1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2022 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 #include <linux/crash_dump.h> 39 #ifdef CONFIG_X86 40 #include <asm/set_memory.h> 41 #endif 42 43 #include "lpfc_hw4.h" 44 #include "lpfc_hw.h" 45 #include "lpfc_sli.h" 46 #include "lpfc_sli4.h" 47 #include "lpfc_nl.h" 48 #include "lpfc_disc.h" 49 #include "lpfc.h" 50 #include "lpfc_scsi.h" 51 #include "lpfc_nvme.h" 52 #include "lpfc_crtn.h" 53 #include "lpfc_logmsg.h" 54 #include "lpfc_compat.h" 55 #include "lpfc_debugfs.h" 56 #include "lpfc_vport.h" 57 #include "lpfc_version.h" 58 59 /* There are only four IOCB completion types. */ 60 typedef enum _lpfc_iocb_type { 61 LPFC_UNKNOWN_IOCB, 62 LPFC_UNSOL_IOCB, 63 LPFC_SOL_IOCB, 64 LPFC_ABORT_IOCB 65 } lpfc_iocb_type; 66 67 68 /* Provide function prototypes local to this module. */ 69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 70 uint32_t); 71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint8_t *, uint32_t *); 73 static struct lpfc_iocbq * 74 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 75 struct lpfc_iocbq *rspiocbq); 76 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 77 struct hbq_dmabuf *); 78 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 79 struct hbq_dmabuf *dmabuf); 80 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 81 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 82 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 83 int); 84 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 85 struct lpfc_queue *eq, 86 struct lpfc_eqe *eqe); 87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 89 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 90 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 91 struct lpfc_queue *cq, 92 struct lpfc_cqe *cqe); 93 static uint16_t lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, 94 struct lpfc_iocbq *pwqeq, 95 struct lpfc_sglq *sglq); 96 97 union lpfc_wqe128 lpfc_iread_cmd_template; 98 union lpfc_wqe128 lpfc_iwrite_cmd_template; 99 union lpfc_wqe128 lpfc_icmnd_cmd_template; 100 101 /* Setup WQE templates for IOs */ 102 void lpfc_wqe_cmd_template(void) 103 { 104 union lpfc_wqe128 *wqe; 105 106 /* IREAD template */ 107 wqe = &lpfc_iread_cmd_template; 108 memset(wqe, 0, sizeof(union lpfc_wqe128)); 109 110 /* Word 0, 1, 2 - BDE is variable */ 111 112 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 113 114 /* Word 4 - total_xfer_len is variable */ 115 116 /* Word 5 - is zero */ 117 118 /* Word 6 - ctxt_tag, xri_tag is variable */ 119 120 /* Word 7 */ 121 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 122 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 123 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 124 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 125 126 /* Word 8 - abort_tag is variable */ 127 128 /* Word 9 - reqtag is variable */ 129 130 /* Word 10 - dbde, wqes is variable */ 131 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 132 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 133 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 134 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 135 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 136 137 /* Word 11 - pbde is variable */ 138 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 139 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 140 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 141 142 /* Word 12 - is zero */ 143 144 /* Word 13, 14, 15 - PBDE is variable */ 145 146 /* IWRITE template */ 147 wqe = &lpfc_iwrite_cmd_template; 148 memset(wqe, 0, sizeof(union lpfc_wqe128)); 149 150 /* Word 0, 1, 2 - BDE is variable */ 151 152 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 153 154 /* Word 4 - total_xfer_len is variable */ 155 156 /* Word 5 - initial_xfer_len is variable */ 157 158 /* Word 6 - ctxt_tag, xri_tag is variable */ 159 160 /* Word 7 */ 161 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 162 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 163 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 164 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 165 166 /* Word 8 - abort_tag is variable */ 167 168 /* Word 9 - reqtag is variable */ 169 170 /* Word 10 - dbde, wqes is variable */ 171 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 172 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 173 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 174 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 175 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 176 177 /* Word 11 - pbde is variable */ 178 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 179 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 180 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 181 182 /* Word 12 - is zero */ 183 184 /* Word 13, 14, 15 - PBDE is variable */ 185 186 /* ICMND template */ 187 wqe = &lpfc_icmnd_cmd_template; 188 memset(wqe, 0, sizeof(union lpfc_wqe128)); 189 190 /* Word 0, 1, 2 - BDE is variable */ 191 192 /* Word 3 - payload_offset_len is variable */ 193 194 /* Word 4, 5 - is zero */ 195 196 /* Word 6 - ctxt_tag, xri_tag is variable */ 197 198 /* Word 7 */ 199 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 200 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 201 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 202 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 203 204 /* Word 8 - abort_tag is variable */ 205 206 /* Word 9 - reqtag is variable */ 207 208 /* Word 10 - dbde, wqes is variable */ 209 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 210 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 211 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 212 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 213 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 214 215 /* Word 11 */ 216 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 217 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 218 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 219 220 /* Word 12, 13, 14, 15 - is zero */ 221 } 222 223 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 224 /** 225 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 226 * @srcp: Source memory pointer. 227 * @destp: Destination memory pointer. 228 * @cnt: Number of words required to be copied. 229 * Must be a multiple of sizeof(uint64_t) 230 * 231 * This function is used for copying data between driver memory 232 * and the SLI WQ. This function also changes the endianness 233 * of each word if native endianness is different from SLI 234 * endianness. This function can be called with or without 235 * lock. 236 **/ 237 static void 238 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 239 { 240 uint64_t *src = srcp; 241 uint64_t *dest = destp; 242 int i; 243 244 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 245 *dest++ = *src++; 246 } 247 #else 248 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 249 #endif 250 251 /** 252 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 253 * @q: The Work Queue to operate on. 254 * @wqe: The work Queue Entry to put on the Work queue. 255 * 256 * This routine will copy the contents of @wqe to the next available entry on 257 * the @q. This function will then ring the Work Queue Doorbell to signal the 258 * HBA to start processing the Work Queue Entry. This function returns 0 if 259 * successful. If no entries are available on @q then this function will return 260 * -ENOMEM. 261 * The caller is expected to hold the hbalock when calling this routine. 262 **/ 263 static int 264 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 265 { 266 union lpfc_wqe *temp_wqe; 267 struct lpfc_register doorbell; 268 uint32_t host_index; 269 uint32_t idx; 270 uint32_t i = 0; 271 uint8_t *tmp; 272 u32 if_type; 273 274 /* sanity check on queue memory */ 275 if (unlikely(!q)) 276 return -ENOMEM; 277 278 temp_wqe = lpfc_sli4_qe(q, q->host_index); 279 280 /* If the host has not yet processed the next entry then we are done */ 281 idx = ((q->host_index + 1) % q->entry_count); 282 if (idx == q->hba_index) { 283 q->WQ_overflow++; 284 return -EBUSY; 285 } 286 q->WQ_posted++; 287 /* set consumption flag every once in a while */ 288 if (!((q->host_index + 1) % q->notify_interval)) 289 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 290 else 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 292 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 293 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 294 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 295 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 296 /* write to DPP aperture taking advatage of Combined Writes */ 297 tmp = (uint8_t *)temp_wqe; 298 #ifdef __raw_writeq 299 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 300 __raw_writeq(*((uint64_t *)(tmp + i)), 301 q->dpp_regaddr + i); 302 #else 303 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 304 __raw_writel(*((uint32_t *)(tmp + i)), 305 q->dpp_regaddr + i); 306 #endif 307 } 308 /* ensure WQE bcopy and DPP flushed before doorbell write */ 309 wmb(); 310 311 /* Update the host index before invoking device */ 312 host_index = q->host_index; 313 314 q->host_index = idx; 315 316 /* Ring Doorbell */ 317 doorbell.word0 = 0; 318 if (q->db_format == LPFC_DB_LIST_FORMAT) { 319 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 320 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 321 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 322 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 323 q->dpp_id); 324 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 325 q->queue_id); 326 } else { 327 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 328 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 329 330 /* Leave bits <23:16> clear for if_type 6 dpp */ 331 if_type = bf_get(lpfc_sli_intf_if_type, 332 &q->phba->sli4_hba.sli_intf); 333 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 334 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 335 host_index); 336 } 337 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 338 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 339 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 340 } else { 341 return -EINVAL; 342 } 343 writel(doorbell.word0, q->db_regaddr); 344 345 return 0; 346 } 347 348 /** 349 * lpfc_sli4_wq_release - Updates internal hba index for WQ 350 * @q: The Work Queue to operate on. 351 * @index: The index to advance the hba index to. 352 * 353 * This routine will update the HBA index of a queue to reflect consumption of 354 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 355 * an entry the host calls this function to update the queue's internal 356 * pointers. 357 **/ 358 static void 359 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 360 { 361 /* sanity check on queue memory */ 362 if (unlikely(!q)) 363 return; 364 365 q->hba_index = index; 366 } 367 368 /** 369 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 370 * @q: The Mailbox Queue to operate on. 371 * @mqe: The Mailbox Queue Entry to put on the Work queue. 372 * 373 * This routine will copy the contents of @mqe to the next available entry on 374 * the @q. This function will then ring the Work Queue Doorbell to signal the 375 * HBA to start processing the Work Queue Entry. This function returns 0 if 376 * successful. If no entries are available on @q then this function will return 377 * -ENOMEM. 378 * The caller is expected to hold the hbalock when calling this routine. 379 **/ 380 static uint32_t 381 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 382 { 383 struct lpfc_mqe *temp_mqe; 384 struct lpfc_register doorbell; 385 386 /* sanity check on queue memory */ 387 if (unlikely(!q)) 388 return -ENOMEM; 389 temp_mqe = lpfc_sli4_qe(q, q->host_index); 390 391 /* If the host has not yet processed the next entry then we are done */ 392 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 393 return -ENOMEM; 394 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 395 /* Save off the mailbox pointer for completion */ 396 q->phba->mbox = (MAILBOX_t *)temp_mqe; 397 398 /* Update the host index before invoking device */ 399 q->host_index = ((q->host_index + 1) % q->entry_count); 400 401 /* Ring Doorbell */ 402 doorbell.word0 = 0; 403 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 404 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 405 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 406 return 0; 407 } 408 409 /** 410 * lpfc_sli4_mq_release - Updates internal hba index for MQ 411 * @q: The Mailbox Queue to operate on. 412 * 413 * This routine will update the HBA index of a queue to reflect consumption of 414 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 415 * an entry the host calls this function to update the queue's internal 416 * pointers. This routine returns the number of entries that were consumed by 417 * the HBA. 418 **/ 419 static uint32_t 420 lpfc_sli4_mq_release(struct lpfc_queue *q) 421 { 422 /* sanity check on queue memory */ 423 if (unlikely(!q)) 424 return 0; 425 426 /* Clear the mailbox pointer for completion */ 427 q->phba->mbox = NULL; 428 q->hba_index = ((q->hba_index + 1) % q->entry_count); 429 return 1; 430 } 431 432 /** 433 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 434 * @q: The Event Queue to get the first valid EQE from 435 * 436 * This routine will get the first valid Event Queue Entry from @q, update 437 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 438 * the Queue (no more work to do), or the Queue is full of EQEs that have been 439 * processed, but not popped back to the HBA then this routine will return NULL. 440 **/ 441 static struct lpfc_eqe * 442 lpfc_sli4_eq_get(struct lpfc_queue *q) 443 { 444 struct lpfc_eqe *eqe; 445 446 /* sanity check on queue memory */ 447 if (unlikely(!q)) 448 return NULL; 449 eqe = lpfc_sli4_qe(q, q->host_index); 450 451 /* If the next EQE is not valid then we are done */ 452 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 453 return NULL; 454 455 /* 456 * insert barrier for instruction interlock : data from the hardware 457 * must have the valid bit checked before it can be copied and acted 458 * upon. Speculative instructions were allowing a bcopy at the start 459 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 460 * after our return, to copy data before the valid bit check above 461 * was done. As such, some of the copied data was stale. The barrier 462 * ensures the check is before any data is copied. 463 */ 464 mb(); 465 return eqe; 466 } 467 468 /** 469 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 470 * @q: The Event Queue to disable interrupts 471 * 472 **/ 473 void 474 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 475 { 476 struct lpfc_register doorbell; 477 478 doorbell.word0 = 0; 479 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 480 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 481 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 482 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 483 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 484 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 485 } 486 487 /** 488 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 489 * @q: The Event Queue to disable interrupts 490 * 491 **/ 492 void 493 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 494 { 495 struct lpfc_register doorbell; 496 497 doorbell.word0 = 0; 498 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 499 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 500 } 501 502 /** 503 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 504 * @phba: adapter with EQ 505 * @q: The Event Queue that the host has completed processing for. 506 * @count: Number of elements that have been consumed 507 * @arm: Indicates whether the host wants to arms this CQ. 508 * 509 * This routine will notify the HBA, by ringing the doorbell, that count 510 * number of EQEs have been processed. The @arm parameter indicates whether 511 * the queue should be rearmed when ringing the doorbell. 512 **/ 513 void 514 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 515 uint32_t count, bool arm) 516 { 517 struct lpfc_register doorbell; 518 519 /* sanity check on queue memory */ 520 if (unlikely(!q || (count == 0 && !arm))) 521 return; 522 523 /* ring doorbell for number popped */ 524 doorbell.word0 = 0; 525 if (arm) { 526 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 527 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 528 } 529 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 530 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 531 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 532 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 533 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 534 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 535 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 536 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 537 readl(q->phba->sli4_hba.EQDBregaddr); 538 } 539 540 /** 541 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 542 * @phba: adapter with EQ 543 * @q: The Event Queue that the host has completed processing for. 544 * @count: Number of elements that have been consumed 545 * @arm: Indicates whether the host wants to arms this CQ. 546 * 547 * This routine will notify the HBA, by ringing the doorbell, that count 548 * number of EQEs have been processed. The @arm parameter indicates whether 549 * the queue should be rearmed when ringing the doorbell. 550 **/ 551 void 552 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 553 uint32_t count, bool arm) 554 { 555 struct lpfc_register doorbell; 556 557 /* sanity check on queue memory */ 558 if (unlikely(!q || (count == 0 && !arm))) 559 return; 560 561 /* ring doorbell for number popped */ 562 doorbell.word0 = 0; 563 if (arm) 564 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 565 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 566 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 567 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 568 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 569 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 570 readl(q->phba->sli4_hba.EQDBregaddr); 571 } 572 573 static void 574 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 575 struct lpfc_eqe *eqe) 576 { 577 if (!phba->sli4_hba.pc_sli4_params.eqav) 578 bf_set_le32(lpfc_eqe_valid, eqe, 0); 579 580 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 581 582 /* if the index wrapped around, toggle the valid bit */ 583 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 584 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 585 } 586 587 static void 588 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 589 { 590 struct lpfc_eqe *eqe = NULL; 591 u32 eq_count = 0, cq_count = 0; 592 struct lpfc_cqe *cqe = NULL; 593 struct lpfc_queue *cq = NULL, *childq = NULL; 594 int cqid = 0; 595 596 /* walk all the EQ entries and drop on the floor */ 597 eqe = lpfc_sli4_eq_get(eq); 598 while (eqe) { 599 /* Get the reference to the corresponding CQ */ 600 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 601 cq = NULL; 602 603 list_for_each_entry(childq, &eq->child_list, list) { 604 if (childq->queue_id == cqid) { 605 cq = childq; 606 break; 607 } 608 } 609 /* If CQ is valid, iterate through it and drop all the CQEs */ 610 if (cq) { 611 cqe = lpfc_sli4_cq_get(cq); 612 while (cqe) { 613 __lpfc_sli4_consume_cqe(phba, cq, cqe); 614 cq_count++; 615 cqe = lpfc_sli4_cq_get(cq); 616 } 617 /* Clear and re-arm the CQ */ 618 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 619 LPFC_QUEUE_REARM); 620 cq_count = 0; 621 } 622 __lpfc_sli4_consume_eqe(phba, eq, eqe); 623 eq_count++; 624 eqe = lpfc_sli4_eq_get(eq); 625 } 626 627 /* Clear and re-arm the EQ */ 628 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 629 } 630 631 static int 632 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 633 uint8_t rearm) 634 { 635 struct lpfc_eqe *eqe; 636 int count = 0, consumed = 0; 637 638 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 639 goto rearm_and_exit; 640 641 eqe = lpfc_sli4_eq_get(eq); 642 while (eqe) { 643 lpfc_sli4_hba_handle_eqe(phba, eq, eqe); 644 __lpfc_sli4_consume_eqe(phba, eq, eqe); 645 646 consumed++; 647 if (!(++count % eq->max_proc_limit)) 648 break; 649 650 if (!(count % eq->notify_interval)) { 651 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 652 LPFC_QUEUE_NOARM); 653 consumed = 0; 654 } 655 656 eqe = lpfc_sli4_eq_get(eq); 657 } 658 eq->EQ_processed += count; 659 660 /* Track the max number of EQEs processed in 1 intr */ 661 if (count > eq->EQ_max_eqe) 662 eq->EQ_max_eqe = count; 663 664 xchg(&eq->queue_claimed, 0); 665 666 rearm_and_exit: 667 /* Always clear the EQ. */ 668 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 669 670 return count; 671 } 672 673 /** 674 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 675 * @q: The Completion Queue to get the first valid CQE from 676 * 677 * This routine will get the first valid Completion Queue Entry from @q, update 678 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 679 * the Queue (no more work to do), or the Queue is full of CQEs that have been 680 * processed, but not popped back to the HBA then this routine will return NULL. 681 **/ 682 static struct lpfc_cqe * 683 lpfc_sli4_cq_get(struct lpfc_queue *q) 684 { 685 struct lpfc_cqe *cqe; 686 687 /* sanity check on queue memory */ 688 if (unlikely(!q)) 689 return NULL; 690 cqe = lpfc_sli4_qe(q, q->host_index); 691 692 /* If the next CQE is not valid then we are done */ 693 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 694 return NULL; 695 696 /* 697 * insert barrier for instruction interlock : data from the hardware 698 * must have the valid bit checked before it can be copied and acted 699 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 700 * instructions allowing action on content before valid bit checked, 701 * add barrier here as well. May not be needed as "content" is a 702 * single 32-bit entity here (vs multi word structure for cq's). 703 */ 704 mb(); 705 return cqe; 706 } 707 708 static void 709 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 710 struct lpfc_cqe *cqe) 711 { 712 if (!phba->sli4_hba.pc_sli4_params.cqav) 713 bf_set_le32(lpfc_cqe_valid, cqe, 0); 714 715 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 716 717 /* if the index wrapped around, toggle the valid bit */ 718 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 719 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 720 } 721 722 /** 723 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 724 * @phba: the adapter with the CQ 725 * @q: The Completion Queue that the host has completed processing for. 726 * @count: the number of elements that were consumed 727 * @arm: Indicates whether the host wants to arms this CQ. 728 * 729 * This routine will notify the HBA, by ringing the doorbell, that the 730 * CQEs have been processed. The @arm parameter specifies whether the 731 * queue should be rearmed when ringing the doorbell. 732 **/ 733 void 734 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 735 uint32_t count, bool arm) 736 { 737 struct lpfc_register doorbell; 738 739 /* sanity check on queue memory */ 740 if (unlikely(!q || (count == 0 && !arm))) 741 return; 742 743 /* ring doorbell for number popped */ 744 doorbell.word0 = 0; 745 if (arm) 746 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 747 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 748 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 749 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 750 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 751 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 752 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 753 } 754 755 /** 756 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 757 * @phba: the adapter with the CQ 758 * @q: The Completion Queue that the host has completed processing for. 759 * @count: the number of elements that were consumed 760 * @arm: Indicates whether the host wants to arms this CQ. 761 * 762 * This routine will notify the HBA, by ringing the doorbell, that the 763 * CQEs have been processed. The @arm parameter specifies whether the 764 * queue should be rearmed when ringing the doorbell. 