1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2004-2012 Emulex. All rights reserved. * 5 * EMULEX and SLI are trademarks of Emulex. * 6 * www.emulex.com * 7 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 8 * * 9 * This program is free software; you can redistribute it and/or * 10 * modify it under the terms of version 2 of the GNU General * 11 * Public License as published by the Free Software Foundation. * 12 * This program is distributed in the hope that it will be useful. * 13 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 14 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 15 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 16 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 17 * TO BE LEGALLY INVALID. See the GNU General Public License for * 18 * more details, a copy of which can be found in the file COPYING * 19 * included with this package. * 20 *******************************************************************/ 21 22 #include <linux/blkdev.h> 23 #include <linux/pci.h> 24 #include <linux/interrupt.h> 25 #include <linux/delay.h> 26 #include <linux/slab.h> 27 28 #include <scsi/scsi.h> 29 #include <scsi/scsi_cmnd.h> 30 #include <scsi/scsi_device.h> 31 #include <scsi/scsi_host.h> 32 #include <scsi/scsi_transport_fc.h> 33 #include <scsi/fc/fc_fs.h> 34 #include <linux/aer.h> 35 36 #include "lpfc_hw4.h" 37 #include "lpfc_hw.h" 38 #include "lpfc_sli.h" 39 #include "lpfc_sli4.h" 40 #include "lpfc_nl.h" 41 #include "lpfc_disc.h" 42 #include "lpfc_scsi.h" 43 #include "lpfc.h" 44 #include "lpfc_crtn.h" 45 #include "lpfc_logmsg.h" 46 #include "lpfc_compat.h" 47 #include "lpfc_debugfs.h" 48 #include "lpfc_vport.h" 49 50 /* There are only four IOCB completion types. */ 51 typedef enum _lpfc_iocb_type { 52 LPFC_UNKNOWN_IOCB, 53 LPFC_UNSOL_IOCB, 54 LPFC_SOL_IOCB, 55 LPFC_ABORT_IOCB 56 } lpfc_iocb_type; 57 58 59 /* Provide function prototypes local to this module. */ 60 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 61 uint32_t); 62 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 63 uint8_t *, uint32_t *); 64 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 65 struct lpfc_iocbq *); 66 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 67 struct hbq_dmabuf *); 68 static int lpfc_sli4_fp_handle_wcqe(struct lpfc_hba *, struct lpfc_queue *, 69 struct lpfc_cqe *); 70 static int lpfc_sli4_post_els_sgl_list(struct lpfc_hba *, struct list_head *, 71 int); 72 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *, struct lpfc_eqe *, 73 uint32_t); 74 75 static IOCB_t * 76 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 77 { 78 return &iocbq->iocb; 79 } 80 81 /** 82 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 83 * @q: The Work Queue to operate on. 84 * @wqe: The work Queue Entry to put on the Work queue. 85 * 86 * This routine will copy the contents of @wqe to the next available entry on 87 * the @q. This function will then ring the Work Queue Doorbell to signal the 88 * HBA to start processing the Work Queue Entry. This function returns 0 if 89 * successful. If no entries are available on @q then this function will return 90 * -ENOMEM. 91 * The caller is expected to hold the hbalock when calling this routine. 92 **/ 93 static uint32_t 94 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe *wqe) 95 { 96 union lpfc_wqe *temp_wqe; 97 struct lpfc_register doorbell; 98 uint32_t host_index; 99 uint32_t idx; 100 101 /* sanity check on queue memory */ 102 if (unlikely(!q)) 103 return -ENOMEM; 104 temp_wqe = q->qe[q->host_index].wqe; 105 106 /* If the host has not yet processed the next entry then we are done */ 107 idx = ((q->host_index + 1) % q->entry_count); 108 if (idx == q->hba_index) { 109 q->WQ_overflow++; 110 return -ENOMEM; 111 } 112 q->WQ_posted++; 113 /* set consumption flag every once in a while */ 114 if (!((q->host_index + 1) % q->entry_repost)) 115 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 116 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 117 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 118 lpfc_sli_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 119 120 /* Update the host index before invoking device */ 121 host_index = q->host_index; 122 123 q->host_index = idx; 124 125 /* Ring Doorbell */ 126 doorbell.word0 = 0; 127 if (q->db_format == LPFC_DB_LIST_FORMAT) { 128 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 129 bf_set(lpfc_wq_db_list_fm_index, &doorbell, host_index); 130 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 131 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 132 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 133 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 134 } else { 135 return -EINVAL; 136 } 137 writel(doorbell.word0, q->db_regaddr); 138 139 return 0; 140 } 141 142 /** 143 * lpfc_sli4_wq_release - Updates internal hba index for WQ 144 * @q: The Work Queue to operate on. 145 * @index: The index to advance the hba index to. 146 * 147 * This routine will update the HBA index of a queue to reflect consumption of 148 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 149 * an entry the host calls this function to update the queue's internal 150 * pointers. This routine returns the number of entries that were consumed by 151 * the HBA. 152 **/ 153 static uint32_t 154 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 155 { 156 uint32_t released = 0; 157 158 /* sanity check on queue memory */ 159 if (unlikely(!q)) 160 return 0; 161 162 if (q->hba_index == index) 163 return 0; 164 do { 165 q->hba_index = ((q->hba_index + 1) % q->entry_count); 166 released++; 167 } while (q->hba_index != index); 168 return released; 169 } 170 171 /** 172 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 173 * @q: The Mailbox Queue to operate on. 174 * @wqe: The Mailbox Queue Entry to put on the Work queue. 175 * 176 * This routine will copy the contents of @mqe to the next available entry on 177 * the @q. This function will then ring the Work Queue Doorbell to signal the 178 * HBA to start processing the Work Queue Entry. This function returns 0 if 179 * successful. If no entries are available on @q then this function will return 180 * -ENOMEM. 181 * The caller is expected to hold the hbalock when calling this routine. 182 **/ 183 static uint32_t 184 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 185 { 186 struct lpfc_mqe *temp_mqe; 187 struct lpfc_register doorbell; 188 uint32_t host_index; 189 190 /* sanity check on queue memory */ 191 if (unlikely(!q)) 192 return -ENOMEM; 193 temp_mqe = q->qe[q->host_index].mqe; 194 195 /* If the host has not yet processed the next entry then we are done */ 196 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 197 return -ENOMEM; 198 lpfc_sli_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 199 /* Save off the mailbox pointer for completion */ 200 q->phba->mbox = (MAILBOX_t *)temp_mqe; 201 202 /* Update the host index before invoking device */ 203 host_index = q->host_index; 204 q->host_index = ((q->host_index + 1) % q->entry_count); 205 206 /* Ring Doorbell */ 207 doorbell.word0 = 0; 208 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 209 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 210 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 211 return 0; 212 } 213 214 /** 215 * lpfc_sli4_mq_release - Updates internal hba index for MQ 216 * @q: The Mailbox Queue to operate on. 217 * 218 * This routine will update the HBA index of a queue to reflect consumption of 219 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 220 * an entry the host calls this function to update the queue's internal 221 * pointers. This routine returns the number of entries that were consumed by 222 * the HBA. 223 **/ 224 static uint32_t 225 lpfc_sli4_mq_release(struct lpfc_queue *q) 226 { 227 /* sanity check on queue memory */ 228 if (unlikely(!q)) 229 return 0; 230 231 /* Clear the mailbox pointer for completion */ 232 q->phba->mbox = NULL; 233 q->hba_index = ((q->hba_index + 1) % q->entry_count); 234 return 1; 235 } 236 237 /** 238 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 239 * @q: The Event Queue to get the first valid EQE from 240 * 241 * This routine will get the first valid Event Queue Entry from @q, update 242 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 243 * the Queue (no more work to do), or the Queue is full of EQEs that have been 244 * processed, but not popped back to the HBA then this routine will return NULL. 245 **/ 246 static struct lpfc_eqe * 247 lpfc_sli4_eq_get(struct lpfc_queue *q) 248 { 249 struct lpfc_eqe *eqe; 250 uint32_t idx; 251 252 /* sanity check on queue memory */ 253 if (unlikely(!q)) 254 return NULL; 255 eqe = q->qe[q->hba_index].eqe; 256 257 /* If the next EQE is not valid then we are done */ 258 if (!bf_get_le32(lpfc_eqe_valid, eqe)) 259 return NULL; 260 /* If the host has not yet processed the next entry then we are done */ 261 idx = ((q->hba_index + 1) % q->entry_count); 262 if (idx == q->host_index) 263 return NULL; 264 265 q->hba_index = idx; 266 return eqe; 267 } 268 269 /** 270 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 271 * @q: The Event Queue to disable interrupts 272 * 273 **/ 274 static inline void 275 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 276 { 277 struct lpfc_register doorbell; 278 279 doorbell.word0 = 0; 280 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 281 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 282 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 283 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 284 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 285 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 286 } 287 288 /** 289 * lpfc_sli4_eq_release - Indicates the host has finished processing an EQ 290 * @q: The Event Queue that the host has completed processing for. 291 * @arm: Indicates whether the host wants to arms this CQ. 292 * 293 * This routine will mark all Event Queue Entries on @q, from the last 294 * known completed entry to the last entry that was processed, as completed 295 * by clearing the valid bit for each completion queue entry. Then it will 296 * notify the HBA, by ringing the doorbell, that the EQEs have been processed. 297 * The internal host index in the @q will be updated by this routine to indicate 298 * that the host has finished processing the entries. The @arm parameter 299 * indicates that the queue should be rearmed when ringing the doorbell. 300 * 301 * This function will return the number of EQEs that were popped. 302 **/ 303 uint32_t 304 lpfc_sli4_eq_release(struct lpfc_queue *q, bool arm) 305 { 306 uint32_t released = 0; 307 struct lpfc_eqe *temp_eqe; 308 struct lpfc_register doorbell; 309 310 /* sanity check on queue memory */ 311 if (unlikely(!q)) 312 return 0; 313 314 /* while there are valid entries */ 315 while (q->hba_index != q->host_index) { 316 temp_eqe = q->qe[q->host_index].eqe; 317 bf_set_le32(lpfc_eqe_valid, temp_eqe, 0); 318 released++; 319 q->host_index = ((q->host_index + 1) % q->entry_count); 320 } 321 if (unlikely(released == 0 && !arm)) 322 return 0; 323 324 /* ring doorbell for number popped */ 325 doorbell.word0 = 0; 326 if (arm) { 327 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 328 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 329 } 330 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 331 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 332 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 333 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 334 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 335 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 336 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 337 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 338 readl(q->phba->sli4_hba.EQCQDBregaddr); 339 return released; 340 } 341 342 /** 343 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 344 * @q: The Completion Queue to get the first valid CQE from 345 * 346 * This routine will get the first valid Completion Queue Entry from @q, update 347 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 348 * the Queue (no more work to do), or the Queue is full of CQEs that have been 349 * processed, but not popped back to the HBA then this routine will return NULL. 350 **/ 351 static struct lpfc_cqe * 352 lpfc_sli4_cq_get(struct lpfc_queue *q) 353 { 354 struct lpfc_cqe *cqe; 355 uint32_t idx; 356 357 /* sanity check on queue memory */ 358 if (unlikely(!q)) 359 return NULL; 360 361 /* If the next CQE is not valid then we are done */ 362 if (!bf_get_le32(lpfc_cqe_valid, q->qe[q->hba_index].cqe)) 363 return NULL; 364 /* If the host has not yet processed the next entry then we are done */ 365 idx = ((q->hba_index + 1) % q->entry_count); 366 if (idx == q->host_index) 367 return NULL; 368 369 cqe = q->qe[q->hba_index].cqe; 370 q->hba_index = idx; 371 return cqe; 372 } 373 374 /** 375 * lpfc_sli4_cq_release - Indicates the host has finished processing a CQ 376 * @q: The Completion Queue that the host has completed processing for. 377 * @arm: Indicates whether the host wants to arms this CQ. 378 * 379 * This routine will mark all Completion queue entries on @q, from the last 380 * known completed entry to the last entry that was processed, as completed 381 * by clearing the valid bit for each completion queue entry. Then it will 382 * notify the HBA, by ringing the doorbell, that the CQEs have been processed. 383 * The internal host index in the @q will be updated by this routine to indicate 384 * that the host has finished processing the entries. The @arm parameter 385 * indicates that the queue should be rearmed when ringing the doorbell. 386 * 387 * This function will return the number of CQEs that were released. 388 **/ 389 uint32_t 390 lpfc_sli4_cq_release(struct lpfc_queue *q, bool arm) 391 { 392 uint32_t released = 0; 393 struct lpfc_cqe *temp_qe; 394 struct lpfc_register doorbell; 395 396 /* sanity check on queue memory */ 397 if (unlikely(!q)) 398 return 0; 399 /* while there are valid entries */ 400 while (q->hba_index != q->host_index) { 401 temp_qe = q->qe[q->host_index].cqe; 402 bf_set_le32(lpfc_cqe_valid, temp_qe, 0); 403 released++; 404 q->host_index = ((q->host_index + 1) % q->entry_count); 405 } 406 if (unlikely(released == 0 && !arm)) 407 return 0; 408 409 /* ring doorbell for number popped */ 410 doorbell.word0 = 0; 411 if (arm) 412 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 413 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 414 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 415 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 416 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 417 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 418 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 419 return released; 420 } 421 422 /** 423 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 424 * @q: The Header Receive Queue to operate on. 425 * @wqe: The Receive Queue Entry to put on the Receive queue. 426 * 427 * This routine will copy the contents of @wqe to the next available entry on 428 * the @q. This function will then ring the Receive Queue Doorbell to signal the 429 * HBA to start processing the Receive Queue Entry. This function returns the 430 * index that the rqe was copied to if successful. If no entries are available 431 * on @q then this function will return -ENOMEM. 432 * The caller is expected to hold the hbalock when calling this routine. 433 **/ 434 static int 435 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 436 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 437 { 438 struct lpfc_rqe *temp_hrqe; 439 struct lpfc_rqe *temp_drqe; 440 struct lpfc_register doorbell; 441 int put_index; 442 443 /* sanity check on queue memory */ 444 if (unlikely(!hq) || unlikely(!dq)) 445 return -ENOMEM; 446 put_index = hq->host_index; 447 temp_hrqe = hq->qe[hq->host_index].rqe; 448 temp_drqe = dq->qe[dq->host_index].rqe; 449 450 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 451 return -EINVAL; 452 if (hq->host_index != dq->host_index) 453 return -EINVAL; 454 /* If the host has not yet processed the next entry then we are done */ 455 if (((hq->host_index + 1) % hq->entry_count) == hq->hba_index) 456 return -EBUSY; 457 lpfc_sli_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 458 lpfc_sli_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 459 460 /* Update the host index to point to the next slot */ 461 hq->host_index = ((hq->host_index + 1) % hq->entry_count); 462 dq->host_index = ((dq->host_index + 1) % dq->entry_count); 463 464 /* Ring The Header Receive Queue Doorbell */ 465 if (!(hq->host_index % hq->entry_repost)) { 466 doorbell.word0 = 0; 467 if (hq->db_format == LPFC_DB_RING_FORMAT) { 468 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 469 hq->entry_repost); 470 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 471 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 472 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 473 hq->entry_repost); 474 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 475 hq->host_index); 476 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 477 } else { 478 return -EINVAL; 479 } 480 writel(doorbell.word0, hq->db_regaddr); 481 } 482 return put_index; 483 } 484 485 /** 486 * lpfc_sli4_rq_release - Updates internal hba index for RQ 487 * @q: The Header Receive Queue to operate on. 488 * 489 * This routine will update the HBA index of a queue to reflect consumption of 490 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 491 * consumed an entry the host calls this function to update the queue's 492 * internal pointers. This routine returns the number of entries that were 493 * consumed by the HBA. 494 **/ 495 static uint32_t 496 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 497 { 498 /* sanity check on queue memory */ 499 if (unlikely(!hq) || unlikely(!dq)) 500 return 0; 501 502 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 503 return 0; 504 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 505 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 506 return 1; 507 } 508 509 /** 510 * lpfc_cmd_iocb - Get next command iocb entry in the ring 511 * @phba: Pointer to HBA context object. 512 * @pring: Pointer to driver SLI ring object. 513 * 514 * This function returns pointer to next command iocb entry 515 * in the command ring. The caller must hold hbalock to prevent 516 * other threads consume the next command iocb. 517 * SLI-2/SLI-3 provide different sized iocbs. 518 **/ 519 static inline IOCB_t * 520 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 521 { 522 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 523 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 524 } 525 526 /** 527 * lpfc_resp_iocb - Get next response iocb entry in the ring 528 * @phba: Pointer to HBA context object. 529 * @pring: Pointer to driver SLI ring object. 530 * 531 * This function returns pointer to next response iocb entry 532 * in the response ring. The caller must hold hbalock to make sure 533 * that no other thread consume the next response iocb. 534 * SLI-2/SLI-3 provide different sized iocbs. 535 **/ 536 static inline IOCB_t * 537 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 538 { 539 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 540 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 541 } 542 543 /** 544 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 545 * @phba: Pointer to HBA context object. 546 * 547 * This function is called with hbalock held. This function 548 * allocates a new driver iocb object from the iocb pool. If the 549 * allocation is successful, it returns pointer to the newly 550 * allocated iocb object else it returns NULL. 551 **/ 552 struct lpfc_iocbq * 553 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 554 { 555 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 556 struct lpfc_iocbq * iocbq = NULL; 557 558 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 559 if (iocbq) 560 phba->iocb_cnt++; 561 if (phba->iocb_cnt > phba->iocb_max) 562 phba->iocb_max = phba->iocb_cnt; 563 return iocbq; 564 } 565 566 /** 567 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 568 * @phba: Pointer to HBA context object. 569 * @xritag: XRI value. 570 * 571 * This function clears the sglq pointer from the array of acive 572 * sglq's. The xritag that is passed in is used to index into the 573 * array. Before the xritag can be used it needs to be adjusted 574 * by subtracting the xribase. 575 * 576 * Returns sglq ponter = success, NULL = Failure. 577 **/ 578 static struct lpfc_sglq * 579 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 580 { 581 struct lpfc_sglq *sglq; 582 583 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 584 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 585 return sglq; 586 } 587 588 /** 589 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 590 * @phba: Pointer to HBA context object. 591 * @xritag: XRI value. 592 * 593 * This function returns the sglq pointer from the array of acive 594 * sglq's. The xritag that is passed in is used to index into the 595 * array. Before the xritag can be used it needs to be adjusted 596 * by subtracting the xribase. 597 * 598 * Returns sglq ponter = success, NULL = Failure. 599 **/ 600 struct lpfc_sglq * 601 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 602 { 603 struct lpfc_sglq *sglq; 604 605 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 606 return sglq; 607 } 608 609 /** 610 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 611 * @phba: Pointer to HBA context object. 612 * @xritag: xri used in this exchange. 613 * @rrq: The RRQ to be cleared. 614 * 615 **/ 616 void 617 lpfc_clr_rrq_active(struct lpfc_hba *phba, 618 uint16_t xritag, 619 struct lpfc_node_rrq *rrq) 620 { 621 struct lpfc_nodelist *ndlp = NULL; 622 623 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp)) 624 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 625 626 /* The target DID could have been swapped (cable swap) 627 * we should use the ndlp from the findnode if it is 628 * available. 629 */ 630 if ((!ndlp) && rrq->ndlp) 631 ndlp = rrq->ndlp; 632 633 if (!ndlp) 634 goto out; 635 636 if (test_and_clear_bit(xritag, ndlp->active_rrqs.xri_bitmap)) { 637 rrq->send_rrq = 0; 638 rrq->xritag = 0; 639 rrq->rrq_stop_time = 0; 640 } 641 out: 642 mempool_free(rrq, phba->rrq_pool); 643 } 644 645 /** 646 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 647 * @phba: Pointer to HBA context object. 648 * 649 * This function is called with hbalock held. This function 650 * Checks if stop_time (ratov from setting rrq active) has 651 * been reached, if it has and the send_rrq flag is set then 652 * it will call lpfc_send_rrq. If the send_rrq flag is not set 653 * then it will just call the routine to clear the rrq and 654 * free the rrq resource. 655 * The timer is set to the next rrq that is going to expire before 656 * leaving the routine. 657 * 658 **/ 659 void 660 lpfc_handle_rrq_active(struct lpfc_hba *phba) 661 { 662 struct lpfc_node_rrq *rrq; 663 struct lpfc_node_rrq *nextrrq; 664 unsigned long next_time; 665 unsigned long iflags; 666 LIST_HEAD(send_rrq); 667 668 spin_lock_irqsave(&phba->hbalock, iflags); 669 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 670 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 671 list_for_each_entry_safe(rrq, nextrrq, 672 &phba->active_rrq_list, list) { 673 if (time_after(jiffies, rrq->rrq_stop_time)) 674 list_move(&rrq->list, &send_rrq); 675 else if (time_before(rrq->rrq_stop_time, next_time)) 676 next_time = rrq->rrq_stop_time; 677 } 678 spin_unlock_irqrestore(&phba->hbalock, iflags); 679 if (!list_empty(&phba->active_rrq_list)) 680 mod_timer(&phba->rrq_tmr, next_time); 681 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 682 list_del(&rrq->list); 683 if (!rrq->send_rrq) 684 /* this call will free the rrq */ 685 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 686 else if (lpfc_send_rrq(phba, rrq)) { 687 /* if we send the rrq then the completion handler 688 * will clear the bit in the xribitmap. 689 */ 690 lpfc_clr_rrq_active(phba, rrq->xritag, 691 rrq); 692 } 693 } 694 } 695 696 /** 697 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 698 * @vport: Pointer to vport context object. 699 * @xri: The xri used in the exchange. 700 * @did: The targets DID for this exchange. 701 * 702 * returns NULL = rrq not found in the phba->active_rrq_list. 703 * rrq = rrq for this xri and target. 704 **/ 705 struct lpfc_node_rrq * 706 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 707 { 708 struct lpfc_hba *phba = vport->phba; 709 struct lpfc_node_rrq *rrq; 710 struct lpfc_node_rrq *nextrrq; 711 unsigned long iflags; 712 713 if (phba->sli_rev != LPFC_SLI_REV4) 714 return NULL; 715 spin_lock_irqsave(&phba->hbalock, iflags); 716 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 717 if (rrq->vport == vport && rrq->xritag == xri && 718 rrq->nlp_DID == did){ 719 list_del(&rrq->list); 720 spin_unlock_irqrestore(&phba->hbalock, iflags); 721 return rrq; 722 } 723 } 724 spin_unlock_irqrestore(&phba->hbalock, iflags); 725 return NULL; 726 } 727 728 /** 729 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 730 * @vport: Pointer to vport context object. 731 * @ndlp: Pointer to the lpfc_node_list structure. 732 * If ndlp is NULL Remove all active RRQs for this vport from the 733 * phba->active_rrq_list and clear the rrq. 734 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 735 **/ 736 void 737 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 738 739 { 740 struct lpfc_hba *phba = vport->phba; 741 struct lpfc_node_rrq *rrq; 742 struct lpfc_node_rrq *nextrrq; 743 unsigned long iflags; 744 LIST_HEAD(rrq_list); 745 746 if (phba->sli_rev != LPFC_SLI_REV4) 747 return; 748 if (!ndlp) { 749 lpfc_sli4_vport_delete_els_xri_aborted(vport); 750 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 751 } 752 spin_lock_irqsave(&phba->hbalock, iflags); 753 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) 754 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp)) 755 list_move(&rrq->list, &rrq_list); 756 spin_unlock_irqrestore(&phba->hbalock, iflags); 757 758 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 759 list_del(&rrq->list); 760 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 761 } 762 } 763 764 /** 765 * lpfc_cleanup_wt_rrqs - Remove all rrq's from the active list. 766 * @phba: Pointer to HBA context object. 767 * 768 * Remove all rrqs from the phba->active_rrq_list and free them by 769 * calling __lpfc_clr_active_rrq 770 * 771 **/ 772 void 773 lpfc_cleanup_wt_rrqs(struct lpfc_hba *phba) 774 { 775 struct lpfc_node_rrq *rrq; 776 struct lpfc_node_rrq *nextrrq; 777 unsigned long next_time; 778 unsigned long iflags; 779 LIST_HEAD(rrq_list); 780 781 if (phba->sli_rev != LPFC_SLI_REV4) 782 return; 783 spin_lock_irqsave(&phba->hbalock, iflags); 784 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 785 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)); 786 list_splice_init(&phba->active_rrq_list, &rrq_list); 787 spin_unlock_irqrestore(&phba->hbalock, iflags); 788 789 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 790 list_del(&rrq->list); 791 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 792 } 793 if (!list_empty(&phba->active_rrq_list)) 794 mod_timer(&phba->rrq_tmr, next_time); 795 } 796 797 798 /** 799 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 800 * @phba: Pointer to HBA context object. 801 * @ndlp: Targets nodelist pointer for this exchange. 802 * @xritag the xri in the bitmap to test. 803 * 804 * This function is called with hbalock held. This function 805 * returns 0 = rrq not active for this xri 806 * 1 = rrq is valid for this xri. 807 **/ 808 int 809 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 810 uint16_t xritag) 811 { 812 if (!ndlp) 813 return 0; 814 if (test_bit(xritag, ndlp->active_rrqs.xri_bitmap)) 815 return 1; 816 else 817 return 0; 818 } 819 820 /** 821 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 822 * @phba: Pointer to HBA context object. 823 * @ndlp: nodelist pointer for this target. 824 * @xritag: xri used in this exchange. 825 * @rxid: Remote Exchange ID. 826 * @send_rrq: Flag used to determine if we should send rrq els cmd. 827 * 828 * This function takes the hbalock. 829 * The active bit is always set in the active rrq xri_bitmap even 830 * if there is no slot avaiable for the other rrq information. 831 * 832 * returns 0 rrq actived for this xri 833 * < 0 No memory or invalid ndlp. 834 **/ 835 int 836 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 837 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 838 { 839 unsigned long iflags; 840 struct lpfc_node_rrq *rrq; 841 int empty; 842 843 if (!ndlp) 844 return -EINVAL; 845 846 if (!phba->cfg_enable_rrq) 847 return -EINVAL; 848 849 spin_lock_irqsave(&phba->hbalock, iflags); 850 if (phba->pport->load_flag & FC_UNLOADING) { 851 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 852 goto out; 853 } 854 855 /* 856 * set the active bit even if there is no mem available. 857 */ 858 if (NLP_CHK_FREE_REQ(ndlp)) 859 goto out; 860 861 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 862 goto out; 863 864 if (test_and_set_bit(xritag, ndlp->active_rrqs.xri_bitmap)) 865 goto out; 866 867 spin_unlock_irqrestore(&phba->hbalock, iflags); 868 rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL); 869 if (!rrq) { 870 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 871 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 872 " DID:0x%x Send:%d\n", 873 xritag, rxid, ndlp->nlp_DID, send_rrq); 874 return -EINVAL; 875 } 876 if (phba->cfg_enable_rrq == 1) 877 rrq->send_rrq = send_rrq; 878 else 879 rrq->send_rrq = 0; 880 rrq->xritag = xritag; 881 rrq->rrq_stop_time = jiffies + 882 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 883 rrq->ndlp = ndlp; 884 rrq->nlp_DID = ndlp->nlp_DID; 885 rrq->vport = ndlp->vport; 886 rrq->rxid = rxid; 887 spin_lock_irqsave(&phba->hbalock, iflags); 888 empty = list_empty(&phba->active_rrq_list); 889 list_add_tail(&rrq->list, &phba->active_rrq_list); 890 phba->hba_flag |= HBA_RRQ_ACTIVE; 891 if (empty) 892 lpfc_worker_wake_up(phba); 893 spin_unlock_irqrestore(&phba->hbalock, iflags); 894 return 0; 895 out: 896 spin_unlock_irqrestore(&phba->hbalock, iflags); 897 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 898 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 899 " DID:0x%x Send:%d\n", 900 xritag, rxid, ndlp->nlp_DID, send_rrq); 901 return -EINVAL; 902 } 903 904 /** 905 * __lpfc_sli_get_sglq - Allocates an iocb object from sgl pool 906 * @phba: Pointer to HBA context object. 907 * @piocb: Pointer to the iocbq. 908 * 909 * This function is called with hbalock held. This function 910 * gets a new driver sglq object from the sglq list. If the 911 * list is not empty then it is successful, it returns pointer to the newly 912 * allocated sglq object else it returns NULL. 913 **/ 914 static struct lpfc_sglq * 915 __lpfc_sli_get_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 916 { 917 struct list_head *lpfc_sgl_list = &phba->sli4_hba.lpfc_sgl_list; 918 struct lpfc_sglq *sglq = NULL; 919 struct lpfc_sglq *start_sglq = NULL; 920 struct lpfc_scsi_buf *lpfc_cmd; 921 struct lpfc_nodelist *ndlp; 922 int found = 0; 923 924 if (piocbq->iocb_flag & LPFC_IO_FCP) { 925 lpfc_cmd = (struct lpfc_scsi_buf *) piocbq->context1; 926 ndlp = lpfc_cmd->rdata->pnode; 927 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 928 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) 929 ndlp = piocbq->context_un.ndlp; 930 else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) 931 ndlp = piocbq->context_un.ndlp; 932 else 933 ndlp = piocbq->context1; 934 935 list_remove_head(lpfc_sgl_list, sglq, struct lpfc_sglq, list); 936 start_sglq = sglq; 937 while (!found) { 938 if (!sglq) 939 return NULL; 940 if (lpfc_test_rrq_active(phba, ndlp, sglq->sli4_lxritag)) { 941 /* This xri has an rrq outstanding for this DID. 942 * put it back in the list and get another xri. 943 */ 944 list_add_tail(&sglq->list, lpfc_sgl_list); 945 sglq = NULL; 946 list_remove_head(lpfc_sgl_list, sglq, 947 struct lpfc_sglq, list); 948 if (sglq == start_sglq) { 949 sglq = NULL; 950 break; 951 } else 952 continue; 953 } 954 sglq->ndlp = ndlp; 955 found = 1; 956 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 957 sglq->state = SGL_ALLOCATED; 958 } 959 return sglq; 960 } 961 962 /** 963 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 964 * @phba: Pointer to HBA context object. 965 * 966 * This function is called with no lock held. This function 967 * allocates a new driver iocb object from the iocb pool. If the 968 * allocation is successful, it returns pointer to the newly 969 * allocated iocb object else it returns NULL. 970 **/ 971 struct lpfc_iocbq * 972 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 973 { 974 struct lpfc_iocbq * iocbq = NULL; 975 unsigned long iflags; 976 977 spin_lock_irqsave(&phba->hbalock, iflags); 978 iocbq = __lpfc_sli_get_iocbq(phba); 979 spin_unlock_irqrestore(&phba->hbalock, iflags); 980 return iocbq; 981 } 982 983 /** 984 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 985 * @phba: Pointer to HBA context object. 986 * @iocbq: Pointer to driver iocb object. 987 * 988 * This function is called with hbalock held to release driver 989 * iocb object to the iocb pool. The iotag in the iocb object 990 * does not change for each use of the iocb object. This function 991 * clears all other fields of the iocb object when it is freed. 992 * The sqlq structure that holds the xritag and phys and virtual 993 * mappings for the scatter gather list is retrieved from the 994 * active array of sglq. The get of the sglq pointer also clears 995 * the entry in the array. If the status of the IO indiactes that 996 * this IO was aborted then the sglq entry it put on the 997 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 998 * IO has good status or fails for any other reason then the sglq 999 * entry is added to the free list (lpfc_sgl_list). 1000 **/ 1001 static void 1002 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1003 { 1004 struct lpfc_sglq *sglq; 1005 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1006 unsigned long iflag = 0; 1007 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 1008 1009 if (iocbq->sli4_xritag == NO_XRI) 1010 sglq = NULL; 1011 else 1012 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1013 1014 /* 1015 ** This should have been removed from the txcmplq before calling 1016 ** iocbq_release. The normal completion 1017 ** path should have already done the list_del_init. 1018 */ 1019 if (unlikely(!list_empty(&iocbq->list))) { 1020 if (iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ) 1021 iocbq->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 1022 list_del_init(&iocbq->list); 1023 } 1024 1025 1026 if (sglq) { 1027 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1028 (sglq->state != SGL_XRI_ABORTED)) { 1029 spin_lock_irqsave(&phba->sli4_hba.abts_sgl_list_lock, 1030 iflag); 1031 list_add(&sglq->list, 1032 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1033 spin_unlock_irqrestore( 1034 &phba->sli4_hba.abts_sgl_list_lock, iflag); 1035 } else { 1036 sglq->state = SGL_FREED; 1037 sglq->ndlp = NULL; 1038 list_add_tail(&sglq->list, 1039 &phba->sli4_hba.lpfc_sgl_list); 1040 1041 /* Check if TXQ queue needs to be serviced */ 1042 if (!list_empty(&pring->txq)) 1043 lpfc_worker_wake_up(phba); 1044 } 1045 } 1046 1047 1048 /* 1049 * Clean all volatile data fields, preserve iotag and node struct. 1050 */ 1051 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1052 iocbq->sli4_lxritag = NO_XRI; 1053 iocbq->sli4_xritag = NO_XRI; 1054 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1055 } 1056 1057 1058 /** 1059 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1060 * @phba: Pointer to HBA context object. 1061 * @iocbq: Pointer to driver iocb object. 1062 * 1063 * This function is called with hbalock held to release driver 1064 * iocb object to the iocb pool. The iotag in the iocb object 1065 * does not change for each use of the iocb object. This function 1066 * clears all other fields of the iocb object when it is freed. 1067 **/ 1068 static void 1069 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1070 { 1071 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1072 1073 /* 1074 ** This should have been removed from the txcmplq before calling 1075 ** iocbq_release. The normal completion 1076 ** path should have already done the list_del_init. 1077 */ 1078 if (unlikely(!list_empty(&iocbq->list))) 1079 list_del_init(&iocbq->list); 1080 1081 /* 1082 * Clean all volatile data fields, preserve iotag and node struct. 1083 */ 1084 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1085 iocbq->sli4_xritag = NO_XRI; 1086 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1087 } 1088 1089 /** 1090 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1091 * @phba: Pointer to HBA context object. 1092 * @iocbq: Pointer to driver iocb object. 1093 * 1094 * This function is called with hbalock held to release driver 1095 * iocb object to the iocb pool. The iotag in the iocb object 1096 * does not change for each use of the iocb object. This function 1097 * clears all other fields of the iocb object when it is freed. 1098 **/ 1099 static void 1100 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1101 { 1102 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1103 phba->iocb_cnt--; 1104 } 1105 1106 /** 1107 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1108 * @phba: Pointer to HBA context object. 1109 * @iocbq: Pointer to driver iocb object. 1110 * 1111 * This function is called with no lock held to release the iocb to 1112 * iocb pool. 1113 **/ 1114 void 1115 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1116 { 1117 unsigned long iflags; 1118 1119 /* 1120 * Clean all volatile data fields, preserve iotag and node struct. 1121 */ 1122 spin_lock_irqsave(&phba->hbalock, iflags); 1123 __lpfc_sli_release_iocbq(phba, iocbq); 1124 spin_unlock_irqrestore(&phba->hbalock, iflags); 1125 } 1126 1127 /** 1128 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1129 * @phba: Pointer to HBA context object. 1130 * @iocblist: List of IOCBs. 1131 * @ulpstatus: ULP status in IOCB command field. 1132 * @ulpWord4: ULP word-4 in IOCB command field. 1133 * 1134 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1135 * on the list by invoking the complete callback function associated with the 1136 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1137 * fields. 1138 **/ 1139 void 1140 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1141 uint32_t ulpstatus, uint32_t ulpWord4) 1142 { 1143 struct lpfc_iocbq *piocb; 1144 1145 while (!list_empty(iocblist)) { 1146 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1147 if (!piocb->iocb_cmpl) 1148 lpfc_sli_release_iocbq(phba, piocb); 1149 else { 1150 piocb->iocb.ulpStatus = ulpstatus; 1151 piocb->iocb.un.ulpWord[4] = ulpWord4; 1152 (piocb->iocb_cmpl) (phba, piocb, piocb); 1153 } 1154 } 1155 return; 1156 } 1157 1158 /** 1159 * lpfc_sli_iocb_cmd_type - Get the iocb type 1160 * @iocb_cmnd: iocb command code. 1161 * 1162 * This function is called by ring event handler function to get the iocb type. 1163 * This function translates the iocb command to an iocb command type used to 1164 * decide the final disposition of each completed IOCB. 1165 * The function returns 1166 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1167 * LPFC_SOL_IOCB if it is a solicited iocb completion 1168 * LPFC_ABORT_IOCB if it is an abort iocb 1169 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1170 * 1171 * The caller is not required to hold any lock. 1172 **/ 1173 static lpfc_iocb_type 1174 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1175 { 1176 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1177 1178 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1179 return 0; 1180 1181 switch (iocb_cmnd) { 1182 case CMD_XMIT_SEQUENCE_CR: 1183 case CMD_XMIT_SEQUENCE_CX: 1184 case CMD_XMIT_BCAST_CN: 1185 case CMD_XMIT_BCAST_CX: 1186 case CMD_ELS_REQUEST_CR: 1187 case CMD_ELS_REQUEST_CX: 1188 case CMD_CREATE_XRI_CR: 1189 case CMD_CREATE_XRI_CX: 1190 case CMD_GET_RPI_CN: 1191 case CMD_XMIT_ELS_RSP_CX: 1192 case CMD_GET_RPI_CR: 1193 case CMD_FCP_IWRITE_CR: 1194 case CMD_FCP_IWRITE_CX: 1195 case CMD_FCP_IREAD_CR: 1196 case CMD_FCP_IREAD_CX: 1197 case CMD_FCP_ICMND_CR: 1198 case CMD_FCP_ICMND_CX: 1199 case CMD_FCP_TSEND_CX: 1200 case CMD_FCP_TRSP_CX: 1201 case CMD_FCP_TRECEIVE_CX: 1202 case CMD_FCP_AUTO_TRSP_CX: 1203 case CMD_ADAPTER_MSG: 1204 case CMD_ADAPTER_DUMP: 1205 case CMD_XMIT_SEQUENCE64_CR: 1206 case CMD_XMIT_SEQUENCE64_CX: 1207 case CMD_XMIT_BCAST64_CN: 1208 case CMD_XMIT_BCAST64_CX: 1209 case CMD_ELS_REQUEST64_CR: 1210 case CMD_ELS_REQUEST64_CX: 1211 case CMD_FCP_IWRITE64_CR: 1212 case CMD_FCP_IWRITE64_CX: 1213 case CMD_FCP_IREAD64_CR: 1214 case CMD_FCP_IREAD64_CX: 1215 case CMD_FCP_ICMND64_CR: 1216 case CMD_FCP_ICMND64_CX: 1217 case CMD_FCP_TSEND64_CX: 1218 case CMD_FCP_TRSP64_CX: 1219 case CMD_FCP_TRECEIVE64_CX: 1220 case CMD_GEN_REQUEST64_CR: 1221 case CMD_GEN_REQUEST64_CX: 1222 case CMD_XMIT_ELS_RSP64_CX: 1223 case DSSCMD_IWRITE64_CR: 1224 case DSSCMD_IWRITE64_CX: 1225 case DSSCMD_IREAD64_CR: 1226 case DSSCMD_IREAD64_CX: 1227 type = LPFC_SOL_IOCB; 1228 break; 1229 case CMD_ABORT_XRI_CN: 1230 case CMD_ABORT_XRI_CX: 1231 case CMD_CLOSE_XRI_CN: 1232 case CMD_CLOSE_XRI_CX: 1233 case CMD_XRI_ABORTED_CX: 1234 case CMD_ABORT_MXRI64_CN: 1235 case CMD_XMIT_BLS_RSP64_CX: 1236 type = LPFC_ABORT_IOCB; 1237 break; 1238 case CMD_RCV_SEQUENCE_CX: 1239 case CMD_RCV_ELS_REQ_CX: 1240 case CMD_RCV_SEQUENCE64_CX: 1241 case CMD_RCV_ELS_REQ64_CX: 1242 case CMD_ASYNC_STATUS: 1243 case CMD_IOCB_RCV_SEQ64_CX: 1244 case CMD_IOCB_RCV_ELS64_CX: 1245 case CMD_IOCB_RCV_CONT64_CX: 1246 case CMD_IOCB_RET_XRI64_CX: 1247 type = LPFC_UNSOL_IOCB; 1248 break; 1249 case CMD_IOCB_XMIT_MSEQ64_CR: 1250 case CMD_IOCB_XMIT_MSEQ64_CX: 1251 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1252 case CMD_IOCB_RCV_ELS_LIST64_CX: 1253 case CMD_IOCB_CLOSE_EXTENDED_CN: 1254 case CMD_IOCB_ABORT_EXTENDED_CN: 1255 case CMD_IOCB_RET_HBQE64_CN: 1256 case CMD_IOCB_FCP_IBIDIR64_CR: 1257 case CMD_IOCB_FCP_IBIDIR64_CX: 1258 case CMD_IOCB_FCP_ITASKMGT64_CX: 1259 case CMD_IOCB_LOGENTRY_CN: 1260 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1261 printk("%s - Unhandled SLI-3 Command x%x\n", 1262 __func__, iocb_cmnd); 1263 type = LPFC_UNKNOWN_IOCB; 1264 break; 1265 default: 1266 type = LPFC_UNKNOWN_IOCB; 1267 break; 1268 } 1269 1270 return type; 1271 } 1272 1273 /** 1274 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1275 * @phba: Pointer to HBA context object. 1276 * 1277 * This function is called from SLI initialization code 1278 * to configure every ring of the HBA's SLI interface. The 1279 * caller is not required to hold any lock. This function issues 1280 * a config_ring mailbox command for each ring. 1281 * This function returns zero if successful else returns a negative 1282 * error code. 1283 **/ 1284 static int 1285 lpfc_sli_ring_map(struct lpfc_hba *phba) 1286 { 1287 struct lpfc_sli *psli = &phba->sli; 1288 LPFC_MBOXQ_t *pmb; 1289 MAILBOX_t *pmbox; 1290 int i, rc, ret = 0; 1291 1292 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1293 if (!pmb) 1294 return -ENOMEM; 1295 pmbox = &pmb->u.mb; 1296 phba->link_state = LPFC_INIT_MBX_CMDS; 1297 for (i = 0; i < psli->num_rings; i++) { 1298 lpfc_config_ring(phba, i, pmb); 1299 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1300 if (rc != MBX_SUCCESS) { 1301 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1302 "0446 Adapter failed to init (%d), " 1303 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1304 "ring %d\n", 1305 rc, pmbox->mbxCommand, 1306 pmbox->mbxStatus, i); 1307 phba->link_state = LPFC_HBA_ERROR; 1308 ret = -ENXIO; 1309 break; 1310 } 1311 } 1312 mempool_free(pmb, phba->mbox_mem_pool); 1313 return ret; 1314 } 1315 1316 /** 1317 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1318 * @phba: Pointer to HBA context object. 1319 * @pring: Pointer to driver SLI ring object. 1320 * @piocb: Pointer to the driver iocb object. 1321 * 1322 * This function is called with hbalock held. The function adds the 1323 * new iocb to txcmplq of the given ring. This function always returns 1324 * 0. If this function is called for ELS ring, this function checks if 1325 * there is a vport associated with the ELS command. This function also 1326 * starts els_tmofunc timer if this is an ELS command. 1327 **/ 1328 static int 1329 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1330 struct lpfc_iocbq *piocb) 1331 { 1332 list_add_tail(&piocb->list, &pring->txcmplq); 1333 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1334 1335 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1336 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1337 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1338 if (!piocb->vport) 1339 BUG(); 1340 else 1341 mod_timer(&piocb->vport->els_tmofunc, 1342 jiffies + 1343 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1344 } 1345 1346 1347 return 0; 1348 } 1349 1350 /** 1351 * lpfc_sli_ringtx_get - Get first element of the txq 1352 * @phba: Pointer to HBA context object. 1353 * @pring: Pointer to driver SLI ring object. 1354 * 1355 * This function is called with hbalock held to get next 1356 * iocb in txq of the given ring. If there is any iocb in 1357 * the txq, the function returns first iocb in the list after 1358 * removing the iocb from the list, else it returns NULL. 1359 **/ 1360 struct lpfc_iocbq * 1361 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1362 { 1363 struct lpfc_iocbq *cmd_iocb; 1364 1365 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1366 return cmd_iocb; 1367 } 1368 1369 /** 1370 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1371 * @phba: Pointer to HBA context object. 1372 * @pring: Pointer to driver SLI ring object. 1373 * 1374 * This function is called with hbalock held and the caller must post the 1375 * iocb without releasing the lock. If the caller releases the lock, 1376 * iocb slot returned by the function is not guaranteed to be available. 1377 * The function returns pointer to the next available iocb slot if there 1378 * is available slot in the ring, else it returns NULL. 1379 * If the get index of the ring is ahead of the put index, the function 1380 * will post an error attention event to the worker thread to take the 1381 * HBA to offline state. 1382 **/ 1383 static IOCB_t * 1384 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1385 { 1386 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1387 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1388 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1389 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1390 pring->sli.sli3.next_cmdidx = 0; 1391 1392 if (unlikely(pring->sli.sli3.local_getidx == 1393 pring->sli.sli3.next_cmdidx)) { 1394 1395 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1396 1397 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1398 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 1399 "0315 Ring %d issue: portCmdGet %d " 1400 "is bigger than cmd ring %d\n", 1401 pring->ringno, 1402 pring->sli.sli3.local_getidx, 1403 max_cmd_idx); 1404 1405 phba->link_state = LPFC_HBA_ERROR; 1406 /* 1407 * All error attention handlers are posted to 1408 * worker thread 1409 */ 1410 phba->work_ha |= HA_ERATT; 1411 phba->work_hs = HS_FFER3; 1412 1413 lpfc_worker_wake_up(phba); 1414 1415 return NULL; 1416 } 1417 1418 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1419 return NULL; 1420 } 1421 1422 return lpfc_cmd_iocb(phba, pring); 1423 } 1424 1425 /** 1426 * lpfc_sli_next_iotag - Get an iotag for the iocb 1427 * @phba: Pointer to HBA context object. 1428 * @iocbq: Pointer to driver iocb object. 1429 * 1430 * This function gets an iotag for the iocb. If there is no unused iotag and 1431 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1432 * array and assigns a new iotag. 1433 * The function returns the allocated iotag if successful, else returns zero. 1434 * Zero is not a valid iotag. 1435 * The caller is not required to hold any lock. 1436 **/ 1437 uint16_t 1438 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1439 { 1440 struct lpfc_iocbq **new_arr; 1441 struct lpfc_iocbq **old_arr; 1442 size_t new_len; 1443 struct lpfc_sli *psli = &phba->sli; 1444 uint16_t iotag; 1445 1446 spin_lock_irq(&phba->hbalock); 1447 iotag = psli->last_iotag; 1448 if(++iotag < psli->iocbq_lookup_len) { 1449 psli->last_iotag = iotag; 1450 psli->iocbq_lookup[iotag] = iocbq; 1451 spin_unlock_irq(&phba->hbalock); 1452 iocbq->iotag = iotag; 1453 return iotag; 1454 } else if (psli->iocbq_lookup_len < (0xffff 1455 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1456 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1457 spin_unlock_irq(&phba->hbalock); 1458 new_arr = kzalloc(new_len * sizeof (struct lpfc_iocbq *), 1459 GFP_KERNEL); 1460 if (new_arr) { 1461 spin_lock_irq(&phba->hbalock); 1462 old_arr = psli->iocbq_lookup; 1463 if (new_len <= psli->iocbq_lookup_len) { 1464 /* highly unprobable case */ 1465 kfree(new_arr); 1466 iotag = psli->last_iotag; 1467 if(++iotag < psli->iocbq_lookup_len) { 1468 psli->last_iotag = iotag; 1469 psli->iocbq_lookup[iotag] = iocbq; 1470 spin_unlock_irq(&phba->hbalock); 1471 iocbq->iotag = iotag; 1472 return iotag; 1473 } 1474 spin_unlock_irq(&phba->hbalock); 1475 return 0; 1476 } 1477 if (psli->iocbq_lookup) 1478 memcpy(new_arr, old_arr, 1479 ((psli->last_iotag + 1) * 1480 sizeof (struct lpfc_iocbq *))); 1481 psli->iocbq_lookup = new_arr; 1482 psli->iocbq_lookup_len = new_len; 1483 psli->last_iotag = iotag; 1484 psli->iocbq_lookup[iotag] = iocbq; 1485 spin_unlock_irq(&phba->hbalock); 1486 iocbq->iotag = iotag; 1487 kfree(old_arr); 1488 return iotag; 1489 } 1490 } else 1491 spin_unlock_irq(&phba->hbalock); 1492 1493 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1494 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1495 psli->last_iotag); 1496 1497 return 0; 1498 } 1499 1500 /** 1501 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1502 * @phba: Pointer to HBA context object. 1503 * @pring: Pointer to driver SLI ring object. 1504 * @iocb: Pointer to iocb slot in the ring. 1505 * @nextiocb: Pointer to driver iocb object which need to be 1506 * posted to firmware. 1507 * 1508 * This function is called with hbalock held to post a new iocb to 1509 * the firmware. This function copies the new iocb to ring iocb slot and 1510 * updates the ring pointers. It adds the new iocb to txcmplq if there is 1511 * a completion call back for this iocb else the function will free the 1512 * iocb object. 1513 **/ 1514 static void 1515 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1516 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1517 { 1518 /* 1519 * Set up an iotag 1520 */ 1521 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1522 1523 1524 if (pring->ringno == LPFC_ELS_RING) { 1525 lpfc_debugfs_slow_ring_trc(phba, 1526 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1527 *(((uint32_t *) &nextiocb->iocb) + 4), 1528 *(((uint32_t *) &nextiocb->iocb) + 6), 1529 *(((uint32_t *) &nextiocb->iocb) + 7)); 1530 } 1531 1532 /* 1533 * Issue iocb command to adapter 1534 */ 1535 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1536 wmb(); 1537 pring->stats.iocb_cmd++; 1538 1539 /* 1540 * If there is no completion routine to call, we can release the 1541 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1542 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1543 */ 1544 if (nextiocb->iocb_cmpl) 1545 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1546 else 1547 __lpfc_sli_release_iocbq(phba, nextiocb); 1548 1549 /* 1550 * Let the HBA know what IOCB slot will be the next one the 1551 * driver will put a command into. 1552 */ 1553 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1554 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1555 } 1556 1557 /** 1558 * lpfc_sli_update_full_ring - Update the chip attention register 1559 * @phba: Pointer to HBA context object. 1560 * @pring: Pointer to driver SLI ring object. 1561 * 1562 * The caller is not required to hold any lock for calling this function. 1563 * This function updates the chip attention bits for the ring to inform firmware 1564 * that there are pending work to be done for this ring and requests an 1565 * interrupt when there is space available in the ring. This function is 1566 * called when the driver is unable to post more iocbs to the ring due 1567 * to unavailability of space in the ring. 1568 **/ 1569 static void 1570 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1571 { 1572 int ringno = pring->ringno; 1573 1574 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1575 1576 wmb(); 1577 1578 /* 1579 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1580 * The HBA will tell us when an IOCB entry is available. 1581 */ 1582 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1583 readl(phba->CAregaddr); /* flush */ 1584 1585 pring->stats.iocb_cmd_full++; 1586 } 1587 1588 /** 1589 * lpfc_sli_update_ring - Update chip attention register 1590 * @phba: Pointer to HBA context object. 1591 * @pring: Pointer to driver SLI ring object. 1592 * 1593 * This function updates the chip attention register bit for the 1594 * given ring to inform HBA that there is more work to be done 1595 * in this ring. The caller is not required to hold any lock. 1596 **/ 1597 static void 1598 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1599 { 1600 int ringno = pring->ringno; 1601 1602 /* 1603 * Tell the HBA that there is work to do in this ring. 1604 */ 1605 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 1606 wmb(); 1607 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 1608 readl(phba->CAregaddr); /* flush */ 1609 } 1610 } 1611 1612 /** 1613 * lpfc_sli_resume_iocb - Process iocbs in the txq 1614 * @phba: Pointer to HBA context object. 1615 * @pring: Pointer to driver SLI ring object. 1616 * 1617 * This function is called with hbalock held to post pending iocbs 1618 * in the txq to the firmware. This function is called when driver 1619 * detects space available in the ring. 1620 **/ 1621 static void 1622 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1623 { 1624 IOCB_t *iocb; 1625 struct lpfc_iocbq *nextiocb; 1626 1627 /* 1628 * Check to see if: 1629 * (a) there is anything on the txq to send 1630 * (b) link is up 1631 * (c) link attention events can be processed (fcp ring only) 1632 * (d) IOCB processing is not blocked by the outstanding mbox command. 1633 */ 1634 1635 if (lpfc_is_link_up(phba) && 1636 (!list_empty(&pring->txq)) && 1637 (pring->ringno != phba->sli.fcp_ring || 1638 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 1639 1640 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 1641 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 1642 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 1643 1644 if (iocb) 1645 lpfc_sli_update_ring(phba, pring); 1646 else 1647 lpfc_sli_update_full_ring(phba, pring); 1648 } 1649 1650 return; 1651 } 1652 1653 /** 1654 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 1655 * @phba: Pointer to HBA context object. 1656 * @hbqno: HBQ number. 1657 * 1658 * This function is called with hbalock held to get the next 1659 * available slot for the given HBQ. If there is free slot 1660 * available for the HBQ it will return pointer to the next available 1661 * HBQ entry else it will return NULL. 1662 **/ 1663 static struct lpfc_hbq_entry * 1664 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 1665 { 1666 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1667 1668 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 1669 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 1670 hbqp->next_hbqPutIdx = 0; 1671 1672 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 1673 uint32_t raw_index = phba->hbq_get[hbqno]; 1674 uint32_t getidx = le32_to_cpu(raw_index); 1675 1676 hbqp->local_hbqGetIdx = getidx; 1677 1678 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 1679 lpfc_printf_log(phba, KERN_ERR, 1680 LOG_SLI | LOG_VPORT, 1681 "1802 HBQ %d: local_hbqGetIdx " 1682 "%u is > than hbqp->entry_count %u\n", 1683 hbqno, hbqp->local_hbqGetIdx, 1684 hbqp->entry_count); 1685 1686 phba->link_state = LPFC_HBA_ERROR; 1687 return NULL; 1688 } 1689 1690 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 1691 return NULL; 1692 } 1693 1694 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 1695 hbqp->hbqPutIdx; 1696 } 1697 1698 /** 1699 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 1700 * @phba: Pointer to HBA context object. 1701 * 1702 * This function is called with no lock held to free all the 1703 * hbq buffers while uninitializing the SLI interface. It also 1704 * frees the HBQ buffers returned by the firmware but not yet 1705 * processed by the upper layers. 1706 **/ 1707 void 1708 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 1709 { 1710 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 1711 struct hbq_dmabuf *hbq_buf; 1712 unsigned long flags; 1713 int i, hbq_count; 1714 uint32_t hbqno; 1715 1716 hbq_count = lpfc_sli_hbq_count(); 1717 /* Return all memory used by all HBQs */ 1718 spin_lock_irqsave(&phba->hbalock, flags); 1719 for (i = 0; i < hbq_count; ++i) { 1720 list_for_each_entry_safe(dmabuf, next_dmabuf, 1721 &phba->hbqs[i].hbq_buffer_list, list) { 1722 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 1723 list_del(&hbq_buf->dbuf.list); 1724 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 1725 } 1726 phba->hbqs[i].buffer_count = 0; 1727 } 1728 /* Return all HBQ buffer that are in-fly */ 1729 list_for_each_entry_safe(dmabuf, next_dmabuf, &phba->rb_pend_list, 1730 list) { 1731 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 1732 list_del(&hbq_buf->dbuf.list); 1733 if (hbq_buf->tag == -1) { 1734 (phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer) 1735 (phba, hbq_buf); 1736 } else { 1737 hbqno = hbq_buf->tag >> 16; 1738 if (hbqno >= LPFC_MAX_HBQS) 1739 (phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer) 1740 (phba, hbq_buf); 1741 else 1742 (phba->hbqs[hbqno].hbq_free_buffer)(phba, 1743 hbq_buf); 1744 } 1745 } 1746 1747 /* Mark the HBQs not in use */ 1748 phba->hbq_in_use = 0; 1749 spin_unlock_irqrestore(&phba->hbalock, flags); 1750 } 1751 1752 /** 1753 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 1754 * @phba: Pointer to HBA context object. 1755 * @hbqno: HBQ number. 1756 * @hbq_buf: Pointer to HBQ buffer. 1757 * 1758 * This function is called with the hbalock held to post a 1759 * hbq buffer to the firmware. If the function finds an empty 1760 * slot in the HBQ, it will post the buffer. The function will return 1761 * pointer to the hbq entry if it successfully post the buffer 1762 * else it will return NULL. 1763 **/ 1764 static int 1765 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 1766 struct hbq_dmabuf *hbq_buf) 1767 { 1768 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 1769 } 1770 1771 /** 1772 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 1773 * @phba: Pointer to HBA context object. 1774 * @hbqno: HBQ number. 1775 * @hbq_buf: Pointer to HBQ buffer. 1776 * 1777 * This function is called with the hbalock held to post a hbq buffer to the 1778 * firmware. If the function finds an empty slot in the HBQ, it will post the 1779 * buffer and place it on the hbq_buffer_list. The function will return zero if 1780 * it successfully post the buffer else it will return an error. 1781 **/ 1782 static int 1783 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 1784 struct hbq_dmabuf *hbq_buf) 1785 { 1786 struct lpfc_hbq_entry *hbqe; 1787 dma_addr_t physaddr = hbq_buf->dbuf.phys; 1788 1789 /* Get next HBQ entry slot to use */ 1790 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 1791 if (hbqe) { 1792 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1793 1794 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 1795 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 1796 hbqe->bde.tus.f.bdeSize = hbq_buf->size; 1797 hbqe->bde.tus.f.bdeFlags = 0; 1798 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 1799 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 1800 /* Sync SLIM */ 1801 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 1802 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 1803 /* flush */ 1804 readl(phba->hbq_put + hbqno); 1805 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 1806 return 0; 1807 } else 1808 return -ENOMEM; 1809 } 1810 1811 /** 1812 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 1813 * @phba: Pointer to HBA context object. 1814 * @hbqno: HBQ number. 1815 * @hbq_buf: Pointer to HBQ buffer. 1816 * 1817 * This function is called with the hbalock held to post an RQE to the SLI4 1818 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 1819 * the hbq_buffer_list and return zero, otherwise it will return an error. 1820 **/ 1821 static int 1822 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 1823 struct hbq_dmabuf *hbq_buf) 1824 { 1825 int rc; 1826 struct lpfc_rqe hrqe; 1827 struct lpfc_rqe drqe; 1828 1829 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 1830 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 1831 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 1832 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 1833 rc = lpfc_sli4_rq_put(phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq, 1834 &hrqe, &drqe); 1835 if (rc < 0) 1836 return rc; 1837 hbq_buf->tag = rc; 1838 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 1839 return 0; 1840 } 1841 1842 /* HBQ for ELS and CT traffic. */ 1843 static struct lpfc_hbq_init lpfc_els_hbq = { 1844 .rn = 1, 1845 .entry_count = 256, 1846 .mask_count = 0, 1847 .profile = 0, 1848 .ring_mask = (1 << LPFC_ELS_RING), 1849 .buffer_count = 0, 1850 .init_count = 40, 1851 .add_count = 40, 1852 }; 1853 1854 /* HBQ for the extra ring if needed */ 1855 static struct lpfc_hbq_init lpfc_extra_hbq = { 1856 .rn = 1, 1857 .entry_count = 200, 1858 .mask_count = 0, 1859 .profile = 0, 1860 .ring_mask = (1 << LPFC_EXTRA_RING), 1861 .buffer_count = 0, 1862 .init_count = 0, 1863 .add_count = 5, 1864 }; 1865 1866 /* Array of HBQs */ 1867 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 1868 &lpfc_els_hbq, 1869 &lpfc_extra_hbq, 1870 }; 1871 1872 /** 1873 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 1874 * @phba: Pointer to HBA context object. 1875 * @hbqno: HBQ number. 1876 * @count: Number of HBQ buffers to be posted. 1877 * 1878 * This function is called with no lock held to post more hbq buffers to the 1879 * given HBQ. The function returns the number of HBQ buffers successfully 1880 * posted. 1881 **/ 1882 static int 1883 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 1884 { 1885 uint32_t i, posted = 0; 1886 unsigned long flags; 1887 struct hbq_dmabuf *hbq_buffer; 1888 LIST_HEAD(hbq_buf_list); 1889 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 1890 return 0; 1891 1892 if ((phba->hbqs[hbqno].buffer_count + count) > 1893 lpfc_hbq_defs[hbqno]->entry_count) 1894 count = lpfc_hbq_defs[hbqno]->entry_count - 1895 phba->hbqs[hbqno].buffer_count; 1896 if (!count) 1897 return 0; 1898 /* Allocate HBQ entries */ 1899 for (i = 0; i < count; i++) { 1900 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 1901 if (!hbq_buffer) 1902 break; 1903 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 1904 } 1905 /* Check whether HBQ is still in use */ 1906 spin_lock_irqsave(&phba->hbalock, flags); 1907 if (!phba->hbq_in_use) 1908 goto err; 1909 while (!list_empty(&hbq_buf_list)) { 1910 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 1911 dbuf.list); 1912 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 1913 (hbqno << 16)); 1914 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 1915 phba->hbqs[hbqno].buffer_count++; 1916 posted++; 1917 } else 1918 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 1919 } 1920 spin_unlock_irqrestore(&phba->hbalock, flags); 1921 return posted; 1922 err: 1923 spin_unlock_irqrestore(&phba->hbalock, flags); 1924 while (!list_empty(&hbq_buf_list)) { 1925 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 1926 dbuf.list); 1927 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 1928 } 1929 return 0; 1930 } 1931 1932 /** 1933 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 1934 * @phba: Pointer to HBA context object. 1935 * @qno: HBQ number. 1936 * 1937 * This function posts more buffers to the HBQ. This function 1938 * is called with no lock held. The function returns the number of HBQ entries 1939 * successfully allocated. 1940 **/ 1941 int 1942 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 1943 { 1944 if (phba->sli_rev == LPFC_SLI_REV4) 1945 return 0; 1946 else 1947 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 1948 lpfc_hbq_defs[qno]->add_count); 1949 } 1950 1951 /** 1952 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 1953 * @phba: Pointer to HBA context object. 1954 * @qno: HBQ queue number. 1955 * 1956 * This function is called from SLI initialization code path with 1957 * no lock held to post initial HBQ buffers to firmware. The 1958 * function returns the number of HBQ entries successfully allocated. 1959 **/ 1960 static int 1961 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 1962 { 1963 if (phba->sli_rev == LPFC_SLI_REV4) 1964 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 1965 lpfc_hbq_defs[qno]->entry_count); 1966 else 1967 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 1968 lpfc_hbq_defs[qno]->init_count); 1969 } 1970 1971 /** 1972 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 1973 * @phba: Pointer to HBA context object. 1974 * @hbqno: HBQ number. 1975 * 1976 * This function removes the first hbq buffer on an hbq list and returns a 1977 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 1978 **/ 1979 static struct hbq_dmabuf * 1980 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 1981 { 1982 struct lpfc_dmabuf *d_buf; 1983 1984 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 1985 if (!d_buf) 1986 return NULL; 1987 return container_of(d_buf, struct hbq_dmabuf, dbuf); 1988 } 1989 1990 /** 1991 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 1992 * @phba: Pointer to HBA context object. 1993 * @tag: Tag of the hbq buffer. 1994 * 1995 * This function is called with hbalock held. This function searches 1996 * for the hbq buffer associated with the given tag in the hbq buffer 1997 * list. If it finds the hbq buffer, it returns the hbq_buffer other wise 1998 * it returns NULL. 1999 **/ 2000 static struct hbq_dmabuf * 2001 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2002 { 2003 struct lpfc_dmabuf *d_buf; 2004 struct hbq_dmabuf *hbq_buf; 2005 uint32_t hbqno; 2006 2007 hbqno = tag >> 16; 2008 if (hbqno >= LPFC_MAX_HBQS) 2009 return NULL; 2010 2011 spin_lock_irq(&phba->hbalock); 2012 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2013 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2014 if (hbq_buf->tag == tag) { 2015 spin_unlock_irq(&phba->hbalock); 2016 return hbq_buf; 2017 } 2018 } 2019 spin_unlock_irq(&phba->hbalock); 2020 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT, 2021 "1803 Bad hbq tag. Data: x%x x%x\n", 2022 tag, phba->hbqs[tag >> 16].buffer_count); 2023 return NULL; 2024 } 2025 2026 /** 2027 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2028 * @phba: Pointer to HBA context object. 2029 * @hbq_buffer: Pointer to HBQ buffer. 2030 * 2031 * This function is called with hbalock. This function gives back 2032 * the hbq buffer to firmware. If the HBQ does not have space to 2033 * post the buffer, it will free the buffer. 2034 **/ 2035 void 2036 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2037 { 2038 uint32_t hbqno; 2039 2040 if (hbq_buffer) { 2041 hbqno = hbq_buffer->tag >> 16; 2042 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2043 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2044 } 2045 } 2046 2047 /** 2048 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2049 * @mbxCommand: mailbox command code. 2050 * 2051 * This function is called by the mailbox event handler function to verify 2052 * that the completed mailbox command is a legitimate mailbox command. If the 2053 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2054 * and the mailbox event handler will take the HBA offline. 2055 **/ 2056 static int 2057 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2058 { 2059 uint8_t ret; 2060 2061 switch (mbxCommand) { 2062 case MBX_LOAD_SM: 2063 case MBX_READ_NV: 2064 case MBX_WRITE_NV: 2065 case MBX_WRITE_VPARMS: 2066 case MBX_RUN_BIU_DIAG: 2067 case MBX_INIT_LINK: 2068 case MBX_DOWN_LINK: 2069 case MBX_CONFIG_LINK: 2070 case MBX_CONFIG_RING: 2071 case MBX_RESET_RING: 2072 case MBX_READ_CONFIG: 2073 case MBX_READ_RCONFIG: 2074 case MBX_READ_SPARM: 2075 case MBX_READ_STATUS: 2076 case MBX_READ_RPI: 2077 case MBX_READ_XRI: 2078 case MBX_READ_REV: 2079 case MBX_READ_LNK_STAT: 2080 case MBX_REG_LOGIN: 2081 case MBX_UNREG_LOGIN: 2082 case MBX_CLEAR_LA: 2083 case MBX_DUMP_MEMORY: 2084 case MBX_DUMP_CONTEXT: 2085 case MBX_RUN_DIAGS: 2086 case MBX_RESTART: 2087 case MBX_UPDATE_CFG: 2088 case MBX_DOWN_LOAD: 2089 case MBX_DEL_LD_ENTRY: 2090 case MBX_RUN_PROGRAM: 2091 case MBX_SET_MASK: 2092 case MBX_SET_VARIABLE: 2093 case MBX_UNREG_D_ID: 2094 case MBX_KILL_BOARD: 2095 case MBX_CONFIG_FARP: 2096 case MBX_BEACON: 2097 case MBX_LOAD_AREA: 2098 case MBX_RUN_BIU_DIAG64: 2099 case MBX_CONFIG_PORT: 2100 case MBX_READ_SPARM64: 2101 case MBX_READ_RPI64: 2102 case MBX_REG_LOGIN64: 2103 case MBX_READ_TOPOLOGY: 2104 case MBX_WRITE_WWN: 2105 case MBX_SET_DEBUG: 2106 case MBX_LOAD_EXP_ROM: 2107 case MBX_ASYNCEVT_ENABLE: 2108 case MBX_REG_VPI: 2109 case MBX_UNREG_VPI: 2110 case MBX_HEARTBEAT: 2111 case MBX_PORT_CAPABILITIES: 2112 case MBX_PORT_IOV_CONTROL: 2113 case MBX_SLI4_CONFIG: 2114 case MBX_SLI4_REQ_FTRS: 2115 case MBX_REG_FCFI: 2116 case MBX_UNREG_FCFI: 2117 case MBX_REG_VFI: 2118 case MBX_UNREG_VFI: 2119 case MBX_INIT_VPI: 2120 case MBX_INIT_VFI: 2121 case MBX_RESUME_RPI: 2122 case MBX_READ_EVENT_LOG_STATUS: 2123 case MBX_READ_EVENT_LOG: 2124 case MBX_SECURITY_MGMT: 2125 case MBX_AUTH_PORT: 2126 case MBX_ACCESS_VDATA: 2127 ret = mbxCommand; 2128 break; 2129 default: 2130 ret = MBX_SHUTDOWN; 2131 break; 2132 } 2133 return ret; 2134 } 2135 2136 /** 2137 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2138 * @phba: Pointer to HBA context object. 2139 * @pmboxq: Pointer to mailbox command. 2140 * 2141 * This is completion handler function for mailbox commands issued from 2142 * lpfc_sli_issue_mbox_wait function. This function is called by the 2143 * mailbox event handler function with no lock held. This function 2144 * will wake up thread waiting on the wait queue pointed by context1 2145 * of the mailbox. 