = get_job_cmnd(phba, piocbq); 1256 1257 if (piocbq->cmd_flag & LPFC_IO_FCP) { 1258 lpfc_cmd = piocbq->io_buf; 1259 ndlp = lpfc_cmd->rdata->pnode; 1260 } else if ((cmnd == CMD_GEN_REQUEST64_CR) && 1261 !(piocbq->cmd_flag & LPFC_IO_LIBDFC)) { 1262 ndlp = piocbq->ndlp; 1263 } else if (piocbq->cmd_flag & LPFC_IO_LIBDFC) { 1264 if (piocbq->cmd_flag & LPFC_IO_LOOPBACK) 1265 ndlp = NULL; 1266 else 1267 ndlp = piocbq->ndlp; 1268 } else { 1269 ndlp = piocbq->ndlp; 1270 } 1271 1272 spin_lock(&phba->sli4_hba.sgl_list_lock); 1273 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1274 start_sglq = sglq; 1275 while (!found) { 1276 if (!sglq) 1277 break; 1278 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1279 test_bit(sglq->sli4_lxritag, 1280 ndlp->active_rrqs_xri_bitmap)) { 1281 /* This xri has an rrq outstanding for this DID. 1282 * put it back in the list and get another xri. 1283 */ 1284 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1285 sglq = NULL; 1286 list_remove_head(lpfc_els_sgl_list, sglq, 1287 struct lpfc_sglq, list); 1288 if (sglq == start_sglq) { 1289 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1290 sglq = NULL; 1291 break; 1292 } else 1293 continue; 1294 } 1295 sglq->ndlp = ndlp; 1296 found = 1; 1297 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1298 sglq->state = SGL_ALLOCATED; 1299 } 1300 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1301 return sglq; 1302 } 1303 1304 /** 1305 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1306 * @phba: Pointer to HBA context object. 1307 * @piocbq: Pointer to the iocbq. 1308 * 1309 * This function is called with the sgl_list lock held. This function 1310 * gets a new driver sglq object from the sglq list. If the 1311 * list is not empty then it is successful, it returns pointer to the newly 1312 * allocated sglq object else it returns NULL. 1313 **/ 1314 struct lpfc_sglq * 1315 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1316 { 1317 struct list_head *lpfc_nvmet_sgl_list; 1318 struct lpfc_sglq *sglq = NULL; 1319 1320 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1321 1322 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1323 1324 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1325 if (!sglq) 1326 return NULL; 1327 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1328 sglq->state = SGL_ALLOCATED; 1329 return sglq; 1330 } 1331 1332 /** 1333 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1334 * @phba: Pointer to HBA context object. 1335 * 1336 * This function is called with no lock held. This function 1337 * allocates a new driver iocb object from the iocb pool. If the 1338 * allocation is successful, it returns pointer to the newly 1339 * allocated iocb object else it returns NULL. 1340 **/ 1341 struct lpfc_iocbq * 1342 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1343 { 1344 struct lpfc_iocbq * iocbq = NULL; 1345 unsigned long iflags; 1346 1347 spin_lock_irqsave(&phba->hbalock, iflags); 1348 iocbq = __lpfc_sli_get_iocbq(phba); 1349 spin_unlock_irqrestore(&phba->hbalock, iflags); 1350 return iocbq; 1351 } 1352 1353 /** 1354 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1355 * @phba: Pointer to HBA context object. 1356 * @iocbq: Pointer to driver iocb object. 1357 * 1358 * This function is called to release the driver iocb object 1359 * to the iocb pool. The iotag in the iocb object 1360 * does not change for each use of the iocb object. This function 1361 * clears all other fields of the iocb object when it is freed. 1362 * The sqlq structure that holds the xritag and phys and virtual 1363 * mappings for the scatter gather list is retrieved from the 1364 * active array of sglq. The get of the sglq pointer also clears 1365 * the entry in the array. If the status of the IO indiactes that 1366 * this IO was aborted then the sglq entry it put on the 1367 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1368 * IO has good status or fails for any other reason then the sglq 1369 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1370 * asserted held in the code path calling this routine. 1371 **/ 1372 static void 1373 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1374 { 1375 struct lpfc_sglq *sglq; 1376 unsigned long iflag = 0; 1377 struct lpfc_sli_ring *pring; 1378 1379 if (iocbq->sli4_xritag == NO_XRI) 1380 sglq = NULL; 1381 else 1382 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1383 1384 1385 if (sglq) { 1386 if (iocbq->cmd_flag & LPFC_IO_NVMET) { 1387 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1388 iflag); 1389 sglq->state = SGL_FREED; 1390 sglq->ndlp = NULL; 1391 list_add_tail(&sglq->list, 1392 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1393 spin_unlock_irqrestore( 1394 &phba->sli4_hba.sgl_list_lock, iflag); 1395 goto out; 1396 } 1397 1398 if ((iocbq->cmd_flag & LPFC_EXCHANGE_BUSY) && 1399 (!(unlikely(pci_channel_offline(phba->pcidev)))) && 1400 sglq->state != SGL_XRI_ABORTED) { 1401 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1402 iflag); 1403 1404 /* Check if we can get a reference on ndlp */ 1405 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1406 sglq->ndlp = NULL; 1407 1408 list_add(&sglq->list, 1409 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1410 spin_unlock_irqrestore( 1411 &phba->sli4_hba.sgl_list_lock, iflag); 1412 } else { 1413 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1414 iflag); 1415 sglq->state = SGL_FREED; 1416 sglq->ndlp = NULL; 1417 list_add_tail(&sglq->list, 1418 &phba->sli4_hba.lpfc_els_sgl_list); 1419 spin_unlock_irqrestore( 1420 &phba->sli4_hba.sgl_list_lock, iflag); 1421 pring = lpfc_phba_elsring(phba); 1422 /* Check if TXQ queue needs to be serviced */ 1423 if (pring && (!list_empty(&pring->txq))) 1424 lpfc_worker_wake_up(phba); 1425 } 1426 } 1427 1428 out: 1429 /* 1430 * Clean all volatile data fields, preserve iotag and node struct. 1431 */ 1432 memset_startat(iocbq, 0, wqe); 1433 iocbq->sli4_lxritag = NO_XRI; 1434 iocbq->sli4_xritag = NO_XRI; 1435 iocbq->cmd_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF | 1436 LPFC_IO_NVME_LS); 1437 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1438 } 1439 1440 1441 /** 1442 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1443 * @phba: Pointer to HBA context object. 1444 * @iocbq: Pointer to driver iocb object. 1445 * 1446 * This function is called to release the driver iocb object to the 1447 * iocb pool. The iotag in the iocb object does not change for each 1448 * use of the iocb object. This function clears all other fields of 1449 * the iocb object when it is freed. The hbalock is asserted held in 1450 * the code path calling this routine. 1451 **/ 1452 static void 1453 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1454 { 1455 1456 /* 1457 * Clean all volatile data fields, preserve iotag and node struct. 1458 */ 1459 memset_startat(iocbq, 0, iocb); 1460 iocbq->sli4_xritag = NO_XRI; 1461 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1462 } 1463 1464 /** 1465 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1466 * @phba: Pointer to HBA context object. 1467 * @iocbq: Pointer to driver iocb object. 1468 * 1469 * This function is called with hbalock held to release driver 1470 * iocb object to the iocb pool. The iotag in the iocb object 1471 * does not change for each use of the iocb object. This function 1472 * clears all other fields of the iocb object when it is freed. 1473 **/ 1474 static void 1475 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1476 { 1477 lockdep_assert_held(&phba->hbalock); 1478 1479 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1480 phba->iocb_cnt--; 1481 } 1482 1483 /** 1484 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1485 * @phba: Pointer to HBA context object. 1486 * @iocbq: Pointer to driver iocb object. 1487 * 1488 * This function is called with no lock held to release the iocb to 1489 * iocb pool. 1490 **/ 1491 void 1492 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1493 { 1494 unsigned long iflags; 1495 1496 /* 1497 * Clean all volatile data fields, preserve iotag and node struct. 1498 */ 1499 spin_lock_irqsave(&phba->hbalock, iflags); 1500 __lpfc_sli_release_iocbq(phba, iocbq); 1501 spin_unlock_irqrestore(&phba->hbalock, iflags); 1502 } 1503 1504 /** 1505 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1506 * @phba: Pointer to HBA context object. 1507 * @iocblist: List of IOCBs. 1508 * @ulpstatus: ULP status in IOCB command field. 1509 * @ulpWord4: ULP word-4 in IOCB command field. 1510 * 1511 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1512 * on the list by invoking the complete callback function associated with the 1513 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1514 * fields. 1515 **/ 1516 void 1517 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1518 uint32_t ulpstatus, uint32_t ulpWord4) 1519 { 1520 struct lpfc_iocbq *piocb; 1521 1522 while (!list_empty(iocblist)) { 1523 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1524 if (piocb->cmd_cmpl) { 1525 if (piocb->cmd_flag & LPFC_IO_NVME) { 1526 lpfc_nvme_cancel_iocb(phba, piocb, 1527 ulpstatus, ulpWord4); 1528 } else { 1529 if (phba->sli_rev == LPFC_SLI_REV4) { 1530 bf_set(lpfc_wcqe_c_status, 1531 &piocb->wcqe_cmpl, ulpstatus); 1532 piocb->wcqe_cmpl.parameter = ulpWord4; 1533 } else { 1534 piocb->iocb.ulpStatus = ulpstatus; 1535 piocb->iocb.un.ulpWord[4] = ulpWord4; 1536 } 1537 (piocb->cmd_cmpl) (phba, piocb, piocb); 1538 } 1539 } else { 1540 lpfc_sli_release_iocbq(phba, piocb); 1541 } 1542 } 1543 return; 1544 } 1545 1546 /** 1547 * lpfc_sli_iocb_cmd_type - Get the iocb type 1548 * @iocb_cmnd: iocb command code. 1549 * 1550 * This function is called by ring event handler function to get the iocb type. 1551 * This function translates the iocb command to an iocb command type used to 1552 * decide the final disposition of each completed IOCB. 1553 * The function returns 1554 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1555 * LPFC_SOL_IOCB if it is a solicited iocb completion 1556 * LPFC_ABORT_IOCB if it is an abort iocb 1557 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1558 * 1559 * The caller is not required to hold any lock. 1560 **/ 1561 static lpfc_iocb_type 1562 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1563 { 1564 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1565 1566 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1567 return 0; 1568 1569 switch (iocb_cmnd) { 1570 case CMD_XMIT_SEQUENCE_CR: 1571 case CMD_XMIT_SEQUENCE_CX: 1572 case CMD_XMIT_BCAST_CN: 1573 case CMD_XMIT_BCAST_CX: 1574 case CMD_ELS_REQUEST_CR: 1575 case CMD_ELS_REQUEST_CX: 1576 case CMD_CREATE_XRI_CR: 1577 case CMD_CREATE_XRI_CX: 1578 case CMD_GET_RPI_CN: 1579 case CMD_XMIT_ELS_RSP_CX: 1580 case CMD_GET_RPI_CR: 1581 case CMD_FCP_IWRITE_CR: 1582 case CMD_FCP_IWRITE_CX: 1583 case CMD_FCP_IREAD_CR: 1584 case CMD_FCP_IREAD_CX: 1585 case CMD_FCP_ICMND_CR: 1586 case CMD_FCP_ICMND_CX: 1587 case CMD_FCP_TSEND_CX: 1588 case CMD_FCP_TRSP_CX: 1589 case CMD_FCP_TRECEIVE_CX: 1590 case CMD_FCP_AUTO_TRSP_CX: 1591 case CMD_ADAPTER_MSG: 1592 case CMD_ADAPTER_DUMP: 1593 case CMD_XMIT_SEQUENCE64_CR: 1594 case CMD_XMIT_SEQUENCE64_CX: 1595 case CMD_XMIT_BCAST64_CN: 1596 case CMD_XMIT_BCAST64_CX: 1597 case CMD_ELS_REQUEST64_CR: 1598 case CMD_ELS_REQUEST64_CX: 1599 case CMD_FCP_IWRITE64_CR: 1600 case CMD_FCP_IWRITE64_CX: 1601 case CMD_FCP_IREAD64_CR: 1602 case CMD_FCP_IREAD64_CX: 1603 case CMD_FCP_ICMND64_CR: 1604 case CMD_FCP_ICMND64_CX: 1605 case CMD_FCP_TSEND64_CX: 1606 case CMD_FCP_TRSP64_CX: 1607 case CMD_FCP_TRECEIVE64_CX: 1608 case CMD_GEN_REQUEST64_CR: 1609 case CMD_GEN_REQUEST64_CX: 1610 case CMD_XMIT_ELS_RSP64_CX: 1611 case DSSCMD_IWRITE64_CR: 1612 case DSSCMD_IWRITE64_CX: 1613 case DSSCMD_IREAD64_CR: 1614 case DSSCMD_IREAD64_CX: 1615 case CMD_SEND_FRAME: 1616 type = LPFC_SOL_IOCB; 1617 break; 1618 case CMD_ABORT_XRI_CN: 1619 case CMD_ABORT_XRI_CX: 1620 case CMD_CLOSE_XRI_CN: 1621 case CMD_CLOSE_XRI_CX: 1622 case CMD_XRI_ABORTED_CX: 1623 case CMD_ABORT_MXRI64_CN: 1624 case CMD_XMIT_BLS_RSP64_CX: 1625 type = LPFC_ABORT_IOCB; 1626 break; 1627 case CMD_RCV_SEQUENCE_CX: 1628 case CMD_RCV_ELS_REQ_CX: 1629 case CMD_RCV_SEQUENCE64_CX: 1630 case CMD_RCV_ELS_REQ64_CX: 1631 case CMD_ASYNC_STATUS: 1632 case CMD_IOCB_RCV_SEQ64_CX: 1633 case CMD_IOCB_RCV_ELS64_CX: 1634 case CMD_IOCB_RCV_CONT64_CX: 1635 case CMD_IOCB_RET_XRI64_CX: 1636 type = LPFC_UNSOL_IOCB; 1637 break; 1638 case CMD_IOCB_XMIT_MSEQ64_CR: 1639 case CMD_IOCB_XMIT_MSEQ64_CX: 1640 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1641 case CMD_IOCB_RCV_ELS_LIST64_CX: 1642 case CMD_IOCB_CLOSE_EXTENDED_CN: 1643 case CMD_IOCB_ABORT_EXTENDED_CN: 1644 case CMD_IOCB_RET_HBQE64_CN: 1645 case CMD_IOCB_FCP_IBIDIR64_CR: 1646 case CMD_IOCB_FCP_IBIDIR64_CX: 1647 case CMD_IOCB_FCP_ITASKMGT64_CX: 1648 case CMD_IOCB_LOGENTRY_CN: 1649 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1650 printk("%s - Unhandled SLI-3 Command x%x\n", 1651 __func__, iocb_cmnd); 1652 type = LPFC_UNKNOWN_IOCB; 1653 break; 1654 default: 1655 type = LPFC_UNKNOWN_IOCB; 1656 break; 1657 } 1658 1659 return type; 1660 } 1661 1662 /** 1663 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1664 * @phba: Pointer to HBA context object. 1665 * 1666 * This function is called from SLI initialization code 1667 * to configure every ring of the HBA's SLI interface. The 1668 * caller is not required to hold any lock. This function issues 1669 * a config_ring mailbox command for each ring. 1670 * This function returns zero if successful else returns a negative 1671 * error code. 1672 **/ 1673 static int 1674 lpfc_sli_ring_map(struct lpfc_hba *phba) 1675 { 1676 struct lpfc_sli *psli = &phba->sli; 1677 LPFC_MBOXQ_t *pmb; 1678 MAILBOX_t *pmbox; 1679 int i, rc, ret = 0; 1680 1681 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1682 if (!pmb) 1683 return -ENOMEM; 1684 pmbox = &pmb->u.mb; 1685 phba->link_state = LPFC_INIT_MBX_CMDS; 1686 for (i = 0; i < psli->num_rings; i++) { 1687 lpfc_config_ring(phba, i, pmb); 1688 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1689 if (rc != MBX_SUCCESS) { 1690 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1691 "0446 Adapter failed to init (%d), " 1692 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1693 "ring %d\n", 1694 rc, pmbox->mbxCommand, 1695 pmbox->mbxStatus, i); 1696 phba->link_state = LPFC_HBA_ERROR; 1697 ret = -ENXIO; 1698 break; 1699 } 1700 } 1701 mempool_free(pmb, phba->mbox_mem_pool); 1702 return ret; 1703 } 1704 1705 /** 1706 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1707 * @phba: Pointer to HBA context object. 1708 * @pring: Pointer to driver SLI ring object. 1709 * @piocb: Pointer to the driver iocb object. 1710 * 1711 * The driver calls this function with the hbalock held for SLI3 ports or 1712 * the ring lock held for SLI4 ports. The function adds the 1713 * new iocb to txcmplq of the given ring. This function always returns 1714 * 0. If this function is called for ELS ring, this function checks if 1715 * there is a vport associated with the ELS command. This function also 1716 * starts els_tmofunc timer if this is an ELS command. 1717 **/ 1718 static int 1719 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1720 struct lpfc_iocbq *piocb) 1721 { 1722 u32 ulp_command = 0; 1723 1724 BUG_ON(!piocb); 1725 ulp_command = get_job_cmnd(phba, piocb); 1726 1727 list_add_tail(&piocb->list, &pring->txcmplq); 1728 piocb->cmd_flag |= LPFC_IO_ON_TXCMPLQ; 1729 pring->txcmplq_cnt++; 1730 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1731 (ulp_command != CMD_ABORT_XRI_WQE) && 1732 (ulp_command != CMD_ABORT_XRI_CN) && 1733 (ulp_command != CMD_CLOSE_XRI_CN)) { 1734 BUG_ON(!piocb->vport); 1735 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1736 mod_timer(&piocb->vport->els_tmofunc, 1737 jiffies + 1738 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1739 } 1740 1741 return 0; 1742 } 1743 1744 /** 1745 * lpfc_sli_ringtx_get - Get first element of the txq 1746 * @phba: Pointer to HBA context object. 1747 * @pring: Pointer to driver SLI ring object. 1748 * 1749 * This function is called with hbalock held to get next 1750 * iocb in txq of the given ring. If there is any iocb in 1751 * the txq, the function returns first iocb in the list after 1752 * removing the iocb from the list, else it returns NULL. 1753 **/ 1754 struct lpfc_iocbq * 1755 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1756 { 1757 struct lpfc_iocbq *cmd_iocb; 1758 1759 lockdep_assert_held(&phba->hbalock); 1760 1761 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1762 return cmd_iocb; 1763 } 1764 1765 /** 1766 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl 1767 * @phba: Pointer to HBA context object. 1768 * @cmdiocb: Pointer to driver command iocb object. 1769 * @rspiocb: Pointer to driver response iocb object. 1770 * 1771 * This routine will inform the driver of any BW adjustments we need 1772 * to make. These changes will be picked up during the next CMF 1773 * timer interrupt. In addition, any BW changes will be logged 1774 * with LOG_CGN_MGMT. 1775 **/ 1776 static void 1777 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 1778 struct lpfc_iocbq *rspiocb) 1779 { 1780 union lpfc_wqe128 *wqe; 1781 uint32_t status, info; 1782 struct lpfc_wcqe_complete *wcqe = &rspiocb->wcqe_cmpl; 1783 uint64_t bw, bwdif, slop; 1784 uint64_t pcent, bwpcent; 1785 int asig, afpin, sigcnt, fpincnt; 1786 int wsigmax, wfpinmax, cg, tdp; 1787 char *s; 1788 1789 /* First check for error */ 1790 status = bf_get(lpfc_wcqe_c_status, wcqe); 1791 if (status) { 1792 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1793 "6211 CMF_SYNC_WQE Error " 1794 "req_tag x%x status x%x hwstatus x%x " 1795 "tdatap x%x parm x%x\n", 1796 bf_get(lpfc_wcqe_c_request_tag, wcqe), 1797 bf_get(lpfc_wcqe_c_status, wcqe), 1798 bf_get(lpfc_wcqe_c_hw_status, wcqe), 1799 wcqe->total_data_placed, 1800 wcqe->parameter); 1801 goto out; 1802 } 1803 1804 /* Gather congestion information on a successful cmpl */ 1805 info = wcqe->parameter; 1806 phba->cmf_active_info = info; 1807 1808 /* See if firmware info count is valid or has changed */ 1809 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info) 1810 info = 0; 1811 else 1812 phba->cmf_info_per_interval = info; 1813 1814 tdp = bf_get(lpfc_wcqe_c_cmf_bw, wcqe); 1815 cg = bf_get(lpfc_wcqe_c_cmf_cg, wcqe); 1816 1817 /* Get BW requirement from firmware */ 1818 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE; 1819 if (!bw) { 1820 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1821 "6212 CMF_SYNC_WQE x%x: NULL bw\n", 1822 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 1823 goto out; 1824 } 1825 1826 /* Gather information needed for logging if a BW change is required */ 1827 wqe = &cmdiocb->wqe; 1828 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync); 1829 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync); 1830 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync); 1831 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync); 1832 if (phba->cmf_max_bytes_per_interval != bw || 1833 (asig || afpin || sigcnt || fpincnt)) { 1834 /* Are we increasing or decreasing BW */ 1835 if (phba->cmf_max_bytes_per_interval < bw) { 1836 bwdif = bw - phba->cmf_max_bytes_per_interval; 1837 s = "Increase"; 1838 } else { 1839 bwdif = phba->cmf_max_bytes_per_interval - bw; 1840 s = "Decrease"; 1841 } 1842 1843 /* What is the change percentage */ 1844 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/ 1845 pcent = div64_u64(bwdif * 100 + slop, 1846 phba->cmf_link_byte_count); 1847 bwpcent = div64_u64(bw * 100 + slop, 1848 phba->cmf_link_byte_count); 1849 /* Because of bytes adjustment due to shorter timer in 1850 * lpfc_cmf_timer() the cmf_link_byte_count can be shorter and 1851 * may seem like BW is above 100%. 1852 */ 1853 if (bwpcent > 100) 1854 bwpcent = 100; 1855 1856 if (phba->cmf_max_bytes_per_interval < bw && 1857 bwpcent > 95) 1858 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1859 "6208 Congestion bandwidth " 1860 "limits removed\n"); 1861 else if ((phba->cmf_max_bytes_per_interval > bw) && 1862 ((bwpcent + pcent) <= 100) && ((bwpcent + pcent) > 95)) 1863 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1864 "6209 Congestion bandwidth " 1865 "limits in effect\n"); 1866 1867 if (asig) { 1868 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1869 "6237 BW Threshold %lld%% (%lld): " 1870 "%lld%% %s: Signal Alarm: cg:%d " 1871 "Info:%u\n", 1872 bwpcent, bw, pcent, s, cg, 1873 phba->cmf_active_info); 1874 } else if (afpin) { 1875 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1876 "6238 BW Threshold %lld%% (%lld): " 1877 "%lld%% %s: FPIN Alarm: cg:%d " 1878 "Info:%u\n", 1879 bwpcent, bw, pcent, s, cg, 1880 phba->cmf_active_info); 1881 } else if (sigcnt) { 1882 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync); 1883 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1884 "6239 BW Threshold %lld%% (%lld): " 1885 "%lld%% %s: Signal Warning: " 1886 "Cnt %d Max %d: cg:%d Info:%u\n", 1887 bwpcent, bw, pcent, s, sigcnt, 1888 wsigmax, cg, phba->cmf_active_info); 1889 } else if (fpincnt) { 1890 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync); 1891 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1892 "6240 BW Threshold %lld%% (%lld): " 1893 "%lld%% %s: FPIN Warning: " 1894 "Cnt %d Max %d: cg:%d Info:%u\n", 1895 bwpcent, bw, pcent, s, fpincnt, 1896 wfpinmax, cg, phba->cmf_active_info); 1897 } else { 1898 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1899 "6241 BW Threshold %lld%% (%lld): " 1900 "CMF %lld%% %s: cg:%d Info:%u\n", 1901 bwpcent, bw, pcent, s, cg, 1902 phba->cmf_active_info); 1903 } 1904 } else if (info) { 1905 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1906 "6246 Info Threshold %u\n", info); 1907 } 1908 1909 /* Save BW change to be picked up during next timer interrupt */ 1910 phba->cmf_last_sync_bw = bw; 1911 out: 1912 lpfc_sli_release_iocbq(phba, cmdiocb); 1913 } 1914 1915 /** 1916 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE 1917 * @phba: Pointer to HBA context object. 1918 * @ms: ms to set in WQE interval, 0 means use init op 1919 * @total: Total rcv bytes for this interval 1920 * 1921 * This routine is called every CMF timer interrupt. Its purpose is 1922 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events 1923 * that may indicate we have congestion (FPINs or Signals). Upon 1924 * completion, the firmware will indicate any BW restrictions the 1925 * driver may need to take. 1926 **/ 1927 int 1928 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total) 1929 { 1930 union lpfc_wqe128 *wqe; 1931 struct lpfc_iocbq *sync_buf; 1932 unsigned long iflags; 1933 u32 ret_val; 1934 u32 atot, wtot, max; 1935 u8 warn_sync_period = 0; 1936 1937 /* First address any alarm / warning activity */ 1938 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0); 1939 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0); 1940 1941 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */ 1942 if (phba->cmf_active_mode != LPFC_CFG_MANAGED || 1943 phba->link_state == LPFC_LINK_DOWN) 1944 return 0; 1945 1946 spin_lock_irqsave(&phba->hbalock, iflags); 1947 sync_buf = __lpfc_sli_get_iocbq(phba); 1948 if (!sync_buf) { 1949 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 1950 "6244 No available WQEs for CMF_SYNC_WQE\n"); 1951 ret_val = ENOMEM; 1952 goto out_unlock; 1953 } 1954 1955 wqe = &sync_buf->wqe; 1956 1957 /* WQEs are reused. Clear stale data and set key fields to zero */ 1958 memset(wqe, 0, sizeof(*wqe)); 1959 1960 /* If this is the very first CMF_SYNC_WQE, issue an init operation */ 1961 if (!ms) { 1962 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1963 "6441 CMF Init %d - CMF_SYNC_WQE\n", 1964 phba->fc_eventTag); 1965 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */ 1966 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL); 1967 goto initpath; 1968 } 1969 1970 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */ 1971 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms); 1972 1973 /* Check for alarms / warnings */ 1974 if (atot) { 1975 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1976 /* We hit an Signal alarm condition */ 1977 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1); 1978 } else { 1979 /* We hit a FPIN alarm condition */ 1980 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1); 1981 } 1982 } else if (wtot) { 1983 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 1984 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1985 /* We hit an Signal warning condition */ 1986 max = LPFC_SEC_TO_MSEC / lpfc_fabric_cgn_frequency * 1987 lpfc_acqe_cgn_frequency; 1988 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max); 1989 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot); 1990 warn_sync_period = lpfc_acqe_cgn_frequency; 1991 } else { 1992 /* We hit a FPIN warning condition */ 1993 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1); 1994 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1); 1995 if (phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) 1996 warn_sync_period = 1997 LPFC_MSECS_TO_SECS(phba->cgn_fpin_frequency); 1998 } 1999 } 2000 2001 /* Update total read blocks during previous timer interval */ 2002 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE); 2003 2004 initpath: 2005 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER); 2006 wqe->cmf_sync.event_tag = phba->fc_eventTag; 2007 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE); 2008 2009 /* Setup reqtag to match the wqe completion. */ 2010 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag); 2011 2012 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1); 2013 bf_set(cmf_sync_period, &wqe->cmf_sync, warn_sync_period); 2014 2015 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND); 2016 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1); 2017 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT); 2018 2019 sync_buf->vport = phba->pport; 2020 sync_buf->cmd_cmpl = lpfc_cmf_sync_cmpl; 2021 sync_buf->cmd_dmabuf = NULL; 2022 sync_buf->rsp_dmabuf = NULL; 2023 sync_buf->bpl_dmabuf = NULL; 2024 sync_buf->sli4_xritag = NO_XRI; 2025 2026 sync_buf->cmd_flag |= LPFC_IO_CMF; 2027 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf); 2028 if (ret_val) { 2029 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 2030 "6214 Cannot issue CMF_SYNC_WQE: x%x\n", 2031 ret_val); 2032 __lpfc_sli_release_iocbq(phba, sync_buf); 2033 } 2034 out_unlock: 2035 spin_unlock_irqrestore(&phba->hbalock, iflags); 2036 return ret_val; 2037 } 2038 2039 /** 2040 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 2041 * @phba: Pointer to HBA context object. 2042 * @pring: Pointer to driver SLI ring object. 2043 * 2044 * This function is called with hbalock held and the caller must post the 2045 * iocb without releasing the lock. If the caller releases the lock, 2046 * iocb slot returned by the function is not guaranteed to be available. 2047 * The function returns pointer to the next available iocb slot if there 2048 * is available slot in the ring, else it returns NULL. 2049 * If the get index of the ring is ahead of the put index, the function 2050 * will post an error attention event to the worker thread to take the 2051 * HBA to offline state. 2052 **/ 2053 static IOCB_t * 2054 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2055 { 2056 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2057 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 2058 2059 lockdep_assert_held(&phba->hbalock); 2060 2061 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 2062 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 2063 pring->sli.sli3.next_cmdidx = 0; 2064 2065 if (unlikely(pring->sli.sli3.local_getidx == 2066 pring->sli.sli3.next_cmdidx)) { 2067 2068 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 2069 2070 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 2071 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2072 "0315 Ring %d issue: portCmdGet %d " 2073 "is bigger than cmd ring %d\n", 2074 pring->ringno, 2075 pring->sli.sli3.local_getidx, 2076 max_cmd_idx); 2077 2078 phba->link_state = LPFC_HBA_ERROR; 2079 /* 2080 * All error attention handlers are posted to 2081 * worker thread 2082 */ 2083 phba->work_ha |= HA_ERATT; 2084 phba->work_hs = HS_FFER3; 2085 2086 lpfc_worker_wake_up(phba); 2087 2088 return NULL; 2089 } 2090 2091 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 2092 return NULL; 2093 } 2094 2095 return lpfc_cmd_iocb(phba, pring); 2096 } 2097 2098 /** 2099 * lpfc_sli_next_iotag - Get an iotag for the iocb 2100 * @phba: Pointer to HBA context object. 2101 * @iocbq: Pointer to driver iocb object. 2102 * 2103 * This function gets an iotag for the iocb. If there is no unused iotag and 2104 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 2105 * array and assigns a new iotag. 2106 * The function returns the allocated iotag if successful, else returns zero. 2107 * Zero is not a valid iotag. 2108 * The caller is not required to hold any lock. 2109 **/ 2110 uint16_t 2111 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 2112 { 2113 struct lpfc_iocbq **new_arr; 2114 struct lpfc_iocbq **old_arr; 2115 size_t new_len; 2116 struct lpfc_sli *psli = &phba->sli; 2117 uint16_t iotag; 2118 2119 spin_lock_irq(&phba->hbalock); 2120 iotag = psli->last_iotag; 2121 if(++iotag < psli->iocbq_lookup_len) { 2122 psli->last_iotag = iotag; 2123 psli->iocbq_lookup[iotag] = iocbq; 2124 spin_unlock_irq(&phba->hbalock); 2125 iocbq->iotag = iotag; 2126 return iotag; 2127 } else if (psli->iocbq_lookup_len < (0xffff 2128 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 2129 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 2130 spin_unlock_irq(&phba->hbalock); 2131 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 2132 GFP_KERNEL); 2133 if (new_arr) { 2134 spin_lock_irq(&phba->hbalock); 2135 old_arr = psli->iocbq_lookup; 2136 if (new_len <= psli->iocbq_lookup_len) { 2137 /* highly unprobable case */ 2138 kfree(new_arr); 2139 iotag = psli->last_iotag; 2140 if(++iotag < psli->iocbq_lookup_len) { 2141 psli->last_iotag = iotag; 2142 psli->iocbq_lookup[iotag] = iocbq; 2143 spin_unlock_irq(&phba->hbalock); 2144 iocbq->iotag = iotag; 2145 return iotag; 2146 } 2147 spin_unlock_irq(&phba->hbalock); 2148 return 0; 2149 } 2150 if (psli->iocbq_lookup) 2151 memcpy(new_arr, old_arr, 2152 ((psli->last_iotag + 1) * 2153 sizeof (struct lpfc_iocbq *))); 2154 psli->iocbq_lookup = new_arr; 2155 psli->iocbq_lookup_len = new_len; 2156 psli->last_iotag = iotag; 2157 psli->iocbq_lookup[iotag] = iocbq; 2158 spin_unlock_irq(&phba->hbalock); 2159 iocbq->iotag = iotag; 2160 kfree(old_arr); 2161 return iotag; 2162 } 2163 } else 2164 spin_unlock_irq(&phba->hbalock); 2165 2166 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2167 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 2168 psli->last_iotag); 2169 2170 return 0; 2171 } 2172 2173 /** 2174 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 2175 * @phba: Pointer to HBA context object. 2176 * @pring: Pointer to driver SLI ring object. 2177 * @iocb: Pointer to iocb slot in the ring. 2178 * @nextiocb: Pointer to driver iocb object which need to be 2179 * posted to firmware. 2180 * 2181 * This function is called to post a new iocb to the firmware. This 2182 * function copies the new iocb to ring iocb slot and updates the 2183 * ring pointers. It adds the new iocb to txcmplq if there is 2184 * a completion call back for this iocb else the function will free the 2185 * iocb object. The hbalock is asserted held in the code path calling 2186 * this routine. 2187 **/ 2188 static void 2189 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2190 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 2191 { 2192 /* 2193 * Set up an iotag 2194 */ 2195 nextiocb->iocb.ulpIoTag = (nextiocb->cmd_cmpl) ? nextiocb->iotag : 0; 2196 2197 2198 if (pring->ringno == LPFC_ELS_RING) { 2199 lpfc_debugfs_slow_ring_trc(phba, 2200 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 2201 *(((uint32_t *) &nextiocb->iocb) + 4), 2202 *(((uint32_t *) &nextiocb->iocb) + 6), 2203 *(((uint32_t *) &nextiocb->iocb) + 7)); 2204 } 2205 2206 /* 2207 * Issue iocb command to adapter 2208 */ 2209 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 2210 wmb(); 2211 pring->stats.iocb_cmd++; 2212 2213 /* 2214 * If there is no completion routine to call, we can release the 2215 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 2216 * that have no rsp ring completion, cmd_cmpl MUST be NULL. 2217 */ 2218 if (nextiocb->cmd_cmpl) 2219 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 2220 else 2221 __lpfc_sli_release_iocbq(phba, nextiocb); 2222 2223 /* 2224 * Let the HBA know what IOCB slot will be the next one the 2225 * driver will put a command into. 2226 */ 2227 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 2228 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 2229 } 2230 2231 /** 2232 * lpfc_sli_update_full_ring - Update the chip attention register 2233 * @phba: Pointer to HBA context object. 2234 * @pring: Pointer to driver SLI ring object. 2235 * 2236 * The caller is not required to hold any lock for calling this function. 2237 * This function updates the chip attention bits for the ring to inform firmware 2238 * that there are pending work to be done for this ring and requests an 2239 * interrupt when there is space available in the ring. This function is 2240 * called when the driver is unable to post more iocbs to the ring due 2241 * to unavailability of space in the ring. 2242 **/ 2243 static void 2244 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2245 { 2246 int ringno = pring->ringno; 2247 2248 pring->flag |= LPFC_CALL_RING_AVAILABLE; 2249 2250 wmb(); 2251 2252 /* 2253 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 2254 * The HBA will tell us when an IOCB entry is available. 2255 */ 2256 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 2257 readl(phba->CAregaddr); /* flush */ 2258 2259 pring->stats.iocb_cmd_full++; 2260 } 2261 2262 /** 2263 * lpfc_sli_update_ring - Update chip attention register 2264 * @phba: Pointer to HBA context object. 2265 * @pring: Pointer to driver SLI ring object. 2266 * 2267 * This function updates the chip attention register bit for the 2268 * given ring to inform HBA that there is more work to be done 2269 * in this ring. The caller is not required to hold any lock. 2270 **/ 2271 static void 2272 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2273 { 2274 int ringno = pring->ringno; 2275 2276 /* 2277 * Tell the HBA that there is work to do in this ring. 2278 */ 2279 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2280 wmb(); 2281 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2282 readl(phba->CAregaddr); /* flush */ 2283 } 2284 } 2285 2286 /** 2287 * lpfc_sli_resume_iocb - Process iocbs in the txq 2288 * @phba: Pointer to HBA context object. 2289 * @pring: Pointer to driver SLI ring object. 2290 * 2291 * This function is called with hbalock held to post pending iocbs 2292 * in the txq to the firmware. This function is called when driver 2293 * detects space available in the ring. 2294 **/ 2295 static void 2296 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2297 { 2298 IOCB_t *iocb; 2299 struct lpfc_iocbq *nextiocb; 2300 2301 lockdep_assert_held(&phba->hbalock); 2302 2303 /* 2304 * Check to see if: 2305 * (a) there is anything on the txq to send 2306 * (b) link is up 2307 * (c) link attention events can be processed (fcp ring only) 2308 * (d) IOCB processing is not blocked by the outstanding mbox command. 2309 */ 2310 2311 if (lpfc_is_link_up(phba) && 2312 (!list_empty(&pring->txq)) && 2313 (pring->ringno != LPFC_FCP_RING || 2314 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2315 2316 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2317 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2318 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2319 2320 if (iocb) 2321 lpfc_sli_update_ring(phba, pring); 2322 else 2323 lpfc_sli_update_full_ring(phba, pring); 2324 } 2325 2326 return; 2327 } 2328 2329 /** 2330 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2331 * @phba: Pointer to HBA context object. 2332 * @hbqno: HBQ number. 2333 * 2334 * This function is called with hbalock held to get the next 2335 * available slot for the given HBQ. If there is free slot 2336 * available for the HBQ it will return pointer to the next available 2337 * HBQ entry else it will return NULL. 2338 **/ 2339 static struct lpfc_hbq_entry * 2340 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2341 { 2342 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2343 2344 lockdep_assert_held(&phba->hbalock); 2345 2346 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2347 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2348 hbqp->next_hbqPutIdx = 0; 2349 2350 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2351 uint32_t raw_index = phba->hbq_get[hbqno]; 2352 uint32_t getidx = le32_to_cpu(raw_index); 2353 2354 hbqp->local_hbqGetIdx = getidx; 2355 2356 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2357 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2358 "1802 HBQ %d: local_hbqGetIdx " 2359 "%u is > than hbqp->entry_count %u\n", 2360 hbqno, hbqp->local_hbqGetIdx, 2361 hbqp->entry_count); 2362 2363 phba->link_state = LPFC_HBA_ERROR; 2364 return NULL; 2365 } 2366 2367 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2368 return NULL; 2369 } 2370 2371 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2372 hbqp->hbqPutIdx; 2373 } 2374 2375 /** 2376 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2377 * @phba: Pointer to HBA context object. 2378 * 2379 * This function is called with no lock held to free all the 2380 * hbq buffers while uninitializing the SLI interface. It also 2381 * frees the HBQ buffers returned by the firmware but not yet 2382 * processed by the upper layers. 2383 **/ 2384 void 2385 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2386 { 2387 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2388 struct hbq_dmabuf *hbq_buf; 2389 unsigned long flags; 2390 int i, hbq_count; 2391 2392 hbq_count = lpfc_sli_hbq_count(); 2393 /* Return all memory used by all HBQs */ 2394 spin_lock_irqsave(&phba->hbalock, flags); 2395 for (i = 0; i < hbq_count; ++i) { 2396 list_for_each_entry_safe(dmabuf, next_dmabuf, 2397 &phba->hbqs[i].hbq_buffer_list, list) { 2398 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2399 list_del(&hbq_buf->dbuf.list); 2400 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2401 } 2402 phba->hbqs[i].buffer_count = 0; 2403 } 2404 2405 /* Mark the HBQs not in use */ 2406 phba->hbq_in_use = 0; 2407 spin_unlock_irqrestore(&phba->hbalock, flags); 2408 } 2409 2410 /** 2411 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2412 * @phba: Pointer to HBA context object. 2413 * @hbqno: HBQ number. 2414 * @hbq_buf: Pointer to HBQ buffer. 2415 * 2416 * This function is called with the hbalock held to post a 2417 * hbq buffer to the firmware. If the function finds an empty 2418 * slot in the HBQ, it will post the buffer. The function will return 2419 * pointer to the hbq entry if it successfully post the buffer 2420 * else it will return NULL. 2421 **/ 2422 static int 2423 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2424 struct hbq_dmabuf *hbq_buf) 2425 { 2426 lockdep_assert_held(&phba->hbalock); 2427 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2428 } 2429 2430 /** 2431 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2432 * @phba: Pointer to HBA context object. 2433 * @hbqno: HBQ number. 2434 * @hbq_buf: Pointer to HBQ buffer. 2435 * 2436 * This function is called with the hbalock held to post a hbq buffer to the 2437 * firmware. If the function finds an empty slot in the HBQ, it will post the 2438 * buffer and place it on the hbq_buffer_list. The function will return zero if 2439 * it successfully post the buffer else it will return an error. 2440 **/ 2441 static int 2442 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2443 struct hbq_dmabuf *hbq_buf) 2444 { 2445 struct lpfc_hbq_entry *hbqe; 2446 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2447 2448 lockdep_assert_held(&phba->hbalock); 2449 /* Get next HBQ entry slot to use */ 2450 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2451 if (hbqe) { 2452 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2453 2454 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2455 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2456 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2457 hbqe->bde.tus.f.bdeFlags = 0; 2458 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2459 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2460 /* Sync SLIM */ 2461 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2462 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2463 /* flush */ 2464 readl(phba->hbq_put + hbqno); 2465 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2466 return 0; 2467 } else 2468 return -ENOMEM; 2469 } 2470 2471 /** 2472 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2473 * @phba: Pointer to HBA context object. 2474 * @hbqno: HBQ number. 2475 * @hbq_buf: Pointer to HBQ buffer. 2476 * 2477 * This function is called with the hbalock held to post an RQE to the SLI4 2478 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2479 * the hbq_buffer_list and return zero, otherwise it will return an error. 2480 **/ 2481 static int 2482 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2483 struct hbq_dmabuf *hbq_buf) 2484 { 2485 int rc; 2486 struct lpfc_rqe hrqe; 2487 struct lpfc_rqe drqe; 2488 struct lpfc_queue *hrq; 2489 struct lpfc_queue *drq; 2490 2491 if (hbqno != LPFC_ELS_HBQ) 2492 return 1; 2493 hrq = phba->sli4_hba.hdr_rq; 2494 drq = phba->sli4_hba.dat_rq; 2495 2496 lockdep_assert_held(&phba->hbalock); 2497 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2498 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2499 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2500 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2501 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2502 if (rc < 0) 2503 return rc; 2504 hbq_buf->tag = (rc | (hbqno << 16)); 2505 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2506 return 0; 2507 } 2508 2509 /* HBQ for ELS and CT traffic. */ 2510 static struct lpfc_hbq_init lpfc_els_hbq = { 2511 .rn = 1, 2512 .entry_count = 256, 2513 .mask_count = 0, 2514 .profile = 0, 2515 .ring_mask = (1 << LPFC_ELS_RING), 2516 .buffer_count = 0, 2517 .init_count = 40, 2518 .add_count = 40, 2519 }; 2520 2521 /* Array of HBQs */ 2522 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2523 &lpfc_els_hbq, 2524 }; 2525 2526 /** 2527 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2528 * @phba: Pointer to HBA context object. 2529 * @hbqno: HBQ number. 2530 * @count: Number of HBQ buffers to be posted. 2531 * 2532 * This function is called with no lock held to post more hbq buffers to the 2533 * given HBQ. The function returns the number of HBQ buffers successfully 2534 * posted. 2535 **/ 2536 static int 2537 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2538 { 2539 uint32_t i, posted = 0; 2540 unsigned long flags; 2541 struct hbq_dmabuf *hbq_buffer; 2542 LIST_HEAD(hbq_buf_list); 2543 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2544 return 0; 2545 2546 if ((phba->hbqs[hbqno].buffer_count + count) > 2547 lpfc_hbq_defs[hbqno]->entry_count) 2548 count = lpfc_hbq_defs[hbqno]->entry_count - 2549 phba->hbqs[hbqno].buffer_count; 2550 if (!count) 2551 return 0; 2552 /* Allocate HBQ entries */ 2553 for (i = 0; i < count; i++) { 2554 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2555 if (!hbq_buffer) 2556 break; 2557 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2558 } 2559 /* Check whether HBQ is still in use */ 2560 spin_lock_irqsave(&phba->hbalock, flags); 2561 if (!phba->hbq_in_use) 2562 goto err; 2563 while (!list_empty(&hbq_buf_list)) { 2564 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2565 dbuf.list); 2566 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2567 (hbqno << 16)); 2568 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2569 phba->hbqs[hbqno].buffer_count++; 2570 posted++; 2571 } else 2572 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2573 } 2574 spin_unlock_irqrestore(&phba->hbalock, flags); 2575 return posted; 2576 err: 2577 spin_unlock_irqrestore(&phba->hbalock, flags); 2578 while (!list_empty(&hbq_buf_list)) { 2579 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2580 dbuf.list); 2581 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2582 } 2583 return 0; 2584 } 2585 2586 /** 2587 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2588 * @phba: Pointer to HBA context object. 2589 * @qno: HBQ number. 2590 * 2591 * This function posts more buffers to the HBQ. This function 2592 * is called with no lock held. The function returns the number of HBQ entries 2593 * successfully allocated. 2594 **/ 2595 int 2596 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2597 { 2598 if (phba->sli_rev == LPFC_SLI_REV4) 2599 return 0; 2600 else 2601 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2602 lpfc_hbq_defs[qno]->add_count); 2603 } 2604 2605 /** 2606 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2607 * @phba: Pointer to HBA context object. 2608 * @qno: HBQ queue number. 2609 * 2610 * This function is called from SLI initialization code path with 2611 * no lock held to post initial HBQ buffers to firmware. The 2612 * function returns the number of HBQ entries successfully allocated. 2613 **/ 2614 static int 2615 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2616 { 2617 if (phba->sli_rev == LPFC_SLI_REV4) 2618 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2619 lpfc_hbq_defs[qno]->entry_count); 2620 else 2621 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2622 lpfc_hbq_defs[qno]->init_count); 2623 } 2624 2625 /* 2626 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2627 * 2628 * This function removes the first hbq buffer on an hbq list and returns a 2629 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2630 **/ 2631 static struct hbq_dmabuf * 2632 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2633 { 2634 struct lpfc_dmabuf *d_buf; 2635 2636 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2637 if (!d_buf) 2638 return NULL; 2639 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2640 } 2641 2642 /** 2643 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2644 * @phba: Pointer to HBA context object. 2645 * @hrq: HBQ number. 2646 * 2647 * This function removes the first RQ buffer on an RQ buffer list and returns a 2648 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2649 **/ 2650 static struct rqb_dmabuf * 2651 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2652 { 2653 struct lpfc_dmabuf *h_buf; 2654 struct lpfc_rqb *rqbp; 2655 2656 rqbp = hrq->rqbp; 2657 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2658 struct lpfc_dmabuf, list); 2659 if (!h_buf) 2660 return NULL; 2661 rqbp->buffer_count--; 2662 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2663 } 2664 2665 /** 2666 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2667 * @phba: Pointer to HBA context object. 2668 * @tag: Tag of the hbq buffer. 2669 * 2670 * This function searches for the hbq buffer associated with the given tag in 2671 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2672 * otherwise it returns NULL. 2673 **/ 2674 static struct hbq_dmabuf * 2675 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2676 { 2677 struct lpfc_dmabuf *d_buf; 2678 struct hbq_dmabuf *hbq_buf; 2679 uint32_t hbqno; 2680 2681 hbqno = tag >> 16; 2682 if (hbqno >= LPFC_MAX_HBQS) 2683 return NULL; 2684 2685 spin_lock_irq(&phba->hbalock); 2686 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2687 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2688 if (hbq_buf->tag == tag) { 2689 spin_unlock_irq(&phba->hbalock); 2690 return hbq_buf; 2691 } 2692 } 2693 spin_unlock_irq(&phba->hbalock); 2694 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2695 "1803 Bad hbq tag. Data: x%x x%x\n", 2696 tag, phba->hbqs[tag >> 16].buffer_count); 2697 return NULL; 2698 } 2699 2700 /** 2701 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2702 * @phba: Pointer to HBA context object. 2703 * @hbq_buffer: Pointer to HBQ buffer. 2704 * 2705 * This function is called with hbalock. This function gives back 2706 * the hbq buffer to firmware. If the HBQ does not have space to 2707 * post the buffer, it will free the buffer. 2708 **/ 2709 void 2710 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2711 { 2712 uint32_t hbqno; 2713 2714 if (hbq_buffer) { 2715 hbqno = hbq_buffer->tag >> 16; 2716 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2717 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2718 } 2719 } 2720 2721 /** 2722 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2723 * @mbxCommand: mailbox command code. 2724 * 2725 * This function is called by the mailbox event handler function to verify 2726 * that the completed mailbox command is a legitimate mailbox command. If the 2727 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2728 * and the mailbox event handler will take the HBA offline. 2729 **/ 2730 static int 2731 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2732 { 2733 uint8_t ret; 2734 2735 switch (mbxCommand) { 2736 case MBX_LOAD_SM: 2737 case MBX_READ_NV: 2738 case MBX_WRITE_NV: 2739 case MBX_WRITE_VPARMS: 2740 case MBX_RUN_BIU_DIAG: 2741 case MBX_INIT_LINK: 2742 case MBX_DOWN_LINK: 2743 case MBX_CONFIG_LINK: 2744 case MBX_CONFIG_RING: 2745 case MBX_RESET_RING: 2746 case MBX_READ_CONFIG: 2747 case MBX_READ_RCONFIG: 2748 case MBX_READ_SPARM: 2749 case MBX_READ_STATUS: 2750 case MBX_READ_RPI: 2751 case MBX_READ_XRI: 2752 case MBX_READ_REV: 2753 case MBX_READ_LNK_STAT: 2754 case MBX_REG_LOGIN: 2755 case MBX_UNREG_LOGIN: 2756 case MBX_CLEAR_LA: 2757 case MBX_DUMP_MEMORY: 2758 case MBX_DUMP_CONTEXT: 2759 case MBX_RUN_DIAGS: 2760 case MBX_RESTART: 2761 case MBX_UPDATE_CFG: 2762 case MBX_DOWN_LOAD: 2763 case MBX_DEL_LD_ENTRY: 2764 case MBX_RUN_PROGRAM: 2765 case MBX_SET_MASK: 2766 case MBX_SET_VARIABLE: 2767 case MBX_UNREG_D_ID: 2768 case MBX_KILL_BOARD: 2769 case MBX_CONFIG_FARP: 2770 case MBX_BEACON: 2771 case MBX_LOAD_AREA: 2772 case MBX_RUN_BIU_DIAG64: 2773 case MBX_CONFIG_PORT: 2774 case MBX_READ_SPARM64: 2775 case MBX_READ_RPI64: 2776 case MBX_REG_LOGIN64: 2777 case MBX_READ_TOPOLOGY: 2778 case MBX_WRITE_WWN: 2779 case MBX_SET_DEBUG: 2780 case MBX_LOAD_EXP_ROM: 2781 case MBX_ASYNCEVT_ENABLE: 2782 case MBX_REG_VPI: 2783 case MBX_UNREG_VPI: 2784 case MBX_HEARTBEAT: 2785 case MBX_PORT_CAPABILITIES: 2786 case MBX_PORT_IOV_CONTROL: 2787 case MBX_SLI4_CONFIG: 2788 case MBX_SLI4_REQ_FTRS: 2789 case MBX_REG_FCFI: 2790 case MBX_UNREG_FCFI: 2791 case MBX_REG_VFI: 2792 case MBX_UNREG_VFI: 2793 case MBX_INIT_VPI: 2794 case MBX_INIT_VFI: 2795 case MBX_RESUME_RPI: 2796 case MBX_READ_EVENT_LOG_STATUS: 2797 case MBX_READ_EVENT_LOG: 2798 case MBX_SECURITY_MGMT: 2799 case MBX_AUTH_PORT: 2800 case MBX_ACCESS_VDATA: 2801 ret = mbxCommand; 2802 break; 2803 default: 2804 ret = MBX_SHUTDOWN; 2805 break; 2806 } 2807 return ret; 2808 } 2809 2810 /** 2811 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2812 * @phba: Pointer to HBA context object. 2813 * @pmboxq: Pointer to mailbox command. 2814 * 2815 * This is completion handler function for mailbox commands issued from 2816 * lpfc_sli_issue_mbox_wait function. This function is called by the 2817 * mailbox event handler function with no lock held. This function 2818 * will wake up thread waiting on the wait queue pointed by context1 2819 * of the mailbox. 2820 **/ 2821 void 2822 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2823 { 2824 unsigned long drvr_flag; 2825 struct completion *pmbox_done; 2826 2827 /* 2828 * If pmbox_done is empty, the driver thread gave up waiting and 2829 * continued running. 2830 */ 2831 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2832 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2833 pmbox_done = (struct completion *)pmboxq->context3; 2834 if (pmbox_done) 2835 complete(pmbox_done); 2836 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2837 return; 2838 } 2839 2840 static void 2841 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2842 { 2843 unsigned long iflags; 2844 2845 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2846 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2847 spin_lock_irqsave(&ndlp->lock, iflags); 2848 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2849 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2850 spin_unlock_irqrestore(&ndlp->lock, iflags); 2851 } 2852 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2853 } 2854 2855 void 2856 lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2857 { 2858 __lpfc_sli_rpi_release(vport, ndlp); 2859 } 2860 2861 /** 2862 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2863 * @phba: Pointer to HBA context object. 2864 * @pmb: Pointer to mailbox object. 2865 * 2866 * This function is the default mailbox completion handler. It 2867 * frees the memory resources associated with the completed mailbox 2868 * command. If the completed command is a REG_LOGIN mailbox command, 2869 * this function will issue a UREG_LOGIN to re-claim the RPI. 2870 **/ 2871 void 2872 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2873 { 2874 struct lpfc_vport *vport = pmb->vport; 2875 struct lpfc_dmabuf *mp; 2876 struct lpfc_nodelist *ndlp; 2877 struct Scsi_Host *shost; 2878 uint16_t rpi, vpi; 2879 int rc; 2880 2881 /* 2882 * If a REG_LOGIN succeeded after node is destroyed or node 2883 * is in re-discovery driver need to cleanup the RPI. 2884 */ 2885 if (!(phba->pport->load_flag & FC_UNLOADING) && 2886 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2887 !pmb->u.mb.mbxStatus) { 2888 mp = (struct lpfc_dmabuf *)pmb->ctx_buf; 2889 if (mp) { 2890 pmb->ctx_buf = NULL; 2891 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2892 kfree(mp); 2893 } 2894 rpi = pmb->u.mb.un.varWords[0]; 2895 vpi = pmb->u.mb.un.varRegLogin.vpi; 2896 if (phba->sli_rev == LPFC_SLI_REV4) 2897 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2898 lpfc_unreg_login(phba, vpi, rpi, pmb); 2899 pmb->vport = vport; 2900 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2901 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2902 if (rc != MBX_NOT_FINISHED) 2903 return; 2904 } 2905 2906 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2907 !(phba->pport->load_flag & FC_UNLOADING) && 2908 !pmb->u.mb.mbxStatus) { 2909 shost = lpfc_shost_from_vport(vport); 2910 spin_lock_irq(shost->host_lock); 2911 vport->vpi_state |= LPFC_VPI_REGISTERED; 2912 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2913 spin_unlock_irq(shost->host_lock); 2914 } 2915 2916 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2917 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2918 lpfc_nlp_put(ndlp); 2919 } 2920 2921 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2922 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2923 2924 /* Check to see if there are any deferred events to process */ 2925 if (ndlp) { 2926 lpfc_printf_vlog( 2927 vport, 2928 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2929 "1438 UNREG cmpl deferred mbox x%x " 2930 "on NPort x%x Data: x%x x%x x%px x%x x%x\n", 2931 ndlp->nlp_rpi, ndlp->nlp_DID, 2932 ndlp->nlp_flag, ndlp->nlp_defer_did, 2933 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2934 2935 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2936 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2937 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2938 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2939 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2940 } else { 2941 __lpfc_sli_rpi_release(vport, ndlp); 2942 } 2943 2944 /* The unreg_login mailbox is complete and had a 2945 * reference that has to be released. The PLOGI 2946 * got its own ref. 2947 */ 2948 lpfc_nlp_put(ndlp); 2949 pmb->ctx_ndlp = NULL; 2950 } 2951 } 2952 2953 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2954 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2955 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2956 lpfc_nlp_put(ndlp); 2957 } 2958 2959 /* Check security permission status on INIT_LINK mailbox command */ 2960 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2961 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2962 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2963 "2860 SLI authentication is required " 2964 "for INIT_LINK but has not done yet\n"); 2965 2966 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2967 lpfc_sli4_mbox_cmd_free(phba, pmb); 2968 else 2969 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 2970 } 2971 /** 2972 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2973 * @phba: Pointer to HBA context object. 2974 * @pmb: Pointer to mailbox object. 2975 * 2976 * This function is the unreg rpi mailbox completion handler. It 2977 * frees the memory resources associated with the completed mailbox 2978 * command. An additional reference is put on the ndlp to prevent 2979 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2980 * the unreg mailbox command completes, this routine puts the 2981 * reference back. 2982 * 2983 **/ 2984 void 2985 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2986 { 2987 struct lpfc_vport *vport = pmb->vport; 2988 struct lpfc_nodelist *ndlp; 2989 2990 ndlp = pmb->ctx_ndlp; 2991 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2992 if (phba->sli_rev == LPFC_SLI_REV4 && 2993 (bf_get(lpfc_sli_intf_if_type, 2994 &phba->sli4_hba.sli_intf) >= 2995 LPFC_SLI_INTF_IF_TYPE_2)) { 2996 if (ndlp) { 2997 lpfc_printf_vlog( 2998 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2999 "0010 UNREG_LOGIN vpi:%x " 3000 "rpi:%x DID:%x defer x%x flg x%x " 3001 "x%px\n", 3002 vport->vpi, ndlp->nlp_rpi, 3003 ndlp->nlp_DID, ndlp->nlp_defer_did, 3004 ndlp->nlp_flag, 3005 ndlp); 3006 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 3007 3008 /* Check to see if there are any deferred 3009 * events to process 3010 */ 3011 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 3012 (ndlp->nlp_defer_did != 3013 NLP_EVT_NOTHING_PENDING)) { 3014 lpfc_printf_vlog( 3015 vport, KERN_INFO, LOG_DISCOVERY, 3016 "4111 UNREG cmpl deferred " 3017 "clr x%x on " 3018 "NPort x%x Data: x%x x%px\n", 3019 ndlp->nlp_rpi, ndlp->nlp_DID, 3020 ndlp->nlp_defer_did, ndlp); 3021 ndlp->nlp_flag &= ~NLP_UNREG_INP; 3022 ndlp->nlp_defer_did = 3023 NLP_EVT_NOTHING_PENDING; 3024 lpfc_issue_els_plogi( 3025 vport, ndlp->nlp_DID, 0); 3026 } else { 3027 __lpfc_sli_rpi_release(vport, ndlp); 3028 } 3029 lpfc_nlp_put(ndlp); 3030 } 3031 } 3032 } 3033 3034 mempool_free(pmb, phba->mbox_mem_pool); 3035 } 3036 3037 /** 3038 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 3039 * @phba: Pointer to HBA context object. 3040 * 3041 * This function is called with no lock held. This function processes all 3042 * the completed mailbox commands and gives it to upper layers. The interrupt 3043 * service routine processes mailbox completion interrupt and adds completed 3044 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 3045 * Worker thread call lpfc_sli_handle_mb_event, which will return the 3046 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 3047 * function returns the mailbox commands to the upper layer by calling the 3048 * completion handler function of each mailbox. 3049 **/ 3050 int 3051 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 3052 { 3053 MAILBOX_t *pmbox; 3054 LPFC_MBOXQ_t *pmb; 3055 int rc; 3056 LIST_HEAD(cmplq); 3057 3058 phba->sli.slistat.mbox_event++; 3059 3060 /* Get all completed mailboxe buffers into the cmplq */ 3061 spin_lock_irq(&phba->hbalock); 3062 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 3063 spin_unlock_irq(&phba->hbalock); 3064 3065 /* Get a Mailbox buffer to setup mailbox commands for callback */ 3066 do { 3067 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 3068 if (pmb == NULL) 3069 break; 3070 3071 pmbox = &pmb->u.mb; 3072 3073 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 3074 if (pmb->vport) { 3075 lpfc_debugfs_disc_trc(pmb->vport, 3076 LPFC_DISC_TRC_MBOX_VPORT, 3077 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 3078 (uint32_t)pmbox->mbxCommand, 3079 pmbox->un.varWords[0], 3080 pmbox->un.varWords[1]); 3081 } 3082 else { 3083 lpfc_debugfs_disc_trc(phba->pport, 3084 LPFC_DISC_TRC_MBOX, 3085 "MBOX cmpl: cmd:x%x mb:x%x x%x", 3086 (uint32_t)pmbox->mbxCommand, 3087 pmbox->un.varWords[0], 3088 pmbox->un.varWords[1]); 3089 } 3090 } 3091 3092 /* 3093 * It is a fatal error if unknown mbox command completion. 3094 */ 3095 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 3096 MBX_SHUTDOWN) { 3097 /* Unknown mailbox command compl */ 3098 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3099 "(%d):0323 Unknown Mailbox command " 3100 "x%x (x%x/x%x) Cmpl\n", 3101 pmb->vport ? pmb->vport->vpi : 3102 LPFC_VPORT_UNKNOWN, 3103 pmbox->mbxCommand, 3104 lpfc_sli_config_mbox_subsys_get(phba, 3105 pmb), 3106 lpfc_sli_config_mbox_opcode_get(phba, 3107 pmb)); 3108 phba->link_state = LPFC_HBA_ERROR; 3109 phba->work_hs = HS_FFER3; 3110 lpfc_handle_eratt(phba); 3111 continue; 3112 } 3113 3114 if (pmbox->mbxStatus) { 3115 phba->sli.slistat.mbox_stat_err++; 3116 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 3117 /* Mbox cmd cmpl error - RETRYing */ 3118 lpfc_printf_log(phba, KERN_INFO, 3119 LOG_MBOX | LOG_SLI, 3120 "(%d):0305 Mbox cmd cmpl " 3121 "error - RETRYing Data: x%x " 3122 "(x%x/x%x) x%x x%x x%x\n", 3123 pmb->vport ? pmb->vport->vpi : 3124 LPFC_VPORT_UNKNOWN, 3125 pmbox->mbxCommand, 3126 lpfc_sli_config_mbox_subsys_get(phba, 3127 pmb), 3128 lpfc_sli_config_mbox_opcode_get(phba, 3129 pmb), 3130 pmbox->mbxStatus, 3131 pmbox->un.varWords[0], 3132 pmb->vport ? pmb->vport->port_state : 3133 LPFC_VPORT_UNKNOWN); 3134 pmbox->mbxStatus = 0; 3135 pmbox->mbxOwner = OWN_HOST; 3136 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3137 if (rc != MBX_NOT_FINISHED) 3138 continue; 3139 } 3140 } 3141 3142 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 3143 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 3144 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 3145 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 3146 "x%x x%x x%x\n", 3147 pmb->vport ? pmb->vport->vpi : 0, 3148 pmbox->mbxCommand, 3149 lpfc_sli_config_mbox_subsys_get(phba, pmb), 3150 lpfc_sli_config_mbox_opcode_get(phba, pmb), 3151 pmb->mbox_cmpl, 3152 *((uint32_t *) pmbox), 3153 pmbox->un.varWords[0], 3154 pmbox->un.varWords[1], 3155 pmbox->un.varWords[2], 3156 pmbox->un.varWords[3], 3157 pmbox->un.varWords[4], 3158 pmbox->un.varWords[5], 3159 pmbox->un.varWords[6], 3160 pmbox->un.varWords[7], 3161 pmbox->un.varWords[8], 3162 pmbox->un.varWords[9], 3163 pmbox->un.varWords[10]); 3164 3165 if (pmb->mbox_cmpl) 3166 pmb->mbox_cmpl(phba,pmb); 3167 } while (1); 3168 return 0; 3169 } 3170 3171 /** 3172 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 3173 * @phba: Pointer to HBA context object. 3174 * @pring: Pointer to driver SLI ring object. 3175 * @tag: buffer tag. 3176 * 3177 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 3178 * is set in the tag the buffer is posted for a particular exchange, 3179 * the function will return the buffer without replacing the buffer. 3180 * If the buffer is for unsolicited ELS or CT traffic, this function 3181 * returns the buffer and also posts another buffer to the firmware. 3182 **/ 3183 static struct lpfc_dmabuf * 3184 lpfc_sli_get_buff(struct lpfc_hba *phba, 3185 struct lpfc_sli_ring *pring, 3186 uint32_t tag) 3187 { 3188 struct hbq_dmabuf *hbq_entry; 3189 3190 if (tag & QUE_BUFTAG_BIT) 3191 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 3192 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 3193 if (!hbq_entry) 3194 return NULL; 3195 return &hbq_entry->dbuf; 3196 } 3197 3198 /** 3199 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 3200 * containing a NVME LS request. 3201 * @phba: pointer to lpfc hba data structure. 3202 * @piocb: pointer to the iocbq struct representing the sequence starting 3203 * frame. 3204 * 3205 * This routine initially validates the NVME LS, validates there is a login 3206 * with the port that sent the LS, and then calls the appropriate nvme host 3207 * or target LS request handler. 3208 **/ 3209 static void 3210 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 3211 { 3212 struct lpfc_nodelist *ndlp; 3213 struct lpfc_dmabuf *d_buf; 3214 struct hbq_dmabuf *nvmebuf; 3215 struct fc_frame_header *fc_hdr; 3216 struct lpfc_async_xchg_ctx *axchg = NULL; 3217 char *failwhy = NULL; 3218 uint32_t oxid, sid, did, fctl, size; 3219 int ret = 1; 3220 3221 d_buf = piocb->cmd_dmabuf; 3222 3223 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 3224 fc_hdr = nvmebuf->hbuf.virt; 3225 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 3226 sid = sli4_sid_from_fc_hdr(fc_hdr); 3227 did = sli4_did_from_fc_hdr(fc_hdr); 3228 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 3229 fc_hdr->fh_f_ctl[1] << 8 | 3230 fc_hdr->fh_f_ctl[2]); 3231 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 3232 3233 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 3234 oxid, size, sid); 3235 3236 if (phba->pport->load_flag & FC_UNLOADING) { 3237 failwhy = "Driver Unloading"; 3238 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 3239 failwhy = "NVME FC4 Disabled"; 3240 } else if (!phba->nvmet_support && !phba->pport->localport) { 3241 failwhy = "No Localport"; 3242 } else if (phba->nvmet_support && !phba->targetport) { 3243 failwhy = "No Targetport"; 3244 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 3245 failwhy = "Bad NVME LS R_CTL"; 3246 } else if (unlikely((fctl & 0x00FF0000) != 3247 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 3248 failwhy = "Bad NVME LS F_CTL"; 3249 } else { 3250 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 3251 if (!axchg) 3252 failwhy = "No CTX memory"; 3253 } 3254 3255 if (unlikely(failwhy)) { 3256 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3257 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 3258 sid, oxid, failwhy); 3259 goto out_fail; 3260 } 3261 3262 /* validate the source of the LS is logged in */ 3263 ndlp = lpfc_findnode_did(phba->pport, sid); 3264 if (!ndlp || 3265 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3266 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3267 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 3268 "6216 NVME Unsol rcv: No ndlp: " 3269 "NPort_ID x%x oxid x%x\n", 3270 sid, oxid); 3271 goto out_fail; 3272 } 3273 3274 axchg->phba = phba; 3275 axchg->ndlp = ndlp; 3276 axchg->size = size; 3277 axchg->oxid = oxid; 3278 axchg->sid = sid; 3279 axchg->wqeq = NULL; 3280 axchg->state = LPFC_NVME_STE_LS_RCV; 3281 axchg->entry_cnt = 1; 3282 axchg->rqb_buffer = (void *)nvmebuf; 3283 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3284 axchg->payload = nvmebuf->dbuf.virt; 3285 INIT_LIST_HEAD(&axchg->list); 3286 3287 if (phba->nvmet_support) { 3288 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3289 spin_lock_irq(&ndlp->lock); 3290 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3291 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3292 spin_unlock_irq(&ndlp->lock); 3293 3294 /* This reference is a single occurrence to hold the 3295 * node valid until the nvmet transport calls 3296 * host_release. 3297 */ 3298 if (!lpfc_nlp_get(ndlp)) 3299 goto out_fail; 3300 3301 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3302 "6206 NVMET unsol ls_req ndlp x%px " 3303 "DID x%x xflags x%x refcnt %d\n", 3304 ndlp, ndlp->nlp_DID, 3305 ndlp->fc4_xpt_flags, 3306 kref_read(&ndlp->kref)); 3307 } else { 3308 spin_unlock_irq(&ndlp->lock); 3309 } 3310 } else { 3311 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3312 } 3313 3314 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3315 if (!ret) 3316 return; 3317 3318 out_fail: 3319 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3320 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3321 "NVMe%s handler failed %d\n", 3322 did, sid, oxid, 3323 (phba->nvmet_support) ? "T" : "I", ret); 3324 3325 /* recycle receive buffer */ 3326 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3327 3328 /* If start of new exchange, abort it */ 3329 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3330 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3331 3332 if (ret) 3333 kfree(axchg); 3334 } 3335 3336 /** 3337 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3338 * @phba: Pointer to HBA context object. 3339 * @pring: Pointer to driver SLI ring object. 3340 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3341 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3342 * @fch_type: the type for the first frame of the sequence. 3343 * 3344 * This function is called with no lock held. This function uses the r_ctl and 3345 * type of the received sequence to find the correct callback function to call 3346 * to process the sequence. 3347 **/ 3348 static int 3349 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3350 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3351 uint32_t fch_type) 3352 { 3353 int i; 3354 3355 switch (fch_type) { 3356 case FC_TYPE_NVME: 3357 lpfc_nvme_unsol_ls_handler(phba, saveq); 3358 return 1; 3359 default: 3360 break; 3361 } 3362 3363 /* unSolicited Responses */ 3364 if (pring->prt[0].profile) { 3365 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3366 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3367 saveq); 3368 return 1; 3369 } 3370 /* We must search, based on rctl / type 3371 for the right routine */ 3372 for (i = 0; i < pring->num_mask; i++) { 3373 if ((pring->prt[i].rctl == fch_r_ctl) && 3374 (pring->prt[i].type == fch_type)) { 3375 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3376 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3377 (phba, pring, saveq); 3378 return 1; 3379 } 3380 } 3381 return 0; 3382 } 3383 3384 static void 3385 lpfc_sli_prep_unsol_wqe(struct lpfc_hba *phba, 3386 struct lpfc_iocbq *saveq) 3387 { 3388 IOCB_t *irsp; 3389 union lpfc_wqe128 *wqe; 3390 u16 i = 0; 3391 3392 irsp = &saveq->iocb; 3393 wqe = &saveq->wqe; 3394 3395 /* Fill wcqe with the IOCB status fields */ 3396 bf_set(lpfc_wcqe_c_status, &saveq->wcqe_cmpl, irsp->ulpStatus); 3397 saveq->wcqe_cmpl.word3 = irsp->ulpBdeCount; 3398 saveq->wcqe_cmpl.parameter = irsp->un.ulpWord[4]; 3399 saveq->wcqe_cmpl.total_data_placed = irsp->unsli3.rcvsli3.acc_len; 3400 3401 /* Source ID */ 3402 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, irsp->un.rcvels.parmRo); 3403 3404 /* rx-id of the response frame */ 3405 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, irsp->ulpContext); 3406 3407 /* ox-id of the frame */ 3408 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 3409 irsp->unsli3.rcvsli3.ox_id); 3410 3411 /* DID */ 3412 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 3413 irsp->un.rcvels.remoteID); 3414 3415 /* unsol data len */ 3416 for (i = 0; i < irsp->ulpBdeCount; i++) { 3417 struct lpfc_hbq_entry *hbqe = NULL; 3418 3419 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3420 if (i == 0) { 3421 hbqe = (struct lpfc_hbq_entry *) 3422 &irsp->un.ulpWord[0]; 3423 saveq->wqe.gen_req.bde.tus.f.bdeSize = 3424 hbqe->bde.tus.f.bdeSize; 3425 } else if (i == 1) { 3426 hbqe = (struct lpfc_hbq_entry *) 3427 &irsp->unsli3.sli3Words[4]; 3428 saveq->unsol_rcv_len = hbqe->bde.tus.f.bdeSize; 3429 } 3430 } 3431 } 3432 } 3433 3434 /** 3435 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3436 * @phba: Pointer to HBA context object. 3437 * @pring: Pointer to driver SLI ring object. 3438 * @saveq: Pointer to the unsolicited iocb. 3439 * 3440 * This function is called with no lock held by the ring event handler 3441 * when there is an unsolicited iocb posted to the response ring by the 3442 * firmware. This function gets the buffer associated with the iocbs 3443 * and calls the event handler for the ring. This function handles both 3444 * qring buffers and hbq buffers. 3445 * When the function returns 1 the caller can free the iocb object otherwise 3446 * upper layer functions will free the iocb objects. 3447 **/ 3448 static int 3449 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3450 struct lpfc_iocbq *saveq) 3451 { 3452 IOCB_t * irsp; 3453 WORD5 * w5p; 3454 dma_addr_t paddr; 3455 uint32_t Rctl, Type; 3456 struct lpfc_iocbq *iocbq; 3457 struct lpfc_dmabuf *dmzbuf; 3458 3459 irsp = &saveq->iocb; 3460 saveq->vport = phba->pport; 3461 3462 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3463 if (pring->lpfc_sli_rcv_async_status) 3464 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3465 else 3466 lpfc_printf_log(phba, 3467 KERN_WARNING, 3468 LOG_SLI, 3469 "0316 Ring %d handler: unexpected " 3470 "ASYNC_STATUS iocb received evt_code " 3471 "0x%x\n", 3472 pring->ringno, 3473 irsp->un.asyncstat.evt_code); 3474 return 1; 3475 } 3476 3477 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3478 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3479 if (irsp->ulpBdeCount > 0) { 3480 dmzbuf = lpfc_sli_get_buff(phba, pring, 3481 irsp->un.ulpWord[3]); 3482 lpfc_in_buf_free(phba, dmzbuf); 3483 } 3484 3485 if (irsp->ulpBdeCount > 1) { 3486 dmzbuf = lpfc_sli_get_buff(phba, pring, 3487 irsp->unsli3.sli3Words[3]); 3488 lpfc_in_buf_free(phba, dmzbuf); 3489 } 3490 3491 if (irsp->ulpBdeCount > 2) { 3492 dmzbuf = lpfc_sli_get_buff(phba, pring, 3493 irsp->unsli3.sli3Words[7]); 3494 lpfc_in_buf_free(phba, dmzbuf); 3495 } 3496 3497 return 1; 3498 } 3499 3500 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3501 if (irsp->ulpBdeCount != 0) { 3502 saveq->cmd_dmabuf = lpfc_sli_get_buff(phba, pring, 3503 irsp->un.ulpWord[3]); 3504 if (!saveq->cmd_dmabuf) 3505 lpfc_printf_log(phba, 3506 KERN_ERR, 3507 LOG_SLI, 3508 "0341 Ring %d Cannot find buffer for " 3509 "an unsolicited iocb. tag 0x%x\n", 3510 pring->ringno, 3511 irsp->un.ulpWord[3]); 3512 } 3513 if (irsp->ulpBdeCount == 2) { 3514 saveq->bpl_dmabuf = lpfc_sli_get_buff(phba, pring, 3515 irsp->unsli3.sli3Words[7]); 3516 if (!saveq->bpl_dmabuf) 3517 lpfc_printf_log(phba, 3518 KERN_ERR, 3519 LOG_SLI, 3520 "0342 Ring %d Cannot find buffer for an" 3521 " unsolicited iocb. tag 0x%x\n", 3522 pring->ringno, 3523 irsp->unsli3.sli3Words[7]); 3524 } 3525 list_for_each_entry(iocbq, &saveq->list, list) { 3526 irsp = &iocbq->iocb; 3527 if (irsp->ulpBdeCount != 0) { 3528 iocbq->cmd_dmabuf = lpfc_sli_get_buff(phba, 3529 pring, 3530 irsp->un.ulpWord[3]); 3531 if (!iocbq->cmd_dmabuf) 3532 lpfc_printf_log(phba, 3533 KERN_ERR, 3534 LOG_SLI, 3535 "0343 Ring %d Cannot find " 3536 "buffer for an unsolicited iocb" 3537 ". tag 0x%x\n", pring->ringno, 3538 irsp->un.ulpWord[3]); 3539 } 3540 if (irsp->ulpBdeCount == 2) { 3541 iocbq->bpl_dmabuf = lpfc_sli_get_buff(phba, 3542 pring, 3543 irsp->unsli3.sli3Words[7]); 3544 if (!iocbq->bpl_dmabuf) 3545 lpfc_printf_log(phba, 3546 KERN_ERR, 3547 LOG_SLI, 3548 "0344 Ring %d Cannot find " 3549 "buffer for an unsolicited " 3550 "iocb. tag 0x%x\n", 3551 pring->ringno, 3552 irsp->unsli3.sli3Words[7]); 3553 } 3554 } 3555 } else { 3556 paddr = getPaddr(irsp->un.cont64[0].addrHigh, 3557 irsp->un.cont64[0].addrLow); 3558 saveq->cmd_dmabuf = lpfc_sli_ringpostbuf_get(phba, pring, 3559 paddr); 3560 if (irsp->ulpBdeCount == 2) { 3561 paddr = getPaddr(irsp->un.cont64[1].addrHigh, 3562 irsp->un.cont64[1].addrLow); 3563 saveq->bpl_dmabuf = lpfc_sli_ringpostbuf_get(phba, 3564 pring, 3565 paddr); 3566 } 3567 } 3568 3569 if (irsp->ulpBdeCount != 0 && 3570 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3571 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3572 int found = 0; 3573 3574 /* search continue save q for same XRI */ 3575 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3576 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3577 saveq->iocb.unsli3.rcvsli3.ox_id) { 3578 list_add_tail(&saveq->list, &iocbq->list); 3579 found = 1; 3580 break; 3581 } 3582 } 3583 if (!found) 3584 list_add_tail(&saveq->clist, 3585 &pring->iocb_continue_saveq); 3586 3587 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3588 list_del_init(&iocbq->clist); 3589 saveq = iocbq; 3590 irsp = &saveq->iocb; 3591 } else { 3592 return 0; 3593 } 3594 } 3595 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3596 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3597 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3598 Rctl = FC_RCTL_ELS_REQ; 3599 Type = FC_TYPE_ELS; 3600 } else { 3601 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3602 Rctl = w5p->hcsw.Rctl; 3603 Type = w5p->hcsw.Type; 3604 3605 /* Firmware Workaround */ 3606 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3607 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3608 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3609 Rctl = FC_RCTL_ELS_REQ; 3610 Type = FC_TYPE_ELS; 3611 w5p->hcsw.Rctl = Rctl; 3612 w5p->hcsw.Type = Type; 3613 } 3614 } 3615 3616 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) && 3617 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX || 3618 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3619 if (irsp->unsli3.rcvsli3.vpi == 0xffff) 3620 saveq->vport = phba->pport; 3621 else 3622 saveq->vport = lpfc_find_vport_by_vpid(phba, 3623 irsp->unsli3.rcvsli3.vpi); 3624 } 3625 3626 /* Prepare WQE with Unsol frame */ 3627 lpfc_sli_prep_unsol_wqe(phba, saveq); 3628 3629 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3630 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3631 "0313 Ring %d handler: unexpected Rctl x%x " 3632 "Type x%x received\n", 3633 pring->ringno, Rctl, Type); 3634 3635 return 1; 3636 } 3637 3638 /** 3639 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3640 * @phba: Pointer to HBA context object. 3641 * @pring: Pointer to driver SLI ring object. 3642 * @prspiocb: Pointer to response iocb object. 3643 * 3644 * This function looks up the iocb_lookup table to get the command iocb 3645 * corresponding to the given response iocb using the iotag of the 3646 * response iocb. The driver calls this function with the hbalock held 3647 * for SLI3 ports or the ring lock held for SLI4 ports. 3648 * This function returns the command iocb object if it finds the command 3649 * iocb else returns NULL. 3650 **/ 3651 static struct lpfc_iocbq * 3652 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3653 struct lpfc_sli_ring *pring, 3654 struct lpfc_iocbq *prspiocb) 3655 { 3656 struct lpfc_iocbq *cmd_iocb = NULL; 3657 u16 iotag; 3658 3659 if (phba->sli_rev == LPFC_SLI_REV4) 3660 iotag = get_wqe_reqtag(prspiocb); 3661 else 3662 iotag = prspiocb->iocb.ulpIoTag; 3663 3664 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3665 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3666 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3667 /* remove from txcmpl queue list */ 3668 list_del_init(&cmd_iocb->list); 3669 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3670 pring->txcmplq_cnt--; 3671 return cmd_iocb; 3672 } 3673 } 3674 3675 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3676 "0317 iotag x%x is out of " 3677 "range: max iotag x%x\n", 3678 iotag, phba->sli.last_iotag); 3679 return NULL; 3680 } 3681 3682 /** 3683 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3684 * @phba: Pointer to HBA context object. 3685 * @pring: Pointer to driver SLI ring object. 3686 * @iotag: IOCB tag. 3687 * 3688 * This function looks up the iocb_lookup table to get the command iocb 3689 * corresponding to the given iotag. The driver calls this function with 3690 * the ring lock held because this function is an SLI4 port only helper. 3691 * This function returns the command iocb object if it finds the command 3692 * iocb else returns NULL. 3693 **/ 3694 static struct lpfc_iocbq * 3695 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3696 struct lpfc_sli_ring *pring, uint16_t iotag) 3697 { 3698 struct lpfc_iocbq *cmd_iocb = NULL; 3699 3700 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3701 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3702 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3703 /* remove from txcmpl queue list */ 3704 list_del_init(&cmd_iocb->list); 3705 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3706 pring->txcmplq_cnt--; 3707 return cmd_iocb; 3708 } 3709 } 3710 3711 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3712 "0372 iotag x%x lookup error: max iotag (x%x) " 3713 "cmd_flag x%x\n", 3714 iotag, phba->sli.last_iotag, 3715 cmd_iocb ? cmd_iocb->cmd_flag : 0xffff); 3716 return NULL; 3717 } 3718 3719 /** 3720 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3721 * @phba: Pointer to HBA context object. 3722 * @pring: Pointer to driver SLI ring object. 3723 * @saveq: Pointer to the response iocb to be processed. 3724 * 3725 * This function is called by the ring event handler for non-fcp 3726 * rings when there is a new response iocb in the response ring. 3727 * The caller is not required to hold any locks. This function 3728 * gets the command iocb associated with the response iocb and 3729 * calls the completion handler for the command iocb. If there 3730 * is no completion handler, the function will free the resources 3731 * associated with command iocb. If the response iocb is for 3732 * an already aborted command iocb, the status of the completion 3733 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3734 * This function always returns 1. 3735 **/ 3736 static int 3737 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3738 struct lpfc_iocbq *saveq) 3739 { 3740 struct lpfc_iocbq *cmdiocbp; 3741 unsigned long iflag; 3742 u32 ulp_command, ulp_status, ulp_word4, ulp_context, iotag; 3743 3744 if (phba->sli_rev == LPFC_SLI_REV4) 3745 spin_lock_irqsave(&pring->ring_lock, iflag); 3746 else 3747 spin_lock_irqsave(&phba->hbalock, iflag); 3748 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3749 if (phba->sli_rev == LPFC_SLI_REV4) 3750 spin_unlock_irqrestore(&pring->ring_lock, iflag); 3751 else 3752 spin_unlock_irqrestore(&phba->hbalock, iflag); 3753 3754 ulp_command = get_job_cmnd(phba, saveq); 3755 ulp_status = get_job_ulpstatus(phba, saveq); 3756 ulp_word4 = get_job_word4(phba, saveq); 3757 ulp_context = get_job_ulpcontext(phba, saveq); 3758 if (phba->sli_rev == LPFC_SLI_REV4) 3759 iotag = get_wqe_reqtag(saveq); 3760 else 3761 iotag = saveq->iocb.ulpIoTag; 3762 3763 if (cmdiocbp) { 3764 ulp_command = get_job_cmnd(phba, cmdiocbp); 3765 if (cmdiocbp->cmd_cmpl) { 3766 /* 3767 * If an ELS command failed send an event to mgmt 3768 * application. 3769 */ 3770 if (ulp_status && 3771 (pring->ringno == LPFC_ELS_RING) && 3772 (ulp_command == CMD_ELS_REQUEST64_CR)) 3773 lpfc_send_els_failure_event(phba, 3774 cmdiocbp, saveq); 3775 3776 /* 3777 * Post all ELS completions to the worker thread. 3778 * All other are passed to the completion callback. 3779 */ 3780 if (pring->ringno == LPFC_ELS_RING) { 3781 if ((phba->sli_rev < LPFC_SLI_REV4) && 3782 (cmdiocbp->cmd_flag & 3783 LPFC_DRIVER_ABORTED)) { 3784 spin_lock_irqsave(&phba->hbalock, 3785 iflag); 3786 cmdiocbp->cmd_flag &= 3787 ~LPFC_DRIVER_ABORTED; 3788 spin_unlock_irqrestore(&phba->hbalock, 3789 iflag); 3790 saveq->iocb.ulpStatus = 3791 IOSTAT_LOCAL_REJECT; 3792 saveq->iocb.un.ulpWord[4] = 3793 IOERR_SLI_ABORTED; 3794 3795 /* Firmware could still be in progress 3796 * of DMAing payload, so don't free data 3797 * buffer till after a hbeat. 3798 */ 3799 spin_lock_irqsave(&phba->hbalock, 3800 iflag); 3801 saveq->cmd_flag |= LPFC_DELAY_MEM_FREE; 3802 spin_unlock_irqrestore(&phba->hbalock, 3803 iflag); 3804 } 3805 if (phba->sli_rev == LPFC_SLI_REV4) { 3806 if (saveq->cmd_flag & 3807 LPFC_EXCHANGE_BUSY) { 3808 /* Set cmdiocb flag for the 3809 * exchange busy so sgl (xri) 3810 * will not be released until 3811 * the abort xri is received 3812 * from hba. 3813 */ 3814 spin_lock_irqsave( 3815 &phba->hbalock, iflag); 3816 cmdiocbp->cmd_flag |= 3817 LPFC_EXCHANGE_BUSY; 3818 spin_unlock_irqrestore( 3819 &phba->hbalock, iflag); 3820 } 3821 if (cmdiocbp->cmd_flag & 3822 LPFC_DRIVER_ABORTED) { 3823 /* 3824 * Clear LPFC_DRIVER_ABORTED 3825 * bit in case it was driver 3826 * initiated abort. 3827 */ 3828 spin_lock_irqsave( 3829 &phba->hbalock, iflag); 3830 cmdiocbp->cmd_flag &= 3831 ~LPFC_DRIVER_ABORTED; 3832 spin_unlock_irqrestore( 3833 &phba->hbalock, iflag); 3834 set_job_ulpstatus(cmdiocbp, 3835 IOSTAT_LOCAL_REJECT); 3836 set_job_ulpword4(cmdiocbp, 3837 IOERR_ABORT_REQUESTED); 3838 /* 3839 * For SLI4, irspiocb contains 3840 * NO_XRI in sli_xritag, it 3841 * shall not affect releasing 3842 * sgl (xri) process. 3843 */ 3844 set_job_ulpstatus(saveq, 3845 IOSTAT_LOCAL_REJECT); 3846 set_job_ulpword4(saveq, 3847 IOERR_SLI_ABORTED); 3848 spin_lock_irqsave( 3849 &phba->hbalock, iflag); 3850 saveq->cmd_flag |= 3851 LPFC_DELAY_MEM_FREE; 3852 spin_unlock_irqrestore( 3853 &phba->hbalock, iflag); 3854 } 3855 } 3856 } 3857 cmdiocbp->cmd_cmpl(phba, cmdiocbp, saveq); 3858 } else 3859 lpfc_sli_release_iocbq(phba, cmdiocbp); 3860 } else { 3861 /* 3862 * Unknown initiating command based on the response iotag. 3863 * This could be the case on the ELS ring because of 3864 * lpfc_els_abort(). 3865 */ 3866 if (pring->ringno != LPFC_ELS_RING) { 3867 /* 3868 * Ring <ringno> handler: unexpected completion IoTag 3869 * <IoTag> 3870 */ 3871 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3872 "0322 Ring %d handler: " 3873 "unexpected completion IoTag x%x " 3874 "Data: x%x x%x x%x x%x\n", 3875 pring->ringno, iotag, ulp_status, 3876 ulp_word4, ulp_command, ulp_context); 3877 } 3878 } 3879 3880 return 1; 3881 } 3882 3883 /** 3884 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3885 * @phba: Pointer to HBA context object. 3886 * @pring: Pointer to driver SLI ring object. 3887 * 3888 * This function is called from the iocb ring event handlers when 3889 * put pointer is ahead of the get pointer for a ring. This function signal 3890 * an error attention condition to the worker thread and the worker 3891 * thread will transition the HBA to offline state. 3892 **/ 3893 static void 3894 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3895 { 3896 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3897 /* 3898 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3899 * rsp ring <portRspMax> 3900 */ 3901 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3902 "0312 Ring %d handler: portRspPut %d " 3903 "is bigger than rsp ring %d\n", 3904 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3905 pring->sli.sli3.numRiocb); 3906 3907 phba->link_state = LPFC_HBA_ERROR; 3908 3909 /* 3910 * All error attention handlers are posted to 3911 * worker thread 3912 */ 3913 phba->work_ha |= HA_ERATT; 3914 phba->work_hs = HS_FFER3; 3915 3916 lpfc_worker_wake_up(phba); 3917 3918 return; 3919 } 3920 3921 /** 3922 * lpfc_poll_eratt - Error attention polling timer timeout handler 3923 * @t: Context to fetch pointer to address of HBA context object from. 3924 * 3925 * This function is invoked by the Error Attention polling timer when the 3926 * timer times out. It will check the SLI Error Attention register for 3927 * possible attention events. If so, it will post an Error Attention event 3928 * and wake up worker thread to process it. Otherwise, it will set up the 3929 * Error Attention polling timer for the next poll. 3930 **/ 3931 void lpfc_poll_eratt(struct timer_list *t) 3932 { 3933 struct lpfc_hba *phba; 3934 uint32_t eratt = 0; 3935 uint64_t sli_intr, cnt; 3936 3937 phba = from_timer(phba, t, eratt_poll); 3938 if (!(phba->hba_flag & HBA_SETUP)) 3939 return; 3940 3941 /* Here we will also keep track of interrupts per sec of the hba */ 3942 sli_intr = phba->sli.slistat.sli_intr; 3943 3944 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3945 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3946 sli_intr); 3947 else 3948 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3949 3950 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3951 do_div(cnt, phba->eratt_poll_interval); 3952 phba->sli.slistat.sli_ips = cnt; 3953 3954 phba->sli.slistat.sli_prev_intr = sli_intr; 3955 3956 /* Check chip HA register for error event */ 3957 eratt = lpfc_sli_check_eratt(phba); 3958 3959 if (eratt) 3960 /* Tell the worker thread there is work to do */ 3961 lpfc_worker_wake_up(phba); 3962 else 3963 /* Restart the timer for next eratt poll */ 3964 mod_timer(&phba->eratt_poll, 3965 jiffies + 3966 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3967 return; 3968 } 3969 3970 3971 /** 3972 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3973 * @phba: Pointer to HBA context object. 3974 * @pring: Pointer to driver SLI ring object. 3975 * @mask: Host attention register mask for this ring. 3976 * 3977 * This function is called from the interrupt context when there is a ring 3978 * event for the fcp ring. The caller does not hold any lock. 3979 * The function processes each response iocb in the response ring until it 3980 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3981 * LE bit set. The function will call the completion handler of the command iocb 3982 * if the response iocb indicates a completion for a command iocb or it is 3983 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3984 * function if this is an unsolicited iocb. 3985 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3986 * to check it explicitly. 3987 */ 3988 int 3989 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3990 struct lpfc_sli_ring *pring, uint32_t mask) 3991 { 3992 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3993 IOCB_t *irsp = NULL; 3994 IOCB_t *entry = NULL; 3995 struct lpfc_iocbq *cmdiocbq = NULL; 3996 struct lpfc_iocbq rspiocbq; 3997 uint32_t status; 3998 uint32_t portRspPut, portRspMax; 3999 int rc = 1; 4000 lpfc_iocb_type type; 4001 unsigned long iflag; 4002 uint32_t rsp_cmpl = 0; 4003 4004 spin_lock_irqsave(&phba->hbalock, iflag); 4005 pring->stats.iocb_event++; 4006 4007 /* 4008 * The next available response entry should never exceed the maximum 4009 * entries. If it does, treat it as an adapter hardware error. 4010 */ 4011 portRspMax = pring->sli.sli3.numRiocb; 4012 portRspPut = le32_to_cpu(pgp->rspPutInx); 4013 if (unlikely(portRspPut >= portRspMax)) { 4014 lpfc_sli_rsp_pointers_error(phba, pring); 4015 spin_unlock_irqrestore(&phba->hbalock, iflag); 4016 return 1; 4017 } 4018 if (phba->fcp_ring_in_use) { 4019 spin_unlock_irqrestore(&phba->hbalock, iflag); 4020 return 1; 4021 } else 4022 phba->fcp_ring_in_use = 1; 4023 4024 rmb(); 4025 while (pring->sli.sli3.rspidx != portRspPut) { 4026 /* 4027 * Fetch an entry off the ring and copy it into a local data 4028 * structure. The copy involves a byte-swap since the 4029 * network byte order and pci byte orders are different. 4030 */ 4031 entry = lpfc_resp_iocb(phba, pring); 4032 phba->last_completion_time = jiffies; 4033 4034 if (++pring->sli.sli3.rspidx >= portRspMax) 4035 pring->sli.sli3.rspidx = 0; 4036 4037 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 4038 (uint32_t *) &rspiocbq.iocb, 4039 phba->iocb_rsp_size); 4040 INIT_LIST_HEAD(&(rspiocbq.list)); 4041 irsp = &rspiocbq.iocb; 4042 4043 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 4044 pring->stats.iocb_rsp++; 4045 rsp_cmpl++; 4046 4047 if (unlikely(irsp->ulpStatus)) { 4048 /* 4049 * If resource errors reported from HBA, reduce 4050 * queuedepths of the SCSI device. 4051 */ 4052 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 4053 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 4054 IOERR_NO_RESOURCES)) { 4055 spin_unlock_irqrestore(&phba->hbalock, iflag); 4056 phba->lpfc_rampdown_queue_depth(phba); 4057 spin_lock_irqsave(&phba->hbalock, iflag); 4058 } 4059 4060 /* Rsp ring <ringno> error: IOCB */ 4061 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4062 "0336 Rsp Ring %d error: IOCB Data: " 4063 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 4064 pring->ringno, 4065 irsp->un.ulpWord[0], 4066 irsp->un.ulpWord[1], 4067 irsp->un.ulpWord[2], 4068 irsp->un.ulpWord[3], 4069 irsp->un.ulpWord[4], 4070 irsp->un.ulpWord[5], 4071 *(uint32_t *)&irsp->un1, 4072 *((uint32_t *)&irsp->un1 + 1)); 4073 } 4074 4075 switch (type) { 4076 case LPFC_ABORT_IOCB: 4077 case LPFC_SOL_IOCB: 4078 /* 4079 * Idle exchange closed via ABTS from port. No iocb 4080 * resources need to be recovered. 