765 **/ 766 void 767 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 768 uint32_t count, bool arm) 769 { 770 struct lpfc_register doorbell; 771 772 /* sanity check on queue memory */ 773 if (unlikely(!q || (count == 0 && !arm))) 774 return; 775 776 /* ring doorbell for number popped */ 777 doorbell.word0 = 0; 778 if (arm) 779 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 780 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 781 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 782 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 783 } 784 785 /* 786 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 787 * 788 * This routine will copy the contents of @wqe to the next available entry on 789 * the @q. This function will then ring the Receive Queue Doorbell to signal the 790 * HBA to start processing the Receive Queue Entry. This function returns the 791 * index that the rqe was copied to if successful. If no entries are available 792 * on @q then this function will return -ENOMEM. 793 * The caller is expected to hold the hbalock when calling this routine. 794 **/ 795 int 796 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 797 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 798 { 799 struct lpfc_rqe *temp_hrqe; 800 struct lpfc_rqe *temp_drqe; 801 struct lpfc_register doorbell; 802 int hq_put_index; 803 int dq_put_index; 804 805 /* sanity check on queue memory */ 806 if (unlikely(!hq) || unlikely(!dq)) 807 return -ENOMEM; 808 hq_put_index = hq->host_index; 809 dq_put_index = dq->host_index; 810 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 811 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 812 813 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 814 return -EINVAL; 815 if (hq_put_index != dq_put_index) 816 return -EINVAL; 817 /* If the host has not yet processed the next entry then we are done */ 818 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 819 return -EBUSY; 820 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 821 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 822 823 /* Update the host index to point to the next slot */ 824 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 825 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 826 hq->RQ_buf_posted++; 827 828 /* Ring The Header Receive Queue Doorbell */ 829 if (!(hq->host_index % hq->notify_interval)) { 830 doorbell.word0 = 0; 831 if (hq->db_format == LPFC_DB_RING_FORMAT) { 832 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 833 hq->notify_interval); 834 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 835 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 836 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 837 hq->notify_interval); 838 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 839 hq->host_index); 840 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 841 } else { 842 return -EINVAL; 843 } 844 writel(doorbell.word0, hq->db_regaddr); 845 } 846 return hq_put_index; 847 } 848 849 /* 850 * lpfc_sli4_rq_release - Updates internal hba index for RQ 851 * 852 * This routine will update the HBA index of a queue to reflect consumption of 853 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 854 * consumed an entry the host calls this function to update the queue's 855 * internal pointers. This routine returns the number of entries that were 856 * consumed by the HBA. 857 **/ 858 static uint32_t 859 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 860 { 861 /* sanity check on queue memory */ 862 if (unlikely(!hq) || unlikely(!dq)) 863 return 0; 864 865 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 866 return 0; 867 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 868 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 869 return 1; 870 } 871 872 /** 873 * lpfc_cmd_iocb - Get next command iocb entry in the ring 874 * @phba: Pointer to HBA context object. 875 * @pring: Pointer to driver SLI ring object. 876 * 877 * This function returns pointer to next command iocb entry 878 * in the command ring. The caller must hold hbalock to prevent 879 * other threads consume the next command iocb. 880 * SLI-2/SLI-3 provide different sized iocbs. 881 **/ 882 static inline IOCB_t * 883 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 884 { 885 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 886 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 887 } 888 889 /** 890 * lpfc_resp_iocb - Get next response iocb entry in the ring 891 * @phba: Pointer to HBA context object. 892 * @pring: Pointer to driver SLI ring object. 893 * 894 * This function returns pointer to next response iocb entry 895 * in the response ring. The caller must hold hbalock to make sure 896 * that no other thread consume the next response iocb. 897 * SLI-2/SLI-3 provide different sized iocbs. 898 **/ 899 static inline IOCB_t * 900 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 901 { 902 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 903 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 904 } 905 906 /** 907 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 908 * @phba: Pointer to HBA context object. 909 * 910 * This function is called with hbalock held. This function 911 * allocates a new driver iocb object from the iocb pool. If the 912 * allocation is successful, it returns pointer to the newly 913 * allocated iocb object else it returns NULL. 914 **/ 915 struct lpfc_iocbq * 916 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 917 { 918 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 919 struct lpfc_iocbq * iocbq = NULL; 920 921 lockdep_assert_held(&phba->hbalock); 922 923 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 924 if (iocbq) 925 phba->iocb_cnt++; 926 if (phba->iocb_cnt > phba->iocb_max) 927 phba->iocb_max = phba->iocb_cnt; 928 return iocbq; 929 } 930 931 /** 932 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 933 * @phba: Pointer to HBA context object. 934 * @xritag: XRI value. 935 * 936 * This function clears the sglq pointer from the array of active 937 * sglq's. The xritag that is passed in is used to index into the 938 * array. Before the xritag can be used it needs to be adjusted 939 * by subtracting the xribase. 940 * 941 * Returns sglq ponter = success, NULL = Failure. 942 **/ 943 struct lpfc_sglq * 944 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 945 { 946 struct lpfc_sglq *sglq; 947 948 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 949 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 950 return sglq; 951 } 952 953 /** 954 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 955 * @phba: Pointer to HBA context object. 956 * @xritag: XRI value. 957 * 958 * This function returns the sglq pointer from the array of active 959 * sglq's. The xritag that is passed in is used to index into the 960 * array. Before the xritag can be used it needs to be adjusted 961 * by subtracting the xribase. 962 * 963 * Returns sglq ponter = success, NULL = Failure. 964 **/ 965 struct lpfc_sglq * 966 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 967 { 968 struct lpfc_sglq *sglq; 969 970 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 971 return sglq; 972 } 973 974 /** 975 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 976 * @phba: Pointer to HBA context object. 977 * @xritag: xri used in this exchange. 978 * @rrq: The RRQ to be cleared. 979 * 980 **/ 981 void 982 lpfc_clr_rrq_active(struct lpfc_hba *phba, 983 uint16_t xritag, 984 struct lpfc_node_rrq *rrq) 985 { 986 struct lpfc_nodelist *ndlp = NULL; 987 988 /* Lookup did to verify if did is still active on this vport */ 989 if (rrq->vport) 990 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 991 992 if (!ndlp) 993 goto out; 994 995 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 996 rrq->send_rrq = 0; 997 rrq->xritag = 0; 998 rrq->rrq_stop_time = 0; 999 } 1000 out: 1001 mempool_free(rrq, phba->rrq_pool); 1002 } 1003 1004 /** 1005 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1006 * @phba: Pointer to HBA context object. 1007 * 1008 * This function is called with hbalock held. This function 1009 * Checks if stop_time (ratov from setting rrq active) has 1010 * been reached, if it has and the send_rrq flag is set then 1011 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1012 * then it will just call the routine to clear the rrq and 1013 * free the rrq resource. 1014 * The timer is set to the next rrq that is going to expire before 1015 * leaving the routine. 1016 * 1017 **/ 1018 void 1019 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1020 { 1021 struct lpfc_node_rrq *rrq; 1022 struct lpfc_node_rrq *nextrrq; 1023 unsigned long next_time; 1024 unsigned long iflags; 1025 LIST_HEAD(send_rrq); 1026 1027 spin_lock_irqsave(&phba->hbalock, iflags); 1028 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1029 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1030 list_for_each_entry_safe(rrq, nextrrq, 1031 &phba->active_rrq_list, list) { 1032 if (time_after(jiffies, rrq->rrq_stop_time)) 1033 list_move(&rrq->list, &send_rrq); 1034 else if (time_before(rrq->rrq_stop_time, next_time)) 1035 next_time = rrq->rrq_stop_time; 1036 } 1037 spin_unlock_irqrestore(&phba->hbalock, iflags); 1038 if ((!list_empty(&phba->active_rrq_list)) && 1039 (!(phba->pport->load_flag & FC_UNLOADING))) 1040 mod_timer(&phba->rrq_tmr, next_time); 1041 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1042 list_del(&rrq->list); 1043 if (!rrq->send_rrq) { 1044 /* this call will free the rrq */ 1045 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1046 } else if (lpfc_send_rrq(phba, rrq)) { 1047 /* if we send the rrq then the completion handler 1048 * will clear the bit in the xribitmap. 1049 */ 1050 lpfc_clr_rrq_active(phba, rrq->xritag, 1051 rrq); 1052 } 1053 } 1054 } 1055 1056 /** 1057 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1058 * @vport: Pointer to vport context object. 1059 * @xri: The xri used in the exchange. 1060 * @did: The targets DID for this exchange. 1061 * 1062 * returns NULL = rrq not found in the phba->active_rrq_list. 1063 * rrq = rrq for this xri and target. 1064 **/ 1065 struct lpfc_node_rrq * 1066 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1067 { 1068 struct lpfc_hba *phba = vport->phba; 1069 struct lpfc_node_rrq *rrq; 1070 struct lpfc_node_rrq *nextrrq; 1071 unsigned long iflags; 1072 1073 if (phba->sli_rev != LPFC_SLI_REV4) 1074 return NULL; 1075 spin_lock_irqsave(&phba->hbalock, iflags); 1076 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1077 if (rrq->vport == vport && rrq->xritag == xri && 1078 rrq->nlp_DID == did){ 1079 list_del(&rrq->list); 1080 spin_unlock_irqrestore(&phba->hbalock, iflags); 1081 return rrq; 1082 } 1083 } 1084 spin_unlock_irqrestore(&phba->hbalock, iflags); 1085 return NULL; 1086 } 1087 1088 /** 1089 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1090 * @vport: Pointer to vport context object. 1091 * @ndlp: Pointer to the lpfc_node_list structure. 1092 * If ndlp is NULL Remove all active RRQs for this vport from the 1093 * phba->active_rrq_list and clear the rrq. 1094 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1095 **/ 1096 void 1097 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1098 1099 { 1100 struct lpfc_hba *phba = vport->phba; 1101 struct lpfc_node_rrq *rrq; 1102 struct lpfc_node_rrq *nextrrq; 1103 unsigned long iflags; 1104 LIST_HEAD(rrq_list); 1105 1106 if (phba->sli_rev != LPFC_SLI_REV4) 1107 return; 1108 if (!ndlp) { 1109 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1110 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1111 } 1112 spin_lock_irqsave(&phba->hbalock, iflags); 1113 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1114 if (rrq->vport != vport) 1115 continue; 1116 1117 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1118 list_move(&rrq->list, &rrq_list); 1119 1120 } 1121 spin_unlock_irqrestore(&phba->hbalock, iflags); 1122 1123 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1124 list_del(&rrq->list); 1125 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1126 } 1127 } 1128 1129 /** 1130 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1131 * @phba: Pointer to HBA context object. 1132 * @ndlp: Targets nodelist pointer for this exchange. 1133 * @xritag: the xri in the bitmap to test. 1134 * 1135 * This function returns: 1136 * 0 = rrq not active for this xri 1137 * 1 = rrq is valid for this xri. 1138 **/ 1139 int 1140 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1141 uint16_t xritag) 1142 { 1143 if (!ndlp) 1144 return 0; 1145 if (!ndlp->active_rrqs_xri_bitmap) 1146 return 0; 1147 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1148 return 1; 1149 else 1150 return 0; 1151 } 1152 1153 /** 1154 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1155 * @phba: Pointer to HBA context object. 1156 * @ndlp: nodelist pointer for this target. 1157 * @xritag: xri used in this exchange. 1158 * @rxid: Remote Exchange ID. 1159 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1160 * 1161 * This function takes the hbalock. 1162 * The active bit is always set in the active rrq xri_bitmap even 1163 * if there is no slot avaiable for the other rrq information. 1164 * 1165 * returns 0 rrq actived for this xri 1166 * < 0 No memory or invalid ndlp. 1167 **/ 1168 int 1169 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1170 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1171 { 1172 unsigned long iflags; 1173 struct lpfc_node_rrq *rrq; 1174 int empty; 1175 1176 if (!ndlp) 1177 return -EINVAL; 1178 1179 if (!phba->cfg_enable_rrq) 1180 return -EINVAL; 1181 1182 spin_lock_irqsave(&phba->hbalock, iflags); 1183 if (phba->pport->load_flag & FC_UNLOADING) { 1184 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1185 goto out; 1186 } 1187 1188 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1189 goto out; 1190 1191 if (!ndlp->active_rrqs_xri_bitmap) 1192 goto out; 1193 1194 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1195 goto out; 1196 1197 spin_unlock_irqrestore(&phba->hbalock, iflags); 1198 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1199 if (!rrq) { 1200 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1201 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1202 " DID:0x%x Send:%d\n", 1203 xritag, rxid, ndlp->nlp_DID, send_rrq); 1204 return -EINVAL; 1205 } 1206 if (phba->cfg_enable_rrq == 1) 1207 rrq->send_rrq = send_rrq; 1208 else 1209 rrq->send_rrq = 0; 1210 rrq->xritag = xritag; 1211 rrq->rrq_stop_time = jiffies + 1212 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1213 rrq->nlp_DID = ndlp->nlp_DID; 1214 rrq->vport = ndlp->vport; 1215 rrq->rxid = rxid; 1216 spin_lock_irqsave(&phba->hbalock, iflags); 1217 empty = list_empty(&phba->active_rrq_list); 1218 list_add_tail(&rrq->list, &phba->active_rrq_list); 1219 phba->hba_flag |= HBA_RRQ_ACTIVE; 1220 if (empty) 1221 lpfc_worker_wake_up(phba); 1222 spin_unlock_irqrestore(&phba->hbalock, iflags); 1223 return 0; 1224 out: 1225 spin_unlock_irqrestore(&phba->hbalock, iflags); 1226 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1227 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1228 " DID:0x%x Send:%d\n", 1229 xritag, rxid, ndlp->nlp_DID, send_rrq); 1230 return -EINVAL; 1231 } 1232 1233 /** 1234 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1235 * @phba: Pointer to HBA context object. 1236 * @piocbq: Pointer to the iocbq. 1237 * 1238 * The driver calls this function with either the nvme ls ring lock 1239 * or the fc els ring lock held depending on the iocb usage. This function 1240 * gets a new driver sglq object from the sglq list. If the list is not empty 1241 * then it is successful, it returns pointer to the newly allocated sglq 1242 * object else it returns NULL. 1243 **/ 1244 static struct lpfc_sglq * 1245 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1246 { 1247 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1248 struct lpfc_sglq *sglq = NULL; 1249 struct lpfc_sglq *start_sglq = NULL; 1250 struct lpfc_io_buf *lpfc_cmd; 1251 struct lpfc_nodelist *ndlp; 1252 int found = 0; 1253 u8 cmnd; 1254 1255 cmnd = get_job_cmnd(phba, piocbq); 1256 1257 if (piocbq->cmd_flag & LPFC_IO_FCP) { 1258 lpfc_cmd = piocbq->io_buf; 1259 ndlp = lpfc_cmd->rdata->pnode; 1260 } else if ((cmnd == CMD_GEN_REQUEST64_CR) && 1261 !(piocbq->cmd_flag & LPFC_IO_LIBDFC)) { 1262 ndlp = piocbq->ndlp; 1263 } else if (piocbq->cmd_flag & LPFC_IO_LIBDFC) { 1264 if (piocbq->cmd_flag & LPFC_IO_LOOPBACK) 1265 ndlp = NULL; 1266 else 1267 ndlp = piocbq->ndlp; 1268 } else { 1269 ndlp = piocbq->ndlp; 1270 } 1271 1272 spin_lock(&phba->sli4_hba.sgl_list_lock); 1273 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1274 start_sglq = sglq; 1275 while (!found) { 1276 if (!sglq) 1277 break; 1278 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1279 test_bit(sglq->sli4_lxritag, 1280 ndlp->active_rrqs_xri_bitmap)) { 1281 /* This xri has an rrq outstanding for this DID. 1282 * put it back in the list and get another xri. 1283 */ 1284 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1285 sglq = NULL; 1286 list_remove_head(lpfc_els_sgl_list, sglq, 1287 struct lpfc_sglq, list); 1288 if (sglq == start_sglq) { 1289 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1290 sglq = NULL; 1291 break; 1292 } else 1293 continue; 1294 } 1295 sglq->ndlp = ndlp; 1296 found = 1; 1297 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1298 sglq->state = SGL_ALLOCATED; 1299 } 1300 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1301 return sglq; 1302 } 1303 1304 /** 1305 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1306 * @phba: Pointer to HBA context object. 1307 * @piocbq: Pointer to the iocbq. 1308 * 1309 * This function is called with the sgl_list lock held. This function 1310 * gets a new driver sglq object from the sglq list. If the 1311 * list is not empty then it is successful, it returns pointer to the newly 1312 * allocated sglq object else it returns NULL. 1313 **/ 1314 struct lpfc_sglq * 1315 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1316 { 1317 struct list_head *lpfc_nvmet_sgl_list; 1318 struct lpfc_sglq *sglq = NULL; 1319 1320 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1321 1322 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1323 1324 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1325 if (!sglq) 1326 return NULL; 1327 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1328 sglq->state = SGL_ALLOCATED; 1329 return sglq; 1330 } 1331 1332 /** 1333 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1334 * @phba: Pointer to HBA context object. 1335 * 1336 * This function is called with no lock held. This function 1337 * allocates a new driver iocb object from the iocb pool. If the 1338 * allocation is successful, it returns pointer to the newly 1339 * allocated iocb object else it returns NULL. 1340 **/ 1341 struct lpfc_iocbq * 1342 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1343 { 1344 struct lpfc_iocbq * iocbq = NULL; 1345 unsigned long iflags; 1346 1347 spin_lock_irqsave(&phba->hbalock, iflags); 1348 iocbq = __lpfc_sli_get_iocbq(phba); 1349 spin_unlock_irqrestore(&phba->hbalock, iflags); 1350 return iocbq; 1351 } 1352 1353 /** 1354 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1355 * @phba: Pointer to HBA context object. 1356 * @iocbq: Pointer to driver iocb object. 1357 * 1358 * This function is called to release the driver iocb object 1359 * to the iocb pool. The iotag in the iocb object 1360 * does not change for each use of the iocb object. This function 1361 * clears all other fields of the iocb object when it is freed. 1362 * The sqlq structure that holds the xritag and phys and virtual 1363 * mappings for the scatter gather list is retrieved from the 1364 * active array of sglq. The get of the sglq pointer also clears 1365 * the entry in the array. If the status of the IO indiactes that 1366 * this IO was aborted then the sglq entry it put on the 1367 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1368 * IO has good status or fails for any other reason then the sglq 1369 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1370 * asserted held in the code path calling this routine. 1371 **/ 1372 static void 1373 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1374 { 1375 struct lpfc_sglq *sglq; 1376 unsigned long iflag = 0; 1377 struct lpfc_sli_ring *pring; 1378 1379 if (iocbq->sli4_xritag == NO_XRI) 1380 sglq = NULL; 1381 else 1382 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1383 1384 1385 if (sglq) { 1386 if (iocbq->cmd_flag & LPFC_IO_NVMET) { 1387 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1388 iflag); 1389 sglq->state = SGL_FREED; 1390 sglq->ndlp = NULL; 1391 list_add_tail(&sglq->list, 1392 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1393 spin_unlock_irqrestore( 1394 &phba->sli4_hba.sgl_list_lock, iflag); 1395 goto out; 1396 } 1397 1398 if ((iocbq->cmd_flag & LPFC_EXCHANGE_BUSY) && 1399 (!(unlikely(pci_channel_offline(phba->pcidev)))) && 1400 sglq->state != SGL_XRI_ABORTED) { 1401 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1402 iflag); 1403 1404 /* Check if we can get a reference on ndlp */ 1405 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1406 sglq->ndlp = NULL; 1407 1408 list_add(&sglq->list, 1409 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1410 spin_unlock_irqrestore( 1411 &phba->sli4_hba.sgl_list_lock, iflag); 1412 } else { 1413 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1414 iflag); 1415 sglq->state = SGL_FREED; 1416 sglq->ndlp = NULL; 1417 list_add_tail(&sglq->list, 1418 &phba->sli4_hba.lpfc_els_sgl_list); 1419 spin_unlock_irqrestore( 1420 &phba->sli4_hba.sgl_list_lock, iflag); 1421 pring = lpfc_phba_elsring(phba); 1422 /* Check if TXQ queue needs to be serviced */ 1423 if (pring && (!list_empty(&pring->txq))) 1424 lpfc_worker_wake_up(phba); 1425 } 1426 } 1427 1428 out: 1429 /* 1430 * Clean all volatile data fields, preserve iotag and node struct. 1431 */ 1432 memset_startat(iocbq, 0, wqe); 1433 iocbq->sli4_lxritag = NO_XRI; 1434 iocbq->sli4_xritag = NO_XRI; 1435 iocbq->cmd_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF | 1436 LPFC_IO_NVME_LS); 1437 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1438 } 1439 1440 1441 /** 1442 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1443 * @phba: Pointer to HBA context object. 1444 * @iocbq: Pointer to driver iocb object. 1445 * 1446 * This function is called to release the driver iocb object to the 1447 * iocb pool. The iotag in the iocb object does not change for each 1448 * use of the iocb object. This function clears all other fields of 1449 * the iocb object when it is freed. The hbalock is asserted held in 1450 * the code path calling this routine. 1451 **/ 1452 static void 1453 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1454 { 1455 1456 /* 1457 * Clean all volatile data fields, preserve iotag and node struct. 1458 */ 1459 memset_startat(iocbq, 0, iocb); 1460 iocbq->sli4_xritag = NO_XRI; 1461 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1462 } 1463 1464 /** 1465 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1466 * @phba: Pointer to HBA context object. 1467 * @iocbq: Pointer to driver iocb object. 1468 * 1469 * This function is called with hbalock held to release driver 1470 * iocb object to the iocb pool. The iotag in the iocb object 1471 * does not change for each use of the iocb object. This function 1472 * clears all other fields of the iocb object when it is freed. 1473 **/ 1474 static void 1475 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1476 { 1477 lockdep_assert_held(&phba->hbalock); 1478 1479 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1480 phba->iocb_cnt--; 1481 } 1482 1483 /** 1484 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1485 * @phba: Pointer to HBA context object. 1486 * @iocbq: Pointer to driver iocb object. 1487 * 1488 * This function is called with no lock held to release the iocb to 1489 * iocb pool. 1490 **/ 1491 void 1492 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1493 { 1494 unsigned long iflags; 1495 1496 /* 1497 * Clean all volatile data fields, preserve iotag and node struct. 1498 */ 1499 spin_lock_irqsave(&phba->hbalock, iflags); 1500 __lpfc_sli_release_iocbq(phba, iocbq); 1501 spin_unlock_irqrestore(&phba->hbalock, iflags); 1502 } 1503 1504 /** 1505 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1506 * @phba: Pointer to HBA context object. 1507 * @iocblist: List of IOCBs. 1508 * @ulpstatus: ULP status in IOCB command field. 1509 * @ulpWord4: ULP word-4 in IOCB command field. 1510 * 1511 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1512 * on the list by invoking the complete callback function associated with the 1513 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1514 * fields. 