2146 **/ 2147 void 2148 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2149 { 2150 wait_queue_head_t *pdone_q; 2151 unsigned long drvr_flag; 2152 2153 /* 2154 * If pdone_q is empty, the driver thread gave up waiting and 2155 * continued running. 2156 */ 2157 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2158 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2159 pdone_q = (wait_queue_head_t *) pmboxq->context1; 2160 if (pdone_q) 2161 wake_up_interruptible(pdone_q); 2162 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2163 return; 2164 } 2165 2166 2167 /** 2168 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2169 * @phba: Pointer to HBA context object. 2170 * @pmb: Pointer to mailbox object. 2171 * 2172 * This function is the default mailbox completion handler. It 2173 * frees the memory resources associated with the completed mailbox 2174 * command. If the completed command is a REG_LOGIN mailbox command, 2175 * this function will issue a UREG_LOGIN to re-claim the RPI. 2176 **/ 2177 void 2178 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2179 { 2180 struct lpfc_vport *vport = pmb->vport; 2181 struct lpfc_dmabuf *mp; 2182 struct lpfc_nodelist *ndlp; 2183 struct Scsi_Host *shost; 2184 uint16_t rpi, vpi; 2185 int rc; 2186 2187 mp = (struct lpfc_dmabuf *) (pmb->context1); 2188 2189 if (mp) { 2190 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2191 kfree(mp); 2192 } 2193 2194 /* 2195 * If a REG_LOGIN succeeded after node is destroyed or node 2196 * is in re-discovery driver need to cleanup the RPI. 2197 */ 2198 if (!(phba->pport->load_flag & FC_UNLOADING) && 2199 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2200 !pmb->u.mb.mbxStatus) { 2201 rpi = pmb->u.mb.un.varWords[0]; 2202 vpi = pmb->u.mb.un.varRegLogin.vpi; 2203 lpfc_unreg_login(phba, vpi, rpi, pmb); 2204 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2205 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2206 if (rc != MBX_NOT_FINISHED) 2207 return; 2208 } 2209 2210 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2211 !(phba->pport->load_flag & FC_UNLOADING) && 2212 !pmb->u.mb.mbxStatus) { 2213 shost = lpfc_shost_from_vport(vport); 2214 spin_lock_irq(shost->host_lock); 2215 vport->vpi_state |= LPFC_VPI_REGISTERED; 2216 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2217 spin_unlock_irq(shost->host_lock); 2218 } 2219 2220 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2221 ndlp = (struct lpfc_nodelist *)pmb->context2; 2222 lpfc_nlp_put(ndlp); 2223 pmb->context2 = NULL; 2224 } 2225 2226 /* Check security permission status on INIT_LINK mailbox command */ 2227 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2228 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2229 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2230 "2860 SLI authentication is required " 2231 "for INIT_LINK but has not done yet\n"); 2232 2233 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2234 lpfc_sli4_mbox_cmd_free(phba, pmb); 2235 else 2236 mempool_free(pmb, phba->mbox_mem_pool); 2237 } 2238 2239 /** 2240 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2241 * @phba: Pointer to HBA context object. 2242 * 2243 * This function is called with no lock held. This function processes all 2244 * the completed mailbox commands and gives it to upper layers. The interrupt 2245 * service routine processes mailbox completion interrupt and adds completed 2246 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2247 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2248 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2249 * function returns the mailbox commands to the upper layer by calling the 2250 * completion handler function of each mailbox. 2251 **/ 2252 int 2253 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2254 { 2255 MAILBOX_t *pmbox; 2256 LPFC_MBOXQ_t *pmb; 2257 int rc; 2258 LIST_HEAD(cmplq); 2259 2260 phba->sli.slistat.mbox_event++; 2261 2262 /* Get all completed mailboxe buffers into the cmplq */ 2263 spin_lock_irq(&phba->hbalock); 2264 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2265 spin_unlock_irq(&phba->hbalock); 2266 2267 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2268 do { 2269 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2270 if (pmb == NULL) 2271 break; 2272 2273 pmbox = &pmb->u.mb; 2274 2275 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2276 if (pmb->vport) { 2277 lpfc_debugfs_disc_trc(pmb->vport, 2278 LPFC_DISC_TRC_MBOX_VPORT, 2279 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2280 (uint32_t)pmbox->mbxCommand, 2281 pmbox->un.varWords[0], 2282 pmbox->un.varWords[1]); 2283 } 2284 else { 2285 lpfc_debugfs_disc_trc(phba->pport, 2286 LPFC_DISC_TRC_MBOX, 2287 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2288 (uint32_t)pmbox->mbxCommand, 2289 pmbox->un.varWords[0], 2290 pmbox->un.varWords[1]); 2291 } 2292 } 2293 2294 /* 2295 * It is a fatal error if unknown mbox command completion. 2296 */ 2297 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2298 MBX_SHUTDOWN) { 2299 /* Unknown mailbox command compl */ 2300 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2301 "(%d):0323 Unknown Mailbox command " 2302 "x%x (x%x/x%x) Cmpl\n", 2303 pmb->vport ? pmb->vport->vpi : 0, 2304 pmbox->mbxCommand, 2305 lpfc_sli_config_mbox_subsys_get(phba, 2306 pmb), 2307 lpfc_sli_config_mbox_opcode_get(phba, 2308 pmb)); 2309 phba->link_state = LPFC_HBA_ERROR; 2310 phba->work_hs = HS_FFER3; 2311 lpfc_handle_eratt(phba); 2312 continue; 2313 } 2314 2315 if (pmbox->mbxStatus) { 2316 phba->sli.slistat.mbox_stat_err++; 2317 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2318 /* Mbox cmd cmpl error - RETRYing */ 2319 lpfc_printf_log(phba, KERN_INFO, 2320 LOG_MBOX | LOG_SLI, 2321 "(%d):0305 Mbox cmd cmpl " 2322 "error - RETRYing Data: x%x " 2323 "(x%x/x%x) x%x x%x x%x\n", 2324 pmb->vport ? pmb->vport->vpi : 0, 2325 pmbox->mbxCommand, 2326 lpfc_sli_config_mbox_subsys_get(phba, 2327 pmb), 2328 lpfc_sli_config_mbox_opcode_get(phba, 2329 pmb), 2330 pmbox->mbxStatus, 2331 pmbox->un.varWords[0], 2332 pmb->vport->port_state); 2333 pmbox->mbxStatus = 0; 2334 pmbox->mbxOwner = OWN_HOST; 2335 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2336 if (rc != MBX_NOT_FINISHED) 2337 continue; 2338 } 2339 } 2340 2341 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2342 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2343 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p " 2344 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2345 "x%x x%x x%x\n", 2346 pmb->vport ? pmb->vport->vpi : 0, 2347 pmbox->mbxCommand, 2348 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2349 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2350 pmb->mbox_cmpl, 2351 *((uint32_t *) pmbox), 2352 pmbox->un.varWords[0], 2353 pmbox->un.varWords[1], 2354 pmbox->un.varWords[2], 2355 pmbox->un.varWords[3], 2356 pmbox->un.varWords[4], 2357 pmbox->un.varWords[5], 2358 pmbox->un.varWords[6], 2359 pmbox->un.varWords[7], 2360 pmbox->un.varWords[8], 2361 pmbox->un.varWords[9], 2362 pmbox->un.varWords[10]); 2363 2364 if (pmb->mbox_cmpl) 2365 pmb->mbox_cmpl(phba,pmb); 2366 } while (1); 2367 return 0; 2368 } 2369 2370 /** 2371 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2372 * @phba: Pointer to HBA context object. 2373 * @pring: Pointer to driver SLI ring object. 2374 * @tag: buffer tag. 2375 * 2376 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2377 * is set in the tag the buffer is posted for a particular exchange, 2378 * the function will return the buffer without replacing the buffer. 2379 * If the buffer is for unsolicited ELS or CT traffic, this function 2380 * returns the buffer and also posts another buffer to the firmware. 2381 **/ 2382 static struct lpfc_dmabuf * 2383 lpfc_sli_get_buff(struct lpfc_hba *phba, 2384 struct lpfc_sli_ring *pring, 2385 uint32_t tag) 2386 { 2387 struct hbq_dmabuf *hbq_entry; 2388 2389 if (tag & QUE_BUFTAG_BIT) 2390 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2391 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2392 if (!hbq_entry) 2393 return NULL; 2394 return &hbq_entry->dbuf; 2395 } 2396 2397 /** 2398 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 2399 * @phba: Pointer to HBA context object. 2400 * @pring: Pointer to driver SLI ring object. 2401 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 2402 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 2403 * @fch_type: the type for the first frame of the sequence. 2404 * 2405 * This function is called with no lock held. This function uses the r_ctl and 2406 * type of the received sequence to find the correct callback function to call 2407 * to process the sequence. 2408 **/ 2409 static int 2410 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2411 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 2412 uint32_t fch_type) 2413 { 2414 int i; 2415 2416 /* unSolicited Responses */ 2417 if (pring->prt[0].profile) { 2418 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 2419 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 2420 saveq); 2421 return 1; 2422 } 2423 /* We must search, based on rctl / type 2424 for the right routine */ 2425 for (i = 0; i < pring->num_mask; i++) { 2426 if ((pring->prt[i].rctl == fch_r_ctl) && 2427 (pring->prt[i].type == fch_type)) { 2428 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 2429 (pring->prt[i].lpfc_sli_rcv_unsol_event) 2430 (phba, pring, saveq); 2431 return 1; 2432 } 2433 } 2434 return 0; 2435 } 2436 2437 /** 2438 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 2439 * @phba: Pointer to HBA context object. 2440 * @pring: Pointer to driver SLI ring object. 2441 * @saveq: Pointer to the unsolicited iocb. 2442 * 2443 * This function is called with no lock held by the ring event handler 2444 * when there is an unsolicited iocb posted to the response ring by the 2445 * firmware. This function gets the buffer associated with the iocbs 2446 * and calls the event handler for the ring. This function handles both 2447 * qring buffers and hbq buffers. 2448 * When the function returns 1 the caller can free the iocb object otherwise 2449 * upper layer functions will free the iocb objects. 2450 **/ 2451 static int 2452 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2453 struct lpfc_iocbq *saveq) 2454 { 2455 IOCB_t * irsp; 2456 WORD5 * w5p; 2457 uint32_t Rctl, Type; 2458 uint32_t match; 2459 struct lpfc_iocbq *iocbq; 2460 struct lpfc_dmabuf *dmzbuf; 2461 2462 match = 0; 2463 irsp = &(saveq->iocb); 2464 2465 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 2466 if (pring->lpfc_sli_rcv_async_status) 2467 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 2468 else 2469 lpfc_printf_log(phba, 2470 KERN_WARNING, 2471 LOG_SLI, 2472 "0316 Ring %d handler: unexpected " 2473 "ASYNC_STATUS iocb received evt_code " 2474 "0x%x\n", 2475 pring->ringno, 2476 irsp->un.asyncstat.evt_code); 2477 return 1; 2478 } 2479 2480 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 2481 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 2482 if (irsp->ulpBdeCount > 0) { 2483 dmzbuf = lpfc_sli_get_buff(phba, pring, 2484 irsp->un.ulpWord[3]); 2485 lpfc_in_buf_free(phba, dmzbuf); 2486 } 2487 2488 if (irsp->ulpBdeCount > 1) { 2489 dmzbuf = lpfc_sli_get_buff(phba, pring, 2490 irsp->unsli3.sli3Words[3]); 2491 lpfc_in_buf_free(phba, dmzbuf); 2492 } 2493 2494 if (irsp->ulpBdeCount > 2) { 2495 dmzbuf = lpfc_sli_get_buff(phba, pring, 2496 irsp->unsli3.sli3Words[7]); 2497 lpfc_in_buf_free(phba, dmzbuf); 2498 } 2499 2500 return 1; 2501 } 2502 2503 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 2504 if (irsp->ulpBdeCount != 0) { 2505 saveq->context2 = lpfc_sli_get_buff(phba, pring, 2506 irsp->un.ulpWord[3]); 2507 if (!saveq->context2) 2508 lpfc_printf_log(phba, 2509 KERN_ERR, 2510 LOG_SLI, 2511 "0341 Ring %d Cannot find buffer for " 2512 "an unsolicited iocb. tag 0x%x\n", 2513 pring->ringno, 2514 irsp->un.ulpWord[3]); 2515 } 2516 if (irsp->ulpBdeCount == 2) { 2517 saveq->context3 = lpfc_sli_get_buff(phba, pring, 2518 irsp->unsli3.sli3Words[7]); 2519 if (!saveq->context3) 2520 lpfc_printf_log(phba, 2521 KERN_ERR, 2522 LOG_SLI, 2523 "0342 Ring %d Cannot find buffer for an" 2524 " unsolicited iocb. tag 0x%x\n", 2525 pring->ringno, 2526 irsp->unsli3.sli3Words[7]); 2527 } 2528 list_for_each_entry(iocbq, &saveq->list, list) { 2529 irsp = &(iocbq->iocb); 2530 if (irsp->ulpBdeCount != 0) { 2531 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 2532 irsp->un.ulpWord[3]); 2533 if (!iocbq->context2) 2534 lpfc_printf_log(phba, 2535 KERN_ERR, 2536 LOG_SLI, 2537 "0343 Ring %d Cannot find " 2538 "buffer for an unsolicited iocb" 2539 ". tag 0x%x\n", pring->ringno, 2540 irsp->un.ulpWord[3]); 2541 } 2542 if (irsp->ulpBdeCount == 2) { 2543 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 2544 irsp->unsli3.sli3Words[7]); 2545 if (!iocbq->context3) 2546 lpfc_printf_log(phba, 2547 KERN_ERR, 2548 LOG_SLI, 2549 "0344 Ring %d Cannot find " 2550 "buffer for an unsolicited " 2551 "iocb. tag 0x%x\n", 2552 pring->ringno, 2553 irsp->unsli3.sli3Words[7]); 2554 } 2555 } 2556 } 2557 if (irsp->ulpBdeCount != 0 && 2558 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 2559 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 2560 int found = 0; 2561 2562 /* search continue save q for same XRI */ 2563 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 2564 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 2565 saveq->iocb.unsli3.rcvsli3.ox_id) { 2566 list_add_tail(&saveq->list, &iocbq->list); 2567 found = 1; 2568 break; 2569 } 2570 } 2571 if (!found) 2572 list_add_tail(&saveq->clist, 2573 &pring->iocb_continue_saveq); 2574 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 2575 list_del_init(&iocbq->clist); 2576 saveq = iocbq; 2577 irsp = &(saveq->iocb); 2578 } else 2579 return 0; 2580 } 2581 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 2582 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 2583 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 2584 Rctl = FC_RCTL_ELS_REQ; 2585 Type = FC_TYPE_ELS; 2586 } else { 2587 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 2588 Rctl = w5p->hcsw.Rctl; 2589 Type = w5p->hcsw.Type; 2590 2591 /* Firmware Workaround */ 2592 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 2593 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 2594 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 2595 Rctl = FC_RCTL_ELS_REQ; 2596 Type = FC_TYPE_ELS; 2597 w5p->hcsw.Rctl = Rctl; 2598 w5p->hcsw.Type = Type; 2599 } 2600 } 2601 2602 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 2603 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2604 "0313 Ring %d handler: unexpected Rctl x%x " 2605 "Type x%x received\n", 2606 pring->ringno, Rctl, Type); 2607 2608 return 1; 2609 } 2610 2611 /** 2612 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 2613 * @phba: Pointer to HBA context object. 2614 * @pring: Pointer to driver SLI ring object. 2615 * @prspiocb: Pointer to response iocb object. 2616 * 2617 * This function looks up the iocb_lookup table to get the command iocb 2618 * corresponding to the given response iocb using the iotag of the 2619 * response iocb. This function is called with the hbalock held. 2620 * This function returns the command iocb object if it finds the command 2621 * iocb else returns NULL. 2622 **/ 2623 static struct lpfc_iocbq * 2624 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 2625 struct lpfc_sli_ring *pring, 2626 struct lpfc_iocbq *prspiocb) 2627 { 2628 struct lpfc_iocbq *cmd_iocb = NULL; 2629 uint16_t iotag; 2630 2631 iotag = prspiocb->iocb.ulpIoTag; 2632 2633 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2634 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2635 list_del_init(&cmd_iocb->list); 2636 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2637 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 2638 } 2639 return cmd_iocb; 2640 } 2641 2642 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2643 "0317 iotag x%x is out off " 2644 "range: max iotag x%x wd0 x%x\n", 2645 iotag, phba->sli.last_iotag, 2646 *(((uint32_t *) &prspiocb->iocb) + 7)); 2647 return NULL; 2648 } 2649 2650 /** 2651 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 2652 * @phba: Pointer to HBA context object. 2653 * @pring: Pointer to driver SLI ring object. 2654 * @iotag: IOCB tag. 2655 * 2656 * This function looks up the iocb_lookup table to get the command iocb 2657 * corresponding to the given iotag. This function is called with the 2658 * hbalock held. 2659 * This function returns the command iocb object if it finds the command 2660 * iocb else returns NULL. 2661 **/ 2662 static struct lpfc_iocbq * 2663 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 2664 struct lpfc_sli_ring *pring, uint16_t iotag) 2665 { 2666 struct lpfc_iocbq *cmd_iocb; 2667 2668 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2669 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2670 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2671 /* remove from txcmpl queue list */ 2672 list_del_init(&cmd_iocb->list); 2673 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 2674 return cmd_iocb; 2675 } 2676 } 2677 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2678 "0372 iotag x%x is out off range: max iotag (x%x)\n", 2679 iotag, phba->sli.last_iotag); 2680 return NULL; 2681 } 2682 2683 /** 2684 * lpfc_sli_process_sol_iocb - process solicited iocb completion 2685 * @phba: Pointer to HBA context object. 2686 * @pring: Pointer to driver SLI ring object. 2687 * @saveq: Pointer to the response iocb to be processed. 2688 * 2689 * This function is called by the ring event handler for non-fcp 2690 * rings when there is a new response iocb in the response ring. 2691 * The caller is not required to hold any locks. This function 2692 * gets the command iocb associated with the response iocb and 2693 * calls the completion handler for the command iocb. If there 2694 * is no completion handler, the function will free the resources 2695 * associated with command iocb. If the response iocb is for 2696 * an already aborted command iocb, the status of the completion 2697 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 2698 * This function always returns 1. 2699 **/ 2700 static int 2701 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2702 struct lpfc_iocbq *saveq) 2703 { 2704 struct lpfc_iocbq *cmdiocbp; 2705 int rc = 1; 2706 unsigned long iflag; 2707 2708 /* Based on the iotag field, get the cmd IOCB from the txcmplq */ 2709 spin_lock_irqsave(&phba->hbalock, iflag); 2710 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 2711 spin_unlock_irqrestore(&phba->hbalock, iflag); 2712 2713 if (cmdiocbp) { 2714 if (cmdiocbp->iocb_cmpl) { 2715 /* 2716 * If an ELS command failed send an event to mgmt 2717 * application. 2718 */ 2719 if (saveq->iocb.ulpStatus && 2720 (pring->ringno == LPFC_ELS_RING) && 2721 (cmdiocbp->iocb.ulpCommand == 2722 CMD_ELS_REQUEST64_CR)) 2723 lpfc_send_els_failure_event(phba, 2724 cmdiocbp, saveq); 2725 2726 /* 2727 * Post all ELS completions to the worker thread. 2728 * All other are passed to the completion callback. 2729 */ 2730 if (pring->ringno == LPFC_ELS_RING) { 2731 if ((phba->sli_rev < LPFC_SLI_REV4) && 2732 (cmdiocbp->iocb_flag & 2733 LPFC_DRIVER_ABORTED)) { 2734 spin_lock_irqsave(&phba->hbalock, 2735 iflag); 2736 cmdiocbp->iocb_flag &= 2737 ~LPFC_DRIVER_ABORTED; 2738 spin_unlock_irqrestore(&phba->hbalock, 2739 iflag); 2740 saveq->iocb.ulpStatus = 2741 IOSTAT_LOCAL_REJECT; 2742 saveq->iocb.un.ulpWord[4] = 2743 IOERR_SLI_ABORTED; 2744 2745 /* Firmware could still be in progress 2746 * of DMAing payload, so don't free data 2747 * buffer till after a hbeat. 2748 */ 2749 spin_lock_irqsave(&phba->hbalock, 2750 iflag); 2751 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 2752 spin_unlock_irqrestore(&phba->hbalock, 2753 iflag); 2754 } 2755 if (phba->sli_rev == LPFC_SLI_REV4) { 2756 if (saveq->iocb_flag & 2757 LPFC_EXCHANGE_BUSY) { 2758 /* Set cmdiocb flag for the 2759 * exchange busy so sgl (xri) 2760 * will not be released until 2761 * the abort xri is received 2762 * from hba. 2763 */ 2764 spin_lock_irqsave( 2765 &phba->hbalock, iflag); 2766 cmdiocbp->iocb_flag |= 2767 LPFC_EXCHANGE_BUSY; 2768 spin_unlock_irqrestore( 2769 &phba->hbalock, iflag); 2770 } 2771 if (cmdiocbp->iocb_flag & 2772 LPFC_DRIVER_ABORTED) { 2773 /* 2774 * Clear LPFC_DRIVER_ABORTED 2775 * bit in case it was driver 2776 * initiated abort. 2777 */ 2778 spin_lock_irqsave( 2779 &phba->hbalock, iflag); 2780 cmdiocbp->iocb_flag &= 2781 ~LPFC_DRIVER_ABORTED; 2782 spin_unlock_irqrestore( 2783 &phba->hbalock, iflag); 2784 cmdiocbp->iocb.ulpStatus = 2785 IOSTAT_LOCAL_REJECT; 2786 cmdiocbp->iocb.un.ulpWord[4] = 2787 IOERR_ABORT_REQUESTED; 2788 /* 2789 * For SLI4, irsiocb contains 2790 * NO_XRI in sli_xritag, it 2791 * shall not affect releasing 2792 * sgl (xri) process. 2793 */ 2794 saveq->iocb.ulpStatus = 2795 IOSTAT_LOCAL_REJECT; 2796 saveq->iocb.un.ulpWord[4] = 2797 IOERR_SLI_ABORTED; 2798 spin_lock_irqsave( 2799 &phba->hbalock, iflag); 2800 saveq->iocb_flag |= 2801 LPFC_DELAY_MEM_FREE; 2802 spin_unlock_irqrestore( 2803 &phba->hbalock, iflag); 2804 } 2805 } 2806 } 2807 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 2808 } else 2809 lpfc_sli_release_iocbq(phba, cmdiocbp); 2810 } else { 2811 /* 2812 * Unknown initiating command based on the response iotag. 2813 * This could be the case on the ELS ring because of 2814 * lpfc_els_abort(). 2815 */ 2816 if (pring->ringno != LPFC_ELS_RING) { 2817 /* 2818 * Ring <ringno> handler: unexpected completion IoTag 2819 * <IoTag> 2820 */ 2821 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2822 "0322 Ring %d handler: " 2823 "unexpected completion IoTag x%x " 2824 "Data: x%x x%x x%x x%x\n", 2825 pring->ringno, 2826 saveq->iocb.ulpIoTag, 2827 saveq->iocb.ulpStatus, 2828 saveq->iocb.un.ulpWord[4], 2829 saveq->iocb.ulpCommand, 2830 saveq->iocb.ulpContext); 2831 } 2832 } 2833 2834 return rc; 2835 } 2836 2837 /** 2838 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 2839 * @phba: Pointer to HBA context object. 2840 * @pring: Pointer to driver SLI ring object. 2841 * 2842 * This function is called from the iocb ring event handlers when 2843 * put pointer is ahead of the get pointer for a ring. This function signal 2844 * an error attention condition to the worker thread and the worker 2845 * thread will transition the HBA to offline state. 2846 **/ 2847 static void 2848 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2849 { 2850 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2851 /* 2852 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 2853 * rsp ring <portRspMax> 2854 */ 2855 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2856 "0312 Ring %d handler: portRspPut %d " 2857 "is bigger than rsp ring %d\n", 2858 pring->ringno, le32_to_cpu(pgp->rspPutInx), 2859 pring->sli.sli3.numRiocb); 2860 2861 phba->link_state = LPFC_HBA_ERROR; 2862 2863 /* 2864 * All error attention handlers are posted to 2865 * worker thread 2866 */ 2867 phba->work_ha |= HA_ERATT; 2868 phba->work_hs = HS_FFER3; 2869 2870 lpfc_worker_wake_up(phba); 2871 2872 return; 2873 } 2874 2875 /** 2876 * lpfc_poll_eratt - Error attention polling timer timeout handler 2877 * @ptr: Pointer to address of HBA context object. 2878 * 2879 * This function is invoked by the Error Attention polling timer when the 2880 * timer times out. It will check the SLI Error Attention register for 2881 * possible attention events. If so, it will post an Error Attention event 2882 * and wake up worker thread to process it. Otherwise, it will set up the 2883 * Error Attention polling timer for the next poll. 2884 **/ 2885 void lpfc_poll_eratt(unsigned long ptr) 2886 { 2887 struct lpfc_hba *phba; 2888 uint32_t eratt = 0, rem; 2889 uint64_t sli_intr, cnt; 2890 2891 phba = (struct lpfc_hba *)ptr; 2892 2893 /* Here we will also keep track of interrupts per sec of the hba */ 2894 sli_intr = phba->sli.slistat.sli_intr; 2895 2896 if (phba->sli.slistat.sli_prev_intr > sli_intr) 2897 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 2898 sli_intr); 2899 else 2900 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 2901 2902 /* 64-bit integer division not supporte on 32-bit x86 - use do_div */ 2903 rem = do_div(cnt, LPFC_ERATT_POLL_INTERVAL); 2904 phba->sli.slistat.sli_ips = cnt; 2905 2906 phba->sli.slistat.sli_prev_intr = sli_intr; 2907 2908 /* Check chip HA register for error event */ 2909 eratt = lpfc_sli_check_eratt(phba); 2910 2911 if (eratt) 2912 /* Tell the worker thread there is work to do */ 2913 lpfc_worker_wake_up(phba); 2914 else 2915 /* Restart the timer for next eratt poll */ 2916 mod_timer(&phba->eratt_poll, 2917 jiffies + 2918 msecs_to_jiffies(1000 * LPFC_ERATT_POLL_INTERVAL)); 2919 return; 2920 } 2921 2922 2923 /** 2924 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 2925 * @phba: Pointer to HBA context object. 2926 * @pring: Pointer to driver SLI ring object. 2927 * @mask: Host attention register mask for this ring. 2928 * 2929 * This function is called from the interrupt context when there is a ring 2930 * event for the fcp ring. The caller does not hold any lock. 2931 * The function processes each response iocb in the response ring until it 2932 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 2933 * LE bit set. The function will call the completion handler of the command iocb 2934 * if the response iocb indicates a completion for a command iocb or it is 2935 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 2936 * function if this is an unsolicited iocb. 2937 * This routine presumes LPFC_FCP_RING handling and doesn't bother 2938 * to check it explicitly. 2939 */ 2940 int 2941 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 2942 struct lpfc_sli_ring *pring, uint32_t mask) 2943 { 2944 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2945 IOCB_t *irsp = NULL; 2946 IOCB_t *entry = NULL; 2947 struct lpfc_iocbq *cmdiocbq = NULL; 2948 struct lpfc_iocbq rspiocbq; 2949 uint32_t status; 2950 uint32_t portRspPut, portRspMax; 2951 int rc = 1; 2952 lpfc_iocb_type type; 2953 unsigned long iflag; 2954 uint32_t rsp_cmpl = 0; 2955 2956 spin_lock_irqsave(&phba->hbalock, iflag); 2957 pring->stats.iocb_event++; 2958 2959 /* 2960 * The next available response entry should never exceed the maximum 2961 * entries. If it does, treat it as an adapter hardware error. 2962 */ 2963 portRspMax = pring->sli.sli3.numRiocb; 2964 portRspPut = le32_to_cpu(pgp->rspPutInx); 2965 if (unlikely(portRspPut >= portRspMax)) { 2966 lpfc_sli_rsp_pointers_error(phba, pring); 2967 spin_unlock_irqrestore(&phba->hbalock, iflag); 2968 return 1; 2969 } 2970 if (phba->fcp_ring_in_use) { 2971 spin_unlock_irqrestore(&phba->hbalock, iflag); 2972 return 1; 2973 } else 2974 phba->fcp_ring_in_use = 1; 2975 2976 rmb(); 2977 while (pring->sli.sli3.rspidx != portRspPut) { 2978 /* 2979 * Fetch an entry off the ring and copy it into a local data 2980 * structure. The copy involves a byte-swap since the 2981 * network byte order and pci byte orders are different. 2982 */ 2983 entry = lpfc_resp_iocb(phba, pring); 2984 phba->last_completion_time = jiffies; 2985 2986 if (++pring->sli.sli3.rspidx >= portRspMax) 2987 pring->sli.sli3.rspidx = 0; 2988 2989 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 2990 (uint32_t *) &rspiocbq.iocb, 2991 phba->iocb_rsp_size); 2992 INIT_LIST_HEAD(&(rspiocbq.list)); 2993 irsp = &rspiocbq.iocb; 2994 2995 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 2996 pring->stats.iocb_rsp++; 2997 rsp_cmpl++; 2998 2999 if (unlikely(irsp->ulpStatus)) { 3000 /* 3001 * If resource errors reported from HBA, reduce 3002 * queuedepths of the SCSI device. 3003 */ 3004 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3005 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3006 IOERR_NO_RESOURCES)) { 3007 spin_unlock_irqrestore(&phba->hbalock, iflag); 3008 phba->lpfc_rampdown_queue_depth(phba); 3009 spin_lock_irqsave(&phba->hbalock, iflag); 3010 } 3011 3012 /* Rsp ring <ringno> error: IOCB */ 3013 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3014 "0336 Rsp Ring %d error: IOCB Data: " 3015 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3016 pring->ringno, 3017 irsp->un.ulpWord[0], 3018 irsp->un.ulpWord[1], 3019 irsp->un.ulpWord[2], 3020 irsp->un.ulpWord[3], 3021 irsp->un.ulpWord[4], 3022 irsp->un.ulpWord[5], 3023 *(uint32_t *)&irsp->un1, 3024 *((uint32_t *)&irsp->un1 + 1)); 3025 } 3026 3027 switch (type) { 3028 case LPFC_ABORT_IOCB: 3029 case LPFC_SOL_IOCB: 3030 /* 3031 * Idle exchange closed via ABTS from port. No iocb 3032 * resources need to be recovered. 3033 */ 3034 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3035 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3036 "0333 IOCB cmd 0x%x" 3037 " processed. Skipping" 3038 " completion\n", 3039 irsp->ulpCommand); 3040 break; 3041 } 3042 3043 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3044 &rspiocbq); 3045 if (unlikely(!cmdiocbq)) 3046 break; 3047 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3048 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3049 if (cmdiocbq->iocb_cmpl) { 3050 spin_unlock_irqrestore(&phba->hbalock, iflag); 3051 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3052 &rspiocbq); 3053 spin_lock_irqsave(&phba->hbalock, iflag); 3054 } 3055 break; 3056 case LPFC_UNSOL_IOCB: 3057 spin_unlock_irqrestore(&phba->hbalock, iflag); 3058 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3059 spin_lock_irqsave(&phba->hbalock, iflag); 3060 break; 3061 default: 3062 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3063 char adaptermsg[LPFC_MAX_ADPTMSG]; 3064 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3065 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3066 MAX_MSG_DATA); 3067 dev_warn(&((phba->pcidev)->dev), 3068 "lpfc%d: %s\n", 3069 phba->brd_no, adaptermsg); 3070 } else { 3071 /* Unknown IOCB command */ 3072 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3073 "0334 Unknown IOCB command " 3074 "Data: x%x, x%x x%x x%x x%x\n", 3075 type, irsp->ulpCommand, 3076 irsp->ulpStatus, 3077 irsp->ulpIoTag, 3078 irsp->ulpContext); 3079 } 3080 break; 3081 } 3082 3083 /* 3084 * The response IOCB has been processed. Update the ring 3085 * pointer in SLIM. If the port response put pointer has not 3086 * been updated, sync the pgp->rspPutInx and fetch the new port 3087 * response put pointer. 3088 */ 3089 writel(pring->sli.sli3.rspidx, 3090 &phba->host_gp[pring->ringno].rspGetInx); 3091 3092 if (pring->sli.sli3.rspidx == portRspPut) 3093 portRspPut = le32_to_cpu(pgp->rspPutInx); 3094 } 3095 3096 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3097 pring->stats.iocb_rsp_full++; 3098 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3099 writel(status, phba->CAregaddr); 3100 readl(phba->CAregaddr); 3101 } 3102 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3103 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3104 pring->stats.iocb_cmd_empty++; 3105 3106 /* Force update of the local copy of cmdGetInx */ 3107 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3108 lpfc_sli_resume_iocb(phba, pring); 3109 3110 if ((pring->lpfc_sli_cmd_available)) 3111 (pring->lpfc_sli_cmd_available) (phba, pring); 3112 3113 } 3114 3115 phba->fcp_ring_in_use = 0; 3116 spin_unlock_irqrestore(&phba->hbalock, iflag); 3117 return rc; 3118 } 3119 3120 /** 3121 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3122 * @phba: Pointer to HBA context object. 3123 * @pring: Pointer to driver SLI ring object. 3124 * @rspiocbp: Pointer to driver response IOCB object. 3125 * 3126 * This function is called from the worker thread when there is a slow-path 3127 * response IOCB to process. This function chains all the response iocbs until 3128 * seeing the iocb with the LE bit set. The function will call 3129 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3130 * completion of a command iocb. The function will call the 3131 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3132 * The function frees the resources or calls the completion handler if this 3133 * iocb is an abort completion. The function returns NULL when the response 3134 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3135 * this function shall chain the iocb on to the iocb_continueq and return the 3136 * response iocb passed in. 3137 **/ 3138 static struct lpfc_iocbq * 3139 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3140 struct lpfc_iocbq *rspiocbp) 3141 { 3142 struct lpfc_iocbq *saveq; 3143 struct lpfc_iocbq *cmdiocbp; 3144 struct lpfc_iocbq *next_iocb; 3145 IOCB_t *irsp = NULL; 3146 uint32_t free_saveq; 3147 uint8_t iocb_cmd_type; 3148 lpfc_iocb_type type; 3149 unsigned long iflag; 3150 int rc; 3151 3152 spin_lock_irqsave(&phba->hbalock, iflag); 3153 /* First add the response iocb to the countinueq list */ 3154 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3155 pring->iocb_continueq_cnt++; 3156 3157 /* Now, determine whether the list is completed for processing */ 3158 irsp = &rspiocbp->iocb; 3159 if (irsp->ulpLe) { 3160 /* 3161 * By default, the driver expects to free all resources 3162 * associated with this iocb completion. 3163 */ 3164 free_saveq = 1; 3165 saveq = list_get_first(&pring->iocb_continueq, 3166 struct lpfc_iocbq, list); 3167 irsp = &(saveq->iocb); 3168 list_del_init(&pring->iocb_continueq); 3169 pring->iocb_continueq_cnt = 0; 3170 3171 pring->stats.iocb_rsp++; 3172 3173 /* 3174 * If resource errors reported from HBA, reduce 3175 * queuedepths of the SCSI device. 3176 */ 3177 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3178 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3179 IOERR_NO_RESOURCES)) { 3180 spin_unlock_irqrestore(&phba->hbalock, iflag); 3181 phba->lpfc_rampdown_queue_depth(phba); 3182 spin_lock_irqsave(&phba->hbalock, iflag); 3183 } 3184 3185 if (irsp->ulpStatus) { 3186 /* Rsp ring <ringno> error: IOCB */ 3187 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3188 "0328 Rsp Ring %d error: " 3189 "IOCB Data: " 3190 "x%x x%x x%x x%x " 3191 "x%x x%x x%x x%x " 3192 "x%x x%x x%x x%x " 3193 "x%x x%x x%x x%x\n", 3194 pring->ringno, 3195 irsp->un.ulpWord[0], 3196 irsp->un.ulpWord[1], 3197 irsp->un.ulpWord[2], 3198 irsp->un.ulpWord[3], 3199 irsp->un.ulpWord[4], 3200 irsp->un.ulpWord[5], 3201 *(((uint32_t *) irsp) + 6), 3202 *(((uint32_t *) irsp) + 7), 3203 *(((uint32_t *) irsp) + 8), 3204 *(((uint32_t *) irsp) + 9), 3205 *(((uint32_t *) irsp) + 10), 3206 *(((uint32_t *) irsp) + 11), 3207 *(((uint32_t *) irsp) + 12), 3208 *(((uint32_t *) irsp) + 13), 3209 *(((uint32_t *) irsp) + 14), 3210 *(((uint32_t *) irsp) + 15)); 3211 } 3212 3213 /* 3214 * Fetch the IOCB command type and call the correct completion 3215 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3216 * get freed back to the lpfc_iocb_list by the discovery 3217 * kernel thread. 3218 */ 3219 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3220 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3221 switch (type) { 3222 case LPFC_SOL_IOCB: 3223 spin_unlock_irqrestore(&phba->hbalock, iflag); 3224 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3225 spin_lock_irqsave(&phba->hbalock, iflag); 3226 break; 3227 3228 case LPFC_UNSOL_IOCB: 3229 spin_unlock_irqrestore(&phba->hbalock, iflag); 3230 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3231 spin_lock_irqsave(&phba->hbalock, iflag); 3232 if (!rc) 3233 free_saveq = 0; 3234 break; 3235 3236 case LPFC_ABORT_IOCB: 3237 cmdiocbp = NULL; 3238 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) 3239 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3240 saveq); 3241 if (cmdiocbp) { 3242 /* Call the specified completion routine */ 3243 if (cmdiocbp->iocb_cmpl) { 3244 spin_unlock_irqrestore(&phba->hbalock, 3245 iflag); 3246 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3247 saveq); 3248 spin_lock_irqsave(&phba->hbalock, 3249 iflag); 3250 } else 3251 __lpfc_sli_release_iocbq(phba, 3252 cmdiocbp); 3253 } 3254 break; 3255 3256 case LPFC_UNKNOWN_IOCB: 3257 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3258 char adaptermsg[LPFC_MAX_ADPTMSG]; 3259 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3260 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3261 MAX_MSG_DATA); 3262 dev_warn(&((phba->pcidev)->dev), 3263 "lpfc%d: %s\n", 3264 phba->brd_no, adaptermsg); 3265 } else { 3266 /* Unknown IOCB command */ 3267 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3268 "0335 Unknown IOCB " 3269 "command Data: x%x " 3270 "x%x x%x x%x\n", 3271 irsp->ulpCommand, 3272 irsp->ulpStatus, 3273 irsp->ulpIoTag, 3274 irsp->ulpContext); 3275 } 3276 break; 3277 } 3278 3279 if (free_saveq) { 3280 list_for_each_entry_safe(rspiocbp, next_iocb, 3281 &saveq->list, list) { 3282 list_del(&rspiocbp->list); 3283 __lpfc_sli_release_iocbq(phba, rspiocbp); 3284 } 3285 __lpfc_sli_release_iocbq(phba, saveq); 3286 } 3287 rspiocbp = NULL; 3288 } 3289 spin_unlock_irqrestore(&phba->hbalock, iflag); 3290 return rspiocbp; 3291 } 3292 3293 /** 3294 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3295 * @phba: Pointer to HBA context object. 3296 * @pring: Pointer to driver SLI ring object. 3297 * @mask: Host attention register mask for this ring. 3298 * 3299 * This routine wraps the actual slow_ring event process routine from the 3300 * API jump table function pointer from the lpfc_hba struct. 3301 **/ 3302 void 3303 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 3304 struct lpfc_sli_ring *pring, uint32_t mask) 3305 { 3306 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 3307 } 3308 3309 /** 3310 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 3311 * @phba: Pointer to HBA context object. 3312 * @pring: Pointer to driver SLI ring object. 3313 * @mask: Host attention register mask for this ring. 3314 * 3315 * This function is called from the worker thread when there is a ring event 3316 * for non-fcp rings. The caller does not hold any lock. The function will 3317 * remove each response iocb in the response ring and calls the handle 3318 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3319 **/ 3320 static void 3321 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 3322 struct lpfc_sli_ring *pring, uint32_t mask) 3323 { 3324 struct lpfc_pgp *pgp; 3325 IOCB_t *entry; 3326 IOCB_t *irsp = NULL; 3327 struct lpfc_iocbq *rspiocbp = NULL; 3328 uint32_t portRspPut, portRspMax; 3329 unsigned long iflag; 3330 uint32_t status; 3331 3332 pgp = &phba->port_gp[pring->ringno]; 3333 spin_lock_irqsave(&phba->hbalock, iflag); 3334 pring->stats.iocb_event++; 3335 3336 /* 3337 * The next available response entry should never exceed the maximum 3338 * entries. If it does, treat it as an adapter hardware error. 3339 */ 3340 portRspMax = pring->sli.sli3.numRiocb; 3341 portRspPut = le32_to_cpu(pgp->rspPutInx); 3342 if (portRspPut >= portRspMax) { 3343 /* 3344 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3345 * rsp ring <portRspMax> 3346 */ 3347 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3348 "0303 Ring %d handler: portRspPut %d " 3349 "is bigger than rsp ring %d\n", 3350 pring->ringno, portRspPut, portRspMax); 3351 3352 phba->link_state = LPFC_HBA_ERROR; 3353 spin_unlock_irqrestore(&phba->hbalock, iflag); 3354 3355 phba->work_hs = HS_FFER3; 3356 lpfc_handle_eratt(phba); 3357 3358 return; 3359 } 3360 3361 rmb(); 3362 while (pring->sli.sli3.rspidx != portRspPut) { 3363 /* 3364 * Build a completion list and call the appropriate handler. 3365 * The process is to get the next available response iocb, get 3366 * a free iocb from the list, copy the response data into the 3367 * free iocb, insert to the continuation list, and update the 3368 * next response index to slim. This process makes response 3369 * iocb's in the ring available to DMA as fast as possible but 3370 * pays a penalty for a copy operation. Since the iocb is 3371 * only 32 bytes, this penalty is considered small relative to 3372 * the PCI reads for register values and a slim write. When 3373 * the ulpLe field is set, the entire Command has been 3374 * received. 3375 */ 3376 entry = lpfc_resp_iocb(phba, pring); 3377 3378 phba->last_completion_time = jiffies; 3379 rspiocbp = __lpfc_sli_get_iocbq(phba); 3380 if (rspiocbp == NULL) { 3381 printk(KERN_ERR "%s: out of buffers! Failing " 3382 "completion.\n", __func__); 3383 break; 3384 } 3385 3386 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 3387 phba->iocb_rsp_size); 3388 irsp = &rspiocbp->iocb; 3389 3390 if (++pring->sli.sli3.rspidx >= portRspMax) 3391 pring->sli.sli3.rspidx = 0; 3392 3393 if (pring->ringno == LPFC_ELS_RING) { 3394 lpfc_debugfs_slow_ring_trc(phba, 3395 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 3396 *(((uint32_t *) irsp) + 4), 3397 *(((uint32_t *) irsp) + 6), 3398 *(((uint32_t *) irsp) + 7)); 3399 } 3400 3401 writel(pring->sli.sli3.rspidx, 3402 &phba->host_gp[pring->ringno].rspGetInx); 3403 3404 spin_unlock_irqrestore(&phba->hbalock, iflag); 3405 /* Handle the response IOCB */ 3406 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 3407 spin_lock_irqsave(&phba->hbalock, iflag); 3408 3409 /* 3410 * If the port response put pointer has not been updated, sync 3411 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 3412 * response put pointer. 3413 */ 3414 if (pring->sli.sli3.rspidx == portRspPut) { 3415 portRspPut = le32_to_cpu(pgp->rspPutInx); 3416 } 3417 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 3418 3419 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 3420 /* At least one response entry has been freed */ 3421 pring->stats.iocb_rsp_full++; 3422 /* SET RxRE_RSP in Chip Att register */ 3423 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3424 writel(status, phba->CAregaddr); 3425 readl(phba->CAregaddr); /* flush */ 3426 } 3427 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3428 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3429 pring->stats.iocb_cmd_empty++; 3430 3431 /* Force update of the local copy of cmdGetInx */ 3432 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3433 lpfc_sli_resume_iocb(phba, pring); 3434 3435 if ((pring->lpfc_sli_cmd_available)) 3436 (pring->lpfc_sli_cmd_available) (phba, pring); 3437 3438 } 3439 3440 spin_unlock_irqrestore(&phba->hbalock, iflag); 3441 return; 3442 } 3443 3444 /** 3445 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 3446 * @phba: Pointer to HBA context object. 3447 * @pring: Pointer to driver SLI ring object. 3448 * @mask: Host attention register mask for this ring. 3449 * 3450 * This function is called from the worker thread when there is a pending 3451 * ELS response iocb on the driver internal slow-path response iocb worker 3452 * queue. The caller does not hold any lock. The function will remove each 3453 * response iocb from the response worker queue and calls the handle 3454 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3455 **/ 3456 static void 3457 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 3458 struct lpfc_sli_ring *pring, uint32_t mask) 3459 { 3460 struct lpfc_iocbq *irspiocbq; 3461 struct hbq_dmabuf *dmabuf; 3462 struct lpfc_cq_event *cq_event; 3463 unsigned long iflag; 3464 3465 spin_lock_irqsave(&phba->hbalock, iflag); 3466 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 3467 spin_unlock_irqrestore(&phba->hbalock, iflag); 3468 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 3469 /* Get the response iocb from the head of work queue */ 3470 spin_lock_irqsave(&phba->hbalock, iflag); 3471 list_remove_head(&phba->sli4_hba.sp_queue_event, 3472 cq_event, struct lpfc_cq_event, list); 3473 spin_unlock_irqrestore(&phba->hbalock, iflag); 3474 3475 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 3476 case CQE_CODE_COMPL_WQE: 3477 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 3478 cq_event); 3479 /* Translate ELS WCQE to response IOCBQ */ 3480 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 3481 irspiocbq); 3482 if (irspiocbq) 3483 lpfc_sli_sp_handle_rspiocb(phba, pring, 3484 irspiocbq); 3485 break; 3486 case CQE_CODE_RECEIVE: 3487 case CQE_CODE_RECEIVE_V1: 3488 dmabuf = container_of(cq_event, struct hbq_dmabuf, 3489 cq_event); 3490 lpfc_sli4_handle_received_buffer(phba, dmabuf); 3491 break; 3492 default: 3493 break; 3494 } 3495 } 3496 } 3497 3498 /** 3499 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 3500 * @phba: Pointer to HBA context object. 3501 * @pring: Pointer to driver SLI ring object. 3502 * 3503 * This function aborts all iocbs in the given ring and frees all the iocb 3504 * objects in txq. This function issues an abort iocb for all the iocb commands 3505 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3506 * the return of this function. The caller is not required to hold any locks. 3507 **/ 3508 void 3509 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3510 { 3511 LIST_HEAD(completions); 3512 struct lpfc_iocbq *iocb, *next_iocb; 3513 3514 if (pring->ringno == LPFC_ELS_RING) { 3515 lpfc_fabric_abort_hba(phba); 3516 } 3517 3518 /* Error everything on txq and txcmplq 3519 * First do the txq. 3520 */ 3521 spin_lock_irq(&phba->hbalock); 3522 list_splice_init(&pring->txq, &completions); 3523 3524 /* Next issue ABTS for everything on the txcmplq */ 3525 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3526 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3527 3528 spin_unlock_irq(&phba->hbalock); 3529 3530 /* Cancel all the IOCBs from the completions list */ 3531 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 3532 IOERR_SLI_ABORTED); 3533 } 3534 3535 /** 3536 * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring 3537 * @phba: Pointer to HBA context object. 3538 * 3539 * This function flushes all iocbs in the fcp ring and frees all the iocb 3540 * objects in txq and txcmplq. This function will not issue abort iocbs 3541 * for all the iocb commands in txcmplq, they will just be returned with 3542 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 3543 * slot has been permanently disabled. 3544 **/ 3545 void 3546 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba) 3547 { 3548 LIST_HEAD(txq); 3549 LIST_HEAD(txcmplq); 3550 struct lpfc_sli *psli = &phba->sli; 3551 struct lpfc_sli_ring *pring; 3552 3553 /* Currently, only one fcp ring */ 3554 pring = &psli->ring[psli->fcp_ring]; 3555 3556 spin_lock_irq(&phba->hbalock); 3557 /* Retrieve everything on txq */ 3558 list_splice_init(&pring->txq, &txq); 3559 3560 /* Retrieve everything on the txcmplq */ 3561 list_splice_init(&pring->txcmplq, &txcmplq); 3562 3563 /* Indicate the I/O queues are flushed */ 3564 phba->hba_flag |= HBA_FCP_IOQ_FLUSH; 3565 spin_unlock_irq(&phba->hbalock); 3566 3567 /* Flush the txq */ 3568 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 3569 IOERR_SLI_DOWN); 3570 3571 /* Flush the txcmpq */ 3572 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 3573 IOERR_SLI_DOWN); 3574 } 3575 3576 /** 3577 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 3578 * @phba: Pointer to HBA context object. 3579 * @mask: Bit mask to be checked. 3580 * 3581 * This function reads the host status register and compares 3582 * with the provided bit mask to check if HBA completed 3583 * the restart. This function will wait in a loop for the 3584 * HBA to complete restart. If the HBA does not restart within 3585 * 15 iterations, the function will reset the HBA again. The 3586 * function returns 1 when HBA fail to restart otherwise returns 3587 * zero. 3588 **/ 3589 static int 3590 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 3591 { 3592 uint32_t status; 3593 int i = 0; 3594 int retval = 0; 3595 3596 /* Read the HBA Host Status Register */ 3597 if (lpfc_readl(phba->HSregaddr, &status)) 3598 return 1; 3599 3600 /* 3601 * Check status register every 100ms for 5 retries, then every 3602 * 500ms for 5, then every 2.5 sec for 5, then reset board and 3603 * every 2.5 sec for 4. 3604 * Break our of the loop if errors occurred during init. 3605 */ 3606 while (((status & mask) != mask) && 3607 !(status & HS_FFERM) && 3608 i++ < 20) { 3609 3610 if (i <= 5) 3611 msleep(10); 3612 else if (i <= 10) 3613 msleep(500); 3614 else 3615 msleep(2500); 3616 3617 if (i == 15) { 3618 /* Do post */ 3619 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 3620 lpfc_sli_brdrestart(phba); 3621 } 3622 /* Read the HBA Host Status Register */ 3623 if (lpfc_readl(phba->HSregaddr, &status)) { 3624 retval = 1; 3625 break; 3626 } 3627 } 3628 3629 /* Check to see if any errors occurred during init */ 3630 if ((status & HS_FFERM) || (i >= 20)) { 3631 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 3632 "2751 Adapter failed to restart, " 3633 "status reg x%x, FW Data: A8 x%x AC x%x\n", 3634 status, 3635 readl(phba->MBslimaddr + 0xa8), 3636 readl(phba->MBslimaddr + 0xac)); 3637 phba->link_state = LPFC_HBA_ERROR; 3638 retval = 1; 3639 } 3640 3641 return retval; 3642 } 3643 3644 /** 3645 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 3646 * @phba: Pointer to HBA context object. 3647 * @mask: Bit mask to be checked. 3648 * 3649 * This function checks the host status register to check if HBA is 3650 * ready. This function will wait in a loop for the HBA to be ready 3651 * If the HBA is not ready , the function will will reset the HBA PCI 3652 * function again. The function returns 1 when HBA fail to be ready 3653 * otherwise returns zero. 3654 **/ 3655 static int 3656 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 3657 { 3658 uint32_t status; 3659 int retval = 0; 3660 3661 /* Read the HBA Host Status Register */ 3662 status = lpfc_sli4_post_status_check(phba); 3663 3664 if (status) { 3665 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 3666 lpfc_sli_brdrestart(phba); 3667 status = lpfc_sli4_post_status_check(phba); 3668 } 3669 3670 /* Check to see if any errors occurred during init */ 3671 if (status) { 3672 phba->link_state = LPFC_HBA_ERROR; 3673 retval = 1; 3674 } else 3675 phba->sli4_hba.intr_enable = 0; 3676 3677 return retval; 3678 } 3679 3680 /** 3681 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 3682 * @phba: Pointer to HBA context object. 3683 * @mask: Bit mask to be checked. 3684 * 3685 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 3686 * from the API jump table function pointer from the lpfc_hba struct. 3687 **/ 3688 int 3689 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 3690 { 3691 return phba->lpfc_sli_brdready(phba, mask); 3692 } 3693 3694 #define BARRIER_TEST_PATTERN (0xdeadbeef) 3695 3696 /** 3697 * lpfc_reset_barrier - Make HBA ready for HBA reset 3698 * @phba: Pointer to HBA context object. 3699 * 3700 * This function is called before resetting an HBA. This function is called 3701 * with hbalock held and requests HBA to quiesce DMAs before a reset. 3702 **/ 3703 void lpfc_reset_barrier(struct lpfc_hba *phba) 3704 { 3705 uint32_t __iomem *resp_buf; 3706 uint32_t __iomem *mbox_buf; 3707 volatile uint32_t mbox; 3708 uint32_t hc_copy, ha_copy, resp_data; 3709 int i; 3710 uint8_t hdrtype; 3711 3712 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 3713 if (hdrtype != 0x80 || 3714 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 3715 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 3716 return; 3717 3718 /* 3719 * Tell the other part of the chip to suspend temporarily all 3720 * its DMA activity. 3721 */ 3722 resp_buf = phba->MBslimaddr; 3723 3724 /* Disable the error attention */ 3725 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 3726 return; 3727 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 3728 readl(phba->HCregaddr); /* flush */ 3729 phba->link_flag |= LS_IGNORE_ERATT; 3730 3731 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 3732 return; 3733 if (ha_copy & HA_ERATT) { 3734 /* Clear Chip error bit */ 3735 writel(HA_ERATT, phba->HAregaddr); 3736 phba->pport->stopped = 1; 3737 } 3738 3739 mbox = 0; 3740 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 3741 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 3742 3743 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 3744 mbox_buf = phba->MBslimaddr; 3745 writel(mbox, mbox_buf); 3746 3747 for (i = 0; i < 50; i++) { 3748 if (lpfc_readl((resp_buf + 1), &resp_data)) 3749 return; 3750 if (resp_data != ~(BARRIER_TEST_PATTERN)) 3751 mdelay(1); 3752 else 3753 break; 3754 } 3755 resp_data = 0; 3756 if (lpfc_readl((resp_buf + 1), &resp_data)) 3757 return; 3758 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 3759 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 3760 phba->pport->stopped) 3761 goto restore_hc; 3762 else 3763 goto clear_errat; 3764 } 3765 3766 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 3767 resp_data = 0; 3768 for (i = 0; i < 500; i++) { 3769 if (lpfc_readl(resp_buf, &resp_data)) 3770 return; 3771 if (resp_data != mbox) 3772 mdelay(1); 3773 else 3774 break; 3775 } 3776 3777 clear_errat: 3778 3779 while (++i < 500) { 3780 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 3781 return; 3782 if (!(ha_copy & HA_ERATT)) 3783 mdelay(1); 3784 else 3785 break; 3786 } 3787 3788 if (readl(phba->HAregaddr) & HA_ERATT) { 3789 writel(HA_ERATT, phba->HAregaddr); 3790 phba->pport->stopped = 1; 3791 } 3792 3793 restore_hc: 3794 phba->link_flag &= ~LS_IGNORE_ERATT; 3795 writel(hc_copy, phba->HCregaddr); 3796 readl(phba->HCregaddr); /* flush */ 3797 } 3798 3799 /** 3800 * lpfc_sli_brdkill - Issue a kill_board mailbox command 3801 * @phba: Pointer to HBA context object. 3802 * 3803 * This function issues a kill_board mailbox command and waits for 3804 * the error attention interrupt. This function is called for stopping 3805 * the firmware processing. The caller is not required to hold any 3806 * locks. This function calls lpfc_hba_down_post function to free 3807 * any pending commands after the kill. The function will return 1 when it 3808 * fails to kill the board else will return 0. 3809 **/ 3810 int 3811 lpfc_sli_brdkill(struct lpfc_hba *phba) 3812 { 3813 struct lpfc_sli *psli; 3814 LPFC_MBOXQ_t *pmb; 3815 uint32_t status; 3816 uint32_t ha_copy; 3817 int retval; 3818 int i = 0; 3819 3820 psli = &phba->sli; 3821 3822 /* Kill HBA */ 3823 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3824 "0329 Kill HBA Data: x%x x%x\n", 3825 phba->pport->port_state, psli->sli_flag); 3826 3827 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 3828 if (!pmb) 3829 return 1; 3830 3831 /* Disable the error attention */ 3832 spin_lock_irq(&phba->hbalock); 3833 if (lpfc_readl(phba->HCregaddr, &status)) { 3834 spin_unlock_irq(&phba->hbalock); 3835 mempool_free(pmb, phba->mbox_mem_pool); 3836 return 1; 3837 } 3838 status &= ~HC_ERINT_ENA; 3839 writel(status, phba->HCregaddr); 3840 readl(phba->HCregaddr); /* flush */ 3841 phba->link_flag |= LS_IGNORE_ERATT; 3842 spin_unlock_irq(&phba->hbalock); 3843 3844 lpfc_kill_board(phba, pmb); 3845 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 3846 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3847 3848 if (retval != MBX_SUCCESS) { 3849 if (retval != MBX_BUSY) 3850 mempool_free(pmb, phba->mbox_mem_pool); 3851 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3852 "2752 KILL_BOARD command failed retval %d\n", 3853 retval); 3854 spin_lock_irq(&phba->hbalock); 3855 phba->link_flag &= ~LS_IGNORE_ERATT; 3856 spin_unlock_irq(&phba->hbalock); 3857 return 1; 3858 } 3859 3860 spin_lock_irq(&phba->hbalock); 3861 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 3862 spin_unlock_irq(&phba->hbalock); 3863 3864 mempool_free(pmb, phba->mbox_mem_pool); 3865 3866 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 3867 * attention every 100ms for 3 seconds. If we don't get ERATT after 3868 * 3 seconds we still set HBA_ERROR state because the status of the 3869 * board is now undefined. 3870 */ 3871 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 3872 return 1; 3873 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 3874 mdelay(100); 3875 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 3876 return 1; 3877 } 3878 3879 del_timer_sync(&psli->mbox_tmo); 3880 if (ha_copy & HA_ERATT) { 3881 writel(HA_ERATT, phba->HAregaddr); 3882 phba->pport->stopped = 1; 3883 } 3884 spin_lock_irq(&phba->hbalock); 3885 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 3886 psli->mbox_active = NULL; 3887 phba->link_flag &= ~LS_IGNORE_ERATT; 3888 spin_unlock_irq(&phba->hbalock); 3889 3890 lpfc_hba_down_post(phba); 3891 phba->link_state = LPFC_HBA_ERROR; 3892 3893 return ha_copy & HA_ERATT ? 0 : 1; 3894 } 3895 3896 /** 3897 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 3898 * @phba: Pointer to HBA context object. 3899 * 3900 * This function resets the HBA by writing HC_INITFF to the control 3901 * register. After the HBA resets, this function resets all the iocb ring 3902 * indices. This function disables PCI layer parity checking during 3903 * the reset. 3904 * This function returns 0 always. 3905 * The caller is not required to hold any locks. 3906 **/ 3907 int 3908 lpfc_sli_brdreset(struct lpfc_hba *phba) 3909 { 3910 struct lpfc_sli *psli; 3911 struct lpfc_sli_ring *pring; 3912 uint16_t cfg_value; 3913 int i; 3914 3915 psli = &phba->sli; 3916 3917 /* Reset HBA */ 3918 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3919 "0325 Reset HBA Data: x%x x%x\n", 3920 phba->pport->port_state, psli->sli_flag); 3921 3922 /* perform board reset */ 3923 phba->fc_eventTag = 0; 3924 phba->link_events = 0; 3925 phba->pport->fc_myDID = 0; 3926 phba->pport->fc_prevDID = 0; 3927 3928 /* Turn off parity checking and serr during the physical reset */ 3929 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 3930 pci_write_config_word(phba->pcidev, PCI_COMMAND, 3931 (cfg_value & 3932 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 3933 3934 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 3935 3936 /* Now toggle INITFF bit in the Host Control Register */ 3937 writel(HC_INITFF, phba->HCregaddr); 3938 mdelay(1); 3939 readl(phba->HCregaddr); /* flush */ 3940 writel(0, phba->HCregaddr); 3941 readl(phba->HCregaddr); /* flush */ 3942 3943 /* Restore PCI cmd register */ 3944 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 3945 3946 /* Initialize relevant SLI info */ 3947 for (i = 0; i < psli->num_rings; i++) { 3948 pring = &psli->ring[i]; 3949 pring->flag = 0; 3950 pring->sli.sli3.rspidx = 0; 3951 pring->sli.sli3.next_cmdidx = 0; 3952 pring->sli.sli3.local_getidx = 0; 3953 pring->sli.sli3.cmdidx = 0; 3954 pring->missbufcnt = 0; 3955 } 3956 3957 phba->link_state = LPFC_WARM_START; 3958 return 0; 3959 } 3960 3961 /** 3962 * lpfc_sli4_brdreset - Reset a sli-4 HBA 3963 * @phba: Pointer to HBA context object. 3964 * 3965 * This function resets a SLI4 HBA. This function disables PCI layer parity 3966 * checking during resets the device. The caller is not required to hold 3967 * any locks. 3968 * 3969 * This function returns 0 always. 3970 **/ 3971 int 3972 lpfc_sli4_brdreset(struct lpfc_hba *phba) 3973 { 3974 struct lpfc_sli *psli = &phba->sli; 3975 uint16_t cfg_value; 3976 int rc; 3977 3978 /* Reset HBA */ 3979 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3980 "0295 Reset HBA Data: x%x x%x\n", 3981 phba->pport->port_state, psli->sli_flag); 3982 3983 /* perform board reset */ 3984 phba->fc_eventTag = 0; 3985 phba->link_events = 0; 3986 phba->pport->fc_myDID = 0; 3987 phba->pport->fc_prevDID = 0; 3988 3989 spin_lock_irq(&phba->hbalock); 3990 psli->sli_flag &= ~(LPFC_PROCESS_LA); 3991 phba->fcf.fcf_flag = 0; 3992 spin_unlock_irq(&phba->hbalock); 3993 3994 /* Now physically reset the device */ 3995 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 3996 "0389 Performing PCI function reset!\n"); 3997 3998 /* Turn off parity checking and serr during the physical reset */ 3999 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4000 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4001 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4002 4003 /* Perform FCoE PCI function reset before freeing queue memory */ 4004 rc = lpfc_pci_function_reset(phba); 4005 lpfc_sli4_queue_destroy(phba); 4006 4007 /* Restore PCI cmd register */ 4008 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4009 4010 return rc; 4011 } 4012 4013 /** 4014 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4015 * @phba: Pointer to HBA context object. 4016 * 4017 * This function is called in the SLI initialization code path to 4018 * restart the HBA. The caller is not required to hold any lock. 4019 * This function writes MBX_RESTART mailbox command to the SLIM and 4020 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4021 * function to free any pending commands. The function enables 4022 * POST only during the first initialization. The function returns zero. 4023 * The function does not guarantee completion of MBX_RESTART mailbox 4024 * command before the return of this function. 4025 **/ 4026 static int 4027 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4028 { 4029 MAILBOX_t *mb; 4030 struct lpfc_sli *psli; 4031 volatile uint32_t word0; 4032 void __iomem *to_slim; 4033 uint32_t hba_aer_enabled; 4034 4035 spin_lock_irq(&phba->hbalock); 4036 4037 /* Take PCIe device Advanced Error Reporting (AER) state */ 4038 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4039 4040 psli = &phba->sli; 4041 4042 /* Restart HBA */ 4043 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4044 "0337 Restart HBA Data: x%x x%x\n", 4045 phba->pport->port_state, psli->sli_flag); 4046 4047 word0 = 0; 4048 mb = (MAILBOX_t *) &word0; 4049 mb->mbxCommand = MBX_RESTART; 4050 mb->mbxHc = 1; 4051 4052 lpfc_reset_barrier(phba); 4053 4054 to_slim = phba->MBslimaddr; 4055 writel(*(uint32_t *) mb, to_slim); 4056 readl(to_slim); /* flush */ 4057 4058 /* Only skip post after fc_ffinit is completed */ 4059 if (phba->pport->port_state) 4060 word0 = 1; /* This is really setting up word1 */ 4061 else 4062 word0 = 0; /* This is really setting up word1 */ 4063 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4064 writel(*(uint32_t *) mb, to_slim); 4065 readl(to_slim); /* flush */ 4066 4067 lpfc_sli_brdreset(phba); 4068 phba->pport->stopped = 0; 4069 phba->link_state = LPFC_INIT_START; 4070 phba->hba_flag = 0; 4071 spin_unlock_irq(&phba->hbalock); 4072 4073 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4074 psli->stats_start = get_seconds(); 4075 4076 /* Give the INITFF and Post time to settle. */ 4077 mdelay(100); 4078 4079 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4080 if (hba_aer_enabled) 4081 pci_disable_pcie_error_reporting(phba->pcidev); 4082 4083 lpfc_hba_down_post(phba); 4084 4085 return 0; 4086 } 4087 4088 /** 4089 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4090 * @phba: Pointer to HBA context object. 4091 * 4092 * This function is called in the SLI initialization code path to restart 4093 * a SLI4 HBA. The caller is not required to hold any lock. 4094 * At the end of the function, it calls lpfc_hba_down_post function to 4095 * free any pending commands. 4096 **/ 4097 static int 4098 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4099 { 4100 struct lpfc_sli *psli = &phba->sli; 4101 uint32_t hba_aer_enabled; 4102 int rc; 4103 4104 /* Restart HBA */ 4105 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4106 "0296 Restart HBA Data: x%x x%x\n", 4107 phba->pport->port_state, psli->sli_flag); 4108 4109 /* Take PCIe device Advanced Error Reporting (AER) state */ 4110 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4111 4112 rc = lpfc_sli4_brdreset(phba); 4113 4114 spin_lock_irq(&phba->hbalock); 4115 phba->pport->stopped = 0; 4116 phba->link_state = LPFC_INIT_START; 4117 phba->hba_flag = 0; 4118 spin_unlock_irq(&phba->hbalock); 4119 4120 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4121 psli->stats_start = get_seconds(); 4122 4123 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4124 if (hba_aer_enabled) 4125 pci_disable_pcie_error_reporting(phba->pcidev); 4126 4127 lpfc_hba_down_post(phba); 4128 4129 return rc; 4130 } 4131 4132 /** 4133 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4134 * @phba: Pointer to HBA context object. 4135 * 4136 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4137 * API jump table function pointer from the lpfc_hba struct. 4138 **/ 4139 int 4140 lpfc_sli_brdrestart(struct lpfc_hba *phba) 4141 { 4142 return phba->lpfc_sli_brdrestart(phba); 4143 } 4144 4145 /** 4146 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4147 * @phba: Pointer to HBA context object. 4148 * 4149 * This function is called after a HBA restart to wait for successful 4150 * restart of the HBA. Successful restart of the HBA is indicated by 4151 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4152 * iteration, the function will restart the HBA again. The function returns 4153 * zero if HBA successfully restarted else returns negative error code. 4154 **/ 4155 static int 4156 lpfc_sli_chipset_init(struct lpfc_hba *phba) 4157 { 4158 uint32_t status, i = 0; 4159 4160 /* Read the HBA Host Status Register */ 4161 if (lpfc_readl(phba->HSregaddr, &status)) 4162 return -EIO; 4163 4164 /* Check status register to see what current state is */ 4165 i = 0; 4166 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4167 4168 /* Check every 10ms for 10 retries, then every 100ms for 90 4169 * retries, then every 1 sec for 50 retires for a total of 4170 * ~60 seconds before reset the board again and check every 4171 * 1 sec for 50 retries. The up to 60 seconds before the 4172 * board ready is required by the Falcon FIPS zeroization 4173 * complete, and any reset the board in between shall cause 4174 * restart of zeroization, further delay the board ready. 4175 */ 4176 if (i++ >= 200) { 4177 /* Adapter failed to init, timeout, status reg 4178 <status> */ 4179 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4180 "0436 Adapter failed to init, " 4181 "timeout, status reg x%x, " 4182 "FW Data: A8 x%x AC x%x\n", status, 4183 readl(phba->MBslimaddr + 0xa8), 4184 readl(phba->MBslimaddr + 0xac)); 4185 phba->link_state = LPFC_HBA_ERROR; 4186 return -ETIMEDOUT; 4187 } 4188 4189 /* Check to see if any errors occurred during init */ 4190 if (status & HS_FFERM) { 4191 /* ERROR: During chipset initialization */ 4192 /* Adapter failed to init, chipset, status reg 4193 <status> */ 4194 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4195 "0437 Adapter failed to init, " 4196 "chipset, status reg x%x, " 4197 "FW Data: A8 x%x AC x%x\n", status, 4198 readl(phba->MBslimaddr + 0xa8), 4199 readl(phba->MBslimaddr + 0xac)); 4200 phba->link_state = LPFC_HBA_ERROR; 4201 return -EIO; 4202 } 4203 4204 if (i <= 10) 4205 msleep(10); 4206 else if (i <= 100) 4207 msleep(100); 4208 else 4209 msleep(1000); 4210 4211 if (i == 150) { 4212 /* Do post */ 4213 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4214 lpfc_sli_brdrestart(phba); 4215 } 4216 /* Read the HBA Host Status Register */ 4217 if (lpfc_readl(phba->HSregaddr, &status)) 4218 return -EIO; 4219 } 4220 4221 /* Check to see if any errors occurred during init */ 4222 if (status & HS_FFERM) { 4223 /* ERROR: During chipset initialization */ 4224 /* Adapter failed to init, chipset, status reg <status> */ 4225 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4226 "0438 Adapter failed to init, chipset, " 4227 "status reg x%x, " 4228 "FW Data: A8 x%x AC x%x\n", status, 4229 readl(phba->MBslimaddr + 0xa8), 4230 readl(phba->MBslimaddr + 0xac)); 4231 phba->link_state = LPFC_HBA_ERROR; 4232 return -EIO; 4233 } 4234 4235 /* Clear all interrupt enable conditions */ 4236 writel(0, phba->HCregaddr); 4237 readl(phba->HCregaddr); /* flush */ 4238 4239 /* setup host attn register */ 4240 writel(0xffffffff, phba->HAregaddr); 4241 readl(phba->HAregaddr); /* flush */ 4242 return 0; 4243 } 4244 4245 /** 4246 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 4247 * 4248 * This function calculates and returns the number of HBQs required to be 4249 * configured. 4250 **/ 4251 int 4252 lpfc_sli_hbq_count(void) 4253 { 4254 return ARRAY_SIZE(lpfc_hbq_defs); 4255 } 4256 4257 /** 4258 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 4259 * 4260 * This function adds the number of hbq entries in every HBQ to get 4261 * the total number of hbq entries required for the HBA and returns 4262 * the total count. 4263 **/ 4264 static int 4265 lpfc_sli_hbq_entry_count(void) 4266 { 4267 int hbq_count = lpfc_sli_hbq_count(); 4268 int count = 0; 4269 int i; 4270 4271 for (i = 0; i < hbq_count; ++i) 4272 count += lpfc_hbq_defs[i]->entry_count; 4273 return count; 4274 } 4275 4276 /** 4277 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 4278 * 4279 * This function calculates amount of memory required for all hbq entries 4280 * to be configured and returns the total memory required. 4281 **/ 4282 int 4283 lpfc_sli_hbq_size(void) 4284 { 4285 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 4286 } 4287 4288 /** 4289 * lpfc_sli_hbq_setup - configure and initialize HBQs 4290 * @phba: Pointer to HBA context object. 4291 * 4292 * This function is called during the SLI initialization to configure 4293 * all the HBQs and post buffers to the HBQ. The caller is not 4294 * required to hold any locks. This function will return zero if successful 4295 * else it will return negative error code. 4296 **/ 4297 static int 4298 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 4299 { 4300 int hbq_count = lpfc_sli_hbq_count(); 4301 LPFC_MBOXQ_t *pmb; 4302 MAILBOX_t *pmbox; 4303 uint32_t hbqno; 4304 uint32_t hbq_entry_index; 4305 4306 /* Get a Mailbox buffer to setup mailbox 4307 * commands for HBA initialization 4308 */ 4309 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4310 4311 if (!pmb) 4312 return -ENOMEM; 4313 4314 pmbox = &pmb->u.mb; 4315 4316 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 4317 phba->link_state = LPFC_INIT_MBX_CMDS; 4318 phba->hbq_in_use = 1; 4319 4320 hbq_entry_index = 0; 4321 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 4322 phba->hbqs[hbqno].next_hbqPutIdx = 0; 4323 phba->hbqs[hbqno].hbqPutIdx = 0; 4324 phba->hbqs[hbqno].local_hbqGetIdx = 0; 4325 phba->hbqs[hbqno].entry_count = 4326 lpfc_hbq_defs[hbqno]->entry_count; 4327 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 4328 hbq_entry_index, pmb); 4329 hbq_entry_index += phba->hbqs[hbqno].entry_count; 4330 4331 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 4332 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 4333 mbxStatus <status>, ring <num> */ 4334 4335 lpfc_printf_log(phba, KERN_ERR, 4336 LOG_SLI | LOG_VPORT, 4337 "1805 Adapter failed to init. " 4338 "Data: x%x x%x x%x\n", 4339 pmbox->mbxCommand, 4340 pmbox->mbxStatus, hbqno); 4341 4342 phba->link_state = LPFC_HBA_ERROR; 4343 mempool_free(pmb, phba->mbox_mem_pool); 4344 return -ENXIO; 4345 } 4346 } 4347 phba->hbq_count = hbq_count; 4348 4349 mempool_free(pmb, phba->mbox_mem_pool); 4350 4351 /* Initially populate or replenish the HBQs */ 4352 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 4353 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 4354 return 0; 4355 } 4356 4357 /** 4358 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 4359 * @phba: Pointer to HBA context object. 