4081 */ 4082 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 4083 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4084 "0333 IOCB cmd 0x%x" 4085 " processed. Skipping" 4086 " completion\n", 4087 irsp->ulpCommand); 4088 break; 4089 } 4090 4091 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 4092 &rspiocbq); 4093 if (unlikely(!cmdiocbq)) 4094 break; 4095 if (cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) 4096 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 4097 if (cmdiocbq->cmd_cmpl) { 4098 spin_unlock_irqrestore(&phba->hbalock, iflag); 4099 cmdiocbq->cmd_cmpl(phba, cmdiocbq, &rspiocbq); 4100 spin_lock_irqsave(&phba->hbalock, iflag); 4101 } 4102 break; 4103 case LPFC_UNSOL_IOCB: 4104 spin_unlock_irqrestore(&phba->hbalock, iflag); 4105 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 4106 spin_lock_irqsave(&phba->hbalock, iflag); 4107 break; 4108 default: 4109 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4110 char adaptermsg[LPFC_MAX_ADPTMSG]; 4111 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4112 memcpy(&adaptermsg[0], (uint8_t *) irsp, 4113 MAX_MSG_DATA); 4114 dev_warn(&((phba->pcidev)->dev), 4115 "lpfc%d: %s\n", 4116 phba->brd_no, adaptermsg); 4117 } else { 4118 /* Unknown IOCB command */ 4119 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4120 "0334 Unknown IOCB command " 4121 "Data: x%x, x%x x%x x%x x%x\n", 4122 type, irsp->ulpCommand, 4123 irsp->ulpStatus, 4124 irsp->ulpIoTag, 4125 irsp->ulpContext); 4126 } 4127 break; 4128 } 4129 4130 /* 4131 * The response IOCB has been processed. Update the ring 4132 * pointer in SLIM. If the port response put pointer has not 4133 * been updated, sync the pgp->rspPutInx and fetch the new port 4134 * response put pointer. 4135 */ 4136 writel(pring->sli.sli3.rspidx, 4137 &phba->host_gp[pring->ringno].rspGetInx); 4138 4139 if (pring->sli.sli3.rspidx == portRspPut) 4140 portRspPut = le32_to_cpu(pgp->rspPutInx); 4141 } 4142 4143 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 4144 pring->stats.iocb_rsp_full++; 4145 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4146 writel(status, phba->CAregaddr); 4147 readl(phba->CAregaddr); 4148 } 4149 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4150 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4151 pring->stats.iocb_cmd_empty++; 4152 4153 /* Force update of the local copy of cmdGetInx */ 4154 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4155 lpfc_sli_resume_iocb(phba, pring); 4156 4157 if ((pring->lpfc_sli_cmd_available)) 4158 (pring->lpfc_sli_cmd_available) (phba, pring); 4159 4160 } 4161 4162 phba->fcp_ring_in_use = 0; 4163 spin_unlock_irqrestore(&phba->hbalock, iflag); 4164 return rc; 4165 } 4166 4167 /** 4168 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 4169 * @phba: Pointer to HBA context object. 4170 * @pring: Pointer to driver SLI ring object. 4171 * @rspiocbp: Pointer to driver response IOCB object. 4172 * 4173 * This function is called from the worker thread when there is a slow-path 4174 * response IOCB to process. This function chains all the response iocbs until 4175 * seeing the iocb with the LE bit set. The function will call 4176 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 4177 * completion of a command iocb. The function will call the 4178 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 4179 * The function frees the resources or calls the completion handler if this 4180 * iocb is an abort completion. The function returns NULL when the response 4181 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 4182 * this function shall chain the iocb on to the iocb_continueq and return the 4183 * response iocb passed in. 4184 **/ 4185 static struct lpfc_iocbq * 4186 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 4187 struct lpfc_iocbq *rspiocbp) 4188 { 4189 struct lpfc_iocbq *saveq; 4190 struct lpfc_iocbq *cmdiocb; 4191 struct lpfc_iocbq *next_iocb; 4192 IOCB_t *irsp; 4193 uint32_t free_saveq; 4194 u8 cmd_type; 4195 lpfc_iocb_type type; 4196 unsigned long iflag; 4197 u32 ulp_status = get_job_ulpstatus(phba, rspiocbp); 4198 u32 ulp_word4 = get_job_word4(phba, rspiocbp); 4199 u32 ulp_command = get_job_cmnd(phba, rspiocbp); 4200 int rc; 4201 4202 spin_lock_irqsave(&phba->hbalock, iflag); 4203 /* First add the response iocb to the countinueq list */ 4204 list_add_tail(&rspiocbp->list, &pring->iocb_continueq); 4205 pring->iocb_continueq_cnt++; 4206 4207 /* 4208 * By default, the driver expects to free all resources 4209 * associated with this iocb completion. 4210 */ 4211 free_saveq = 1; 4212 saveq = list_get_first(&pring->iocb_continueq, 4213 struct lpfc_iocbq, list); 4214 list_del_init(&pring->iocb_continueq); 4215 pring->iocb_continueq_cnt = 0; 4216 4217 pring->stats.iocb_rsp++; 4218 4219 /* 4220 * If resource errors reported from HBA, reduce 4221 * queuedepths of the SCSI device. 4222 */ 4223 if (ulp_status == IOSTAT_LOCAL_REJECT && 4224 ((ulp_word4 & IOERR_PARAM_MASK) == 4225 IOERR_NO_RESOURCES)) { 4226 spin_unlock_irqrestore(&phba->hbalock, iflag); 4227 phba->lpfc_rampdown_queue_depth(phba); 4228 spin_lock_irqsave(&phba->hbalock, iflag); 4229 } 4230 4231 if (ulp_status) { 4232 /* Rsp ring <ringno> error: IOCB */ 4233 if (phba->sli_rev < LPFC_SLI_REV4) { 4234 irsp = &rspiocbp->iocb; 4235 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4236 "0328 Rsp Ring %d error: ulp_status x%x " 4237 "IOCB Data: " 4238 "x%08x x%08x x%08x x%08x " 4239 "x%08x x%08x x%08x x%08x " 4240 "x%08x x%08x x%08x x%08x " 4241 "x%08x x%08x x%08x x%08x\n", 4242 pring->ringno, ulp_status, 4243 get_job_ulpword(rspiocbp, 0), 4244 get_job_ulpword(rspiocbp, 1), 4245 get_job_ulpword(rspiocbp, 2), 4246 get_job_ulpword(rspiocbp, 3), 4247 get_job_ulpword(rspiocbp, 4), 4248 get_job_ulpword(rspiocbp, 5), 4249 *(((uint32_t *)irsp) + 6), 4250 *(((uint32_t *)irsp) + 7), 4251 *(((uint32_t *)irsp) + 8), 4252 *(((uint32_t *)irsp) + 9), 4253 *(((uint32_t *)irsp) + 10), 4254 *(((uint32_t *)irsp) + 11), 4255 *(((uint32_t *)irsp) + 12), 4256 *(((uint32_t *)irsp) + 13), 4257 *(((uint32_t *)irsp) + 14), 4258 *(((uint32_t *)irsp) + 15)); 4259 } else { 4260 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4261 "0321 Rsp Ring %d error: " 4262 "IOCB Data: " 4263 "x%x x%x x%x x%x\n", 4264 pring->ringno, 4265 rspiocbp->wcqe_cmpl.word0, 4266 rspiocbp->wcqe_cmpl.total_data_placed, 4267 rspiocbp->wcqe_cmpl.parameter, 4268 rspiocbp->wcqe_cmpl.word3); 4269 } 4270 } 4271 4272 4273 /* 4274 * Fetch the iocb command type and call the correct completion 4275 * routine. Solicited and Unsolicited IOCBs on the ELS ring 4276 * get freed back to the lpfc_iocb_list by the discovery 4277 * kernel thread. 4278 */ 4279 cmd_type = ulp_command & CMD_IOCB_MASK; 4280 type = lpfc_sli_iocb_cmd_type(cmd_type); 4281 switch (type) { 4282 case LPFC_SOL_IOCB: 4283 spin_unlock_irqrestore(&phba->hbalock, iflag); 4284 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 4285 spin_lock_irqsave(&phba->hbalock, iflag); 4286 break; 4287 case LPFC_UNSOL_IOCB: 4288 spin_unlock_irqrestore(&phba->hbalock, iflag); 4289 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 4290 spin_lock_irqsave(&phba->hbalock, iflag); 4291 if (!rc) 4292 free_saveq = 0; 4293 break; 4294 case LPFC_ABORT_IOCB: 4295 cmdiocb = NULL; 4296 if (ulp_command != CMD_XRI_ABORTED_CX) 4297 cmdiocb = lpfc_sli_iocbq_lookup(phba, pring, 4298 saveq); 4299 if (cmdiocb) { 4300 /* Call the specified completion routine */ 4301 if (cmdiocb->cmd_cmpl) { 4302 spin_unlock_irqrestore(&phba->hbalock, iflag); 4303 cmdiocb->cmd_cmpl(phba, cmdiocb, saveq); 4304 spin_lock_irqsave(&phba->hbalock, iflag); 4305 } else { 4306 __lpfc_sli_release_iocbq(phba, cmdiocb); 4307 } 4308 } 4309 break; 4310 case LPFC_UNKNOWN_IOCB: 4311 if (ulp_command == CMD_ADAPTER_MSG) { 4312 char adaptermsg[LPFC_MAX_ADPTMSG]; 4313 4314 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4315 memcpy(&adaptermsg[0], (uint8_t *)&rspiocbp->wqe, 4316 MAX_MSG_DATA); 4317 dev_warn(&((phba->pcidev)->dev), 4318 "lpfc%d: %s\n", 4319 phba->brd_no, adaptermsg); 4320 } else { 4321 /* Unknown command */ 4322 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4323 "0335 Unknown IOCB " 4324 "command Data: x%x " 4325 "x%x x%x x%x\n", 4326 ulp_command, 4327 ulp_status, 4328 get_wqe_reqtag(rspiocbp), 4329 get_job_ulpcontext(phba, rspiocbp)); 4330 } 4331 break; 4332 } 4333 4334 if (free_saveq) { 4335 list_for_each_entry_safe(rspiocbp, next_iocb, 4336 &saveq->list, list) { 4337 list_del_init(&rspiocbp->list); 4338 __lpfc_sli_release_iocbq(phba, rspiocbp); 4339 } 4340 __lpfc_sli_release_iocbq(phba, saveq); 4341 } 4342 rspiocbp = NULL; 4343 spin_unlock_irqrestore(&phba->hbalock, iflag); 4344 return rspiocbp; 4345 } 4346 4347 /** 4348 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 4349 * @phba: Pointer to HBA context object. 4350 * @pring: Pointer to driver SLI ring object. 4351 * @mask: Host attention register mask for this ring. 4352 * 4353 * This routine wraps the actual slow_ring event process routine from the 4354 * API jump table function pointer from the lpfc_hba struct. 4355 **/ 4356 void 4357 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4358 struct lpfc_sli_ring *pring, uint32_t mask) 4359 { 4360 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4361 } 4362 4363 /** 4364 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4365 * @phba: Pointer to HBA context object. 4366 * @pring: Pointer to driver SLI ring object. 4367 * @mask: Host attention register mask for this ring. 4368 * 4369 * This function is called from the worker thread when there is a ring event 4370 * for non-fcp rings. The caller does not hold any lock. The function will 4371 * remove each response iocb in the response ring and calls the handle 4372 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4373 **/ 4374 static void 4375 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4376 struct lpfc_sli_ring *pring, uint32_t mask) 4377 { 4378 struct lpfc_pgp *pgp; 4379 IOCB_t *entry; 4380 IOCB_t *irsp = NULL; 4381 struct lpfc_iocbq *rspiocbp = NULL; 4382 uint32_t portRspPut, portRspMax; 4383 unsigned long iflag; 4384 uint32_t status; 4385 4386 pgp = &phba->port_gp[pring->ringno]; 4387 spin_lock_irqsave(&phba->hbalock, iflag); 4388 pring->stats.iocb_event++; 4389 4390 /* 4391 * The next available response entry should never exceed the maximum 4392 * entries. If it does, treat it as an adapter hardware error. 4393 */ 4394 portRspMax = pring->sli.sli3.numRiocb; 4395 portRspPut = le32_to_cpu(pgp->rspPutInx); 4396 if (portRspPut >= portRspMax) { 4397 /* 4398 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4399 * rsp ring <portRspMax> 4400 */ 4401 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4402 "0303 Ring %d handler: portRspPut %d " 4403 "is bigger than rsp ring %d\n", 4404 pring->ringno, portRspPut, portRspMax); 4405 4406 phba->link_state = LPFC_HBA_ERROR; 4407 spin_unlock_irqrestore(&phba->hbalock, iflag); 4408 4409 phba->work_hs = HS_FFER3; 4410 lpfc_handle_eratt(phba); 4411 4412 return; 4413 } 4414 4415 rmb(); 4416 while (pring->sli.sli3.rspidx != portRspPut) { 4417 /* 4418 * Build a completion list and call the appropriate handler. 4419 * The process is to get the next available response iocb, get 4420 * a free iocb from the list, copy the response data into the 4421 * free iocb, insert to the continuation list, and update the 4422 * next response index to slim. This process makes response 4423 * iocb's in the ring available to DMA as fast as possible but 4424 * pays a penalty for a copy operation. Since the iocb is 4425 * only 32 bytes, this penalty is considered small relative to 4426 * the PCI reads for register values and a slim write. When 4427 * the ulpLe field is set, the entire Command has been 4428 * received. 4429 */ 4430 entry = lpfc_resp_iocb(phba, pring); 4431 4432 phba->last_completion_time = jiffies; 4433 rspiocbp = __lpfc_sli_get_iocbq(phba); 4434 if (rspiocbp == NULL) { 4435 printk(KERN_ERR "%s: out of buffers! Failing " 4436 "completion.\n", __func__); 4437 break; 4438 } 4439 4440 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4441 phba->iocb_rsp_size); 4442 irsp = &rspiocbp->iocb; 4443 4444 if (++pring->sli.sli3.rspidx >= portRspMax) 4445 pring->sli.sli3.rspidx = 0; 4446 4447 if (pring->ringno == LPFC_ELS_RING) { 4448 lpfc_debugfs_slow_ring_trc(phba, 4449 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4450 *(((uint32_t *) irsp) + 4), 4451 *(((uint32_t *) irsp) + 6), 4452 *(((uint32_t *) irsp) + 7)); 4453 } 4454 4455 writel(pring->sli.sli3.rspidx, 4456 &phba->host_gp[pring->ringno].rspGetInx); 4457 4458 spin_unlock_irqrestore(&phba->hbalock, iflag); 4459 /* Handle the response IOCB */ 4460 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4461 spin_lock_irqsave(&phba->hbalock, iflag); 4462 4463 /* 4464 * If the port response put pointer has not been updated, sync 4465 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4466 * response put pointer. 4467 */ 4468 if (pring->sli.sli3.rspidx == portRspPut) { 4469 portRspPut = le32_to_cpu(pgp->rspPutInx); 4470 } 4471 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4472 4473 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4474 /* At least one response entry has been freed */ 4475 pring->stats.iocb_rsp_full++; 4476 /* SET RxRE_RSP in Chip Att register */ 4477 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4478 writel(status, phba->CAregaddr); 4479 readl(phba->CAregaddr); /* flush */ 4480 } 4481 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4482 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4483 pring->stats.iocb_cmd_empty++; 4484 4485 /* Force update of the local copy of cmdGetInx */ 4486 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4487 lpfc_sli_resume_iocb(phba, pring); 4488 4489 if ((pring->lpfc_sli_cmd_available)) 4490 (pring->lpfc_sli_cmd_available) (phba, pring); 4491 4492 } 4493 4494 spin_unlock_irqrestore(&phba->hbalock, iflag); 4495 return; 4496 } 4497 4498 /** 4499 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4500 * @phba: Pointer to HBA context object. 4501 * @pring: Pointer to driver SLI ring object. 4502 * @mask: Host attention register mask for this ring. 4503 * 4504 * This function is called from the worker thread when there is a pending 4505 * ELS response iocb on the driver internal slow-path response iocb worker 4506 * queue. The caller does not hold any lock. The function will remove each 4507 * response iocb from the response worker queue and calls the handle 4508 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4509 **/ 4510 static void 4511 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4512 struct lpfc_sli_ring *pring, uint32_t mask) 4513 { 4514 struct lpfc_iocbq *irspiocbq; 4515 struct hbq_dmabuf *dmabuf; 4516 struct lpfc_cq_event *cq_event; 4517 unsigned long iflag; 4518 int count = 0; 4519 4520 spin_lock_irqsave(&phba->hbalock, iflag); 4521 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4522 spin_unlock_irqrestore(&phba->hbalock, iflag); 4523 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4524 /* Get the response iocb from the head of work queue */ 4525 spin_lock_irqsave(&phba->hbalock, iflag); 4526 list_remove_head(&phba->sli4_hba.sp_queue_event, 4527 cq_event, struct lpfc_cq_event, list); 4528 spin_unlock_irqrestore(&phba->hbalock, iflag); 4529 4530 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4531 case CQE_CODE_COMPL_WQE: 4532 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4533 cq_event); 4534 /* Translate ELS WCQE to response IOCBQ */ 4535 irspiocbq = lpfc_sli4_els_preprocess_rspiocbq(phba, 4536 irspiocbq); 4537 if (irspiocbq) 4538 lpfc_sli_sp_handle_rspiocb(phba, pring, 4539 irspiocbq); 4540 count++; 4541 break; 4542 case CQE_CODE_RECEIVE: 4543 case CQE_CODE_RECEIVE_V1: 4544 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4545 cq_event); 4546 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4547 count++; 4548 break; 4549 default: 4550 break; 4551 } 4552 4553 /* Limit the number of events to 64 to avoid soft lockups */ 4554 if (count == 64) 4555 break; 4556 } 4557 } 4558 4559 /** 4560 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4561 * @phba: Pointer to HBA context object. 4562 * @pring: Pointer to driver SLI ring object. 4563 * 4564 * This function aborts all iocbs in the given ring and frees all the iocb 4565 * objects in txq. This function issues an abort iocb for all the iocb commands 4566 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4567 * the return of this function. The caller is not required to hold any locks. 4568 **/ 4569 void 4570 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4571 { 4572 LIST_HEAD(tx_completions); 4573 LIST_HEAD(txcmplq_completions); 4574 struct lpfc_iocbq *iocb, *next_iocb; 4575 int offline; 4576 4577 if (pring->ringno == LPFC_ELS_RING) { 4578 lpfc_fabric_abort_hba(phba); 4579 } 4580 offline = pci_channel_offline(phba->pcidev); 4581 4582 /* Error everything on txq and txcmplq 4583 * First do the txq. 4584 */ 4585 if (phba->sli_rev >= LPFC_SLI_REV4) { 4586 spin_lock_irq(&pring->ring_lock); 4587 list_splice_init(&pring->txq, &tx_completions); 4588 pring->txq_cnt = 0; 4589 4590 if (offline) { 4591 list_splice_init(&pring->txcmplq, 4592 &txcmplq_completions); 4593 } else { 4594 /* Next issue ABTS for everything on the txcmplq */ 4595 list_for_each_entry_safe(iocb, next_iocb, 4596 &pring->txcmplq, list) 4597 lpfc_sli_issue_abort_iotag(phba, pring, 4598 iocb, NULL); 4599 } 4600 spin_unlock_irq(&pring->ring_lock); 4601 } else { 4602 spin_lock_irq(&phba->hbalock); 4603 list_splice_init(&pring->txq, &tx_completions); 4604 pring->txq_cnt = 0; 4605 4606 if (offline) { 4607 list_splice_init(&pring->txcmplq, &txcmplq_completions); 4608 } else { 4609 /* Next issue ABTS for everything on the txcmplq */ 4610 list_for_each_entry_safe(iocb, next_iocb, 4611 &pring->txcmplq, list) 4612 lpfc_sli_issue_abort_iotag(phba, pring, 4613 iocb, NULL); 4614 } 4615 spin_unlock_irq(&phba->hbalock); 4616 } 4617 4618 if (offline) { 4619 /* Cancel all the IOCBs from the completions list */ 4620 lpfc_sli_cancel_iocbs(phba, &txcmplq_completions, 4621 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 4622 } else { 4623 /* Make sure HBA is alive */ 4624 lpfc_issue_hb_tmo(phba); 4625 } 4626 /* Cancel all the IOCBs from the completions list */ 4627 lpfc_sli_cancel_iocbs(phba, &tx_completions, IOSTAT_LOCAL_REJECT, 4628 IOERR_SLI_ABORTED); 4629 } 4630 4631 /** 4632 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4633 * @phba: Pointer to HBA context object. 4634 * 4635 * This function aborts all iocbs in FCP rings and frees all the iocb 4636 * objects in txq. This function issues an abort iocb for all the iocb commands 4637 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4638 * the return of this function. The caller is not required to hold any locks. 4639 **/ 4640 void 4641 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4642 { 4643 struct lpfc_sli *psli = &phba->sli; 4644 struct lpfc_sli_ring *pring; 4645 uint32_t i; 4646 4647 /* Look on all the FCP Rings for the iotag */ 4648 if (phba->sli_rev >= LPFC_SLI_REV4) { 4649 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4650 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4651 lpfc_sli_abort_iocb_ring(phba, pring); 4652 } 4653 } else { 4654 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4655 lpfc_sli_abort_iocb_ring(phba, pring); 4656 } 4657 } 4658 4659 /** 4660 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4661 * @phba: Pointer to HBA context object. 4662 * 4663 * This function flushes all iocbs in the IO ring and frees all the iocb 4664 * objects in txq and txcmplq. This function will not issue abort iocbs 4665 * for all the iocb commands in txcmplq, they will just be returned with 4666 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4667 * slot has been permanently disabled. 4668 **/ 4669 void 4670 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4671 { 4672 LIST_HEAD(txq); 4673 LIST_HEAD(txcmplq); 4674 struct lpfc_sli *psli = &phba->sli; 4675 struct lpfc_sli_ring *pring; 4676 uint32_t i; 4677 struct lpfc_iocbq *piocb, *next_iocb; 4678 4679 spin_lock_irq(&phba->hbalock); 4680 /* Indicate the I/O queues are flushed */ 4681 phba->hba_flag |= HBA_IOQ_FLUSH; 4682 spin_unlock_irq(&phba->hbalock); 4683 4684 /* Look on all the FCP Rings for the iotag */ 4685 if (phba->sli_rev >= LPFC_SLI_REV4) { 4686 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4687 if (!phba->sli4_hba.hdwq || 4688 !phba->sli4_hba.hdwq[i].io_wq) { 4689 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4690 "7777 hdwq's deleted %lx " 4691 "%lx %x %x\n", 4692 (unsigned long)phba->pport->load_flag, 4693 (unsigned long)phba->hba_flag, 4694 phba->link_state, 4695 phba->sli.sli_flag); 4696 return; 4697 } 4698 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4699 4700 spin_lock_irq(&pring->ring_lock); 4701 /* Retrieve everything on txq */ 4702 list_splice_init(&pring->txq, &txq); 4703 list_for_each_entry_safe(piocb, next_iocb, 4704 &pring->txcmplq, list) 4705 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4706 /* Retrieve everything on the txcmplq */ 4707 list_splice_init(&pring->txcmplq, &txcmplq); 4708 pring->txq_cnt = 0; 4709 pring->txcmplq_cnt = 0; 4710 spin_unlock_irq(&pring->ring_lock); 4711 4712 /* Flush the txq */ 4713 lpfc_sli_cancel_iocbs(phba, &txq, 4714 IOSTAT_LOCAL_REJECT, 4715 IOERR_SLI_DOWN); 4716 /* Flush the txcmplq */ 4717 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4718 IOSTAT_LOCAL_REJECT, 4719 IOERR_SLI_DOWN); 4720 if (unlikely(pci_channel_offline(phba->pcidev))) 4721 lpfc_sli4_io_xri_aborted(phba, NULL, 0); 4722 } 4723 } else { 4724 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4725 4726 spin_lock_irq(&phba->hbalock); 4727 /* Retrieve everything on txq */ 4728 list_splice_init(&pring->txq, &txq); 4729 list_for_each_entry_safe(piocb, next_iocb, 4730 &pring->txcmplq, list) 4731 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4732 /* Retrieve everything on the txcmplq */ 4733 list_splice_init(&pring->txcmplq, &txcmplq); 4734 pring->txq_cnt = 0; 4735 pring->txcmplq_cnt = 0; 4736 spin_unlock_irq(&phba->hbalock); 4737 4738 /* Flush the txq */ 4739 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4740 IOERR_SLI_DOWN); 4741 /* Flush the txcmpq */ 4742 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4743 IOERR_SLI_DOWN); 4744 } 4745 } 4746 4747 /** 4748 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4749 * @phba: Pointer to HBA context object. 4750 * @mask: Bit mask to be checked. 4751 * 4752 * This function reads the host status register and compares 4753 * with the provided bit mask to check if HBA completed 4754 * the restart. This function will wait in a loop for the 4755 * HBA to complete restart. If the HBA does not restart within 4756 * 15 iterations, the function will reset the HBA again. The 4757 * function returns 1 when HBA fail to restart otherwise returns 4758 * zero. 4759 **/ 4760 static int 4761 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4762 { 4763 uint32_t status; 4764 int i = 0; 4765 int retval = 0; 4766 4767 /* Read the HBA Host Status Register */ 4768 if (lpfc_readl(phba->HSregaddr, &status)) 4769 return 1; 4770 4771 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4772 4773 /* 4774 * Check status register every 100ms for 5 retries, then every 4775 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4776 * every 2.5 sec for 4. 4777 * Break our of the loop if errors occurred during init. 4778 */ 4779 while (((status & mask) != mask) && 4780 !(status & HS_FFERM) && 4781 i++ < 20) { 4782 4783 if (i <= 5) 4784 msleep(10); 4785 else if (i <= 10) 4786 msleep(500); 4787 else 4788 msleep(2500); 4789 4790 if (i == 15) { 4791 /* Do post */ 4792 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4793 lpfc_sli_brdrestart(phba); 4794 } 4795 /* Read the HBA Host Status Register */ 4796 if (lpfc_readl(phba->HSregaddr, &status)) { 4797 retval = 1; 4798 break; 4799 } 4800 } 4801 4802 /* Check to see if any errors occurred during init */ 4803 if ((status & HS_FFERM) || (i >= 20)) { 4804 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4805 "2751 Adapter failed to restart, " 4806 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4807 status, 4808 readl(phba->MBslimaddr + 0xa8), 4809 readl(phba->MBslimaddr + 0xac)); 4810 phba->link_state = LPFC_HBA_ERROR; 4811 retval = 1; 4812 } 4813 4814 return retval; 4815 } 4816 4817 /** 4818 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4819 * @phba: Pointer to HBA context object. 4820 * @mask: Bit mask to be checked. 4821 * 4822 * This function checks the host status register to check if HBA is 4823 * ready. This function will wait in a loop for the HBA to be ready 4824 * If the HBA is not ready , the function will will reset the HBA PCI 4825 * function again. The function returns 1 when HBA fail to be ready 4826 * otherwise returns zero. 4827 **/ 4828 static int 4829 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4830 { 4831 uint32_t status; 4832 int retval = 0; 4833 4834 /* Read the HBA Host Status Register */ 4835 status = lpfc_sli4_post_status_check(phba); 4836 4837 if (status) { 4838 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4839 lpfc_sli_brdrestart(phba); 4840 status = lpfc_sli4_post_status_check(phba); 4841 } 4842 4843 /* Check to see if any errors occurred during init */ 4844 if (status) { 4845 phba->link_state = LPFC_HBA_ERROR; 4846 retval = 1; 4847 } else 4848 phba->sli4_hba.intr_enable = 0; 4849 4850 phba->hba_flag &= ~HBA_SETUP; 4851 return retval; 4852 } 4853 4854 /** 4855 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4856 * @phba: Pointer to HBA context object. 4857 * @mask: Bit mask to be checked. 4858 * 4859 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4860 * from the API jump table function pointer from the lpfc_hba struct. 4861 **/ 4862 int 4863 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4864 { 4865 return phba->lpfc_sli_brdready(phba, mask); 4866 } 4867 4868 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4869 4870 /** 4871 * lpfc_reset_barrier - Make HBA ready for HBA reset 4872 * @phba: Pointer to HBA context object. 4873 * 4874 * This function is called before resetting an HBA. This function is called 4875 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4876 **/ 4877 void lpfc_reset_barrier(struct lpfc_hba *phba) 4878 { 4879 uint32_t __iomem *resp_buf; 4880 uint32_t __iomem *mbox_buf; 4881 volatile struct MAILBOX_word0 mbox; 4882 uint32_t hc_copy, ha_copy, resp_data; 4883 int i; 4884 uint8_t hdrtype; 4885 4886 lockdep_assert_held(&phba->hbalock); 4887 4888 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4889 if (hdrtype != 0x80 || 4890 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4891 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4892 return; 4893 4894 /* 4895 * Tell the other part of the chip to suspend temporarily all 4896 * its DMA activity. 4897 */ 4898 resp_buf = phba->MBslimaddr; 4899 4900 /* Disable the error attention */ 4901 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4902 return; 4903 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4904 readl(phba->HCregaddr); /* flush */ 4905 phba->link_flag |= LS_IGNORE_ERATT; 4906 4907 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4908 return; 4909 if (ha_copy & HA_ERATT) { 4910 /* Clear Chip error bit */ 4911 writel(HA_ERATT, phba->HAregaddr); 4912 phba->pport->stopped = 1; 4913 } 4914 4915 mbox.word0 = 0; 4916 mbox.mbxCommand = MBX_KILL_BOARD; 4917 mbox.mbxOwner = OWN_CHIP; 4918 4919 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4920 mbox_buf = phba->MBslimaddr; 4921 writel(mbox.word0, mbox_buf); 4922 4923 for (i = 0; i < 50; i++) { 4924 if (lpfc_readl((resp_buf + 1), &resp_data)) 4925 return; 4926 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4927 mdelay(1); 4928 else 4929 break; 4930 } 4931 resp_data = 0; 4932 if (lpfc_readl((resp_buf + 1), &resp_data)) 4933 return; 4934 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4935 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4936 phba->pport->stopped) 4937 goto restore_hc; 4938 else 4939 goto clear_errat; 4940 } 4941 4942 mbox.mbxOwner = OWN_HOST; 4943 resp_data = 0; 4944 for (i = 0; i < 500; i++) { 4945 if (lpfc_readl(resp_buf, &resp_data)) 4946 return; 4947 if (resp_data != mbox.word0) 4948 mdelay(1); 4949 else 4950 break; 4951 } 4952 4953 clear_errat: 4954 4955 while (++i < 500) { 4956 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4957 return; 4958 if (!(ha_copy & HA_ERATT)) 4959 mdelay(1); 4960 else 4961 break; 4962 } 4963 4964 if (readl(phba->HAregaddr) & HA_ERATT) { 4965 writel(HA_ERATT, phba->HAregaddr); 4966 phba->pport->stopped = 1; 4967 } 4968 4969 restore_hc: 4970 phba->link_flag &= ~LS_IGNORE_ERATT; 4971 writel(hc_copy, phba->HCregaddr); 4972 readl(phba->HCregaddr); /* flush */ 4973 } 4974 4975 /** 4976 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4977 * @phba: Pointer to HBA context object. 4978 * 4979 * This function issues a kill_board mailbox command and waits for 4980 * the error attention interrupt. This function is called for stopping 4981 * the firmware processing. The caller is not required to hold any 4982 * locks. This function calls lpfc_hba_down_post function to free 4983 * any pending commands after the kill. The function will return 1 when it 4984 * fails to kill the board else will return 0. 4985 **/ 4986 int 4987 lpfc_sli_brdkill(struct lpfc_hba *phba) 4988 { 4989 struct lpfc_sli *psli; 4990 LPFC_MBOXQ_t *pmb; 4991 uint32_t status; 4992 uint32_t ha_copy; 4993 int retval; 4994 int i = 0; 4995 4996 psli = &phba->sli; 4997 4998 /* Kill HBA */ 4999 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5000 "0329 Kill HBA Data: x%x x%x\n", 5001 phba->pport->port_state, psli->sli_flag); 5002 5003 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5004 if (!pmb) 5005 return 1; 5006 5007 /* Disable the error attention */ 5008 spin_lock_irq(&phba->hbalock); 5009 if (lpfc_readl(phba->HCregaddr, &status)) { 5010 spin_unlock_irq(&phba->hbalock); 5011 mempool_free(pmb, phba->mbox_mem_pool); 5012 return 1; 5013 } 5014 status &= ~HC_ERINT_ENA; 5015 writel(status, phba->HCregaddr); 5016 readl(phba->HCregaddr); /* flush */ 5017 phba->link_flag |= LS_IGNORE_ERATT; 5018 spin_unlock_irq(&phba->hbalock); 5019 5020 lpfc_kill_board(phba, pmb); 5021 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 5022 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 5023 5024 if (retval != MBX_SUCCESS) { 5025 if (retval != MBX_BUSY) 5026 mempool_free(pmb, phba->mbox_mem_pool); 5027 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5028 "2752 KILL_BOARD command failed retval %d\n", 5029 retval); 5030 spin_lock_irq(&phba->hbalock); 5031 phba->link_flag &= ~LS_IGNORE_ERATT; 5032 spin_unlock_irq(&phba->hbalock); 5033 return 1; 5034 } 5035 5036 spin_lock_irq(&phba->hbalock); 5037 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 5038 spin_unlock_irq(&phba->hbalock); 5039 5040 mempool_free(pmb, phba->mbox_mem_pool); 5041 5042 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 5043 * attention every 100ms for 3 seconds. If we don't get ERATT after 5044 * 3 seconds we still set HBA_ERROR state because the status of the 5045 * board is now undefined. 5046 */ 5047 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5048 return 1; 5049 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 5050 mdelay(100); 5051 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5052 return 1; 5053 } 5054 5055 del_timer_sync(&psli->mbox_tmo); 5056 if (ha_copy & HA_ERATT) { 5057 writel(HA_ERATT, phba->HAregaddr); 5058 phba->pport->stopped = 1; 5059 } 5060 spin_lock_irq(&phba->hbalock); 5061 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5062 psli->mbox_active = NULL; 5063 phba->link_flag &= ~LS_IGNORE_ERATT; 5064 spin_unlock_irq(&phba->hbalock); 5065 5066 lpfc_hba_down_post(phba); 5067 phba->link_state = LPFC_HBA_ERROR; 5068 5069 return ha_copy & HA_ERATT ? 0 : 1; 5070 } 5071 5072 /** 5073 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 5074 * @phba: Pointer to HBA context object. 5075 * 5076 * This function resets the HBA by writing HC_INITFF to the control 5077 * register. After the HBA resets, this function resets all the iocb ring 5078 * indices. This function disables PCI layer parity checking during 5079 * the reset. 5080 * This function returns 0 always. 5081 * The caller is not required to hold any locks. 5082 **/ 5083 int 5084 lpfc_sli_brdreset(struct lpfc_hba *phba) 5085 { 5086 struct lpfc_sli *psli; 5087 struct lpfc_sli_ring *pring; 5088 uint16_t cfg_value; 5089 int i; 5090 5091 psli = &phba->sli; 5092 5093 /* Reset HBA */ 5094 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5095 "0325 Reset HBA Data: x%x x%x\n", 5096 (phba->pport) ? phba->pport->port_state : 0, 5097 psli->sli_flag); 5098 5099 /* perform board reset */ 5100 phba->fc_eventTag = 0; 5101 phba->link_events = 0; 5102 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5103 if (phba->pport) { 5104 phba->pport->fc_myDID = 0; 5105 phba->pport->fc_prevDID = 0; 5106 } 5107 5108 /* Turn off parity checking and serr during the physical reset */ 5109 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 5110 return -EIO; 5111 5112 pci_write_config_word(phba->pcidev, PCI_COMMAND, 5113 (cfg_value & 5114 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5115 5116 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 5117 5118 /* Now toggle INITFF bit in the Host Control Register */ 5119 writel(HC_INITFF, phba->HCregaddr); 5120 mdelay(1); 5121 readl(phba->HCregaddr); /* flush */ 5122 writel(0, phba->HCregaddr); 5123 readl(phba->HCregaddr); /* flush */ 5124 5125 /* Restore PCI cmd register */ 5126 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5127 5128 /* Initialize relevant SLI info */ 5129 for (i = 0; i < psli->num_rings; i++) { 5130 pring = &psli->sli3_ring[i]; 5131 pring->flag = 0; 5132 pring->sli.sli3.rspidx = 0; 5133 pring->sli.sli3.next_cmdidx = 0; 5134 pring->sli.sli3.local_getidx = 0; 5135 pring->sli.sli3.cmdidx = 0; 5136 pring->missbufcnt = 0; 5137 } 5138 5139 phba->link_state = LPFC_WARM_START; 5140 return 0; 5141 } 5142 5143 /** 5144 * lpfc_sli4_brdreset - Reset a sli-4 HBA 5145 * @phba: Pointer to HBA context object. 5146 * 5147 * This function resets a SLI4 HBA. This function disables PCI layer parity 5148 * checking during resets the device. The caller is not required to hold 5149 * any locks. 5150 * 5151 * This function returns 0 on success else returns negative error code. 5152 **/ 5153 int 5154 lpfc_sli4_brdreset(struct lpfc_hba *phba) 5155 { 5156 struct lpfc_sli *psli = &phba->sli; 5157 uint16_t cfg_value; 5158 int rc = 0; 5159 5160 /* Reset HBA */ 5161 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5162 "0295 Reset HBA Data: x%x x%x x%x\n", 5163 phba->pport->port_state, psli->sli_flag, 5164 phba->hba_flag); 5165 5166 /* perform board reset */ 5167 phba->fc_eventTag = 0; 5168 phba->link_events = 0; 5169 phba->pport->fc_myDID = 0; 5170 phba->pport->fc_prevDID = 0; 5171 phba->hba_flag &= ~HBA_SETUP; 5172 5173 spin_lock_irq(&phba->hbalock); 5174 psli->sli_flag &= ~(LPFC_PROCESS_LA); 5175 phba->fcf.fcf_flag = 0; 5176 spin_unlock_irq(&phba->hbalock); 5177 5178 /* Now physically reset the device */ 5179 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5180 "0389 Performing PCI function reset!\n"); 5181 5182 /* Turn off parity checking and serr during the physical reset */ 5183 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 5184 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5185 "3205 PCI read Config failed\n"); 5186 return -EIO; 5187 } 5188 5189 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 5190 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5191 5192 /* Perform FCoE PCI function reset before freeing queue memory */ 5193 rc = lpfc_pci_function_reset(phba); 5194 5195 /* Restore PCI cmd register */ 5196 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5197 5198 return rc; 5199 } 5200 5201 /** 5202 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 5203 * @phba: Pointer to HBA context object. 5204 * 5205 * This function is called in the SLI initialization code path to 5206 * restart the HBA. The caller is not required to hold any lock. 5207 * This function writes MBX_RESTART mailbox command to the SLIM and 5208 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 5209 * function to free any pending commands. The function enables 5210 * POST only during the first initialization. The function returns zero. 5211 * The function does not guarantee completion of MBX_RESTART mailbox 5212 * command before the return of this function. 5213 **/ 5214 static int 5215 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 5216 { 5217 volatile struct MAILBOX_word0 mb; 5218 struct lpfc_sli *psli; 5219 void __iomem *to_slim; 5220 5221 spin_lock_irq(&phba->hbalock); 5222 5223 psli = &phba->sli; 5224 5225 /* Restart HBA */ 5226 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5227 "0337 Restart HBA Data: x%x x%x\n", 5228 (phba->pport) ? phba->pport->port_state : 0, 5229 psli->sli_flag); 5230 5231 mb.word0 = 0; 5232 mb.mbxCommand = MBX_RESTART; 5233 mb.mbxHc = 1; 5234 5235 lpfc_reset_barrier(phba); 5236 5237 to_slim = phba->MBslimaddr; 5238 writel(mb.word0, to_slim); 5239 readl(to_slim); /* flush */ 5240 5241 /* Only skip post after fc_ffinit is completed */ 5242 if (phba->pport && phba->pport->port_state) 5243 mb.word0 = 1; /* This is really setting up word1 */ 5244 else 5245 mb.word0 = 0; /* This is really setting up word1 */ 5246 to_slim = phba->MBslimaddr + sizeof (uint32_t); 5247 writel(mb.word0, to_slim); 5248 readl(to_slim); /* flush */ 5249 5250 lpfc_sli_brdreset(phba); 5251 if (phba->pport) 5252 phba->pport->stopped = 0; 5253 phba->link_state = LPFC_INIT_START; 5254 phba->hba_flag = 0; 5255 spin_unlock_irq(&phba->hbalock); 5256 5257 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5258 psli->stats_start = ktime_get_seconds(); 5259 5260 /* Give the INITFF and Post time to settle. */ 5261 mdelay(100); 5262 5263 lpfc_hba_down_post(phba); 5264 5265 return 0; 5266 } 5267 5268 /** 5269 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 5270 * @phba: Pointer to HBA context object. 5271 * 5272 * This function is called in the SLI initialization code path to restart 5273 * a SLI4 HBA. The caller is not required to hold any lock. 5274 * At the end of the function, it calls lpfc_hba_down_post function to 5275 * free any pending commands. 5276 **/ 5277 static int 5278 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 5279 { 5280 struct lpfc_sli *psli = &phba->sli; 5281 int rc; 5282 5283 /* Restart HBA */ 5284 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5285 "0296 Restart HBA Data: x%x x%x\n", 5286 phba->pport->port_state, psli->sli_flag); 5287 5288 lpfc_sli4_queue_unset(phba); 5289 5290 rc = lpfc_sli4_brdreset(phba); 5291 if (rc) { 5292 phba->link_state = LPFC_HBA_ERROR; 5293 goto hba_down_queue; 5294 } 5295 5296 spin_lock_irq(&phba->hbalock); 5297 phba->pport->stopped = 0; 5298 phba->link_state = LPFC_INIT_START; 5299 phba->hba_flag = 0; 5300 /* Preserve FA-PWWN expectation */ 5301 phba->sli4_hba.fawwpn_flag &= LPFC_FAWWPN_FABRIC; 5302 spin_unlock_irq(&phba->hbalock); 5303 5304 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5305 psli->stats_start = ktime_get_seconds(); 5306 5307 hba_down_queue: 5308 lpfc_hba_down_post(phba); 5309 lpfc_sli4_queue_destroy(phba); 5310 5311 return rc; 5312 } 5313 5314 /** 5315 * lpfc_sli_brdrestart - Wrapper func for restarting hba 5316 * @phba: Pointer to HBA context object. 5317 * 5318 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 5319 * API jump table function pointer from the lpfc_hba struct. 5320 **/ 5321 int 5322 lpfc_sli_brdrestart(struct lpfc_hba *phba) 5323 { 5324 return phba->lpfc_sli_brdrestart(phba); 5325 } 5326 5327 /** 5328 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 5329 * @phba: Pointer to HBA context object. 5330 * 5331 * This function is called after a HBA restart to wait for successful 5332 * restart of the HBA. Successful restart of the HBA is indicated by 5333 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 5334 * iteration, the function will restart the HBA again. The function returns 5335 * zero if HBA successfully restarted else returns negative error code. 5336 **/ 5337 int 5338 lpfc_sli_chipset_init(struct lpfc_hba *phba) 5339 { 5340 uint32_t status, i = 0; 5341 5342 /* Read the HBA Host Status Register */ 5343 if (lpfc_readl(phba->HSregaddr, &status)) 5344 return -EIO; 5345 5346 /* Check status register to see what current state is */ 5347 i = 0; 5348 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 5349 5350 /* Check every 10ms for 10 retries, then every 100ms for 90 5351 * retries, then every 1 sec for 50 retires for a total of 5352 * ~60 seconds before reset the board again and check every 5353 * 1 sec for 50 retries. The up to 60 seconds before the 5354 * board ready is required by the Falcon FIPS zeroization 5355 * complete, and any reset the board in between shall cause 5356 * restart of zeroization, further delay the board ready. 5357 */ 5358 if (i++ >= 200) { 5359 /* Adapter failed to init, timeout, status reg 5360 <status> */ 5361 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5362 "0436 Adapter failed to init, " 5363 "timeout, status reg x%x, " 5364 "FW Data: A8 x%x AC x%x\n", status, 5365 readl(phba->MBslimaddr + 0xa8), 5366 readl(phba->MBslimaddr + 0xac)); 5367 phba->link_state = LPFC_HBA_ERROR; 5368 return -ETIMEDOUT; 5369 } 5370 5371 /* Check to see if any errors occurred during init */ 5372 if (status & HS_FFERM) { 5373 /* ERROR: During chipset initialization */ 5374 /* Adapter failed to init, chipset, status reg 5375 <status> */ 5376 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5377 "0437 Adapter failed to init, " 5378 "chipset, status reg x%x, " 5379 "FW Data: A8 x%x AC x%x\n", status, 5380 readl(phba->MBslimaddr + 0xa8), 5381 readl(phba->MBslimaddr + 0xac)); 5382 phba->link_state = LPFC_HBA_ERROR; 5383 return -EIO; 5384 } 5385 5386 if (i <= 10) 5387 msleep(10); 5388 else if (i <= 100) 5389 msleep(100); 5390 else 5391 msleep(1000); 5392 5393 if (i == 150) { 5394 /* Do post */ 5395 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5396 lpfc_sli_brdrestart(phba); 5397 } 5398 /* Read the HBA Host Status Register */ 5399 if (lpfc_readl(phba->HSregaddr, &status)) 5400 return -EIO; 5401 } 5402 5403 /* Check to see if any errors occurred during init */ 5404 if (status & HS_FFERM) { 5405 /* ERROR: During chipset initialization */ 5406 /* Adapter failed to init, chipset, status reg <status> */ 5407 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5408 "0438 Adapter failed to init, chipset, " 5409 "status reg x%x, " 5410 "FW Data: A8 x%x AC x%x\n", status, 5411 readl(phba->MBslimaddr + 0xa8), 5412 readl(phba->MBslimaddr + 0xac)); 5413 phba->link_state = LPFC_HBA_ERROR; 5414 return -EIO; 5415 } 5416 5417 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5418 5419 /* Clear all interrupt enable conditions */ 5420 writel(0, phba->HCregaddr); 5421 readl(phba->HCregaddr); /* flush */ 5422 5423 /* setup host attn register */ 5424 writel(0xffffffff, phba->HAregaddr); 5425 readl(phba->HAregaddr); /* flush */ 5426 return 0; 5427 } 5428 5429 /** 5430 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5431 * 5432 * This function calculates and returns the number of HBQs required to be 5433 * configured. 5434 **/ 5435 int 5436 lpfc_sli_hbq_count(void) 5437 { 5438 return ARRAY_SIZE(lpfc_hbq_defs); 5439 } 5440 5441 /** 5442 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5443 * 5444 * This function adds the number of hbq entries in every HBQ to get 5445 * the total number of hbq entries required for the HBA and returns 5446 * the total count. 5447 **/ 5448 static int 5449 lpfc_sli_hbq_entry_count(void) 5450 { 5451 int hbq_count = lpfc_sli_hbq_count(); 5452 int count = 0; 5453 int i; 5454 5455 for (i = 0; i < hbq_count; ++i) 5456 count += lpfc_hbq_defs[i]->entry_count; 5457 return count; 5458 } 5459 5460 /** 5461 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5462 * 5463 * This function calculates amount of memory required for all hbq entries 5464 * to be configured and returns the total memory required. 5465 **/ 5466 int 5467 lpfc_sli_hbq_size(void) 5468 { 5469 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5470 } 5471 5472 /** 5473 * lpfc_sli_hbq_setup - configure and initialize HBQs 5474 * @phba: Pointer to HBA context object. 5475 * 5476 * This function is called during the SLI initialization to configure 5477 * all the HBQs and post buffers to the HBQ. The caller is not 5478 * required to hold any locks. This function will return zero if successful 5479 * else it will return negative error code. 5480 **/ 5481 static int 5482 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5483 { 5484 int hbq_count = lpfc_sli_hbq_count(); 5485 LPFC_MBOXQ_t *pmb; 5486 MAILBOX_t *pmbox; 5487 uint32_t hbqno; 5488 uint32_t hbq_entry_index; 5489 5490 /* Get a Mailbox buffer to setup mailbox 5491 * commands for HBA initialization 5492 */ 5493 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5494 5495 if (!pmb) 5496 return -ENOMEM; 5497 5498 pmbox = &pmb->u.mb; 5499 5500 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5501 phba->link_state = LPFC_INIT_MBX_CMDS; 5502 phba->hbq_in_use = 1; 5503 5504 hbq_entry_index = 0; 5505 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5506 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5507 phba->hbqs[hbqno].hbqPutIdx = 0; 5508 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5509 phba->hbqs[hbqno].entry_count = 5510 lpfc_hbq_defs[hbqno]->entry_count; 5511 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5512 hbq_entry_index, pmb); 5513 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5514 5515 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5516 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5517 mbxStatus <status>, ring <num> */ 5518 5519 lpfc_printf_log(phba, KERN_ERR, 5520 LOG_SLI | LOG_VPORT, 5521 "1805 Adapter failed to init. " 5522 "Data: x%x x%x x%x\n", 5523 pmbox->mbxCommand, 5524 pmbox->mbxStatus, hbqno); 5525 5526 phba->link_state = LPFC_HBA_ERROR; 5527 mempool_free(pmb, phba->mbox_mem_pool); 5528 return -ENXIO; 5529 } 5530 } 5531 phba->hbq_count = hbq_count; 5532 5533 mempool_free(pmb, phba->mbox_mem_pool); 5534 5535 /* Initially populate or replenish the HBQs */ 5536 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5537 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5538 return 0; 5539 } 5540 5541 /** 5542 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5543 * @phba: Pointer to HBA context object. 5544 * 5545 * This function is called during the SLI initialization to configure 5546 * all the HBQs and post buffers to the HBQ. The caller is not 5547 * required to hold any locks. This function will return zero if successful 5548 * else it will return negative error code. 5549 **/ 5550 static int 5551 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5552 { 5553 phba->hbq_in_use = 1; 5554 /** 5555 * Specific case when the MDS diagnostics is enabled and supported. 5556 * The receive buffer count is truncated to manage the incoming 5557 * traffic. 5558 **/ 5559 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5560 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5561 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5562 else 5563 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5564 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5565 phba->hbq_count = 1; 5566 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5567 /* Initially populate or replenish the HBQs */ 5568 return 0; 5569 } 5570 5571 /** 5572 * lpfc_sli_config_port - Issue config port mailbox command 5573 * @phba: Pointer to HBA context object. 5574 * @sli_mode: sli mode - 2/3 5575 * 5576 * This function is called by the sli initialization code path 5577 * to issue config_port mailbox command. This function restarts the 5578 * HBA firmware and issues a config_port mailbox command to configure 5579 * the SLI interface in the sli mode specified by sli_mode 5580 * variable. The caller is not required to hold any locks. 5581 * The function returns 0 if successful, else returns negative error 5582 * code. 5583 **/ 5584 int 5585 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5586 { 5587 LPFC_MBOXQ_t *pmb; 5588 uint32_t resetcount = 0, rc = 0, done = 0; 5589 5590 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5591 if (!pmb) { 5592 phba->link_state = LPFC_HBA_ERROR; 5593 return -ENOMEM; 5594 } 5595 5596 phba->sli_rev = sli_mode; 5597 while (resetcount < 2 && !done) { 5598 spin_lock_irq(&phba->hbalock); 5599 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5600 spin_unlock_irq(&phba->hbalock); 5601 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5602 lpfc_sli_brdrestart(phba); 5603 rc = lpfc_sli_chipset_init(phba); 5604 if (rc) 5605 break; 5606 5607 spin_lock_irq(&phba->hbalock); 5608 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5609 spin_unlock_irq(&phba->hbalock); 5610 resetcount++; 5611 5612 /* Call pre CONFIG_PORT mailbox command initialization. A 5613 * value of 0 means the call was successful. Any other 5614 * nonzero value is a failure, but if ERESTART is returned, 5615 * the driver may reset the HBA and try again. 5616 */ 5617 rc = lpfc_config_port_prep(phba); 5618 if (rc == -ERESTART) { 5619 phba->link_state = LPFC_LINK_UNKNOWN; 5620 continue; 5621 } else if (rc) 5622 break; 5623 5624 phba->link_state = LPFC_INIT_MBX_CMDS; 5625 lpfc_config_port(phba, pmb); 5626 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5627 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5628 LPFC_SLI3_HBQ_ENABLED | 5629 LPFC_SLI3_CRP_ENABLED | 5630 LPFC_SLI3_DSS_ENABLED); 5631 if (rc != MBX_SUCCESS) { 5632 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5633 "0442 Adapter failed to init, mbxCmd x%x " 5634 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5635 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5636 spin_lock_irq(&phba->hbalock); 5637 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5638 spin_unlock_irq(&phba->hbalock); 5639 rc = -ENXIO; 5640 } else { 5641 /* Allow asynchronous mailbox command to go through */ 5642 spin_lock_irq(&phba->hbalock); 5643 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5644 spin_unlock_irq(&phba->hbalock); 5645 done = 1; 5646 5647 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5648 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5649 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5650 "3110 Port did not grant ASABT\n"); 5651 } 5652 } 5653 if (!done) { 5654 rc = -EINVAL; 5655 goto do_prep_failed; 5656 } 5657 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5658 if (!pmb->u.mb.un.varCfgPort.cMA) { 5659 rc = -ENXIO; 5660 goto do_prep_failed; 5661 } 5662 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5663 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5664 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5665 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5666 phba->max_vpi : phba->max_vports; 5667 5668 } else 5669 phba->max_vpi = 0; 5670 if (pmb->u.mb.un.varCfgPort.gerbm) 5671 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5672 if (pmb->u.mb.un.varCfgPort.gcrp) 5673 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5674 5675 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5676 phba->port_gp = phba->mbox->us.s3_pgp.port; 5677 5678 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5679 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5680 phba->cfg_enable_bg = 0; 5681 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5682 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5683 "0443 Adapter did not grant " 5684 "BlockGuard\n"); 5685 } 5686 } 5687 } else { 5688 phba->hbq_get = NULL; 5689 phba->port_gp = phba->mbox->us.s2.port; 5690 phba->max_vpi = 0; 5691 } 5692 do_prep_failed: 5693 mempool_free(pmb, phba->mbox_mem_pool); 5694 return rc; 5695 } 5696 5697 5698 /** 5699 * lpfc_sli_hba_setup - SLI initialization function 5700 * @phba: Pointer to HBA context object. 5701 * 5702 * This function is the main SLI initialization function. This function 5703 * is called by the HBA initialization code, HBA reset code and HBA 5704 * error attention handler code. Caller is not required to hold any 5705 * locks. This function issues config_port mailbox command to configure 5706 * the SLI, setup iocb rings and HBQ rings. In the end the function 5707 * calls the config_port_post function to issue init_link mailbox 5708 * command and to start the discovery. The function will return zero 5709 * if successful, else it will return negative error code. 5710 **/ 5711 int 5712 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5713 { 5714 uint32_t rc; 5715 int i; 5716 int longs; 5717 5718 /* Enable ISR already does config_port because of config_msi mbx */ 5719 if (phba->hba_flag & HBA_NEEDS_CFG_PORT) { 5720 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5721 if (rc) 5722 return -EIO; 5723 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 5724 } 5725 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5726 5727 if (phba->sli_rev == 3) { 5728 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5729 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5730 } else { 5731 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5732 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5733 phba->sli3_options = 0; 5734 } 5735 5736 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5737 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5738 phba->sli_rev, phba->max_vpi); 5739 rc = lpfc_sli_ring_map(phba); 5740 5741 if (rc) 5742 goto lpfc_sli_hba_setup_error; 5743 5744 /* Initialize VPIs. */ 5745 if (phba->sli_rev == LPFC_SLI_REV3) { 5746 /* 5747 * The VPI bitmask and physical ID array are allocated 5748 * and initialized once only - at driver load. A port 5749 * reset doesn't need to reinitialize this memory. 5750 */ 5751 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5752 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5753 phba->vpi_bmask = kcalloc(longs, 5754 sizeof(unsigned long), 5755 GFP_KERNEL); 5756 if (!phba->vpi_bmask) { 5757 rc = -ENOMEM; 5758 goto lpfc_sli_hba_setup_error; 5759 } 5760 5761 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5762 sizeof(uint16_t), 5763 GFP_KERNEL); 5764 if (!phba->vpi_ids) { 5765 kfree(phba->vpi_bmask); 5766 rc = -ENOMEM; 5767 goto lpfc_sli_hba_setup_error; 5768 } 5769 for (i = 0; i < phba->max_vpi; i++) 5770 phba->vpi_ids[i] = i; 5771 } 5772 } 5773 5774 /* Init HBQs */ 5775 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5776 rc = lpfc_sli_hbq_setup(phba); 5777 if (rc) 5778 goto lpfc_sli_hba_setup_error; 5779 } 5780 spin_lock_irq(&phba->hbalock); 5781 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5782 spin_unlock_irq(&phba->hbalock); 5783 5784 rc = lpfc_config_port_post(phba); 5785 if (rc) 5786 goto lpfc_sli_hba_setup_error; 5787 5788 return rc; 5789 5790 lpfc_sli_hba_setup_error: 5791 phba->link_state = LPFC_HBA_ERROR; 5792 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5793 "0445 Firmware initialization failed\n"); 5794 return rc; 5795 } 5796 5797 /** 5798 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5799 * @phba: Pointer to HBA context object. 5800 * 5801 * This function issue a dump mailbox command to read config region 5802 * 23 and parse the records in the region and populate driver 5803 * data structure. 5804 **/ 5805 static int 5806 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5807 { 5808 LPFC_MBOXQ_t *mboxq; 5809 struct lpfc_dmabuf *mp; 5810 struct lpfc_mqe *mqe; 5811 uint32_t data_length; 5812 int rc; 5813 5814 /* Program the default value of vlan_id and fc_map */ 5815 phba->valid_vlan = 0; 5816 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5817 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5818 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5819 5820 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5821 if (!mboxq) 5822 return -ENOMEM; 5823 5824 mqe = &mboxq->u.mqe; 5825 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5826 rc = -ENOMEM; 5827 goto out_free_mboxq; 5828 } 5829 5830 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5831 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5832 5833 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5834 "(%d):2571 Mailbox cmd x%x Status x%x " 5835 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5836 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5837 "CQ: x%x x%x x%x x%x\n", 5838 mboxq->vport ? mboxq->vport->vpi : 0, 5839 bf_get(lpfc_mqe_command, mqe), 5840 bf_get(lpfc_mqe_status, mqe), 5841 mqe->un.mb_words[0], mqe->un.mb_words[1], 5842 mqe->un.mb_words[2], mqe->un.mb_words[3], 5843 mqe->un.mb_words[4], mqe->un.mb_words[5], 5844 mqe->un.mb_words[6], mqe->un.mb_words[7], 5845 mqe->un.mb_words[8], mqe->un.mb_words[9], 5846 mqe->un.mb_words[10], mqe->un.mb_words[11], 5847 mqe->un.mb_words[12], mqe->un.mb_words[13], 5848 mqe->un.mb_words[14], mqe->un.mb_words[15], 5849 mqe->un.mb_words[16], mqe->un.mb_words[50], 5850 mboxq->mcqe.word0, 5851 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5852 mboxq->mcqe.trailer); 5853 5854 if (rc) { 5855 rc = -EIO; 5856 goto out_free_mboxq; 5857 } 5858 data_length = mqe->un.mb_words[5]; 5859 if (data_length > DMP_RGN23_SIZE) { 5860 rc = -EIO; 5861 goto out_free_mboxq; 5862 } 5863 5864 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5865 rc = 0; 5866 5867 out_free_mboxq: 5868 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 5869 return rc; 5870 } 5871 5872 /** 5873 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5874 * @phba: pointer to lpfc hba data structure. 5875 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5876 * @vpd: pointer to the memory to hold resulting port vpd data. 5877 * @vpd_size: On input, the number of bytes allocated to @vpd. 5878 * On output, the number of data bytes in @vpd. 5879 * 5880 * This routine executes a READ_REV SLI4 mailbox command. In 5881 * addition, this routine gets the port vpd data. 5882 * 5883 * Return codes 5884 * 0 - successful 5885 * -ENOMEM - could not allocated memory. 5886 **/ 5887 static int 5888 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5889 uint8_t *vpd, uint32_t *vpd_size) 5890 { 5891 int rc = 0; 5892 uint32_t dma_size; 5893 struct lpfc_dmabuf *dmabuf; 5894 struct lpfc_mqe *mqe; 5895 5896 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5897 if (!dmabuf) 5898 return -ENOMEM; 5899 5900 /* 5901 * Get a DMA buffer for the vpd data resulting from the READ_REV 5902 * mailbox command. 5903 */ 5904 dma_size = *vpd_size; 5905 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5906 &dmabuf->phys, GFP_KERNEL); 5907 if (!dmabuf->virt) { 5908 kfree(dmabuf); 5909 return -ENOMEM; 5910 } 5911 5912 /* 5913 * The SLI4 implementation of READ_REV conflicts at word1, 5914 * bits 31:16 and SLI4 adds vpd functionality not present 5915 * in SLI3. This code corrects the conflicts. 5916 */ 5917 lpfc_read_rev(phba, mboxq); 5918 mqe = &mboxq->u.mqe; 5919 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5920 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5921 mqe->un.read_rev.word1 &= 0x0000FFFF; 5922 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5923 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5924 5925 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5926 if (rc) { 5927 dma_free_coherent(&phba->pcidev->dev, dma_size, 5928 dmabuf->virt, dmabuf->phys); 5929 kfree(dmabuf); 5930 return -EIO; 5931 } 5932 5933 /* 5934 * The available vpd length cannot be bigger than the 5935 * DMA buffer passed to the port. Catch the less than 5936 * case and update the caller's size. 5937 */ 5938 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5939 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5940 5941 memcpy(vpd, dmabuf->virt, *vpd_size); 5942 5943 dma_free_coherent(&phba->pcidev->dev, dma_size, 5944 dmabuf->virt, dmabuf->phys); 5945 kfree(dmabuf); 5946 return 0; 5947 } 5948 5949 /** 5950 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5951 * @phba: pointer to lpfc hba data structure. 5952 * 5953 * This routine retrieves SLI4 device physical port name this PCI function 5954 * is attached to. 5955 * 5956 * Return codes 5957 * 0 - successful 5958 * otherwise - failed to retrieve controller attributes 5959 **/ 5960 static int 5961 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5962 { 5963 LPFC_MBOXQ_t *mboxq; 5964 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5965 struct lpfc_controller_attribute *cntl_attr; 5966 void *virtaddr = NULL; 5967 uint32_t alloclen, reqlen; 5968 uint32_t shdr_status, shdr_add_status; 5969 union lpfc_sli4_cfg_shdr *shdr; 5970 int rc; 5971 5972 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5973 if (!mboxq) 5974 return -ENOMEM; 5975 5976 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5977 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5978 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5979 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5980 LPFC_SLI4_MBX_NEMBED); 5981 5982 if (alloclen < reqlen) { 5983 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5984 "3084 Allocated DMA memory size (%d) is " 5985 "less than the requested DMA memory size " 5986 "(%d)\n", alloclen, reqlen); 5987 rc = -ENOMEM; 5988 goto out_free_mboxq; 5989 } 5990 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5991 virtaddr = mboxq->sge_array->addr[0]; 5992 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5993 shdr = &mbx_cntl_attr->cfg_shdr; 5994 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5995 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5996 if (shdr_status || shdr_add_status || rc) { 5997 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5998 "3085 Mailbox x%x (x%x/x%x) failed, " 5999 "rc:x%x, status:x%x, add_status:x%x\n", 6000 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6001 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6002 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6003 rc, shdr_status, shdr_add_status); 6004 rc = -ENXIO; 6005 goto out_free_mboxq; 6006 } 6007 6008 cntl_attr = &mbx_cntl_attr->cntl_attr; 6009 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 6010 phba->sli4_hba.lnk_info.lnk_tp = 6011 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 6012 phba->sli4_hba.lnk_info.lnk_no = 6013 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 6014 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr); 6015 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr); 6016 6017 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 6018 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 6019 sizeof(phba->BIOSVersion)); 6020 6021 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6022 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, " 6023 "flash_id: x%02x, asic_rev: x%02x\n", 6024 phba->sli4_hba.lnk_info.lnk_tp, 6025 phba->sli4_hba.lnk_info.lnk_no, 6026 phba->BIOSVersion, phba->sli4_hba.flash_id, 6027 phba->sli4_hba.asic_rev); 6028 out_free_mboxq: 6029 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6030 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6031 else 6032 mempool_free(mboxq, phba->mbox_mem_pool); 6033 return rc; 6034 } 6035 6036 /** 6037 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 6038 * @phba: pointer to lpfc hba data structure. 6039 * 6040 * This routine retrieves SLI4 device physical port name this PCI function 6041 * is attached to. 6042 * 6043 * Return codes 6044 * 0 - successful 6045 * otherwise - failed to retrieve physical port name 6046 **/ 6047 static int 6048 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 6049 { 6050 LPFC_MBOXQ_t *mboxq; 6051 struct lpfc_mbx_get_port_name *get_port_name; 6052 uint32_t shdr_status, shdr_add_status; 6053 union lpfc_sli4_cfg_shdr *shdr; 6054 char cport_name = 0; 6055 int rc; 6056 6057 /* We assume nothing at this point */ 6058 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6059 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 6060 6061 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6062 if (!mboxq) 6063 return -ENOMEM; 6064 /* obtain link type and link number via READ_CONFIG */ 6065 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6066 lpfc_sli4_read_config(phba); 6067 6068 if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) 6069 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC; 6070 6071 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 6072 goto retrieve_ppname; 6073 6074 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 6075 rc = lpfc_sli4_get_ctl_attr(phba); 6076 if (rc) 6077 goto out_free_mboxq; 6078 6079 retrieve_ppname: 6080 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 6081 LPFC_MBOX_OPCODE_GET_PORT_NAME, 6082 sizeof(struct lpfc_mbx_get_port_name) - 6083 sizeof(struct lpfc_sli4_cfg_mhdr), 6084 LPFC_SLI4_MBX_EMBED); 6085 get_port_name = &mboxq->u.mqe.un.get_port_name; 6086 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 6087 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 6088 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 6089 phba->sli4_hba.lnk_info.lnk_tp); 6090 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6091 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6092 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6093 if (shdr_status || shdr_add_status || rc) { 6094 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6095 "3087 Mailbox x%x (x%x/x%x) failed: " 6096 "rc:x%x, status:x%x, add_status:x%x\n", 6097 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6098 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6099 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6100 rc, shdr_status, shdr_add_status); 6101 rc = -ENXIO; 6102 goto out_free_mboxq; 6103 } 6104 switch (phba->sli4_hba.lnk_info.lnk_no) { 6105 case LPFC_LINK_NUMBER_0: 6106 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 6107 &get_port_name->u.response); 6108 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6109 break; 6110 case LPFC_LINK_NUMBER_1: 6111 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 6112 &get_port_name->u.response); 6113 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6114 break; 6115 case LPFC_LINK_NUMBER_2: 6116 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 6117 &get_port_name->u.response); 6118 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6119 break; 6120 case LPFC_LINK_NUMBER_3: 6121 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 6122 &get_port_name->u.response); 6123 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6124 break; 6125 default: 6126 break; 6127 } 6128 6129 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 6130 phba->Port[0] = cport_name; 6131 phba->Port[1] = '\0'; 6132 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6133 "3091 SLI get port name: %s\n", phba->Port); 6134 } 6135 6136 out_free_mboxq: 6137 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6138 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6139 else 6140 mempool_free(mboxq, phba->mbox_mem_pool); 6141 return rc; 6142 } 6143 6144 /** 6145 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 6146 * @phba: pointer to lpfc hba data structure. 6147 * 6148 * This routine is called to explicitly arm the SLI4 device's completion and 6149 * event queues 6150 **/ 6151 static void 6152 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 6153 { 6154 int qidx; 6155 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 6156 struct lpfc_sli4_hdw_queue *qp; 6157 struct lpfc_queue *eq; 6158 6159 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 6160 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 6161 if (sli4_hba->nvmels_cq) 6162 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 6163 LPFC_QUEUE_REARM); 6164 6165 if (sli4_hba->hdwq) { 6166 /* Loop thru all Hardware Queues */ 6167 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 6168 qp = &sli4_hba->hdwq[qidx]; 6169 /* ARM the corresponding CQ */ 6170 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 6171 LPFC_QUEUE_REARM); 6172 } 6173 6174 /* Loop thru all IRQ vectors */ 6175 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 6176 eq = sli4_hba->hba_eq_hdl[qidx].eq; 6177 /* ARM the corresponding EQ */ 6178 sli4_hba->sli4_write_eq_db(phba, eq, 6179 0, LPFC_QUEUE_REARM); 6180 } 6181 } 6182 6183 if (phba->nvmet_support) { 6184 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 6185 sli4_hba->sli4_write_cq_db(phba, 6186 sli4_hba->nvmet_cqset[qidx], 0, 6187 LPFC_QUEUE_REARM); 6188 } 6189 } 6190 } 6191 6192 /** 6193 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 6194 * @phba: Pointer to HBA context object. 6195 * @type: The resource extent type. 6196 * @extnt_count: buffer to hold port available extent count. 6197 * @extnt_size: buffer to hold element count per extent. 6198 * 6199 * This function calls the port and retrievs the number of available 6200 * extents and their size for a particular extent type. 6201 * 6202 * Returns: 0 if successful. Nonzero otherwise. 6203 **/ 6204 int 6205 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 6206 uint16_t *extnt_count, uint16_t *extnt_size) 6207 { 6208 int rc = 0; 6209 uint32_t length; 6210 uint32_t mbox_tmo; 6211 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 6212 LPFC_MBOXQ_t *mbox; 6213 6214 *extnt_count = 0; 6215 *extnt_size = 0; 6216 6217 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6218 if (!mbox) 6219 return -ENOMEM; 6220 6221 /* Find out how many extents are available for this resource type */ 6222 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 6223 sizeof(struct lpfc_sli4_cfg_mhdr)); 6224 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6225 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 6226 length, LPFC_SLI4_MBX_EMBED); 6227 6228 /* Send an extents count of 0 - the GET doesn't use it. */ 6229 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6230 LPFC_SLI4_MBX_EMBED); 6231 if (unlikely(rc)) { 6232 rc = -EIO; 6233 goto err_exit; 6234 } 6235 6236 if (!phba->sli4_hba.intr_enable) 6237 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6238 else { 6239 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6240 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6241 } 6242 if (unlikely(rc)) { 6243 rc = -EIO; 6244 goto err_exit; 6245 } 6246 6247 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 6248 if (bf_get(lpfc_mbox_hdr_status, 6249 &rsrc_info->header.cfg_shdr.response)) { 6250 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6251 "2930 Failed to get resource extents " 6252 "Status 0x%x Add'l Status 0x%x\n", 6253 bf_get(lpfc_mbox_hdr_status, 6254 &rsrc_info->header.cfg_shdr.response), 6255 bf_get(lpfc_mbox_hdr_add_status, 6256 &rsrc_info->header.cfg_shdr.response)); 6257 rc = -EIO; 6258 goto err_exit; 6259 } 6260 6261 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 6262 &rsrc_info->u.rsp); 6263 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 6264 &rsrc_info->u.rsp); 6265 6266 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6267 "3162 Retrieved extents type-%d from port: count:%d, " 6268 "size:%d\n", type, *extnt_count, *extnt_size); 6269 6270 err_exit: 6271 mempool_free(mbox, phba->mbox_mem_pool); 6272 return rc; 6273 } 6274 6275 /** 6276 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 6277 * @phba: Pointer to HBA context object. 6278 * @type: The extent type to check. 6279 * 6280 * This function reads the current available extents from the port and checks 6281 * if the extent count or extent size has changed since the last access. 6282 * Callers use this routine post port reset to understand if there is a 6283 * extent reprovisioning requirement. 6284 * 6285 * Returns: 6286 * -Error: error indicates problem. 6287 * 1: Extent count or size has changed. 6288 * 0: No changes. 6289 **/ 6290 static int 6291 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 6292 { 6293 uint16_t curr_ext_cnt, rsrc_ext_cnt; 6294 uint16_t size_diff, rsrc_ext_size; 6295 int rc = 0; 6296 struct lpfc_rsrc_blks *rsrc_entry; 6297 struct list_head *rsrc_blk_list = NULL; 6298 6299 size_diff = 0; 6300 curr_ext_cnt = 0; 6301 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6302 &rsrc_ext_cnt, 6303 &rsrc_ext_size); 6304 if (unlikely(rc)) 6305 return -EIO; 6306 6307 switch (type) { 6308 case LPFC_RSC_TYPE_FCOE_RPI: 6309 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6310 break; 6311 case LPFC_RSC_TYPE_FCOE_VPI: 6312 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 6313 break; 6314 case LPFC_RSC_TYPE_FCOE_XRI: 6315 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6316 break; 6317 case LPFC_RSC_TYPE_FCOE_VFI: 6318 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6319 break; 6320 default: 6321 break; 6322 } 6323 6324 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 6325 curr_ext_cnt++; 6326 if (rsrc_entry->rsrc_size != rsrc_ext_size) 6327 size_diff++; 6328 } 6329 6330 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 6331 rc = 1; 6332 6333 return rc; 6334 } 6335 6336 /** 6337 * lpfc_sli4_cfg_post_extnts - 6338 * @phba: Pointer to HBA context object. 6339 * @extnt_cnt: number of available extents. 6340 * @type: the extent type (rpi, xri, vfi, vpi). 6341 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 6342 * @mbox: pointer to the caller's allocated mailbox structure. 6343 * 6344 * This function executes the extents allocation request. It also 6345 * takes care of the amount of memory needed to allocate or get the 6346 * allocated extents. It is the caller's responsibility to evaluate 6347 * the response. 6348 * 6349 * Returns: 6350 * -Error: Error value describes the condition found. 6351 * 0: if successful 6352 **/ 6353 static int 6354 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6355 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6356 { 6357 int rc = 0; 6358 uint32_t req_len; 6359 uint32_t emb_len; 6360 uint32_t alloc_len, mbox_tmo; 6361 6362 /* Calculate the total requested length of the dma memory */ 6363 req_len = extnt_cnt * sizeof(uint16_t); 6364 6365 /* 6366 * Calculate the size of an embedded mailbox. The uint32_t 6367 * accounts for extents-specific word. 6368 */ 6369 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6370 sizeof(uint32_t); 6371 6372 /* 6373 * Presume the allocation and response will fit into an embedded 6374 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6375 */ 6376 *emb = LPFC_SLI4_MBX_EMBED; 6377 if (req_len > emb_len) { 6378 req_len = extnt_cnt * sizeof(uint16_t) + 6379 sizeof(union lpfc_sli4_cfg_shdr) + 6380 sizeof(uint32_t); 6381 *emb = LPFC_SLI4_MBX_NEMBED; 6382 } 6383 6384 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6385 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6386 req_len, *emb); 6387 if (alloc_len < req_len) { 6388 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6389 "2982 Allocated DMA memory size (x%x) is " 6390 "less than the requested DMA memory " 6391 "size (x%x)\n", alloc_len, req_len); 6392 return -ENOMEM; 6393 } 6394 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6395 if (unlikely(rc)) 6396 return -EIO; 6397 6398 if (!phba->sli4_hba.intr_enable) 6399 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6400 else { 6401 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6402 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6403 } 6404 6405 if (unlikely(rc)) 6406 rc = -EIO; 6407 return rc; 6408 } 6409 6410 /** 6411 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6412 * @phba: Pointer to HBA context object. 6413 * @type: The resource extent type to allocate. 6414 * 6415 * This function allocates the number of elements for the specified 6416 * resource type. 6417 **/ 6418 static int 6419 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6420 { 6421 bool emb = false; 6422 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6423 uint16_t rsrc_id, rsrc_start, j, k; 6424 uint16_t *ids; 6425 int i, rc; 6426 unsigned long longs; 6427 unsigned long *bmask; 6428 struct lpfc_rsrc_blks *rsrc_blks; 6429 LPFC_MBOXQ_t *mbox; 6430 uint32_t length; 6431 struct lpfc_id_range *id_array = NULL; 6432 void *virtaddr = NULL; 6433 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6434 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6435 struct list_head *ext_blk_list; 6436 6437 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6438 &rsrc_cnt, 6439 &rsrc_size); 6440 if (unlikely(rc)) 6441 return -EIO; 6442 6443 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6444 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6445 "3009 No available Resource Extents " 6446 "for resource type 0x%x: Count: 0x%x, " 6447 "Size 0x%x\n", type, rsrc_cnt, 6448 rsrc_size); 6449 return -ENOMEM; 6450 } 6451 6452 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6453 "2903 Post resource extents type-0x%x: " 6454 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6455 6456 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6457 if (!mbox) 6458 return -ENOMEM; 6459 6460 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6461 if (unlikely(rc)) { 6462 rc = -EIO; 6463 goto err_exit; 6464 } 6465 6466 /* 6467 * Figure out where the response is located. Then get local pointers 6468 * to the response data. The port does not guarantee to respond to 6469 * all extents counts request so update the local variable with the 6470 * allocated count from the port. 6471 */ 6472 if (emb == LPFC_SLI4_MBX_EMBED) { 6473 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6474 id_array = &rsrc_ext->u.rsp.id[0]; 6475 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6476 } else { 6477 virtaddr = mbox->sge_array->addr[0]; 6478 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6479 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6480 id_array = &n_rsrc->id; 6481 } 6482 6483 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6484 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6485 6486 /* 6487 * Based on the resource size and count, correct the base and max 6488 * resource values. 6489 */ 6490 length = sizeof(struct lpfc_rsrc_blks); 6491 switch (type) { 6492 case LPFC_RSC_TYPE_FCOE_RPI: 6493 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6494 sizeof(unsigned long), 6495 GFP_KERNEL); 6496 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6497 rc = -ENOMEM; 6498 goto err_exit; 6499 } 6500 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6501 sizeof(uint16_t), 6502 GFP_KERNEL); 6503 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6504 kfree(phba->sli4_hba.rpi_bmask); 6505 rc = -ENOMEM; 6506 goto err_exit; 6507 } 6508 6509 /* 6510 * The next_rpi was initialized with the maximum available 6511 * count but the port may allocate a smaller number. Catch 6512 * that case and update the next_rpi. 6513 */ 6514 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6515 6516 /* Initialize local ptrs for common extent processing later. */ 6517 bmask = phba->sli4_hba.rpi_bmask; 6518 ids = phba->sli4_hba.rpi_ids; 6519 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6520 break; 6521 case LPFC_RSC_TYPE_FCOE_VPI: 6522 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6523 GFP_KERNEL); 6524 if (unlikely(!phba->vpi_bmask)) { 6525 rc = -ENOMEM; 6526 goto err_exit; 6527 } 6528 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6529 GFP_KERNEL); 6530 if (unlikely(!phba->vpi_ids)) { 6531 kfree(phba->vpi_bmask); 6532 rc = -ENOMEM; 6533 goto err_exit; 6534 } 6535 6536 /* Initialize local ptrs for common extent processing later. */ 6537 bmask = phba->vpi_bmask; 6538 ids = phba->vpi_ids; 6539 ext_blk_list = &phba->lpfc_vpi_blk_list; 6540 break; 6541 case LPFC_RSC_TYPE_FCOE_XRI: 6542 phba->sli4_hba.xri_bmask = kcalloc(longs, 6543 sizeof(unsigned long), 6544 GFP_KERNEL); 6545 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6546 rc = -ENOMEM; 6547 goto err_exit; 6548 } 6549 phba->sli4_hba.max_cfg_param.xri_used = 0; 6550 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6551 sizeof(uint16_t), 6552 GFP_KERNEL); 6553 if (unlikely(!phba->sli4_hba.xri_ids)) { 6554 kfree(phba->sli4_hba.xri_bmask); 6555 rc = -ENOMEM; 6556 goto err_exit; 6557 } 6558 6559 /* Initialize local ptrs for common extent processing later. */ 6560 bmask = phba->sli4_hba.xri_bmask; 6561 ids = phba->sli4_hba.xri_ids; 6562 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6563 break; 6564 case LPFC_RSC_TYPE_FCOE_VFI: 6565 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6566 sizeof(unsigned long), 6567 GFP_KERNEL); 6568 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6569 rc = -ENOMEM; 6570 goto err_exit; 6571 } 6572 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6573 sizeof(uint16_t), 6574 GFP_KERNEL); 6575 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6576 kfree(phba->sli4_hba.vfi_bmask); 6577 rc = -ENOMEM; 6578 goto err_exit; 6579 } 6580 6581 /* Initialize local ptrs for common extent processing later. */ 6582 bmask = phba->sli4_hba.vfi_bmask; 6583 ids = phba->sli4_hba.vfi_ids; 6584 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6585 break; 6586 default: 6587 /* Unsupported Opcode. Fail call. */ 6588 id_array = NULL; 6589 bmask = NULL; 6590 ids = NULL; 6591 ext_blk_list = NULL; 6592 goto err_exit; 6593 } 6594 6595 /* 6596 * Complete initializing the extent configuration with the 6597 * allocated ids assigned to this function. The bitmask serves 6598 * as an index into the array and manages the available ids. The 6599 * array just stores the ids communicated to the port via the wqes. 6600 */ 6601 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6602 if ((i % 2) == 0) 6603 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6604 &id_array[k]); 6605 else 6606 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6607 &id_array[k]); 6608 6609 rsrc_blks = kzalloc(length, GFP_KERNEL); 6610 if (unlikely(!rsrc_blks)) { 6611 rc = -ENOMEM; 6612 kfree(bmask); 6613 kfree(ids); 6614 goto err_exit; 6615 } 6616 rsrc_blks->rsrc_start = rsrc_id; 6617 rsrc_blks->rsrc_size = rsrc_size; 6618 list_add_tail(&rsrc_blks->list, ext_blk_list); 6619 rsrc_start = rsrc_id; 6620 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6621 phba->sli4_hba.io_xri_start = rsrc_start + 6622 lpfc_sli4_get_iocb_cnt(phba); 6623 } 6624 6625 while (rsrc_id < (rsrc_start + rsrc_size)) { 6626 ids[j] = rsrc_id; 6627 rsrc_id++; 6628 j++; 6629 } 6630 /* Entire word processed. Get next word.*/ 6631 if ((i % 2) == 1) 6632 k++; 6633 } 6634 err_exit: 6635 lpfc_sli4_mbox_cmd_free(phba, mbox); 6636 return rc; 6637 } 6638 6639 6640 6641 /** 6642 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6643 * @phba: Pointer to HBA context object. 6644 * @type: the extent's type. 6645 * 6646 * This function deallocates all extents of a particular resource type. 6647 * SLI4 does not allow for deallocating a particular extent range. It 6648 * is the caller's responsibility to release all kernel memory resources. 6649 **/ 6650 static int 6651 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6652 { 6653 int rc; 6654 uint32_t length, mbox_tmo = 0; 6655 LPFC_MBOXQ_t *mbox; 6656 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6657 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6658 6659 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6660 if (!mbox) 6661 return -ENOMEM; 6662 6663 /* 6664 * This function sends an embedded mailbox because it only sends the 6665 * the resource type. All extents of this type are released by the 6666 * port. 6667 */ 6668 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6669 sizeof(struct lpfc_sli4_cfg_mhdr)); 6670 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6671 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6672 length, LPFC_SLI4_MBX_EMBED); 6673 6674 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6675 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6676 LPFC_SLI4_MBX_EMBED); 6677 if (unlikely(rc)) { 6678 rc = -EIO; 6679 goto out_free_mbox; 6680 } 6681 if (!phba->sli4_hba.intr_enable) 6682 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6683 else { 6684 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6685 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6686 } 6687 if (unlikely(rc)) { 6688 rc = -EIO; 6689 goto out_free_mbox; 6690 } 6691 6692 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6693 if (bf_get(lpfc_mbox_hdr_status, 6694 &dealloc_rsrc->header.cfg_shdr.response)) { 6695 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6696 "2919 Failed to release resource extents " 6697 "for type %d - Status 0x%x Add'l Status 0x%x. " 6698 "Resource memory not released.\n", 6699 type, 6700 bf_get(lpfc_mbox_hdr_status, 6701 &dealloc_rsrc->header.cfg_shdr.response), 6702 bf_get(lpfc_mbox_hdr_add_status, 6703 &dealloc_rsrc->header.cfg_shdr.response)); 6704 rc = -EIO; 6705 goto out_free_mbox; 6706 } 6707 6708 /* Release kernel memory resources for the specific type. */ 6709 switch (type) { 6710 case LPFC_RSC_TYPE_FCOE_VPI: 6711 kfree(phba->vpi_bmask); 6712 kfree(phba->vpi_ids); 6713 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6714 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6715 &phba->lpfc_vpi_blk_list, list) { 6716 list_del_init(&rsrc_blk->list); 6717 kfree(rsrc_blk); 6718 } 6719 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6720 break; 6721 case LPFC_RSC_TYPE_FCOE_XRI: 6722 kfree(phba->sli4_hba.xri_bmask); 6723 kfree(phba->sli4_hba.xri_ids); 6724 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6725 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6726 list_del_init(&rsrc_blk->list); 6727 kfree(rsrc_blk); 6728 } 6729 break; 6730 case LPFC_RSC_TYPE_FCOE_VFI: 6731 kfree(phba->sli4_hba.vfi_bmask); 6732 kfree(phba->sli4_hba.vfi_ids); 6733 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6734 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6735 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6736 list_del_init(&rsrc_blk->list); 6737 kfree(rsrc_blk); 6738 } 6739 break; 6740 case LPFC_RSC_TYPE_FCOE_RPI: 6741 /* RPI bitmask and physical id array are cleaned up earlier. */ 6742 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6743 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6744 list_del_init(&rsrc_blk->list); 6745 kfree(rsrc_blk); 6746 } 6747 break; 6748 default: 6749 break; 6750 } 6751 6752 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6753 6754 out_free_mbox: 6755 mempool_free(mbox, phba->mbox_mem_pool); 6756 return rc; 6757 } 6758 6759 static void 6760 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6761 uint32_t feature) 6762 { 6763 uint32_t len; 6764 u32 sig_freq = 0; 6765 6766 len = sizeof(struct lpfc_mbx_set_feature) - 6767 sizeof(struct lpfc_sli4_cfg_mhdr); 6768 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6769 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6770 LPFC_SLI4_MBX_EMBED); 6771 6772 switch (feature) { 6773 case LPFC_SET_UE_RECOVERY: 6774 bf_set(lpfc_mbx_set_feature_UER, 6775 &mbox->u.mqe.un.set_feature, 1); 6776 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6777 mbox->u.mqe.un.set_feature.param_len = 8; 6778 break; 6779 case LPFC_SET_MDS_DIAGS: 6780 bf_set(lpfc_mbx_set_feature_mds, 6781 &mbox->u.mqe.un.set_feature, 1); 6782 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6783 &mbox->u.mqe.un.set_feature, 1); 6784 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6785 mbox->u.mqe.un.set_feature.param_len = 8; 6786 break; 6787 case LPFC_SET_CGN_SIGNAL: 6788 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6789 sig_freq = 0; 6790 else 6791 sig_freq = phba->cgn_sig_freq; 6792 6793 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6794 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq, 6795 &mbox->u.mqe.un.set_feature, sig_freq); 6796 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6797 &mbox->u.mqe.un.set_feature, sig_freq); 6798 } 6799 6800 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY) 6801 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6802 &mbox->u.mqe.un.set_feature, sig_freq); 6803 6804 if (phba->cmf_active_mode == LPFC_CFG_OFF || 6805 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED) 6806 sig_freq = 0; 6807 else 6808 sig_freq = lpfc_acqe_cgn_frequency; 6809 6810 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq, 6811 &mbox->u.mqe.un.set_feature, sig_freq); 6812 6813 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL; 6814 mbox->u.mqe.un.set_feature.param_len = 12; 6815 break; 6816 case LPFC_SET_DUAL_DUMP: 6817 bf_set(lpfc_mbx_set_feature_dd, 6818 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6819 bf_set(lpfc_mbx_set_feature_ddquery, 6820 &mbox->u.mqe.un.set_feature, 0); 6821 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6822 mbox->u.mqe.un.set_feature.param_len = 4; 6823 break; 6824 case LPFC_SET_ENABLE_MI: 6825 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI; 6826 mbox->u.mqe.un.set_feature.param_len = 4; 6827 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature, 6828 phba->pport->cfg_lun_queue_depth); 6829 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature, 6830 phba->sli4_hba.pc_sli4_params.mi_ver); 6831 break; 6832 case LPFC_SET_LD_SIGNAL: 6833 mbox->u.mqe.un.set_feature.feature = LPFC_SET_LD_SIGNAL; 6834 mbox->u.mqe.un.set_feature.param_len = 16; 6835 bf_set(lpfc_mbx_set_feature_lds_qry, 6836 &mbox->u.mqe.un.set_feature, LPFC_QUERY_LDS_OP); 6837 break; 6838 case LPFC_SET_ENABLE_CMF: 6839 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF; 6840 mbox->u.mqe.un.set_feature.param_len = 4; 6841 bf_set(lpfc_mbx_set_feature_cmf, 6842 &mbox->u.mqe.un.set_feature, 1); 6843 break; 6844 } 6845 return; 6846 } 6847 6848 /** 6849 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6850 * @phba: Pointer to HBA context object. 6851 * 6852 * Disable FW logging into host memory on the adapter. To 6853 * be done before reading logs from the host memory. 6854 **/ 6855 void 6856 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6857 { 6858 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6859 6860 spin_lock_irq(&phba->ras_fwlog_lock); 6861 ras_fwlog->state = INACTIVE; 6862 spin_unlock_irq(&phba->ras_fwlog_lock); 6863 6864 /* Disable FW logging to host memory */ 6865 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6866 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6867 6868 /* Wait 10ms for firmware to stop using DMA buffer */ 6869 usleep_range(10 * 1000, 20 * 1000); 6870 } 6871 6872 /** 6873 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6874 * @phba: Pointer to HBA context object. 6875 * 6876 * This function is called to free memory allocated for RAS FW logging 6877 * support in the driver. 6878 **/ 6879 void 6880 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6881 { 6882 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6883 struct lpfc_dmabuf *dmabuf, *next; 6884 6885 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6886 list_for_each_entry_safe(dmabuf, next, 6887 &ras_fwlog->fwlog_buff_list, 6888 list) { 6889 list_del(&dmabuf->list); 6890 dma_free_coherent(&phba->pcidev->dev, 6891 LPFC_RAS_MAX_ENTRY_SIZE, 6892 dmabuf->virt, dmabuf->phys); 6893 kfree(dmabuf); 6894 } 6895 } 6896 6897 if (ras_fwlog->lwpd.virt) { 6898 dma_free_coherent(&phba->pcidev->dev, 6899 sizeof(uint32_t) * 2, 6900 ras_fwlog->lwpd.virt, 6901 ras_fwlog->lwpd.phys); 6902 ras_fwlog->lwpd.virt = NULL; 6903 } 6904 6905 spin_lock_irq(&phba->ras_fwlog_lock); 6906 ras_fwlog->state = INACTIVE; 6907 spin_unlock_irq(&phba->ras_fwlog_lock); 6908 } 6909 6910 /** 6911 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6912 * @phba: Pointer to HBA context object. 