1515 **/ 1516 void 1517 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1518 uint32_t ulpstatus, uint32_t ulpWord4) 1519 { 1520 struct lpfc_iocbq *piocb; 1521 1522 while (!list_empty(iocblist)) { 1523 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1524 if (piocb->cmd_cmpl) { 1525 if (piocb->cmd_flag & LPFC_IO_NVME) { 1526 lpfc_nvme_cancel_iocb(phba, piocb, 1527 ulpstatus, ulpWord4); 1528 } else { 1529 if (phba->sli_rev == LPFC_SLI_REV4) { 1530 bf_set(lpfc_wcqe_c_status, 1531 &piocb->wcqe_cmpl, ulpstatus); 1532 piocb->wcqe_cmpl.parameter = ulpWord4; 1533 } else { 1534 piocb->iocb.ulpStatus = ulpstatus; 1535 piocb->iocb.un.ulpWord[4] = ulpWord4; 1536 } 1537 (piocb->cmd_cmpl) (phba, piocb, piocb); 1538 } 1539 } else { 1540 lpfc_sli_release_iocbq(phba, piocb); 1541 } 1542 } 1543 return; 1544 } 1545 1546 /** 1547 * lpfc_sli_iocb_cmd_type - Get the iocb type 1548 * @iocb_cmnd: iocb command code. 1549 * 1550 * This function is called by ring event handler function to get the iocb type. 1551 * This function translates the iocb command to an iocb command type used to 1552 * decide the final disposition of each completed IOCB. 1553 * The function returns 1554 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1555 * LPFC_SOL_IOCB if it is a solicited iocb completion 1556 * LPFC_ABORT_IOCB if it is an abort iocb 1557 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1558 * 1559 * The caller is not required to hold any lock. 1560 **/ 1561 static lpfc_iocb_type 1562 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1563 { 1564 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1565 1566 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1567 return 0; 1568 1569 switch (iocb_cmnd) { 1570 case CMD_XMIT_SEQUENCE_CR: 1571 case CMD_XMIT_SEQUENCE_CX: 1572 case CMD_XMIT_BCAST_CN: 1573 case CMD_XMIT_BCAST_CX: 1574 case CMD_ELS_REQUEST_CR: 1575 case CMD_ELS_REQUEST_CX: 1576 case CMD_CREATE_XRI_CR: 1577 case CMD_CREATE_XRI_CX: 1578 case CMD_GET_RPI_CN: 1579 case CMD_XMIT_ELS_RSP_CX: 1580 case CMD_GET_RPI_CR: 1581 case CMD_FCP_IWRITE_CR: 1582 case CMD_FCP_IWRITE_CX: 1583 case CMD_FCP_IREAD_CR: 1584 case CMD_FCP_IREAD_CX: 1585 case CMD_FCP_ICMND_CR: 1586 case CMD_FCP_ICMND_CX: 1587 case CMD_FCP_TSEND_CX: 1588 case CMD_FCP_TRSP_CX: 1589 case CMD_FCP_TRECEIVE_CX: 1590 case CMD_FCP_AUTO_TRSP_CX: 1591 case CMD_ADAPTER_MSG: 1592 case CMD_ADAPTER_DUMP: 1593 case CMD_XMIT_SEQUENCE64_CR: 1594 case CMD_XMIT_SEQUENCE64_CX: 1595 case CMD_XMIT_BCAST64_CN: 1596 case CMD_XMIT_BCAST64_CX: 1597 case CMD_ELS_REQUEST64_CR: 1598 case CMD_ELS_REQUEST64_CX: 1599 case CMD_FCP_IWRITE64_CR: 1600 case CMD_FCP_IWRITE64_CX: 1601 case CMD_FCP_IREAD64_CR: 1602 case CMD_FCP_IREAD64_CX: 1603 case CMD_FCP_ICMND64_CR: 1604 case CMD_FCP_ICMND64_CX: 1605 case CMD_FCP_TSEND64_CX: 1606 case CMD_FCP_TRSP64_CX: 1607 case CMD_FCP_TRECEIVE64_CX: 1608 case CMD_GEN_REQUEST64_CR: 1609 case CMD_GEN_REQUEST64_CX: 1610 case CMD_XMIT_ELS_RSP64_CX: 1611 case DSSCMD_IWRITE64_CR: 1612 case DSSCMD_IWRITE64_CX: 1613 case DSSCMD_IREAD64_CR: 1614 case DSSCMD_IREAD64_CX: 1615 case CMD_SEND_FRAME: 1616 type = LPFC_SOL_IOCB; 1617 break; 1618 case CMD_ABORT_XRI_CN: 1619 case CMD_ABORT_XRI_CX: 1620 case CMD_CLOSE_XRI_CN: 1621 case CMD_CLOSE_XRI_CX: 1622 case CMD_XRI_ABORTED_CX: 1623 case CMD_ABORT_MXRI64_CN: 1624 case CMD_XMIT_BLS_RSP64_CX: 1625 type = LPFC_ABORT_IOCB; 1626 break; 1627 case CMD_RCV_SEQUENCE_CX: 1628 case CMD_RCV_ELS_REQ_CX: 1629 case CMD_RCV_SEQUENCE64_CX: 1630 case CMD_RCV_ELS_REQ64_CX: 1631 case CMD_ASYNC_STATUS: 1632 case CMD_IOCB_RCV_SEQ64_CX: 1633 case CMD_IOCB_RCV_ELS64_CX: 1634 case CMD_IOCB_RCV_CONT64_CX: 1635 case CMD_IOCB_RET_XRI64_CX: 1636 type = LPFC_UNSOL_IOCB; 1637 break; 1638 case CMD_IOCB_XMIT_MSEQ64_CR: 1639 case CMD_IOCB_XMIT_MSEQ64_CX: 1640 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1641 case CMD_IOCB_RCV_ELS_LIST64_CX: 1642 case CMD_IOCB_CLOSE_EXTENDED_CN: 1643 case CMD_IOCB_ABORT_EXTENDED_CN: 1644 case CMD_IOCB_RET_HBQE64_CN: 1645 case CMD_IOCB_FCP_IBIDIR64_CR: 1646 case CMD_IOCB_FCP_IBIDIR64_CX: 1647 case CMD_IOCB_FCP_ITASKMGT64_CX: 1648 case CMD_IOCB_LOGENTRY_CN: 1649 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1650 printk("%s - Unhandled SLI-3 Command x%x\n", 1651 __func__, iocb_cmnd); 1652 type = LPFC_UNKNOWN_IOCB; 1653 break; 1654 default: 1655 type = LPFC_UNKNOWN_IOCB; 1656 break; 1657 } 1658 1659 return type; 1660 } 1661 1662 /** 1663 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1664 * @phba: Pointer to HBA context object. 1665 * 1666 * This function is called from SLI initialization code 1667 * to configure every ring of the HBA's SLI interface. The 1668 * caller is not required to hold any lock. This function issues 1669 * a config_ring mailbox command for each ring. 1670 * This function returns zero if successful else returns a negative 1671 * error code. 1672 **/ 1673 static int 1674 lpfc_sli_ring_map(struct lpfc_hba *phba) 1675 { 1676 struct lpfc_sli *psli = &phba->sli; 1677 LPFC_MBOXQ_t *pmb; 1678 MAILBOX_t *pmbox; 1679 int i, rc, ret = 0; 1680 1681 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1682 if (!pmb) 1683 return -ENOMEM; 1684 pmbox = &pmb->u.mb; 1685 phba->link_state = LPFC_INIT_MBX_CMDS; 1686 for (i = 0; i < psli->num_rings; i++) { 1687 lpfc_config_ring(phba, i, pmb); 1688 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1689 if (rc != MBX_SUCCESS) { 1690 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1691 "0446 Adapter failed to init (%d), " 1692 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1693 "ring %d\n", 1694 rc, pmbox->mbxCommand, 1695 pmbox->mbxStatus, i); 1696 phba->link_state = LPFC_HBA_ERROR; 1697 ret = -ENXIO; 1698 break; 1699 } 1700 } 1701 mempool_free(pmb, phba->mbox_mem_pool); 1702 return ret; 1703 } 1704 1705 /** 1706 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1707 * @phba: Pointer to HBA context object. 1708 * @pring: Pointer to driver SLI ring object. 1709 * @piocb: Pointer to the driver iocb object. 1710 * 1711 * The driver calls this function with the hbalock held for SLI3 ports or 1712 * the ring lock held for SLI4 ports. The function adds the 1713 * new iocb to txcmplq of the given ring. This function always returns 1714 * 0. If this function is called for ELS ring, this function checks if 1715 * there is a vport associated with the ELS command. This function also 1716 * starts els_tmofunc timer if this is an ELS command. 1717 **/ 1718 static int 1719 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1720 struct lpfc_iocbq *piocb) 1721 { 1722 u32 ulp_command = 0; 1723 1724 BUG_ON(!piocb); 1725 ulp_command = get_job_cmnd(phba, piocb); 1726 1727 list_add_tail(&piocb->list, &pring->txcmplq); 1728 piocb->cmd_flag |= LPFC_IO_ON_TXCMPLQ; 1729 pring->txcmplq_cnt++; 1730 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1731 (ulp_command != CMD_ABORT_XRI_WQE) && 1732 (ulp_command != CMD_ABORT_XRI_CN) && 1733 (ulp_command != CMD_CLOSE_XRI_CN)) { 1734 BUG_ON(!piocb->vport); 1735 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1736 mod_timer(&piocb->vport->els_tmofunc, 1737 jiffies + 1738 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1739 } 1740 1741 return 0; 1742 } 1743 1744 /** 1745 * lpfc_sli_ringtx_get - Get first element of the txq 1746 * @phba: Pointer to HBA context object. 1747 * @pring: Pointer to driver SLI ring object. 1748 * 1749 * This function is called with hbalock held to get next 1750 * iocb in txq of the given ring. If there is any iocb in 1751 * the txq, the function returns first iocb in the list after 1752 * removing the iocb from the list, else it returns NULL. 1753 **/ 1754 struct lpfc_iocbq * 1755 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1756 { 1757 struct lpfc_iocbq *cmd_iocb; 1758 1759 lockdep_assert_held(&phba->hbalock); 1760 1761 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1762 return cmd_iocb; 1763 } 1764 1765 /** 1766 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl 1767 * @phba: Pointer to HBA context object. 1768 * @cmdiocb: Pointer to driver command iocb object. 1769 * @rspiocb: Pointer to driver response iocb object. 1770 * 1771 * This routine will inform the driver of any BW adjustments we need 1772 * to make. These changes will be picked up during the next CMF 1773 * timer interrupt. In addition, any BW changes will be logged 1774 * with LOG_CGN_MGMT. 1775 **/ 1776 static void 1777 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 1778 struct lpfc_iocbq *rspiocb) 1779 { 1780 union lpfc_wqe128 *wqe; 1781 uint32_t status, info; 1782 struct lpfc_wcqe_complete *wcqe = &rspiocb->wcqe_cmpl; 1783 uint64_t bw, bwdif, slop; 1784 uint64_t pcent, bwpcent; 1785 int asig, afpin, sigcnt, fpincnt; 1786 int wsigmax, wfpinmax, cg, tdp; 1787 char *s; 1788 1789 /* First check for error */ 1790 status = bf_get(lpfc_wcqe_c_status, wcqe); 1791 if (status) { 1792 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1793 "6211 CMF_SYNC_WQE Error " 1794 "req_tag x%x status x%x hwstatus x%x " 1795 "tdatap x%x parm x%x\n", 1796 bf_get(lpfc_wcqe_c_request_tag, wcqe), 1797 bf_get(lpfc_wcqe_c_status, wcqe), 1798 bf_get(lpfc_wcqe_c_hw_status, wcqe), 1799 wcqe->total_data_placed, 1800 wcqe->parameter); 1801 goto out; 1802 } 1803 1804 /* Gather congestion information on a successful cmpl */ 1805 info = wcqe->parameter; 1806 phba->cmf_active_info = info; 1807 1808 /* See if firmware info count is valid or has changed */ 1809 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info) 1810 info = 0; 1811 else 1812 phba->cmf_info_per_interval = info; 1813 1814 tdp = bf_get(lpfc_wcqe_c_cmf_bw, wcqe); 1815 cg = bf_get(lpfc_wcqe_c_cmf_cg, wcqe); 1816 1817 /* Get BW requirement from firmware */ 1818 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE; 1819 if (!bw) { 1820 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1821 "6212 CMF_SYNC_WQE x%x: NULL bw\n", 1822 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 1823 goto out; 1824 } 1825 1826 /* Gather information needed for logging if a BW change is required */ 1827 wqe = &cmdiocb->wqe; 1828 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync); 1829 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync); 1830 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync); 1831 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync); 1832 if (phba->cmf_max_bytes_per_interval != bw || 1833 (asig || afpin || sigcnt || fpincnt)) { 1834 /* Are we increasing or decreasing BW */ 1835 if (phba->cmf_max_bytes_per_interval < bw) { 1836 bwdif = bw - phba->cmf_max_bytes_per_interval; 1837 s = "Increase"; 1838 } else { 1839 bwdif = phba->cmf_max_bytes_per_interval - bw; 1840 s = "Decrease"; 1841 } 1842 1843 /* What is the change percentage */ 1844 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/ 1845 pcent = div64_u64(bwdif * 100 + slop, 1846 phba->cmf_link_byte_count); 1847 bwpcent = div64_u64(bw * 100 + slop, 1848 phba->cmf_link_byte_count); 1849 /* Because of bytes adjustment due to shorter timer in 1850 * lpfc_cmf_timer() the cmf_link_byte_count can be shorter and 1851 * may seem like BW is above 100%. 1852 */ 1853 if (bwpcent > 100) 1854 bwpcent = 100; 1855 1856 if (phba->cmf_max_bytes_per_interval < bw && 1857 bwpcent > 95) 1858 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1859 "6208 Congestion bandwidth " 1860 "limits removed\n"); 1861 else if ((phba->cmf_max_bytes_per_interval > bw) && 1862 ((bwpcent + pcent) <= 100) && ((bwpcent + pcent) > 95)) 1863 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1864 "6209 Congestion bandwidth " 1865 "limits in effect\n"); 1866 1867 if (asig) { 1868 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1869 "6237 BW Threshold %lld%% (%lld): " 1870 "%lld%% %s: Signal Alarm: cg:%d " 1871 "Info:%u\n", 1872 bwpcent, bw, pcent, s, cg, 1873 phba->cmf_active_info); 1874 } else if (afpin) { 1875 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1876 "6238 BW Threshold %lld%% (%lld): " 1877 "%lld%% %s: FPIN Alarm: cg:%d " 1878 "Info:%u\n", 1879 bwpcent, bw, pcent, s, cg, 1880 phba->cmf_active_info); 1881 } else if (sigcnt) { 1882 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync); 1883 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1884 "6239 BW Threshold %lld%% (%lld): " 1885 "%lld%% %s: Signal Warning: " 1886 "Cnt %d Max %d: cg:%d Info:%u\n", 1887 bwpcent, bw, pcent, s, sigcnt, 1888 wsigmax, cg, phba->cmf_active_info); 1889 } else if (fpincnt) { 1890 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync); 1891 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1892 "6240 BW Threshold %lld%% (%lld): " 1893 "%lld%% %s: FPIN Warning: " 1894 "Cnt %d Max %d: cg:%d Info:%u\n", 1895 bwpcent, bw, pcent, s, fpincnt, 1896 wfpinmax, cg, phba->cmf_active_info); 1897 } else { 1898 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1899 "6241 BW Threshold %lld%% (%lld): " 1900 "CMF %lld%% %s: cg:%d Info:%u\n", 1901 bwpcent, bw, pcent, s, cg, 1902 phba->cmf_active_info); 1903 } 1904 } else if (info) { 1905 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1906 "6246 Info Threshold %u\n", info); 1907 } 1908 1909 /* Save BW change to be picked up during next timer interrupt */ 1910 phba->cmf_last_sync_bw = bw; 1911 out: 1912 lpfc_sli_release_iocbq(phba, cmdiocb); 1913 } 1914 1915 /** 1916 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE 1917 * @phba: Pointer to HBA context object. 1918 * @ms: ms to set in WQE interval, 0 means use init op 1919 * @total: Total rcv bytes for this interval 1920 * 1921 * This routine is called every CMF timer interrupt. Its purpose is 1922 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events 1923 * that may indicate we have congestion (FPINs or Signals). Upon 1924 * completion, the firmware will indicate any BW restrictions the 1925 * driver may need to take. 1926 **/ 1927 int 1928 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total) 1929 { 1930 union lpfc_wqe128 *wqe; 1931 struct lpfc_iocbq *sync_buf; 1932 unsigned long iflags; 1933 u32 ret_val; 1934 u32 atot, wtot, max; 1935 u16 warn_sync_period = 0; 1936 1937 /* First address any alarm / warning activity */ 1938 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0); 1939 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0); 1940 1941 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */ 1942 if (phba->cmf_active_mode != LPFC_CFG_MANAGED || 1943 phba->link_state == LPFC_LINK_DOWN) 1944 return 0; 1945 1946 spin_lock_irqsave(&phba->hbalock, iflags); 1947 sync_buf = __lpfc_sli_get_iocbq(phba); 1948 if (!sync_buf) { 1949 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 1950 "6244 No available WQEs for CMF_SYNC_WQE\n"); 1951 ret_val = ENOMEM; 1952 goto out_unlock; 1953 } 1954 1955 wqe = &sync_buf->wqe; 1956 1957 /* WQEs are reused. Clear stale data and set key fields to zero */ 1958 memset(wqe, 0, sizeof(*wqe)); 1959 1960 /* If this is the very first CMF_SYNC_WQE, issue an init operation */ 1961 if (!ms) { 1962 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1963 "6441 CMF Init %d - CMF_SYNC_WQE\n", 1964 phba->fc_eventTag); 1965 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */ 1966 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL); 1967 goto initpath; 1968 } 1969 1970 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */ 1971 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms); 1972 1973 /* Check for alarms / warnings */ 1974 if (atot) { 1975 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1976 /* We hit an Signal alarm condition */ 1977 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1); 1978 } else { 1979 /* We hit a FPIN alarm condition */ 1980 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1); 1981 } 1982 } else if (wtot) { 1983 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 1984 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1985 /* We hit an Signal warning condition */ 1986 max = LPFC_SEC_TO_MSEC / lpfc_fabric_cgn_frequency * 1987 lpfc_acqe_cgn_frequency; 1988 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max); 1989 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot); 1990 warn_sync_period = lpfc_acqe_cgn_frequency; 1991 } else { 1992 /* We hit a FPIN warning condition */ 1993 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1); 1994 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1); 1995 if (phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) 1996 warn_sync_period = 1997 LPFC_MSECS_TO_SECS(phba->cgn_fpin_frequency); 1998 } 1999 } 2000 2001 /* Update total read blocks during previous timer interval */ 2002 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE); 2003 2004 initpath: 2005 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER); 2006 wqe->cmf_sync.event_tag = phba->fc_eventTag; 2007 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE); 2008 2009 /* Setup reqtag to match the wqe completion. */ 2010 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag); 2011 2012 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1); 2013 bf_set(cmf_sync_period, &wqe->cmf_sync, warn_sync_period); 2014 2015 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND); 2016 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1); 2017 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT); 2018 2019 sync_buf->vport = phba->pport; 2020 sync_buf->cmd_cmpl = lpfc_cmf_sync_cmpl; 2021 sync_buf->cmd_dmabuf = NULL; 2022 sync_buf->rsp_dmabuf = NULL; 2023 sync_buf->bpl_dmabuf = NULL; 2024 sync_buf->sli4_xritag = NO_XRI; 2025 2026 sync_buf->cmd_flag |= LPFC_IO_CMF; 2027 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf); 2028 if (ret_val) { 2029 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 2030 "6214 Cannot issue CMF_SYNC_WQE: x%x\n", 2031 ret_val); 2032 __lpfc_sli_release_iocbq(phba, sync_buf); 2033 } 2034 out_unlock: 2035 spin_unlock_irqrestore(&phba->hbalock, iflags); 2036 return ret_val; 2037 } 2038 2039 /** 2040 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 2041 * @phba: Pointer to HBA context object. 2042 * @pring: Pointer to driver SLI ring object. 2043 * 2044 * This function is called with hbalock held and the caller must post the 2045 * iocb without releasing the lock. If the caller releases the lock, 2046 * iocb slot returned by the function is not guaranteed to be available. 2047 * The function returns pointer to the next available iocb slot if there 2048 * is available slot in the ring, else it returns NULL. 2049 * If the get index of the ring is ahead of the put index, the function 2050 * will post an error attention event to the worker thread to take the 2051 * HBA to offline state. 2052 **/ 2053 static IOCB_t * 2054 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2055 { 2056 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2057 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 2058 2059 lockdep_assert_held(&phba->hbalock); 2060 2061 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 2062 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 2063 pring->sli.sli3.next_cmdidx = 0; 2064 2065 if (unlikely(pring->sli.sli3.local_getidx == 2066 pring->sli.sli3.next_cmdidx)) { 2067 2068 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 2069 2070 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 2071 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2072 "0315 Ring %d issue: portCmdGet %d " 2073 "is bigger than cmd ring %d\n", 2074 pring->ringno, 2075 pring->sli.sli3.local_getidx, 2076 max_cmd_idx); 2077 2078 phba->link_state = LPFC_HBA_ERROR; 2079 /* 2080 * All error attention handlers are posted to 2081 * worker thread 2082 */ 2083 phba->work_ha |= HA_ERATT; 2084 phba->work_hs = HS_FFER3; 2085 2086 lpfc_worker_wake_up(phba); 2087 2088 return NULL; 2089 } 2090 2091 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 2092 return NULL; 2093 } 2094 2095 return lpfc_cmd_iocb(phba, pring); 2096 } 2097 2098 /** 2099 * lpfc_sli_next_iotag - Get an iotag for the iocb 2100 * @phba: Pointer to HBA context object. 2101 * @iocbq: Pointer to driver iocb object. 2102 * 2103 * This function gets an iotag for the iocb. If there is no unused iotag and 2104 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 2105 * array and assigns a new iotag. 2106 * The function returns the allocated iotag if successful, else returns zero. 2107 * Zero is not a valid iotag. 2108 * The caller is not required to hold any lock. 2109 **/ 2110 uint16_t 2111 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 2112 { 2113 struct lpfc_iocbq **new_arr; 2114 struct lpfc_iocbq **old_arr; 2115 size_t new_len; 2116 struct lpfc_sli *psli = &phba->sli; 2117 uint16_t iotag; 2118 2119 spin_lock_irq(&phba->hbalock); 2120 iotag = psli->last_iotag; 2121 if(++iotag < psli->iocbq_lookup_len) { 2122 psli->last_iotag = iotag; 2123 psli->iocbq_lookup[iotag] = iocbq; 2124 spin_unlock_irq(&phba->hbalock); 2125 iocbq->iotag = iotag; 2126 return iotag; 2127 } else if (psli->iocbq_lookup_len < (0xffff 2128 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 2129 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 2130 spin_unlock_irq(&phba->hbalock); 2131 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 2132 GFP_KERNEL); 2133 if (new_arr) { 2134 spin_lock_irq(&phba->hbalock); 2135 old_arr = psli->iocbq_lookup; 2136 if (new_len <= psli->iocbq_lookup_len) { 2137 /* highly unprobable case */ 2138 kfree(new_arr); 2139 iotag = psli->last_iotag; 2140 if(++iotag < psli->iocbq_lookup_len) { 2141 psli->last_iotag = iotag; 2142 psli->iocbq_lookup[iotag] = iocbq; 2143 spin_unlock_irq(&phba->hbalock); 2144 iocbq->iotag = iotag; 2145 return iotag; 2146 } 2147 spin_unlock_irq(&phba->hbalock); 2148 return 0; 2149 } 2150 if (psli->iocbq_lookup) 2151 memcpy(new_arr, old_arr, 2152 ((psli->last_iotag + 1) * 2153 sizeof (struct lpfc_iocbq *))); 2154 psli->iocbq_lookup = new_arr; 2155 psli->iocbq_lookup_len = new_len; 2156 psli->last_iotag = iotag; 2157 psli->iocbq_lookup[iotag] = iocbq; 2158 spin_unlock_irq(&phba->hbalock); 2159 iocbq->iotag = iotag; 2160 kfree(old_arr); 2161 return iotag; 2162 } 2163 } else 2164 spin_unlock_irq(&phba->hbalock); 2165 2166 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2167 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 2168 psli->last_iotag); 2169 2170 return 0; 2171 } 2172 2173 /** 2174 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 2175 * @phba: Pointer to HBA context object. 2176 * @pring: Pointer to driver SLI ring object. 2177 * @iocb: Pointer to iocb slot in the ring. 2178 * @nextiocb: Pointer to driver iocb object which need to be 2179 * posted to firmware. 2180 * 2181 * This function is called to post a new iocb to the firmware. This 2182 * function copies the new iocb to ring iocb slot and updates the 2183 * ring pointers. It adds the new iocb to txcmplq if there is 2184 * a completion call back for this iocb else the function will free the 2185 * iocb object. The hbalock is asserted held in the code path calling 2186 * this routine. 2187 **/ 2188 static void 2189 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2190 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 2191 { 2192 /* 2193 * Set up an iotag 2194 */ 2195 nextiocb->iocb.ulpIoTag = (nextiocb->cmd_cmpl) ? nextiocb->iotag : 0; 2196 2197 2198 if (pring->ringno == LPFC_ELS_RING) { 2199 lpfc_debugfs_slow_ring_trc(phba, 2200 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 2201 *(((uint32_t *) &nextiocb->iocb) + 4), 2202 *(((uint32_t *) &nextiocb->iocb) + 6), 2203 *(((uint32_t *) &nextiocb->iocb) + 7)); 2204 } 2205 2206 /* 2207 * Issue iocb command to adapter 2208 */ 2209 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 2210 wmb(); 2211 pring->stats.iocb_cmd++; 2212 2213 /* 2214 * If there is no completion routine to call, we can release the 2215 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 2216 * that have no rsp ring completion, cmd_cmpl MUST be NULL. 2217 */ 2218 if (nextiocb->cmd_cmpl) 2219 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 2220 else 2221 __lpfc_sli_release_iocbq(phba, nextiocb); 2222 2223 /* 2224 * Let the HBA know what IOCB slot will be the next one the 2225 * driver will put a command into. 2226 */ 2227 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 2228 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 2229 } 2230 2231 /** 2232 * lpfc_sli_update_full_ring - Update the chip attention register 2233 * @phba: Pointer to HBA context object. 2234 * @pring: Pointer to driver SLI ring object. 2235 * 2236 * The caller is not required to hold any lock for calling this function. 