4360 * 4361 * This function is called during the SLI initialization to configure 4362 * all the HBQs and post buffers to the HBQ. The caller is not 4363 * required to hold any locks. This function will return zero if successful 4364 * else it will return negative error code. 4365 **/ 4366 static int 4367 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 4368 { 4369 phba->hbq_in_use = 1; 4370 phba->hbqs[0].entry_count = lpfc_hbq_defs[0]->entry_count; 4371 phba->hbq_count = 1; 4372 /* Initially populate or replenish the HBQs */ 4373 lpfc_sli_hbqbuf_init_hbqs(phba, 0); 4374 return 0; 4375 } 4376 4377 /** 4378 * lpfc_sli_config_port - Issue config port mailbox command 4379 * @phba: Pointer to HBA context object. 4380 * @sli_mode: sli mode - 2/3 4381 * 4382 * This function is called by the sli intialization code path 4383 * to issue config_port mailbox command. This function restarts the 4384 * HBA firmware and issues a config_port mailbox command to configure 4385 * the SLI interface in the sli mode specified by sli_mode 4386 * variable. The caller is not required to hold any locks. 4387 * The function returns 0 if successful, else returns negative error 4388 * code. 4389 **/ 4390 int 4391 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 4392 { 4393 LPFC_MBOXQ_t *pmb; 4394 uint32_t resetcount = 0, rc = 0, done = 0; 4395 4396 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4397 if (!pmb) { 4398 phba->link_state = LPFC_HBA_ERROR; 4399 return -ENOMEM; 4400 } 4401 4402 phba->sli_rev = sli_mode; 4403 while (resetcount < 2 && !done) { 4404 spin_lock_irq(&phba->hbalock); 4405 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 4406 spin_unlock_irq(&phba->hbalock); 4407 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4408 lpfc_sli_brdrestart(phba); 4409 rc = lpfc_sli_chipset_init(phba); 4410 if (rc) 4411 break; 4412 4413 spin_lock_irq(&phba->hbalock); 4414 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4415 spin_unlock_irq(&phba->hbalock); 4416 resetcount++; 4417 4418 /* Call pre CONFIG_PORT mailbox command initialization. A 4419 * value of 0 means the call was successful. Any other 4420 * nonzero value is a failure, but if ERESTART is returned, 4421 * the driver may reset the HBA and try again. 4422 */ 4423 rc = lpfc_config_port_prep(phba); 4424 if (rc == -ERESTART) { 4425 phba->link_state = LPFC_LINK_UNKNOWN; 4426 continue; 4427 } else if (rc) 4428 break; 4429 4430 phba->link_state = LPFC_INIT_MBX_CMDS; 4431 lpfc_config_port(phba, pmb); 4432 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 4433 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 4434 LPFC_SLI3_HBQ_ENABLED | 4435 LPFC_SLI3_CRP_ENABLED | 4436 LPFC_SLI3_BG_ENABLED | 4437 LPFC_SLI3_DSS_ENABLED); 4438 if (rc != MBX_SUCCESS) { 4439 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4440 "0442 Adapter failed to init, mbxCmd x%x " 4441 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 4442 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 4443 spin_lock_irq(&phba->hbalock); 4444 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 4445 spin_unlock_irq(&phba->hbalock); 4446 rc = -ENXIO; 4447 } else { 4448 /* Allow asynchronous mailbox command to go through */ 4449 spin_lock_irq(&phba->hbalock); 4450 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 4451 spin_unlock_irq(&phba->hbalock); 4452 done = 1; 4453 4454 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 4455 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 4456 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 4457 "3110 Port did not grant ASABT\n"); 4458 } 4459 } 4460 if (!done) { 4461 rc = -EINVAL; 4462 goto do_prep_failed; 4463 } 4464 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 4465 if (!pmb->u.mb.un.varCfgPort.cMA) { 4466 rc = -ENXIO; 4467 goto do_prep_failed; 4468 } 4469 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 4470 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 4471 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 4472 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 4473 phba->max_vpi : phba->max_vports; 4474 4475 } else 4476 phba->max_vpi = 0; 4477 phba->fips_level = 0; 4478 phba->fips_spec_rev = 0; 4479 if (pmb->u.mb.un.varCfgPort.gdss) { 4480 phba->sli3_options |= LPFC_SLI3_DSS_ENABLED; 4481 phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level; 4482 phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev; 4483 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4484 "2850 Security Crypto Active. FIPS x%d " 4485 "(Spec Rev: x%d)", 4486 phba->fips_level, phba->fips_spec_rev); 4487 } 4488 if (pmb->u.mb.un.varCfgPort.sec_err) { 4489 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4490 "2856 Config Port Security Crypto " 4491 "Error: x%x ", 4492 pmb->u.mb.un.varCfgPort.sec_err); 4493 } 4494 if (pmb->u.mb.un.varCfgPort.gerbm) 4495 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 4496 if (pmb->u.mb.un.varCfgPort.gcrp) 4497 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 4498 4499 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 4500 phba->port_gp = phba->mbox->us.s3_pgp.port; 4501 4502 if (phba->cfg_enable_bg) { 4503 if (pmb->u.mb.un.varCfgPort.gbg) 4504 phba->sli3_options |= LPFC_SLI3_BG_ENABLED; 4505 else 4506 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4507 "0443 Adapter did not grant " 4508 "BlockGuard\n"); 4509 } 4510 } else { 4511 phba->hbq_get = NULL; 4512 phba->port_gp = phba->mbox->us.s2.port; 4513 phba->max_vpi = 0; 4514 } 4515 do_prep_failed: 4516 mempool_free(pmb, phba->mbox_mem_pool); 4517 return rc; 4518 } 4519 4520 4521 /** 4522 * lpfc_sli_hba_setup - SLI intialization function 4523 * @phba: Pointer to HBA context object. 4524 * 4525 * This function is the main SLI intialization function. This function 4526 * is called by the HBA intialization code, HBA reset code and HBA 4527 * error attention handler code. Caller is not required to hold any 4528 * locks. This function issues config_port mailbox command to configure 4529 * the SLI, setup iocb rings and HBQ rings. In the end the function 4530 * calls the config_port_post function to issue init_link mailbox 4531 * command and to start the discovery. The function will return zero 4532 * if successful, else it will return negative error code. 4533 **/ 4534 int 4535 lpfc_sli_hba_setup(struct lpfc_hba *phba) 4536 { 4537 uint32_t rc; 4538 int mode = 3, i; 4539 int longs; 4540 4541 switch (lpfc_sli_mode) { 4542 case 2: 4543 if (phba->cfg_enable_npiv) { 4544 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4545 "1824 NPIV enabled: Override lpfc_sli_mode " 4546 "parameter (%d) to auto (0).\n", 4547 lpfc_sli_mode); 4548 break; 4549 } 4550 mode = 2; 4551 break; 4552 case 0: 4553 case 3: 4554 break; 4555 default: 4556 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4557 "1819 Unrecognized lpfc_sli_mode " 4558 "parameter: %d.\n", lpfc_sli_mode); 4559 4560 break; 4561 } 4562 4563 rc = lpfc_sli_config_port(phba, mode); 4564 4565 if (rc && lpfc_sli_mode == 3) 4566 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4567 "1820 Unable to select SLI-3. " 4568 "Not supported by adapter.\n"); 4569 if (rc && mode != 2) 4570 rc = lpfc_sli_config_port(phba, 2); 4571 if (rc) 4572 goto lpfc_sli_hba_setup_error; 4573 4574 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 4575 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 4576 rc = pci_enable_pcie_error_reporting(phba->pcidev); 4577 if (!rc) { 4578 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4579 "2709 This device supports " 4580 "Advanced Error Reporting (AER)\n"); 4581 spin_lock_irq(&phba->hbalock); 4582 phba->hba_flag |= HBA_AER_ENABLED; 4583 spin_unlock_irq(&phba->hbalock); 4584 } else { 4585 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4586 "2708 This device does not support " 4587 "Advanced Error Reporting (AER)\n"); 4588 phba->cfg_aer_support = 0; 4589 } 4590 } 4591 4592 if (phba->sli_rev == 3) { 4593 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 4594 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 4595 } else { 4596 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 4597 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 4598 phba->sli3_options = 0; 4599 } 4600 4601 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4602 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 4603 phba->sli_rev, phba->max_vpi); 4604 rc = lpfc_sli_ring_map(phba); 4605 4606 if (rc) 4607 goto lpfc_sli_hba_setup_error; 4608 4609 /* Initialize VPIs. */ 4610 if (phba->sli_rev == LPFC_SLI_REV3) { 4611 /* 4612 * The VPI bitmask and physical ID array are allocated 4613 * and initialized once only - at driver load. A port 4614 * reset doesn't need to reinitialize this memory. 4615 */ 4616 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 4617 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 4618 phba->vpi_bmask = kzalloc(longs * sizeof(unsigned long), 4619 GFP_KERNEL); 4620 if (!phba->vpi_bmask) { 4621 rc = -ENOMEM; 4622 goto lpfc_sli_hba_setup_error; 4623 } 4624 4625 phba->vpi_ids = kzalloc( 4626 (phba->max_vpi+1) * sizeof(uint16_t), 4627 GFP_KERNEL); 4628 if (!phba->vpi_ids) { 4629 kfree(phba->vpi_bmask); 4630 rc = -ENOMEM; 4631 goto lpfc_sli_hba_setup_error; 4632 } 4633 for (i = 0; i < phba->max_vpi; i++) 4634 phba->vpi_ids[i] = i; 4635 } 4636 } 4637 4638 /* Init HBQs */ 4639 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 4640 rc = lpfc_sli_hbq_setup(phba); 4641 if (rc) 4642 goto lpfc_sli_hba_setup_error; 4643 } 4644 spin_lock_irq(&phba->hbalock); 4645 phba->sli.sli_flag |= LPFC_PROCESS_LA; 4646 spin_unlock_irq(&phba->hbalock); 4647 4648 rc = lpfc_config_port_post(phba); 4649 if (rc) 4650 goto lpfc_sli_hba_setup_error; 4651 4652 return rc; 4653 4654 lpfc_sli_hba_setup_error: 4655 phba->link_state = LPFC_HBA_ERROR; 4656 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4657 "0445 Firmware initialization failed\n"); 4658 return rc; 4659 } 4660 4661 /** 4662 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 4663 * @phba: Pointer to HBA context object. 4664 * @mboxq: mailbox pointer. 4665 * This function issue a dump mailbox command to read config region 4666 * 23 and parse the records in the region and populate driver 4667 * data structure. 4668 **/ 4669 static int 4670 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 4671 { 4672 LPFC_MBOXQ_t *mboxq; 4673 struct lpfc_dmabuf *mp; 4674 struct lpfc_mqe *mqe; 4675 uint32_t data_length; 4676 int rc; 4677 4678 /* Program the default value of vlan_id and fc_map */ 4679 phba->valid_vlan = 0; 4680 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 4681 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 4682 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 4683 4684 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4685 if (!mboxq) 4686 return -ENOMEM; 4687 4688 mqe = &mboxq->u.mqe; 4689 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 4690 rc = -ENOMEM; 4691 goto out_free_mboxq; 4692 } 4693 4694 mp = (struct lpfc_dmabuf *) mboxq->context1; 4695 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4696 4697 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 4698 "(%d):2571 Mailbox cmd x%x Status x%x " 4699 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 4700 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 4701 "CQ: x%x x%x x%x x%x\n", 4702 mboxq->vport ? mboxq->vport->vpi : 0, 4703 bf_get(lpfc_mqe_command, mqe), 4704 bf_get(lpfc_mqe_status, mqe), 4705 mqe->un.mb_words[0], mqe->un.mb_words[1], 4706 mqe->un.mb_words[2], mqe->un.mb_words[3], 4707 mqe->un.mb_words[4], mqe->un.mb_words[5], 4708 mqe->un.mb_words[6], mqe->un.mb_words[7], 4709 mqe->un.mb_words[8], mqe->un.mb_words[9], 4710 mqe->un.mb_words[10], mqe->un.mb_words[11], 4711 mqe->un.mb_words[12], mqe->un.mb_words[13], 4712 mqe->un.mb_words[14], mqe->un.mb_words[15], 4713 mqe->un.mb_words[16], mqe->un.mb_words[50], 4714 mboxq->mcqe.word0, 4715 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 4716 mboxq->mcqe.trailer); 4717 4718 if (rc) { 4719 lpfc_mbuf_free(phba, mp->virt, mp->phys); 4720 kfree(mp); 4721 rc = -EIO; 4722 goto out_free_mboxq; 4723 } 4724 data_length = mqe->un.mb_words[5]; 4725 if (data_length > DMP_RGN23_SIZE) { 4726 lpfc_mbuf_free(phba, mp->virt, mp->phys); 4727 kfree(mp); 4728 rc = -EIO; 4729 goto out_free_mboxq; 4730 } 4731 4732 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 4733 lpfc_mbuf_free(phba, mp->virt, mp->phys); 4734 kfree(mp); 4735 rc = 0; 4736 4737 out_free_mboxq: 4738 mempool_free(mboxq, phba->mbox_mem_pool); 4739 return rc; 4740 } 4741 4742 /** 4743 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 4744 * @phba: pointer to lpfc hba data structure. 4745 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 4746 * @vpd: pointer to the memory to hold resulting port vpd data. 4747 * @vpd_size: On input, the number of bytes allocated to @vpd. 4748 * On output, the number of data bytes in @vpd. 4749 * 4750 * This routine executes a READ_REV SLI4 mailbox command. In 4751 * addition, this routine gets the port vpd data. 4752 * 4753 * Return codes 4754 * 0 - successful 4755 * -ENOMEM - could not allocated memory. 4756 **/ 4757 static int 4758 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 4759 uint8_t *vpd, uint32_t *vpd_size) 4760 { 4761 int rc = 0; 4762 uint32_t dma_size; 4763 struct lpfc_dmabuf *dmabuf; 4764 struct lpfc_mqe *mqe; 4765 4766 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 4767 if (!dmabuf) 4768 return -ENOMEM; 4769 4770 /* 4771 * Get a DMA buffer for the vpd data resulting from the READ_REV 4772 * mailbox command. 4773 */ 4774 dma_size = *vpd_size; 4775 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 4776 dma_size, 4777 &dmabuf->phys, 4778 GFP_KERNEL); 4779 if (!dmabuf->virt) { 4780 kfree(dmabuf); 4781 return -ENOMEM; 4782 } 4783 memset(dmabuf->virt, 0, dma_size); 4784 4785 /* 4786 * The SLI4 implementation of READ_REV conflicts at word1, 4787 * bits 31:16 and SLI4 adds vpd functionality not present 4788 * in SLI3. This code corrects the conflicts. 4789 */ 4790 lpfc_read_rev(phba, mboxq); 4791 mqe = &mboxq->u.mqe; 4792 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 4793 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 4794 mqe->un.read_rev.word1 &= 0x0000FFFF; 4795 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 4796 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 4797 4798 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4799 if (rc) { 4800 dma_free_coherent(&phba->pcidev->dev, dma_size, 4801 dmabuf->virt, dmabuf->phys); 4802 kfree(dmabuf); 4803 return -EIO; 4804 } 4805 4806 /* 4807 * The available vpd length cannot be bigger than the 4808 * DMA buffer passed to the port. Catch the less than 4809 * case and update the caller's size. 4810 */ 4811 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 4812 *vpd_size = mqe->un.read_rev.avail_vpd_len; 4813 4814 memcpy(vpd, dmabuf->virt, *vpd_size); 4815 4816 dma_free_coherent(&phba->pcidev->dev, dma_size, 4817 dmabuf->virt, dmabuf->phys); 4818 kfree(dmabuf); 4819 return 0; 4820 } 4821 4822 /** 4823 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 4824 * @phba: pointer to lpfc hba data structure. 4825 * 4826 * This routine retrieves SLI4 device physical port name this PCI function 4827 * is attached to. 4828 * 4829 * Return codes 4830 * 0 - successful 4831 * otherwise - failed to retrieve physical port name 4832 **/ 4833 static int 4834 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 4835 { 4836 LPFC_MBOXQ_t *mboxq; 4837 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 4838 struct lpfc_controller_attribute *cntl_attr; 4839 struct lpfc_mbx_get_port_name *get_port_name; 4840 void *virtaddr = NULL; 4841 uint32_t alloclen, reqlen; 4842 uint32_t shdr_status, shdr_add_status; 4843 union lpfc_sli4_cfg_shdr *shdr; 4844 char cport_name = 0; 4845 int rc; 4846 4847 /* We assume nothing at this point */ 4848 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 4849 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 4850 4851 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4852 if (!mboxq) 4853 return -ENOMEM; 4854 /* obtain link type and link number via READ_CONFIG */ 4855 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 4856 lpfc_sli4_read_config(phba); 4857 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 4858 goto retrieve_ppname; 4859 4860 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 4861 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 4862 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 4863 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 4864 LPFC_SLI4_MBX_NEMBED); 4865 if (alloclen < reqlen) { 4866 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4867 "3084 Allocated DMA memory size (%d) is " 4868 "less than the requested DMA memory size " 4869 "(%d)\n", alloclen, reqlen); 4870 rc = -ENOMEM; 4871 goto out_free_mboxq; 4872 } 4873 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4874 virtaddr = mboxq->sge_array->addr[0]; 4875 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 4876 shdr = &mbx_cntl_attr->cfg_shdr; 4877 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 4878 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 4879 if (shdr_status || shdr_add_status || rc) { 4880 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4881 "3085 Mailbox x%x (x%x/x%x) failed, " 4882 "rc:x%x, status:x%x, add_status:x%x\n", 4883 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 4884 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 4885 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 4886 rc, shdr_status, shdr_add_status); 4887 rc = -ENXIO; 4888 goto out_free_mboxq; 4889 } 4890 cntl_attr = &mbx_cntl_attr->cntl_attr; 4891 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 4892 phba->sli4_hba.lnk_info.lnk_tp = 4893 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 4894 phba->sli4_hba.lnk_info.lnk_no = 4895 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 4896 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4897 "3086 lnk_type:%d, lnk_numb:%d\n", 4898 phba->sli4_hba.lnk_info.lnk_tp, 4899 phba->sli4_hba.lnk_info.lnk_no); 4900 4901 retrieve_ppname: 4902 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 4903 LPFC_MBOX_OPCODE_GET_PORT_NAME, 4904 sizeof(struct lpfc_mbx_get_port_name) - 4905 sizeof(struct lpfc_sli4_cfg_mhdr), 4906 LPFC_SLI4_MBX_EMBED); 4907 get_port_name = &mboxq->u.mqe.un.get_port_name; 4908 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 4909 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 4910 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 4911 phba->sli4_hba.lnk_info.lnk_tp); 4912 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4913 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 4914 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 4915 if (shdr_status || shdr_add_status || rc) { 4916 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4917 "3087 Mailbox x%x (x%x/x%x) failed: " 4918 "rc:x%x, status:x%x, add_status:x%x\n", 4919 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 4920 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 4921 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 4922 rc, shdr_status, shdr_add_status); 4923 rc = -ENXIO; 4924 goto out_free_mboxq; 4925 } 4926 switch (phba->sli4_hba.lnk_info.lnk_no) { 4927 case LPFC_LINK_NUMBER_0: 4928 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 4929 &get_port_name->u.response); 4930 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 4931 break; 4932 case LPFC_LINK_NUMBER_1: 4933 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 4934 &get_port_name->u.response); 4935 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 4936 break; 4937 case LPFC_LINK_NUMBER_2: 4938 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 4939 &get_port_name->u.response); 4940 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 4941 break; 4942 case LPFC_LINK_NUMBER_3: 4943 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 4944 &get_port_name->u.response); 4945 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 4946 break; 4947 default: 4948 break; 4949 } 4950 4951 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 4952 phba->Port[0] = cport_name; 4953 phba->Port[1] = '\0'; 4954 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4955 "3091 SLI get port name: %s\n", phba->Port); 4956 } 4957 4958 out_free_mboxq: 4959 if (rc != MBX_TIMEOUT) { 4960 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 4961 lpfc_sli4_mbox_cmd_free(phba, mboxq); 4962 else 4963 mempool_free(mboxq, phba->mbox_mem_pool); 4964 } 4965 return rc; 4966 } 4967 4968 /** 4969 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 4970 * @phba: pointer to lpfc hba data structure. 4971 * 4972 * This routine is called to explicitly arm the SLI4 device's completion and 4973 * event queues 4974 **/ 4975 static void 4976 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 4977 { 4978 int fcp_eqidx; 4979 4980 lpfc_sli4_cq_release(phba->sli4_hba.mbx_cq, LPFC_QUEUE_REARM); 4981 lpfc_sli4_cq_release(phba->sli4_hba.els_cq, LPFC_QUEUE_REARM); 4982 fcp_eqidx = 0; 4983 if (phba->sli4_hba.fcp_cq) { 4984 do { 4985 lpfc_sli4_cq_release(phba->sli4_hba.fcp_cq[fcp_eqidx], 4986 LPFC_QUEUE_REARM); 4987 } while (++fcp_eqidx < phba->cfg_fcp_io_channel); 4988 } 4989 if (phba->sli4_hba.hba_eq) { 4990 for (fcp_eqidx = 0; fcp_eqidx < phba->cfg_fcp_io_channel; 4991 fcp_eqidx++) 4992 lpfc_sli4_eq_release(phba->sli4_hba.hba_eq[fcp_eqidx], 4993 LPFC_QUEUE_REARM); 4994 } 4995 } 4996 4997 /** 4998 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 4999 * @phba: Pointer to HBA context object. 5000 * @type: The resource extent type. 5001 * @extnt_count: buffer to hold port available extent count. 5002 * @extnt_size: buffer to hold element count per extent. 5003 * 5004 * This function calls the port and retrievs the number of available 5005 * extents and their size for a particular extent type. 5006 * 5007 * Returns: 0 if successful. Nonzero otherwise. 5008 **/ 5009 int 5010 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5011 uint16_t *extnt_count, uint16_t *extnt_size) 5012 { 5013 int rc = 0; 5014 uint32_t length; 5015 uint32_t mbox_tmo; 5016 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5017 LPFC_MBOXQ_t *mbox; 5018 5019 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5020 if (!mbox) 5021 return -ENOMEM; 5022 5023 /* Find out how many extents are available for this resource type */ 5024 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5025 sizeof(struct lpfc_sli4_cfg_mhdr)); 5026 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5027 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5028 length, LPFC_SLI4_MBX_EMBED); 5029 5030 /* Send an extents count of 0 - the GET doesn't use it. */ 5031 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5032 LPFC_SLI4_MBX_EMBED); 5033 if (unlikely(rc)) { 5034 rc = -EIO; 5035 goto err_exit; 5036 } 5037 5038 if (!phba->sli4_hba.intr_enable) 5039 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5040 else { 5041 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5042 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5043 } 5044 if (unlikely(rc)) { 5045 rc = -EIO; 5046 goto err_exit; 5047 } 5048 5049 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5050 if (bf_get(lpfc_mbox_hdr_status, 5051 &rsrc_info->header.cfg_shdr.response)) { 5052 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5053 "2930 Failed to get resource extents " 5054 "Status 0x%x Add'l Status 0x%x\n", 5055 bf_get(lpfc_mbox_hdr_status, 5056 &rsrc_info->header.cfg_shdr.response), 5057 bf_get(lpfc_mbox_hdr_add_status, 5058 &rsrc_info->header.cfg_shdr.response)); 5059 rc = -EIO; 5060 goto err_exit; 5061 } 5062 5063 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5064 &rsrc_info->u.rsp); 5065 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5066 &rsrc_info->u.rsp); 5067 5068 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5069 "3162 Retrieved extents type-%d from port: count:%d, " 5070 "size:%d\n", type, *extnt_count, *extnt_size); 5071 5072 err_exit: 5073 mempool_free(mbox, phba->mbox_mem_pool); 5074 return rc; 5075 } 5076 5077 /** 5078 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5079 * @phba: Pointer to HBA context object. 5080 * @type: The extent type to check. 5081 * 5082 * This function reads the current available extents from the port and checks 5083 * if the extent count or extent size has changed since the last access. 5084 * Callers use this routine post port reset to understand if there is a 5085 * extent reprovisioning requirement. 5086 * 5087 * Returns: 5088 * -Error: error indicates problem. 5089 * 1: Extent count or size has changed. 5090 * 0: No changes. 5091 **/ 5092 static int 5093 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5094 { 5095 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5096 uint16_t size_diff, rsrc_ext_size; 5097 int rc = 0; 5098 struct lpfc_rsrc_blks *rsrc_entry; 5099 struct list_head *rsrc_blk_list = NULL; 5100 5101 size_diff = 0; 5102 curr_ext_cnt = 0; 5103 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5104 &rsrc_ext_cnt, 5105 &rsrc_ext_size); 5106 if (unlikely(rc)) 5107 return -EIO; 5108 5109 switch (type) { 5110 case LPFC_RSC_TYPE_FCOE_RPI: 5111 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5112 break; 5113 case LPFC_RSC_TYPE_FCOE_VPI: 5114 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5115 break; 5116 case LPFC_RSC_TYPE_FCOE_XRI: 5117 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5118 break; 5119 case LPFC_RSC_TYPE_FCOE_VFI: 5120 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5121 break; 5122 default: 5123 break; 5124 } 5125 5126 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5127 curr_ext_cnt++; 5128 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5129 size_diff++; 5130 } 5131 5132 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5133 rc = 1; 5134 5135 return rc; 5136 } 5137 5138 /** 5139 * lpfc_sli4_cfg_post_extnts - 5140 * @phba: Pointer to HBA context object. 5141 * @extnt_cnt - number of available extents. 5142 * @type - the extent type (rpi, xri, vfi, vpi). 5143 * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5144 * @mbox - pointer to the caller's allocated mailbox structure. 5145 * 5146 * This function executes the extents allocation request. It also 5147 * takes care of the amount of memory needed to allocate or get the 5148 * allocated extents. It is the caller's responsibility to evaluate 5149 * the response. 5150 * 5151 * Returns: 5152 * -Error: Error value describes the condition found. 5153 * 0: if successful 5154 **/ 5155 static int 5156 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 5157 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 5158 { 5159 int rc = 0; 5160 uint32_t req_len; 5161 uint32_t emb_len; 5162 uint32_t alloc_len, mbox_tmo; 5163 5164 /* Calculate the total requested length of the dma memory */ 5165 req_len = extnt_cnt * sizeof(uint16_t); 5166 5167 /* 5168 * Calculate the size of an embedded mailbox. The uint32_t 5169 * accounts for extents-specific word. 5170 */ 5171 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 5172 sizeof(uint32_t); 5173 5174 /* 5175 * Presume the allocation and response will fit into an embedded 5176 * mailbox. If not true, reconfigure to a non-embedded mailbox. 5177 */ 5178 *emb = LPFC_SLI4_MBX_EMBED; 5179 if (req_len > emb_len) { 5180 req_len = extnt_cnt * sizeof(uint16_t) + 5181 sizeof(union lpfc_sli4_cfg_shdr) + 5182 sizeof(uint32_t); 5183 *emb = LPFC_SLI4_MBX_NEMBED; 5184 } 5185 5186 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5187 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 5188 req_len, *emb); 5189 if (alloc_len < req_len) { 5190 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5191 "2982 Allocated DMA memory size (x%x) is " 5192 "less than the requested DMA memory " 5193 "size (x%x)\n", alloc_len, req_len); 5194 return -ENOMEM; 5195 } 5196 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 5197 if (unlikely(rc)) 5198 return -EIO; 5199 5200 if (!phba->sli4_hba.intr_enable) 5201 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5202 else { 5203 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5204 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5205 } 5206 5207 if (unlikely(rc)) 5208 rc = -EIO; 5209 return rc; 5210 } 5211 5212 /** 5213 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 5214 * @phba: Pointer to HBA context object. 5215 * @type: The resource extent type to allocate. 5216 * 5217 * This function allocates the number of elements for the specified 5218 * resource type. 5219 **/ 5220 static int 5221 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 5222 { 5223 bool emb = false; 5224 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 5225 uint16_t rsrc_id, rsrc_start, j, k; 5226 uint16_t *ids; 5227 int i, rc; 5228 unsigned long longs; 5229 unsigned long *bmask; 5230 struct lpfc_rsrc_blks *rsrc_blks; 5231 LPFC_MBOXQ_t *mbox; 5232 uint32_t length; 5233 struct lpfc_id_range *id_array = NULL; 5234 void *virtaddr = NULL; 5235 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 5236 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 5237 struct list_head *ext_blk_list; 5238 5239 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5240 &rsrc_cnt, 5241 &rsrc_size); 5242 if (unlikely(rc)) 5243 return -EIO; 5244 5245 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 5246 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5247 "3009 No available Resource Extents " 5248 "for resource type 0x%x: Count: 0x%x, " 5249 "Size 0x%x\n", type, rsrc_cnt, 5250 rsrc_size); 5251 return -ENOMEM; 5252 } 5253 5254 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 5255 "2903 Post resource extents type-0x%x: " 5256 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 5257 5258 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5259 if (!mbox) 5260 return -ENOMEM; 5261 5262 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 5263 if (unlikely(rc)) { 5264 rc = -EIO; 5265 goto err_exit; 5266 } 5267 5268 /* 5269 * Figure out where the response is located. Then get local pointers 5270 * to the response data. The port does not guarantee to respond to 5271 * all extents counts request so update the local variable with the 5272 * allocated count from the port. 5273 */ 5274 if (emb == LPFC_SLI4_MBX_EMBED) { 5275 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 5276 id_array = &rsrc_ext->u.rsp.id[0]; 5277 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 5278 } else { 5279 virtaddr = mbox->sge_array->addr[0]; 5280 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 5281 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 5282 id_array = &n_rsrc->id; 5283 } 5284 5285 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 5286 rsrc_id_cnt = rsrc_cnt * rsrc_size; 5287 5288 /* 5289 * Based on the resource size and count, correct the base and max 5290 * resource values. 5291 */ 5292 length = sizeof(struct lpfc_rsrc_blks); 5293 switch (type) { 5294 case LPFC_RSC_TYPE_FCOE_RPI: 5295 phba->sli4_hba.rpi_bmask = kzalloc(longs * 5296 sizeof(unsigned long), 5297 GFP_KERNEL); 5298 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 5299 rc = -ENOMEM; 5300 goto err_exit; 5301 } 5302 phba->sli4_hba.rpi_ids = kzalloc(rsrc_id_cnt * 5303 sizeof(uint16_t), 5304 GFP_KERNEL); 5305 if (unlikely(!phba->sli4_hba.rpi_ids)) { 5306 kfree(phba->sli4_hba.rpi_bmask); 5307 rc = -ENOMEM; 5308 goto err_exit; 5309 } 5310 5311 /* 5312 * The next_rpi was initialized with the maximum available 5313 * count but the port may allocate a smaller number. Catch 5314 * that case and update the next_rpi. 5315 */ 5316 phba->sli4_hba.next_rpi = rsrc_id_cnt; 5317 5318 /* Initialize local ptrs for common extent processing later. */ 5319 bmask = phba->sli4_hba.rpi_bmask; 5320 ids = phba->sli4_hba.rpi_ids; 5321 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5322 break; 5323 case LPFC_RSC_TYPE_FCOE_VPI: 5324 phba->vpi_bmask = kzalloc(longs * 5325 sizeof(unsigned long), 5326 GFP_KERNEL); 5327 if (unlikely(!phba->vpi_bmask)) { 5328 rc = -ENOMEM; 5329 goto err_exit; 5330 } 5331 phba->vpi_ids = kzalloc(rsrc_id_cnt * 5332 sizeof(uint16_t), 5333 GFP_KERNEL); 5334 if (unlikely(!phba->vpi_ids)) { 5335 kfree(phba->vpi_bmask); 5336 rc = -ENOMEM; 5337 goto err_exit; 5338 } 5339 5340 /* Initialize local ptrs for common extent processing later. */ 5341 bmask = phba->vpi_bmask; 5342 ids = phba->vpi_ids; 5343 ext_blk_list = &phba->lpfc_vpi_blk_list; 5344 break; 5345 case LPFC_RSC_TYPE_FCOE_XRI: 5346 phba->sli4_hba.xri_bmask = kzalloc(longs * 5347 sizeof(unsigned long), 5348 GFP_KERNEL); 5349 if (unlikely(!phba->sli4_hba.xri_bmask)) { 5350 rc = -ENOMEM; 5351 goto err_exit; 5352 } 5353 phba->sli4_hba.max_cfg_param.xri_used = 0; 5354 phba->sli4_hba.xri_ids = kzalloc(rsrc_id_cnt * 5355 sizeof(uint16_t), 5356 GFP_KERNEL); 5357 if (unlikely(!phba->sli4_hba.xri_ids)) { 5358 kfree(phba->sli4_hba.xri_bmask); 5359 rc = -ENOMEM; 5360 goto err_exit; 5361 } 5362 5363 /* Initialize local ptrs for common extent processing later. */ 5364 bmask = phba->sli4_hba.xri_bmask; 5365 ids = phba->sli4_hba.xri_ids; 5366 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5367 break; 5368 case LPFC_RSC_TYPE_FCOE_VFI: 5369 phba->sli4_hba.vfi_bmask = kzalloc(longs * 5370 sizeof(unsigned long), 5371 GFP_KERNEL); 5372 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 5373 rc = -ENOMEM; 5374 goto err_exit; 5375 } 5376 phba->sli4_hba.vfi_ids = kzalloc(rsrc_id_cnt * 5377 sizeof(uint16_t), 5378 GFP_KERNEL); 5379 if (unlikely(!phba->sli4_hba.vfi_ids)) { 5380 kfree(phba->sli4_hba.vfi_bmask); 5381 rc = -ENOMEM; 5382 goto err_exit; 5383 } 5384 5385 /* Initialize local ptrs for common extent processing later. */ 5386 bmask = phba->sli4_hba.vfi_bmask; 5387 ids = phba->sli4_hba.vfi_ids; 5388 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5389 break; 5390 default: 5391 /* Unsupported Opcode. Fail call. */ 5392 id_array = NULL; 5393 bmask = NULL; 5394 ids = NULL; 5395 ext_blk_list = NULL; 5396 goto err_exit; 5397 } 5398 5399 /* 5400 * Complete initializing the extent configuration with the 5401 * allocated ids assigned to this function. The bitmask serves 5402 * as an index into the array and manages the available ids. The 5403 * array just stores the ids communicated to the port via the wqes. 5404 */ 5405 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 5406 if ((i % 2) == 0) 5407 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 5408 &id_array[k]); 5409 else 5410 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 5411 &id_array[k]); 5412 5413 rsrc_blks = kzalloc(length, GFP_KERNEL); 5414 if (unlikely(!rsrc_blks)) { 5415 rc = -ENOMEM; 5416 kfree(bmask); 5417 kfree(ids); 5418 goto err_exit; 5419 } 5420 rsrc_blks->rsrc_start = rsrc_id; 5421 rsrc_blks->rsrc_size = rsrc_size; 5422 list_add_tail(&rsrc_blks->list, ext_blk_list); 5423 rsrc_start = rsrc_id; 5424 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) 5425 phba->sli4_hba.scsi_xri_start = rsrc_start + 5426 lpfc_sli4_get_els_iocb_cnt(phba); 5427 5428 while (rsrc_id < (rsrc_start + rsrc_size)) { 5429 ids[j] = rsrc_id; 5430 rsrc_id++; 5431 j++; 5432 } 5433 /* Entire word processed. Get next word.*/ 5434 if ((i % 2) == 1) 5435 k++; 5436 } 5437 err_exit: 5438 lpfc_sli4_mbox_cmd_free(phba, mbox); 5439 return rc; 5440 } 5441 5442 /** 5443 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 5444 * @phba: Pointer to HBA context object. 5445 * @type: the extent's type. 5446 * 5447 * This function deallocates all extents of a particular resource type. 5448 * SLI4 does not allow for deallocating a particular extent range. It 5449 * is the caller's responsibility to release all kernel memory resources. 5450 **/ 5451 static int 5452 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 5453 { 5454 int rc; 5455 uint32_t length, mbox_tmo = 0; 5456 LPFC_MBOXQ_t *mbox; 5457 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 5458 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 5459 5460 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5461 if (!mbox) 5462 return -ENOMEM; 5463 5464 /* 5465 * This function sends an embedded mailbox because it only sends the 5466 * the resource type. All extents of this type are released by the 5467 * port. 5468 */ 5469 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 5470 sizeof(struct lpfc_sli4_cfg_mhdr)); 5471 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5472 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 5473 length, LPFC_SLI4_MBX_EMBED); 5474 5475 /* Send an extents count of 0 - the dealloc doesn't use it. */ 5476 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5477 LPFC_SLI4_MBX_EMBED); 5478 if (unlikely(rc)) { 5479 rc = -EIO; 5480 goto out_free_mbox; 5481 } 5482 if (!phba->sli4_hba.intr_enable) 5483 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5484 else { 5485 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5486 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5487 } 5488 if (unlikely(rc)) { 5489 rc = -EIO; 5490 goto out_free_mbox; 5491 } 5492 5493 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 5494 if (bf_get(lpfc_mbox_hdr_status, 5495 &dealloc_rsrc->header.cfg_shdr.response)) { 5496 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5497 "2919 Failed to release resource extents " 5498 "for type %d - Status 0x%x Add'l Status 0x%x. " 5499 "Resource memory not released.\n", 5500 type, 5501 bf_get(lpfc_mbox_hdr_status, 5502 &dealloc_rsrc->header.cfg_shdr.response), 5503 bf_get(lpfc_mbox_hdr_add_status, 5504 &dealloc_rsrc->header.cfg_shdr.response)); 5505 rc = -EIO; 5506 goto out_free_mbox; 5507 } 5508 5509 /* Release kernel memory resources for the specific type. */ 5510 switch (type) { 5511 case LPFC_RSC_TYPE_FCOE_VPI: 5512 kfree(phba->vpi_bmask); 5513 kfree(phba->vpi_ids); 5514 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5515 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5516 &phba->lpfc_vpi_blk_list, list) { 5517 list_del_init(&rsrc_blk->list); 5518 kfree(rsrc_blk); 5519 } 5520 phba->sli4_hba.max_cfg_param.vpi_used = 0; 5521 break; 5522 case LPFC_RSC_TYPE_FCOE_XRI: 5523 kfree(phba->sli4_hba.xri_bmask); 5524 kfree(phba->sli4_hba.xri_ids); 5525 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5526 &phba->sli4_hba.lpfc_xri_blk_list, list) { 5527 list_del_init(&rsrc_blk->list); 5528 kfree(rsrc_blk); 5529 } 5530 break; 5531 case LPFC_RSC_TYPE_FCOE_VFI: 5532 kfree(phba->sli4_hba.vfi_bmask); 5533 kfree(phba->sli4_hba.vfi_ids); 5534 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5535 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5536 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 5537 list_del_init(&rsrc_blk->list); 5538 kfree(rsrc_blk); 5539 } 5540 break; 5541 case LPFC_RSC_TYPE_FCOE_RPI: 5542 /* RPI bitmask and physical id array are cleaned up earlier. */ 5543 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5544 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 5545 list_del_init(&rsrc_blk->list); 5546 kfree(rsrc_blk); 5547 } 5548 break; 5549 default: 5550 break; 5551 } 5552 5553 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5554 5555 out_free_mbox: 5556 mempool_free(mbox, phba->mbox_mem_pool); 5557 return rc; 5558 } 5559 5560 /** 5561 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 5562 * @phba: Pointer to HBA context object. 5563 * 5564 * This function allocates all SLI4 resource identifiers. 5565 **/ 5566 int 5567 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 5568 { 5569 int i, rc, error = 0; 5570 uint16_t count, base; 5571 unsigned long longs; 5572 5573 if (!phba->sli4_hba.rpi_hdrs_in_use) 5574 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 5575 if (phba->sli4_hba.extents_in_use) { 5576 /* 5577 * The port supports resource extents. The XRI, VPI, VFI, RPI 5578 * resource extent count must be read and allocated before 5579 * provisioning the resource id arrays. 5580 */ 5581 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 5582 LPFC_IDX_RSRC_RDY) { 5583 /* 5584 * Extent-based resources are set - the driver could 5585 * be in a port reset. Figure out if any corrective 5586 * actions need to be taken. 5587 */ 5588 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5589 LPFC_RSC_TYPE_FCOE_VFI); 5590 if (rc != 0) 5591 error++; 5592 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5593 LPFC_RSC_TYPE_FCOE_VPI); 5594 if (rc != 0) 5595 error++; 5596 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5597 LPFC_RSC_TYPE_FCOE_XRI); 5598 if (rc != 0) 5599 error++; 5600 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5601 LPFC_RSC_TYPE_FCOE_RPI); 5602 if (rc != 0) 5603 error++; 5604 5605 /* 5606 * It's possible that the number of resources 5607 * provided to this port instance changed between 5608 * resets. Detect this condition and reallocate 5609 * resources. Otherwise, there is no action. 5610 */ 5611 if (error) { 5612 lpfc_printf_log(phba, KERN_INFO, 5613 LOG_MBOX | LOG_INIT, 5614 "2931 Detected extent resource " 5615 "change. Reallocating all " 5616 "extents.\n"); 5617 rc = lpfc_sli4_dealloc_extent(phba, 5618 LPFC_RSC_TYPE_FCOE_VFI); 5619 rc = lpfc_sli4_dealloc_extent(phba, 5620 LPFC_RSC_TYPE_FCOE_VPI); 5621 rc = lpfc_sli4_dealloc_extent(phba, 5622 LPFC_RSC_TYPE_FCOE_XRI); 5623 rc = lpfc_sli4_dealloc_extent(phba, 5624 LPFC_RSC_TYPE_FCOE_RPI); 5625 } else 5626 return 0; 5627 } 5628 5629 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 5630 if (unlikely(rc)) 5631 goto err_exit; 5632 5633 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 5634 if (unlikely(rc)) 5635 goto err_exit; 5636 5637 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 5638 if (unlikely(rc)) 5639 goto err_exit; 5640 5641 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 5642 if (unlikely(rc)) 5643 goto err_exit; 5644 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 5645 LPFC_IDX_RSRC_RDY); 5646 return rc; 5647 } else { 5648 /* 5649 * The port does not support resource extents. The XRI, VPI, 5650 * VFI, RPI resource ids were determined from READ_CONFIG. 5651 * Just allocate the bitmasks and provision the resource id 5652 * arrays. If a port reset is active, the resources don't 5653 * need any action - just exit. 5654 */ 5655 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 5656 LPFC_IDX_RSRC_RDY) { 5657 lpfc_sli4_dealloc_resource_identifiers(phba); 5658 lpfc_sli4_remove_rpis(phba); 5659 } 5660 /* RPIs. */ 5661 count = phba->sli4_hba.max_cfg_param.max_rpi; 5662 if (count <= 0) { 5663 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5664 "3279 Invalid provisioning of " 5665 "rpi:%d\n", count); 5666 rc = -EINVAL; 5667 goto err_exit; 5668 } 5669 base = phba->sli4_hba.max_cfg_param.rpi_base; 5670 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 5671 phba->sli4_hba.rpi_bmask = kzalloc(longs * 5672 sizeof(unsigned long), 5673 GFP_KERNEL); 5674 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 5675 rc = -ENOMEM; 5676 goto err_exit; 5677 } 5678 phba->sli4_hba.rpi_ids = kzalloc(count * 5679 sizeof(uint16_t), 5680 GFP_KERNEL); 5681 if (unlikely(!phba->sli4_hba.rpi_ids)) { 5682 rc = -ENOMEM; 5683 goto free_rpi_bmask; 5684 } 5685 5686 for (i = 0; i < count; i++) 5687 phba->sli4_hba.rpi_ids[i] = base + i; 5688 5689 /* VPIs. */ 5690 count = phba->sli4_hba.max_cfg_param.max_vpi; 5691 if (count <= 0) { 5692 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5693 "3280 Invalid provisioning of " 5694 "vpi:%d\n", count); 5695 rc = -EINVAL; 5696 goto free_rpi_ids; 5697 } 5698 base = phba->sli4_hba.max_cfg_param.vpi_base; 5699 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 5700 phba->vpi_bmask = kzalloc(longs * 5701 sizeof(unsigned long), 5702 GFP_KERNEL); 5703 if (unlikely(!phba->vpi_bmask)) { 5704 rc = -ENOMEM; 5705 goto free_rpi_ids; 5706 } 5707 phba->vpi_ids = kzalloc(count * 5708 sizeof(uint16_t), 5709 GFP_KERNEL); 5710 if (unlikely(!phba->vpi_ids)) { 5711 rc = -ENOMEM; 5712 goto free_vpi_bmask; 5713 } 5714 5715 for (i = 0; i < count; i++) 5716 phba->vpi_ids[i] = base + i; 5717 5718 /* XRIs. */ 5719 count = phba->sli4_hba.max_cfg_param.max_xri; 5720 if (count <= 0) { 5721 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5722 "3281 Invalid provisioning of " 5723 "xri:%d\n", count); 5724 rc = -EINVAL; 5725 goto free_vpi_ids; 5726 } 5727 base = phba->sli4_hba.max_cfg_param.xri_base; 5728 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 5729 phba->sli4_hba.xri_bmask = kzalloc(longs * 5730 sizeof(unsigned long), 5731 GFP_KERNEL); 5732 if (unlikely(!phba->sli4_hba.xri_bmask)) { 5733 rc = -ENOMEM; 5734 goto free_vpi_ids; 5735 } 5736 phba->sli4_hba.max_cfg_param.xri_used = 0; 5737 phba->sli4_hba.xri_ids = kzalloc(count * 5738 sizeof(uint16_t), 5739 GFP_KERNEL); 5740 if (unlikely(!phba->sli4_hba.xri_ids)) { 5741 rc = -ENOMEM; 5742 goto free_xri_bmask; 5743 } 5744 5745 for (i = 0; i < count; i++) 5746 phba->sli4_hba.xri_ids[i] = base + i; 5747 5748 /* VFIs. */ 5749 count = phba->sli4_hba.max_cfg_param.max_vfi; 5750 if (count <= 0) { 5751 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5752 "3282 Invalid provisioning of " 5753 "vfi:%d\n", count); 5754 rc = -EINVAL; 5755 goto free_xri_ids; 5756 } 5757 base = phba->sli4_hba.max_cfg_param.vfi_base; 5758 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 5759 phba->sli4_hba.vfi_bmask = kzalloc(longs * 5760 sizeof(unsigned long), 5761 GFP_KERNEL); 5762 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 5763 rc = -ENOMEM; 5764 goto free_xri_ids; 5765 } 5766 phba->sli4_hba.vfi_ids = kzalloc(count * 5767 sizeof(uint16_t), 5768 GFP_KERNEL); 5769 if (unlikely(!phba->sli4_hba.vfi_ids)) { 5770 rc = -ENOMEM; 5771 goto free_vfi_bmask; 5772 } 5773 5774 for (i = 0; i < count; i++) 5775 phba->sli4_hba.vfi_ids[i] = base + i; 5776 5777 /* 5778 * Mark all resources ready. An HBA reset doesn't need 5779 * to reset the initialization. 5780 */ 5781 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 5782 LPFC_IDX_RSRC_RDY); 5783 return 0; 5784 } 5785 5786 free_vfi_bmask: 5787 kfree(phba->sli4_hba.vfi_bmask); 5788 free_xri_ids: 5789 kfree(phba->sli4_hba.xri_ids); 5790 free_xri_bmask: 5791 kfree(phba->sli4_hba.xri_bmask); 5792 free_vpi_ids: 5793 kfree(phba->vpi_ids); 5794 free_vpi_bmask: 5795 kfree(phba->vpi_bmask); 5796 free_rpi_ids: 5797 kfree(phba->sli4_hba.rpi_ids); 5798 free_rpi_bmask: 5799 kfree(phba->sli4_hba.rpi_bmask); 5800 err_exit: 5801 return rc; 5802 } 5803 5804 /** 5805 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 5806 * @phba: Pointer to HBA context object. 5807 * 5808 * This function allocates the number of elements for the specified 5809 * resource type. 5810 **/ 5811 int 5812 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 5813 { 5814 if (phba->sli4_hba.extents_in_use) { 5815 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 5816 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 5817 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 5818 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 5819 } else { 5820 kfree(phba->vpi_bmask); 5821 phba->sli4_hba.max_cfg_param.vpi_used = 0; 5822 kfree(phba->vpi_ids); 5823 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5824 kfree(phba->sli4_hba.xri_bmask); 5825 kfree(phba->sli4_hba.xri_ids); 5826 kfree(phba->sli4_hba.vfi_bmask); 5827 kfree(phba->sli4_hba.vfi_ids); 5828 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5829 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5830 } 5831 5832 return 0; 5833 } 5834 5835 /** 5836 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 5837 * @phba: Pointer to HBA context object. 5838 * @type: The resource extent type. 5839 * @extnt_count: buffer to hold port extent count response 5840 * @extnt_size: buffer to hold port extent size response. 5841 * 5842 * This function calls the port to read the host allocated extents 5843 * for a particular type. 5844 **/ 5845 int 5846 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 5847 uint16_t *extnt_cnt, uint16_t *extnt_size) 5848 { 5849 bool emb; 5850 int rc = 0; 5851 uint16_t curr_blks = 0; 5852 uint32_t req_len, emb_len; 5853 uint32_t alloc_len, mbox_tmo; 5854 struct list_head *blk_list_head; 5855 struct lpfc_rsrc_blks *rsrc_blk; 5856 LPFC_MBOXQ_t *mbox; 5857 void *virtaddr = NULL; 5858 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 5859 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 5860 union lpfc_sli4_cfg_shdr *shdr; 5861 5862 switch (type) { 5863 case LPFC_RSC_TYPE_FCOE_VPI: 5864 blk_list_head = &phba->lpfc_vpi_blk_list; 5865 break; 5866 case LPFC_RSC_TYPE_FCOE_XRI: 5867 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 5868 break; 5869 case LPFC_RSC_TYPE_FCOE_VFI: 5870 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 5871 break; 5872 case LPFC_RSC_TYPE_FCOE_RPI: 5873 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 5874 break; 5875 default: 5876 return -EIO; 5877 } 5878 5879 /* Count the number of extents currently allocatd for this type. */ 5880 list_for_each_entry(rsrc_blk, blk_list_head, list) { 5881 if (curr_blks == 0) { 5882 /* 5883 * The GET_ALLOCATED mailbox does not return the size, 5884 * just the count. The size should be just the size 5885 * stored in the current allocated block and all sizes 5886 * for an extent type are the same so set the return 5887 * value now. 5888 */ 5889 *extnt_size = rsrc_blk->rsrc_size; 5890 } 5891 curr_blks++; 5892 } 5893 5894 /* Calculate the total requested length of the dma memory. */ 5895 req_len = curr_blks * sizeof(uint16_t); 5896 5897 /* 5898 * Calculate the size of an embedded mailbox. The uint32_t 5899 * accounts for extents-specific word. 5900 */ 5901 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 5902 sizeof(uint32_t); 5903 5904 /* 5905 * Presume the allocation and response will fit into an embedded 5906 * mailbox. If not true, reconfigure to a non-embedded mailbox. 5907 */ 5908 emb = LPFC_SLI4_MBX_EMBED; 5909 req_len = emb_len; 5910 if (req_len > emb_len) { 5911 req_len = curr_blks * sizeof(uint16_t) + 5912 sizeof(union lpfc_sli4_cfg_shdr) + 5913 sizeof(uint32_t); 5914 emb = LPFC_SLI4_MBX_NEMBED; 5915 } 5916 5917 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5918 if (!mbox) 5919 return -ENOMEM; 5920 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 5921 5922 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5923 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 5924 req_len, emb); 5925 if (alloc_len < req_len) { 5926 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5927 "2983 Allocated DMA memory size (x%x) is " 5928 "less than the requested DMA memory " 5929 "size (x%x)\n", alloc_len, req_len); 5930 rc = -ENOMEM; 5931 goto err_exit; 5932 } 5933 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 5934 if (unlikely(rc)) { 5935 rc = -EIO; 5936 goto err_exit; 5937 } 5938 5939 if (!phba->sli4_hba.intr_enable) 5940 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5941 else { 5942 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5943 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5944 } 5945 5946 if (unlikely(rc)) { 5947 rc = -EIO; 5948 goto err_exit; 5949 } 5950 5951 /* 5952 * Figure out where the response is located. Then get local pointers 5953 * to the response data. The port does not guarantee to respond to 5954 * all extents counts request so update the local variable with the 5955 * allocated count from the port. 5956 */ 5957 if (emb == LPFC_SLI4_MBX_EMBED) { 5958 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 5959 shdr = &rsrc_ext->header.cfg_shdr; 5960 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 5961 } else { 5962 virtaddr = mbox->sge_array->addr[0]; 5963 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 5964 shdr = &n_rsrc->cfg_shdr; 5965 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 5966 } 5967 5968 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 5969 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5970 "2984 Failed to read allocated resources " 5971 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 5972 type, 5973 bf_get(lpfc_mbox_hdr_status, &shdr->response), 5974 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 5975 rc = -EIO; 5976 goto err_exit; 5977 } 5978 err_exit: 5979 lpfc_sli4_mbox_cmd_free(phba, mbox); 5980 return rc; 5981 } 5982 5983 /** 5984 * lpfc_sli4_repost_els_sgl_list - Repsot the els buffers sgl pages as block 5985 * @phba: pointer to lpfc hba data structure. 5986 * 5987 * This routine walks the list of els buffers that have been allocated and 5988 * repost them to the port by using SGL block post. This is needed after a 5989 * pci_function_reset/warm_start or start. It attempts to construct blocks 5990 * of els buffer sgls which contains contiguous xris and uses the non-embedded 5991 * SGL block post mailbox commands to post them to the port. For single els 5992 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 5993 * mailbox command for posting. 5994 * 5995 * Returns: 0 = success, non-zero failure. 5996 **/ 5997 static int 5998 lpfc_sli4_repost_els_sgl_list(struct lpfc_hba *phba) 5999 { 6000 struct lpfc_sglq *sglq_entry = NULL; 6001 struct lpfc_sglq *sglq_entry_next = NULL; 6002 struct lpfc_sglq *sglq_entry_first = NULL; 6003 int status, total_cnt, post_cnt = 0, num_posted = 0, block_cnt = 0; 6004 int last_xritag = NO_XRI; 6005 LIST_HEAD(prep_sgl_list); 6006 LIST_HEAD(blck_sgl_list); 6007 LIST_HEAD(allc_sgl_list); 6008 LIST_HEAD(post_sgl_list); 6009 LIST_HEAD(free_sgl_list); 6010 6011 spin_lock_irq(&phba->hbalock); 6012 list_splice_init(&phba->sli4_hba.lpfc_sgl_list, &allc_sgl_list); 6013 spin_unlock_irq(&phba->hbalock); 6014 6015 total_cnt = phba->sli4_hba.els_xri_cnt; 6016 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 6017 &allc_sgl_list, list) { 6018 list_del_init(&sglq_entry->list); 6019 block_cnt++; 6020 if ((last_xritag != NO_XRI) && 6021 (sglq_entry->sli4_xritag != last_xritag + 1)) { 6022 /* a hole in xri block, form a sgl posting block */ 6023 list_splice_init(&prep_sgl_list, &blck_sgl_list); 6024 post_cnt = block_cnt - 1; 6025 /* prepare list for next posting block */ 6026 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6027 block_cnt = 1; 6028 } else { 6029 /* prepare list for next posting block */ 6030 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6031 /* enough sgls for non-embed sgl mbox command */ 6032 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 6033 list_splice_init(&prep_sgl_list, 6034 &blck_sgl_list); 6035 post_cnt = block_cnt; 6036 block_cnt = 0; 6037 } 6038 } 6039 num_posted++; 6040 6041 /* keep track of last sgl's xritag */ 6042 last_xritag = sglq_entry->sli4_xritag; 6043 6044 /* end of repost sgl list condition for els buffers */ 6045 if (num_posted == phba->sli4_hba.els_xri_cnt) { 6046 if (post_cnt == 0) { 6047 list_splice_init(&prep_sgl_list, 6048 &blck_sgl_list); 6049 post_cnt = block_cnt; 6050 } else if (block_cnt == 1) { 6051 status = lpfc_sli4_post_sgl(phba, 6052 sglq_entry->phys, 0, 6053 sglq_entry->sli4_xritag); 6054 if (!status) { 6055 /* successful, put sgl to posted list */ 6056 list_add_tail(&sglq_entry->list, 6057 &post_sgl_list); 6058 } else { 6059 /* Failure, put sgl to free list */ 6060 lpfc_printf_log(phba, KERN_WARNING, 6061 LOG_SLI, 6062 "3159 Failed to post els " 6063 "sgl, xritag:x%x\n", 6064 sglq_entry->sli4_xritag); 6065 list_add_tail(&sglq_entry->list, 6066 &free_sgl_list); 6067 total_cnt--; 6068 } 6069 } 6070 } 6071 6072 /* continue until a nembed page worth of sgls */ 6073 if (post_cnt == 0) 6074 continue; 6075 6076 /* post the els buffer list sgls as a block */ 6077 status = lpfc_sli4_post_els_sgl_list(phba, &blck_sgl_list, 6078 post_cnt); 6079 6080 if (!status) { 6081 /* success, put sgl list to posted sgl list */ 6082 list_splice_init(&blck_sgl_list, &post_sgl_list); 6083 } else { 6084 /* Failure, put sgl list to free sgl list */ 6085 sglq_entry_first = list_first_entry(&blck_sgl_list, 6086 struct lpfc_sglq, 6087 list); 6088 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6089 "3160 Failed to post els sgl-list, " 6090 "xritag:x%x-x%x\n", 6091 sglq_entry_first->sli4_xritag, 6092 (sglq_entry_first->sli4_xritag + 6093 post_cnt - 1)); 6094 list_splice_init(&blck_sgl_list, &free_sgl_list); 6095 total_cnt -= post_cnt; 6096 } 6097 6098 /* don't reset xirtag due to hole in xri block */ 6099 if (block_cnt == 0) 6100 last_xritag = NO_XRI; 6101 6102 /* reset els sgl post count for next round of posting */ 6103 post_cnt = 0; 6104 } 6105 /* update the number of XRIs posted for ELS */ 6106 phba->sli4_hba.els_xri_cnt = total_cnt; 6107 6108 /* free the els sgls failed to post */ 6109 lpfc_free_sgl_list(phba, &free_sgl_list); 6110 6111 /* push els sgls posted to the availble list */ 6112 if (!list_empty(&post_sgl_list)) { 6113 spin_lock_irq(&phba->hbalock); 6114 list_splice_init(&post_sgl_list, 6115 &phba->sli4_hba.lpfc_sgl_list); 6116 spin_unlock_irq(&phba->hbalock); 6117 } else { 6118 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6119 "3161 Failure to post els sgl to port.\n"); 6120 return -EIO; 6121 } 6122 return 0; 6123 } 6124 6125 /** 6126 * lpfc_sli4_hba_setup - SLI4 device intialization PCI function 6127 * @phba: Pointer to HBA context object. 6128 * 6129 * This function is the main SLI4 device intialization PCI function. This 6130 * function is called by the HBA intialization code, HBA reset code and 6131 * HBA error attention handler code. Caller is not required to hold any 6132 * locks. 6133 **/ 6134 int 6135 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 6136 { 6137 int rc; 6138 LPFC_MBOXQ_t *mboxq; 6139 struct lpfc_mqe *mqe; 6140 uint8_t *vpd; 6141 uint32_t vpd_size; 6142 uint32_t ftr_rsp = 0; 6143 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 6144 struct lpfc_vport *vport = phba->pport; 6145 struct lpfc_dmabuf *mp; 6146 6147 /* Perform a PCI function reset to start from clean */ 6148 rc = lpfc_pci_function_reset(phba); 6149 if (unlikely(rc)) 6150 return -ENODEV; 6151 6152 /* Check the HBA Host Status Register for readyness */ 6153 rc = lpfc_sli4_post_status_check(phba); 6154 if (unlikely(rc)) 6155 return -ENODEV; 6156 else { 6157 spin_lock_irq(&phba->hbalock); 6158 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 6159 spin_unlock_irq(&phba->hbalock); 6160 } 6161 6162 /* 6163 * Allocate a single mailbox container for initializing the 6164 * port. 6165 */ 6166 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6167 if (!mboxq) 6168 return -ENOMEM; 6169 6170 /* Issue READ_REV to collect vpd and FW information. */ 6171 vpd_size = SLI4_PAGE_SIZE; 6172 vpd = kzalloc(vpd_size, GFP_KERNEL); 6173 if (!vpd) { 6174 rc = -ENOMEM; 6175 goto out_free_mbox; 6176 } 6177 6178 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 6179 if (unlikely(rc)) { 6180 kfree(vpd); 6181 goto out_free_mbox; 6182 } 6183 mqe = &mboxq->u.mqe; 6184 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 6185 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) 6186 phba->hba_flag |= HBA_FCOE_MODE; 6187 else 6188 phba->hba_flag &= ~HBA_FCOE_MODE; 6189 6190 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 6191 LPFC_DCBX_CEE_MODE) 6192 phba->hba_flag |= HBA_FIP_SUPPORT; 6193 else 6194 phba->hba_flag &= ~HBA_FIP_SUPPORT; 6195 6196 phba->hba_flag &= ~HBA_FCP_IOQ_FLUSH; 6197 6198 if (phba->sli_rev != LPFC_SLI_REV4) { 6199 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6200 "0376 READ_REV Error. SLI Level %d " 6201 "FCoE enabled %d\n", 6202 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 6203 rc = -EIO; 6204 kfree(vpd); 6205 goto out_free_mbox; 6206 } 6207 6208 /* 6209 * Continue initialization with default values even if driver failed 6210 * to read FCoE param config regions, only read parameters if the 6211 * board is FCoE 6212 */ 6213 if (phba->hba_flag & HBA_FCOE_MODE && 6214 lpfc_sli4_read_fcoe_params(phba)) 6215 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 6216 "2570 Failed to read FCoE parameters\n"); 6217 6218 /* 6219 * Retrieve sli4 device physical port name, failure of doing it 6220 * is considered as non-fatal. 6221 */ 6222 rc = lpfc_sli4_retrieve_pport_name(phba); 6223 if (!rc) 6224 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6225 "3080 Successful retrieving SLI4 device " 6226 "physical port name: %s.\n", phba->Port); 6227 6228 /* 6229 * Evaluate the read rev and vpd data. Populate the driver 6230 * state with the results. If this routine fails, the failure 6231 * is not fatal as the driver will use generic values. 6232 */ 6233 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 6234 if (unlikely(!rc)) { 6235 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6236 "0377 Error %d parsing vpd. " 6237 "Using defaults.\n", rc); 6238 rc = 0; 6239 } 6240 kfree(vpd); 6241 6242 /* Save information as VPD data */ 6243 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 6244 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 6245 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 6246 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 6247 &mqe->un.read_rev); 6248 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 6249 &mqe->un.read_rev); 6250 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 6251 &mqe->un.read_rev); 6252 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 6253 &mqe->un.read_rev); 6254 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 6255 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 6256 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 6257 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 6258 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 6259 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 6260 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6261 "(%d):0380 READ_REV Status x%x " 6262 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 6263 mboxq->vport ? mboxq->vport->vpi : 0, 6264 bf_get(lpfc_mqe_status, mqe), 6265 phba->vpd.rev.opFwName, 6266 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 6267 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 6268 6269 /* 6270 * Discover the port's supported feature set and match it against the 6271 * hosts requests. 6272 */ 6273 lpfc_request_features(phba, mboxq); 6274 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6275 if (unlikely(rc)) { 6276 rc = -EIO; 6277 goto out_free_mbox; 6278 } 6279 6280 /* 6281 * The port must support FCP initiator mode as this is the 6282 * only mode running in the host. 6283 */ 6284 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 6285 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6286 "0378 No support for fcpi mode.\n"); 6287 ftr_rsp++; 6288 } 6289 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 6290 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 6291 else 6292 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 6293 /* 6294 * If the port cannot support the host's requested features 6295 * then turn off the global config parameters to disable the 6296 * feature in the driver. This is not a fatal error. 6297 */ 6298 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 6299 if (phba->cfg_enable_bg) { 6300 if (bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)) 6301 phba->sli3_options |= LPFC_SLI3_BG_ENABLED; 6302 else 6303 ftr_rsp++; 6304 } 6305 6306 if (phba->max_vpi && phba->cfg_enable_npiv && 6307 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 6308 ftr_rsp++; 6309 6310 if (ftr_rsp) { 6311 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6312 "0379 Feature Mismatch Data: x%08x %08x " 6313 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 6314 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 6315 phba->cfg_enable_npiv, phba->max_vpi); 6316 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 6317 phba->cfg_enable_bg = 0; 6318 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 6319 phba->cfg_enable_npiv = 0; 6320 } 6321 6322 /* These SLI3 features are assumed in SLI4 */ 6323 spin_lock_irq(&phba->hbalock); 6324 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 6325 spin_unlock_irq(&phba->hbalock); 6326 6327 /* 6328 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 6329 * calls depends on these resources to complete port setup. 6330 */ 6331 rc = lpfc_sli4_alloc_resource_identifiers(phba); 6332 if (rc) { 6333 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6334 "2920 Failed to alloc Resource IDs " 6335 "rc = x%x\n", rc); 6336 goto out_free_mbox; 6337 } 6338 6339 /* Read the port's service parameters. */ 6340 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 6341 if (rc) { 6342 phba->link_state = LPFC_HBA_ERROR; 6343 rc = -ENOMEM; 6344 goto out_free_mbox; 6345 } 6346 6347 mboxq->vport = vport; 6348 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6349 mp = (struct lpfc_dmabuf *) mboxq->context1; 6350 if (rc == MBX_SUCCESS) { 6351 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 6352 rc = 0; 6353 } 6354 6355 /* 6356 * This memory was allocated by the lpfc_read_sparam routine. Release 6357 * it to the mbuf pool. 6358 */ 6359 lpfc_mbuf_free(phba, mp->virt, mp->phys); 6360 kfree(mp); 6361 mboxq->context1 = NULL; 6362 if (unlikely(rc)) { 6363 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6364 "0382 READ_SPARAM command failed " 6365 "status %d, mbxStatus x%x\n", 6366 rc, bf_get(lpfc_mqe_status, mqe)); 6367 phba->link_state = LPFC_HBA_ERROR; 6368 rc = -EIO; 6369 goto out_free_mbox; 6370 } 6371 6372 lpfc_update_vport_wwn(vport); 6373 6374 /* Update the fc_host data structures with new wwn. */ 6375 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 6376 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 6377 6378 /* update host els and scsi xri-sgl sizes and mappings */ 6379 rc = lpfc_sli4_xri_sgl_update(phba); 6380 if (unlikely(rc)) { 6381 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6382 "1400 Failed to update xri-sgl size and " 6383 "mapping: %d\n", rc); 6384 goto out_free_mbox; 6385 } 6386 6387 /* register the els sgl pool to the port */ 6388 rc = lpfc_sli4_repost_els_sgl_list(phba); 6389 if (unlikely(rc)) { 6390 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6391 "0582 Error %d during els sgl post " 6392 "operation\n", rc); 6393 rc = -ENODEV; 6394 goto out_free_mbox; 6395 } 6396 6397 /* register the allocated scsi sgl pool to the port */ 6398 rc = lpfc_sli4_repost_scsi_sgl_list(phba); 6399 if (unlikely(rc)) { 6400 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6401 "0383 Error %d during scsi sgl post " 6402 "operation\n", rc); 6403 /* Some Scsi buffers were moved to the abort scsi list */ 6404 /* A pci function reset will repost them */ 6405 rc = -ENODEV; 6406 goto out_free_mbox; 6407 } 6408 6409 /* Post the rpi header region to the device. */ 6410 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 6411 if (unlikely(rc)) { 6412 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6413 "0393 Error %d during rpi post operation\n", 6414 rc); 6415 rc = -ENODEV; 6416 goto out_free_mbox; 6417 } 6418 lpfc_sli4_node_prep(phba); 6419 6420 /* Create all the SLI4 queues */ 6421 rc = lpfc_sli4_queue_create(phba); 6422 if (rc) { 6423 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6424 "3089 Failed to allocate queues\n"); 6425 rc = -ENODEV; 6426 goto out_stop_timers; 6427 } 6428 /* Set up all the queues to the device */ 6429 rc = lpfc_sli4_queue_setup(phba); 6430 if (unlikely(rc)) { 6431 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6432 "0381 Error %d during queue setup.\n ", rc); 6433 goto out_destroy_queue; 6434 } 6435 6436 /* Arm the CQs and then EQs on device */ 6437 lpfc_sli4_arm_cqeq_intr(phba); 6438 6439 /* Indicate device interrupt mode */ 6440 phba->sli4_hba.intr_enable = 1; 6441 6442 /* Allow asynchronous mailbox command to go through */ 6443 spin_lock_irq(&phba->hbalock); 6444 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 6445 spin_unlock_irq(&phba->hbalock); 6446 6447 /* Post receive buffers to the device */ 6448 lpfc_sli4_rb_setup(phba); 6449 6450 /* Reset HBA FCF states after HBA reset */ 6451 phba->fcf.fcf_flag = 0; 6452 phba->fcf.current_rec.flag = 0; 6453 6454 /* Start the ELS watchdog timer */ 6455 mod_timer(&vport->els_tmofunc, 6456 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 6457 6458 /* Start heart beat timer */ 6459 mod_timer(&phba->hb_tmofunc, 6460 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 6461 phba->hb_outstanding = 0; 6462 phba->last_completion_time = jiffies; 6463 6464 /* Start error attention (ERATT) polling timer */ 6465 mod_timer(&phba->eratt_poll, 6466 jiffies + msecs_to_jiffies(1000 * LPFC_ERATT_POLL_INTERVAL)); 6467 6468 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 6469 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 6470 rc = pci_enable_pcie_error_reporting(phba->pcidev); 6471 if (!rc) { 6472 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6473 "2829 This device supports " 6474 "Advanced Error Reporting (AER)\n"); 6475 spin_lock_irq(&phba->hbalock); 6476 phba->hba_flag |= HBA_AER_ENABLED; 6477 spin_unlock_irq(&phba->hbalock); 6478 } else { 6479 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6480 "2830 This device does not support " 6481 "Advanced Error Reporting (AER)\n"); 6482 phba->cfg_aer_support = 0; 6483 } 6484 rc = 0; 6485 } 6486 6487 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 6488 /* 6489 * The FC Port needs to register FCFI (index 0) 6490 */ 6491 lpfc_reg_fcfi(phba, mboxq); 6492 mboxq->vport = phba->pport; 6493 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6494 if (rc != MBX_SUCCESS) 6495 goto out_unset_queue; 6496 rc = 0; 6497 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 6498 &mboxq->u.mqe.un.reg_fcfi); 6499 6500 /* Check if the port is configured to be disabled */ 6501 lpfc_sli_read_link_ste(phba); 6502 } 6503 6504 /* 6505 * The port is ready, set the host's link state to LINK_DOWN 6506 * in preparation for link interrupts. 6507 */ 6508 spin_lock_irq(&phba->hbalock); 6509 phba->link_state = LPFC_LINK_DOWN; 6510 spin_unlock_irq(&phba->hbalock); 6511 if (!(phba->hba_flag & HBA_FCOE_MODE) && 6512 (phba->hba_flag & LINK_DISABLED)) { 6513 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 6514 "3103 Adapter Link is disabled.\n"); 6515 lpfc_down_link(phba, mboxq); 6516 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6517 if (rc != MBX_SUCCESS) { 6518 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 6519 "3104 Adapter failed to issue " 6520 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 6521 goto out_unset_queue; 6522 } 6523 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 6524 /* don't perform init_link on SLI4 FC port loopback test */ 6525 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 6526 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 6527 if (rc) 6528 goto out_unset_queue; 6529 } 6530 } 6531 mempool_free(mboxq, phba->mbox_mem_pool); 6532 return rc; 6533 out_unset_queue: 6534 /* Unset all the queues set up in this routine when error out */ 6535 lpfc_sli4_queue_unset(phba); 6536 out_destroy_queue: 6537 lpfc_sli4_queue_destroy(phba); 6538 out_stop_timers: 6539 lpfc_stop_hba_timers(phba); 6540 out_free_mbox: 6541 mempool_free(mboxq, phba->mbox_mem_pool); 6542 return rc; 6543 } 6544 6545 /** 6546 * lpfc_mbox_timeout - Timeout call back function for mbox timer 6547 * @ptr: context object - pointer to hba structure. 