6913 * @fwlog_buff_count: Count of buffers to be created. 6914 * 6915 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6916 * to update FW log is posted to the adapter. 6917 * Buffer count is calculated based on module param ras_fwlog_buffsize 6918 * Size of each buffer posted to FW is 64K. 6919 **/ 6920 6921 static int 6922 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6923 uint32_t fwlog_buff_count) 6924 { 6925 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6926 struct lpfc_dmabuf *dmabuf; 6927 int rc = 0, i = 0; 6928 6929 /* Initialize List */ 6930 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6931 6932 /* Allocate memory for the LWPD */ 6933 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6934 sizeof(uint32_t) * 2, 6935 &ras_fwlog->lwpd.phys, 6936 GFP_KERNEL); 6937 if (!ras_fwlog->lwpd.virt) { 6938 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6939 "6185 LWPD Memory Alloc Failed\n"); 6940 6941 return -ENOMEM; 6942 } 6943 6944 ras_fwlog->fw_buffcount = fwlog_buff_count; 6945 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6946 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6947 GFP_KERNEL); 6948 if (!dmabuf) { 6949 rc = -ENOMEM; 6950 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6951 "6186 Memory Alloc failed FW logging"); 6952 goto free_mem; 6953 } 6954 6955 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6956 LPFC_RAS_MAX_ENTRY_SIZE, 6957 &dmabuf->phys, GFP_KERNEL); 6958 if (!dmabuf->virt) { 6959 kfree(dmabuf); 6960 rc = -ENOMEM; 6961 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6962 "6187 DMA Alloc Failed FW logging"); 6963 goto free_mem; 6964 } 6965 dmabuf->buffer_tag = i; 6966 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6967 } 6968 6969 free_mem: 6970 if (rc) 6971 lpfc_sli4_ras_dma_free(phba); 6972 6973 return rc; 6974 } 6975 6976 /** 6977 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6978 * @phba: pointer to lpfc hba data structure. 6979 * @pmb: pointer to the driver internal queue element for mailbox command. 6980 * 6981 * Completion handler for driver's RAS MBX command to the device. 6982 **/ 6983 static void 6984 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6985 { 6986 MAILBOX_t *mb; 6987 union lpfc_sli4_cfg_shdr *shdr; 6988 uint32_t shdr_status, shdr_add_status; 6989 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6990 6991 mb = &pmb->u.mb; 6992 6993 shdr = (union lpfc_sli4_cfg_shdr *) 6994 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6995 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6996 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6997 6998 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6999 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7000 "6188 FW LOG mailbox " 7001 "completed with status x%x add_status x%x," 7002 " mbx status x%x\n", 7003 shdr_status, shdr_add_status, mb->mbxStatus); 7004 7005 ras_fwlog->ras_hwsupport = false; 7006 goto disable_ras; 7007 } 7008 7009 spin_lock_irq(&phba->ras_fwlog_lock); 7010 ras_fwlog->state = ACTIVE; 7011 spin_unlock_irq(&phba->ras_fwlog_lock); 7012 mempool_free(pmb, phba->mbox_mem_pool); 7013 7014 return; 7015 7016 disable_ras: 7017 /* Free RAS DMA memory */ 7018 lpfc_sli4_ras_dma_free(phba); 7019 mempool_free(pmb, phba->mbox_mem_pool); 7020 } 7021 7022 /** 7023 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 7024 * @phba: pointer to lpfc hba data structure. 7025 * @fwlog_level: Logging verbosity level. 7026 * @fwlog_enable: Enable/Disable logging. 7027 * 7028 * Initialize memory and post mailbox command to enable FW logging in host 7029 * memory. 7030 **/ 7031 int 7032 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 7033 uint32_t fwlog_level, 7034 uint32_t fwlog_enable) 7035 { 7036 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 7037 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 7038 struct lpfc_dmabuf *dmabuf; 7039 LPFC_MBOXQ_t *mbox; 7040 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 7041 int rc = 0; 7042 7043 spin_lock_irq(&phba->ras_fwlog_lock); 7044 ras_fwlog->state = INACTIVE; 7045 spin_unlock_irq(&phba->ras_fwlog_lock); 7046 7047 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 7048 phba->cfg_ras_fwlog_buffsize); 7049 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 7050 7051 /* 7052 * If re-enabling FW logging support use earlier allocated 7053 * DMA buffers while posting MBX command. 7054 **/ 7055 if (!ras_fwlog->lwpd.virt) { 7056 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 7057 if (rc) { 7058 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7059 "6189 FW Log Memory Allocation Failed"); 7060 return rc; 7061 } 7062 } 7063 7064 /* Setup Mailbox command */ 7065 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7066 if (!mbox) { 7067 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7068 "6190 RAS MBX Alloc Failed"); 7069 rc = -ENOMEM; 7070 goto mem_free; 7071 } 7072 7073 ras_fwlog->fw_loglevel = fwlog_level; 7074 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 7075 sizeof(struct lpfc_sli4_cfg_mhdr)); 7076 7077 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 7078 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 7079 len, LPFC_SLI4_MBX_EMBED); 7080 7081 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 7082 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 7083 fwlog_enable); 7084 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 7085 ras_fwlog->fw_loglevel); 7086 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 7087 ras_fwlog->fw_buffcount); 7088 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 7089 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 7090 7091 /* Update DMA buffer address */ 7092 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 7093 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 7094 7095 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 7096 putPaddrLow(dmabuf->phys); 7097 7098 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 7099 putPaddrHigh(dmabuf->phys); 7100 } 7101 7102 /* Update LPWD address */ 7103 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 7104 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 7105 7106 spin_lock_irq(&phba->ras_fwlog_lock); 7107 ras_fwlog->state = REG_INPROGRESS; 7108 spin_unlock_irq(&phba->ras_fwlog_lock); 7109 mbox->vport = phba->pport; 7110 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 7111 7112 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 7113 7114 if (rc == MBX_NOT_FINISHED) { 7115 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7116 "6191 FW-Log Mailbox failed. " 7117 "status %d mbxStatus : x%x", rc, 7118 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 7119 mempool_free(mbox, phba->mbox_mem_pool); 7120 rc = -EIO; 7121 goto mem_free; 7122 } else 7123 rc = 0; 7124 mem_free: 7125 if (rc) 7126 lpfc_sli4_ras_dma_free(phba); 7127 7128 return rc; 7129 } 7130 7131 /** 7132 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 7133 * @phba: Pointer to HBA context object. 7134 * 7135 * Check if RAS is supported on the adapter and initialize it. 7136 **/ 7137 void 7138 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 7139 { 7140 /* Check RAS FW Log needs to be enabled or not */ 7141 if (lpfc_check_fwlog_support(phba)) 7142 return; 7143 7144 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 7145 LPFC_RAS_ENABLE_LOGGING); 7146 } 7147 7148 /** 7149 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 7150 * @phba: Pointer to HBA context object. 7151 * 7152 * This function allocates all SLI4 resource identifiers. 7153 **/ 7154 int 7155 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 7156 { 7157 int i, rc, error = 0; 7158 uint16_t count, base; 7159 unsigned long longs; 7160 7161 if (!phba->sli4_hba.rpi_hdrs_in_use) 7162 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 7163 if (phba->sli4_hba.extents_in_use) { 7164 /* 7165 * The port supports resource extents. The XRI, VPI, VFI, RPI 7166 * resource extent count must be read and allocated before 7167 * provisioning the resource id arrays. 7168 */ 7169 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7170 LPFC_IDX_RSRC_RDY) { 7171 /* 7172 * Extent-based resources are set - the driver could 7173 * be in a port reset. Figure out if any corrective 7174 * actions need to be taken. 7175 */ 7176 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7177 LPFC_RSC_TYPE_FCOE_VFI); 7178 if (rc != 0) 7179 error++; 7180 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7181 LPFC_RSC_TYPE_FCOE_VPI); 7182 if (rc != 0) 7183 error++; 7184 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7185 LPFC_RSC_TYPE_FCOE_XRI); 7186 if (rc != 0) 7187 error++; 7188 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7189 LPFC_RSC_TYPE_FCOE_RPI); 7190 if (rc != 0) 7191 error++; 7192 7193 /* 7194 * It's possible that the number of resources 7195 * provided to this port instance changed between 7196 * resets. Detect this condition and reallocate 7197 * resources. Otherwise, there is no action. 7198 */ 7199 if (error) { 7200 lpfc_printf_log(phba, KERN_INFO, 7201 LOG_MBOX | LOG_INIT, 7202 "2931 Detected extent resource " 7203 "change. Reallocating all " 7204 "extents.\n"); 7205 rc = lpfc_sli4_dealloc_extent(phba, 7206 LPFC_RSC_TYPE_FCOE_VFI); 7207 rc = lpfc_sli4_dealloc_extent(phba, 7208 LPFC_RSC_TYPE_FCOE_VPI); 7209 rc = lpfc_sli4_dealloc_extent(phba, 7210 LPFC_RSC_TYPE_FCOE_XRI); 7211 rc = lpfc_sli4_dealloc_extent(phba, 7212 LPFC_RSC_TYPE_FCOE_RPI); 7213 } else 7214 return 0; 7215 } 7216 7217 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7218 if (unlikely(rc)) 7219 goto err_exit; 7220 7221 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7222 if (unlikely(rc)) 7223 goto err_exit; 7224 7225 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7226 if (unlikely(rc)) 7227 goto err_exit; 7228 7229 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7230 if (unlikely(rc)) 7231 goto err_exit; 7232 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7233 LPFC_IDX_RSRC_RDY); 7234 return rc; 7235 } else { 7236 /* 7237 * The port does not support resource extents. The XRI, VPI, 7238 * VFI, RPI resource ids were determined from READ_CONFIG. 7239 * Just allocate the bitmasks and provision the resource id 7240 * arrays. If a port reset is active, the resources don't 7241 * need any action - just exit. 7242 */ 7243 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7244 LPFC_IDX_RSRC_RDY) { 7245 lpfc_sli4_dealloc_resource_identifiers(phba); 7246 lpfc_sli4_remove_rpis(phba); 7247 } 7248 /* RPIs. */ 7249 count = phba->sli4_hba.max_cfg_param.max_rpi; 7250 if (count <= 0) { 7251 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7252 "3279 Invalid provisioning of " 7253 "rpi:%d\n", count); 7254 rc = -EINVAL; 7255 goto err_exit; 7256 } 7257 base = phba->sli4_hba.max_cfg_param.rpi_base; 7258 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7259 phba->sli4_hba.rpi_bmask = kcalloc(longs, 7260 sizeof(unsigned long), 7261 GFP_KERNEL); 7262 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 7263 rc = -ENOMEM; 7264 goto err_exit; 7265 } 7266 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 7267 GFP_KERNEL); 7268 if (unlikely(!phba->sli4_hba.rpi_ids)) { 7269 rc = -ENOMEM; 7270 goto free_rpi_bmask; 7271 } 7272 7273 for (i = 0; i < count; i++) 7274 phba->sli4_hba.rpi_ids[i] = base + i; 7275 7276 /* VPIs. */ 7277 count = phba->sli4_hba.max_cfg_param.max_vpi; 7278 if (count <= 0) { 7279 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7280 "3280 Invalid provisioning of " 7281 "vpi:%d\n", count); 7282 rc = -EINVAL; 7283 goto free_rpi_ids; 7284 } 7285 base = phba->sli4_hba.max_cfg_param.vpi_base; 7286 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7287 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 7288 GFP_KERNEL); 7289 if (unlikely(!phba->vpi_bmask)) { 7290 rc = -ENOMEM; 7291 goto free_rpi_ids; 7292 } 7293 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 7294 GFP_KERNEL); 7295 if (unlikely(!phba->vpi_ids)) { 7296 rc = -ENOMEM; 7297 goto free_vpi_bmask; 7298 } 7299 7300 for (i = 0; i < count; i++) 7301 phba->vpi_ids[i] = base + i; 7302 7303 /* XRIs. */ 7304 count = phba->sli4_hba.max_cfg_param.max_xri; 7305 if (count <= 0) { 7306 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7307 "3281 Invalid provisioning of " 7308 "xri:%d\n", count); 7309 rc = -EINVAL; 7310 goto free_vpi_ids; 7311 } 7312 base = phba->sli4_hba.max_cfg_param.xri_base; 7313 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7314 phba->sli4_hba.xri_bmask = kcalloc(longs, 7315 sizeof(unsigned long), 7316 GFP_KERNEL); 7317 if (unlikely(!phba->sli4_hba.xri_bmask)) { 7318 rc = -ENOMEM; 7319 goto free_vpi_ids; 7320 } 7321 phba->sli4_hba.max_cfg_param.xri_used = 0; 7322 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 7323 GFP_KERNEL); 7324 if (unlikely(!phba->sli4_hba.xri_ids)) { 7325 rc = -ENOMEM; 7326 goto free_xri_bmask; 7327 } 7328 7329 for (i = 0; i < count; i++) 7330 phba->sli4_hba.xri_ids[i] = base + i; 7331 7332 /* VFIs. */ 7333 count = phba->sli4_hba.max_cfg_param.max_vfi; 7334 if (count <= 0) { 7335 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7336 "3282 Invalid provisioning of " 7337 "vfi:%d\n", count); 7338 rc = -EINVAL; 7339 goto free_xri_ids; 7340 } 7341 base = phba->sli4_hba.max_cfg_param.vfi_base; 7342 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7343 phba->sli4_hba.vfi_bmask = kcalloc(longs, 7344 sizeof(unsigned long), 7345 GFP_KERNEL); 7346 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 7347 rc = -ENOMEM; 7348 goto free_xri_ids; 7349 } 7350 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 7351 GFP_KERNEL); 7352 if (unlikely(!phba->sli4_hba.vfi_ids)) { 7353 rc = -ENOMEM; 7354 goto free_vfi_bmask; 7355 } 7356 7357 for (i = 0; i < count; i++) 7358 phba->sli4_hba.vfi_ids[i] = base + i; 7359 7360 /* 7361 * Mark all resources ready. An HBA reset doesn't need 7362 * to reset the initialization. 7363 */ 7364 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7365 LPFC_IDX_RSRC_RDY); 7366 return 0; 7367 } 7368 7369 free_vfi_bmask: 7370 kfree(phba->sli4_hba.vfi_bmask); 7371 phba->sli4_hba.vfi_bmask = NULL; 7372 free_xri_ids: 7373 kfree(phba->sli4_hba.xri_ids); 7374 phba->sli4_hba.xri_ids = NULL; 7375 free_xri_bmask: 7376 kfree(phba->sli4_hba.xri_bmask); 7377 phba->sli4_hba.xri_bmask = NULL; 7378 free_vpi_ids: 7379 kfree(phba->vpi_ids); 7380 phba->vpi_ids = NULL; 7381 free_vpi_bmask: 7382 kfree(phba->vpi_bmask); 7383 phba->vpi_bmask = NULL; 7384 free_rpi_ids: 7385 kfree(phba->sli4_hba.rpi_ids); 7386 phba->sli4_hba.rpi_ids = NULL; 7387 free_rpi_bmask: 7388 kfree(phba->sli4_hba.rpi_bmask); 7389 phba->sli4_hba.rpi_bmask = NULL; 7390 err_exit: 7391 return rc; 7392 } 7393 7394 /** 7395 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 7396 * @phba: Pointer to HBA context object. 7397 * 7398 * This function allocates the number of elements for the specified 7399 * resource type. 7400 **/ 7401 int 7402 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7403 { 7404 if (phba->sli4_hba.extents_in_use) { 7405 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7406 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7407 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7408 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7409 } else { 7410 kfree(phba->vpi_bmask); 7411 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7412 kfree(phba->vpi_ids); 7413 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7414 kfree(phba->sli4_hba.xri_bmask); 7415 kfree(phba->sli4_hba.xri_ids); 7416 kfree(phba->sli4_hba.vfi_bmask); 7417 kfree(phba->sli4_hba.vfi_ids); 7418 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7419 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7420 } 7421 7422 return 0; 7423 } 7424 7425 /** 7426 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7427 * @phba: Pointer to HBA context object. 7428 * @type: The resource extent type. 7429 * @extnt_cnt: buffer to hold port extent count response 7430 * @extnt_size: buffer to hold port extent size response. 7431 * 7432 * This function calls the port to read the host allocated extents 7433 * for a particular type. 7434 **/ 7435 int 7436 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7437 uint16_t *extnt_cnt, uint16_t *extnt_size) 7438 { 7439 bool emb; 7440 int rc = 0; 7441 uint16_t curr_blks = 0; 7442 uint32_t req_len, emb_len; 7443 uint32_t alloc_len, mbox_tmo; 7444 struct list_head *blk_list_head; 7445 struct lpfc_rsrc_blks *rsrc_blk; 7446 LPFC_MBOXQ_t *mbox; 7447 void *virtaddr = NULL; 7448 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7449 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7450 union lpfc_sli4_cfg_shdr *shdr; 7451 7452 switch (type) { 7453 case LPFC_RSC_TYPE_FCOE_VPI: 7454 blk_list_head = &phba->lpfc_vpi_blk_list; 7455 break; 7456 case LPFC_RSC_TYPE_FCOE_XRI: 7457 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7458 break; 7459 case LPFC_RSC_TYPE_FCOE_VFI: 7460 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7461 break; 7462 case LPFC_RSC_TYPE_FCOE_RPI: 7463 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7464 break; 7465 default: 7466 return -EIO; 7467 } 7468 7469 /* Count the number of extents currently allocatd for this type. */ 7470 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7471 if (curr_blks == 0) { 7472 /* 7473 * The GET_ALLOCATED mailbox does not return the size, 7474 * just the count. The size should be just the size 7475 * stored in the current allocated block and all sizes 7476 * for an extent type are the same so set the return 7477 * value now. 7478 */ 7479 *extnt_size = rsrc_blk->rsrc_size; 7480 } 7481 curr_blks++; 7482 } 7483 7484 /* 7485 * Calculate the size of an embedded mailbox. The uint32_t 7486 * accounts for extents-specific word. 7487 */ 7488 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7489 sizeof(uint32_t); 7490 7491 /* 7492 * Presume the allocation and response will fit into an embedded 7493 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7494 */ 7495 emb = LPFC_SLI4_MBX_EMBED; 7496 req_len = emb_len; 7497 if (req_len > emb_len) { 7498 req_len = curr_blks * sizeof(uint16_t) + 7499 sizeof(union lpfc_sli4_cfg_shdr) + 7500 sizeof(uint32_t); 7501 emb = LPFC_SLI4_MBX_NEMBED; 7502 } 7503 7504 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7505 if (!mbox) 7506 return -ENOMEM; 7507 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7508 7509 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7510 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7511 req_len, emb); 7512 if (alloc_len < req_len) { 7513 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7514 "2983 Allocated DMA memory size (x%x) is " 7515 "less than the requested DMA memory " 7516 "size (x%x)\n", alloc_len, req_len); 7517 rc = -ENOMEM; 7518 goto err_exit; 7519 } 7520 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7521 if (unlikely(rc)) { 7522 rc = -EIO; 7523 goto err_exit; 7524 } 7525 7526 if (!phba->sli4_hba.intr_enable) 7527 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7528 else { 7529 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7530 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7531 } 7532 7533 if (unlikely(rc)) { 7534 rc = -EIO; 7535 goto err_exit; 7536 } 7537 7538 /* 7539 * Figure out where the response is located. Then get local pointers 7540 * to the response data. The port does not guarantee to respond to 7541 * all extents counts request so update the local variable with the 7542 * allocated count from the port. 7543 */ 7544 if (emb == LPFC_SLI4_MBX_EMBED) { 7545 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7546 shdr = &rsrc_ext->header.cfg_shdr; 7547 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7548 } else { 7549 virtaddr = mbox->sge_array->addr[0]; 7550 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7551 shdr = &n_rsrc->cfg_shdr; 7552 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7553 } 7554 7555 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7556 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7557 "2984 Failed to read allocated resources " 7558 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7559 type, 7560 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7561 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7562 rc = -EIO; 7563 goto err_exit; 7564 } 7565 err_exit: 7566 lpfc_sli4_mbox_cmd_free(phba, mbox); 7567 return rc; 7568 } 7569 7570 /** 7571 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7572 * @phba: pointer to lpfc hba data structure. 7573 * @sgl_list: linked link of sgl buffers to post 7574 * @cnt: number of linked list buffers 7575 * 7576 * This routine walks the list of buffers that have been allocated and 7577 * repost them to the port by using SGL block post. This is needed after a 7578 * pci_function_reset/warm_start or start. It attempts to construct blocks 7579 * of buffer sgls which contains contiguous xris and uses the non-embedded 7580 * SGL block post mailbox commands to post them to the port. For single 7581 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7582 * mailbox command for posting. 7583 * 7584 * Returns: 0 = success, non-zero failure. 7585 **/ 7586 static int 7587 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7588 struct list_head *sgl_list, int cnt) 7589 { 7590 struct lpfc_sglq *sglq_entry = NULL; 7591 struct lpfc_sglq *sglq_entry_next = NULL; 7592 struct lpfc_sglq *sglq_entry_first = NULL; 7593 int status = 0, total_cnt; 7594 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7595 int last_xritag = NO_XRI; 7596 LIST_HEAD(prep_sgl_list); 7597 LIST_HEAD(blck_sgl_list); 7598 LIST_HEAD(allc_sgl_list); 7599 LIST_HEAD(post_sgl_list); 7600 LIST_HEAD(free_sgl_list); 7601 7602 spin_lock_irq(&phba->hbalock); 7603 spin_lock(&phba->sli4_hba.sgl_list_lock); 7604 list_splice_init(sgl_list, &allc_sgl_list); 7605 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7606 spin_unlock_irq(&phba->hbalock); 7607 7608 total_cnt = cnt; 7609 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7610 &allc_sgl_list, list) { 7611 list_del_init(&sglq_entry->list); 7612 block_cnt++; 7613 if ((last_xritag != NO_XRI) && 7614 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7615 /* a hole in xri block, form a sgl posting block */ 7616 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7617 post_cnt = block_cnt - 1; 7618 /* prepare list for next posting block */ 7619 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7620 block_cnt = 1; 7621 } else { 7622 /* prepare list for next posting block */ 7623 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7624 /* enough sgls for non-embed sgl mbox command */ 7625 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7626 list_splice_init(&prep_sgl_list, 7627 &blck_sgl_list); 7628 post_cnt = block_cnt; 7629 block_cnt = 0; 7630 } 7631 } 7632 num_posted++; 7633 7634 /* keep track of last sgl's xritag */ 7635 last_xritag = sglq_entry->sli4_xritag; 7636 7637 /* end of repost sgl list condition for buffers */ 7638 if (num_posted == total_cnt) { 7639 if (post_cnt == 0) { 7640 list_splice_init(&prep_sgl_list, 7641 &blck_sgl_list); 7642 post_cnt = block_cnt; 7643 } else if (block_cnt == 1) { 7644 status = lpfc_sli4_post_sgl(phba, 7645 sglq_entry->phys, 0, 7646 sglq_entry->sli4_xritag); 7647 if (!status) { 7648 /* successful, put sgl to posted list */ 7649 list_add_tail(&sglq_entry->list, 7650 &post_sgl_list); 7651 } else { 7652 /* Failure, put sgl to free list */ 7653 lpfc_printf_log(phba, KERN_WARNING, 7654 LOG_SLI, 7655 "3159 Failed to post " 7656 "sgl, xritag:x%x\n", 7657 sglq_entry->sli4_xritag); 7658 list_add_tail(&sglq_entry->list, 7659 &free_sgl_list); 7660 total_cnt--; 7661 } 7662 } 7663 } 7664 7665 /* continue until a nembed page worth of sgls */ 7666 if (post_cnt == 0) 7667 continue; 7668 7669 /* post the buffer list sgls as a block */ 7670 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7671 post_cnt); 7672 7673 if (!status) { 7674 /* success, put sgl list to posted sgl list */ 7675 list_splice_init(&blck_sgl_list, &post_sgl_list); 7676 } else { 7677 /* Failure, put sgl list to free sgl list */ 7678 sglq_entry_first = list_first_entry(&blck_sgl_list, 7679 struct lpfc_sglq, 7680 list); 7681 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7682 "3160 Failed to post sgl-list, " 7683 "xritag:x%x-x%x\n", 7684 sglq_entry_first->sli4_xritag, 7685 (sglq_entry_first->sli4_xritag + 7686 post_cnt - 1)); 7687 list_splice_init(&blck_sgl_list, &free_sgl_list); 7688 total_cnt -= post_cnt; 7689 } 7690 7691 /* don't reset xirtag due to hole in xri block */ 7692 if (block_cnt == 0) 7693 last_xritag = NO_XRI; 7694 7695 /* reset sgl post count for next round of posting */ 7696 post_cnt = 0; 7697 } 7698 7699 /* free the sgls failed to post */ 7700 lpfc_free_sgl_list(phba, &free_sgl_list); 7701 7702 /* push sgls posted to the available list */ 7703 if (!list_empty(&post_sgl_list)) { 7704 spin_lock_irq(&phba->hbalock); 7705 spin_lock(&phba->sli4_hba.sgl_list_lock); 7706 list_splice_init(&post_sgl_list, sgl_list); 7707 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7708 spin_unlock_irq(&phba->hbalock); 7709 } else { 7710 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7711 "3161 Failure to post sgl to port,status %x " 7712 "blkcnt %d totalcnt %d postcnt %d\n", 7713 status, block_cnt, total_cnt, post_cnt); 7714 return -EIO; 7715 } 7716 7717 /* return the number of XRIs actually posted */ 7718 return total_cnt; 7719 } 7720 7721 /** 7722 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7723 * @phba: pointer to lpfc hba data structure. 7724 * 7725 * This routine walks the list of nvme buffers that have been allocated and 7726 * repost them to the port by using SGL block post. This is needed after a 7727 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7728 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7729 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7730 * 7731 * Returns: 0 = success, non-zero failure. 7732 **/ 7733 static int 7734 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7735 { 7736 LIST_HEAD(post_nblist); 7737 int num_posted, rc = 0; 7738 7739 /* get all NVME buffers need to repost to a local list */ 7740 lpfc_io_buf_flush(phba, &post_nblist); 7741 7742 /* post the list of nvme buffer sgls to port if available */ 7743 if (!list_empty(&post_nblist)) { 7744 num_posted = lpfc_sli4_post_io_sgl_list( 7745 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7746 /* failed to post any nvme buffer, return error */ 7747 if (num_posted == 0) 7748 rc = -EIO; 7749 } 7750 return rc; 7751 } 7752 7753 static void 7754 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7755 { 7756 uint32_t len; 7757 7758 len = sizeof(struct lpfc_mbx_set_host_data) - 7759 sizeof(struct lpfc_sli4_cfg_mhdr); 7760 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7761 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7762 LPFC_SLI4_MBX_EMBED); 7763 7764 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7765 mbox->u.mqe.un.set_host_data.param_len = 7766 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7767 snprintf(mbox->u.mqe.un.set_host_data.un.data, 7768 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7769 "Linux %s v"LPFC_DRIVER_VERSION, 7770 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7771 } 7772 7773 int 7774 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7775 struct lpfc_queue *drq, int count, int idx) 7776 { 7777 int rc, i; 7778 struct lpfc_rqe hrqe; 7779 struct lpfc_rqe drqe; 7780 struct lpfc_rqb *rqbp; 7781 unsigned long flags; 7782 struct rqb_dmabuf *rqb_buffer; 7783 LIST_HEAD(rqb_buf_list); 7784 7785 rqbp = hrq->rqbp; 7786 for (i = 0; i < count; i++) { 7787 spin_lock_irqsave(&phba->hbalock, flags); 7788 /* IF RQ is already full, don't bother */ 7789 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7790 spin_unlock_irqrestore(&phba->hbalock, flags); 7791 break; 7792 } 7793 spin_unlock_irqrestore(&phba->hbalock, flags); 7794 7795 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7796 if (!rqb_buffer) 7797 break; 7798 rqb_buffer->hrq = hrq; 7799 rqb_buffer->drq = drq; 7800 rqb_buffer->idx = idx; 7801 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7802 } 7803 7804 spin_lock_irqsave(&phba->hbalock, flags); 7805 while (!list_empty(&rqb_buf_list)) { 7806 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7807 hbuf.list); 7808 7809 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7810 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7811 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7812 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7813 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7814 if (rc < 0) { 7815 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7816 "6421 Cannot post to HRQ %d: %x %x %x " 7817 "DRQ %x %x\n", 7818 hrq->queue_id, 7819 hrq->host_index, 7820 hrq->hba_index, 7821 hrq->entry_count, 7822 drq->host_index, 7823 drq->hba_index); 7824 rqbp->rqb_free_buffer(phba, rqb_buffer); 7825 } else { 7826 list_add_tail(&rqb_buffer->hbuf.list, 7827 &rqbp->rqb_buffer_list); 7828 rqbp->buffer_count++; 7829 } 7830 } 7831 spin_unlock_irqrestore(&phba->hbalock, flags); 7832 return 1; 7833 } 7834 7835 static void 7836 lpfc_mbx_cmpl_read_lds_params(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7837 { 7838 union lpfc_sli4_cfg_shdr *shdr; 7839 u32 shdr_status, shdr_add_status; 7840 7841 shdr = (union lpfc_sli4_cfg_shdr *) 7842 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7843 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7844 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7845 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7846 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT | LOG_MBOX, 7847 "4622 SET_FEATURE (x%x) mbox failed, " 7848 "status x%x add_status x%x, mbx status x%x\n", 7849 LPFC_SET_LD_SIGNAL, shdr_status, 7850 shdr_add_status, pmb->u.mb.mbxStatus); 7851 phba->degrade_activate_threshold = 0; 7852 phba->degrade_deactivate_threshold = 0; 7853 phba->fec_degrade_interval = 0; 7854 goto out; 7855 } 7856 7857 phba->degrade_activate_threshold = pmb->u.mqe.un.set_feature.word7; 7858 phba->degrade_deactivate_threshold = pmb->u.mqe.un.set_feature.word8; 7859 phba->fec_degrade_interval = pmb->u.mqe.un.set_feature.word10; 7860 7861 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT, 7862 "4624 Success: da x%x dd x%x interval x%x\n", 7863 phba->degrade_activate_threshold, 7864 phba->degrade_deactivate_threshold, 7865 phba->fec_degrade_interval); 7866 out: 7867 mempool_free(pmb, phba->mbox_mem_pool); 7868 } 7869 7870 int 7871 lpfc_read_lds_params(struct lpfc_hba *phba) 7872 { 7873 LPFC_MBOXQ_t *mboxq; 7874 int rc; 7875 7876 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7877 if (!mboxq) 7878 return -ENOMEM; 7879 7880 lpfc_set_features(phba, mboxq, LPFC_SET_LD_SIGNAL); 7881 mboxq->vport = phba->pport; 7882 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_lds_params; 7883 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7884 if (rc == MBX_NOT_FINISHED) { 7885 mempool_free(mboxq, phba->mbox_mem_pool); 7886 return -EIO; 7887 } 7888 return 0; 7889 } 7890 7891 static void 7892 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7893 { 7894 struct lpfc_vport *vport = pmb->vport; 7895 union lpfc_sli4_cfg_shdr *shdr; 7896 u32 shdr_status, shdr_add_status; 7897 u32 sig, acqe; 7898 7899 /* Two outcomes. (1) Set featurs was successul and EDC negotiation 7900 * is done. (2) Mailbox failed and send FPIN support only. 7901 */ 7902 shdr = (union lpfc_sli4_cfg_shdr *) 7903 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7904 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7905 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7906 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7907 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 7908 "2516 CGN SET_FEATURE mbox failed with " 7909 "status x%x add_status x%x, mbx status x%x " 7910 "Reset Congestion to FPINs only\n", 7911 shdr_status, shdr_add_status, 7912 pmb->u.mb.mbxStatus); 7913 /* If there is a mbox error, move on to RDF */ 7914 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7915 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7916 goto out; 7917 } 7918 7919 /* Zero out Congestion Signal ACQE counter */ 7920 phba->cgn_acqe_cnt = 0; 7921 7922 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq, 7923 &pmb->u.mqe.un.set_feature); 7924 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq, 7925 &pmb->u.mqe.un.set_feature); 7926 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7927 "4620 SET_FEATURES Success: Freq: %ds %dms " 7928 " Reg: x%x x%x\n", acqe, sig, 7929 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7930 out: 7931 mempool_free(pmb, phba->mbox_mem_pool); 7932 7933 /* Register for FPIN events from the fabric now that the 7934 * EDC common_set_features has completed. 7935 */ 7936 lpfc_issue_els_rdf(vport, 0); 7937 } 7938 7939 int 7940 lpfc_config_cgn_signal(struct lpfc_hba *phba) 7941 { 7942 LPFC_MBOXQ_t *mboxq; 7943 u32 rc; 7944 7945 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7946 if (!mboxq) 7947 goto out_rdf; 7948 7949 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL); 7950 mboxq->vport = phba->pport; 7951 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs; 7952 7953 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7954 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: " 7955 "Reg: x%x x%x\n", 7956 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency, 7957 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7958 7959 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7960 if (rc == MBX_NOT_FINISHED) 7961 goto out; 7962 return 0; 7963 7964 out: 7965 mempool_free(mboxq, phba->mbox_mem_pool); 7966 out_rdf: 7967 /* If there is a mbox error, move on to RDF */ 7968 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7969 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7970 lpfc_issue_els_rdf(phba->pport, 0); 7971 return -EIO; 7972 } 7973 7974 /** 7975 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7976 * @phba: pointer to lpfc hba data structure. 7977 * 7978 * This routine initializes the per-eq idle_stat to dynamically dictate 7979 * polling decisions. 7980 * 7981 * Return codes: 7982 * None 7983 **/ 7984 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7985 { 7986 int i; 7987 struct lpfc_sli4_hdw_queue *hdwq; 7988 struct lpfc_queue *eq; 7989 struct lpfc_idle_stat *idle_stat; 7990 u64 wall; 7991 7992 for_each_present_cpu(i) { 7993 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7994 eq = hdwq->hba_eq; 7995 7996 /* Skip if we've already handled this eq's primary CPU */ 7997 if (eq->chann != i) 7998 continue; 7999 8000 idle_stat = &phba->sli4_hba.idle_stat[i]; 8001 8002 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 8003 idle_stat->prev_wall = wall; 8004 8005 if (phba->nvmet_support || 8006 phba->cmf_active_mode != LPFC_CFG_OFF || 8007 phba->intr_type != MSIX) 8008 eq->poll_mode = LPFC_QUEUE_WORK; 8009 else 8010 eq->poll_mode = LPFC_THREADED_IRQ; 8011 } 8012 8013 if (!phba->nvmet_support && phba->intr_type == MSIX) 8014 schedule_delayed_work(&phba->idle_stat_delay_work, 8015 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 8016 } 8017 8018 static void lpfc_sli4_dip(struct lpfc_hba *phba) 8019 { 8020 uint32_t if_type; 8021 8022 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 8023 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 8024 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 8025 struct lpfc_register reg_data; 8026 8027 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 8028 ®_data.word0)) 8029 return; 8030 8031 if (bf_get(lpfc_sliport_status_dip, ®_data)) 8032 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8033 "2904 Firmware Dump Image Present" 8034 " on Adapter"); 8035 } 8036 } 8037 8038 /** 8039 * lpfc_rx_monitor_create_ring - Initialize ring buffer for rx_monitor 8040 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8041 * @entries: Number of rx_info_entry objects to allocate in ring 8042 * 8043 * Return: 8044 * 0 - Success 8045 * ENOMEM - Failure to kmalloc 8046 **/ 8047 int lpfc_rx_monitor_create_ring(struct lpfc_rx_info_monitor *rx_monitor, 8048 u32 entries) 8049 { 8050 rx_monitor->ring = kmalloc_array(entries, sizeof(struct rx_info_entry), 8051 GFP_KERNEL); 8052 if (!rx_monitor->ring) 8053 return -ENOMEM; 8054 8055 rx_monitor->head_idx = 0; 8056 rx_monitor->tail_idx = 0; 8057 spin_lock_init(&rx_monitor->lock); 8058 rx_monitor->entries = entries; 8059 8060 return 0; 8061 } 8062 8063 /** 8064 * lpfc_rx_monitor_destroy_ring - Free ring buffer for rx_monitor 8065 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8066 * 8067 * Called after cancellation of cmf_timer. 8068 **/ 8069 void lpfc_rx_monitor_destroy_ring(struct lpfc_rx_info_monitor *rx_monitor) 8070 { 8071 kfree(rx_monitor->ring); 8072 rx_monitor->ring = NULL; 8073 rx_monitor->entries = 0; 8074 rx_monitor->head_idx = 0; 8075 rx_monitor->tail_idx = 0; 8076 } 8077 8078 /** 8079 * lpfc_rx_monitor_record - Insert an entry into rx_monitor's ring 8080 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8081 * @entry: Pointer to rx_info_entry 8082 * 8083 * Used to insert an rx_info_entry into rx_monitor's ring. Note that this is a 8084 * deep copy of rx_info_entry not a shallow copy of the rx_info_entry ptr. 8085 * 8086 * This is called from lpfc_cmf_timer, which is in timer/softirq context. 8087 * 8088 * In cases of old data overflow, we do a best effort of FIFO order. 8089 **/ 8090 void lpfc_rx_monitor_record(struct lpfc_rx_info_monitor *rx_monitor, 8091 struct rx_info_entry *entry) 8092 { 8093 struct rx_info_entry *ring = rx_monitor->ring; 8094 u32 *head_idx = &rx_monitor->head_idx; 8095 u32 *tail_idx = &rx_monitor->tail_idx; 8096 spinlock_t *ring_lock = &rx_monitor->lock; 8097 u32 ring_size = rx_monitor->entries; 8098 8099 spin_lock(ring_lock); 8100 memcpy(&ring[*tail_idx], entry, sizeof(*entry)); 8101 *tail_idx = (*tail_idx + 1) % ring_size; 8102 8103 /* Best effort of FIFO saved data */ 8104 if (*tail_idx == *head_idx) 8105 *head_idx = (*head_idx + 1) % ring_size; 8106 8107 spin_unlock(ring_lock); 8108 } 8109 8110 /** 8111 * lpfc_rx_monitor_report - Read out rx_monitor's ring 8112 * @phba: Pointer to lpfc_hba object 8113 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8114 * @buf: Pointer to char buffer that will contain rx monitor info data 8115 * @buf_len: Length buf including null char 8116 * @max_read_entries: Maximum number of entries to read out of ring 8117 * 8118 * Used to dump/read what's in rx_monitor's ring buffer. 8119 * 8120 * If buf is NULL || buf_len == 0, then it is implied that we want to log the 8121 * information to kmsg instead of filling out buf. 8122 * 8123 * Return: 8124 * Number of entries read out of the ring 8125 **/ 8126 u32 lpfc_rx_monitor_report(struct lpfc_hba *phba, 8127 struct lpfc_rx_info_monitor *rx_monitor, char *buf, 8128 u32 buf_len, u32 max_read_entries) 8129 { 8130 struct rx_info_entry *ring = rx_monitor->ring; 8131 struct rx_info_entry *entry; 8132 u32 *head_idx = &rx_monitor->head_idx; 8133 u32 *tail_idx = &rx_monitor->tail_idx; 8134 spinlock_t *ring_lock = &rx_monitor->lock; 8135 u32 ring_size = rx_monitor->entries; 8136 u32 cnt = 0; 8137 char tmp[DBG_LOG_STR_SZ] = {0}; 8138 bool log_to_kmsg = (!buf || !buf_len) ? true : false; 8139 8140 if (!log_to_kmsg) { 8141 /* clear the buffer to be sure */ 8142 memset(buf, 0, buf_len); 8143 8144 scnprintf(buf, buf_len, "\t%-16s%-16s%-16s%-16s%-8s%-8s%-8s" 8145 "%-8s%-8s%-8s%-16s\n", 8146 "MaxBPI", "Tot_Data_CMF", 8147 "Tot_Data_Cmd", "Tot_Data_Cmpl", 8148 "Lat(us)", "Avg_IO", "Max_IO", "Bsy", 8149 "IO_cnt", "Info", "BWutil(ms)"); 8150 } 8151 8152 /* Needs to be _irq because record is called from timer interrupt 8153 * context 8154 */ 8155 spin_lock_irq(ring_lock); 8156 while (*head_idx != *tail_idx) { 8157 entry = &ring[*head_idx]; 8158 8159 /* Read out this entry's data. */ 8160 if (!log_to_kmsg) { 8161 /* If !log_to_kmsg, then store to buf. */ 8162 scnprintf(tmp, sizeof(tmp), 8163 "%03d:\t%-16llu%-16llu%-16llu%-16llu%-8llu" 8164 "%-8llu%-8llu%-8u%-8u%-8u%u(%u)\n", 8165 *head_idx, entry->max_bytes_per_interval, 8166 entry->cmf_bytes, entry->total_bytes, 8167 entry->rcv_bytes, entry->avg_io_latency, 8168 entry->avg_io_size, entry->max_read_cnt, 8169 entry->cmf_busy, entry->io_cnt, 8170 entry->cmf_info, entry->timer_utilization, 8171 entry->timer_interval); 8172 8173 /* Check for buffer overflow */ 8174 if ((strlen(buf) + strlen(tmp)) >= buf_len) 8175 break; 8176 8177 /* Append entry's data to buffer */ 8178 strlcat(buf, tmp, buf_len); 8179 } else { 8180 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 8181 "4410 %02u: MBPI %llu Xmit %llu " 8182 "Cmpl %llu Lat %llu ASz %llu Info %02u " 8183 "BWUtil %u Int %u slot %u\n", 8184 cnt, entry->max_bytes_per_interval, 8185 entry->total_bytes, entry->rcv_bytes, 8186 entry->avg_io_latency, 8187 entry->avg_io_size, entry->cmf_info, 8188 entry->timer_utilization, 8189 entry->timer_interval, *head_idx); 8190 } 8191 8192 *head_idx = (*head_idx + 1) % ring_size; 8193 8194 /* Don't feed more than max_read_entries */ 8195 cnt++; 8196 if (cnt >= max_read_entries) 8197 break; 8198 } 8199 spin_unlock_irq(ring_lock); 8200 8201 return cnt; 8202 } 8203 8204 /** 8205 * lpfc_cmf_setup - Initialize idle_stat tracking 8206 * @phba: Pointer to HBA context object. 8207 * 8208 * This is called from HBA setup during driver load or when the HBA 8209 * comes online. this does all the initialization to support CMF and MI. 8210 **/ 8211 static int 8212 lpfc_cmf_setup(struct lpfc_hba *phba) 8213 { 8214 LPFC_MBOXQ_t *mboxq; 8215 struct lpfc_dmabuf *mp; 8216 struct lpfc_pc_sli4_params *sli4_params; 8217 int rc, cmf, mi_ver; 8218 8219 rc = lpfc_sli4_refresh_params(phba); 8220 if (unlikely(rc)) 8221 return rc; 8222 8223 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8224 if (!mboxq) 8225 return -ENOMEM; 8226 8227 sli4_params = &phba->sli4_hba.pc_sli4_params; 8228 8229 /* Always try to enable MI feature if we can */ 8230 if (sli4_params->mi_ver) { 8231 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI); 8232 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8233 mi_ver = bf_get(lpfc_mbx_set_feature_mi, 8234 &mboxq->u.mqe.un.set_feature); 8235 8236 if (rc == MBX_SUCCESS) { 8237 if (mi_ver) { 8238 lpfc_printf_log(phba, 8239 KERN_WARNING, LOG_CGN_MGMT, 8240 "6215 MI is enabled\n"); 8241 sli4_params->mi_ver = mi_ver; 8242 } else { 8243 lpfc_printf_log(phba, 8244 KERN_WARNING, LOG_CGN_MGMT, 8245 "6338 MI is disabled\n"); 8246 sli4_params->mi_ver = 0; 8247 } 8248 } else { 8249 /* mi_ver is already set from GET_SLI4_PARAMETERS */ 8250 lpfc_printf_log(phba, KERN_INFO, 8251 LOG_CGN_MGMT | LOG_INIT, 8252 "6245 Enable MI Mailbox x%x (x%x/x%x) " 8253 "failed, rc:x%x mi:x%x\n", 8254 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8255 lpfc_sli_config_mbox_subsys_get 8256 (phba, mboxq), 8257 lpfc_sli_config_mbox_opcode_get 8258 (phba, mboxq), 8259 rc, sli4_params->mi_ver); 8260 } 8261 } else { 8262 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8263 "6217 MI is disabled\n"); 8264 } 8265 8266 /* Ensure FDMI is enabled for MI if enable_mi is set */ 8267 if (sli4_params->mi_ver) 8268 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT; 8269 8270 /* Always try to enable CMF feature if we can */ 8271 if (sli4_params->cmf) { 8272 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF); 8273 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8274 cmf = bf_get(lpfc_mbx_set_feature_cmf, 8275 &mboxq->u.mqe.un.set_feature); 8276 if (rc == MBX_SUCCESS && cmf) { 8277 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8278 "6218 CMF is enabled: mode %d\n", 8279 phba->cmf_active_mode); 8280 } else { 8281 lpfc_printf_log(phba, KERN_WARNING, 8282 LOG_CGN_MGMT | LOG_INIT, 8283 "6219 Enable CMF Mailbox x%x (x%x/x%x) " 8284 "failed, rc:x%x dd:x%x\n", 8285 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8286 lpfc_sli_config_mbox_subsys_get 8287 (phba, mboxq), 8288 lpfc_sli_config_mbox_opcode_get 8289 (phba, mboxq), 8290 rc, cmf); 8291 sli4_params->cmf = 0; 8292 phba->cmf_active_mode = LPFC_CFG_OFF; 8293 goto no_cmf; 8294 } 8295 8296 /* Allocate Congestion Information Buffer */ 8297 if (!phba->cgn_i) { 8298 mp = kmalloc(sizeof(*mp), GFP_KERNEL); 8299 if (mp) 8300 mp->virt = dma_alloc_coherent 8301 (&phba->pcidev->dev, 8302 sizeof(struct lpfc_cgn_info), 8303 &mp->phys, GFP_KERNEL); 8304 if (!mp || !mp->virt) { 8305 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8306 "2640 Failed to alloc memory " 8307 "for Congestion Info\n"); 8308 kfree(mp); 8309 sli4_params->cmf = 0; 8310 phba->cmf_active_mode = LPFC_CFG_OFF; 8311 goto no_cmf; 8312 } 8313 phba->cgn_i = mp; 8314 8315 /* initialize congestion buffer info */ 8316 lpfc_init_congestion_buf(phba); 8317 lpfc_init_congestion_stat(phba); 8318 8319 /* Zero out Congestion Signal counters */ 8320 atomic64_set(&phba->cgn_acqe_stat.alarm, 0); 8321 atomic64_set(&phba->cgn_acqe_stat.warn, 0); 8322 } 8323 8324 rc = lpfc_sli4_cgn_params_read(phba); 8325 if (rc < 0) { 8326 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8327 "6242 Error reading Cgn Params (%d)\n", 8328 rc); 8329 /* Ensure CGN Mode is off */ 8330 sli4_params->cmf = 0; 8331 } else if (!rc) { 8332 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8333 "6243 CGN Event empty object.\n"); 8334 /* Ensure CGN Mode is off */ 8335 sli4_params->cmf = 0; 8336 } 8337 } else { 8338 no_cmf: 8339 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8340 "6220 CMF is disabled\n"); 8341 } 8342 8343 /* Only register congestion buffer with firmware if BOTH 8344 * CMF and E2E are enabled. 8345 */ 8346 if (sli4_params->cmf && sli4_params->mi_ver) { 8347 rc = lpfc_reg_congestion_buf(phba); 8348 if (rc) { 8349 dma_free_coherent(&phba->pcidev->dev, 8350 sizeof(struct lpfc_cgn_info), 8351 phba->cgn_i->virt, phba->cgn_i->phys); 8352 kfree(phba->cgn_i); 8353 phba->cgn_i = NULL; 8354 /* Ensure CGN Mode is off */ 8355 phba->cmf_active_mode = LPFC_CFG_OFF; 8356 sli4_params->cmf = 0; 8357 return 0; 8358 } 8359 } 8360 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8361 "6470 Setup MI version %d CMF %d mode %d\n", 8362 sli4_params->mi_ver, sli4_params->cmf, 8363 phba->cmf_active_mode); 8364 8365 mempool_free(mboxq, phba->mbox_mem_pool); 8366 8367 /* Initialize atomic counters */ 8368 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 8369 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 8370 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 8371 atomic_set(&phba->cgn_sync_warn_cnt, 0); 8372 atomic_set(&phba->cgn_driver_evt_cnt, 0); 8373 atomic_set(&phba->cgn_latency_evt_cnt, 0); 8374 atomic64_set(&phba->cgn_latency_evt, 0); 8375 8376 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 8377 8378 /* Allocate RX Monitor Buffer */ 8379 if (!phba->rx_monitor) { 8380 phba->rx_monitor = kzalloc(sizeof(*phba->rx_monitor), 8381 GFP_KERNEL); 8382 8383 if (!phba->rx_monitor) { 8384 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8385 "2644 Failed to alloc memory " 8386 "for RX Monitor Buffer\n"); 8387 return -ENOMEM; 8388 } 8389 8390 /* Instruct the rx_monitor object to instantiate its ring */ 8391 if (lpfc_rx_monitor_create_ring(phba->rx_monitor, 8392 LPFC_MAX_RXMONITOR_ENTRY)) { 8393 kfree(phba->rx_monitor); 8394 phba->rx_monitor = NULL; 8395 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8396 "2645 Failed to alloc memory " 8397 "for RX Monitor's Ring\n"); 8398 return -ENOMEM; 8399 } 8400 } 8401 8402 return 0; 8403 } 8404 8405 static int 8406 lpfc_set_host_tm(struct lpfc_hba *phba) 8407 { 8408 LPFC_MBOXQ_t *mboxq; 8409 uint32_t len, rc; 8410 struct timespec64 cur_time; 8411 struct tm broken; 8412 uint32_t month, day, year; 8413 uint32_t hour, minute, second; 8414 struct lpfc_mbx_set_host_date_time *tm; 8415 8416 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8417 if (!mboxq) 8418 return -ENOMEM; 8419 8420 len = sizeof(struct lpfc_mbx_set_host_data) - 8421 sizeof(struct lpfc_sli4_cfg_mhdr); 8422 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 8423 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 8424 LPFC_SLI4_MBX_EMBED); 8425 8426 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME; 8427 mboxq->u.mqe.un.set_host_data.param_len = 8428 sizeof(struct lpfc_mbx_set_host_date_time); 8429 tm = &mboxq->u.mqe.un.set_host_data.un.tm; 8430 ktime_get_real_ts64(&cur_time); 8431 time64_to_tm(cur_time.tv_sec, 0, &broken); 8432 month = broken.tm_mon + 1; 8433 day = broken.tm_mday; 8434 year = broken.tm_year - 100; 8435 hour = broken.tm_hour; 8436 minute = broken.tm_min; 8437 second = broken.tm_sec; 8438 bf_set(lpfc_mbx_set_host_month, tm, month); 8439 bf_set(lpfc_mbx_set_host_day, tm, day); 8440 bf_set(lpfc_mbx_set_host_year, tm, year); 8441 bf_set(lpfc_mbx_set_host_hour, tm, hour); 8442 bf_set(lpfc_mbx_set_host_min, tm, minute); 8443 bf_set(lpfc_mbx_set_host_sec, tm, second); 8444 8445 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8446 mempool_free(mboxq, phba->mbox_mem_pool); 8447 return rc; 8448 } 8449 8450 /** 8451 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 8452 * @phba: Pointer to HBA context object. 8453 * 8454 * This function is the main SLI4 device initialization PCI function. This 8455 * function is called by the HBA initialization code, HBA reset code and 8456 * HBA error attention handler code. Caller is not required to hold any 8457 * locks. 8458 **/ 8459 int 8460 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 8461 { 8462 int rc, i, cnt, len, dd; 8463 LPFC_MBOXQ_t *mboxq; 8464 struct lpfc_mqe *mqe; 8465 uint8_t *vpd; 8466 uint32_t vpd_size; 8467 uint32_t ftr_rsp = 0; 8468 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 8469 struct lpfc_vport *vport = phba->pport; 8470 struct lpfc_dmabuf *mp; 8471 struct lpfc_rqb *rqbp; 8472 u32 flg; 8473 8474 /* Perform a PCI function reset to start from clean */ 8475 rc = lpfc_pci_function_reset(phba); 8476 if (unlikely(rc)) 8477 return -ENODEV; 8478 8479 /* Check the HBA Host Status Register for readyness */ 8480 rc = lpfc_sli4_post_status_check(phba); 8481 if (unlikely(rc)) 8482 return -ENODEV; 8483 else { 8484 spin_lock_irq(&phba->hbalock); 8485 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 8486 flg = phba->sli.sli_flag; 8487 spin_unlock_irq(&phba->hbalock); 8488 /* Allow a little time after setting SLI_ACTIVE for any polled 8489 * MBX commands to complete via BSG. 8490 */ 8491 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) { 8492 msleep(20); 8493 spin_lock_irq(&phba->hbalock); 8494 flg = phba->sli.sli_flag; 8495 spin_unlock_irq(&phba->hbalock); 8496 } 8497 } 8498 phba->hba_flag &= ~HBA_SETUP; 8499 8500 lpfc_sli4_dip(phba); 8501 8502 /* 8503 * Allocate a single mailbox container for initializing the 8504 * port. 8505 */ 8506 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8507 if (!mboxq) 8508 return -ENOMEM; 8509 8510 /* Issue READ_REV to collect vpd and FW information. */ 8511 vpd_size = SLI4_PAGE_SIZE; 8512 vpd = kzalloc(vpd_size, GFP_KERNEL); 8513 if (!vpd) { 8514 rc = -ENOMEM; 8515 goto out_free_mbox; 8516 } 8517 8518 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 8519 if (unlikely(rc)) { 8520 kfree(vpd); 8521 goto out_free_mbox; 8522 } 8523 8524 mqe = &mboxq->u.mqe; 8525 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 8526 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 8527 phba->hba_flag |= HBA_FCOE_MODE; 8528 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 8529 } else { 8530 phba->hba_flag &= ~HBA_FCOE_MODE; 8531 } 8532 8533 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 8534 LPFC_DCBX_CEE_MODE) 8535 phba->hba_flag |= HBA_FIP_SUPPORT; 8536 else 8537 phba->hba_flag &= ~HBA_FIP_SUPPORT; 8538 8539 phba->hba_flag &= ~HBA_IOQ_FLUSH; 8540 8541 if (phba->sli_rev != LPFC_SLI_REV4) { 8542 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8543 "0376 READ_REV Error. SLI Level %d " 8544 "FCoE enabled %d\n", 8545 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 8546 rc = -EIO; 8547 kfree(vpd); 8548 goto out_free_mbox; 8549 } 8550 8551 rc = lpfc_set_host_tm(phba); 8552 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 8553 "6468 Set host date / time: Status x%x:\n", rc); 8554 8555 /* 8556 * Continue initialization with default values even if driver failed 8557 * to read FCoE param config regions, only read parameters if the 8558 * board is FCoE 8559 */ 8560 if (phba->hba_flag & HBA_FCOE_MODE && 8561 lpfc_sli4_read_fcoe_params(phba)) 8562 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 8563 "2570 Failed to read FCoE parameters\n"); 8564 8565 /* 8566 * Retrieve sli4 device physical port name, failure of doing it 8567 * is considered as non-fatal. 8568 */ 8569 rc = lpfc_sli4_retrieve_pport_name(phba); 8570 if (!rc) 8571 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8572 "3080 Successful retrieving SLI4 device " 8573 "physical port name: %s.\n", phba->Port); 8574 8575 rc = lpfc_sli4_get_ctl_attr(phba); 8576 if (!rc) 8577 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8578 "8351 Successful retrieving SLI4 device " 8579 "CTL ATTR\n"); 8580 8581 /* 8582 * Evaluate the read rev and vpd data. Populate the driver 8583 * state with the results. If this routine fails, the failure 8584 * is not fatal as the driver will use generic values. 8585 */ 8586 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 8587 if (unlikely(!rc)) { 8588 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8589 "0377 Error %d parsing vpd. " 8590 "Using defaults.\n", rc); 8591 rc = 0; 8592 } 8593 kfree(vpd); 8594 8595 /* Save information as VPD data */ 8596 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 8597 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 8598 8599 /* 8600 * This is because first G7 ASIC doesn't support the standard 8601 * 0x5a NVME cmd descriptor type/subtype 8602 */ 8603 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8604 LPFC_SLI_INTF_IF_TYPE_6) && 8605 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 8606 (phba->vpd.rev.smRev == 0) && 8607 (phba->cfg_nvme_embed_cmd == 1)) 8608 phba->cfg_nvme_embed_cmd = 0; 8609 8610 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 8611 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 8612 &mqe->un.read_rev); 8613 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 8614 &mqe->un.read_rev); 8615 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 8616 &mqe->un.read_rev); 8617 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 8618 &mqe->un.read_rev); 8619 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 8620 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 8621 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 8622 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 8623 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 8624 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 8625 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8626 "(%d):0380 READ_REV Status x%x " 8627 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 8628 mboxq->vport ? mboxq->vport->vpi : 0, 8629 bf_get(lpfc_mqe_status, mqe), 8630 phba->vpd.rev.opFwName, 8631 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 8632 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 8633 8634 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8635 LPFC_SLI_INTF_IF_TYPE_0) { 8636 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 8637 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8638 if (rc == MBX_SUCCESS) { 8639 phba->hba_flag |= HBA_RECOVERABLE_UE; 8640 /* Set 1Sec interval to detect UE */ 8641 phba->eratt_poll_interval = 1; 8642 phba->sli4_hba.ue_to_sr = bf_get( 8643 lpfc_mbx_set_feature_UESR, 8644 &mboxq->u.mqe.un.set_feature); 8645 phba->sli4_hba.ue_to_rp = bf_get( 8646 lpfc_mbx_set_feature_UERP, 8647 &mboxq->u.mqe.un.set_feature); 8648 } 8649 } 8650 8651 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 8652 /* Enable MDS Diagnostics only if the SLI Port supports it */ 8653 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 8654 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8655 if (rc != MBX_SUCCESS) 8656 phba->mds_diags_support = 0; 8657 } 8658 8659 /* 8660 * Discover the port's supported feature set and match it against the 8661 * hosts requests. 8662 */ 8663 lpfc_request_features(phba, mboxq); 8664 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8665 if (unlikely(rc)) { 8666 rc = -EIO; 8667 goto out_free_mbox; 8668 } 8669 8670 /* Disable VMID if app header is not supported */ 8671 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, 8672 &mqe->un.req_ftrs))) { 8673 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); 8674 phba->cfg_vmid_app_header = 0; 8675 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, 8676 "1242 vmid feature not supported\n"); 8677 } 8678 8679 /* 8680 * The port must support FCP initiator mode as this is the 8681 * only mode running in the host. 8682 */ 8683 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 8684 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8685 "0378 No support for fcpi mode.\n"); 8686 ftr_rsp++; 8687 } 8688 8689 /* Performance Hints are ONLY for FCoE */ 8690 if (phba->hba_flag & HBA_FCOE_MODE) { 8691 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 8692 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 8693 else 8694 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 8695 } 8696 8697 /* 8698 * If the port cannot support the host's requested features 8699 * then turn off the global config parameters to disable the 8700 * feature in the driver. This is not a fatal error. 8701 */ 8702 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8703 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 8704 phba->cfg_enable_bg = 0; 8705 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 8706 ftr_rsp++; 8707 } 8708 } 8709 8710 if (phba->max_vpi && phba->cfg_enable_npiv && 8711 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8712 ftr_rsp++; 8713 8714 if (ftr_rsp) { 8715 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8716 "0379 Feature Mismatch Data: x%08x %08x " 8717 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 8718 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 8719 phba->cfg_enable_npiv, phba->max_vpi); 8720 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 8721 phba->cfg_enable_bg = 0; 8722 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8723 phba->cfg_enable_npiv = 0; 8724 } 8725 8726 /* These SLI3 features are assumed in SLI4 */ 8727 spin_lock_irq(&phba->hbalock); 8728 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 8729 spin_unlock_irq(&phba->hbalock); 8730 8731 /* Always try to enable dual dump feature if we can */ 8732 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 8733 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8734 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 8735 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 8736 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8737 "6448 Dual Dump is enabled\n"); 8738 else 8739 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 8740 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 8741 "rc:x%x dd:x%x\n", 8742 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8743 lpfc_sli_config_mbox_subsys_get( 8744 phba, mboxq), 8745 lpfc_sli_config_mbox_opcode_get( 8746 phba, mboxq), 8747 rc, dd); 8748 /* 8749 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 8750 * calls depends on these resources to complete port setup. 8751 */ 8752 rc = lpfc_sli4_alloc_resource_identifiers(phba); 8753 if (rc) { 8754 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8755 "2920 Failed to alloc Resource IDs " 8756 "rc = x%x\n", rc); 8757 goto out_free_mbox; 8758 } 8759 8760 lpfc_set_host_data(phba, mboxq); 8761 8762 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8763 if (rc) { 8764 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8765 "2134 Failed to set host os driver version %x", 8766 rc); 8767 } 8768 8769 /* Read the port's service parameters. */ 8770 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 8771 if (rc) { 8772 phba->link_state = LPFC_HBA_ERROR; 8773 rc = -ENOMEM; 8774 goto out_free_mbox; 8775 } 8776 8777 mboxq->vport = vport; 8778 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8779 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 8780 if (rc == MBX_SUCCESS) { 8781 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 8782 rc = 0; 8783 } 8784 8785 /* 8786 * This memory was allocated by the lpfc_read_sparam routine but is 8787 * no longer needed. It is released and ctx_buf NULLed to prevent 8788 * unintended pointer access as the mbox is reused. 8789 */ 8790 lpfc_mbuf_free(phba, mp->virt, mp->phys); 8791 kfree(mp); 8792 mboxq->ctx_buf = NULL; 8793 if (unlikely(rc)) { 8794 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8795 "0382 READ_SPARAM command failed " 8796 "status %d, mbxStatus x%x\n", 8797 rc, bf_get(lpfc_mqe_status, mqe)); 8798 phba->link_state = LPFC_HBA_ERROR; 8799 rc = -EIO; 8800 goto out_free_mbox; 8801 } 8802 8803 lpfc_update_vport_wwn(vport); 8804 8805 /* Update the fc_host data structures with new wwn. */ 8806 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 8807 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 8808 8809 /* Create all the SLI4 queues */ 8810 rc = lpfc_sli4_queue_create(phba); 8811 if (rc) { 8812 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8813 "3089 Failed to allocate queues\n"); 8814 rc = -ENODEV; 8815 goto out_free_mbox; 8816 } 8817 /* Set up all the queues to the device */ 8818 rc = lpfc_sli4_queue_setup(phba); 8819 if (unlikely(rc)) { 8820 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8821 "0381 Error %d during queue setup.\n ", rc); 8822 goto out_stop_timers; 8823 } 8824 /* Initialize the driver internal SLI layer lists. */ 8825 lpfc_sli4_setup(phba); 8826 lpfc_sli4_queue_init(phba); 8827 8828 /* update host els xri-sgl sizes and mappings */ 8829 rc = lpfc_sli4_els_sgl_update(phba); 8830 if (unlikely(rc)) { 8831 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8832 "1400 Failed to update xri-sgl size and " 8833 "mapping: %d\n", rc); 8834 goto out_destroy_queue; 8835 } 8836 8837 /* register the els sgl pool to the port */ 8838 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 8839 phba->sli4_hba.els_xri_cnt); 8840 if (unlikely(rc < 0)) { 8841 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8842 "0582 Error %d during els sgl post " 8843 "operation\n", rc); 8844 rc = -ENODEV; 8845 goto out_destroy_queue; 8846 } 8847 phba->sli4_hba.els_xri_cnt = rc; 8848 8849 if (phba->nvmet_support) { 8850 /* update host nvmet xri-sgl sizes and mappings */ 8851 rc = lpfc_sli4_nvmet_sgl_update(phba); 8852 if (unlikely(rc)) { 8853 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8854 "6308 Failed to update nvmet-sgl size " 8855 "and mapping: %d\n", rc); 8856 goto out_destroy_queue; 8857 } 8858 8859 /* register the nvmet sgl pool to the port */ 8860 rc = lpfc_sli4_repost_sgl_list( 8861 phba, 8862 &phba->sli4_hba.lpfc_nvmet_sgl_list, 8863 phba->sli4_hba.nvmet_xri_cnt); 8864 if (unlikely(rc < 0)) { 8865 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8866 "3117 Error %d during nvmet " 8867 "sgl post\n", rc); 8868 rc = -ENODEV; 8869 goto out_destroy_queue; 8870 } 8871 phba->sli4_hba.nvmet_xri_cnt = rc; 8872 8873 /* We allocate an iocbq for every receive context SGL. 8874 * The additional allocation is for abort and ls handling. 8875 */ 8876 cnt = phba->sli4_hba.nvmet_xri_cnt + 8877 phba->sli4_hba.max_cfg_param.max_xri; 8878 } else { 8879 /* update host common xri-sgl sizes and mappings */ 8880 rc = lpfc_sli4_io_sgl_update(phba); 8881 if (unlikely(rc)) { 8882 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8883 "6082 Failed to update nvme-sgl size " 8884 "and mapping: %d\n", rc); 8885 goto out_destroy_queue; 8886 } 8887 8888 /* register the allocated common sgl pool to the port */ 8889 rc = lpfc_sli4_repost_io_sgl_list(phba); 8890 if (unlikely(rc)) { 8891 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8892 "6116 Error %d during nvme sgl post " 8893 "operation\n", rc); 8894 /* Some NVME buffers were moved to abort nvme list */ 8895 /* A pci function reset will repost them */ 8896 rc = -ENODEV; 8897 goto out_destroy_queue; 8898 } 8899 /* Each lpfc_io_buf job structure has an iocbq element. 8900 * This cnt provides for abort, els, ct and ls requests. 8901 */ 8902 cnt = phba->sli4_hba.max_cfg_param.max_xri; 8903 } 8904 8905 if (!phba->sli.iocbq_lookup) { 8906 /* Initialize and populate the iocb list per host */ 8907 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8908 "2821 initialize iocb list with %d entries\n", 8909 cnt); 8910 rc = lpfc_init_iocb_list(phba, cnt); 8911 if (rc) { 8912 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8913 "1413 Failed to init iocb list.\n"); 8914 goto out_destroy_queue; 8915 } 8916 } 8917 8918 if (phba->nvmet_support) 8919 lpfc_nvmet_create_targetport(phba); 8920 8921 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 8922 /* Post initial buffers to all RQs created */ 8923 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 8924 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 8925 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 8926 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 8927 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 8928 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 8929 rqbp->buffer_count = 0; 8930 8931 lpfc_post_rq_buffer( 8932 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 8933 phba->sli4_hba.nvmet_mrq_data[i], 8934 phba->cfg_nvmet_mrq_post, i); 8935 } 8936 } 8937 8938 /* Post the rpi header region to the device. */ 8939 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 8940 if (unlikely(rc)) { 8941 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8942 "0393 Error %d during rpi post operation\n", 8943 rc); 8944 rc = -ENODEV; 8945 goto out_free_iocblist; 8946 } 8947 lpfc_sli4_node_prep(phba); 8948 8949 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 8950 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 8951 /* 8952 * The FC Port needs to register FCFI (index 0) 8953 */ 8954 lpfc_reg_fcfi(phba, mboxq); 8955 mboxq->vport = phba->pport; 8956 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8957 if (rc != MBX_SUCCESS) 8958 goto out_unset_queue; 8959 rc = 0; 8960 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 8961 &mboxq->u.mqe.un.reg_fcfi); 8962 } else { 8963 /* We are a NVME Target mode with MRQ > 1 */ 8964 8965 /* First register the FCFI */ 8966 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 8967 mboxq->vport = phba->pport; 8968 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8969 if (rc != MBX_SUCCESS) 8970 goto out_unset_queue; 8971 rc = 0; 8972 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 8973 &mboxq->u.mqe.un.reg_fcfi_mrq); 8974 8975 /* Next register the MRQs */ 8976 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 8977 mboxq->vport = phba->pport; 8978 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8979 if (rc != MBX_SUCCESS) 8980 goto out_unset_queue; 8981 rc = 0; 8982 } 8983 /* Check if the port is configured to be disabled */ 8984 lpfc_sli_read_link_ste(phba); 8985 } 8986 8987 /* Don't post more new bufs if repost already recovered 8988 * the nvme sgls. 8989 */ 8990 if (phba->nvmet_support == 0) { 8991 if (phba->sli4_hba.io_xri_cnt == 0) { 8992 len = lpfc_new_io_buf( 8993 phba, phba->sli4_hba.io_xri_max); 8994 if (len == 0) { 8995 rc = -ENOMEM; 8996 goto out_unset_queue; 8997 } 8998 8999 if (phba->cfg_xri_rebalancing) 9000 lpfc_create_multixri_pools(phba); 9001 } 9002 } else { 9003 phba->cfg_xri_rebalancing = 0; 9004 } 9005 9006 /* Allow asynchronous mailbox command to go through */ 9007 spin_lock_irq(&phba->hbalock); 9008 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9009 spin_unlock_irq(&phba->hbalock); 9010 9011 /* Post receive buffers to the device */ 9012 lpfc_sli4_rb_setup(phba); 9013 9014 /* Reset HBA FCF states after HBA reset */ 9015 phba->fcf.fcf_flag = 0; 9016 phba->fcf.current_rec.flag = 0; 9017 9018 /* Start the ELS watchdog timer */ 9019 mod_timer(&vport->els_tmofunc, 9020 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 9021 9022 /* Start heart beat timer */ 9023 mod_timer(&phba->hb_tmofunc, 9024 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 9025 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 9026 phba->last_completion_time = jiffies; 9027 9028 /* start eq_delay heartbeat */ 9029 if (phba->cfg_auto_imax) 9030 queue_delayed_work(phba->wq, &phba->eq_delay_work, 9031 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 9032 9033 /* start per phba idle_stat_delay heartbeat */ 9034 lpfc_init_idle_stat_hb(phba); 9035 9036 /* Start error attention (ERATT) polling timer */ 9037 mod_timer(&phba->eratt_poll, 9038 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 9039 9040 /* 9041 * The port is ready, set the host's link state to LINK_DOWN 9042 * in preparation for link interrupts. 9043 */ 9044 spin_lock_irq(&phba->hbalock); 9045 phba->link_state = LPFC_LINK_DOWN; 9046 9047 /* Check if physical ports are trunked */ 9048 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 9049 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 9050 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 9051 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 9052 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 9053 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 9054 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 9055 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 9056 spin_unlock_irq(&phba->hbalock); 9057 9058 /* Arm the CQs and then EQs on device */ 9059 lpfc_sli4_arm_cqeq_intr(phba); 9060 9061 /* Indicate device interrupt mode */ 9062 phba->sli4_hba.intr_enable = 1; 9063 9064 /* Setup CMF after HBA is initialized */ 9065 lpfc_cmf_setup(phba); 9066 9067 if (!(phba->hba_flag & HBA_FCOE_MODE) && 9068 (phba->hba_flag & LINK_DISABLED)) { 9069 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9070 "3103 Adapter Link is disabled.\n"); 9071 lpfc_down_link(phba, mboxq); 9072 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 9073 if (rc != MBX_SUCCESS) { 9074 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9075 "3104 Adapter failed to issue " 9076 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 9077 goto out_io_buff_free; 9078 } 9079 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 9080 /* don't perform init_link on SLI4 FC port loopback test */ 9081 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 9082 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 9083 if (rc) 9084 goto out_io_buff_free; 9085 } 9086 } 9087 mempool_free(mboxq, phba->mbox_mem_pool); 9088 9089 /* Enable RAS FW log support */ 9090 lpfc_sli4_ras_setup(phba); 9091 9092 phba->hba_flag |= HBA_SETUP; 9093 return rc; 9094 9095 out_io_buff_free: 9096 /* Free allocated IO Buffers */ 9097 lpfc_io_free(phba); 9098 out_unset_queue: 9099 /* Unset all the queues set up in this routine when error out */ 9100 lpfc_sli4_queue_unset(phba); 9101 out_free_iocblist: 9102 lpfc_free_iocb_list(phba); 9103 out_destroy_queue: 9104 lpfc_sli4_queue_destroy(phba); 9105 out_stop_timers: 9106 lpfc_stop_hba_timers(phba); 9107 out_free_mbox: 9108 mempool_free(mboxq, phba->mbox_mem_pool); 9109 return rc; 9110 } 9111 9112 /** 9113 * lpfc_mbox_timeout - Timeout call back function for mbox timer 9114 * @t: Context to fetch pointer to hba structure from. 9115 * 9116 * This is the callback function for mailbox timer. The mailbox 9117 * timer is armed when a new mailbox command is issued and the timer 9118 * is deleted when the mailbox complete. The function is called by 9119 * the kernel timer code when a mailbox does not complete within 9120 * expected time. This function wakes up the worker thread to 9121 * process the mailbox timeout and returns. All the processing is 9122 * done by the worker thread function lpfc_mbox_timeout_handler. 9123 **/ 9124 void 9125 lpfc_mbox_timeout(struct timer_list *t) 9126 { 9127 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 9128 unsigned long iflag; 9129 uint32_t tmo_posted; 9130 9131 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 9132 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 9133 if (!tmo_posted) 9134 phba->pport->work_port_events |= WORKER_MBOX_TMO; 9135 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 9136 9137 if (!tmo_posted) 9138 lpfc_worker_wake_up(phba); 9139 return; 9140 } 9141 9142 /** 9143 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 9144 * are pending 9145 * @phba: Pointer to HBA context object. 9146 * 9147 * This function checks if any mailbox completions are present on the mailbox 9148 * completion queue. 9149 **/ 9150 static bool 9151 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 9152 { 9153 9154 uint32_t idx; 9155 struct lpfc_queue *mcq; 9156 struct lpfc_mcqe *mcqe; 9157 bool pending_completions = false; 9158 uint8_t qe_valid; 9159 9160 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9161 return false; 9162 9163 /* Check for completions on mailbox completion queue */ 9164 9165 mcq = phba->sli4_hba.mbx_cq; 9166 idx = mcq->hba_index; 9167 qe_valid = mcq->qe_valid; 9168 while (bf_get_le32(lpfc_cqe_valid, 9169 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 9170 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 9171 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 9172 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 9173 pending_completions = true; 9174 break; 9175 } 9176 idx = (idx + 1) % mcq->entry_count; 9177 if (mcq->hba_index == idx) 9178 break; 9179 9180 /* if the index wrapped around, toggle the valid bit */ 9181 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 9182 qe_valid = (qe_valid) ? 0 : 1; 9183 } 9184 return pending_completions; 9185 9186 } 9187 9188 /** 9189 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 9190 * that were missed. 9191 * @phba: Pointer to HBA context object. 9192 * 9193 * For sli4, it is possible to miss an interrupt. As such mbox completions 9194 * maybe missed causing erroneous mailbox timeouts to occur. This function 9195 * checks to see if mbox completions are on the mailbox completion queue 9196 * and will process all the completions associated with the eq for the 9197 * mailbox completion queue. 9198 **/ 9199 static bool 9200 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 9201 { 9202 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 9203 uint32_t eqidx; 9204 struct lpfc_queue *fpeq = NULL; 9205 struct lpfc_queue *eq; 9206 bool mbox_pending; 9207 9208 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9209 return false; 9210 9211 /* Find the EQ associated with the mbox CQ */ 9212 if (sli4_hba->hdwq) { 9213 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 9214 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 9215 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 9216 fpeq = eq; 9217 break; 9218 } 9219 } 9220 } 9221 if (!fpeq) 9222 return false; 9223 9224 /* Turn off interrupts from this EQ */ 9225 9226 sli4_hba->sli4_eq_clr_intr(fpeq); 9227 9228 /* Check to see if a mbox completion is pending */ 9229 9230 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 9231 9232 /* 9233 * If a mbox completion is pending, process all the events on EQ 9234 * associated with the mbox completion queue (this could include 9235 * mailbox commands, async events, els commands, receive queue data 9236 * and fcp commands) 9237 */ 9238 9239 if (mbox_pending) 9240 /* process and rearm the EQ */ 9241 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 9242 LPFC_QUEUE_WORK); 9243 else 9244 /* Always clear and re-arm the EQ */ 9245 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 9246 9247 return mbox_pending; 9248 9249 } 9250 9251 /** 9252 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 9253 * @phba: Pointer to HBA context object. 9254 * 9255 * This function is called from worker thread when a mailbox command times out. 9256 * The caller is not required to hold any locks. This function will reset the 9257 * HBA and recover all the pending commands. 9258 **/ 9259 void 9260 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 9261 { 9262 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 9263 MAILBOX_t *mb = NULL; 9264 9265 struct lpfc_sli *psli = &phba->sli; 9266 9267 /* If the mailbox completed, process the completion */ 9268 lpfc_sli4_process_missed_mbox_completions(phba); 9269 9270 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 9271 return; 9272 9273 if (pmbox != NULL) 9274 mb = &pmbox->u.mb; 9275 /* Check the pmbox pointer first. There is a race condition 9276 * between the mbox timeout handler getting executed in the 9277 * worklist and the mailbox actually completing. When this 9278 * race condition occurs, the mbox_active will be NULL. 9279 */ 9280 spin_lock_irq(&phba->hbalock); 9281 if (pmbox == NULL) { 9282 lpfc_printf_log(phba, KERN_WARNING, 9283 LOG_MBOX | LOG_SLI, 9284 "0353 Active Mailbox cleared - mailbox timeout " 9285 "exiting\n"); 9286 spin_unlock_irq(&phba->hbalock); 9287 return; 9288 } 9289 9290 /* Mbox cmd <mbxCommand> timeout */ 9291 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9292 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 9293 mb->mbxCommand, 9294 phba->pport->port_state, 9295 phba->sli.sli_flag, 9296 phba->sli.mbox_active); 9297 spin_unlock_irq(&phba->hbalock); 9298 9299 /* Setting state unknown so lpfc_sli_abort_iocb_ring 9300 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 9301 * it to fail all outstanding SCSI IO. 9302 */ 9303 set_bit(MBX_TMO_ERR, &phba->bit_flags); 9304 spin_lock_irq(&phba->pport->work_port_lock); 9305 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 9306 spin_unlock_irq(&phba->pport->work_port_lock); 9307 spin_lock_irq(&phba->hbalock); 9308 phba->link_state = LPFC_LINK_UNKNOWN; 9309 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 9310 spin_unlock_irq(&phba->hbalock); 9311 9312 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9313 "0345 Resetting board due to mailbox timeout\n"); 9314 9315 /* Reset the HBA device */ 9316 lpfc_reset_hba(phba); 9317 } 9318 9319 /** 9320 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 9321 * @phba: Pointer to HBA context object. 9322 * @pmbox: Pointer to mailbox object. 9323 * @flag: Flag indicating how the mailbox need to be processed. 9324 * 9325 * This function is called by discovery code and HBA management code 9326 * to submit a mailbox command to firmware with SLI-3 interface spec. This 9327 * function gets the hbalock to protect the data structures. 9328 * The mailbox command can be submitted in polling mode, in which case 9329 * this function will wait in a polling loop for the completion of the 9330 * mailbox. 9331 * If the mailbox is submitted in no_wait mode (not polling) the 9332 * function will submit the command and returns immediately without waiting 9333 * for the mailbox completion. The no_wait is supported only when HBA 9334 * is in SLI2/SLI3 mode - interrupts are enabled. 9335 * The SLI interface allows only one mailbox pending at a time. If the 9336 * mailbox is issued in polling mode and there is already a mailbox 9337 * pending, then the function will return an error. If the mailbox is issued 9338 * in NO_WAIT mode and there is a mailbox pending already, the function 9339 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 9340 * The sli layer owns the mailbox object until the completion of mailbox 9341 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 9342 * return codes the caller owns the mailbox command after the return of 9343 * the function. 9344 **/ 9345 static int 9346 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 9347 uint32_t flag) 9348 { 9349 MAILBOX_t *mbx; 9350 struct lpfc_sli *psli = &phba->sli; 9351 uint32_t status, evtctr; 9352 uint32_t ha_copy, hc_copy; 9353 int i; 9354 unsigned long timeout; 9355 unsigned long drvr_flag = 0; 9356 uint32_t word0, ldata; 9357 void __iomem *to_slim; 9358 int processing_queue = 0; 9359 9360 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9361 if (!pmbox) { 9362 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9363 /* processing mbox queue from intr_handler */ 9364 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9365 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9366 return MBX_SUCCESS; 9367 } 9368 processing_queue = 1; 9369 pmbox = lpfc_mbox_get(phba); 9370 if (!pmbox) { 9371 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9372 return MBX_SUCCESS; 9373 } 9374 } 9375 9376 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 9377 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 9378 if(!pmbox->vport) { 9379 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9380 lpfc_printf_log(phba, KERN_ERR, 9381 LOG_MBOX | LOG_VPORT, 9382 "1806 Mbox x%x failed. No vport\n", 9383 pmbox->u.mb.mbxCommand); 9384 dump_stack(); 9385 goto out_not_finished; 9386 } 9387 } 9388 9389 /* If the PCI channel is in offline state, do not post mbox. */ 9390 if (unlikely(pci_channel_offline(phba->pcidev))) { 9391 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9392 goto out_not_finished; 9393 } 9394 9395 /* If HBA has a deferred error attention, fail the iocb. */ 9396 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 9397 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9398 goto out_not_finished; 9399 } 9400 9401 psli = &phba->sli; 9402 9403 mbx = &pmbox->u.mb; 9404 status = MBX_SUCCESS; 9405 9406 if (phba->link_state == LPFC_HBA_ERROR) { 9407 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9408 9409 /* Mbox command <mbxCommand> cannot issue */ 9410 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9411 "(%d):0311 Mailbox command x%x cannot " 9412 "issue Data: x%x x%x\n", 9413 pmbox->vport ? pmbox->vport->vpi : 0, 9414 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9415 goto out_not_finished; 9416 } 9417 9418 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 9419 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 9420 !(hc_copy & HC_MBINT_ENA)) { 9421 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9422 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9423 "(%d):2528 Mailbox command x%x cannot " 9424 "issue Data: x%x x%x\n", 9425 pmbox->vport ? pmbox->vport->vpi : 0, 9426 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9427 goto out_not_finished; 9428 } 9429 } 9430 9431 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9432 /* Polling for a mbox command when another one is already active 9433 * is not allowed in SLI. Also, the driver must have established 9434 * SLI2 mode to queue and process multiple mbox commands. 9435 */ 9436 9437 if (flag & MBX_POLL) { 9438 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9439 9440 /* Mbox command <mbxCommand> cannot issue */ 9441 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9442 "(%d):2529 Mailbox command x%x " 9443 "cannot issue Data: x%x x%x\n", 9444 pmbox->vport ? pmbox->vport->vpi : 0, 9445 pmbox->u.mb.mbxCommand, 9446 psli->sli_flag, flag); 9447 goto out_not_finished; 9448 } 9449 9450 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 9451 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9452 /* Mbox command <mbxCommand> cannot issue */ 9453 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9454 "(%d):2530 Mailbox command x%x " 9455 "cannot issue Data: x%x x%x\n", 9456 pmbox->vport ? pmbox->vport->vpi : 0, 9457 pmbox->u.mb.mbxCommand, 9458 psli->sli_flag, flag); 9459 goto out_not_finished; 9460 } 9461 9462 /* Another mailbox command is still being processed, queue this 9463 * command to be processed later. 9464 */ 9465 lpfc_mbox_put(phba, pmbox); 9466 9467 /* Mbox cmd issue - BUSY */ 9468 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9469 "(%d):0308 Mbox cmd issue - BUSY Data: " 9470 "x%x x%x x%x x%x\n", 9471 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 9472 mbx->mbxCommand, 9473 phba->pport ? phba->pport->port_state : 0xff, 9474 psli->sli_flag, flag); 9475 9476 psli->slistat.mbox_busy++; 9477 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9478 9479 if (pmbox->vport) { 9480 lpfc_debugfs_disc_trc(pmbox->vport, 9481 LPFC_DISC_TRC_MBOX_VPORT, 9482 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 9483 (uint32_t)mbx->mbxCommand, 9484 mbx->un.varWords[0], mbx->un.varWords[1]); 9485 } 9486 else { 9487 lpfc_debugfs_disc_trc(phba->pport, 9488 LPFC_DISC_TRC_MBOX, 9489 "MBOX Bsy: cmd:x%x mb:x%x x%x", 9490 (uint32_t)mbx->mbxCommand, 9491 mbx->un.varWords[0], mbx->un.varWords[1]); 9492 } 9493 9494 return MBX_BUSY; 9495 } 9496 9497 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9498 9499 /* If we are not polling, we MUST be in SLI2 mode */ 9500 if (flag != MBX_POLL) { 9501 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 9502 (mbx->mbxCommand != MBX_KILL_BOARD)) { 9503 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9504 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9505 /* Mbox command <mbxCommand> cannot issue */ 9506 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9507 "(%d):2531 Mailbox command x%x " 9508 "cannot issue Data: x%x x%x\n", 9509 pmbox->vport ? pmbox->vport->vpi : 0, 9510 pmbox->u.mb.mbxCommand, 9511 psli->sli_flag, flag); 9512 goto out_not_finished; 9513 } 9514 /* timeout active mbox command */ 9515 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9516 1000); 9517 mod_timer(&psli->mbox_tmo, jiffies + timeout); 9518 } 9519 9520 /* Mailbox cmd <cmd> issue */ 9521 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9522 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 9523 "x%x\n", 9524 pmbox->vport ? pmbox->vport->vpi : 0, 9525 mbx->mbxCommand, 9526 phba->pport ? phba->pport->port_state : 0xff, 9527 psli->sli_flag, flag); 9528 9529 if (mbx->mbxCommand != MBX_HEARTBEAT) { 9530 if (pmbox->vport) { 9531 lpfc_debugfs_disc_trc(pmbox->vport, 9532 LPFC_DISC_TRC_MBOX_VPORT, 9533 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9534 (uint32_t)mbx->mbxCommand, 9535 mbx->un.varWords[0], mbx->un.varWords[1]); 9536 } 9537 else { 9538 lpfc_debugfs_disc_trc(phba->pport, 9539 LPFC_DISC_TRC_MBOX, 9540 "MBOX Send: cmd:x%x mb:x%x x%x", 9541 (uint32_t)mbx->mbxCommand, 9542 mbx->un.varWords[0], mbx->un.varWords[1]); 9543 } 9544 } 9545 9546 psli->slistat.mbox_cmd++; 9547 evtctr = psli->slistat.mbox_event; 9548 9549 /* next set own bit for the adapter and copy over command word */ 9550 mbx->mbxOwner = OWN_CHIP; 9551 9552 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9553 /* Populate mbox extension offset word. */ 9554 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 9555 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9556 = (uint8_t *)phba->mbox_ext 9557 - (uint8_t *)phba->mbox; 9558 } 9559 9560 /* Copy the mailbox extension data */ 9561 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 9562 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 9563 (uint8_t *)phba->mbox_ext, 9564 pmbox->in_ext_byte_len); 9565 } 9566 /* Copy command data to host SLIM area */ 9567 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 9568 } else { 9569 /* Populate mbox extension offset word. */ 9570 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 9571 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9572 = MAILBOX_HBA_EXT_OFFSET; 9573 9574 /* Copy the mailbox extension data */ 9575 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 9576 lpfc_memcpy_to_slim(phba->MBslimaddr + 9577 MAILBOX_HBA_EXT_OFFSET, 9578 pmbox->ctx_buf, pmbox->in_ext_byte_len); 9579 9580 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9581 /* copy command data into host mbox for cmpl */ 9582 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 9583 MAILBOX_CMD_SIZE); 9584 9585 /* First copy mbox command data to HBA SLIM, skip past first 9586 word */ 9587 to_slim = phba->MBslimaddr + sizeof (uint32_t); 9588 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 9589 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 9590 9591 /* Next copy over first word, with mbxOwner set */ 9592 ldata = *((uint32_t *)mbx); 9593 to_slim = phba->MBslimaddr; 9594 writel(ldata, to_slim); 9595 readl(to_slim); /* flush */ 9596 9597 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9598 /* switch over to host mailbox */ 9599 psli->sli_flag |= LPFC_SLI_ACTIVE; 9600 } 9601 9602 wmb(); 9603 9604 switch (flag) { 9605 case MBX_NOWAIT: 9606 /* Set up reference to mailbox command */ 9607 psli->mbox_active = pmbox; 9608 /* Interrupt board to do it */ 9609 writel(CA_MBATT, phba->CAregaddr); 9610 readl(phba->CAregaddr); /* flush */ 9611 /* Don't wait for it to finish, just return */ 9612 break; 9613 9614 case MBX_POLL: 9615 /* Set up null reference to mailbox command */ 9616 psli->mbox_active = NULL; 9617 /* Interrupt board to do it */ 9618 writel(CA_MBATT, phba->CAregaddr); 9619 readl(phba->CAregaddr); /* flush */ 9620 9621 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9622 /* First read mbox status word */ 9623 word0 = *((uint32_t *)phba->mbox); 9624 word0 = le32_to_cpu(word0); 9625 } else { 9626 /* First read mbox status word */ 9627 if (lpfc_readl(phba->MBslimaddr, &word0)) { 9628 spin_unlock_irqrestore(&phba->hbalock, 9629 drvr_flag); 9630 goto out_not_finished; 9631 } 9632 } 9633 9634 /* Read the HBA Host Attention Register */ 9635 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9636 spin_unlock_irqrestore(&phba->hbalock, 9637 drvr_flag); 9638 goto out_not_finished; 9639 } 9640 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9641 1000) + jiffies; 9642 i = 0; 9643 /* Wait for command to complete */ 9644 while (((word0 & OWN_CHIP) == OWN_CHIP) || 9645 (!(ha_copy & HA_MBATT) && 9646 (phba->link_state > LPFC_WARM_START))) { 9647 if (time_after(jiffies, timeout)) { 9648 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9649 spin_unlock_irqrestore(&phba->hbalock, 9650 drvr_flag); 9651 goto out_not_finished; 9652 } 9653 9654 /* Check if we took a mbox interrupt while we were 9655 polling */ 9656 if (((word0 & OWN_CHIP) != OWN_CHIP) 9657 && (evtctr != psli->slistat.mbox_event)) 9658 break; 9659 9660 if (i++ > 10) { 9661 spin_unlock_irqrestore(&phba->hbalock, 9662 drvr_flag); 9663 msleep(1); 9664 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9665 } 9666 9667 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9668 /* First copy command data */ 9669 word0 = *((uint32_t *)phba->mbox); 9670 word0 = le32_to_cpu(word0); 9671 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 9672 MAILBOX_t *slimmb; 9673 uint32_t slimword0; 9674 /* Check real SLIM for any errors */ 9675 slimword0 = readl(phba->MBslimaddr); 9676 slimmb = (MAILBOX_t *) & slimword0; 9677 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 9678 && slimmb->mbxStatus) { 9679 psli->sli_flag &= 9680 ~LPFC_SLI_ACTIVE; 9681 word0 = slimword0; 9682 } 9683 } 9684 } else { 9685 /* First copy command data */ 9686 word0 = readl(phba->MBslimaddr); 9687 } 9688 /* Read the HBA Host Attention Register */ 9689 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9690 spin_unlock_irqrestore(&phba->hbalock, 9691 drvr_flag); 9692 goto out_not_finished; 9693 } 9694 } 9695 9696 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9697 /* copy results back to user */ 9698 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 9699 MAILBOX_CMD_SIZE); 9700 /* Copy the mailbox extension data */ 9701 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9702 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 9703 pmbox->ctx_buf, 9704 pmbox->out_ext_byte_len); 9705 } 9706 } else { 9707 /* First copy command data */ 9708 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 9709 MAILBOX_CMD_SIZE); 9710 /* Copy the mailbox extension data */ 9711 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9712 lpfc_memcpy_from_slim( 9713 pmbox->ctx_buf, 9714 phba->MBslimaddr + 9715 MAILBOX_HBA_EXT_OFFSET, 9716 pmbox->out_ext_byte_len); 9717 } 9718 } 9719 9720 writel(HA_MBATT, phba->HAregaddr); 9721 readl(phba->HAregaddr); /* flush */ 9722 9723 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9724 status = mbx->mbxStatus; 9725 } 9726 9727 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9728 return status; 9729 9730 out_not_finished: 9731 if (processing_queue) { 9732 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 9733 lpfc_mbox_cmpl_put(phba, pmbox); 9734 } 9735 return MBX_NOT_FINISHED; 9736 } 9737 9738 /** 9739 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 9740 * @phba: Pointer to HBA context object. 