2237 * This function updates the chip attention bits for the ring to inform firmware 2238 * that there are pending work to be done for this ring and requests an 2239 * interrupt when there is space available in the ring. This function is 2240 * called when the driver is unable to post more iocbs to the ring due 2241 * to unavailability of space in the ring. 2242 **/ 2243 static void 2244 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2245 { 2246 int ringno = pring->ringno; 2247 2248 pring->flag |= LPFC_CALL_RING_AVAILABLE; 2249 2250 wmb(); 2251 2252 /* 2253 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 2254 * The HBA will tell us when an IOCB entry is available. 2255 */ 2256 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 2257 readl(phba->CAregaddr); /* flush */ 2258 2259 pring->stats.iocb_cmd_full++; 2260 } 2261 2262 /** 2263 * lpfc_sli_update_ring - Update chip attention register 2264 * @phba: Pointer to HBA context object. 2265 * @pring: Pointer to driver SLI ring object. 2266 * 2267 * This function updates the chip attention register bit for the 2268 * given ring to inform HBA that there is more work to be done 2269 * in this ring. The caller is not required to hold any lock. 2270 **/ 2271 static void 2272 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2273 { 2274 int ringno = pring->ringno; 2275 2276 /* 2277 * Tell the HBA that there is work to do in this ring. 2278 */ 2279 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2280 wmb(); 2281 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2282 readl(phba->CAregaddr); /* flush */ 2283 } 2284 } 2285 2286 /** 2287 * lpfc_sli_resume_iocb - Process iocbs in the txq 2288 * @phba: Pointer to HBA context object. 2289 * @pring: Pointer to driver SLI ring object. 2290 * 2291 * This function is called with hbalock held to post pending iocbs 2292 * in the txq to the firmware. This function is called when driver 2293 * detects space available in the ring. 2294 **/ 2295 static void 2296 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2297 { 2298 IOCB_t *iocb; 2299 struct lpfc_iocbq *nextiocb; 2300 2301 lockdep_assert_held(&phba->hbalock); 2302 2303 /* 2304 * Check to see if: 2305 * (a) there is anything on the txq to send 2306 * (b) link is up 2307 * (c) link attention events can be processed (fcp ring only) 2308 * (d) IOCB processing is not blocked by the outstanding mbox command. 2309 */ 2310 2311 if (lpfc_is_link_up(phba) && 2312 (!list_empty(&pring->txq)) && 2313 (pring->ringno != LPFC_FCP_RING || 2314 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2315 2316 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2317 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2318 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2319 2320 if (iocb) 2321 lpfc_sli_update_ring(phba, pring); 2322 else 2323 lpfc_sli_update_full_ring(phba, pring); 2324 } 2325 2326 return; 2327 } 2328 2329 /** 2330 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2331 * @phba: Pointer to HBA context object. 2332 * @hbqno: HBQ number. 2333 * 2334 * This function is called with hbalock held to get the next 2335 * available slot for the given HBQ. If there is free slot 2336 * available for the HBQ it will return pointer to the next available 2337 * HBQ entry else it will return NULL. 2338 **/ 2339 static struct lpfc_hbq_entry * 2340 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2341 { 2342 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2343 2344 lockdep_assert_held(&phba->hbalock); 2345 2346 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2347 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2348 hbqp->next_hbqPutIdx = 0; 2349 2350 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2351 uint32_t raw_index = phba->hbq_get[hbqno]; 2352 uint32_t getidx = le32_to_cpu(raw_index); 2353 2354 hbqp->local_hbqGetIdx = getidx; 2355 2356 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2357 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2358 "1802 HBQ %d: local_hbqGetIdx " 2359 "%u is > than hbqp->entry_count %u\n", 2360 hbqno, hbqp->local_hbqGetIdx, 2361 hbqp->entry_count); 2362 2363 phba->link_state = LPFC_HBA_ERROR; 2364 return NULL; 2365 } 2366 2367 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2368 return NULL; 2369 } 2370 2371 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2372 hbqp->hbqPutIdx; 2373 } 2374 2375 /** 2376 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2377 * @phba: Pointer to HBA context object. 2378 * 2379 * This function is called with no lock held to free all the 2380 * hbq buffers while uninitializing the SLI interface. It also 2381 * frees the HBQ buffers returned by the firmware but not yet 2382 * processed by the upper layers. 2383 **/ 2384 void 2385 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2386 { 2387 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2388 struct hbq_dmabuf *hbq_buf; 2389 unsigned long flags; 2390 int i, hbq_count; 2391 2392 hbq_count = lpfc_sli_hbq_count(); 2393 /* Return all memory used by all HBQs */ 2394 spin_lock_irqsave(&phba->hbalock, flags); 2395 for (i = 0; i < hbq_count; ++i) { 2396 list_for_each_entry_safe(dmabuf, next_dmabuf, 2397 &phba->hbqs[i].hbq_buffer_list, list) { 2398 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2399 list_del(&hbq_buf->dbuf.list); 2400 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2401 } 2402 phba->hbqs[i].buffer_count = 0; 2403 } 2404 2405 /* Mark the HBQs not in use */ 2406 phba->hbq_in_use = 0; 2407 spin_unlock_irqrestore(&phba->hbalock, flags); 2408 } 2409 2410 /** 2411 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2412 * @phba: Pointer to HBA context object. 2413 * @hbqno: HBQ number. 2414 * @hbq_buf: Pointer to HBQ buffer. 2415 * 2416 * This function is called with the hbalock held to post a 2417 * hbq buffer to the firmware. If the function finds an empty 2418 * slot in the HBQ, it will post the buffer. The function will return 2419 * pointer to the hbq entry if it successfully post the buffer 2420 * else it will return NULL. 2421 **/ 2422 static int 2423 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2424 struct hbq_dmabuf *hbq_buf) 2425 { 2426 lockdep_assert_held(&phba->hbalock); 2427 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2428 } 2429 2430 /** 2431 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2432 * @phba: Pointer to HBA context object. 2433 * @hbqno: HBQ number. 2434 * @hbq_buf: Pointer to HBQ buffer. 2435 * 2436 * This function is called with the hbalock held to post a hbq buffer to the 2437 * firmware. If the function finds an empty slot in the HBQ, it will post the 2438 * buffer and place it on the hbq_buffer_list. The function will return zero if 2439 * it successfully post the buffer else it will return an error. 2440 **/ 2441 static int 2442 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2443 struct hbq_dmabuf *hbq_buf) 2444 { 2445 struct lpfc_hbq_entry *hbqe; 2446 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2447 2448 lockdep_assert_held(&phba->hbalock); 2449 /* Get next HBQ entry slot to use */ 2450 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2451 if (hbqe) { 2452 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2453 2454 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2455 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2456 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2457 hbqe->bde.tus.f.bdeFlags = 0; 2458 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2459 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2460 /* Sync SLIM */ 2461 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2462 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2463 /* flush */ 2464 readl(phba->hbq_put + hbqno); 2465 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2466 return 0; 2467 } else 2468 return -ENOMEM; 2469 } 2470 2471 /** 2472 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2473 * @phba: Pointer to HBA context object. 2474 * @hbqno: HBQ number. 2475 * @hbq_buf: Pointer to HBQ buffer. 2476 * 2477 * This function is called with the hbalock held to post an RQE to the SLI4 2478 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2479 * the hbq_buffer_list and return zero, otherwise it will return an error. 2480 **/ 2481 static int 2482 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2483 struct hbq_dmabuf *hbq_buf) 2484 { 2485 int rc; 2486 struct lpfc_rqe hrqe; 2487 struct lpfc_rqe drqe; 2488 struct lpfc_queue *hrq; 2489 struct lpfc_queue *drq; 2490 2491 if (hbqno != LPFC_ELS_HBQ) 2492 return 1; 2493 hrq = phba->sli4_hba.hdr_rq; 2494 drq = phba->sli4_hba.dat_rq; 2495 2496 lockdep_assert_held(&phba->hbalock); 2497 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2498 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2499 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2500 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2501 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2502 if (rc < 0) 2503 return rc; 2504 hbq_buf->tag = (rc | (hbqno << 16)); 2505 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2506 return 0; 2507 } 2508 2509 /* HBQ for ELS and CT traffic. */ 2510 static struct lpfc_hbq_init lpfc_els_hbq = { 2511 .rn = 1, 2512 .entry_count = 256, 2513 .mask_count = 0, 2514 .profile = 0, 2515 .ring_mask = (1 << LPFC_ELS_RING), 2516 .buffer_count = 0, 2517 .init_count = 40, 2518 .add_count = 40, 2519 }; 2520 2521 /* Array of HBQs */ 2522 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2523 &lpfc_els_hbq, 2524 }; 2525 2526 /** 2527 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2528 * @phba: Pointer to HBA context object. 2529 * @hbqno: HBQ number. 2530 * @count: Number of HBQ buffers to be posted. 2531 * 2532 * This function is called with no lock held to post more hbq buffers to the 2533 * given HBQ. The function returns the number of HBQ buffers successfully 2534 * posted. 2535 **/ 2536 static int 2537 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2538 { 2539 uint32_t i, posted = 0; 2540 unsigned long flags; 2541 struct hbq_dmabuf *hbq_buffer; 2542 LIST_HEAD(hbq_buf_list); 2543 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2544 return 0; 2545 2546 if ((phba->hbqs[hbqno].buffer_count + count) > 2547 lpfc_hbq_defs[hbqno]->entry_count) 2548 count = lpfc_hbq_defs[hbqno]->entry_count - 2549 phba->hbqs[hbqno].buffer_count; 2550 if (!count) 2551 return 0; 2552 /* Allocate HBQ entries */ 2553 for (i = 0; i < count; i++) { 2554 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2555 if (!hbq_buffer) 2556 break; 2557 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2558 } 2559 /* Check whether HBQ is still in use */ 2560 spin_lock_irqsave(&phba->hbalock, flags); 2561 if (!phba->hbq_in_use) 2562 goto err; 2563 while (!list_empty(&hbq_buf_list)) { 2564 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2565 dbuf.list); 2566 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2567 (hbqno << 16)); 2568 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2569 phba->hbqs[hbqno].buffer_count++; 2570 posted++; 2571 } else 2572 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2573 } 2574 spin_unlock_irqrestore(&phba->hbalock, flags); 2575 return posted; 2576 err: 2577 spin_unlock_irqrestore(&phba->hbalock, flags); 2578 while (!list_empty(&hbq_buf_list)) { 2579 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2580 dbuf.list); 2581 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2582 } 2583 return 0; 2584 } 2585 2586 /** 2587 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2588 * @phba: Pointer to HBA context object. 2589 * @qno: HBQ number. 2590 * 2591 * This function posts more buffers to the HBQ. This function 2592 * is called with no lock held. The function returns the number of HBQ entries 2593 * successfully allocated. 2594 **/ 2595 int 2596 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2597 { 2598 if (phba->sli_rev == LPFC_SLI_REV4) 2599 return 0; 2600 else 2601 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2602 lpfc_hbq_defs[qno]->add_count); 2603 } 2604 2605 /** 2606 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2607 * @phba: Pointer to HBA context object. 2608 * @qno: HBQ queue number. 2609 * 2610 * This function is called from SLI initialization code path with 2611 * no lock held to post initial HBQ buffers to firmware. The 2612 * function returns the number of HBQ entries successfully allocated. 2613 **/ 2614 static int 2615 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2616 { 2617 if (phba->sli_rev == LPFC_SLI_REV4) 2618 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2619 lpfc_hbq_defs[qno]->entry_count); 2620 else 2621 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2622 lpfc_hbq_defs[qno]->init_count); 2623 } 2624 2625 /* 2626 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2627 * 2628 * This function removes the first hbq buffer on an hbq list and returns a 2629 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2630 **/ 2631 static struct hbq_dmabuf * 2632 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2633 { 2634 struct lpfc_dmabuf *d_buf; 2635 2636 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2637 if (!d_buf) 2638 return NULL; 2639 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2640 } 2641 2642 /** 2643 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2644 * @phba: Pointer to HBA context object. 2645 * @hrq: HBQ number. 2646 * 2647 * This function removes the first RQ buffer on an RQ buffer list and returns a 2648 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2649 **/ 2650 static struct rqb_dmabuf * 2651 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2652 { 2653 struct lpfc_dmabuf *h_buf; 2654 struct lpfc_rqb *rqbp; 2655 2656 rqbp = hrq->rqbp; 2657 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2658 struct lpfc_dmabuf, list); 2659 if (!h_buf) 2660 return NULL; 2661 rqbp->buffer_count--; 2662 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2663 } 2664 2665 /** 2666 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2667 * @phba: Pointer to HBA context object. 2668 * @tag: Tag of the hbq buffer. 2669 * 2670 * This function searches for the hbq buffer associated with the given tag in 2671 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2672 * otherwise it returns NULL. 2673 **/ 2674 static struct hbq_dmabuf * 2675 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2676 { 2677 struct lpfc_dmabuf *d_buf; 2678 struct hbq_dmabuf *hbq_buf; 2679 uint32_t hbqno; 2680 2681 hbqno = tag >> 16; 2682 if (hbqno >= LPFC_MAX_HBQS) 2683 return NULL; 2684 2685 spin_lock_irq(&phba->hbalock); 2686 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2687 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2688 if (hbq_buf->tag == tag) { 2689 spin_unlock_irq(&phba->hbalock); 2690 return hbq_buf; 2691 } 2692 } 2693 spin_unlock_irq(&phba->hbalock); 2694 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2695 "1803 Bad hbq tag. Data: x%x x%x\n", 2696 tag, phba->hbqs[tag >> 16].buffer_count); 2697 return NULL; 2698 } 2699 2700 /** 2701 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2702 * @phba: Pointer to HBA context object. 2703 * @hbq_buffer: Pointer to HBQ buffer. 2704 * 2705 * This function is called with hbalock. This function gives back 2706 * the hbq buffer to firmware. If the HBQ does not have space to 2707 * post the buffer, it will free the buffer. 2708 **/ 2709 void 2710 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2711 { 2712 uint32_t hbqno; 2713 2714 if (hbq_buffer) { 2715 hbqno = hbq_buffer->tag >> 16; 2716 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2717 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2718 } 2719 } 2720 2721 /** 2722 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2723 * @mbxCommand: mailbox command code. 2724 * 2725 * This function is called by the mailbox event handler function to verify 2726 * that the completed mailbox command is a legitimate mailbox command. If the 2727 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2728 * and the mailbox event handler will take the HBA offline. 2729 **/ 2730 static int 2731 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2732 { 2733 uint8_t ret; 2734 2735 switch (mbxCommand) { 2736 case MBX_LOAD_SM: 2737 case MBX_READ_NV: 2738 case MBX_WRITE_NV: 2739 case MBX_WRITE_VPARMS: 2740 case MBX_RUN_BIU_DIAG: 2741 case MBX_INIT_LINK: 2742 case MBX_DOWN_LINK: 2743 case MBX_CONFIG_LINK: 2744 case MBX_CONFIG_RING: 2745 case MBX_RESET_RING: 2746 case MBX_READ_CONFIG: 2747 case MBX_READ_RCONFIG: 2748 case MBX_READ_SPARM: 2749 case MBX_READ_STATUS: 2750 case MBX_READ_RPI: 2751 case MBX_READ_XRI: 2752 case MBX_READ_REV: 2753 case MBX_READ_LNK_STAT: 2754 case MBX_REG_LOGIN: 2755 case MBX_UNREG_LOGIN: 2756 case MBX_CLEAR_LA: 2757 case MBX_DUMP_MEMORY: 2758 case MBX_DUMP_CONTEXT: 2759 case MBX_RUN_DIAGS: 2760 case MBX_RESTART: 2761 case MBX_UPDATE_CFG: 2762 case MBX_DOWN_LOAD: 2763 case MBX_DEL_LD_ENTRY: 2764 case MBX_RUN_PROGRAM: 2765 case MBX_SET_MASK: 2766 case MBX_SET_VARIABLE: 2767 case MBX_UNREG_D_ID: 2768 case MBX_KILL_BOARD: 2769 case MBX_CONFIG_FARP: 2770 case MBX_BEACON: 2771 case MBX_LOAD_AREA: 2772 case MBX_RUN_BIU_DIAG64: 2773 case MBX_CONFIG_PORT: 2774 case MBX_READ_SPARM64: 2775 case MBX_READ_RPI64: 2776 case MBX_REG_LOGIN64: 2777 case MBX_READ_TOPOLOGY: 2778 case MBX_WRITE_WWN: 2779 case MBX_SET_DEBUG: 2780 case MBX_LOAD_EXP_ROM: 2781 case MBX_ASYNCEVT_ENABLE: 2782 case MBX_REG_VPI: 2783 case MBX_UNREG_VPI: 2784 case MBX_HEARTBEAT: 2785 case MBX_PORT_CAPABILITIES: 2786 case MBX_PORT_IOV_CONTROL: 2787 case MBX_SLI4_CONFIG: 2788 case MBX_SLI4_REQ_FTRS: 2789 case MBX_REG_FCFI: 2790 case MBX_UNREG_FCFI: 2791 case MBX_REG_VFI: 2792 case MBX_UNREG_VFI: 2793 case MBX_INIT_VPI: 2794 case MBX_INIT_VFI: 2795 case MBX_RESUME_RPI: 2796 case MBX_READ_EVENT_LOG_STATUS: 2797 case MBX_READ_EVENT_LOG: 2798 case MBX_SECURITY_MGMT: 2799 case MBX_AUTH_PORT: 2800 case MBX_ACCESS_VDATA: 2801 ret = mbxCommand; 2802 break; 2803 default: 2804 ret = MBX_SHUTDOWN; 2805 break; 2806 } 2807 return ret; 2808 } 2809 2810 /** 2811 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2812 * @phba: Pointer to HBA context object. 2813 * @pmboxq: Pointer to mailbox command. 2814 * 2815 * This is completion handler function for mailbox commands issued from 2816 * lpfc_sli_issue_mbox_wait function. This function is called by the 2817 * mailbox event handler function with no lock held. This function 2818 * will wake up thread waiting on the wait queue pointed by context1 2819 * of the mailbox. 2820 **/ 2821 void 2822 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2823 { 2824 unsigned long drvr_flag; 2825 struct completion *pmbox_done; 2826 2827 /* 2828 * If pmbox_done is empty, the driver thread gave up waiting and 2829 * continued running. 2830 */ 2831 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2832 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2833 pmbox_done = (struct completion *)pmboxq->context3; 2834 if (pmbox_done) 2835 complete(pmbox_done); 2836 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2837 return; 2838 } 2839 2840 static void 2841 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2842 { 2843 unsigned long iflags; 2844 2845 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2846 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2847 spin_lock_irqsave(&ndlp->lock, iflags); 2848 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2849 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2850 spin_unlock_irqrestore(&ndlp->lock, iflags); 2851 } 2852 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2853 } 2854 2855 void 2856 lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2857 { 2858 __lpfc_sli_rpi_release(vport, ndlp); 2859 } 2860 2861 /** 2862 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2863 * @phba: Pointer to HBA context object. 2864 * @pmb: Pointer to mailbox object. 2865 * 2866 * This function is the default mailbox completion handler. It 2867 * frees the memory resources associated with the completed mailbox 2868 * command. If the completed command is a REG_LOGIN mailbox command, 2869 * this function will issue a UREG_LOGIN to re-claim the RPI. 2870 **/ 2871 void 2872 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2873 { 2874 struct lpfc_vport *vport = pmb->vport; 2875 struct lpfc_dmabuf *mp; 2876 struct lpfc_nodelist *ndlp; 2877 struct Scsi_Host *shost; 2878 uint16_t rpi, vpi; 2879 int rc; 2880 2881 /* 2882 * If a REG_LOGIN succeeded after node is destroyed or node 2883 * is in re-discovery driver need to cleanup the RPI. 2884 */ 2885 if (!(phba->pport->load_flag & FC_UNLOADING) && 2886 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2887 !pmb->u.mb.mbxStatus) { 2888 mp = (struct lpfc_dmabuf *)pmb->ctx_buf; 2889 if (mp) { 2890 pmb->ctx_buf = NULL; 2891 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2892 kfree(mp); 2893 } 2894 rpi = pmb->u.mb.un.varWords[0]; 2895 vpi = pmb->u.mb.un.varRegLogin.vpi; 2896 if (phba->sli_rev == LPFC_SLI_REV4) 2897 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2898 lpfc_unreg_login(phba, vpi, rpi, pmb); 2899 pmb->vport = vport; 2900 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2901 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2902 if (rc != MBX_NOT_FINISHED) 2903 return; 2904 } 2905 2906 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2907 !(phba->pport->load_flag & FC_UNLOADING) && 2908 !pmb->u.mb.mbxStatus) { 2909 shost = lpfc_shost_from_vport(vport); 2910 spin_lock_irq(shost->host_lock); 2911 vport->vpi_state |= LPFC_VPI_REGISTERED; 2912 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2913 spin_unlock_irq(shost->host_lock); 2914 } 2915 2916 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2917 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2918 lpfc_nlp_put(ndlp); 2919 } 2920 2921 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2922 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2923 2924 /* Check to see if there are any deferred events to process */ 2925 if (ndlp) { 2926 lpfc_printf_vlog( 2927 vport, 2928 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2929 "1438 UNREG cmpl deferred mbox x%x " 2930 "on NPort x%x Data: x%x x%x x%px x%x x%x\n", 2931 ndlp->nlp_rpi, ndlp->nlp_DID, 2932 ndlp->nlp_flag, ndlp->nlp_defer_did, 2933 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2934 2935 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2936 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2937 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2938 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2939 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2940 } else { 2941 __lpfc_sli_rpi_release(vport, ndlp); 2942 } 2943 2944 /* The unreg_login mailbox is complete and had a 2945 * reference that has to be released. The PLOGI 2946 * got its own ref. 2947 */ 2948 lpfc_nlp_put(ndlp); 2949 pmb->ctx_ndlp = NULL; 2950 } 2951 } 2952 2953 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2954 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2955 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2956 lpfc_nlp_put(ndlp); 2957 } 2958 2959 /* Check security permission status on INIT_LINK mailbox command */ 2960 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2961 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2962 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2963 "2860 SLI authentication is required " 2964 "for INIT_LINK but has not done yet\n"); 2965 2966 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2967 lpfc_sli4_mbox_cmd_free(phba, pmb); 2968 else 2969 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 2970 } 2971 /** 2972 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2973 * @phba: Pointer to HBA context object. 2974 * @pmb: Pointer to mailbox object. 