6548 * 6549 * This is the callback function for mailbox timer. The mailbox 6550 * timer is armed when a new mailbox command is issued and the timer 6551 * is deleted when the mailbox complete. The function is called by 6552 * the kernel timer code when a mailbox does not complete within 6553 * expected time. This function wakes up the worker thread to 6554 * process the mailbox timeout and returns. All the processing is 6555 * done by the worker thread function lpfc_mbox_timeout_handler. 6556 **/ 6557 void 6558 lpfc_mbox_timeout(unsigned long ptr) 6559 { 6560 struct lpfc_hba *phba = (struct lpfc_hba *) ptr; 6561 unsigned long iflag; 6562 uint32_t tmo_posted; 6563 6564 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 6565 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 6566 if (!tmo_posted) 6567 phba->pport->work_port_events |= WORKER_MBOX_TMO; 6568 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 6569 6570 if (!tmo_posted) 6571 lpfc_worker_wake_up(phba); 6572 return; 6573 } 6574 6575 6576 /** 6577 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 6578 * @phba: Pointer to HBA context object. 6579 * 6580 * This function is called from worker thread when a mailbox command times out. 6581 * The caller is not required to hold any locks. This function will reset the 6582 * HBA and recover all the pending commands. 6583 **/ 6584 void 6585 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 6586 { 6587 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 6588 MAILBOX_t *mb = &pmbox->u.mb; 6589 struct lpfc_sli *psli = &phba->sli; 6590 struct lpfc_sli_ring *pring; 6591 6592 /* Check the pmbox pointer first. There is a race condition 6593 * between the mbox timeout handler getting executed in the 6594 * worklist and the mailbox actually completing. When this 6595 * race condition occurs, the mbox_active will be NULL. 6596 */ 6597 spin_lock_irq(&phba->hbalock); 6598 if (pmbox == NULL) { 6599 lpfc_printf_log(phba, KERN_WARNING, 6600 LOG_MBOX | LOG_SLI, 6601 "0353 Active Mailbox cleared - mailbox timeout " 6602 "exiting\n"); 6603 spin_unlock_irq(&phba->hbalock); 6604 return; 6605 } 6606 6607 /* Mbox cmd <mbxCommand> timeout */ 6608 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6609 "0310 Mailbox command x%x timeout Data: x%x x%x x%p\n", 6610 mb->mbxCommand, 6611 phba->pport->port_state, 6612 phba->sli.sli_flag, 6613 phba->sli.mbox_active); 6614 spin_unlock_irq(&phba->hbalock); 6615 6616 /* Setting state unknown so lpfc_sli_abort_iocb_ring 6617 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 6618 * it to fail all outstanding SCSI IO. 6619 */ 6620 spin_lock_irq(&phba->pport->work_port_lock); 6621 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 6622 spin_unlock_irq(&phba->pport->work_port_lock); 6623 spin_lock_irq(&phba->hbalock); 6624 phba->link_state = LPFC_LINK_UNKNOWN; 6625 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 6626 spin_unlock_irq(&phba->hbalock); 6627 6628 pring = &psli->ring[psli->fcp_ring]; 6629 lpfc_sli_abort_iocb_ring(phba, pring); 6630 6631 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6632 "0345 Resetting board due to mailbox timeout\n"); 6633 6634 /* Reset the HBA device */ 6635 lpfc_reset_hba(phba); 6636 } 6637 6638 /** 6639 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 6640 * @phba: Pointer to HBA context object. 6641 * @pmbox: Pointer to mailbox object. 6642 * @flag: Flag indicating how the mailbox need to be processed. 6643 * 6644 * This function is called by discovery code and HBA management code 6645 * to submit a mailbox command to firmware with SLI-3 interface spec. This 6646 * function gets the hbalock to protect the data structures. 6647 * The mailbox command can be submitted in polling mode, in which case 6648 * this function will wait in a polling loop for the completion of the 6649 * mailbox. 6650 * If the mailbox is submitted in no_wait mode (not polling) the 6651 * function will submit the command and returns immediately without waiting 6652 * for the mailbox completion. The no_wait is supported only when HBA 6653 * is in SLI2/SLI3 mode - interrupts are enabled. 6654 * The SLI interface allows only one mailbox pending at a time. If the 6655 * mailbox is issued in polling mode and there is already a mailbox 6656 * pending, then the function will return an error. If the mailbox is issued 6657 * in NO_WAIT mode and there is a mailbox pending already, the function 6658 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 6659 * The sli layer owns the mailbox object until the completion of mailbox 6660 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 6661 * return codes the caller owns the mailbox command after the return of 6662 * the function. 6663 **/ 6664 static int 6665 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 6666 uint32_t flag) 6667 { 6668 MAILBOX_t *mbx; 6669 struct lpfc_sli *psli = &phba->sli; 6670 uint32_t status, evtctr; 6671 uint32_t ha_copy, hc_copy; 6672 int i; 6673 unsigned long timeout; 6674 unsigned long drvr_flag = 0; 6675 uint32_t word0, ldata; 6676 void __iomem *to_slim; 6677 int processing_queue = 0; 6678 6679 spin_lock_irqsave(&phba->hbalock, drvr_flag); 6680 if (!pmbox) { 6681 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 6682 /* processing mbox queue from intr_handler */ 6683 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 6684 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6685 return MBX_SUCCESS; 6686 } 6687 processing_queue = 1; 6688 pmbox = lpfc_mbox_get(phba); 6689 if (!pmbox) { 6690 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6691 return MBX_SUCCESS; 6692 } 6693 } 6694 6695 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 6696 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 6697 if(!pmbox->vport) { 6698 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6699 lpfc_printf_log(phba, KERN_ERR, 6700 LOG_MBOX | LOG_VPORT, 6701 "1806 Mbox x%x failed. No vport\n", 6702 pmbox->u.mb.mbxCommand); 6703 dump_stack(); 6704 goto out_not_finished; 6705 } 6706 } 6707 6708 /* If the PCI channel is in offline state, do not post mbox. */ 6709 if (unlikely(pci_channel_offline(phba->pcidev))) { 6710 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6711 goto out_not_finished; 6712 } 6713 6714 /* If HBA has a deferred error attention, fail the iocb. */ 6715 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 6716 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6717 goto out_not_finished; 6718 } 6719 6720 psli = &phba->sli; 6721 6722 mbx = &pmbox->u.mb; 6723 status = MBX_SUCCESS; 6724 6725 if (phba->link_state == LPFC_HBA_ERROR) { 6726 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6727 6728 /* Mbox command <mbxCommand> cannot issue */ 6729 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6730 "(%d):0311 Mailbox command x%x cannot " 6731 "issue Data: x%x x%x\n", 6732 pmbox->vport ? pmbox->vport->vpi : 0, 6733 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 6734 goto out_not_finished; 6735 } 6736 6737 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 6738 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 6739 !(hc_copy & HC_MBINT_ENA)) { 6740 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6741 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6742 "(%d):2528 Mailbox command x%x cannot " 6743 "issue Data: x%x x%x\n", 6744 pmbox->vport ? pmbox->vport->vpi : 0, 6745 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 6746 goto out_not_finished; 6747 } 6748 } 6749 6750 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 6751 /* Polling for a mbox command when another one is already active 6752 * is not allowed in SLI. Also, the driver must have established 6753 * SLI2 mode to queue and process multiple mbox commands. 6754 */ 6755 6756 if (flag & MBX_POLL) { 6757 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6758 6759 /* Mbox command <mbxCommand> cannot issue */ 6760 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6761 "(%d):2529 Mailbox command x%x " 6762 "cannot issue Data: x%x x%x\n", 6763 pmbox->vport ? pmbox->vport->vpi : 0, 6764 pmbox->u.mb.mbxCommand, 6765 psli->sli_flag, flag); 6766 goto out_not_finished; 6767 } 6768 6769 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 6770 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6771 /* Mbox command <mbxCommand> cannot issue */ 6772 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6773 "(%d):2530 Mailbox command x%x " 6774 "cannot issue Data: x%x x%x\n", 6775 pmbox->vport ? pmbox->vport->vpi : 0, 6776 pmbox->u.mb.mbxCommand, 6777 psli->sli_flag, flag); 6778 goto out_not_finished; 6779 } 6780 6781 /* Another mailbox command is still being processed, queue this 6782 * command to be processed later. 6783 */ 6784 lpfc_mbox_put(phba, pmbox); 6785 6786 /* Mbox cmd issue - BUSY */ 6787 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6788 "(%d):0308 Mbox cmd issue - BUSY Data: " 6789 "x%x x%x x%x x%x\n", 6790 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 6791 mbx->mbxCommand, phba->pport->port_state, 6792 psli->sli_flag, flag); 6793 6794 psli->slistat.mbox_busy++; 6795 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6796 6797 if (pmbox->vport) { 6798 lpfc_debugfs_disc_trc(pmbox->vport, 6799 LPFC_DISC_TRC_MBOX_VPORT, 6800 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 6801 (uint32_t)mbx->mbxCommand, 6802 mbx->un.varWords[0], mbx->un.varWords[1]); 6803 } 6804 else { 6805 lpfc_debugfs_disc_trc(phba->pport, 6806 LPFC_DISC_TRC_MBOX, 6807 "MBOX Bsy: cmd:x%x mb:x%x x%x", 6808 (uint32_t)mbx->mbxCommand, 6809 mbx->un.varWords[0], mbx->un.varWords[1]); 6810 } 6811 6812 return MBX_BUSY; 6813 } 6814 6815 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 6816 6817 /* If we are not polling, we MUST be in SLI2 mode */ 6818 if (flag != MBX_POLL) { 6819 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 6820 (mbx->mbxCommand != MBX_KILL_BOARD)) { 6821 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 6822 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6823 /* Mbox command <mbxCommand> cannot issue */ 6824 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6825 "(%d):2531 Mailbox command x%x " 6826 "cannot issue Data: x%x x%x\n", 6827 pmbox->vport ? pmbox->vport->vpi : 0, 6828 pmbox->u.mb.mbxCommand, 6829 psli->sli_flag, flag); 6830 goto out_not_finished; 6831 } 6832 /* timeout active mbox command */ 6833 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 6834 1000); 6835 mod_timer(&psli->mbox_tmo, jiffies + timeout); 6836 } 6837 6838 /* Mailbox cmd <cmd> issue */ 6839 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6840 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 6841 "x%x\n", 6842 pmbox->vport ? pmbox->vport->vpi : 0, 6843 mbx->mbxCommand, phba->pport->port_state, 6844 psli->sli_flag, flag); 6845 6846 if (mbx->mbxCommand != MBX_HEARTBEAT) { 6847 if (pmbox->vport) { 6848 lpfc_debugfs_disc_trc(pmbox->vport, 6849 LPFC_DISC_TRC_MBOX_VPORT, 6850 "MBOX Send vport: cmd:x%x mb:x%x x%x", 6851 (uint32_t)mbx->mbxCommand, 6852 mbx->un.varWords[0], mbx->un.varWords[1]); 6853 } 6854 else { 6855 lpfc_debugfs_disc_trc(phba->pport, 6856 LPFC_DISC_TRC_MBOX, 6857 "MBOX Send: cmd:x%x mb:x%x x%x", 6858 (uint32_t)mbx->mbxCommand, 6859 mbx->un.varWords[0], mbx->un.varWords[1]); 6860 } 6861 } 6862 6863 psli->slistat.mbox_cmd++; 6864 evtctr = psli->slistat.mbox_event; 6865 6866 /* next set own bit for the adapter and copy over command word */ 6867 mbx->mbxOwner = OWN_CHIP; 6868 6869 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 6870 /* Populate mbox extension offset word. */ 6871 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 6872 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 6873 = (uint8_t *)phba->mbox_ext 6874 - (uint8_t *)phba->mbox; 6875 } 6876 6877 /* Copy the mailbox extension data */ 6878 if (pmbox->in_ext_byte_len && pmbox->context2) { 6879 lpfc_sli_pcimem_bcopy(pmbox->context2, 6880 (uint8_t *)phba->mbox_ext, 6881 pmbox->in_ext_byte_len); 6882 } 6883 /* Copy command data to host SLIM area */ 6884 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 6885 } else { 6886 /* Populate mbox extension offset word. */ 6887 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 6888 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 6889 = MAILBOX_HBA_EXT_OFFSET; 6890 6891 /* Copy the mailbox extension data */ 6892 if (pmbox->in_ext_byte_len && pmbox->context2) { 6893 lpfc_memcpy_to_slim(phba->MBslimaddr + 6894 MAILBOX_HBA_EXT_OFFSET, 6895 pmbox->context2, pmbox->in_ext_byte_len); 6896 6897 } 6898 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 6899 /* copy command data into host mbox for cmpl */ 6900 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 6901 } 6902 6903 /* First copy mbox command data to HBA SLIM, skip past first 6904 word */ 6905 to_slim = phba->MBslimaddr + sizeof (uint32_t); 6906 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 6907 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 6908 6909 /* Next copy over first word, with mbxOwner set */ 6910 ldata = *((uint32_t *)mbx); 6911 to_slim = phba->MBslimaddr; 6912 writel(ldata, to_slim); 6913 readl(to_slim); /* flush */ 6914 6915 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 6916 /* switch over to host mailbox */ 6917 psli->sli_flag |= LPFC_SLI_ACTIVE; 6918 } 6919 } 6920 6921 wmb(); 6922 6923 switch (flag) { 6924 case MBX_NOWAIT: 6925 /* Set up reference to mailbox command */ 6926 psli->mbox_active = pmbox; 6927 /* Interrupt board to do it */ 6928 writel(CA_MBATT, phba->CAregaddr); 6929 readl(phba->CAregaddr); /* flush */ 6930 /* Don't wait for it to finish, just return */ 6931 break; 6932 6933 case MBX_POLL: 6934 /* Set up null reference to mailbox command */ 6935 psli->mbox_active = NULL; 6936 /* Interrupt board to do it */ 6937 writel(CA_MBATT, phba->CAregaddr); 6938 readl(phba->CAregaddr); /* flush */ 6939 6940 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 6941 /* First read mbox status word */ 6942 word0 = *((uint32_t *)phba->mbox); 6943 word0 = le32_to_cpu(word0); 6944 } else { 6945 /* First read mbox status word */ 6946 if (lpfc_readl(phba->MBslimaddr, &word0)) { 6947 spin_unlock_irqrestore(&phba->hbalock, 6948 drvr_flag); 6949 goto out_not_finished; 6950 } 6951 } 6952 6953 /* Read the HBA Host Attention Register */ 6954 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 6955 spin_unlock_irqrestore(&phba->hbalock, 6956 drvr_flag); 6957 goto out_not_finished; 6958 } 6959 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 6960 1000) + jiffies; 6961 i = 0; 6962 /* Wait for command to complete */ 6963 while (((word0 & OWN_CHIP) == OWN_CHIP) || 6964 (!(ha_copy & HA_MBATT) && 6965 (phba->link_state > LPFC_WARM_START))) { 6966 if (time_after(jiffies, timeout)) { 6967 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 6968 spin_unlock_irqrestore(&phba->hbalock, 6969 drvr_flag); 6970 goto out_not_finished; 6971 } 6972 6973 /* Check if we took a mbox interrupt while we were 6974 polling */ 6975 if (((word0 & OWN_CHIP) != OWN_CHIP) 6976 && (evtctr != psli->slistat.mbox_event)) 6977 break; 6978 6979 if (i++ > 10) { 6980 spin_unlock_irqrestore(&phba->hbalock, 6981 drvr_flag); 6982 msleep(1); 6983 spin_lock_irqsave(&phba->hbalock, drvr_flag); 6984 } 6985 6986 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 6987 /* First copy command data */ 6988 word0 = *((uint32_t *)phba->mbox); 6989 word0 = le32_to_cpu(word0); 6990 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 6991 MAILBOX_t *slimmb; 6992 uint32_t slimword0; 6993 /* Check real SLIM for any errors */ 6994 slimword0 = readl(phba->MBslimaddr); 6995 slimmb = (MAILBOX_t *) & slimword0; 6996 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 6997 && slimmb->mbxStatus) { 6998 psli->sli_flag &= 6999 ~LPFC_SLI_ACTIVE; 7000 word0 = slimword0; 7001 } 7002 } 7003 } else { 7004 /* First copy command data */ 7005 word0 = readl(phba->MBslimaddr); 7006 } 7007 /* Read the HBA Host Attention Register */ 7008 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 7009 spin_unlock_irqrestore(&phba->hbalock, 7010 drvr_flag); 7011 goto out_not_finished; 7012 } 7013 } 7014 7015 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7016 /* copy results back to user */ 7017 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, MAILBOX_CMD_SIZE); 7018 /* Copy the mailbox extension data */ 7019 if (pmbox->out_ext_byte_len && pmbox->context2) { 7020 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 7021 pmbox->context2, 7022 pmbox->out_ext_byte_len); 7023 } 7024 } else { 7025 /* First copy command data */ 7026 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 7027 MAILBOX_CMD_SIZE); 7028 /* Copy the mailbox extension data */ 7029 if (pmbox->out_ext_byte_len && pmbox->context2) { 7030 lpfc_memcpy_from_slim(pmbox->context2, 7031 phba->MBslimaddr + 7032 MAILBOX_HBA_EXT_OFFSET, 7033 pmbox->out_ext_byte_len); 7034 } 7035 } 7036 7037 writel(HA_MBATT, phba->HAregaddr); 7038 readl(phba->HAregaddr); /* flush */ 7039 7040 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7041 status = mbx->mbxStatus; 7042 } 7043 7044 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7045 return status; 7046 7047 out_not_finished: 7048 if (processing_queue) { 7049 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 7050 lpfc_mbox_cmpl_put(phba, pmbox); 7051 } 7052 return MBX_NOT_FINISHED; 7053 } 7054 7055 /** 7056 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 7057 * @phba: Pointer to HBA context object. 7058 * 7059 * The function blocks the posting of SLI4 asynchronous mailbox commands from 7060 * the driver internal pending mailbox queue. It will then try to wait out the 7061 * possible outstanding mailbox command before return. 7062 * 7063 * Returns: 7064 * 0 - the outstanding mailbox command completed; otherwise, the wait for 7065 * the outstanding mailbox command timed out. 7066 **/ 7067 static int 7068 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 7069 { 7070 struct lpfc_sli *psli = &phba->sli; 7071 int rc = 0; 7072 unsigned long timeout = 0; 7073 7074 /* Mark the asynchronous mailbox command posting as blocked */ 7075 spin_lock_irq(&phba->hbalock); 7076 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 7077 /* Determine how long we might wait for the active mailbox 7078 * command to be gracefully completed by firmware. 7079 */ 7080 if (phba->sli.mbox_active) 7081 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 7082 phba->sli.mbox_active) * 7083 1000) + jiffies; 7084 spin_unlock_irq(&phba->hbalock); 7085 7086 /* Wait for the outstnading mailbox command to complete */ 7087 while (phba->sli.mbox_active) { 7088 /* Check active mailbox complete status every 2ms */ 7089 msleep(2); 7090 if (time_after(jiffies, timeout)) { 7091 /* Timeout, marked the outstanding cmd not complete */ 7092 rc = 1; 7093 break; 7094 } 7095 } 7096 7097 /* Can not cleanly block async mailbox command, fails it */ 7098 if (rc) { 7099 spin_lock_irq(&phba->hbalock); 7100 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7101 spin_unlock_irq(&phba->hbalock); 7102 } 7103 return rc; 7104 } 7105 7106 /** 7107 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 7108 * @phba: Pointer to HBA context object. 7109 * 7110 * The function unblocks and resume posting of SLI4 asynchronous mailbox 7111 * commands from the driver internal pending mailbox queue. It makes sure 7112 * that there is no outstanding mailbox command before resuming posting 7113 * asynchronous mailbox commands. If, for any reason, there is outstanding 7114 * mailbox command, it will try to wait it out before resuming asynchronous 7115 * mailbox command posting. 7116 **/ 7117 static void 7118 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 7119 { 7120 struct lpfc_sli *psli = &phba->sli; 7121 7122 spin_lock_irq(&phba->hbalock); 7123 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7124 /* Asynchronous mailbox posting is not blocked, do nothing */ 7125 spin_unlock_irq(&phba->hbalock); 7126 return; 7127 } 7128 7129 /* Outstanding synchronous mailbox command is guaranteed to be done, 7130 * successful or timeout, after timing-out the outstanding mailbox 7131 * command shall always be removed, so just unblock posting async 7132 * mailbox command and resume 7133 */ 7134 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7135 spin_unlock_irq(&phba->hbalock); 7136 7137 /* wake up worker thread to post asynchronlous mailbox command */ 7138 lpfc_worker_wake_up(phba); 7139 } 7140 7141 /** 7142 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 7143 * @phba: Pointer to HBA context object. 7144 * @mboxq: Pointer to mailbox object. 7145 * 7146 * The function waits for the bootstrap mailbox register ready bit from 7147 * port for twice the regular mailbox command timeout value. 7148 * 7149 * 0 - no timeout on waiting for bootstrap mailbox register ready. 7150 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 7151 **/ 7152 static int 7153 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 7154 { 7155 uint32_t db_ready; 7156 unsigned long timeout; 7157 struct lpfc_register bmbx_reg; 7158 7159 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 7160 * 1000) + jiffies; 7161 7162 do { 7163 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 7164 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 7165 if (!db_ready) 7166 msleep(2); 7167 7168 if (time_after(jiffies, timeout)) 7169 return MBXERR_ERROR; 7170 } while (!db_ready); 7171 7172 return 0; 7173 } 7174 7175 /** 7176 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 7177 * @phba: Pointer to HBA context object. 7178 * @mboxq: Pointer to mailbox object. 7179 * 7180 * The function posts a mailbox to the port. The mailbox is expected 7181 * to be comletely filled in and ready for the port to operate on it. 7182 * This routine executes a synchronous completion operation on the 7183 * mailbox by polling for its completion. 7184 * 7185 * The caller must not be holding any locks when calling this routine. 7186 * 7187 * Returns: 7188 * MBX_SUCCESS - mailbox posted successfully 7189 * Any of the MBX error values. 7190 **/ 7191 static int 7192 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 7193 { 7194 int rc = MBX_SUCCESS; 7195 unsigned long iflag; 7196 uint32_t mcqe_status; 7197 uint32_t mbx_cmnd; 7198 struct lpfc_sli *psli = &phba->sli; 7199 struct lpfc_mqe *mb = &mboxq->u.mqe; 7200 struct lpfc_bmbx_create *mbox_rgn; 7201 struct dma_address *dma_address; 7202 7203 /* 7204 * Only one mailbox can be active to the bootstrap mailbox region 7205 * at a time and there is no queueing provided. 7206 */ 7207 spin_lock_irqsave(&phba->hbalock, iflag); 7208 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7209 spin_unlock_irqrestore(&phba->hbalock, iflag); 7210 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7211 "(%d):2532 Mailbox command x%x (x%x/x%x) " 7212 "cannot issue Data: x%x x%x\n", 7213 mboxq->vport ? mboxq->vport->vpi : 0, 7214 mboxq->u.mb.mbxCommand, 7215 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7216 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7217 psli->sli_flag, MBX_POLL); 7218 return MBXERR_ERROR; 7219 } 7220 /* The server grabs the token and owns it until release */ 7221 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7222 phba->sli.mbox_active = mboxq; 7223 spin_unlock_irqrestore(&phba->hbalock, iflag); 7224 7225 /* wait for bootstrap mbox register for readyness */ 7226 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7227 if (rc) 7228 goto exit; 7229 7230 /* 7231 * Initialize the bootstrap memory region to avoid stale data areas 7232 * in the mailbox post. Then copy the caller's mailbox contents to 7233 * the bmbx mailbox region. 7234 */ 7235 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 7236 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 7237 lpfc_sli_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 7238 sizeof(struct lpfc_mqe)); 7239 7240 /* Post the high mailbox dma address to the port and wait for ready. */ 7241 dma_address = &phba->sli4_hba.bmbx.dma_address; 7242 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 7243 7244 /* wait for bootstrap mbox register for hi-address write done */ 7245 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7246 if (rc) 7247 goto exit; 7248 7249 /* Post the low mailbox dma address to the port. */ 7250 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 7251 7252 /* wait for bootstrap mbox register for low address write done */ 7253 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7254 if (rc) 7255 goto exit; 7256 7257 /* 7258 * Read the CQ to ensure the mailbox has completed. 7259 * If so, update the mailbox status so that the upper layers 7260 * can complete the request normally. 7261 */ 7262 lpfc_sli_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 7263 sizeof(struct lpfc_mqe)); 7264 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 7265 lpfc_sli_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 7266 sizeof(struct lpfc_mcqe)); 7267 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 7268 /* 7269 * When the CQE status indicates a failure and the mailbox status 7270 * indicates success then copy the CQE status into the mailbox status 7271 * (and prefix it with x4000). 7272 */ 7273 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 7274 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 7275 bf_set(lpfc_mqe_status, mb, 7276 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 7277 rc = MBXERR_ERROR; 7278 } else 7279 lpfc_sli4_swap_str(phba, mboxq); 7280 7281 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7282 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 7283 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 7284 " x%x x%x CQ: x%x x%x x%x x%x\n", 7285 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 7286 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7287 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7288 bf_get(lpfc_mqe_status, mb), 7289 mb->un.mb_words[0], mb->un.mb_words[1], 7290 mb->un.mb_words[2], mb->un.mb_words[3], 7291 mb->un.mb_words[4], mb->un.mb_words[5], 7292 mb->un.mb_words[6], mb->un.mb_words[7], 7293 mb->un.mb_words[8], mb->un.mb_words[9], 7294 mb->un.mb_words[10], mb->un.mb_words[11], 7295 mb->un.mb_words[12], mboxq->mcqe.word0, 7296 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 7297 mboxq->mcqe.trailer); 7298 exit: 7299 /* We are holding the token, no needed for lock when release */ 7300 spin_lock_irqsave(&phba->hbalock, iflag); 7301 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7302 phba->sli.mbox_active = NULL; 7303 spin_unlock_irqrestore(&phba->hbalock, iflag); 7304 return rc; 7305 } 7306 7307 /** 7308 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 7309 * @phba: Pointer to HBA context object. 7310 * @pmbox: Pointer to mailbox object. 7311 * @flag: Flag indicating how the mailbox need to be processed. 7312 * 7313 * This function is called by discovery code and HBA management code to submit 7314 * a mailbox command to firmware with SLI-4 interface spec. 7315 * 7316 * Return codes the caller owns the mailbox command after the return of the 7317 * function. 7318 **/ 7319 static int 7320 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 7321 uint32_t flag) 7322 { 7323 struct lpfc_sli *psli = &phba->sli; 7324 unsigned long iflags; 7325 int rc; 7326 7327 /* dump from issue mailbox command if setup */ 7328 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 7329 7330 rc = lpfc_mbox_dev_check(phba); 7331 if (unlikely(rc)) { 7332 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7333 "(%d):2544 Mailbox command x%x (x%x/x%x) " 7334 "cannot issue Data: x%x x%x\n", 7335 mboxq->vport ? mboxq->vport->vpi : 0, 7336 mboxq->u.mb.mbxCommand, 7337 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7338 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7339 psli->sli_flag, flag); 7340 goto out_not_finished; 7341 } 7342 7343 /* Detect polling mode and jump to a handler */ 7344 if (!phba->sli4_hba.intr_enable) { 7345 if (flag == MBX_POLL) 7346 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 7347 else 7348 rc = -EIO; 7349 if (rc != MBX_SUCCESS) 7350 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7351 "(%d):2541 Mailbox command x%x " 7352 "(x%x/x%x) failure: " 7353 "mqe_sta: x%x mcqe_sta: x%x/x%x " 7354 "Data: x%x x%x\n,", 7355 mboxq->vport ? mboxq->vport->vpi : 0, 7356 mboxq->u.mb.mbxCommand, 7357 lpfc_sli_config_mbox_subsys_get(phba, 7358 mboxq), 7359 lpfc_sli_config_mbox_opcode_get(phba, 7360 mboxq), 7361 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 7362 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 7363 bf_get(lpfc_mcqe_ext_status, 7364 &mboxq->mcqe), 7365 psli->sli_flag, flag); 7366 return rc; 7367 } else if (flag == MBX_POLL) { 7368 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7369 "(%d):2542 Try to issue mailbox command " 7370 "x%x (x%x/x%x) synchronously ahead of async" 7371 "mailbox command queue: x%x x%x\n", 7372 mboxq->vport ? mboxq->vport->vpi : 0, 7373 mboxq->u.mb.mbxCommand, 7374 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7375 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7376 psli->sli_flag, flag); 7377 /* Try to block the asynchronous mailbox posting */ 7378 rc = lpfc_sli4_async_mbox_block(phba); 7379 if (!rc) { 7380 /* Successfully blocked, now issue sync mbox cmd */ 7381 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 7382 if (rc != MBX_SUCCESS) 7383 lpfc_printf_log(phba, KERN_WARNING, 7384 LOG_MBOX | LOG_SLI, 7385 "(%d):2597 Sync Mailbox command " 7386 "x%x (x%x/x%x) failure: " 7387 "mqe_sta: x%x mcqe_sta: x%x/x%x " 7388 "Data: x%x x%x\n,", 7389 mboxq->vport ? mboxq->vport->vpi : 0, 7390 mboxq->u.mb.mbxCommand, 7391 lpfc_sli_config_mbox_subsys_get(phba, 7392 mboxq), 7393 lpfc_sli_config_mbox_opcode_get(phba, 7394 mboxq), 7395 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 7396 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 7397 bf_get(lpfc_mcqe_ext_status, 7398 &mboxq->mcqe), 7399 psli->sli_flag, flag); 7400 /* Unblock the async mailbox posting afterward */ 7401 lpfc_sli4_async_mbox_unblock(phba); 7402 } 7403 return rc; 7404 } 7405 7406 /* Now, interrupt mode asynchrous mailbox command */ 7407 rc = lpfc_mbox_cmd_check(phba, mboxq); 7408 if (rc) { 7409 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7410 "(%d):2543 Mailbox command x%x (x%x/x%x) " 7411 "cannot issue Data: x%x x%x\n", 7412 mboxq->vport ? mboxq->vport->vpi : 0, 7413 mboxq->u.mb.mbxCommand, 7414 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7415 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7416 psli->sli_flag, flag); 7417 goto out_not_finished; 7418 } 7419 7420 /* Put the mailbox command to the driver internal FIFO */ 7421 psli->slistat.mbox_busy++; 7422 spin_lock_irqsave(&phba->hbalock, iflags); 7423 lpfc_mbox_put(phba, mboxq); 7424 spin_unlock_irqrestore(&phba->hbalock, iflags); 7425 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7426 "(%d):0354 Mbox cmd issue - Enqueue Data: " 7427 "x%x (x%x/x%x) x%x x%x x%x\n", 7428 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 7429 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7430 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7431 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7432 phba->pport->port_state, 7433 psli->sli_flag, MBX_NOWAIT); 7434 /* Wake up worker thread to transport mailbox command from head */ 7435 lpfc_worker_wake_up(phba); 7436 7437 return MBX_BUSY; 7438 7439 out_not_finished: 7440 return MBX_NOT_FINISHED; 7441 } 7442 7443 /** 7444 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 7445 * @phba: Pointer to HBA context object. 7446 * 7447 * This function is called by worker thread to send a mailbox command to 7448 * SLI4 HBA firmware. 7449 * 7450 **/ 7451 int 7452 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 7453 { 7454 struct lpfc_sli *psli = &phba->sli; 7455 LPFC_MBOXQ_t *mboxq; 7456 int rc = MBX_SUCCESS; 7457 unsigned long iflags; 7458 struct lpfc_mqe *mqe; 7459 uint32_t mbx_cmnd; 7460 7461 /* Check interrupt mode before post async mailbox command */ 7462 if (unlikely(!phba->sli4_hba.intr_enable)) 7463 return MBX_NOT_FINISHED; 7464 7465 /* Check for mailbox command service token */ 7466 spin_lock_irqsave(&phba->hbalock, iflags); 7467 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7468 spin_unlock_irqrestore(&phba->hbalock, iflags); 7469 return MBX_NOT_FINISHED; 7470 } 7471 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7472 spin_unlock_irqrestore(&phba->hbalock, iflags); 7473 return MBX_NOT_FINISHED; 7474 } 7475 if (unlikely(phba->sli.mbox_active)) { 7476 spin_unlock_irqrestore(&phba->hbalock, iflags); 7477 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7478 "0384 There is pending active mailbox cmd\n"); 7479 return MBX_NOT_FINISHED; 7480 } 7481 /* Take the mailbox command service token */ 7482 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7483 7484 /* Get the next mailbox command from head of queue */ 7485 mboxq = lpfc_mbox_get(phba); 7486 7487 /* If no more mailbox command waiting for post, we're done */ 7488 if (!mboxq) { 7489 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7490 spin_unlock_irqrestore(&phba->hbalock, iflags); 7491 return MBX_SUCCESS; 7492 } 7493 phba->sli.mbox_active = mboxq; 7494 spin_unlock_irqrestore(&phba->hbalock, iflags); 7495 7496 /* Check device readiness for posting mailbox command */ 7497 rc = lpfc_mbox_dev_check(phba); 7498 if (unlikely(rc)) 7499 /* Driver clean routine will clean up pending mailbox */ 7500 goto out_not_finished; 7501 7502 /* Prepare the mbox command to be posted */ 7503 mqe = &mboxq->u.mqe; 7504 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 7505 7506 /* Start timer for the mbox_tmo and log some mailbox post messages */ 7507 mod_timer(&psli->mbox_tmo, (jiffies + 7508 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 7509 7510 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7511 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 7512 "x%x x%x\n", 7513 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 7514 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7515 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7516 phba->pport->port_state, psli->sli_flag); 7517 7518 if (mbx_cmnd != MBX_HEARTBEAT) { 7519 if (mboxq->vport) { 7520 lpfc_debugfs_disc_trc(mboxq->vport, 7521 LPFC_DISC_TRC_MBOX_VPORT, 7522 "MBOX Send vport: cmd:x%x mb:x%x x%x", 7523 mbx_cmnd, mqe->un.mb_words[0], 7524 mqe->un.mb_words[1]); 7525 } else { 7526 lpfc_debugfs_disc_trc(phba->pport, 7527 LPFC_DISC_TRC_MBOX, 7528 "MBOX Send: cmd:x%x mb:x%x x%x", 7529 mbx_cmnd, mqe->un.mb_words[0], 7530 mqe->un.mb_words[1]); 7531 } 7532 } 7533 psli->slistat.mbox_cmd++; 7534 7535 /* Post the mailbox command to the port */ 7536 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 7537 if (rc != MBX_SUCCESS) { 7538 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7539 "(%d):2533 Mailbox command x%x (x%x/x%x) " 7540 "cannot issue Data: x%x x%x\n", 7541 mboxq->vport ? mboxq->vport->vpi : 0, 7542 mboxq->u.mb.mbxCommand, 7543 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7544 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7545 psli->sli_flag, MBX_NOWAIT); 7546 goto out_not_finished; 7547 } 7548 7549 return rc; 7550 7551 out_not_finished: 7552 spin_lock_irqsave(&phba->hbalock, iflags); 7553 if (phba->sli.mbox_active) { 7554 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 7555 __lpfc_mbox_cmpl_put(phba, mboxq); 7556 /* Release the token */ 7557 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7558 phba->sli.mbox_active = NULL; 7559 } 7560 spin_unlock_irqrestore(&phba->hbalock, iflags); 7561 7562 return MBX_NOT_FINISHED; 7563 } 7564 7565 /** 7566 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 7567 * @phba: Pointer to HBA context object. 7568 * @pmbox: Pointer to mailbox object. 7569 * @flag: Flag indicating how the mailbox need to be processed. 7570 * 7571 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 7572 * the API jump table function pointer from the lpfc_hba struct. 7573 * 7574 * Return codes the caller owns the mailbox command after the return of the 7575 * function. 7576 **/ 7577 int 7578 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 7579 { 7580 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 7581 } 7582 7583 /** 7584 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 7585 * @phba: The hba struct for which this call is being executed. 7586 * @dev_grp: The HBA PCI-Device group number. 7587 * 7588 * This routine sets up the mbox interface API function jump table in @phba 7589 * struct. 7590 * Returns: 0 - success, -ENODEV - failure. 7591 **/ 7592 int 7593 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 7594 { 7595 7596 switch (dev_grp) { 7597 case LPFC_PCI_DEV_LP: 7598 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 7599 phba->lpfc_sli_handle_slow_ring_event = 7600 lpfc_sli_handle_slow_ring_event_s3; 7601 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 7602 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 7603 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 7604 break; 7605 case LPFC_PCI_DEV_OC: 7606 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 7607 phba->lpfc_sli_handle_slow_ring_event = 7608 lpfc_sli_handle_slow_ring_event_s4; 7609 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 7610 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 7611 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 7612 break; 7613 default: 7614 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7615 "1420 Invalid HBA PCI-device group: 0x%x\n", 7616 dev_grp); 7617 return -ENODEV; 7618 break; 7619 } 7620 return 0; 7621 } 7622 7623 /** 7624 * __lpfc_sli_ringtx_put - Add an iocb to the txq 7625 * @phba: Pointer to HBA context object. 7626 * @pring: Pointer to driver SLI ring object. 7627 * @piocb: Pointer to address of newly added command iocb. 7628 * 7629 * This function is called with hbalock held to add a command 7630 * iocb to the txq when SLI layer cannot submit the command iocb 7631 * to the ring. 7632 **/ 7633 void 7634 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 7635 struct lpfc_iocbq *piocb) 7636 { 7637 /* Insert the caller's iocb in the txq tail for later processing. */ 7638 list_add_tail(&piocb->list, &pring->txq); 7639 } 7640 7641 /** 7642 * lpfc_sli_next_iocb - Get the next iocb in the txq 7643 * @phba: Pointer to HBA context object. 7644 * @pring: Pointer to driver SLI ring object. 7645 * @piocb: Pointer to address of newly added command iocb. 7646 * 7647 * This function is called with hbalock held before a new 7648 * iocb is submitted to the firmware. This function checks 7649 * txq to flush the iocbs in txq to Firmware before 7650 * submitting new iocbs to the Firmware. 7651 * If there are iocbs in the txq which need to be submitted 7652 * to firmware, lpfc_sli_next_iocb returns the first element 7653 * of the txq after dequeuing it from txq. 7654 * If there is no iocb in the txq then the function will return 7655 * *piocb and *piocb is set to NULL. Caller needs to check 7656 * *piocb to find if there are more commands in the txq. 7657 **/ 7658 static struct lpfc_iocbq * 7659 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 7660 struct lpfc_iocbq **piocb) 7661 { 7662 struct lpfc_iocbq * nextiocb; 7663 7664 nextiocb = lpfc_sli_ringtx_get(phba, pring); 7665 if (!nextiocb) { 7666 nextiocb = *piocb; 7667 *piocb = NULL; 7668 } 7669 7670 return nextiocb; 7671 } 7672 7673 /** 7674 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 7675 * @phba: Pointer to HBA context object. 7676 * @ring_number: SLI ring number to issue iocb on. 7677 * @piocb: Pointer to command iocb. 7678 * @flag: Flag indicating if this command can be put into txq. 7679 * 7680 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 7681 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 7682 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 7683 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 7684 * this function allows only iocbs for posting buffers. This function finds 7685 * next available slot in the command ring and posts the command to the 7686 * available slot and writes the port attention register to request HBA start 7687 * processing new iocb. If there is no slot available in the ring and 7688 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 7689 * the function returns IOCB_BUSY. 7690 * 7691 * This function is called with hbalock held. The function will return success 7692 * after it successfully submit the iocb to firmware or after adding to the 7693 * txq. 7694 **/ 7695 static int 7696 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 7697 struct lpfc_iocbq *piocb, uint32_t flag) 7698 { 7699 struct lpfc_iocbq *nextiocb; 7700 IOCB_t *iocb; 7701 struct lpfc_sli_ring *pring = &phba->sli.ring[ring_number]; 7702 7703 if (piocb->iocb_cmpl && (!piocb->vport) && 7704 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 7705 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 7706 lpfc_printf_log(phba, KERN_ERR, 7707 LOG_SLI | LOG_VPORT, 7708 "1807 IOCB x%x failed. No vport\n", 7709 piocb->iocb.ulpCommand); 7710 dump_stack(); 7711 return IOCB_ERROR; 7712 } 7713 7714 7715 /* If the PCI channel is in offline state, do not post iocbs. */ 7716 if (unlikely(pci_channel_offline(phba->pcidev))) 7717 return IOCB_ERROR; 7718 7719 /* If HBA has a deferred error attention, fail the iocb. */ 7720 if (unlikely(phba->hba_flag & DEFER_ERATT)) 7721 return IOCB_ERROR; 7722 7723 /* 7724 * We should never get an IOCB if we are in a < LINK_DOWN state 7725 */ 7726 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 7727 return IOCB_ERROR; 7728 7729 /* 7730 * Check to see if we are blocking IOCB processing because of a 7731 * outstanding event. 7732 */ 7733 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 7734 goto iocb_busy; 7735 7736 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 7737 /* 7738 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 7739 * can be issued if the link is not up. 7740 */ 7741 switch (piocb->iocb.ulpCommand) { 7742 case CMD_GEN_REQUEST64_CR: 7743 case CMD_GEN_REQUEST64_CX: 7744 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 7745 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 7746 FC_RCTL_DD_UNSOL_CMD) || 7747 (piocb->iocb.un.genreq64.w5.hcsw.Type != 7748 MENLO_TRANSPORT_TYPE)) 7749 7750 goto iocb_busy; 7751 break; 7752 case CMD_QUE_RING_BUF_CN: 7753 case CMD_QUE_RING_BUF64_CN: 7754 /* 7755 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 7756 * completion, iocb_cmpl MUST be 0. 7757 */ 7758 if (piocb->iocb_cmpl) 7759 piocb->iocb_cmpl = NULL; 7760 /*FALLTHROUGH*/ 7761 case CMD_CREATE_XRI_CR: 7762 case CMD_CLOSE_XRI_CN: 7763 case CMD_CLOSE_XRI_CX: 7764 break; 7765 default: 7766 goto iocb_busy; 7767 } 7768 7769 /* 7770 * For FCP commands, we must be in a state where we can process link 7771 * attention events. 7772 */ 7773 } else if (unlikely(pring->ringno == phba->sli.fcp_ring && 7774 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 7775 goto iocb_busy; 7776 } 7777 7778 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 7779 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 7780 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 7781 7782 if (iocb) 7783 lpfc_sli_update_ring(phba, pring); 7784 else 7785 lpfc_sli_update_full_ring(phba, pring); 7786 7787 if (!piocb) 7788 return IOCB_SUCCESS; 7789 7790 goto out_busy; 7791 7792 iocb_busy: 7793 pring->stats.iocb_cmd_delay++; 7794 7795 out_busy: 7796 7797 if (!(flag & SLI_IOCB_RET_IOCB)) { 7798 __lpfc_sli_ringtx_put(phba, pring, piocb); 7799 return IOCB_SUCCESS; 7800 } 7801 7802 return IOCB_BUSY; 7803 } 7804 7805 /** 7806 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 7807 * @phba: Pointer to HBA context object. 7808 * @piocb: Pointer to command iocb. 7809 * @sglq: Pointer to the scatter gather queue object. 7810 * 7811 * This routine converts the bpl or bde that is in the IOCB 7812 * to a sgl list for the sli4 hardware. The physical address 7813 * of the bpl/bde is converted back to a virtual address. 7814 * If the IOCB contains a BPL then the list of BDE's is 7815 * converted to sli4_sge's. If the IOCB contains a single 7816 * BDE then it is converted to a single sli_sge. 7817 * The IOCB is still in cpu endianess so the contents of 7818 * the bpl can be used without byte swapping. 7819 * 7820 * Returns valid XRI = Success, NO_XRI = Failure. 7821 **/ 7822 static uint16_t 7823 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 7824 struct lpfc_sglq *sglq) 7825 { 7826 uint16_t xritag = NO_XRI; 7827 struct ulp_bde64 *bpl = NULL; 7828 struct ulp_bde64 bde; 7829 struct sli4_sge *sgl = NULL; 7830 struct lpfc_dmabuf *dmabuf; 7831 IOCB_t *icmd; 7832 int numBdes = 0; 7833 int i = 0; 7834 uint32_t offset = 0; /* accumulated offset in the sg request list */ 7835 int inbound = 0; /* number of sg reply entries inbound from firmware */ 7836 7837 if (!piocbq || !sglq) 7838 return xritag; 7839 7840 sgl = (struct sli4_sge *)sglq->sgl; 7841 icmd = &piocbq->iocb; 7842 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 7843 return sglq->sli4_xritag; 7844 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 7845 numBdes = icmd->un.genreq64.bdl.bdeSize / 7846 sizeof(struct ulp_bde64); 7847 /* The addrHigh and addrLow fields within the IOCB 7848 * have not been byteswapped yet so there is no 7849 * need to swap them back. 7850 */ 7851 if (piocbq->context3) 7852 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 7853 else 7854 return xritag; 7855 7856 bpl = (struct ulp_bde64 *)dmabuf->virt; 7857 if (!bpl) 7858 return xritag; 7859 7860 for (i = 0; i < numBdes; i++) { 7861 /* Should already be byte swapped. */ 7862 sgl->addr_hi = bpl->addrHigh; 7863 sgl->addr_lo = bpl->addrLow; 7864 7865 sgl->word2 = le32_to_cpu(sgl->word2); 7866 if ((i+1) == numBdes) 7867 bf_set(lpfc_sli4_sge_last, sgl, 1); 7868 else 7869 bf_set(lpfc_sli4_sge_last, sgl, 0); 7870 /* swap the size field back to the cpu so we 7871 * can assign it to the sgl. 7872 */ 7873 bde.tus.w = le32_to_cpu(bpl->tus.w); 7874 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 7875 /* The offsets in the sgl need to be accumulated 7876 * separately for the request and reply lists. 7877 * The request is always first, the reply follows. 7878 */ 7879 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 7880 /* add up the reply sg entries */ 7881 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 7882 inbound++; 7883 /* first inbound? reset the offset */ 7884 if (inbound == 1) 7885 offset = 0; 7886 bf_set(lpfc_sli4_sge_offset, sgl, offset); 7887 bf_set(lpfc_sli4_sge_type, sgl, 7888 LPFC_SGE_TYPE_DATA); 7889 offset += bde.tus.f.bdeSize; 7890 } 7891 sgl->word2 = cpu_to_le32(sgl->word2); 7892 bpl++; 7893 sgl++; 7894 } 7895 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 7896 /* The addrHigh and addrLow fields of the BDE have not 7897 * been byteswapped yet so they need to be swapped 7898 * before putting them in the sgl. 7899 */ 7900 sgl->addr_hi = 7901 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 7902 sgl->addr_lo = 7903 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 7904 sgl->word2 = le32_to_cpu(sgl->word2); 7905 bf_set(lpfc_sli4_sge_last, sgl, 1); 7906 sgl->word2 = cpu_to_le32(sgl->word2); 7907 sgl->sge_len = 7908 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 7909 } 7910 return sglq->sli4_xritag; 7911 } 7912 7913 /** 7914 * lpfc_sli4_scmd_to_wqidx_distr - scsi command to SLI4 WQ index distribution 7915 * @phba: Pointer to HBA context object. 7916 * 7917 * This routine performs a roundrobin SCSI command to SLI4 FCP WQ index 7918 * distribution. This is called by __lpfc_sli_issue_iocb_s4() with the hbalock 7919 * held. 7920 * 7921 * Return: index into SLI4 fast-path FCP queue index. 7922 **/ 7923 static inline uint32_t 7924 lpfc_sli4_scmd_to_wqidx_distr(struct lpfc_hba *phba) 7925 { 7926 struct lpfc_vector_map_info *cpup; 7927 int chann, cpu; 7928 7929 if (phba->cfg_fcp_io_sched == LPFC_FCP_SCHED_BY_CPU) { 7930 cpu = smp_processor_id(); 7931 if (cpu < phba->sli4_hba.num_present_cpu) { 7932 cpup = phba->sli4_hba.cpu_map; 7933 cpup += cpu; 7934 return cpup->channel_id; 7935 } 7936 chann = cpu; 7937 } 7938 chann = atomic_add_return(1, &phba->fcp_qidx); 7939 chann = (chann % phba->cfg_fcp_io_channel); 7940 return chann; 7941 } 7942 7943 /** 7944 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry. 7945 * @phba: Pointer to HBA context object. 7946 * @piocb: Pointer to command iocb. 7947 * @wqe: Pointer to the work queue entry. 7948 * 7949 * This routine converts the iocb command to its Work Queue Entry 7950 * equivalent. The wqe pointer should not have any fields set when 7951 * this routine is called because it will memcpy over them. 7952 * This routine does not set the CQ_ID or the WQEC bits in the 7953 * wqe. 7954 * 7955 * Returns: 0 = Success, IOCB_ERROR = Failure. 7956 **/ 7957 static int 7958 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 7959 union lpfc_wqe *wqe) 7960 { 7961 uint32_t xmit_len = 0, total_len = 0; 7962 uint8_t ct = 0; 7963 uint32_t fip; 7964 uint32_t abort_tag; 7965 uint8_t command_type = ELS_COMMAND_NON_FIP; 7966 uint8_t cmnd; 7967 uint16_t xritag; 7968 uint16_t abrt_iotag; 7969 struct lpfc_iocbq *abrtiocbq; 7970 struct ulp_bde64 *bpl = NULL; 7971 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 7972 int numBdes, i; 7973 struct ulp_bde64 bde; 7974 struct lpfc_nodelist *ndlp; 7975 uint32_t *pcmd; 7976 uint32_t if_type; 7977 7978 fip = phba->hba_flag & HBA_FIP_SUPPORT; 7979 /* The fcp commands will set command type */ 7980 if (iocbq->iocb_flag & LPFC_IO_FCP) 7981 command_type = FCP_COMMAND; 7982 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 7983 command_type = ELS_COMMAND_FIP; 7984 else 7985 command_type = ELS_COMMAND_NON_FIP; 7986 7987 /* Some of the fields are in the right position already */ 7988 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 7989 abort_tag = (uint32_t) iocbq->iotag; 7990 xritag = iocbq->sli4_xritag; 7991 wqe->generic.wqe_com.word7 = 0; /* The ct field has moved so reset */ 7992 /* words0-2 bpl convert bde */ 7993 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 7994 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 7995 sizeof(struct ulp_bde64); 7996 bpl = (struct ulp_bde64 *) 7997 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 7998 if (!bpl) 7999 return IOCB_ERROR; 8000 8001 /* Should already be byte swapped. */ 8002 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 8003 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 8004 /* swap the size field back to the cpu so we 8005 * can assign it to the sgl. 8006 */ 8007 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 8008 xmit_len = wqe->generic.bde.tus.f.bdeSize; 8009 total_len = 0; 8010 for (i = 0; i < numBdes; i++) { 8011 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 8012 total_len += bde.tus.f.bdeSize; 8013 } 8014 } else 8015 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 8016 8017 iocbq->iocb.ulpIoTag = iocbq->iotag; 8018 cmnd = iocbq->iocb.ulpCommand; 8019 8020 switch (iocbq->iocb.ulpCommand) { 8021 case CMD_ELS_REQUEST64_CR: 8022 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 8023 ndlp = iocbq->context_un.ndlp; 8024 else 8025 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8026 if (!iocbq->iocb.ulpLe) { 8027 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8028 "2007 Only Limited Edition cmd Format" 8029 " supported 0x%x\n", 8030 iocbq->iocb.ulpCommand); 8031 return IOCB_ERROR; 8032 } 8033 8034 wqe->els_req.payload_len = xmit_len; 8035 /* Els_reguest64 has a TMO */ 8036 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 8037 iocbq->iocb.ulpTimeout); 8038 /* Need a VF for word 4 set the vf bit*/ 8039 bf_set(els_req64_vf, &wqe->els_req, 0); 8040 /* And a VFID for word 12 */ 8041 bf_set(els_req64_vfid, &wqe->els_req, 0); 8042 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 8043 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8044 iocbq->iocb.ulpContext); 8045 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 8046 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 8047 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 8048 if (command_type == ELS_COMMAND_FIP) 8049 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 8050 >> LPFC_FIP_ELS_ID_SHIFT); 8051 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 8052 iocbq->context2)->virt); 8053 if_type = bf_get(lpfc_sli_intf_if_type, 8054 &phba->sli4_hba.sli_intf); 8055 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) { 8056 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 8057 *pcmd == ELS_CMD_SCR || 8058 *pcmd == ELS_CMD_FDISC || 8059 *pcmd == ELS_CMD_LOGO || 8060 *pcmd == ELS_CMD_PLOGI)) { 8061 bf_set(els_req64_sp, &wqe->els_req, 1); 8062 bf_set(els_req64_sid, &wqe->els_req, 8063 iocbq->vport->fc_myDID); 8064 if ((*pcmd == ELS_CMD_FLOGI) && 8065 !(phba->fc_topology == 8066 LPFC_TOPOLOGY_LOOP)) 8067 bf_set(els_req64_sid, &wqe->els_req, 0); 8068 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 8069 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8070 phba->vpi_ids[iocbq->vport->vpi]); 8071 } else if (pcmd && iocbq->context1) { 8072 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 8073 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8074 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8075 } 8076 } 8077 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 8078 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8079 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 8080 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 8081 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 8082 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 8083 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 8084 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 8085 break; 8086 case CMD_XMIT_SEQUENCE64_CX: 8087 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 8088 iocbq->iocb.un.ulpWord[3]); 8089 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 8090 iocbq->iocb.unsli3.rcvsli3.ox_id); 8091 /* The entire sequence is transmitted for this IOCB */ 8092 xmit_len = total_len; 8093 cmnd = CMD_XMIT_SEQUENCE64_CR; 8094 if (phba->link_flag & LS_LOOPBACK_MODE) 8095 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 8096 case CMD_XMIT_SEQUENCE64_CR: 8097 /* word3 iocb=io_tag32 wqe=reserved */ 8098 wqe->xmit_sequence.rsvd3 = 0; 8099 /* word4 relative_offset memcpy */ 8100 /* word5 r_ctl/df_ctl memcpy */ 8101 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 8102 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 8103 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 8104 LPFC_WQE_IOD_WRITE); 8105 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 8106 LPFC_WQE_LENLOC_WORD12); 8107 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 8108 wqe->xmit_sequence.xmit_len = xmit_len; 8109 command_type = OTHER_COMMAND; 8110 break; 8111 case CMD_XMIT_BCAST64_CN: 8112 /* word3 iocb=iotag32 wqe=seq_payload_len */ 8113 wqe->xmit_bcast64.seq_payload_len = xmit_len; 8114 /* word4 iocb=rsvd wqe=rsvd */ 8115 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 8116 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 8117 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 8118 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 8119 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 8120 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 8121 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 8122 LPFC_WQE_LENLOC_WORD3); 8123 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 8124 break; 8125 case CMD_FCP_IWRITE64_CR: 8126 command_type = FCP_COMMAND_DATA_OUT; 8127 /* word3 iocb=iotag wqe=payload_offset_len */ 8128 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8129 wqe->fcp_iwrite.payload_offset_len = 8130 xmit_len + sizeof(struct fcp_rsp); 8131 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 8132 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 8133 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 8134 iocbq->iocb.ulpFCP2Rcvy); 8135 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 8136 /* Always open the exchange */ 8137 bf_set(wqe_xc, &wqe->fcp_iwrite.wqe_com, 0); 8138 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 8139 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 8140 LPFC_WQE_LENLOC_WORD4); 8141 bf_set(wqe_ebde_cnt, &wqe->fcp_iwrite.wqe_com, 0); 8142 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 8143 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 8144 break; 8145 case CMD_FCP_IREAD64_CR: 8146 /* word3 iocb=iotag wqe=payload_offset_len */ 8147 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8148 wqe->fcp_iread.payload_offset_len = 8149 xmit_len + sizeof(struct fcp_rsp); 8150 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 8151 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 8152 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 8153 iocbq->iocb.ulpFCP2Rcvy); 8154 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 8155 /* Always open the exchange */ 8156 bf_set(wqe_xc, &wqe->fcp_iread.wqe_com, 0); 8157 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 8158 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 8159 LPFC_WQE_LENLOC_WORD4); 8160 bf_set(wqe_ebde_cnt, &wqe->fcp_iread.wqe_com, 0); 8161 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 8162 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 8163 break; 8164 case CMD_FCP_ICMND64_CR: 8165 /* word3 iocb=IO_TAG wqe=reserved */ 8166 wqe->fcp_icmd.rsrvd3 = 0; 8167 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 8168 /* Always open the exchange */ 8169 bf_set(wqe_xc, &wqe->fcp_icmd.wqe_com, 0); 8170 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 8171 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 8172 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 8173 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 8174 LPFC_WQE_LENLOC_NONE); 8175 bf_set(wqe_ebde_cnt, &wqe->fcp_icmd.wqe_com, 0); 8176 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 8177 iocbq->iocb.ulpFCP2Rcvy); 8178 break; 8179 case CMD_GEN_REQUEST64_CR: 8180 /* For this command calculate the xmit length of the 8181 * request bde. 8182 */ 8183 xmit_len = 0; 8184 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 8185 sizeof(struct ulp_bde64); 8186 for (i = 0; i < numBdes; i++) { 8187 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 8188 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 8189 break; 8190 xmit_len += bde.tus.f.bdeSize; 8191 } 8192 /* word3 iocb=IO_TAG wqe=request_payload_len */ 8193 wqe->gen_req.request_payload_len = xmit_len; 8194 /* word4 iocb=parameter wqe=relative_offset memcpy */ 8195 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 8196 /* word6 context tag copied in memcpy */ 8197 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 8198 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 8199 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8200 "2015 Invalid CT %x command 0x%x\n", 8201 ct, iocbq->iocb.ulpCommand); 8202 return IOCB_ERROR; 8203 } 8204 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 8205 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 8206 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 8207 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 8208 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 8209 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 8210 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 8211 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 8212 command_type = OTHER_COMMAND; 8213 break; 8214 case CMD_XMIT_ELS_RSP64_CX: 8215 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8216 /* words0-2 BDE memcpy */ 8217 /* word3 iocb=iotag32 wqe=response_payload_len */ 8218 wqe->xmit_els_rsp.response_payload_len = xmit_len; 8219 /* word4 */ 8220 wqe->xmit_els_rsp.word4 = 0; 8221 /* word5 iocb=rsvd wge=did */ 8222 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 8223 iocbq->iocb.un.xseq64.xmit_els_remoteID); 8224 8225 if_type = bf_get(lpfc_sli_intf_if_type, 8226 &phba->sli4_hba.sli_intf); 8227 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) { 8228 if (iocbq->vport->fc_flag & FC_PT2PT) { 8229 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 8230 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 8231 iocbq->vport->fc_myDID); 8232 if (iocbq->vport->fc_myDID == Fabric_DID) { 8233 bf_set(wqe_els_did, 8234 &wqe->xmit_els_rsp.wqe_dest, 0); 8235 } 8236 } 8237 } 8238 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 8239 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 8240 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 8241 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 8242 iocbq->iocb.unsli3.rcvsli3.ox_id); 8243 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 8244 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 8245 phba->vpi_ids[iocbq->vport->vpi]); 8246 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 8247 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 8248 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 8249 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 8250 LPFC_WQE_LENLOC_WORD3); 8251 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 8252 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 8253 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8254 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 8255 iocbq->context2)->virt); 8256 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 8257 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 8258 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 8259 iocbq->vport->fc_myDID); 8260 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 8261 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 8262 phba->vpi_ids[phba->pport->vpi]); 8263 } 8264 command_type = OTHER_COMMAND; 8265 break; 8266 case CMD_CLOSE_XRI_CN: 8267 case CMD_ABORT_XRI_CN: 8268 case CMD_ABORT_XRI_CX: 8269 /* words 0-2 memcpy should be 0 rserved */ 8270 /* port will send abts */ 8271 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 8272 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 8273 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 8274 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 8275 } else 8276 fip = 0; 8277 8278 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 8279 /* 8280 * The link is down, or the command was ELS_FIP 8281 * so the fw does not need to send abts 8282 * on the wire. 8283 */ 8284 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 8285 else 8286 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 8287 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 8288 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 8289 wqe->abort_cmd.rsrvd5 = 0; 8290 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 8291 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 8292 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 8293 /* 8294 * The abort handler will send us CMD_ABORT_XRI_CN or 8295 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 8296 */ 8297 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 8298 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 8299 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 8300 LPFC_WQE_LENLOC_NONE); 8301 cmnd = CMD_ABORT_XRI_CX; 8302 command_type = OTHER_COMMAND; 8303 xritag = 0; 8304 break; 8305 case CMD_XMIT_BLS_RSP64_CX: 8306 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8307 /* As BLS ABTS RSP WQE is very different from other WQEs, 8308 * we re-construct this WQE here based on information in 8309 * iocbq from scratch. 8310 */ 8311 memset(wqe, 0, sizeof(union lpfc_wqe)); 8312 /* OX_ID is invariable to who sent ABTS to CT exchange */ 8313 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 8314 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 8315 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 8316 LPFC_ABTS_UNSOL_INT) { 8317 /* ABTS sent by initiator to CT exchange, the 8318 * RX_ID field will be filled with the newly 8319 * allocated responder XRI. 8320 */ 8321 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 8322 iocbq->sli4_xritag); 8323 } else { 8324 /* ABTS sent by responder to CT exchange, the 8325 * RX_ID field will be filled with the responder 8326 * RX_ID from ABTS. 8327 */ 8328 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 8329 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 8330 } 8331 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 8332 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 8333 8334 /* Use CT=VPI */ 8335 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 8336 ndlp->nlp_DID); 8337 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 8338 iocbq->iocb.ulpContext); 8339 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 8340 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 8341 phba->vpi_ids[phba->pport->vpi]); 8342 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 8343 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 8344 LPFC_WQE_LENLOC_NONE); 8345 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 8346 command_type = OTHER_COMMAND; 8347 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 8348 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 8349 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 8350 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 8351 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 8352 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 8353 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 8354 } 8355 8356 break; 8357 case CMD_XRI_ABORTED_CX: 8358 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 8359 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 8360 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 8361 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 8362 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 8363 default: 8364 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8365 "2014 Invalid command 0x%x\n", 8366 iocbq->iocb.ulpCommand); 8367 return IOCB_ERROR; 8368 break; 8369 } 8370 8371 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 8372 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 8373 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 8374 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 8375 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 8376 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 8377 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 8378 LPFC_IO_DIF_INSERT); 8379 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 8380 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 8381 wqe->generic.wqe_com.abort_tag = abort_tag; 8382 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 8383 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 8384 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 8385 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 8386 return 0; 8387 } 8388 8389 /** 8390 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 8391 * @phba: Pointer to HBA context object. 8392 * @ring_number: SLI ring number to issue iocb on. 8393 * @piocb: Pointer to command iocb. 8394 * @flag: Flag indicating if this command can be put into txq. 8395 * 8396 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 8397 * an iocb command to an HBA with SLI-4 interface spec. 8398 * 8399 * This function is called with hbalock held. The function will return success 8400 * after it successfully submit the iocb to firmware or after adding to the 8401 * txq. 8402 **/ 8403 static int 8404 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 8405 struct lpfc_iocbq *piocb, uint32_t flag) 8406 { 8407 struct lpfc_sglq *sglq; 8408 union lpfc_wqe wqe; 8409 struct lpfc_sli_ring *pring = &phba->sli.ring[ring_number]; 8410 8411 if (piocb->sli4_xritag == NO_XRI) { 8412 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 8413 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 8414 sglq = NULL; 8415 else { 8416 if (!list_empty(&pring->txq)) { 8417 if (!(flag & SLI_IOCB_RET_IOCB)) { 8418 __lpfc_sli_ringtx_put(phba, 8419 pring, piocb); 8420 return IOCB_SUCCESS; 8421 } else { 8422 return IOCB_BUSY; 8423 } 8424 } else { 8425 sglq = __lpfc_sli_get_sglq(phba, piocb); 8426 if (!sglq) { 8427 if (!(flag & SLI_IOCB_RET_IOCB)) { 8428 __lpfc_sli_ringtx_put(phba, 8429 pring, 8430 piocb); 8431 return IOCB_SUCCESS; 8432 } else 8433 return IOCB_BUSY; 8434 } 8435 } 8436 } 8437 } else if (piocb->iocb_flag & LPFC_IO_FCP) { 8438 /* These IO's already have an XRI and a mapped sgl. */ 8439 sglq = NULL; 8440 } else { 8441 /* 8442 * This is a continuation of a commandi,(CX) so this 8443 * sglq is on the active list 8444 */ 8445 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 8446 if (!sglq) 8447 return IOCB_ERROR; 8448 } 8449 8450 if (sglq) { 8451 piocb->sli4_lxritag = sglq->sli4_lxritag; 8452 piocb->sli4_xritag = sglq->sli4_xritag; 8453 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 8454 return IOCB_ERROR; 8455 } 8456 8457 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe)) 8458 return IOCB_ERROR; 8459 8460 if ((piocb->iocb_flag & LPFC_IO_FCP) || 8461 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 8462 if (unlikely(!phba->sli4_hba.fcp_wq)) 8463 return IOCB_ERROR; 8464 if (lpfc_sli4_wq_put(phba->sli4_hba.fcp_wq[piocb->fcp_wqidx], 8465 &wqe)) 8466 return IOCB_ERROR; 8467 } else { 8468 if (unlikely(!phba->sli4_hba.els_wq)) 8469 return IOCB_ERROR; 8470 if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, &wqe)) 8471 return IOCB_ERROR; 8472 } 8473 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 8474 8475 return 0; 8476 } 8477 8478 /** 8479 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 8480 * 8481 * This routine wraps the actual lockless version for issusing IOCB function 8482 * pointer from the lpfc_hba struct. 8483 * 8484 * Return codes: 8485 * IOCB_ERROR - Error 8486 * IOCB_SUCCESS - Success 8487 * IOCB_BUSY - Busy 8488 **/ 8489 int 8490 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 8491 struct lpfc_iocbq *piocb, uint32_t flag) 8492 { 8493 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 8494 } 8495 8496 /** 8497 * lpfc_sli_api_table_setup - Set up sli api function jump table 8498 * @phba: The hba struct for which this call is being executed. 8499 * @dev_grp: The HBA PCI-Device group number. 8500 * 8501 * This routine sets up the SLI interface API function jump table in @phba 8502 * struct. 8503 * Returns: 0 - success, -ENODEV - failure. 