9741 * 9742 * The function blocks the posting of SLI4 asynchronous mailbox commands from 9743 * the driver internal pending mailbox queue. It will then try to wait out the 9744 * possible outstanding mailbox command before return. 9745 * 9746 * Returns: 9747 * 0 - the outstanding mailbox command completed; otherwise, the wait for 9748 * the outstanding mailbox command timed out. 9749 **/ 9750 static int 9751 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 9752 { 9753 struct lpfc_sli *psli = &phba->sli; 9754 LPFC_MBOXQ_t *mboxq; 9755 int rc = 0; 9756 unsigned long timeout = 0; 9757 u32 sli_flag; 9758 u8 cmd, subsys, opcode; 9759 9760 /* Mark the asynchronous mailbox command posting as blocked */ 9761 spin_lock_irq(&phba->hbalock); 9762 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 9763 /* Determine how long we might wait for the active mailbox 9764 * command to be gracefully completed by firmware. 9765 */ 9766 if (phba->sli.mbox_active) 9767 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 9768 phba->sli.mbox_active) * 9769 1000) + jiffies; 9770 spin_unlock_irq(&phba->hbalock); 9771 9772 /* Make sure the mailbox is really active */ 9773 if (timeout) 9774 lpfc_sli4_process_missed_mbox_completions(phba); 9775 9776 /* Wait for the outstanding mailbox command to complete */ 9777 while (phba->sli.mbox_active) { 9778 /* Check active mailbox complete status every 2ms */ 9779 msleep(2); 9780 if (time_after(jiffies, timeout)) { 9781 /* Timeout, mark the outstanding cmd not complete */ 9782 9783 /* Sanity check sli.mbox_active has not completed or 9784 * cancelled from another context during last 2ms sleep, 9785 * so take hbalock to be sure before logging. 9786 */ 9787 spin_lock_irq(&phba->hbalock); 9788 if (phba->sli.mbox_active) { 9789 mboxq = phba->sli.mbox_active; 9790 cmd = mboxq->u.mb.mbxCommand; 9791 subsys = lpfc_sli_config_mbox_subsys_get(phba, 9792 mboxq); 9793 opcode = lpfc_sli_config_mbox_opcode_get(phba, 9794 mboxq); 9795 sli_flag = psli->sli_flag; 9796 spin_unlock_irq(&phba->hbalock); 9797 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9798 "2352 Mailbox command x%x " 9799 "(x%x/x%x) sli_flag x%x could " 9800 "not complete\n", 9801 cmd, subsys, opcode, 9802 sli_flag); 9803 } else { 9804 spin_unlock_irq(&phba->hbalock); 9805 } 9806 9807 rc = 1; 9808 break; 9809 } 9810 } 9811 9812 /* Can not cleanly block async mailbox command, fails it */ 9813 if (rc) { 9814 spin_lock_irq(&phba->hbalock); 9815 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9816 spin_unlock_irq(&phba->hbalock); 9817 } 9818 return rc; 9819 } 9820 9821 /** 9822 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 9823 * @phba: Pointer to HBA context object. 9824 * 9825 * The function unblocks and resume posting of SLI4 asynchronous mailbox 9826 * commands from the driver internal pending mailbox queue. It makes sure 9827 * that there is no outstanding mailbox command before resuming posting 9828 * asynchronous mailbox commands. If, for any reason, there is outstanding 9829 * mailbox command, it will try to wait it out before resuming asynchronous 9830 * mailbox command posting. 9831 **/ 9832 static void 9833 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 9834 { 9835 struct lpfc_sli *psli = &phba->sli; 9836 9837 spin_lock_irq(&phba->hbalock); 9838 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9839 /* Asynchronous mailbox posting is not blocked, do nothing */ 9840 spin_unlock_irq(&phba->hbalock); 9841 return; 9842 } 9843 9844 /* Outstanding synchronous mailbox command is guaranteed to be done, 9845 * successful or timeout, after timing-out the outstanding mailbox 9846 * command shall always be removed, so just unblock posting async 9847 * mailbox command and resume 9848 */ 9849 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9850 spin_unlock_irq(&phba->hbalock); 9851 9852 /* wake up worker thread to post asynchronous mailbox command */ 9853 lpfc_worker_wake_up(phba); 9854 } 9855 9856 /** 9857 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 9858 * @phba: Pointer to HBA context object. 9859 * @mboxq: Pointer to mailbox object. 9860 * 9861 * The function waits for the bootstrap mailbox register ready bit from 9862 * port for twice the regular mailbox command timeout value. 9863 * 9864 * 0 - no timeout on waiting for bootstrap mailbox register ready. 9865 * MBXERR_ERROR - wait for bootstrap mailbox register timed out or port 9866 * is in an unrecoverable state. 9867 **/ 9868 static int 9869 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9870 { 9871 uint32_t db_ready; 9872 unsigned long timeout; 9873 struct lpfc_register bmbx_reg; 9874 struct lpfc_register portstat_reg = {-1}; 9875 9876 /* Sanity check - there is no point to wait if the port is in an 9877 * unrecoverable state. 9878 */ 9879 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 9880 LPFC_SLI_INTF_IF_TYPE_2) { 9881 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 9882 &portstat_reg.word0) || 9883 lpfc_sli4_unrecoverable_port(&portstat_reg)) { 9884 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9885 "3858 Skipping bmbx ready because " 9886 "Port Status x%x\n", 9887 portstat_reg.word0); 9888 return MBXERR_ERROR; 9889 } 9890 } 9891 9892 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 9893 * 1000) + jiffies; 9894 9895 do { 9896 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 9897 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 9898 if (!db_ready) 9899 mdelay(2); 9900 9901 if (time_after(jiffies, timeout)) 9902 return MBXERR_ERROR; 9903 } while (!db_ready); 9904 9905 return 0; 9906 } 9907 9908 /** 9909 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 9910 * @phba: Pointer to HBA context object. 9911 * @mboxq: Pointer to mailbox object. 9912 * 9913 * The function posts a mailbox to the port. The mailbox is expected 9914 * to be comletely filled in and ready for the port to operate on it. 9915 * This routine executes a synchronous completion operation on the 9916 * mailbox by polling for its completion. 9917 * 9918 * The caller must not be holding any locks when calling this routine. 9919 * 9920 * Returns: 9921 * MBX_SUCCESS - mailbox posted successfully 9922 * Any of the MBX error values. 9923 **/ 9924 static int 9925 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9926 { 9927 int rc = MBX_SUCCESS; 9928 unsigned long iflag; 9929 uint32_t mcqe_status; 9930 uint32_t mbx_cmnd; 9931 struct lpfc_sli *psli = &phba->sli; 9932 struct lpfc_mqe *mb = &mboxq->u.mqe; 9933 struct lpfc_bmbx_create *mbox_rgn; 9934 struct dma_address *dma_address; 9935 9936 /* 9937 * Only one mailbox can be active to the bootstrap mailbox region 9938 * at a time and there is no queueing provided. 9939 */ 9940 spin_lock_irqsave(&phba->hbalock, iflag); 9941 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9942 spin_unlock_irqrestore(&phba->hbalock, iflag); 9943 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9944 "(%d):2532 Mailbox command x%x (x%x/x%x) " 9945 "cannot issue Data: x%x x%x\n", 9946 mboxq->vport ? mboxq->vport->vpi : 0, 9947 mboxq->u.mb.mbxCommand, 9948 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9949 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9950 psli->sli_flag, MBX_POLL); 9951 return MBXERR_ERROR; 9952 } 9953 /* The server grabs the token and owns it until release */ 9954 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9955 phba->sli.mbox_active = mboxq; 9956 spin_unlock_irqrestore(&phba->hbalock, iflag); 9957 9958 /* wait for bootstrap mbox register for readyness */ 9959 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9960 if (rc) 9961 goto exit; 9962 /* 9963 * Initialize the bootstrap memory region to avoid stale data areas 9964 * in the mailbox post. Then copy the caller's mailbox contents to 9965 * the bmbx mailbox region. 9966 */ 9967 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 9968 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 9969 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 9970 sizeof(struct lpfc_mqe)); 9971 9972 /* Post the high mailbox dma address to the port and wait for ready. */ 9973 dma_address = &phba->sli4_hba.bmbx.dma_address; 9974 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 9975 9976 /* wait for bootstrap mbox register for hi-address write done */ 9977 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9978 if (rc) 9979 goto exit; 9980 9981 /* Post the low mailbox dma address to the port. */ 9982 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 9983 9984 /* wait for bootstrap mbox register for low address write done */ 9985 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9986 if (rc) 9987 goto exit; 9988 9989 /* 9990 * Read the CQ to ensure the mailbox has completed. 9991 * If so, update the mailbox status so that the upper layers 9992 * can complete the request normally. 9993 */ 9994 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 9995 sizeof(struct lpfc_mqe)); 9996 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 9997 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 9998 sizeof(struct lpfc_mcqe)); 9999 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 10000 /* 10001 * When the CQE status indicates a failure and the mailbox status 10002 * indicates success then copy the CQE status into the mailbox status 10003 * (and prefix it with x4000). 10004 */ 10005 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 10006 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 10007 bf_set(lpfc_mqe_status, mb, 10008 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 10009 rc = MBXERR_ERROR; 10010 } else 10011 lpfc_sli4_swap_str(phba, mboxq); 10012 10013 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10014 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 10015 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 10016 " x%x x%x CQ: x%x x%x x%x x%x\n", 10017 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10018 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10019 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10020 bf_get(lpfc_mqe_status, mb), 10021 mb->un.mb_words[0], mb->un.mb_words[1], 10022 mb->un.mb_words[2], mb->un.mb_words[3], 10023 mb->un.mb_words[4], mb->un.mb_words[5], 10024 mb->un.mb_words[6], mb->un.mb_words[7], 10025 mb->un.mb_words[8], mb->un.mb_words[9], 10026 mb->un.mb_words[10], mb->un.mb_words[11], 10027 mb->un.mb_words[12], mboxq->mcqe.word0, 10028 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 10029 mboxq->mcqe.trailer); 10030 exit: 10031 /* We are holding the token, no needed for lock when release */ 10032 spin_lock_irqsave(&phba->hbalock, iflag); 10033 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10034 phba->sli.mbox_active = NULL; 10035 spin_unlock_irqrestore(&phba->hbalock, iflag); 10036 return rc; 10037 } 10038 10039 /** 10040 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 10041 * @phba: Pointer to HBA context object. 10042 * @mboxq: Pointer to mailbox object. 10043 * @flag: Flag indicating how the mailbox need to be processed. 10044 * 10045 * This function is called by discovery code and HBA management code to submit 10046 * a mailbox command to firmware with SLI-4 interface spec. 10047 * 10048 * Return codes the caller owns the mailbox command after the return of the 10049 * function. 10050 **/ 10051 static int 10052 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 10053 uint32_t flag) 10054 { 10055 struct lpfc_sli *psli = &phba->sli; 10056 unsigned long iflags; 10057 int rc; 10058 10059 /* dump from issue mailbox command if setup */ 10060 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 10061 10062 rc = lpfc_mbox_dev_check(phba); 10063 if (unlikely(rc)) { 10064 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10065 "(%d):2544 Mailbox command x%x (x%x/x%x) " 10066 "cannot issue Data: x%x x%x\n", 10067 mboxq->vport ? mboxq->vport->vpi : 0, 10068 mboxq->u.mb.mbxCommand, 10069 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10070 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10071 psli->sli_flag, flag); 10072 goto out_not_finished; 10073 } 10074 10075 /* Detect polling mode and jump to a handler */ 10076 if (!phba->sli4_hba.intr_enable) { 10077 if (flag == MBX_POLL) 10078 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10079 else 10080 rc = -EIO; 10081 if (rc != MBX_SUCCESS) 10082 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10083 "(%d):2541 Mailbox command x%x " 10084 "(x%x/x%x) failure: " 10085 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10086 "Data: x%x x%x\n", 10087 mboxq->vport ? mboxq->vport->vpi : 0, 10088 mboxq->u.mb.mbxCommand, 10089 lpfc_sli_config_mbox_subsys_get(phba, 10090 mboxq), 10091 lpfc_sli_config_mbox_opcode_get(phba, 10092 mboxq), 10093 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10094 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10095 bf_get(lpfc_mcqe_ext_status, 10096 &mboxq->mcqe), 10097 psli->sli_flag, flag); 10098 return rc; 10099 } else if (flag == MBX_POLL) { 10100 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10101 "(%d):2542 Try to issue mailbox command " 10102 "x%x (x%x/x%x) synchronously ahead of async " 10103 "mailbox command queue: x%x x%x\n", 10104 mboxq->vport ? mboxq->vport->vpi : 0, 10105 mboxq->u.mb.mbxCommand, 10106 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10107 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10108 psli->sli_flag, flag); 10109 /* Try to block the asynchronous mailbox posting */ 10110 rc = lpfc_sli4_async_mbox_block(phba); 10111 if (!rc) { 10112 /* Successfully blocked, now issue sync mbox cmd */ 10113 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10114 if (rc != MBX_SUCCESS) 10115 lpfc_printf_log(phba, KERN_WARNING, 10116 LOG_MBOX | LOG_SLI, 10117 "(%d):2597 Sync Mailbox command " 10118 "x%x (x%x/x%x) failure: " 10119 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10120 "Data: x%x x%x\n", 10121 mboxq->vport ? mboxq->vport->vpi : 0, 10122 mboxq->u.mb.mbxCommand, 10123 lpfc_sli_config_mbox_subsys_get(phba, 10124 mboxq), 10125 lpfc_sli_config_mbox_opcode_get(phba, 10126 mboxq), 10127 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10128 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10129 bf_get(lpfc_mcqe_ext_status, 10130 &mboxq->mcqe), 10131 psli->sli_flag, flag); 10132 /* Unblock the async mailbox posting afterward */ 10133 lpfc_sli4_async_mbox_unblock(phba); 10134 } 10135 return rc; 10136 } 10137 10138 /* Now, interrupt mode asynchronous mailbox command */ 10139 rc = lpfc_mbox_cmd_check(phba, mboxq); 10140 if (rc) { 10141 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10142 "(%d):2543 Mailbox command x%x (x%x/x%x) " 10143 "cannot issue Data: x%x x%x\n", 10144 mboxq->vport ? mboxq->vport->vpi : 0, 10145 mboxq->u.mb.mbxCommand, 10146 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10147 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10148 psli->sli_flag, flag); 10149 goto out_not_finished; 10150 } 10151 10152 /* Put the mailbox command to the driver internal FIFO */ 10153 psli->slistat.mbox_busy++; 10154 spin_lock_irqsave(&phba->hbalock, iflags); 10155 lpfc_mbox_put(phba, mboxq); 10156 spin_unlock_irqrestore(&phba->hbalock, iflags); 10157 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10158 "(%d):0354 Mbox cmd issue - Enqueue Data: " 10159 "x%x (x%x/x%x) x%x x%x x%x\n", 10160 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 10161 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 10162 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10163 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10164 phba->pport->port_state, 10165 psli->sli_flag, MBX_NOWAIT); 10166 /* Wake up worker thread to transport mailbox command from head */ 10167 lpfc_worker_wake_up(phba); 10168 10169 return MBX_BUSY; 10170 10171 out_not_finished: 10172 return MBX_NOT_FINISHED; 10173 } 10174 10175 /** 10176 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 10177 * @phba: Pointer to HBA context object. 10178 * 10179 * This function is called by worker thread to send a mailbox command to 10180 * SLI4 HBA firmware. 10181 * 10182 **/ 10183 int 10184 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 10185 { 10186 struct lpfc_sli *psli = &phba->sli; 10187 LPFC_MBOXQ_t *mboxq; 10188 int rc = MBX_SUCCESS; 10189 unsigned long iflags; 10190 struct lpfc_mqe *mqe; 10191 uint32_t mbx_cmnd; 10192 10193 /* Check interrupt mode before post async mailbox command */ 10194 if (unlikely(!phba->sli4_hba.intr_enable)) 10195 return MBX_NOT_FINISHED; 10196 10197 /* Check for mailbox command service token */ 10198 spin_lock_irqsave(&phba->hbalock, iflags); 10199 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 10200 spin_unlock_irqrestore(&phba->hbalock, iflags); 10201 return MBX_NOT_FINISHED; 10202 } 10203 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 10204 spin_unlock_irqrestore(&phba->hbalock, iflags); 10205 return MBX_NOT_FINISHED; 10206 } 10207 if (unlikely(phba->sli.mbox_active)) { 10208 spin_unlock_irqrestore(&phba->hbalock, iflags); 10209 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10210 "0384 There is pending active mailbox cmd\n"); 10211 return MBX_NOT_FINISHED; 10212 } 10213 /* Take the mailbox command service token */ 10214 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 10215 10216 /* Get the next mailbox command from head of queue */ 10217 mboxq = lpfc_mbox_get(phba); 10218 10219 /* If no more mailbox command waiting for post, we're done */ 10220 if (!mboxq) { 10221 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10222 spin_unlock_irqrestore(&phba->hbalock, iflags); 10223 return MBX_SUCCESS; 10224 } 10225 phba->sli.mbox_active = mboxq; 10226 spin_unlock_irqrestore(&phba->hbalock, iflags); 10227 10228 /* Check device readiness for posting mailbox command */ 10229 rc = lpfc_mbox_dev_check(phba); 10230 if (unlikely(rc)) 10231 /* Driver clean routine will clean up pending mailbox */ 10232 goto out_not_finished; 10233 10234 /* Prepare the mbox command to be posted */ 10235 mqe = &mboxq->u.mqe; 10236 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 10237 10238 /* Start timer for the mbox_tmo and log some mailbox post messages */ 10239 mod_timer(&psli->mbox_tmo, (jiffies + 10240 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 10241 10242 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10243 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 10244 "x%x x%x\n", 10245 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10246 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10247 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10248 phba->pport->port_state, psli->sli_flag); 10249 10250 if (mbx_cmnd != MBX_HEARTBEAT) { 10251 if (mboxq->vport) { 10252 lpfc_debugfs_disc_trc(mboxq->vport, 10253 LPFC_DISC_TRC_MBOX_VPORT, 10254 "MBOX Send vport: cmd:x%x mb:x%x x%x", 10255 mbx_cmnd, mqe->un.mb_words[0], 10256 mqe->un.mb_words[1]); 10257 } else { 10258 lpfc_debugfs_disc_trc(phba->pport, 10259 LPFC_DISC_TRC_MBOX, 10260 "MBOX Send: cmd:x%x mb:x%x x%x", 10261 mbx_cmnd, mqe->un.mb_words[0], 10262 mqe->un.mb_words[1]); 10263 } 10264 } 10265 psli->slistat.mbox_cmd++; 10266 10267 /* Post the mailbox command to the port */ 10268 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 10269 if (rc != MBX_SUCCESS) { 10270 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10271 "(%d):2533 Mailbox command x%x (x%x/x%x) " 10272 "cannot issue Data: x%x x%x\n", 10273 mboxq->vport ? mboxq->vport->vpi : 0, 10274 mboxq->u.mb.mbxCommand, 10275 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10276 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10277 psli->sli_flag, MBX_NOWAIT); 10278 goto out_not_finished; 10279 } 10280 10281 return rc; 10282 10283 out_not_finished: 10284 spin_lock_irqsave(&phba->hbalock, iflags); 10285 if (phba->sli.mbox_active) { 10286 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 10287 __lpfc_mbox_cmpl_put(phba, mboxq); 10288 /* Release the token */ 10289 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10290 phba->sli.mbox_active = NULL; 10291 } 10292 spin_unlock_irqrestore(&phba->hbalock, iflags); 10293 10294 return MBX_NOT_FINISHED; 10295 } 10296 10297 /** 10298 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 10299 * @phba: Pointer to HBA context object. 10300 * @pmbox: Pointer to mailbox object. 10301 * @flag: Flag indicating how the mailbox need to be processed. 10302 * 10303 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 10304 * the API jump table function pointer from the lpfc_hba struct. 10305 * 10306 * Return codes the caller owns the mailbox command after the return of the 10307 * function. 10308 **/ 10309 int 10310 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 10311 { 10312 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 10313 } 10314 10315 /** 10316 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 10317 * @phba: The hba struct for which this call is being executed. 10318 * @dev_grp: The HBA PCI-Device group number. 10319 * 10320 * This routine sets up the mbox interface API function jump table in @phba 10321 * struct. 10322 * Returns: 0 - success, -ENODEV - failure. 10323 **/ 10324 int 10325 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10326 { 10327 10328 switch (dev_grp) { 10329 case LPFC_PCI_DEV_LP: 10330 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 10331 phba->lpfc_sli_handle_slow_ring_event = 10332 lpfc_sli_handle_slow_ring_event_s3; 10333 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 10334 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 10335 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 10336 break; 10337 case LPFC_PCI_DEV_OC: 10338 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 10339 phba->lpfc_sli_handle_slow_ring_event = 10340 lpfc_sli_handle_slow_ring_event_s4; 10341 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 10342 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 10343 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 10344 break; 10345 default: 10346 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10347 "1420 Invalid HBA PCI-device group: 0x%x\n", 10348 dev_grp); 10349 return -ENODEV; 10350 } 10351 return 0; 10352 } 10353 10354 /** 10355 * __lpfc_sli_ringtx_put - Add an iocb to the txq 10356 * @phba: Pointer to HBA context object. 10357 * @pring: Pointer to driver SLI ring object. 10358 * @piocb: Pointer to address of newly added command iocb. 10359 * 10360 * This function is called with hbalock held for SLI3 ports or 10361 * the ring lock held for SLI4 ports to add a command 10362 * iocb to the txq when SLI layer cannot submit the command iocb 10363 * to the ring. 10364 **/ 10365 void 10366 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10367 struct lpfc_iocbq *piocb) 10368 { 10369 if (phba->sli_rev == LPFC_SLI_REV4) 10370 lockdep_assert_held(&pring->ring_lock); 10371 else 10372 lockdep_assert_held(&phba->hbalock); 10373 /* Insert the caller's iocb in the txq tail for later processing. */ 10374 list_add_tail(&piocb->list, &pring->txq); 10375 } 10376 10377 /** 10378 * lpfc_sli_next_iocb - Get the next iocb in the txq 10379 * @phba: Pointer to HBA context object. 10380 * @pring: Pointer to driver SLI ring object. 10381 * @piocb: Pointer to address of newly added command iocb. 10382 * 10383 * This function is called with hbalock held before a new 10384 * iocb is submitted to the firmware. This function checks 10385 * txq to flush the iocbs in txq to Firmware before 10386 * submitting new iocbs to the Firmware. 10387 * If there are iocbs in the txq which need to be submitted 10388 * to firmware, lpfc_sli_next_iocb returns the first element 10389 * of the txq after dequeuing it from txq. 10390 * If there is no iocb in the txq then the function will return 10391 * *piocb and *piocb is set to NULL. Caller needs to check 10392 * *piocb to find if there are more commands in the txq. 10393 **/ 10394 static struct lpfc_iocbq * 10395 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10396 struct lpfc_iocbq **piocb) 10397 { 10398 struct lpfc_iocbq * nextiocb; 10399 10400 lockdep_assert_held(&phba->hbalock); 10401 10402 nextiocb = lpfc_sli_ringtx_get(phba, pring); 10403 if (!nextiocb) { 10404 nextiocb = *piocb; 10405 *piocb = NULL; 10406 } 10407 10408 return nextiocb; 10409 } 10410 10411 /** 10412 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 10413 * @phba: Pointer to HBA context object. 10414 * @ring_number: SLI ring number to issue iocb on. 10415 * @piocb: Pointer to command iocb. 10416 * @flag: Flag indicating if this command can be put into txq. 10417 * 10418 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 10419 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 10420 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 10421 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 10422 * this function allows only iocbs for posting buffers. This function finds 10423 * next available slot in the command ring and posts the command to the 10424 * available slot and writes the port attention register to request HBA start 10425 * processing new iocb. If there is no slot available in the ring and 10426 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 10427 * the function returns IOCB_BUSY. 10428 * 10429 * This function is called with hbalock held. The function will return success 10430 * after it successfully submit the iocb to firmware or after adding to the 10431 * txq. 10432 **/ 10433 static int 10434 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 10435 struct lpfc_iocbq *piocb, uint32_t flag) 10436 { 10437 struct lpfc_iocbq *nextiocb; 10438 IOCB_t *iocb; 10439 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 10440 10441 lockdep_assert_held(&phba->hbalock); 10442 10443 if (piocb->cmd_cmpl && (!piocb->vport) && 10444 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 10445 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 10446 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10447 "1807 IOCB x%x failed. No vport\n", 10448 piocb->iocb.ulpCommand); 10449 dump_stack(); 10450 return IOCB_ERROR; 10451 } 10452 10453 10454 /* If the PCI channel is in offline state, do not post iocbs. */ 10455 if (unlikely(pci_channel_offline(phba->pcidev))) 10456 return IOCB_ERROR; 10457 10458 /* If HBA has a deferred error attention, fail the iocb. */ 10459 if (unlikely(phba->hba_flag & DEFER_ERATT)) 10460 return IOCB_ERROR; 10461 10462 /* 10463 * We should never get an IOCB if we are in a < LINK_DOWN state 10464 */ 10465 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10466 return IOCB_ERROR; 10467 10468 /* 10469 * Check to see if we are blocking IOCB processing because of a 10470 * outstanding event. 10471 */ 10472 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 10473 goto iocb_busy; 10474 10475 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 10476 /* 10477 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 10478 * can be issued if the link is not up. 10479 */ 10480 switch (piocb->iocb.ulpCommand) { 10481 case CMD_QUE_RING_BUF_CN: 10482 case CMD_QUE_RING_BUF64_CN: 10483 /* 10484 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 10485 * completion, cmd_cmpl MUST be 0. 10486 */ 10487 if (piocb->cmd_cmpl) 10488 piocb->cmd_cmpl = NULL; 10489 fallthrough; 10490 case CMD_CREATE_XRI_CR: 10491 case CMD_CLOSE_XRI_CN: 10492 case CMD_CLOSE_XRI_CX: 10493 break; 10494 default: 10495 goto iocb_busy; 10496 } 10497 10498 /* 10499 * For FCP commands, we must be in a state where we can process link 10500 * attention events. 10501 */ 10502 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 10503 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 10504 goto iocb_busy; 10505 } 10506 10507 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 10508 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 10509 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 10510 10511 if (iocb) 10512 lpfc_sli_update_ring(phba, pring); 10513 else 10514 lpfc_sli_update_full_ring(phba, pring); 10515 10516 if (!piocb) 10517 return IOCB_SUCCESS; 10518 10519 goto out_busy; 10520 10521 iocb_busy: 10522 pring->stats.iocb_cmd_delay++; 10523 10524 out_busy: 10525 10526 if (!(flag & SLI_IOCB_RET_IOCB)) { 10527 __lpfc_sli_ringtx_put(phba, pring, piocb); 10528 return IOCB_SUCCESS; 10529 } 10530 10531 return IOCB_BUSY; 10532 } 10533 10534 /** 10535 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10536 * @phba: Pointer to HBA context object. 10537 * @ring_number: SLI ring number to issue wqe on. 10538 * @piocb: Pointer to command iocb. 10539 * @flag: Flag indicating if this command can be put into txq. 10540 * 10541 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10542 * send an iocb command to an HBA with SLI-3 interface spec. 10543 * 10544 * This function takes the hbalock before invoking the lockless version. 10545 * The function will return success after it successfully submit the wqe to 10546 * firmware or after adding to the txq. 10547 **/ 10548 static int 10549 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10550 struct lpfc_iocbq *piocb, uint32_t flag) 10551 { 10552 unsigned long iflags; 10553 int rc; 10554 10555 spin_lock_irqsave(&phba->hbalock, iflags); 10556 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10557 spin_unlock_irqrestore(&phba->hbalock, iflags); 10558 10559 return rc; 10560 } 10561 10562 /** 10563 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10564 * @phba: Pointer to HBA context object. 10565 * @ring_number: SLI ring number to issue wqe on. 10566 * @piocb: Pointer to command iocb. 10567 * @flag: Flag indicating if this command can be put into txq. 10568 * 10569 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10570 * an wqe command to an HBA with SLI-4 interface spec. 10571 * 10572 * This function is a lockless version. The function will return success 10573 * after it successfully submit the wqe to firmware or after adding to the 10574 * txq. 10575 **/ 10576 static int 10577 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10578 struct lpfc_iocbq *piocb, uint32_t flag) 10579 { 10580 struct lpfc_io_buf *lpfc_cmd = piocb->io_buf; 10581 10582 lpfc_prep_embed_io(phba, lpfc_cmd); 10583 return lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 10584 } 10585 10586 void 10587 lpfc_prep_embed_io(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) 10588 { 10589 struct lpfc_iocbq *piocb = &lpfc_cmd->cur_iocbq; 10590 union lpfc_wqe128 *wqe = &lpfc_cmd->cur_iocbq.wqe; 10591 struct sli4_sge *sgl; 10592 10593 /* 128 byte wqe support here */ 10594 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10595 10596 if (phba->fcp_embed_io) { 10597 struct fcp_cmnd *fcp_cmnd; 10598 u32 *ptr; 10599 10600 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10601 10602 /* Word 0-2 - FCP_CMND */ 10603 wqe->generic.bde.tus.f.bdeFlags = 10604 BUFF_TYPE_BDE_IMMED; 10605 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10606 wqe->generic.bde.addrHigh = 0; 10607 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10608 10609 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10610 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10611 10612 /* Word 22-29 FCP CMND Payload */ 10613 ptr = &wqe->words[22]; 10614 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10615 } else { 10616 /* Word 0-2 - Inline BDE */ 10617 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10618 wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd); 10619 wqe->generic.bde.addrHigh = sgl->addr_hi; 10620 wqe->generic.bde.addrLow = sgl->addr_lo; 10621 10622 /* Word 10 */ 10623 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10624 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10625 } 10626 10627 /* add the VMID tags as per switch response */ 10628 if (unlikely(piocb->cmd_flag & LPFC_IO_VMID)) { 10629 if (phba->pport->vmid_flag & LPFC_VMID_TYPE_PRIO) { 10630 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 10631 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10632 (piocb->vmid_tag.cs_ctl_vmid)); 10633 } else if (phba->cfg_vmid_app_header) { 10634 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); 10635 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10636 wqe->words[31] = piocb->vmid_tag.app_id; 10637 } 10638 } 10639 } 10640 10641 /** 10642 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10643 * @phba: Pointer to HBA context object. 10644 * @ring_number: SLI ring number to issue iocb on. 10645 * @piocb: Pointer to command iocb. 10646 * @flag: Flag indicating if this command can be put into txq. 10647 * 10648 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10649 * an iocb command to an HBA with SLI-4 interface spec. 10650 * 10651 * This function is called with ringlock held. The function will return success 10652 * after it successfully submit the iocb to firmware or after adding to the 10653 * txq. 10654 **/ 10655 static int 10656 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10657 struct lpfc_iocbq *piocb, uint32_t flag) 10658 { 10659 struct lpfc_sglq *sglq; 10660 union lpfc_wqe128 *wqe; 10661 struct lpfc_queue *wq; 10662 struct lpfc_sli_ring *pring; 10663 u32 ulp_command = get_job_cmnd(phba, piocb); 10664 10665 /* Get the WQ */ 10666 if ((piocb->cmd_flag & LPFC_IO_FCP) || 10667 (piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 10668 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10669 } else { 10670 wq = phba->sli4_hba.els_wq; 10671 } 10672 10673 /* Get corresponding ring */ 10674 pring = wq->pring; 10675 10676 /* 10677 * The WQE can be either 64 or 128 bytes, 10678 */ 10679 10680 lockdep_assert_held(&pring->ring_lock); 10681 wqe = &piocb->wqe; 10682 if (piocb->sli4_xritag == NO_XRI) { 10683 if (ulp_command == CMD_ABORT_XRI_CX) 10684 sglq = NULL; 10685 else { 10686 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10687 if (!sglq) { 10688 if (!(flag & SLI_IOCB_RET_IOCB)) { 10689 __lpfc_sli_ringtx_put(phba, 10690 pring, 10691 piocb); 10692 return IOCB_SUCCESS; 10693 } else { 10694 return IOCB_BUSY; 10695 } 10696 } 10697 } 10698 } else if (piocb->cmd_flag & LPFC_IO_FCP) { 10699 /* These IO's already have an XRI and a mapped sgl. */ 10700 sglq = NULL; 10701 } 10702 else { 10703 /* 10704 * This is a continuation of a commandi,(CX) so this 10705 * sglq is on the active list 10706 */ 10707 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10708 if (!sglq) 10709 return IOCB_ERROR; 10710 } 10711 10712 if (sglq) { 10713 piocb->sli4_lxritag = sglq->sli4_lxritag; 10714 piocb->sli4_xritag = sglq->sli4_xritag; 10715 10716 /* ABTS sent by initiator to CT exchange, the 10717 * RX_ID field will be filled with the newly 10718 * allocated responder XRI. 10719 */ 10720 if (ulp_command == CMD_XMIT_BLS_RSP64_CX && 10721 piocb->abort_bls == LPFC_ABTS_UNSOL_INT) 10722 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10723 piocb->sli4_xritag); 10724 10725 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, 10726 piocb->sli4_xritag); 10727 10728 if (lpfc_wqe_bpl2sgl(phba, piocb, sglq) == NO_XRI) 10729 return IOCB_ERROR; 10730 } 10731 10732 if (lpfc_sli4_wq_put(wq, wqe)) 10733 return IOCB_ERROR; 10734 10735 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10736 10737 return 0; 10738 } 10739 10740 /* 10741 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 10742 * 10743 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 10744 * or IOCB for sli-3 function. 10745 * pointer from the lpfc_hba struct. 10746 * 10747 * Return codes: 10748 * IOCB_ERROR - Error 10749 * IOCB_SUCCESS - Success 10750 * IOCB_BUSY - Busy 10751 **/ 10752 int 10753 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 10754 struct lpfc_iocbq *piocb, uint32_t flag) 10755 { 10756 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 10757 } 10758 10759 /* 10760 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10761 * 10762 * This routine wraps the actual lockless version for issusing IOCB function 10763 * pointer from the lpfc_hba struct. 10764 * 10765 * Return codes: 10766 * IOCB_ERROR - Error 10767 * IOCB_SUCCESS - Success 10768 * IOCB_BUSY - Busy 10769 **/ 10770 int 10771 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10772 struct lpfc_iocbq *piocb, uint32_t flag) 10773 { 10774 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10775 } 10776 10777 static void 10778 __lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq *cmdiocbq, 10779 struct lpfc_vport *vport, 10780 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10781 u32 elscmd, u8 tmo, u8 expect_rsp) 10782 { 10783 struct lpfc_hba *phba = vport->phba; 10784 IOCB_t *cmd; 10785 10786 cmd = &cmdiocbq->iocb; 10787 memset(cmd, 0, sizeof(*cmd)); 10788 10789 cmd->un.elsreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10790 cmd->un.elsreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10791 cmd->un.elsreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10792 10793 if (expect_rsp) { 10794 cmd->un.elsreq64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); 10795 cmd->un.elsreq64.remoteID = did; /* DID */ 10796 cmd->ulpCommand = CMD_ELS_REQUEST64_CR; 10797 cmd->ulpTimeout = tmo; 10798 } else { 10799 cmd->un.elsreq64.bdl.bdeSize = sizeof(struct ulp_bde64); 10800 cmd->un.genreq64.xmit_els_remoteID = did; /* DID */ 10801 cmd->ulpCommand = CMD_XMIT_ELS_RSP64_CX; 10802 cmd->ulpPU = PARM_NPIV_DID; 10803 } 10804 cmd->ulpBdeCount = 1; 10805 cmd->ulpLe = 1; 10806 cmd->ulpClass = CLASS3; 10807 10808 /* If we have NPIV enabled, we want to send ELS traffic by VPI. */ 10809 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) { 10810 if (expect_rsp) { 10811 cmd->un.elsreq64.myID = vport->fc_myDID; 10812 10813 /* For ELS_REQUEST64_CR, use the VPI by default */ 10814 cmd->ulpContext = phba->vpi_ids[vport->vpi]; 10815 } 10816 10817 cmd->ulpCt_h = 0; 10818 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10819 if (elscmd == ELS_CMD_ECHO) 10820 cmd->ulpCt_l = 0; /* context = invalid RPI */ 10821 else 10822 cmd->ulpCt_l = 1; /* context = VPI */ 10823 } 10824 } 10825 10826 static void 10827 __lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq *cmdiocbq, 10828 struct lpfc_vport *vport, 10829 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10830 u32 elscmd, u8 tmo, u8 expect_rsp) 10831 { 10832 struct lpfc_hba *phba = vport->phba; 10833 union lpfc_wqe128 *wqe; 10834 struct ulp_bde64_le *bde; 10835 u8 els_id; 10836 10837 wqe = &cmdiocbq->wqe; 10838 memset(wqe, 0, sizeof(*wqe)); 10839 10840 /* Word 0 - 2 BDE */ 10841 bde = (struct ulp_bde64_le *)&wqe->generic.bde; 10842 bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys)); 10843 bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys)); 10844 bde->type_size = cpu_to_le32(cmd_size); 10845 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10846 10847 if (expect_rsp) { 10848 bf_set(wqe_cmnd, &wqe->els_req.wqe_com, CMD_ELS_REQUEST64_WQE); 10849 10850 /* Transfer length */ 10851 wqe->els_req.payload_len = cmd_size; 10852 wqe->els_req.max_response_payload_len = FCELSSIZE; 10853 10854 /* DID */ 10855 bf_set(wqe_els_did, &wqe->els_req.wqe_dest, did); 10856 10857 /* Word 11 - ELS_ID */ 10858 switch (elscmd) { 10859 case ELS_CMD_PLOGI: 10860 els_id = LPFC_ELS_ID_PLOGI; 10861 break; 10862 case ELS_CMD_FLOGI: 10863 els_id = LPFC_ELS_ID_FLOGI; 10864 break; 10865 case ELS_CMD_LOGO: 10866 els_id = LPFC_ELS_ID_LOGO; 10867 break; 10868 case ELS_CMD_FDISC: 10869 if (!vport->fc_myDID) { 10870 els_id = LPFC_ELS_ID_FDISC; 10871 break; 10872 } 10873 fallthrough; 10874 default: 10875 els_id = LPFC_ELS_ID_DEFAULT; 10876 break; 10877 } 10878 10879 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 10880 } else { 10881 /* DID */ 10882 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, did); 10883 10884 /* Transfer length */ 10885 wqe->xmit_els_rsp.response_payload_len = cmd_size; 10886 10887 bf_set(wqe_cmnd, &wqe->xmit_els_rsp.wqe_com, 10888 CMD_XMIT_ELS_RSP64_WQE); 10889 } 10890 10891 bf_set(wqe_tmo, &wqe->generic.wqe_com, tmo); 10892 bf_set(wqe_reqtag, &wqe->generic.wqe_com, cmdiocbq->iotag); 10893 bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3); 10894 10895 /* If we have NPIV enabled, we want to send ELS traffic by VPI. 10896 * For SLI4, since the driver controls VPIs we also want to include 10897 * all ELS pt2pt protocol traffic as well. 10898 */ 10899 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) || 10900 (vport->fc_flag & FC_PT2PT)) { 10901 if (expect_rsp) { 10902 bf_set(els_req64_sid, &wqe->els_req, vport->fc_myDID); 10903 10904 /* For ELS_REQUEST64_WQE, use the VPI by default */ 10905 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10906 phba->vpi_ids[vport->vpi]); 10907 } 10908 10909 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10910 if (elscmd == ELS_CMD_ECHO) 10911 bf_set(wqe_ct, &wqe->generic.wqe_com, 0); 10912 else 10913 bf_set(wqe_ct, &wqe->generic.wqe_com, 1); 10914 } 10915 } 10916 10917 void 10918 lpfc_sli_prep_els_req_rsp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10919 struct lpfc_vport *vport, struct lpfc_dmabuf *bmp, 10920 u16 cmd_size, u32 did, u32 elscmd, u8 tmo, 10921 u8 expect_rsp) 10922 { 10923 phba->__lpfc_sli_prep_els_req_rsp(cmdiocbq, vport, bmp, cmd_size, did, 10924 elscmd, tmo, expect_rsp); 10925 } 10926 10927 static void 10928 __lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10929 u16 rpi, u32 num_entry, u8 tmo) 10930 { 10931 IOCB_t *cmd; 10932 10933 cmd = &cmdiocbq->iocb; 10934 memset(cmd, 0, sizeof(*cmd)); 10935 10936 cmd->un.genreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10937 cmd->un.genreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10938 cmd->un.genreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10939 cmd->un.genreq64.bdl.bdeSize = num_entry * sizeof(struct ulp_bde64); 10940 10941 cmd->un.genreq64.w5.hcsw.Rctl = FC_RCTL_DD_UNSOL_CTL; 10942 cmd->un.genreq64.w5.hcsw.Type = FC_TYPE_CT; 10943 cmd->un.genreq64.w5.hcsw.Fctl = (SI | LA); 10944 10945 cmd->ulpContext = rpi; 10946 cmd->ulpClass = CLASS3; 10947 cmd->ulpCommand = CMD_GEN_REQUEST64_CR; 10948 cmd->ulpBdeCount = 1; 10949 cmd->ulpLe = 1; 10950 cmd->ulpOwner = OWN_CHIP; 10951 cmd->ulpTimeout = tmo; 10952 } 10953 10954 static void 10955 __lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10956 u16 rpi, u32 num_entry, u8 tmo) 10957 { 10958 union lpfc_wqe128 *cmdwqe; 10959 struct ulp_bde64_le *bde, *bpl; 10960 u32 xmit_len = 0, total_len = 0, size, type, i; 10961 10962 cmdwqe = &cmdiocbq->wqe; 10963 memset(cmdwqe, 0, sizeof(*cmdwqe)); 10964 10965 /* Calculate total_len and xmit_len */ 10966 bpl = (struct ulp_bde64_le *)bmp->virt; 10967 for (i = 0; i < num_entry; i++) { 10968 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10969 total_len += size; 10970 } 10971 for (i = 0; i < num_entry; i++) { 10972 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10973 type = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_TYPE_MASK; 10974 if (type != ULP_BDE64_TYPE_BDE_64) 10975 break; 10976 xmit_len += size; 10977 } 10978 10979 /* Words 0 - 2 */ 10980 bde = (struct ulp_bde64_le *)&cmdwqe->generic.bde; 10981 bde->addr_low = bpl->addr_low; 10982 bde->addr_high = bpl->addr_high; 10983 bde->type_size = cpu_to_le32(xmit_len); 10984 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10985 10986 /* Word 3 */ 10987 cmdwqe->gen_req.request_payload_len = xmit_len; 10988 10989 /* Word 5 */ 10990 bf_set(wqe_type, &cmdwqe->gen_req.wge_ctl, FC_TYPE_CT); 10991 bf_set(wqe_rctl, &cmdwqe->gen_req.wge_ctl, FC_RCTL_DD_UNSOL_CTL); 10992 bf_set(wqe_si, &cmdwqe->gen_req.wge_ctl, 1); 10993 bf_set(wqe_la, &cmdwqe->gen_req.wge_ctl, 1); 10994 10995 /* Word 6 */ 10996 bf_set(wqe_ctxt_tag, &cmdwqe->gen_req.wqe_com, rpi); 10997 10998 /* Word 7 */ 10999 bf_set(wqe_tmo, &cmdwqe->gen_req.wqe_com, tmo); 11000 bf_set(wqe_class, &cmdwqe->gen_req.wqe_com, CLASS3); 11001 bf_set(wqe_cmnd, &cmdwqe->gen_req.wqe_com, CMD_GEN_REQUEST64_CR); 11002 bf_set(wqe_ct, &cmdwqe->gen_req.wqe_com, SLI4_CT_RPI); 11003 11004 /* Word 12 */ 11005 cmdwqe->gen_req.max_response_payload_len = total_len - xmit_len; 11006 } 11007 11008 void 11009 lpfc_sli_prep_gen_req(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11010 struct lpfc_dmabuf *bmp, u16 rpi, u32 num_entry, u8 tmo) 11011 { 11012 phba->__lpfc_sli_prep_gen_req(cmdiocbq, bmp, rpi, num_entry, tmo); 11013 } 11014 11015 static void 11016 __lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq *cmdiocbq, 11017 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11018 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11019 { 11020 IOCB_t *icmd; 11021 11022 icmd = &cmdiocbq->iocb; 11023 memset(icmd, 0, sizeof(*icmd)); 11024 11025 icmd->un.xseq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 11026 icmd->un.xseq64.bdl.addrLow = putPaddrLow(bmp->phys); 11027 icmd->un.xseq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 11028 icmd->un.xseq64.bdl.bdeSize = (num_entry * sizeof(struct ulp_bde64)); 11029 icmd->un.xseq64.w5.hcsw.Fctl = LA; 11030 if (last_seq) 11031 icmd->un.xseq64.w5.hcsw.Fctl |= LS; 11032 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 11033 icmd->un.xseq64.w5.hcsw.Rctl = rctl; 11034 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_CT; 11035 11036 icmd->ulpBdeCount = 1; 11037 icmd->ulpLe = 1; 11038 icmd->ulpClass = CLASS3; 11039 11040 switch (cr_cx_cmd) { 11041 case CMD_XMIT_SEQUENCE64_CR: 11042 icmd->ulpContext = rpi; 11043 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CR; 11044 break; 11045 case CMD_XMIT_SEQUENCE64_CX: 11046 icmd->ulpContext = ox_id; 11047 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CX; 11048 break; 11049 default: 11050 break; 11051 } 11052 } 11053 11054 static void 11055 __lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq *cmdiocbq, 11056 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11057 u32 full_size, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11058 { 11059 union lpfc_wqe128 *wqe; 11060 struct ulp_bde64 *bpl; 11061 11062 wqe = &cmdiocbq->wqe; 11063 memset(wqe, 0, sizeof(*wqe)); 11064 11065 /* Words 0 - 2 */ 11066 bpl = (struct ulp_bde64 *)bmp->virt; 11067 wqe->xmit_sequence.bde.addrHigh = bpl->addrHigh; 11068 wqe->xmit_sequence.bde.addrLow = bpl->addrLow; 11069 wqe->xmit_sequence.bde.tus.w = bpl->tus.w; 11070 11071 /* Word 5 */ 11072 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, last_seq); 11073 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 1); 11074 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 11075 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, rctl); 11076 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_CT); 11077 11078 /* Word 6 */ 11079 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, rpi); 11080 11081 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 11082 CMD_XMIT_SEQUENCE64_WQE); 11083 11084 /* Word 7 */ 11085 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 11086 11087 /* Word 9 */ 11088 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ox_id); 11089 11090 /* Word 12 */ 11091 if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK)) 11092 wqe->xmit_sequence.xmit_len = full_size; 11093 else 11094 wqe->xmit_sequence.xmit_len = 11095 wqe->xmit_sequence.bde.tus.f.bdeSize; 11096 } 11097 11098 void 11099 lpfc_sli_prep_xmit_seq64(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11100 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11101 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11102 { 11103 phba->__lpfc_sli_prep_xmit_seq64(cmdiocbq, bmp, rpi, ox_id, num_entry, 11104 rctl, last_seq, cr_cx_cmd); 11105 } 11106 11107 static void 11108 __lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11109 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11110 bool wqec) 11111 { 11112 IOCB_t *icmd = NULL; 11113 11114 icmd = &cmdiocbq->iocb; 11115 memset(icmd, 0, sizeof(*icmd)); 11116 11117 /* Word 5 */ 11118 icmd->un.acxri.abortContextTag = ulp_context; 11119 icmd->un.acxri.abortIoTag = iotag; 11120 11121 if (ia) { 11122 /* Word 7 */ 11123 icmd->ulpCommand = CMD_CLOSE_XRI_CN; 11124 } else { 11125 /* Word 3 */ 11126 icmd->un.acxri.abortType = ABORT_TYPE_ABTS; 11127 11128 /* Word 7 */ 11129 icmd->ulpClass = ulp_class; 11130 icmd->ulpCommand = CMD_ABORT_XRI_CN; 11131 } 11132 11133 /* Word 7 */ 11134 icmd->ulpLe = 1; 11135 } 11136 11137 static void 11138 __lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11139 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11140 bool wqec) 11141 { 11142 union lpfc_wqe128 *wqe; 11143 11144 wqe = &cmdiocbq->wqe; 11145 memset(wqe, 0, sizeof(*wqe)); 11146 11147 /* Word 3 */ 11148 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 11149 if (ia) 11150 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 11151 else 11152 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 11153 11154 /* Word 7 */ 11155 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_WQE); 11156 11157 /* Word 8 */ 11158 wqe->abort_cmd.wqe_com.abort_tag = ulp_context; 11159 11160 /* Word 9 */ 11161 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, iotag); 11162 11163 /* Word 10 */ 11164 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 11165 11166 /* Word 11 */ 11167 if (wqec) 11168 bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1); 11169 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, cqid); 11170 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND); 11171 } 11172 11173 void 11174 lpfc_sli_prep_abort_xri(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11175 u16 ulp_context, u16 iotag, u8 ulp_class, u16 cqid, 11176 bool ia, bool wqec) 11177 { 11178 phba->__lpfc_sli_prep_abort_xri(cmdiocbq, ulp_context, iotag, ulp_class, 11179 cqid, ia, wqec); 11180 } 11181 11182 /** 11183 * lpfc_sli_api_table_setup - Set up sli api function jump table 11184 * @phba: The hba struct for which this call is being executed. 11185 * @dev_grp: The HBA PCI-Device group number. 11186 * 11187 * This routine sets up the SLI interface API function jump table in @phba 11188 * struct. 11189 * Returns: 0 - success, -ENODEV - failure. 11190 **/ 11191 int 11192 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 11193 { 11194 11195 switch (dev_grp) { 11196 case LPFC_PCI_DEV_LP: 11197 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 11198 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 11199 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 11200 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s3; 11201 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s3; 11202 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s3; 11203 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s3; 11204 break; 11205 case LPFC_PCI_DEV_OC: 11206 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 11207 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 11208 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 11209 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s4; 11210 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s4; 11211 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s4; 11212 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s4; 11213 break; 11214 default: 11215 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11216 "1419 Invalid HBA PCI-device group: 0x%x\n", 11217 dev_grp); 11218 return -ENODEV; 11219 } 11220 return 0; 11221 } 11222 11223 /** 11224 * lpfc_sli4_calc_ring - Calculates which ring to use 11225 * @phba: Pointer to HBA context object. 11226 * @piocb: Pointer to command iocb. 11227 * 11228 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 11229 * hba_wqidx, thus we need to calculate the corresponding ring. 11230 * Since ABORTS must go on the same WQ of the command they are 11231 * aborting, we use command's hba_wqidx. 11232 */ 11233 struct lpfc_sli_ring * 11234 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 11235 { 11236 struct lpfc_io_buf *lpfc_cmd; 11237 11238 if (piocb->cmd_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 11239 if (unlikely(!phba->sli4_hba.hdwq)) 11240 return NULL; 11241 /* 11242 * for abort iocb hba_wqidx should already 11243 * be setup based on what work queue we used. 11244 */ 11245 if (!(piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 11246 lpfc_cmd = piocb->io_buf; 11247 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 11248 } 11249 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 11250 } else { 11251 if (unlikely(!phba->sli4_hba.els_wq)) 11252 return NULL; 11253 piocb->hba_wqidx = 0; 11254 return phba->sli4_hba.els_wq->pring; 11255 } 11256 } 11257 11258 inline void lpfc_sli4_poll_eq(struct lpfc_queue *eq) 11259 { 11260 struct lpfc_hba *phba = eq->phba; 11261 11262 /* 11263 * Unlocking an irq is one of the entry point to check 11264 * for re-schedule, but we are good for io submission 11265 * path as midlayer does a get_cpu to glue us in. Flush 11266 * out the invalidate queue so we can see the updated 11267 * value for flag. 11268 */ 11269 smp_rmb(); 11270 11271 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 11272 /* We will not likely get the completion for the caller 11273 * during this iteration but i guess that's fine. 11274 * Future io's coming on this eq should be able to 11275 * pick it up. As for the case of single io's, they 11276 * will be handled through a sched from polling timer 11277 * function which is currently triggered every 1msec. 11278 */ 11279 lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM, 11280 LPFC_QUEUE_WORK); 11281 } 11282 11283 /** 11284 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 11285 * @phba: Pointer to HBA context object. 11286 * @ring_number: Ring number 11287 * @piocb: Pointer to command iocb. 11288 * @flag: Flag indicating if this command can be put into txq. 11289 * 11290 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 11291 * function. This function gets the hbalock and calls 11292 * __lpfc_sli_issue_iocb function and will return the error returned 11293 * by __lpfc_sli_issue_iocb function. This wrapper is used by 11294 * functions which do not hold hbalock. 11295 **/ 11296 int 11297 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11298 struct lpfc_iocbq *piocb, uint32_t flag) 11299 { 11300 struct lpfc_sli_ring *pring; 11301 struct lpfc_queue *eq; 11302 unsigned long iflags; 11303 int rc; 11304 11305 /* If the PCI channel is in offline state, do not post iocbs. */ 11306 if (unlikely(pci_channel_offline(phba->pcidev))) 11307 return IOCB_ERROR; 11308 11309 if (phba->sli_rev == LPFC_SLI_REV4) { 11310 lpfc_sli_prep_wqe(phba, piocb); 11311 11312 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 11313 11314 pring = lpfc_sli4_calc_ring(phba, piocb); 11315 if (unlikely(pring == NULL)) 11316 return IOCB_ERROR; 11317 11318 spin_lock_irqsave(&pring->ring_lock, iflags); 11319 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11320 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11321 11322 lpfc_sli4_poll_eq(eq); 11323 } else { 11324 /* For now, SLI2/3 will still use hbalock */ 11325 spin_lock_irqsave(&phba->hbalock, iflags); 11326 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11327 spin_unlock_irqrestore(&phba->hbalock, iflags); 11328 } 11329 return rc; 11330 } 11331 11332 /** 11333 * lpfc_extra_ring_setup - Extra ring setup function 11334 * @phba: Pointer to HBA context object. 11335 * 11336 * This function is called while driver attaches with the 11337 * HBA to setup the extra ring. The extra ring is used 11338 * only when driver needs to support target mode functionality 11339 * or IP over FC functionalities. 11340 * 11341 * This function is called with no lock held. SLI3 only. 11342 **/ 11343 static int 11344 lpfc_extra_ring_setup( struct lpfc_hba *phba) 11345 { 11346 struct lpfc_sli *psli; 11347 struct lpfc_sli_ring *pring; 11348 11349 psli = &phba->sli; 11350 11351 /* Adjust cmd/rsp ring iocb entries more evenly */ 11352 11353 /* Take some away from the FCP ring */ 11354 pring = &psli->sli3_ring[LPFC_FCP_RING]; 11355 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11356 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11357 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11358 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11359 11360 /* and give them to the extra ring */ 11361 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 11362 11363 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11364 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11365 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11366 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11367 11368 /* Setup default profile for this ring */ 11369 pring->iotag_max = 4096; 11370 pring->num_mask = 1; 11371 pring->prt[0].profile = 0; /* Mask 0 */ 11372 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 11373 pring->prt[0].type = phba->cfg_multi_ring_type; 11374 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 11375 return 0; 11376 } 11377 11378 static void 11379 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 11380 struct lpfc_nodelist *ndlp) 11381 { 11382 unsigned long iflags; 11383 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 11384 11385 /* Hold a node reference for outstanding queued work */ 11386 if (!lpfc_nlp_get(ndlp)) 11387 return; 11388 11389 spin_lock_irqsave(&phba->hbalock, iflags); 11390 if (!list_empty(&evtp->evt_listp)) { 11391 spin_unlock_irqrestore(&phba->hbalock, iflags); 11392 lpfc_nlp_put(ndlp); 11393 return; 11394 } 11395 11396 evtp->evt_arg1 = ndlp; 11397 evtp->evt = LPFC_EVT_RECOVER_PORT; 11398 list_add_tail(&evtp->evt_listp, &phba->work_list); 11399 spin_unlock_irqrestore(&phba->hbalock, iflags); 11400 11401 lpfc_worker_wake_up(phba); 11402 } 11403 11404 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 11405 * @phba: Pointer to HBA context object. 11406 * @iocbq: Pointer to iocb object. 11407 * 11408 * The async_event handler calls this routine when it receives 11409 * an ASYNC_STATUS_CN event from the port. The port generates 11410 * this event when an Abort Sequence request to an rport fails 11411 * twice in succession. The abort could be originated by the 11412 * driver or by the port. The ABTS could have been for an ELS 11413 * or FCP IO. The port only generates this event when an ABTS 11414 * fails to complete after one retry. 11415 */ 11416 static void 11417 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 11418 struct lpfc_iocbq *iocbq) 11419 { 11420 struct lpfc_nodelist *ndlp = NULL; 11421 uint16_t rpi = 0, vpi = 0; 11422 struct lpfc_vport *vport = NULL; 11423 11424 /* The rpi in the ulpContext is vport-sensitive. */ 11425 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 11426 rpi = iocbq->iocb.ulpContext; 11427 11428 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11429 "3092 Port generated ABTS async event " 11430 "on vpi %d rpi %d status 0x%x\n", 11431 vpi, rpi, iocbq->iocb.ulpStatus); 11432 11433 vport = lpfc_find_vport_by_vpid(phba, vpi); 11434 if (!vport) 11435 goto err_exit; 11436 ndlp = lpfc_findnode_rpi(vport, rpi); 11437 if (!ndlp) 11438 goto err_exit; 11439 11440 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 11441 lpfc_sli_abts_recover_port(vport, ndlp); 11442 return; 11443 11444 err_exit: 11445 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11446 "3095 Event Context not found, no " 11447 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 11448 vpi, rpi, iocbq->iocb.ulpStatus, 11449 iocbq->iocb.ulpContext); 11450 } 11451 11452 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 11453 * @phba: pointer to HBA context object. 11454 * @ndlp: nodelist pointer for the impacted rport. 11455 * @axri: pointer to the wcqe containing the failed exchange. 11456 * 11457 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 11458 * port. The port generates this event when an abort exchange request to an 11459 * rport fails twice in succession with no reply. The abort could be originated 11460 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 11461 */ 11462 void 11463 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 11464 struct lpfc_nodelist *ndlp, 11465 struct sli4_wcqe_xri_aborted *axri) 11466 { 11467 uint32_t ext_status = 0; 11468 11469 if (!ndlp) { 11470 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11471 "3115 Node Context not found, driver " 11472 "ignoring abts err event\n"); 11473 return; 11474 } 11475 11476 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11477 "3116 Port generated FCP XRI ABORT event on " 11478 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 11479 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 11480 bf_get(lpfc_wcqe_xa_xri, axri), 11481 bf_get(lpfc_wcqe_xa_status, axri), 11482 axri->parameter); 11483 11484 /* 11485 * Catch the ABTS protocol failure case. Older OCe FW releases returned 11486 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 11487 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 11488 */ 11489 ext_status = axri->parameter & IOERR_PARAM_MASK; 11490 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 11491 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 11492 lpfc_sli_post_recovery_event(phba, ndlp); 11493 } 11494 11495 /** 11496 * lpfc_sli_async_event_handler - ASYNC iocb handler function 11497 * @phba: Pointer to HBA context object. 11498 * @pring: Pointer to driver SLI ring object. 11499 * @iocbq: Pointer to iocb object. 11500 * 11501 * This function is called by the slow ring event handler 11502 * function when there is an ASYNC event iocb in the ring. 11503 * This function is called with no lock held. 11504 * Currently this function handles only temperature related 11505 * ASYNC events. The function decodes the temperature sensor 11506 * event message and posts events for the management applications. 11507 **/ 11508 static void 11509 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 11510 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 11511 { 11512 IOCB_t *icmd; 11513 uint16_t evt_code; 11514 struct temp_event temp_event_data; 11515 struct Scsi_Host *shost; 11516 uint32_t *iocb_w; 11517 11518 icmd = &iocbq->iocb; 11519 evt_code = icmd->un.asyncstat.evt_code; 11520 11521 switch (evt_code) { 11522 case ASYNC_TEMP_WARN: 11523 case ASYNC_TEMP_SAFE: 11524 temp_event_data.data = (uint32_t) icmd->ulpContext; 11525 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 11526 if (evt_code == ASYNC_TEMP_WARN) { 11527 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 11528 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11529 "0347 Adapter is very hot, please take " 11530 "corrective action. temperature : %d Celsius\n", 11531 (uint32_t) icmd->ulpContext); 11532 } else { 11533 temp_event_data.event_code = LPFC_NORMAL_TEMP; 11534 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11535 "0340 Adapter temperature is OK now. " 11536 "temperature : %d Celsius\n", 11537 (uint32_t) icmd->ulpContext); 11538 } 11539 11540 /* Send temperature change event to applications */ 11541 shost = lpfc_shost_from_vport(phba->pport); 11542 fc_host_post_vendor_event(shost, fc_get_event_number(), 11543 sizeof(temp_event_data), (char *) &temp_event_data, 11544 LPFC_NL_VENDOR_ID); 11545 break; 11546 case ASYNC_STATUS_CN: 11547 lpfc_sli_abts_err_handler(phba, iocbq); 11548 break; 11549 default: 11550 iocb_w = (uint32_t *) icmd; 11551 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11552 "0346 Ring %d handler: unexpected ASYNC_STATUS" 11553 " evt_code 0x%x\n" 11554 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 11555 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 11556 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 11557 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 11558 pring->ringno, icmd->un.asyncstat.evt_code, 11559 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 11560 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 11561 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 11562 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 11563 11564 break; 11565 } 11566 } 11567 11568 11569 /** 11570 * lpfc_sli4_setup - SLI ring setup function 11571 * @phba: Pointer to HBA context object. 11572 * 11573 * lpfc_sli_setup sets up rings of the SLI interface with 11574 * number of iocbs per ring and iotags. This function is 11575 * called while driver attach to the HBA and before the 11576 * interrupts are enabled. So there is no need for locking. 11577 * 11578 * This function always returns 0. 11579 **/ 11580 int 11581 lpfc_sli4_setup(struct lpfc_hba *phba) 11582 { 11583 struct lpfc_sli_ring *pring; 11584 11585 pring = phba->sli4_hba.els_wq->pring; 11586 pring->num_mask = LPFC_MAX_RING_MASK; 11587 pring->prt[0].profile = 0; /* Mask 0 */ 11588 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11589 pring->prt[0].type = FC_TYPE_ELS; 11590 pring->prt[0].lpfc_sli_rcv_unsol_event = 11591 lpfc_els_unsol_event; 11592 pring->prt[1].profile = 0; /* Mask 1 */ 11593 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11594 pring->prt[1].type = FC_TYPE_ELS; 11595 pring->prt[1].lpfc_sli_rcv_unsol_event = 11596 lpfc_els_unsol_event; 11597 pring->prt[2].profile = 0; /* Mask 2 */ 11598 /* NameServer Inquiry */ 11599 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11600 /* NameServer */ 11601 pring->prt[2].type = FC_TYPE_CT; 11602 pring->prt[2].lpfc_sli_rcv_unsol_event = 11603 lpfc_ct_unsol_event; 11604 pring->prt[3].profile = 0; /* Mask 3 */ 11605 /* NameServer response */ 11606 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11607 /* NameServer */ 11608 pring->prt[3].type = FC_TYPE_CT; 11609 pring->prt[3].lpfc_sli_rcv_unsol_event = 11610 lpfc_ct_unsol_event; 11611 return 0; 11612 } 11613 11614 /** 11615 * lpfc_sli_setup - SLI ring setup function 11616 * @phba: Pointer to HBA context object. 11617 * 11618 * lpfc_sli_setup sets up rings of the SLI interface with 11619 * number of iocbs per ring and iotags. This function is 11620 * called while driver attach to the HBA and before the 11621 * interrupts are enabled. So there is no need for locking. 11622 * 11623 * This function always returns 0. SLI3 only. 11624 **/ 11625 int 11626 lpfc_sli_setup(struct lpfc_hba *phba) 11627 { 11628 int i, totiocbsize = 0; 11629 struct lpfc_sli *psli = &phba->sli; 11630 struct lpfc_sli_ring *pring; 11631 11632 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 11633 psli->sli_flag = 0; 11634 11635 psli->iocbq_lookup = NULL; 11636 psli->iocbq_lookup_len = 0; 11637 psli->last_iotag = 0; 11638 11639 for (i = 0; i < psli->num_rings; i++) { 11640 pring = &psli->sli3_ring[i]; 11641 switch (i) { 11642 case LPFC_FCP_RING: /* ring 0 - FCP */ 11643 /* numCiocb and numRiocb are used in config_port */ 11644 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 11645 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 11646 pring->sli.sli3.numCiocb += 11647 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11648 pring->sli.sli3.numRiocb += 11649 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11650 pring->sli.sli3.numCiocb += 11651 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11652 pring->sli.sli3.numRiocb += 11653 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11654 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11655 SLI3_IOCB_CMD_SIZE : 11656 SLI2_IOCB_CMD_SIZE; 11657 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11658 SLI3_IOCB_RSP_SIZE : 11659 SLI2_IOCB_RSP_SIZE; 11660 pring->iotag_ctr = 0; 11661 pring->iotag_max = 11662 (phba->cfg_hba_queue_depth * 2); 11663 pring->fast_iotag = pring->iotag_max; 11664 pring->num_mask = 0; 11665 break; 11666 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 11667 /* numCiocb and numRiocb are used in config_port */ 11668 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 11669 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 11670 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11671 SLI3_IOCB_CMD_SIZE : 11672 SLI2_IOCB_CMD_SIZE; 11673 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11674 SLI3_IOCB_RSP_SIZE : 11675 SLI2_IOCB_RSP_SIZE; 11676 pring->iotag_max = phba->cfg_hba_queue_depth; 11677 pring->num_mask = 0; 11678 break; 11679 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 11680 /* numCiocb and numRiocb are used in config_port */ 11681 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 11682 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 11683 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11684 SLI3_IOCB_CMD_SIZE : 11685 SLI2_IOCB_CMD_SIZE; 11686 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11687 SLI3_IOCB_RSP_SIZE : 11688 SLI2_IOCB_RSP_SIZE; 11689 pring->fast_iotag = 0; 11690 pring->iotag_ctr = 0; 11691 pring->iotag_max = 4096; 11692 pring->lpfc_sli_rcv_async_status = 11693 lpfc_sli_async_event_handler; 11694 pring->num_mask = LPFC_MAX_RING_MASK; 11695 pring->prt[0].profile = 0; /* Mask 0 */ 11696 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11697 pring->prt[0].type = FC_TYPE_ELS; 11698 pring->prt[0].lpfc_sli_rcv_unsol_event = 11699 lpfc_els_unsol_event; 11700 pring->prt[1].profile = 0; /* Mask 1 */ 11701 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11702 pring->prt[1].type = FC_TYPE_ELS; 11703 pring->prt[1].lpfc_sli_rcv_unsol_event = 11704 lpfc_els_unsol_event; 11705 pring->prt[2].profile = 0; /* Mask 2 */ 11706 /* NameServer Inquiry */ 11707 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11708 /* NameServer */ 11709 pring->prt[2].type = FC_TYPE_CT; 11710 pring->prt[2].lpfc_sli_rcv_unsol_event = 11711 lpfc_ct_unsol_event; 11712 pring->prt[3].profile = 0; /* Mask 3 */ 11713 /* NameServer response */ 11714 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11715 /* NameServer */ 11716 pring->prt[3].type = FC_TYPE_CT; 11717 pring->prt[3].lpfc_sli_rcv_unsol_event = 11718 lpfc_ct_unsol_event; 11719 break; 11720 } 11721 totiocbsize += (pring->sli.sli3.numCiocb * 11722 pring->sli.sli3.sizeCiocb) + 11723 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 11724 } 11725 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 11726 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 11727 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 11728 "SLI2 SLIM Data: x%x x%lx\n", 11729 phba->brd_no, totiocbsize, 11730 (unsigned long) MAX_SLIM_IOCB_SIZE); 11731 } 11732 if (phba->cfg_multi_ring_support == 2) 11733 lpfc_extra_ring_setup(phba); 11734 11735 return 0; 11736 } 11737 11738 /** 11739 * lpfc_sli4_queue_init - Queue initialization function 11740 * @phba: Pointer to HBA context object. 11741 * 11742 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 11743 * ring. This function also initializes ring indices of each ring. 11744 * This function is called during the initialization of the SLI 11745 * interface of an HBA. 11746 * This function is called with no lock held and always returns 11747 * 1. 11748 **/ 11749 void 11750 lpfc_sli4_queue_init(struct lpfc_hba *phba) 11751 { 11752 struct lpfc_sli *psli; 11753 struct lpfc_sli_ring *pring; 11754 int i; 11755 11756 psli = &phba->sli; 11757 spin_lock_irq(&phba->hbalock); 11758 INIT_LIST_HEAD(&psli->mboxq); 11759 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11760 /* Initialize list headers for txq and txcmplq as double linked lists */ 11761 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11762 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11763 pring->flag = 0; 11764 pring->ringno = LPFC_FCP_RING; 11765 pring->txcmplq_cnt = 0; 11766 INIT_LIST_HEAD(&pring->txq); 11767 INIT_LIST_HEAD(&pring->txcmplq); 11768 INIT_LIST_HEAD(&pring->iocb_continueq); 11769 spin_lock_init(&pring->ring_lock); 11770 } 11771 pring = phba->sli4_hba.els_wq->pring; 11772 pring->flag = 0; 11773 pring->ringno = LPFC_ELS_RING; 11774 pring->txcmplq_cnt = 0; 11775 INIT_LIST_HEAD(&pring->txq); 11776 INIT_LIST_HEAD(&pring->txcmplq); 11777 INIT_LIST_HEAD(&pring->iocb_continueq); 11778 spin_lock_init(&pring->ring_lock); 11779 11780 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11781 pring = phba->sli4_hba.nvmels_wq->pring; 11782 pring->flag = 0; 11783 pring->ringno = LPFC_ELS_RING; 11784 pring->txcmplq_cnt = 0; 11785 INIT_LIST_HEAD(&pring->txq); 11786 INIT_LIST_HEAD(&pring->txcmplq); 11787 INIT_LIST_HEAD(&pring->iocb_continueq); 11788 spin_lock_init(&pring->ring_lock); 11789 } 11790 11791 spin_unlock_irq(&phba->hbalock); 11792 } 11793 11794 /** 11795 * lpfc_sli_queue_init - Queue initialization function 11796 * @phba: Pointer to HBA context object. 11797 * 11798 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11799 * ring. This function also initializes ring indices of each ring. 11800 * This function is called during the initialization of the SLI 11801 * interface of an HBA. 11802 * This function is called with no lock held and always returns 11803 * 1. 11804 **/ 11805 void 11806 lpfc_sli_queue_init(struct lpfc_hba *phba) 11807 { 11808 struct lpfc_sli *psli; 11809 struct lpfc_sli_ring *pring; 11810 int i; 11811 11812 psli = &phba->sli; 11813 spin_lock_irq(&phba->hbalock); 11814 INIT_LIST_HEAD(&psli->mboxq); 11815 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11816 /* Initialize list headers for txq and txcmplq as double linked lists */ 11817 for (i = 0; i < psli->num_rings; i++) { 11818 pring = &psli->sli3_ring[i]; 11819 pring->ringno = i; 11820 pring->sli.sli3.next_cmdidx = 0; 11821 pring->sli.sli3.local_getidx = 0; 11822 pring->sli.sli3.cmdidx = 0; 11823 INIT_LIST_HEAD(&pring->iocb_continueq); 11824 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11825 INIT_LIST_HEAD(&pring->postbufq); 11826 pring->flag = 0; 11827 INIT_LIST_HEAD(&pring->txq); 11828 INIT_LIST_HEAD(&pring->txcmplq); 11829 spin_lock_init(&pring->ring_lock); 11830 } 11831 spin_unlock_irq(&phba->hbalock); 11832 } 11833 11834 /** 11835 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11836 * @phba: Pointer to HBA context object. 11837 * 11838 * This routine flushes the mailbox command subsystem. It will unconditionally 11839 * flush all the mailbox commands in the three possible stages in the mailbox 11840 * command sub-system: pending mailbox command queue; the outstanding mailbox 11841 * command; and completed mailbox command queue. It is caller's responsibility 11842 * to make sure that the driver is in the proper state to flush the mailbox 11843 * command sub-system. Namely, the posting of mailbox commands into the 11844 * pending mailbox command queue from the various clients must be stopped; 11845 * either the HBA is in a state that it will never works on the outstanding 11846 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11847 * mailbox command has been completed. 11848 **/ 11849 static void 11850 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11851 { 11852 LIST_HEAD(completions); 11853 struct lpfc_sli *psli = &phba->sli; 11854 LPFC_MBOXQ_t *pmb; 11855 unsigned long iflag; 11856 11857 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11858 local_bh_disable(); 11859 11860 /* Flush all the mailbox commands in the mbox system */ 11861 spin_lock_irqsave(&phba->hbalock, iflag); 11862 11863 /* The pending mailbox command queue */ 11864 list_splice_init(&phba->sli.mboxq, &completions); 11865 /* The outstanding active mailbox command */ 11866 if (psli->mbox_active) { 11867 list_add_tail(&psli->mbox_active->list, &completions); 11868 psli->mbox_active = NULL; 11869 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11870 } 11871 /* The completed mailbox command queue */ 11872 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11873 spin_unlock_irqrestore(&phba->hbalock, iflag); 11874 11875 /* Enable softirqs again, done with phba->hbalock */ 11876 local_bh_enable(); 11877 11878 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11879 while (!list_empty(&completions)) { 11880 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11881 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11882 if (pmb->mbox_cmpl) 11883 pmb->mbox_cmpl(phba, pmb); 11884 } 11885 } 11886 11887 /** 11888 * lpfc_sli_host_down - Vport cleanup function 11889 * @vport: Pointer to virtual port object. 11890 * 11891 * lpfc_sli_host_down is called to clean up the resources 11892 * associated with a vport before destroying virtual 11893 * port data structures. 11894 * This function does following operations: 11895 * - Free discovery resources associated with this virtual 11896 * port. 11897 * - Free iocbs associated with this virtual port in 11898 * the txq. 11899 * - Send abort for all iocb commands associated with this 11900 * vport in txcmplq. 11901 * 11902 * This function is called with no lock held and always returns 1. 11903 **/ 11904 int 11905 lpfc_sli_host_down(struct lpfc_vport *vport) 11906 { 11907 LIST_HEAD(completions); 11908 struct lpfc_hba *phba = vport->phba; 11909 struct lpfc_sli *psli = &phba->sli; 11910 struct lpfc_queue *qp = NULL; 11911 struct lpfc_sli_ring *pring; 11912 struct lpfc_iocbq *iocb, *next_iocb; 11913 int i; 11914 unsigned long flags = 0; 11915 uint16_t prev_pring_flag; 11916 11917 lpfc_cleanup_discovery_resources(vport); 11918 11919 spin_lock_irqsave(&phba->hbalock, flags); 11920 11921 /* 11922 * Error everything on the txq since these iocbs 11923 * have not been given to the FW yet. 11924 * Also issue ABTS for everything on the txcmplq 11925 */ 11926 if (phba->sli_rev != LPFC_SLI_REV4) { 11927 for (i = 0; i < psli->num_rings; i++) { 11928 pring = &psli->sli3_ring[i]; 11929 prev_pring_flag = pring->flag; 11930 /* Only slow rings */ 11931 if (pring->ringno == LPFC_ELS_RING) { 11932 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11933 /* Set the lpfc data pending flag */ 11934 set_bit(LPFC_DATA_READY, &phba->data_flags); 11935 } 11936 list_for_each_entry_safe(iocb, next_iocb, 11937 &pring->txq, list) { 11938 if (iocb->vport != vport) 11939 continue; 11940 list_move_tail(&iocb->list, &completions); 11941 } 11942 list_for_each_entry_safe(iocb, next_iocb, 11943 &pring->txcmplq, list) { 11944 if (iocb->vport != vport) 11945 continue; 11946 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11947 NULL); 11948 } 11949 pring->flag = prev_pring_flag; 11950 } 11951 } else { 11952 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11953 pring = qp->pring; 11954 if (!pring) 11955 continue; 11956 if (pring == phba->sli4_hba.els_wq->pring) { 11957 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11958 /* Set the lpfc data pending flag */ 11959 set_bit(LPFC_DATA_READY, &phba->data_flags); 11960 } 11961 prev_pring_flag = pring->flag; 11962 spin_lock(&pring->ring_lock); 11963 list_for_each_entry_safe(iocb, next_iocb, 11964 &pring->txq, list) { 11965 if (iocb->vport != vport) 11966 continue; 11967 list_move_tail(&iocb->list, &completions); 11968 } 11969 spin_unlock(&pring->ring_lock); 11970 list_for_each_entry_safe(iocb, next_iocb, 11971 &pring->txcmplq, list) { 11972 if (iocb->vport != vport) 11973 continue; 11974 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11975 NULL); 11976 } 11977 pring->flag = prev_pring_flag; 11978 } 11979 } 11980 spin_unlock_irqrestore(&phba->hbalock, flags); 11981 11982 /* Make sure HBA is alive */ 11983 lpfc_issue_hb_tmo(phba); 11984 11985 /* Cancel all the IOCBs from the completions list */ 11986 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11987 IOERR_SLI_DOWN); 11988 return 1; 11989 } 11990 11991 /** 11992 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11993 * @phba: Pointer to HBA context object. 11994 * 11995 * This function cleans up all iocb, buffers, mailbox commands 11996 * while shutting down the HBA. This function is called with no 11997 * lock held and always returns 1. 11998 * This function does the following to cleanup driver resources: 11999 * - Free discovery resources for each virtual port 12000 * - Cleanup any pending fabric iocbs 12001 * - Iterate through the iocb txq and free each entry 12002 * in the list. 12003 * - Free up any buffer posted to the HBA 12004 * - Free mailbox commands in the mailbox queue. 12005 **/ 12006 int 12007 lpfc_sli_hba_down(struct lpfc_hba *phba) 12008 { 12009 LIST_HEAD(completions); 12010 struct lpfc_sli *psli = &phba->sli; 12011 struct lpfc_queue *qp = NULL; 12012 struct lpfc_sli_ring *pring; 12013 struct lpfc_dmabuf *buf_ptr; 12014 unsigned long flags = 0; 12015 int i; 12016 12017 /* Shutdown the mailbox command sub-system */ 12018 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 12019 12020 lpfc_hba_down_prep(phba); 12021 12022 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12023 local_bh_disable(); 12024 12025 lpfc_fabric_abort_hba(phba); 12026 12027 spin_lock_irqsave(&phba->hbalock, flags); 12028 12029 /* 12030 * Error everything on the txq since these iocbs 12031 * have not been given to the FW yet. 12032 */ 12033 if (phba->sli_rev != LPFC_SLI_REV4) { 12034 for (i = 0; i < psli->num_rings; i++) { 12035 pring = &psli->sli3_ring[i]; 12036 /* Only slow rings */ 12037 if (pring->ringno == LPFC_ELS_RING) { 12038 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12039 /* Set the lpfc data pending flag */ 12040 set_bit(LPFC_DATA_READY, &phba->data_flags); 12041 } 12042 list_splice_init(&pring->txq, &completions); 12043 } 12044 } else { 12045 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12046 pring = qp->pring; 12047 if (!pring) 12048 continue; 12049 spin_lock(&pring->ring_lock); 12050 list_splice_init(&pring->txq, &completions); 12051 spin_unlock(&pring->ring_lock); 12052 if (pring == phba->sli4_hba.els_wq->pring) { 12053 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12054 /* Set the lpfc data pending flag */ 12055 set_bit(LPFC_DATA_READY, &phba->data_flags); 12056 } 12057 } 12058 } 12059 spin_unlock_irqrestore(&phba->hbalock, flags); 12060 12061 /* Cancel all the IOCBs from the completions list */ 12062 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 12063 IOERR_SLI_DOWN); 12064 12065 spin_lock_irqsave(&phba->hbalock, flags); 12066 list_splice_init(&phba->elsbuf, &completions); 12067 phba->elsbuf_cnt = 0; 12068 phba->elsbuf_prev_cnt = 0; 12069 spin_unlock_irqrestore(&phba->hbalock, flags); 12070 12071 while (!list_empty(&completions)) { 12072 list_remove_head(&completions, buf_ptr, 12073 struct lpfc_dmabuf, list); 12074 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 12075 kfree(buf_ptr); 12076 } 12077 12078 /* Enable softirqs again, done with phba->hbalock */ 12079 local_bh_enable(); 12080 12081 /* Return any active mbox cmds */ 12082 del_timer_sync(&psli->mbox_tmo); 12083 12084 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 12085 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12086 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 12087 12088 return 1; 12089 } 12090 12091 /** 12092 * lpfc_sli_pcimem_bcopy - SLI memory copy function 12093 * @srcp: Source memory pointer. 12094 * @destp: Destination memory pointer. 12095 * @cnt: Number of words required to be copied. 12096 * 12097 * This function is used for copying data between driver memory 12098 * and the SLI memory. This function also changes the endianness 12099 * of each word if native endianness is different from SLI 12100 * endianness. This function can be called with or without 12101 * lock. 12102 **/ 12103 void 12104 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 12105 { 12106 uint32_t *src = srcp; 12107 uint32_t *dest = destp; 12108 uint32_t ldata; 12109 int i; 12110 12111 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 12112 ldata = *src; 12113 ldata = le32_to_cpu(ldata); 12114 *dest = ldata; 12115 src++; 12116 dest++; 12117 } 12118 } 12119 12120 12121 /** 12122 * lpfc_sli_bemem_bcopy - SLI memory copy function 12123 * @srcp: Source memory pointer. 12124 * @destp: Destination memory pointer. 12125 * @cnt: Number of words required to be copied. 12126 * 12127 * This function is used for copying data between a data structure 12128 * with big endian representation to local endianness. 12129 * This function can be called with or without lock. 12130 **/ 12131 void 12132 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 12133 { 12134 uint32_t *src = srcp; 12135 uint32_t *dest = destp; 12136 uint32_t ldata; 12137 int i; 12138 12139 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 12140 ldata = *src; 12141 ldata = be32_to_cpu(ldata); 12142 *dest = ldata; 12143 src++; 12144 dest++; 12145 } 12146 } 12147 12148 /** 12149 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 12150 * @phba: Pointer to HBA context object. 12151 * @pring: Pointer to driver SLI ring object. 12152 * @mp: Pointer to driver buffer object. 12153 * 12154 * This function is called with no lock held. 12155 * It always return zero after adding the buffer to the postbufq 12156 * buffer list. 12157 **/ 12158 int 12159 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12160 struct lpfc_dmabuf *mp) 12161 { 12162 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 12163 later */ 12164 spin_lock_irq(&phba->hbalock); 12165 list_add_tail(&mp->list, &pring->postbufq); 12166 pring->postbufq_cnt++; 12167 spin_unlock_irq(&phba->hbalock); 12168 return 0; 12169 } 12170 12171 /** 12172 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 12173 * @phba: Pointer to HBA context object. 12174 * 12175 * When HBQ is enabled, buffers are searched based on tags. This function 12176 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 12177 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 12178 * does not conflict with tags of buffer posted for unsolicited events. 12179 * The function returns the allocated tag. The function is called with 12180 * no locks held. 12181 **/ 12182 uint32_t 12183 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 12184 { 12185 spin_lock_irq(&phba->hbalock); 12186 phba->buffer_tag_count++; 12187 /* 12188 * Always set the QUE_BUFTAG_BIT to distiguish between 12189 * a tag assigned by HBQ. 12190 */ 12191 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 12192 spin_unlock_irq(&phba->hbalock); 12193 return phba->buffer_tag_count; 12194 } 12195 12196 /** 12197 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 12198 * @phba: Pointer to HBA context object. 12199 * @pring: Pointer to driver SLI ring object. 12200 * @tag: Buffer tag. 12201 * 12202 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 12203 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 12204 * iocb is posted to the response ring with the tag of the buffer. 12205 * This function searches the pring->postbufq list using the tag 12206 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 12207 * iocb. If the buffer is found then lpfc_dmabuf object of the 12208 * buffer is returned to the caller else NULL is returned. 12209 * This function is called with no lock held. 12210 **/ 12211 struct lpfc_dmabuf * 12212 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12213 uint32_t tag) 12214 { 12215 struct lpfc_dmabuf *mp, *next_mp; 12216 struct list_head *slp = &pring->postbufq; 12217 12218 /* Search postbufq, from the beginning, looking for a match on tag */ 12219 spin_lock_irq(&phba->hbalock); 12220 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12221 if (mp->buffer_tag == tag) { 12222 list_del_init(&mp->list); 12223 pring->postbufq_cnt--; 12224 spin_unlock_irq(&phba->hbalock); 12225 return mp; 12226 } 12227 } 12228 12229 spin_unlock_irq(&phba->hbalock); 12230 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12231 "0402 Cannot find virtual addr for buffer tag on " 12232 "ring %d Data x%lx x%px x%px x%x\n", 12233 pring->ringno, (unsigned long) tag, 12234 slp->next, slp->prev, pring->postbufq_cnt); 12235 12236 return NULL; 12237 } 12238 12239 /** 12240 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 12241 * @phba: Pointer to HBA context object. 12242 * @pring: Pointer to driver SLI ring object. 12243 * @phys: DMA address of the buffer. 12244 * 12245 * This function searches the buffer list using the dma_address 12246 * of unsolicited event to find the driver's lpfc_dmabuf object 12247 * corresponding to the dma_address. The function returns the 12248 * lpfc_dmabuf object if a buffer is found else it returns NULL. 12249 * This function is called by the ct and els unsolicited event 12250 * handlers to get the buffer associated with the unsolicited 12251 * event. 12252 * 12253 * This function is called with no lock held. 12254 **/ 12255 struct lpfc_dmabuf * 12256 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12257 dma_addr_t phys) 12258 { 12259 struct lpfc_dmabuf *mp, *next_mp; 12260 struct list_head *slp = &pring->postbufq; 12261 12262 /* Search postbufq, from the beginning, looking for a match on phys */ 12263 spin_lock_irq(&phba->hbalock); 12264 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12265 if (mp->phys == phys) { 12266 list_del_init(&mp->list); 12267 pring->postbufq_cnt--; 12268 spin_unlock_irq(&phba->hbalock); 12269 return mp; 12270 } 12271 } 12272 12273 spin_unlock_irq(&phba->hbalock); 12274 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12275 "0410 Cannot find virtual addr for mapped buf on " 12276 "ring %d Data x%llx x%px x%px x%x\n", 12277 pring->ringno, (unsigned long long)phys, 12278 slp->next, slp->prev, pring->postbufq_cnt); 12279 return NULL; 12280 } 12281 12282 /** 12283 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 12284 * @phba: Pointer to HBA context object. 12285 * @cmdiocb: Pointer to driver command iocb object. 12286 * @rspiocb: Pointer to driver response iocb object. 12287 * 12288 * This function is the completion handler for the abort iocbs for 12289 * ELS commands. This function is called from the ELS ring event 12290 * handler with no lock held. This function frees memory resources 12291 * associated with the abort iocb. 12292 **/ 12293 static void 12294 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12295 struct lpfc_iocbq *rspiocb) 12296 { 12297 u32 ulp_status = get_job_ulpstatus(phba, rspiocb); 12298 u32 ulp_word4 = get_job_word4(phba, rspiocb); 12299 u8 cmnd = get_job_cmnd(phba, cmdiocb); 12300 12301 if (ulp_status) { 12302 /* 12303 * Assume that the port already completed and returned, or 12304 * will return the iocb. Just Log the message. 12305 */ 12306 if (phba->sli_rev < LPFC_SLI_REV4) { 12307 if (cmnd == CMD_ABORT_XRI_CX && 12308 ulp_status == IOSTAT_LOCAL_REJECT && 12309 ulp_word4 == IOERR_ABORT_REQUESTED) { 12310 goto release_iocb; 12311 } 12312 } 12313 12314 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 12315 "0327 Cannot abort els iocb x%px " 12316 "with io cmd xri %x abort tag : x%x, " 12317 "abort status %x abort code %x\n", 12318 cmdiocb, get_job_abtsiotag(phba, cmdiocb), 12319 (phba->sli_rev == LPFC_SLI_REV4) ? 12320 get_wqe_reqtag(cmdiocb) : 12321 cmdiocb->iocb.un.acxri.abortContextTag, 12322 ulp_status, ulp_word4); 12323 12324 } 12325 release_iocb: 12326 lpfc_sli_release_iocbq(phba, cmdiocb); 12327 return; 12328 } 12329 12330 /** 12331 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 12332 * @phba: Pointer to HBA context object. 12333 * @cmdiocb: Pointer to driver command iocb object. 12334 * @rspiocb: Pointer to driver response iocb object. 12335 * 12336 * The function is called from SLI ring event handler with no 12337 * lock held. This function is the completion handler for ELS commands 12338 * which are aborted. The function frees memory resources used for 12339 * the aborted ELS commands. 12340 **/ 12341 void 12342 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12343 struct lpfc_iocbq *rspiocb) 12344 { 12345 struct lpfc_nodelist *ndlp = cmdiocb->ndlp; 12346 IOCB_t *irsp; 12347 LPFC_MBOXQ_t *mbox; 12348 u32 ulp_command, ulp_status, ulp_word4, iotag; 12349 12350 ulp_command = get_job_cmnd(phba, cmdiocb); 12351 ulp_status = get_job_ulpstatus(phba, rspiocb); 12352 ulp_word4 = get_job_word4(phba, rspiocb); 12353 12354 if (phba->sli_rev == LPFC_SLI_REV4) { 12355 iotag = get_wqe_reqtag(cmdiocb); 12356 } else { 12357 irsp = &rspiocb->iocb; 12358 iotag = irsp->ulpIoTag; 12359 12360 /* It is possible a PLOGI_RJT for NPIV ports to get aborted. 