2975 * 2976 * This function is the unreg rpi mailbox completion handler. It 2977 * frees the memory resources associated with the completed mailbox 2978 * command. An additional reference is put on the ndlp to prevent 2979 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2980 * the unreg mailbox command completes, this routine puts the 2981 * reference back. 2982 * 2983 **/ 2984 void 2985 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2986 { 2987 struct lpfc_vport *vport = pmb->vport; 2988 struct lpfc_nodelist *ndlp; 2989 2990 ndlp = pmb->ctx_ndlp; 2991 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2992 if (phba->sli_rev == LPFC_SLI_REV4 && 2993 (bf_get(lpfc_sli_intf_if_type, 2994 &phba->sli4_hba.sli_intf) >= 2995 LPFC_SLI_INTF_IF_TYPE_2)) { 2996 if (ndlp) { 2997 lpfc_printf_vlog( 2998 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2999 "0010 UNREG_LOGIN vpi:%x " 3000 "rpi:%x DID:%x defer x%x flg x%x " 3001 "x%px\n", 3002 vport->vpi, ndlp->nlp_rpi, 3003 ndlp->nlp_DID, ndlp->nlp_defer_did, 3004 ndlp->nlp_flag, 3005 ndlp); 3006 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 3007 3008 /* Check to see if there are any deferred 3009 * events to process 3010 */ 3011 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 3012 (ndlp->nlp_defer_did != 3013 NLP_EVT_NOTHING_PENDING)) { 3014 lpfc_printf_vlog( 3015 vport, KERN_INFO, LOG_DISCOVERY, 3016 "4111 UNREG cmpl deferred " 3017 "clr x%x on " 3018 "NPort x%x Data: x%x x%px\n", 3019 ndlp->nlp_rpi, ndlp->nlp_DID, 3020 ndlp->nlp_defer_did, ndlp); 3021 ndlp->nlp_flag &= ~NLP_UNREG_INP; 3022 ndlp->nlp_defer_did = 3023 NLP_EVT_NOTHING_PENDING; 3024 lpfc_issue_els_plogi( 3025 vport, ndlp->nlp_DID, 0); 3026 } else { 3027 __lpfc_sli_rpi_release(vport, ndlp); 3028 } 3029 lpfc_nlp_put(ndlp); 3030 } 3031 } 3032 } 3033 3034 mempool_free(pmb, phba->mbox_mem_pool); 3035 } 3036 3037 /** 3038 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 3039 * @phba: Pointer to HBA context object. 3040 * 3041 * This function is called with no lock held. This function processes all 3042 * the completed mailbox commands and gives it to upper layers. The interrupt 3043 * service routine processes mailbox completion interrupt and adds completed 3044 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 3045 * Worker thread call lpfc_sli_handle_mb_event, which will return the 3046 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 3047 * function returns the mailbox commands to the upper layer by calling the 3048 * completion handler function of each mailbox. 3049 **/ 3050 int 3051 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 3052 { 3053 MAILBOX_t *pmbox; 3054 LPFC_MBOXQ_t *pmb; 3055 int rc; 3056 LIST_HEAD(cmplq); 3057 3058 phba->sli.slistat.mbox_event++; 3059 3060 /* Get all completed mailboxe buffers into the cmplq */ 3061 spin_lock_irq(&phba->hbalock); 3062 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 3063 spin_unlock_irq(&phba->hbalock); 3064 3065 /* Get a Mailbox buffer to setup mailbox commands for callback */ 3066 do { 3067 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 3068 if (pmb == NULL) 3069 break; 3070 3071 pmbox = &pmb->u.mb; 3072 3073 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 3074 if (pmb->vport) { 3075 lpfc_debugfs_disc_trc(pmb->vport, 3076 LPFC_DISC_TRC_MBOX_VPORT, 3077 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 3078 (uint32_t)pmbox->mbxCommand, 3079 pmbox->un.varWords[0], 3080 pmbox->un.varWords[1]); 3081 } 3082 else { 3083 lpfc_debugfs_disc_trc(phba->pport, 3084 LPFC_DISC_TRC_MBOX, 3085 "MBOX cmpl: cmd:x%x mb:x%x x%x", 3086 (uint32_t)pmbox->mbxCommand, 3087 pmbox->un.varWords[0], 3088 pmbox->un.varWords[1]); 3089 } 3090 } 3091 3092 /* 3093 * It is a fatal error if unknown mbox command completion. 3094 */ 3095 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 3096 MBX_SHUTDOWN) { 3097 /* Unknown mailbox command compl */ 3098 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3099 "(%d):0323 Unknown Mailbox command " 3100 "x%x (x%x/x%x) Cmpl\n", 3101 pmb->vport ? pmb->vport->vpi : 3102 LPFC_VPORT_UNKNOWN, 3103 pmbox->mbxCommand, 3104 lpfc_sli_config_mbox_subsys_get(phba, 3105 pmb), 3106 lpfc_sli_config_mbox_opcode_get(phba, 3107 pmb)); 3108 phba->link_state = LPFC_HBA_ERROR; 3109 phba->work_hs = HS_FFER3; 3110 lpfc_handle_eratt(phba); 3111 continue; 3112 } 3113 3114 if (pmbox->mbxStatus) { 3115 phba->sli.slistat.mbox_stat_err++; 3116 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 3117 /* Mbox cmd cmpl error - RETRYing */ 3118 lpfc_printf_log(phba, KERN_INFO, 3119 LOG_MBOX | LOG_SLI, 3120 "(%d):0305 Mbox cmd cmpl " 3121 "error - RETRYing Data: x%x " 3122 "(x%x/x%x) x%x x%x x%x\n", 3123 pmb->vport ? pmb->vport->vpi : 3124 LPFC_VPORT_UNKNOWN, 3125 pmbox->mbxCommand, 3126 lpfc_sli_config_mbox_subsys_get(phba, 3127 pmb), 3128 lpfc_sli_config_mbox_opcode_get(phba, 3129 pmb), 3130 pmbox->mbxStatus, 3131 pmbox->un.varWords[0], 3132 pmb->vport ? pmb->vport->port_state : 3133 LPFC_VPORT_UNKNOWN); 3134 pmbox->mbxStatus = 0; 3135 pmbox->mbxOwner = OWN_HOST; 3136 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3137 if (rc != MBX_NOT_FINISHED) 3138 continue; 3139 } 3140 } 3141 3142 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 3143 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 3144 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 3145 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 3146 "x%x x%x x%x\n", 3147 pmb->vport ? pmb->vport->vpi : 0, 3148 pmbox->mbxCommand, 3149 lpfc_sli_config_mbox_subsys_get(phba, pmb), 3150 lpfc_sli_config_mbox_opcode_get(phba, pmb), 3151 pmb->mbox_cmpl, 3152 *((uint32_t *) pmbox), 3153 pmbox->un.varWords[0], 3154 pmbox->un.varWords[1], 3155 pmbox->un.varWords[2], 3156 pmbox->un.varWords[3], 3157 pmbox->un.varWords[4], 3158 pmbox->un.varWords[5], 3159 pmbox->un.varWords[6], 3160 pmbox->un.varWords[7], 3161 pmbox->un.varWords[8], 3162 pmbox->un.varWords[9], 3163 pmbox->un.varWords[10]); 3164 3165 if (pmb->mbox_cmpl) 3166 pmb->mbox_cmpl(phba,pmb); 3167 } while (1); 3168 return 0; 3169 } 3170 3171 /** 3172 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 3173 * @phba: Pointer to HBA context object. 3174 * @pring: Pointer to driver SLI ring object. 3175 * @tag: buffer tag. 3176 * 3177 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 3178 * is set in the tag the buffer is posted for a particular exchange, 3179 * the function will return the buffer without replacing the buffer. 3180 * If the buffer is for unsolicited ELS or CT traffic, this function 3181 * returns the buffer and also posts another buffer to the firmware. 3182 **/ 3183 static struct lpfc_dmabuf * 3184 lpfc_sli_get_buff(struct lpfc_hba *phba, 3185 struct lpfc_sli_ring *pring, 3186 uint32_t tag) 3187 { 3188 struct hbq_dmabuf *hbq_entry; 3189 3190 if (tag & QUE_BUFTAG_BIT) 3191 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 3192 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 3193 if (!hbq_entry) 3194 return NULL; 3195 return &hbq_entry->dbuf; 3196 } 3197 3198 /** 3199 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 3200 * containing a NVME LS request. 3201 * @phba: pointer to lpfc hba data structure. 3202 * @piocb: pointer to the iocbq struct representing the sequence starting 3203 * frame. 3204 * 3205 * This routine initially validates the NVME LS, validates there is a login 3206 * with the port that sent the LS, and then calls the appropriate nvme host 3207 * or target LS request handler. 3208 **/ 3209 static void 3210 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 3211 { 3212 struct lpfc_nodelist *ndlp; 3213 struct lpfc_dmabuf *d_buf; 3214 struct hbq_dmabuf *nvmebuf; 3215 struct fc_frame_header *fc_hdr; 3216 struct lpfc_async_xchg_ctx *axchg = NULL; 3217 char *failwhy = NULL; 3218 uint32_t oxid, sid, did, fctl, size; 3219 int ret = 1; 3220 3221 d_buf = piocb->cmd_dmabuf; 3222 3223 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 3224 fc_hdr = nvmebuf->hbuf.virt; 3225 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 3226 sid = sli4_sid_from_fc_hdr(fc_hdr); 3227 did = sli4_did_from_fc_hdr(fc_hdr); 3228 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 3229 fc_hdr->fh_f_ctl[1] << 8 | 3230 fc_hdr->fh_f_ctl[2]); 3231 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 3232 3233 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 3234 oxid, size, sid); 3235 3236 if (phba->pport->load_flag & FC_UNLOADING) { 3237 failwhy = "Driver Unloading"; 3238 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 3239 failwhy = "NVME FC4 Disabled"; 3240 } else if (!phba->nvmet_support && !phba->pport->localport) { 3241 failwhy = "No Localport"; 3242 } else if (phba->nvmet_support && !phba->targetport) { 3243 failwhy = "No Targetport"; 3244 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 3245 failwhy = "Bad NVME LS R_CTL"; 3246 } else if (unlikely((fctl & 0x00FF0000) != 3247 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 3248 failwhy = "Bad NVME LS F_CTL"; 3249 } else { 3250 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 3251 if (!axchg) 3252 failwhy = "No CTX memory"; 3253 } 3254 3255 if (unlikely(failwhy)) { 3256 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3257 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 3258 sid, oxid, failwhy); 3259 goto out_fail; 3260 } 3261 3262 /* validate the source of the LS is logged in */ 3263 ndlp = lpfc_findnode_did(phba->pport, sid); 3264 if (!ndlp || 3265 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3266 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3267 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 3268 "6216 NVME Unsol rcv: No ndlp: " 3269 "NPort_ID x%x oxid x%x\n", 3270 sid, oxid); 3271 goto out_fail; 3272 } 3273 3274 axchg->phba = phba; 3275 axchg->ndlp = ndlp; 3276 axchg->size = size; 3277 axchg->oxid = oxid; 3278 axchg->sid = sid; 3279 axchg->wqeq = NULL; 3280 axchg->state = LPFC_NVME_STE_LS_RCV; 3281 axchg->entry_cnt = 1; 3282 axchg->rqb_buffer = (void *)nvmebuf; 3283 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3284 axchg->payload = nvmebuf->dbuf.virt; 3285 INIT_LIST_HEAD(&axchg->list); 3286 3287 if (phba->nvmet_support) { 3288 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3289 spin_lock_irq(&ndlp->lock); 3290 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3291 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3292 spin_unlock_irq(&ndlp->lock); 3293 3294 /* This reference is a single occurrence to hold the 3295 * node valid until the nvmet transport calls 3296 * host_release. 3297 */ 3298 if (!lpfc_nlp_get(ndlp)) 3299 goto out_fail; 3300 3301 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3302 "6206 NVMET unsol ls_req ndlp x%px " 3303 "DID x%x xflags x%x refcnt %d\n", 3304 ndlp, ndlp->nlp_DID, 3305 ndlp->fc4_xpt_flags, 3306 kref_read(&ndlp->kref)); 3307 } else { 3308 spin_unlock_irq(&ndlp->lock); 3309 } 3310 } else { 3311 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3312 } 3313 3314 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3315 if (!ret) 3316 return; 3317 3318 out_fail: 3319 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3320 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3321 "NVMe%s handler failed %d\n", 3322 did, sid, oxid, 3323 (phba->nvmet_support) ? "T" : "I", ret); 3324 3325 /* recycle receive buffer */ 3326 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3327 3328 /* If start of new exchange, abort it */ 3329 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3330 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3331 3332 if (ret) 3333 kfree(axchg); 3334 } 3335 3336 /** 3337 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3338 * @phba: Pointer to HBA context object. 3339 * @pring: Pointer to driver SLI ring object. 3340 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3341 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3342 * @fch_type: the type for the first frame of the sequence. 3343 * 3344 * This function is called with no lock held. This function uses the r_ctl and 3345 * type of the received sequence to find the correct callback function to call 3346 * to process the sequence. 3347 **/ 3348 static int 3349 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3350 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3351 uint32_t fch_type) 3352 { 3353 int i; 3354 3355 switch (fch_type) { 3356 case FC_TYPE_NVME: 3357 lpfc_nvme_unsol_ls_handler(phba, saveq); 3358 return 1; 3359 default: 3360 break; 3361 } 3362 3363 /* unSolicited Responses */ 3364 if (pring->prt[0].profile) { 3365 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3366 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3367 saveq); 3368 return 1; 3369 } 3370 /* We must search, based on rctl / type 3371 for the right routine */ 3372 for (i = 0; i < pring->num_mask; i++) { 3373 if ((pring->prt[i].rctl == fch_r_ctl) && 3374 (pring->prt[i].type == fch_type)) { 3375 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3376 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3377 (phba, pring, saveq); 3378 return 1; 3379 } 3380 } 3381 return 0; 3382 } 3383 3384 static void 3385 lpfc_sli_prep_unsol_wqe(struct lpfc_hba *phba, 3386 struct lpfc_iocbq *saveq) 3387 { 3388 IOCB_t *irsp; 3389 union lpfc_wqe128 *wqe; 3390 u16 i = 0; 3391 3392 irsp = &saveq->iocb; 3393 wqe = &saveq->wqe; 3394 3395 /* Fill wcqe with the IOCB status fields */ 3396 bf_set(lpfc_wcqe_c_status, &saveq->wcqe_cmpl, irsp->ulpStatus); 3397 saveq->wcqe_cmpl.word3 = irsp->ulpBdeCount; 3398 saveq->wcqe_cmpl.parameter = irsp->un.ulpWord[4]; 3399 saveq->wcqe_cmpl.total_data_placed = irsp->unsli3.rcvsli3.acc_len; 3400 3401 /* Source ID */ 3402 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, irsp->un.rcvels.parmRo); 3403 3404 /* rx-id of the response frame */ 3405 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, irsp->ulpContext); 3406 3407 /* ox-id of the frame */ 3408 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 3409 irsp->unsli3.rcvsli3.ox_id); 3410 3411 /* DID */ 3412 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 3413 irsp->un.rcvels.remoteID); 3414 3415 /* unsol data len */ 3416 for (i = 0; i < irsp->ulpBdeCount; i++) { 3417 struct lpfc_hbq_entry *hbqe = NULL; 3418 3419 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3420 if (i == 0) { 3421 hbqe = (struct lpfc_hbq_entry *) 3422 &irsp->un.ulpWord[0]; 3423 saveq->wqe.gen_req.bde.tus.f.bdeSize = 3424 hbqe->bde.tus.f.bdeSize; 3425 } else if (i == 1) { 3426 hbqe = (struct lpfc_hbq_entry *) 3427 &irsp->unsli3.sli3Words[4]; 3428 saveq->unsol_rcv_len = hbqe->bde.tus.f.bdeSize; 3429 } 3430 } 3431 } 3432 } 3433 3434 /** 3435 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3436 * @phba: Pointer to HBA context object. 3437 * @pring: Pointer to driver SLI ring object. 3438 * @saveq: Pointer to the unsolicited iocb. 3439 * 3440 * This function is called with no lock held by the ring event handler 3441 * when there is an unsolicited iocb posted to the response ring by the 3442 * firmware. This function gets the buffer associated with the iocbs 3443 * and calls the event handler for the ring. This function handles both 3444 * qring buffers and hbq buffers. 3445 * When the function returns 1 the caller can free the iocb object otherwise 3446 * upper layer functions will free the iocb objects. 3447 **/ 3448 static int 3449 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3450 struct lpfc_iocbq *saveq) 3451 { 3452 IOCB_t * irsp; 3453 WORD5 * w5p; 3454 dma_addr_t paddr; 3455 uint32_t Rctl, Type; 3456 struct lpfc_iocbq *iocbq; 3457 struct lpfc_dmabuf *dmzbuf; 3458 3459 irsp = &saveq->iocb; 3460 saveq->vport = phba->pport; 3461 3462 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3463 if (pring->lpfc_sli_rcv_async_status) 3464 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3465 else 3466 lpfc_printf_log(phba, 3467 KERN_WARNING, 3468 LOG_SLI, 3469 "0316 Ring %d handler: unexpected " 3470 "ASYNC_STATUS iocb received evt_code " 3471 "0x%x\n", 3472 pring->ringno, 3473 irsp->un.asyncstat.evt_code); 3474 return 1; 3475 } 3476 3477 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3478 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3479 if (irsp->ulpBdeCount > 0) { 3480 dmzbuf = lpfc_sli_get_buff(phba, pring, 3481 irsp->un.ulpWord[3]); 3482 lpfc_in_buf_free(phba, dmzbuf); 3483 } 3484 3485 if (irsp->ulpBdeCount > 1) { 3486 dmzbuf = lpfc_sli_get_buff(phba, pring, 3487 irsp->unsli3.sli3Words[3]); 3488 lpfc_in_buf_free(phba, dmzbuf); 3489 } 3490 3491 if (irsp->ulpBdeCount > 2) { 3492 dmzbuf = lpfc_sli_get_buff(phba, pring, 3493 irsp->unsli3.sli3Words[7]); 3494 lpfc_in_buf_free(phba, dmzbuf); 3495 } 3496 3497 return 1; 3498 } 3499 3500 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3501 if (irsp->ulpBdeCount != 0) { 3502 saveq->cmd_dmabuf = lpfc_sli_get_buff(phba, pring, 3503 irsp->un.ulpWord[3]); 3504 if (!saveq->cmd_dmabuf) 3505 lpfc_printf_log(phba, 3506 KERN_ERR, 3507 LOG_SLI, 3508 "0341 Ring %d Cannot find buffer for " 3509 "an unsolicited iocb. tag 0x%x\n", 3510 pring->ringno, 3511 irsp->un.ulpWord[3]); 3512 } 3513 if (irsp->ulpBdeCount == 2) { 3514 saveq->bpl_dmabuf = lpfc_sli_get_buff(phba, pring, 3515 irsp->unsli3.sli3Words[7]); 3516 if (!saveq->bpl_dmabuf) 3517 lpfc_printf_log(phba, 3518 KERN_ERR, 3519 LOG_SLI, 3520 "0342 Ring %d Cannot find buffer for an" 3521 " unsolicited iocb. tag 0x%x\n", 3522 pring->ringno, 3523 irsp->unsli3.sli3Words[7]); 3524 } 3525 list_for_each_entry(iocbq, &saveq->list, list) { 3526 irsp = &iocbq->iocb; 3527 if (irsp->ulpBdeCount != 0) { 3528 iocbq->cmd_dmabuf = lpfc_sli_get_buff(phba, 3529 pring, 3530 irsp->un.ulpWord[3]); 3531 if (!iocbq->cmd_dmabuf) 3532 lpfc_printf_log(phba, 3533 KERN_ERR, 3534 LOG_SLI, 3535 "0343 Ring %d Cannot find " 3536 "buffer for an unsolicited iocb" 3537 ". tag 0x%x\n", pring->ringno, 3538 irsp->un.ulpWord[3]); 3539 } 3540 if (irsp->ulpBdeCount == 2) { 3541 iocbq->bpl_dmabuf = lpfc_sli_get_buff(phba, 3542 pring, 3543 irsp->unsli3.sli3Words[7]); 3544 if (!iocbq->bpl_dmabuf) 3545 lpfc_printf_log(phba, 3546 KERN_ERR, 3547 LOG_SLI, 3548 "0344 Ring %d Cannot find " 3549 "buffer for an unsolicited " 3550 "iocb. tag 0x%x\n", 3551 pring->ringno, 3552 irsp->unsli3.sli3Words[7]); 3553 } 3554 } 3555 } else { 3556 paddr = getPaddr(irsp->un.cont64[0].addrHigh, 3557 irsp->un.cont64[0].addrLow); 3558 saveq->cmd_dmabuf = lpfc_sli_ringpostbuf_get(phba, pring, 3559 paddr); 3560 if (irsp->ulpBdeCount == 2) { 3561 paddr = getPaddr(irsp->un.cont64[1].addrHigh, 3562 irsp->un.cont64[1].addrLow); 3563 saveq->bpl_dmabuf = lpfc_sli_ringpostbuf_get(phba, 3564 pring, 3565 paddr); 3566 } 3567 } 3568 3569 if (irsp->ulpBdeCount != 0 && 3570 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3571 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3572 int found = 0; 3573 3574 /* search continue save q for same XRI */ 3575 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3576 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3577 saveq->iocb.unsli3.rcvsli3.ox_id) { 3578 list_add_tail(&saveq->list, &iocbq->list); 3579 found = 1; 3580 break; 3581 } 3582 } 3583 if (!found) 3584 list_add_tail(&saveq->clist, 3585 &pring->iocb_continue_saveq); 3586 3587 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3588 list_del_init(&iocbq->clist); 3589 saveq = iocbq; 3590 irsp = &saveq->iocb; 3591 } else { 3592 return 0; 3593 } 3594 } 3595 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3596 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3597 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3598 Rctl = FC_RCTL_ELS_REQ; 3599 Type = FC_TYPE_ELS; 3600 } else { 3601 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3602 Rctl = w5p->hcsw.Rctl; 3603 Type = w5p->hcsw.Type; 3604 3605 /* Firmware Workaround */ 3606 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3607 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3608 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3609 Rctl = FC_RCTL_ELS_REQ; 3610 Type = FC_TYPE_ELS; 3611 w5p->hcsw.Rctl = Rctl; 3612 w5p->hcsw.Type = Type; 3613 } 3614 } 3615 3616 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) && 3617 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX || 3618 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3619 if (irsp->unsli3.rcvsli3.vpi == 0xffff) 3620 saveq->vport = phba->pport; 3621 else 3622 saveq->vport = lpfc_find_vport_by_vpid(phba, 3623 irsp->unsli3.rcvsli3.vpi); 3624 } 3625 3626 /* Prepare WQE with Unsol frame */ 3627 lpfc_sli_prep_unsol_wqe(phba, saveq); 3628 3629 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3630 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3631 "0313 Ring %d handler: unexpected Rctl x%x " 3632 "Type x%x received\n", 3633 pring->ringno, Rctl, Type); 3634 3635 return 1; 3636 } 3637 3638 /** 3639 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3640 * @phba: Pointer to HBA context object. 3641 * @pring: Pointer to driver SLI ring object. 3642 * @prspiocb: Pointer to response iocb object. 3643 * 3644 * This function looks up the iocb_lookup table to get the command iocb 3645 * corresponding to the given response iocb using the iotag of the 3646 * response iocb. The driver calls this function with the hbalock held 3647 * for SLI3 ports or the ring lock held for SLI4 ports. 3648 * This function returns the command iocb object if it finds the command 3649 * iocb else returns NULL. 3650 **/ 3651 static struct lpfc_iocbq * 3652 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3653 struct lpfc_sli_ring *pring, 3654 struct lpfc_iocbq *prspiocb) 3655 { 3656 struct lpfc_iocbq *cmd_iocb = NULL; 3657 u16 iotag; 3658 3659 if (phba->sli_rev == LPFC_SLI_REV4) 3660 iotag = get_wqe_reqtag(prspiocb); 3661 else 3662 iotag = prspiocb->iocb.ulpIoTag; 3663 3664 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3665 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3666 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3667 /* remove from txcmpl queue list */ 3668 list_del_init(&cmd_iocb->list); 3669 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3670 pring->txcmplq_cnt--; 3671 return cmd_iocb; 3672 } 3673 } 3674 3675 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3676 "0317 iotag x%x is out of " 3677 "range: max iotag x%x\n", 3678 iotag, phba->sli.last_iotag); 3679 return NULL; 3680 } 3681 3682 /** 3683 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3684 * @phba: Pointer to HBA context object. 3685 * @pring: Pointer to driver SLI ring object. 3686 * @iotag: IOCB tag. 3687 * 3688 * This function looks up the iocb_lookup table to get the command iocb 3689 * corresponding to the given iotag. The driver calls this function with 3690 * the ring lock held because this function is an SLI4 port only helper. 3691 * This function returns the command iocb object if it finds the command 3692 * iocb else returns NULL. 3693 **/ 3694 static struct lpfc_iocbq * 3695 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3696 struct lpfc_sli_ring *pring, uint16_t iotag) 3697 { 3698 struct lpfc_iocbq *cmd_iocb = NULL; 3699 3700 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3701 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3702 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3703 /* remove from txcmpl queue list */ 3704 list_del_init(&cmd_iocb->list); 3705 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3706 pring->txcmplq_cnt--; 3707 return cmd_iocb; 3708 } 3709 } 3710 3711 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3712 "0372 iotag x%x lookup error: max iotag (x%x) " 3713 "cmd_flag x%x\n", 3714 iotag, phba->sli.last_iotag, 3715 cmd_iocb ? cmd_iocb->cmd_flag : 0xffff); 3716 return NULL; 3717 } 3718 3719 /** 3720 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3721 * @phba: Pointer to HBA context object. 3722 * @pring: Pointer to driver SLI ring object. 3723 * @saveq: Pointer to the response iocb to be processed. 3724 * 3725 * This function is called by the ring event handler for non-fcp 3726 * rings when there is a new response iocb in the response ring. 3727 * The caller is not required to hold any locks. This function 3728 * gets the command iocb associated with the response iocb and 3729 * calls the completion handler for the command iocb. If there 3730 * is no completion handler, the function will free the resources 3731 * associated with command iocb. If the response iocb is for 3732 * an already aborted command iocb, the status of the completion 3733 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3734 * This function always returns 1. 3735 **/ 3736 static int 3737 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3738 struct lpfc_iocbq *saveq) 3739 { 3740 struct lpfc_iocbq *cmdiocbp; 3741 unsigned long iflag; 3742 u32 ulp_command, ulp_status, ulp_word4, ulp_context, iotag; 3743 3744 if (phba->sli_rev == LPFC_SLI_REV4) 3745 spin_lock_irqsave(&pring->ring_lock, iflag); 3746 else 3747 spin_lock_irqsave(&phba->hbalock, iflag); 3748 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3749 if (phba->sli_rev == LPFC_SLI_REV4) 3750 spin_unlock_irqrestore(&pring->ring_lock, iflag); 3751 else 3752 spin_unlock_irqrestore(&phba->hbalock, iflag); 3753 3754 ulp_command = get_job_cmnd(phba, saveq); 3755 ulp_status = get_job_ulpstatus(phba, saveq); 3756 ulp_word4 = get_job_word4(phba, saveq); 3757 ulp_context = get_job_ulpcontext(phba, saveq); 3758 if (phba->sli_rev == LPFC_SLI_REV4) 3759 iotag = get_wqe_reqtag(saveq); 3760 else 3761 iotag = saveq->iocb.ulpIoTag; 3762 3763 if (cmdiocbp) { 3764 ulp_command = get_job_cmnd(phba, cmdiocbp); 3765 if (cmdiocbp->cmd_cmpl) { 3766 /* 3767 * If an ELS command failed send an event to mgmt 3768 * application. 