8504 **/ 8505 int 8506 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 8507 { 8508 8509 switch (dev_grp) { 8510 case LPFC_PCI_DEV_LP: 8511 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 8512 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 8513 break; 8514 case LPFC_PCI_DEV_OC: 8515 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 8516 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 8517 break; 8518 default: 8519 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8520 "1419 Invalid HBA PCI-device group: 0x%x\n", 8521 dev_grp); 8522 return -ENODEV; 8523 break; 8524 } 8525 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 8526 return 0; 8527 } 8528 8529 /** 8530 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 8531 * @phba: Pointer to HBA context object. 8532 * @pring: Pointer to driver SLI ring object. 8533 * @piocb: Pointer to command iocb. 8534 * @flag: Flag indicating if this command can be put into txq. 8535 * 8536 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 8537 * function. This function gets the hbalock and calls 8538 * __lpfc_sli_issue_iocb function and will return the error returned 8539 * by __lpfc_sli_issue_iocb function. This wrapper is used by 8540 * functions which do not hold hbalock. 8541 **/ 8542 int 8543 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 8544 struct lpfc_iocbq *piocb, uint32_t flag) 8545 { 8546 struct lpfc_fcp_eq_hdl *fcp_eq_hdl; 8547 struct lpfc_sli_ring *pring; 8548 struct lpfc_queue *fpeq; 8549 struct lpfc_eqe *eqe; 8550 unsigned long iflags; 8551 int rc, idx; 8552 8553 if (phba->sli_rev == LPFC_SLI_REV4) { 8554 if (piocb->iocb_flag & LPFC_IO_FCP) { 8555 if (unlikely(!phba->sli4_hba.fcp_wq)) 8556 return IOCB_ERROR; 8557 idx = lpfc_sli4_scmd_to_wqidx_distr(phba); 8558 piocb->fcp_wqidx = idx; 8559 ring_number = MAX_SLI3_CONFIGURED_RINGS + idx; 8560 8561 pring = &phba->sli.ring[ring_number]; 8562 spin_lock_irqsave(&pring->ring_lock, iflags); 8563 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, 8564 flag); 8565 spin_unlock_irqrestore(&pring->ring_lock, iflags); 8566 8567 if (lpfc_fcp_look_ahead) { 8568 fcp_eq_hdl = &phba->sli4_hba.fcp_eq_hdl[idx]; 8569 8570 if (atomic_dec_and_test(&fcp_eq_hdl-> 8571 fcp_eq_in_use)) { 8572 8573 /* Get associated EQ with this index */ 8574 fpeq = phba->sli4_hba.hba_eq[idx]; 8575 8576 /* Turn off interrupts from this EQ */ 8577 lpfc_sli4_eq_clr_intr(fpeq); 8578 8579 /* 8580 * Process all the events on FCP EQ 8581 */ 8582 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 8583 lpfc_sli4_hba_handle_eqe(phba, 8584 eqe, idx); 8585 fpeq->EQ_processed++; 8586 } 8587 8588 /* Always clear and re-arm the EQ */ 8589 lpfc_sli4_eq_release(fpeq, 8590 LPFC_QUEUE_REARM); 8591 } 8592 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 8593 } 8594 } else { 8595 pring = &phba->sli.ring[ring_number]; 8596 spin_lock_irqsave(&pring->ring_lock, iflags); 8597 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, 8598 flag); 8599 spin_unlock_irqrestore(&pring->ring_lock, iflags); 8600 8601 } 8602 } else { 8603 /* For now, SLI2/3 will still use hbalock */ 8604 spin_lock_irqsave(&phba->hbalock, iflags); 8605 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 8606 spin_unlock_irqrestore(&phba->hbalock, iflags); 8607 } 8608 return rc; 8609 } 8610 8611 /** 8612 * lpfc_extra_ring_setup - Extra ring setup function 8613 * @phba: Pointer to HBA context object. 8614 * 8615 * This function is called while driver attaches with the 8616 * HBA to setup the extra ring. The extra ring is used 8617 * only when driver needs to support target mode functionality 8618 * or IP over FC functionalities. 8619 * 8620 * This function is called with no lock held. 8621 **/ 8622 static int 8623 lpfc_extra_ring_setup( struct lpfc_hba *phba) 8624 { 8625 struct lpfc_sli *psli; 8626 struct lpfc_sli_ring *pring; 8627 8628 psli = &phba->sli; 8629 8630 /* Adjust cmd/rsp ring iocb entries more evenly */ 8631 8632 /* Take some away from the FCP ring */ 8633 pring = &psli->ring[psli->fcp_ring]; 8634 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 8635 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 8636 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 8637 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 8638 8639 /* and give them to the extra ring */ 8640 pring = &psli->ring[psli->extra_ring]; 8641 8642 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 8643 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 8644 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 8645 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 8646 8647 /* Setup default profile for this ring */ 8648 pring->iotag_max = 4096; 8649 pring->num_mask = 1; 8650 pring->prt[0].profile = 0; /* Mask 0 */ 8651 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 8652 pring->prt[0].type = phba->cfg_multi_ring_type; 8653 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 8654 return 0; 8655 } 8656 8657 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 8658 * @phba: Pointer to HBA context object. 8659 * @iocbq: Pointer to iocb object. 8660 * 8661 * The async_event handler calls this routine when it receives 8662 * an ASYNC_STATUS_CN event from the port. The port generates 8663 * this event when an Abort Sequence request to an rport fails 8664 * twice in succession. The abort could be originated by the 8665 * driver or by the port. The ABTS could have been for an ELS 8666 * or FCP IO. The port only generates this event when an ABTS 8667 * fails to complete after one retry. 8668 */ 8669 static void 8670 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 8671 struct lpfc_iocbq *iocbq) 8672 { 8673 struct lpfc_nodelist *ndlp = NULL; 8674 uint16_t rpi = 0, vpi = 0; 8675 struct lpfc_vport *vport = NULL; 8676 8677 /* The rpi in the ulpContext is vport-sensitive. */ 8678 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 8679 rpi = iocbq->iocb.ulpContext; 8680 8681 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 8682 "3092 Port generated ABTS async event " 8683 "on vpi %d rpi %d status 0x%x\n", 8684 vpi, rpi, iocbq->iocb.ulpStatus); 8685 8686 vport = lpfc_find_vport_by_vpid(phba, vpi); 8687 if (!vport) 8688 goto err_exit; 8689 ndlp = lpfc_findnode_rpi(vport, rpi); 8690 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) 8691 goto err_exit; 8692 8693 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 8694 lpfc_sli_abts_recover_port(vport, ndlp); 8695 return; 8696 8697 err_exit: 8698 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 8699 "3095 Event Context not found, no " 8700 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 8701 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 8702 vpi, rpi); 8703 } 8704 8705 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 8706 * @phba: pointer to HBA context object. 8707 * @ndlp: nodelist pointer for the impacted rport. 8708 * @axri: pointer to the wcqe containing the failed exchange. 8709 * 8710 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 8711 * port. The port generates this event when an abort exchange request to an 8712 * rport fails twice in succession with no reply. The abort could be originated 8713 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 8714 */ 8715 void 8716 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 8717 struct lpfc_nodelist *ndlp, 8718 struct sli4_wcqe_xri_aborted *axri) 8719 { 8720 struct lpfc_vport *vport; 8721 uint32_t ext_status = 0; 8722 8723 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { 8724 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 8725 "3115 Node Context not found, driver " 8726 "ignoring abts err event\n"); 8727 return; 8728 } 8729 8730 vport = ndlp->vport; 8731 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 8732 "3116 Port generated FCP XRI ABORT event on " 8733 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 8734 ndlp->vport->vpi, ndlp->nlp_rpi, 8735 bf_get(lpfc_wcqe_xa_xri, axri), 8736 bf_get(lpfc_wcqe_xa_status, axri), 8737 axri->parameter); 8738 8739 /* 8740 * Catch the ABTS protocol failure case. Older OCe FW releases returned 8741 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 8742 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 8743 */ 8744 ext_status = axri->parameter & IOERR_PARAM_MASK; 8745 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 8746 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 8747 lpfc_sli_abts_recover_port(vport, ndlp); 8748 } 8749 8750 /** 8751 * lpfc_sli_async_event_handler - ASYNC iocb handler function 8752 * @phba: Pointer to HBA context object. 8753 * @pring: Pointer to driver SLI ring object. 8754 * @iocbq: Pointer to iocb object. 8755 * 8756 * This function is called by the slow ring event handler 8757 * function when there is an ASYNC event iocb in the ring. 8758 * This function is called with no lock held. 8759 * Currently this function handles only temperature related 8760 * ASYNC events. The function decodes the temperature sensor 8761 * event message and posts events for the management applications. 8762 **/ 8763 static void 8764 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 8765 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 8766 { 8767 IOCB_t *icmd; 8768 uint16_t evt_code; 8769 struct temp_event temp_event_data; 8770 struct Scsi_Host *shost; 8771 uint32_t *iocb_w; 8772 8773 icmd = &iocbq->iocb; 8774 evt_code = icmd->un.asyncstat.evt_code; 8775 8776 switch (evt_code) { 8777 case ASYNC_TEMP_WARN: 8778 case ASYNC_TEMP_SAFE: 8779 temp_event_data.data = (uint32_t) icmd->ulpContext; 8780 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 8781 if (evt_code == ASYNC_TEMP_WARN) { 8782 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 8783 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 8784 "0347 Adapter is very hot, please take " 8785 "corrective action. temperature : %d Celsius\n", 8786 (uint32_t) icmd->ulpContext); 8787 } else { 8788 temp_event_data.event_code = LPFC_NORMAL_TEMP; 8789 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 8790 "0340 Adapter temperature is OK now. " 8791 "temperature : %d Celsius\n", 8792 (uint32_t) icmd->ulpContext); 8793 } 8794 8795 /* Send temperature change event to applications */ 8796 shost = lpfc_shost_from_vport(phba->pport); 8797 fc_host_post_vendor_event(shost, fc_get_event_number(), 8798 sizeof(temp_event_data), (char *) &temp_event_data, 8799 LPFC_NL_VENDOR_ID); 8800 break; 8801 case ASYNC_STATUS_CN: 8802 lpfc_sli_abts_err_handler(phba, iocbq); 8803 break; 8804 default: 8805 iocb_w = (uint32_t *) icmd; 8806 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8807 "0346 Ring %d handler: unexpected ASYNC_STATUS" 8808 " evt_code 0x%x\n" 8809 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 8810 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 8811 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 8812 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 8813 pring->ringno, icmd->un.asyncstat.evt_code, 8814 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 8815 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 8816 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 8817 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 8818 8819 break; 8820 } 8821 } 8822 8823 8824 /** 8825 * lpfc_sli_setup - SLI ring setup function 8826 * @phba: Pointer to HBA context object. 8827 * 8828 * lpfc_sli_setup sets up rings of the SLI interface with 8829 * number of iocbs per ring and iotags. This function is 8830 * called while driver attach to the HBA and before the 8831 * interrupts are enabled. So there is no need for locking. 8832 * 8833 * This function always returns 0. 8834 **/ 8835 int 8836 lpfc_sli_setup(struct lpfc_hba *phba) 8837 { 8838 int i, totiocbsize = 0; 8839 struct lpfc_sli *psli = &phba->sli; 8840 struct lpfc_sli_ring *pring; 8841 8842 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 8843 if (phba->sli_rev == LPFC_SLI_REV4) 8844 psli->num_rings += phba->cfg_fcp_io_channel; 8845 psli->sli_flag = 0; 8846 psli->fcp_ring = LPFC_FCP_RING; 8847 psli->next_ring = LPFC_FCP_NEXT_RING; 8848 psli->extra_ring = LPFC_EXTRA_RING; 8849 8850 psli->iocbq_lookup = NULL; 8851 psli->iocbq_lookup_len = 0; 8852 psli->last_iotag = 0; 8853 8854 for (i = 0; i < psli->num_rings; i++) { 8855 pring = &psli->ring[i]; 8856 switch (i) { 8857 case LPFC_FCP_RING: /* ring 0 - FCP */ 8858 /* numCiocb and numRiocb are used in config_port */ 8859 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 8860 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 8861 pring->sli.sli3.numCiocb += 8862 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 8863 pring->sli.sli3.numRiocb += 8864 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 8865 pring->sli.sli3.numCiocb += 8866 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 8867 pring->sli.sli3.numRiocb += 8868 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 8869 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 8870 SLI3_IOCB_CMD_SIZE : 8871 SLI2_IOCB_CMD_SIZE; 8872 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 8873 SLI3_IOCB_RSP_SIZE : 8874 SLI2_IOCB_RSP_SIZE; 8875 pring->iotag_ctr = 0; 8876 pring->iotag_max = 8877 (phba->cfg_hba_queue_depth * 2); 8878 pring->fast_iotag = pring->iotag_max; 8879 pring->num_mask = 0; 8880 break; 8881 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 8882 /* numCiocb and numRiocb are used in config_port */ 8883 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 8884 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 8885 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 8886 SLI3_IOCB_CMD_SIZE : 8887 SLI2_IOCB_CMD_SIZE; 8888 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 8889 SLI3_IOCB_RSP_SIZE : 8890 SLI2_IOCB_RSP_SIZE; 8891 pring->iotag_max = phba->cfg_hba_queue_depth; 8892 pring->num_mask = 0; 8893 break; 8894 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 8895 /* numCiocb and numRiocb are used in config_port */ 8896 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 8897 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 8898 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 8899 SLI3_IOCB_CMD_SIZE : 8900 SLI2_IOCB_CMD_SIZE; 8901 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 8902 SLI3_IOCB_RSP_SIZE : 8903 SLI2_IOCB_RSP_SIZE; 8904 pring->fast_iotag = 0; 8905 pring->iotag_ctr = 0; 8906 pring->iotag_max = 4096; 8907 pring->lpfc_sli_rcv_async_status = 8908 lpfc_sli_async_event_handler; 8909 pring->num_mask = LPFC_MAX_RING_MASK; 8910 pring->prt[0].profile = 0; /* Mask 0 */ 8911 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 8912 pring->prt[0].type = FC_TYPE_ELS; 8913 pring->prt[0].lpfc_sli_rcv_unsol_event = 8914 lpfc_els_unsol_event; 8915 pring->prt[1].profile = 0; /* Mask 1 */ 8916 pring->prt[1].rctl = FC_RCTL_ELS_REP; 8917 pring->prt[1].type = FC_TYPE_ELS; 8918 pring->prt[1].lpfc_sli_rcv_unsol_event = 8919 lpfc_els_unsol_event; 8920 pring->prt[2].profile = 0; /* Mask 2 */ 8921 /* NameServer Inquiry */ 8922 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 8923 /* NameServer */ 8924 pring->prt[2].type = FC_TYPE_CT; 8925 pring->prt[2].lpfc_sli_rcv_unsol_event = 8926 lpfc_ct_unsol_event; 8927 pring->prt[3].profile = 0; /* Mask 3 */ 8928 /* NameServer response */ 8929 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 8930 /* NameServer */ 8931 pring->prt[3].type = FC_TYPE_CT; 8932 pring->prt[3].lpfc_sli_rcv_unsol_event = 8933 lpfc_ct_unsol_event; 8934 break; 8935 } 8936 totiocbsize += (pring->sli.sli3.numCiocb * 8937 pring->sli.sli3.sizeCiocb) + 8938 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 8939 } 8940 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 8941 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 8942 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 8943 "SLI2 SLIM Data: x%x x%lx\n", 8944 phba->brd_no, totiocbsize, 8945 (unsigned long) MAX_SLIM_IOCB_SIZE); 8946 } 8947 if (phba->cfg_multi_ring_support == 2) 8948 lpfc_extra_ring_setup(phba); 8949 8950 return 0; 8951 } 8952 8953 /** 8954 * lpfc_sli_queue_setup - Queue initialization function 8955 * @phba: Pointer to HBA context object. 8956 * 8957 * lpfc_sli_queue_setup sets up mailbox queues and iocb queues for each 8958 * ring. This function also initializes ring indices of each ring. 8959 * This function is called during the initialization of the SLI 8960 * interface of an HBA. 8961 * This function is called with no lock held and always returns 8962 * 1. 8963 **/ 8964 int 8965 lpfc_sli_queue_setup(struct lpfc_hba *phba) 8966 { 8967 struct lpfc_sli *psli; 8968 struct lpfc_sli_ring *pring; 8969 int i; 8970 8971 psli = &phba->sli; 8972 spin_lock_irq(&phba->hbalock); 8973 INIT_LIST_HEAD(&psli->mboxq); 8974 INIT_LIST_HEAD(&psli->mboxq_cmpl); 8975 /* Initialize list headers for txq and txcmplq as double linked lists */ 8976 for (i = 0; i < psli->num_rings; i++) { 8977 pring = &psli->ring[i]; 8978 pring->ringno = i; 8979 pring->sli.sli3.next_cmdidx = 0; 8980 pring->sli.sli3.local_getidx = 0; 8981 pring->sli.sli3.cmdidx = 0; 8982 INIT_LIST_HEAD(&pring->txq); 8983 INIT_LIST_HEAD(&pring->txcmplq); 8984 INIT_LIST_HEAD(&pring->iocb_continueq); 8985 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 8986 INIT_LIST_HEAD(&pring->postbufq); 8987 spin_lock_init(&pring->ring_lock); 8988 } 8989 spin_unlock_irq(&phba->hbalock); 8990 return 1; 8991 } 8992 8993 /** 8994 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 8995 * @phba: Pointer to HBA context object. 8996 * 8997 * This routine flushes the mailbox command subsystem. It will unconditionally 8998 * flush all the mailbox commands in the three possible stages in the mailbox 8999 * command sub-system: pending mailbox command queue; the outstanding mailbox 9000 * command; and completed mailbox command queue. It is caller's responsibility 9001 * to make sure that the driver is in the proper state to flush the mailbox 9002 * command sub-system. Namely, the posting of mailbox commands into the 9003 * pending mailbox command queue from the various clients must be stopped; 9004 * either the HBA is in a state that it will never works on the outstanding 9005 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 9006 * mailbox command has been completed. 9007 **/ 9008 static void 9009 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 9010 { 9011 LIST_HEAD(completions); 9012 struct lpfc_sli *psli = &phba->sli; 9013 LPFC_MBOXQ_t *pmb; 9014 unsigned long iflag; 9015 9016 /* Flush all the mailbox commands in the mbox system */ 9017 spin_lock_irqsave(&phba->hbalock, iflag); 9018 /* The pending mailbox command queue */ 9019 list_splice_init(&phba->sli.mboxq, &completions); 9020 /* The outstanding active mailbox command */ 9021 if (psli->mbox_active) { 9022 list_add_tail(&psli->mbox_active->list, &completions); 9023 psli->mbox_active = NULL; 9024 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9025 } 9026 /* The completed mailbox command queue */ 9027 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 9028 spin_unlock_irqrestore(&phba->hbalock, iflag); 9029 9030 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 9031 while (!list_empty(&completions)) { 9032 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 9033 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 9034 if (pmb->mbox_cmpl) 9035 pmb->mbox_cmpl(phba, pmb); 9036 } 9037 } 9038 9039 /** 9040 * lpfc_sli_host_down - Vport cleanup function 9041 * @vport: Pointer to virtual port object. 9042 * 9043 * lpfc_sli_host_down is called to clean up the resources 9044 * associated with a vport before destroying virtual 9045 * port data structures. 9046 * This function does following operations: 9047 * - Free discovery resources associated with this virtual 9048 * port. 9049 * - Free iocbs associated with this virtual port in 9050 * the txq. 9051 * - Send abort for all iocb commands associated with this 9052 * vport in txcmplq. 9053 * 9054 * This function is called with no lock held and always returns 1. 9055 **/ 9056 int 9057 lpfc_sli_host_down(struct lpfc_vport *vport) 9058 { 9059 LIST_HEAD(completions); 9060 struct lpfc_hba *phba = vport->phba; 9061 struct lpfc_sli *psli = &phba->sli; 9062 struct lpfc_sli_ring *pring; 9063 struct lpfc_iocbq *iocb, *next_iocb; 9064 int i; 9065 unsigned long flags = 0; 9066 uint16_t prev_pring_flag; 9067 9068 lpfc_cleanup_discovery_resources(vport); 9069 9070 spin_lock_irqsave(&phba->hbalock, flags); 9071 for (i = 0; i < psli->num_rings; i++) { 9072 pring = &psli->ring[i]; 9073 prev_pring_flag = pring->flag; 9074 /* Only slow rings */ 9075 if (pring->ringno == LPFC_ELS_RING) { 9076 pring->flag |= LPFC_DEFERRED_RING_EVENT; 9077 /* Set the lpfc data pending flag */ 9078 set_bit(LPFC_DATA_READY, &phba->data_flags); 9079 } 9080 /* 9081 * Error everything on the txq since these iocbs have not been 9082 * given to the FW yet. 9083 */ 9084 list_for_each_entry_safe(iocb, next_iocb, &pring->txq, list) { 9085 if (iocb->vport != vport) 9086 continue; 9087 list_move_tail(&iocb->list, &completions); 9088 } 9089 9090 /* Next issue ABTS for everything on the txcmplq */ 9091 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, 9092 list) { 9093 if (iocb->vport != vport) 9094 continue; 9095 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 9096 } 9097 9098 pring->flag = prev_pring_flag; 9099 } 9100 9101 spin_unlock_irqrestore(&phba->hbalock, flags); 9102 9103 /* Cancel all the IOCBs from the completions list */ 9104 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 9105 IOERR_SLI_DOWN); 9106 return 1; 9107 } 9108 9109 /** 9110 * lpfc_sli_hba_down - Resource cleanup function for the HBA 9111 * @phba: Pointer to HBA context object. 9112 * 9113 * This function cleans up all iocb, buffers, mailbox commands 9114 * while shutting down the HBA. This function is called with no 9115 * lock held and always returns 1. 9116 * This function does the following to cleanup driver resources: 9117 * - Free discovery resources for each virtual port 9118 * - Cleanup any pending fabric iocbs 9119 * - Iterate through the iocb txq and free each entry 9120 * in the list. 9121 * - Free up any buffer posted to the HBA 9122 * - Free mailbox commands in the mailbox queue. 9123 **/ 9124 int 9125 lpfc_sli_hba_down(struct lpfc_hba *phba) 9126 { 9127 LIST_HEAD(completions); 9128 struct lpfc_sli *psli = &phba->sli; 9129 struct lpfc_sli_ring *pring; 9130 struct lpfc_dmabuf *buf_ptr; 9131 unsigned long flags = 0; 9132 int i; 9133 9134 /* Shutdown the mailbox command sub-system */ 9135 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 9136 9137 lpfc_hba_down_prep(phba); 9138 9139 lpfc_fabric_abort_hba(phba); 9140 9141 spin_lock_irqsave(&phba->hbalock, flags); 9142 for (i = 0; i < psli->num_rings; i++) { 9143 pring = &psli->ring[i]; 9144 /* Only slow rings */ 9145 if (pring->ringno == LPFC_ELS_RING) { 9146 pring->flag |= LPFC_DEFERRED_RING_EVENT; 9147 /* Set the lpfc data pending flag */ 9148 set_bit(LPFC_DATA_READY, &phba->data_flags); 9149 } 9150 9151 /* 9152 * Error everything on the txq since these iocbs have not been 9153 * given to the FW yet. 9154 */ 9155 list_splice_init(&pring->txq, &completions); 9156 } 9157 spin_unlock_irqrestore(&phba->hbalock, flags); 9158 9159 /* Cancel all the IOCBs from the completions list */ 9160 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 9161 IOERR_SLI_DOWN); 9162 9163 spin_lock_irqsave(&phba->hbalock, flags); 9164 list_splice_init(&phba->elsbuf, &completions); 9165 phba->elsbuf_cnt = 0; 9166 phba->elsbuf_prev_cnt = 0; 9167 spin_unlock_irqrestore(&phba->hbalock, flags); 9168 9169 while (!list_empty(&completions)) { 9170 list_remove_head(&completions, buf_ptr, 9171 struct lpfc_dmabuf, list); 9172 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 9173 kfree(buf_ptr); 9174 } 9175 9176 /* Return any active mbox cmds */ 9177 del_timer_sync(&psli->mbox_tmo); 9178 9179 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 9180 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 9181 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 9182 9183 return 1; 9184 } 9185 9186 /** 9187 * lpfc_sli_pcimem_bcopy - SLI memory copy function 9188 * @srcp: Source memory pointer. 9189 * @destp: Destination memory pointer. 9190 * @cnt: Number of words required to be copied. 9191 * 9192 * This function is used for copying data between driver memory 9193 * and the SLI memory. This function also changes the endianness 9194 * of each word if native endianness is different from SLI 9195 * endianness. This function can be called with or without 9196 * lock. 9197 **/ 9198 void 9199 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 9200 { 9201 uint32_t *src = srcp; 9202 uint32_t *dest = destp; 9203 uint32_t ldata; 9204 int i; 9205 9206 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 9207 ldata = *src; 9208 ldata = le32_to_cpu(ldata); 9209 *dest = ldata; 9210 src++; 9211 dest++; 9212 } 9213 } 9214 9215 9216 /** 9217 * lpfc_sli_bemem_bcopy - SLI memory copy function 9218 * @srcp: Source memory pointer. 9219 * @destp: Destination memory pointer. 9220 * @cnt: Number of words required to be copied. 9221 * 9222 * This function is used for copying data between a data structure 9223 * with big endian representation to local endianness. 9224 * This function can be called with or without lock. 9225 **/ 9226 void 9227 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 9228 { 9229 uint32_t *src = srcp; 9230 uint32_t *dest = destp; 9231 uint32_t ldata; 9232 int i; 9233 9234 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 9235 ldata = *src; 9236 ldata = be32_to_cpu(ldata); 9237 *dest = ldata; 9238 src++; 9239 dest++; 9240 } 9241 } 9242 9243 /** 9244 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 9245 * @phba: Pointer to HBA context object. 9246 * @pring: Pointer to driver SLI ring object. 9247 * @mp: Pointer to driver buffer object. 9248 * 9249 * This function is called with no lock held. 9250 * It always return zero after adding the buffer to the postbufq 9251 * buffer list. 9252 **/ 9253 int 9254 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9255 struct lpfc_dmabuf *mp) 9256 { 9257 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 9258 later */ 9259 spin_lock_irq(&phba->hbalock); 9260 list_add_tail(&mp->list, &pring->postbufq); 9261 pring->postbufq_cnt++; 9262 spin_unlock_irq(&phba->hbalock); 9263 return 0; 9264 } 9265 9266 /** 9267 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 9268 * @phba: Pointer to HBA context object. 9269 * 9270 * When HBQ is enabled, buffers are searched based on tags. This function 9271 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 9272 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 9273 * does not conflict with tags of buffer posted for unsolicited events. 9274 * The function returns the allocated tag. The function is called with 9275 * no locks held. 9276 **/ 9277 uint32_t 9278 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 9279 { 9280 spin_lock_irq(&phba->hbalock); 9281 phba->buffer_tag_count++; 9282 /* 9283 * Always set the QUE_BUFTAG_BIT to distiguish between 9284 * a tag assigned by HBQ. 9285 */ 9286 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 9287 spin_unlock_irq(&phba->hbalock); 9288 return phba->buffer_tag_count; 9289 } 9290 9291 /** 9292 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 9293 * @phba: Pointer to HBA context object. 9294 * @pring: Pointer to driver SLI ring object. 9295 * @tag: Buffer tag. 9296 * 9297 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 9298 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 9299 * iocb is posted to the response ring with the tag of the buffer. 9300 * This function searches the pring->postbufq list using the tag 9301 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 9302 * iocb. If the buffer is found then lpfc_dmabuf object of the 9303 * buffer is returned to the caller else NULL is returned. 9304 * This function is called with no lock held. 9305 **/ 9306 struct lpfc_dmabuf * 9307 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9308 uint32_t tag) 9309 { 9310 struct lpfc_dmabuf *mp, *next_mp; 9311 struct list_head *slp = &pring->postbufq; 9312 9313 /* Search postbufq, from the beginning, looking for a match on tag */ 9314 spin_lock_irq(&phba->hbalock); 9315 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 9316 if (mp->buffer_tag == tag) { 9317 list_del_init(&mp->list); 9318 pring->postbufq_cnt--; 9319 spin_unlock_irq(&phba->hbalock); 9320 return mp; 9321 } 9322 } 9323 9324 spin_unlock_irq(&phba->hbalock); 9325 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9326 "0402 Cannot find virtual addr for buffer tag on " 9327 "ring %d Data x%lx x%p x%p x%x\n", 9328 pring->ringno, (unsigned long) tag, 9329 slp->next, slp->prev, pring->postbufq_cnt); 9330 9331 return NULL; 9332 } 9333 9334 /** 9335 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 9336 * @phba: Pointer to HBA context object. 9337 * @pring: Pointer to driver SLI ring object. 9338 * @phys: DMA address of the buffer. 9339 * 9340 * This function searches the buffer list using the dma_address 9341 * of unsolicited event to find the driver's lpfc_dmabuf object 9342 * corresponding to the dma_address. The function returns the 9343 * lpfc_dmabuf object if a buffer is found else it returns NULL. 9344 * This function is called by the ct and els unsolicited event 9345 * handlers to get the buffer associated with the unsolicited 9346 * event. 9347 * 9348 * This function is called with no lock held. 9349 **/ 9350 struct lpfc_dmabuf * 9351 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9352 dma_addr_t phys) 9353 { 9354 struct lpfc_dmabuf *mp, *next_mp; 9355 struct list_head *slp = &pring->postbufq; 9356 9357 /* Search postbufq, from the beginning, looking for a match on phys */ 9358 spin_lock_irq(&phba->hbalock); 9359 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 9360 if (mp->phys == phys) { 9361 list_del_init(&mp->list); 9362 pring->postbufq_cnt--; 9363 spin_unlock_irq(&phba->hbalock); 9364 return mp; 9365 } 9366 } 9367 9368 spin_unlock_irq(&phba->hbalock); 9369 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9370 "0410 Cannot find virtual addr for mapped buf on " 9371 "ring %d Data x%llx x%p x%p x%x\n", 9372 pring->ringno, (unsigned long long)phys, 9373 slp->next, slp->prev, pring->postbufq_cnt); 9374 return NULL; 9375 } 9376 9377 /** 9378 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 9379 * @phba: Pointer to HBA context object. 9380 * @cmdiocb: Pointer to driver command iocb object. 9381 * @rspiocb: Pointer to driver response iocb object. 9382 * 9383 * This function is the completion handler for the abort iocbs for 9384 * ELS commands. This function is called from the ELS ring event 9385 * handler with no lock held. This function frees memory resources 9386 * associated with the abort iocb. 9387 **/ 9388 static void 9389 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 9390 struct lpfc_iocbq *rspiocb) 9391 { 9392 IOCB_t *irsp = &rspiocb->iocb; 9393 uint16_t abort_iotag, abort_context; 9394 struct lpfc_iocbq *abort_iocb = NULL; 9395 9396 if (irsp->ulpStatus) { 9397 9398 /* 9399 * Assume that the port already completed and returned, or 9400 * will return the iocb. Just Log the message. 9401 */ 9402 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 9403 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 9404 9405 spin_lock_irq(&phba->hbalock); 9406 if (phba->sli_rev < LPFC_SLI_REV4) { 9407 if (abort_iotag != 0 && 9408 abort_iotag <= phba->sli.last_iotag) 9409 abort_iocb = 9410 phba->sli.iocbq_lookup[abort_iotag]; 9411 } else 9412 /* For sli4 the abort_tag is the XRI, 9413 * so the abort routine puts the iotag of the iocb 9414 * being aborted in the context field of the abort 9415 * IOCB. 9416 */ 9417 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 9418 9419 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 9420 "0327 Cannot abort els iocb %p " 9421 "with tag %x context %x, abort status %x, " 9422 "abort code %x\n", 9423 abort_iocb, abort_iotag, abort_context, 9424 irsp->ulpStatus, irsp->un.ulpWord[4]); 9425 9426 spin_unlock_irq(&phba->hbalock); 9427 } 9428 lpfc_sli_release_iocbq(phba, cmdiocb); 9429 return; 9430 } 9431 9432 /** 9433 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 9434 * @phba: Pointer to HBA context object. 9435 * @cmdiocb: Pointer to driver command iocb object. 9436 * @rspiocb: Pointer to driver response iocb object. 9437 * 9438 * The function is called from SLI ring event handler with no 9439 * lock held. This function is the completion handler for ELS commands 9440 * which are aborted. The function frees memory resources used for 9441 * the aborted ELS commands. 9442 **/ 9443 static void 9444 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 9445 struct lpfc_iocbq *rspiocb) 9446 { 9447 IOCB_t *irsp = &rspiocb->iocb; 9448 9449 /* ELS cmd tag <ulpIoTag> completes */ 9450 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 9451 "0139 Ignoring ELS cmd tag x%x completion Data: " 9452 "x%x x%x x%x\n", 9453 irsp->ulpIoTag, irsp->ulpStatus, 9454 irsp->un.ulpWord[4], irsp->ulpTimeout); 9455 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 9456 lpfc_ct_free_iocb(phba, cmdiocb); 9457 else 9458 lpfc_els_free_iocb(phba, cmdiocb); 9459 return; 9460 } 9461 9462 /** 9463 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb 9464 * @phba: Pointer to HBA context object. 9465 * @pring: Pointer to driver SLI ring object. 9466 * @cmdiocb: Pointer to driver command iocb object. 9467 * 9468 * This function issues an abort iocb for the provided command iocb down to 9469 * the port. Other than the case the outstanding command iocb is an abort 9470 * request, this function issues abort out unconditionally. This function is 9471 * called with hbalock held. The function returns 0 when it fails due to 9472 * memory allocation failure or when the command iocb is an abort request. 9473 **/ 9474 static int 9475 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9476 struct lpfc_iocbq *cmdiocb) 9477 { 9478 struct lpfc_vport *vport = cmdiocb->vport; 9479 struct lpfc_iocbq *abtsiocbp; 9480 IOCB_t *icmd = NULL; 9481 IOCB_t *iabt = NULL; 9482 int retval; 9483 unsigned long iflags; 9484 9485 /* 9486 * There are certain command types we don't want to abort. And we 9487 * don't want to abort commands that are already in the process of 9488 * being aborted. 9489 */ 9490 icmd = &cmdiocb->iocb; 9491 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 9492 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 9493 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 9494 return 0; 9495 9496 /* issue ABTS for this IOCB based on iotag */ 9497 abtsiocbp = __lpfc_sli_get_iocbq(phba); 9498 if (abtsiocbp == NULL) 9499 return 0; 9500 9501 /* This signals the response to set the correct status 9502 * before calling the completion handler 9503 */ 9504 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 9505 9506 iabt = &abtsiocbp->iocb; 9507 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 9508 iabt->un.acxri.abortContextTag = icmd->ulpContext; 9509 if (phba->sli_rev == LPFC_SLI_REV4) { 9510 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 9511 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 9512 } 9513 else 9514 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 9515 iabt->ulpLe = 1; 9516 iabt->ulpClass = icmd->ulpClass; 9517 9518 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 9519 abtsiocbp->fcp_wqidx = cmdiocb->fcp_wqidx; 9520 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 9521 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 9522 9523 if (phba->link_state >= LPFC_LINK_UP) 9524 iabt->ulpCommand = CMD_ABORT_XRI_CN; 9525 else 9526 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 9527 9528 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 9529 9530 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 9531 "0339 Abort xri x%x, original iotag x%x, " 9532 "abort cmd iotag x%x\n", 9533 iabt->un.acxri.abortIoTag, 9534 iabt->un.acxri.abortContextTag, 9535 abtsiocbp->iotag); 9536 9537 if (phba->sli_rev == LPFC_SLI_REV4) { 9538 /* Note: both hbalock and ring_lock need to be set here */ 9539 spin_lock_irqsave(&pring->ring_lock, iflags); 9540 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 9541 abtsiocbp, 0); 9542 spin_unlock_irqrestore(&pring->ring_lock, iflags); 9543 } else { 9544 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 9545 abtsiocbp, 0); 9546 } 9547 9548 if (retval) 9549 __lpfc_sli_release_iocbq(phba, abtsiocbp); 9550 9551 /* 9552 * Caller to this routine should check for IOCB_ERROR 9553 * and handle it properly. This routine no longer removes 9554 * iocb off txcmplq and call compl in case of IOCB_ERROR. 9555 */ 9556 return retval; 9557 } 9558 9559 /** 9560 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 9561 * @phba: Pointer to HBA context object. 9562 * @pring: Pointer to driver SLI ring object. 9563 * @cmdiocb: Pointer to driver command iocb object. 9564 * 9565 * This function issues an abort iocb for the provided command iocb. In case 9566 * of unloading, the abort iocb will not be issued to commands on the ELS 9567 * ring. Instead, the callback function shall be changed to those commands 9568 * so that nothing happens when them finishes. This function is called with 9569 * hbalock held. The function returns 0 when the command iocb is an abort 9570 * request. 9571 **/ 9572 int 9573 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9574 struct lpfc_iocbq *cmdiocb) 9575 { 9576 struct lpfc_vport *vport = cmdiocb->vport; 9577 int retval = IOCB_ERROR; 9578 IOCB_t *icmd = NULL; 9579 9580 /* 9581 * There are certain command types we don't want to abort. And we 9582 * don't want to abort commands that are already in the process of 9583 * being aborted. 9584 */ 9585 icmd = &cmdiocb->iocb; 9586 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 9587 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 9588 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 9589 return 0; 9590 9591 /* 9592 * If we're unloading, don't abort iocb on the ELS ring, but change 9593 * the callback so that nothing happens when it finishes. 9594 */ 9595 if ((vport->load_flag & FC_UNLOADING) && 9596 (pring->ringno == LPFC_ELS_RING)) { 9597 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 9598 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 9599 else 9600 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 9601 goto abort_iotag_exit; 9602 } 9603 9604 /* Now, we try to issue the abort to the cmdiocb out */ 9605 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb); 9606 9607 abort_iotag_exit: 9608 /* 9609 * Caller to this routine should check for IOCB_ERROR 9610 * and handle it properly. This routine no longer removes 9611 * iocb off txcmplq and call compl in case of IOCB_ERROR. 9612 */ 9613 return retval; 9614 } 9615 9616 /** 9617 * lpfc_sli_iocb_ring_abort - Unconditionally abort all iocbs on an iocb ring 9618 * @phba: Pointer to HBA context object. 9619 * @pring: Pointer to driver SLI ring object. 9620 * 9621 * This function aborts all iocbs in the given ring and frees all the iocb 9622 * objects in txq. This function issues abort iocbs unconditionally for all 9623 * the iocb commands in txcmplq. The iocbs in the txcmplq is not guaranteed 9624 * to complete before the return of this function. The caller is not required 9625 * to hold any locks. 9626 **/ 9627 static void 9628 lpfc_sli_iocb_ring_abort(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 9629 { 9630 LIST_HEAD(completions); 9631 struct lpfc_iocbq *iocb, *next_iocb; 9632 9633 if (pring->ringno == LPFC_ELS_RING) 9634 lpfc_fabric_abort_hba(phba); 9635 9636 spin_lock_irq(&phba->hbalock); 9637 9638 /* Take off all the iocbs on txq for cancelling */ 9639 list_splice_init(&pring->txq, &completions); 9640 pring->txq_cnt = 0; 9641 9642 /* Next issue ABTS for everything on the txcmplq */ 9643 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 9644 lpfc_sli_abort_iotag_issue(phba, pring, iocb); 9645 9646 spin_unlock_irq(&phba->hbalock); 9647 9648 /* Cancel all the IOCBs from the completions list */ 9649 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 9650 IOERR_SLI_ABORTED); 9651 } 9652 9653 /** 9654 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 9655 * @phba: pointer to lpfc HBA data structure. 9656 * 9657 * This routine will abort all pending and outstanding iocbs to an HBA. 9658 **/ 9659 void 9660 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 9661 { 9662 struct lpfc_sli *psli = &phba->sli; 9663 struct lpfc_sli_ring *pring; 9664 int i; 9665 9666 for (i = 0; i < psli->num_rings; i++) { 9667 pring = &psli->ring[i]; 9668 lpfc_sli_iocb_ring_abort(phba, pring); 9669 } 9670 } 9671 9672 /** 9673 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 9674 * @iocbq: Pointer to driver iocb object. 9675 * @vport: Pointer to driver virtual port object. 9676 * @tgt_id: SCSI ID of the target. 9677 * @lun_id: LUN ID of the scsi device. 9678 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 9679 * 9680 * This function acts as an iocb filter for functions which abort or count 9681 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 9682 * 0 if the filtering criteria is met for the given iocb and will return 9683 * 1 if the filtering criteria is not met. 9684 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 9685 * given iocb is for the SCSI device specified by vport, tgt_id and 9686 * lun_id parameter. 9687 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 9688 * given iocb is for the SCSI target specified by vport and tgt_id 9689 * parameters. 9690 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 9691 * given iocb is for the SCSI host associated with the given vport. 9692 * This function is called with no locks held. 9693 **/ 9694 static int 9695 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 9696 uint16_t tgt_id, uint64_t lun_id, 9697 lpfc_ctx_cmd ctx_cmd) 9698 { 9699 struct lpfc_scsi_buf *lpfc_cmd; 9700 int rc = 1; 9701 9702 if (!(iocbq->iocb_flag & LPFC_IO_FCP)) 9703 return rc; 9704 9705 if (iocbq->vport != vport) 9706 return rc; 9707 9708 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 9709 9710 if (lpfc_cmd->pCmd == NULL) 9711 return rc; 9712 9713 switch (ctx_cmd) { 9714 case LPFC_CTX_LUN: 9715 if ((lpfc_cmd->rdata->pnode) && 9716 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 9717 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 9718 rc = 0; 9719 break; 9720 case LPFC_CTX_TGT: 9721 if ((lpfc_cmd->rdata->pnode) && 9722 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 9723 rc = 0; 9724 break; 9725 case LPFC_CTX_HOST: 9726 rc = 0; 9727 break; 9728 default: 9729 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 9730 __func__, ctx_cmd); 9731 break; 9732 } 9733 9734 return rc; 9735 } 9736 9737 /** 9738 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 9739 * @vport: Pointer to virtual port. 9740 * @tgt_id: SCSI ID of the target. 9741 * @lun_id: LUN ID of the scsi device. 9742 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 9743 * 9744 * This function returns number of FCP commands pending for the vport. 9745 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 9746 * commands pending on the vport associated with SCSI device specified 9747 * by tgt_id and lun_id parameters. 9748 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 9749 * commands pending on the vport associated with SCSI target specified 9750 * by tgt_id parameter. 9751 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 9752 * commands pending on the vport. 9753 * This function returns the number of iocbs which satisfy the filter. 9754 * This function is called without any lock held. 9755 **/ 9756 int 9757 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 9758 lpfc_ctx_cmd ctx_cmd) 9759 { 9760 struct lpfc_hba *phba = vport->phba; 9761 struct lpfc_iocbq *iocbq; 9762 int sum, i; 9763 9764 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 9765 iocbq = phba->sli.iocbq_lookup[i]; 9766 9767 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 9768 ctx_cmd) == 0) 9769 sum++; 9770 } 9771 9772 return sum; 9773 } 9774 9775 /** 9776 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 9777 * @phba: Pointer to HBA context object 9778 * @cmdiocb: Pointer to command iocb object. 9779 * @rspiocb: Pointer to response iocb object. 9780 * 9781 * This function is called when an aborted FCP iocb completes. This 9782 * function is called by the ring event handler with no lock held. 9783 * This function frees the iocb. 9784 **/ 9785 void 9786 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 9787 struct lpfc_iocbq *rspiocb) 9788 { 9789 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9790 "3096 ABORT_XRI_CN completing on xri x%x " 9791 "original iotag x%x, abort cmd iotag x%x " 9792 "status 0x%x, reason 0x%x\n", 9793 cmdiocb->iocb.un.acxri.abortContextTag, 9794 cmdiocb->iocb.un.acxri.abortIoTag, 9795 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 9796 rspiocb->iocb.un.ulpWord[4]); 9797 lpfc_sli_release_iocbq(phba, cmdiocb); 9798 return; 9799 } 9800 9801 /** 9802 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 9803 * @vport: Pointer to virtual port. 9804 * @pring: Pointer to driver SLI ring object. 9805 * @tgt_id: SCSI ID of the target. 9806 * @lun_id: LUN ID of the scsi device. 9807 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 9808 * 9809 * This function sends an abort command for every SCSI command 9810 * associated with the given virtual port pending on the ring 9811 * filtered by lpfc_sli_validate_fcp_iocb function. 9812 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 9813 * FCP iocbs associated with lun specified by tgt_id and lun_id 9814 * parameters 9815 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 9816 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 9817 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 9818 * FCP iocbs associated with virtual port. 9819 * This function returns number of iocbs it failed to abort. 9820 * This function is called with no locks held. 9821 **/ 9822 int 9823 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 9824 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd) 9825 { 9826 struct lpfc_hba *phba = vport->phba; 9827 struct lpfc_iocbq *iocbq; 9828 struct lpfc_iocbq *abtsiocb; 9829 IOCB_t *cmd = NULL; 9830 int errcnt = 0, ret_val = 0; 9831 int i; 9832 9833 for (i = 1; i <= phba->sli.last_iotag; i++) { 9834 iocbq = phba->sli.iocbq_lookup[i]; 9835 9836 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 9837 abort_cmd) != 0) 9838 continue; 9839 9840 /* issue ABTS for this IOCB based on iotag */ 9841 abtsiocb = lpfc_sli_get_iocbq(phba); 9842 if (abtsiocb == NULL) { 9843 errcnt++; 9844 continue; 9845 } 9846 9847 cmd = &iocbq->iocb; 9848 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 9849 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext; 9850 if (phba->sli_rev == LPFC_SLI_REV4) 9851 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag; 9852 else 9853 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag; 9854 abtsiocb->iocb.ulpLe = 1; 9855 abtsiocb->iocb.ulpClass = cmd->ulpClass; 9856 abtsiocb->vport = phba->pport; 9857 9858 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 9859 abtsiocb->fcp_wqidx = iocbq->fcp_wqidx; 9860 if (iocbq->iocb_flag & LPFC_IO_FCP) 9861 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 9862 9863 if (lpfc_is_link_up(phba)) 9864 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN; 9865 else 9866 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 9867 9868 /* Setup callback routine and issue the command. */ 9869 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 9870 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno, 9871 abtsiocb, 0); 9872 if (ret_val == IOCB_ERROR) { 9873 lpfc_sli_release_iocbq(phba, abtsiocb); 9874 errcnt++; 9875 continue; 9876 } 9877 } 9878 9879 return errcnt; 9880 } 9881 9882 /** 9883 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 9884 * @phba: Pointer to HBA context object. 9885 * @cmdiocbq: Pointer to command iocb. 9886 * @rspiocbq: Pointer to response iocb. 9887 * 9888 * This function is the completion handler for iocbs issued using 9889 * lpfc_sli_issue_iocb_wait function. This function is called by the 9890 * ring event handler function without any lock held. This function 9891 * can be called from both worker thread context and interrupt 9892 * context. This function also can be called from other thread which 9893 * cleans up the SLI layer objects. 9894 * This function copy the contents of the response iocb to the 9895 * response iocb memory object provided by the caller of 9896 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 9897 * sleeps for the iocb completion. 9898 **/ 9899 static void 9900 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 9901 struct lpfc_iocbq *cmdiocbq, 9902 struct lpfc_iocbq *rspiocbq) 9903 { 9904 wait_queue_head_t *pdone_q; 9905 unsigned long iflags; 9906 struct lpfc_scsi_buf *lpfc_cmd; 9907 9908 spin_lock_irqsave(&phba->hbalock, iflags); 9909 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 9910 if (cmdiocbq->context2 && rspiocbq) 9911 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 9912 &rspiocbq->iocb, sizeof(IOCB_t)); 9913 9914 /* Set the exchange busy flag for task management commands */ 9915 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 9916 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 9917 lpfc_cmd = container_of(cmdiocbq, struct lpfc_scsi_buf, 9918 cur_iocbq); 9919 lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY; 9920 } 9921 9922 pdone_q = cmdiocbq->context_un.wait_queue; 9923 if (pdone_q) 9924 wake_up(pdone_q); 9925 spin_unlock_irqrestore(&phba->hbalock, iflags); 9926 return; 9927 } 9928 9929 /** 9930 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 9931 * @phba: Pointer to HBA context object.. 9932 * @piocbq: Pointer to command iocb. 9933 * @flag: Flag to test. 9934 * 9935 * This routine grabs the hbalock and then test the iocb_flag to 9936 * see if the passed in flag is set. 9937 * Returns: 9938 * 1 if flag is set. 9939 * 0 if flag is not set. 9940 **/ 9941 static int 9942 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 9943 struct lpfc_iocbq *piocbq, uint32_t flag) 9944 { 9945 unsigned long iflags; 9946 int ret; 9947 9948 spin_lock_irqsave(&phba->hbalock, iflags); 9949 ret = piocbq->iocb_flag & flag; 9950 spin_unlock_irqrestore(&phba->hbalock, iflags); 9951 return ret; 9952 9953 } 9954 9955 /** 9956 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 9957 * @phba: Pointer to HBA context object.. 9958 * @pring: Pointer to sli ring. 9959 * @piocb: Pointer to command iocb. 9960 * @prspiocbq: Pointer to response iocb. 9961 * @timeout: Timeout in number of seconds. 9962 * 9963 * This function issues the iocb to firmware and waits for the 9964 * iocb to complete. If the iocb command is not 9965 * completed within timeout seconds, it returns IOCB_TIMEDOUT. 9966 * Caller should not free the iocb resources if this function 9967 * returns IOCB_TIMEDOUT. 9968 * The function waits for the iocb completion using an 9969 * non-interruptible wait. 9970 * This function will sleep while waiting for iocb completion. 9971 * So, this function should not be called from any context which 9972 * does not allow sleeping. Due to the same reason, this function 9973 * cannot be called with interrupt disabled. 9974 * This function assumes that the iocb completions occur while 9975 * this function sleep. So, this function cannot be called from 9976 * the thread which process iocb completion for this ring. 9977 * This function clears the iocb_flag of the iocb object before 9978 * issuing the iocb and the iocb completion handler sets this 9979 * flag and wakes this thread when the iocb completes. 9980 * The contents of the response iocb will be copied to prspiocbq 9981 * by the completion handler when the command completes. 9982 * This function returns IOCB_SUCCESS when success. 9983 * This function is called with no lock held. 9984 **/ 9985 int 9986 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 9987 uint32_t ring_number, 9988 struct lpfc_iocbq *piocb, 9989 struct lpfc_iocbq *prspiocbq, 9990 uint32_t timeout) 9991 { 9992 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 9993 long timeleft, timeout_req = 0; 9994 int retval = IOCB_SUCCESS; 9995 uint32_t creg_val; 9996 struct lpfc_iocbq *iocb; 9997 int txq_cnt = 0; 9998 int txcmplq_cnt = 0; 9999 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 10000 /* 10001 * If the caller has provided a response iocbq buffer, then context2 10002 * is NULL or its an error. 10003 */ 10004 if (prspiocbq) { 10005 if (piocb->context2) 10006 return IOCB_ERROR; 10007 piocb->context2 = prspiocbq; 10008 } 10009 10010 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 10011 piocb->context_un.wait_queue = &done_q; 10012 piocb->iocb_flag &= ~LPFC_IO_WAKE; 10013 10014 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 10015 if (lpfc_readl(phba->HCregaddr, &creg_val)) 10016 return IOCB_ERROR; 10017 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 10018 writel(creg_val, phba->HCregaddr); 10019 readl(phba->HCregaddr); /* flush */ 10020 } 10021 10022 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 10023 SLI_IOCB_RET_IOCB); 10024 if (retval == IOCB_SUCCESS) { 10025 timeout_req = msecs_to_jiffies(timeout * 1000); 10026 timeleft = wait_event_timeout(done_q, 10027 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 10028 timeout_req); 10029 10030 if (piocb->iocb_flag & LPFC_IO_WAKE) { 10031 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10032 "0331 IOCB wake signaled\n"); 10033 } else if (timeleft == 0) { 10034 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 10035 "0338 IOCB wait timeout error - no " 10036 "wake response Data x%x\n", timeout); 10037 retval = IOCB_TIMEDOUT; 10038 } else { 10039 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 10040 "0330 IOCB wake NOT set, " 10041 "Data x%x x%lx\n", 10042 timeout, (timeleft / jiffies)); 10043 retval = IOCB_TIMEDOUT; 10044 } 10045 } else if (retval == IOCB_BUSY) { 10046 if (phba->cfg_log_verbose & LOG_SLI) { 10047 list_for_each_entry(iocb, &pring->txq, list) { 10048 txq_cnt++; 10049 } 10050 list_for_each_entry(iocb, &pring->txcmplq, list) { 10051 txcmplq_cnt++; 10052 } 10053 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10054 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 10055 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 10056 } 10057 return retval; 10058 } else { 10059 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10060 "0332 IOCB wait issue failed, Data x%x\n", 10061 retval); 10062 retval = IOCB_ERROR; 10063 } 10064 10065 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 10066 if (lpfc_readl(phba->HCregaddr, &creg_val)) 10067 return IOCB_ERROR; 10068 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 10069 writel(creg_val, phba->HCregaddr); 10070 readl(phba->HCregaddr); /* flush */ 10071 } 10072 10073 if (prspiocbq) 10074 piocb->context2 = NULL; 10075 10076 piocb->context_un.wait_queue = NULL; 10077 piocb->iocb_cmpl = NULL; 10078 return retval; 10079 } 10080 10081 /** 10082 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 10083 * @phba: Pointer to HBA context object. 10084 * @pmboxq: Pointer to driver mailbox object. 10085 * @timeout: Timeout in number of seconds. 10086 * 10087 * This function issues the mailbox to firmware and waits for the 10088 * mailbox command to complete. If the mailbox command is not 10089 * completed within timeout seconds, it returns MBX_TIMEOUT. 10090 * The function waits for the mailbox completion using an 10091 * interruptible wait. If the thread is woken up due to a 10092 * signal, MBX_TIMEOUT error is returned to the caller. Caller 10093 * should not free the mailbox resources, if this function returns 10094 * MBX_TIMEOUT. 10095 * This function will sleep while waiting for mailbox completion. 10096 * So, this function should not be called from any context which 10097 * does not allow sleeping. Due to the same reason, this function 10098 * cannot be called with interrupt disabled. 10099 * This function assumes that the mailbox completion occurs while 10100 * this function sleep. So, this function cannot be called from 10101 * the worker thread which processes mailbox completion. 10102 * This function is called in the context of HBA management 10103 * applications. 10104 * This function returns MBX_SUCCESS when successful. 10105 * This function is called with no lock held. 10106 **/ 10107 int 10108 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 10109 uint32_t timeout) 10110 { 10111 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 10112 int retval; 10113 unsigned long flag; 10114 10115 /* The caller must leave context1 empty. */ 10116 if (pmboxq->context1) 10117 return MBX_NOT_FINISHED; 10118 10119 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 10120 /* setup wake call as IOCB callback */ 10121 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 10122 /* setup context field to pass wait_queue pointer to wake function */ 10123 pmboxq->context1 = &done_q; 10124 10125 /* now issue the command */ 10126 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 10127 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 10128 wait_event_interruptible_timeout(done_q, 10129 pmboxq->mbox_flag & LPFC_MBX_WAKE, 10130 msecs_to_jiffies(timeout * 1000)); 10131 10132 spin_lock_irqsave(&phba->hbalock, flag); 10133 pmboxq->context1 = NULL; 10134 /* 10135 * if LPFC_MBX_WAKE flag is set the mailbox is completed 10136 * else do not free the resources. 10137 */ 10138 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 10139 retval = MBX_SUCCESS; 10140 lpfc_sli4_swap_str(phba, pmboxq); 10141 } else { 10142 retval = MBX_TIMEOUT; 10143 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 10144 } 10145 spin_unlock_irqrestore(&phba->hbalock, flag); 10146 } 10147 10148 return retval; 10149 } 10150 10151 /** 10152 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 10153 * @phba: Pointer to HBA context. 10154 * 10155 * This function is called to shutdown the driver's mailbox sub-system. 10156 * It first marks the mailbox sub-system is in a block state to prevent 10157 * the asynchronous mailbox command from issued off the pending mailbox 10158 * command queue. If the mailbox command sub-system shutdown is due to 10159 * HBA error conditions such as EEH or ERATT, this routine shall invoke 10160 * the mailbox sub-system flush routine to forcefully bring down the 10161 * mailbox sub-system. Otherwise, if it is due to normal condition (such 10162 * as with offline or HBA function reset), this routine will wait for the 10163 * outstanding mailbox command to complete before invoking the mailbox 10164 * sub-system flush routine to gracefully bring down mailbox sub-system. 10165 **/ 10166 void 10167 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 10168 { 10169 struct lpfc_sli *psli = &phba->sli; 10170 unsigned long timeout; 10171 10172 if (mbx_action == LPFC_MBX_NO_WAIT) { 10173 /* delay 100ms for port state */ 10174 msleep(100); 10175 lpfc_sli_mbox_sys_flush(phba); 10176 return; 10177 } 10178 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 10179 10180 spin_lock_irq(&phba->hbalock); 10181 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 10182 10183 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 10184 /* Determine how long we might wait for the active mailbox 10185 * command to be gracefully completed by firmware. 10186 */ 10187 if (phba->sli.mbox_active) 10188 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 10189 phba->sli.mbox_active) * 10190 1000) + jiffies; 10191 spin_unlock_irq(&phba->hbalock); 10192 10193 while (phba->sli.mbox_active) { 10194 /* Check active mailbox complete status every 2ms */ 10195 msleep(2); 10196 if (time_after(jiffies, timeout)) 10197 /* Timeout, let the mailbox flush routine to 10198 * forcefully release active mailbox command 10199 */ 10200 break; 10201 } 10202 } else 10203 spin_unlock_irq(&phba->hbalock); 10204 10205 lpfc_sli_mbox_sys_flush(phba); 10206 } 10207 10208 /** 10209 * lpfc_sli_eratt_read - read sli-3 error attention events 10210 * @phba: Pointer to HBA context. 10211 * 10212 * This function is called to read the SLI3 device error attention registers 10213 * for possible error attention events. The caller must hold the hostlock 10214 * with spin_lock_irq(). 10215 * 10216 * This function returns 1 when there is Error Attention in the Host Attention 10217 * Register and returns 0 otherwise. 10218 **/ 10219 static int 10220 lpfc_sli_eratt_read(struct lpfc_hba *phba) 10221 { 10222 uint32_t ha_copy; 10223 10224 /* Read chip Host Attention (HA) register */ 10225 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 10226 goto unplug_err; 10227 10228 if (ha_copy & HA_ERATT) { 10229 /* Read host status register to retrieve error event */ 10230 if (lpfc_sli_read_hs(phba)) 10231 goto unplug_err; 10232 10233 /* Check if there is a deferred error condition is active */ 10234 if ((HS_FFER1 & phba->work_hs) && 10235 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 10236 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 10237 phba->hba_flag |= DEFER_ERATT; 10238 /* Clear all interrupt enable conditions */ 10239 writel(0, phba->HCregaddr); 10240 readl(phba->HCregaddr); 10241 } 10242 10243 /* Set the driver HA work bitmap */ 10244 phba->work_ha |= HA_ERATT; 10245 /* Indicate polling handles this ERATT */ 10246 phba->hba_flag |= HBA_ERATT_HANDLED; 10247 return 1; 10248 } 10249 return 0; 10250 10251 unplug_err: 10252 /* Set the driver HS work bitmap */ 10253 phba->work_hs |= UNPLUG_ERR; 10254 /* Set the driver HA work bitmap */ 10255 phba->work_ha |= HA_ERATT; 10256 /* Indicate polling handles this ERATT */ 10257 phba->hba_flag |= HBA_ERATT_HANDLED; 10258 return 1; 10259 } 10260 10261 /** 10262 * lpfc_sli4_eratt_read - read sli-4 error attention events 10263 * @phba: Pointer to HBA context. 10264 * 10265 * This function is called to read the SLI4 device error attention registers 10266 * for possible error attention events. The caller must hold the hostlock 10267 * with spin_lock_irq(). 10268 * 10269 * This function returns 1 when there is Error Attention in the Host Attention 10270 * Register and returns 0 otherwise. 10271 **/ 10272 static int 10273 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 10274 { 10275 uint32_t uerr_sta_hi, uerr_sta_lo; 10276 uint32_t if_type, portsmphr; 10277 struct lpfc_register portstat_reg; 10278 10279 /* 10280 * For now, use the SLI4 device internal unrecoverable error 10281 * registers for error attention. This can be changed later. 10282 */ 10283 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10284 switch (if_type) { 10285 case LPFC_SLI_INTF_IF_TYPE_0: 10286 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 10287 &uerr_sta_lo) || 10288 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 10289 &uerr_sta_hi)) { 10290 phba->work_hs |= UNPLUG_ERR; 10291 phba->work_ha |= HA_ERATT; 10292 phba->hba_flag |= HBA_ERATT_HANDLED; 10293 return 1; 10294 } 10295 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 10296 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 10297 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10298 "1423 HBA Unrecoverable error: " 10299 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 10300 "ue_mask_lo_reg=0x%x, " 10301 "ue_mask_hi_reg=0x%x\n", 10302 uerr_sta_lo, uerr_sta_hi, 10303 phba->sli4_hba.ue_mask_lo, 10304 phba->sli4_hba.ue_mask_hi); 10305 phba->work_status[0] = uerr_sta_lo; 10306 phba->work_status[1] = uerr_sta_hi; 10307 phba->work_ha |= HA_ERATT; 10308 phba->hba_flag |= HBA_ERATT_HANDLED; 10309 return 1; 10310 } 10311 break; 10312 case LPFC_SLI_INTF_IF_TYPE_2: 10313 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 10314 &portstat_reg.word0) || 10315 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 10316 &portsmphr)){ 10317 phba->work_hs |= UNPLUG_ERR; 10318 phba->work_ha |= HA_ERATT; 10319 phba->hba_flag |= HBA_ERATT_HANDLED; 10320 return 1; 10321 } 10322 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 10323 phba->work_status[0] = 10324 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 10325 phba->work_status[1] = 10326 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 10327 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10328 "2885 Port Status Event: " 10329 "port status reg 0x%x, " 10330 "port smphr reg 0x%x, " 10331 "error 1=0x%x, error 2=0x%x\n", 10332 portstat_reg.word0, 10333 portsmphr, 10334 phba->work_status[0], 10335 phba->work_status[1]); 10336 phba->work_ha |= HA_ERATT; 10337 phba->hba_flag |= HBA_ERATT_HANDLED; 10338 return 1; 10339 } 10340 break; 10341 case LPFC_SLI_INTF_IF_TYPE_1: 10342 default: 10343 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10344 "2886 HBA Error Attention on unsupported " 10345 "if type %d.", if_type); 10346 return 1; 10347 } 10348 10349 return 0; 10350 } 10351 10352 /** 10353 * lpfc_sli_check_eratt - check error attention events 10354 * @phba: Pointer to HBA context. 10355 * 10356 * This function is called from timer soft interrupt context to check HBA's 10357 * error attention register bit for error attention events. 10358 * 10359 * This function returns 1 when there is Error Attention in the Host Attention 10360 * Register and returns 0 otherwise. 10361 **/ 10362 int 10363 lpfc_sli_check_eratt(struct lpfc_hba *phba) 10364 { 10365 uint32_t ha_copy; 10366 10367 /* If somebody is waiting to handle an eratt, don't process it 10368 * here. The brdkill function will do this. 10369 */ 10370 if (phba->link_flag & LS_IGNORE_ERATT) 10371 return 0; 10372 10373 /* Check if interrupt handler handles this ERATT */ 10374 spin_lock_irq(&phba->hbalock); 10375 if (phba->hba_flag & HBA_ERATT_HANDLED) { 10376 /* Interrupt handler has handled ERATT */ 10377 spin_unlock_irq(&phba->hbalock); 10378 return 0; 10379 } 10380 10381 /* 10382 * If there is deferred error attention, do not check for error 10383 * attention 10384 */ 10385 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 10386 spin_unlock_irq(&phba->hbalock); 10387 return 0; 10388 } 10389 10390 /* If PCI channel is offline, don't process it */ 10391 if (unlikely(pci_channel_offline(phba->pcidev))) { 10392 spin_unlock_irq(&phba->hbalock); 10393 return 0; 10394 } 10395 10396 switch (phba->sli_rev) { 10397 case LPFC_SLI_REV2: 10398 case LPFC_SLI_REV3: 10399 /* Read chip Host Attention (HA) register */ 10400 ha_copy = lpfc_sli_eratt_read(phba); 10401 break; 10402 case LPFC_SLI_REV4: 10403 /* Read device Uncoverable Error (UERR) registers */ 10404 ha_copy = lpfc_sli4_eratt_read(phba); 10405 break; 10406 default: 10407 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10408 "0299 Invalid SLI revision (%d)\n", 10409 phba->sli_rev); 10410 ha_copy = 0; 10411 break; 10412 } 10413 spin_unlock_irq(&phba->hbalock); 10414 10415 return ha_copy; 10416 } 10417 10418 /** 10419 * lpfc_intr_state_check - Check device state for interrupt handling 10420 * @phba: Pointer to HBA context. 10421 * 10422 * This inline routine checks whether a device or its PCI slot is in a state 10423 * that the interrupt should be handled. 10424 * 10425 * This function returns 0 if the device or the PCI slot is in a state that 10426 * interrupt should be handled, otherwise -EIO. 10427 */ 10428 static inline int 10429 lpfc_intr_state_check(struct lpfc_hba *phba) 10430 { 10431 /* If the pci channel is offline, ignore all the interrupts */ 10432 if (unlikely(pci_channel_offline(phba->pcidev))) 10433 return -EIO; 10434 10435 /* Update device level interrupt statistics */ 10436 phba->sli.slistat.sli_intr++; 10437 10438 /* Ignore all interrupts during initialization. */ 10439 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10440 return -EIO; 10441 10442 return 0; 10443 } 10444 10445 /** 10446 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 10447 * @irq: Interrupt number. 10448 * @dev_id: The device context pointer. 10449 * 10450 * This function is directly called from the PCI layer as an interrupt 10451 * service routine when device with SLI-3 interface spec is enabled with 10452 * MSI-X multi-message interrupt mode and there are slow-path events in 10453 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 10454 * interrupt mode, this function is called as part of the device-level 10455 * interrupt handler. When the PCI slot is in error recovery or the HBA 10456 * is undergoing initialization, the interrupt handler will not process 10457 * the interrupt. The link attention and ELS ring attention events are 10458 * handled by the worker thread. The interrupt handler signals the worker 10459 * thread and returns for these events. This function is called without 10460 * any lock held. It gets the hbalock to access and update SLI data 10461 * structures. 10462 * 10463 * This function returns IRQ_HANDLED when interrupt is handled else it 10464 * returns IRQ_NONE. 10465 **/ 10466 irqreturn_t 10467 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 10468 { 10469 struct lpfc_hba *phba; 10470 uint32_t ha_copy, hc_copy; 10471 uint32_t work_ha_copy; 10472 unsigned long status; 10473 unsigned long iflag; 10474 uint32_t control; 10475 10476 MAILBOX_t *mbox, *pmbox; 10477 struct lpfc_vport *vport; 10478 struct lpfc_nodelist *ndlp; 10479 struct lpfc_dmabuf *mp; 10480 LPFC_MBOXQ_t *pmb; 10481 int rc; 10482 10483 /* 10484 * Get the driver's phba structure from the dev_id and 10485 * assume the HBA is not interrupting. 10486 */ 10487 phba = (struct lpfc_hba *)dev_id; 10488 10489 if (unlikely(!phba)) 10490 return IRQ_NONE; 10491 10492 /* 10493 * Stuff needs to be attented to when this function is invoked as an 10494 * individual interrupt handler in MSI-X multi-message interrupt mode 10495 */ 10496 if (phba->intr_type == MSIX) { 10497 /* Check device state for handling interrupt */ 10498 if (lpfc_intr_state_check(phba)) 10499 return IRQ_NONE; 10500 /* Need to read HA REG for slow-path events */ 10501 spin_lock_irqsave(&phba->hbalock, iflag); 10502 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 10503 goto unplug_error; 10504 /* If somebody is waiting to handle an eratt don't process it 10505 * here. The brdkill function will do this. 10506 */ 10507 if (phba->link_flag & LS_IGNORE_ERATT) 10508 ha_copy &= ~HA_ERATT; 10509 /* Check the need for handling ERATT in interrupt handler */ 10510 if (ha_copy & HA_ERATT) { 10511 if (phba->hba_flag & HBA_ERATT_HANDLED) 10512 /* ERATT polling has handled ERATT */ 10513 ha_copy &= ~HA_ERATT; 10514 else 10515 /* Indicate interrupt handler handles ERATT */ 10516 phba->hba_flag |= HBA_ERATT_HANDLED; 10517 } 10518 10519 /* 10520 * If there is deferred error attention, do not check for any 10521 * interrupt. 