12361 * The MBX_REG_LOGIN64 mbox command is freed back to the 12362 * mbox_mem_pool here. 12363 */ 12364 if (cmdiocb->context_un.mbox) { 12365 mbox = cmdiocb->context_un.mbox; 12366 lpfc_mbox_rsrc_cleanup(phba, mbox, MBOX_THD_UNLOCKED); 12367 cmdiocb->context_un.mbox = NULL; 12368 } 12369 } 12370 12371 /* ELS cmd tag <ulpIoTag> completes */ 12372 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 12373 "0139 Ignoring ELS cmd code x%x completion Data: " 12374 "x%x x%x x%x x%px\n", 12375 ulp_command, ulp_status, ulp_word4, iotag, 12376 cmdiocb->ndlp); 12377 /* 12378 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp 12379 * if exchange is busy. 12380 */ 12381 if (ulp_command == CMD_GEN_REQUEST64_CR) 12382 lpfc_ct_free_iocb(phba, cmdiocb); 12383 else 12384 lpfc_els_free_iocb(phba, cmdiocb); 12385 12386 lpfc_nlp_put(ndlp); 12387 } 12388 12389 /** 12390 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 12391 * @phba: Pointer to HBA context object. 12392 * @pring: Pointer to driver SLI ring object. 12393 * @cmdiocb: Pointer to driver command iocb object. 12394 * @cmpl: completion function. 12395 * 12396 * This function issues an abort iocb for the provided command iocb. In case 12397 * of unloading, the abort iocb will not be issued to commands on the ELS 12398 * ring. Instead, the callback function shall be changed to those commands 12399 * so that nothing happens when them finishes. This function is called with 12400 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 12401 * when the command iocb is an abort request. 12402 * 12403 **/ 12404 int 12405 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12406 struct lpfc_iocbq *cmdiocb, void *cmpl) 12407 { 12408 struct lpfc_vport *vport = cmdiocb->vport; 12409 struct lpfc_iocbq *abtsiocbp; 12410 int retval = IOCB_ERROR; 12411 unsigned long iflags; 12412 struct lpfc_nodelist *ndlp = NULL; 12413 u32 ulp_command = get_job_cmnd(phba, cmdiocb); 12414 u16 ulp_context, iotag; 12415 bool ia; 12416 12417 /* 12418 * There are certain command types we don't want to abort. And we 12419 * don't want to abort commands that are already in the process of 12420 * being aborted. 12421 */ 12422 if (ulp_command == CMD_ABORT_XRI_WQE || 12423 ulp_command == CMD_ABORT_XRI_CN || 12424 ulp_command == CMD_CLOSE_XRI_CN || 12425 cmdiocb->cmd_flag & LPFC_DRIVER_ABORTED) 12426 return IOCB_ABORTING; 12427 12428 if (!pring) { 12429 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12430 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12431 else 12432 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12433 return retval; 12434 } 12435 12436 /* 12437 * If we're unloading, don't abort iocb on the ELS ring, but change 12438 * the callback so that nothing happens when it finishes. 12439 */ 12440 if ((vport->load_flag & FC_UNLOADING) && 12441 pring->ringno == LPFC_ELS_RING) { 12442 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12443 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12444 else 12445 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12446 return retval; 12447 } 12448 12449 /* issue ABTS for this IOCB based on iotag */ 12450 abtsiocbp = __lpfc_sli_get_iocbq(phba); 12451 if (abtsiocbp == NULL) 12452 return IOCB_NORESOURCE; 12453 12454 /* This signals the response to set the correct status 12455 * before calling the completion handler 12456 */ 12457 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 12458 12459 if (phba->sli_rev == LPFC_SLI_REV4) { 12460 ulp_context = cmdiocb->sli4_xritag; 12461 iotag = abtsiocbp->iotag; 12462 } else { 12463 iotag = cmdiocb->iocb.ulpIoTag; 12464 if (pring->ringno == LPFC_ELS_RING) { 12465 ndlp = cmdiocb->ndlp; 12466 ulp_context = ndlp->nlp_rpi; 12467 } else { 12468 ulp_context = cmdiocb->iocb.ulpContext; 12469 } 12470 } 12471 12472 if (phba->link_state < LPFC_LINK_UP || 12473 (phba->sli_rev == LPFC_SLI_REV4 && 12474 phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN) || 12475 (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12476 ia = true; 12477 else 12478 ia = false; 12479 12480 lpfc_sli_prep_abort_xri(phba, abtsiocbp, ulp_context, iotag, 12481 cmdiocb->iocb.ulpClass, 12482 LPFC_WQE_CQ_ID_DEFAULT, ia, false); 12483 12484 abtsiocbp->vport = vport; 12485 12486 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12487 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 12488 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 12489 abtsiocbp->cmd_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX); 12490 12491 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 12492 abtsiocbp->cmd_flag |= LPFC_IO_FOF; 12493 12494 if (cmpl) 12495 abtsiocbp->cmd_cmpl = cmpl; 12496 else 12497 abtsiocbp->cmd_cmpl = lpfc_sli_abort_els_cmpl; 12498 abtsiocbp->vport = vport; 12499 12500 if (phba->sli_rev == LPFC_SLI_REV4) { 12501 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 12502 if (unlikely(pring == NULL)) 12503 goto abort_iotag_exit; 12504 /* Note: both hbalock and ring_lock need to be set here */ 12505 spin_lock_irqsave(&pring->ring_lock, iflags); 12506 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12507 abtsiocbp, 0); 12508 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12509 } else { 12510 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12511 abtsiocbp, 0); 12512 } 12513 12514 abort_iotag_exit: 12515 12516 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 12517 "0339 Abort IO XRI x%x, Original iotag x%x, " 12518 "abort tag x%x Cmdjob : x%px Abortjob : x%px " 12519 "retval x%x\n", 12520 ulp_context, (phba->sli_rev == LPFC_SLI_REV4) ? 12521 cmdiocb->iotag : iotag, iotag, cmdiocb, abtsiocbp, 12522 retval); 12523 if (retval) { 12524 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 12525 __lpfc_sli_release_iocbq(phba, abtsiocbp); 12526 } 12527 12528 /* 12529 * Caller to this routine should check for IOCB_ERROR 12530 * and handle it properly. This routine no longer removes 12531 * iocb off txcmplq and call compl in case of IOCB_ERROR. 12532 */ 12533 return retval; 12534 } 12535 12536 /** 12537 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 12538 * @phba: pointer to lpfc HBA data structure. 12539 * 12540 * This routine will abort all pending and outstanding iocbs to an HBA. 12541 **/ 12542 void 12543 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 12544 { 12545 struct lpfc_sli *psli = &phba->sli; 12546 struct lpfc_sli_ring *pring; 12547 struct lpfc_queue *qp = NULL; 12548 int i; 12549 12550 if (phba->sli_rev != LPFC_SLI_REV4) { 12551 for (i = 0; i < psli->num_rings; i++) { 12552 pring = &psli->sli3_ring[i]; 12553 lpfc_sli_abort_iocb_ring(phba, pring); 12554 } 12555 return; 12556 } 12557 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12558 pring = qp->pring; 12559 if (!pring) 12560 continue; 12561 lpfc_sli_abort_iocb_ring(phba, pring); 12562 } 12563 } 12564 12565 /** 12566 * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts 12567 * @iocbq: Pointer to iocb object. 12568 * @vport: Pointer to driver virtual port object. 12569 * 12570 * This function acts as an iocb filter for functions which abort FCP iocbs. 12571 * 12572 * Return values 12573 * -ENODEV, if a null iocb or vport ptr is encountered 12574 * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as 12575 * driver already started the abort process, or is an abort iocb itself 12576 * 0, passes criteria for aborting the FCP I/O iocb 12577 **/ 12578 static int 12579 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq, 12580 struct lpfc_vport *vport) 12581 { 12582 u8 ulp_command; 12583 12584 /* No null ptr vports */ 12585 if (!iocbq || iocbq->vport != vport) 12586 return -ENODEV; 12587 12588 /* iocb must be for FCP IO, already exists on the TX cmpl queue, 12589 * can't be premarked as driver aborted, nor be an ABORT iocb itself 12590 */ 12591 ulp_command = get_job_cmnd(vport->phba, iocbq); 12592 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12593 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ) || 12594 (iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12595 (ulp_command == CMD_ABORT_XRI_CN || 12596 ulp_command == CMD_CLOSE_XRI_CN || 12597 ulp_command == CMD_ABORT_XRI_WQE)) 12598 return -EINVAL; 12599 12600 return 0; 12601 } 12602 12603 /** 12604 * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target 12605 * @iocbq: Pointer to driver iocb object. 12606 * @vport: Pointer to driver virtual port object. 12607 * @tgt_id: SCSI ID of the target. 12608 * @lun_id: LUN ID of the scsi device. 12609 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 12610 * 12611 * This function acts as an iocb filter for validating a lun/SCSI target/SCSI 12612 * host. 12613 * 12614 * It will return 12615 * 0 if the filtering criteria is met for the given iocb and will return 12616 * 1 if the filtering criteria is not met. 12617 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 12618 * given iocb is for the SCSI device specified by vport, tgt_id and 12619 * lun_id parameter. 12620 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 12621 * given iocb is for the SCSI target specified by vport and tgt_id 12622 * parameters. 12623 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 12624 * given iocb is for the SCSI host associated with the given vport. 12625 * This function is called with no locks held. 12626 **/ 12627 static int 12628 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 12629 uint16_t tgt_id, uint64_t lun_id, 12630 lpfc_ctx_cmd ctx_cmd) 12631 { 12632 struct lpfc_io_buf *lpfc_cmd; 12633 int rc = 1; 12634 12635 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12636 12637 if (lpfc_cmd->pCmd == NULL) 12638 return rc; 12639 12640 switch (ctx_cmd) { 12641 case LPFC_CTX_LUN: 12642 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12643 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 12644 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 12645 rc = 0; 12646 break; 12647 case LPFC_CTX_TGT: 12648 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12649 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 12650 rc = 0; 12651 break; 12652 case LPFC_CTX_HOST: 12653 rc = 0; 12654 break; 12655 default: 12656 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 12657 __func__, ctx_cmd); 12658 break; 12659 } 12660 12661 return rc; 12662 } 12663 12664 /** 12665 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 12666 * @vport: Pointer to virtual port. 12667 * @tgt_id: SCSI ID of the target. 12668 * @lun_id: LUN ID of the scsi device. 12669 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12670 * 12671 * This function returns number of FCP commands pending for the vport. 12672 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 12673 * commands pending on the vport associated with SCSI device specified 12674 * by tgt_id and lun_id parameters. 12675 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 12676 * commands pending on the vport associated with SCSI target specified 12677 * by tgt_id parameter. 12678 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 12679 * commands pending on the vport. 12680 * This function returns the number of iocbs which satisfy the filter. 12681 * This function is called without any lock held. 12682 **/ 12683 int 12684 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 12685 lpfc_ctx_cmd ctx_cmd) 12686 { 12687 struct lpfc_hba *phba = vport->phba; 12688 struct lpfc_iocbq *iocbq; 12689 int sum, i; 12690 unsigned long iflags; 12691 u8 ulp_command; 12692 12693 spin_lock_irqsave(&phba->hbalock, iflags); 12694 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 12695 iocbq = phba->sli.iocbq_lookup[i]; 12696 12697 if (!iocbq || iocbq->vport != vport) 12698 continue; 12699 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12700 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) 12701 continue; 12702 12703 /* Include counting outstanding aborts */ 12704 ulp_command = get_job_cmnd(phba, iocbq); 12705 if (ulp_command == CMD_ABORT_XRI_CN || 12706 ulp_command == CMD_CLOSE_XRI_CN || 12707 ulp_command == CMD_ABORT_XRI_WQE) { 12708 sum++; 12709 continue; 12710 } 12711 12712 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12713 ctx_cmd) == 0) 12714 sum++; 12715 } 12716 spin_unlock_irqrestore(&phba->hbalock, iflags); 12717 12718 return sum; 12719 } 12720 12721 /** 12722 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12723 * @phba: Pointer to HBA context object 12724 * @cmdiocb: Pointer to command iocb object. 12725 * @rspiocb: Pointer to response iocb object. 12726 * 12727 * This function is called when an aborted FCP iocb completes. This 12728 * function is called by the ring event handler with no lock held. 12729 * This function frees the iocb. 12730 **/ 12731 void 12732 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12733 struct lpfc_iocbq *rspiocb) 12734 { 12735 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12736 "3096 ABORT_XRI_CX completing on rpi x%x " 12737 "original iotag x%x, abort cmd iotag x%x " 12738 "status 0x%x, reason 0x%x\n", 12739 (phba->sli_rev == LPFC_SLI_REV4) ? 12740 cmdiocb->sli4_xritag : 12741 cmdiocb->iocb.un.acxri.abortContextTag, 12742 get_job_abtsiotag(phba, cmdiocb), 12743 cmdiocb->iotag, get_job_ulpstatus(phba, rspiocb), 12744 get_job_word4(phba, rspiocb)); 12745 lpfc_sli_release_iocbq(phba, cmdiocb); 12746 return; 12747 } 12748 12749 /** 12750 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 12751 * @vport: Pointer to virtual port. 12752 * @tgt_id: SCSI ID of the target. 12753 * @lun_id: LUN ID of the scsi device. 12754 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12755 * 12756 * This function sends an abort command for every SCSI command 12757 * associated with the given virtual port pending on the ring 12758 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12759 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12760 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12761 * followed by lpfc_sli_validate_fcp_iocb. 12762 * 12763 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 12764 * FCP iocbs associated with lun specified by tgt_id and lun_id 12765 * parameters 12766 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 12767 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12768 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 12769 * FCP iocbs associated with virtual port. 12770 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 12771 * lpfc_sli4_calc_ring is used. 12772 * This function returns number of iocbs it failed to abort. 12773 * This function is called with no locks held. 12774 **/ 12775 int 12776 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 12777 lpfc_ctx_cmd abort_cmd) 12778 { 12779 struct lpfc_hba *phba = vport->phba; 12780 struct lpfc_sli_ring *pring = NULL; 12781 struct lpfc_iocbq *iocbq; 12782 int errcnt = 0, ret_val = 0; 12783 unsigned long iflags; 12784 int i; 12785 12786 /* all I/Os are in process of being flushed */ 12787 if (phba->hba_flag & HBA_IOQ_FLUSH) 12788 return errcnt; 12789 12790 for (i = 1; i <= phba->sli.last_iotag; i++) { 12791 iocbq = phba->sli.iocbq_lookup[i]; 12792 12793 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12794 continue; 12795 12796 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12797 abort_cmd) != 0) 12798 continue; 12799 12800 spin_lock_irqsave(&phba->hbalock, iflags); 12801 if (phba->sli_rev == LPFC_SLI_REV3) { 12802 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12803 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12804 pring = lpfc_sli4_calc_ring(phba, iocbq); 12805 } 12806 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12807 lpfc_sli_abort_fcp_cmpl); 12808 spin_unlock_irqrestore(&phba->hbalock, iflags); 12809 if (ret_val != IOCB_SUCCESS) 12810 errcnt++; 12811 } 12812 12813 return errcnt; 12814 } 12815 12816 /** 12817 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12818 * @vport: Pointer to virtual port. 12819 * @pring: Pointer to driver SLI ring object. 12820 * @tgt_id: SCSI ID of the target. 12821 * @lun_id: LUN ID of the scsi device. 12822 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12823 * 12824 * This function sends an abort command for every SCSI command 12825 * associated with the given virtual port pending on the ring 12826 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12827 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12828 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12829 * followed by lpfc_sli_validate_fcp_iocb. 12830 * 12831 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12832 * FCP iocbs associated with lun specified by tgt_id and lun_id 12833 * parameters 12834 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12835 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12836 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12837 * FCP iocbs associated with virtual port. 12838 * This function returns number of iocbs it aborted . 12839 * This function is called with no locks held right after a taskmgmt 12840 * command is sent. 12841 **/ 12842 int 12843 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12844 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12845 { 12846 struct lpfc_hba *phba = vport->phba; 12847 struct lpfc_io_buf *lpfc_cmd; 12848 struct lpfc_iocbq *abtsiocbq; 12849 struct lpfc_nodelist *ndlp = NULL; 12850 struct lpfc_iocbq *iocbq; 12851 int sum, i, ret_val; 12852 unsigned long iflags; 12853 struct lpfc_sli_ring *pring_s4 = NULL; 12854 u16 ulp_context, iotag, cqid = LPFC_WQE_CQ_ID_DEFAULT; 12855 bool ia; 12856 12857 spin_lock_irqsave(&phba->hbalock, iflags); 12858 12859 /* all I/Os are in process of being flushed */ 12860 if (phba->hba_flag & HBA_IOQ_FLUSH) { 12861 spin_unlock_irqrestore(&phba->hbalock, iflags); 12862 return 0; 12863 } 12864 sum = 0; 12865 12866 for (i = 1; i <= phba->sli.last_iotag; i++) { 12867 iocbq = phba->sli.iocbq_lookup[i]; 12868 12869 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12870 continue; 12871 12872 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12873 cmd) != 0) 12874 continue; 12875 12876 /* Guard against IO completion being called at same time */ 12877 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12878 spin_lock(&lpfc_cmd->buf_lock); 12879 12880 if (!lpfc_cmd->pCmd) { 12881 spin_unlock(&lpfc_cmd->buf_lock); 12882 continue; 12883 } 12884 12885 if (phba->sli_rev == LPFC_SLI_REV4) { 12886 pring_s4 = 12887 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12888 if (!pring_s4) { 12889 spin_unlock(&lpfc_cmd->buf_lock); 12890 continue; 12891 } 12892 /* Note: both hbalock and ring_lock must be set here */ 12893 spin_lock(&pring_s4->ring_lock); 12894 } 12895 12896 /* 12897 * If the iocbq is already being aborted, don't take a second 12898 * action, but do count it. 12899 */ 12900 if ((iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12901 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) { 12902 if (phba->sli_rev == LPFC_SLI_REV4) 12903 spin_unlock(&pring_s4->ring_lock); 12904 spin_unlock(&lpfc_cmd->buf_lock); 12905 continue; 12906 } 12907 12908 /* issue ABTS for this IOCB based on iotag */ 12909 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12910 if (!abtsiocbq) { 12911 if (phba->sli_rev == LPFC_SLI_REV4) 12912 spin_unlock(&pring_s4->ring_lock); 12913 spin_unlock(&lpfc_cmd->buf_lock); 12914 continue; 12915 } 12916 12917 if (phba->sli_rev == LPFC_SLI_REV4) { 12918 iotag = abtsiocbq->iotag; 12919 ulp_context = iocbq->sli4_xritag; 12920 cqid = lpfc_cmd->hdwq->io_cq_map; 12921 } else { 12922 iotag = iocbq->iocb.ulpIoTag; 12923 if (pring->ringno == LPFC_ELS_RING) { 12924 ndlp = iocbq->ndlp; 12925 ulp_context = ndlp->nlp_rpi; 12926 } else { 12927 ulp_context = iocbq->iocb.ulpContext; 12928 } 12929 } 12930 12931 ndlp = lpfc_cmd->rdata->pnode; 12932 12933 if (lpfc_is_link_up(phba) && 12934 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE) && 12935 !(phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12936 ia = false; 12937 else 12938 ia = true; 12939 12940 lpfc_sli_prep_abort_xri(phba, abtsiocbq, ulp_context, iotag, 12941 iocbq->iocb.ulpClass, cqid, 12942 ia, false); 12943 12944 abtsiocbq->vport = vport; 12945 12946 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12947 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12948 if (iocbq->cmd_flag & LPFC_IO_FCP) 12949 abtsiocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 12950 if (iocbq->cmd_flag & LPFC_IO_FOF) 12951 abtsiocbq->cmd_flag |= LPFC_IO_FOF; 12952 12953 /* Setup callback routine and issue the command. */ 12954 abtsiocbq->cmd_cmpl = lpfc_sli_abort_fcp_cmpl; 12955 12956 /* 12957 * Indicate the IO is being aborted by the driver and set 12958 * the caller's flag into the aborted IO. 12959 */ 12960 iocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 12961 12962 if (phba->sli_rev == LPFC_SLI_REV4) { 12963 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12964 abtsiocbq, 0); 12965 spin_unlock(&pring_s4->ring_lock); 12966 } else { 12967 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12968 abtsiocbq, 0); 12969 } 12970 12971 spin_unlock(&lpfc_cmd->buf_lock); 12972 12973 if (ret_val == IOCB_ERROR) 12974 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12975 else 12976 sum++; 12977 } 12978 spin_unlock_irqrestore(&phba->hbalock, iflags); 12979 return sum; 12980 } 12981 12982 /** 12983 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12984 * @phba: Pointer to HBA context object. 12985 * @cmdiocbq: Pointer to command iocb. 12986 * @rspiocbq: Pointer to response iocb. 12987 * 12988 * This function is the completion handler for iocbs issued using 12989 * lpfc_sli_issue_iocb_wait function. This function is called by the 12990 * ring event handler function without any lock held. This function 12991 * can be called from both worker thread context and interrupt 12992 * context. This function also can be called from other thread which 12993 * cleans up the SLI layer objects. 12994 * This function copy the contents of the response iocb to the 12995 * response iocb memory object provided by the caller of 12996 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12997 * sleeps for the iocb completion. 12998 **/ 12999 static void 13000 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 13001 struct lpfc_iocbq *cmdiocbq, 13002 struct lpfc_iocbq *rspiocbq) 13003 { 13004 wait_queue_head_t *pdone_q; 13005 unsigned long iflags; 13006 struct lpfc_io_buf *lpfc_cmd; 13007 size_t offset = offsetof(struct lpfc_iocbq, wqe); 13008 13009 spin_lock_irqsave(&phba->hbalock, iflags); 13010 if (cmdiocbq->cmd_flag & LPFC_IO_WAKE_TMO) { 13011 13012 /* 13013 * A time out has occurred for the iocb. If a time out 13014 * completion handler has been supplied, call it. Otherwise, 13015 * just free the iocbq. 13016 */ 13017 13018 spin_unlock_irqrestore(&phba->hbalock, iflags); 13019 cmdiocbq->cmd_cmpl = cmdiocbq->wait_cmd_cmpl; 13020 cmdiocbq->wait_cmd_cmpl = NULL; 13021 if (cmdiocbq->cmd_cmpl) 13022 cmdiocbq->cmd_cmpl(phba, cmdiocbq, NULL); 13023 else 13024 lpfc_sli_release_iocbq(phba, cmdiocbq); 13025 return; 13026 } 13027 13028 /* Copy the contents of the local rspiocb into the caller's buffer. */ 13029 cmdiocbq->cmd_flag |= LPFC_IO_WAKE; 13030 if (cmdiocbq->rsp_iocb && rspiocbq) 13031 memcpy((char *)cmdiocbq->rsp_iocb + offset, 13032 (char *)rspiocbq + offset, sizeof(*rspiocbq) - offset); 13033 13034 /* Set the exchange busy flag for task management commands */ 13035 if ((cmdiocbq->cmd_flag & LPFC_IO_FCP) && 13036 !(cmdiocbq->cmd_flag & LPFC_IO_LIBDFC)) { 13037 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 13038 cur_iocbq); 13039 if (rspiocbq && (rspiocbq->cmd_flag & LPFC_EXCHANGE_BUSY)) 13040 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 13041 else 13042 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 13043 } 13044 13045 pdone_q = cmdiocbq->context_un.wait_queue; 13046 if (pdone_q) 13047 wake_up(pdone_q); 13048 spin_unlock_irqrestore(&phba->hbalock, iflags); 13049 return; 13050 } 13051 13052 /** 13053 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 13054 * @phba: Pointer to HBA context object.. 13055 * @piocbq: Pointer to command iocb. 13056 * @flag: Flag to test. 13057 * 13058 * This routine grabs the hbalock and then test the cmd_flag to 13059 * see if the passed in flag is set. 13060 * Returns: 13061 * 1 if flag is set. 13062 * 0 if flag is not set. 13063 **/ 13064 static int 13065 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 13066 struct lpfc_iocbq *piocbq, uint32_t flag) 13067 { 13068 unsigned long iflags; 13069 int ret; 13070 13071 spin_lock_irqsave(&phba->hbalock, iflags); 13072 ret = piocbq->cmd_flag & flag; 13073 spin_unlock_irqrestore(&phba->hbalock, iflags); 13074 return ret; 13075 13076 } 13077 13078 /** 13079 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 13080 * @phba: Pointer to HBA context object.. 13081 * @ring_number: Ring number 13082 * @piocb: Pointer to command iocb. 13083 * @prspiocbq: Pointer to response iocb. 13084 * @timeout: Timeout in number of seconds. 13085 * 13086 * This function issues the iocb to firmware and waits for the 13087 * iocb to complete. The cmd_cmpl field of the shall be used 13088 * to handle iocbs which time out. If the field is NULL, the 13089 * function shall free the iocbq structure. If more clean up is 13090 * needed, the caller is expected to provide a completion function 13091 * that will provide the needed clean up. If the iocb command is 13092 * not completed within timeout seconds, the function will either 13093 * free the iocbq structure (if cmd_cmpl == NULL) or execute the 13094 * completion function set in the cmd_cmpl field and then return 13095 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 13096 * resources if this function returns IOCB_TIMEDOUT. 13097 * The function waits for the iocb completion using an 13098 * non-interruptible wait. 13099 * This function will sleep while waiting for iocb completion. 13100 * So, this function should not be called from any context which 13101 * does not allow sleeping. Due to the same reason, this function 13102 * cannot be called with interrupt disabled. 13103 * This function assumes that the iocb completions occur while 13104 * this function sleep. So, this function cannot be called from 13105 * the thread which process iocb completion for this ring. 13106 * This function clears the cmd_flag of the iocb object before 13107 * issuing the iocb and the iocb completion handler sets this 13108 * flag and wakes this thread when the iocb completes. 13109 * The contents of the response iocb will be copied to prspiocbq 13110 * by the completion handler when the command completes. 13111 * This function returns IOCB_SUCCESS when success. 13112 * This function is called with no lock held. 13113 **/ 13114 int 13115 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 13116 uint32_t ring_number, 13117 struct lpfc_iocbq *piocb, 13118 struct lpfc_iocbq *prspiocbq, 13119 uint32_t timeout) 13120 { 13121 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 13122 long timeleft, timeout_req = 0; 13123 int retval = IOCB_SUCCESS; 13124 uint32_t creg_val; 13125 struct lpfc_iocbq *iocb; 13126 int txq_cnt = 0; 13127 int txcmplq_cnt = 0; 13128 struct lpfc_sli_ring *pring; 13129 unsigned long iflags; 13130 bool iocb_completed = true; 13131 13132 if (phba->sli_rev >= LPFC_SLI_REV4) { 13133 lpfc_sli_prep_wqe(phba, piocb); 13134 13135 pring = lpfc_sli4_calc_ring(phba, piocb); 13136 } else 13137 pring = &phba->sli.sli3_ring[ring_number]; 13138 /* 13139 * If the caller has provided a response iocbq buffer, then rsp_iocb 13140 * is NULL or its an error. 13141 */ 13142 if (prspiocbq) { 13143 if (piocb->rsp_iocb) 13144 return IOCB_ERROR; 13145 piocb->rsp_iocb = prspiocbq; 13146 } 13147 13148 piocb->wait_cmd_cmpl = piocb->cmd_cmpl; 13149 piocb->cmd_cmpl = lpfc_sli_wake_iocb_wait; 13150 piocb->context_un.wait_queue = &done_q; 13151 piocb->cmd_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 13152 13153 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13154 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13155 return IOCB_ERROR; 13156 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 13157 writel(creg_val, phba->HCregaddr); 13158 readl(phba->HCregaddr); /* flush */ 13159 } 13160 13161 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 13162 SLI_IOCB_RET_IOCB); 13163 if (retval == IOCB_SUCCESS) { 13164 timeout_req = msecs_to_jiffies(timeout * 1000); 13165 timeleft = wait_event_timeout(done_q, 13166 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 13167 timeout_req); 13168 spin_lock_irqsave(&phba->hbalock, iflags); 13169 if (!(piocb->cmd_flag & LPFC_IO_WAKE)) { 13170 13171 /* 13172 * IOCB timed out. Inform the wake iocb wait 13173 * completion function and set local status 13174 */ 13175 13176 iocb_completed = false; 13177 piocb->cmd_flag |= LPFC_IO_WAKE_TMO; 13178 } 13179 spin_unlock_irqrestore(&phba->hbalock, iflags); 13180 if (iocb_completed) { 13181 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13182 "0331 IOCB wake signaled\n"); 13183 /* Note: we are not indicating if the IOCB has a success 13184 * status or not - that's for the caller to check. 13185 * IOCB_SUCCESS means just that the command was sent and 13186 * completed. Not that it completed successfully. 13187 * */ 13188 } else if (timeleft == 0) { 13189 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13190 "0338 IOCB wait timeout error - no " 13191 "wake response Data x%x\n", timeout); 13192 retval = IOCB_TIMEDOUT; 13193 } else { 13194 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13195 "0330 IOCB wake NOT set, " 13196 "Data x%x x%lx\n", 13197 timeout, (timeleft / jiffies)); 13198 retval = IOCB_TIMEDOUT; 13199 } 13200 } else if (retval == IOCB_BUSY) { 13201 if (phba->cfg_log_verbose & LOG_SLI) { 13202 list_for_each_entry(iocb, &pring->txq, list) { 13203 txq_cnt++; 13204 } 13205 list_for_each_entry(iocb, &pring->txcmplq, list) { 13206 txcmplq_cnt++; 13207 } 13208 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13209 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 13210 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 13211 } 13212 return retval; 13213 } else { 13214 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13215 "0332 IOCB wait issue failed, Data x%x\n", 13216 retval); 13217 retval = IOCB_ERROR; 13218 } 13219 13220 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13221 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13222 return IOCB_ERROR; 13223 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 13224 writel(creg_val, phba->HCregaddr); 13225 readl(phba->HCregaddr); /* flush */ 13226 } 13227 13228 if (prspiocbq) 13229 piocb->rsp_iocb = NULL; 13230 13231 piocb->context_un.wait_queue = NULL; 13232 piocb->cmd_cmpl = NULL; 13233 return retval; 13234 } 13235 13236 /** 13237 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 13238 * @phba: Pointer to HBA context object. 13239 * @pmboxq: Pointer to driver mailbox object. 13240 * @timeout: Timeout in number of seconds. 13241 * 13242 * This function issues the mailbox to firmware and waits for the 13243 * mailbox command to complete. If the mailbox command is not 13244 * completed within timeout seconds, it returns MBX_TIMEOUT. 13245 * The function waits for the mailbox completion using an 13246 * interruptible wait. If the thread is woken up due to a 13247 * signal, MBX_TIMEOUT error is returned to the caller. Caller 13248 * should not free the mailbox resources, if this function returns 13249 * MBX_TIMEOUT. 13250 * This function will sleep while waiting for mailbox completion. 13251 * So, this function should not be called from any context which 13252 * does not allow sleeping. Due to the same reason, this function 13253 * cannot be called with interrupt disabled. 13254 * This function assumes that the mailbox completion occurs while 13255 * this function sleep. So, this function cannot be called from 13256 * the worker thread which processes mailbox completion. 13257 * This function is called in the context of HBA management 13258 * applications. 13259 * This function returns MBX_SUCCESS when successful. 13260 * This function is called with no lock held. 13261 **/ 13262 int 13263 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 13264 uint32_t timeout) 13265 { 13266 struct completion mbox_done; 13267 int retval; 13268 unsigned long flag; 13269 13270 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 13271 /* setup wake call as IOCB callback */ 13272 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 13273 13274 /* setup context3 field to pass wait_queue pointer to wake function */ 13275 init_completion(&mbox_done); 13276 pmboxq->context3 = &mbox_done; 13277 /* now issue the command */ 13278 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 13279 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 13280 wait_for_completion_timeout(&mbox_done, 13281 msecs_to_jiffies(timeout * 1000)); 13282 13283 spin_lock_irqsave(&phba->hbalock, flag); 13284 pmboxq->context3 = NULL; 13285 /* 13286 * if LPFC_MBX_WAKE flag is set the mailbox is completed 13287 * else do not free the resources. 13288 */ 13289 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 13290 retval = MBX_SUCCESS; 13291 } else { 13292 retval = MBX_TIMEOUT; 13293 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13294 } 13295 spin_unlock_irqrestore(&phba->hbalock, flag); 13296 } 13297 return retval; 13298 } 13299 13300 /** 13301 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 13302 * @phba: Pointer to HBA context. 13303 * @mbx_action: Mailbox shutdown options. 13304 * 13305 * This function is called to shutdown the driver's mailbox sub-system. 13306 * It first marks the mailbox sub-system is in a block state to prevent 13307 * the asynchronous mailbox command from issued off the pending mailbox 13308 * command queue. If the mailbox command sub-system shutdown is due to 13309 * HBA error conditions such as EEH or ERATT, this routine shall invoke 13310 * the mailbox sub-system flush routine to forcefully bring down the 13311 * mailbox sub-system. Otherwise, if it is due to normal condition (such 13312 * as with offline or HBA function reset), this routine will wait for the 13313 * outstanding mailbox command to complete before invoking the mailbox 13314 * sub-system flush routine to gracefully bring down mailbox sub-system. 13315 **/ 13316 void 13317 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 13318 { 13319 struct lpfc_sli *psli = &phba->sli; 13320 unsigned long timeout; 13321 13322 if (mbx_action == LPFC_MBX_NO_WAIT) { 13323 /* delay 100ms for port state */ 13324 msleep(100); 13325 lpfc_sli_mbox_sys_flush(phba); 13326 return; 13327 } 13328 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 13329 13330 /* Disable softirqs, including timers from obtaining phba->hbalock */ 13331 local_bh_disable(); 13332 13333 spin_lock_irq(&phba->hbalock); 13334 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13335 13336 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 13337 /* Determine how long we might wait for the active mailbox 13338 * command to be gracefully completed by firmware. 13339 */ 13340 if (phba->sli.mbox_active) 13341 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 13342 phba->sli.mbox_active) * 13343 1000) + jiffies; 13344 spin_unlock_irq(&phba->hbalock); 13345 13346 /* Enable softirqs again, done with phba->hbalock */ 13347 local_bh_enable(); 13348 13349 while (phba->sli.mbox_active) { 13350 /* Check active mailbox complete status every 2ms */ 13351 msleep(2); 13352 if (time_after(jiffies, timeout)) 13353 /* Timeout, let the mailbox flush routine to 13354 * forcefully release active mailbox command 13355 */ 13356 break; 13357 } 13358 } else { 13359 spin_unlock_irq(&phba->hbalock); 13360 13361 /* Enable softirqs again, done with phba->hbalock */ 13362 local_bh_enable(); 13363 } 13364 13365 lpfc_sli_mbox_sys_flush(phba); 13366 } 13367 13368 /** 13369 * lpfc_sli_eratt_read - read sli-3 error attention events 13370 * @phba: Pointer to HBA context. 13371 * 13372 * This function is called to read the SLI3 device error attention registers 13373 * for possible error attention events. The caller must hold the hostlock 13374 * with spin_lock_irq(). 13375 * 13376 * This function returns 1 when there is Error Attention in the Host Attention 13377 * Register and returns 0 otherwise. 13378 **/ 13379 static int 13380 lpfc_sli_eratt_read(struct lpfc_hba *phba) 13381 { 13382 uint32_t ha_copy; 13383 13384 /* Read chip Host Attention (HA) register */ 13385 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13386 goto unplug_err; 13387 13388 if (ha_copy & HA_ERATT) { 13389 /* Read host status register to retrieve error event */ 13390 if (lpfc_sli_read_hs(phba)) 13391 goto unplug_err; 13392 13393 /* Check if there is a deferred error condition is active */ 13394 if ((HS_FFER1 & phba->work_hs) && 13395 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13396 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 13397 phba->hba_flag |= DEFER_ERATT; 13398 /* Clear all interrupt enable conditions */ 13399 writel(0, phba->HCregaddr); 13400 readl(phba->HCregaddr); 13401 } 13402 13403 /* Set the driver HA work bitmap */ 13404 phba->work_ha |= HA_ERATT; 13405 /* Indicate polling handles this ERATT */ 13406 phba->hba_flag |= HBA_ERATT_HANDLED; 13407 return 1; 13408 } 13409 return 0; 13410 13411 unplug_err: 13412 /* Set the driver HS work bitmap */ 13413 phba->work_hs |= UNPLUG_ERR; 13414 /* Set the driver HA work bitmap */ 13415 phba->work_ha |= HA_ERATT; 13416 /* Indicate polling handles this ERATT */ 13417 phba->hba_flag |= HBA_ERATT_HANDLED; 13418 return 1; 13419 } 13420 13421 /** 13422 * lpfc_sli4_eratt_read - read sli-4 error attention events 13423 * @phba: Pointer to HBA context. 13424 * 13425 * This function is called to read the SLI4 device error attention registers 13426 * for possible error attention events. The caller must hold the hostlock 13427 * with spin_lock_irq(). 13428 * 13429 * This function returns 1 when there is Error Attention in the Host Attention 13430 * Register and returns 0 otherwise. 13431 **/ 13432 static int 13433 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 13434 { 13435 uint32_t uerr_sta_hi, uerr_sta_lo; 13436 uint32_t if_type, portsmphr; 13437 struct lpfc_register portstat_reg; 13438 u32 logmask; 13439 13440 /* 13441 * For now, use the SLI4 device internal unrecoverable error 13442 * registers for error attention. This can be changed later. 13443 */ 13444 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 13445 switch (if_type) { 13446 case LPFC_SLI_INTF_IF_TYPE_0: 13447 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 13448 &uerr_sta_lo) || 13449 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 13450 &uerr_sta_hi)) { 13451 phba->work_hs |= UNPLUG_ERR; 13452 phba->work_ha |= HA_ERATT; 13453 phba->hba_flag |= HBA_ERATT_HANDLED; 13454 return 1; 13455 } 13456 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 13457 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 13458 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13459 "1423 HBA Unrecoverable error: " 13460 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 13461 "ue_mask_lo_reg=0x%x, " 13462 "ue_mask_hi_reg=0x%x\n", 13463 uerr_sta_lo, uerr_sta_hi, 13464 phba->sli4_hba.ue_mask_lo, 13465 phba->sli4_hba.ue_mask_hi); 13466 phba->work_status[0] = uerr_sta_lo; 13467 phba->work_status[1] = uerr_sta_hi; 13468 phba->work_ha |= HA_ERATT; 13469 phba->hba_flag |= HBA_ERATT_HANDLED; 13470 return 1; 13471 } 13472 break; 13473 case LPFC_SLI_INTF_IF_TYPE_2: 13474 case LPFC_SLI_INTF_IF_TYPE_6: 13475 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 13476 &portstat_reg.word0) || 13477 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 13478 &portsmphr)){ 13479 phba->work_hs |= UNPLUG_ERR; 13480 phba->work_ha |= HA_ERATT; 13481 phba->hba_flag |= HBA_ERATT_HANDLED; 13482 return 1; 13483 } 13484 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 13485 phba->work_status[0] = 13486 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 13487 phba->work_status[1] = 13488 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 13489 logmask = LOG_TRACE_EVENT; 13490 if (phba->work_status[0] == 13491 SLIPORT_ERR1_REG_ERR_CODE_2 && 13492 phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART) 13493 logmask = LOG_SLI; 13494 lpfc_printf_log(phba, KERN_ERR, logmask, 13495 "2885 Port Status Event: " 13496 "port status reg 0x%x, " 13497 "port smphr reg 0x%x, " 13498 "error 1=0x%x, error 2=0x%x\n", 13499 portstat_reg.word0, 13500 portsmphr, 13501 phba->work_status[0], 13502 phba->work_status[1]); 13503 phba->work_ha |= HA_ERATT; 13504 phba->hba_flag |= HBA_ERATT_HANDLED; 13505 return 1; 13506 } 13507 break; 13508 case LPFC_SLI_INTF_IF_TYPE_1: 13509 default: 13510 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13511 "2886 HBA Error Attention on unsupported " 13512 "if type %d.", if_type); 13513 return 1; 13514 } 13515 13516 return 0; 13517 } 13518 13519 /** 13520 * lpfc_sli_check_eratt - check error attention events 13521 * @phba: Pointer to HBA context. 13522 * 13523 * This function is called from timer soft interrupt context to check HBA's 13524 * error attention register bit for error attention events. 13525 * 13526 * This function returns 1 when there is Error Attention in the Host Attention 13527 * Register and returns 0 otherwise. 13528 **/ 13529 int 13530 lpfc_sli_check_eratt(struct lpfc_hba *phba) 13531 { 13532 uint32_t ha_copy; 13533 13534 /* If somebody is waiting to handle an eratt, don't process it 13535 * here. The brdkill function will do this. 13536 */ 13537 if (phba->link_flag & LS_IGNORE_ERATT) 13538 return 0; 13539 13540 /* Check if interrupt handler handles this ERATT */ 13541 spin_lock_irq(&phba->hbalock); 13542 if (phba->hba_flag & HBA_ERATT_HANDLED) { 13543 /* Interrupt handler has handled ERATT */ 13544 spin_unlock_irq(&phba->hbalock); 13545 return 0; 13546 } 13547 13548 /* 13549 * If there is deferred error attention, do not check for error 13550 * attention 13551 */ 13552 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13553 spin_unlock_irq(&phba->hbalock); 13554 return 0; 13555 } 13556 13557 /* If PCI channel is offline, don't process it */ 13558 if (unlikely(pci_channel_offline(phba->pcidev))) { 13559 spin_unlock_irq(&phba->hbalock); 13560 return 0; 13561 } 13562 13563 switch (phba->sli_rev) { 13564 case LPFC_SLI_REV2: 13565 case LPFC_SLI_REV3: 13566 /* Read chip Host Attention (HA) register */ 13567 ha_copy = lpfc_sli_eratt_read(phba); 13568 break; 13569 case LPFC_SLI_REV4: 13570 /* Read device Uncoverable Error (UERR) registers */ 13571 ha_copy = lpfc_sli4_eratt_read(phba); 13572 break; 13573 default: 13574 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13575 "0299 Invalid SLI revision (%d)\n", 13576 phba->sli_rev); 13577 ha_copy = 0; 13578 break; 13579 } 13580 spin_unlock_irq(&phba->hbalock); 13581 13582 return ha_copy; 13583 } 13584 13585 /** 13586 * lpfc_intr_state_check - Check device state for interrupt handling 13587 * @phba: Pointer to HBA context. 13588 * 13589 * This inline routine checks whether a device or its PCI slot is in a state 13590 * that the interrupt should be handled. 13591 * 13592 * This function returns 0 if the device or the PCI slot is in a state that 13593 * interrupt should be handled, otherwise -EIO. 13594 */ 13595 static inline int 13596 lpfc_intr_state_check(struct lpfc_hba *phba) 13597 { 13598 /* If the pci channel is offline, ignore all the interrupts */ 13599 if (unlikely(pci_channel_offline(phba->pcidev))) 13600 return -EIO; 13601 13602 /* Update device level interrupt statistics */ 13603 phba->sli.slistat.sli_intr++; 13604 13605 /* Ignore all interrupts during initialization. */ 13606 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 13607 return -EIO; 13608 13609 return 0; 13610 } 13611 13612 /** 13613 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 13614 * @irq: Interrupt number. 13615 * @dev_id: The device context pointer. 13616 * 13617 * This function is directly called from the PCI layer as an interrupt 13618 * service routine when device with SLI-3 interface spec is enabled with 13619 * MSI-X multi-message interrupt mode and there are slow-path events in 13620 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 13621 * interrupt mode, this function is called as part of the device-level 13622 * interrupt handler. When the PCI slot is in error recovery or the HBA 13623 * is undergoing initialization, the interrupt handler will not process 13624 * the interrupt. The link attention and ELS ring attention events are 13625 * handled by the worker thread. The interrupt handler signals the worker 13626 * thread and returns for these events. This function is called without 13627 * any lock held. It gets the hbalock to access and update SLI data 13628 * structures. 13629 * 13630 * This function returns IRQ_HANDLED when interrupt is handled else it 13631 * returns IRQ_NONE. 13632 **/ 13633 irqreturn_t 13634 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 13635 { 13636 struct lpfc_hba *phba; 13637 uint32_t ha_copy, hc_copy; 13638 uint32_t work_ha_copy; 13639 unsigned long status; 13640 unsigned long iflag; 13641 uint32_t control; 13642 13643 MAILBOX_t *mbox, *pmbox; 13644 struct lpfc_vport *vport; 13645 struct lpfc_nodelist *ndlp; 13646 struct lpfc_dmabuf *mp; 13647 LPFC_MBOXQ_t *pmb; 13648 int rc; 13649 13650 /* 13651 * Get the driver's phba structure from the dev_id and 13652 * assume the HBA is not interrupting. 13653 */ 13654 phba = (struct lpfc_hba *)dev_id; 13655 13656 if (unlikely(!phba)) 13657 return IRQ_NONE; 13658 13659 /* 13660 * Stuff needs to be attented to when this function is invoked as an 13661 * individual interrupt handler in MSI-X multi-message interrupt mode 13662 */ 13663 if (phba->intr_type == MSIX) { 13664 /* Check device state for handling interrupt */ 13665 if (lpfc_intr_state_check(phba)) 13666 return IRQ_NONE; 13667 /* Need to read HA REG for slow-path events */ 13668 spin_lock_irqsave(&phba->hbalock, iflag); 13669 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13670 goto unplug_error; 13671 /* If somebody is waiting to handle an eratt don't process it 13672 * here. The brdkill function will do this. 13673 */ 13674 if (phba->link_flag & LS_IGNORE_ERATT) 13675 ha_copy &= ~HA_ERATT; 13676 /* Check the need for handling ERATT in interrupt handler */ 13677 if (ha_copy & HA_ERATT) { 13678 if (phba->hba_flag & HBA_ERATT_HANDLED) 13679 /* ERATT polling has handled ERATT */ 13680 ha_copy &= ~HA_ERATT; 13681 else 13682 /* Indicate interrupt handler handles ERATT */ 13683 phba->hba_flag |= HBA_ERATT_HANDLED; 13684 } 13685 13686 /* 13687 * If there is deferred error attention, do not check for any 13688 * interrupt. 13689 */ 13690 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13691 spin_unlock_irqrestore(&phba->hbalock, iflag); 13692 return IRQ_NONE; 13693 } 13694 13695 /* Clear up only attention source related to slow-path */ 13696 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 13697 goto unplug_error; 13698 13699 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 13700 HC_LAINT_ENA | HC_ERINT_ENA), 13701 phba->HCregaddr); 13702 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 13703 phba->HAregaddr); 13704 writel(hc_copy, phba->HCregaddr); 13705 readl(phba->HAregaddr); /* flush */ 13706 spin_unlock_irqrestore(&phba->hbalock, iflag); 13707 } else 13708 ha_copy = phba->ha_copy; 13709 13710 work_ha_copy = ha_copy & phba->work_ha_mask; 13711 13712 if (work_ha_copy) { 13713 if (work_ha_copy & HA_LATT) { 13714 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 13715 /* 13716 * Turn off Link Attention interrupts 13717 * until CLEAR_LA done 13718 */ 13719 spin_lock_irqsave(&phba->hbalock, iflag); 13720 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 13721 if (lpfc_readl(phba->HCregaddr, &control)) 13722 goto unplug_error; 13723 control &= ~HC_LAINT_ENA; 13724 writel(control, phba->HCregaddr); 13725 readl(phba->HCregaddr); /* flush */ 13726 spin_unlock_irqrestore(&phba->hbalock, iflag); 13727 } 13728 else 13729 work_ha_copy &= ~HA_LATT; 13730 } 13731 13732 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 13733 /* 13734 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 13735 * the only slow ring. 13736 */ 13737 status = (work_ha_copy & 13738 (HA_RXMASK << (4*LPFC_ELS_RING))); 13739 status >>= (4*LPFC_ELS_RING); 13740 if (status & HA_RXMASK) { 13741 spin_lock_irqsave(&phba->hbalock, iflag); 13742 if (lpfc_readl(phba->HCregaddr, &control)) 13743 goto unplug_error; 13744 13745 lpfc_debugfs_slow_ring_trc(phba, 13746 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 13747 control, status, 13748 (uint32_t)phba->sli.slistat.sli_intr); 13749 13750 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 13751 lpfc_debugfs_slow_ring_trc(phba, 13752 "ISR Disable ring:" 13753 "pwork:x%x hawork:x%x wait:x%x", 13754 phba->work_ha, work_ha_copy, 13755 (uint32_t)((unsigned long) 13756 &phba->work_waitq)); 13757 13758 control &= 13759 ~(HC_R0INT_ENA << LPFC_ELS_RING); 13760 writel(control, phba->HCregaddr); 13761 readl(phba->HCregaddr); /* flush */ 13762 } 13763 else { 13764 lpfc_debugfs_slow_ring_trc(phba, 13765 "ISR slow ring: pwork:" 13766 "x%x hawork:x%x wait:x%x", 13767 phba->work_ha, work_ha_copy, 13768 (uint32_t)((unsigned long) 13769 &phba->work_waitq)); 13770 } 13771 spin_unlock_irqrestore(&phba->hbalock, iflag); 13772 } 13773 } 13774 spin_lock_irqsave(&phba->hbalock, iflag); 13775 if (work_ha_copy & HA_ERATT) { 13776 if (lpfc_sli_read_hs(phba)) 13777 goto unplug_error; 13778 /* 13779 * Check if there is a deferred error condition 13780 * is active 13781 */ 13782 if ((HS_FFER1 & phba->work_hs) && 13783 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13784 HS_FFER6 | HS_FFER7 | HS_FFER8) & 13785 phba->work_hs)) { 13786 phba->hba_flag |= DEFER_ERATT; 13787 /* Clear all interrupt enable conditions */ 13788 writel(0, phba->HCregaddr); 13789 readl(phba->HCregaddr); 13790 } 13791 } 13792 13793 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 13794 pmb = phba->sli.mbox_active; 13795 pmbox = &pmb->u.mb; 13796 mbox = phba->mbox; 13797 vport = pmb->vport; 13798 13799 /* First check out the status word */ 13800 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 13801 if (pmbox->mbxOwner != OWN_HOST) { 13802 spin_unlock_irqrestore(&phba->hbalock, iflag); 13803 /* 13804 * Stray Mailbox Interrupt, mbxCommand <cmd> 13805 * mbxStatus <status> 13806 */ 13807 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13808 "(%d):0304 Stray Mailbox " 13809 "Interrupt mbxCommand x%x " 13810 "mbxStatus x%x\n", 13811 (vport ? vport->vpi : 0), 13812 pmbox->mbxCommand, 13813 pmbox->mbxStatus); 13814 /* clear mailbox attention bit */ 13815 work_ha_copy &= ~HA_MBATT; 13816 } else { 13817 phba->sli.mbox_active = NULL; 13818 spin_unlock_irqrestore(&phba->hbalock, iflag); 13819 phba->last_completion_time = jiffies; 13820 del_timer(&phba->sli.mbox_tmo); 13821 if (pmb->mbox_cmpl) { 13822 lpfc_sli_pcimem_bcopy(mbox, pmbox, 13823 MAILBOX_CMD_SIZE); 13824 if (pmb->out_ext_byte_len && 13825 pmb->ctx_buf) 13826 lpfc_sli_pcimem_bcopy( 13827 phba->mbox_ext, 13828 pmb->ctx_buf, 13829 pmb->out_ext_byte_len); 13830 } 13831 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13832 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13833 13834 lpfc_debugfs_disc_trc(vport, 13835 LPFC_DISC_TRC_MBOX_VPORT, 13836 "MBOX dflt rpi: : " 13837 "status:x%x rpi:x%x", 13838 (uint32_t)pmbox->mbxStatus, 13839 pmbox->un.varWords[0], 0); 13840 13841 if (!pmbox->mbxStatus) { 13842 mp = (struct lpfc_dmabuf *) 13843 (pmb->ctx_buf); 13844 ndlp = (struct lpfc_nodelist *) 13845 pmb->ctx_ndlp; 13846 13847 /* Reg_LOGIN of dflt RPI was 13848 * successful. new lets get 13849 * rid of the RPI using the 13850 * same mbox buffer. 13851 */ 13852 lpfc_unreg_login(phba, 13853 vport->vpi, 13854 pmbox->un.varWords[0], 13855 pmb); 13856 pmb->mbox_cmpl = 13857 lpfc_mbx_cmpl_dflt_rpi; 13858 pmb->ctx_buf = mp; 13859 pmb->ctx_ndlp = ndlp; 13860 pmb->vport = vport; 13861 rc = lpfc_sli_issue_mbox(phba, 13862 pmb, 13863 MBX_NOWAIT); 13864 if (rc != MBX_BUSY) 13865 lpfc_printf_log(phba, 13866 KERN_ERR, 13867 LOG_TRACE_EVENT, 13868 "0350 rc should have" 13869 "been MBX_BUSY\n"); 13870 if (rc != MBX_NOT_FINISHED) 13871 goto send_current_mbox; 13872 } 13873 } 13874 spin_lock_irqsave( 13875 &phba->pport->work_port_lock, 13876 iflag); 13877 phba->pport->work_port_events &= 13878 ~WORKER_MBOX_TMO; 13879 spin_unlock_irqrestore( 13880 &phba->pport->work_port_lock, 13881 iflag); 13882 13883 /* Do NOT queue MBX_HEARTBEAT to the worker 13884 * thread for processing. 13885 */ 13886 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13887 /* Process mbox now */ 13888 phba->sli.mbox_active = NULL; 13889 phba->sli.sli_flag &= 13890 ~LPFC_SLI_MBOX_ACTIVE; 13891 if (pmb->mbox_cmpl) 13892 pmb->mbox_cmpl(phba, pmb); 13893 } else { 13894 /* Queue to worker thread to process */ 13895 lpfc_mbox_cmpl_put(phba, pmb); 13896 } 13897 } 13898 } else 13899 spin_unlock_irqrestore(&phba->hbalock, iflag); 13900 13901 if ((work_ha_copy & HA_MBATT) && 13902 (phba->sli.mbox_active == NULL)) { 13903 send_current_mbox: 13904 /* Process next mailbox command if there is one */ 13905 do { 13906 rc = lpfc_sli_issue_mbox(phba, NULL, 13907 MBX_NOWAIT); 13908 } while (rc == MBX_NOT_FINISHED); 13909 if (rc != MBX_SUCCESS) 13910 lpfc_printf_log(phba, KERN_ERR, 13911 LOG_TRACE_EVENT, 13912 "0349 rc should be " 13913 "MBX_SUCCESS\n"); 13914 } 13915 13916 spin_lock_irqsave(&phba->hbalock, iflag); 13917 phba->work_ha |= work_ha_copy; 13918 spin_unlock_irqrestore(&phba->hbalock, iflag); 13919 lpfc_worker_wake_up(phba); 13920 } 13921 return IRQ_HANDLED; 13922 unplug_error: 13923 spin_unlock_irqrestore(&phba->hbalock, iflag); 13924 return IRQ_HANDLED; 13925 13926 } /* lpfc_sli_sp_intr_handler */ 13927 13928 /** 13929 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13930 * @irq: Interrupt number. 13931 * @dev_id: The device context pointer. 13932 * 13933 * This function is directly called from the PCI layer as an interrupt 13934 * service routine when device with SLI-3 interface spec is enabled with 13935 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13936 * ring event in the HBA. However, when the device is enabled with either 13937 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13938 * device-level interrupt handler. When the PCI slot is in error recovery 13939 * or the HBA is undergoing initialization, the interrupt handler will not 13940 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13941 * the intrrupt context. This function is called without any lock held. 13942 * It gets the hbalock to access and update SLI data structures. 13943 * 13944 * This function returns IRQ_HANDLED when interrupt is handled else it 13945 * returns IRQ_NONE. 13946 **/ 13947 irqreturn_t 13948 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13949 { 13950 struct lpfc_hba *phba; 13951 uint32_t ha_copy; 13952 unsigned long status; 13953 unsigned long iflag; 13954 struct lpfc_sli_ring *pring; 13955 13956 /* Get the driver's phba structure from the dev_id and 13957 * assume the HBA is not interrupting. 13958 */ 13959 phba = (struct lpfc_hba *) dev_id; 13960 13961 if (unlikely(!phba)) 13962 return IRQ_NONE; 13963 13964 /* 13965 * Stuff needs to be attented to when this function is invoked as an 13966 * individual interrupt handler in MSI-X multi-message interrupt mode 13967 */ 13968 if (phba->intr_type == MSIX) { 13969 /* Check device state for handling interrupt */ 13970 if (lpfc_intr_state_check(phba)) 13971 return IRQ_NONE; 13972 /* Need to read HA REG for FCP ring and other ring events */ 13973 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13974 return IRQ_HANDLED; 13975 /* Clear up only attention source related to fast-path */ 13976 spin_lock_irqsave(&phba->hbalock, iflag); 13977 /* 13978 * If there is deferred error attention, do not check for 13979 * any interrupt. 13980 */ 13981 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13982 spin_unlock_irqrestore(&phba->hbalock, iflag); 13983 return IRQ_NONE; 13984 } 13985 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13986 phba->HAregaddr); 13987 readl(phba->HAregaddr); /* flush */ 13988 spin_unlock_irqrestore(&phba->hbalock, iflag); 13989 } else 13990 ha_copy = phba->ha_copy; 13991 13992 /* 13993 * Process all events on FCP ring. Take the optimized path for FCP IO. 13994 */ 13995 ha_copy &= ~(phba->work_ha_mask); 13996 13997 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13998 status >>= (4*LPFC_FCP_RING); 13999 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 14000 if (status & HA_RXMASK) 14001 lpfc_sli_handle_fast_ring_event(phba, pring, status); 14002 14003 if (phba->cfg_multi_ring_support == 2) { 14004 /* 14005 * Process all events on extra ring. Take the optimized path 14006 * for extra ring IO. 14007 */ 14008 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 14009 status >>= (4*LPFC_EXTRA_RING); 14010 if (status & HA_RXMASK) { 14011 lpfc_sli_handle_fast_ring_event(phba, 14012 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 14013 status); 14014 } 14015 } 14016 return IRQ_HANDLED; 14017 } /* lpfc_sli_fp_intr_handler */ 14018 14019 /** 14020 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 14021 * @irq: Interrupt number. 14022 * @dev_id: The device context pointer. 14023 * 14024 * This function is the HBA device-level interrupt handler to device with 14025 * SLI-3 interface spec, called from the PCI layer when either MSI or 14026 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 14027 * requires driver attention. This function invokes the slow-path interrupt 14028 * attention handling function and fast-path interrupt attention handling 14029 * function in turn to process the relevant HBA attention events. This 14030 * function is called without any lock held. It gets the hbalock to access 14031 * and update SLI data structures. 14032 * 14033 * This function returns IRQ_HANDLED when interrupt is handled, else it 14034 * returns IRQ_NONE. 14035 **/ 14036 irqreturn_t 14037 lpfc_sli_intr_handler(int irq, void *dev_id) 14038 { 14039 struct lpfc_hba *phba; 14040 irqreturn_t sp_irq_rc, fp_irq_rc; 14041 unsigned long status1, status2; 14042 uint32_t hc_copy; 14043 14044 /* 14045 * Get the driver's phba structure from the dev_id and 14046 * assume the HBA is not interrupting. 14047 */ 14048 phba = (struct lpfc_hba *) dev_id; 14049 14050 if (unlikely(!phba)) 14051 return IRQ_NONE; 14052 14053 /* Check device state for handling interrupt */ 14054 if (lpfc_intr_state_check(phba)) 14055 return IRQ_NONE; 14056 14057 spin_lock(&phba->hbalock); 14058 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 14059 spin_unlock(&phba->hbalock); 14060 return IRQ_HANDLED; 14061 } 14062 14063 if (unlikely(!phba->ha_copy)) { 14064 spin_unlock(&phba->hbalock); 14065 return IRQ_NONE; 14066 } else if (phba->ha_copy & HA_ERATT) { 14067 if (phba->hba_flag & HBA_ERATT_HANDLED) 14068 /* ERATT polling has handled ERATT */ 14069 phba->ha_copy &= ~HA_ERATT; 14070 else 14071 /* Indicate interrupt handler handles ERATT */ 14072 phba->hba_flag |= HBA_ERATT_HANDLED; 14073 } 14074 14075 /* 14076 * If there is deferred error attention, do not check for any interrupt. 14077 */ 14078 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 14079 spin_unlock(&phba->hbalock); 14080 return IRQ_NONE; 14081 } 14082 14083 /* Clear attention sources except link and error attentions */ 14084 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 14085 spin_unlock(&phba->hbalock); 14086 return IRQ_HANDLED; 14087 } 14088 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 14089 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 14090 phba->HCregaddr); 14091 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 14092 writel(hc_copy, phba->HCregaddr); 14093 readl(phba->HAregaddr); /* flush */ 14094 spin_unlock(&phba->hbalock); 14095 14096 /* 14097 * Invokes slow-path host attention interrupt handling as appropriate. 14098 */ 14099 14100 /* status of events with mailbox and link attention */ 14101 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 14102 14103 /* status of events with ELS ring */ 14104 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 14105 status2 >>= (4*LPFC_ELS_RING); 14106 14107 if (status1 || (status2 & HA_RXMASK)) 14108 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 14109 else 14110 sp_irq_rc = IRQ_NONE; 14111 14112 /* 14113 * Invoke fast-path host attention interrupt handling as appropriate. 14114 */ 14115 14116 /* status of events with FCP ring */ 14117 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 14118 status1 >>= (4*LPFC_FCP_RING); 14119 14120 /* status of events with extra ring */ 14121 if (phba->cfg_multi_ring_support == 2) { 14122 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 14123 status2 >>= (4*LPFC_EXTRA_RING); 14124 } else 14125 status2 = 0; 14126 14127 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 14128 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 14129 else 14130 fp_irq_rc = IRQ_NONE; 14131 14132 /* Return device-level interrupt handling status */ 14133 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 14134 } /* lpfc_sli_intr_handler */ 14135 14136 /** 14137 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 14138 * @phba: pointer to lpfc hba data structure. 14139 * 14140 * This routine is invoked by the worker thread to process all the pending 14141 * SLI4 els abort xri events. 14142 **/ 14143 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 14144 { 14145 struct lpfc_cq_event *cq_event; 14146 unsigned long iflags; 14147 14148 /* First, declare the els xri abort event has been handled */ 14149 spin_lock_irqsave(&phba->hbalock, iflags); 14150 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 14151 spin_unlock_irqrestore(&phba->hbalock, iflags); 14152 14153 /* Now, handle all the els xri abort events */ 14154 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14155 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 14156 /* Get the first event from the head of the event queue */ 14157 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 14158 cq_event, struct lpfc_cq_event, list); 14159 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14160 iflags); 14161 /* Notify aborted XRI for ELS work queue */ 14162 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 14163 14164 /* Free the event processed back to the free pool */ 14165 lpfc_sli4_cq_event_release(phba, cq_event); 14166 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14167 iflags); 14168 } 14169 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14170 } 14171 14172 /** 14173 * lpfc_sli4_els_preprocess_rspiocbq - Get response iocbq from els wcqe 14174 * @phba: Pointer to HBA context object. 14175 * @irspiocbq: Pointer to work-queue completion queue entry. 14176 * 14177 * This routine handles an ELS work-queue completion event and construct 14178 * a pseudo response ELS IOCBQ from the SLI4 ELS WCQE for the common 14179 * discovery engine to handle. 14180 * 14181 * Return: Pointer to the receive IOCBQ, NULL otherwise. 14182 **/ 14183 static struct lpfc_iocbq * 14184 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 14185 struct lpfc_iocbq *irspiocbq) 14186 { 14187 struct lpfc_sli_ring *pring; 14188 struct lpfc_iocbq *cmdiocbq; 14189 struct lpfc_wcqe_complete *wcqe; 14190 unsigned long iflags; 14191 14192 pring = lpfc_phba_elsring(phba); 14193 if (unlikely(!pring)) 14194 return NULL; 14195 14196 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 14197 spin_lock_irqsave(&pring->ring_lock, iflags); 14198 pring->stats.iocb_event++; 14199 /* Look up the ELS command IOCB and create pseudo response IOCB */ 14200 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14201 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14202 if (unlikely(!cmdiocbq)) { 14203 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14204 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14205 "0386 ELS complete with no corresponding " 14206 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 14207 wcqe->word0, wcqe->total_data_placed, 14208 wcqe->parameter, wcqe->word3); 14209 lpfc_sli_release_iocbq(phba, irspiocbq); 14210 return NULL; 14211 } 14212 14213 memcpy(&irspiocbq->wqe, &cmdiocbq->wqe, sizeof(union lpfc_wqe128)); 14214 memcpy(&irspiocbq->wcqe_cmpl, wcqe, sizeof(*wcqe)); 14215 14216 /* Put the iocb back on the txcmplq */ 14217 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 14218 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14219 14220 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 14221 spin_lock_irqsave(&phba->hbalock, iflags); 14222 irspiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 14223 spin_unlock_irqrestore(&phba->hbalock, iflags); 14224 } 14225 14226 return irspiocbq; 14227 } 14228 14229 inline struct lpfc_cq_event * 14230 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 14231 { 14232 struct lpfc_cq_event *cq_event; 14233 14234 /* Allocate a new internal CQ_EVENT entry */ 14235 cq_event = lpfc_sli4_cq_event_alloc(phba); 14236 if (!cq_event) { 14237 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14238 "0602 Failed to alloc CQ_EVENT entry\n"); 14239 return NULL; 14240 } 14241 14242 /* Move the CQE into the event */ 14243 memcpy(&cq_event->cqe, entry, size); 14244 return cq_event; 14245 } 14246 14247 /** 14248 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 14249 * @phba: Pointer to HBA context object. 14250 * @mcqe: Pointer to mailbox completion queue entry. 14251 * 14252 * This routine process a mailbox completion queue entry with asynchronous 14253 * event. 14254 * 14255 * Return: true if work posted to worker thread, otherwise false. 14256 **/ 14257 static bool 14258 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14259 { 14260 struct lpfc_cq_event *cq_event; 14261 unsigned long iflags; 14262 14263 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14264 "0392 Async Event: word0:x%x, word1:x%x, " 14265 "word2:x%x, word3:x%x\n", mcqe->word0, 14266 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 14267 14268 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 14269 if (!cq_event) 14270 return false; 14271 14272 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 14273 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 14274 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 14275 14276 /* Set the async event flag */ 14277 spin_lock_irqsave(&phba->hbalock, iflags); 14278 phba->hba_flag |= ASYNC_EVENT; 14279 spin_unlock_irqrestore(&phba->hbalock, iflags); 14280 14281 return true; 14282 } 14283 14284 /** 14285 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 14286 * @phba: Pointer to HBA context object. 14287 * @mcqe: Pointer to mailbox completion queue entry. 14288 * 14289 * This routine process a mailbox completion queue entry with mailbox 14290 * completion event. 14291 * 14292 * Return: true if work posted to worker thread, otherwise false. 14293 **/ 14294 static bool 14295 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14296 { 14297 uint32_t mcqe_status; 14298 MAILBOX_t *mbox, *pmbox; 14299 struct lpfc_mqe *mqe; 14300 struct lpfc_vport *vport; 14301 struct lpfc_nodelist *ndlp; 14302 struct lpfc_dmabuf *mp; 14303 unsigned long iflags; 14304 LPFC_MBOXQ_t *pmb; 14305 bool workposted = false; 14306 int rc; 14307 14308 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 14309 if (!bf_get(lpfc_trailer_completed, mcqe)) 14310 goto out_no_mqe_complete; 14311 14312 /* Get the reference to the active mbox command */ 14313 spin_lock_irqsave(&phba->hbalock, iflags); 14314 pmb = phba->sli.mbox_active; 14315 if (unlikely(!pmb)) { 14316 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14317 "1832 No pending MBOX command to handle\n"); 14318 spin_unlock_irqrestore(&phba->hbalock, iflags); 14319 goto out_no_mqe_complete; 14320 } 14321 spin_unlock_irqrestore(&phba->hbalock, iflags); 14322 mqe = &pmb->u.mqe; 14323 pmbox = (MAILBOX_t *)&pmb->u.mqe; 14324 mbox = phba->mbox; 14325 vport = pmb->vport; 14326 14327 /* Reset heartbeat timer */ 14328 phba->last_completion_time = jiffies; 14329 del_timer(&phba->sli.mbox_tmo); 14330 14331 /* Move mbox data to caller's mailbox region, do endian swapping */ 14332 if (pmb->mbox_cmpl && mbox) 14333 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 14334 14335 /* 14336 * For mcqe errors, conditionally move a modified error code to 14337 * the mbox so that the error will not be missed. 14338 */ 14339 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 14340 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 14341 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 14342 bf_set(lpfc_mqe_status, mqe, 14343 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 14344 } 14345 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 14346 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 14347 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 14348 "MBOX dflt rpi: status:x%x rpi:x%x", 14349 mcqe_status, 14350 pmbox->un.varWords[0], 0); 14351 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 14352 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 14353 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 14354 14355 /* Reg_LOGIN of dflt RPI was successful. Mark the 14356 * node as having an UNREG_LOGIN in progress to stop 14357 * an unsolicited PLOGI from the same NPortId from 14358 * starting another mailbox transaction. 14359 */ 14360 spin_lock_irqsave(&ndlp->lock, iflags); 14361 ndlp->nlp_flag |= NLP_UNREG_INP; 14362 spin_unlock_irqrestore(&ndlp->lock, iflags); 14363 lpfc_unreg_login(phba, vport->vpi, 14364 pmbox->un.varWords[0], pmb); 14365 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 14366 pmb->ctx_buf = mp; 14367 14368 /* No reference taken here. This is a default 14369 * RPI reg/immediate unreg cycle. The reference was 14370 * taken in the reg rpi path and is released when 14371 * this mailbox completes. 14372 */ 14373 pmb->ctx_ndlp = ndlp; 14374 pmb->vport = vport; 14375 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 14376 if (rc != MBX_BUSY) 14377 lpfc_printf_log(phba, KERN_ERR, 14378 LOG_TRACE_EVENT, 14379 "0385 rc should " 14380 "have been MBX_BUSY\n"); 14381 if (rc != MBX_NOT_FINISHED) 14382 goto send_current_mbox; 14383 } 14384 } 14385 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 14386 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 14387 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 14388 14389 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 14390 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 14391 spin_lock_irqsave(&phba->hbalock, iflags); 14392 /* Release the mailbox command posting token */ 14393 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14394 phba->sli.mbox_active = NULL; 14395 if (bf_get(lpfc_trailer_consumed, mcqe)) 14396 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14397 spin_unlock_irqrestore(&phba->hbalock, iflags); 14398 14399 /* Post the next mbox command, if there is one */ 14400 lpfc_sli4_post_async_mbox(phba); 14401 14402 /* Process cmpl now */ 14403 if (pmb->mbox_cmpl) 14404 pmb->mbox_cmpl(phba, pmb); 14405 return false; 14406 } 14407 14408 /* There is mailbox completion work to queue to the worker thread */ 14409 spin_lock_irqsave(&phba->hbalock, iflags); 14410 __lpfc_mbox_cmpl_put(phba, pmb); 14411 phba->work_ha |= HA_MBATT; 14412 spin_unlock_irqrestore(&phba->hbalock, iflags); 14413 workposted = true; 14414 14415 send_current_mbox: 14416 spin_lock_irqsave(&phba->hbalock, iflags); 14417 /* Release the mailbox command posting token */ 14418 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14419 /* Setting active mailbox pointer need to be in sync to flag clear */ 14420 phba->sli.mbox_active = NULL; 14421 if (bf_get(lpfc_trailer_consumed, mcqe)) 14422 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14423 spin_unlock_irqrestore(&phba->hbalock, iflags); 14424 /* Wake up worker thread to post the next pending mailbox command */ 14425 lpfc_worker_wake_up(phba); 14426 return workposted; 14427 14428 out_no_mqe_complete: 14429 spin_lock_irqsave(&phba->hbalock, iflags); 14430 if (bf_get(lpfc_trailer_consumed, mcqe)) 14431 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14432 spin_unlock_irqrestore(&phba->hbalock, iflags); 14433 return false; 14434 } 14435 14436 /** 14437 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 14438 * @phba: Pointer to HBA context object. 14439 * @cq: Pointer to associated CQ 14440 * @cqe: Pointer to mailbox completion queue entry. 14441 * 14442 * This routine process a mailbox completion queue entry, it invokes the 14443 * proper mailbox complete handling or asynchronous event handling routine 14444 * according to the MCQE's async bit. 14445 * 14446 * Return: true if work posted to worker thread, otherwise false. 14447 **/ 14448 static bool 14449 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14450 struct lpfc_cqe *cqe) 14451 { 14452 struct lpfc_mcqe mcqe; 14453 bool workposted; 14454 14455 cq->CQ_mbox++; 14456 14457 /* Copy the mailbox MCQE and convert endian order as needed */ 14458 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 14459 14460 /* Invoke the proper event handling routine */ 14461 if (!bf_get(lpfc_trailer_async, &mcqe)) 14462 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 14463 else 14464 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 14465 return workposted; 14466 } 14467 14468 /** 14469 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 14470 * @phba: Pointer to HBA context object. 14471 * @cq: Pointer to associated CQ 14472 * @wcqe: Pointer to work-queue completion queue entry. 14473 * 14474 * This routine handles an ELS work-queue completion event. 14475 * 14476 * Return: true if work posted to worker thread, otherwise false. 14477 **/ 14478 static bool 14479 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14480 struct lpfc_wcqe_complete *wcqe) 14481 { 14482 struct lpfc_iocbq *irspiocbq; 14483 unsigned long iflags; 14484 struct lpfc_sli_ring *pring = cq->pring; 14485 int txq_cnt = 0; 14486 int txcmplq_cnt = 0; 14487 14488 /* Check for response status */ 14489 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14490 /* Log the error status */ 14491 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14492 "0357 ELS CQE error: status=x%x: " 14493 "CQE: %08x %08x %08x %08x\n", 14494 bf_get(lpfc_wcqe_c_status, wcqe), 14495 wcqe->word0, wcqe->total_data_placed, 14496 wcqe->parameter, wcqe->word3); 14497 } 14498 14499 /* Get an irspiocbq for later ELS response processing use */ 14500 irspiocbq = lpfc_sli_get_iocbq(phba); 14501 if (!irspiocbq) { 14502 if (!list_empty(&pring->txq)) 14503 txq_cnt++; 14504 if (!list_empty(&pring->txcmplq)) 14505 txcmplq_cnt++; 14506 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14507 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 14508 "els_txcmplq_cnt=%d\n", 14509 txq_cnt, phba->iocb_cnt, 14510 txcmplq_cnt); 14511 return false; 14512 } 14513 14514 /* Save off the slow-path queue event for work thread to process */ 14515 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 14516 spin_lock_irqsave(&phba->hbalock, iflags); 14517 list_add_tail(&irspiocbq->cq_event.list, 14518 &phba->sli4_hba.sp_queue_event); 14519 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14520 spin_unlock_irqrestore(&phba->hbalock, iflags); 14521 14522 return true; 14523 } 14524 14525 /** 14526 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 14527 * @phba: Pointer to HBA context object. 14528 * @wcqe: Pointer to work-queue completion queue entry. 14529 * 14530 * This routine handles slow-path WQ entry consumed event by invoking the 14531 * proper WQ release routine to the slow-path WQ. 14532 **/ 14533 static void 14534 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 14535 struct lpfc_wcqe_release *wcqe) 14536 { 14537 /* sanity check on queue memory */ 14538 if (unlikely(!phba->sli4_hba.els_wq)) 14539 return; 14540 /* Check for the slow-path ELS work queue */ 14541 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 14542 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 14543 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14544 else 14545 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14546 "2579 Slow-path wqe consume event carries " 14547 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 14548 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 14549 phba->sli4_hba.els_wq->queue_id); 14550 } 14551 14552 /** 14553 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 14554 * @phba: Pointer to HBA context object. 14555 * @cq: Pointer to a WQ completion queue. 14556 * @wcqe: Pointer to work-queue completion queue entry. 14557 * 14558 * This routine handles an XRI abort event. 14559 * 14560 * Return: true if work posted to worker thread, otherwise false. 14561 **/ 14562 static bool 14563 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 14564 struct lpfc_queue *cq, 14565 struct sli4_wcqe_xri_aborted *wcqe) 14566 { 14567 bool workposted = false; 14568 struct lpfc_cq_event *cq_event; 14569 unsigned long iflags; 14570 14571 switch (cq->subtype) { 14572 case LPFC_IO: 14573 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 14574 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14575 /* Notify aborted XRI for NVME work queue */ 14576 if (phba->nvmet_support) 14577 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 14578 } 14579 workposted = false; 14580 break; 14581 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 14582 case LPFC_ELS: 14583 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 14584 if (!cq_event) { 14585 workposted = false; 14586 break; 14587 } 14588 cq_event->hdwq = cq->hdwq; 14589 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14590 iflags); 14591 list_add_tail(&cq_event->list, 14592 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 14593 /* Set the els xri abort event flag */ 14594 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 14595 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14596 iflags); 14597 workposted = true; 14598 break; 14599 default: 14600 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14601 "0603 Invalid CQ subtype %d: " 14602 "%08x %08x %08x %08x\n", 14603 cq->subtype, wcqe->word0, wcqe->parameter, 14604 wcqe->word2, wcqe->word3); 14605 workposted = false; 14606 break; 14607 } 14608 return workposted; 14609 } 14610 14611 #define FC_RCTL_MDS_DIAGS 0xF4 14612 14613 /** 14614 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 14615 * @phba: Pointer to HBA context object. 14616 * @rcqe: Pointer to receive-queue completion queue entry. 14617 * 14618 * This routine process a receive-queue completion queue entry. 14619 * 14620 * Return: true if work posted to worker thread, otherwise false. 14621 **/ 14622 static bool 14623 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 14624 { 14625 bool workposted = false; 14626 struct fc_frame_header *fc_hdr; 14627 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 14628 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 14629 struct lpfc_nvmet_tgtport *tgtp; 14630 struct hbq_dmabuf *dma_buf; 14631 uint32_t status, rq_id; 14632 unsigned long iflags; 14633 14634 /* sanity check on queue memory */ 14635 if (unlikely(!hrq) || unlikely(!drq)) 14636 return workposted; 14637 14638 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14639 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14640 else 14641 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14642 if (rq_id != hrq->queue_id) 14643 goto out; 14644 14645 status = bf_get(lpfc_rcqe_status, rcqe); 14646 switch (status) { 14647 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14648 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14649 "2537 Receive Frame Truncated!!\n"); 14650 fallthrough; 14651 case FC_STATUS_RQ_SUCCESS: 14652 spin_lock_irqsave(&phba->hbalock, iflags); 14653 lpfc_sli4_rq_release(hrq, drq); 14654 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14655 if (!dma_buf) { 14656 hrq->RQ_no_buf_found++; 14657 spin_unlock_irqrestore(&phba->hbalock, iflags); 14658 goto out; 14659 } 14660 hrq->RQ_rcv_buf++; 14661 hrq->RQ_buf_posted--; 14662 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 14663 14664 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14665 14666 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 14667 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 14668 spin_unlock_irqrestore(&phba->hbalock, iflags); 14669 /* Handle MDS Loopback frames */ 14670 if (!(phba->pport->load_flag & FC_UNLOADING)) 14671 lpfc_sli4_handle_mds_loopback(phba->pport, 14672 dma_buf); 14673 else 14674 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14675 break; 14676 } 14677 14678 /* save off the frame for the work thread to process */ 14679 list_add_tail(&dma_buf->cq_event.list, 14680 &phba->sli4_hba.sp_queue_event); 14681 /* Frame received */ 14682 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14683 spin_unlock_irqrestore(&phba->hbalock, iflags); 14684 workposted = true; 14685 break; 14686 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14687 if (phba->nvmet_support) { 14688 tgtp = phba->targetport->private; 14689 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14690 "6402 RQE Error x%x, posted %d err_cnt " 14691 "%d: %x %x %x\n", 14692 status, hrq->RQ_buf_posted, 14693 hrq->RQ_no_posted_buf, 14694 atomic_read(&tgtp->rcv_fcp_cmd_in), 14695 atomic_read(&tgtp->rcv_fcp_cmd_out), 14696 atomic_read(&tgtp->xmt_fcp_release)); 14697 } 14698 fallthrough; 14699 14700 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14701 hrq->RQ_no_posted_buf++; 14702 /* Post more buffers if possible */ 14703 spin_lock_irqsave(&phba->hbalock, iflags); 14704 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 14705 spin_unlock_irqrestore(&phba->hbalock, iflags); 14706 workposted = true; 14707 break; 14708 case FC_STATUS_RQ_DMA_FAILURE: 14709 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14710 "2564 RQE DMA Error x%x, x%08x x%08x x%08x " 14711 "x%08x\n", 14712 status, rcqe->word0, rcqe->word1, 14713 rcqe->word2, rcqe->word3); 14714 14715 /* If IV set, no further recovery */ 14716 if (bf_get(lpfc_rcqe_iv, rcqe)) 14717 break; 14718 14719 /* recycle consumed resource */ 14720 spin_lock_irqsave(&phba->hbalock, iflags); 14721 lpfc_sli4_rq_release(hrq, drq); 14722 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14723 if (!dma_buf) { 14724 hrq->RQ_no_buf_found++; 14725 spin_unlock_irqrestore(&phba->hbalock, iflags); 14726 break; 14727 } 14728 hrq->RQ_rcv_buf++; 14729 hrq->RQ_buf_posted--; 14730 spin_unlock_irqrestore(&phba->hbalock, iflags); 14731 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14732 break; 14733 default: 14734 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14735 "2565 Unexpected RQE Status x%x, w0-3 x%08x " 14736 "x%08x x%08x x%08x\n", 14737 status, rcqe->word0, rcqe->word1, 14738 rcqe->word2, rcqe->word3); 14739 break; 14740 } 14741 out: 14742 return workposted; 14743 } 14744 14745 /** 14746 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 14747 * @phba: Pointer to HBA context object. 14748 * @cq: Pointer to the completion queue. 14749 * @cqe: Pointer to a completion queue entry. 14750 * 14751 * This routine process a slow-path work-queue or receive queue completion queue 14752 * entry. 14753 * 14754 * Return: true if work posted to worker thread, otherwise false. 14755 **/ 14756 static bool 14757 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14758 struct lpfc_cqe *cqe) 14759 { 14760 struct lpfc_cqe cqevt; 14761 bool workposted = false; 14762 14763 /* Copy the work queue CQE and convert endian order if needed */ 14764 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14765 14766 /* Check and process for different type of WCQE and dispatch */ 14767 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14768 case CQE_CODE_COMPL_WQE: 14769 /* Process the WQ/RQ complete event */ 14770 phba->last_completion_time = jiffies; 14771 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14772 (struct lpfc_wcqe_complete *)&cqevt); 14773 break; 14774 case CQE_CODE_RELEASE_WQE: 14775 /* Process the WQ release event */ 14776 lpfc_sli4_sp_handle_rel_wcqe(phba, 14777 (struct lpfc_wcqe_release *)&cqevt); 14778 break; 14779 case CQE_CODE_XRI_ABORTED: 14780 /* Process the WQ XRI abort event */ 14781 phba->last_completion_time = jiffies; 14782 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14783 (struct sli4_wcqe_xri_aborted *)&cqevt); 14784 break; 14785 case CQE_CODE_RECEIVE: 14786 case CQE_CODE_RECEIVE_V1: 14787 /* Process the RQ event */ 14788 phba->last_completion_time = jiffies; 14789 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14790 (struct lpfc_rcqe *)&cqevt); 14791 break; 14792 default: 14793 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14794 "0388 Not a valid WCQE code: x%x\n", 14795 bf_get(lpfc_cqe_code, &cqevt)); 14796 break; 14797 } 14798 return workposted; 14799 } 14800 14801 /** 14802 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14803 * @phba: Pointer to HBA context object. 14804 * @eqe: Pointer to fast-path event queue entry. 14805 * @speq: Pointer to slow-path event queue. 14806 * 14807 * This routine process a event queue entry from the slow-path event queue. 14808 * It will check the MajorCode and MinorCode to determine this is for a 14809 * completion event on a completion queue, if not, an error shall be logged 14810 * and just return. Otherwise, it will get to the corresponding completion 14811 * queue and process all the entries on that completion queue, rearm the 14812 * completion queue, and then return. 14813 * 14814 **/ 14815 static void 14816 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14817 struct lpfc_queue *speq) 14818 { 14819 struct lpfc_queue *cq = NULL, *childq; 14820 uint16_t cqid; 14821 int ret = 0; 14822 14823 /* Get the reference to the corresponding CQ */ 14824 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14825 14826 list_for_each_entry(childq, &speq->child_list, list) { 14827 if (childq->queue_id == cqid) { 14828 cq = childq; 14829 break; 14830 } 14831 } 14832 if (unlikely(!cq)) { 14833 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14834 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14835 "0365 Slow-path CQ identifier " 14836 "(%d) does not exist\n", cqid); 14837 return; 14838 } 14839 14840 /* Save EQ associated with this CQ */ 14841 cq->assoc_qp = speq; 14842 14843 if (is_kdump_kernel()) 14844 ret = queue_work(phba->wq, &cq->spwork); 14845 else 14846 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14847 14848 if (!ret) 14849 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14850 "0390 Cannot schedule queue work " 14851 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14852 cqid, cq->queue_id, raw_smp_processor_id()); 14853 } 14854 14855 /** 14856 * __lpfc_sli4_process_cq - Process elements of a CQ 14857 * @phba: Pointer to HBA context object. 14858 * @cq: Pointer to CQ to be processed 14859 * @handler: Routine to process each cqe 14860 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14861 * 14862 * This routine processes completion queue entries in a CQ. While a valid 14863 * queue element is found, the handler is called. During processing checks 14864 * are made for periodic doorbell writes to let the hardware know of 14865 * element consumption. 14866 * 14867 * If the max limit on cqes to process is hit, or there are no more valid 14868 * entries, the loop stops. If we processed a sufficient number of elements, 14869 * meaning there is sufficient load, rather than rearming and generating 14870 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14871 * indicates no rescheduling. 14872 * 14873 * Returns True if work scheduled, False otherwise. 14874 **/ 14875 static bool 14876 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14877 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14878 struct lpfc_cqe *), unsigned long *delay) 14879 { 14880 struct lpfc_cqe *cqe; 14881 bool workposted = false; 14882 int count = 0, consumed = 0; 14883 bool arm = true; 14884 14885 /* default - no reschedule */ 14886 *delay = 0; 14887 14888 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14889 goto rearm_and_exit; 14890 14891 /* Process all the entries to the CQ */ 14892 cq->q_flag = 0; 14893 cqe = lpfc_sli4_cq_get(cq); 14894 while (cqe) { 14895 workposted |= handler(phba, cq, cqe); 14896 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14897 14898 consumed++; 14899 if (!(++count % cq->max_proc_limit)) 14900 break; 14901 14902 if (!(count % cq->notify_interval)) { 14903 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14904 LPFC_QUEUE_NOARM); 14905 consumed = 0; 14906 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14907 } 14908 14909 if (count == LPFC_NVMET_CQ_NOTIFY) 14910 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14911 14912 cqe = lpfc_sli4_cq_get(cq); 14913 } 14914 if (count >= phba->cfg_cq_poll_threshold) { 14915 *delay = 1; 14916 arm = false; 14917 } 14918 14919 /* Track the max number of CQEs processed in 1 EQ */ 14920 if (count > cq->CQ_max_cqe) 14921 cq->CQ_max_cqe = count; 14922 14923 cq->assoc_qp->EQ_cqe_cnt += count; 14924 14925 /* Catch the no cq entry condition */ 14926 if (unlikely(count == 0)) 14927 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14928 "0369 No entry from completion queue " 14929 "qid=%d\n", cq->queue_id); 14930 14931 xchg(&cq->queue_claimed, 0); 14932 14933 rearm_and_exit: 14934 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14935 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14936 14937 return workposted; 14938 } 14939 14940 /** 14941 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14942 * @cq: pointer to CQ to process 14943 * 14944 * This routine calls the cq processing routine with a handler specific 14945 * to the type of queue bound to it. 14946 * 14947 * The CQ routine returns two values: the first is the calling status, 14948 * which indicates whether work was queued to the background discovery 14949 * thread. If true, the routine should wakeup the discovery thread; 14950 * the second is the delay parameter. If non-zero, rather than rearming 14951 * the CQ and yet another interrupt, the CQ handler should be queued so 14952 * that it is processed in a subsequent polling action. The value of 14953 * the delay indicates when to reschedule it. 14954 **/ 14955 static void 14956 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14957 { 14958 struct lpfc_hba *phba = cq->phba; 14959 unsigned long delay; 14960 bool workposted = false; 14961 int ret = 0; 14962 14963 /* Process and rearm the CQ */ 14964 switch (cq->type) { 14965 case LPFC_MCQ: 14966 workposted |= __lpfc_sli4_process_cq(phba, cq, 14967 lpfc_sli4_sp_handle_mcqe, 14968 &delay); 14969 break; 14970 case LPFC_WCQ: 14971 if (cq->subtype == LPFC_IO) 14972 workposted |= __lpfc_sli4_process_cq(phba, cq, 14973 lpfc_sli4_fp_handle_cqe, 14974 &delay); 14975 else 14976 workposted |= __lpfc_sli4_process_cq(phba, cq, 14977 lpfc_sli4_sp_handle_cqe, 14978 &delay); 14979 break; 14980 default: 14981 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14982 "0370 Invalid completion queue type (%d)\n", 14983 cq->type); 14984 return; 14985 } 14986 14987 if (delay) { 14988 if (is_kdump_kernel()) 14989 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14990 delay); 14991 else 14992 ret = queue_delayed_work_on(cq->chann, phba->wq, 14993 &cq->sched_spwork, delay); 14994 if (!ret) 14995 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14996 "0394 Cannot schedule queue work " 14997 "for cqid=%d on CPU %d\n", 14998 cq->queue_id, cq->chann); 14999 } 15000 15001 /* wake up worker thread if there are works to be done */ 15002 if (workposted) 15003 lpfc_worker_wake_up(phba); 15004 } 15005 15006 /** 15007 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 15008 * interrupt 15009 * @work: pointer to work element 15010 * 15011 * translates from the work handler and calls the slow-path handler. 15012 **/ 15013 static void 15014 lpfc_sli4_sp_process_cq(struct work_struct *work) 15015 { 15016 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 15017 15018 __lpfc_sli4_sp_process_cq(cq); 15019 } 15020 15021 /** 15022 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 15023 * @work: pointer to work element 15024 * 15025 * translates from the work handler and calls the slow-path handler. 