3769 */ 3770 if (ulp_status && 3771 (pring->ringno == LPFC_ELS_RING) && 3772 (ulp_command == CMD_ELS_REQUEST64_CR)) 3773 lpfc_send_els_failure_event(phba, 3774 cmdiocbp, saveq); 3775 3776 /* 3777 * Post all ELS completions to the worker thread. 3778 * All other are passed to the completion callback. 3779 */ 3780 if (pring->ringno == LPFC_ELS_RING) { 3781 if ((phba->sli_rev < LPFC_SLI_REV4) && 3782 (cmdiocbp->cmd_flag & 3783 LPFC_DRIVER_ABORTED)) { 3784 spin_lock_irqsave(&phba->hbalock, 3785 iflag); 3786 cmdiocbp->cmd_flag &= 3787 ~LPFC_DRIVER_ABORTED; 3788 spin_unlock_irqrestore(&phba->hbalock, 3789 iflag); 3790 saveq->iocb.ulpStatus = 3791 IOSTAT_LOCAL_REJECT; 3792 saveq->iocb.un.ulpWord[4] = 3793 IOERR_SLI_ABORTED; 3794 3795 /* Firmware could still be in progress 3796 * of DMAing payload, so don't free data 3797 * buffer till after a hbeat. 3798 */ 3799 spin_lock_irqsave(&phba->hbalock, 3800 iflag); 3801 saveq->cmd_flag |= LPFC_DELAY_MEM_FREE; 3802 spin_unlock_irqrestore(&phba->hbalock, 3803 iflag); 3804 } 3805 if (phba->sli_rev == LPFC_SLI_REV4) { 3806 if (saveq->cmd_flag & 3807 LPFC_EXCHANGE_BUSY) { 3808 /* Set cmdiocb flag for the 3809 * exchange busy so sgl (xri) 3810 * will not be released until 3811 * the abort xri is received 3812 * from hba. 3813 */ 3814 spin_lock_irqsave( 3815 &phba->hbalock, iflag); 3816 cmdiocbp->cmd_flag |= 3817 LPFC_EXCHANGE_BUSY; 3818 spin_unlock_irqrestore( 3819 &phba->hbalock, iflag); 3820 } 3821 if (cmdiocbp->cmd_flag & 3822 LPFC_DRIVER_ABORTED) { 3823 /* 3824 * Clear LPFC_DRIVER_ABORTED 3825 * bit in case it was driver 3826 * initiated abort. 3827 */ 3828 spin_lock_irqsave( 3829 &phba->hbalock, iflag); 3830 cmdiocbp->cmd_flag &= 3831 ~LPFC_DRIVER_ABORTED; 3832 spin_unlock_irqrestore( 3833 &phba->hbalock, iflag); 3834 set_job_ulpstatus(cmdiocbp, 3835 IOSTAT_LOCAL_REJECT); 3836 set_job_ulpword4(cmdiocbp, 3837 IOERR_ABORT_REQUESTED); 3838 /* 3839 * For SLI4, irspiocb contains 3840 * NO_XRI in sli_xritag, it 3841 * shall not affect releasing 3842 * sgl (xri) process. 3843 */ 3844 set_job_ulpstatus(saveq, 3845 IOSTAT_LOCAL_REJECT); 3846 set_job_ulpword4(saveq, 3847 IOERR_SLI_ABORTED); 3848 spin_lock_irqsave( 3849 &phba->hbalock, iflag); 3850 saveq->cmd_flag |= 3851 LPFC_DELAY_MEM_FREE; 3852 spin_unlock_irqrestore( 3853 &phba->hbalock, iflag); 3854 } 3855 } 3856 } 3857 cmdiocbp->cmd_cmpl(phba, cmdiocbp, saveq); 3858 } else 3859 lpfc_sli_release_iocbq(phba, cmdiocbp); 3860 } else { 3861 /* 3862 * Unknown initiating command based on the response iotag. 3863 * This could be the case on the ELS ring because of 3864 * lpfc_els_abort(). 3865 */ 3866 if (pring->ringno != LPFC_ELS_RING) { 3867 /* 3868 * Ring <ringno> handler: unexpected completion IoTag 3869 * <IoTag> 3870 */ 3871 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3872 "0322 Ring %d handler: " 3873 "unexpected completion IoTag x%x " 3874 "Data: x%x x%x x%x x%x\n", 3875 pring->ringno, iotag, ulp_status, 3876 ulp_word4, ulp_command, ulp_context); 3877 } 3878 } 3879 3880 return 1; 3881 } 3882 3883 /** 3884 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3885 * @phba: Pointer to HBA context object. 3886 * @pring: Pointer to driver SLI ring object. 3887 * 3888 * This function is called from the iocb ring event handlers when 3889 * put pointer is ahead of the get pointer for a ring. This function signal 3890 * an error attention condition to the worker thread and the worker 3891 * thread will transition the HBA to offline state. 3892 **/ 3893 static void 3894 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3895 { 3896 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3897 /* 3898 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3899 * rsp ring <portRspMax> 3900 */ 3901 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3902 "0312 Ring %d handler: portRspPut %d " 3903 "is bigger than rsp ring %d\n", 3904 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3905 pring->sli.sli3.numRiocb); 3906 3907 phba->link_state = LPFC_HBA_ERROR; 3908 3909 /* 3910 * All error attention handlers are posted to 3911 * worker thread 3912 */ 3913 phba->work_ha |= HA_ERATT; 3914 phba->work_hs = HS_FFER3; 3915 3916 lpfc_worker_wake_up(phba); 3917 3918 return; 3919 } 3920 3921 /** 3922 * lpfc_poll_eratt - Error attention polling timer timeout handler 3923 * @t: Context to fetch pointer to address of HBA context object from. 3924 * 3925 * This function is invoked by the Error Attention polling timer when the 3926 * timer times out. It will check the SLI Error Attention register for 3927 * possible attention events. If so, it will post an Error Attention event 3928 * and wake up worker thread to process it. Otherwise, it will set up the 3929 * Error Attention polling timer for the next poll. 3930 **/ 3931 void lpfc_poll_eratt(struct timer_list *t) 3932 { 3933 struct lpfc_hba *phba; 3934 uint32_t eratt = 0; 3935 uint64_t sli_intr, cnt; 3936 3937 phba = from_timer(phba, t, eratt_poll); 3938 3939 /* Here we will also keep track of interrupts per sec of the hba */ 3940 sli_intr = phba->sli.slistat.sli_intr; 3941 3942 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3943 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3944 sli_intr); 3945 else 3946 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3947 3948 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3949 do_div(cnt, phba->eratt_poll_interval); 3950 phba->sli.slistat.sli_ips = cnt; 3951 3952 phba->sli.slistat.sli_prev_intr = sli_intr; 3953 3954 /* Check chip HA register for error event */ 3955 eratt = lpfc_sli_check_eratt(phba); 3956 3957 if (eratt) 3958 /* Tell the worker thread there is work to do */ 3959 lpfc_worker_wake_up(phba); 3960 else 3961 /* Restart the timer for next eratt poll */ 3962 mod_timer(&phba->eratt_poll, 3963 jiffies + 3964 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3965 return; 3966 } 3967 3968 3969 /** 3970 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3971 * @phba: Pointer to HBA context object. 3972 * @pring: Pointer to driver SLI ring object. 3973 * @mask: Host attention register mask for this ring. 3974 * 3975 * This function is called from the interrupt context when there is a ring 3976 * event for the fcp ring. The caller does not hold any lock. 3977 * The function processes each response iocb in the response ring until it 3978 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3979 * LE bit set. The function will call the completion handler of the command iocb 3980 * if the response iocb indicates a completion for a command iocb or it is 3981 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3982 * function if this is an unsolicited iocb. 3983 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3984 * to check it explicitly. 3985 */ 3986 int 3987 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3988 struct lpfc_sli_ring *pring, uint32_t mask) 3989 { 3990 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3991 IOCB_t *irsp = NULL; 3992 IOCB_t *entry = NULL; 3993 struct lpfc_iocbq *cmdiocbq = NULL; 3994 struct lpfc_iocbq rspiocbq; 3995 uint32_t status; 3996 uint32_t portRspPut, portRspMax; 3997 int rc = 1; 3998 lpfc_iocb_type type; 3999 unsigned long iflag; 4000 uint32_t rsp_cmpl = 0; 4001 4002 spin_lock_irqsave(&phba->hbalock, iflag); 4003 pring->stats.iocb_event++; 4004 4005 /* 4006 * The next available response entry should never exceed the maximum 4007 * entries. If it does, treat it as an adapter hardware error. 4008 */ 4009 portRspMax = pring->sli.sli3.numRiocb; 4010 portRspPut = le32_to_cpu(pgp->rspPutInx); 4011 if (unlikely(portRspPut >= portRspMax)) { 4012 lpfc_sli_rsp_pointers_error(phba, pring); 4013 spin_unlock_irqrestore(&phba->hbalock, iflag); 4014 return 1; 4015 } 4016 if (phba->fcp_ring_in_use) { 4017 spin_unlock_irqrestore(&phba->hbalock, iflag); 4018 return 1; 4019 } else 4020 phba->fcp_ring_in_use = 1; 4021 4022 rmb(); 4023 while (pring->sli.sli3.rspidx != portRspPut) { 4024 /* 4025 * Fetch an entry off the ring and copy it into a local data 4026 * structure. The copy involves a byte-swap since the 4027 * network byte order and pci byte orders are different. 4028 */ 4029 entry = lpfc_resp_iocb(phba, pring); 4030 phba->last_completion_time = jiffies; 4031 4032 if (++pring->sli.sli3.rspidx >= portRspMax) 4033 pring->sli.sli3.rspidx = 0; 4034 4035 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 4036 (uint32_t *) &rspiocbq.iocb, 4037 phba->iocb_rsp_size); 4038 INIT_LIST_HEAD(&(rspiocbq.list)); 4039 irsp = &rspiocbq.iocb; 4040 4041 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 4042 pring->stats.iocb_rsp++; 4043 rsp_cmpl++; 4044 4045 if (unlikely(irsp->ulpStatus)) { 4046 /* 4047 * If resource errors reported from HBA, reduce 4048 * queuedepths of the SCSI device. 4049 */ 4050 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 4051 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 4052 IOERR_NO_RESOURCES)) { 4053 spin_unlock_irqrestore(&phba->hbalock, iflag); 4054 phba->lpfc_rampdown_queue_depth(phba); 4055 spin_lock_irqsave(&phba->hbalock, iflag); 4056 } 4057 4058 /* Rsp ring <ringno> error: IOCB */ 4059 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4060 "0336 Rsp Ring %d error: IOCB Data: " 4061 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 4062 pring->ringno, 4063 irsp->un.ulpWord[0], 4064 irsp->un.ulpWord[1], 4065 irsp->un.ulpWord[2], 4066 irsp->un.ulpWord[3], 4067 irsp->un.ulpWord[4], 4068 irsp->un.ulpWord[5], 4069 *(uint32_t *)&irsp->un1, 4070 *((uint32_t *)&irsp->un1 + 1)); 4071 } 4072 4073 switch (type) { 4074 case LPFC_ABORT_IOCB: 4075 case LPFC_SOL_IOCB: 4076 /* 4077 * Idle exchange closed via ABTS from port. No iocb 4078 * resources need to be recovered. 4079 */ 4080 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 4081 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4082 "0333 IOCB cmd 0x%x" 4083 " processed. Skipping" 4084 " completion\n", 4085 irsp->ulpCommand); 4086 break; 4087 } 4088 4089 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 4090 &rspiocbq); 4091 if (unlikely(!cmdiocbq)) 4092 break; 4093 if (cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) 4094 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 4095 if (cmdiocbq->cmd_cmpl) { 4096 spin_unlock_irqrestore(&phba->hbalock, iflag); 4097 cmdiocbq->cmd_cmpl(phba, cmdiocbq, &rspiocbq); 4098 spin_lock_irqsave(&phba->hbalock, iflag); 4099 } 4100 break; 4101 case LPFC_UNSOL_IOCB: 4102 spin_unlock_irqrestore(&phba->hbalock, iflag); 4103 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 4104 spin_lock_irqsave(&phba->hbalock, iflag); 4105 break; 4106 default: 4107 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4108 char adaptermsg[LPFC_MAX_ADPTMSG]; 4109 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4110 memcpy(&adaptermsg[0], (uint8_t *) irsp, 4111 MAX_MSG_DATA); 4112 dev_warn(&((phba->pcidev)->dev), 4113 "lpfc%d: %s\n", 4114 phba->brd_no, adaptermsg); 4115 } else { 4116 /* Unknown IOCB command */ 4117 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4118 "0334 Unknown IOCB command " 4119 "Data: x%x, x%x x%x x%x x%x\n", 4120 type, irsp->ulpCommand, 4121 irsp->ulpStatus, 4122 irsp->ulpIoTag, 4123 irsp->ulpContext); 4124 } 4125 break; 4126 } 4127 4128 /* 4129 * The response IOCB has been processed. Update the ring 4130 * pointer in SLIM. If the port response put pointer has not 4131 * been updated, sync the pgp->rspPutInx and fetch the new port 4132 * response put pointer. 4133 */ 4134 writel(pring->sli.sli3.rspidx, 4135 &phba->host_gp[pring->ringno].rspGetInx); 4136 4137 if (pring->sli.sli3.rspidx == portRspPut) 4138 portRspPut = le32_to_cpu(pgp->rspPutInx); 4139 } 4140 4141 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 4142 pring->stats.iocb_rsp_full++; 4143 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4144 writel(status, phba->CAregaddr); 4145 readl(phba->CAregaddr); 4146 } 4147 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4148 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4149 pring->stats.iocb_cmd_empty++; 4150 4151 /* Force update of the local copy of cmdGetInx */ 4152 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4153 lpfc_sli_resume_iocb(phba, pring); 4154 4155 if ((pring->lpfc_sli_cmd_available)) 4156 (pring->lpfc_sli_cmd_available) (phba, pring); 4157 4158 } 4159 4160 phba->fcp_ring_in_use = 0; 4161 spin_unlock_irqrestore(&phba->hbalock, iflag); 4162 return rc; 4163 } 4164 4165 /** 4166 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 4167 * @phba: Pointer to HBA context object. 4168 * @pring: Pointer to driver SLI ring object. 4169 * @rspiocbp: Pointer to driver response IOCB object. 4170 * 4171 * This function is called from the worker thread when there is a slow-path 4172 * response IOCB to process. This function chains all the response iocbs until 4173 * seeing the iocb with the LE bit set. The function will call 4174 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 4175 * completion of a command iocb. The function will call the 4176 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 4177 * The function frees the resources or calls the completion handler if this 4178 * iocb is an abort completion. The function returns NULL when the response 4179 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 4180 * this function shall chain the iocb on to the iocb_continueq and return the 4181 * response iocb passed in. 4182 **/ 4183 static struct lpfc_iocbq * 4184 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 4185 struct lpfc_iocbq *rspiocbp) 4186 { 4187 struct lpfc_iocbq *saveq; 4188 struct lpfc_iocbq *cmdiocb; 4189 struct lpfc_iocbq *next_iocb; 4190 IOCB_t *irsp; 4191 uint32_t free_saveq; 4192 u8 cmd_type; 4193 lpfc_iocb_type type; 4194 unsigned long iflag; 4195 u32 ulp_status = get_job_ulpstatus(phba, rspiocbp); 4196 u32 ulp_word4 = get_job_word4(phba, rspiocbp); 4197 u32 ulp_command = get_job_cmnd(phba, rspiocbp); 4198 int rc; 4199 4200 spin_lock_irqsave(&phba->hbalock, iflag); 4201 /* First add the response iocb to the countinueq list */ 4202 list_add_tail(&rspiocbp->list, &pring->iocb_continueq); 4203 pring->iocb_continueq_cnt++; 4204 4205 /* 4206 * By default, the driver expects to free all resources 4207 * associated with this iocb completion. 4208 */ 4209 free_saveq = 1; 4210 saveq = list_get_first(&pring->iocb_continueq, 4211 struct lpfc_iocbq, list); 4212 list_del_init(&pring->iocb_continueq); 4213 pring->iocb_continueq_cnt = 0; 4214 4215 pring->stats.iocb_rsp++; 4216 4217 /* 4218 * If resource errors reported from HBA, reduce 4219 * queuedepths of the SCSI device. 4220 */ 4221 if (ulp_status == IOSTAT_LOCAL_REJECT && 4222 ((ulp_word4 & IOERR_PARAM_MASK) == 4223 IOERR_NO_RESOURCES)) { 4224 spin_unlock_irqrestore(&phba->hbalock, iflag); 4225 phba->lpfc_rampdown_queue_depth(phba); 4226 spin_lock_irqsave(&phba->hbalock, iflag); 4227 } 4228 4229 if (ulp_status) { 4230 /* Rsp ring <ringno> error: IOCB */ 4231 if (phba->sli_rev < LPFC_SLI_REV4) { 4232 irsp = &rspiocbp->iocb; 4233 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4234 "0328 Rsp Ring %d error: ulp_status x%x " 4235 "IOCB Data: " 4236 "x%08x x%08x x%08x x%08x " 4237 "x%08x x%08x x%08x x%08x " 4238 "x%08x x%08x x%08x x%08x " 4239 "x%08x x%08x x%08x x%08x\n", 4240 pring->ringno, ulp_status, 4241 get_job_ulpword(rspiocbp, 0), 4242 get_job_ulpword(rspiocbp, 1), 4243 get_job_ulpword(rspiocbp, 2), 4244 get_job_ulpword(rspiocbp, 3), 4245 get_job_ulpword(rspiocbp, 4), 4246 get_job_ulpword(rspiocbp, 5), 4247 *(((uint32_t *)irsp) + 6), 4248 *(((uint32_t *)irsp) + 7), 4249 *(((uint32_t *)irsp) + 8), 4250 *(((uint32_t *)irsp) + 9), 4251 *(((uint32_t *)irsp) + 10), 4252 *(((uint32_t *)irsp) + 11), 4253 *(((uint32_t *)irsp) + 12), 4254 *(((uint32_t *)irsp) + 13), 4255 *(((uint32_t *)irsp) + 14), 4256 *(((uint32_t *)irsp) + 15)); 4257 } else { 4258 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4259 "0321 Rsp Ring %d error: " 4260 "IOCB Data: " 4261 "x%x x%x x%x x%x\n", 4262 pring->ringno, 4263 rspiocbp->wcqe_cmpl.word0, 4264 rspiocbp->wcqe_cmpl.total_data_placed, 4265 rspiocbp->wcqe_cmpl.parameter, 4266 rspiocbp->wcqe_cmpl.word3); 4267 } 4268 } 4269 4270 4271 /* 4272 * Fetch the iocb command type and call the correct completion 4273 * routine. Solicited and Unsolicited IOCBs on the ELS ring 4274 * get freed back to the lpfc_iocb_list by the discovery 4275 * kernel thread. 4276 */ 4277 cmd_type = ulp_command & CMD_IOCB_MASK; 4278 type = lpfc_sli_iocb_cmd_type(cmd_type); 4279 switch (type) { 4280 case LPFC_SOL_IOCB: 4281 spin_unlock_irqrestore(&phba->hbalock, iflag); 4282 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 4283 spin_lock_irqsave(&phba->hbalock, iflag); 4284 break; 4285 case LPFC_UNSOL_IOCB: 4286 spin_unlock_irqrestore(&phba->hbalock, iflag); 4287 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 4288 spin_lock_irqsave(&phba->hbalock, iflag); 4289 if (!rc) 4290 free_saveq = 0; 4291 break; 4292 case LPFC_ABORT_IOCB: 4293 cmdiocb = NULL; 4294 if (ulp_command != CMD_XRI_ABORTED_CX) 4295 cmdiocb = lpfc_sli_iocbq_lookup(phba, pring, 4296 saveq); 4297 if (cmdiocb) { 4298 /* Call the specified completion routine */ 4299 if (cmdiocb->cmd_cmpl) { 4300 spin_unlock_irqrestore(&phba->hbalock, iflag); 4301 cmdiocb->cmd_cmpl(phba, cmdiocb, saveq); 4302 spin_lock_irqsave(&phba->hbalock, iflag); 4303 } else { 4304 __lpfc_sli_release_iocbq(phba, cmdiocb); 4305 } 4306 } 4307 break; 4308 case LPFC_UNKNOWN_IOCB: 4309 if (ulp_command == CMD_ADAPTER_MSG) { 4310 char adaptermsg[LPFC_MAX_ADPTMSG]; 4311 4312 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4313 memcpy(&adaptermsg[0], (uint8_t *)&rspiocbp->wqe, 4314 MAX_MSG_DATA); 4315 dev_warn(&((phba->pcidev)->dev), 4316 "lpfc%d: %s\n", 4317 phba->brd_no, adaptermsg); 4318 } else { 4319 /* Unknown command */ 4320 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4321 "0335 Unknown IOCB " 4322 "command Data: x%x " 4323 "x%x x%x x%x\n", 4324 ulp_command, 4325 ulp_status, 4326 get_wqe_reqtag(rspiocbp), 4327 get_job_ulpcontext(phba, rspiocbp)); 4328 } 4329 break; 4330 } 4331 4332 if (free_saveq) { 4333 list_for_each_entry_safe(rspiocbp, next_iocb, 4334 &saveq->list, list) { 4335 list_del_init(&rspiocbp->list); 4336 __lpfc_sli_release_iocbq(phba, rspiocbp); 4337 } 4338 __lpfc_sli_release_iocbq(phba, saveq); 4339 } 4340 rspiocbp = NULL; 4341 spin_unlock_irqrestore(&phba->hbalock, iflag); 4342 return rspiocbp; 4343 } 4344 4345 /** 4346 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 4347 * @phba: Pointer to HBA context object. 4348 * @pring: Pointer to driver SLI ring object. 4349 * @mask: Host attention register mask for this ring. 4350 * 4351 * This routine wraps the actual slow_ring event process routine from the 4352 * API jump table function pointer from the lpfc_hba struct. 4353 **/ 4354 void 4355 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4356 struct lpfc_sli_ring *pring, uint32_t mask) 4357 { 4358 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4359 } 4360 4361 /** 4362 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4363 * @phba: Pointer to HBA context object. 4364 * @pring: Pointer to driver SLI ring object. 4365 * @mask: Host attention register mask for this ring. 4366 * 4367 * This function is called from the worker thread when there is a ring event 4368 * for non-fcp rings. The caller does not hold any lock. The function will 4369 * remove each response iocb in the response ring and calls the handle 4370 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4371 **/ 4372 static void 4373 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4374 struct lpfc_sli_ring *pring, uint32_t mask) 4375 { 4376 struct lpfc_pgp *pgp; 4377 IOCB_t *entry; 4378 IOCB_t *irsp = NULL; 4379 struct lpfc_iocbq *rspiocbp = NULL; 4380 uint32_t portRspPut, portRspMax; 4381 unsigned long iflag; 4382 uint32_t status; 4383 4384 pgp = &phba->port_gp[pring->ringno]; 4385 spin_lock_irqsave(&phba->hbalock, iflag); 4386 pring->stats.iocb_event++; 4387 4388 /* 4389 * The next available response entry should never exceed the maximum 4390 * entries. If it does, treat it as an adapter hardware error. 4391 */ 4392 portRspMax = pring->sli.sli3.numRiocb; 4393 portRspPut = le32_to_cpu(pgp->rspPutInx); 4394 if (portRspPut >= portRspMax) { 4395 /* 4396 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4397 * rsp ring <portRspMax> 4398 */ 4399 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4400 "0303 Ring %d handler: portRspPut %d " 4401 "is bigger than rsp ring %d\n", 4402 pring->ringno, portRspPut, portRspMax); 4403 4404 phba->link_state = LPFC_HBA_ERROR; 4405 spin_unlock_irqrestore(&phba->hbalock, iflag); 4406 4407 phba->work_hs = HS_FFER3; 4408 lpfc_handle_eratt(phba); 4409 4410 return; 4411 } 4412 4413 rmb(); 4414 while (pring->sli.sli3.rspidx != portRspPut) { 4415 /* 4416 * Build a completion list and call the appropriate handler. 4417 * The process is to get the next available response iocb, get 4418 * a free iocb from the list, copy the response data into the 4419 * free iocb, insert to the continuation list, and update the 4420 * next response index to slim. This process makes response 4421 * iocb's in the ring available to DMA as fast as possible but 4422 * pays a penalty for a copy operation. Since the iocb is 4423 * only 32 bytes, this penalty is considered small relative to 4424 * the PCI reads for register values and a slim write. When 4425 * the ulpLe field is set, the entire Command has been 4426 * received. 4427 */ 4428 entry = lpfc_resp_iocb(phba, pring); 4429 4430 phba->last_completion_time = jiffies; 4431 rspiocbp = __lpfc_sli_get_iocbq(phba); 4432 if (rspiocbp == NULL) { 4433 printk(KERN_ERR "%s: out of buffers! Failing " 4434 "completion.\n", __func__); 4435 break; 4436 } 4437 4438 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4439 phba->iocb_rsp_size); 4440 irsp = &rspiocbp->iocb; 4441 4442 if (++pring->sli.sli3.rspidx >= portRspMax) 4443 pring->sli.sli3.rspidx = 0; 4444 4445 if (pring->ringno == LPFC_ELS_RING) { 4446 lpfc_debugfs_slow_ring_trc(phba, 4447 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4448 *(((uint32_t *) irsp) + 4), 4449 *(((uint32_t *) irsp) + 6), 4450 *(((uint32_t *) irsp) + 7)); 4451 } 4452 4453 writel(pring->sli.sli3.rspidx, 4454 &phba->host_gp[pring->ringno].rspGetInx); 4455 4456 spin_unlock_irqrestore(&phba->hbalock, iflag); 4457 /* Handle the response IOCB */ 4458 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4459 spin_lock_irqsave(&phba->hbalock, iflag); 4460 4461 /* 4462 * If the port response put pointer has not been updated, sync 4463 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4464 * response put pointer. 4465 */ 4466 if (pring->sli.sli3.rspidx == portRspPut) { 4467 portRspPut = le32_to_cpu(pgp->rspPutInx); 4468 } 4469 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4470 4471 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4472 /* At least one response entry has been freed */ 4473 pring->stats.iocb_rsp_full++; 4474 /* SET RxRE_RSP in Chip Att register */ 4475 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4476 writel(status, phba->CAregaddr); 4477 readl(phba->CAregaddr); /* flush */ 4478 } 4479 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4480 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4481 pring->stats.iocb_cmd_empty++; 4482 4483 /* Force update of the local copy of cmdGetInx */ 4484 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4485 lpfc_sli_resume_iocb(phba, pring); 4486 4487 if ((pring->lpfc_sli_cmd_available)) 4488 (pring->lpfc_sli_cmd_available) (phba, pring); 4489 4490 } 4491 4492 spin_unlock_irqrestore(&phba->hbalock, iflag); 4493 return; 4494 } 4495 4496 /** 4497 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4498 * @phba: Pointer to HBA context object. 4499 * @pring: Pointer to driver SLI ring object. 