10522 */ 10523 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 10524 spin_unlock_irqrestore(&phba->hbalock, iflag); 10525 return IRQ_NONE; 10526 } 10527 10528 /* Clear up only attention source related to slow-path */ 10529 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 10530 goto unplug_error; 10531 10532 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 10533 HC_LAINT_ENA | HC_ERINT_ENA), 10534 phba->HCregaddr); 10535 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 10536 phba->HAregaddr); 10537 writel(hc_copy, phba->HCregaddr); 10538 readl(phba->HAregaddr); /* flush */ 10539 spin_unlock_irqrestore(&phba->hbalock, iflag); 10540 } else 10541 ha_copy = phba->ha_copy; 10542 10543 work_ha_copy = ha_copy & phba->work_ha_mask; 10544 10545 if (work_ha_copy) { 10546 if (work_ha_copy & HA_LATT) { 10547 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 10548 /* 10549 * Turn off Link Attention interrupts 10550 * until CLEAR_LA done 10551 */ 10552 spin_lock_irqsave(&phba->hbalock, iflag); 10553 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 10554 if (lpfc_readl(phba->HCregaddr, &control)) 10555 goto unplug_error; 10556 control &= ~HC_LAINT_ENA; 10557 writel(control, phba->HCregaddr); 10558 readl(phba->HCregaddr); /* flush */ 10559 spin_unlock_irqrestore(&phba->hbalock, iflag); 10560 } 10561 else 10562 work_ha_copy &= ~HA_LATT; 10563 } 10564 10565 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 10566 /* 10567 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 10568 * the only slow ring. 10569 */ 10570 status = (work_ha_copy & 10571 (HA_RXMASK << (4*LPFC_ELS_RING))); 10572 status >>= (4*LPFC_ELS_RING); 10573 if (status & HA_RXMASK) { 10574 spin_lock_irqsave(&phba->hbalock, iflag); 10575 if (lpfc_readl(phba->HCregaddr, &control)) 10576 goto unplug_error; 10577 10578 lpfc_debugfs_slow_ring_trc(phba, 10579 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 10580 control, status, 10581 (uint32_t)phba->sli.slistat.sli_intr); 10582 10583 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 10584 lpfc_debugfs_slow_ring_trc(phba, 10585 "ISR Disable ring:" 10586 "pwork:x%x hawork:x%x wait:x%x", 10587 phba->work_ha, work_ha_copy, 10588 (uint32_t)((unsigned long) 10589 &phba->work_waitq)); 10590 10591 control &= 10592 ~(HC_R0INT_ENA << LPFC_ELS_RING); 10593 writel(control, phba->HCregaddr); 10594 readl(phba->HCregaddr); /* flush */ 10595 } 10596 else { 10597 lpfc_debugfs_slow_ring_trc(phba, 10598 "ISR slow ring: pwork:" 10599 "x%x hawork:x%x wait:x%x", 10600 phba->work_ha, work_ha_copy, 10601 (uint32_t)((unsigned long) 10602 &phba->work_waitq)); 10603 } 10604 spin_unlock_irqrestore(&phba->hbalock, iflag); 10605 } 10606 } 10607 spin_lock_irqsave(&phba->hbalock, iflag); 10608 if (work_ha_copy & HA_ERATT) { 10609 if (lpfc_sli_read_hs(phba)) 10610 goto unplug_error; 10611 /* 10612 * Check if there is a deferred error condition 10613 * is active 10614 */ 10615 if ((HS_FFER1 & phba->work_hs) && 10616 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 10617 HS_FFER6 | HS_FFER7 | HS_FFER8) & 10618 phba->work_hs)) { 10619 phba->hba_flag |= DEFER_ERATT; 10620 /* Clear all interrupt enable conditions */ 10621 writel(0, phba->HCregaddr); 10622 readl(phba->HCregaddr); 10623 } 10624 } 10625 10626 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 10627 pmb = phba->sli.mbox_active; 10628 pmbox = &pmb->u.mb; 10629 mbox = phba->mbox; 10630 vport = pmb->vport; 10631 10632 /* First check out the status word */ 10633 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 10634 if (pmbox->mbxOwner != OWN_HOST) { 10635 spin_unlock_irqrestore(&phba->hbalock, iflag); 10636 /* 10637 * Stray Mailbox Interrupt, mbxCommand <cmd> 10638 * mbxStatus <status> 10639 */ 10640 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 10641 LOG_SLI, 10642 "(%d):0304 Stray Mailbox " 10643 "Interrupt mbxCommand x%x " 10644 "mbxStatus x%x\n", 10645 (vport ? vport->vpi : 0), 10646 pmbox->mbxCommand, 10647 pmbox->mbxStatus); 10648 /* clear mailbox attention bit */ 10649 work_ha_copy &= ~HA_MBATT; 10650 } else { 10651 phba->sli.mbox_active = NULL; 10652 spin_unlock_irqrestore(&phba->hbalock, iflag); 10653 phba->last_completion_time = jiffies; 10654 del_timer(&phba->sli.mbox_tmo); 10655 if (pmb->mbox_cmpl) { 10656 lpfc_sli_pcimem_bcopy(mbox, pmbox, 10657 MAILBOX_CMD_SIZE); 10658 if (pmb->out_ext_byte_len && 10659 pmb->context2) 10660 lpfc_sli_pcimem_bcopy( 10661 phba->mbox_ext, 10662 pmb->context2, 10663 pmb->out_ext_byte_len); 10664 } 10665 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 10666 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 10667 10668 lpfc_debugfs_disc_trc(vport, 10669 LPFC_DISC_TRC_MBOX_VPORT, 10670 "MBOX dflt rpi: : " 10671 "status:x%x rpi:x%x", 10672 (uint32_t)pmbox->mbxStatus, 10673 pmbox->un.varWords[0], 0); 10674 10675 if (!pmbox->mbxStatus) { 10676 mp = (struct lpfc_dmabuf *) 10677 (pmb->context1); 10678 ndlp = (struct lpfc_nodelist *) 10679 pmb->context2; 10680 10681 /* Reg_LOGIN of dflt RPI was 10682 * successful. new lets get 10683 * rid of the RPI using the 10684 * same mbox buffer. 10685 */ 10686 lpfc_unreg_login(phba, 10687 vport->vpi, 10688 pmbox->un.varWords[0], 10689 pmb); 10690 pmb->mbox_cmpl = 10691 lpfc_mbx_cmpl_dflt_rpi; 10692 pmb->context1 = mp; 10693 pmb->context2 = ndlp; 10694 pmb->vport = vport; 10695 rc = lpfc_sli_issue_mbox(phba, 10696 pmb, 10697 MBX_NOWAIT); 10698 if (rc != MBX_BUSY) 10699 lpfc_printf_log(phba, 10700 KERN_ERR, 10701 LOG_MBOX | LOG_SLI, 10702 "0350 rc should have" 10703 "been MBX_BUSY\n"); 10704 if (rc != MBX_NOT_FINISHED) 10705 goto send_current_mbox; 10706 } 10707 } 10708 spin_lock_irqsave( 10709 &phba->pport->work_port_lock, 10710 iflag); 10711 phba->pport->work_port_events &= 10712 ~WORKER_MBOX_TMO; 10713 spin_unlock_irqrestore( 10714 &phba->pport->work_port_lock, 10715 iflag); 10716 lpfc_mbox_cmpl_put(phba, pmb); 10717 } 10718 } else 10719 spin_unlock_irqrestore(&phba->hbalock, iflag); 10720 10721 if ((work_ha_copy & HA_MBATT) && 10722 (phba->sli.mbox_active == NULL)) { 10723 send_current_mbox: 10724 /* Process next mailbox command if there is one */ 10725 do { 10726 rc = lpfc_sli_issue_mbox(phba, NULL, 10727 MBX_NOWAIT); 10728 } while (rc == MBX_NOT_FINISHED); 10729 if (rc != MBX_SUCCESS) 10730 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 10731 LOG_SLI, "0349 rc should be " 10732 "MBX_SUCCESS\n"); 10733 } 10734 10735 spin_lock_irqsave(&phba->hbalock, iflag); 10736 phba->work_ha |= work_ha_copy; 10737 spin_unlock_irqrestore(&phba->hbalock, iflag); 10738 lpfc_worker_wake_up(phba); 10739 } 10740 return IRQ_HANDLED; 10741 unplug_error: 10742 spin_unlock_irqrestore(&phba->hbalock, iflag); 10743 return IRQ_HANDLED; 10744 10745 } /* lpfc_sli_sp_intr_handler */ 10746 10747 /** 10748 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 10749 * @irq: Interrupt number. 10750 * @dev_id: The device context pointer. 10751 * 10752 * This function is directly called from the PCI layer as an interrupt 10753 * service routine when device with SLI-3 interface spec is enabled with 10754 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 10755 * ring event in the HBA. However, when the device is enabled with either 10756 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 10757 * device-level interrupt handler. When the PCI slot is in error recovery 10758 * or the HBA is undergoing initialization, the interrupt handler will not 10759 * process the interrupt. The SCSI FCP fast-path ring event are handled in 10760 * the intrrupt context. This function is called without any lock held. 10761 * It gets the hbalock to access and update SLI data structures. 10762 * 10763 * This function returns IRQ_HANDLED when interrupt is handled else it 10764 * returns IRQ_NONE. 10765 **/ 10766 irqreturn_t 10767 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 10768 { 10769 struct lpfc_hba *phba; 10770 uint32_t ha_copy; 10771 unsigned long status; 10772 unsigned long iflag; 10773 10774 /* Get the driver's phba structure from the dev_id and 10775 * assume the HBA is not interrupting. 10776 */ 10777 phba = (struct lpfc_hba *) dev_id; 10778 10779 if (unlikely(!phba)) 10780 return IRQ_NONE; 10781 10782 /* 10783 * Stuff needs to be attented to when this function is invoked as an 10784 * individual interrupt handler in MSI-X multi-message interrupt mode 10785 */ 10786 if (phba->intr_type == MSIX) { 10787 /* Check device state for handling interrupt */ 10788 if (lpfc_intr_state_check(phba)) 10789 return IRQ_NONE; 10790 /* Need to read HA REG for FCP ring and other ring events */ 10791 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 10792 return IRQ_HANDLED; 10793 /* Clear up only attention source related to fast-path */ 10794 spin_lock_irqsave(&phba->hbalock, iflag); 10795 /* 10796 * If there is deferred error attention, do not check for 10797 * any interrupt. 10798 */ 10799 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 10800 spin_unlock_irqrestore(&phba->hbalock, iflag); 10801 return IRQ_NONE; 10802 } 10803 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 10804 phba->HAregaddr); 10805 readl(phba->HAregaddr); /* flush */ 10806 spin_unlock_irqrestore(&phba->hbalock, iflag); 10807 } else 10808 ha_copy = phba->ha_copy; 10809 10810 /* 10811 * Process all events on FCP ring. Take the optimized path for FCP IO. 10812 */ 10813 ha_copy &= ~(phba->work_ha_mask); 10814 10815 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 10816 status >>= (4*LPFC_FCP_RING); 10817 if (status & HA_RXMASK) 10818 lpfc_sli_handle_fast_ring_event(phba, 10819 &phba->sli.ring[LPFC_FCP_RING], 10820 status); 10821 10822 if (phba->cfg_multi_ring_support == 2) { 10823 /* 10824 * Process all events on extra ring. Take the optimized path 10825 * for extra ring IO. 10826 */ 10827 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 10828 status >>= (4*LPFC_EXTRA_RING); 10829 if (status & HA_RXMASK) { 10830 lpfc_sli_handle_fast_ring_event(phba, 10831 &phba->sli.ring[LPFC_EXTRA_RING], 10832 status); 10833 } 10834 } 10835 return IRQ_HANDLED; 10836 } /* lpfc_sli_fp_intr_handler */ 10837 10838 /** 10839 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 10840 * @irq: Interrupt number. 10841 * @dev_id: The device context pointer. 10842 * 10843 * This function is the HBA device-level interrupt handler to device with 10844 * SLI-3 interface spec, called from the PCI layer when either MSI or 10845 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 10846 * requires driver attention. This function invokes the slow-path interrupt 10847 * attention handling function and fast-path interrupt attention handling 10848 * function in turn to process the relevant HBA attention events. This 10849 * function is called without any lock held. It gets the hbalock to access 10850 * and update SLI data structures. 10851 * 10852 * This function returns IRQ_HANDLED when interrupt is handled, else it 10853 * returns IRQ_NONE. 10854 **/ 10855 irqreturn_t 10856 lpfc_sli_intr_handler(int irq, void *dev_id) 10857 { 10858 struct lpfc_hba *phba; 10859 irqreturn_t sp_irq_rc, fp_irq_rc; 10860 unsigned long status1, status2; 10861 uint32_t hc_copy; 10862 10863 /* 10864 * Get the driver's phba structure from the dev_id and 10865 * assume the HBA is not interrupting. 10866 */ 10867 phba = (struct lpfc_hba *) dev_id; 10868 10869 if (unlikely(!phba)) 10870 return IRQ_NONE; 10871 10872 /* Check device state for handling interrupt */ 10873 if (lpfc_intr_state_check(phba)) 10874 return IRQ_NONE; 10875 10876 spin_lock(&phba->hbalock); 10877 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 10878 spin_unlock(&phba->hbalock); 10879 return IRQ_HANDLED; 10880 } 10881 10882 if (unlikely(!phba->ha_copy)) { 10883 spin_unlock(&phba->hbalock); 10884 return IRQ_NONE; 10885 } else if (phba->ha_copy & HA_ERATT) { 10886 if (phba->hba_flag & HBA_ERATT_HANDLED) 10887 /* ERATT polling has handled ERATT */ 10888 phba->ha_copy &= ~HA_ERATT; 10889 else 10890 /* Indicate interrupt handler handles ERATT */ 10891 phba->hba_flag |= HBA_ERATT_HANDLED; 10892 } 10893 10894 /* 10895 * If there is deferred error attention, do not check for any interrupt. 10896 */ 10897 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 10898 spin_unlock(&phba->hbalock); 10899 return IRQ_NONE; 10900 } 10901 10902 /* Clear attention sources except link and error attentions */ 10903 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 10904 spin_unlock(&phba->hbalock); 10905 return IRQ_HANDLED; 10906 } 10907 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 10908 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 10909 phba->HCregaddr); 10910 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 10911 writel(hc_copy, phba->HCregaddr); 10912 readl(phba->HAregaddr); /* flush */ 10913 spin_unlock(&phba->hbalock); 10914 10915 /* 10916 * Invokes slow-path host attention interrupt handling as appropriate. 10917 */ 10918 10919 /* status of events with mailbox and link attention */ 10920 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 10921 10922 /* status of events with ELS ring */ 10923 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 10924 status2 >>= (4*LPFC_ELS_RING); 10925 10926 if (status1 || (status2 & HA_RXMASK)) 10927 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 10928 else 10929 sp_irq_rc = IRQ_NONE; 10930 10931 /* 10932 * Invoke fast-path host attention interrupt handling as appropriate. 10933 */ 10934 10935 /* status of events with FCP ring */ 10936 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 10937 status1 >>= (4*LPFC_FCP_RING); 10938 10939 /* status of events with extra ring */ 10940 if (phba->cfg_multi_ring_support == 2) { 10941 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 10942 status2 >>= (4*LPFC_EXTRA_RING); 10943 } else 10944 status2 = 0; 10945 10946 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 10947 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 10948 else 10949 fp_irq_rc = IRQ_NONE; 10950 10951 /* Return device-level interrupt handling status */ 10952 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 10953 } /* lpfc_sli_intr_handler */ 10954 10955 /** 10956 * lpfc_sli4_fcp_xri_abort_event_proc - Process fcp xri abort event 10957 * @phba: pointer to lpfc hba data structure. 10958 * 10959 * This routine is invoked by the worker thread to process all the pending 10960 * SLI4 FCP abort XRI events. 10961 **/ 10962 void lpfc_sli4_fcp_xri_abort_event_proc(struct lpfc_hba *phba) 10963 { 10964 struct lpfc_cq_event *cq_event; 10965 10966 /* First, declare the fcp xri abort event has been handled */ 10967 spin_lock_irq(&phba->hbalock); 10968 phba->hba_flag &= ~FCP_XRI_ABORT_EVENT; 10969 spin_unlock_irq(&phba->hbalock); 10970 /* Now, handle all the fcp xri abort events */ 10971 while (!list_empty(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue)) { 10972 /* Get the first event from the head of the event queue */ 10973 spin_lock_irq(&phba->hbalock); 10974 list_remove_head(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue, 10975 cq_event, struct lpfc_cq_event, list); 10976 spin_unlock_irq(&phba->hbalock); 10977 /* Notify aborted XRI for FCP work queue */ 10978 lpfc_sli4_fcp_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 10979 /* Free the event processed back to the free pool */ 10980 lpfc_sli4_cq_event_release(phba, cq_event); 10981 } 10982 } 10983 10984 /** 10985 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 10986 * @phba: pointer to lpfc hba data structure. 10987 * 10988 * This routine is invoked by the worker thread to process all the pending 10989 * SLI4 els abort xri events. 10990 **/ 10991 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 10992 { 10993 struct lpfc_cq_event *cq_event; 10994 10995 /* First, declare the els xri abort event has been handled */ 10996 spin_lock_irq(&phba->hbalock); 10997 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 10998 spin_unlock_irq(&phba->hbalock); 10999 /* Now, handle all the els xri abort events */ 11000 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 11001 /* Get the first event from the head of the event queue */ 11002 spin_lock_irq(&phba->hbalock); 11003 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 11004 cq_event, struct lpfc_cq_event, list); 11005 spin_unlock_irq(&phba->hbalock); 11006 /* Notify aborted XRI for ELS work queue */ 11007 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 11008 /* Free the event processed back to the free pool */ 11009 lpfc_sli4_cq_event_release(phba, cq_event); 11010 } 11011 } 11012 11013 /** 11014 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 11015 * @phba: pointer to lpfc hba data structure 11016 * @pIocbIn: pointer to the rspiocbq 11017 * @pIocbOut: pointer to the cmdiocbq 11018 * @wcqe: pointer to the complete wcqe 11019 * 11020 * This routine transfers the fields of a command iocbq to a response iocbq 11021 * by copying all the IOCB fields from command iocbq and transferring the 11022 * completion status information from the complete wcqe. 11023 **/ 11024 static void 11025 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 11026 struct lpfc_iocbq *pIocbIn, 11027 struct lpfc_iocbq *pIocbOut, 11028 struct lpfc_wcqe_complete *wcqe) 11029 { 11030 unsigned long iflags; 11031 uint32_t status; 11032 size_t offset = offsetof(struct lpfc_iocbq, iocb); 11033 11034 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 11035 sizeof(struct lpfc_iocbq) - offset); 11036 /* Map WCQE parameters into irspiocb parameters */ 11037 status = bf_get(lpfc_wcqe_c_status, wcqe); 11038 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 11039 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 11040 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 11041 pIocbIn->iocb.un.fcpi.fcpi_parm = 11042 pIocbOut->iocb.un.fcpi.fcpi_parm - 11043 wcqe->total_data_placed; 11044 else 11045 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 11046 else { 11047 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 11048 pIocbIn->iocb.un.genreq64.bdl.bdeSize = wcqe->total_data_placed; 11049 } 11050 11051 /* Convert BG errors for completion status */ 11052 if (status == CQE_STATUS_DI_ERROR) { 11053 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 11054 11055 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 11056 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 11057 else 11058 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 11059 11060 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 11061 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 11062 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11063 BGS_GUARD_ERR_MASK; 11064 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 11065 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11066 BGS_APPTAG_ERR_MASK; 11067 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 11068 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11069 BGS_REFTAG_ERR_MASK; 11070 11071 /* Check to see if there was any good data before the error */ 11072 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 11073 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11074 BGS_HI_WATER_MARK_PRESENT_MASK; 11075 pIocbIn->iocb.unsli3.sli3_bg.bghm = 11076 wcqe->total_data_placed; 11077 } 11078 11079 /* 11080 * Set ALL the error bits to indicate we don't know what 11081 * type of error it is. 11082 */ 11083 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 11084 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11085 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 11086 BGS_GUARD_ERR_MASK); 11087 } 11088 11089 /* Pick up HBA exchange busy condition */ 11090 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 11091 spin_lock_irqsave(&phba->hbalock, iflags); 11092 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 11093 spin_unlock_irqrestore(&phba->hbalock, iflags); 11094 } 11095 } 11096 11097 /** 11098 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 11099 * @phba: Pointer to HBA context object. 11100 * @wcqe: Pointer to work-queue completion queue entry. 11101 * 11102 * This routine handles an ELS work-queue completion event and construct 11103 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 11104 * discovery engine to handle. 11105 * 11106 * Return: Pointer to the receive IOCBQ, NULL otherwise. 11107 **/ 11108 static struct lpfc_iocbq * 11109 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 11110 struct lpfc_iocbq *irspiocbq) 11111 { 11112 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 11113 struct lpfc_iocbq *cmdiocbq; 11114 struct lpfc_wcqe_complete *wcqe; 11115 unsigned long iflags; 11116 11117 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 11118 spin_lock_irqsave(&pring->ring_lock, iflags); 11119 pring->stats.iocb_event++; 11120 /* Look up the ELS command IOCB and create pseudo response IOCB */ 11121 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 11122 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 11123 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11124 11125 if (unlikely(!cmdiocbq)) { 11126 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11127 "0386 ELS complete with no corresponding " 11128 "cmdiocb: iotag (%d)\n", 11129 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 11130 lpfc_sli_release_iocbq(phba, irspiocbq); 11131 return NULL; 11132 } 11133 11134 /* Fake the irspiocbq and copy necessary response information */ 11135 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 11136 11137 return irspiocbq; 11138 } 11139 11140 /** 11141 * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event 11142 * @phba: Pointer to HBA context object. 11143 * @cqe: Pointer to mailbox completion queue entry. 11144 * 11145 * This routine process a mailbox completion queue entry with asynchrous 11146 * event. 11147 * 11148 * Return: true if work posted to worker thread, otherwise false. 11149 **/ 11150 static bool 11151 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 11152 { 11153 struct lpfc_cq_event *cq_event; 11154 unsigned long iflags; 11155 11156 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11157 "0392 Async Event: word0:x%x, word1:x%x, " 11158 "word2:x%x, word3:x%x\n", mcqe->word0, 11159 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 11160 11161 /* Allocate a new internal CQ_EVENT entry */ 11162 cq_event = lpfc_sli4_cq_event_alloc(phba); 11163 if (!cq_event) { 11164 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11165 "0394 Failed to allocate CQ_EVENT entry\n"); 11166 return false; 11167 } 11168 11169 /* Move the CQE into an asynchronous event entry */ 11170 memcpy(&cq_event->cqe, mcqe, sizeof(struct lpfc_mcqe)); 11171 spin_lock_irqsave(&phba->hbalock, iflags); 11172 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 11173 /* Set the async event flag */ 11174 phba->hba_flag |= ASYNC_EVENT; 11175 spin_unlock_irqrestore(&phba->hbalock, iflags); 11176 11177 return true; 11178 } 11179 11180 /** 11181 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 11182 * @phba: Pointer to HBA context object. 11183 * @cqe: Pointer to mailbox completion queue entry. 11184 * 11185 * This routine process a mailbox completion queue entry with mailbox 11186 * completion event. 11187 * 11188 * Return: true if work posted to worker thread, otherwise false. 11189 **/ 11190 static bool 11191 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 11192 { 11193 uint32_t mcqe_status; 11194 MAILBOX_t *mbox, *pmbox; 11195 struct lpfc_mqe *mqe; 11196 struct lpfc_vport *vport; 11197 struct lpfc_nodelist *ndlp; 11198 struct lpfc_dmabuf *mp; 11199 unsigned long iflags; 11200 LPFC_MBOXQ_t *pmb; 11201 bool workposted = false; 11202 int rc; 11203 11204 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 11205 if (!bf_get(lpfc_trailer_completed, mcqe)) 11206 goto out_no_mqe_complete; 11207 11208 /* Get the reference to the active mbox command */ 11209 spin_lock_irqsave(&phba->hbalock, iflags); 11210 pmb = phba->sli.mbox_active; 11211 if (unlikely(!pmb)) { 11212 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 11213 "1832 No pending MBOX command to handle\n"); 11214 spin_unlock_irqrestore(&phba->hbalock, iflags); 11215 goto out_no_mqe_complete; 11216 } 11217 spin_unlock_irqrestore(&phba->hbalock, iflags); 11218 mqe = &pmb->u.mqe; 11219 pmbox = (MAILBOX_t *)&pmb->u.mqe; 11220 mbox = phba->mbox; 11221 vport = pmb->vport; 11222 11223 /* Reset heartbeat timer */ 11224 phba->last_completion_time = jiffies; 11225 del_timer(&phba->sli.mbox_tmo); 11226 11227 /* Move mbox data to caller's mailbox region, do endian swapping */ 11228 if (pmb->mbox_cmpl && mbox) 11229 lpfc_sli_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 11230 11231 /* 11232 * For mcqe errors, conditionally move a modified error code to 11233 * the mbox so that the error will not be missed. 11234 */ 11235 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 11236 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 11237 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 11238 bf_set(lpfc_mqe_status, mqe, 11239 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 11240 } 11241 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 11242 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 11243 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 11244 "MBOX dflt rpi: status:x%x rpi:x%x", 11245 mcqe_status, 11246 pmbox->un.varWords[0], 0); 11247 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 11248 mp = (struct lpfc_dmabuf *)(pmb->context1); 11249 ndlp = (struct lpfc_nodelist *)pmb->context2; 11250 /* Reg_LOGIN of dflt RPI was successful. Now lets get 11251 * RID of the PPI using the same mbox buffer. 11252 */ 11253 lpfc_unreg_login(phba, vport->vpi, 11254 pmbox->un.varWords[0], pmb); 11255 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 11256 pmb->context1 = mp; 11257 pmb->context2 = ndlp; 11258 pmb->vport = vport; 11259 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 11260 if (rc != MBX_BUSY) 11261 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 11262 LOG_SLI, "0385 rc should " 11263 "have been MBX_BUSY\n"); 11264 if (rc != MBX_NOT_FINISHED) 11265 goto send_current_mbox; 11266 } 11267 } 11268 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 11269 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 11270 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 11271 11272 /* There is mailbox completion work to do */ 11273 spin_lock_irqsave(&phba->hbalock, iflags); 11274 __lpfc_mbox_cmpl_put(phba, pmb); 11275 phba->work_ha |= HA_MBATT; 11276 spin_unlock_irqrestore(&phba->hbalock, iflags); 11277 workposted = true; 11278 11279 send_current_mbox: 11280 spin_lock_irqsave(&phba->hbalock, iflags); 11281 /* Release the mailbox command posting token */ 11282 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11283 /* Setting active mailbox pointer need to be in sync to flag clear */ 11284 phba->sli.mbox_active = NULL; 11285 spin_unlock_irqrestore(&phba->hbalock, iflags); 11286 /* Wake up worker thread to post the next pending mailbox command */ 11287 lpfc_worker_wake_up(phba); 11288 out_no_mqe_complete: 11289 if (bf_get(lpfc_trailer_consumed, mcqe)) 11290 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 11291 return workposted; 11292 } 11293 11294 /** 11295 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 11296 * @phba: Pointer to HBA context object. 11297 * @cqe: Pointer to mailbox completion queue entry. 11298 * 11299 * This routine process a mailbox completion queue entry, it invokes the 11300 * proper mailbox complete handling or asynchrous event handling routine 11301 * according to the MCQE's async bit. 11302 * 11303 * Return: true if work posted to worker thread, otherwise false. 11304 **/ 11305 static bool 11306 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_cqe *cqe) 11307 { 11308 struct lpfc_mcqe mcqe; 11309 bool workposted; 11310 11311 /* Copy the mailbox MCQE and convert endian order as needed */ 11312 lpfc_sli_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 11313 11314 /* Invoke the proper event handling routine */ 11315 if (!bf_get(lpfc_trailer_async, &mcqe)) 11316 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 11317 else 11318 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 11319 return workposted; 11320 } 11321 11322 /** 11323 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 11324 * @phba: Pointer to HBA context object. 11325 * @cq: Pointer to associated CQ 11326 * @wcqe: Pointer to work-queue completion queue entry. 11327 * 11328 * This routine handles an ELS work-queue completion event. 11329 * 11330 * Return: true if work posted to worker thread, otherwise false. 11331 **/ 11332 static bool 11333 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 11334 struct lpfc_wcqe_complete *wcqe) 11335 { 11336 struct lpfc_iocbq *irspiocbq; 11337 unsigned long iflags; 11338 struct lpfc_sli_ring *pring = cq->pring; 11339 int txq_cnt = 0; 11340 int txcmplq_cnt = 0; 11341 int fcp_txcmplq_cnt = 0; 11342 11343 /* Get an irspiocbq for later ELS response processing use */ 11344 irspiocbq = lpfc_sli_get_iocbq(phba); 11345 if (!irspiocbq) { 11346 if (!list_empty(&pring->txq)) 11347 txq_cnt++; 11348 if (!list_empty(&pring->txcmplq)) 11349 txcmplq_cnt++; 11350 if (!list_empty(&phba->sli.ring[LPFC_FCP_RING].txcmplq)) 11351 fcp_txcmplq_cnt++; 11352 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11353 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 11354 "fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n", 11355 txq_cnt, phba->iocb_cnt, 11356 fcp_txcmplq_cnt, 11357 txcmplq_cnt); 11358 return false; 11359 } 11360 11361 /* Save off the slow-path queue event for work thread to process */ 11362 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 11363 spin_lock_irqsave(&phba->hbalock, iflags); 11364 list_add_tail(&irspiocbq->cq_event.list, 11365 &phba->sli4_hba.sp_queue_event); 11366 phba->hba_flag |= HBA_SP_QUEUE_EVT; 11367 spin_unlock_irqrestore(&phba->hbalock, iflags); 11368 11369 return true; 11370 } 11371 11372 /** 11373 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 11374 * @phba: Pointer to HBA context object. 11375 * @wcqe: Pointer to work-queue completion queue entry. 11376 * 11377 * This routine handles slow-path WQ entry comsumed event by invoking the 11378 * proper WQ release routine to the slow-path WQ. 11379 **/ 11380 static void 11381 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 11382 struct lpfc_wcqe_release *wcqe) 11383 { 11384 /* sanity check on queue memory */ 11385 if (unlikely(!phba->sli4_hba.els_wq)) 11386 return; 11387 /* Check for the slow-path ELS work queue */ 11388 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 11389 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 11390 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 11391 else 11392 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11393 "2579 Slow-path wqe consume event carries " 11394 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 11395 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 11396 phba->sli4_hba.els_wq->queue_id); 11397 } 11398 11399 /** 11400 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 11401 * @phba: Pointer to HBA context object. 11402 * @cq: Pointer to a WQ completion queue. 11403 * @wcqe: Pointer to work-queue completion queue entry. 11404 * 11405 * This routine handles an XRI abort event. 11406 * 11407 * Return: true if work posted to worker thread, otherwise false. 11408 **/ 11409 static bool 11410 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 11411 struct lpfc_queue *cq, 11412 struct sli4_wcqe_xri_aborted *wcqe) 11413 { 11414 bool workposted = false; 11415 struct lpfc_cq_event *cq_event; 11416 unsigned long iflags; 11417 11418 /* Allocate a new internal CQ_EVENT entry */ 11419 cq_event = lpfc_sli4_cq_event_alloc(phba); 11420 if (!cq_event) { 11421 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11422 "0602 Failed to allocate CQ_EVENT entry\n"); 11423 return false; 11424 } 11425 11426 /* Move the CQE into the proper xri abort event list */ 11427 memcpy(&cq_event->cqe, wcqe, sizeof(struct sli4_wcqe_xri_aborted)); 11428 switch (cq->subtype) { 11429 case LPFC_FCP: 11430 spin_lock_irqsave(&phba->hbalock, iflags); 11431 list_add_tail(&cq_event->list, 11432 &phba->sli4_hba.sp_fcp_xri_aborted_work_queue); 11433 /* Set the fcp xri abort event flag */ 11434 phba->hba_flag |= FCP_XRI_ABORT_EVENT; 11435 spin_unlock_irqrestore(&phba->hbalock, iflags); 11436 workposted = true; 11437 break; 11438 case LPFC_ELS: 11439 spin_lock_irqsave(&phba->hbalock, iflags); 11440 list_add_tail(&cq_event->list, 11441 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 11442 /* Set the els xri abort event flag */ 11443 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 11444 spin_unlock_irqrestore(&phba->hbalock, iflags); 11445 workposted = true; 11446 break; 11447 default: 11448 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11449 "0603 Invalid work queue CQE subtype (x%x)\n", 11450 cq->subtype); 11451 workposted = false; 11452 break; 11453 } 11454 return workposted; 11455 } 11456 11457 /** 11458 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 11459 * @phba: Pointer to HBA context object. 11460 * @rcqe: Pointer to receive-queue completion queue entry. 11461 * 11462 * This routine process a receive-queue completion queue entry. 11463 * 11464 * Return: true if work posted to worker thread, otherwise false. 11465 **/ 11466 static bool 11467 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 11468 { 11469 bool workposted = false; 11470 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 11471 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 11472 struct hbq_dmabuf *dma_buf; 11473 uint32_t status, rq_id; 11474 unsigned long iflags; 11475 11476 /* sanity check on queue memory */ 11477 if (unlikely(!hrq) || unlikely(!drq)) 11478 return workposted; 11479 11480 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 11481 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 11482 else 11483 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 11484 if (rq_id != hrq->queue_id) 11485 goto out; 11486 11487 status = bf_get(lpfc_rcqe_status, rcqe); 11488 switch (status) { 11489 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 11490 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11491 "2537 Receive Frame Truncated!!\n"); 11492 hrq->RQ_buf_trunc++; 11493 case FC_STATUS_RQ_SUCCESS: 11494 lpfc_sli4_rq_release(hrq, drq); 11495 spin_lock_irqsave(&phba->hbalock, iflags); 11496 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 11497 if (!dma_buf) { 11498 hrq->RQ_no_buf_found++; 11499 spin_unlock_irqrestore(&phba->hbalock, iflags); 11500 goto out; 11501 } 11502 hrq->RQ_rcv_buf++; 11503 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 11504 /* save off the frame for the word thread to process */ 11505 list_add_tail(&dma_buf->cq_event.list, 11506 &phba->sli4_hba.sp_queue_event); 11507 /* Frame received */ 11508 phba->hba_flag |= HBA_SP_QUEUE_EVT; 11509 spin_unlock_irqrestore(&phba->hbalock, iflags); 11510 workposted = true; 11511 break; 11512 case FC_STATUS_INSUFF_BUF_NEED_BUF: 11513 case FC_STATUS_INSUFF_BUF_FRM_DISC: 11514 hrq->RQ_no_posted_buf++; 11515 /* Post more buffers if possible */ 11516 spin_lock_irqsave(&phba->hbalock, iflags); 11517 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 11518 spin_unlock_irqrestore(&phba->hbalock, iflags); 11519 workposted = true; 11520 break; 11521 } 11522 out: 11523 return workposted; 11524 } 11525 11526 /** 11527 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 11528 * @phba: Pointer to HBA context object. 11529 * @cq: Pointer to the completion queue. 11530 * @wcqe: Pointer to a completion queue entry. 11531 * 11532 * This routine process a slow-path work-queue or receive queue completion queue 11533 * entry. 11534 * 11535 * Return: true if work posted to worker thread, otherwise false. 11536 **/ 11537 static bool 11538 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 11539 struct lpfc_cqe *cqe) 11540 { 11541 struct lpfc_cqe cqevt; 11542 bool workposted = false; 11543 11544 /* Copy the work queue CQE and convert endian order if needed */ 11545 lpfc_sli_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 11546 11547 /* Check and process for different type of WCQE and dispatch */ 11548 switch (bf_get(lpfc_cqe_code, &cqevt)) { 11549 case CQE_CODE_COMPL_WQE: 11550 /* Process the WQ/RQ complete event */ 11551 phba->last_completion_time = jiffies; 11552 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 11553 (struct lpfc_wcqe_complete *)&cqevt); 11554 break; 11555 case CQE_CODE_RELEASE_WQE: 11556 /* Process the WQ release event */ 11557 lpfc_sli4_sp_handle_rel_wcqe(phba, 11558 (struct lpfc_wcqe_release *)&cqevt); 11559 break; 11560 case CQE_CODE_XRI_ABORTED: 11561 /* Process the WQ XRI abort event */ 11562 phba->last_completion_time = jiffies; 11563 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 11564 (struct sli4_wcqe_xri_aborted *)&cqevt); 11565 break; 11566 case CQE_CODE_RECEIVE: 11567 case CQE_CODE_RECEIVE_V1: 11568 /* Process the RQ event */ 11569 phba->last_completion_time = jiffies; 11570 workposted = lpfc_sli4_sp_handle_rcqe(phba, 11571 (struct lpfc_rcqe *)&cqevt); 11572 break; 11573 default: 11574 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11575 "0388 Not a valid WCQE code: x%x\n", 11576 bf_get(lpfc_cqe_code, &cqevt)); 11577 break; 11578 } 11579 return workposted; 11580 } 11581 11582 /** 11583 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 11584 * @phba: Pointer to HBA context object. 11585 * @eqe: Pointer to fast-path event queue entry. 11586 * 11587 * This routine process a event queue entry from the slow-path event queue. 11588 * It will check the MajorCode and MinorCode to determine this is for a 11589 * completion event on a completion queue, if not, an error shall be logged 11590 * and just return. Otherwise, it will get to the corresponding completion 11591 * queue and process all the entries on that completion queue, rearm the 11592 * completion queue, and then return. 11593 * 11594 **/ 11595 static void 11596 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 11597 struct lpfc_queue *speq) 11598 { 11599 struct lpfc_queue *cq = NULL, *childq; 11600 struct lpfc_cqe *cqe; 11601 bool workposted = false; 11602 int ecount = 0; 11603 uint16_t cqid; 11604 11605 /* Get the reference to the corresponding CQ */ 11606 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 11607 11608 list_for_each_entry(childq, &speq->child_list, list) { 11609 if (childq->queue_id == cqid) { 11610 cq = childq; 11611 break; 11612 } 11613 } 11614 if (unlikely(!cq)) { 11615 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 11616 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11617 "0365 Slow-path CQ identifier " 11618 "(%d) does not exist\n", cqid); 11619 return; 11620 } 11621 11622 /* Process all the entries to the CQ */ 11623 switch (cq->type) { 11624 case LPFC_MCQ: 11625 while ((cqe = lpfc_sli4_cq_get(cq))) { 11626 workposted |= lpfc_sli4_sp_handle_mcqe(phba, cqe); 11627 if (!(++ecount % cq->entry_repost)) 11628 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 11629 cq->CQ_mbox++; 11630 } 11631 break; 11632 case LPFC_WCQ: 11633 while ((cqe = lpfc_sli4_cq_get(cq))) { 11634 if (cq->subtype == LPFC_FCP) 11635 workposted |= lpfc_sli4_fp_handle_wcqe(phba, cq, 11636 cqe); 11637 else 11638 workposted |= lpfc_sli4_sp_handle_cqe(phba, cq, 11639 cqe); 11640 if (!(++ecount % cq->entry_repost)) 11641 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 11642 } 11643 11644 /* Track the max number of CQEs processed in 1 EQ */ 11645 if (ecount > cq->CQ_max_cqe) 11646 cq->CQ_max_cqe = ecount; 11647 break; 11648 default: 11649 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11650 "0370 Invalid completion queue type (%d)\n", 11651 cq->type); 11652 return; 11653 } 11654 11655 /* Catch the no cq entry condition, log an error */ 11656 if (unlikely(ecount == 0)) 11657 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11658 "0371 No entry from the CQ: identifier " 11659 "(x%x), type (%d)\n", cq->queue_id, cq->type); 11660 11661 /* In any case, flash and re-arm the RCQ */ 11662 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 11663 11664 /* wake up worker thread if there are works to be done */ 11665 if (workposted) 11666 lpfc_worker_wake_up(phba); 11667 } 11668 11669 /** 11670 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 11671 * @phba: Pointer to HBA context object. 11672 * @cq: Pointer to associated CQ 11673 * @wcqe: Pointer to work-queue completion queue entry. 11674 * 11675 * This routine process a fast-path work queue completion entry from fast-path 11676 * event queue for FCP command response completion. 11677 **/ 11678 static void 11679 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 11680 struct lpfc_wcqe_complete *wcqe) 11681 { 11682 struct lpfc_sli_ring *pring = cq->pring; 11683 struct lpfc_iocbq *cmdiocbq; 11684 struct lpfc_iocbq irspiocbq; 11685 unsigned long iflags; 11686 11687 /* Check for response status */ 11688 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 11689 /* If resource errors reported from HBA, reduce queue 11690 * depth of the SCSI device. 11691 */ 11692 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 11693 IOSTAT_LOCAL_REJECT)) && 11694 ((wcqe->parameter & IOERR_PARAM_MASK) == 11695 IOERR_NO_RESOURCES)) 11696 phba->lpfc_rampdown_queue_depth(phba); 11697 11698 /* Log the error status */ 11699 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11700 "0373 FCP complete error: status=x%x, " 11701 "hw_status=x%x, total_data_specified=%d, " 11702 "parameter=x%x, word3=x%x\n", 11703 bf_get(lpfc_wcqe_c_status, wcqe), 11704 bf_get(lpfc_wcqe_c_hw_status, wcqe), 11705 wcqe->total_data_placed, wcqe->parameter, 11706 wcqe->word3); 11707 } 11708 11709 /* Look up the FCP command IOCB and create pseudo response IOCB */ 11710 spin_lock_irqsave(&pring->ring_lock, iflags); 11711 pring->stats.iocb_event++; 11712 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 11713 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 11714 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11715 if (unlikely(!cmdiocbq)) { 11716 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11717 "0374 FCP complete with no corresponding " 11718 "cmdiocb: iotag (%d)\n", 11719 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 11720 return; 11721 } 11722 if (unlikely(!cmdiocbq->iocb_cmpl)) { 11723 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11724 "0375 FCP cmdiocb not callback function " 11725 "iotag: (%d)\n", 11726 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 11727 return; 11728 } 11729 11730 /* Fake the irspiocb and copy necessary response information */ 11731 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 11732 11733 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 11734 spin_lock_irqsave(&phba->hbalock, iflags); 11735 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 11736 spin_unlock_irqrestore(&phba->hbalock, iflags); 11737 } 11738 11739 /* Pass the cmd_iocb and the rsp state to the upper layer */ 11740 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 11741 } 11742 11743 /** 11744 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 11745 * @phba: Pointer to HBA context object. 11746 * @cq: Pointer to completion queue. 11747 * @wcqe: Pointer to work-queue completion queue entry. 11748 * 11749 * This routine handles an fast-path WQ entry comsumed event by invoking the 11750 * proper WQ release routine to the slow-path WQ. 11751 **/ 11752 static void 11753 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 11754 struct lpfc_wcqe_release *wcqe) 11755 { 11756 struct lpfc_queue *childwq; 11757 bool wqid_matched = false; 11758 uint16_t fcp_wqid; 11759 11760 /* Check for fast-path FCP work queue release */ 11761 fcp_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 11762 list_for_each_entry(childwq, &cq->child_list, list) { 11763 if (childwq->queue_id == fcp_wqid) { 11764 lpfc_sli4_wq_release(childwq, 11765 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 11766 wqid_matched = true; 11767 break; 11768 } 11769 } 11770 /* Report warning log message if no match found */ 11771 if (wqid_matched != true) 11772 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11773 "2580 Fast-path wqe consume event carries " 11774 "miss-matched qid: wcqe-qid=x%x\n", fcp_wqid); 11775 } 11776 11777 /** 11778 * lpfc_sli4_fp_handle_wcqe - Process fast-path work queue completion entry 11779 * @cq: Pointer to the completion queue. 11780 * @eqe: Pointer to fast-path completion queue entry. 11781 * 11782 * This routine process a fast-path work queue completion entry from fast-path 11783 * event queue for FCP command response completion. 11784 **/ 11785 static int 11786 lpfc_sli4_fp_handle_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 11787 struct lpfc_cqe *cqe) 11788 { 11789 struct lpfc_wcqe_release wcqe; 11790 bool workposted = false; 11791 11792 /* Copy the work queue CQE and convert endian order if needed */ 11793 lpfc_sli_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 11794 11795 /* Check and process for different type of WCQE and dispatch */ 11796 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 11797 case CQE_CODE_COMPL_WQE: 11798 cq->CQ_wq++; 11799 /* Process the WQ complete event */ 11800 phba->last_completion_time = jiffies; 11801 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 11802 (struct lpfc_wcqe_complete *)&wcqe); 11803 break; 11804 case CQE_CODE_RELEASE_WQE: 11805 cq->CQ_release_wqe++; 11806 /* Process the WQ release event */ 11807 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 11808 (struct lpfc_wcqe_release *)&wcqe); 11809 break; 11810 case CQE_CODE_XRI_ABORTED: 11811 cq->CQ_xri_aborted++; 11812 /* Process the WQ XRI abort event */ 11813 phba->last_completion_time = jiffies; 11814 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 11815 (struct sli4_wcqe_xri_aborted *)&wcqe); 11816 break; 11817 default: 11818 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11819 "0144 Not a valid WCQE code: x%x\n", 11820 bf_get(lpfc_wcqe_c_code, &wcqe)); 11821 break; 11822 } 11823 return workposted; 11824 } 11825 11826 /** 11827 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 11828 * @phba: Pointer to HBA context object. 11829 * @eqe: Pointer to fast-path event queue entry. 11830 * 11831 * This routine process a event queue entry from the fast-path event queue. 11832 * It will check the MajorCode and MinorCode to determine this is for a 11833 * completion event on a completion queue, if not, an error shall be logged 11834 * and just return. Otherwise, it will get to the corresponding completion 11835 * queue and process all the entries on the completion queue, rearm the 11836 * completion queue, and then return. 11837 **/ 11838 static void 11839 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 11840 uint32_t qidx) 11841 { 11842 struct lpfc_queue *cq; 11843 struct lpfc_cqe *cqe; 11844 bool workposted = false; 11845 uint16_t cqid; 11846 int ecount = 0; 11847 11848 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 11849 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11850 "0366 Not a valid completion " 11851 "event: majorcode=x%x, minorcode=x%x\n", 11852 bf_get_le32(lpfc_eqe_major_code, eqe), 11853 bf_get_le32(lpfc_eqe_minor_code, eqe)); 11854 return; 11855 } 11856 11857 /* Get the reference to the corresponding CQ */ 11858 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 11859 11860 /* Check if this is a Slow path event */ 11861 if (unlikely(cqid != phba->sli4_hba.fcp_cq_map[qidx])) { 11862 lpfc_sli4_sp_handle_eqe(phba, eqe, 11863 phba->sli4_hba.hba_eq[qidx]); 11864 return; 11865 } 11866 11867 if (unlikely(!phba->sli4_hba.fcp_cq)) { 11868 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11869 "3146 Fast-path completion queues " 11870 "does not exist\n"); 11871 return; 11872 } 11873 cq = phba->sli4_hba.fcp_cq[qidx]; 11874 if (unlikely(!cq)) { 11875 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 11876 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11877 "0367 Fast-path completion queue " 11878 "(%d) does not exist\n", qidx); 11879 return; 11880 } 11881 11882 if (unlikely(cqid != cq->queue_id)) { 11883 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11884 "0368 Miss-matched fast-path completion " 11885 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 11886 cqid, cq->queue_id); 11887 return; 11888 } 11889 11890 /* Process all the entries to the CQ */ 11891 while ((cqe = lpfc_sli4_cq_get(cq))) { 11892 workposted |= lpfc_sli4_fp_handle_wcqe(phba, cq, cqe); 11893 if (!(++ecount % cq->entry_repost)) 11894 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 11895 } 11896 11897 /* Track the max number of CQEs processed in 1 EQ */ 11898 if (ecount > cq->CQ_max_cqe) 11899 cq->CQ_max_cqe = ecount; 11900 11901 /* Catch the no cq entry condition */ 11902 if (unlikely(ecount == 0)) 11903 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11904 "0369 No entry from fast-path completion " 11905 "queue fcpcqid=%d\n", cq->queue_id); 11906 11907 /* In any case, flash and re-arm the CQ */ 11908 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 11909 11910 /* wake up worker thread if there are works to be done */ 11911 if (workposted) 11912 lpfc_worker_wake_up(phba); 11913 } 11914 11915 static void 11916 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 11917 { 11918 struct lpfc_eqe *eqe; 11919 11920 /* walk all the EQ entries and drop on the floor */ 11921 while ((eqe = lpfc_sli4_eq_get(eq))) 11922 ; 11923 11924 /* Clear and re-arm the EQ */ 11925 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM); 11926 } 11927 11928 /** 11929 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 11930 * @irq: Interrupt number. 11931 * @dev_id: The device context pointer. 11932 * 11933 * This function is directly called from the PCI layer as an interrupt 11934 * service routine when device with SLI-4 interface spec is enabled with 11935 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 11936 * ring event in the HBA. However, when the device is enabled with either 11937 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 11938 * device-level interrupt handler. When the PCI slot is in error recovery 11939 * or the HBA is undergoing initialization, the interrupt handler will not 11940 * process the interrupt. The SCSI FCP fast-path ring event are handled in 11941 * the intrrupt context. This function is called without any lock held. 11942 * It gets the hbalock to access and update SLI data structures. Note that, 11943 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 11944 * equal to that of FCP CQ index. 11945 * 11946 * The link attention and ELS ring attention events are handled 11947 * by the worker thread. The interrupt handler signals the worker thread 11948 * and returns for these events. This function is called without any lock 11949 * held. It gets the hbalock to access and update SLI data structures. 11950 * 11951 * This function returns IRQ_HANDLED when interrupt is handled else it 11952 * returns IRQ_NONE. 11953 **/ 11954 irqreturn_t 11955 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 11956 { 11957 struct lpfc_hba *phba; 11958 struct lpfc_fcp_eq_hdl *fcp_eq_hdl; 11959 struct lpfc_queue *fpeq; 11960 struct lpfc_eqe *eqe; 11961 unsigned long iflag; 11962 int ecount = 0; 11963 int fcp_eqidx; 11964 11965 /* Get the driver's phba structure from the dev_id */ 11966 fcp_eq_hdl = (struct lpfc_fcp_eq_hdl *)dev_id; 11967 phba = fcp_eq_hdl->phba; 11968 fcp_eqidx = fcp_eq_hdl->idx; 11969 11970 if (unlikely(!phba)) 11971 return IRQ_NONE; 11972 if (unlikely(!phba->sli4_hba.hba_eq)) 11973 return IRQ_NONE; 11974 11975 /* Get to the EQ struct associated with this vector */ 11976 fpeq = phba->sli4_hba.hba_eq[fcp_eqidx]; 11977 if (unlikely(!fpeq)) 11978 return IRQ_NONE; 11979 11980 if (lpfc_fcp_look_ahead) { 11981 if (atomic_dec_and_test(&fcp_eq_hdl->fcp_eq_in_use)) 11982 lpfc_sli4_eq_clr_intr(fpeq); 11983 else { 11984 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 11985 return IRQ_NONE; 11986 } 11987 } 11988 11989 /* Check device state for handling interrupt */ 11990 if (unlikely(lpfc_intr_state_check(phba))) { 11991 fpeq->EQ_badstate++; 11992 /* Check again for link_state with lock held */ 11993 spin_lock_irqsave(&phba->hbalock, iflag); 11994 if (phba->link_state < LPFC_LINK_DOWN) 11995 /* Flush, clear interrupt, and rearm the EQ */ 11996 lpfc_sli4_eq_flush(phba, fpeq); 11997 spin_unlock_irqrestore(&phba->hbalock, iflag); 11998 if (lpfc_fcp_look_ahead) 11999 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 12000 return IRQ_NONE; 12001 } 12002 12003 /* 12004 * Process all the event on FCP fast-path EQ 12005 */ 12006 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 12007 lpfc_sli4_hba_handle_eqe(phba, eqe, fcp_eqidx); 12008 if (!(++ecount % fpeq->entry_repost)) 12009 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_NOARM); 12010 fpeq->EQ_processed++; 12011 } 12012 12013 /* Track the max number of EQEs processed in 1 intr */ 12014 if (ecount > fpeq->EQ_max_eqe) 12015 fpeq->EQ_max_eqe = ecount; 12016 12017 /* Always clear and re-arm the fast-path EQ */ 12018 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 12019 12020 if (unlikely(ecount == 0)) { 12021 fpeq->EQ_no_entry++; 12022 12023 if (lpfc_fcp_look_ahead) { 12024 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 12025 return IRQ_NONE; 12026 } 12027 12028 if (phba->intr_type == MSIX) 12029 /* MSI-X treated interrupt served as no EQ share INT */ 12030 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12031 "0358 MSI-X interrupt with no EQE\n"); 12032 else 12033 /* Non MSI-X treated on interrupt as EQ share INT */ 12034 return IRQ_NONE; 12035 } 12036 12037 if (lpfc_fcp_look_ahead) 12038 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 12039 return IRQ_HANDLED; 12040 } /* lpfc_sli4_fp_intr_handler */ 12041 12042 /** 12043 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 12044 * @irq: Interrupt number. 12045 * @dev_id: The device context pointer. 12046 * 12047 * This function is the device-level interrupt handler to device with SLI-4 12048 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 12049 * interrupt mode is enabled and there is an event in the HBA which requires 12050 * driver attention. This function invokes the slow-path interrupt attention 12051 * handling function and fast-path interrupt attention handling function in 12052 * turn to process the relevant HBA attention events. This function is called 12053 * without any lock held. It gets the hbalock to access and update SLI data 12054 * structures. 12055 * 12056 * This function returns IRQ_HANDLED when interrupt is handled, else it 12057 * returns IRQ_NONE. 12058 **/ 12059 irqreturn_t 12060 lpfc_sli4_intr_handler(int irq, void *dev_id) 12061 { 12062 struct lpfc_hba *phba; 12063 irqreturn_t hba_irq_rc; 12064 bool hba_handled = false; 12065 int fcp_eqidx; 12066 12067 /* Get the driver's phba structure from the dev_id */ 12068 phba = (struct lpfc_hba *)dev_id; 12069 12070 if (unlikely(!phba)) 12071 return IRQ_NONE; 12072 12073 /* 12074 * Invoke fast-path host attention interrupt handling as appropriate. 12075 */ 12076 for (fcp_eqidx = 0; fcp_eqidx < phba->cfg_fcp_io_channel; fcp_eqidx++) { 12077 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 12078 &phba->sli4_hba.fcp_eq_hdl[fcp_eqidx]); 12079 if (hba_irq_rc == IRQ_HANDLED) 12080 hba_handled |= true; 12081 } 12082 12083 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 12084 } /* lpfc_sli4_intr_handler */ 12085 12086 /** 12087 * lpfc_sli4_queue_free - free a queue structure and associated memory 12088 * @queue: The queue structure to free. 12089 * 12090 * This function frees a queue structure and the DMAable memory used for 12091 * the host resident queue. This function must be called after destroying the 12092 * queue on the HBA. 12093 **/ 12094 void 12095 lpfc_sli4_queue_free(struct lpfc_queue *queue) 12096 { 12097 struct lpfc_dmabuf *dmabuf; 12098 12099 if (!queue) 12100 return; 12101 12102 while (!list_empty(&queue->page_list)) { 12103 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 12104 list); 12105 dma_free_coherent(&queue->phba->pcidev->dev, SLI4_PAGE_SIZE, 12106 dmabuf->virt, dmabuf->phys); 12107 kfree(dmabuf); 12108 } 12109 kfree(queue); 12110 return; 12111 } 12112 12113 /** 12114 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 12115 * @phba: The HBA that this queue is being created on. 12116 * @entry_size: The size of each queue entry for this queue. 12117 * @entry count: The number of entries that this queue will handle. 12118 * 12119 * This function allocates a queue structure and the DMAable memory used for 12120 * the host resident queue. This function must be called before creating the 12121 * queue on the HBA. 12122 **/ 12123 struct lpfc_queue * 12124 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t entry_size, 12125 uint32_t entry_count) 12126 { 12127 struct lpfc_queue *queue; 12128 struct lpfc_dmabuf *dmabuf; 12129 int x, total_qe_count; 12130 void *dma_pointer; 12131 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 12132 12133 if (!phba->sli4_hba.pc_sli4_params.supported) 12134 hw_page_size = SLI4_PAGE_SIZE; 12135 12136 queue = kzalloc(sizeof(struct lpfc_queue) + 12137 (sizeof(union sli4_qe) * entry_count), GFP_KERNEL); 12138 if (!queue) 12139 return NULL; 12140 queue->page_count = (ALIGN(entry_size * entry_count, 12141 hw_page_size))/hw_page_size; 12142 INIT_LIST_HEAD(&queue->list); 12143 INIT_LIST_HEAD(&queue->page_list); 12144 INIT_LIST_HEAD(&queue->child_list); 12145 for (x = 0, total_qe_count = 0; x < queue->page_count; x++) { 12146 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 12147 if (!dmabuf) 12148 goto out_fail; 12149 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 12150 hw_page_size, &dmabuf->phys, 12151 GFP_KERNEL); 12152 if (!dmabuf->virt) { 12153 kfree(dmabuf); 12154 goto out_fail; 12155 } 12156 memset(dmabuf->virt, 0, hw_page_size); 12157 dmabuf->buffer_tag = x; 12158 list_add_tail(&dmabuf->list, &queue->page_list); 12159 /* initialize queue's entry array */ 12160 dma_pointer = dmabuf->virt; 12161 for (; total_qe_count < entry_count && 12162 dma_pointer < (hw_page_size + dmabuf->virt); 12163 total_qe_count++, dma_pointer += entry_size) { 12164 queue->qe[total_qe_count].address = dma_pointer; 12165 } 12166 } 12167 queue->entry_size = entry_size; 12168 queue->entry_count = entry_count; 12169 12170 /* 12171 * entry_repost is calculated based on the number of entries in the 12172 * queue. This works out except for RQs. If buffers are NOT initially 12173 * posted for every RQE, entry_repost should be adjusted accordingly. 12174 */ 12175 queue->entry_repost = (entry_count >> 3); 12176 if (queue->entry_repost < LPFC_QUEUE_MIN_REPOST) 12177 queue->entry_repost = LPFC_QUEUE_MIN_REPOST; 12178 queue->phba = phba; 12179 12180 return queue; 12181 out_fail: 12182 lpfc_sli4_queue_free(queue); 12183 return NULL; 12184 } 12185 12186 /** 12187 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 12188 * @phba: HBA structure that indicates port to create a queue on. 12189 * @pci_barset: PCI BAR set flag. 12190 * 12191 * This function shall perform iomap of the specified PCI BAR address to host 12192 * memory address if not already done so and return it. The returned host 12193 * memory address can be NULL. 12194 */ 12195 static void __iomem * 12196 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 12197 { 12198 struct pci_dev *pdev; 12199 unsigned long bar_map, bar_map_len; 12200 12201 if (!phba->pcidev) 12202 return NULL; 12203 else 12204 pdev = phba->pcidev; 12205 12206 switch (pci_barset) { 12207 case WQ_PCI_BAR_0_AND_1: 12208 if (!phba->pci_bar0_memmap_p) { 12209 bar_map = pci_resource_start(pdev, PCI_64BIT_BAR0); 12210 bar_map_len = pci_resource_len(pdev, PCI_64BIT_BAR0); 12211 phba->pci_bar0_memmap_p = ioremap(bar_map, bar_map_len); 12212 } 12213 return phba->pci_bar0_memmap_p; 12214 case WQ_PCI_BAR_2_AND_3: 12215 if (!phba->pci_bar2_memmap_p) { 12216 bar_map = pci_resource_start(pdev, PCI_64BIT_BAR2); 12217 bar_map_len = pci_resource_len(pdev, PCI_64BIT_BAR2); 12218 phba->pci_bar2_memmap_p = ioremap(bar_map, bar_map_len); 12219 } 12220 return phba->pci_bar2_memmap_p; 12221 case WQ_PCI_BAR_4_AND_5: 12222 if (!phba->pci_bar4_memmap_p) { 12223 bar_map = pci_resource_start(pdev, PCI_64BIT_BAR4); 12224 bar_map_len = pci_resource_len(pdev, PCI_64BIT_BAR4); 12225 phba->pci_bar4_memmap_p = ioremap(bar_map, bar_map_len); 12226 } 12227 return phba->pci_bar4_memmap_p; 12228 default: 12229 break; 12230 } 12231 return NULL; 12232 } 12233 12234 /** 12235 * lpfc_modify_fcp_eq_delay - Modify Delay Multiplier on FCP EQs 12236 * @phba: HBA structure that indicates port to create a queue on. 12237 * @startq: The starting FCP EQ to modify 12238 * 12239 * This function sends an MODIFY_EQ_DELAY mailbox command to the HBA. 12240 * 12241 * The @phba struct is used to send mailbox command to HBA. The @startq 12242 * is used to get the starting FCP EQ to change. 12243 * This function is asynchronous and will wait for the mailbox 12244 * command to finish before continuing. 12245 * 12246 * On success this function will return a zero. If unable to allocate enough 12247 * memory this function will return -ENOMEM. If the queue create mailbox command 12248 * fails this function will return -ENXIO. 12249 **/ 12250 uint32_t 12251 lpfc_modify_fcp_eq_delay(struct lpfc_hba *phba, uint16_t startq) 12252 { 12253 struct lpfc_mbx_modify_eq_delay *eq_delay; 12254 LPFC_MBOXQ_t *mbox; 12255 struct lpfc_queue *eq; 12256 int cnt, rc, length, status = 0; 12257 uint32_t shdr_status, shdr_add_status; 12258 uint32_t result; 12259 int fcp_eqidx; 12260 union lpfc_sli4_cfg_shdr *shdr; 12261 uint16_t dmult; 12262 12263 if (startq >= phba->cfg_fcp_io_channel) 12264 return 0; 12265 12266 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 12267 if (!mbox) 12268 return -ENOMEM; 12269 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 12270 sizeof(struct lpfc_sli4_cfg_mhdr)); 12271 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 12272 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 12273 length, LPFC_SLI4_MBX_EMBED); 12274 eq_delay = &mbox->u.mqe.un.eq_delay; 12275 12276 /* Calculate delay multiper from maximum interrupt per second */ 12277 result = phba->cfg_fcp_imax / phba->cfg_fcp_io_channel; 12278 if (result > LPFC_DMULT_CONST) 12279 dmult = 0; 12280 else 12281 dmult = LPFC_DMULT_CONST/result - 1; 12282 12283 cnt = 0; 12284 for (fcp_eqidx = startq; fcp_eqidx < phba->cfg_fcp_io_channel; 12285 fcp_eqidx++) { 12286 eq = phba->sli4_hba.hba_eq[fcp_eqidx]; 12287 if (!eq) 12288 continue; 12289 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 12290 eq_delay->u.request.eq[cnt].phase = 0; 12291 eq_delay->u.request.eq[cnt].delay_multi = dmult; 12292 cnt++; 12293 if (cnt >= LPFC_MAX_EQ_DELAY) 12294 break; 12295 } 12296 eq_delay->u.request.num_eq = cnt; 12297 12298 mbox->vport = phba->pport; 12299 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 12300 mbox->context1 = NULL; 12301 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 12302 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 12303 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 12304 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 12305 if (shdr_status || shdr_add_status || rc) { 12306 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12307 "2512 MODIFY_EQ_DELAY mailbox failed with " 12308 "status x%x add_status x%x, mbx status x%x\n", 12309 shdr_status, shdr_add_status, rc); 12310 status = -ENXIO; 12311 } 12312 mempool_free(mbox, phba->mbox_mem_pool); 12313 return status; 12314 } 12315 12316 /** 12317 * lpfc_eq_create - Create an Event Queue on the HBA 12318 * @phba: HBA structure that indicates port to create a queue on. 12319 * @eq: The queue structure to use to create the event queue. 12320 * @imax: The maximum interrupt per second limit. 12321 * 12322 * This function creates an event queue, as detailed in @eq, on a port, 12323 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 12324 * 12325 * The @phba struct is used to send mailbox command to HBA. The @eq struct 12326 * is used to get the entry count and entry size that are necessary to 12327 * determine the number of pages to allocate and use for this queue. This 12328 * function will send the EQ_CREATE mailbox command to the HBA to setup the 12329 * event queue. This function is asynchronous and will wait for the mailbox 12330 * command to finish before continuing. 12331 * 12332 * On success this function will return a zero. If unable to allocate enough 12333 * memory this function will return -ENOMEM. If the queue create mailbox command 12334 * fails this function will return -ENXIO. 12335 **/ 12336 uint32_t 12337 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 12338 { 12339 struct lpfc_mbx_eq_create *eq_create; 12340 LPFC_MBOXQ_t *mbox; 12341 int rc, length, status = 0; 12342 struct lpfc_dmabuf *dmabuf; 12343 uint32_t shdr_status, shdr_add_status; 12344 union lpfc_sli4_cfg_shdr *shdr; 12345 uint16_t dmult; 12346 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 12347 12348 /* sanity check on queue memory */ 12349 if (!eq) 12350 return -ENODEV; 12351 if (!phba->sli4_hba.pc_sli4_params.supported) 12352 hw_page_size = SLI4_PAGE_SIZE; 12353 12354 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 12355 if (!mbox) 12356 return -ENOMEM; 12357 length = (sizeof(struct lpfc_mbx_eq_create) - 12358 sizeof(struct lpfc_sli4_cfg_mhdr)); 12359 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 12360 LPFC_MBOX_OPCODE_EQ_CREATE, 12361 length, LPFC_SLI4_MBX_EMBED); 12362 eq_create = &mbox->u.mqe.un.eq_create; 12363 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 12364 eq->page_count); 12365 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 12366 LPFC_EQE_SIZE); 12367 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 12368 /* Calculate delay multiper from maximum interrupt per second */ 12369 if (imax > LPFC_DMULT_CONST) 12370 dmult = 0; 12371 else 12372 dmult = LPFC_DMULT_CONST/imax - 1; 12373 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 12374 dmult); 12375 switch (eq->entry_count) { 12376 default: 12377 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12378 "0360 Unsupported EQ count. (%d)\n", 12379 eq->entry_count); 12380 if (eq->entry_count < 256) 12381 return -EINVAL; 12382 /* otherwise default to smallest count (drop through) */ 12383 case 256: 12384 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 12385 LPFC_EQ_CNT_256); 12386 break; 12387 case 512: 12388 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 12389 LPFC_EQ_CNT_512); 12390 break; 12391 case 1024: 12392 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 12393 LPFC_EQ_CNT_1024); 12394 break; 12395 case 2048: 12396 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 12397 LPFC_EQ_CNT_2048); 12398 break; 12399 case 4096: 12400 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 12401 LPFC_EQ_CNT_4096); 12402 break; 12403 } 12404 list_for_each_entry(dmabuf, &eq->page_list, list) { 12405 memset(dmabuf->virt, 0, hw_page_size); 12406 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 12407 putPaddrLow(dmabuf->phys); 12408 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 12409 putPaddrHigh(dmabuf->phys); 12410 } 12411 mbox->vport = phba->pport; 12412 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 12413 mbox->context1 = NULL; 12414 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 12415 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 12416 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 12417 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 12418 if (shdr_status || shdr_add_status || rc) { 12419 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12420 "2500 EQ_CREATE mailbox failed with " 12421 "status x%x add_status x%x, mbx status x%x\n", 12422 shdr_status, shdr_add_status, rc); 12423 status = -ENXIO; 12424 } 12425 eq->type = LPFC_EQ; 12426 eq->subtype = LPFC_NONE; 12427 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 12428 if (eq->queue_id == 0xFFFF) 12429 status = -ENXIO; 12430 eq->host_index = 0; 12431 eq->hba_index = 0; 12432 12433 mempool_free(mbox, phba->mbox_mem_pool); 12434 return status; 12435 } 12436 12437 /** 12438 * lpfc_cq_create - Create a Completion Queue on the HBA 12439 * @phba: HBA structure that indicates port to create a queue on. 12440 * @cq: The queue structure to use to create the completion queue. 12441 * @eq: The event queue to bind this completion queue to. 12442 * 12443 * This function creates a completion queue, as detailed in @wq, on a port, 12444 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 12445 * 12446 * The @phba struct is used to send mailbox command to HBA. The @cq struct 12447 * is used to get the entry count and entry size that are necessary to 12448 * determine the number of pages to allocate and use for this queue. The @eq 12449 * is used to indicate which event queue to bind this completion queue to. This 12450 * function will send the CQ_CREATE mailbox command to the HBA to setup the 12451 * completion queue. This function is asynchronous and will wait for the mailbox 12452 * command to finish before continuing. 12453 * 12454 * On success this function will return a zero. If unable to allocate enough 12455 * memory this function will return -ENOMEM. If the queue create mailbox command 12456 * fails this function will return -ENXIO. 