15026 **/ 15027 static void 15028 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 15029 { 15030 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15031 struct lpfc_queue, sched_spwork); 15032 15033 __lpfc_sli4_sp_process_cq(cq); 15034 } 15035 15036 /** 15037 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 15038 * @phba: Pointer to HBA context object. 15039 * @cq: Pointer to associated CQ 15040 * @wcqe: Pointer to work-queue completion queue entry. 15041 * 15042 * This routine process a fast-path work queue completion entry from fast-path 15043 * event queue for FCP command response completion. 15044 **/ 15045 static void 15046 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15047 struct lpfc_wcqe_complete *wcqe) 15048 { 15049 struct lpfc_sli_ring *pring = cq->pring; 15050 struct lpfc_iocbq *cmdiocbq; 15051 unsigned long iflags; 15052 15053 /* Check for response status */ 15054 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 15055 /* If resource errors reported from HBA, reduce queue 15056 * depth of the SCSI device. 15057 */ 15058 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 15059 IOSTAT_LOCAL_REJECT)) && 15060 ((wcqe->parameter & IOERR_PARAM_MASK) == 15061 IOERR_NO_RESOURCES)) 15062 phba->lpfc_rampdown_queue_depth(phba); 15063 15064 /* Log the cmpl status */ 15065 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 15066 "0373 FCP CQE cmpl: status=x%x: " 15067 "CQE: %08x %08x %08x %08x\n", 15068 bf_get(lpfc_wcqe_c_status, wcqe), 15069 wcqe->word0, wcqe->total_data_placed, 15070 wcqe->parameter, wcqe->word3); 15071 } 15072 15073 /* Look up the FCP command IOCB and create pseudo response IOCB */ 15074 spin_lock_irqsave(&pring->ring_lock, iflags); 15075 pring->stats.iocb_event++; 15076 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 15077 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15078 spin_unlock_irqrestore(&pring->ring_lock, iflags); 15079 if (unlikely(!cmdiocbq)) { 15080 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15081 "0374 FCP complete with no corresponding " 15082 "cmdiocb: iotag (%d)\n", 15083 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15084 return; 15085 } 15086 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 15087 cmdiocbq->isr_timestamp = cq->isr_timestamp; 15088 #endif 15089 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 15090 spin_lock_irqsave(&phba->hbalock, iflags); 15091 cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 15092 spin_unlock_irqrestore(&phba->hbalock, iflags); 15093 } 15094 15095 if (cmdiocbq->cmd_cmpl) { 15096 /* For FCP the flag is cleared in cmd_cmpl */ 15097 if (!(cmdiocbq->cmd_flag & LPFC_IO_FCP) && 15098 cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) { 15099 spin_lock_irqsave(&phba->hbalock, iflags); 15100 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 15101 spin_unlock_irqrestore(&phba->hbalock, iflags); 15102 } 15103 15104 /* Pass the cmd_iocb and the wcqe to the upper layer */ 15105 memcpy(&cmdiocbq->wcqe_cmpl, wcqe, 15106 sizeof(struct lpfc_wcqe_complete)); 15107 cmdiocbq->cmd_cmpl(phba, cmdiocbq, cmdiocbq); 15108 } else { 15109 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15110 "0375 FCP cmdiocb not callback function " 15111 "iotag: (%d)\n", 15112 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15113 } 15114 } 15115 15116 /** 15117 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 15118 * @phba: Pointer to HBA context object. 15119 * @cq: Pointer to completion queue. 15120 * @wcqe: Pointer to work-queue completion queue entry. 15121 * 15122 * This routine handles an fast-path WQ entry consumed event by invoking the 15123 * proper WQ release routine to the slow-path WQ. 15124 **/ 15125 static void 15126 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15127 struct lpfc_wcqe_release *wcqe) 15128 { 15129 struct lpfc_queue *childwq; 15130 bool wqid_matched = false; 15131 uint16_t hba_wqid; 15132 15133 /* Check for fast-path FCP work queue release */ 15134 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 15135 list_for_each_entry(childwq, &cq->child_list, list) { 15136 if (childwq->queue_id == hba_wqid) { 15137 lpfc_sli4_wq_release(childwq, 15138 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 15139 if (childwq->q_flag & HBA_NVMET_WQFULL) 15140 lpfc_nvmet_wqfull_process(phba, childwq); 15141 wqid_matched = true; 15142 break; 15143 } 15144 } 15145 /* Report warning log message if no match found */ 15146 if (wqid_matched != true) 15147 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15148 "2580 Fast-path wqe consume event carries " 15149 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 15150 } 15151 15152 /** 15153 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 15154 * @phba: Pointer to HBA context object. 15155 * @cq: Pointer to completion queue. 15156 * @rcqe: Pointer to receive-queue completion queue entry. 15157 * 15158 * This routine process a receive-queue completion queue entry. 15159 * 15160 * Return: true if work posted to worker thread, otherwise false. 15161 **/ 15162 static bool 15163 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15164 struct lpfc_rcqe *rcqe) 15165 { 15166 bool workposted = false; 15167 struct lpfc_queue *hrq; 15168 struct lpfc_queue *drq; 15169 struct rqb_dmabuf *dma_buf; 15170 struct fc_frame_header *fc_hdr; 15171 struct lpfc_nvmet_tgtport *tgtp; 15172 uint32_t status, rq_id; 15173 unsigned long iflags; 15174 uint32_t fctl, idx; 15175 15176 if ((phba->nvmet_support == 0) || 15177 (phba->sli4_hba.nvmet_cqset == NULL)) 15178 return workposted; 15179 15180 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 15181 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 15182 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 15183 15184 /* sanity check on queue memory */ 15185 if (unlikely(!hrq) || unlikely(!drq)) 15186 return workposted; 15187 15188 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 15189 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 15190 else 15191 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 15192 15193 if ((phba->nvmet_support == 0) || 15194 (rq_id != hrq->queue_id)) 15195 return workposted; 15196 15197 status = bf_get(lpfc_rcqe_status, rcqe); 15198 switch (status) { 15199 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 15200 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15201 "6126 Receive Frame Truncated!!\n"); 15202 fallthrough; 15203 case FC_STATUS_RQ_SUCCESS: 15204 spin_lock_irqsave(&phba->hbalock, iflags); 15205 lpfc_sli4_rq_release(hrq, drq); 15206 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15207 if (!dma_buf) { 15208 hrq->RQ_no_buf_found++; 15209 spin_unlock_irqrestore(&phba->hbalock, iflags); 15210 goto out; 15211 } 15212 spin_unlock_irqrestore(&phba->hbalock, iflags); 15213 hrq->RQ_rcv_buf++; 15214 hrq->RQ_buf_posted--; 15215 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 15216 15217 /* Just some basic sanity checks on FCP Command frame */ 15218 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 15219 fc_hdr->fh_f_ctl[1] << 8 | 15220 fc_hdr->fh_f_ctl[2]); 15221 if (((fctl & 15222 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 15223 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 15224 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 15225 goto drop; 15226 15227 if (fc_hdr->fh_type == FC_TYPE_FCP) { 15228 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 15229 lpfc_nvmet_unsol_fcp_event( 15230 phba, idx, dma_buf, cq->isr_timestamp, 15231 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 15232 return false; 15233 } 15234 drop: 15235 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15236 break; 15237 case FC_STATUS_INSUFF_BUF_FRM_DISC: 15238 if (phba->nvmet_support) { 15239 tgtp = phba->targetport->private; 15240 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15241 "6401 RQE Error x%x, posted %d err_cnt " 15242 "%d: %x %x %x\n", 15243 status, hrq->RQ_buf_posted, 15244 hrq->RQ_no_posted_buf, 15245 atomic_read(&tgtp->rcv_fcp_cmd_in), 15246 atomic_read(&tgtp->rcv_fcp_cmd_out), 15247 atomic_read(&tgtp->xmt_fcp_release)); 15248 } 15249 fallthrough; 15250 15251 case FC_STATUS_INSUFF_BUF_NEED_BUF: 15252 hrq->RQ_no_posted_buf++; 15253 /* Post more buffers if possible */ 15254 break; 15255 case FC_STATUS_RQ_DMA_FAILURE: 15256 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15257 "2575 RQE DMA Error x%x, x%08x x%08x x%08x " 15258 "x%08x\n", 15259 status, rcqe->word0, rcqe->word1, 15260 rcqe->word2, rcqe->word3); 15261 15262 /* If IV set, no further recovery */ 15263 if (bf_get(lpfc_rcqe_iv, rcqe)) 15264 break; 15265 15266 /* recycle consumed resource */ 15267 spin_lock_irqsave(&phba->hbalock, iflags); 15268 lpfc_sli4_rq_release(hrq, drq); 15269 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15270 if (!dma_buf) { 15271 hrq->RQ_no_buf_found++; 15272 spin_unlock_irqrestore(&phba->hbalock, iflags); 15273 break; 15274 } 15275 hrq->RQ_rcv_buf++; 15276 hrq->RQ_buf_posted--; 15277 spin_unlock_irqrestore(&phba->hbalock, iflags); 15278 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15279 break; 15280 default: 15281 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15282 "2576 Unexpected RQE Status x%x, w0-3 x%08x " 15283 "x%08x x%08x x%08x\n", 15284 status, rcqe->word0, rcqe->word1, 15285 rcqe->word2, rcqe->word3); 15286 break; 15287 } 15288 out: 15289 return workposted; 15290 } 15291 15292 /** 15293 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 15294 * @phba: adapter with cq 15295 * @cq: Pointer to the completion queue. 15296 * @cqe: Pointer to fast-path completion queue entry. 15297 * 15298 * This routine process a fast-path work queue completion entry from fast-path 15299 * event queue for FCP command response completion. 15300 * 15301 * Return: true if work posted to worker thread, otherwise false. 15302 **/ 15303 static bool 15304 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15305 struct lpfc_cqe *cqe) 15306 { 15307 struct lpfc_wcqe_release wcqe; 15308 bool workposted = false; 15309 15310 /* Copy the work queue CQE and convert endian order if needed */ 15311 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 15312 15313 /* Check and process for different type of WCQE and dispatch */ 15314 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 15315 case CQE_CODE_COMPL_WQE: 15316 case CQE_CODE_NVME_ERSP: 15317 cq->CQ_wq++; 15318 /* Process the WQ complete event */ 15319 phba->last_completion_time = jiffies; 15320 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 15321 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 15322 (struct lpfc_wcqe_complete *)&wcqe); 15323 break; 15324 case CQE_CODE_RELEASE_WQE: 15325 cq->CQ_release_wqe++; 15326 /* Process the WQ release event */ 15327 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 15328 (struct lpfc_wcqe_release *)&wcqe); 15329 break; 15330 case CQE_CODE_XRI_ABORTED: 15331 cq->CQ_xri_aborted++; 15332 /* Process the WQ XRI abort event */ 15333 phba->last_completion_time = jiffies; 15334 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 15335 (struct sli4_wcqe_xri_aborted *)&wcqe); 15336 break; 15337 case CQE_CODE_RECEIVE_V1: 15338 case CQE_CODE_RECEIVE: 15339 phba->last_completion_time = jiffies; 15340 if (cq->subtype == LPFC_NVMET) { 15341 workposted = lpfc_sli4_nvmet_handle_rcqe( 15342 phba, cq, (struct lpfc_rcqe *)&wcqe); 15343 } 15344 break; 15345 default: 15346 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15347 "0144 Not a valid CQE code: x%x\n", 15348 bf_get(lpfc_wcqe_c_code, &wcqe)); 15349 break; 15350 } 15351 return workposted; 15352 } 15353 15354 /** 15355 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 15356 * @cq: Pointer to CQ to be processed 15357 * 15358 * This routine calls the cq processing routine with the handler for 15359 * fast path CQEs. 15360 * 15361 * The CQ routine returns two values: the first is the calling status, 15362 * which indicates whether work was queued to the background discovery 15363 * thread. If true, the routine should wakeup the discovery thread; 15364 * the second is the delay parameter. If non-zero, rather than rearming 15365 * the CQ and yet another interrupt, the CQ handler should be queued so 15366 * that it is processed in a subsequent polling action. The value of 15367 * the delay indicates when to reschedule it. 15368 **/ 15369 static void 15370 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq) 15371 { 15372 struct lpfc_hba *phba = cq->phba; 15373 unsigned long delay; 15374 bool workposted = false; 15375 int ret; 15376 15377 /* process and rearm the CQ */ 15378 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 15379 &delay); 15380 15381 if (delay) { 15382 if (is_kdump_kernel()) 15383 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 15384 delay); 15385 else 15386 ret = queue_delayed_work_on(cq->chann, phba->wq, 15387 &cq->sched_irqwork, delay); 15388 if (!ret) 15389 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15390 "0367 Cannot schedule queue work " 15391 "for cqid=%d on CPU %d\n", 15392 cq->queue_id, cq->chann); 15393 } 15394 15395 /* wake up worker thread if there are works to be done */ 15396 if (workposted) 15397 lpfc_worker_wake_up(phba); 15398 } 15399 15400 /** 15401 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 15402 * interrupt 15403 * @work: pointer to work element 15404 * 15405 * translates from the work handler and calls the fast-path handler. 15406 **/ 15407 static void 15408 lpfc_sli4_hba_process_cq(struct work_struct *work) 15409 { 15410 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 15411 15412 __lpfc_sli4_hba_process_cq(cq); 15413 } 15414 15415 /** 15416 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 15417 * @phba: Pointer to HBA context object. 15418 * @eq: Pointer to the queue structure. 15419 * @eqe: Pointer to fast-path event queue entry. 15420 * @poll_mode: poll_mode to execute processing the cq. 15421 * 15422 * This routine process a event queue entry from the fast-path event queue. 15423 * It will check the MajorCode and MinorCode to determine this is for a 15424 * completion event on a completion queue, if not, an error shall be logged 15425 * and just return. Otherwise, it will get to the corresponding completion 15426 * queue and process all the entries on the completion queue, rearm the 15427 * completion queue, and then return. 15428 **/ 15429 static void 15430 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 15431 struct lpfc_eqe *eqe, enum lpfc_poll_mode poll_mode) 15432 { 15433 struct lpfc_queue *cq = NULL; 15434 uint32_t qidx = eq->hdwq; 15435 uint16_t cqid, id; 15436 int ret; 15437 15438 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 15439 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15440 "0366 Not a valid completion " 15441 "event: majorcode=x%x, minorcode=x%x\n", 15442 bf_get_le32(lpfc_eqe_major_code, eqe), 15443 bf_get_le32(lpfc_eqe_minor_code, eqe)); 15444 return; 15445 } 15446 15447 /* Get the reference to the corresponding CQ */ 15448 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 15449 15450 /* Use the fast lookup method first */ 15451 if (cqid <= phba->sli4_hba.cq_max) { 15452 cq = phba->sli4_hba.cq_lookup[cqid]; 15453 if (cq) 15454 goto work_cq; 15455 } 15456 15457 /* Next check for NVMET completion */ 15458 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 15459 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 15460 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 15461 /* Process NVMET unsol rcv */ 15462 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 15463 goto process_cq; 15464 } 15465 } 15466 15467 if (phba->sli4_hba.nvmels_cq && 15468 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 15469 /* Process NVME unsol rcv */ 15470 cq = phba->sli4_hba.nvmels_cq; 15471 } 15472 15473 /* Otherwise this is a Slow path event */ 15474 if (cq == NULL) { 15475 lpfc_sli4_sp_handle_eqe(phba, eqe, 15476 phba->sli4_hba.hdwq[qidx].hba_eq); 15477 return; 15478 } 15479 15480 process_cq: 15481 if (unlikely(cqid != cq->queue_id)) { 15482 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15483 "0368 Miss-matched fast-path completion " 15484 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 15485 cqid, cq->queue_id); 15486 return; 15487 } 15488 15489 work_cq: 15490 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 15491 if (phba->ktime_on) 15492 cq->isr_timestamp = ktime_get_ns(); 15493 else 15494 cq->isr_timestamp = 0; 15495 #endif 15496 15497 switch (poll_mode) { 15498 case LPFC_THREADED_IRQ: 15499 __lpfc_sli4_hba_process_cq(cq); 15500 break; 15501 case LPFC_QUEUE_WORK: 15502 default: 15503 if (is_kdump_kernel()) 15504 ret = queue_work(phba->wq, &cq->irqwork); 15505 else 15506 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 15507 if (!ret) 15508 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15509 "0383 Cannot schedule queue work " 15510 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 15511 cqid, cq->queue_id, 15512 raw_smp_processor_id()); 15513 break; 15514 } 15515 } 15516 15517 /** 15518 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 15519 * @work: pointer to work element 15520 * 15521 * translates from the work handler and calls the fast-path handler. 15522 **/ 15523 static void 15524 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 15525 { 15526 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15527 struct lpfc_queue, sched_irqwork); 15528 15529 __lpfc_sli4_hba_process_cq(cq); 15530 } 15531 15532 /** 15533 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 15534 * @irq: Interrupt number. 15535 * @dev_id: The device context pointer. 15536 * 15537 * This function is directly called from the PCI layer as an interrupt 15538 * service routine when device with SLI-4 interface spec is enabled with 15539 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 15540 * ring event in the HBA. However, when the device is enabled with either 15541 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 15542 * device-level interrupt handler. When the PCI slot is in error recovery 15543 * or the HBA is undergoing initialization, the interrupt handler will not 15544 * process the interrupt. The SCSI FCP fast-path ring event are handled in 15545 * the intrrupt context. This function is called without any lock held. 15546 * It gets the hbalock to access and update SLI data structures. Note that, 15547 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 15548 * equal to that of FCP CQ index. 15549 * 15550 * The link attention and ELS ring attention events are handled 15551 * by the worker thread. The interrupt handler signals the worker thread 15552 * and returns for these events. This function is called without any lock 15553 * held. It gets the hbalock to access and update SLI data structures. 15554 * 15555 * This function returns IRQ_HANDLED when interrupt is handled, IRQ_WAKE_THREAD 15556 * when interrupt is scheduled to be handled from a threaded irq context, or 15557 * else returns IRQ_NONE. 15558 **/ 15559 irqreturn_t 15560 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 15561 { 15562 struct lpfc_hba *phba; 15563 struct lpfc_hba_eq_hdl *hba_eq_hdl; 15564 struct lpfc_queue *fpeq; 15565 unsigned long iflag; 15566 int hba_eqidx; 15567 int ecount = 0; 15568 struct lpfc_eq_intr_info *eqi; 15569 15570 /* Get the driver's phba structure from the dev_id */ 15571 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 15572 phba = hba_eq_hdl->phba; 15573 hba_eqidx = hba_eq_hdl->idx; 15574 15575 if (unlikely(!phba)) 15576 return IRQ_NONE; 15577 if (unlikely(!phba->sli4_hba.hdwq)) 15578 return IRQ_NONE; 15579 15580 /* Get to the EQ struct associated with this vector */ 15581 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 15582 if (unlikely(!fpeq)) 15583 return IRQ_NONE; 15584 15585 /* Check device state for handling interrupt */ 15586 if (unlikely(lpfc_intr_state_check(phba))) { 15587 /* Check again for link_state with lock held */ 15588 spin_lock_irqsave(&phba->hbalock, iflag); 15589 if (phba->link_state < LPFC_LINK_DOWN) 15590 /* Flush, clear interrupt, and rearm the EQ */ 15591 lpfc_sli4_eqcq_flush(phba, fpeq); 15592 spin_unlock_irqrestore(&phba->hbalock, iflag); 15593 return IRQ_NONE; 15594 } 15595 15596 switch (fpeq->poll_mode) { 15597 case LPFC_THREADED_IRQ: 15598 /* CGN mgmt is mutually exclusive from irq processing */ 15599 if (phba->cmf_active_mode == LPFC_CFG_OFF) 15600 return IRQ_WAKE_THREAD; 15601 fallthrough; 15602 case LPFC_QUEUE_WORK: 15603 default: 15604 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 15605 eqi->icnt++; 15606 15607 fpeq->last_cpu = raw_smp_processor_id(); 15608 15609 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 15610 fpeq->q_flag & HBA_EQ_DELAY_CHK && 15611 phba->cfg_auto_imax && 15612 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 15613 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 15614 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, 15615 LPFC_MAX_AUTO_EQ_DELAY); 15616 15617 /* process and rearm the EQ */ 15618 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 15619 LPFC_QUEUE_WORK); 15620 15621 if (unlikely(ecount == 0)) { 15622 fpeq->EQ_no_entry++; 15623 if (phba->intr_type == MSIX) 15624 /* MSI-X treated interrupt served as no EQ share INT */ 15625 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15626 "0358 MSI-X interrupt with no EQE\n"); 15627 else 15628 /* Non MSI-X treated on interrupt as EQ share INT */ 15629 return IRQ_NONE; 15630 } 15631 } 15632 15633 return IRQ_HANDLED; 15634 } /* lpfc_sli4_hba_intr_handler */ 15635 15636 /** 15637 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 15638 * @irq: Interrupt number. 15639 * @dev_id: The device context pointer. 15640 * 15641 * This function is the device-level interrupt handler to device with SLI-4 15642 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 15643 * interrupt mode is enabled and there is an event in the HBA which requires 15644 * driver attention. This function invokes the slow-path interrupt attention 15645 * handling function and fast-path interrupt attention handling function in 15646 * turn to process the relevant HBA attention events. This function is called 15647 * without any lock held. It gets the hbalock to access and update SLI data 15648 * structures. 15649 * 15650 * This function returns IRQ_HANDLED when interrupt is handled, else it 15651 * returns IRQ_NONE. 15652 **/ 15653 irqreturn_t 15654 lpfc_sli4_intr_handler(int irq, void *dev_id) 15655 { 15656 struct lpfc_hba *phba; 15657 irqreturn_t hba_irq_rc; 15658 bool hba_handled = false; 15659 int qidx; 15660 15661 /* Get the driver's phba structure from the dev_id */ 15662 phba = (struct lpfc_hba *)dev_id; 15663 15664 if (unlikely(!phba)) 15665 return IRQ_NONE; 15666 15667 /* 15668 * Invoke fast-path host attention interrupt handling as appropriate. 15669 */ 15670 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 15671 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 15672 &phba->sli4_hba.hba_eq_hdl[qidx]); 15673 if (hba_irq_rc == IRQ_HANDLED) 15674 hba_handled |= true; 15675 } 15676 15677 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 15678 } /* lpfc_sli4_intr_handler */ 15679 15680 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 15681 { 15682 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 15683 struct lpfc_queue *eq; 15684 15685 rcu_read_lock(); 15686 15687 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 15688 lpfc_sli4_poll_eq(eq); 15689 if (!list_empty(&phba->poll_list)) 15690 mod_timer(&phba->cpuhp_poll_timer, 15691 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15692 15693 rcu_read_unlock(); 15694 } 15695 15696 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 15697 { 15698 struct lpfc_hba *phba = eq->phba; 15699 15700 /* kickstart slowpath processing if needed */ 15701 if (list_empty(&phba->poll_list)) 15702 mod_timer(&phba->cpuhp_poll_timer, 15703 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15704 15705 list_add_rcu(&eq->_poll_list, &phba->poll_list); 15706 synchronize_rcu(); 15707 } 15708 15709 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 15710 { 15711 struct lpfc_hba *phba = eq->phba; 15712 15713 /* Disable slowpath processing for this eq. Kick start the eq 15714 * by RE-ARMING the eq's ASAP 15715 */ 15716 list_del_rcu(&eq->_poll_list); 15717 synchronize_rcu(); 15718 15719 if (list_empty(&phba->poll_list)) 15720 del_timer_sync(&phba->cpuhp_poll_timer); 15721 } 15722 15723 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 15724 { 15725 struct lpfc_queue *eq, *next; 15726 15727 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 15728 list_del(&eq->_poll_list); 15729 15730 INIT_LIST_HEAD(&phba->poll_list); 15731 synchronize_rcu(); 15732 } 15733 15734 static inline void 15735 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15736 { 15737 if (mode == eq->mode) 15738 return; 15739 /* 15740 * currently this function is only called during a hotplug 15741 * event and the cpu on which this function is executing 15742 * is going offline. By now the hotplug has instructed 15743 * the scheduler to remove this cpu from cpu active mask. 15744 * So we don't need to work about being put aside by the 15745 * scheduler for a high priority process. Yes, the inte- 15746 * rrupts could come but they are known to retire ASAP. 15747 */ 15748 15749 /* Disable polling in the fastpath */ 15750 WRITE_ONCE(eq->mode, mode); 15751 /* flush out the store buffer */ 15752 smp_wmb(); 15753 15754 /* 15755 * Add this eq to the polling list and start polling. For 15756 * a grace period both interrupt handler and poller will 15757 * try to process the eq _but_ that's fine. We have a 15758 * synchronization mechanism in place (queue_claimed) to 15759 * deal with it. This is just a draining phase for int- 15760 * errupt handler (not eq's) as we have guranteed through 15761 * barrier that all the CPUs have seen the new CQ_POLLED 15762 * state. which will effectively disable the REARMING of 15763 * the EQ. The whole idea is eq's die off eventually as 15764 * we are not rearming EQ's anymore. 15765 */ 15766 mode ? lpfc_sli4_add_to_poll_list(eq) : 15767 lpfc_sli4_remove_from_poll_list(eq); 15768 } 15769 15770 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15771 { 15772 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15773 } 15774 15775 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15776 { 15777 struct lpfc_hba *phba = eq->phba; 15778 15779 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15780 15781 /* Kick start for the pending io's in h/w. 15782 * Once we switch back to interrupt processing on a eq 15783 * the io path completion will only arm eq's when it 15784 * receives a completion. But since eq's are in disa- 15785 * rmed state it doesn't receive a completion. This 15786 * creates a deadlock scenaro. 15787 */ 15788 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15789 } 15790 15791 /** 15792 * lpfc_sli4_queue_free - free a queue structure and associated memory 15793 * @queue: The queue structure to free. 15794 * 15795 * This function frees a queue structure and the DMAable memory used for 15796 * the host resident queue. This function must be called after destroying the 15797 * queue on the HBA. 15798 **/ 15799 void 15800 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15801 { 15802 struct lpfc_dmabuf *dmabuf; 15803 15804 if (!queue) 15805 return; 15806 15807 if (!list_empty(&queue->wq_list)) 15808 list_del(&queue->wq_list); 15809 15810 while (!list_empty(&queue->page_list)) { 15811 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15812 list); 15813 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15814 dmabuf->virt, dmabuf->phys); 15815 kfree(dmabuf); 15816 } 15817 if (queue->rqbp) { 15818 lpfc_free_rq_buffer(queue->phba, queue); 15819 kfree(queue->rqbp); 15820 } 15821 15822 if (!list_empty(&queue->cpu_list)) 15823 list_del(&queue->cpu_list); 15824 15825 kfree(queue); 15826 return; 15827 } 15828 15829 /** 15830 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15831 * @phba: The HBA that this queue is being created on. 15832 * @page_size: The size of a queue page 15833 * @entry_size: The size of each queue entry for this queue. 15834 * @entry_count: The number of entries that this queue will handle. 15835 * @cpu: The cpu that will primarily utilize this queue. 15836 * 15837 * This function allocates a queue structure and the DMAable memory used for 15838 * the host resident queue. This function must be called before creating the 15839 * queue on the HBA. 15840 **/ 15841 struct lpfc_queue * 15842 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15843 uint32_t entry_size, uint32_t entry_count, int cpu) 15844 { 15845 struct lpfc_queue *queue; 15846 struct lpfc_dmabuf *dmabuf; 15847 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15848 uint16_t x, pgcnt; 15849 15850 if (!phba->sli4_hba.pc_sli4_params.supported) 15851 hw_page_size = page_size; 15852 15853 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15854 15855 /* If needed, Adjust page count to match the max the adapter supports */ 15856 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15857 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15858 15859 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15860 GFP_KERNEL, cpu_to_node(cpu)); 15861 if (!queue) 15862 return NULL; 15863 15864 INIT_LIST_HEAD(&queue->list); 15865 INIT_LIST_HEAD(&queue->_poll_list); 15866 INIT_LIST_HEAD(&queue->wq_list); 15867 INIT_LIST_HEAD(&queue->wqfull_list); 15868 INIT_LIST_HEAD(&queue->page_list); 15869 INIT_LIST_HEAD(&queue->child_list); 15870 INIT_LIST_HEAD(&queue->cpu_list); 15871 15872 /* Set queue parameters now. If the system cannot provide memory 15873 * resources, the free routine needs to know what was allocated. 15874 */ 15875 queue->page_count = pgcnt; 15876 queue->q_pgs = (void **)&queue[1]; 15877 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15878 queue->entry_size = entry_size; 15879 queue->entry_count = entry_count; 15880 queue->page_size = hw_page_size; 15881 queue->phba = phba; 15882 15883 for (x = 0; x < queue->page_count; x++) { 15884 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15885 dev_to_node(&phba->pcidev->dev)); 15886 if (!dmabuf) 15887 goto out_fail; 15888 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15889 hw_page_size, &dmabuf->phys, 15890 GFP_KERNEL); 15891 if (!dmabuf->virt) { 15892 kfree(dmabuf); 15893 goto out_fail; 15894 } 15895 dmabuf->buffer_tag = x; 15896 list_add_tail(&dmabuf->list, &queue->page_list); 15897 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15898 queue->q_pgs[x] = dmabuf->virt; 15899 } 15900 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15901 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15902 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15903 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15904 15905 /* notify_interval will be set during q creation */ 15906 15907 return queue; 15908 out_fail: 15909 lpfc_sli4_queue_free(queue); 15910 return NULL; 15911 } 15912 15913 /** 15914 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15915 * @phba: HBA structure that indicates port to create a queue on. 15916 * @pci_barset: PCI BAR set flag. 15917 * 15918 * This function shall perform iomap of the specified PCI BAR address to host 15919 * memory address if not already done so and return it. The returned host 15920 * memory address can be NULL. 15921 */ 15922 static void __iomem * 15923 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15924 { 15925 if (!phba->pcidev) 15926 return NULL; 15927 15928 switch (pci_barset) { 15929 case WQ_PCI_BAR_0_AND_1: 15930 return phba->pci_bar0_memmap_p; 15931 case WQ_PCI_BAR_2_AND_3: 15932 return phba->pci_bar2_memmap_p; 15933 case WQ_PCI_BAR_4_AND_5: 15934 return phba->pci_bar4_memmap_p; 15935 default: 15936 break; 15937 } 15938 return NULL; 15939 } 15940 15941 /** 15942 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15943 * @phba: HBA structure that EQs are on. 15944 * @startq: The starting EQ index to modify 15945 * @numq: The number of EQs (consecutive indexes) to modify 15946 * @usdelay: amount of delay 15947 * 15948 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15949 * is set either by writing to a register (if supported by the SLI Port) 15950 * or by mailbox command. The mailbox command allows several EQs to be 15951 * updated at once. 15952 * 15953 * The @phba struct is used to send a mailbox command to HBA. The @startq 15954 * is used to get the starting EQ index to change. The @numq value is 15955 * used to specify how many consecutive EQ indexes, starting at EQ index, 15956 * are to be changed. This function is asynchronous and will wait for any 15957 * mailbox commands to finish before returning. 15958 * 15959 * On success this function will return a zero. If unable to allocate 15960 * enough memory this function will return -ENOMEM. If a mailbox command 15961 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15962 * have had their delay multipler changed. 15963 **/ 15964 void 15965 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15966 uint32_t numq, uint32_t usdelay) 15967 { 15968 struct lpfc_mbx_modify_eq_delay *eq_delay; 15969 LPFC_MBOXQ_t *mbox; 15970 struct lpfc_queue *eq; 15971 int cnt = 0, rc, length; 15972 uint32_t shdr_status, shdr_add_status; 15973 uint32_t dmult; 15974 int qidx; 15975 union lpfc_sli4_cfg_shdr *shdr; 15976 15977 if (startq >= phba->cfg_irq_chann) 15978 return; 15979 15980 if (usdelay > 0xFFFF) { 15981 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15982 "6429 usdelay %d too large. Scaled down to " 15983 "0xFFFF.\n", usdelay); 15984 usdelay = 0xFFFF; 15985 } 15986 15987 /* set values by EQ_DELAY register if supported */ 15988 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15989 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15990 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15991 if (!eq) 15992 continue; 15993 15994 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15995 15996 if (++cnt >= numq) 15997 break; 15998 } 15999 return; 16000 } 16001 16002 /* Otherwise, set values by mailbox cmd */ 16003 16004 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16005 if (!mbox) { 16006 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16007 "6428 Failed allocating mailbox cmd buffer." 16008 " EQ delay was not set.\n"); 16009 return; 16010 } 16011 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 16012 sizeof(struct lpfc_sli4_cfg_mhdr)); 16013 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16014 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 16015 length, LPFC_SLI4_MBX_EMBED); 16016 eq_delay = &mbox->u.mqe.un.eq_delay; 16017 16018 /* Calculate delay multiper from maximum interrupt per second */ 16019 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 16020 if (dmult) 16021 dmult--; 16022 if (dmult > LPFC_DMULT_MAX) 16023 dmult = LPFC_DMULT_MAX; 16024 16025 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 16026 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 16027 if (!eq) 16028 continue; 16029 eq->q_mode = usdelay; 16030 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 16031 eq_delay->u.request.eq[cnt].phase = 0; 16032 eq_delay->u.request.eq[cnt].delay_multi = dmult; 16033 16034 if (++cnt >= numq) 16035 break; 16036 } 16037 eq_delay->u.request.num_eq = cnt; 16038 16039 mbox->vport = phba->pport; 16040 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16041 mbox->ctx_ndlp = NULL; 16042 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16043 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 16044 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16045 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16046 if (shdr_status || shdr_add_status || rc) { 16047 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16048 "2512 MODIFY_EQ_DELAY mailbox failed with " 16049 "status x%x add_status x%x, mbx status x%x\n", 16050 shdr_status, shdr_add_status, rc); 16051 } 16052 mempool_free(mbox, phba->mbox_mem_pool); 16053 return; 16054 } 16055 16056 /** 16057 * lpfc_eq_create - Create an Event Queue on the HBA 16058 * @phba: HBA structure that indicates port to create a queue on. 16059 * @eq: The queue structure to use to create the event queue. 16060 * @imax: The maximum interrupt per second limit. 16061 * 16062 * This function creates an event queue, as detailed in @eq, on a port, 16063 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 16064 * 16065 * The @phba struct is used to send mailbox command to HBA. The @eq struct 16066 * is used to get the entry count and entry size that are necessary to 16067 * determine the number of pages to allocate and use for this queue. This 16068 * function will send the EQ_CREATE mailbox command to the HBA to setup the 16069 * event queue. This function is asynchronous and will wait for the mailbox 16070 * command to finish before continuing. 16071 * 16072 * On success this function will return a zero. If unable to allocate enough 16073 * memory this function will return -ENOMEM. If the queue create mailbox command 16074 * fails this function will return -ENXIO. 16075 **/ 16076 int 16077 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 16078 { 16079 struct lpfc_mbx_eq_create *eq_create; 16080 LPFC_MBOXQ_t *mbox; 16081 int rc, length, status = 0; 16082 struct lpfc_dmabuf *dmabuf; 16083 uint32_t shdr_status, shdr_add_status; 16084 union lpfc_sli4_cfg_shdr *shdr; 16085 uint16_t dmult; 16086 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16087 16088 /* sanity check on queue memory */ 16089 if (!eq) 16090 return -ENODEV; 16091 if (!phba->sli4_hba.pc_sli4_params.supported) 16092 hw_page_size = SLI4_PAGE_SIZE; 16093 16094 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16095 if (!mbox) 16096 return -ENOMEM; 16097 length = (sizeof(struct lpfc_mbx_eq_create) - 16098 sizeof(struct lpfc_sli4_cfg_mhdr)); 16099 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16100 LPFC_MBOX_OPCODE_EQ_CREATE, 16101 length, LPFC_SLI4_MBX_EMBED); 16102 eq_create = &mbox->u.mqe.un.eq_create; 16103 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 16104 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 16105 eq->page_count); 16106 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 16107 LPFC_EQE_SIZE); 16108 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 16109 16110 /* Use version 2 of CREATE_EQ if eqav is set */ 16111 if (phba->sli4_hba.pc_sli4_params.eqav) { 16112 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16113 LPFC_Q_CREATE_VERSION_2); 16114 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 16115 phba->sli4_hba.pc_sli4_params.eqav); 16116 } 16117 16118 /* don't setup delay multiplier using EQ_CREATE */ 16119 dmult = 0; 16120 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 16121 dmult); 16122 switch (eq->entry_count) { 16123 default: 16124 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16125 "0360 Unsupported EQ count. (%d)\n", 16126 eq->entry_count); 16127 if (eq->entry_count < 256) { 16128 status = -EINVAL; 16129 goto out; 16130 } 16131 fallthrough; /* otherwise default to smallest count */ 16132 case 256: 16133 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16134 LPFC_EQ_CNT_256); 16135 break; 16136 case 512: 16137 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16138 LPFC_EQ_CNT_512); 16139 break; 16140 case 1024: 16141 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16142 LPFC_EQ_CNT_1024); 16143 break; 16144 case 2048: 16145 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16146 LPFC_EQ_CNT_2048); 16147 break; 16148 case 4096: 16149 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16150 LPFC_EQ_CNT_4096); 16151 break; 16152 } 16153 list_for_each_entry(dmabuf, &eq->page_list, list) { 16154 memset(dmabuf->virt, 0, hw_page_size); 16155 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16156 putPaddrLow(dmabuf->phys); 16157 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16158 putPaddrHigh(dmabuf->phys); 16159 } 16160 mbox->vport = phba->pport; 16161 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16162 mbox->ctx_buf = NULL; 16163 mbox->ctx_ndlp = NULL; 16164 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16165 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16166 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16167 if (shdr_status || shdr_add_status || rc) { 16168 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16169 "2500 EQ_CREATE mailbox failed with " 16170 "status x%x add_status x%x, mbx status x%x\n", 16171 shdr_status, shdr_add_status, rc); 16172 status = -ENXIO; 16173 } 16174 eq->type = LPFC_EQ; 16175 eq->subtype = LPFC_NONE; 16176 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 16177 if (eq->queue_id == 0xFFFF) 16178 status = -ENXIO; 16179 eq->host_index = 0; 16180 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 16181 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 16182 out: 16183 mempool_free(mbox, phba->mbox_mem_pool); 16184 return status; 16185 } 16186 16187 /** 16188 * lpfc_sli4_hba_intr_handler_th - SLI4 HBA threaded interrupt handler 16189 * @irq: Interrupt number. 16190 * @dev_id: The device context pointer. 16191 * 16192 * This routine is a mirror of lpfc_sli4_hba_intr_handler, but executed within 16193 * threaded irq context. 16194 * 16195 * Returns 16196 * IRQ_HANDLED - interrupt is handled 16197 * IRQ_NONE - otherwise 16198 **/ 16199 irqreturn_t lpfc_sli4_hba_intr_handler_th(int irq, void *dev_id) 16200 { 16201 struct lpfc_hba *phba; 16202 struct lpfc_hba_eq_hdl *hba_eq_hdl; 16203 struct lpfc_queue *fpeq; 16204 int ecount = 0; 16205 int hba_eqidx; 16206 struct lpfc_eq_intr_info *eqi; 16207 16208 /* Get the driver's phba structure from the dev_id */ 16209 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 16210 phba = hba_eq_hdl->phba; 16211 hba_eqidx = hba_eq_hdl->idx; 16212 16213 if (unlikely(!phba)) 16214 return IRQ_NONE; 16215 if (unlikely(!phba->sli4_hba.hdwq)) 16216 return IRQ_NONE; 16217 16218 /* Get to the EQ struct associated with this vector */ 16219 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 16220 if (unlikely(!fpeq)) 16221 return IRQ_NONE; 16222 16223 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, raw_smp_processor_id()); 16224 eqi->icnt++; 16225 16226 fpeq->last_cpu = raw_smp_processor_id(); 16227 16228 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 16229 fpeq->q_flag & HBA_EQ_DELAY_CHK && 16230 phba->cfg_auto_imax && 16231 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 16232 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 16233 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 16234 16235 /* process and rearm the EQ */ 16236 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 16237 LPFC_THREADED_IRQ); 16238 16239 if (unlikely(ecount == 0)) { 16240 fpeq->EQ_no_entry++; 16241 if (phba->intr_type == MSIX) 16242 /* MSI-X treated interrupt served as no EQ share INT */ 16243 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 16244 "3358 MSI-X interrupt with no EQE\n"); 16245 else 16246 /* Non MSI-X treated on interrupt as EQ share INT */ 16247 return IRQ_NONE; 16248 } 16249 return IRQ_HANDLED; 16250 } 16251 16252 /** 16253 * lpfc_cq_create - Create a Completion Queue on the HBA 16254 * @phba: HBA structure that indicates port to create a queue on. 16255 * @cq: The queue structure to use to create the completion queue. 16256 * @eq: The event queue to bind this completion queue to. 16257 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16258 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16259 * 16260 * This function creates a completion queue, as detailed in @wq, on a port, 16261 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 16262 * 16263 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16264 * is used to get the entry count and entry size that are necessary to 16265 * determine the number of pages to allocate and use for this queue. The @eq 16266 * is used to indicate which event queue to bind this completion queue to. This 16267 * function will send the CQ_CREATE mailbox command to the HBA to setup the 16268 * completion queue. This function is asynchronous and will wait for the mailbox 16269 * command to finish before continuing. 16270 * 16271 * On success this function will return a zero. If unable to allocate enough 16272 * memory this function will return -ENOMEM. If the queue create mailbox command 16273 * fails this function will return -ENXIO. 16274 **/ 16275 int 16276 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 16277 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 16278 { 16279 struct lpfc_mbx_cq_create *cq_create; 16280 struct lpfc_dmabuf *dmabuf; 16281 LPFC_MBOXQ_t *mbox; 16282 int rc, length, status = 0; 16283 uint32_t shdr_status, shdr_add_status; 16284 union lpfc_sli4_cfg_shdr *shdr; 16285 16286 /* sanity check on queue memory */ 16287 if (!cq || !eq) 16288 return -ENODEV; 16289 16290 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16291 if (!mbox) 16292 return -ENOMEM; 16293 length = (sizeof(struct lpfc_mbx_cq_create) - 16294 sizeof(struct lpfc_sli4_cfg_mhdr)); 16295 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16296 LPFC_MBOX_OPCODE_CQ_CREATE, 16297 length, LPFC_SLI4_MBX_EMBED); 16298 cq_create = &mbox->u.mqe.un.cq_create; 16299 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 16300 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 16301 cq->page_count); 16302 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 16303 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 16304 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16305 phba->sli4_hba.pc_sli4_params.cqv); 16306 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 16307 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 16308 (cq->page_size / SLI4_PAGE_SIZE)); 16309 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 16310 eq->queue_id); 16311 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 16312 phba->sli4_hba.pc_sli4_params.cqav); 16313 } else { 16314 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 16315 eq->queue_id); 16316 } 16317 switch (cq->entry_count) { 16318 case 2048: 16319 case 4096: 16320 if (phba->sli4_hba.pc_sli4_params.cqv == 16321 LPFC_Q_CREATE_VERSION_2) { 16322 cq_create->u.request.context.lpfc_cq_context_count = 16323 cq->entry_count; 16324 bf_set(lpfc_cq_context_count, 16325 &cq_create->u.request.context, 16326 LPFC_CQ_CNT_WORD7); 16327 break; 16328 } 16329 fallthrough; 16330 default: 16331 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16332 "0361 Unsupported CQ count: " 16333 "entry cnt %d sz %d pg cnt %d\n", 16334 cq->entry_count, cq->entry_size, 16335 cq->page_count); 16336 if (cq->entry_count < 256) { 16337 status = -EINVAL; 16338 goto out; 16339 } 16340 fallthrough; /* otherwise default to smallest count */ 16341 case 256: 16342 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16343 LPFC_CQ_CNT_256); 16344 break; 16345 case 512: 16346 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16347 LPFC_CQ_CNT_512); 16348 break; 16349 case 1024: 16350 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16351 LPFC_CQ_CNT_1024); 16352 break; 16353 } 16354 list_for_each_entry(dmabuf, &cq->page_list, list) { 16355 memset(dmabuf->virt, 0, cq->page_size); 16356 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16357 putPaddrLow(dmabuf->phys); 16358 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16359 putPaddrHigh(dmabuf->phys); 16360 } 16361 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16362 16363 /* The IOCTL status is embedded in the mailbox subheader. */ 16364 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16365 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16366 if (shdr_status || shdr_add_status || rc) { 16367 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16368 "2501 CQ_CREATE mailbox failed with " 16369 "status x%x add_status x%x, mbx status x%x\n", 16370 shdr_status, shdr_add_status, rc); 16371 status = -ENXIO; 16372 goto out; 16373 } 16374 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16375 if (cq->queue_id == 0xFFFF) { 16376 status = -ENXIO; 16377 goto out; 16378 } 16379 /* link the cq onto the parent eq child list */ 16380 list_add_tail(&cq->list, &eq->child_list); 16381 /* Set up completion queue's type and subtype */ 16382 cq->type = type; 16383 cq->subtype = subtype; 16384 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16385 cq->assoc_qid = eq->queue_id; 16386 cq->assoc_qp = eq; 16387 cq->host_index = 0; 16388 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16389 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 16390 16391 if (cq->queue_id > phba->sli4_hba.cq_max) 16392 phba->sli4_hba.cq_max = cq->queue_id; 16393 out: 16394 mempool_free(mbox, phba->mbox_mem_pool); 16395 return status; 16396 } 16397 16398 /** 16399 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 16400 * @phba: HBA structure that indicates port to create a queue on. 16401 * @cqp: The queue structure array to use to create the completion queues. 16402 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 16403 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16404 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16405 * 16406 * This function creates a set of completion queue, s to support MRQ 16407 * as detailed in @cqp, on a port, 16408 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 16409 * 16410 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16411 * is used to get the entry count and entry size that are necessary to 16412 * determine the number of pages to allocate and use for this queue. The @eq 16413 * is used to indicate which event queue to bind this completion queue to. This 16414 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 16415 * completion queue. This function is asynchronous and will wait for the mailbox 16416 * command to finish before continuing. 16417 * 16418 * On success this function will return a zero. If unable to allocate enough 16419 * memory this function will return -ENOMEM. If the queue create mailbox command 16420 * fails this function will return -ENXIO. 16421 **/ 16422 int 16423 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 16424 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 16425 uint32_t subtype) 16426 { 16427 struct lpfc_queue *cq; 16428 struct lpfc_queue *eq; 16429 struct lpfc_mbx_cq_create_set *cq_set; 16430 struct lpfc_dmabuf *dmabuf; 16431 LPFC_MBOXQ_t *mbox; 16432 int rc, length, alloclen, status = 0; 16433 int cnt, idx, numcq, page_idx = 0; 16434 uint32_t shdr_status, shdr_add_status; 16435 union lpfc_sli4_cfg_shdr *shdr; 16436 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16437 16438 /* sanity check on queue memory */ 16439 numcq = phba->cfg_nvmet_mrq; 16440 if (!cqp || !hdwq || !numcq) 16441 return -ENODEV; 16442 16443 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16444 if (!mbox) 16445 return -ENOMEM; 16446 16447 length = sizeof(struct lpfc_mbx_cq_create_set); 16448 length += ((numcq * cqp[0]->page_count) * 16449 sizeof(struct dma_address)); 16450 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16451 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 16452 LPFC_SLI4_MBX_NEMBED); 16453 if (alloclen < length) { 16454 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16455 "3098 Allocated DMA memory size (%d) is " 16456 "less than the requested DMA memory size " 16457 "(%d)\n", alloclen, length); 16458 status = -ENOMEM; 16459 goto out; 16460 } 16461 cq_set = mbox->sge_array->addr[0]; 16462 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 16463 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 16464 16465 for (idx = 0; idx < numcq; idx++) { 16466 cq = cqp[idx]; 16467 eq = hdwq[idx].hba_eq; 16468 if (!cq || !eq) { 16469 status = -ENOMEM; 16470 goto out; 16471 } 16472 if (!phba->sli4_hba.pc_sli4_params.supported) 16473 hw_page_size = cq->page_size; 16474 16475 switch (idx) { 16476 case 0: 16477 bf_set(lpfc_mbx_cq_create_set_page_size, 16478 &cq_set->u.request, 16479 (hw_page_size / SLI4_PAGE_SIZE)); 16480 bf_set(lpfc_mbx_cq_create_set_num_pages, 16481 &cq_set->u.request, cq->page_count); 16482 bf_set(lpfc_mbx_cq_create_set_evt, 16483 &cq_set->u.request, 1); 16484 bf_set(lpfc_mbx_cq_create_set_valid, 16485 &cq_set->u.request, 1); 16486 bf_set(lpfc_mbx_cq_create_set_cqe_size, 16487 &cq_set->u.request, 0); 16488 bf_set(lpfc_mbx_cq_create_set_num_cq, 16489 &cq_set->u.request, numcq); 16490 bf_set(lpfc_mbx_cq_create_set_autovalid, 16491 &cq_set->u.request, 16492 phba->sli4_hba.pc_sli4_params.cqav); 16493 switch (cq->entry_count) { 16494 case 2048: 16495 case 4096: 16496 if (phba->sli4_hba.pc_sli4_params.cqv == 16497 LPFC_Q_CREATE_VERSION_2) { 16498 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16499 &cq_set->u.request, 16500 cq->entry_count); 16501 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16502 &cq_set->u.request, 16503 LPFC_CQ_CNT_WORD7); 16504 break; 16505 } 16506 fallthrough; 16507 default: 16508 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16509 "3118 Bad CQ count. (%d)\n", 16510 cq->entry_count); 16511 if (cq->entry_count < 256) { 16512 status = -EINVAL; 16513 goto out; 16514 } 16515 fallthrough; /* otherwise default to smallest */ 16516 case 256: 16517 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16518 &cq_set->u.request, LPFC_CQ_CNT_256); 16519 break; 16520 case 512: 16521 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16522 &cq_set->u.request, LPFC_CQ_CNT_512); 16523 break; 16524 case 1024: 16525 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16526 &cq_set->u.request, LPFC_CQ_CNT_1024); 16527 break; 16528 } 16529 bf_set(lpfc_mbx_cq_create_set_eq_id0, 16530 &cq_set->u.request, eq->queue_id); 16531 break; 16532 case 1: 16533 bf_set(lpfc_mbx_cq_create_set_eq_id1, 16534 &cq_set->u.request, eq->queue_id); 16535 break; 16536 case 2: 16537 bf_set(lpfc_mbx_cq_create_set_eq_id2, 16538 &cq_set->u.request, eq->queue_id); 16539 break; 16540 case 3: 16541 bf_set(lpfc_mbx_cq_create_set_eq_id3, 16542 &cq_set->u.request, eq->queue_id); 16543 break; 16544 case 4: 16545 bf_set(lpfc_mbx_cq_create_set_eq_id4, 16546 &cq_set->u.request, eq->queue_id); 16547 break; 16548 case 5: 16549 bf_set(lpfc_mbx_cq_create_set_eq_id5, 16550 &cq_set->u.request, eq->queue_id); 16551 break; 16552 case 6: 16553 bf_set(lpfc_mbx_cq_create_set_eq_id6, 16554 &cq_set->u.request, eq->queue_id); 16555 break; 16556 case 7: 16557 bf_set(lpfc_mbx_cq_create_set_eq_id7, 16558 &cq_set->u.request, eq->queue_id); 16559 break; 16560 case 8: 16561 bf_set(lpfc_mbx_cq_create_set_eq_id8, 16562 &cq_set->u.request, eq->queue_id); 16563 break; 16564 case 9: 16565 bf_set(lpfc_mbx_cq_create_set_eq_id9, 16566 &cq_set->u.request, eq->queue_id); 16567 break; 16568 case 10: 16569 bf_set(lpfc_mbx_cq_create_set_eq_id10, 16570 &cq_set->u.request, eq->queue_id); 16571 break; 16572 case 11: 16573 bf_set(lpfc_mbx_cq_create_set_eq_id11, 16574 &cq_set->u.request, eq->queue_id); 16575 break; 16576 case 12: 16577 bf_set(lpfc_mbx_cq_create_set_eq_id12, 16578 &cq_set->u.request, eq->queue_id); 16579 break; 16580 case 13: 16581 bf_set(lpfc_mbx_cq_create_set_eq_id13, 16582 &cq_set->u.request, eq->queue_id); 16583 break; 16584 case 14: 16585 bf_set(lpfc_mbx_cq_create_set_eq_id14, 16586 &cq_set->u.request, eq->queue_id); 16587 break; 16588 case 15: 16589 bf_set(lpfc_mbx_cq_create_set_eq_id15, 16590 &cq_set->u.request, eq->queue_id); 16591 break; 16592 } 16593 16594 /* link the cq onto the parent eq child list */ 16595 list_add_tail(&cq->list, &eq->child_list); 16596 /* Set up completion queue's type and subtype */ 16597 cq->type = type; 16598 cq->subtype = subtype; 16599 cq->assoc_qid = eq->queue_id; 16600 cq->assoc_qp = eq; 16601 cq->host_index = 0; 16602 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16603 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 16604 cq->entry_count); 16605 cq->chann = idx; 16606 16607 rc = 0; 16608 list_for_each_entry(dmabuf, &cq->page_list, list) { 16609 memset(dmabuf->virt, 0, hw_page_size); 16610 cnt = page_idx + dmabuf->buffer_tag; 16611 cq_set->u.request.page[cnt].addr_lo = 16612 putPaddrLow(dmabuf->phys); 16613 cq_set->u.request.page[cnt].addr_hi = 16614 putPaddrHigh(dmabuf->phys); 16615 rc++; 16616 } 16617 page_idx += rc; 16618 } 16619 16620 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16621 16622 /* The IOCTL status is embedded in the mailbox subheader. */ 16623 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16624 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16625 if (shdr_status || shdr_add_status || rc) { 16626 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16627 "3119 CQ_CREATE_SET mailbox failed with " 16628 "status x%x add_status x%x, mbx status x%x\n", 16629 shdr_status, shdr_add_status, rc); 16630 status = -ENXIO; 16631 goto out; 16632 } 16633 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 16634 if (rc == 0xFFFF) { 16635 status = -ENXIO; 16636 goto out; 16637 } 16638 16639 for (idx = 0; idx < numcq; idx++) { 16640 cq = cqp[idx]; 16641 cq->queue_id = rc + idx; 16642 if (cq->queue_id > phba->sli4_hba.cq_max) 16643 phba->sli4_hba.cq_max = cq->queue_id; 16644 } 16645 16646 out: 16647 lpfc_sli4_mbox_cmd_free(phba, mbox); 16648 return status; 16649 } 16650 16651 /** 16652 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 16653 * @phba: HBA structure that indicates port to create a queue on. 16654 * @mq: The queue structure to use to create the mailbox queue. 16655 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 16656 * @cq: The completion queue to associate with this cq. 16657 * 16658 * This function provides failback (fb) functionality when the 16659 * mq_create_ext fails on older FW generations. It's purpose is identical 16660 * to mq_create_ext otherwise. 16661 * 16662 * This routine cannot fail as all attributes were previously accessed and 16663 * initialized in mq_create_ext. 16664 **/ 16665 static void 16666 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 16667 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 16668 { 16669 struct lpfc_mbx_mq_create *mq_create; 16670 struct lpfc_dmabuf *dmabuf; 16671 int length; 16672 16673 length = (sizeof(struct lpfc_mbx_mq_create) - 16674 sizeof(struct lpfc_sli4_cfg_mhdr)); 16675 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16676 LPFC_MBOX_OPCODE_MQ_CREATE, 16677 length, LPFC_SLI4_MBX_EMBED); 16678 mq_create = &mbox->u.mqe.un.mq_create; 16679 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 16680 mq->page_count); 16681 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 16682 cq->queue_id); 16683 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 16684 switch (mq->entry_count) { 16685 case 16: 16686 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16687 LPFC_MQ_RING_SIZE_16); 16688 break; 16689 case 32: 16690 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16691 LPFC_MQ_RING_SIZE_32); 16692 break; 16693 case 64: 16694 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16695 LPFC_MQ_RING_SIZE_64); 16696 break; 16697 case 128: 16698 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16699 LPFC_MQ_RING_SIZE_128); 16700 break; 16701 } 16702 list_for_each_entry(dmabuf, &mq->page_list, list) { 16703 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16704 putPaddrLow(dmabuf->phys); 16705 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16706 putPaddrHigh(dmabuf->phys); 16707 } 16708 } 16709 16710 /** 16711 * lpfc_mq_create - Create a mailbox Queue on the HBA 16712 * @phba: HBA structure that indicates port to create a queue on. 16713 * @mq: The queue structure to use to create the mailbox queue. 16714 * @cq: The completion queue to associate with this cq. 16715 * @subtype: The queue's subtype. 16716 * 16717 * This function creates a mailbox queue, as detailed in @mq, on a port, 16718 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 16719 * 16720 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16721 * is used to get the entry count and entry size that are necessary to 16722 * determine the number of pages to allocate and use for this queue. This 16723 * function will send the MQ_CREATE mailbox command to the HBA to setup the 16724 * mailbox queue. This function is asynchronous and will wait for the mailbox 16725 * command to finish before continuing. 16726 * 16727 * On success this function will return a zero. If unable to allocate enough 16728 * memory this function will return -ENOMEM. If the queue create mailbox command 16729 * fails this function will return -ENXIO. 16730 **/ 16731 int32_t 16732 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 16733 struct lpfc_queue *cq, uint32_t subtype) 16734 { 16735 struct lpfc_mbx_mq_create *mq_create; 16736 struct lpfc_mbx_mq_create_ext *mq_create_ext; 16737 struct lpfc_dmabuf *dmabuf; 16738 LPFC_MBOXQ_t *mbox; 16739 int rc, length, status = 0; 16740 uint32_t shdr_status, shdr_add_status; 16741 union lpfc_sli4_cfg_shdr *shdr; 16742 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16743 16744 /* sanity check on queue memory */ 16745 if (!mq || !cq) 16746 return -ENODEV; 16747 if (!phba->sli4_hba.pc_sli4_params.supported) 16748 hw_page_size = SLI4_PAGE_SIZE; 16749 16750 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16751 if (!mbox) 16752 return -ENOMEM; 16753 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 16754 sizeof(struct lpfc_sli4_cfg_mhdr)); 16755 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16756 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 16757 length, LPFC_SLI4_MBX_EMBED); 16758 16759 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 16760 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 16761 bf_set(lpfc_mbx_mq_create_ext_num_pages, 16762 &mq_create_ext->u.request, mq->page_count); 16763 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 16764 &mq_create_ext->u.request, 1); 16765 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 16766 &mq_create_ext->u.request, 1); 16767 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 16768 &mq_create_ext->u.request, 1); 16769 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 16770 &mq_create_ext->u.request, 1); 16771 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 16772 &mq_create_ext->u.request, 1); 16773 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 16774 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16775 phba->sli4_hba.pc_sli4_params.mqv); 16776 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 16777 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 16778 cq->queue_id); 16779 else 16780 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 16781 cq->queue_id); 16782 switch (mq->entry_count) { 16783 default: 16784 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16785 "0362 Unsupported MQ count. (%d)\n", 16786 mq->entry_count); 16787 if (mq->entry_count < 16) { 16788 status = -EINVAL; 16789 goto out; 16790 } 16791 fallthrough; /* otherwise default to smallest count */ 16792 case 16: 16793 bf_set(lpfc_mq_context_ring_size, 16794 &mq_create_ext->u.request.context, 16795 LPFC_MQ_RING_SIZE_16); 16796 break; 16797 case 32: 16798 bf_set(lpfc_mq_context_ring_size, 16799 &mq_create_ext->u.request.context, 16800 LPFC_MQ_RING_SIZE_32); 16801 break; 16802 case 64: 16803 bf_set(lpfc_mq_context_ring_size, 16804 &mq_create_ext->u.request.context, 16805 LPFC_MQ_RING_SIZE_64); 16806 break; 16807 case 128: 16808 bf_set(lpfc_mq_context_ring_size, 16809 &mq_create_ext->u.request.context, 16810 LPFC_MQ_RING_SIZE_128); 16811 break; 16812 } 16813 list_for_each_entry(dmabuf, &mq->page_list, list) { 16814 memset(dmabuf->virt, 0, hw_page_size); 16815 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16816 putPaddrLow(dmabuf->phys); 16817 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16818 putPaddrHigh(dmabuf->phys); 16819 } 16820 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16821 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16822 &mq_create_ext->u.response); 16823 if (rc != MBX_SUCCESS) { 16824 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16825 "2795 MQ_CREATE_EXT failed with " 16826 "status x%x. Failback to MQ_CREATE.\n", 16827 rc); 16828 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16829 mq_create = &mbox->u.mqe.un.mq_create; 16830 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16831 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16832 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16833 &mq_create->u.response); 16834 } 16835 16836 /* The IOCTL status is embedded in the mailbox subheader. */ 16837 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16838 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16839 if (shdr_status || shdr_add_status || rc) { 16840 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16841 "2502 MQ_CREATE mailbox failed with " 16842 "status x%x add_status x%x, mbx status x%x\n", 16843 shdr_status, shdr_add_status, rc); 16844 status = -ENXIO; 16845 goto out; 16846 } 16847 if (mq->queue_id == 0xFFFF) { 16848 status = -ENXIO; 16849 goto out; 16850 } 16851 mq->type = LPFC_MQ; 16852 mq->assoc_qid = cq->queue_id; 16853 mq->subtype = subtype; 16854 mq->host_index = 0; 16855 mq->hba_index = 0; 16856 16857 /* link the mq onto the parent cq child list */ 16858 list_add_tail(&mq->list, &cq->child_list); 16859 out: 16860 mempool_free(mbox, phba->mbox_mem_pool); 16861 return status; 16862 } 16863 16864 /** 16865 * lpfc_wq_create - Create a Work Queue on the HBA 16866 * @phba: HBA structure that indicates port to create a queue on. 16867 * @wq: The queue structure to use to create the work queue. 16868 * @cq: The completion queue to bind this work queue to. 16869 * @subtype: The subtype of the work queue indicating its functionality. 16870 * 16871 * This function creates a work queue, as detailed in @wq, on a port, described 16872 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16873 * 16874 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16875 * is used to get the entry count and entry size that are necessary to 16876 * determine the number of pages to allocate and use for this queue. The @cq 16877 * is used to indicate which completion queue to bind this work queue to. This 16878 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16879 * work queue. This function is asynchronous and will wait for the mailbox 16880 * command to finish before continuing. 16881 * 16882 * On success this function will return a zero. If unable to allocate enough 16883 * memory this function will return -ENOMEM. If the queue create mailbox command 16884 * fails this function will return -ENXIO. 16885 **/ 16886 int 16887 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16888 struct lpfc_queue *cq, uint32_t subtype) 16889 { 16890 struct lpfc_mbx_wq_create *wq_create; 16891 struct lpfc_dmabuf *dmabuf; 16892 LPFC_MBOXQ_t *mbox; 16893 int rc, length, status = 0; 16894 uint32_t shdr_status, shdr_add_status; 16895 union lpfc_sli4_cfg_shdr *shdr; 16896 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16897 struct dma_address *page; 16898 void __iomem *bar_memmap_p; 16899 uint32_t db_offset; 16900 uint16_t pci_barset; 16901 uint8_t dpp_barset; 16902 uint32_t dpp_offset; 16903 uint8_t wq_create_version; 16904 #ifdef CONFIG_X86 16905 unsigned long pg_addr; 16906 #endif 16907 16908 /* sanity check on queue memory */ 16909 if (!wq || !cq) 16910 return -ENODEV; 16911 if (!phba->sli4_hba.pc_sli4_params.supported) 16912 hw_page_size = wq->page_size; 16913 16914 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16915 if (!mbox) 16916 return -ENOMEM; 16917 length = (sizeof(struct lpfc_mbx_wq_create) - 16918 sizeof(struct lpfc_sli4_cfg_mhdr)); 16919 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16920 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16921 length, LPFC_SLI4_MBX_EMBED); 16922 wq_create = &mbox->u.mqe.un.wq_create; 16923 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16924 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16925 wq->page_count); 16926 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16927 cq->queue_id); 16928 16929 /* wqv is the earliest version supported, NOT the latest */ 16930 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16931 phba->sli4_hba.pc_sli4_params.wqv); 16932 16933 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16934 (wq->page_size > SLI4_PAGE_SIZE)) 16935 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16936 else 16937 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16938 16939 switch (wq_create_version) { 16940 case LPFC_Q_CREATE_VERSION_1: 16941 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16942 wq->entry_count); 16943 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16944 LPFC_Q_CREATE_VERSION_1); 16945 16946 switch (wq->entry_size) { 16947 default: 16948 case 64: 16949 bf_set(lpfc_mbx_wq_create_wqe_size, 16950 &wq_create->u.request_1, 16951 LPFC_WQ_WQE_SIZE_64); 16952 break; 16953 case 128: 16954 bf_set(lpfc_mbx_wq_create_wqe_size, 16955 &wq_create->u.request_1, 16956 LPFC_WQ_WQE_SIZE_128); 16957 break; 16958 } 16959 /* Request DPP by default */ 16960 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16961 bf_set(lpfc_mbx_wq_create_page_size, 16962 &wq_create->u.request_1, 16963 (wq->page_size / SLI4_PAGE_SIZE)); 16964 page = wq_create->u.request_1.page; 16965 break; 16966 default: 16967 page = wq_create->u.request.page; 16968 break; 16969 } 16970 16971 list_for_each_entry(dmabuf, &wq->page_list, list) { 16972 memset(dmabuf->virt, 0, hw_page_size); 16973 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16974 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16975 } 16976 16977 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16978 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16979 16980 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16981 /* The IOCTL status is embedded in the mailbox subheader. */ 16982 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16983 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16984 if (shdr_status || shdr_add_status || rc) { 16985 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16986 "2503 WQ_CREATE mailbox failed with " 16987 "status x%x add_status x%x, mbx status x%x\n", 16988 shdr_status, shdr_add_status, rc); 16989 status = -ENXIO; 16990 goto out; 16991 } 16992 16993 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16994 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16995 &wq_create->u.response); 16996 else 16997 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16998 &wq_create->u.response_1); 16999 17000 if (wq->queue_id == 0xFFFF) { 17001 status = -ENXIO; 17002 goto out; 17003 } 17004 17005 wq->db_format = LPFC_DB_LIST_FORMAT; 17006 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 17007 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 17008 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 17009 &wq_create->u.response); 17010 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 17011 (wq->db_format != LPFC_DB_RING_FORMAT)) { 17012 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17013 "3265 WQ[%d] doorbell format " 17014 "not supported: x%x\n", 17015 wq->queue_id, wq->db_format); 17016 status = -EINVAL; 17017 goto out; 17018 } 17019 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 17020 &wq_create->u.response); 17021 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17022 pci_barset); 17023 if (!bar_memmap_p) { 17024 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17025 "3263 WQ[%d] failed to memmap " 17026 "pci barset:x%x\n", 17027 wq->queue_id, pci_barset); 17028 status = -ENOMEM; 17029 goto out; 17030 } 17031 db_offset = wq_create->u.response.doorbell_offset; 17032 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 17033 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 17034 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17035 "3252 WQ[%d] doorbell offset " 17036 "not supported: x%x\n", 17037 wq->queue_id, db_offset); 17038 status = -EINVAL; 17039 goto out; 17040 } 17041 wq->db_regaddr = bar_memmap_p + db_offset; 17042 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17043 "3264 WQ[%d]: barset:x%x, offset:x%x, " 17044 "format:x%x\n", wq->queue_id, 17045 pci_barset, db_offset, wq->db_format); 17046 } else 17047 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17048 } else { 17049 /* Check if DPP was honored by the firmware */ 17050 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 17051 &wq_create->u.response_1); 17052 if (wq->dpp_enable) { 17053 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 17054 &wq_create->u.response_1); 17055 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17056 pci_barset); 17057 if (!bar_memmap_p) { 17058 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17059 "3267 WQ[%d] failed to memmap " 17060 "pci barset:x%x\n", 17061 wq->queue_id, pci_barset); 17062 status = -ENOMEM; 17063 goto out; 17064 } 17065 db_offset = wq_create->u.response_1.doorbell_offset; 17066 wq->db_regaddr = bar_memmap_p + db_offset; 17067 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 17068 &wq_create->u.response_1); 17069 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 17070 &wq_create->u.response_1); 17071 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17072 dpp_barset); 17073 if (!bar_memmap_p) { 17074 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17075 "3268 WQ[%d] failed to memmap " 17076 "pci barset:x%x\n", 17077 wq->queue_id, dpp_barset); 17078 status = -ENOMEM; 17079 goto out; 17080 } 17081 dpp_offset = wq_create->u.response_1.dpp_offset; 17082 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 17083 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17084 "3271 WQ[%d]: barset:x%x, offset:x%x, " 17085 "dpp_id:x%x dpp_barset:x%x " 17086 "dpp_offset:x%x\n", 17087 wq->queue_id, pci_barset, db_offset, 17088 wq->dpp_id, dpp_barset, dpp_offset); 17089 17090 #ifdef CONFIG_X86 17091 /* Enable combined writes for DPP aperture */ 17092 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 17093 rc = set_memory_wc(pg_addr, 1); 17094 if (rc) { 17095 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17096 "3272 Cannot setup Combined " 17097 "Write on WQ[%d] - disable DPP\n", 17098 wq->queue_id); 17099 phba->cfg_enable_dpp = 0; 17100 } 17101 #else 17102 phba->cfg_enable_dpp = 0; 17103 #endif 17104 } else 17105 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17106 } 17107 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 17108 if (wq->pring == NULL) { 17109 status = -ENOMEM; 17110 goto out; 17111 } 17112 wq->type = LPFC_WQ; 17113 wq->assoc_qid = cq->queue_id; 17114 wq->subtype = subtype; 17115 wq->host_index = 0; 17116 wq->hba_index = 0; 17117 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 17118 17119 /* link the wq onto the parent cq child list */ 17120 list_add_tail(&wq->list, &cq->child_list); 17121 out: 17122 mempool_free(mbox, phba->mbox_mem_pool); 17123 return status; 17124 } 17125 17126 /** 17127 * lpfc_rq_create - Create a Receive Queue on the HBA 17128 * @phba: HBA structure that indicates port to create a queue on. 17129 * @hrq: The queue structure to use to create the header receive queue. 17130 * @drq: The queue structure to use to create the data receive queue. 17131 * @cq: The completion queue to bind this work queue to. 17132 * @subtype: The subtype of the work queue indicating its functionality. 17133 * 17134 * This function creates a receive buffer queue pair , as detailed in @hrq and 17135 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17136 * to the HBA. 17137 * 17138 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17139 * struct is used to get the entry count that is necessary to determine the 17140 * number of pages to use for this queue. The @cq is used to indicate which 17141 * completion queue to bind received buffers that are posted to these queues to. 17142 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17143 * receive queue pair. This function is asynchronous and will wait for the 17144 * mailbox command to finish before continuing. 17145 * 17146 * On success this function will return a zero. If unable to allocate enough 17147 * memory this function will return -ENOMEM. If the queue create mailbox command 17148 * fails this function will return -ENXIO. 17149 **/ 17150 int 17151 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17152 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 17153 { 17154 struct lpfc_mbx_rq_create *rq_create; 17155 struct lpfc_dmabuf *dmabuf; 17156 LPFC_MBOXQ_t *mbox; 17157 int rc, length, status = 0; 17158 uint32_t shdr_status, shdr_add_status; 17159 union lpfc_sli4_cfg_shdr *shdr; 17160 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17161 void __iomem *bar_memmap_p; 17162 uint32_t db_offset; 17163 uint16_t pci_barset; 17164 17165 /* sanity check on queue memory */ 17166 if (!hrq || !drq || !cq) 17167 return -ENODEV; 17168 if (!phba->sli4_hba.pc_sli4_params.supported) 17169 hw_page_size = SLI4_PAGE_SIZE; 17170 17171 if (hrq->entry_count != drq->entry_count) 17172 return -EINVAL; 17173 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17174 if (!mbox) 17175 return -ENOMEM; 17176 length = (sizeof(struct lpfc_mbx_rq_create) - 17177 sizeof(struct lpfc_sli4_cfg_mhdr)); 17178 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17179 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17180 length, LPFC_SLI4_MBX_EMBED); 17181 rq_create = &mbox->u.mqe.un.rq_create; 17182 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17183 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17184 phba->sli4_hba.pc_sli4_params.rqv); 17185 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17186 bf_set(lpfc_rq_context_rqe_count_1, 17187 &rq_create->u.request.context, 17188 hrq->entry_count); 17189 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 17190 bf_set(lpfc_rq_context_rqe_size, 17191 &rq_create->u.request.context, 17192 LPFC_RQE_SIZE_8); 17193 bf_set(lpfc_rq_context_page_size, 17194 &rq_create->u.request.context, 17195 LPFC_RQ_PAGE_SIZE_4096); 17196 } else { 17197 switch (hrq->entry_count) { 17198 default: 17199 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17200 "2535 Unsupported RQ count. (%d)\n", 17201 hrq->entry_count); 17202 if (hrq->entry_count < 512) { 17203 status = -EINVAL; 17204 goto out; 17205 } 17206 fallthrough; /* otherwise default to smallest count */ 17207 case 512: 17208 bf_set(lpfc_rq_context_rqe_count, 17209 &rq_create->u.request.context, 17210 LPFC_RQ_RING_SIZE_512); 17211 break; 17212 case 1024: 17213 bf_set(lpfc_rq_context_rqe_count, 17214 &rq_create->u.request.context, 17215 LPFC_RQ_RING_SIZE_1024); 17216 break; 17217 case 2048: 17218 bf_set(lpfc_rq_context_rqe_count, 17219 &rq_create->u.request.context, 17220 LPFC_RQ_RING_SIZE_2048); 17221 break; 17222 case 4096: 17223 bf_set(lpfc_rq_context_rqe_count, 17224 &rq_create->u.request.context, 17225 LPFC_RQ_RING_SIZE_4096); 17226 break; 17227 } 17228 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 17229 LPFC_HDR_BUF_SIZE); 17230 } 17231 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17232 cq->queue_id); 17233 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17234 hrq->page_count); 17235 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17236 memset(dmabuf->virt, 0, hw_page_size); 17237 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17238 putPaddrLow(dmabuf->phys); 17239 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17240 putPaddrHigh(dmabuf->phys); 17241 } 17242 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17243 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17244 17245 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17246 /* The IOCTL status is embedded in the mailbox subheader. */ 17247 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17248 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17249 if (shdr_status || shdr_add_status || rc) { 17250 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17251 "2504 RQ_CREATE mailbox failed with " 17252 "status x%x add_status x%x, mbx status x%x\n", 17253 shdr_status, shdr_add_status, rc); 17254 status = -ENXIO; 17255 goto out; 17256 } 17257 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17258 if (hrq->queue_id == 0xFFFF) { 17259 status = -ENXIO; 17260 goto out; 17261 } 17262 17263 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 17264 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 17265 &rq_create->u.response); 17266 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 17267 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 17268 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17269 "3262 RQ [%d] doorbell format not " 17270 "supported: x%x\n", hrq->queue_id, 17271 hrq->db_format); 17272 status = -EINVAL; 17273 goto out; 17274 } 17275 17276 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 17277 &rq_create->u.response); 17278 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 17279 if (!bar_memmap_p) { 17280 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17281 "3269 RQ[%d] failed to memmap pci " 17282 "barset:x%x\n", hrq->queue_id, 17283 pci_barset); 17284 status = -ENOMEM; 17285 goto out; 17286 } 17287 17288 db_offset = rq_create->u.response.doorbell_offset; 17289 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 17290 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 17291 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17292 "3270 RQ[%d] doorbell offset not " 17293 "supported: x%x\n", hrq->queue_id, 17294 db_offset); 17295 status = -EINVAL; 17296 goto out; 17297 } 17298 hrq->db_regaddr = bar_memmap_p + db_offset; 17299 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17300 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 17301 "format:x%x\n", hrq->queue_id, pci_barset, 17302 db_offset, hrq->db_format); 17303 } else { 17304 hrq->db_format = LPFC_DB_RING_FORMAT; 17305 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17306 } 17307 hrq->type = LPFC_HRQ; 17308 hrq->assoc_qid = cq->queue_id; 17309 hrq->subtype = subtype; 17310 hrq->host_index = 0; 17311 hrq->hba_index = 0; 17312 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17313 17314 /* now create the data queue */ 17315 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17316 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17317 length, LPFC_SLI4_MBX_EMBED); 17318 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17319 phba->sli4_hba.pc_sli4_params.rqv); 17320 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17321 bf_set(lpfc_rq_context_rqe_count_1, 17322 &rq_create->u.request.context, hrq->entry_count); 17323 if (subtype == LPFC_NVMET) 17324 rq_create->u.request.context.buffer_size = 17325 LPFC_NVMET_DATA_BUF_SIZE; 17326 else 17327 rq_create->u.request.context.buffer_size = 17328 LPFC_DATA_BUF_SIZE; 17329 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 17330 LPFC_RQE_SIZE_8); 17331 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 17332 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17333 } else { 17334 switch (drq->entry_count) { 17335 default: 17336 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17337 "2536 Unsupported RQ count. (%d)\n", 17338 drq->entry_count); 17339 if (drq->entry_count < 512) { 17340 status = -EINVAL; 17341 goto out; 17342 } 17343 fallthrough; /* otherwise default to smallest count */ 17344 case 512: 17345 bf_set(lpfc_rq_context_rqe_count, 17346 &rq_create->u.request.context, 17347 LPFC_RQ_RING_SIZE_512); 17348 break; 17349 case 1024: 17350 bf_set(lpfc_rq_context_rqe_count, 17351 &rq_create->u.request.context, 17352 LPFC_RQ_RING_SIZE_1024); 17353 break; 17354 case 2048: 17355 bf_set(lpfc_rq_context_rqe_count, 17356 &rq_create->u.request.context, 17357 LPFC_RQ_RING_SIZE_2048); 17358 break; 17359 case 4096: 17360 bf_set(lpfc_rq_context_rqe_count, 17361 &rq_create->u.request.context, 17362 LPFC_RQ_RING_SIZE_4096); 17363 break; 17364 } 17365 if (subtype == LPFC_NVMET) 17366 bf_set(lpfc_rq_context_buf_size, 17367 &rq_create->u.request.context, 17368 LPFC_NVMET_DATA_BUF_SIZE); 17369 else 17370 bf_set(lpfc_rq_context_buf_size, 17371 &rq_create->u.request.context, 17372 LPFC_DATA_BUF_SIZE); 17373 } 17374 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17375 cq->queue_id); 17376 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17377 drq->page_count); 17378 list_for_each_entry(dmabuf, &drq->page_list, list) { 17379 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17380 putPaddrLow(dmabuf->phys); 17381 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17382 putPaddrHigh(dmabuf->phys); 17383 } 17384 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17385 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17386 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17387 /* The IOCTL status is embedded in the mailbox subheader. */ 17388 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17389 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17390 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17391 if (shdr_status || shdr_add_status || rc) { 17392 status = -ENXIO; 17393 goto out; 17394 } 17395 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17396 if (drq->queue_id == 0xFFFF) { 17397 status = -ENXIO; 17398 goto out; 17399 } 17400 drq->type = LPFC_DRQ; 17401 drq->assoc_qid = cq->queue_id; 17402 drq->subtype = subtype; 17403 drq->host_index = 0; 17404 drq->hba_index = 0; 17405 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17406 17407 /* link the header and data RQs onto the parent cq child list */ 17408 list_add_tail(&hrq->list, &cq->child_list); 17409 list_add_tail(&drq->list, &cq->child_list); 17410 17411 out: 17412 mempool_free(mbox, phba->mbox_mem_pool); 17413 return status; 17414 } 17415 17416 /** 17417 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 17418 * @phba: HBA structure that indicates port to create a queue on. 17419 * @hrqp: The queue structure array to use to create the header receive queues. 17420 * @drqp: The queue structure array to use to create the data receive queues. 17421 * @cqp: The completion queue array to bind these receive queues to. 17422 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 17423 * 17424 * This function creates a receive buffer queue pair , as detailed in @hrq and 17425 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17426 * to the HBA. 17427 * 17428 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17429 * struct is used to get the entry count that is necessary to determine the 17430 * number of pages to use for this queue. The @cq is used to indicate which 17431 * completion queue to bind received buffers that are posted to these queues to. 17432 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17433 * receive queue pair. This function is asynchronous and will wait for the 17434 * mailbox command to finish before continuing. 17435 * 17436 * On success this function will return a zero. If unable to allocate enough 17437 * memory this function will return -ENOMEM. If the queue create mailbox command 17438 * fails this function will return -ENXIO. 17439 **/ 17440 int 17441 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 17442 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 17443 uint32_t subtype) 17444 { 17445 struct lpfc_queue *hrq, *drq, *cq; 17446 struct lpfc_mbx_rq_create_v2 *rq_create; 17447 struct lpfc_dmabuf *dmabuf; 17448 LPFC_MBOXQ_t *mbox; 17449 int rc, length, alloclen, status = 0; 17450 int cnt, idx, numrq, page_idx = 0; 17451 uint32_t shdr_status, shdr_add_status; 17452 union lpfc_sli4_cfg_shdr *shdr; 17453 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17454 17455 numrq = phba->cfg_nvmet_mrq; 17456 /* sanity check on array memory */ 17457 if (!hrqp || !drqp || !cqp || !numrq) 17458 return -ENODEV; 17459 if (!phba->sli4_hba.pc_sli4_params.supported) 17460 hw_page_size = SLI4_PAGE_SIZE; 17461 17462 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17463 if (!mbox) 17464 return -ENOMEM; 17465 17466 length = sizeof(struct lpfc_mbx_rq_create_v2); 17467 length += ((2 * numrq * hrqp[0]->page_count) * 17468 sizeof(struct dma_address)); 17469 17470 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17471 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 17472 LPFC_SLI4_MBX_NEMBED); 17473 if (alloclen < length) { 17474 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17475 "3099 Allocated DMA memory size (%d) is " 17476 "less than the requested DMA memory size " 17477 "(%d)\n", alloclen, length); 17478 status = -ENOMEM; 17479 goto out; 17480 } 17481 17482 17483 17484 rq_create = mbox->sge_array->addr[0]; 17485 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 17486 17487 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 17488 cnt = 0; 17489 17490 for (idx = 0; idx < numrq; idx++) { 17491 hrq = hrqp[idx]; 17492 drq = drqp[idx]; 17493 cq = cqp[idx]; 17494 17495 /* sanity check on queue memory */ 17496 if (!hrq || !drq || !cq) { 17497 status = -ENODEV; 17498 goto out; 17499 } 17500 17501 if (hrq->entry_count != drq->entry_count) { 17502 status = -EINVAL; 17503 goto out; 17504 } 17505 17506 if (idx == 0) { 17507 bf_set(lpfc_mbx_rq_create_num_pages, 17508 &rq_create->u.request, 17509 hrq->page_count); 17510 bf_set(lpfc_mbx_rq_create_rq_cnt, 17511 &rq_create->u.request, (numrq * 2)); 17512 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 17513 1); 17514 bf_set(lpfc_rq_context_base_cq, 17515 &rq_create->u.request.context, 17516 cq->queue_id); 17517 bf_set(lpfc_rq_context_data_size, 17518 &rq_create->u.request.context, 17519 LPFC_NVMET_DATA_BUF_SIZE); 17520 bf_set(lpfc_rq_context_hdr_size, 17521 &rq_create->u.request.context, 17522 LPFC_HDR_BUF_SIZE); 17523 bf_set(lpfc_rq_context_rqe_count_1, 17524 &rq_create->u.request.context, 17525 hrq->entry_count); 17526 bf_set(lpfc_rq_context_rqe_size, 17527 &rq_create->u.request.context, 17528 LPFC_RQE_SIZE_8); 17529 bf_set(lpfc_rq_context_page_size, 17530 &rq_create->u.request.context, 17531 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17532 } 17533 rc = 0; 17534 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17535 memset(dmabuf->virt, 0, hw_page_size); 17536 cnt = page_idx + dmabuf->buffer_tag; 17537 rq_create->u.request.page[cnt].addr_lo = 17538 putPaddrLow(dmabuf->phys); 17539 rq_create->u.request.page[cnt].addr_hi = 17540 putPaddrHigh(dmabuf->phys); 17541 rc++; 17542 } 17543 page_idx += rc; 17544 17545 rc = 0; 17546 list_for_each_entry(dmabuf, &drq->page_list, list) { 17547 memset(dmabuf->virt, 0, hw_page_size); 17548 cnt = page_idx + dmabuf->buffer_tag; 17549 rq_create->u.request.page[cnt].addr_lo = 17550 putPaddrLow(dmabuf->phys); 17551 rq_create->u.request.page[cnt].addr_hi = 17552 putPaddrHigh(dmabuf->phys); 17553 rc++; 17554 } 17555 page_idx += rc; 17556 17557 hrq->db_format = LPFC_DB_RING_FORMAT; 17558 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17559 hrq->type = LPFC_HRQ; 17560 hrq->assoc_qid = cq->queue_id; 17561 hrq->subtype = subtype; 17562 hrq->host_index = 0; 17563 hrq->hba_index = 0; 17564 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17565 17566 drq->db_format = LPFC_DB_RING_FORMAT; 17567 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17568 drq->type = LPFC_DRQ; 17569 drq->assoc_qid = cq->queue_id; 17570 drq->subtype = subtype; 17571 drq->host_index = 0; 17572 drq->hba_index = 0; 17573 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17574 17575 list_add_tail(&hrq->list, &cq->child_list); 17576 list_add_tail(&drq->list, &cq->child_list); 17577 } 17578 17579 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17580 /* The IOCTL status is embedded in the mailbox subheader. */ 17581 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17582 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17583 if (shdr_status || shdr_add_status || rc) { 17584 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17585 "3120 RQ_CREATE mailbox failed with " 17586 "status x%x add_status x%x, mbx status x%x\n", 17587 shdr_status, shdr_add_status, rc); 17588 status = -ENXIO; 17589 goto out; 17590 } 17591 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17592 if (rc == 0xFFFF) { 17593 status = -ENXIO; 17594 goto out; 17595 } 17596 17597 /* Initialize all RQs with associated queue id */ 17598 for (idx = 0; idx < numrq; idx++) { 17599 hrq = hrqp[idx]; 17600 hrq->queue_id = rc + (2 * idx); 17601 drq = drqp[idx]; 17602 drq->queue_id = rc + (2 * idx) + 1; 17603 } 17604 17605 out: 17606 lpfc_sli4_mbox_cmd_free(phba, mbox); 17607 return status; 17608 } 17609 17610 /** 17611 * lpfc_eq_destroy - Destroy an event Queue on the HBA 17612 * @phba: HBA structure that indicates port to destroy a queue on. 17613 * @eq: The queue structure associated with the queue to destroy. 