4500 * @mask: Host attention register mask for this ring. 4501 * 4502 * This function is called from the worker thread when there is a pending 4503 * ELS response iocb on the driver internal slow-path response iocb worker 4504 * queue. The caller does not hold any lock. The function will remove each 4505 * response iocb from the response worker queue and calls the handle 4506 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4507 **/ 4508 static void 4509 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4510 struct lpfc_sli_ring *pring, uint32_t mask) 4511 { 4512 struct lpfc_iocbq *irspiocbq; 4513 struct hbq_dmabuf *dmabuf; 4514 struct lpfc_cq_event *cq_event; 4515 unsigned long iflag; 4516 int count = 0; 4517 4518 spin_lock_irqsave(&phba->hbalock, iflag); 4519 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4520 spin_unlock_irqrestore(&phba->hbalock, iflag); 4521 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4522 /* Get the response iocb from the head of work queue */ 4523 spin_lock_irqsave(&phba->hbalock, iflag); 4524 list_remove_head(&phba->sli4_hba.sp_queue_event, 4525 cq_event, struct lpfc_cq_event, list); 4526 spin_unlock_irqrestore(&phba->hbalock, iflag); 4527 4528 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4529 case CQE_CODE_COMPL_WQE: 4530 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4531 cq_event); 4532 /* Translate ELS WCQE to response IOCBQ */ 4533 irspiocbq = lpfc_sli4_els_preprocess_rspiocbq(phba, 4534 irspiocbq); 4535 if (irspiocbq) 4536 lpfc_sli_sp_handle_rspiocb(phba, pring, 4537 irspiocbq); 4538 count++; 4539 break; 4540 case CQE_CODE_RECEIVE: 4541 case CQE_CODE_RECEIVE_V1: 4542 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4543 cq_event); 4544 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4545 count++; 4546 break; 4547 default: 4548 break; 4549 } 4550 4551 /* Limit the number of events to 64 to avoid soft lockups */ 4552 if (count == 64) 4553 break; 4554 } 4555 } 4556 4557 /** 4558 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4559 * @phba: Pointer to HBA context object. 4560 * @pring: Pointer to driver SLI ring object. 4561 * 4562 * This function aborts all iocbs in the given ring and frees all the iocb 4563 * objects in txq. This function issues an abort iocb for all the iocb commands 4564 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4565 * the return of this function. The caller is not required to hold any locks. 4566 **/ 4567 void 4568 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4569 { 4570 LIST_HEAD(tx_completions); 4571 LIST_HEAD(txcmplq_completions); 4572 struct lpfc_iocbq *iocb, *next_iocb; 4573 int offline; 4574 4575 if (pring->ringno == LPFC_ELS_RING) { 4576 lpfc_fabric_abort_hba(phba); 4577 } 4578 offline = pci_channel_offline(phba->pcidev); 4579 4580 /* Error everything on txq and txcmplq 4581 * First do the txq. 4582 */ 4583 if (phba->sli_rev >= LPFC_SLI_REV4) { 4584 spin_lock_irq(&pring->ring_lock); 4585 list_splice_init(&pring->txq, &tx_completions); 4586 pring->txq_cnt = 0; 4587 4588 if (offline) { 4589 list_splice_init(&pring->txcmplq, 4590 &txcmplq_completions); 4591 } else { 4592 /* Next issue ABTS for everything on the txcmplq */ 4593 list_for_each_entry_safe(iocb, next_iocb, 4594 &pring->txcmplq, list) 4595 lpfc_sli_issue_abort_iotag(phba, pring, 4596 iocb, NULL); 4597 } 4598 spin_unlock_irq(&pring->ring_lock); 4599 } else { 4600 spin_lock_irq(&phba->hbalock); 4601 list_splice_init(&pring->txq, &tx_completions); 4602 pring->txq_cnt = 0; 4603 4604 if (offline) { 4605 list_splice_init(&pring->txcmplq, &txcmplq_completions); 4606 } else { 4607 /* Next issue ABTS for everything on the txcmplq */ 4608 list_for_each_entry_safe(iocb, next_iocb, 4609 &pring->txcmplq, list) 4610 lpfc_sli_issue_abort_iotag(phba, pring, 4611 iocb, NULL); 4612 } 4613 spin_unlock_irq(&phba->hbalock); 4614 } 4615 4616 if (offline) { 4617 /* Cancel all the IOCBs from the completions list */ 4618 lpfc_sli_cancel_iocbs(phba, &txcmplq_completions, 4619 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 4620 } else { 4621 /* Make sure HBA is alive */ 4622 lpfc_issue_hb_tmo(phba); 4623 } 4624 /* Cancel all the IOCBs from the completions list */ 4625 lpfc_sli_cancel_iocbs(phba, &tx_completions, IOSTAT_LOCAL_REJECT, 4626 IOERR_SLI_ABORTED); 4627 } 4628 4629 /** 4630 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4631 * @phba: Pointer to HBA context object. 4632 * 4633 * This function aborts all iocbs in FCP rings and frees all the iocb 4634 * objects in txq. This function issues an abort iocb for all the iocb commands 4635 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4636 * the return of this function. The caller is not required to hold any locks. 4637 **/ 4638 void 4639 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4640 { 4641 struct lpfc_sli *psli = &phba->sli; 4642 struct lpfc_sli_ring *pring; 4643 uint32_t i; 4644 4645 /* Look on all the FCP Rings for the iotag */ 4646 if (phba->sli_rev >= LPFC_SLI_REV4) { 4647 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4648 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4649 lpfc_sli_abort_iocb_ring(phba, pring); 4650 } 4651 } else { 4652 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4653 lpfc_sli_abort_iocb_ring(phba, pring); 4654 } 4655 } 4656 4657 /** 4658 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4659 * @phba: Pointer to HBA context object. 4660 * 4661 * This function flushes all iocbs in the IO ring and frees all the iocb 4662 * objects in txq and txcmplq. This function will not issue abort iocbs 4663 * for all the iocb commands in txcmplq, they will just be returned with 4664 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4665 * slot has been permanently disabled. 4666 **/ 4667 void 4668 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4669 { 4670 LIST_HEAD(txq); 4671 LIST_HEAD(txcmplq); 4672 struct lpfc_sli *psli = &phba->sli; 4673 struct lpfc_sli_ring *pring; 4674 uint32_t i; 4675 struct lpfc_iocbq *piocb, *next_iocb; 4676 4677 spin_lock_irq(&phba->hbalock); 4678 /* Indicate the I/O queues are flushed */ 4679 phba->hba_flag |= HBA_IOQ_FLUSH; 4680 spin_unlock_irq(&phba->hbalock); 4681 4682 /* Look on all the FCP Rings for the iotag */ 4683 if (phba->sli_rev >= LPFC_SLI_REV4) { 4684 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4685 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4686 4687 spin_lock_irq(&pring->ring_lock); 4688 /* Retrieve everything on txq */ 4689 list_splice_init(&pring->txq, &txq); 4690 list_for_each_entry_safe(piocb, next_iocb, 4691 &pring->txcmplq, list) 4692 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4693 /* Retrieve everything on the txcmplq */ 4694 list_splice_init(&pring->txcmplq, &txcmplq); 4695 pring->txq_cnt = 0; 4696 pring->txcmplq_cnt = 0; 4697 spin_unlock_irq(&pring->ring_lock); 4698 4699 /* Flush the txq */ 4700 lpfc_sli_cancel_iocbs(phba, &txq, 4701 IOSTAT_LOCAL_REJECT, 4702 IOERR_SLI_DOWN); 4703 /* Flush the txcmplq */ 4704 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4705 IOSTAT_LOCAL_REJECT, 4706 IOERR_SLI_DOWN); 4707 if (unlikely(pci_channel_offline(phba->pcidev))) 4708 lpfc_sli4_io_xri_aborted(phba, NULL, 0); 4709 } 4710 } else { 4711 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4712 4713 spin_lock_irq(&phba->hbalock); 4714 /* Retrieve everything on txq */ 4715 list_splice_init(&pring->txq, &txq); 4716 list_for_each_entry_safe(piocb, next_iocb, 4717 &pring->txcmplq, list) 4718 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4719 /* Retrieve everything on the txcmplq */ 4720 list_splice_init(&pring->txcmplq, &txcmplq); 4721 pring->txq_cnt = 0; 4722 pring->txcmplq_cnt = 0; 4723 spin_unlock_irq(&phba->hbalock); 4724 4725 /* Flush the txq */ 4726 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4727 IOERR_SLI_DOWN); 4728 /* Flush the txcmpq */ 4729 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4730 IOERR_SLI_DOWN); 4731 } 4732 } 4733 4734 /** 4735 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4736 * @phba: Pointer to HBA context object. 4737 * @mask: Bit mask to be checked. 4738 * 4739 * This function reads the host status register and compares 4740 * with the provided bit mask to check if HBA completed 4741 * the restart. This function will wait in a loop for the 4742 * HBA to complete restart. If the HBA does not restart within 4743 * 15 iterations, the function will reset the HBA again. The 4744 * function returns 1 when HBA fail to restart otherwise returns 4745 * zero. 4746 **/ 4747 static int 4748 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4749 { 4750 uint32_t status; 4751 int i = 0; 4752 int retval = 0; 4753 4754 /* Read the HBA Host Status Register */ 4755 if (lpfc_readl(phba->HSregaddr, &status)) 4756 return 1; 4757 4758 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4759 4760 /* 4761 * Check status register every 100ms for 5 retries, then every 4762 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4763 * every 2.5 sec for 4. 4764 * Break our of the loop if errors occurred during init. 4765 */ 4766 while (((status & mask) != mask) && 4767 !(status & HS_FFERM) && 4768 i++ < 20) { 4769 4770 if (i <= 5) 4771 msleep(10); 4772 else if (i <= 10) 4773 msleep(500); 4774 else 4775 msleep(2500); 4776 4777 if (i == 15) { 4778 /* Do post */ 4779 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4780 lpfc_sli_brdrestart(phba); 4781 } 4782 /* Read the HBA Host Status Register */ 4783 if (lpfc_readl(phba->HSregaddr, &status)) { 4784 retval = 1; 4785 break; 4786 } 4787 } 4788 4789 /* Check to see if any errors occurred during init */ 4790 if ((status & HS_FFERM) || (i >= 20)) { 4791 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4792 "2751 Adapter failed to restart, " 4793 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4794 status, 4795 readl(phba->MBslimaddr + 0xa8), 4796 readl(phba->MBslimaddr + 0xac)); 4797 phba->link_state = LPFC_HBA_ERROR; 4798 retval = 1; 4799 } 4800 4801 return retval; 4802 } 4803 4804 /** 4805 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4806 * @phba: Pointer to HBA context object. 4807 * @mask: Bit mask to be checked. 4808 * 4809 * This function checks the host status register to check if HBA is 4810 * ready. This function will wait in a loop for the HBA to be ready 4811 * If the HBA is not ready , the function will will reset the HBA PCI 4812 * function again. The function returns 1 when HBA fail to be ready 4813 * otherwise returns zero. 4814 **/ 4815 static int 4816 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4817 { 4818 uint32_t status; 4819 int retval = 0; 4820 4821 /* Read the HBA Host Status Register */ 4822 status = lpfc_sli4_post_status_check(phba); 4823 4824 if (status) { 4825 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4826 lpfc_sli_brdrestart(phba); 4827 status = lpfc_sli4_post_status_check(phba); 4828 } 4829 4830 /* Check to see if any errors occurred during init */ 4831 if (status) { 4832 phba->link_state = LPFC_HBA_ERROR; 4833 retval = 1; 4834 } else 4835 phba->sli4_hba.intr_enable = 0; 4836 4837 phba->hba_flag &= ~HBA_SETUP; 4838 return retval; 4839 } 4840 4841 /** 4842 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4843 * @phba: Pointer to HBA context object. 4844 * @mask: Bit mask to be checked. 4845 * 4846 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4847 * from the API jump table function pointer from the lpfc_hba struct. 4848 **/ 4849 int 4850 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4851 { 4852 return phba->lpfc_sli_brdready(phba, mask); 4853 } 4854 4855 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4856 4857 /** 4858 * lpfc_reset_barrier - Make HBA ready for HBA reset 4859 * @phba: Pointer to HBA context object. 4860 * 4861 * This function is called before resetting an HBA. This function is called 4862 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4863 **/ 4864 void lpfc_reset_barrier(struct lpfc_hba *phba) 4865 { 4866 uint32_t __iomem *resp_buf; 4867 uint32_t __iomem *mbox_buf; 4868 volatile struct MAILBOX_word0 mbox; 4869 uint32_t hc_copy, ha_copy, resp_data; 4870 int i; 4871 uint8_t hdrtype; 4872 4873 lockdep_assert_held(&phba->hbalock); 4874 4875 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4876 if (hdrtype != 0x80 || 4877 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4878 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4879 return; 4880 4881 /* 4882 * Tell the other part of the chip to suspend temporarily all 4883 * its DMA activity. 4884 */ 4885 resp_buf = phba->MBslimaddr; 4886 4887 /* Disable the error attention */ 4888 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4889 return; 4890 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4891 readl(phba->HCregaddr); /* flush */ 4892 phba->link_flag |= LS_IGNORE_ERATT; 4893 4894 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4895 return; 4896 if (ha_copy & HA_ERATT) { 4897 /* Clear Chip error bit */ 4898 writel(HA_ERATT, phba->HAregaddr); 4899 phba->pport->stopped = 1; 4900 } 4901 4902 mbox.word0 = 0; 4903 mbox.mbxCommand = MBX_KILL_BOARD; 4904 mbox.mbxOwner = OWN_CHIP; 4905 4906 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4907 mbox_buf = phba->MBslimaddr; 4908 writel(mbox.word0, mbox_buf); 4909 4910 for (i = 0; i < 50; i++) { 4911 if (lpfc_readl((resp_buf + 1), &resp_data)) 4912 return; 4913 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4914 mdelay(1); 4915 else 4916 break; 4917 } 4918 resp_data = 0; 4919 if (lpfc_readl((resp_buf + 1), &resp_data)) 4920 return; 4921 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4922 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4923 phba->pport->stopped) 4924 goto restore_hc; 4925 else 4926 goto clear_errat; 4927 } 4928 4929 mbox.mbxOwner = OWN_HOST; 4930 resp_data = 0; 4931 for (i = 0; i < 500; i++) { 4932 if (lpfc_readl(resp_buf, &resp_data)) 4933 return; 4934 if (resp_data != mbox.word0) 4935 mdelay(1); 4936 else 4937 break; 4938 } 4939 4940 clear_errat: 4941 4942 while (++i < 500) { 4943 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4944 return; 4945 if (!(ha_copy & HA_ERATT)) 4946 mdelay(1); 4947 else 4948 break; 4949 } 4950 4951 if (readl(phba->HAregaddr) & HA_ERATT) { 4952 writel(HA_ERATT, phba->HAregaddr); 4953 phba->pport->stopped = 1; 4954 } 4955 4956 restore_hc: 4957 phba->link_flag &= ~LS_IGNORE_ERATT; 4958 writel(hc_copy, phba->HCregaddr); 4959 readl(phba->HCregaddr); /* flush */ 4960 } 4961 4962 /** 4963 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4964 * @phba: Pointer to HBA context object. 4965 * 4966 * This function issues a kill_board mailbox command and waits for 4967 * the error attention interrupt. This function is called for stopping 4968 * the firmware processing. The caller is not required to hold any 4969 * locks. This function calls lpfc_hba_down_post function to free 4970 * any pending commands after the kill. The function will return 1 when it 4971 * fails to kill the board else will return 0. 4972 **/ 4973 int 4974 lpfc_sli_brdkill(struct lpfc_hba *phba) 4975 { 4976 struct lpfc_sli *psli; 4977 LPFC_MBOXQ_t *pmb; 4978 uint32_t status; 4979 uint32_t ha_copy; 4980 int retval; 4981 int i = 0; 4982 4983 psli = &phba->sli; 4984 4985 /* Kill HBA */ 4986 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4987 "0329 Kill HBA Data: x%x x%x\n", 4988 phba->pport->port_state, psli->sli_flag); 4989 4990 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4991 if (!pmb) 4992 return 1; 4993 4994 /* Disable the error attention */ 4995 spin_lock_irq(&phba->hbalock); 4996 if (lpfc_readl(phba->HCregaddr, &status)) { 4997 spin_unlock_irq(&phba->hbalock); 4998 mempool_free(pmb, phba->mbox_mem_pool); 4999 return 1; 5000 } 5001 status &= ~HC_ERINT_ENA; 5002 writel(status, phba->HCregaddr); 5003 readl(phba->HCregaddr); /* flush */ 5004 phba->link_flag |= LS_IGNORE_ERATT; 5005 spin_unlock_irq(&phba->hbalock); 5006 5007 lpfc_kill_board(phba, pmb); 5008 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 5009 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 5010 5011 if (retval != MBX_SUCCESS) { 5012 if (retval != MBX_BUSY) 5013 mempool_free(pmb, phba->mbox_mem_pool); 5014 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5015 "2752 KILL_BOARD command failed retval %d\n", 5016 retval); 5017 spin_lock_irq(&phba->hbalock); 5018 phba->link_flag &= ~LS_IGNORE_ERATT; 5019 spin_unlock_irq(&phba->hbalock); 5020 return 1; 5021 } 5022 5023 spin_lock_irq(&phba->hbalock); 5024 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 5025 spin_unlock_irq(&phba->hbalock); 5026 5027 mempool_free(pmb, phba->mbox_mem_pool); 5028 5029 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 5030 * attention every 100ms for 3 seconds. If we don't get ERATT after 5031 * 3 seconds we still set HBA_ERROR state because the status of the 5032 * board is now undefined. 5033 */ 5034 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5035 return 1; 5036 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 5037 mdelay(100); 5038 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5039 return 1; 5040 } 5041 5042 del_timer_sync(&psli->mbox_tmo); 5043 if (ha_copy & HA_ERATT) { 5044 writel(HA_ERATT, phba->HAregaddr); 5045 phba->pport->stopped = 1; 5046 } 5047 spin_lock_irq(&phba->hbalock); 5048 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5049 psli->mbox_active = NULL; 5050 phba->link_flag &= ~LS_IGNORE_ERATT; 5051 spin_unlock_irq(&phba->hbalock); 5052 5053 lpfc_hba_down_post(phba); 5054 phba->link_state = LPFC_HBA_ERROR; 5055 5056 return ha_copy & HA_ERATT ? 0 : 1; 5057 } 5058 5059 /** 5060 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 5061 * @phba: Pointer to HBA context object. 5062 * 5063 * This function resets the HBA by writing HC_INITFF to the control 5064 * register. After the HBA resets, this function resets all the iocb ring 5065 * indices. This function disables PCI layer parity checking during 5066 * the reset. 5067 * This function returns 0 always. 5068 * The caller is not required to hold any locks. 5069 **/ 5070 int 5071 lpfc_sli_brdreset(struct lpfc_hba *phba) 5072 { 5073 struct lpfc_sli *psli; 5074 struct lpfc_sli_ring *pring; 5075 uint16_t cfg_value; 5076 int i; 5077 5078 psli = &phba->sli; 5079 5080 /* Reset HBA */ 5081 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5082 "0325 Reset HBA Data: x%x x%x\n", 5083 (phba->pport) ? phba->pport->port_state : 0, 5084 psli->sli_flag); 5085 5086 /* perform board reset */ 5087 phba->fc_eventTag = 0; 5088 phba->link_events = 0; 5089 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5090 if (phba->pport) { 5091 phba->pport->fc_myDID = 0; 5092 phba->pport->fc_prevDID = 0; 5093 } 5094 5095 /* Turn off parity checking and serr during the physical reset */ 5096 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 5097 return -EIO; 5098 5099 pci_write_config_word(phba->pcidev, PCI_COMMAND, 5100 (cfg_value & 5101 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5102 5103 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 5104 5105 /* Now toggle INITFF bit in the Host Control Register */ 5106 writel(HC_INITFF, phba->HCregaddr); 5107 mdelay(1); 5108 readl(phba->HCregaddr); /* flush */ 5109 writel(0, phba->HCregaddr); 5110 readl(phba->HCregaddr); /* flush */ 5111 5112 /* Restore PCI cmd register */ 5113 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5114 5115 /* Initialize relevant SLI info */ 5116 for (i = 0; i < psli->num_rings; i++) { 5117 pring = &psli->sli3_ring[i]; 5118 pring->flag = 0; 5119 pring->sli.sli3.rspidx = 0; 5120 pring->sli.sli3.next_cmdidx = 0; 5121 pring->sli.sli3.local_getidx = 0; 5122 pring->sli.sli3.cmdidx = 0; 5123 pring->missbufcnt = 0; 5124 } 5125 5126 phba->link_state = LPFC_WARM_START; 5127 return 0; 5128 } 5129 5130 /** 5131 * lpfc_sli4_brdreset - Reset a sli-4 HBA 5132 * @phba: Pointer to HBA context object. 5133 * 5134 * This function resets a SLI4 HBA. This function disables PCI layer parity 5135 * checking during resets the device. The caller is not required to hold 5136 * any locks. 5137 * 5138 * This function returns 0 on success else returns negative error code. 5139 **/ 5140 int 5141 lpfc_sli4_brdreset(struct lpfc_hba *phba) 5142 { 5143 struct lpfc_sli *psli = &phba->sli; 5144 uint16_t cfg_value; 5145 int rc = 0; 5146 5147 /* Reset HBA */ 5148 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5149 "0295 Reset HBA Data: x%x x%x x%x\n", 5150 phba->pport->port_state, psli->sli_flag, 5151 phba->hba_flag); 5152 5153 /* perform board reset */ 5154 phba->fc_eventTag = 0; 5155 phba->link_events = 0; 5156 phba->pport->fc_myDID = 0; 5157 phba->pport->fc_prevDID = 0; 5158 phba->hba_flag &= ~HBA_SETUP; 5159 5160 spin_lock_irq(&phba->hbalock); 5161 psli->sli_flag &= ~(LPFC_PROCESS_LA); 5162 phba->fcf.fcf_flag = 0; 5163 spin_unlock_irq(&phba->hbalock); 5164 5165 /* Now physically reset the device */ 5166 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5167 "0389 Performing PCI function reset!\n"); 5168 5169 /* Turn off parity checking and serr during the physical reset */ 5170 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 5171 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5172 "3205 PCI read Config failed\n"); 5173 return -EIO; 5174 } 5175 5176 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 5177 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5178 5179 /* Perform FCoE PCI function reset before freeing queue memory */ 5180 rc = lpfc_pci_function_reset(phba); 5181 5182 /* Restore PCI cmd register */ 5183 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5184 5185 return rc; 5186 } 5187 5188 /** 5189 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 5190 * @phba: Pointer to HBA context object. 5191 * 5192 * This function is called in the SLI initialization code path to 5193 * restart the HBA. The caller is not required to hold any lock. 5194 * This function writes MBX_RESTART mailbox command to the SLIM and 5195 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 5196 * function to free any pending commands. The function enables 5197 * POST only during the first initialization. The function returns zero. 5198 * The function does not guarantee completion of MBX_RESTART mailbox 5199 * command before the return of this function. 5200 **/ 5201 static int 5202 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 5203 { 5204 volatile struct MAILBOX_word0 mb; 5205 struct lpfc_sli *psli; 5206 void __iomem *to_slim; 5207 uint32_t hba_aer_enabled; 5208 5209 spin_lock_irq(&phba->hbalock); 5210 5211 /* Take PCIe device Advanced Error Reporting (AER) state */ 5212 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 5213 5214 psli = &phba->sli; 5215 5216 /* Restart HBA */ 5217 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5218 "0337 Restart HBA Data: x%x x%x\n", 5219 (phba->pport) ? phba->pport->port_state : 0, 5220 psli->sli_flag); 5221 5222 mb.word0 = 0; 5223 mb.mbxCommand = MBX_RESTART; 5224 mb.mbxHc = 1; 5225 5226 lpfc_reset_barrier(phba); 5227 5228 to_slim = phba->MBslimaddr; 5229 writel(mb.word0, to_slim); 5230 readl(to_slim); /* flush */ 5231 5232 /* Only skip post after fc_ffinit is completed */ 5233 if (phba->pport && phba->pport->port_state) 5234 mb.word0 = 1; /* This is really setting up word1 */ 5235 else 5236 mb.word0 = 0; /* This is really setting up word1 */ 5237 to_slim = phba->MBslimaddr + sizeof (uint32_t); 5238 writel(mb.word0, to_slim); 5239 readl(to_slim); /* flush */ 5240 5241 lpfc_sli_brdreset(phba); 5242 if (phba->pport) 5243 phba->pport->stopped = 0; 5244 phba->link_state = LPFC_INIT_START; 5245 phba->hba_flag = 0; 5246 spin_unlock_irq(&phba->hbalock); 5247 5248 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5249 psli->stats_start = ktime_get_seconds(); 5250 5251 /* Give the INITFF and Post time to settle. */ 5252 mdelay(100); 5253 5254 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 5255 if (hba_aer_enabled) 5256 pci_disable_pcie_error_reporting(phba->pcidev); 5257 5258 lpfc_hba_down_post(phba); 5259 5260 return 0; 5261 } 5262 5263 /** 5264 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 5265 * @phba: Pointer to HBA context object. 5266 * 5267 * This function is called in the SLI initialization code path to restart 5268 * a SLI4 HBA. The caller is not required to hold any lock. 5269 * At the end of the function, it calls lpfc_hba_down_post function to 5270 * free any pending commands. 