12457 **/ 12458 uint32_t 12459 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 12460 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 12461 { 12462 struct lpfc_mbx_cq_create *cq_create; 12463 struct lpfc_dmabuf *dmabuf; 12464 LPFC_MBOXQ_t *mbox; 12465 int rc, length, status = 0; 12466 uint32_t shdr_status, shdr_add_status; 12467 union lpfc_sli4_cfg_shdr *shdr; 12468 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 12469 12470 /* sanity check on queue memory */ 12471 if (!cq || !eq) 12472 return -ENODEV; 12473 if (!phba->sli4_hba.pc_sli4_params.supported) 12474 hw_page_size = SLI4_PAGE_SIZE; 12475 12476 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 12477 if (!mbox) 12478 return -ENOMEM; 12479 length = (sizeof(struct lpfc_mbx_cq_create) - 12480 sizeof(struct lpfc_sli4_cfg_mhdr)); 12481 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 12482 LPFC_MBOX_OPCODE_CQ_CREATE, 12483 length, LPFC_SLI4_MBX_EMBED); 12484 cq_create = &mbox->u.mqe.un.cq_create; 12485 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 12486 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 12487 cq->page_count); 12488 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 12489 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 12490 bf_set(lpfc_mbox_hdr_version, &shdr->request, 12491 phba->sli4_hba.pc_sli4_params.cqv); 12492 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 12493 /* FW only supports 1. Should be PAGE_SIZE/SLI4_PAGE_SIZE */ 12494 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 1); 12495 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 12496 eq->queue_id); 12497 } else { 12498 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 12499 eq->queue_id); 12500 } 12501 switch (cq->entry_count) { 12502 default: 12503 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12504 "0361 Unsupported CQ count. (%d)\n", 12505 cq->entry_count); 12506 if (cq->entry_count < 256) { 12507 status = -EINVAL; 12508 goto out; 12509 } 12510 /* otherwise default to smallest count (drop through) */ 12511 case 256: 12512 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 12513 LPFC_CQ_CNT_256); 12514 break; 12515 case 512: 12516 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 12517 LPFC_CQ_CNT_512); 12518 break; 12519 case 1024: 12520 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 12521 LPFC_CQ_CNT_1024); 12522 break; 12523 } 12524 list_for_each_entry(dmabuf, &cq->page_list, list) { 12525 memset(dmabuf->virt, 0, hw_page_size); 12526 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 12527 putPaddrLow(dmabuf->phys); 12528 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 12529 putPaddrHigh(dmabuf->phys); 12530 } 12531 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 12532 12533 /* The IOCTL status is embedded in the mailbox subheader. */ 12534 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 12535 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 12536 if (shdr_status || shdr_add_status || rc) { 12537 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12538 "2501 CQ_CREATE mailbox failed with " 12539 "status x%x add_status x%x, mbx status x%x\n", 12540 shdr_status, shdr_add_status, rc); 12541 status = -ENXIO; 12542 goto out; 12543 } 12544 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 12545 if (cq->queue_id == 0xFFFF) { 12546 status = -ENXIO; 12547 goto out; 12548 } 12549 /* link the cq onto the parent eq child list */ 12550 list_add_tail(&cq->list, &eq->child_list); 12551 /* Set up completion queue's type and subtype */ 12552 cq->type = type; 12553 cq->subtype = subtype; 12554 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 12555 cq->assoc_qid = eq->queue_id; 12556 cq->host_index = 0; 12557 cq->hba_index = 0; 12558 12559 out: 12560 mempool_free(mbox, phba->mbox_mem_pool); 12561 return status; 12562 } 12563 12564 /** 12565 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 12566 * @phba: HBA structure that indicates port to create a queue on. 12567 * @mq: The queue structure to use to create the mailbox queue. 12568 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 12569 * @cq: The completion queue to associate with this cq. 12570 * 12571 * This function provides failback (fb) functionality when the 12572 * mq_create_ext fails on older FW generations. It's purpose is identical 12573 * to mq_create_ext otherwise. 12574 * 12575 * This routine cannot fail as all attributes were previously accessed and 12576 * initialized in mq_create_ext. 12577 **/ 12578 static void 12579 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 12580 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 12581 { 12582 struct lpfc_mbx_mq_create *mq_create; 12583 struct lpfc_dmabuf *dmabuf; 12584 int length; 12585 12586 length = (sizeof(struct lpfc_mbx_mq_create) - 12587 sizeof(struct lpfc_sli4_cfg_mhdr)); 12588 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 12589 LPFC_MBOX_OPCODE_MQ_CREATE, 12590 length, LPFC_SLI4_MBX_EMBED); 12591 mq_create = &mbox->u.mqe.un.mq_create; 12592 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 12593 mq->page_count); 12594 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 12595 cq->queue_id); 12596 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 12597 switch (mq->entry_count) { 12598 case 16: 12599 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 12600 LPFC_MQ_RING_SIZE_16); 12601 break; 12602 case 32: 12603 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 12604 LPFC_MQ_RING_SIZE_32); 12605 break; 12606 case 64: 12607 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 12608 LPFC_MQ_RING_SIZE_64); 12609 break; 12610 case 128: 12611 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 12612 LPFC_MQ_RING_SIZE_128); 12613 break; 12614 } 12615 list_for_each_entry(dmabuf, &mq->page_list, list) { 12616 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 12617 putPaddrLow(dmabuf->phys); 12618 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 12619 putPaddrHigh(dmabuf->phys); 12620 } 12621 } 12622 12623 /** 12624 * lpfc_mq_create - Create a mailbox Queue on the HBA 12625 * @phba: HBA structure that indicates port to create a queue on. 12626 * @mq: The queue structure to use to create the mailbox queue. 12627 * @cq: The completion queue to associate with this cq. 12628 * @subtype: The queue's subtype. 12629 * 12630 * This function creates a mailbox queue, as detailed in @mq, on a port, 12631 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 12632 * 12633 * The @phba struct is used to send mailbox command to HBA. The @cq struct 12634 * is used to get the entry count and entry size that are necessary to 12635 * determine the number of pages to allocate and use for this queue. This 12636 * function will send the MQ_CREATE mailbox command to the HBA to setup the 12637 * mailbox queue. This function is asynchronous and will wait for the mailbox 12638 * command to finish before continuing. 12639 * 12640 * On success this function will return a zero. If unable to allocate enough 12641 * memory this function will return -ENOMEM. If the queue create mailbox command 12642 * fails this function will return -ENXIO. 12643 **/ 12644 int32_t 12645 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 12646 struct lpfc_queue *cq, uint32_t subtype) 12647 { 12648 struct lpfc_mbx_mq_create *mq_create; 12649 struct lpfc_mbx_mq_create_ext *mq_create_ext; 12650 struct lpfc_dmabuf *dmabuf; 12651 LPFC_MBOXQ_t *mbox; 12652 int rc, length, status = 0; 12653 uint32_t shdr_status, shdr_add_status; 12654 union lpfc_sli4_cfg_shdr *shdr; 12655 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 12656 12657 /* sanity check on queue memory */ 12658 if (!mq || !cq) 12659 return -ENODEV; 12660 if (!phba->sli4_hba.pc_sli4_params.supported) 12661 hw_page_size = SLI4_PAGE_SIZE; 12662 12663 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 12664 if (!mbox) 12665 return -ENOMEM; 12666 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 12667 sizeof(struct lpfc_sli4_cfg_mhdr)); 12668 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 12669 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 12670 length, LPFC_SLI4_MBX_EMBED); 12671 12672 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 12673 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 12674 bf_set(lpfc_mbx_mq_create_ext_num_pages, 12675 &mq_create_ext->u.request, mq->page_count); 12676 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 12677 &mq_create_ext->u.request, 1); 12678 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 12679 &mq_create_ext->u.request, 1); 12680 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 12681 &mq_create_ext->u.request, 1); 12682 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 12683 &mq_create_ext->u.request, 1); 12684 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 12685 &mq_create_ext->u.request, 1); 12686 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 12687 bf_set(lpfc_mbox_hdr_version, &shdr->request, 12688 phba->sli4_hba.pc_sli4_params.mqv); 12689 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 12690 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 12691 cq->queue_id); 12692 else 12693 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 12694 cq->queue_id); 12695 switch (mq->entry_count) { 12696 default: 12697 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12698 "0362 Unsupported MQ count. (%d)\n", 12699 mq->entry_count); 12700 if (mq->entry_count < 16) { 12701 status = -EINVAL; 12702 goto out; 12703 } 12704 /* otherwise default to smallest count (drop through) */ 12705 case 16: 12706 bf_set(lpfc_mq_context_ring_size, 12707 &mq_create_ext->u.request.context, 12708 LPFC_MQ_RING_SIZE_16); 12709 break; 12710 case 32: 12711 bf_set(lpfc_mq_context_ring_size, 12712 &mq_create_ext->u.request.context, 12713 LPFC_MQ_RING_SIZE_32); 12714 break; 12715 case 64: 12716 bf_set(lpfc_mq_context_ring_size, 12717 &mq_create_ext->u.request.context, 12718 LPFC_MQ_RING_SIZE_64); 12719 break; 12720 case 128: 12721 bf_set(lpfc_mq_context_ring_size, 12722 &mq_create_ext->u.request.context, 12723 LPFC_MQ_RING_SIZE_128); 12724 break; 12725 } 12726 list_for_each_entry(dmabuf, &mq->page_list, list) { 12727 memset(dmabuf->virt, 0, hw_page_size); 12728 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 12729 putPaddrLow(dmabuf->phys); 12730 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 12731 putPaddrHigh(dmabuf->phys); 12732 } 12733 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 12734 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 12735 &mq_create_ext->u.response); 12736 if (rc != MBX_SUCCESS) { 12737 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12738 "2795 MQ_CREATE_EXT failed with " 12739 "status x%x. Failback to MQ_CREATE.\n", 12740 rc); 12741 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 12742 mq_create = &mbox->u.mqe.un.mq_create; 12743 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 12744 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 12745 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 12746 &mq_create->u.response); 12747 } 12748 12749 /* The IOCTL status is embedded in the mailbox subheader. */ 12750 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 12751 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 12752 if (shdr_status || shdr_add_status || rc) { 12753 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12754 "2502 MQ_CREATE mailbox failed with " 12755 "status x%x add_status x%x, mbx status x%x\n", 12756 shdr_status, shdr_add_status, rc); 12757 status = -ENXIO; 12758 goto out; 12759 } 12760 if (mq->queue_id == 0xFFFF) { 12761 status = -ENXIO; 12762 goto out; 12763 } 12764 mq->type = LPFC_MQ; 12765 mq->assoc_qid = cq->queue_id; 12766 mq->subtype = subtype; 12767 mq->host_index = 0; 12768 mq->hba_index = 0; 12769 12770 /* link the mq onto the parent cq child list */ 12771 list_add_tail(&mq->list, &cq->child_list); 12772 out: 12773 mempool_free(mbox, phba->mbox_mem_pool); 12774 return status; 12775 } 12776 12777 /** 12778 * lpfc_wq_create - Create a Work Queue on the HBA 12779 * @phba: HBA structure that indicates port to create a queue on. 12780 * @wq: The queue structure to use to create the work queue. 12781 * @cq: The completion queue to bind this work queue to. 12782 * @subtype: The subtype of the work queue indicating its functionality. 12783 * 12784 * This function creates a work queue, as detailed in @wq, on a port, described 12785 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 12786 * 12787 * The @phba struct is used to send mailbox command to HBA. The @wq struct 12788 * is used to get the entry count and entry size that are necessary to 12789 * determine the number of pages to allocate and use for this queue. The @cq 12790 * is used to indicate which completion queue to bind this work queue to. This 12791 * function will send the WQ_CREATE mailbox command to the HBA to setup the 12792 * work queue. This function is asynchronous and will wait for the mailbox 12793 * command to finish before continuing. 12794 * 12795 * On success this function will return a zero. If unable to allocate enough 12796 * memory this function will return -ENOMEM. If the queue create mailbox command 12797 * fails this function will return -ENXIO. 12798 **/ 12799 uint32_t 12800 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 12801 struct lpfc_queue *cq, uint32_t subtype) 12802 { 12803 struct lpfc_mbx_wq_create *wq_create; 12804 struct lpfc_dmabuf *dmabuf; 12805 LPFC_MBOXQ_t *mbox; 12806 int rc, length, status = 0; 12807 uint32_t shdr_status, shdr_add_status; 12808 union lpfc_sli4_cfg_shdr *shdr; 12809 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 12810 struct dma_address *page; 12811 void __iomem *bar_memmap_p; 12812 uint32_t db_offset; 12813 uint16_t pci_barset; 12814 12815 /* sanity check on queue memory */ 12816 if (!wq || !cq) 12817 return -ENODEV; 12818 if (!phba->sli4_hba.pc_sli4_params.supported) 12819 hw_page_size = SLI4_PAGE_SIZE; 12820 12821 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 12822 if (!mbox) 12823 return -ENOMEM; 12824 length = (sizeof(struct lpfc_mbx_wq_create) - 12825 sizeof(struct lpfc_sli4_cfg_mhdr)); 12826 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 12827 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 12828 length, LPFC_SLI4_MBX_EMBED); 12829 wq_create = &mbox->u.mqe.un.wq_create; 12830 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 12831 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 12832 wq->page_count); 12833 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 12834 cq->queue_id); 12835 bf_set(lpfc_mbox_hdr_version, &shdr->request, 12836 phba->sli4_hba.pc_sli4_params.wqv); 12837 12838 if (phba->sli4_hba.pc_sli4_params.wqv == LPFC_Q_CREATE_VERSION_1) { 12839 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 12840 wq->entry_count); 12841 switch (wq->entry_size) { 12842 default: 12843 case 64: 12844 bf_set(lpfc_mbx_wq_create_wqe_size, 12845 &wq_create->u.request_1, 12846 LPFC_WQ_WQE_SIZE_64); 12847 break; 12848 case 128: 12849 bf_set(lpfc_mbx_wq_create_wqe_size, 12850 &wq_create->u.request_1, 12851 LPFC_WQ_WQE_SIZE_128); 12852 break; 12853 } 12854 bf_set(lpfc_mbx_wq_create_page_size, &wq_create->u.request_1, 12855 (PAGE_SIZE/SLI4_PAGE_SIZE)); 12856 page = wq_create->u.request_1.page; 12857 } else { 12858 page = wq_create->u.request.page; 12859 } 12860 list_for_each_entry(dmabuf, &wq->page_list, list) { 12861 memset(dmabuf->virt, 0, hw_page_size); 12862 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 12863 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 12864 } 12865 12866 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 12867 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 12868 12869 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 12870 /* The IOCTL status is embedded in the mailbox subheader. */ 12871 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 12872 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 12873 if (shdr_status || shdr_add_status || rc) { 12874 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12875 "2503 WQ_CREATE mailbox failed with " 12876 "status x%x add_status x%x, mbx status x%x\n", 12877 shdr_status, shdr_add_status, rc); 12878 status = -ENXIO; 12879 goto out; 12880 } 12881 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, &wq_create->u.response); 12882 if (wq->queue_id == 0xFFFF) { 12883 status = -ENXIO; 12884 goto out; 12885 } 12886 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 12887 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 12888 &wq_create->u.response); 12889 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 12890 (wq->db_format != LPFC_DB_RING_FORMAT)) { 12891 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12892 "3265 WQ[%d] doorbell format not " 12893 "supported: x%x\n", wq->queue_id, 12894 wq->db_format); 12895 status = -EINVAL; 12896 goto out; 12897 } 12898 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 12899 &wq_create->u.response); 12900 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 12901 if (!bar_memmap_p) { 12902 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12903 "3263 WQ[%d] failed to memmap pci " 12904 "barset:x%x\n", wq->queue_id, 12905 pci_barset); 12906 status = -ENOMEM; 12907 goto out; 12908 } 12909 db_offset = wq_create->u.response.doorbell_offset; 12910 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 12911 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 12912 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12913 "3252 WQ[%d] doorbell offset not " 12914 "supported: x%x\n", wq->queue_id, 12915 db_offset); 12916 status = -EINVAL; 12917 goto out; 12918 } 12919 wq->db_regaddr = bar_memmap_p + db_offset; 12920 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 12921 "3264 WQ[%d]: barset:x%x, offset:x%x, " 12922 "format:x%x\n", wq->queue_id, pci_barset, 12923 db_offset, wq->db_format); 12924 } else { 12925 wq->db_format = LPFC_DB_LIST_FORMAT; 12926 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 12927 } 12928 wq->type = LPFC_WQ; 12929 wq->assoc_qid = cq->queue_id; 12930 wq->subtype = subtype; 12931 wq->host_index = 0; 12932 wq->hba_index = 0; 12933 wq->entry_repost = LPFC_RELEASE_NOTIFICATION_INTERVAL; 12934 12935 /* link the wq onto the parent cq child list */ 12936 list_add_tail(&wq->list, &cq->child_list); 12937 out: 12938 mempool_free(mbox, phba->mbox_mem_pool); 12939 return status; 12940 } 12941 12942 /** 12943 * lpfc_rq_adjust_repost - Adjust entry_repost for an RQ 12944 * @phba: HBA structure that indicates port to create a queue on. 12945 * @rq: The queue structure to use for the receive queue. 12946 * @qno: The associated HBQ number 12947 * 12948 * 12949 * For SLI4 we need to adjust the RQ repost value based on 12950 * the number of buffers that are initially posted to the RQ. 12951 */ 12952 void 12953 lpfc_rq_adjust_repost(struct lpfc_hba *phba, struct lpfc_queue *rq, int qno) 12954 { 12955 uint32_t cnt; 12956 12957 /* sanity check on queue memory */ 12958 if (!rq) 12959 return; 12960 cnt = lpfc_hbq_defs[qno]->entry_count; 12961 12962 /* Recalc repost for RQs based on buffers initially posted */ 12963 cnt = (cnt >> 3); 12964 if (cnt < LPFC_QUEUE_MIN_REPOST) 12965 cnt = LPFC_QUEUE_MIN_REPOST; 12966 12967 rq->entry_repost = cnt; 12968 } 12969 12970 /** 12971 * lpfc_rq_create - Create a Receive Queue on the HBA 12972 * @phba: HBA structure that indicates port to create a queue on. 12973 * @hrq: The queue structure to use to create the header receive queue. 12974 * @drq: The queue structure to use to create the data receive queue. 12975 * @cq: The completion queue to bind this work queue to. 12976 * 12977 * This function creates a receive buffer queue pair , as detailed in @hrq and 12978 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 12979 * to the HBA. 12980 * 12981 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 12982 * struct is used to get the entry count that is necessary to determine the 12983 * number of pages to use for this queue. The @cq is used to indicate which 12984 * completion queue to bind received buffers that are posted to these queues to. 12985 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 12986 * receive queue pair. This function is asynchronous and will wait for the 12987 * mailbox command to finish before continuing. 12988 * 12989 * On success this function will return a zero. If unable to allocate enough 12990 * memory this function will return -ENOMEM. If the queue create mailbox command 12991 * fails this function will return -ENXIO. 12992 **/ 12993 uint32_t 12994 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 12995 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 12996 { 12997 struct lpfc_mbx_rq_create *rq_create; 12998 struct lpfc_dmabuf *dmabuf; 12999 LPFC_MBOXQ_t *mbox; 13000 int rc, length, status = 0; 13001 uint32_t shdr_status, shdr_add_status; 13002 union lpfc_sli4_cfg_shdr *shdr; 13003 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13004 void __iomem *bar_memmap_p; 13005 uint32_t db_offset; 13006 uint16_t pci_barset; 13007 13008 /* sanity check on queue memory */ 13009 if (!hrq || !drq || !cq) 13010 return -ENODEV; 13011 if (!phba->sli4_hba.pc_sli4_params.supported) 13012 hw_page_size = SLI4_PAGE_SIZE; 13013 13014 if (hrq->entry_count != drq->entry_count) 13015 return -EINVAL; 13016 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13017 if (!mbox) 13018 return -ENOMEM; 13019 length = (sizeof(struct lpfc_mbx_rq_create) - 13020 sizeof(struct lpfc_sli4_cfg_mhdr)); 13021 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 13022 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 13023 length, LPFC_SLI4_MBX_EMBED); 13024 rq_create = &mbox->u.mqe.un.rq_create; 13025 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 13026 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13027 phba->sli4_hba.pc_sli4_params.rqv); 13028 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 13029 bf_set(lpfc_rq_context_rqe_count_1, 13030 &rq_create->u.request.context, 13031 hrq->entry_count); 13032 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 13033 bf_set(lpfc_rq_context_rqe_size, 13034 &rq_create->u.request.context, 13035 LPFC_RQE_SIZE_8); 13036 bf_set(lpfc_rq_context_page_size, 13037 &rq_create->u.request.context, 13038 (PAGE_SIZE/SLI4_PAGE_SIZE)); 13039 } else { 13040 switch (hrq->entry_count) { 13041 default: 13042 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13043 "2535 Unsupported RQ count. (%d)\n", 13044 hrq->entry_count); 13045 if (hrq->entry_count < 512) { 13046 status = -EINVAL; 13047 goto out; 13048 } 13049 /* otherwise default to smallest count (drop through) */ 13050 case 512: 13051 bf_set(lpfc_rq_context_rqe_count, 13052 &rq_create->u.request.context, 13053 LPFC_RQ_RING_SIZE_512); 13054 break; 13055 case 1024: 13056 bf_set(lpfc_rq_context_rqe_count, 13057 &rq_create->u.request.context, 13058 LPFC_RQ_RING_SIZE_1024); 13059 break; 13060 case 2048: 13061 bf_set(lpfc_rq_context_rqe_count, 13062 &rq_create->u.request.context, 13063 LPFC_RQ_RING_SIZE_2048); 13064 break; 13065 case 4096: 13066 bf_set(lpfc_rq_context_rqe_count, 13067 &rq_create->u.request.context, 13068 LPFC_RQ_RING_SIZE_4096); 13069 break; 13070 } 13071 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 13072 LPFC_HDR_BUF_SIZE); 13073 } 13074 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 13075 cq->queue_id); 13076 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 13077 hrq->page_count); 13078 list_for_each_entry(dmabuf, &hrq->page_list, list) { 13079 memset(dmabuf->virt, 0, hw_page_size); 13080 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13081 putPaddrLow(dmabuf->phys); 13082 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13083 putPaddrHigh(dmabuf->phys); 13084 } 13085 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 13086 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 13087 13088 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13089 /* The IOCTL status is embedded in the mailbox subheader. */ 13090 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13091 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13092 if (shdr_status || shdr_add_status || rc) { 13093 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13094 "2504 RQ_CREATE mailbox failed with " 13095 "status x%x add_status x%x, mbx status x%x\n", 13096 shdr_status, shdr_add_status, rc); 13097 status = -ENXIO; 13098 goto out; 13099 } 13100 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 13101 if (hrq->queue_id == 0xFFFF) { 13102 status = -ENXIO; 13103 goto out; 13104 } 13105 13106 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 13107 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 13108 &rq_create->u.response); 13109 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 13110 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 13111 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13112 "3262 RQ [%d] doorbell format not " 13113 "supported: x%x\n", hrq->queue_id, 13114 hrq->db_format); 13115 status = -EINVAL; 13116 goto out; 13117 } 13118 13119 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 13120 &rq_create->u.response); 13121 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 13122 if (!bar_memmap_p) { 13123 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13124 "3269 RQ[%d] failed to memmap pci " 13125 "barset:x%x\n", hrq->queue_id, 13126 pci_barset); 13127 status = -ENOMEM; 13128 goto out; 13129 } 13130 13131 db_offset = rq_create->u.response.doorbell_offset; 13132 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 13133 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 13134 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13135 "3270 RQ[%d] doorbell offset not " 13136 "supported: x%x\n", hrq->queue_id, 13137 db_offset); 13138 status = -EINVAL; 13139 goto out; 13140 } 13141 hrq->db_regaddr = bar_memmap_p + db_offset; 13142 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13143 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 13144 "format:x%x\n", hrq->queue_id, pci_barset, 13145 db_offset, hrq->db_format); 13146 } else { 13147 hrq->db_format = LPFC_DB_RING_FORMAT; 13148 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 13149 } 13150 hrq->type = LPFC_HRQ; 13151 hrq->assoc_qid = cq->queue_id; 13152 hrq->subtype = subtype; 13153 hrq->host_index = 0; 13154 hrq->hba_index = 0; 13155 13156 /* now create the data queue */ 13157 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 13158 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 13159 length, LPFC_SLI4_MBX_EMBED); 13160 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13161 phba->sli4_hba.pc_sli4_params.rqv); 13162 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 13163 bf_set(lpfc_rq_context_rqe_count_1, 13164 &rq_create->u.request.context, hrq->entry_count); 13165 rq_create->u.request.context.buffer_size = LPFC_DATA_BUF_SIZE; 13166 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 13167 LPFC_RQE_SIZE_8); 13168 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 13169 (PAGE_SIZE/SLI4_PAGE_SIZE)); 13170 } else { 13171 switch (drq->entry_count) { 13172 default: 13173 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13174 "2536 Unsupported RQ count. (%d)\n", 13175 drq->entry_count); 13176 if (drq->entry_count < 512) { 13177 status = -EINVAL; 13178 goto out; 13179 } 13180 /* otherwise default to smallest count (drop through) */ 13181 case 512: 13182 bf_set(lpfc_rq_context_rqe_count, 13183 &rq_create->u.request.context, 13184 LPFC_RQ_RING_SIZE_512); 13185 break; 13186 case 1024: 13187 bf_set(lpfc_rq_context_rqe_count, 13188 &rq_create->u.request.context, 13189 LPFC_RQ_RING_SIZE_1024); 13190 break; 13191 case 2048: 13192 bf_set(lpfc_rq_context_rqe_count, 13193 &rq_create->u.request.context, 13194 LPFC_RQ_RING_SIZE_2048); 13195 break; 13196 case 4096: 13197 bf_set(lpfc_rq_context_rqe_count, 13198 &rq_create->u.request.context, 13199 LPFC_RQ_RING_SIZE_4096); 13200 break; 13201 } 13202 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 13203 LPFC_DATA_BUF_SIZE); 13204 } 13205 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 13206 cq->queue_id); 13207 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 13208 drq->page_count); 13209 list_for_each_entry(dmabuf, &drq->page_list, list) { 13210 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13211 putPaddrLow(dmabuf->phys); 13212 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13213 putPaddrHigh(dmabuf->phys); 13214 } 13215 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 13216 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 13217 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13218 /* The IOCTL status is embedded in the mailbox subheader. */ 13219 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 13220 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13221 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13222 if (shdr_status || shdr_add_status || rc) { 13223 status = -ENXIO; 13224 goto out; 13225 } 13226 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 13227 if (drq->queue_id == 0xFFFF) { 13228 status = -ENXIO; 13229 goto out; 13230 } 13231 drq->type = LPFC_DRQ; 13232 drq->assoc_qid = cq->queue_id; 13233 drq->subtype = subtype; 13234 drq->host_index = 0; 13235 drq->hba_index = 0; 13236 13237 /* link the header and data RQs onto the parent cq child list */ 13238 list_add_tail(&hrq->list, &cq->child_list); 13239 list_add_tail(&drq->list, &cq->child_list); 13240 13241 out: 13242 mempool_free(mbox, phba->mbox_mem_pool); 13243 return status; 13244 } 13245 13246 /** 13247 * lpfc_eq_destroy - Destroy an event Queue on the HBA 13248 * @eq: The queue structure associated with the queue to destroy. 13249 * 13250 * This function destroys a queue, as detailed in @eq by sending an mailbox 13251 * command, specific to the type of queue, to the HBA. 13252 * 13253 * The @eq struct is used to get the queue ID of the queue to destroy. 13254 * 13255 * On success this function will return a zero. If the queue destroy mailbox 13256 * command fails this function will return -ENXIO. 13257 **/ 13258 uint32_t 13259 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 13260 { 13261 LPFC_MBOXQ_t *mbox; 13262 int rc, length, status = 0; 13263 uint32_t shdr_status, shdr_add_status; 13264 union lpfc_sli4_cfg_shdr *shdr; 13265 13266 /* sanity check on queue memory */ 13267 if (!eq) 13268 return -ENODEV; 13269 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 13270 if (!mbox) 13271 return -ENOMEM; 13272 length = (sizeof(struct lpfc_mbx_eq_destroy) - 13273 sizeof(struct lpfc_sli4_cfg_mhdr)); 13274 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13275 LPFC_MBOX_OPCODE_EQ_DESTROY, 13276 length, LPFC_SLI4_MBX_EMBED); 13277 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 13278 eq->queue_id); 13279 mbox->vport = eq->phba->pport; 13280 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13281 13282 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 13283 /* The IOCTL status is embedded in the mailbox subheader. */ 13284 shdr = (union lpfc_sli4_cfg_shdr *) 13285 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 13286 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13287 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13288 if (shdr_status || shdr_add_status || rc) { 13289 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13290 "2505 EQ_DESTROY mailbox failed with " 13291 "status x%x add_status x%x, mbx status x%x\n", 13292 shdr_status, shdr_add_status, rc); 13293 status = -ENXIO; 13294 } 13295 13296 /* Remove eq from any list */ 13297 list_del_init(&eq->list); 13298 mempool_free(mbox, eq->phba->mbox_mem_pool); 13299 return status; 13300 } 13301 13302 /** 13303 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 13304 * @cq: The queue structure associated with the queue to destroy. 13305 * 13306 * This function destroys a queue, as detailed in @cq by sending an mailbox 13307 * command, specific to the type of queue, to the HBA. 13308 * 13309 * The @cq struct is used to get the queue ID of the queue to destroy. 13310 * 13311 * On success this function will return a zero. If the queue destroy mailbox 13312 * command fails this function will return -ENXIO. 13313 **/ 13314 uint32_t 13315 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 13316 { 13317 LPFC_MBOXQ_t *mbox; 13318 int rc, length, status = 0; 13319 uint32_t shdr_status, shdr_add_status; 13320 union lpfc_sli4_cfg_shdr *shdr; 13321 13322 /* sanity check on queue memory */ 13323 if (!cq) 13324 return -ENODEV; 13325 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 13326 if (!mbox) 13327 return -ENOMEM; 13328 length = (sizeof(struct lpfc_mbx_cq_destroy) - 13329 sizeof(struct lpfc_sli4_cfg_mhdr)); 13330 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13331 LPFC_MBOX_OPCODE_CQ_DESTROY, 13332 length, LPFC_SLI4_MBX_EMBED); 13333 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 13334 cq->queue_id); 13335 mbox->vport = cq->phba->pport; 13336 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13337 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 13338 /* The IOCTL status is embedded in the mailbox subheader. */ 13339 shdr = (union lpfc_sli4_cfg_shdr *) 13340 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 13341 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13342 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13343 if (shdr_status || shdr_add_status || rc) { 13344 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13345 "2506 CQ_DESTROY mailbox failed with " 13346 "status x%x add_status x%x, mbx status x%x\n", 13347 shdr_status, shdr_add_status, rc); 13348 status = -ENXIO; 13349 } 13350 /* Remove cq from any list */ 13351 list_del_init(&cq->list); 13352 mempool_free(mbox, cq->phba->mbox_mem_pool); 13353 return status; 13354 } 13355 13356 /** 13357 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 13358 * @qm: The queue structure associated with the queue to destroy. 13359 * 13360 * This function destroys a queue, as detailed in @mq by sending an mailbox 13361 * command, specific to the type of queue, to the HBA. 13362 * 13363 * The @mq struct is used to get the queue ID of the queue to destroy. 13364 * 13365 * On success this function will return a zero. If the queue destroy mailbox 13366 * command fails this function will return -ENXIO. 13367 **/ 13368 uint32_t 13369 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 13370 { 13371 LPFC_MBOXQ_t *mbox; 13372 int rc, length, status = 0; 13373 uint32_t shdr_status, shdr_add_status; 13374 union lpfc_sli4_cfg_shdr *shdr; 13375 13376 /* sanity check on queue memory */ 13377 if (!mq) 13378 return -ENODEV; 13379 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 13380 if (!mbox) 13381 return -ENOMEM; 13382 length = (sizeof(struct lpfc_mbx_mq_destroy) - 13383 sizeof(struct lpfc_sli4_cfg_mhdr)); 13384 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13385 LPFC_MBOX_OPCODE_MQ_DESTROY, 13386 length, LPFC_SLI4_MBX_EMBED); 13387 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 13388 mq->queue_id); 13389 mbox->vport = mq->phba->pport; 13390 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13391 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 13392 /* The IOCTL status is embedded in the mailbox subheader. */ 13393 shdr = (union lpfc_sli4_cfg_shdr *) 13394 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 13395 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13396 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13397 if (shdr_status || shdr_add_status || rc) { 13398 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13399 "2507 MQ_DESTROY mailbox failed with " 13400 "status x%x add_status x%x, mbx status x%x\n", 13401 shdr_status, shdr_add_status, rc); 13402 status = -ENXIO; 13403 } 13404 /* Remove mq from any list */ 13405 list_del_init(&mq->list); 13406 mempool_free(mbox, mq->phba->mbox_mem_pool); 13407 return status; 13408 } 13409 13410 /** 13411 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 13412 * @wq: The queue structure associated with the queue to destroy. 13413 * 13414 * This function destroys a queue, as detailed in @wq by sending an mailbox 13415 * command, specific to the type of queue, to the HBA. 13416 * 13417 * The @wq struct is used to get the queue ID of the queue to destroy. 13418 * 13419 * On success this function will return a zero. If the queue destroy mailbox 13420 * command fails this function will return -ENXIO. 13421 **/ 13422 uint32_t 13423 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 13424 { 13425 LPFC_MBOXQ_t *mbox; 13426 int rc, length, status = 0; 13427 uint32_t shdr_status, shdr_add_status; 13428 union lpfc_sli4_cfg_shdr *shdr; 13429 13430 /* sanity check on queue memory */ 13431 if (!wq) 13432 return -ENODEV; 13433 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 13434 if (!mbox) 13435 return -ENOMEM; 13436 length = (sizeof(struct lpfc_mbx_wq_destroy) - 13437 sizeof(struct lpfc_sli4_cfg_mhdr)); 13438 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 13439 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 13440 length, LPFC_SLI4_MBX_EMBED); 13441 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 13442 wq->queue_id); 13443 mbox->vport = wq->phba->pport; 13444 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13445 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 13446 shdr = (union lpfc_sli4_cfg_shdr *) 13447 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 13448 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13449 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13450 if (shdr_status || shdr_add_status || rc) { 13451 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13452 "2508 WQ_DESTROY mailbox failed with " 13453 "status x%x add_status x%x, mbx status x%x\n", 13454 shdr_status, shdr_add_status, rc); 13455 status = -ENXIO; 13456 } 13457 /* Remove wq from any list */ 13458 list_del_init(&wq->list); 13459 mempool_free(mbox, wq->phba->mbox_mem_pool); 13460 return status; 13461 } 13462 13463 /** 13464 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 13465 * @rq: The queue structure associated with the queue to destroy. 13466 * 13467 * This function destroys a queue, as detailed in @rq by sending an mailbox 13468 * command, specific to the type of queue, to the HBA. 13469 * 13470 * The @rq struct is used to get the queue ID of the queue to destroy. 13471 * 13472 * On success this function will return a zero. If the queue destroy mailbox 13473 * command fails this function will return -ENXIO. 13474 **/ 13475 uint32_t 13476 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 13477 struct lpfc_queue *drq) 13478 { 13479 LPFC_MBOXQ_t *mbox; 13480 int rc, length, status = 0; 13481 uint32_t shdr_status, shdr_add_status; 13482 union lpfc_sli4_cfg_shdr *shdr; 13483 13484 /* sanity check on queue memory */ 13485 if (!hrq || !drq) 13486 return -ENODEV; 13487 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 13488 if (!mbox) 13489 return -ENOMEM; 13490 length = (sizeof(struct lpfc_mbx_rq_destroy) - 13491 sizeof(struct lpfc_sli4_cfg_mhdr)); 13492 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 13493 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 13494 length, LPFC_SLI4_MBX_EMBED); 13495 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 13496 hrq->queue_id); 13497 mbox->vport = hrq->phba->pport; 13498 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13499 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 13500 /* The IOCTL status is embedded in the mailbox subheader. */ 13501 shdr = (union lpfc_sli4_cfg_shdr *) 13502 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 13503 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13504 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13505 if (shdr_status || shdr_add_status || rc) { 13506 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13507 "2509 RQ_DESTROY mailbox failed with " 13508 "status x%x add_status x%x, mbx status x%x\n", 13509 shdr_status, shdr_add_status, rc); 13510 if (rc != MBX_TIMEOUT) 13511 mempool_free(mbox, hrq->phba->mbox_mem_pool); 13512 return -ENXIO; 13513 } 13514 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 13515 drq->queue_id); 13516 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 13517 shdr = (union lpfc_sli4_cfg_shdr *) 13518 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 13519 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13520 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13521 if (shdr_status || shdr_add_status || rc) { 13522 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13523 "2510 RQ_DESTROY mailbox failed with " 13524 "status x%x add_status x%x, mbx status x%x\n", 13525 shdr_status, shdr_add_status, rc); 13526 status = -ENXIO; 13527 } 13528 list_del_init(&hrq->list); 13529 list_del_init(&drq->list); 13530 mempool_free(mbox, hrq->phba->mbox_mem_pool); 13531 return status; 13532 } 13533 13534 /** 13535 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 13536 * @phba: The virtual port for which this call being executed. 13537 * @pdma_phys_addr0: Physical address of the 1st SGL page. 13538 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 13539 * @xritag: the xritag that ties this io to the SGL pages. 13540 * 13541 * This routine will post the sgl pages for the IO that has the xritag 13542 * that is in the iocbq structure. The xritag is assigned during iocbq 13543 * creation and persists for as long as the driver is loaded. 13544 * if the caller has fewer than 256 scatter gather segments to map then 13545 * pdma_phys_addr1 should be 0. 13546 * If the caller needs to map more than 256 scatter gather segment then 13547 * pdma_phys_addr1 should be a valid physical address. 13548 * physical address for SGLs must be 64 byte aligned. 13549 * If you are going to map 2 SGL's then the first one must have 256 entries 13550 * the second sgl can have between 1 and 256 entries. 13551 * 13552 * Return codes: 13553 * 0 - Success 13554 * -ENXIO, -ENOMEM - Failure 13555 **/ 13556 int 13557 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 13558 dma_addr_t pdma_phys_addr0, 13559 dma_addr_t pdma_phys_addr1, 13560 uint16_t xritag) 13561 { 13562 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 13563 LPFC_MBOXQ_t *mbox; 13564 int rc; 13565 uint32_t shdr_status, shdr_add_status; 13566 uint32_t mbox_tmo; 13567 union lpfc_sli4_cfg_shdr *shdr; 13568 13569 if (xritag == NO_XRI) { 13570 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13571 "0364 Invalid param:\n"); 13572 return -EINVAL; 13573 } 13574 13575 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13576 if (!mbox) 13577 return -ENOMEM; 13578 13579 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 13580 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 13581 sizeof(struct lpfc_mbx_post_sgl_pages) - 13582 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 13583 13584 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 13585 &mbox->u.mqe.un.post_sgl_pages; 13586 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 13587 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 13588 13589 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 13590 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 13591 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 13592 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 13593 13594 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 13595 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 13596 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 13597 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 13598 if (!phba->sli4_hba.intr_enable) 13599 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13600 else { 13601 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 13602 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 13603 } 13604 /* The IOCTL status is embedded in the mailbox subheader. */ 13605 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 13606 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13607 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13608 if (rc != MBX_TIMEOUT) 13609 mempool_free(mbox, phba->mbox_mem_pool); 13610 if (shdr_status || shdr_add_status || rc) { 13611 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13612 "2511 POST_SGL mailbox failed with " 13613 "status x%x add_status x%x, mbx status x%x\n", 13614 shdr_status, shdr_add_status, rc); 13615 rc = -ENXIO; 13616 } 13617 return 0; 13618 } 13619 13620 /** 13621 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 13622 * @phba: pointer to lpfc hba data structure. 13623 * 13624 * This routine is invoked to post rpi header templates to the 13625 * HBA consistent with the SLI-4 interface spec. This routine 13626 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 13627 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 13628 * 13629 * Returns 13630 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 13631 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 13632 **/ 13633 uint16_t 13634 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 13635 { 13636 unsigned long xri; 13637 13638 /* 13639 * Fetch the next logical xri. Because this index is logical, 13640 * the driver starts at 0 each time. 13641 */ 13642 spin_lock_irq(&phba->hbalock); 13643 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 13644 phba->sli4_hba.max_cfg_param.max_xri, 0); 13645 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 13646 spin_unlock_irq(&phba->hbalock); 13647 return NO_XRI; 13648 } else { 13649 set_bit(xri, phba->sli4_hba.xri_bmask); 13650 phba->sli4_hba.max_cfg_param.xri_used++; 13651 } 13652 spin_unlock_irq(&phba->hbalock); 13653 return xri; 13654 } 13655 13656 /** 13657 * lpfc_sli4_free_xri - Release an xri for reuse. 13658 * @phba: pointer to lpfc hba data structure. 13659 * 13660 * This routine is invoked to release an xri to the pool of 13661 * available rpis maintained by the driver. 13662 **/ 13663 void 13664 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 13665 { 13666 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 13667 phba->sli4_hba.max_cfg_param.xri_used--; 13668 } 13669 } 13670 13671 /** 13672 * lpfc_sli4_free_xri - Release an xri for reuse. 13673 * @phba: pointer to lpfc hba data structure. 13674 * 13675 * This routine is invoked to release an xri to the pool of 13676 * available rpis maintained by the driver. 13677 **/ 13678 void 13679 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 13680 { 13681 spin_lock_irq(&phba->hbalock); 13682 __lpfc_sli4_free_xri(phba, xri); 13683 spin_unlock_irq(&phba->hbalock); 13684 } 13685 13686 /** 13687 * lpfc_sli4_next_xritag - Get an xritag for the io 13688 * @phba: Pointer to HBA context object. 13689 * 13690 * This function gets an xritag for the iocb. If there is no unused xritag 13691 * it will return 0xffff. 13692 * The function returns the allocated xritag if successful, else returns zero. 13693 * Zero is not a valid xritag. 13694 * The caller is not required to hold any lock. 13695 **/ 13696 uint16_t 13697 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 13698 { 13699 uint16_t xri_index; 13700 13701 xri_index = lpfc_sli4_alloc_xri(phba); 13702 if (xri_index == NO_XRI) 13703 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13704 "2004 Failed to allocate XRI.last XRITAG is %d" 13705 " Max XRI is %d, Used XRI is %d\n", 13706 xri_index, 13707 phba->sli4_hba.max_cfg_param.max_xri, 13708 phba->sli4_hba.max_cfg_param.xri_used); 13709 return xri_index; 13710 } 13711 13712 /** 13713 * lpfc_sli4_post_els_sgl_list - post a block of ELS sgls to the port. 13714 * @phba: pointer to lpfc hba data structure. 13715 * @post_sgl_list: pointer to els sgl entry list. 13716 * @count: number of els sgl entries on the list. 13717 * 13718 * This routine is invoked to post a block of driver's sgl pages to the 13719 * HBA using non-embedded mailbox command. No Lock is held. This routine 13720 * is only called when the driver is loading and after all IO has been 13721 * stopped. 13722 **/ 13723 static int 13724 lpfc_sli4_post_els_sgl_list(struct lpfc_hba *phba, 13725 struct list_head *post_sgl_list, 13726 int post_cnt) 13727 { 13728 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 13729 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 13730 struct sgl_page_pairs *sgl_pg_pairs; 13731 void *viraddr; 13732 LPFC_MBOXQ_t *mbox; 13733 uint32_t reqlen, alloclen, pg_pairs; 13734 uint32_t mbox_tmo; 13735 uint16_t xritag_start = 0; 13736 int rc = 0; 13737 uint32_t shdr_status, shdr_add_status; 13738 union lpfc_sli4_cfg_shdr *shdr; 13739 13740 reqlen = phba->sli4_hba.els_xri_cnt * sizeof(struct sgl_page_pairs) + 13741 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 13742 if (reqlen > SLI4_PAGE_SIZE) { 13743 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 13744 "2559 Block sgl registration required DMA " 13745 "size (%d) great than a page\n", reqlen); 13746 return -ENOMEM; 13747 } 13748 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13749 if (!mbox) 13750 return -ENOMEM; 13751 13752 /* Allocate DMA memory and set up the non-embedded mailbox command */ 13753 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 13754 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 13755 LPFC_SLI4_MBX_NEMBED); 13756 13757 if (alloclen < reqlen) { 13758 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13759 "0285 Allocated DMA memory size (%d) is " 13760 "less than the requested DMA memory " 13761 "size (%d)\n", alloclen, reqlen); 13762 lpfc_sli4_mbox_cmd_free(phba, mbox); 13763 return -ENOMEM; 13764 } 13765 /* Set up the SGL pages in the non-embedded DMA pages */ 13766 viraddr = mbox->sge_array->addr[0]; 13767 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 13768 sgl_pg_pairs = &sgl->sgl_pg_pairs; 13769 13770 pg_pairs = 0; 13771 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 13772 /* Set up the sge entry */ 13773 sgl_pg_pairs->sgl_pg0_addr_lo = 13774 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 13775 sgl_pg_pairs->sgl_pg0_addr_hi = 13776 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 13777 sgl_pg_pairs->sgl_pg1_addr_lo = 13778 cpu_to_le32(putPaddrLow(0)); 13779 sgl_pg_pairs->sgl_pg1_addr_hi = 13780 cpu_to_le32(putPaddrHigh(0)); 13781 13782 /* Keep the first xritag on the list */ 13783 if (pg_pairs == 0) 13784 xritag_start = sglq_entry->sli4_xritag; 13785 sgl_pg_pairs++; 13786 pg_pairs++; 13787 } 13788 13789 /* Complete initialization and perform endian conversion. */ 13790 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 13791 bf_set(lpfc_post_sgl_pages_xricnt, sgl, phba->sli4_hba.els_xri_cnt); 13792 sgl->word0 = cpu_to_le32(sgl->word0); 13793 if (!phba->sli4_hba.intr_enable) 13794 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13795 else { 13796 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 13797 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 13798 } 13799 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 13800 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13801 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13802 if (rc != MBX_TIMEOUT) 13803 lpfc_sli4_mbox_cmd_free(phba, mbox); 13804 if (shdr_status || shdr_add_status || rc) { 13805 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13806 "2513 POST_SGL_BLOCK mailbox command failed " 13807 "status x%x add_status x%x mbx status x%x\n", 13808 shdr_status, shdr_add_status, rc); 13809 rc = -ENXIO; 13810 } 13811 return rc; 13812 } 13813 13814 /** 13815 * lpfc_sli4_post_scsi_sgl_block - post a block of scsi sgl list to firmware 13816 * @phba: pointer to lpfc hba data structure. 13817 * @sblist: pointer to scsi buffer list. 13818 * @count: number of scsi buffers on the list. 13819 * 13820 * This routine is invoked to post a block of @count scsi sgl pages from a 13821 * SCSI buffer list @sblist to the HBA using non-embedded mailbox command. 13822 * No Lock is held. 13823 * 13824 **/ 13825 int 13826 lpfc_sli4_post_scsi_sgl_block(struct lpfc_hba *phba, 13827 struct list_head *sblist, 13828 int count) 13829 { 13830 struct lpfc_scsi_buf *psb; 13831 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 13832 struct sgl_page_pairs *sgl_pg_pairs; 13833 void *viraddr; 13834 LPFC_MBOXQ_t *mbox; 13835 uint32_t reqlen, alloclen, pg_pairs; 13836 uint32_t mbox_tmo; 13837 uint16_t xritag_start = 0; 13838 int rc = 0; 13839 uint32_t shdr_status, shdr_add_status; 13840 dma_addr_t pdma_phys_bpl1; 13841 union lpfc_sli4_cfg_shdr *shdr; 13842 13843 /* Calculate the requested length of the dma memory */ 13844 reqlen = count * sizeof(struct sgl_page_pairs) + 13845 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 13846 if (reqlen > SLI4_PAGE_SIZE) { 13847 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 13848 "0217 Block sgl registration required DMA " 13849 "size (%d) great than a page\n", reqlen); 13850 return -ENOMEM; 13851 } 13852 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13853 if (!mbox) { 13854 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13855 "0283 Failed to allocate mbox cmd memory\n"); 13856 return -ENOMEM; 13857 } 13858 13859 /* Allocate DMA memory and set up the non-embedded mailbox command */ 13860 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 13861 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 13862 LPFC_SLI4_MBX_NEMBED); 13863 13864 if (alloclen < reqlen) { 13865 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13866 "2561 Allocated DMA memory size (%d) is " 13867 "less than the requested DMA memory " 13868 "size (%d)\n", alloclen, reqlen); 13869 lpfc_sli4_mbox_cmd_free(phba, mbox); 13870 return -ENOMEM; 13871 } 13872 13873 /* Get the first SGE entry from the non-embedded DMA memory */ 13874 viraddr = mbox->sge_array->addr[0]; 13875 13876 /* Set up the SGL pages in the non-embedded DMA pages */ 13877 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 13878 sgl_pg_pairs = &sgl->sgl_pg_pairs; 13879 13880 pg_pairs = 0; 13881 list_for_each_entry(psb, sblist, list) { 13882 /* Set up the sge entry */ 13883 sgl_pg_pairs->sgl_pg0_addr_lo = 13884 cpu_to_le32(putPaddrLow(psb->dma_phys_bpl)); 13885 sgl_pg_pairs->sgl_pg0_addr_hi = 13886 cpu_to_le32(putPaddrHigh(psb->dma_phys_bpl)); 13887 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 13888 pdma_phys_bpl1 = psb->dma_phys_bpl + SGL_PAGE_SIZE; 13889 else 13890 pdma_phys_bpl1 = 0; 13891 sgl_pg_pairs->sgl_pg1_addr_lo = 13892 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 13893 sgl_pg_pairs->sgl_pg1_addr_hi = 13894 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 13895 /* Keep the first xritag on the list */ 13896 if (pg_pairs == 0) 13897 xritag_start = psb->cur_iocbq.sli4_xritag; 13898 sgl_pg_pairs++; 13899 pg_pairs++; 13900 } 13901 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 13902 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 13903 /* Perform endian conversion if necessary */ 13904 sgl->word0 = cpu_to_le32(sgl->word0); 13905 13906 if (!phba->sli4_hba.intr_enable) 13907 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13908 else { 13909 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 13910 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 13911 } 13912 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 13913 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13914 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13915 if (rc != MBX_TIMEOUT) 13916 lpfc_sli4_mbox_cmd_free(phba, mbox); 13917 if (shdr_status || shdr_add_status || rc) { 13918 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13919 "2564 POST_SGL_BLOCK mailbox command failed " 13920 "status x%x add_status x%x mbx status x%x\n", 13921 shdr_status, shdr_add_status, rc); 13922 rc = -ENXIO; 13923 } 13924 return rc; 13925 } 13926 13927 /** 13928 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 13929 * @phba: pointer to lpfc_hba struct that the frame was received on 13930 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 13931 * 13932 * This function checks the fields in the @fc_hdr to see if the FC frame is a 13933 * valid type of frame that the LPFC driver will handle. This function will 13934 * return a zero if the frame is a valid frame or a non zero value when the 13935 * frame does not pass the check. 13936 **/ 13937 static int 13938 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 13939 { 13940 /* make rctl_names static to save stack space */ 13941 static char *rctl_names[] = FC_RCTL_NAMES_INIT; 13942 char *type_names[] = FC_TYPE_NAMES_INIT; 13943 struct fc_vft_header *fc_vft_hdr; 13944 uint32_t *header = (uint32_t *) fc_hdr; 13945 13946 switch (fc_hdr->fh_r_ctl) { 13947 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 13948 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 13949 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 13950 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 13951 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 13952 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 13953 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 13954 case FC_RCTL_DD_CMD_STATUS: /* command status */ 13955 case FC_RCTL_ELS_REQ: /* extended link services request */ 13956 case FC_RCTL_ELS_REP: /* extended link services reply */ 13957 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 13958 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 13959 case FC_RCTL_BA_NOP: /* basic link service NOP */ 13960 case FC_RCTL_BA_ABTS: /* basic link service abort */ 13961 case FC_RCTL_BA_RMC: /* remove connection */ 13962 case FC_RCTL_BA_ACC: /* basic accept */ 13963 case FC_RCTL_BA_RJT: /* basic reject */ 13964 case FC_RCTL_BA_PRMT: 13965 case FC_RCTL_ACK_1: /* acknowledge_1 */ 13966 case FC_RCTL_ACK_0: /* acknowledge_0 */ 13967 case FC_RCTL_P_RJT: /* port reject */ 13968 case FC_RCTL_F_RJT: /* fabric reject */ 13969 case FC_RCTL_P_BSY: /* port busy */ 13970 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 13971 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 13972 case FC_RCTL_LCR: /* link credit reset */ 13973 case FC_RCTL_END: /* end */ 13974 break; 13975 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 13976 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 13977 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 13978 return lpfc_fc_frame_check(phba, fc_hdr); 13979 default: 13980 goto drop; 13981 } 13982 switch (fc_hdr->fh_type) { 13983 case FC_TYPE_BLS: 13984 case FC_TYPE_ELS: 13985 case FC_TYPE_FCP: 13986 case FC_TYPE_CT: 13987 break; 13988 case FC_TYPE_IP: 13989 case FC_TYPE_ILS: 13990 default: 13991 goto drop; 13992 } 13993 13994 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 13995 "2538 Received frame rctl:%s (x%x), type:%s (x%x), " 13996 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 13997 rctl_names[fc_hdr->fh_r_ctl], fc_hdr->fh_r_ctl, 13998 type_names[fc_hdr->fh_type], fc_hdr->fh_type, 13999 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 14000 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 14001 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 14002 be32_to_cpu(header[6])); 14003 return 0; 14004 drop: 14005 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 14006 "2539 Dropped frame rctl:%s type:%s\n", 14007 rctl_names[fc_hdr->fh_r_ctl], 14008 type_names[fc_hdr->fh_type]); 14009 return 1; 14010 } 14011 14012 /** 14013 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 14014 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 14015 * 14016 * This function processes the FC header to retrieve the VFI from the VF 14017 * header, if one exists. This function will return the VFI if one exists 14018 * or 0 if no VSAN Header exists. 14019 **/ 14020 static uint32_t 14021 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 14022 { 14023 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 14024 14025 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 14026 return 0; 14027 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 14028 } 14029 14030 /** 14031 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 14032 * @phba: Pointer to the HBA structure to search for the vport on 14033 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 14034 * @fcfi: The FC Fabric ID that the frame came from 14035 * 14036 * This function searches the @phba for a vport that matches the content of the 14037 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 14038 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 14039 * returns the matching vport pointer or NULL if unable to match frame to a 14040 * vport. 14041 **/ 14042 static struct lpfc_vport * 14043 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 14044 uint16_t fcfi) 14045 { 14046 struct lpfc_vport **vports; 14047 struct lpfc_vport *vport = NULL; 14048 int i; 14049 uint32_t did = (fc_hdr->fh_d_id[0] << 16 | 14050 fc_hdr->fh_d_id[1] << 8 | 14051 fc_hdr->fh_d_id[2]); 14052 14053 if (did == Fabric_DID) 14054 return phba->pport; 14055 if ((phba->pport->fc_flag & FC_PT2PT) && 14056 !(phba->link_state == LPFC_HBA_READY)) 14057 return phba->pport; 14058 14059 vports = lpfc_create_vport_work_array(phba); 14060 if (vports != NULL) 14061 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 14062 if (phba->fcf.fcfi == fcfi && 14063 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 14064 vports[i]->fc_myDID == did) { 14065 vport = vports[i]; 14066 break; 14067 } 14068 } 14069 lpfc_destroy_vport_work_array(phba, vports); 14070 return vport; 14071 } 14072 14073 /** 14074 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 14075 * @vport: The vport to work on. 14076 * 14077 * This function updates the receive sequence time stamp for this vport. The 14078 * receive sequence time stamp indicates the time that the last frame of the 14079 * the sequence that has been idle for the longest amount of time was received. 14080 * the driver uses this time stamp to indicate if any received sequences have 14081 * timed out. 14082 **/ 14083 void 14084 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 14085 { 14086 struct lpfc_dmabuf *h_buf; 14087 struct hbq_dmabuf *dmabuf = NULL; 14088 14089 /* get the oldest sequence on the rcv list */ 14090 h_buf = list_get_first(&vport->rcv_buffer_list, 14091 struct lpfc_dmabuf, list); 14092 if (!h_buf) 14093 return; 14094 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 14095 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 14096 } 14097 14098 /** 14099 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 14100 * @vport: The vport that the received sequences were sent to. 14101 * 14102 * This function cleans up all outstanding received sequences. This is called 14103 * by the driver when a link event or user action invalidates all the received 14104 * sequences. 14105 **/ 14106 void 14107 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 14108 { 14109 struct lpfc_dmabuf *h_buf, *hnext; 14110 struct lpfc_dmabuf *d_buf, *dnext; 14111 struct hbq_dmabuf *dmabuf = NULL; 14112 14113 /* start with the oldest sequence on the rcv list */ 14114 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 14115 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 14116 list_del_init(&dmabuf->hbuf.list); 14117 list_for_each_entry_safe(d_buf, dnext, 14118 &dmabuf->dbuf.list, list) { 14119 list_del_init(&d_buf->list); 14120 lpfc_in_buf_free(vport->phba, d_buf); 14121 } 14122 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 14123 } 14124 } 14125 14126 /** 14127 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 14128 * @vport: The vport that the received sequences were sent to. 14129 * 14130 * This function determines whether any received sequences have timed out by 14131 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 14132 * indicates that there is at least one timed out sequence this routine will 14133 * go through the received sequences one at a time from most inactive to most 14134 * active to determine which ones need to be cleaned up. Once it has determined 14135 * that a sequence needs to be cleaned up it will simply free up the resources 14136 * without sending an abort. 14137 **/ 14138 void 14139 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 14140 { 14141 struct lpfc_dmabuf *h_buf, *hnext; 14142 struct lpfc_dmabuf *d_buf, *dnext; 14143 struct hbq_dmabuf *dmabuf = NULL; 14144 unsigned long timeout; 14145 int abort_count = 0; 14146 14147 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 14148 vport->rcv_buffer_time_stamp); 14149 if (list_empty(&vport->rcv_buffer_list) || 14150 time_before(jiffies, timeout)) 14151 return; 14152 /* start with the oldest sequence on the rcv list */ 14153 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 14154 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 14155 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 14156 dmabuf->time_stamp); 14157 if (time_before(jiffies, timeout)) 14158 break; 14159 abort_count++; 14160 list_del_init(&dmabuf->hbuf.list); 14161 list_for_each_entry_safe(d_buf, dnext, 14162 &dmabuf->dbuf.list, list) { 14163 list_del_init(&d_buf->list); 14164 lpfc_in_buf_free(vport->phba, d_buf); 14165 } 14166 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 14167 } 14168 if (abort_count) 14169 lpfc_update_rcv_time_stamp(vport); 14170 } 14171 14172 /** 14173 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 14174 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 14175 * 14176 * This function searches through the existing incomplete sequences that have 14177 * been sent to this @vport. If the frame matches one of the incomplete 14178 * sequences then the dbuf in the @dmabuf is added to the list of frames that 14179 * make up that sequence. If no sequence is found that matches this frame then 14180 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 14181 * This function returns a pointer to the first dmabuf in the sequence list that 14182 * the frame was linked to. 14183 **/ 14184 static struct hbq_dmabuf * 14185 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 14186 { 14187 struct fc_frame_header *new_hdr; 14188 struct fc_frame_header *temp_hdr; 14189 struct lpfc_dmabuf *d_buf; 14190 struct lpfc_dmabuf *h_buf; 14191 struct hbq_dmabuf *seq_dmabuf = NULL; 14192 struct hbq_dmabuf *temp_dmabuf = NULL; 14193 14194 INIT_LIST_HEAD(&dmabuf->dbuf.list); 14195 dmabuf->time_stamp = jiffies; 14196 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 14197 /* Use the hdr_buf to find the sequence that this frame belongs to */ 14198 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 14199 temp_hdr = (struct fc_frame_header *)h_buf->virt; 14200 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 14201 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 14202 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 14203 continue; 14204 /* found a pending sequence that matches this frame */ 14205 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 14206 break; 14207 } 14208 if (!seq_dmabuf) { 14209 /* 14210 * This indicates first frame received for this sequence. 14211 * Queue the buffer on the vport's rcv_buffer_list. 14212 */ 14213 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 14214 lpfc_update_rcv_time_stamp(vport); 14215 return dmabuf; 14216 } 14217 temp_hdr = seq_dmabuf->hbuf.virt; 14218 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 14219 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 14220 list_del_init(&seq_dmabuf->hbuf.list); 14221 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 14222 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 14223 lpfc_update_rcv_time_stamp(vport); 14224 return dmabuf; 14225 } 14226 /* move this sequence to the tail to indicate a young sequence */ 14227 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 14228 seq_dmabuf->time_stamp = jiffies; 14229 lpfc_update_rcv_time_stamp(vport); 14230 if (list_empty(&seq_dmabuf->dbuf.list)) { 14231 temp_hdr = dmabuf->hbuf.virt; 14232 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 14233 return seq_dmabuf; 14234 } 14235 /* find the correct place in the sequence to insert this frame */ 14236 list_for_each_entry_reverse(d_buf, &seq_dmabuf->dbuf.list, list) { 14237 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 14238 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 14239 /* 14240 * If the frame's sequence count is greater than the frame on 14241 * the list then insert the frame right after this frame 14242 */ 14243 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 14244 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 14245 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 14246 return seq_dmabuf; 14247 } 14248 } 14249 return NULL; 14250 } 14251 14252 /** 14253 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 14254 * @vport: pointer to a vitural port 14255 * @dmabuf: pointer to a dmabuf that describes the FC sequence 14256 * 14257 * This function tries to abort from the partially assembed sequence, described 14258 * by the information from basic abbort @dmabuf. It checks to see whether such 14259 * partially assembled sequence held by the driver. If so, it shall free up all 14260 * the frames from the partially assembled sequence. 14261 * 14262 * Return 14263 * true -- if there is matching partially assembled sequence present and all 14264 * the frames freed with the sequence; 14265 * false -- if there is no matching partially assembled sequence present so 14266 * nothing got aborted in the lower layer driver 14267 **/ 14268 static bool 14269 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 14270 struct hbq_dmabuf *dmabuf) 14271 { 14272 struct fc_frame_header *new_hdr; 14273 struct fc_frame_header *temp_hdr; 14274 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 14275 struct hbq_dmabuf *seq_dmabuf = NULL; 14276 14277 /* Use the hdr_buf to find the sequence that matches this frame */ 14278 INIT_LIST_HEAD(&dmabuf->dbuf.list); 14279 INIT_LIST_HEAD(&dmabuf->hbuf.list); 14280 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 14281 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 14282 temp_hdr = (struct fc_frame_header *)h_buf->virt; 14283 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 14284 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 14285 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 14286 continue; 14287 /* found a pending sequence that matches this frame */ 14288 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 14289 break; 14290 } 14291 14292 /* Free up all the frames from the partially assembled sequence */ 14293 if (seq_dmabuf) { 14294 list_for_each_entry_safe(d_buf, n_buf, 14295 &seq_dmabuf->dbuf.list, list) { 14296 list_del_init(&d_buf->list); 14297 lpfc_in_buf_free(vport->phba, d_buf); 14298 } 14299 return true; 14300 } 14301 return false; 14302 } 14303 14304 /** 14305 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 14306 * @vport: pointer to a vitural port 14307 * @dmabuf: pointer to a dmabuf that describes the FC sequence 14308 * 14309 * This function tries to abort from the assembed sequence from upper level 14310 * protocol, described by the information from basic abbort @dmabuf. It 14311 * checks to see whether such pending context exists at upper level protocol. 14312 * If so, it shall clean up the pending context. 14313 * 14314 * Return 14315 * true -- if there is matching pending context of the sequence cleaned 14316 * at ulp; 14317 * false -- if there is no matching pending context of the sequence present 14318 * at ulp. 14319 **/ 14320 static bool 14321 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 14322 { 14323 struct lpfc_hba *phba = vport->phba; 14324 int handled; 14325 14326 /* Accepting abort at ulp with SLI4 only */ 14327 if (phba->sli_rev < LPFC_SLI_REV4) 14328 return false; 14329 14330 /* Register all caring upper level protocols to attend abort */ 14331 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 14332 if (handled) 14333 return true; 14334 14335 return false; 14336 } 14337 14338 /** 14339 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 14340 * @phba: Pointer to HBA context object. 14341 * @cmd_iocbq: pointer to the command iocbq structure. 14342 * @rsp_iocbq: pointer to the response iocbq structure. 14343 * 14344 * This function handles the sequence abort response iocb command complete 14345 * event. It properly releases the memory allocated to the sequence abort 14346 * accept iocb. 14347 **/ 14348 static void 14349 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 14350 struct lpfc_iocbq *cmd_iocbq, 14351 struct lpfc_iocbq *rsp_iocbq) 14352 { 14353 struct lpfc_nodelist *ndlp; 14354 14355 if (cmd_iocbq) { 14356 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 14357 lpfc_nlp_put(ndlp); 14358 lpfc_nlp_not_used(ndlp); 14359 lpfc_sli_release_iocbq(phba, cmd_iocbq); 14360 } 14361 14362 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 14363 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 14364 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14365 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 14366 rsp_iocbq->iocb.ulpStatus, 14367 rsp_iocbq->iocb.un.ulpWord[4]); 14368 } 14369 14370 /** 14371 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 14372 * @phba: Pointer to HBA context object. 