17614 * 17615 * This function destroys a queue, as detailed in @eq by sending an mailbox 17616 * command, specific to the type of queue, to the HBA. 17617 * 17618 * The @eq struct is used to get the queue ID of the queue to destroy. 17619 * 17620 * On success this function will return a zero. If the queue destroy mailbox 17621 * command fails this function will return -ENXIO. 17622 **/ 17623 int 17624 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 17625 { 17626 LPFC_MBOXQ_t *mbox; 17627 int rc, length, status = 0; 17628 uint32_t shdr_status, shdr_add_status; 17629 union lpfc_sli4_cfg_shdr *shdr; 17630 17631 /* sanity check on queue memory */ 17632 if (!eq) 17633 return -ENODEV; 17634 17635 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17636 goto list_remove; 17637 17638 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 17639 if (!mbox) 17640 return -ENOMEM; 17641 length = (sizeof(struct lpfc_mbx_eq_destroy) - 17642 sizeof(struct lpfc_sli4_cfg_mhdr)); 17643 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17644 LPFC_MBOX_OPCODE_EQ_DESTROY, 17645 length, LPFC_SLI4_MBX_EMBED); 17646 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 17647 eq->queue_id); 17648 mbox->vport = eq->phba->pport; 17649 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17650 17651 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 17652 /* The IOCTL status is embedded in the mailbox subheader. */ 17653 shdr = (union lpfc_sli4_cfg_shdr *) 17654 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 17655 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17656 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17657 if (shdr_status || shdr_add_status || rc) { 17658 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17659 "2505 EQ_DESTROY mailbox failed with " 17660 "status x%x add_status x%x, mbx status x%x\n", 17661 shdr_status, shdr_add_status, rc); 17662 status = -ENXIO; 17663 } 17664 mempool_free(mbox, eq->phba->mbox_mem_pool); 17665 17666 list_remove: 17667 /* Remove eq from any list */ 17668 list_del_init(&eq->list); 17669 17670 return status; 17671 } 17672 17673 /** 17674 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 17675 * @phba: HBA structure that indicates port to destroy a queue on. 17676 * @cq: The queue structure associated with the queue to destroy. 17677 * 17678 * This function destroys a queue, as detailed in @cq by sending an mailbox 17679 * command, specific to the type of queue, to the HBA. 17680 * 17681 * The @cq struct is used to get the queue ID of the queue to destroy. 17682 * 17683 * On success this function will return a zero. If the queue destroy mailbox 17684 * command fails this function will return -ENXIO. 17685 **/ 17686 int 17687 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 17688 { 17689 LPFC_MBOXQ_t *mbox; 17690 int rc, length, status = 0; 17691 uint32_t shdr_status, shdr_add_status; 17692 union lpfc_sli4_cfg_shdr *shdr; 17693 17694 /* sanity check on queue memory */ 17695 if (!cq) 17696 return -ENODEV; 17697 17698 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17699 goto list_remove; 17700 17701 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 17702 if (!mbox) 17703 return -ENOMEM; 17704 length = (sizeof(struct lpfc_mbx_cq_destroy) - 17705 sizeof(struct lpfc_sli4_cfg_mhdr)); 17706 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17707 LPFC_MBOX_OPCODE_CQ_DESTROY, 17708 length, LPFC_SLI4_MBX_EMBED); 17709 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 17710 cq->queue_id); 17711 mbox->vport = cq->phba->pport; 17712 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17713 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 17714 /* The IOCTL status is embedded in the mailbox subheader. */ 17715 shdr = (union lpfc_sli4_cfg_shdr *) 17716 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 17717 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17718 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17719 if (shdr_status || shdr_add_status || rc) { 17720 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17721 "2506 CQ_DESTROY mailbox failed with " 17722 "status x%x add_status x%x, mbx status x%x\n", 17723 shdr_status, shdr_add_status, rc); 17724 status = -ENXIO; 17725 } 17726 mempool_free(mbox, cq->phba->mbox_mem_pool); 17727 17728 list_remove: 17729 /* Remove cq from any list */ 17730 list_del_init(&cq->list); 17731 return status; 17732 } 17733 17734 /** 17735 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 17736 * @phba: HBA structure that indicates port to destroy a queue on. 17737 * @mq: The queue structure associated with the queue to destroy. 17738 * 17739 * This function destroys a queue, as detailed in @mq by sending an mailbox 17740 * command, specific to the type of queue, to the HBA. 17741 * 17742 * The @mq struct is used to get the queue ID of the queue to destroy. 17743 * 17744 * On success this function will return a zero. If the queue destroy mailbox 17745 * command fails this function will return -ENXIO. 17746 **/ 17747 int 17748 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 17749 { 17750 LPFC_MBOXQ_t *mbox; 17751 int rc, length, status = 0; 17752 uint32_t shdr_status, shdr_add_status; 17753 union lpfc_sli4_cfg_shdr *shdr; 17754 17755 /* sanity check on queue memory */ 17756 if (!mq) 17757 return -ENODEV; 17758 17759 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17760 goto list_remove; 17761 17762 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 17763 if (!mbox) 17764 return -ENOMEM; 17765 length = (sizeof(struct lpfc_mbx_mq_destroy) - 17766 sizeof(struct lpfc_sli4_cfg_mhdr)); 17767 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17768 LPFC_MBOX_OPCODE_MQ_DESTROY, 17769 length, LPFC_SLI4_MBX_EMBED); 17770 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 17771 mq->queue_id); 17772 mbox->vport = mq->phba->pport; 17773 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17774 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 17775 /* The IOCTL status is embedded in the mailbox subheader. */ 17776 shdr = (union lpfc_sli4_cfg_shdr *) 17777 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 17778 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17779 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17780 if (shdr_status || shdr_add_status || rc) { 17781 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17782 "2507 MQ_DESTROY mailbox failed with " 17783 "status x%x add_status x%x, mbx status x%x\n", 17784 shdr_status, shdr_add_status, rc); 17785 status = -ENXIO; 17786 } 17787 mempool_free(mbox, mq->phba->mbox_mem_pool); 17788 17789 list_remove: 17790 /* Remove mq from any list */ 17791 list_del_init(&mq->list); 17792 return status; 17793 } 17794 17795 /** 17796 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 17797 * @phba: HBA structure that indicates port to destroy a queue on. 17798 * @wq: The queue structure associated with the queue to destroy. 17799 * 17800 * This function destroys a queue, as detailed in @wq by sending an mailbox 17801 * command, specific to the type of queue, to the HBA. 17802 * 17803 * The @wq struct is used to get the queue ID of the queue to destroy. 17804 * 17805 * On success this function will return a zero. If the queue destroy mailbox 17806 * command fails this function will return -ENXIO. 17807 **/ 17808 int 17809 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17810 { 17811 LPFC_MBOXQ_t *mbox; 17812 int rc, length, status = 0; 17813 uint32_t shdr_status, shdr_add_status; 17814 union lpfc_sli4_cfg_shdr *shdr; 17815 17816 /* sanity check on queue memory */ 17817 if (!wq) 17818 return -ENODEV; 17819 17820 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17821 goto list_remove; 17822 17823 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17824 if (!mbox) 17825 return -ENOMEM; 17826 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17827 sizeof(struct lpfc_sli4_cfg_mhdr)); 17828 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17829 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17830 length, LPFC_SLI4_MBX_EMBED); 17831 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17832 wq->queue_id); 17833 mbox->vport = wq->phba->pport; 17834 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17835 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17836 shdr = (union lpfc_sli4_cfg_shdr *) 17837 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17838 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17839 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17840 if (shdr_status || shdr_add_status || rc) { 17841 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17842 "2508 WQ_DESTROY mailbox failed with " 17843 "status x%x add_status x%x, mbx status x%x\n", 17844 shdr_status, shdr_add_status, rc); 17845 status = -ENXIO; 17846 } 17847 mempool_free(mbox, wq->phba->mbox_mem_pool); 17848 17849 list_remove: 17850 /* Remove wq from any list */ 17851 list_del_init(&wq->list); 17852 kfree(wq->pring); 17853 wq->pring = NULL; 17854 return status; 17855 } 17856 17857 /** 17858 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17859 * @phba: HBA structure that indicates port to destroy a queue on. 17860 * @hrq: The queue structure associated with the queue to destroy. 17861 * @drq: The queue structure associated with the queue to destroy. 17862 * 17863 * This function destroys a queue, as detailed in @rq by sending an mailbox 17864 * command, specific to the type of queue, to the HBA. 17865 * 17866 * The @rq struct is used to get the queue ID of the queue to destroy. 17867 * 17868 * On success this function will return a zero. If the queue destroy mailbox 17869 * command fails this function will return -ENXIO. 17870 **/ 17871 int 17872 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17873 struct lpfc_queue *drq) 17874 { 17875 LPFC_MBOXQ_t *mbox; 17876 int rc, length, status = 0; 17877 uint32_t shdr_status, shdr_add_status; 17878 union lpfc_sli4_cfg_shdr *shdr; 17879 17880 /* sanity check on queue memory */ 17881 if (!hrq || !drq) 17882 return -ENODEV; 17883 17884 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17885 goto list_remove; 17886 17887 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17888 if (!mbox) 17889 return -ENOMEM; 17890 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17891 sizeof(struct lpfc_sli4_cfg_mhdr)); 17892 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17893 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17894 length, LPFC_SLI4_MBX_EMBED); 17895 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17896 hrq->queue_id); 17897 mbox->vport = hrq->phba->pport; 17898 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17899 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17900 /* The IOCTL status is embedded in the mailbox subheader. */ 17901 shdr = (union lpfc_sli4_cfg_shdr *) 17902 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17903 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17904 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17905 if (shdr_status || shdr_add_status || rc) { 17906 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17907 "2509 RQ_DESTROY mailbox failed with " 17908 "status x%x add_status x%x, mbx status x%x\n", 17909 shdr_status, shdr_add_status, rc); 17910 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17911 return -ENXIO; 17912 } 17913 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17914 drq->queue_id); 17915 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17916 shdr = (union lpfc_sli4_cfg_shdr *) 17917 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17918 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17919 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17920 if (shdr_status || shdr_add_status || rc) { 17921 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17922 "2510 RQ_DESTROY mailbox failed with " 17923 "status x%x add_status x%x, mbx status x%x\n", 17924 shdr_status, shdr_add_status, rc); 17925 status = -ENXIO; 17926 } 17927 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17928 17929 list_remove: 17930 list_del_init(&hrq->list); 17931 list_del_init(&drq->list); 17932 return status; 17933 } 17934 17935 /** 17936 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17937 * @phba: The virtual port for which this call being executed. 17938 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17939 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17940 * @xritag: the xritag that ties this io to the SGL pages. 17941 * 17942 * This routine will post the sgl pages for the IO that has the xritag 17943 * that is in the iocbq structure. The xritag is assigned during iocbq 17944 * creation and persists for as long as the driver is loaded. 17945 * if the caller has fewer than 256 scatter gather segments to map then 17946 * pdma_phys_addr1 should be 0. 17947 * If the caller needs to map more than 256 scatter gather segment then 17948 * pdma_phys_addr1 should be a valid physical address. 17949 * physical address for SGLs must be 64 byte aligned. 17950 * If you are going to map 2 SGL's then the first one must have 256 entries 17951 * the second sgl can have between 1 and 256 entries. 17952 * 17953 * Return codes: 17954 * 0 - Success 17955 * -ENXIO, -ENOMEM - Failure 17956 **/ 17957 int 17958 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17959 dma_addr_t pdma_phys_addr0, 17960 dma_addr_t pdma_phys_addr1, 17961 uint16_t xritag) 17962 { 17963 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17964 LPFC_MBOXQ_t *mbox; 17965 int rc; 17966 uint32_t shdr_status, shdr_add_status; 17967 uint32_t mbox_tmo; 17968 union lpfc_sli4_cfg_shdr *shdr; 17969 17970 if (xritag == NO_XRI) { 17971 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17972 "0364 Invalid param:\n"); 17973 return -EINVAL; 17974 } 17975 17976 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17977 if (!mbox) 17978 return -ENOMEM; 17979 17980 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17981 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17982 sizeof(struct lpfc_mbx_post_sgl_pages) - 17983 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17984 17985 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17986 &mbox->u.mqe.un.post_sgl_pages; 17987 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17988 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17989 17990 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17991 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17992 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17993 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17994 17995 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17996 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17997 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17998 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17999 if (!phba->sli4_hba.intr_enable) 18000 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18001 else { 18002 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18003 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18004 } 18005 /* The IOCTL status is embedded in the mailbox subheader. */ 18006 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 18007 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18008 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18009 if (!phba->sli4_hba.intr_enable) 18010 mempool_free(mbox, phba->mbox_mem_pool); 18011 else if (rc != MBX_TIMEOUT) 18012 mempool_free(mbox, phba->mbox_mem_pool); 18013 if (shdr_status || shdr_add_status || rc) { 18014 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18015 "2511 POST_SGL mailbox failed with " 18016 "status x%x add_status x%x, mbx status x%x\n", 18017 shdr_status, shdr_add_status, rc); 18018 } 18019 return 0; 18020 } 18021 18022 /** 18023 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 18024 * @phba: pointer to lpfc hba data structure. 18025 * 18026 * This routine is invoked to post rpi header templates to the 18027 * HBA consistent with the SLI-4 interface spec. This routine 18028 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18029 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18030 * 18031 * Returns 18032 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 18033 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 18034 **/ 18035 static uint16_t 18036 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 18037 { 18038 unsigned long xri; 18039 18040 /* 18041 * Fetch the next logical xri. Because this index is logical, 18042 * the driver starts at 0 each time. 18043 */ 18044 spin_lock_irq(&phba->hbalock); 18045 xri = find_first_zero_bit(phba->sli4_hba.xri_bmask, 18046 phba->sli4_hba.max_cfg_param.max_xri); 18047 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 18048 spin_unlock_irq(&phba->hbalock); 18049 return NO_XRI; 18050 } else { 18051 set_bit(xri, phba->sli4_hba.xri_bmask); 18052 phba->sli4_hba.max_cfg_param.xri_used++; 18053 } 18054 spin_unlock_irq(&phba->hbalock); 18055 return xri; 18056 } 18057 18058 /** 18059 * __lpfc_sli4_free_xri - Release an xri for reuse. 18060 * @phba: pointer to lpfc hba data structure. 18061 * @xri: xri to release. 18062 * 18063 * This routine is invoked to release an xri to the pool of 18064 * available rpis maintained by the driver. 18065 **/ 18066 static void 18067 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18068 { 18069 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 18070 phba->sli4_hba.max_cfg_param.xri_used--; 18071 } 18072 } 18073 18074 /** 18075 * lpfc_sli4_free_xri - Release an xri for reuse. 18076 * @phba: pointer to lpfc hba data structure. 18077 * @xri: xri to release. 18078 * 18079 * This routine is invoked to release an xri to the pool of 18080 * available rpis maintained by the driver. 18081 **/ 18082 void 18083 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18084 { 18085 spin_lock_irq(&phba->hbalock); 18086 __lpfc_sli4_free_xri(phba, xri); 18087 spin_unlock_irq(&phba->hbalock); 18088 } 18089 18090 /** 18091 * lpfc_sli4_next_xritag - Get an xritag for the io 18092 * @phba: Pointer to HBA context object. 18093 * 18094 * This function gets an xritag for the iocb. If there is no unused xritag 18095 * it will return 0xffff. 18096 * The function returns the allocated xritag if successful, else returns zero. 18097 * Zero is not a valid xritag. 18098 * The caller is not required to hold any lock. 18099 **/ 18100 uint16_t 18101 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 18102 { 18103 uint16_t xri_index; 18104 18105 xri_index = lpfc_sli4_alloc_xri(phba); 18106 if (xri_index == NO_XRI) 18107 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18108 "2004 Failed to allocate XRI.last XRITAG is %d" 18109 " Max XRI is %d, Used XRI is %d\n", 18110 xri_index, 18111 phba->sli4_hba.max_cfg_param.max_xri, 18112 phba->sli4_hba.max_cfg_param.xri_used); 18113 return xri_index; 18114 } 18115 18116 /** 18117 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 18118 * @phba: pointer to lpfc hba data structure. 18119 * @post_sgl_list: pointer to els sgl entry list. 18120 * @post_cnt: number of els sgl entries on the list. 18121 * 18122 * This routine is invoked to post a block of driver's sgl pages to the 18123 * HBA using non-embedded mailbox command. No Lock is held. This routine 18124 * is only called when the driver is loading and after all IO has been 18125 * stopped. 18126 **/ 18127 static int 18128 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 18129 struct list_head *post_sgl_list, 18130 int post_cnt) 18131 { 18132 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 18133 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18134 struct sgl_page_pairs *sgl_pg_pairs; 18135 void *viraddr; 18136 LPFC_MBOXQ_t *mbox; 18137 uint32_t reqlen, alloclen, pg_pairs; 18138 uint32_t mbox_tmo; 18139 uint16_t xritag_start = 0; 18140 int rc = 0; 18141 uint32_t shdr_status, shdr_add_status; 18142 union lpfc_sli4_cfg_shdr *shdr; 18143 18144 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 18145 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18146 if (reqlen > SLI4_PAGE_SIZE) { 18147 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18148 "2559 Block sgl registration required DMA " 18149 "size (%d) great than a page\n", reqlen); 18150 return -ENOMEM; 18151 } 18152 18153 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18154 if (!mbox) 18155 return -ENOMEM; 18156 18157 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18158 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18159 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 18160 LPFC_SLI4_MBX_NEMBED); 18161 18162 if (alloclen < reqlen) { 18163 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18164 "0285 Allocated DMA memory size (%d) is " 18165 "less than the requested DMA memory " 18166 "size (%d)\n", alloclen, reqlen); 18167 lpfc_sli4_mbox_cmd_free(phba, mbox); 18168 return -ENOMEM; 18169 } 18170 /* Set up the SGL pages in the non-embedded DMA pages */ 18171 viraddr = mbox->sge_array->addr[0]; 18172 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18173 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18174 18175 pg_pairs = 0; 18176 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 18177 /* Set up the sge entry */ 18178 sgl_pg_pairs->sgl_pg0_addr_lo = 18179 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 18180 sgl_pg_pairs->sgl_pg0_addr_hi = 18181 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 18182 sgl_pg_pairs->sgl_pg1_addr_lo = 18183 cpu_to_le32(putPaddrLow(0)); 18184 sgl_pg_pairs->sgl_pg1_addr_hi = 18185 cpu_to_le32(putPaddrHigh(0)); 18186 18187 /* Keep the first xritag on the list */ 18188 if (pg_pairs == 0) 18189 xritag_start = sglq_entry->sli4_xritag; 18190 sgl_pg_pairs++; 18191 pg_pairs++; 18192 } 18193 18194 /* Complete initialization and perform endian conversion. */ 18195 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18196 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 18197 sgl->word0 = cpu_to_le32(sgl->word0); 18198 18199 if (!phba->sli4_hba.intr_enable) 18200 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18201 else { 18202 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18203 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18204 } 18205 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 18206 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18207 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18208 if (!phba->sli4_hba.intr_enable) 18209 lpfc_sli4_mbox_cmd_free(phba, mbox); 18210 else if (rc != MBX_TIMEOUT) 18211 lpfc_sli4_mbox_cmd_free(phba, mbox); 18212 if (shdr_status || shdr_add_status || rc) { 18213 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18214 "2513 POST_SGL_BLOCK mailbox command failed " 18215 "status x%x add_status x%x mbx status x%x\n", 18216 shdr_status, shdr_add_status, rc); 18217 rc = -ENXIO; 18218 } 18219 return rc; 18220 } 18221 18222 /** 18223 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 18224 * @phba: pointer to lpfc hba data structure. 18225 * @nblist: pointer to nvme buffer list. 18226 * @count: number of scsi buffers on the list. 18227 * 18228 * This routine is invoked to post a block of @count scsi sgl pages from a 18229 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 18230 * No Lock is held. 18231 * 18232 **/ 18233 static int 18234 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 18235 int count) 18236 { 18237 struct lpfc_io_buf *lpfc_ncmd; 18238 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18239 struct sgl_page_pairs *sgl_pg_pairs; 18240 void *viraddr; 18241 LPFC_MBOXQ_t *mbox; 18242 uint32_t reqlen, alloclen, pg_pairs; 18243 uint32_t mbox_tmo; 18244 uint16_t xritag_start = 0; 18245 int rc = 0; 18246 uint32_t shdr_status, shdr_add_status; 18247 dma_addr_t pdma_phys_bpl1; 18248 union lpfc_sli4_cfg_shdr *shdr; 18249 18250 /* Calculate the requested length of the dma memory */ 18251 reqlen = count * sizeof(struct sgl_page_pairs) + 18252 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18253 if (reqlen > SLI4_PAGE_SIZE) { 18254 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 18255 "6118 Block sgl registration required DMA " 18256 "size (%d) great than a page\n", reqlen); 18257 return -ENOMEM; 18258 } 18259 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18260 if (!mbox) { 18261 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18262 "6119 Failed to allocate mbox cmd memory\n"); 18263 return -ENOMEM; 18264 } 18265 18266 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18267 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18268 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 18269 reqlen, LPFC_SLI4_MBX_NEMBED); 18270 18271 if (alloclen < reqlen) { 18272 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18273 "6120 Allocated DMA memory size (%d) is " 18274 "less than the requested DMA memory " 18275 "size (%d)\n", alloclen, reqlen); 18276 lpfc_sli4_mbox_cmd_free(phba, mbox); 18277 return -ENOMEM; 18278 } 18279 18280 /* Get the first SGE entry from the non-embedded DMA memory */ 18281 viraddr = mbox->sge_array->addr[0]; 18282 18283 /* Set up the SGL pages in the non-embedded DMA pages */ 18284 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18285 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18286 18287 pg_pairs = 0; 18288 list_for_each_entry(lpfc_ncmd, nblist, list) { 18289 /* Set up the sge entry */ 18290 sgl_pg_pairs->sgl_pg0_addr_lo = 18291 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 18292 sgl_pg_pairs->sgl_pg0_addr_hi = 18293 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 18294 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 18295 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 18296 SGL_PAGE_SIZE; 18297 else 18298 pdma_phys_bpl1 = 0; 18299 sgl_pg_pairs->sgl_pg1_addr_lo = 18300 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 18301 sgl_pg_pairs->sgl_pg1_addr_hi = 18302 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 18303 /* Keep the first xritag on the list */ 18304 if (pg_pairs == 0) 18305 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 18306 sgl_pg_pairs++; 18307 pg_pairs++; 18308 } 18309 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18310 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 18311 /* Perform endian conversion if necessary */ 18312 sgl->word0 = cpu_to_le32(sgl->word0); 18313 18314 if (!phba->sli4_hba.intr_enable) { 18315 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18316 } else { 18317 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18318 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18319 } 18320 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 18321 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18322 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18323 if (!phba->sli4_hba.intr_enable) 18324 lpfc_sli4_mbox_cmd_free(phba, mbox); 18325 else if (rc != MBX_TIMEOUT) 18326 lpfc_sli4_mbox_cmd_free(phba, mbox); 18327 if (shdr_status || shdr_add_status || rc) { 18328 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18329 "6125 POST_SGL_BLOCK mailbox command failed " 18330 "status x%x add_status x%x mbx status x%x\n", 18331 shdr_status, shdr_add_status, rc); 18332 rc = -ENXIO; 18333 } 18334 return rc; 18335 } 18336 18337 /** 18338 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 18339 * @phba: pointer to lpfc hba data structure. 18340 * @post_nblist: pointer to the nvme buffer list. 18341 * @sb_count: number of nvme buffers. 18342 * 18343 * This routine walks a list of nvme buffers that was passed in. It attempts 18344 * to construct blocks of nvme buffer sgls which contains contiguous xris and 18345 * uses the non-embedded SGL block post mailbox commands to post to the port. 18346 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 18347 * embedded SGL post mailbox command for posting. The @post_nblist passed in 18348 * must be local list, thus no lock is needed when manipulate the list. 18349 * 18350 * Returns: 0 = failure, non-zero number of successfully posted buffers. 18351 **/ 18352 int 18353 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 18354 struct list_head *post_nblist, int sb_count) 18355 { 18356 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 18357 int status, sgl_size; 18358 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 18359 dma_addr_t pdma_phys_sgl1; 18360 int last_xritag = NO_XRI; 18361 int cur_xritag; 18362 LIST_HEAD(prep_nblist); 18363 LIST_HEAD(blck_nblist); 18364 LIST_HEAD(nvme_nblist); 18365 18366 /* sanity check */ 18367 if (sb_count <= 0) 18368 return -EINVAL; 18369 18370 sgl_size = phba->cfg_sg_dma_buf_size; 18371 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 18372 list_del_init(&lpfc_ncmd->list); 18373 block_cnt++; 18374 if ((last_xritag != NO_XRI) && 18375 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 18376 /* a hole in xri block, form a sgl posting block */ 18377 list_splice_init(&prep_nblist, &blck_nblist); 18378 post_cnt = block_cnt - 1; 18379 /* prepare list for next posting block */ 18380 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18381 block_cnt = 1; 18382 } else { 18383 /* prepare list for next posting block */ 18384 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18385 /* enough sgls for non-embed sgl mbox command */ 18386 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 18387 list_splice_init(&prep_nblist, &blck_nblist); 18388 post_cnt = block_cnt; 18389 block_cnt = 0; 18390 } 18391 } 18392 num_posting++; 18393 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18394 18395 /* end of repost sgl list condition for NVME buffers */ 18396 if (num_posting == sb_count) { 18397 if (post_cnt == 0) { 18398 /* last sgl posting block */ 18399 list_splice_init(&prep_nblist, &blck_nblist); 18400 post_cnt = block_cnt; 18401 } else if (block_cnt == 1) { 18402 /* last single sgl with non-contiguous xri */ 18403 if (sgl_size > SGL_PAGE_SIZE) 18404 pdma_phys_sgl1 = 18405 lpfc_ncmd->dma_phys_sgl + 18406 SGL_PAGE_SIZE; 18407 else 18408 pdma_phys_sgl1 = 0; 18409 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18410 status = lpfc_sli4_post_sgl( 18411 phba, lpfc_ncmd->dma_phys_sgl, 18412 pdma_phys_sgl1, cur_xritag); 18413 if (status) { 18414 /* Post error. Buffer unavailable. */ 18415 lpfc_ncmd->flags |= 18416 LPFC_SBUF_NOT_POSTED; 18417 } else { 18418 /* Post success. Bffer available. */ 18419 lpfc_ncmd->flags &= 18420 ~LPFC_SBUF_NOT_POSTED; 18421 lpfc_ncmd->status = IOSTAT_SUCCESS; 18422 num_posted++; 18423 } 18424 /* success, put on NVME buffer sgl list */ 18425 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18426 } 18427 } 18428 18429 /* continue until a nembed page worth of sgls */ 18430 if (post_cnt == 0) 18431 continue; 18432 18433 /* post block of NVME buffer list sgls */ 18434 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 18435 post_cnt); 18436 18437 /* don't reset xirtag due to hole in xri block */ 18438 if (block_cnt == 0) 18439 last_xritag = NO_XRI; 18440 18441 /* reset NVME buffer post count for next round of posting */ 18442 post_cnt = 0; 18443 18444 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 18445 while (!list_empty(&blck_nblist)) { 18446 list_remove_head(&blck_nblist, lpfc_ncmd, 18447 struct lpfc_io_buf, list); 18448 if (status) { 18449 /* Post error. Mark buffer unavailable. */ 18450 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 18451 } else { 18452 /* Post success, Mark buffer available. */ 18453 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 18454 lpfc_ncmd->status = IOSTAT_SUCCESS; 18455 num_posted++; 18456 } 18457 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18458 } 18459 } 18460 /* Push NVME buffers with sgl posted to the available list */ 18461 lpfc_io_buf_replenish(phba, &nvme_nblist); 18462 18463 return num_posted; 18464 } 18465 18466 /** 18467 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 18468 * @phba: pointer to lpfc_hba struct that the frame was received on 18469 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18470 * 18471 * This function checks the fields in the @fc_hdr to see if the FC frame is a 18472 * valid type of frame that the LPFC driver will handle. This function will 18473 * return a zero if the frame is a valid frame or a non zero value when the 18474 * frame does not pass the check. 18475 **/ 18476 static int 18477 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 18478 { 18479 /* make rctl_names static to save stack space */ 18480 struct fc_vft_header *fc_vft_hdr; 18481 uint32_t *header = (uint32_t *) fc_hdr; 18482 18483 #define FC_RCTL_MDS_DIAGS 0xF4 18484 18485 switch (fc_hdr->fh_r_ctl) { 18486 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 18487 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 18488 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 18489 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 18490 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 18491 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 18492 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 18493 case FC_RCTL_DD_CMD_STATUS: /* command status */ 18494 case FC_RCTL_ELS_REQ: /* extended link services request */ 18495 case FC_RCTL_ELS_REP: /* extended link services reply */ 18496 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 18497 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 18498 case FC_RCTL_BA_ABTS: /* basic link service abort */ 18499 case FC_RCTL_BA_RMC: /* remove connection */ 18500 case FC_RCTL_BA_ACC: /* basic accept */ 18501 case FC_RCTL_BA_RJT: /* basic reject */ 18502 case FC_RCTL_BA_PRMT: 18503 case FC_RCTL_ACK_1: /* acknowledge_1 */ 18504 case FC_RCTL_ACK_0: /* acknowledge_0 */ 18505 case FC_RCTL_P_RJT: /* port reject */ 18506 case FC_RCTL_F_RJT: /* fabric reject */ 18507 case FC_RCTL_P_BSY: /* port busy */ 18508 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 18509 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 18510 case FC_RCTL_LCR: /* link credit reset */ 18511 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 18512 case FC_RCTL_END: /* end */ 18513 break; 18514 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 18515 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18516 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 18517 return lpfc_fc_frame_check(phba, fc_hdr); 18518 case FC_RCTL_BA_NOP: /* basic link service NOP */ 18519 default: 18520 goto drop; 18521 } 18522 18523 switch (fc_hdr->fh_type) { 18524 case FC_TYPE_BLS: 18525 case FC_TYPE_ELS: 18526 case FC_TYPE_FCP: 18527 case FC_TYPE_CT: 18528 case FC_TYPE_NVME: 18529 break; 18530 case FC_TYPE_IP: 18531 case FC_TYPE_ILS: 18532 default: 18533 goto drop; 18534 } 18535 18536 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 18537 "2538 Received frame rctl:x%x, type:x%x, " 18538 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 18539 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 18540 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 18541 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 18542 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 18543 be32_to_cpu(header[6])); 18544 return 0; 18545 drop: 18546 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 18547 "2539 Dropped frame rctl:x%x type:x%x\n", 18548 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18549 return 1; 18550 } 18551 18552 /** 18553 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 18554 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18555 * 18556 * This function processes the FC header to retrieve the VFI from the VF 18557 * header, if one exists. This function will return the VFI if one exists 18558 * or 0 if no VSAN Header exists. 18559 **/ 18560 static uint32_t 18561 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 18562 { 18563 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18564 18565 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 18566 return 0; 18567 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 18568 } 18569 18570 /** 18571 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 18572 * @phba: Pointer to the HBA structure to search for the vport on 18573 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18574 * @fcfi: The FC Fabric ID that the frame came from 18575 * @did: Destination ID to match against 18576 * 18577 * This function searches the @phba for a vport that matches the content of the 18578 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 18579 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 18580 * returns the matching vport pointer or NULL if unable to match frame to a 18581 * vport. 18582 **/ 18583 static struct lpfc_vport * 18584 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 18585 uint16_t fcfi, uint32_t did) 18586 { 18587 struct lpfc_vport **vports; 18588 struct lpfc_vport *vport = NULL; 18589 int i; 18590 18591 if (did == Fabric_DID) 18592 return phba->pport; 18593 if ((phba->pport->fc_flag & FC_PT2PT) && 18594 !(phba->link_state == LPFC_HBA_READY)) 18595 return phba->pport; 18596 18597 vports = lpfc_create_vport_work_array(phba); 18598 if (vports != NULL) { 18599 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 18600 if (phba->fcf.fcfi == fcfi && 18601 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 18602 vports[i]->fc_myDID == did) { 18603 vport = vports[i]; 18604 break; 18605 } 18606 } 18607 } 18608 lpfc_destroy_vport_work_array(phba, vports); 18609 return vport; 18610 } 18611 18612 /** 18613 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 18614 * @vport: The vport to work on. 18615 * 18616 * This function updates the receive sequence time stamp for this vport. The 18617 * receive sequence time stamp indicates the time that the last frame of the 18618 * the sequence that has been idle for the longest amount of time was received. 18619 * the driver uses this time stamp to indicate if any received sequences have 18620 * timed out. 18621 **/ 18622 static void 18623 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 18624 { 18625 struct lpfc_dmabuf *h_buf; 18626 struct hbq_dmabuf *dmabuf = NULL; 18627 18628 /* get the oldest sequence on the rcv list */ 18629 h_buf = list_get_first(&vport->rcv_buffer_list, 18630 struct lpfc_dmabuf, list); 18631 if (!h_buf) 18632 return; 18633 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18634 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 18635 } 18636 18637 /** 18638 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 18639 * @vport: The vport that the received sequences were sent to. 18640 * 18641 * This function cleans up all outstanding received sequences. This is called 18642 * by the driver when a link event or user action invalidates all the received 18643 * sequences. 18644 **/ 18645 void 18646 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 18647 { 18648 struct lpfc_dmabuf *h_buf, *hnext; 18649 struct lpfc_dmabuf *d_buf, *dnext; 18650 struct hbq_dmabuf *dmabuf = NULL; 18651 18652 /* start with the oldest sequence on the rcv list */ 18653 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18654 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18655 list_del_init(&dmabuf->hbuf.list); 18656 list_for_each_entry_safe(d_buf, dnext, 18657 &dmabuf->dbuf.list, list) { 18658 list_del_init(&d_buf->list); 18659 lpfc_in_buf_free(vport->phba, d_buf); 18660 } 18661 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18662 } 18663 } 18664 18665 /** 18666 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 18667 * @vport: The vport that the received sequences were sent to. 18668 * 18669 * This function determines whether any received sequences have timed out by 18670 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 18671 * indicates that there is at least one timed out sequence this routine will 18672 * go through the received sequences one at a time from most inactive to most 18673 * active to determine which ones need to be cleaned up. Once it has determined 18674 * that a sequence needs to be cleaned up it will simply free up the resources 18675 * without sending an abort. 18676 **/ 18677 void 18678 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 18679 { 18680 struct lpfc_dmabuf *h_buf, *hnext; 18681 struct lpfc_dmabuf *d_buf, *dnext; 18682 struct hbq_dmabuf *dmabuf = NULL; 18683 unsigned long timeout; 18684 int abort_count = 0; 18685 18686 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18687 vport->rcv_buffer_time_stamp); 18688 if (list_empty(&vport->rcv_buffer_list) || 18689 time_before(jiffies, timeout)) 18690 return; 18691 /* start with the oldest sequence on the rcv list */ 18692 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18693 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18694 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18695 dmabuf->time_stamp); 18696 if (time_before(jiffies, timeout)) 18697 break; 18698 abort_count++; 18699 list_del_init(&dmabuf->hbuf.list); 18700 list_for_each_entry_safe(d_buf, dnext, 18701 &dmabuf->dbuf.list, list) { 18702 list_del_init(&d_buf->list); 18703 lpfc_in_buf_free(vport->phba, d_buf); 18704 } 18705 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18706 } 18707 if (abort_count) 18708 lpfc_update_rcv_time_stamp(vport); 18709 } 18710 18711 /** 18712 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 18713 * @vport: pointer to a vitural port 18714 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 18715 * 18716 * This function searches through the existing incomplete sequences that have 18717 * been sent to this @vport. If the frame matches one of the incomplete 18718 * sequences then the dbuf in the @dmabuf is added to the list of frames that 18719 * make up that sequence. If no sequence is found that matches this frame then 18720 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 18721 * This function returns a pointer to the first dmabuf in the sequence list that 18722 * the frame was linked to. 18723 **/ 18724 static struct hbq_dmabuf * 18725 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18726 { 18727 struct fc_frame_header *new_hdr; 18728 struct fc_frame_header *temp_hdr; 18729 struct lpfc_dmabuf *d_buf; 18730 struct lpfc_dmabuf *h_buf; 18731 struct hbq_dmabuf *seq_dmabuf = NULL; 18732 struct hbq_dmabuf *temp_dmabuf = NULL; 18733 uint8_t found = 0; 18734 18735 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18736 dmabuf->time_stamp = jiffies; 18737 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18738 18739 /* Use the hdr_buf to find the sequence that this frame belongs to */ 18740 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18741 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18742 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18743 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18744 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18745 continue; 18746 /* found a pending sequence that matches this frame */ 18747 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18748 break; 18749 } 18750 if (!seq_dmabuf) { 18751 /* 18752 * This indicates first frame received for this sequence. 18753 * Queue the buffer on the vport's rcv_buffer_list. 18754 */ 18755 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18756 lpfc_update_rcv_time_stamp(vport); 18757 return dmabuf; 18758 } 18759 temp_hdr = seq_dmabuf->hbuf.virt; 18760 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 18761 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18762 list_del_init(&seq_dmabuf->hbuf.list); 18763 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18764 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18765 lpfc_update_rcv_time_stamp(vport); 18766 return dmabuf; 18767 } 18768 /* move this sequence to the tail to indicate a young sequence */ 18769 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 18770 seq_dmabuf->time_stamp = jiffies; 18771 lpfc_update_rcv_time_stamp(vport); 18772 if (list_empty(&seq_dmabuf->dbuf.list)) { 18773 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18774 return seq_dmabuf; 18775 } 18776 /* find the correct place in the sequence to insert this frame */ 18777 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 18778 while (!found) { 18779 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18780 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 18781 /* 18782 * If the frame's sequence count is greater than the frame on 18783 * the list then insert the frame right after this frame 18784 */ 18785 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 18786 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18787 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 18788 found = 1; 18789 break; 18790 } 18791 18792 if (&d_buf->list == &seq_dmabuf->dbuf.list) 18793 break; 18794 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 18795 } 18796 18797 if (found) 18798 return seq_dmabuf; 18799 return NULL; 18800 } 18801 18802 /** 18803 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 18804 * @vport: pointer to a vitural port 18805 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18806 * 18807 * This function tries to abort from the partially assembed sequence, described 18808 * by the information from basic abbort @dmabuf. It checks to see whether such 18809 * partially assembled sequence held by the driver. If so, it shall free up all 18810 * the frames from the partially assembled sequence. 18811 * 18812 * Return 18813 * true -- if there is matching partially assembled sequence present and all 18814 * the frames freed with the sequence; 18815 * false -- if there is no matching partially assembled sequence present so 18816 * nothing got aborted in the lower layer driver 18817 **/ 18818 static bool 18819 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18820 struct hbq_dmabuf *dmabuf) 18821 { 18822 struct fc_frame_header *new_hdr; 18823 struct fc_frame_header *temp_hdr; 18824 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18825 struct hbq_dmabuf *seq_dmabuf = NULL; 18826 18827 /* Use the hdr_buf to find the sequence that matches this frame */ 18828 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18829 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18830 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18831 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18832 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18833 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18834 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18835 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18836 continue; 18837 /* found a pending sequence that matches this frame */ 18838 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18839 break; 18840 } 18841 18842 /* Free up all the frames from the partially assembled sequence */ 18843 if (seq_dmabuf) { 18844 list_for_each_entry_safe(d_buf, n_buf, 18845 &seq_dmabuf->dbuf.list, list) { 18846 list_del_init(&d_buf->list); 18847 lpfc_in_buf_free(vport->phba, d_buf); 18848 } 18849 return true; 18850 } 18851 return false; 18852 } 18853 18854 /** 18855 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18856 * @vport: pointer to a vitural port 18857 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18858 * 18859 * This function tries to abort from the assembed sequence from upper level 18860 * protocol, described by the information from basic abbort @dmabuf. It 18861 * checks to see whether such pending context exists at upper level protocol. 18862 * If so, it shall clean up the pending context. 18863 * 18864 * Return 18865 * true -- if there is matching pending context of the sequence cleaned 18866 * at ulp; 18867 * false -- if there is no matching pending context of the sequence present 18868 * at ulp. 18869 **/ 18870 static bool 18871 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18872 { 18873 struct lpfc_hba *phba = vport->phba; 18874 int handled; 18875 18876 /* Accepting abort at ulp with SLI4 only */ 18877 if (phba->sli_rev < LPFC_SLI_REV4) 18878 return false; 18879 18880 /* Register all caring upper level protocols to attend abort */ 18881 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18882 if (handled) 18883 return true; 18884 18885 return false; 18886 } 18887 18888 /** 18889 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18890 * @phba: Pointer to HBA context object. 18891 * @cmd_iocbq: pointer to the command iocbq structure. 18892 * @rsp_iocbq: pointer to the response iocbq structure. 18893 * 18894 * This function handles the sequence abort response iocb command complete 18895 * event. It properly releases the memory allocated to the sequence abort 18896 * accept iocb. 18897 **/ 18898 static void 18899 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18900 struct lpfc_iocbq *cmd_iocbq, 18901 struct lpfc_iocbq *rsp_iocbq) 18902 { 18903 if (cmd_iocbq) { 18904 lpfc_nlp_put(cmd_iocbq->ndlp); 18905 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18906 } 18907 18908 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18909 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18910 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18911 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18912 get_job_ulpstatus(phba, rsp_iocbq), 18913 get_job_word4(phba, rsp_iocbq)); 18914 } 18915 18916 /** 18917 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18918 * @phba: Pointer to HBA context object. 18919 * @xri: xri id in transaction. 18920 * 18921 * This function validates the xri maps to the known range of XRIs allocated an 18922 * used by the driver. 18923 **/ 18924 uint16_t 18925 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18926 uint16_t xri) 18927 { 18928 uint16_t i; 18929 18930 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18931 if (xri == phba->sli4_hba.xri_ids[i]) 18932 return i; 18933 } 18934 return NO_XRI; 18935 } 18936 18937 /** 18938 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18939 * @vport: pointer to a virtual port. 18940 * @fc_hdr: pointer to a FC frame header. 18941 * @aborted: was the partially assembled receive sequence successfully aborted 18942 * 18943 * This function sends a basic response to a previous unsol sequence abort 18944 * event after aborting the sequence handling. 18945 **/ 18946 void 18947 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18948 struct fc_frame_header *fc_hdr, bool aborted) 18949 { 18950 struct lpfc_hba *phba = vport->phba; 18951 struct lpfc_iocbq *ctiocb = NULL; 18952 struct lpfc_nodelist *ndlp; 18953 uint16_t oxid, rxid, xri, lxri; 18954 uint32_t sid, fctl; 18955 union lpfc_wqe128 *icmd; 18956 int rc; 18957 18958 if (!lpfc_is_link_up(phba)) 18959 return; 18960 18961 sid = sli4_sid_from_fc_hdr(fc_hdr); 18962 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18963 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18964 18965 ndlp = lpfc_findnode_did(vport, sid); 18966 if (!ndlp) { 18967 ndlp = lpfc_nlp_init(vport, sid); 18968 if (!ndlp) { 18969 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18970 "1268 Failed to allocate ndlp for " 18971 "oxid:x%x SID:x%x\n", oxid, sid); 18972 return; 18973 } 18974 /* Put ndlp onto pport node list */ 18975 lpfc_enqueue_node(vport, ndlp); 18976 } 18977 18978 /* Allocate buffer for rsp iocb */ 18979 ctiocb = lpfc_sli_get_iocbq(phba); 18980 if (!ctiocb) 18981 return; 18982 18983 icmd = &ctiocb->wqe; 18984 18985 /* Extract the F_CTL field from FC_HDR */ 18986 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18987 18988 ctiocb->ndlp = lpfc_nlp_get(ndlp); 18989 if (!ctiocb->ndlp) { 18990 lpfc_sli_release_iocbq(phba, ctiocb); 18991 return; 18992 } 18993 18994 ctiocb->vport = phba->pport; 18995 ctiocb->cmd_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18996 ctiocb->sli4_lxritag = NO_XRI; 18997 ctiocb->sli4_xritag = NO_XRI; 18998 ctiocb->abort_rctl = FC_RCTL_BA_ACC; 18999 19000 if (fctl & FC_FC_EX_CTX) 19001 /* Exchange responder sent the abort so we 19002 * own the oxid. 19003 */ 19004 xri = oxid; 19005 else 19006 xri = rxid; 19007 lxri = lpfc_sli4_xri_inrange(phba, xri); 19008 if (lxri != NO_XRI) 19009 lpfc_set_rrq_active(phba, ndlp, lxri, 19010 (xri == oxid) ? rxid : oxid, 0); 19011 /* For BA_ABTS from exchange responder, if the logical xri with 19012 * the oxid maps to the FCP XRI range, the port no longer has 19013 * that exchange context, send a BLS_RJT. Override the IOCB for 19014 * a BA_RJT. 19015 */ 19016 if ((fctl & FC_FC_EX_CTX) && 19017 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 19018 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 19019 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 19020 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 19021 FC_BA_RJT_INV_XID); 19022 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 19023 FC_BA_RJT_UNABLE); 19024 } 19025 19026 /* If BA_ABTS failed to abort a partially assembled receive sequence, 19027 * the driver no longer has that exchange, send a BLS_RJT. Override 19028 * the IOCB for a BA_RJT. 19029 */ 19030 if (aborted == false) { 19031 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 19032 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 19033 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 19034 FC_BA_RJT_INV_XID); 19035 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 19036 FC_BA_RJT_UNABLE); 19037 } 19038 19039 if (fctl & FC_FC_EX_CTX) { 19040 /* ABTS sent by responder to CT exchange, construction 19041 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 19042 * field and RX_ID from ABTS for RX_ID field. 19043 */ 19044 ctiocb->abort_bls = LPFC_ABTS_UNSOL_RSP; 19045 bf_set(xmit_bls_rsp64_rxid, &icmd->xmit_bls_rsp, rxid); 19046 } else { 19047 /* ABTS sent by initiator to CT exchange, construction 19048 * of BA_ACC will need to allocate a new XRI as for the 19049 * XRI_TAG field. 19050 */ 19051 ctiocb->abort_bls = LPFC_ABTS_UNSOL_INT; 19052 } 19053 19054 /* OX_ID is invariable to who sent ABTS to CT exchange */ 19055 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, oxid); 19056 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, rxid); 19057 19058 /* Use CT=VPI */ 19059 bf_set(wqe_els_did, &icmd->xmit_bls_rsp.wqe_dest, 19060 ndlp->nlp_DID); 19061 bf_set(xmit_bls_rsp64_temprpi, &icmd->xmit_bls_rsp, 19062 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 19063 bf_set(wqe_cmnd, &icmd->generic.wqe_com, CMD_XMIT_BLS_RSP64_CX); 19064 19065 /* Xmit CT abts response on exchange <xid> */ 19066 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 19067 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 19068 ctiocb->abort_rctl, oxid, phba->link_state); 19069 19070 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 19071 if (rc == IOCB_ERROR) { 19072 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19073 "2925 Failed to issue CT ABTS RSP x%x on " 19074 "xri x%x, Data x%x\n", 19075 ctiocb->abort_rctl, oxid, 19076 phba->link_state); 19077 lpfc_nlp_put(ndlp); 19078 ctiocb->ndlp = NULL; 19079 lpfc_sli_release_iocbq(phba, ctiocb); 19080 } 19081 } 19082 19083 /** 19084 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 19085 * @vport: Pointer to the vport on which this sequence was received 19086 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19087 * 19088 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 19089 * receive sequence is only partially assembed by the driver, it shall abort 19090 * the partially assembled frames for the sequence. Otherwise, if the 19091 * unsolicited receive sequence has been completely assembled and passed to 19092 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 19093 * unsolicited sequence has been aborted. After that, it will issue a basic 19094 * accept to accept the abort. 19095 **/ 19096 static void 19097 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 19098 struct hbq_dmabuf *dmabuf) 19099 { 19100 struct lpfc_hba *phba = vport->phba; 19101 struct fc_frame_header fc_hdr; 19102 uint32_t fctl; 19103 bool aborted; 19104 19105 /* Make a copy of fc_hdr before the dmabuf being released */ 19106 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 19107 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 19108 19109 if (fctl & FC_FC_EX_CTX) { 19110 /* ABTS by responder to exchange, no cleanup needed */ 19111 aborted = true; 19112 } else { 19113 /* ABTS by initiator to exchange, need to do cleanup */ 19114 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 19115 if (aborted == false) 19116 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 19117 } 19118 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19119 19120 if (phba->nvmet_support) { 19121 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 19122 return; 19123 } 19124 19125 /* Respond with BA_ACC or BA_RJT accordingly */ 19126 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 19127 } 19128 19129 /** 19130 * lpfc_seq_complete - Indicates if a sequence is complete 19131 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19132 * 19133 * This function checks the sequence, starting with the frame described by 19134 * @dmabuf, to see if all the frames associated with this sequence are present. 19135 * the frames associated with this sequence are linked to the @dmabuf using the 19136 * dbuf list. This function looks for two major things. 1) That the first frame 19137 * has a sequence count of zero. 2) There is a frame with last frame of sequence 19138 * set. 3) That there are no holes in the sequence count. The function will 19139 * return 1 when the sequence is complete, otherwise it will return 0. 19140 **/ 19141 static int 19142 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 19143 { 19144 struct fc_frame_header *hdr; 19145 struct lpfc_dmabuf *d_buf; 19146 struct hbq_dmabuf *seq_dmabuf; 19147 uint32_t fctl; 19148 int seq_count = 0; 19149 19150 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19151 /* make sure first fame of sequence has a sequence count of zero */ 19152 if (hdr->fh_seq_cnt != seq_count) 19153 return 0; 19154 fctl = (hdr->fh_f_ctl[0] << 16 | 19155 hdr->fh_f_ctl[1] << 8 | 19156 hdr->fh_f_ctl[2]); 19157 /* If last frame of sequence we can return success. */ 19158 if (fctl & FC_FC_END_SEQ) 19159 return 1; 19160 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 19161 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19162 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19163 /* If there is a hole in the sequence count then fail. */ 19164 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 19165 return 0; 19166 fctl = (hdr->fh_f_ctl[0] << 16 | 19167 hdr->fh_f_ctl[1] << 8 | 19168 hdr->fh_f_ctl[2]); 19169 /* If last frame of sequence we can return success. */ 19170 if (fctl & FC_FC_END_SEQ) 19171 return 1; 19172 } 19173 return 0; 19174 } 19175 19176 /** 19177 * lpfc_prep_seq - Prep sequence for ULP processing 19178 * @vport: Pointer to the vport on which this sequence was received 19179 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 19180 * 19181 * This function takes a sequence, described by a list of frames, and creates 19182 * a list of iocbq structures to describe the sequence. This iocbq list will be 19183 * used to issue to the generic unsolicited sequence handler. This routine 19184 * returns a pointer to the first iocbq in the list. If the function is unable 19185 * to allocate an iocbq then it throw out the received frames that were not 19186 * able to be described and return a pointer to the first iocbq. If unable to 19187 * allocate any iocbqs (including the first) this function will return NULL. 19188 **/ 19189 static struct lpfc_iocbq * 19190 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 19191 { 19192 struct hbq_dmabuf *hbq_buf; 19193 struct lpfc_dmabuf *d_buf, *n_buf; 19194 struct lpfc_iocbq *first_iocbq, *iocbq; 19195 struct fc_frame_header *fc_hdr; 19196 uint32_t sid; 19197 uint32_t len, tot_len; 19198 19199 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19200 /* remove from receive buffer list */ 19201 list_del_init(&seq_dmabuf->hbuf.list); 19202 lpfc_update_rcv_time_stamp(vport); 19203 /* get the Remote Port's SID */ 19204 sid = sli4_sid_from_fc_hdr(fc_hdr); 19205 tot_len = 0; 19206 /* Get an iocbq struct to fill in. */ 19207 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 19208 if (first_iocbq) { 19209 /* Initialize the first IOCB. */ 19210 first_iocbq->wcqe_cmpl.total_data_placed = 0; 19211 bf_set(lpfc_wcqe_c_status, &first_iocbq->wcqe_cmpl, 19212 IOSTAT_SUCCESS); 19213 first_iocbq->vport = vport; 19214 19215 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 19216 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 19217 bf_set(els_rsp64_sid, &first_iocbq->wqe.xmit_els_rsp, 19218 sli4_did_from_fc_hdr(fc_hdr)); 19219 } 19220 19221 bf_set(wqe_ctxt_tag, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19222 NO_XRI); 19223 bf_set(wqe_rcvoxid, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19224 be16_to_cpu(fc_hdr->fh_ox_id)); 19225 19226 /* put the first buffer into the first iocb */ 19227 tot_len = bf_get(lpfc_rcqe_length, 19228 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 19229 19230 first_iocbq->cmd_dmabuf = &seq_dmabuf->dbuf; 19231 first_iocbq->bpl_dmabuf = NULL; 19232 /* Keep track of the BDE count */ 19233 first_iocbq->wcqe_cmpl.word3 = 1; 19234 19235 if (tot_len > LPFC_DATA_BUF_SIZE) 19236 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = 19237 LPFC_DATA_BUF_SIZE; 19238 else 19239 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = tot_len; 19240 19241 first_iocbq->wcqe_cmpl.total_data_placed = tot_len; 19242 bf_set(wqe_els_did, &first_iocbq->wqe.xmit_els_rsp.wqe_dest, 19243 sid); 19244 } 19245 iocbq = first_iocbq; 19246 /* 19247 * Each IOCBq can have two Buffers assigned, so go through the list 19248 * of buffers for this sequence and save two buffers in each IOCBq 19249 */ 19250 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 19251 if (!iocbq) { 19252 lpfc_in_buf_free(vport->phba, d_buf); 19253 continue; 19254 } 19255 if (!iocbq->bpl_dmabuf) { 19256 iocbq->bpl_dmabuf = d_buf; 19257 iocbq->wcqe_cmpl.word3++; 19258 /* We need to get the size out of the right CQE */ 19259 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19260 len = bf_get(lpfc_rcqe_length, 19261 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19262 iocbq->unsol_rcv_len = len; 19263 iocbq->wcqe_cmpl.total_data_placed += len; 19264 tot_len += len; 19265 } else { 19266 iocbq = lpfc_sli_get_iocbq(vport->phba); 19267 if (!iocbq) { 19268 if (first_iocbq) { 19269 bf_set(lpfc_wcqe_c_status, 19270 &first_iocbq->wcqe_cmpl, 19271 IOSTAT_SUCCESS); 19272 first_iocbq->wcqe_cmpl.parameter = 19273 IOERR_NO_RESOURCES; 19274 } 19275 lpfc_in_buf_free(vport->phba, d_buf); 19276 continue; 19277 } 19278 /* We need to get the size out of the right CQE */ 19279 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19280 len = bf_get(lpfc_rcqe_length, 19281 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19282 iocbq->cmd_dmabuf = d_buf; 19283 iocbq->bpl_dmabuf = NULL; 19284 iocbq->wcqe_cmpl.word3 = 1; 19285 19286 if (len > LPFC_DATA_BUF_SIZE) 19287 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19288 LPFC_DATA_BUF_SIZE; 19289 else 19290 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19291 len; 19292 19293 tot_len += len; 19294 iocbq->wcqe_cmpl.total_data_placed = tot_len; 19295 bf_set(wqe_els_did, &iocbq->wqe.xmit_els_rsp.wqe_dest, 19296 sid); 19297 list_add_tail(&iocbq->list, &first_iocbq->list); 19298 } 19299 } 19300 /* Free the sequence's header buffer */ 19301 if (!first_iocbq) 19302 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 19303 19304 return first_iocbq; 19305 } 19306 19307 static void 19308 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 19309 struct hbq_dmabuf *seq_dmabuf) 19310 { 19311 struct fc_frame_header *fc_hdr; 19312 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 19313 struct lpfc_hba *phba = vport->phba; 19314 19315 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19316 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 19317 if (!iocbq) { 19318 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19319 "2707 Ring %d handler: Failed to allocate " 19320 "iocb Rctl x%x Type x%x received\n", 19321 LPFC_ELS_RING, 19322 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19323 return; 19324 } 19325 if (!lpfc_complete_unsol_iocb(phba, 19326 phba->sli4_hba.els_wq->pring, 19327 iocbq, fc_hdr->fh_r_ctl, 19328 fc_hdr->fh_type)) { 19329 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19330 "2540 Ring %d handler: unexpected Rctl " 19331 "x%x Type x%x received\n", 19332 LPFC_ELS_RING, 19333 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19334 lpfc_in_buf_free(phba, &seq_dmabuf->dbuf); 19335 } 19336 19337 /* Free iocb created in lpfc_prep_seq */ 19338 list_for_each_entry_safe(curr_iocb, next_iocb, 19339 &iocbq->list, list) { 19340 list_del_init(&curr_iocb->list); 19341 lpfc_sli_release_iocbq(phba, curr_iocb); 19342 } 19343 lpfc_sli_release_iocbq(phba, iocbq); 19344 } 19345 19346 static void 19347 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 19348 struct lpfc_iocbq *rspiocb) 19349 { 19350 struct lpfc_dmabuf *pcmd = cmdiocb->cmd_dmabuf; 19351 19352 if (pcmd && pcmd->virt) 19353 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19354 kfree(pcmd); 19355 lpfc_sli_release_iocbq(phba, cmdiocb); 19356 lpfc_drain_txq(phba); 19357 } 19358 19359 static void 19360 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 19361 struct hbq_dmabuf *dmabuf) 19362 { 19363 struct fc_frame_header *fc_hdr; 19364 struct lpfc_hba *phba = vport->phba; 19365 struct lpfc_iocbq *iocbq = NULL; 19366 union lpfc_wqe128 *pwqe; 19367 struct lpfc_dmabuf *pcmd = NULL; 19368 uint32_t frame_len; 19369 int rc; 19370 unsigned long iflags; 19371 19372 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19373 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 19374 19375 /* Send the received frame back */ 19376 iocbq = lpfc_sli_get_iocbq(phba); 19377 if (!iocbq) { 19378 /* Queue cq event and wakeup worker thread to process it */ 19379 spin_lock_irqsave(&phba->hbalock, iflags); 19380 list_add_tail(&dmabuf->cq_event.list, 19381 &phba->sli4_hba.sp_queue_event); 19382 phba->hba_flag |= HBA_SP_QUEUE_EVT; 19383 spin_unlock_irqrestore(&phba->hbalock, iflags); 19384 lpfc_worker_wake_up(phba); 19385 return; 19386 } 19387 19388 /* Allocate buffer for command payload */ 19389 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 19390 if (pcmd) 19391 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 19392 &pcmd->phys); 19393 if (!pcmd || !pcmd->virt) 19394 goto exit; 19395 19396 INIT_LIST_HEAD(&pcmd->list); 19397 19398 /* copyin the payload */ 19399 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 19400 19401 iocbq->cmd_dmabuf = pcmd; 19402 iocbq->vport = vport; 19403 iocbq->cmd_flag &= ~LPFC_FIP_ELS_ID_MASK; 19404 iocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 19405 iocbq->num_bdes = 0; 19406 19407 pwqe = &iocbq->wqe; 19408 /* fill in BDE's for command */ 19409 pwqe->gen_req.bde.addrHigh = putPaddrHigh(pcmd->phys); 19410 pwqe->gen_req.bde.addrLow = putPaddrLow(pcmd->phys); 19411 pwqe->gen_req.bde.tus.f.bdeSize = frame_len; 19412 pwqe->gen_req.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 19413 19414 pwqe->send_frame.frame_len = frame_len; 19415 pwqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((__be32 *)fc_hdr)); 19416 pwqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((__be32 *)fc_hdr + 1)); 19417 pwqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((__be32 *)fc_hdr + 2)); 19418 pwqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((__be32 *)fc_hdr + 3)); 19419 pwqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((__be32 *)fc_hdr + 4)); 19420 pwqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((__be32 *)fc_hdr + 5)); 19421 19422 pwqe->generic.wqe_com.word7 = 0; 19423 pwqe->generic.wqe_com.word10 = 0; 19424 19425 bf_set(wqe_cmnd, &pwqe->generic.wqe_com, CMD_SEND_FRAME); 19426 bf_set(wqe_sof, &pwqe->generic.wqe_com, 0x2E); /* SOF byte */ 19427 bf_set(wqe_eof, &pwqe->generic.wqe_com, 0x41); /* EOF byte */ 19428 bf_set(wqe_lenloc, &pwqe->generic.wqe_com, 1); 19429 bf_set(wqe_xbl, &pwqe->generic.wqe_com, 1); 19430 bf_set(wqe_dbde, &pwqe->generic.wqe_com, 1); 19431 bf_set(wqe_xc, &pwqe->generic.wqe_com, 1); 19432 bf_set(wqe_cmd_type, &pwqe->generic.wqe_com, 0xA); 19433 bf_set(wqe_cqid, &pwqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 19434 bf_set(wqe_xri_tag, &pwqe->generic.wqe_com, iocbq->sli4_xritag); 19435 bf_set(wqe_reqtag, &pwqe->generic.wqe_com, iocbq->iotag); 19436 bf_set(wqe_class, &pwqe->generic.wqe_com, CLASS3); 19437 pwqe->generic.wqe_com.abort_tag = iocbq->iotag; 19438 19439 iocbq->cmd_cmpl = lpfc_sli4_mds_loopback_cmpl; 19440 19441 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 19442 if (rc == IOCB_ERROR) 19443 goto exit; 19444 19445 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19446 return; 19447 19448 exit: 19449 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 19450 "2023 Unable to process MDS loopback frame\n"); 19451 if (pcmd && pcmd->virt) 19452 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19453 kfree(pcmd); 19454 if (iocbq) 19455 lpfc_sli_release_iocbq(phba, iocbq); 19456 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19457 } 19458 19459 /** 19460 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 19461 * @phba: Pointer to HBA context object. 19462 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 19463 * 19464 * This function is called with no lock held. This function processes all 19465 * the received buffers and gives it to upper layers when a received buffer 19466 * indicates that it is the final frame in the sequence. The interrupt 19467 * service routine processes received buffers at interrupt contexts. 19468 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 19469 * appropriate receive function when the final frame in a sequence is received. 19470 **/ 19471 void 19472 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 19473 struct hbq_dmabuf *dmabuf) 19474 { 19475 struct hbq_dmabuf *seq_dmabuf; 19476 struct fc_frame_header *fc_hdr; 19477 struct lpfc_vport *vport; 19478 uint32_t fcfi; 19479 uint32_t did; 19480 19481 /* Process each received buffer */ 19482 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19483 19484 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 19485 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 19486 vport = phba->pport; 19487 /* Handle MDS Loopback frames */ 19488 if (!(phba->pport->load_flag & FC_UNLOADING)) 19489 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19490 else 19491 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19492 return; 19493 } 19494 19495 /* check to see if this a valid type of frame */ 19496 if (lpfc_fc_frame_check(phba, fc_hdr)) { 19497 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19498 return; 19499 } 19500 19501 if ((bf_get(lpfc_cqe_code, 19502 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 19503 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 19504 &dmabuf->cq_event.cqe.rcqe_cmpl); 19505 else 19506 fcfi = bf_get(lpfc_rcqe_fcf_id, 19507 &dmabuf->cq_event.cqe.rcqe_cmpl); 19508 19509 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 19510 vport = phba->pport; 19511 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 19512 "2023 MDS Loopback %d bytes\n", 19513 bf_get(lpfc_rcqe_length, 19514 &dmabuf->cq_event.cqe.rcqe_cmpl)); 19515 /* Handle MDS Loopback frames */ 19516 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19517 return; 19518 } 19519 19520 /* d_id this frame is directed to */ 19521 did = sli4_did_from_fc_hdr(fc_hdr); 19522 19523 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 19524 if (!vport) { 19525 /* throw out the frame */ 19526 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19527 return; 19528 } 19529 19530 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 19531 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 19532 (did != Fabric_DID)) { 19533 /* 19534 * Throw out the frame if we are not pt2pt. 19535 * The pt2pt protocol allows for discovery frames 19536 * to be received without a registered VPI. 19537 */ 19538 if (!(vport->fc_flag & FC_PT2PT) || 19539 (phba->link_state == LPFC_HBA_READY)) { 19540 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19541 return; 19542 } 19543 } 19544 19545 /* Handle the basic abort sequence (BA_ABTS) event */ 19546 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 19547 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 19548 return; 19549 } 19550 19551 /* Link this frame */ 19552 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 19553 if (!seq_dmabuf) { 19554 /* unable to add frame to vport - throw it out */ 19555 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19556 return; 19557 } 19558 /* If not last frame in sequence continue processing frames. */ 19559 if (!lpfc_seq_complete(seq_dmabuf)) 19560 return; 19561 19562 /* Send the complete sequence to the upper layer protocol */ 19563 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 19564 } 19565 19566 /** 19567 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 19568 * @phba: pointer to lpfc hba data structure. 19569 * 19570 * This routine is invoked to post rpi header templates to the 19571 * HBA consistent with the SLI-4 interface spec. This routine 19572 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19573 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19574 * 19575 * This routine does not require any locks. It's usage is expected 19576 * to be driver load or reset recovery when the driver is 19577 * sequential. 19578 * 19579 * Return codes 19580 * 0 - successful 19581 * -EIO - The mailbox failed to complete successfully. 19582 * When this error occurs, the driver is not guaranteed 19583 * to have any rpi regions posted to the device and 19584 * must either attempt to repost the regions or take a 19585 * fatal error. 19586 **/ 19587 int 19588 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 19589 { 19590 struct lpfc_rpi_hdr *rpi_page; 19591 uint32_t rc = 0; 19592 uint16_t lrpi = 0; 19593 19594 /* SLI4 ports that support extents do not require RPI headers. */ 19595 if (!phba->sli4_hba.rpi_hdrs_in_use) 19596 goto exit; 19597 if (phba->sli4_hba.extents_in_use) 19598 return -EIO; 19599 19600 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 19601 /* 19602 * Assign the rpi headers a physical rpi only if the driver 19603 * has not initialized those resources. A port reset only 19604 * needs the headers posted. 19605 */ 19606 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 19607 LPFC_RPI_RSRC_RDY) 19608 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19609 19610 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 19611 if (rc != MBX_SUCCESS) { 19612 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19613 "2008 Error %d posting all rpi " 19614 "headers\n", rc); 19615 rc = -EIO; 19616 break; 19617 } 19618 } 19619 19620 exit: 19621 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 19622 LPFC_RPI_RSRC_RDY); 19623 return rc; 19624 } 19625 19626 /** 19627 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 19628 * @phba: pointer to lpfc hba data structure. 19629 * @rpi_page: pointer to the rpi memory region. 19630 * 19631 * This routine is invoked to post a single rpi header to the 19632 * HBA consistent with the SLI-4 interface spec. This memory region 19633 * maps up to 64 rpi context regions. 19634 * 19635 * Return codes 19636 * 0 - successful 19637 * -ENOMEM - No available memory 19638 * -EIO - The mailbox failed to complete successfully. 19639 **/ 19640 int 19641 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 19642 { 19643 LPFC_MBOXQ_t *mboxq; 19644 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 19645 uint32_t rc = 0; 19646 uint32_t shdr_status, shdr_add_status; 19647 union lpfc_sli4_cfg_shdr *shdr; 19648 19649 /* SLI4 ports that support extents do not require RPI headers. */ 19650 if (!phba->sli4_hba.rpi_hdrs_in_use) 19651 return rc; 19652 if (phba->sli4_hba.extents_in_use) 19653 return -EIO; 19654 19655 /* The port is notified of the header region via a mailbox command. */ 19656 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19657 if (!mboxq) { 19658 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19659 "2001 Unable to allocate memory for issuing " 19660 "SLI_CONFIG_SPECIAL mailbox command\n"); 19661 return -ENOMEM; 19662 } 19663 19664 /* Post all rpi memory regions to the port. */ 19665 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 19666 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19667 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 19668 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 19669 sizeof(struct lpfc_sli4_cfg_mhdr), 19670 LPFC_SLI4_MBX_EMBED); 19671 19672 19673 /* Post the physical rpi to the port for this rpi header. */ 19674 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 19675 rpi_page->start_rpi); 19676 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 19677 hdr_tmpl, rpi_page->page_count); 19678 19679 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 19680 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 19681 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19682 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 19683 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19684 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19685 mempool_free(mboxq, phba->mbox_mem_pool); 19686 if (shdr_status || shdr_add_status || rc) { 19687 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19688 "2514 POST_RPI_HDR mailbox failed with " 19689 "status x%x add_status x%x, mbx status x%x\n", 19690 shdr_status, shdr_add_status, rc); 19691 rc = -ENXIO; 19692 } else { 19693 /* 19694 * The next_rpi stores the next logical module-64 rpi value used 19695 * to post physical rpis in subsequent rpi postings. 19696 */ 19697 spin_lock_irq(&phba->hbalock); 19698 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 19699 spin_unlock_irq(&phba->hbalock); 19700 } 19701 return rc; 19702 } 19703 19704 /** 19705 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 19706 * @phba: pointer to lpfc hba data structure. 19707 * 19708 * This routine is invoked to post rpi header templates to the 19709 * HBA consistent with the SLI-4 interface spec. This routine 19710 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19711 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19712 * 19713 * Returns 19714 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 19715 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 19716 **/ 19717 int 19718 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 19719 { 19720 unsigned long rpi; 19721 uint16_t max_rpi, rpi_limit; 19722 uint16_t rpi_remaining, lrpi = 0; 19723 struct lpfc_rpi_hdr *rpi_hdr; 19724 unsigned long iflag; 19725 19726 /* 19727 * Fetch the next logical rpi. Because this index is logical, 19728 * the driver starts at 0 each time. 19729 */ 19730 spin_lock_irqsave(&phba->hbalock, iflag); 19731 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 19732 rpi_limit = phba->sli4_hba.next_rpi; 19733 19734 rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit); 19735 if (rpi >= rpi_limit) 19736 rpi = LPFC_RPI_ALLOC_ERROR; 19737 else { 19738 set_bit(rpi, phba->sli4_hba.rpi_bmask); 19739 phba->sli4_hba.max_cfg_param.rpi_used++; 19740 phba->sli4_hba.rpi_count++; 19741 } 19742 lpfc_printf_log(phba, KERN_INFO, 19743 LOG_NODE | LOG_DISCOVERY, 19744 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 19745 (int) rpi, max_rpi, rpi_limit); 19746 19747 /* 19748 * Don't try to allocate more rpi header regions if the device limit 19749 * has been exhausted. 19750 */ 19751 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 19752 (phba->sli4_hba.rpi_count >= max_rpi)) { 19753 spin_unlock_irqrestore(&phba->hbalock, iflag); 19754 return rpi; 19755 } 19756 19757 /* 19758 * RPI header postings are not required for SLI4 ports capable of 19759 * extents. 19760 */ 19761 if (!phba->sli4_hba.rpi_hdrs_in_use) { 19762 spin_unlock_irqrestore(&phba->hbalock, iflag); 19763 return rpi; 19764 } 19765 19766 /* 19767 * If the driver is running low on rpi resources, allocate another 19768 * page now. Note that the next_rpi value is used because 19769 * it represents how many are actually in use whereas max_rpi notes 19770 * how many are supported max by the device. 19771 */ 19772 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 19773 spin_unlock_irqrestore(&phba->hbalock, iflag); 19774 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 19775 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 19776 if (!rpi_hdr) { 19777 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19778 "2002 Error Could not grow rpi " 19779 "count\n"); 19780 } else { 19781 lrpi = rpi_hdr->start_rpi; 19782 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19783 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 19784 } 19785 } 19786 19787 return rpi; 19788 } 19789 19790 /** 19791 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 19792 * @phba: pointer to lpfc hba data structure. 19793 * @rpi: rpi to free 19794 * 19795 * This routine is invoked to release an rpi to the pool of 19796 * available rpis maintained by the driver. 19797 **/ 19798 static void 19799 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19800 { 19801 /* 19802 * if the rpi value indicates a prior unreg has already 19803 * been done, skip the unreg. 19804 */ 19805 if (rpi == LPFC_RPI_ALLOC_ERROR) 19806 return; 19807 19808 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 19809 phba->sli4_hba.rpi_count--; 19810 phba->sli4_hba.max_cfg_param.rpi_used--; 19811 } else { 19812 lpfc_printf_log(phba, KERN_INFO, 19813 LOG_NODE | LOG_DISCOVERY, 19814 "2016 rpi %x not inuse\n", 19815 rpi); 19816 } 19817 } 19818 19819 /** 19820 * lpfc_sli4_free_rpi - Release an rpi for reuse. 19821 * @phba: pointer to lpfc hba data structure. 19822 * @rpi: rpi to free 19823 * 19824 * This routine is invoked to release an rpi to the pool of 19825 * available rpis maintained by the driver. 19826 **/ 19827 void 19828 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19829 { 19830 spin_lock_irq(&phba->hbalock); 19831 __lpfc_sli4_free_rpi(phba, rpi); 19832 spin_unlock_irq(&phba->hbalock); 19833 } 19834 19835 /** 19836 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19837 * @phba: pointer to lpfc hba data structure. 19838 * 19839 * This routine is invoked to remove the memory region that 19840 * provided rpi via a bitmask. 19841 **/ 19842 void 19843 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19844 { 19845 kfree(phba->sli4_hba.rpi_bmask); 19846 kfree(phba->sli4_hba.rpi_ids); 19847 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19848 } 19849 19850 /** 19851 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19852 * @ndlp: pointer to lpfc nodelist data structure. 19853 * @cmpl: completion call-back. 19854 * @arg: data to load as MBox 'caller buffer information' 19855 * 19856 * This routine is invoked to remove the memory region that 19857 * provided rpi via a bitmask. 19858 **/ 19859 int 19860 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19861 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 19862 { 19863 LPFC_MBOXQ_t *mboxq; 19864 struct lpfc_hba *phba = ndlp->phba; 19865 int rc; 19866 19867 /* The port is notified of the header region via a mailbox command. */ 19868 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19869 if (!mboxq) 19870 return -ENOMEM; 19871 19872 /* If cmpl assigned, then this nlp_get pairs with 19873 * lpfc_mbx_cmpl_resume_rpi. 19874 * 19875 * Else cmpl is NULL, then this nlp_get pairs with 19876 * lpfc_sli_def_mbox_cmpl. 19877 */ 19878 if (!lpfc_nlp_get(ndlp)) { 19879 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19880 "2122 %s: Failed to get nlp ref\n", 19881 __func__); 19882 mempool_free(mboxq, phba->mbox_mem_pool); 19883 return -EIO; 19884 } 19885 19886 /* Post all rpi memory regions to the port. */ 19887 lpfc_resume_rpi(mboxq, ndlp); 19888 if (cmpl) { 19889 mboxq->mbox_cmpl = cmpl; 19890 mboxq->ctx_buf = arg; 19891 } else 19892 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19893 mboxq->ctx_ndlp = ndlp; 19894 mboxq->vport = ndlp->vport; 19895 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19896 if (rc == MBX_NOT_FINISHED) { 19897 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19898 "2010 Resume RPI Mailbox failed " 19899 "status %d, mbxStatus x%x\n", rc, 19900 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19901 lpfc_nlp_put(ndlp); 19902 mempool_free(mboxq, phba->mbox_mem_pool); 19903 return -EIO; 19904 } 19905 return 0; 19906 } 19907 19908 /** 19909 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19910 * @vport: Pointer to the vport for which the vpi is being initialized 19911 * 19912 * This routine is invoked to activate a vpi with the port. 19913 * 19914 * Returns: 19915 * 0 success 19916 * -Evalue otherwise 19917 **/ 19918 int 19919 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19920 { 19921 LPFC_MBOXQ_t *mboxq; 19922 int rc = 0; 19923 int retval = MBX_SUCCESS; 19924 uint32_t mbox_tmo; 19925 struct lpfc_hba *phba = vport->phba; 19926 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19927 if (!mboxq) 19928 return -ENOMEM; 19929 lpfc_init_vpi(phba, mboxq, vport->vpi); 19930 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19931 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19932 if (rc != MBX_SUCCESS) { 19933 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19934 "2022 INIT VPI Mailbox failed " 19935 "status %d, mbxStatus x%x\n", rc, 19936 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19937 retval = -EIO; 19938 } 19939 if (rc != MBX_TIMEOUT) 19940 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19941 19942 return retval; 19943 } 19944 19945 /** 19946 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19947 * @phba: pointer to lpfc hba data structure. 19948 * @mboxq: Pointer to mailbox object. 19949 * 19950 * This routine is invoked to manually add a single FCF record. The caller 19951 * must pass a completely initialized FCF_Record. This routine takes 19952 * care of the nonembedded mailbox operations. 19953 **/ 19954 static void 19955 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19956 { 19957 void *virt_addr; 19958 union lpfc_sli4_cfg_shdr *shdr; 19959 uint32_t shdr_status, shdr_add_status; 19960 19961 virt_addr = mboxq->sge_array->addr[0]; 19962 /* The IOCTL status is embedded in the mailbox subheader. */ 19963 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19964 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19965 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19966 19967 if ((shdr_status || shdr_add_status) && 19968 (shdr_status != STATUS_FCF_IN_USE)) 19969 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19970 "2558 ADD_FCF_RECORD mailbox failed with " 19971 "status x%x add_status x%x\n", 19972 shdr_status, shdr_add_status); 19973 19974 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19975 } 19976 19977 /** 19978 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19979 * @phba: pointer to lpfc hba data structure. 19980 * @fcf_record: pointer to the initialized fcf record to add. 19981 * 19982 * This routine is invoked to manually add a single FCF record. The caller 19983 * must pass a completely initialized FCF_Record. This routine takes 19984 * care of the nonembedded mailbox operations. 19985 **/ 19986 int 19987 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19988 { 19989 int rc = 0; 19990 LPFC_MBOXQ_t *mboxq; 19991 uint8_t *bytep; 19992 void *virt_addr; 19993 struct lpfc_mbx_sge sge; 19994 uint32_t alloc_len, req_len; 19995 uint32_t fcfindex; 19996 19997 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19998 if (!mboxq) { 19999 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20000 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 20001 return -ENOMEM; 20002 } 20003 20004 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 20005 sizeof(uint32_t); 20006 20007 /* Allocate DMA memory and set up the non-embedded mailbox command */ 20008 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 20009 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 20010 req_len, LPFC_SLI4_MBX_NEMBED); 20011 if (alloc_len < req_len) { 20012 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20013 "2523 Allocated DMA memory size (x%x) is " 20014 "less than the requested DMA memory " 20015 "size (x%x)\n", alloc_len, req_len); 20016 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20017 return -ENOMEM; 20018 } 20019 20020 /* 20021 * Get the first SGE entry from the non-embedded DMA memory. This 20022 * routine only uses a single SGE. 20023 */ 20024 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 20025 virt_addr = mboxq->sge_array->addr[0]; 20026 /* 20027 * Configure the FCF record for FCFI 0. This is the driver's 20028 * hardcoded default and gets used in nonFIP mode. 20029 */ 20030 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 20031 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 20032 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 20033 20034 /* 20035 * Copy the fcf_index and the FCF Record Data. The data starts after 20036 * the FCoE header plus word10. The data copy needs to be endian 20037 * correct. 20038 */ 20039 bytep += sizeof(uint32_t); 20040 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 20041 mboxq->vport = phba->pport; 20042 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 20043 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20044 if (rc == MBX_NOT_FINISHED) { 20045 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20046 "2515 ADD_FCF_RECORD mailbox failed with " 20047 "status 0x%x\n", rc); 20048 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20049 rc = -EIO; 20050 } else 20051 rc = 0; 20052 20053 return rc; 20054 } 20055 20056 /** 20057 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 20058 * @phba: pointer to lpfc hba data structure. 20059 * @fcf_record: pointer to the fcf record to write the default data. 20060 * @fcf_index: FCF table entry index. 20061 * 20062 * This routine is invoked to build the driver's default FCF record. The 20063 * values used are hardcoded. This routine handles memory initialization. 20064 * 20065 **/ 20066 void 20067 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 20068 struct fcf_record *fcf_record, 20069 uint16_t fcf_index) 20070 { 20071 memset(fcf_record, 0, sizeof(struct fcf_record)); 20072 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 20073 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 20074 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 20075 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 20076 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 20077 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 20078 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 20079 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 20080 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 20081 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 20082 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 20083 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 20084 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 20085 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 20086 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 20087 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 20088 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 20089 /* Set the VLAN bit map */ 20090 if (phba->valid_vlan) { 20091 fcf_record->vlan_bitmap[phba->vlan_id / 8] 20092 = 1 << (phba->vlan_id % 8); 20093 } 20094 } 20095 20096 /** 20097 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 20098 * @phba: pointer to lpfc hba data structure. 