14373 * @xri: xri id in transaction. 14374 * 14375 * This function validates the xri maps to the known range of XRIs allocated an 14376 * used by the driver. 14377 **/ 14378 uint16_t 14379 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 14380 uint16_t xri) 14381 { 14382 int i; 14383 14384 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 14385 if (xri == phba->sli4_hba.xri_ids[i]) 14386 return i; 14387 } 14388 return NO_XRI; 14389 } 14390 14391 /** 14392 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 14393 * @phba: Pointer to HBA context object. 14394 * @fc_hdr: pointer to a FC frame header. 14395 * 14396 * This function sends a basic response to a previous unsol sequence abort 14397 * event after aborting the sequence handling. 14398 **/ 14399 static void 14400 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 14401 struct fc_frame_header *fc_hdr, bool aborted) 14402 { 14403 struct lpfc_hba *phba = vport->phba; 14404 struct lpfc_iocbq *ctiocb = NULL; 14405 struct lpfc_nodelist *ndlp; 14406 uint16_t oxid, rxid, xri, lxri; 14407 uint32_t sid, fctl; 14408 IOCB_t *icmd; 14409 int rc; 14410 14411 if (!lpfc_is_link_up(phba)) 14412 return; 14413 14414 sid = sli4_sid_from_fc_hdr(fc_hdr); 14415 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 14416 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 14417 14418 ndlp = lpfc_findnode_did(vport, sid); 14419 if (!ndlp) { 14420 ndlp = mempool_alloc(phba->nlp_mem_pool, GFP_KERNEL); 14421 if (!ndlp) { 14422 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 14423 "1268 Failed to allocate ndlp for " 14424 "oxid:x%x SID:x%x\n", oxid, sid); 14425 return; 14426 } 14427 lpfc_nlp_init(vport, ndlp, sid); 14428 /* Put ndlp onto pport node list */ 14429 lpfc_enqueue_node(vport, ndlp); 14430 } else if (!NLP_CHK_NODE_ACT(ndlp)) { 14431 /* re-setup ndlp without removing from node list */ 14432 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE); 14433 if (!ndlp) { 14434 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 14435 "3275 Failed to active ndlp found " 14436 "for oxid:x%x SID:x%x\n", oxid, sid); 14437 return; 14438 } 14439 } 14440 14441 /* Allocate buffer for rsp iocb */ 14442 ctiocb = lpfc_sli_get_iocbq(phba); 14443 if (!ctiocb) 14444 return; 14445 14446 /* Extract the F_CTL field from FC_HDR */ 14447 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 14448 14449 icmd = &ctiocb->iocb; 14450 icmd->un.xseq64.bdl.bdeSize = 0; 14451 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 14452 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 14453 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 14454 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 14455 14456 /* Fill in the rest of iocb fields */ 14457 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 14458 icmd->ulpBdeCount = 0; 14459 icmd->ulpLe = 1; 14460 icmd->ulpClass = CLASS3; 14461 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 14462 ctiocb->context1 = lpfc_nlp_get(ndlp); 14463 14464 ctiocb->iocb_cmpl = NULL; 14465 ctiocb->vport = phba->pport; 14466 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 14467 ctiocb->sli4_lxritag = NO_XRI; 14468 ctiocb->sli4_xritag = NO_XRI; 14469 14470 if (fctl & FC_FC_EX_CTX) 14471 /* Exchange responder sent the abort so we 14472 * own the oxid. 14473 */ 14474 xri = oxid; 14475 else 14476 xri = rxid; 14477 lxri = lpfc_sli4_xri_inrange(phba, xri); 14478 if (lxri != NO_XRI) 14479 lpfc_set_rrq_active(phba, ndlp, lxri, 14480 (xri == oxid) ? rxid : oxid, 0); 14481 /* For BA_ABTS from exchange responder, if the logical xri with 14482 * the oxid maps to the FCP XRI range, the port no longer has 14483 * that exchange context, send a BLS_RJT. Override the IOCB for 14484 * a BA_RJT. 14485 */ 14486 if ((fctl & FC_FC_EX_CTX) && 14487 (lxri > lpfc_sli4_get_els_iocb_cnt(phba))) { 14488 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 14489 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 14490 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 14491 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 14492 } 14493 14494 /* If BA_ABTS failed to abort a partially assembled receive sequence, 14495 * the driver no longer has that exchange, send a BLS_RJT. Override 14496 * the IOCB for a BA_RJT. 14497 */ 14498 if (aborted == false) { 14499 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 14500 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 14501 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 14502 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 14503 } 14504 14505 if (fctl & FC_FC_EX_CTX) { 14506 /* ABTS sent by responder to CT exchange, construction 14507 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 14508 * field and RX_ID from ABTS for RX_ID field. 14509 */ 14510 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 14511 } else { 14512 /* ABTS sent by initiator to CT exchange, construction 14513 * of BA_ACC will need to allocate a new XRI as for the 14514 * XRI_TAG field. 14515 */ 14516 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 14517 } 14518 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 14519 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 14520 14521 /* Xmit CT abts response on exchange <xid> */ 14522 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 14523 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 14524 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 14525 14526 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 14527 if (rc == IOCB_ERROR) { 14528 lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS, 14529 "2925 Failed to issue CT ABTS RSP x%x on " 14530 "xri x%x, Data x%x\n", 14531 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 14532 phba->link_state); 14533 lpfc_nlp_put(ndlp); 14534 ctiocb->context1 = NULL; 14535 lpfc_sli_release_iocbq(phba, ctiocb); 14536 } 14537 } 14538 14539 /** 14540 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 14541 * @vport: Pointer to the vport on which this sequence was received 14542 * @dmabuf: pointer to a dmabuf that describes the FC sequence 14543 * 14544 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 14545 * receive sequence is only partially assembed by the driver, it shall abort 14546 * the partially assembled frames for the sequence. Otherwise, if the 14547 * unsolicited receive sequence has been completely assembled and passed to 14548 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the 14549 * unsolicited sequence has been aborted. After that, it will issue a basic 14550 * accept to accept the abort. 14551 **/ 14552 void 14553 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 14554 struct hbq_dmabuf *dmabuf) 14555 { 14556 struct lpfc_hba *phba = vport->phba; 14557 struct fc_frame_header fc_hdr; 14558 uint32_t fctl; 14559 bool aborted; 14560 14561 /* Make a copy of fc_hdr before the dmabuf being released */ 14562 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 14563 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 14564 14565 if (fctl & FC_FC_EX_CTX) { 14566 /* ABTS by responder to exchange, no cleanup needed */ 14567 aborted = true; 14568 } else { 14569 /* ABTS by initiator to exchange, need to do cleanup */ 14570 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 14571 if (aborted == false) 14572 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 14573 } 14574 lpfc_in_buf_free(phba, &dmabuf->dbuf); 14575 14576 /* Respond with BA_ACC or BA_RJT accordingly */ 14577 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 14578 } 14579 14580 /** 14581 * lpfc_seq_complete - Indicates if a sequence is complete 14582 * @dmabuf: pointer to a dmabuf that describes the FC sequence 14583 * 14584 * This function checks the sequence, starting with the frame described by 14585 * @dmabuf, to see if all the frames associated with this sequence are present. 14586 * the frames associated with this sequence are linked to the @dmabuf using the 14587 * dbuf list. This function looks for two major things. 1) That the first frame 14588 * has a sequence count of zero. 2) There is a frame with last frame of sequence 14589 * set. 3) That there are no holes in the sequence count. The function will 14590 * return 1 when the sequence is complete, otherwise it will return 0. 14591 **/ 14592 static int 14593 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 14594 { 14595 struct fc_frame_header *hdr; 14596 struct lpfc_dmabuf *d_buf; 14597 struct hbq_dmabuf *seq_dmabuf; 14598 uint32_t fctl; 14599 int seq_count = 0; 14600 14601 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 14602 /* make sure first fame of sequence has a sequence count of zero */ 14603 if (hdr->fh_seq_cnt != seq_count) 14604 return 0; 14605 fctl = (hdr->fh_f_ctl[0] << 16 | 14606 hdr->fh_f_ctl[1] << 8 | 14607 hdr->fh_f_ctl[2]); 14608 /* If last frame of sequence we can return success. */ 14609 if (fctl & FC_FC_END_SEQ) 14610 return 1; 14611 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 14612 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 14613 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 14614 /* If there is a hole in the sequence count then fail. */ 14615 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 14616 return 0; 14617 fctl = (hdr->fh_f_ctl[0] << 16 | 14618 hdr->fh_f_ctl[1] << 8 | 14619 hdr->fh_f_ctl[2]); 14620 /* If last frame of sequence we can return success. */ 14621 if (fctl & FC_FC_END_SEQ) 14622 return 1; 14623 } 14624 return 0; 14625 } 14626 14627 /** 14628 * lpfc_prep_seq - Prep sequence for ULP processing 14629 * @vport: Pointer to the vport on which this sequence was received 14630 * @dmabuf: pointer to a dmabuf that describes the FC sequence 14631 * 14632 * This function takes a sequence, described by a list of frames, and creates 14633 * a list of iocbq structures to describe the sequence. This iocbq list will be 14634 * used to issue to the generic unsolicited sequence handler. This routine 14635 * returns a pointer to the first iocbq in the list. If the function is unable 14636 * to allocate an iocbq then it throw out the received frames that were not 14637 * able to be described and return a pointer to the first iocbq. If unable to 14638 * allocate any iocbqs (including the first) this function will return NULL. 14639 **/ 14640 static struct lpfc_iocbq * 14641 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 14642 { 14643 struct hbq_dmabuf *hbq_buf; 14644 struct lpfc_dmabuf *d_buf, *n_buf; 14645 struct lpfc_iocbq *first_iocbq, *iocbq; 14646 struct fc_frame_header *fc_hdr; 14647 uint32_t sid; 14648 uint32_t len, tot_len; 14649 struct ulp_bde64 *pbde; 14650 14651 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 14652 /* remove from receive buffer list */ 14653 list_del_init(&seq_dmabuf->hbuf.list); 14654 lpfc_update_rcv_time_stamp(vport); 14655 /* get the Remote Port's SID */ 14656 sid = sli4_sid_from_fc_hdr(fc_hdr); 14657 tot_len = 0; 14658 /* Get an iocbq struct to fill in. */ 14659 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 14660 if (first_iocbq) { 14661 /* Initialize the first IOCB. */ 14662 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 14663 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 14664 14665 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 14666 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 14667 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 14668 first_iocbq->iocb.un.rcvels.parmRo = 14669 sli4_did_from_fc_hdr(fc_hdr); 14670 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 14671 } else 14672 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 14673 first_iocbq->iocb.ulpContext = NO_XRI; 14674 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 14675 be16_to_cpu(fc_hdr->fh_ox_id); 14676 /* iocbq is prepped for internal consumption. Physical vpi. */ 14677 first_iocbq->iocb.unsli3.rcvsli3.vpi = 14678 vport->phba->vpi_ids[vport->vpi]; 14679 /* put the first buffer into the first IOCBq */ 14680 first_iocbq->context2 = &seq_dmabuf->dbuf; 14681 first_iocbq->context3 = NULL; 14682 first_iocbq->iocb.ulpBdeCount = 1; 14683 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 14684 LPFC_DATA_BUF_SIZE; 14685 first_iocbq->iocb.un.rcvels.remoteID = sid; 14686 tot_len = bf_get(lpfc_rcqe_length, 14687 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 14688 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 14689 } 14690 iocbq = first_iocbq; 14691 /* 14692 * Each IOCBq can have two Buffers assigned, so go through the list 14693 * of buffers for this sequence and save two buffers in each IOCBq 14694 */ 14695 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 14696 if (!iocbq) { 14697 lpfc_in_buf_free(vport->phba, d_buf); 14698 continue; 14699 } 14700 if (!iocbq->context3) { 14701 iocbq->context3 = d_buf; 14702 iocbq->iocb.ulpBdeCount++; 14703 pbde = (struct ulp_bde64 *) 14704 &iocbq->iocb.unsli3.sli3Words[4]; 14705 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 14706 14707 /* We need to get the size out of the right CQE */ 14708 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 14709 len = bf_get(lpfc_rcqe_length, 14710 &hbq_buf->cq_event.cqe.rcqe_cmpl); 14711 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 14712 tot_len += len; 14713 } else { 14714 iocbq = lpfc_sli_get_iocbq(vport->phba); 14715 if (!iocbq) { 14716 if (first_iocbq) { 14717 first_iocbq->iocb.ulpStatus = 14718 IOSTAT_FCP_RSP_ERROR; 14719 first_iocbq->iocb.un.ulpWord[4] = 14720 IOERR_NO_RESOURCES; 14721 } 14722 lpfc_in_buf_free(vport->phba, d_buf); 14723 continue; 14724 } 14725 iocbq->context2 = d_buf; 14726 iocbq->context3 = NULL; 14727 iocbq->iocb.ulpBdeCount = 1; 14728 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 14729 LPFC_DATA_BUF_SIZE; 14730 14731 /* We need to get the size out of the right CQE */ 14732 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 14733 len = bf_get(lpfc_rcqe_length, 14734 &hbq_buf->cq_event.cqe.rcqe_cmpl); 14735 tot_len += len; 14736 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 14737 14738 iocbq->iocb.un.rcvels.remoteID = sid; 14739 list_add_tail(&iocbq->list, &first_iocbq->list); 14740 } 14741 } 14742 return first_iocbq; 14743 } 14744 14745 static void 14746 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 14747 struct hbq_dmabuf *seq_dmabuf) 14748 { 14749 struct fc_frame_header *fc_hdr; 14750 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 14751 struct lpfc_hba *phba = vport->phba; 14752 14753 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 14754 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 14755 if (!iocbq) { 14756 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14757 "2707 Ring %d handler: Failed to allocate " 14758 "iocb Rctl x%x Type x%x received\n", 14759 LPFC_ELS_RING, 14760 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 14761 return; 14762 } 14763 if (!lpfc_complete_unsol_iocb(phba, 14764 &phba->sli.ring[LPFC_ELS_RING], 14765 iocbq, fc_hdr->fh_r_ctl, 14766 fc_hdr->fh_type)) 14767 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14768 "2540 Ring %d handler: unexpected Rctl " 14769 "x%x Type x%x received\n", 14770 LPFC_ELS_RING, 14771 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 14772 14773 /* Free iocb created in lpfc_prep_seq */ 14774 list_for_each_entry_safe(curr_iocb, next_iocb, 14775 &iocbq->list, list) { 14776 list_del_init(&curr_iocb->list); 14777 lpfc_sli_release_iocbq(phba, curr_iocb); 14778 } 14779 lpfc_sli_release_iocbq(phba, iocbq); 14780 } 14781 14782 /** 14783 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 14784 * @phba: Pointer to HBA context object. 14785 * 14786 * This function is called with no lock held. This function processes all 14787 * the received buffers and gives it to upper layers when a received buffer 14788 * indicates that it is the final frame in the sequence. The interrupt 14789 * service routine processes received buffers at interrupt contexts and adds 14790 * received dma buffers to the rb_pend_list queue and signals the worker thread. 14791 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 14792 * appropriate receive function when the final frame in a sequence is received. 14793 **/ 14794 void 14795 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 14796 struct hbq_dmabuf *dmabuf) 14797 { 14798 struct hbq_dmabuf *seq_dmabuf; 14799 struct fc_frame_header *fc_hdr; 14800 struct lpfc_vport *vport; 14801 uint32_t fcfi; 14802 uint32_t did; 14803 14804 /* Process each received buffer */ 14805 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 14806 /* check to see if this a valid type of frame */ 14807 if (lpfc_fc_frame_check(phba, fc_hdr)) { 14808 lpfc_in_buf_free(phba, &dmabuf->dbuf); 14809 return; 14810 } 14811 if ((bf_get(lpfc_cqe_code, 14812 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 14813 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 14814 &dmabuf->cq_event.cqe.rcqe_cmpl); 14815 else 14816 fcfi = bf_get(lpfc_rcqe_fcf_id, 14817 &dmabuf->cq_event.cqe.rcqe_cmpl); 14818 14819 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi); 14820 if (!vport) { 14821 /* throw out the frame */ 14822 lpfc_in_buf_free(phba, &dmabuf->dbuf); 14823 return; 14824 } 14825 14826 /* d_id this frame is directed to */ 14827 did = sli4_did_from_fc_hdr(fc_hdr); 14828 14829 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 14830 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 14831 (did != Fabric_DID)) { 14832 /* 14833 * Throw out the frame if we are not pt2pt. 14834 * The pt2pt protocol allows for discovery frames 14835 * to be received without a registered VPI. 14836 */ 14837 if (!(vport->fc_flag & FC_PT2PT) || 14838 (phba->link_state == LPFC_HBA_READY)) { 14839 lpfc_in_buf_free(phba, &dmabuf->dbuf); 14840 return; 14841 } 14842 } 14843 14844 /* Handle the basic abort sequence (BA_ABTS) event */ 14845 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 14846 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 14847 return; 14848 } 14849 14850 /* Link this frame */ 14851 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 14852 if (!seq_dmabuf) { 14853 /* unable to add frame to vport - throw it out */ 14854 lpfc_in_buf_free(phba, &dmabuf->dbuf); 14855 return; 14856 } 14857 /* If not last frame in sequence continue processing frames. */ 14858 if (!lpfc_seq_complete(seq_dmabuf)) 14859 return; 14860 14861 /* Send the complete sequence to the upper layer protocol */ 14862 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 14863 } 14864 14865 /** 14866 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 14867 * @phba: pointer to lpfc hba data structure. 14868 * 14869 * This routine is invoked to post rpi header templates to the 14870 * HBA consistent with the SLI-4 interface spec. This routine 14871 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 14872 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 14873 * 14874 * This routine does not require any locks. It's usage is expected 14875 * to be driver load or reset recovery when the driver is 14876 * sequential. 14877 * 14878 * Return codes 14879 * 0 - successful 14880 * -EIO - The mailbox failed to complete successfully. 14881 * When this error occurs, the driver is not guaranteed 14882 * to have any rpi regions posted to the device and 14883 * must either attempt to repost the regions or take a 14884 * fatal error. 14885 **/ 14886 int 14887 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 14888 { 14889 struct lpfc_rpi_hdr *rpi_page; 14890 uint32_t rc = 0; 14891 uint16_t lrpi = 0; 14892 14893 /* SLI4 ports that support extents do not require RPI headers. */ 14894 if (!phba->sli4_hba.rpi_hdrs_in_use) 14895 goto exit; 14896 if (phba->sli4_hba.extents_in_use) 14897 return -EIO; 14898 14899 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 14900 /* 14901 * Assign the rpi headers a physical rpi only if the driver 14902 * has not initialized those resources. A port reset only 14903 * needs the headers posted. 14904 */ 14905 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 14906 LPFC_RPI_RSRC_RDY) 14907 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 14908 14909 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 14910 if (rc != MBX_SUCCESS) { 14911 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14912 "2008 Error %d posting all rpi " 14913 "headers\n", rc); 14914 rc = -EIO; 14915 break; 14916 } 14917 } 14918 14919 exit: 14920 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 14921 LPFC_RPI_RSRC_RDY); 14922 return rc; 14923 } 14924 14925 /** 14926 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 14927 * @phba: pointer to lpfc hba data structure. 14928 * @rpi_page: pointer to the rpi memory region. 14929 * 14930 * This routine is invoked to post a single rpi header to the 14931 * HBA consistent with the SLI-4 interface spec. This memory region 14932 * maps up to 64 rpi context regions. 14933 * 14934 * Return codes 14935 * 0 - successful 14936 * -ENOMEM - No available memory 14937 * -EIO - The mailbox failed to complete successfully. 14938 **/ 14939 int 14940 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 14941 { 14942 LPFC_MBOXQ_t *mboxq; 14943 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 14944 uint32_t rc = 0; 14945 uint32_t shdr_status, shdr_add_status; 14946 union lpfc_sli4_cfg_shdr *shdr; 14947 14948 /* SLI4 ports that support extents do not require RPI headers. */ 14949 if (!phba->sli4_hba.rpi_hdrs_in_use) 14950 return rc; 14951 if (phba->sli4_hba.extents_in_use) 14952 return -EIO; 14953 14954 /* The port is notified of the header region via a mailbox command. */ 14955 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14956 if (!mboxq) { 14957 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14958 "2001 Unable to allocate memory for issuing " 14959 "SLI_CONFIG_SPECIAL mailbox command\n"); 14960 return -ENOMEM; 14961 } 14962 14963 /* Post all rpi memory regions to the port. */ 14964 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 14965 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 14966 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 14967 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 14968 sizeof(struct lpfc_sli4_cfg_mhdr), 14969 LPFC_SLI4_MBX_EMBED); 14970 14971 14972 /* Post the physical rpi to the port for this rpi header. */ 14973 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 14974 rpi_page->start_rpi); 14975 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 14976 hdr_tmpl, rpi_page->page_count); 14977 14978 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 14979 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 14980 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 14981 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 14982 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14983 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14984 if (rc != MBX_TIMEOUT) 14985 mempool_free(mboxq, phba->mbox_mem_pool); 14986 if (shdr_status || shdr_add_status || rc) { 14987 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14988 "2514 POST_RPI_HDR mailbox failed with " 14989 "status x%x add_status x%x, mbx status x%x\n", 14990 shdr_status, shdr_add_status, rc); 14991 rc = -ENXIO; 14992 } 14993 return rc; 14994 } 14995 14996 /** 14997 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 14998 * @phba: pointer to lpfc hba data structure. 14999 * 15000 * This routine is invoked to post rpi header templates to the 15001 * HBA consistent with the SLI-4 interface spec. This routine 15002 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 15003 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 15004 * 15005 * Returns 15006 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 15007 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 15008 **/ 15009 int 15010 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 15011 { 15012 unsigned long rpi; 15013 uint16_t max_rpi, rpi_limit; 15014 uint16_t rpi_remaining, lrpi = 0; 15015 struct lpfc_rpi_hdr *rpi_hdr; 15016 15017 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 15018 rpi_limit = phba->sli4_hba.next_rpi; 15019 15020 /* 15021 * Fetch the next logical rpi. Because this index is logical, 15022 * the driver starts at 0 each time. 15023 */ 15024 spin_lock_irq(&phba->hbalock); 15025 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 15026 if (rpi >= rpi_limit) 15027 rpi = LPFC_RPI_ALLOC_ERROR; 15028 else { 15029 set_bit(rpi, phba->sli4_hba.rpi_bmask); 15030 phba->sli4_hba.max_cfg_param.rpi_used++; 15031 phba->sli4_hba.rpi_count++; 15032 } 15033 15034 /* 15035 * Don't try to allocate more rpi header regions if the device limit 15036 * has been exhausted. 15037 */ 15038 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 15039 (phba->sli4_hba.rpi_count >= max_rpi)) { 15040 spin_unlock_irq(&phba->hbalock); 15041 return rpi; 15042 } 15043 15044 /* 15045 * RPI header postings are not required for SLI4 ports capable of 15046 * extents. 15047 */ 15048 if (!phba->sli4_hba.rpi_hdrs_in_use) { 15049 spin_unlock_irq(&phba->hbalock); 15050 return rpi; 15051 } 15052 15053 /* 15054 * If the driver is running low on rpi resources, allocate another 15055 * page now. Note that the next_rpi value is used because 15056 * it represents how many are actually in use whereas max_rpi notes 15057 * how many are supported max by the device. 15058 */ 15059 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 15060 spin_unlock_irq(&phba->hbalock); 15061 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 15062 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 15063 if (!rpi_hdr) { 15064 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15065 "2002 Error Could not grow rpi " 15066 "count\n"); 15067 } else { 15068 lrpi = rpi_hdr->start_rpi; 15069 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 15070 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 15071 } 15072 } 15073 15074 return rpi; 15075 } 15076 15077 /** 15078 * lpfc_sli4_free_rpi - Release an rpi for reuse. 15079 * @phba: pointer to lpfc hba data structure. 15080 * 15081 * This routine is invoked to release an rpi to the pool of 15082 * available rpis maintained by the driver. 15083 **/ 15084 void 15085 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 15086 { 15087 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 15088 phba->sli4_hba.rpi_count--; 15089 phba->sli4_hba.max_cfg_param.rpi_used--; 15090 } 15091 } 15092 15093 /** 15094 * lpfc_sli4_free_rpi - Release an rpi for reuse. 15095 * @phba: pointer to lpfc hba data structure. 15096 * 15097 * This routine is invoked to release an rpi to the pool of 15098 * available rpis maintained by the driver. 15099 **/ 15100 void 15101 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 15102 { 15103 spin_lock_irq(&phba->hbalock); 15104 __lpfc_sli4_free_rpi(phba, rpi); 15105 spin_unlock_irq(&phba->hbalock); 15106 } 15107 15108 /** 15109 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 15110 * @phba: pointer to lpfc hba data structure. 15111 * 15112 * This routine is invoked to remove the memory region that 15113 * provided rpi via a bitmask. 15114 **/ 15115 void 15116 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 15117 { 15118 kfree(phba->sli4_hba.rpi_bmask); 15119 kfree(phba->sli4_hba.rpi_ids); 15120 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 15121 } 15122 15123 /** 15124 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 15125 * @phba: pointer to lpfc hba data structure. 15126 * 15127 * This routine is invoked to remove the memory region that 15128 * provided rpi via a bitmask. 15129 **/ 15130 int 15131 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 15132 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 15133 { 15134 LPFC_MBOXQ_t *mboxq; 15135 struct lpfc_hba *phba = ndlp->phba; 15136 int rc; 15137 15138 /* The port is notified of the header region via a mailbox command. */ 15139 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15140 if (!mboxq) 15141 return -ENOMEM; 15142 15143 /* Post all rpi memory regions to the port. */ 15144 lpfc_resume_rpi(mboxq, ndlp); 15145 if (cmpl) { 15146 mboxq->mbox_cmpl = cmpl; 15147 mboxq->context1 = arg; 15148 mboxq->context2 = ndlp; 15149 } else 15150 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15151 mboxq->vport = ndlp->vport; 15152 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 15153 if (rc == MBX_NOT_FINISHED) { 15154 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15155 "2010 Resume RPI Mailbox failed " 15156 "status %d, mbxStatus x%x\n", rc, 15157 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 15158 mempool_free(mboxq, phba->mbox_mem_pool); 15159 return -EIO; 15160 } 15161 return 0; 15162 } 15163 15164 /** 15165 * lpfc_sli4_init_vpi - Initialize a vpi with the port 15166 * @vport: Pointer to the vport for which the vpi is being initialized 15167 * 15168 * This routine is invoked to activate a vpi with the port. 15169 * 15170 * Returns: 15171 * 0 success 15172 * -Evalue otherwise 15173 **/ 15174 int 15175 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 15176 { 15177 LPFC_MBOXQ_t *mboxq; 15178 int rc = 0; 15179 int retval = MBX_SUCCESS; 15180 uint32_t mbox_tmo; 15181 struct lpfc_hba *phba = vport->phba; 15182 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15183 if (!mboxq) 15184 return -ENOMEM; 15185 lpfc_init_vpi(phba, mboxq, vport->vpi); 15186 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 15187 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 15188 if (rc != MBX_SUCCESS) { 15189 lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI, 15190 "2022 INIT VPI Mailbox failed " 15191 "status %d, mbxStatus x%x\n", rc, 15192 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 15193 retval = -EIO; 15194 } 15195 if (rc != MBX_TIMEOUT) 15196 mempool_free(mboxq, vport->phba->mbox_mem_pool); 15197 15198 return retval; 15199 } 15200 15201 /** 15202 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 15203 * @phba: pointer to lpfc hba data structure. 15204 * @mboxq: Pointer to mailbox object. 15205 * 15206 * This routine is invoked to manually add a single FCF record. The caller 15207 * must pass a completely initialized FCF_Record. This routine takes 15208 * care of the nonembedded mailbox operations. 15209 **/ 15210 static void 15211 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 15212 { 15213 void *virt_addr; 15214 union lpfc_sli4_cfg_shdr *shdr; 15215 uint32_t shdr_status, shdr_add_status; 15216 15217 virt_addr = mboxq->sge_array->addr[0]; 15218 /* The IOCTL status is embedded in the mailbox subheader. */ 15219 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 15220 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15221 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15222 15223 if ((shdr_status || shdr_add_status) && 15224 (shdr_status != STATUS_FCF_IN_USE)) 15225 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15226 "2558 ADD_FCF_RECORD mailbox failed with " 15227 "status x%x add_status x%x\n", 15228 shdr_status, shdr_add_status); 15229 15230 lpfc_sli4_mbox_cmd_free(phba, mboxq); 15231 } 15232 15233 /** 15234 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 15235 * @phba: pointer to lpfc hba data structure. 15236 * @fcf_record: pointer to the initialized fcf record to add. 15237 * 15238 * This routine is invoked to manually add a single FCF record. The caller 15239 * must pass a completely initialized FCF_Record. This routine takes 15240 * care of the nonembedded mailbox operations. 15241 **/ 15242 int 15243 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 15244 { 15245 int rc = 0; 15246 LPFC_MBOXQ_t *mboxq; 15247 uint8_t *bytep; 15248 void *virt_addr; 15249 dma_addr_t phys_addr; 15250 struct lpfc_mbx_sge sge; 15251 uint32_t alloc_len, req_len; 15252 uint32_t fcfindex; 15253 15254 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15255 if (!mboxq) { 15256 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15257 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 15258 return -ENOMEM; 15259 } 15260 15261 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 15262 sizeof(uint32_t); 15263 15264 /* Allocate DMA memory and set up the non-embedded mailbox command */ 15265 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 15266 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 15267 req_len, LPFC_SLI4_MBX_NEMBED); 15268 if (alloc_len < req_len) { 15269 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15270 "2523 Allocated DMA memory size (x%x) is " 15271 "less than the requested DMA memory " 15272 "size (x%x)\n", alloc_len, req_len); 15273 lpfc_sli4_mbox_cmd_free(phba, mboxq); 15274 return -ENOMEM; 15275 } 15276 15277 /* 15278 * Get the first SGE entry from the non-embedded DMA memory. This 15279 * routine only uses a single SGE. 15280 */ 15281 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 15282 phys_addr = getPaddr(sge.pa_hi, sge.pa_lo); 15283 virt_addr = mboxq->sge_array->addr[0]; 15284 /* 15285 * Configure the FCF record for FCFI 0. This is the driver's 15286 * hardcoded default and gets used in nonFIP mode. 15287 */ 15288 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 15289 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 15290 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 15291 15292 /* 15293 * Copy the fcf_index and the FCF Record Data. The data starts after 15294 * the FCoE header plus word10. The data copy needs to be endian 15295 * correct. 15296 */ 15297 bytep += sizeof(uint32_t); 15298 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 15299 mboxq->vport = phba->pport; 15300 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 15301 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 15302 if (rc == MBX_NOT_FINISHED) { 15303 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15304 "2515 ADD_FCF_RECORD mailbox failed with " 15305 "status 0x%x\n", rc); 15306 lpfc_sli4_mbox_cmd_free(phba, mboxq); 15307 rc = -EIO; 15308 } else 15309 rc = 0; 15310 15311 return rc; 15312 } 15313 15314 /** 15315 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 15316 * @phba: pointer to lpfc hba data structure. 15317 * @fcf_record: pointer to the fcf record to write the default data. 15318 * @fcf_index: FCF table entry index. 15319 * 15320 * This routine is invoked to build the driver's default FCF record. The 15321 * values used are hardcoded. This routine handles memory initialization. 15322 * 15323 **/ 15324 void 15325 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 15326 struct fcf_record *fcf_record, 15327 uint16_t fcf_index) 15328 { 15329 memset(fcf_record, 0, sizeof(struct fcf_record)); 15330 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 15331 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 15332 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 15333 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 15334 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 15335 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 15336 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 15337 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 15338 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 15339 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 15340 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 15341 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 15342 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 15343 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 15344 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 15345 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 15346 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 15347 /* Set the VLAN bit map */ 15348 if (phba->valid_vlan) { 15349 fcf_record->vlan_bitmap[phba->vlan_id / 8] 15350 = 1 << (phba->vlan_id % 8); 15351 } 15352 } 15353 15354 /** 15355 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 15356 * @phba: pointer to lpfc hba data structure. 15357 * @fcf_index: FCF table entry offset. 15358 * 15359 * This routine is invoked to scan the entire FCF table by reading FCF 15360 * record and processing it one at a time starting from the @fcf_index 15361 * for initial FCF discovery or fast FCF failover rediscovery. 15362 * 15363 * Return 0 if the mailbox command is submitted successfully, none 0 15364 * otherwise. 15365 **/ 15366 int 15367 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 15368 { 15369 int rc = 0, error; 15370 LPFC_MBOXQ_t *mboxq; 15371 15372 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 15373 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 15374 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15375 if (!mboxq) { 15376 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15377 "2000 Failed to allocate mbox for " 15378 "READ_FCF cmd\n"); 15379 error = -ENOMEM; 15380 goto fail_fcf_scan; 15381 } 15382 /* Construct the read FCF record mailbox command */ 15383 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 15384 if (rc) { 15385 error = -EINVAL; 15386 goto fail_fcf_scan; 15387 } 15388 /* Issue the mailbox command asynchronously */ 15389 mboxq->vport = phba->pport; 15390 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 15391 15392 spin_lock_irq(&phba->hbalock); 15393 phba->hba_flag |= FCF_TS_INPROG; 15394 spin_unlock_irq(&phba->hbalock); 15395 15396 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 15397 if (rc == MBX_NOT_FINISHED) 15398 error = -EIO; 15399 else { 15400 /* Reset eligible FCF count for new scan */ 15401 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 15402 phba->fcf.eligible_fcf_cnt = 0; 15403 error = 0; 15404 } 15405 fail_fcf_scan: 15406 if (error) { 15407 if (mboxq) 15408 lpfc_sli4_mbox_cmd_free(phba, mboxq); 15409 /* FCF scan failed, clear FCF_TS_INPROG flag */ 15410 spin_lock_irq(&phba->hbalock); 15411 phba->hba_flag &= ~FCF_TS_INPROG; 15412 spin_unlock_irq(&phba->hbalock); 15413 } 15414 return error; 15415 } 15416 15417 /** 15418 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 15419 * @phba: pointer to lpfc hba data structure. 15420 * @fcf_index: FCF table entry offset. 15421 * 15422 * This routine is invoked to read an FCF record indicated by @fcf_index 15423 * and to use it for FLOGI roundrobin FCF failover. 15424 * 15425 * Return 0 if the mailbox command is submitted successfully, none 0 15426 * otherwise. 15427 **/ 15428 int 15429 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 15430 { 15431 int rc = 0, error; 15432 LPFC_MBOXQ_t *mboxq; 15433 15434 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15435 if (!mboxq) { 15436 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 15437 "2763 Failed to allocate mbox for " 15438 "READ_FCF cmd\n"); 15439 error = -ENOMEM; 15440 goto fail_fcf_read; 15441 } 15442 /* Construct the read FCF record mailbox command */ 15443 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 15444 if (rc) { 15445 error = -EINVAL; 15446 goto fail_fcf_read; 15447 } 15448 /* Issue the mailbox command asynchronously */ 15449 mboxq->vport = phba->pport; 15450 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 15451 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 15452 if (rc == MBX_NOT_FINISHED) 15453 error = -EIO; 15454 else 15455 error = 0; 15456 15457 fail_fcf_read: 15458 if (error && mboxq) 15459 lpfc_sli4_mbox_cmd_free(phba, mboxq); 15460 return error; 15461 } 15462 15463 /** 15464 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 15465 * @phba: pointer to lpfc hba data structure. 15466 * @fcf_index: FCF table entry offset. 15467 * 15468 * This routine is invoked to read an FCF record indicated by @fcf_index to 15469 * determine whether it's eligible for FLOGI roundrobin failover list. 15470 * 15471 * Return 0 if the mailbox command is submitted successfully, none 0 15472 * otherwise. 15473 **/ 15474 int 15475 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 15476 { 15477 int rc = 0, error; 15478 LPFC_MBOXQ_t *mboxq; 15479 15480 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15481 if (!mboxq) { 15482 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 15483 "2758 Failed to allocate mbox for " 15484 "READ_FCF cmd\n"); 15485 error = -ENOMEM; 15486 goto fail_fcf_read; 15487 } 15488 /* Construct the read FCF record mailbox command */ 15489 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 15490 if (rc) { 15491 error = -EINVAL; 15492 goto fail_fcf_read; 15493 } 15494 /* Issue the mailbox command asynchronously */ 15495 mboxq->vport = phba->pport; 15496 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 15497 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 15498 if (rc == MBX_NOT_FINISHED) 15499 error = -EIO; 15500 else 15501 error = 0; 15502 15503 fail_fcf_read: 15504 if (error && mboxq) 15505 lpfc_sli4_mbox_cmd_free(phba, mboxq); 15506 return error; 15507 } 15508 15509 /** 15510 * lpfc_check_next_fcf_pri 15511 * phba pointer to the lpfc_hba struct for this port. 15512 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 15513 * routine when the rr_bmask is empty. The FCF indecies are put into the 15514 * rr_bmask based on their priority level. Starting from the highest priority 15515 * to the lowest. The most likely FCF candidate will be in the highest 15516 * priority group. When this routine is called it searches the fcf_pri list for 15517 * next lowest priority group and repopulates the rr_bmask with only those 15518 * fcf_indexes. 15519 * returns: 15520 * 1=success 0=failure 15521 **/ 15522 int 15523 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 15524 { 15525 uint16_t next_fcf_pri; 15526 uint16_t last_index; 15527 struct lpfc_fcf_pri *fcf_pri; 15528 int rc; 15529 int ret = 0; 15530 15531 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 15532 LPFC_SLI4_FCF_TBL_INDX_MAX); 15533 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 15534 "3060 Last IDX %d\n", last_index); 15535 15536 /* Verify the priority list has 2 or more entries */ 15537 spin_lock_irq(&phba->hbalock); 15538 if (list_empty(&phba->fcf.fcf_pri_list) || 15539 list_is_singular(&phba->fcf.fcf_pri_list)) { 15540 spin_unlock_irq(&phba->hbalock); 15541 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 15542 "3061 Last IDX %d\n", last_index); 15543 return 0; /* Empty rr list */ 15544 } 15545 spin_unlock_irq(&phba->hbalock); 15546 15547 next_fcf_pri = 0; 15548 /* 15549 * Clear the rr_bmask and set all of the bits that are at this 15550 * priority. 15551 */ 15552 memset(phba->fcf.fcf_rr_bmask, 0, 15553 sizeof(*phba->fcf.fcf_rr_bmask)); 15554 spin_lock_irq(&phba->hbalock); 15555 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 15556 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 15557 continue; 15558 /* 15559 * the 1st priority that has not FLOGI failed 15560 * will be the highest. 15561 */ 15562 if (!next_fcf_pri) 15563 next_fcf_pri = fcf_pri->fcf_rec.priority; 15564 spin_unlock_irq(&phba->hbalock); 15565 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 15566 rc = lpfc_sli4_fcf_rr_index_set(phba, 15567 fcf_pri->fcf_rec.fcf_index); 15568 if (rc) 15569 return 0; 15570 } 15571 spin_lock_irq(&phba->hbalock); 15572 } 15573 /* 15574 * if next_fcf_pri was not set above and the list is not empty then 15575 * we have failed flogis on all of them. So reset flogi failed 15576 * and start at the beginning. 15577 */ 15578 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 15579 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 15580 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 15581 /* 15582 * the 1st priority that has not FLOGI failed 15583 * will be the highest. 15584 */ 15585 if (!next_fcf_pri) 15586 next_fcf_pri = fcf_pri->fcf_rec.priority; 15587 spin_unlock_irq(&phba->hbalock); 15588 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 15589 rc = lpfc_sli4_fcf_rr_index_set(phba, 15590 fcf_pri->fcf_rec.fcf_index); 15591 if (rc) 15592 return 0; 15593 } 15594 spin_lock_irq(&phba->hbalock); 15595 } 15596 } else 15597 ret = 1; 15598 spin_unlock_irq(&phba->hbalock); 15599 15600 return ret; 15601 } 15602 /** 15603 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 15604 * @phba: pointer to lpfc hba data structure. 15605 * 15606 * This routine is to get the next eligible FCF record index in a round 15607 * robin fashion. If the next eligible FCF record index equals to the 15608 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 15609 * shall be returned, otherwise, the next eligible FCF record's index 15610 * shall be returned. 15611 **/ 15612 uint16_t 15613 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 15614 { 15615 uint16_t next_fcf_index; 15616 15617 initial_priority: 15618 /* Search start from next bit of currently registered FCF index */ 15619 next_fcf_index = phba->fcf.current_rec.fcf_indx; 15620 15621 next_priority: 15622 /* Determine the next fcf index to check */ 15623 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 15624 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 15625 LPFC_SLI4_FCF_TBL_INDX_MAX, 15626 next_fcf_index); 15627 15628 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 15629 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 15630 /* 15631 * If we have wrapped then we need to clear the bits that 15632 * have been tested so that we can detect when we should 15633 * change the priority level. 15634 */ 15635 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 15636 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 15637 } 15638 15639 15640 /* Check roundrobin failover list empty condition */ 15641 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 15642 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 15643 /* 15644 * If next fcf index is not found check if there are lower 15645 * Priority level fcf's in the fcf_priority list. 15646 * Set up the rr_bmask with all of the avaiable fcf bits 15647 * at that level and continue the selection process. 15648 */ 15649 if (lpfc_check_next_fcf_pri_level(phba)) 15650 goto initial_priority; 15651 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 15652 "2844 No roundrobin failover FCF available\n"); 15653 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) 15654 return LPFC_FCOE_FCF_NEXT_NONE; 15655 else { 15656 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 15657 "3063 Only FCF available idx %d, flag %x\n", 15658 next_fcf_index, 15659 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag); 15660 return next_fcf_index; 15661 } 15662 } 15663 15664 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 15665 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 15666 LPFC_FCF_FLOGI_FAILED) 15667 goto next_priority; 15668 15669 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 15670 "2845 Get next roundrobin failover FCF (x%x)\n", 15671 next_fcf_index); 15672 15673 return next_fcf_index; 15674 } 15675 15676 /** 15677 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 15678 * @phba: pointer to lpfc hba data structure. 15679 * 15680 * This routine sets the FCF record index in to the eligible bmask for 15681 * roundrobin failover search. It checks to make sure that the index 15682 * does not go beyond the range of the driver allocated bmask dimension 15683 * before setting the bit. 15684 * 15685 * Returns 0 if the index bit successfully set, otherwise, it returns 15686 * -EINVAL. 15687 **/ 15688 int 15689 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 15690 { 15691 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 15692 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 15693 "2610 FCF (x%x) reached driver's book " 15694 "keeping dimension:x%x\n", 15695 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 15696 return -EINVAL; 15697 } 15698 /* Set the eligible FCF record index bmask */ 15699 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 15700 15701 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 15702 "2790 Set FCF (x%x) to roundrobin FCF failover " 15703 "bmask\n", fcf_index); 15704 15705 return 0; 15706 } 15707 15708 /** 15709 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 15710 * @phba: pointer to lpfc hba data structure. 15711 * 15712 * This routine clears the FCF record index from the eligible bmask for 15713 * roundrobin failover search. It checks to make sure that the index 15714 * does not go beyond the range of the driver allocated bmask dimension 15715 * before clearing the bit. 15716 **/ 15717 void 15718 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 15719 { 15720 struct lpfc_fcf_pri *fcf_pri; 15721 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 15722 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 15723 "2762 FCF (x%x) reached driver's book " 15724 "keeping dimension:x%x\n", 15725 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 15726 return; 15727 } 15728 /* Clear the eligible FCF record index bmask */ 15729 spin_lock_irq(&phba->hbalock); 15730 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 15731 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 15732 list_del_init(&fcf_pri->list); 15733 break; 15734 } 15735 } 15736 spin_unlock_irq(&phba->hbalock); 15737 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 15738 15739 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 15740 "2791 Clear FCF (x%x) from roundrobin failover " 15741 "bmask\n", fcf_index); 15742 } 15743 15744 /** 15745 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 15746 * @phba: pointer to lpfc hba data structure. 15747 * 15748 * This routine is the completion routine for the rediscover FCF table mailbox 15749 * command. If the mailbox command returned failure, it will try to stop the 15750 * FCF rediscover wait timer. 15751 **/ 15752 void 15753 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 15754 { 15755 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 15756 uint32_t shdr_status, shdr_add_status; 15757 15758 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 15759 15760 shdr_status = bf_get(lpfc_mbox_hdr_status, 15761 &redisc_fcf->header.cfg_shdr.response); 15762 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 15763 &redisc_fcf->header.cfg_shdr.response); 15764 if (shdr_status || shdr_add_status) { 15765 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 15766 "2746 Requesting for FCF rediscovery failed " 15767 "status x%x add_status x%x\n", 15768 shdr_status, shdr_add_status); 15769 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 15770 spin_lock_irq(&phba->hbalock); 15771 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 15772 spin_unlock_irq(&phba->hbalock); 15773 /* 15774 * CVL event triggered FCF rediscover request failed, 15775 * last resort to re-try current registered FCF entry. 15776 */ 15777 lpfc_retry_pport_discovery(phba); 15778 } else { 15779 spin_lock_irq(&phba->hbalock); 15780 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 15781 spin_unlock_irq(&phba->hbalock); 15782 /* 15783 * DEAD FCF event triggered FCF rediscover request 15784 * failed, last resort to fail over as a link down 15785 * to FCF registration. 15786 */ 15787 lpfc_sli4_fcf_dead_failthrough(phba); 15788 } 15789 } else { 15790 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 15791 "2775 Start FCF rediscover quiescent timer\n"); 15792 /* 15793 * Start FCF rediscovery wait timer for pending FCF 15794 * before rescan FCF record table. 15795 */ 15796 lpfc_fcf_redisc_wait_start_timer(phba); 15797 } 15798 15799 mempool_free(mbox, phba->mbox_mem_pool); 15800 } 15801 15802 /** 15803 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 15804 * @phba: pointer to lpfc hba data structure. 15805 * 15806 * This routine is invoked to request for rediscovery of the entire FCF table 15807 * by the port. 15808 **/ 15809 int 15810 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 15811 { 15812 LPFC_MBOXQ_t *mbox; 15813 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 15814 int rc, length; 15815 15816 /* Cancel retry delay timers to all vports before FCF rediscover */ 15817 lpfc_cancel_all_vport_retry_delay_timer(phba); 15818 15819 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15820 if (!mbox) { 15821 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15822 "2745 Failed to allocate mbox for " 15823 "requesting FCF rediscover.\n"); 15824 return -ENOMEM; 15825 } 15826 15827 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 15828 sizeof(struct lpfc_sli4_cfg_mhdr)); 15829 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15830 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 15831 length, LPFC_SLI4_MBX_EMBED); 15832 15833 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 15834 /* Set count to 0 for invalidating the entire FCF database */ 15835 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 15836 15837 /* Issue the mailbox command asynchronously */ 15838 mbox->vport = phba->pport; 15839 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 15840 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 15841 15842 if (rc == MBX_NOT_FINISHED) { 15843 mempool_free(mbox, phba->mbox_mem_pool); 15844 return -EIO; 15845 } 15846 return 0; 15847 } 15848 15849 /** 15850 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 15851 * @phba: pointer to lpfc hba data structure. 15852 * 15853 * This function is the failover routine as a last resort to the FCF DEAD 15854 * event when driver failed to perform fast FCF failover. 15855 **/ 15856 void 15857 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 15858 { 15859 uint32_t link_state; 15860 15861 /* 15862 * Last resort as FCF DEAD event failover will treat this as 15863 * a link down, but save the link state because we don't want 15864 * it to be changed to Link Down unless it is already down. 15865 */ 15866 link_state = phba->link_state; 15867 lpfc_linkdown(phba); 15868 phba->link_state = link_state; 15869 15870 /* Unregister FCF if no devices connected to it */ 15871 lpfc_unregister_unused_fcf(phba); 15872 } 15873 15874 /** 15875 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 15876 * @phba: pointer to lpfc hba data structure. 15877 * @rgn23_data: pointer to configure region 23 data. 15878 * 15879 * This function gets SLI3 port configure region 23 data through memory dump 15880 * mailbox command. When it successfully retrieves data, the size of the data 15881 * will be returned, otherwise, 0 will be returned. 15882 **/ 15883 static uint32_t 15884 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 15885 { 15886 LPFC_MBOXQ_t *pmb = NULL; 15887 MAILBOX_t *mb; 15888 uint32_t offset = 0; 15889 int rc; 15890 15891 if (!rgn23_data) 15892 return 0; 15893 15894 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15895 if (!pmb) { 15896 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15897 "2600 failed to allocate mailbox memory\n"); 15898 return 0; 15899 } 15900 mb = &pmb->u.mb; 15901 15902 do { 15903 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 15904 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 15905 15906 if (rc != MBX_SUCCESS) { 15907 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15908 "2601 failed to read config " 15909 "region 23, rc 0x%x Status 0x%x\n", 15910 rc, mb->mbxStatus); 15911 mb->un.varDmp.word_cnt = 0; 15912 } 15913 /* 15914 * dump mem may return a zero when finished or we got a 15915 * mailbox error, either way we are done. 15916 */ 15917 if (mb->un.varDmp.word_cnt == 0) 15918 break; 15919 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 15920 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 15921 15922 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 15923 rgn23_data + offset, 15924 mb->un.varDmp.word_cnt); 15925 offset += mb->un.varDmp.word_cnt; 15926 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 15927 15928 mempool_free(pmb, phba->mbox_mem_pool); 15929 return offset; 15930 } 15931 15932 /** 15933 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 15934 * @phba: pointer to lpfc hba data structure. 15935 * @rgn23_data: pointer to configure region 23 data. 15936 * 15937 * This function gets SLI4 port configure region 23 data through memory dump 15938 * mailbox command. When it successfully retrieves data, the size of the data 15939 * will be returned, otherwise, 0 will be returned. 15940 **/ 15941 static uint32_t 15942 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 15943 { 15944 LPFC_MBOXQ_t *mboxq = NULL; 15945 struct lpfc_dmabuf *mp = NULL; 15946 struct lpfc_mqe *mqe; 15947 uint32_t data_length = 0; 15948 int rc; 15949 15950 if (!rgn23_data) 15951 return 0; 15952 15953 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15954 if (!mboxq) { 15955 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15956 "3105 failed to allocate mailbox memory\n"); 15957 return 0; 15958 } 15959 15960 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 15961 goto out; 15962 mqe = &mboxq->u.mqe; 15963 mp = (struct lpfc_dmabuf *) mboxq->context1; 15964 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 15965 if (rc) 15966 goto out; 15967 data_length = mqe->un.mb_words[5]; 15968 if (data_length == 0) 15969 goto out; 15970 if (data_length > DMP_RGN23_SIZE) { 15971 data_length = 0; 15972 goto out; 15973 } 15974 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 15975 out: 15976 mempool_free(mboxq, phba->mbox_mem_pool); 15977 if (mp) { 15978 lpfc_mbuf_free(phba, mp->virt, mp->phys); 15979 kfree(mp); 15980 } 15981 return data_length; 15982 } 15983 15984 /** 15985 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 15986 * @phba: pointer to lpfc hba data structure. 15987 * 15988 * This function read region 23 and parse TLV for port status to 15989 * decide if the user disaled the port. If the TLV indicates the 15990 * port is disabled, the hba_flag is set accordingly. 15991 **/ 15992 void 15993 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 15994 { 15995 uint8_t *rgn23_data = NULL; 15996 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 15997 uint32_t offset = 0; 15998 15999 /* Get adapter Region 23 data */ 16000 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 16001 if (!rgn23_data) 16002 goto out; 16003 16004 if (phba->sli_rev < LPFC_SLI_REV4) 16005 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 16006 else { 16007 if_type = bf_get(lpfc_sli_intf_if_type, 16008 &phba->sli4_hba.sli_intf); 16009 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 16010 goto out; 16011 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 16012 } 16013 16014 if (!data_size) 16015 goto out; 16016 16017 /* Check the region signature first */ 16018 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 16019 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16020 "2619 Config region 23 has bad signature\n"); 16021 goto out; 16022 } 16023 offset += 4; 16024 16025 /* Check the data structure version */ 16026 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 16027 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16028 "2620 Config region 23 has bad version\n"); 16029 goto out; 16030 } 16031 offset += 4; 16032 16033 /* Parse TLV entries in the region */ 16034 while (offset < data_size) { 16035 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 16036 break; 16037 /* 16038 * If the TLV is not driver specific TLV or driver id is 16039 * not linux driver id, skip the record. 16040 */ 16041 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 16042 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 16043 (rgn23_data[offset + 3] != 0)) { 16044 offset += rgn23_data[offset + 1] * 4 + 4; 16045 continue; 16046 } 16047 16048 /* Driver found a driver specific TLV in the config region */ 16049 sub_tlv_len = rgn23_data[offset + 1] * 4; 16050 offset += 4; 16051 tlv_offset = 0; 16052 16053 /* 16054 * Search for configured port state sub-TLV. 16055 */ 16056 while ((offset < data_size) && 16057 (tlv_offset < sub_tlv_len)) { 16058 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 16059 offset += 4; 16060 tlv_offset += 4; 16061 break; 16062 } 16063 if (rgn23_data[offset] != PORT_STE_TYPE) { 16064 offset += rgn23_data[offset + 1] * 4 + 4; 16065 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 16066 continue; 16067 } 16068 16069 /* This HBA contains PORT_STE configured */ 16070 if (!rgn23_data[offset + 2]) 16071 phba->hba_flag |= LINK_DISABLED; 16072 16073 goto out; 16074 } 16075 } 16076 16077 out: 16078 kfree(rgn23_data); 16079 return; 16080 } 16081 16082 /** 16083 * lpfc_wr_object - write an object to the firmware 16084 * @phba: HBA structure that indicates port to create a queue on. 16085 * @dmabuf_list: list of dmabufs to write to the port. 16086 * @size: the total byte value of the objects to write to the port. 16087 * @offset: the current offset to be used to start the transfer. 16088 * 16089 * This routine will create a wr_object mailbox command to send to the port. 16090 * the mailbox command will be constructed using the dma buffers described in 16091 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 16092 * BDEs that the imbedded mailbox can support. The @offset variable will be 16093 * used to indicate the starting offset of the transfer and will also return 16094 * the offset after the write object mailbox has completed. @size is used to 16095 * determine the end of the object and whether the eof bit should be set. 16096 * 16097 * Return 0 is successful and offset will contain the the new offset to use 16098 * for the next write. 16099 * Return negative value for error cases. 16100 **/ 16101 int 16102 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 16103 uint32_t size, uint32_t *offset) 16104 { 16105 struct lpfc_mbx_wr_object *wr_object; 16106 LPFC_MBOXQ_t *mbox; 16107 int rc = 0, i = 0; 16108 uint32_t shdr_status, shdr_add_status; 16109 uint32_t mbox_tmo; 16110 union lpfc_sli4_cfg_shdr *shdr; 16111 struct lpfc_dmabuf *dmabuf; 16112 uint32_t written = 0; 16113 16114 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16115 if (!mbox) 16116 return -ENOMEM; 16117 16118 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16119 LPFC_MBOX_OPCODE_WRITE_OBJECT, 16120 sizeof(struct lpfc_mbx_wr_object) - 16121 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 16122 16123 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 16124 wr_object->u.request.write_offset = *offset; 16125 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 16126 wr_object->u.request.object_name[0] = 16127 cpu_to_le32(wr_object->u.request.object_name[0]); 16128 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 16129 list_for_each_entry(dmabuf, dmabuf_list, list) { 16130 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 16131 break; 16132 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 16133 wr_object->u.request.bde[i].addrHigh = 16134 putPaddrHigh(dmabuf->phys); 16135 if (written + SLI4_PAGE_SIZE >= size) { 16136 wr_object->u.request.bde[i].tus.f.bdeSize = 16137 (size - written); 16138 written += (size - written); 16139 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 16140 } else { 16141 wr_object->u.request.bde[i].tus.f.bdeSize = 16142 SLI4_PAGE_SIZE; 16143 written += SLI4_PAGE_SIZE; 16144 } 16145 i++; 16146 } 16147 wr_object->u.request.bde_count = i; 16148 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 16149 if (!phba->sli4_hba.intr_enable) 16150 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16151 else { 16152 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16153 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16154 } 16155 /* The IOCTL status is embedded in the mailbox subheader. */ 16156 shdr = (union lpfc_sli4_cfg_shdr *) &wr_object->header.cfg_shdr; 16157 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16158 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16159 if (rc != MBX_TIMEOUT) 16160 mempool_free(mbox, phba->mbox_mem_pool); 16161 if (shdr_status || shdr_add_status || rc) { 16162 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16163 "3025 Write Object mailbox failed with " 16164 "status x%x add_status x%x, mbx status x%x\n", 16165 shdr_status, shdr_add_status, rc); 16166 rc = -ENXIO; 16167 } else 16168 *offset += wr_object->u.response.actual_write_length; 16169 return rc; 16170 } 16171 16172 /** 16173 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 16174 * @vport: pointer to vport data structure. 16175 * 16176 * This function iterate through the mailboxq and clean up all REG_LOGIN 16177 * and REG_VPI mailbox commands associated with the vport. This function 16178 * is called when driver want to restart discovery of the vport due to 16179 * a Clear Virtual Link event. 16180 **/ 16181 void 16182 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 16183 { 16184 struct lpfc_hba *phba = vport->phba; 16185 LPFC_MBOXQ_t *mb, *nextmb; 16186 struct lpfc_dmabuf *mp; 16187 struct lpfc_nodelist *ndlp; 16188 struct lpfc_nodelist *act_mbx_ndlp = NULL; 16189 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 16190 LIST_HEAD(mbox_cmd_list); 16191 uint8_t restart_loop; 16192 16193 /* Clean up internally queued mailbox commands with the vport */ 16194 spin_lock_irq(&phba->hbalock); 16195 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 16196 if (mb->vport != vport) 16197 continue; 16198 16199 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 16200 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 16201 continue; 16202 16203 list_del(&mb->list); 16204 list_add_tail(&mb->list, &mbox_cmd_list); 16205 } 16206 /* Clean up active mailbox command with the vport */ 16207 mb = phba->sli.mbox_active; 16208 if (mb && (mb->vport == vport)) { 16209 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 16210 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 16211 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16212 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 16213 act_mbx_ndlp = (struct lpfc_nodelist *)mb->context2; 16214 /* Put reference count for delayed processing */ 16215 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 16216 /* Unregister the RPI when mailbox complete */ 16217 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 16218 } 16219 } 16220 /* Cleanup any mailbox completions which are not yet processed */ 16221 do { 16222 restart_loop = 0; 16223 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 16224 /* 16225 * If this mailox is already processed or it is 16226 * for another vport ignore it. 16227 */ 16228 if ((mb->vport != vport) || 16229 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 16230 continue; 16231 16232 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 16233 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 16234 continue; 16235 16236 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16237 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 16238 ndlp = (struct lpfc_nodelist *)mb->context2; 16239 /* Unregister the RPI when mailbox complete */ 16240 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 16241 restart_loop = 1; 16242 spin_unlock_irq(&phba->hbalock); 16243 spin_lock(shost->host_lock); 16244 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 16245 spin_unlock(shost->host_lock); 16246 spin_lock_irq(&phba->hbalock); 16247 break; 16248 } 16249 } 16250 } while (restart_loop); 16251 16252 spin_unlock_irq(&phba->hbalock); 16253 16254 /* Release the cleaned-up mailbox commands */ 16255 while (!list_empty(&mbox_cmd_list)) { 16256 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 16257 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 16258 mp = (struct lpfc_dmabuf *) (mb->context1); 16259 if (mp) { 16260 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 16261 kfree(mp); 16262 } 16263 ndlp = (struct lpfc_nodelist *) mb->context2; 16264 mb->context2 = NULL; 16265 if (ndlp) { 16266 spin_lock(shost->host_lock); 16267 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 16268 spin_unlock(shost->host_lock); 16269 lpfc_nlp_put(ndlp); 16270 } 16271 } 16272 mempool_free(mb, phba->mbox_mem_pool); 16273 } 16274 16275 /* Release the ndlp with the cleaned-up active mailbox command */ 16276 if (act_mbx_ndlp) { 16277 spin_lock(shost->host_lock); 16278 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 16279 spin_unlock(shost->host_lock); 16280 lpfc_nlp_put(act_mbx_ndlp); 16281 } 16282 } 16283 16284 /** 16285 * lpfc_drain_txq - Drain the txq 16286 * @phba: Pointer to HBA context object. 16287 * 16288 * This function attempt to submit IOCBs on the txq 16289 * to the adapter. For SLI4 adapters, the txq contains 16290 * ELS IOCBs that have been deferred because the there 16291 * are no SGLs. This congestion can occur with large 16292 * vport counts during node discovery. 16293 **/ 16294 16295 uint32_t 16296 lpfc_drain_txq(struct lpfc_hba *phba) 16297 { 16298 LIST_HEAD(completions); 16299 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 16300 struct lpfc_iocbq *piocbq = 0; 16301 unsigned long iflags = 0; 16302 char *fail_msg = NULL; 16303 struct lpfc_sglq *sglq; 16304 union lpfc_wqe wqe; 16305 int txq_cnt = 0; 16306 16307 spin_lock_irqsave(&phba->hbalock, iflags); 16308 list_for_each_entry(piocbq, &pring->txq, list) { 16309 txq_cnt++; 16310 } 16311 16312 if (txq_cnt > pring->txq_max) 16313 pring->txq_max = txq_cnt; 16314 16315 spin_unlock_irqrestore(&phba->hbalock, iflags); 16316 16317 while (!list_empty(&pring->txq)) { 16318 spin_lock_irqsave(&phba->hbalock, iflags); 16319 16320 piocbq = lpfc_sli_ringtx_get(phba, pring); 16321 if (!piocbq) { 16322 spin_unlock_irqrestore(&phba->hbalock, iflags); 16323 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16324 "2823 txq empty and txq_cnt is %d\n ", 16325 txq_cnt); 16326 break; 16327 } 16328 sglq = __lpfc_sli_get_sglq(phba, piocbq); 16329 if (!sglq) { 16330 __lpfc_sli_ringtx_put(phba, pring, piocbq); 16331 spin_unlock_irqrestore(&phba->hbalock, iflags); 16332 break; 16333 } 16334 txq_cnt--; 16335 16336 /* The xri and iocb resources secured, 16337 * attempt to issue request 16338 */ 16339 piocbq->sli4_lxritag = sglq->sli4_lxritag; 16340 piocbq->sli4_xritag = sglq->sli4_xritag; 16341 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 16342 fail_msg = "to convert bpl to sgl"; 16343 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 16344 fail_msg = "to convert iocb to wqe"; 16345 else if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, &wqe)) 16346 fail_msg = " - Wq is full"; 16347 else 16348 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 16349 16350 if (fail_msg) { 16351 /* Failed means we can't issue and need to cancel */ 16352 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16353 "2822 IOCB failed %s iotag 0x%x " 16354 "xri 0x%x\n", 16355 fail_msg, 16356 piocbq->iotag, piocbq->sli4_xritag); 16357 list_add_tail(&piocbq->list, &completions); 16358 } 16359 spin_unlock_irqrestore(&phba->hbalock, iflags); 16360 } 16361 16362 /* Cancel all the IOCBs that cannot be issued */ 16363 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 16364 IOERR_SLI_ABORTED); 16365 16366 return txq_cnt; 16367 } 16368