20099 * @fcf_index: FCF table entry offset. 20100 * 20101 * This routine is invoked to scan the entire FCF table by reading FCF 20102 * record and processing it one at a time starting from the @fcf_index 20103 * for initial FCF discovery or fast FCF failover rediscovery. 20104 * 20105 * Return 0 if the mailbox command is submitted successfully, none 0 20106 * otherwise. 20107 **/ 20108 int 20109 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20110 { 20111 int rc = 0, error; 20112 LPFC_MBOXQ_t *mboxq; 20113 20114 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 20115 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 20116 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20117 if (!mboxq) { 20118 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20119 "2000 Failed to allocate mbox for " 20120 "READ_FCF cmd\n"); 20121 error = -ENOMEM; 20122 goto fail_fcf_scan; 20123 } 20124 /* Construct the read FCF record mailbox command */ 20125 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20126 if (rc) { 20127 error = -EINVAL; 20128 goto fail_fcf_scan; 20129 } 20130 /* Issue the mailbox command asynchronously */ 20131 mboxq->vport = phba->pport; 20132 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 20133 20134 spin_lock_irq(&phba->hbalock); 20135 phba->hba_flag |= FCF_TS_INPROG; 20136 spin_unlock_irq(&phba->hbalock); 20137 20138 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20139 if (rc == MBX_NOT_FINISHED) 20140 error = -EIO; 20141 else { 20142 /* Reset eligible FCF count for new scan */ 20143 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 20144 phba->fcf.eligible_fcf_cnt = 0; 20145 error = 0; 20146 } 20147 fail_fcf_scan: 20148 if (error) { 20149 if (mboxq) 20150 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20151 /* FCF scan failed, clear FCF_TS_INPROG flag */ 20152 spin_lock_irq(&phba->hbalock); 20153 phba->hba_flag &= ~FCF_TS_INPROG; 20154 spin_unlock_irq(&phba->hbalock); 20155 } 20156 return error; 20157 } 20158 20159 /** 20160 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 20161 * @phba: pointer to lpfc hba data structure. 20162 * @fcf_index: FCF table entry offset. 20163 * 20164 * This routine is invoked to read an FCF record indicated by @fcf_index 20165 * and to use it for FLOGI roundrobin FCF failover. 20166 * 20167 * Return 0 if the mailbox command is submitted successfully, none 0 20168 * otherwise. 20169 **/ 20170 int 20171 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20172 { 20173 int rc = 0, error; 20174 LPFC_MBOXQ_t *mboxq; 20175 20176 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20177 if (!mboxq) { 20178 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20179 "2763 Failed to allocate mbox for " 20180 "READ_FCF cmd\n"); 20181 error = -ENOMEM; 20182 goto fail_fcf_read; 20183 } 20184 /* Construct the read FCF record mailbox command */ 20185 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20186 if (rc) { 20187 error = -EINVAL; 20188 goto fail_fcf_read; 20189 } 20190 /* Issue the mailbox command asynchronously */ 20191 mboxq->vport = phba->pport; 20192 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 20193 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20194 if (rc == MBX_NOT_FINISHED) 20195 error = -EIO; 20196 else 20197 error = 0; 20198 20199 fail_fcf_read: 20200 if (error && mboxq) 20201 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20202 return error; 20203 } 20204 20205 /** 20206 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 20207 * @phba: pointer to lpfc hba data structure. 20208 * @fcf_index: FCF table entry offset. 20209 * 20210 * This routine is invoked to read an FCF record indicated by @fcf_index to 20211 * determine whether it's eligible for FLOGI roundrobin failover list. 20212 * 20213 * Return 0 if the mailbox command is submitted successfully, none 0 20214 * otherwise. 20215 **/ 20216 int 20217 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20218 { 20219 int rc = 0, error; 20220 LPFC_MBOXQ_t *mboxq; 20221 20222 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20223 if (!mboxq) { 20224 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20225 "2758 Failed to allocate mbox for " 20226 "READ_FCF cmd\n"); 20227 error = -ENOMEM; 20228 goto fail_fcf_read; 20229 } 20230 /* Construct the read FCF record mailbox command */ 20231 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20232 if (rc) { 20233 error = -EINVAL; 20234 goto fail_fcf_read; 20235 } 20236 /* Issue the mailbox command asynchronously */ 20237 mboxq->vport = phba->pport; 20238 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 20239 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20240 if (rc == MBX_NOT_FINISHED) 20241 error = -EIO; 20242 else 20243 error = 0; 20244 20245 fail_fcf_read: 20246 if (error && mboxq) 20247 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20248 return error; 20249 } 20250 20251 /** 20252 * lpfc_check_next_fcf_pri_level 20253 * @phba: pointer to the lpfc_hba struct for this port. 20254 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 20255 * routine when the rr_bmask is empty. The FCF indecies are put into the 20256 * rr_bmask based on their priority level. Starting from the highest priority 20257 * to the lowest. The most likely FCF candidate will be in the highest 20258 * priority group. When this routine is called it searches the fcf_pri list for 20259 * next lowest priority group and repopulates the rr_bmask with only those 20260 * fcf_indexes. 20261 * returns: 20262 * 1=success 0=failure 20263 **/ 20264 static int 20265 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 20266 { 20267 uint16_t next_fcf_pri; 20268 uint16_t last_index; 20269 struct lpfc_fcf_pri *fcf_pri; 20270 int rc; 20271 int ret = 0; 20272 20273 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20274 LPFC_SLI4_FCF_TBL_INDX_MAX); 20275 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20276 "3060 Last IDX %d\n", last_index); 20277 20278 /* Verify the priority list has 2 or more entries */ 20279 spin_lock_irq(&phba->hbalock); 20280 if (list_empty(&phba->fcf.fcf_pri_list) || 20281 list_is_singular(&phba->fcf.fcf_pri_list)) { 20282 spin_unlock_irq(&phba->hbalock); 20283 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20284 "3061 Last IDX %d\n", last_index); 20285 return 0; /* Empty rr list */ 20286 } 20287 spin_unlock_irq(&phba->hbalock); 20288 20289 next_fcf_pri = 0; 20290 /* 20291 * Clear the rr_bmask and set all of the bits that are at this 20292 * priority. 20293 */ 20294 memset(phba->fcf.fcf_rr_bmask, 0, 20295 sizeof(*phba->fcf.fcf_rr_bmask)); 20296 spin_lock_irq(&phba->hbalock); 20297 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20298 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 20299 continue; 20300 /* 20301 * the 1st priority that has not FLOGI failed 20302 * will be the highest. 20303 */ 20304 if (!next_fcf_pri) 20305 next_fcf_pri = fcf_pri->fcf_rec.priority; 20306 spin_unlock_irq(&phba->hbalock); 20307 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20308 rc = lpfc_sli4_fcf_rr_index_set(phba, 20309 fcf_pri->fcf_rec.fcf_index); 20310 if (rc) 20311 return 0; 20312 } 20313 spin_lock_irq(&phba->hbalock); 20314 } 20315 /* 20316 * if next_fcf_pri was not set above and the list is not empty then 20317 * we have failed flogis on all of them. So reset flogi failed 20318 * and start at the beginning. 20319 */ 20320 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 20321 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20322 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 20323 /* 20324 * the 1st priority that has not FLOGI failed 20325 * will be the highest. 20326 */ 20327 if (!next_fcf_pri) 20328 next_fcf_pri = fcf_pri->fcf_rec.priority; 20329 spin_unlock_irq(&phba->hbalock); 20330 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20331 rc = lpfc_sli4_fcf_rr_index_set(phba, 20332 fcf_pri->fcf_rec.fcf_index); 20333 if (rc) 20334 return 0; 20335 } 20336 spin_lock_irq(&phba->hbalock); 20337 } 20338 } else 20339 ret = 1; 20340 spin_unlock_irq(&phba->hbalock); 20341 20342 return ret; 20343 } 20344 /** 20345 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 20346 * @phba: pointer to lpfc hba data structure. 20347 * 20348 * This routine is to get the next eligible FCF record index in a round 20349 * robin fashion. If the next eligible FCF record index equals to the 20350 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 20351 * shall be returned, otherwise, the next eligible FCF record's index 20352 * shall be returned. 20353 **/ 20354 uint16_t 20355 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 20356 { 20357 uint16_t next_fcf_index; 20358 20359 initial_priority: 20360 /* Search start from next bit of currently registered FCF index */ 20361 next_fcf_index = phba->fcf.current_rec.fcf_indx; 20362 20363 next_priority: 20364 /* Determine the next fcf index to check */ 20365 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 20366 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 20367 LPFC_SLI4_FCF_TBL_INDX_MAX, 20368 next_fcf_index); 20369 20370 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 20371 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20372 /* 20373 * If we have wrapped then we need to clear the bits that 20374 * have been tested so that we can detect when we should 20375 * change the priority level. 20376 */ 20377 next_fcf_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20378 LPFC_SLI4_FCF_TBL_INDX_MAX); 20379 } 20380 20381 20382 /* Check roundrobin failover list empty condition */ 20383 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 20384 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 20385 /* 20386 * If next fcf index is not found check if there are lower 20387 * Priority level fcf's in the fcf_priority list. 20388 * Set up the rr_bmask with all of the avaiable fcf bits 20389 * at that level and continue the selection process. 20390 */ 20391 if (lpfc_check_next_fcf_pri_level(phba)) 20392 goto initial_priority; 20393 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 20394 "2844 No roundrobin failover FCF available\n"); 20395 20396 return LPFC_FCOE_FCF_NEXT_NONE; 20397 } 20398 20399 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 20400 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 20401 LPFC_FCF_FLOGI_FAILED) { 20402 if (list_is_singular(&phba->fcf.fcf_pri_list)) 20403 return LPFC_FCOE_FCF_NEXT_NONE; 20404 20405 goto next_priority; 20406 } 20407 20408 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20409 "2845 Get next roundrobin failover FCF (x%x)\n", 20410 next_fcf_index); 20411 20412 return next_fcf_index; 20413 } 20414 20415 /** 20416 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 20417 * @phba: pointer to lpfc hba data structure. 20418 * @fcf_index: index into the FCF table to 'set' 20419 * 20420 * This routine sets the FCF record index in to the eligible bmask for 20421 * roundrobin failover search. It checks to make sure that the index 20422 * does not go beyond the range of the driver allocated bmask dimension 20423 * before setting the bit. 20424 * 20425 * Returns 0 if the index bit successfully set, otherwise, it returns 20426 * -EINVAL. 20427 **/ 20428 int 20429 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 20430 { 20431 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20432 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20433 "2610 FCF (x%x) reached driver's book " 20434 "keeping dimension:x%x\n", 20435 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20436 return -EINVAL; 20437 } 20438 /* Set the eligible FCF record index bmask */ 20439 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20440 20441 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20442 "2790 Set FCF (x%x) to roundrobin FCF failover " 20443 "bmask\n", fcf_index); 20444 20445 return 0; 20446 } 20447 20448 /** 20449 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 20450 * @phba: pointer to lpfc hba data structure. 20451 * @fcf_index: index into the FCF table to 'clear' 20452 * 20453 * This routine clears the FCF record index from the eligible bmask for 20454 * roundrobin failover search. It checks to make sure that the index 20455 * does not go beyond the range of the driver allocated bmask dimension 20456 * before clearing the bit. 20457 **/ 20458 void 20459 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 20460 { 20461 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 20462 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20463 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20464 "2762 FCF (x%x) reached driver's book " 20465 "keeping dimension:x%x\n", 20466 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20467 return; 20468 } 20469 /* Clear the eligible FCF record index bmask */ 20470 spin_lock_irq(&phba->hbalock); 20471 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 20472 list) { 20473 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 20474 list_del_init(&fcf_pri->list); 20475 break; 20476 } 20477 } 20478 spin_unlock_irq(&phba->hbalock); 20479 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20480 20481 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20482 "2791 Clear FCF (x%x) from roundrobin failover " 20483 "bmask\n", fcf_index); 20484 } 20485 20486 /** 20487 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 20488 * @phba: pointer to lpfc hba data structure. 20489 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 20490 * 20491 * This routine is the completion routine for the rediscover FCF table mailbox 20492 * command. If the mailbox command returned failure, it will try to stop the 20493 * FCF rediscover wait timer. 20494 **/ 20495 static void 20496 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 20497 { 20498 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20499 uint32_t shdr_status, shdr_add_status; 20500 20501 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20502 20503 shdr_status = bf_get(lpfc_mbox_hdr_status, 20504 &redisc_fcf->header.cfg_shdr.response); 20505 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20506 &redisc_fcf->header.cfg_shdr.response); 20507 if (shdr_status || shdr_add_status) { 20508 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20509 "2746 Requesting for FCF rediscovery failed " 20510 "status x%x add_status x%x\n", 20511 shdr_status, shdr_add_status); 20512 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 20513 spin_lock_irq(&phba->hbalock); 20514 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 20515 spin_unlock_irq(&phba->hbalock); 20516 /* 20517 * CVL event triggered FCF rediscover request failed, 20518 * last resort to re-try current registered FCF entry. 20519 */ 20520 lpfc_retry_pport_discovery(phba); 20521 } else { 20522 spin_lock_irq(&phba->hbalock); 20523 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 20524 spin_unlock_irq(&phba->hbalock); 20525 /* 20526 * DEAD FCF event triggered FCF rediscover request 20527 * failed, last resort to fail over as a link down 20528 * to FCF registration. 20529 */ 20530 lpfc_sli4_fcf_dead_failthrough(phba); 20531 } 20532 } else { 20533 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20534 "2775 Start FCF rediscover quiescent timer\n"); 20535 /* 20536 * Start FCF rediscovery wait timer for pending FCF 20537 * before rescan FCF record table. 20538 */ 20539 lpfc_fcf_redisc_wait_start_timer(phba); 20540 } 20541 20542 mempool_free(mbox, phba->mbox_mem_pool); 20543 } 20544 20545 /** 20546 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 20547 * @phba: pointer to lpfc hba data structure. 20548 * 20549 * This routine is invoked to request for rediscovery of the entire FCF table 20550 * by the port. 20551 **/ 20552 int 20553 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 20554 { 20555 LPFC_MBOXQ_t *mbox; 20556 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20557 int rc, length; 20558 20559 /* Cancel retry delay timers to all vports before FCF rediscover */ 20560 lpfc_cancel_all_vport_retry_delay_timer(phba); 20561 20562 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20563 if (!mbox) { 20564 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20565 "2745 Failed to allocate mbox for " 20566 "requesting FCF rediscover.\n"); 20567 return -ENOMEM; 20568 } 20569 20570 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 20571 sizeof(struct lpfc_sli4_cfg_mhdr)); 20572 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 20573 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 20574 length, LPFC_SLI4_MBX_EMBED); 20575 20576 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20577 /* Set count to 0 for invalidating the entire FCF database */ 20578 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 20579 20580 /* Issue the mailbox command asynchronously */ 20581 mbox->vport = phba->pport; 20582 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 20583 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 20584 20585 if (rc == MBX_NOT_FINISHED) { 20586 mempool_free(mbox, phba->mbox_mem_pool); 20587 return -EIO; 20588 } 20589 return 0; 20590 } 20591 20592 /** 20593 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 20594 * @phba: pointer to lpfc hba data structure. 20595 * 20596 * This function is the failover routine as a last resort to the FCF DEAD 20597 * event when driver failed to perform fast FCF failover. 20598 **/ 20599 void 20600 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 20601 { 20602 uint32_t link_state; 20603 20604 /* 20605 * Last resort as FCF DEAD event failover will treat this as 20606 * a link down, but save the link state because we don't want 20607 * it to be changed to Link Down unless it is already down. 20608 */ 20609 link_state = phba->link_state; 20610 lpfc_linkdown(phba); 20611 phba->link_state = link_state; 20612 20613 /* Unregister FCF if no devices connected to it */ 20614 lpfc_unregister_unused_fcf(phba); 20615 } 20616 20617 /** 20618 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 20619 * @phba: pointer to lpfc hba data structure. 20620 * @rgn23_data: pointer to configure region 23 data. 20621 * 20622 * This function gets SLI3 port configure region 23 data through memory dump 20623 * mailbox command. When it successfully retrieves data, the size of the data 20624 * will be returned, otherwise, 0 will be returned. 20625 **/ 20626 static uint32_t 20627 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20628 { 20629 LPFC_MBOXQ_t *pmb = NULL; 20630 MAILBOX_t *mb; 20631 uint32_t offset = 0; 20632 int rc; 20633 20634 if (!rgn23_data) 20635 return 0; 20636 20637 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20638 if (!pmb) { 20639 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20640 "2600 failed to allocate mailbox memory\n"); 20641 return 0; 20642 } 20643 mb = &pmb->u.mb; 20644 20645 do { 20646 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 20647 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 20648 20649 if (rc != MBX_SUCCESS) { 20650 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20651 "2601 failed to read config " 20652 "region 23, rc 0x%x Status 0x%x\n", 20653 rc, mb->mbxStatus); 20654 mb->un.varDmp.word_cnt = 0; 20655 } 20656 /* 20657 * dump mem may return a zero when finished or we got a 20658 * mailbox error, either way we are done. 20659 */ 20660 if (mb->un.varDmp.word_cnt == 0) 20661 break; 20662 20663 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 20664 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 20665 20666 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 20667 rgn23_data + offset, 20668 mb->un.varDmp.word_cnt); 20669 offset += mb->un.varDmp.word_cnt; 20670 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 20671 20672 mempool_free(pmb, phba->mbox_mem_pool); 20673 return offset; 20674 } 20675 20676 /** 20677 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 20678 * @phba: pointer to lpfc hba data structure. 20679 * @rgn23_data: pointer to configure region 23 data. 20680 * 20681 * This function gets SLI4 port configure region 23 data through memory dump 20682 * mailbox command. When it successfully retrieves data, the size of the data 20683 * will be returned, otherwise, 0 will be returned. 20684 **/ 20685 static uint32_t 20686 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20687 { 20688 LPFC_MBOXQ_t *mboxq = NULL; 20689 struct lpfc_dmabuf *mp = NULL; 20690 struct lpfc_mqe *mqe; 20691 uint32_t data_length = 0; 20692 int rc; 20693 20694 if (!rgn23_data) 20695 return 0; 20696 20697 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20698 if (!mboxq) { 20699 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20700 "3105 failed to allocate mailbox memory\n"); 20701 return 0; 20702 } 20703 20704 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 20705 goto out; 20706 mqe = &mboxq->u.mqe; 20707 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 20708 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 20709 if (rc) 20710 goto out; 20711 data_length = mqe->un.mb_words[5]; 20712 if (data_length == 0) 20713 goto out; 20714 if (data_length > DMP_RGN23_SIZE) { 20715 data_length = 0; 20716 goto out; 20717 } 20718 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 20719 out: 20720 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 20721 return data_length; 20722 } 20723 20724 /** 20725 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 20726 * @phba: pointer to lpfc hba data structure. 20727 * 20728 * This function read region 23 and parse TLV for port status to 20729 * decide if the user disaled the port. If the TLV indicates the 20730 * port is disabled, the hba_flag is set accordingly. 20731 **/ 20732 void 20733 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 20734 { 20735 uint8_t *rgn23_data = NULL; 20736 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 20737 uint32_t offset = 0; 20738 20739 /* Get adapter Region 23 data */ 20740 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 20741 if (!rgn23_data) 20742 goto out; 20743 20744 if (phba->sli_rev < LPFC_SLI_REV4) 20745 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 20746 else { 20747 if_type = bf_get(lpfc_sli_intf_if_type, 20748 &phba->sli4_hba.sli_intf); 20749 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 20750 goto out; 20751 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 20752 } 20753 20754 if (!data_size) 20755 goto out; 20756 20757 /* Check the region signature first */ 20758 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 20759 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20760 "2619 Config region 23 has bad signature\n"); 20761 goto out; 20762 } 20763 offset += 4; 20764 20765 /* Check the data structure version */ 20766 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 20767 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20768 "2620 Config region 23 has bad version\n"); 20769 goto out; 20770 } 20771 offset += 4; 20772 20773 /* Parse TLV entries in the region */ 20774 while (offset < data_size) { 20775 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 20776 break; 20777 /* 20778 * If the TLV is not driver specific TLV or driver id is 20779 * not linux driver id, skip the record. 20780 */ 20781 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 20782 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 20783 (rgn23_data[offset + 3] != 0)) { 20784 offset += rgn23_data[offset + 1] * 4 + 4; 20785 continue; 20786 } 20787 20788 /* Driver found a driver specific TLV in the config region */ 20789 sub_tlv_len = rgn23_data[offset + 1] * 4; 20790 offset += 4; 20791 tlv_offset = 0; 20792 20793 /* 20794 * Search for configured port state sub-TLV. 20795 */ 20796 while ((offset < data_size) && 20797 (tlv_offset < sub_tlv_len)) { 20798 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 20799 offset += 4; 20800 tlv_offset += 4; 20801 break; 20802 } 20803 if (rgn23_data[offset] != PORT_STE_TYPE) { 20804 offset += rgn23_data[offset + 1] * 4 + 4; 20805 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 20806 continue; 20807 } 20808 20809 /* This HBA contains PORT_STE configured */ 20810 if (!rgn23_data[offset + 2]) 20811 phba->hba_flag |= LINK_DISABLED; 20812 20813 goto out; 20814 } 20815 } 20816 20817 out: 20818 kfree(rgn23_data); 20819 return; 20820 } 20821 20822 /** 20823 * lpfc_log_fw_write_cmpl - logs firmware write completion status 20824 * @phba: pointer to lpfc hba data structure 20825 * @shdr_status: wr_object rsp's status field 20826 * @shdr_add_status: wr_object rsp's add_status field 20827 * @shdr_add_status_2: wr_object rsp's add_status_2 field 20828 * @shdr_change_status: wr_object rsp's change_status field 20829 * @shdr_csf: wr_object rsp's csf bit 20830 * 20831 * This routine is intended to be called after a firmware write completes. 20832 * It will log next action items to be performed by the user to instantiate 20833 * the newly downloaded firmware or reason for incompatibility. 20834 **/ 20835 static void 20836 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status, 20837 u32 shdr_add_status, u32 shdr_add_status_2, 20838 u32 shdr_change_status, u32 shdr_csf) 20839 { 20840 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20841 "4198 %s: flash_id x%02x, asic_rev x%02x, " 20842 "status x%02x, add_status x%02x, add_status_2 x%02x, " 20843 "change_status x%02x, csf %01x\n", __func__, 20844 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev, 20845 shdr_status, shdr_add_status, shdr_add_status_2, 20846 shdr_change_status, shdr_csf); 20847 20848 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) { 20849 switch (shdr_add_status_2) { 20850 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH: 20851 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20852 "4199 Firmware write failed: " 20853 "image incompatible with flash x%02x\n", 20854 phba->sli4_hba.flash_id); 20855 break; 20856 case LPFC_ADD_STATUS_2_INCORRECT_ASIC: 20857 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20858 "4200 Firmware write failed: " 20859 "image incompatible with ASIC " 20860 "architecture x%02x\n", 20861 phba->sli4_hba.asic_rev); 20862 break; 20863 default: 20864 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20865 "4210 Firmware write failed: " 20866 "add_status_2 x%02x\n", 20867 shdr_add_status_2); 20868 break; 20869 } 20870 } else if (!shdr_status && !shdr_add_status) { 20871 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20872 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20873 if (shdr_csf) 20874 shdr_change_status = 20875 LPFC_CHANGE_STATUS_PCI_RESET; 20876 } 20877 20878 switch (shdr_change_status) { 20879 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20880 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20881 "3198 Firmware write complete: System " 20882 "reboot required to instantiate\n"); 20883 break; 20884 case (LPFC_CHANGE_STATUS_FW_RESET): 20885 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20886 "3199 Firmware write complete: " 20887 "Firmware reset required to " 20888 "instantiate\n"); 20889 break; 20890 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20891 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20892 "3200 Firmware write complete: Port " 20893 "Migration or PCI Reset required to " 20894 "instantiate\n"); 20895 break; 20896 case (LPFC_CHANGE_STATUS_PCI_RESET): 20897 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20898 "3201 Firmware write complete: PCI " 20899 "Reset required to instantiate\n"); 20900 break; 20901 default: 20902 break; 20903 } 20904 } 20905 } 20906 20907 /** 20908 * lpfc_wr_object - write an object to the firmware 20909 * @phba: HBA structure that indicates port to create a queue on. 20910 * @dmabuf_list: list of dmabufs to write to the port. 20911 * @size: the total byte value of the objects to write to the port. 20912 * @offset: the current offset to be used to start the transfer. 20913 * 20914 * This routine will create a wr_object mailbox command to send to the port. 20915 * the mailbox command will be constructed using the dma buffers described in 20916 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20917 * BDEs that the imbedded mailbox can support. The @offset variable will be 20918 * used to indicate the starting offset of the transfer and will also return 20919 * the offset after the write object mailbox has completed. @size is used to 20920 * determine the end of the object and whether the eof bit should be set. 20921 * 20922 * Return 0 is successful and offset will contain the new offset to use 20923 * for the next write. 20924 * Return negative value for error cases. 20925 **/ 20926 int 20927 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20928 uint32_t size, uint32_t *offset) 20929 { 20930 struct lpfc_mbx_wr_object *wr_object; 20931 LPFC_MBOXQ_t *mbox; 20932 int rc = 0, i = 0; 20933 int mbox_status = 0; 20934 uint32_t shdr_status, shdr_add_status, shdr_add_status_2; 20935 uint32_t shdr_change_status = 0, shdr_csf = 0; 20936 uint32_t mbox_tmo; 20937 struct lpfc_dmabuf *dmabuf; 20938 uint32_t written = 0; 20939 bool check_change_status = false; 20940 20941 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20942 if (!mbox) 20943 return -ENOMEM; 20944 20945 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20946 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20947 sizeof(struct lpfc_mbx_wr_object) - 20948 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20949 20950 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20951 wr_object->u.request.write_offset = *offset; 20952 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20953 wr_object->u.request.object_name[0] = 20954 cpu_to_le32(wr_object->u.request.object_name[0]); 20955 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20956 list_for_each_entry(dmabuf, dmabuf_list, list) { 20957 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20958 break; 20959 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20960 wr_object->u.request.bde[i].addrHigh = 20961 putPaddrHigh(dmabuf->phys); 20962 if (written + SLI4_PAGE_SIZE >= size) { 20963 wr_object->u.request.bde[i].tus.f.bdeSize = 20964 (size - written); 20965 written += (size - written); 20966 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20967 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20968 check_change_status = true; 20969 } else { 20970 wr_object->u.request.bde[i].tus.f.bdeSize = 20971 SLI4_PAGE_SIZE; 20972 written += SLI4_PAGE_SIZE; 20973 } 20974 i++; 20975 } 20976 wr_object->u.request.bde_count = i; 20977 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20978 if (!phba->sli4_hba.intr_enable) 20979 mbox_status = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20980 else { 20981 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20982 mbox_status = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20983 } 20984 20985 /* The mbox status needs to be maintained to detect MBOX_TIMEOUT. */ 20986 rc = mbox_status; 20987 20988 /* The IOCTL status is embedded in the mailbox subheader. */ 20989 shdr_status = bf_get(lpfc_mbox_hdr_status, 20990 &wr_object->header.cfg_shdr.response); 20991 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20992 &wr_object->header.cfg_shdr.response); 20993 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2, 20994 &wr_object->header.cfg_shdr.response); 20995 if (check_change_status) { 20996 shdr_change_status = bf_get(lpfc_wr_object_change_status, 20997 &wr_object->u.response); 20998 shdr_csf = bf_get(lpfc_wr_object_csf, 20999 &wr_object->u.response); 21000 } 21001 21002 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) { 21003 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21004 "3025 Write Object mailbox failed with " 21005 "status x%x add_status x%x, add_status_2 x%x, " 21006 "mbx status x%x\n", 21007 shdr_status, shdr_add_status, shdr_add_status_2, 21008 rc); 21009 rc = -ENXIO; 21010 *offset = shdr_add_status; 21011 } else { 21012 *offset += wr_object->u.response.actual_write_length; 21013 } 21014 21015 if (rc || check_change_status) 21016 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status, 21017 shdr_add_status_2, shdr_change_status, 21018 shdr_csf); 21019 21020 if (!phba->sli4_hba.intr_enable) 21021 mempool_free(mbox, phba->mbox_mem_pool); 21022 else if (mbox_status != MBX_TIMEOUT) 21023 mempool_free(mbox, phba->mbox_mem_pool); 21024 21025 return rc; 21026 } 21027 21028 /** 21029 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 21030 * @vport: pointer to vport data structure. 21031 * 21032 * This function iterate through the mailboxq and clean up all REG_LOGIN 21033 * and REG_VPI mailbox commands associated with the vport. This function 21034 * is called when driver want to restart discovery of the vport due to 21035 * a Clear Virtual Link event. 21036 **/ 21037 void 21038 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 21039 { 21040 struct lpfc_hba *phba = vport->phba; 21041 LPFC_MBOXQ_t *mb, *nextmb; 21042 struct lpfc_nodelist *ndlp; 21043 struct lpfc_nodelist *act_mbx_ndlp = NULL; 21044 LIST_HEAD(mbox_cmd_list); 21045 uint8_t restart_loop; 21046 21047 /* Clean up internally queued mailbox commands with the vport */ 21048 spin_lock_irq(&phba->hbalock); 21049 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 21050 if (mb->vport != vport) 21051 continue; 21052 21053 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21054 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21055 continue; 21056 21057 list_move_tail(&mb->list, &mbox_cmd_list); 21058 } 21059 /* Clean up active mailbox command with the vport */ 21060 mb = phba->sli.mbox_active; 21061 if (mb && (mb->vport == vport)) { 21062 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 21063 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 21064 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21065 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21066 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 21067 21068 /* This reference is local to this routine. The 21069 * reference is removed at routine exit. 21070 */ 21071 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 21072 21073 /* Unregister the RPI when mailbox complete */ 21074 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21075 } 21076 } 21077 /* Cleanup any mailbox completions which are not yet processed */ 21078 do { 21079 restart_loop = 0; 21080 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 21081 /* 21082 * If this mailox is already processed or it is 21083 * for another vport ignore it. 21084 */ 21085 if ((mb->vport != vport) || 21086 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 21087 continue; 21088 21089 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21090 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21091 continue; 21092 21093 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21094 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21095 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 21096 /* Unregister the RPI when mailbox complete */ 21097 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21098 restart_loop = 1; 21099 spin_unlock_irq(&phba->hbalock); 21100 spin_lock(&ndlp->lock); 21101 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21102 spin_unlock(&ndlp->lock); 21103 spin_lock_irq(&phba->hbalock); 21104 break; 21105 } 21106 } 21107 } while (restart_loop); 21108 21109 spin_unlock_irq(&phba->hbalock); 21110 21111 /* Release the cleaned-up mailbox commands */ 21112 while (!list_empty(&mbox_cmd_list)) { 21113 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 21114 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21115 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 21116 mb->ctx_ndlp = NULL; 21117 if (ndlp) { 21118 spin_lock(&ndlp->lock); 21119 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21120 spin_unlock(&ndlp->lock); 21121 lpfc_nlp_put(ndlp); 21122 } 21123 } 21124 lpfc_mbox_rsrc_cleanup(phba, mb, MBOX_THD_UNLOCKED); 21125 } 21126 21127 /* Release the ndlp with the cleaned-up active mailbox command */ 21128 if (act_mbx_ndlp) { 21129 spin_lock(&act_mbx_ndlp->lock); 21130 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21131 spin_unlock(&act_mbx_ndlp->lock); 21132 lpfc_nlp_put(act_mbx_ndlp); 21133 } 21134 } 21135 21136 /** 21137 * lpfc_drain_txq - Drain the txq 21138 * @phba: Pointer to HBA context object. 21139 * 21140 * This function attempt to submit IOCBs on the txq 21141 * to the adapter. For SLI4 adapters, the txq contains 21142 * ELS IOCBs that have been deferred because the there 21143 * are no SGLs. This congestion can occur with large 21144 * vport counts during node discovery. 21145 **/ 21146 21147 uint32_t 21148 lpfc_drain_txq(struct lpfc_hba *phba) 21149 { 21150 LIST_HEAD(completions); 21151 struct lpfc_sli_ring *pring; 21152 struct lpfc_iocbq *piocbq = NULL; 21153 unsigned long iflags = 0; 21154 char *fail_msg = NULL; 21155 uint32_t txq_cnt = 0; 21156 struct lpfc_queue *wq; 21157 int ret = 0; 21158 21159 if (phba->link_flag & LS_MDS_LOOPBACK) { 21160 /* MDS WQE are posted only to first WQ*/ 21161 wq = phba->sli4_hba.hdwq[0].io_wq; 21162 if (unlikely(!wq)) 21163 return 0; 21164 pring = wq->pring; 21165 } else { 21166 wq = phba->sli4_hba.els_wq; 21167 if (unlikely(!wq)) 21168 return 0; 21169 pring = lpfc_phba_elsring(phba); 21170 } 21171 21172 if (unlikely(!pring) || list_empty(&pring->txq)) 21173 return 0; 21174 21175 spin_lock_irqsave(&pring->ring_lock, iflags); 21176 list_for_each_entry(piocbq, &pring->txq, list) { 21177 txq_cnt++; 21178 } 21179 21180 if (txq_cnt > pring->txq_max) 21181 pring->txq_max = txq_cnt; 21182 21183 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21184 21185 while (!list_empty(&pring->txq)) { 21186 spin_lock_irqsave(&pring->ring_lock, iflags); 21187 21188 piocbq = lpfc_sli_ringtx_get(phba, pring); 21189 if (!piocbq) { 21190 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21191 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21192 "2823 txq empty and txq_cnt is %d\n ", 21193 txq_cnt); 21194 break; 21195 } 21196 txq_cnt--; 21197 21198 ret = __lpfc_sli_issue_iocb(phba, pring->ringno, piocbq, 0); 21199 21200 if (ret && ret != IOCB_BUSY) { 21201 fail_msg = " - Cannot send IO "; 21202 piocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21203 } 21204 if (fail_msg) { 21205 piocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 21206 /* Failed means we can't issue and need to cancel */ 21207 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21208 "2822 IOCB failed %s iotag 0x%x " 21209 "xri 0x%x %d flg x%x\n", 21210 fail_msg, piocbq->iotag, 21211 piocbq->sli4_xritag, ret, 21212 piocbq->cmd_flag); 21213 list_add_tail(&piocbq->list, &completions); 21214 fail_msg = NULL; 21215 } 21216 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21217 if (txq_cnt == 0 || ret == IOCB_BUSY) 21218 break; 21219 } 21220 /* Cancel all the IOCBs that cannot be issued */ 21221 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 21222 IOERR_SLI_ABORTED); 21223 21224 return txq_cnt; 21225 } 21226 21227 /** 21228 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 21229 * @phba: Pointer to HBA context object. 21230 * @pwqeq: Pointer to command WQE. 21231 * @sglq: Pointer to the scatter gather queue object. 21232 * 21233 * This routine converts the bpl or bde that is in the WQE 21234 * to a sgl list for the sli4 hardware. The physical address 21235 * of the bpl/bde is converted back to a virtual address. 21236 * If the WQE contains a BPL then the list of BDE's is 21237 * converted to sli4_sge's. If the WQE contains a single 21238 * BDE then it is converted to a single sli_sge. 21239 * The WQE is still in cpu endianness so the contents of 21240 * the bpl can be used without byte swapping. 21241 * 21242 * Returns valid XRI = Success, NO_XRI = Failure. 21243 */ 21244 static uint16_t 21245 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 21246 struct lpfc_sglq *sglq) 21247 { 21248 uint16_t xritag = NO_XRI; 21249 struct ulp_bde64 *bpl = NULL; 21250 struct ulp_bde64 bde; 21251 struct sli4_sge *sgl = NULL; 21252 struct lpfc_dmabuf *dmabuf; 21253 union lpfc_wqe128 *wqe; 21254 int numBdes = 0; 21255 int i = 0; 21256 uint32_t offset = 0; /* accumulated offset in the sg request list */ 21257 int inbound = 0; /* number of sg reply entries inbound from firmware */ 21258 uint32_t cmd; 21259 21260 if (!pwqeq || !sglq) 21261 return xritag; 21262 21263 sgl = (struct sli4_sge *)sglq->sgl; 21264 wqe = &pwqeq->wqe; 21265 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 21266 21267 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 21268 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 21269 return sglq->sli4_xritag; 21270 numBdes = pwqeq->num_bdes; 21271 if (numBdes) { 21272 /* The addrHigh and addrLow fields within the WQE 21273 * have not been byteswapped yet so there is no 21274 * need to swap them back. 21275 */ 21276 if (pwqeq->bpl_dmabuf) 21277 dmabuf = pwqeq->bpl_dmabuf; 21278 else 21279 return xritag; 21280 21281 bpl = (struct ulp_bde64 *)dmabuf->virt; 21282 if (!bpl) 21283 return xritag; 21284 21285 for (i = 0; i < numBdes; i++) { 21286 /* Should already be byte swapped. */ 21287 sgl->addr_hi = bpl->addrHigh; 21288 sgl->addr_lo = bpl->addrLow; 21289 21290 sgl->word2 = le32_to_cpu(sgl->word2); 21291 if ((i+1) == numBdes) 21292 bf_set(lpfc_sli4_sge_last, sgl, 1); 21293 else 21294 bf_set(lpfc_sli4_sge_last, sgl, 0); 21295 /* swap the size field back to the cpu so we 21296 * can assign it to the sgl. 21297 */ 21298 bde.tus.w = le32_to_cpu(bpl->tus.w); 21299 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 21300 /* The offsets in the sgl need to be accumulated 21301 * separately for the request and reply lists. 21302 * The request is always first, the reply follows. 21303 */ 21304 switch (cmd) { 21305 case CMD_GEN_REQUEST64_WQE: 21306 /* add up the reply sg entries */ 21307 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 21308 inbound++; 21309 /* first inbound? reset the offset */ 21310 if (inbound == 1) 21311 offset = 0; 21312 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21313 bf_set(lpfc_sli4_sge_type, sgl, 21314 LPFC_SGE_TYPE_DATA); 21315 offset += bde.tus.f.bdeSize; 21316 break; 21317 case CMD_FCP_TRSP64_WQE: 21318 bf_set(lpfc_sli4_sge_offset, sgl, 0); 21319 bf_set(lpfc_sli4_sge_type, sgl, 21320 LPFC_SGE_TYPE_DATA); 21321 break; 21322 case CMD_FCP_TSEND64_WQE: 21323 case CMD_FCP_TRECEIVE64_WQE: 21324 bf_set(lpfc_sli4_sge_type, sgl, 21325 bpl->tus.f.bdeFlags); 21326 if (i < 3) 21327 offset = 0; 21328 else 21329 offset += bde.tus.f.bdeSize; 21330 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21331 break; 21332 } 21333 sgl->word2 = cpu_to_le32(sgl->word2); 21334 bpl++; 21335 sgl++; 21336 } 21337 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 21338 /* The addrHigh and addrLow fields of the BDE have not 21339 * been byteswapped yet so they need to be swapped 21340 * before putting them in the sgl. 21341 */ 21342 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 21343 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 21344 sgl->word2 = le32_to_cpu(sgl->word2); 21345 bf_set(lpfc_sli4_sge_last, sgl, 1); 21346 sgl->word2 = cpu_to_le32(sgl->word2); 21347 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 21348 } 21349 return sglq->sli4_xritag; 21350 } 21351 21352 /** 21353 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 21354 * @phba: Pointer to HBA context object. 21355 * @qp: Pointer to HDW queue. 21356 * @pwqe: Pointer to command WQE. 21357 **/ 21358 int 21359 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21360 struct lpfc_iocbq *pwqe) 21361 { 21362 union lpfc_wqe128 *wqe = &pwqe->wqe; 21363 struct lpfc_async_xchg_ctx *ctxp; 21364 struct lpfc_queue *wq; 21365 struct lpfc_sglq *sglq; 21366 struct lpfc_sli_ring *pring; 21367 unsigned long iflags; 21368 uint32_t ret = 0; 21369 21370 /* NVME_LS and NVME_LS ABTS requests. */ 21371 if (pwqe->cmd_flag & LPFC_IO_NVME_LS) { 21372 pring = phba->sli4_hba.nvmels_wq->pring; 21373 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21374 qp, wq_access); 21375 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 21376 if (!sglq) { 21377 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21378 return WQE_BUSY; 21379 } 21380 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21381 pwqe->sli4_xritag = sglq->sli4_xritag; 21382 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 21383 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21384 return WQE_ERROR; 21385 } 21386 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21387 pwqe->sli4_xritag); 21388 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 21389 if (ret) { 21390 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21391 return ret; 21392 } 21393 21394 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21395 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21396 21397 lpfc_sli4_poll_eq(qp->hba_eq); 21398 return 0; 21399 } 21400 21401 /* NVME_FCREQ and NVME_ABTS requests */ 21402 if (pwqe->cmd_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) { 21403 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21404 wq = qp->io_wq; 21405 pring = wq->pring; 21406 21407 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21408 21409 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21410 qp, wq_access); 21411 ret = lpfc_sli4_wq_put(wq, wqe); 21412 if (ret) { 21413 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21414 return ret; 21415 } 21416 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21417 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21418 21419 lpfc_sli4_poll_eq(qp->hba_eq); 21420 return 0; 21421 } 21422 21423 /* NVMET requests */ 21424 if (pwqe->cmd_flag & LPFC_IO_NVMET) { 21425 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21426 wq = qp->io_wq; 21427 pring = wq->pring; 21428 21429 ctxp = pwqe->context_un.axchg; 21430 sglq = ctxp->ctxbuf->sglq; 21431 if (pwqe->sli4_xritag == NO_XRI) { 21432 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21433 pwqe->sli4_xritag = sglq->sli4_xritag; 21434 } 21435 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21436 pwqe->sli4_xritag); 21437 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21438 21439 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21440 qp, wq_access); 21441 ret = lpfc_sli4_wq_put(wq, wqe); 21442 if (ret) { 21443 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21444 return ret; 21445 } 21446 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21447 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21448 21449 lpfc_sli4_poll_eq(qp->hba_eq); 21450 return 0; 21451 } 21452 return WQE_ERROR; 21453 } 21454 21455 /** 21456 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 21457 * @phba: Pointer to HBA context object. 21458 * @cmdiocb: Pointer to driver command iocb object. 21459 * @cmpl: completion function. 21460 * 21461 * Fill the appropriate fields for the abort WQE and call 21462 * internal routine lpfc_sli4_issue_wqe to send the WQE 21463 * This function is called with hbalock held and no ring_lock held. 21464 * 21465 * RETURNS 0 - SUCCESS 21466 **/ 21467 21468 int 21469 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 21470 void *cmpl) 21471 { 21472 struct lpfc_vport *vport = cmdiocb->vport; 21473 struct lpfc_iocbq *abtsiocb = NULL; 21474 union lpfc_wqe128 *abtswqe; 21475 struct lpfc_io_buf *lpfc_cmd; 21476 int retval = IOCB_ERROR; 21477 u16 xritag = cmdiocb->sli4_xritag; 21478 21479 /* 21480 * The scsi command can not be in txq and it is in flight because the 21481 * pCmd is still pointing at the SCSI command we have to abort. There 21482 * is no need to search the txcmplq. Just send an abort to the FW. 21483 */ 21484 21485 abtsiocb = __lpfc_sli_get_iocbq(phba); 21486 if (!abtsiocb) 21487 return WQE_NORESOURCE; 21488 21489 /* Indicate the IO is being aborted by the driver. */ 21490 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 21491 21492 abtswqe = &abtsiocb->wqe; 21493 memset(abtswqe, 0, sizeof(*abtswqe)); 21494 21495 if (!lpfc_is_link_up(phba) || (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 21496 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 21497 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 21498 abtswqe->abort_cmd.rsrvd5 = 0; 21499 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 21500 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 21501 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 21502 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 21503 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 21504 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 21505 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 21506 21507 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 21508 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 21509 abtsiocb->cmd_flag |= LPFC_USE_FCPWQIDX; 21510 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 21511 abtsiocb->cmd_flag |= LPFC_IO_FCP; 21512 if (cmdiocb->cmd_flag & LPFC_IO_NVME) 21513 abtsiocb->cmd_flag |= LPFC_IO_NVME; 21514 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 21515 abtsiocb->cmd_flag |= LPFC_IO_FOF; 21516 abtsiocb->vport = vport; 21517 abtsiocb->cmd_cmpl = cmpl; 21518 21519 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 21520 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 21521 21522 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21523 "0359 Abort xri x%x, original iotag x%x, " 21524 "abort cmd iotag x%x retval x%x\n", 21525 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 21526 21527 if (retval) { 21528 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21529 __lpfc_sli_release_iocbq(phba, abtsiocb); 21530 } 21531 21532 return retval; 21533 } 21534 21535 #ifdef LPFC_MXP_STAT 21536 /** 21537 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 21538 * @phba: pointer to lpfc hba data structure. 21539 * @hwqid: belong to which HWQ. 21540 * 21541 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 21542 * 15 seconds after a test case is running. 21543 * 21544 * The user should call lpfc_debugfs_multixripools_write before running a test 21545 * case to clear stat_snapshot_taken. Then the user starts a test case. During 21546 * test case is running, stat_snapshot_taken is incremented by 1 every time when 21547 * this routine is called from heartbeat timer. When stat_snapshot_taken is 21548 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 21549 **/ 21550 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 21551 { 21552 struct lpfc_sli4_hdw_queue *qp; 21553 struct lpfc_multixri_pool *multixri_pool; 21554 struct lpfc_pvt_pool *pvt_pool; 21555 struct lpfc_pbl_pool *pbl_pool; 21556 u32 txcmplq_cnt; 21557 21558 qp = &phba->sli4_hba.hdwq[hwqid]; 21559 multixri_pool = qp->p_multixri_pool; 21560 if (!multixri_pool) 21561 return; 21562 21563 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 21564 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21565 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21566 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21567 21568 multixri_pool->stat_pbl_count = pbl_pool->count; 21569 multixri_pool->stat_pvt_count = pvt_pool->count; 21570 multixri_pool->stat_busy_count = txcmplq_cnt; 21571 } 21572 21573 multixri_pool->stat_snapshot_taken++; 21574 } 21575 #endif 21576 21577 /** 21578 * lpfc_adjust_pvt_pool_count - Adjust private pool count 21579 * @phba: pointer to lpfc hba data structure. 21580 * @hwqid: belong to which HWQ. 21581 * 21582 * This routine moves some XRIs from private to public pool when private pool 21583 * is not busy. 21584 **/ 21585 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 21586 { 21587 struct lpfc_multixri_pool *multixri_pool; 21588 u32 io_req_count; 21589 u32 prev_io_req_count; 21590 21591 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21592 if (!multixri_pool) 21593 return; 21594 io_req_count = multixri_pool->io_req_count; 21595 prev_io_req_count = multixri_pool->prev_io_req_count; 21596 21597 if (prev_io_req_count != io_req_count) { 21598 /* Private pool is busy */ 21599 multixri_pool->prev_io_req_count = io_req_count; 21600 } else { 21601 /* Private pool is not busy. 21602 * Move XRIs from private to public pool. 21603 */ 21604 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 21605 } 21606 } 21607 21608 /** 21609 * lpfc_adjust_high_watermark - Adjust high watermark 21610 * @phba: pointer to lpfc hba data structure. 21611 * @hwqid: belong to which HWQ. 21612 * 21613 * This routine sets high watermark as number of outstanding XRIs, 21614 * but make sure the new value is between xri_limit/2 and xri_limit. 21615 **/ 21616 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 21617 { 21618 u32 new_watermark; 21619 u32 watermark_max; 21620 u32 watermark_min; 21621 u32 xri_limit; 21622 u32 txcmplq_cnt; 21623 u32 abts_io_bufs; 21624 struct lpfc_multixri_pool *multixri_pool; 21625 struct lpfc_sli4_hdw_queue *qp; 21626 21627 qp = &phba->sli4_hba.hdwq[hwqid]; 21628 multixri_pool = qp->p_multixri_pool; 21629 if (!multixri_pool) 21630 return; 21631 xri_limit = multixri_pool->xri_limit; 21632 21633 watermark_max = xri_limit; 21634 watermark_min = xri_limit / 2; 21635 21636 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21637 abts_io_bufs = qp->abts_scsi_io_bufs; 21638 abts_io_bufs += qp->abts_nvme_io_bufs; 21639 21640 new_watermark = txcmplq_cnt + abts_io_bufs; 21641 new_watermark = min(watermark_max, new_watermark); 21642 new_watermark = max(watermark_min, new_watermark); 21643 multixri_pool->pvt_pool.high_watermark = new_watermark; 21644 21645 #ifdef LPFC_MXP_STAT 21646 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 21647 new_watermark); 21648 #endif 21649 } 21650 21651 /** 21652 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 21653 * @phba: pointer to lpfc hba data structure. 21654 * @hwqid: belong to which HWQ. 21655 * 21656 * This routine is called from hearbeat timer when pvt_pool is idle. 21657 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 21658 * The first step moves (all - low_watermark) amount of XRIs. 21659 * The second step moves the rest of XRIs. 21660 **/ 21661 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 21662 { 21663 struct lpfc_pbl_pool *pbl_pool; 21664 struct lpfc_pvt_pool *pvt_pool; 21665 struct lpfc_sli4_hdw_queue *qp; 21666 struct lpfc_io_buf *lpfc_ncmd; 21667 struct lpfc_io_buf *lpfc_ncmd_next; 21668 unsigned long iflag; 21669 struct list_head tmp_list; 21670 u32 tmp_count; 21671 21672 qp = &phba->sli4_hba.hdwq[hwqid]; 21673 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21674 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21675 tmp_count = 0; 21676 21677 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 21678 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 21679 21680 if (pvt_pool->count > pvt_pool->low_watermark) { 21681 /* Step 1: move (all - low_watermark) from pvt_pool 21682 * to pbl_pool 21683 */ 21684 21685 /* Move low watermark of bufs from pvt_pool to tmp_list */ 21686 INIT_LIST_HEAD(&tmp_list); 21687 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21688 &pvt_pool->list, list) { 21689 list_move_tail(&lpfc_ncmd->list, &tmp_list); 21690 tmp_count++; 21691 if (tmp_count >= pvt_pool->low_watermark) 21692 break; 21693 } 21694 21695 /* Move all bufs from pvt_pool to pbl_pool */ 21696 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21697 21698 /* Move all bufs from tmp_list to pvt_pool */ 21699 list_splice(&tmp_list, &pvt_pool->list); 21700 21701 pbl_pool->count += (pvt_pool->count - tmp_count); 21702 pvt_pool->count = tmp_count; 21703 } else { 21704 /* Step 2: move the rest from pvt_pool to pbl_pool */ 21705 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21706 pbl_pool->count += pvt_pool->count; 21707 pvt_pool->count = 0; 21708 } 21709 21710 spin_unlock(&pvt_pool->lock); 21711 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21712 } 21713 21714 /** 21715 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21716 * @phba: pointer to lpfc hba data structure 21717 * @qp: pointer to HDW queue 21718 * @pbl_pool: specified public free XRI pool 21719 * @pvt_pool: specified private free XRI pool 21720 * @count: number of XRIs to move 21721 * 21722 * This routine tries to move some free common bufs from the specified pbl_pool 21723 * to the specified pvt_pool. It might move less than count XRIs if there's not 21724 * enough in public pool. 21725 * 21726 * Return: 21727 * true - if XRIs are successfully moved from the specified pbl_pool to the 21728 * specified pvt_pool 21729 * false - if the specified pbl_pool is empty or locked by someone else 21730 **/ 21731 static bool 21732 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21733 struct lpfc_pbl_pool *pbl_pool, 21734 struct lpfc_pvt_pool *pvt_pool, u32 count) 21735 { 21736 struct lpfc_io_buf *lpfc_ncmd; 21737 struct lpfc_io_buf *lpfc_ncmd_next; 21738 unsigned long iflag; 21739 int ret; 21740 21741 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 21742 if (ret) { 21743 if (pbl_pool->count) { 21744 /* Move a batch of XRIs from public to private pool */ 21745 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 21746 list_for_each_entry_safe(lpfc_ncmd, 21747 lpfc_ncmd_next, 21748 &pbl_pool->list, 21749 list) { 21750 list_move_tail(&lpfc_ncmd->list, 21751 &pvt_pool->list); 21752 pvt_pool->count++; 21753 pbl_pool->count--; 21754 count--; 21755 if (count == 0) 21756 break; 21757 } 21758 21759 spin_unlock(&pvt_pool->lock); 21760 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21761 return true; 21762 } 21763 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21764 } 21765 21766 return false; 21767 } 21768 21769 /** 21770 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21771 * @phba: pointer to lpfc hba data structure. 21772 * @hwqid: belong to which HWQ. 21773 * @count: number of XRIs to move 21774 * 21775 * This routine tries to find some free common bufs in one of public pools with 21776 * Round Robin method. The search always starts from local hwqid, then the next 21777 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 21778 * a batch of free common bufs are moved to private pool on hwqid. 21779 * It might move less than count XRIs if there's not enough in public pool. 21780 **/ 21781 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 21782 { 21783 struct lpfc_multixri_pool *multixri_pool; 21784 struct lpfc_multixri_pool *next_multixri_pool; 21785 struct lpfc_pvt_pool *pvt_pool; 21786 struct lpfc_pbl_pool *pbl_pool; 21787 struct lpfc_sli4_hdw_queue *qp; 21788 u32 next_hwqid; 21789 u32 hwq_count; 21790 int ret; 21791 21792 qp = &phba->sli4_hba.hdwq[hwqid]; 21793 multixri_pool = qp->p_multixri_pool; 21794 pvt_pool = &multixri_pool->pvt_pool; 21795 pbl_pool = &multixri_pool->pbl_pool; 21796 21797 /* Check if local pbl_pool is available */ 21798 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 21799 if (ret) { 21800 #ifdef LPFC_MXP_STAT 21801 multixri_pool->local_pbl_hit_count++; 21802 #endif 21803 return; 21804 } 21805 21806 hwq_count = phba->cfg_hdw_queue; 21807 21808 /* Get the next hwqid which was found last time */ 21809 next_hwqid = multixri_pool->rrb_next_hwqid; 21810 21811 do { 21812 /* Go to next hwq */ 21813 next_hwqid = (next_hwqid + 1) % hwq_count; 21814 21815 next_multixri_pool = 21816 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 21817 pbl_pool = &next_multixri_pool->pbl_pool; 21818 21819 /* Check if the public free xri pool is available */ 21820 ret = _lpfc_move_xri_pbl_to_pvt( 21821 phba, qp, pbl_pool, pvt_pool, count); 21822 21823 /* Exit while-loop if success or all hwqid are checked */ 21824 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 21825 21826 /* Starting point for the next time */ 21827 multixri_pool->rrb_next_hwqid = next_hwqid; 21828 21829 if (!ret) { 21830 /* stats: all public pools are empty*/ 21831 multixri_pool->pbl_empty_count++; 21832 } 21833 21834 #ifdef LPFC_MXP_STAT 21835 if (ret) { 21836 if (next_hwqid == hwqid) 21837 multixri_pool->local_pbl_hit_count++; 21838 else 21839 multixri_pool->other_pbl_hit_count++; 21840 } 21841 #endif 21842 } 21843 21844 /** 21845 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 21846 * @phba: pointer to lpfc hba data structure. 21847 * @hwqid: belong to which HWQ. 21848 * 21849 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 21850 * low watermark. 21851 **/ 21852 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 21853 { 21854 struct lpfc_multixri_pool *multixri_pool; 21855 struct lpfc_pvt_pool *pvt_pool; 21856 21857 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21858 pvt_pool = &multixri_pool->pvt_pool; 21859 21860 if (pvt_pool->count < pvt_pool->low_watermark) 21861 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21862 } 21863 21864 /** 21865 * lpfc_release_io_buf - Return one IO buf back to free pool 21866 * @phba: pointer to lpfc hba data structure. 21867 * @lpfc_ncmd: IO buf to be returned. 21868 * @qp: belong to which HWQ. 21869 * 21870 * This routine returns one IO buf back to free pool. If this is an urgent IO, 21871 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 21872 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 21873 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 21874 * lpfc_io_buf_list_put. 21875 **/ 21876 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21877 struct lpfc_sli4_hdw_queue *qp) 21878 { 21879 unsigned long iflag; 21880 struct lpfc_pbl_pool *pbl_pool; 21881 struct lpfc_pvt_pool *pvt_pool; 21882 struct lpfc_epd_pool *epd_pool; 21883 u32 txcmplq_cnt; 21884 u32 xri_owned; 21885 u32 xri_limit; 21886 u32 abts_io_bufs; 21887 21888 /* MUST zero fields if buffer is reused by another protocol */ 21889 lpfc_ncmd->nvmeCmd = NULL; 21890 lpfc_ncmd->cur_iocbq.cmd_cmpl = NULL; 21891 21892 if (phba->cfg_xpsgl && !phba->nvmet_support && 21893 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21894 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21895 21896 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21897 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21898 21899 if (phba->cfg_xri_rebalancing) { 21900 if (lpfc_ncmd->expedite) { 21901 /* Return to expedite pool */ 21902 epd_pool = &phba->epd_pool; 21903 spin_lock_irqsave(&epd_pool->lock, iflag); 21904 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21905 epd_pool->count++; 21906 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21907 return; 21908 } 21909 21910 /* Avoid invalid access if an IO sneaks in and is being rejected 21911 * just _after_ xri pools are destroyed in lpfc_offline. 21912 * Nothing much can be done at this point. 21913 */ 21914 if (!qp->p_multixri_pool) 21915 return; 21916 21917 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21918 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21919 21920 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21921 abts_io_bufs = qp->abts_scsi_io_bufs; 21922 abts_io_bufs += qp->abts_nvme_io_bufs; 21923 21924 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21925 xri_limit = qp->p_multixri_pool->xri_limit; 21926 21927 #ifdef LPFC_MXP_STAT 21928 if (xri_owned <= xri_limit) 21929 qp->p_multixri_pool->below_limit_count++; 21930 else 21931 qp->p_multixri_pool->above_limit_count++; 21932 #endif 21933 21934 /* XRI goes to either public or private free xri pool 21935 * based on watermark and xri_limit 21936 */ 21937 if ((pvt_pool->count < pvt_pool->low_watermark) || 21938 (xri_owned < xri_limit && 21939 pvt_pool->count < pvt_pool->high_watermark)) { 21940 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21941 qp, free_pvt_pool); 21942 list_add_tail(&lpfc_ncmd->list, 21943 &pvt_pool->list); 21944 pvt_pool->count++; 21945 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21946 } else { 21947 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21948 qp, free_pub_pool); 21949 list_add_tail(&lpfc_ncmd->list, 21950 &pbl_pool->list); 21951 pbl_pool->count++; 21952 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21953 } 21954 } else { 21955 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21956 qp, free_xri); 21957 list_add_tail(&lpfc_ncmd->list, 21958 &qp->lpfc_io_buf_list_put); 21959 qp->put_io_bufs++; 21960 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21961 iflag); 21962 } 21963 } 21964 21965 /** 21966 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21967 * @phba: pointer to lpfc hba data structure. 21968 * @qp: pointer to HDW queue 21969 * @pvt_pool: pointer to private pool data structure. 21970 * @ndlp: pointer to lpfc nodelist data structure. 21971 * 21972 * This routine tries to get one free IO buf from private pool. 21973 * 21974 * Return: 21975 * pointer to one free IO buf - if private pool is not empty 21976 * NULL - if private pool is empty 21977 **/ 21978 static struct lpfc_io_buf * 21979 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21980 struct lpfc_sli4_hdw_queue *qp, 21981 struct lpfc_pvt_pool *pvt_pool, 21982 struct lpfc_nodelist *ndlp) 21983 { 21984 struct lpfc_io_buf *lpfc_ncmd; 21985 struct lpfc_io_buf *lpfc_ncmd_next; 21986 unsigned long iflag; 21987 21988 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21989 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21990 &pvt_pool->list, list) { 21991 if (lpfc_test_rrq_active( 21992 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21993 continue; 21994 list_del(&lpfc_ncmd->list); 21995 pvt_pool->count--; 21996 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21997 return lpfc_ncmd; 21998 } 21999 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 22000 22001 return NULL; 22002 } 22003 22004 /** 22005 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 22006 * @phba: pointer to lpfc hba data structure. 22007 * 22008 * This routine tries to get one free IO buf from expedite pool. 22009 * 22010 * Return: 22011 * pointer to one free IO buf - if expedite pool is not empty 22012 * NULL - if expedite pool is empty 22013 **/ 22014 static struct lpfc_io_buf * 22015 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 22016 { 22017 struct lpfc_io_buf *lpfc_ncmd = NULL, *iter; 22018 struct lpfc_io_buf *lpfc_ncmd_next; 22019 unsigned long iflag; 22020 struct lpfc_epd_pool *epd_pool; 22021 22022 epd_pool = &phba->epd_pool; 22023 22024 spin_lock_irqsave(&epd_pool->lock, iflag); 22025 if (epd_pool->count > 0) { 22026 list_for_each_entry_safe(iter, lpfc_ncmd_next, 22027 &epd_pool->list, list) { 22028 list_del(&iter->list); 22029 epd_pool->count--; 22030 lpfc_ncmd = iter; 22031 break; 22032 } 22033 } 22034 spin_unlock_irqrestore(&epd_pool->lock, iflag); 22035 22036 return lpfc_ncmd; 22037 } 22038 22039 /** 22040 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 22041 * @phba: pointer to lpfc hba data structure. 22042 * @ndlp: pointer to lpfc nodelist data structure. 22043 * @hwqid: belong to which HWQ 22044 * @expedite: 1 means this request is urgent. 22045 * 22046 * This routine will do the following actions and then return a pointer to 22047 * one free IO buf. 22048 * 22049 * 1. If private free xri count is empty, move some XRIs from public to 22050 * private pool. 22051 * 2. Get one XRI from private free xri pool. 22052 * 3. If we fail to get one from pvt_pool and this is an expedite request, 22053 * get one free xri from expedite pool. 22054 * 22055 * Note: ndlp is only used on SCSI side for RRQ testing. 22056 * The caller should pass NULL for ndlp on NVME side. 22057 * 22058 * Return: 22059 * pointer to one free IO buf - if private pool is not empty 22060 * NULL - if private pool is empty 22061 **/ 22062 static struct lpfc_io_buf * 22063 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 22064 struct lpfc_nodelist *ndlp, 22065 int hwqid, int expedite) 22066 { 22067 struct lpfc_sli4_hdw_queue *qp; 22068 struct lpfc_multixri_pool *multixri_pool; 22069 struct lpfc_pvt_pool *pvt_pool; 22070 struct lpfc_io_buf *lpfc_ncmd; 22071 22072 qp = &phba->sli4_hba.hdwq[hwqid]; 22073 lpfc_ncmd = NULL; 22074 if (!qp) { 22075 lpfc_printf_log(phba, KERN_INFO, 22076 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22077 "5556 NULL qp for hwqid x%x\n", hwqid); 22078 return lpfc_ncmd; 22079 } 22080 multixri_pool = qp->p_multixri_pool; 22081 if (!multixri_pool) { 22082 lpfc_printf_log(phba, KERN_INFO, 22083 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22084 "5557 NULL multixri for hwqid x%x\n", hwqid); 22085 return lpfc_ncmd; 22086 } 22087 pvt_pool = &multixri_pool->pvt_pool; 22088 if (!pvt_pool) { 22089 lpfc_printf_log(phba, KERN_INFO, 22090 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22091 "5558 NULL pvt_pool for hwqid x%x\n", hwqid); 22092 return lpfc_ncmd; 22093 } 22094 multixri_pool->io_req_count++; 22095 22096 /* If pvt_pool is empty, move some XRIs from public to private pool */ 22097 if (pvt_pool->count == 0) 22098 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 22099 22100 /* Get one XRI from private free xri pool */ 22101 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 22102 22103 if (lpfc_ncmd) { 22104 lpfc_ncmd->hdwq = qp; 22105 lpfc_ncmd->hdwq_no = hwqid; 22106 } else if (expedite) { 22107 /* If we fail to get one from pvt_pool and this is an expedite 22108 * request, get one free xri from expedite pool. 22109 */ 22110 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 22111 } 22112 22113 return lpfc_ncmd; 22114 } 22115 22116 static inline struct lpfc_io_buf * 22117 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 22118 { 22119 struct lpfc_sli4_hdw_queue *qp; 22120 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 22121 22122 qp = &phba->sli4_hba.hdwq[idx]; 22123 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 22124 &qp->lpfc_io_buf_list_get, list) { 22125 if (lpfc_test_rrq_active(phba, ndlp, 22126 lpfc_cmd->cur_iocbq.sli4_lxritag)) 22127 continue; 22128 22129 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 22130 continue; 22131 22132 list_del_init(&lpfc_cmd->list); 22133 qp->get_io_bufs--; 22134 lpfc_cmd->hdwq = qp; 22135 lpfc_cmd->hdwq_no = idx; 22136 return lpfc_cmd; 22137 } 22138 return NULL; 22139 } 22140 22141 /** 22142 * lpfc_get_io_buf - Get one IO buffer from free pool 22143 * @phba: The HBA for which this call is being executed. 22144 * @ndlp: pointer to lpfc nodelist data structure. 22145 * @hwqid: belong to which HWQ 22146 * @expedite: 1 means this request is urgent. 22147 * 22148 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 22149 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 22150 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 22151 * 22152 * Note: ndlp is only used on SCSI side for RRQ testing. 22153 * The caller should pass NULL for ndlp on NVME side. 22154 * 22155 * Return codes: 22156 * NULL - Error 22157 * Pointer to lpfc_io_buf - Success 22158 **/ 22159 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 22160 struct lpfc_nodelist *ndlp, 22161 u32 hwqid, int expedite) 22162 { 22163 struct lpfc_sli4_hdw_queue *qp; 22164 unsigned long iflag; 22165 struct lpfc_io_buf *lpfc_cmd; 22166 22167 qp = &phba->sli4_hba.hdwq[hwqid]; 22168 lpfc_cmd = NULL; 22169 if (!qp) { 22170 lpfc_printf_log(phba, KERN_WARNING, 22171 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22172 "5555 NULL qp for hwqid x%x\n", hwqid); 22173 return lpfc_cmd; 22174 } 22175 22176 if (phba->cfg_xri_rebalancing) 22177 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 22178 phba, ndlp, hwqid, expedite); 22179 else { 22180 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 22181 qp, alloc_xri_get); 22182 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 22183 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22184 if (!lpfc_cmd) { 22185 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 22186 qp, alloc_xri_put); 22187 list_splice(&qp->lpfc_io_buf_list_put, 22188 &qp->lpfc_io_buf_list_get); 22189 qp->get_io_bufs += qp->put_io_bufs; 22190 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 22191 qp->put_io_bufs = 0; 22192 spin_unlock(&qp->io_buf_list_put_lock); 22193 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 22194 expedite) 22195 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22196 } 22197 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 22198 } 22199 22200 return lpfc_cmd; 22201 } 22202 22203 /** 22204 * lpfc_read_object - Retrieve object data from HBA 22205 * @phba: The HBA for which this call is being executed. 22206 * @rdobject: Pathname of object data we want to read. 22207 * @datap: Pointer to where data will be copied to. 22208 * @datasz: size of data area 22209 * 22210 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less. 22211 * The data will be truncated if datasz is not large enough. 22212 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0. 22213 * Returns the actual bytes read from the object. 22214 */ 22215 int 22216 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap, 22217 uint32_t datasz) 22218 { 22219 struct lpfc_mbx_read_object *read_object; 22220 LPFC_MBOXQ_t *mbox; 22221 int rc, length, eof, j, byte_cnt = 0; 22222 uint32_t shdr_status, shdr_add_status; 22223 union lpfc_sli4_cfg_shdr *shdr; 22224 struct lpfc_dmabuf *pcmd; 22225 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0}; 22226 22227 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 22228 if (!mbox) 22229 return -ENOMEM; 22230 length = (sizeof(struct lpfc_mbx_read_object) - 22231 sizeof(struct lpfc_sli4_cfg_mhdr)); 22232 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 22233 LPFC_MBOX_OPCODE_READ_OBJECT, 22234 length, LPFC_SLI4_MBX_EMBED); 22235 read_object = &mbox->u.mqe.un.read_object; 22236 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr; 22237 22238 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0); 22239 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz); 22240 read_object->u.request.rd_object_offset = 0; 22241 read_object->u.request.rd_object_cnt = 1; 22242 22243 memset((void *)read_object->u.request.rd_object_name, 0, 22244 LPFC_OBJ_NAME_SZ); 22245 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject); 22246 for (j = 0; j < strlen(rdobject); j++) 22247 read_object->u.request.rd_object_name[j] = 22248 cpu_to_le32(rd_object_name[j]); 22249 22250 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL); 22251 if (pcmd) 22252 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys); 22253 if (!pcmd || !pcmd->virt) { 22254 kfree(pcmd); 22255 mempool_free(mbox, phba->mbox_mem_pool); 22256 return -ENOMEM; 22257 } 22258 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE); 22259 read_object->u.request.rd_object_hbuf[0].pa_lo = 22260 putPaddrLow(pcmd->phys); 22261 read_object->u.request.rd_object_hbuf[0].pa_hi = 22262 putPaddrHigh(pcmd->phys); 22263 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE; 22264 22265 mbox->vport = phba->pport; 22266 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 22267 mbox->ctx_ndlp = NULL; 22268 22269 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 22270 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 22271 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 22272 22273 if (shdr_status == STATUS_FAILED && 22274 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) { 22275 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22276 "4674 No port cfg file in FW.\n"); 22277 byte_cnt = -ENOENT; 22278 } else if (shdr_status || shdr_add_status || rc) { 22279 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22280 "2625 READ_OBJECT mailbox failed with " 22281 "status x%x add_status x%x, mbx status x%x\n", 22282 shdr_status, shdr_add_status, rc); 22283 byte_cnt = -ENXIO; 22284 } else { 22285 /* Success */ 22286 length = read_object->u.response.rd_object_actual_rlen; 22287 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response); 22288 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT, 22289 "2626 READ_OBJECT Success len %d:%d, EOF %d\n", 22290 length, datasz, eof); 22291 22292 /* Detect the port config file exists but is empty */ 22293 if (!length && eof) { 22294 byte_cnt = 0; 22295 goto exit; 22296 } 22297 22298 byte_cnt = length; 22299 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt); 22300 } 22301 22302 exit: 22303 /* This is an embedded SLI4 mailbox with an external buffer allocated. 22304 * Free the pcmd and then cleanup with the correct routine. 22305 */ 22306 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys); 22307 kfree(pcmd); 22308 lpfc_sli4_mbox_cmd_free(phba, mbox); 22309 return byte_cnt; 22310 } 22311 22312 /** 22313 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 22314 * @phba: The HBA for which this call is being executed. 22315 * @lpfc_buf: IO buf structure to append the SGL chunk 22316 * 22317 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 22318 * and will allocate an SGL chunk if the pool is empty. 22319 * 22320 * Return codes: 22321 * NULL - Error 22322 * Pointer to sli4_hybrid_sgl - Success 22323 **/ 22324 struct sli4_hybrid_sgl * 22325 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22326 { 22327 struct sli4_hybrid_sgl *list_entry = NULL; 22328 struct sli4_hybrid_sgl *tmp = NULL; 22329 struct sli4_hybrid_sgl *allocated_sgl = NULL; 22330 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22331 struct list_head *buf_list = &hdwq->sgl_list; 22332 unsigned long iflags; 22333 22334 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22335 22336 if (likely(!list_empty(buf_list))) { 22337 /* break off 1 chunk from the sgl_list */ 22338 list_for_each_entry_safe(list_entry, tmp, 22339 buf_list, list_node) { 22340 list_move_tail(&list_entry->list_node, 22341 &lpfc_buf->dma_sgl_xtra_list); 22342 break; 22343 } 22344 } else { 22345 /* allocate more */ 22346 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22347 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22348 cpu_to_node(hdwq->io_wq->chann)); 22349 if (!tmp) { 22350 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22351 "8353 error kmalloc memory for HDWQ " 22352 "%d %s\n", 22353 lpfc_buf->hdwq_no, __func__); 22354 return NULL; 22355 } 22356 22357 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 22358 GFP_ATOMIC, &tmp->dma_phys_sgl); 22359 if (!tmp->dma_sgl) { 22360 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22361 "8354 error pool_alloc memory for HDWQ " 22362 "%d %s\n", 22363 lpfc_buf->hdwq_no, __func__); 22364 kfree(tmp); 22365 return NULL; 22366 } 22367 22368 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22369 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 22370 } 22371 22372 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 22373 struct sli4_hybrid_sgl, 22374 list_node); 22375 22376 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22377 22378 return allocated_sgl; 22379 } 22380 22381 /** 22382 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 22383 * @phba: The HBA for which this call is being executed. 22384 * @lpfc_buf: IO buf structure with the SGL chunk 22385 * 22386 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 22387 * 22388 * Return codes: 22389 * 0 - Success 22390 * -EINVAL - Error 22391 **/ 22392 int 22393 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22394 { 22395 int rc = 0; 22396 struct sli4_hybrid_sgl *list_entry = NULL; 22397 struct sli4_hybrid_sgl *tmp = NULL; 22398 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22399 struct list_head *buf_list = &hdwq->sgl_list; 22400 unsigned long iflags; 22401 22402 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22403 22404 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 22405 list_for_each_entry_safe(list_entry, tmp, 22406 &lpfc_buf->dma_sgl_xtra_list, 22407 list_node) { 22408 list_move_tail(&list_entry->list_node, 22409 buf_list); 22410 } 22411 } else { 22412 rc = -EINVAL; 22413 } 22414 22415 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22416 return rc; 22417 } 22418 22419 /** 22420 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 22421 * @phba: phba object 22422 * @hdwq: hdwq to cleanup sgl buff resources on 22423 * 22424 * This routine frees all SGL chunks of hdwq SGL chunk pool. 22425 * 22426 * Return codes: 22427 * None 22428 **/ 22429 void 22430 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 22431 struct lpfc_sli4_hdw_queue *hdwq) 22432 { 22433 struct list_head *buf_list = &hdwq->sgl_list; 22434 struct sli4_hybrid_sgl *list_entry = NULL; 22435 struct sli4_hybrid_sgl *tmp = NULL; 22436 unsigned long iflags; 22437 22438 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22439 22440 /* Free sgl pool */ 22441 list_for_each_entry_safe(list_entry, tmp, 22442 buf_list, list_node) { 22443 list_del(&list_entry->list_node); 22444 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 22445 list_entry->dma_sgl, 22446 list_entry->dma_phys_sgl); 22447 kfree(list_entry); 22448 } 22449 22450 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22451 } 22452 22453 /** 22454 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 22455 * @phba: The HBA for which this call is being executed. 22456 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 22457 * 22458 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 22459 * and will allocate an CMD/RSP buffer if the pool is empty. 22460 * 22461 * Return codes: 22462 * NULL - Error 22463 * Pointer to fcp_cmd_rsp_buf - Success 22464 **/ 22465 struct fcp_cmd_rsp_buf * 22466 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22467 struct lpfc_io_buf *lpfc_buf) 22468 { 22469 struct fcp_cmd_rsp_buf *list_entry = NULL; 22470 struct fcp_cmd_rsp_buf *tmp = NULL; 22471 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 22472 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22473 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22474 unsigned long iflags; 22475 22476 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22477 22478 if (likely(!list_empty(buf_list))) { 22479 /* break off 1 chunk from the list */ 22480 list_for_each_entry_safe(list_entry, tmp, 22481 buf_list, 22482 list_node) { 22483 list_move_tail(&list_entry->list_node, 22484 &lpfc_buf->dma_cmd_rsp_list); 22485 break; 22486 } 22487 } else { 22488 /* allocate more */ 22489 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22490 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22491 cpu_to_node(hdwq->io_wq->chann)); 22492 if (!tmp) { 22493 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22494 "8355 error kmalloc memory for HDWQ " 22495 "%d %s\n", 22496 lpfc_buf->hdwq_no, __func__); 22497 return NULL; 22498 } 22499 22500 tmp->fcp_cmnd = dma_pool_zalloc(phba->lpfc_cmd_rsp_buf_pool, 22501 GFP_ATOMIC, 22502 &tmp->fcp_cmd_rsp_dma_handle); 22503 22504 if (!tmp->fcp_cmnd) { 22505 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22506 "8356 error pool_alloc memory for HDWQ " 22507 "%d %s\n", 22508 lpfc_buf->hdwq_no, __func__); 22509 kfree(tmp); 22510 return NULL; 22511 } 22512 22513 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 22514 sizeof(struct fcp_cmnd)); 22515 22516 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22517 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 22518 } 22519 22520 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 22521 struct fcp_cmd_rsp_buf, 22522 list_node); 22523 22524 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22525 22526 return allocated_buf; 22527 } 22528 22529 /** 22530 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 22531 * @phba: The HBA for which this call is being executed. 22532 * @lpfc_buf: IO buf structure with the CMD/RSP buf 22533 * 22534 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 22535 * 22536 * Return codes: 22537 * 0 - Success 22538 * -EINVAL - Error 22539 **/ 22540 int 22541 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22542 struct lpfc_io_buf *lpfc_buf) 22543 { 22544 int rc = 0; 22545 struct fcp_cmd_rsp_buf *list_entry = NULL; 22546 struct fcp_cmd_rsp_buf *tmp = NULL; 22547 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22548 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22549 unsigned long iflags; 22550 22551 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22552 22553 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 22554 list_for_each_entry_safe(list_entry, tmp, 22555 &lpfc_buf->dma_cmd_rsp_list, 22556 list_node) { 22557 list_move_tail(&list_entry->list_node, 22558 buf_list); 22559 } 22560 } else { 22561 rc = -EINVAL; 22562 } 22563 22564 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22565 return rc; 22566 } 22567 22568 /** 22569 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 22570 * @phba: phba object 22571 * @hdwq: hdwq to cleanup cmd rsp buff resources on 22572 * 22573 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 22574 * 22575 * Return codes: 22576 * None 22577 **/ 22578 void 22579 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22580 struct lpfc_sli4_hdw_queue *hdwq) 22581 { 22582 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22583 struct fcp_cmd_rsp_buf *list_entry = NULL; 22584 struct fcp_cmd_rsp_buf *tmp = NULL; 22585 unsigned long iflags; 22586 22587 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22588 22589 /* Free cmd_rsp buf pool */ 22590 list_for_each_entry_safe(list_entry, tmp, 22591 buf_list, 22592 list_node) { 22593 list_del(&list_entry->list_node); 22594 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 22595 list_entry->fcp_cmnd, 22596 list_entry->fcp_cmd_rsp_dma_handle); 22597 kfree(list_entry); 22598 } 22599 22600 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22601 } 22602 22603 /** 22604 * lpfc_sli_prep_wqe - Prepare WQE for the command to be posted 22605 * @phba: phba object 22606 * @job: job entry of the command to be posted. 22607 * 22608 * Fill the common fields of the wqe for each of the command. 22609 * 22610 * Return codes: 22611 * None 22612 **/ 22613 void 22614 lpfc_sli_prep_wqe(struct lpfc_hba *phba, struct lpfc_iocbq *job) 22615 { 22616 u8 cmnd; 22617 u32 *pcmd; 22618 u32 if_type = 0; 22619 u32 fip, abort_tag; 22620 struct lpfc_nodelist *ndlp = NULL; 22621 union lpfc_wqe128 *wqe = &job->wqe; 22622 u8 command_type = ELS_COMMAND_NON_FIP; 22623 22624 fip = phba->hba_flag & HBA_FIP_SUPPORT; 22625 /* The fcp commands will set command type */ 22626 if (job->cmd_flag & LPFC_IO_FCP) 22627 command_type = FCP_COMMAND; 22628 else if (fip && (job->cmd_flag & LPFC_FIP_ELS_ID_MASK)) 22629 command_type = ELS_COMMAND_FIP; 22630 else 22631 command_type = ELS_COMMAND_NON_FIP; 22632 22633 abort_tag = job->iotag; 22634 cmnd = bf_get(wqe_cmnd, &wqe->els_req.wqe_com); 22635 22636 switch (cmnd) { 22637 case CMD_ELS_REQUEST64_WQE: 22638 ndlp = job->ndlp; 22639 22640 if_type = bf_get(lpfc_sli_intf_if_type, 22641 &phba->sli4_hba.sli_intf); 22642 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22643 pcmd = (u32 *)job->cmd_dmabuf->virt; 22644 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 22645 *pcmd == ELS_CMD_SCR || 22646 *pcmd == ELS_CMD_RDF || 22647 *pcmd == ELS_CMD_EDC || 22648 *pcmd == ELS_CMD_RSCN_XMT || 22649 *pcmd == ELS_CMD_FDISC || 22650 *pcmd == ELS_CMD_LOGO || 22651 *pcmd == ELS_CMD_QFPA || 22652 *pcmd == ELS_CMD_UVEM || 22653 *pcmd == ELS_CMD_PLOGI)) { 22654 bf_set(els_req64_sp, &wqe->els_req, 1); 22655 bf_set(els_req64_sid, &wqe->els_req, 22656 job->vport->fc_myDID); 22657 22658 if ((*pcmd == ELS_CMD_FLOGI) && 22659 !(phba->fc_topology == 22660 LPFC_TOPOLOGY_LOOP)) 22661 bf_set(els_req64_sid, &wqe->els_req, 0); 22662 22663 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 22664 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22665 phba->vpi_ids[job->vport->vpi]); 22666 } else if (pcmd) { 22667 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 22668 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22669 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22670 } 22671 } 22672 22673 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 22674 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22675 22676 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 22677 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 22678 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 22679 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22680 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 22681 break; 22682 case CMD_XMIT_ELS_RSP64_WQE: 22683 ndlp = job->ndlp; 22684 22685 /* word4 */ 22686 wqe->xmit_els_rsp.word4 = 0; 22687 22688 if_type = bf_get(lpfc_sli_intf_if_type, 22689 &phba->sli4_hba.sli_intf); 22690 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22691 if (job->vport->fc_flag & FC_PT2PT) { 22692 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22693 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22694 job->vport->fc_myDID); 22695 if (job->vport->fc_myDID == Fabric_DID) { 22696 bf_set(wqe_els_did, 22697 &wqe->xmit_els_rsp.wqe_dest, 0); 22698 } 22699 } 22700 } 22701 22702 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 22703 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 22704 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 22705 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 22706 LPFC_WQE_LENLOC_WORD3); 22707 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 22708 22709 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 22710 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22711 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22712 job->vport->fc_myDID); 22713 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 22714 } 22715 22716 if (phba->sli_rev == LPFC_SLI_REV4) { 22717 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 22718 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22719 22720 if (bf_get(wqe_ct, &wqe->xmit_els_rsp.wqe_com)) 22721 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 22722 phba->vpi_ids[job->vport->vpi]); 22723 } 22724 command_type = OTHER_COMMAND; 22725 break; 22726 case CMD_GEN_REQUEST64_WQE: 22727 /* Word 10 */ 22728 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 22729 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 22730 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 22731 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22732 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 22733 command_type = OTHER_COMMAND; 22734 break; 22735 case CMD_XMIT_SEQUENCE64_WQE: 22736 if (phba->link_flag & LS_LOOPBACK_MODE) 22737 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 22738 22739 wqe->xmit_sequence.rsvd3 = 0; 22740 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 22741 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 22742 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 22743 LPFC_WQE_IOD_WRITE); 22744 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 22745 LPFC_WQE_LENLOC_WORD12); 22746 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 22747 command_type = OTHER_COMMAND; 22748 break; 22749 case CMD_XMIT_BLS_RSP64_WQE: 22750 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 22751 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 22752 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 22753 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 22754 phba->vpi_ids[phba->pport->vpi]); 22755 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 22756 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 22757 LPFC_WQE_LENLOC_NONE); 22758 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 22759 command_type = OTHER_COMMAND; 22760 break; 22761 case CMD_FCP_ICMND64_WQE: /* task mgmt commands */ 22762 case CMD_ABORT_XRI_WQE: /* abort iotag */ 22763 case CMD_SEND_FRAME: /* mds loopback */ 22764 /* cases already formatted for sli4 wqe - no chgs necessary */ 22765 return; 22766 default: 22767 dump_stack(); 22768 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 22769 "6207 Invalid command 0x%x\n", 22770 cmnd); 22771 break; 22772 } 22773 22774 wqe->generic.wqe_com.abort_tag = abort_tag; 22775 bf_set(wqe_reqtag, &wqe->generic.wqe_com, job->iotag); 22776 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 22777 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 22778 } 22779