5271 **/ 5272 static int 5273 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 5274 { 5275 struct lpfc_sli *psli = &phba->sli; 5276 uint32_t hba_aer_enabled; 5277 int rc; 5278 5279 /* Restart HBA */ 5280 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5281 "0296 Restart HBA Data: x%x x%x\n", 5282 phba->pport->port_state, psli->sli_flag); 5283 5284 /* Take PCIe device Advanced Error Reporting (AER) state */ 5285 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 5286 5287 rc = lpfc_sli4_brdreset(phba); 5288 if (rc) { 5289 phba->link_state = LPFC_HBA_ERROR; 5290 goto hba_down_queue; 5291 } 5292 5293 spin_lock_irq(&phba->hbalock); 5294 phba->pport->stopped = 0; 5295 phba->link_state = LPFC_INIT_START; 5296 phba->hba_flag = 0; 5297 /* Preserve FA-PWWN expectation */ 5298 phba->sli4_hba.fawwpn_flag &= LPFC_FAWWPN_FABRIC; 5299 spin_unlock_irq(&phba->hbalock); 5300 5301 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5302 psli->stats_start = ktime_get_seconds(); 5303 5304 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 5305 if (hba_aer_enabled) 5306 pci_disable_pcie_error_reporting(phba->pcidev); 5307 5308 hba_down_queue: 5309 lpfc_hba_down_post(phba); 5310 lpfc_sli4_queue_destroy(phba); 5311 5312 return rc; 5313 } 5314 5315 /** 5316 * lpfc_sli_brdrestart - Wrapper func for restarting hba 5317 * @phba: Pointer to HBA context object. 5318 * 5319 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 5320 * API jump table function pointer from the lpfc_hba struct. 5321 **/ 5322 int 5323 lpfc_sli_brdrestart(struct lpfc_hba *phba) 5324 { 5325 return phba->lpfc_sli_brdrestart(phba); 5326 } 5327 5328 /** 5329 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 5330 * @phba: Pointer to HBA context object. 5331 * 5332 * This function is called after a HBA restart to wait for successful 5333 * restart of the HBA. Successful restart of the HBA is indicated by 5334 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 5335 * iteration, the function will restart the HBA again. The function returns 5336 * zero if HBA successfully restarted else returns negative error code. 5337 **/ 5338 int 5339 lpfc_sli_chipset_init(struct lpfc_hba *phba) 5340 { 5341 uint32_t status, i = 0; 5342 5343 /* Read the HBA Host Status Register */ 5344 if (lpfc_readl(phba->HSregaddr, &status)) 5345 return -EIO; 5346 5347 /* Check status register to see what current state is */ 5348 i = 0; 5349 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 5350 5351 /* Check every 10ms for 10 retries, then every 100ms for 90 5352 * retries, then every 1 sec for 50 retires for a total of 5353 * ~60 seconds before reset the board again and check every 5354 * 1 sec for 50 retries. The up to 60 seconds before the 5355 * board ready is required by the Falcon FIPS zeroization 5356 * complete, and any reset the board in between shall cause 5357 * restart of zeroization, further delay the board ready. 5358 */ 5359 if (i++ >= 200) { 5360 /* Adapter failed to init, timeout, status reg 5361 <status> */ 5362 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5363 "0436 Adapter failed to init, " 5364 "timeout, status reg x%x, " 5365 "FW Data: A8 x%x AC x%x\n", status, 5366 readl(phba->MBslimaddr + 0xa8), 5367 readl(phba->MBslimaddr + 0xac)); 5368 phba->link_state = LPFC_HBA_ERROR; 5369 return -ETIMEDOUT; 5370 } 5371 5372 /* Check to see if any errors occurred during init */ 5373 if (status & HS_FFERM) { 5374 /* ERROR: During chipset initialization */ 5375 /* Adapter failed to init, chipset, status reg 5376 <status> */ 5377 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5378 "0437 Adapter failed to init, " 5379 "chipset, status reg x%x, " 5380 "FW Data: A8 x%x AC x%x\n", status, 5381 readl(phba->MBslimaddr + 0xa8), 5382 readl(phba->MBslimaddr + 0xac)); 5383 phba->link_state = LPFC_HBA_ERROR; 5384 return -EIO; 5385 } 5386 5387 if (i <= 10) 5388 msleep(10); 5389 else if (i <= 100) 5390 msleep(100); 5391 else 5392 msleep(1000); 5393 5394 if (i == 150) { 5395 /* Do post */ 5396 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5397 lpfc_sli_brdrestart(phba); 5398 } 5399 /* Read the HBA Host Status Register */ 5400 if (lpfc_readl(phba->HSregaddr, &status)) 5401 return -EIO; 5402 } 5403 5404 /* Check to see if any errors occurred during init */ 5405 if (status & HS_FFERM) { 5406 /* ERROR: During chipset initialization */ 5407 /* Adapter failed to init, chipset, status reg <status> */ 5408 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5409 "0438 Adapter failed to init, chipset, " 5410 "status reg x%x, " 5411 "FW Data: A8 x%x AC x%x\n", status, 5412 readl(phba->MBslimaddr + 0xa8), 5413 readl(phba->MBslimaddr + 0xac)); 5414 phba->link_state = LPFC_HBA_ERROR; 5415 return -EIO; 5416 } 5417 5418 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5419 5420 /* Clear all interrupt enable conditions */ 5421 writel(0, phba->HCregaddr); 5422 readl(phba->HCregaddr); /* flush */ 5423 5424 /* setup host attn register */ 5425 writel(0xffffffff, phba->HAregaddr); 5426 readl(phba->HAregaddr); /* flush */ 5427 return 0; 5428 } 5429 5430 /** 5431 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5432 * 5433 * This function calculates and returns the number of HBQs required to be 5434 * configured. 5435 **/ 5436 int 5437 lpfc_sli_hbq_count(void) 5438 { 5439 return ARRAY_SIZE(lpfc_hbq_defs); 5440 } 5441 5442 /** 5443 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5444 * 5445 * This function adds the number of hbq entries in every HBQ to get 5446 * the total number of hbq entries required for the HBA and returns 5447 * the total count. 5448 **/ 5449 static int 5450 lpfc_sli_hbq_entry_count(void) 5451 { 5452 int hbq_count = lpfc_sli_hbq_count(); 5453 int count = 0; 5454 int i; 5455 5456 for (i = 0; i < hbq_count; ++i) 5457 count += lpfc_hbq_defs[i]->entry_count; 5458 return count; 5459 } 5460 5461 /** 5462 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5463 * 5464 * This function calculates amount of memory required for all hbq entries 5465 * to be configured and returns the total memory required. 5466 **/ 5467 int 5468 lpfc_sli_hbq_size(void) 5469 { 5470 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5471 } 5472 5473 /** 5474 * lpfc_sli_hbq_setup - configure and initialize HBQs 5475 * @phba: Pointer to HBA context object. 5476 * 5477 * This function is called during the SLI initialization to configure 5478 * all the HBQs and post buffers to the HBQ. The caller is not 5479 * required to hold any locks. This function will return zero if successful 5480 * else it will return negative error code. 5481 **/ 5482 static int 5483 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5484 { 5485 int hbq_count = lpfc_sli_hbq_count(); 5486 LPFC_MBOXQ_t *pmb; 5487 MAILBOX_t *pmbox; 5488 uint32_t hbqno; 5489 uint32_t hbq_entry_index; 5490 5491 /* Get a Mailbox buffer to setup mailbox 5492 * commands for HBA initialization 5493 */ 5494 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5495 5496 if (!pmb) 5497 return -ENOMEM; 5498 5499 pmbox = &pmb->u.mb; 5500 5501 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5502 phba->link_state = LPFC_INIT_MBX_CMDS; 5503 phba->hbq_in_use = 1; 5504 5505 hbq_entry_index = 0; 5506 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5507 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5508 phba->hbqs[hbqno].hbqPutIdx = 0; 5509 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5510 phba->hbqs[hbqno].entry_count = 5511 lpfc_hbq_defs[hbqno]->entry_count; 5512 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5513 hbq_entry_index, pmb); 5514 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5515 5516 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5517 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5518 mbxStatus <status>, ring <num> */ 5519 5520 lpfc_printf_log(phba, KERN_ERR, 5521 LOG_SLI | LOG_VPORT, 5522 "1805 Adapter failed to init. " 5523 "Data: x%x x%x x%x\n", 5524 pmbox->mbxCommand, 5525 pmbox->mbxStatus, hbqno); 5526 5527 phba->link_state = LPFC_HBA_ERROR; 5528 mempool_free(pmb, phba->mbox_mem_pool); 5529 return -ENXIO; 5530 } 5531 } 5532 phba->hbq_count = hbq_count; 5533 5534 mempool_free(pmb, phba->mbox_mem_pool); 5535 5536 /* Initially populate or replenish the HBQs */ 5537 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5538 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5539 return 0; 5540 } 5541 5542 /** 5543 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5544 * @phba: Pointer to HBA context object. 5545 * 5546 * This function is called during the SLI initialization to configure 5547 * all the HBQs and post buffers to the HBQ. The caller is not 5548 * required to hold any locks. This function will return zero if successful 5549 * else it will return negative error code. 5550 **/ 5551 static int 5552 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5553 { 5554 phba->hbq_in_use = 1; 5555 /** 5556 * Specific case when the MDS diagnostics is enabled and supported. 5557 * The receive buffer count is truncated to manage the incoming 5558 * traffic. 5559 **/ 5560 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5561 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5562 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5563 else 5564 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5565 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5566 phba->hbq_count = 1; 5567 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5568 /* Initially populate or replenish the HBQs */ 5569 return 0; 5570 } 5571 5572 /** 5573 * lpfc_sli_config_port - Issue config port mailbox command 5574 * @phba: Pointer to HBA context object. 5575 * @sli_mode: sli mode - 2/3 5576 * 5577 * This function is called by the sli initialization code path 5578 * to issue config_port mailbox command. This function restarts the 5579 * HBA firmware and issues a config_port mailbox command to configure 5580 * the SLI interface in the sli mode specified by sli_mode 5581 * variable. The caller is not required to hold any locks. 5582 * The function returns 0 if successful, else returns negative error 5583 * code. 5584 **/ 5585 int 5586 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5587 { 5588 LPFC_MBOXQ_t *pmb; 5589 uint32_t resetcount = 0, rc = 0, done = 0; 5590 5591 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5592 if (!pmb) { 5593 phba->link_state = LPFC_HBA_ERROR; 5594 return -ENOMEM; 5595 } 5596 5597 phba->sli_rev = sli_mode; 5598 while (resetcount < 2 && !done) { 5599 spin_lock_irq(&phba->hbalock); 5600 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5601 spin_unlock_irq(&phba->hbalock); 5602 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5603 lpfc_sli_brdrestart(phba); 5604 rc = lpfc_sli_chipset_init(phba); 5605 if (rc) 5606 break; 5607 5608 spin_lock_irq(&phba->hbalock); 5609 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5610 spin_unlock_irq(&phba->hbalock); 5611 resetcount++; 5612 5613 /* Call pre CONFIG_PORT mailbox command initialization. A 5614 * value of 0 means the call was successful. Any other 5615 * nonzero value is a failure, but if ERESTART is returned, 5616 * the driver may reset the HBA and try again. 5617 */ 5618 rc = lpfc_config_port_prep(phba); 5619 if (rc == -ERESTART) { 5620 phba->link_state = LPFC_LINK_UNKNOWN; 5621 continue; 5622 } else if (rc) 5623 break; 5624 5625 phba->link_state = LPFC_INIT_MBX_CMDS; 5626 lpfc_config_port(phba, pmb); 5627 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5628 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5629 LPFC_SLI3_HBQ_ENABLED | 5630 LPFC_SLI3_CRP_ENABLED | 5631 LPFC_SLI3_DSS_ENABLED); 5632 if (rc != MBX_SUCCESS) { 5633 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5634 "0442 Adapter failed to init, mbxCmd x%x " 5635 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5636 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5637 spin_lock_irq(&phba->hbalock); 5638 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5639 spin_unlock_irq(&phba->hbalock); 5640 rc = -ENXIO; 5641 } else { 5642 /* Allow asynchronous mailbox command to go through */ 5643 spin_lock_irq(&phba->hbalock); 5644 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5645 spin_unlock_irq(&phba->hbalock); 5646 done = 1; 5647 5648 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5649 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5650 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5651 "3110 Port did not grant ASABT\n"); 5652 } 5653 } 5654 if (!done) { 5655 rc = -EINVAL; 5656 goto do_prep_failed; 5657 } 5658 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5659 if (!pmb->u.mb.un.varCfgPort.cMA) { 5660 rc = -ENXIO; 5661 goto do_prep_failed; 5662 } 5663 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5664 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5665 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5666 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5667 phba->max_vpi : phba->max_vports; 5668 5669 } else 5670 phba->max_vpi = 0; 5671 if (pmb->u.mb.un.varCfgPort.gerbm) 5672 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5673 if (pmb->u.mb.un.varCfgPort.gcrp) 5674 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5675 5676 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5677 phba->port_gp = phba->mbox->us.s3_pgp.port; 5678 5679 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5680 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5681 phba->cfg_enable_bg = 0; 5682 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5683 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5684 "0443 Adapter did not grant " 5685 "BlockGuard\n"); 5686 } 5687 } 5688 } else { 5689 phba->hbq_get = NULL; 5690 phba->port_gp = phba->mbox->us.s2.port; 5691 phba->max_vpi = 0; 5692 } 5693 do_prep_failed: 5694 mempool_free(pmb, phba->mbox_mem_pool); 5695 return rc; 5696 } 5697 5698 5699 /** 5700 * lpfc_sli_hba_setup - SLI initialization function 5701 * @phba: Pointer to HBA context object. 5702 * 5703 * This function is the main SLI initialization function. This function 5704 * is called by the HBA initialization code, HBA reset code and HBA 5705 * error attention handler code. Caller is not required to hold any 5706 * locks. This function issues config_port mailbox command to configure 5707 * the SLI, setup iocb rings and HBQ rings. In the end the function 5708 * calls the config_port_post function to issue init_link mailbox 5709 * command and to start the discovery. The function will return zero 5710 * if successful, else it will return negative error code. 5711 **/ 5712 int 5713 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5714 { 5715 uint32_t rc; 5716 int i; 5717 int longs; 5718 5719 /* Enable ISR already does config_port because of config_msi mbx */ 5720 if (phba->hba_flag & HBA_NEEDS_CFG_PORT) { 5721 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5722 if (rc) 5723 return -EIO; 5724 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 5725 } 5726 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5727 5728 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5729 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5730 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5731 if (!rc) { 5732 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5733 "2709 This device supports " 5734 "Advanced Error Reporting (AER)\n"); 5735 spin_lock_irq(&phba->hbalock); 5736 phba->hba_flag |= HBA_AER_ENABLED; 5737 spin_unlock_irq(&phba->hbalock); 5738 } else { 5739 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5740 "2708 This device does not support " 5741 "Advanced Error Reporting (AER): %d\n", 5742 rc); 5743 phba->cfg_aer_support = 0; 5744 } 5745 } 5746 5747 if (phba->sli_rev == 3) { 5748 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5749 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5750 } else { 5751 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5752 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5753 phba->sli3_options = 0; 5754 } 5755 5756 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5757 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5758 phba->sli_rev, phba->max_vpi); 5759 rc = lpfc_sli_ring_map(phba); 5760 5761 if (rc) 5762 goto lpfc_sli_hba_setup_error; 5763 5764 /* Initialize VPIs. */ 5765 if (phba->sli_rev == LPFC_SLI_REV3) { 5766 /* 5767 * The VPI bitmask and physical ID array are allocated 5768 * and initialized once only - at driver load. A port 5769 * reset doesn't need to reinitialize this memory. 5770 */ 5771 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5772 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5773 phba->vpi_bmask = kcalloc(longs, 5774 sizeof(unsigned long), 5775 GFP_KERNEL); 5776 if (!phba->vpi_bmask) { 5777 rc = -ENOMEM; 5778 goto lpfc_sli_hba_setup_error; 5779 } 5780 5781 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5782 sizeof(uint16_t), 5783 GFP_KERNEL); 5784 if (!phba->vpi_ids) { 5785 kfree(phba->vpi_bmask); 5786 rc = -ENOMEM; 5787 goto lpfc_sli_hba_setup_error; 5788 } 5789 for (i = 0; i < phba->max_vpi; i++) 5790 phba->vpi_ids[i] = i; 5791 } 5792 } 5793 5794 /* Init HBQs */ 5795 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5796 rc = lpfc_sli_hbq_setup(phba); 5797 if (rc) 5798 goto lpfc_sli_hba_setup_error; 5799 } 5800 spin_lock_irq(&phba->hbalock); 5801 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5802 spin_unlock_irq(&phba->hbalock); 5803 5804 rc = lpfc_config_port_post(phba); 5805 if (rc) 5806 goto lpfc_sli_hba_setup_error; 5807 5808 return rc; 5809 5810 lpfc_sli_hba_setup_error: 5811 phba->link_state = LPFC_HBA_ERROR; 5812 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5813 "0445 Firmware initialization failed\n"); 5814 return rc; 5815 } 5816 5817 /** 5818 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5819 * @phba: Pointer to HBA context object. 5820 * 5821 * This function issue a dump mailbox command to read config region 5822 * 23 and parse the records in the region and populate driver 5823 * data structure. 5824 **/ 5825 static int 5826 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5827 { 5828 LPFC_MBOXQ_t *mboxq; 5829 struct lpfc_dmabuf *mp; 5830 struct lpfc_mqe *mqe; 5831 uint32_t data_length; 5832 int rc; 5833 5834 /* Program the default value of vlan_id and fc_map */ 5835 phba->valid_vlan = 0; 5836 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5837 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5838 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5839 5840 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5841 if (!mboxq) 5842 return -ENOMEM; 5843 5844 mqe = &mboxq->u.mqe; 5845 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5846 rc = -ENOMEM; 5847 goto out_free_mboxq; 5848 } 5849 5850 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5851 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5852 5853 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5854 "(%d):2571 Mailbox cmd x%x Status x%x " 5855 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5856 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5857 "CQ: x%x x%x x%x x%x\n", 5858 mboxq->vport ? mboxq->vport->vpi : 0, 5859 bf_get(lpfc_mqe_command, mqe), 5860 bf_get(lpfc_mqe_status, mqe), 5861 mqe->un.mb_words[0], mqe->un.mb_words[1], 5862 mqe->un.mb_words[2], mqe->un.mb_words[3], 5863 mqe->un.mb_words[4], mqe->un.mb_words[5], 5864 mqe->un.mb_words[6], mqe->un.mb_words[7], 5865 mqe->un.mb_words[8], mqe->un.mb_words[9], 5866 mqe->un.mb_words[10], mqe->un.mb_words[11], 5867 mqe->un.mb_words[12], mqe->un.mb_words[13], 5868 mqe->un.mb_words[14], mqe->un.mb_words[15], 5869 mqe->un.mb_words[16], mqe->un.mb_words[50], 5870 mboxq->mcqe.word0, 5871 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5872 mboxq->mcqe.trailer); 5873 5874 if (rc) { 5875 rc = -EIO; 5876 goto out_free_mboxq; 5877 } 5878 data_length = mqe->un.mb_words[5]; 5879 if (data_length > DMP_RGN23_SIZE) { 5880 rc = -EIO; 5881 goto out_free_mboxq; 5882 } 5883 5884 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5885 rc = 0; 5886 5887 out_free_mboxq: 5888 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 5889 return rc; 5890 } 5891 5892 /** 5893 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5894 * @phba: pointer to lpfc hba data structure. 5895 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5896 * @vpd: pointer to the memory to hold resulting port vpd data. 5897 * @vpd_size: On input, the number of bytes allocated to @vpd. 5898 * On output, the number of data bytes in @vpd. 5899 * 5900 * This routine executes a READ_REV SLI4 mailbox command. In 5901 * addition, this routine gets the port vpd data. 5902 * 5903 * Return codes 5904 * 0 - successful 5905 * -ENOMEM - could not allocated memory. 5906 **/ 5907 static int 5908 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5909 uint8_t *vpd, uint32_t *vpd_size) 5910 { 5911 int rc = 0; 5912 uint32_t dma_size; 5913 struct lpfc_dmabuf *dmabuf; 5914 struct lpfc_mqe *mqe; 5915 5916 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5917 if (!dmabuf) 5918 return -ENOMEM; 5919 5920 /* 5921 * Get a DMA buffer for the vpd data resulting from the READ_REV 5922 * mailbox command. 5923 */ 5924 dma_size = *vpd_size; 5925 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5926 &dmabuf->phys, GFP_KERNEL); 5927 if (!dmabuf->virt) { 5928 kfree(dmabuf); 5929 return -ENOMEM; 5930 } 5931 5932 /* 5933 * The SLI4 implementation of READ_REV conflicts at word1, 5934 * bits 31:16 and SLI4 adds vpd functionality not present 5935 * in SLI3. This code corrects the conflicts. 5936 */ 5937 lpfc_read_rev(phba, mboxq); 5938 mqe = &mboxq->u.mqe; 5939 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5940 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5941 mqe->un.read_rev.word1 &= 0x0000FFFF; 5942 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5943 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5944 5945 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5946 if (rc) { 5947 dma_free_coherent(&phba->pcidev->dev, dma_size, 5948 dmabuf->virt, dmabuf->phys); 5949 kfree(dmabuf); 5950 return -EIO; 5951 } 5952 5953 /* 5954 * The available vpd length cannot be bigger than the 5955 * DMA buffer passed to the port. Catch the less than 5956 * case and update the caller's size. 5957 */ 5958 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5959 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5960 5961 memcpy(vpd, dmabuf->virt, *vpd_size); 5962 5963 dma_free_coherent(&phba->pcidev->dev, dma_size, 5964 dmabuf->virt, dmabuf->phys); 5965 kfree(dmabuf); 5966 return 0; 5967 } 5968 5969 /** 5970 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5971 * @phba: pointer to lpfc hba data structure. 5972 * 5973 * This routine retrieves SLI4 device physical port name this PCI function 5974 * is attached to. 5975 * 5976 * Return codes 5977 * 0 - successful 5978 * otherwise - failed to retrieve controller attributes 5979 **/ 5980 static int 5981 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5982 { 5983 LPFC_MBOXQ_t *mboxq; 5984 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5985 struct lpfc_controller_attribute *cntl_attr; 5986 void *virtaddr = NULL; 5987 uint32_t alloclen, reqlen; 5988 uint32_t shdr_status, shdr_add_status; 5989 union lpfc_sli4_cfg_shdr *shdr; 5990 int rc; 5991 5992 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5993 if (!mboxq) 5994 return -ENOMEM; 5995 5996 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5997 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5998 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5999 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 6000 LPFC_SLI4_MBX_NEMBED); 6001 6002 if (alloclen < reqlen) { 6003 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6004 "3084 Allocated DMA memory size (%d) is " 6005 "less than the requested DMA memory size " 6006 "(%d)\n", alloclen, reqlen); 6007 rc = -ENOMEM; 6008 goto out_free_mboxq; 6009 } 6010 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6011 virtaddr = mboxq->sge_array->addr[0]; 6012 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 6013 shdr = &mbx_cntl_attr->cfg_shdr; 6014 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6015 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6016 if (shdr_status || shdr_add_status || rc) { 6017 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6018 "3085 Mailbox x%x (x%x/x%x) failed, " 6019 "rc:x%x, status:x%x, add_status:x%x\n", 6020 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6021 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6022 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6023 rc, shdr_status, shdr_add_status); 6024 rc = -ENXIO; 6025 goto out_free_mboxq; 6026 } 6027 6028 cntl_attr = &mbx_cntl_attr->cntl_attr; 6029 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 6030 phba->sli4_hba.lnk_info.lnk_tp = 6031 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 6032 phba->sli4_hba.lnk_info.lnk_no = 6033 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 6034 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr); 6035 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr); 6036 6037 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 6038 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 6039 sizeof(phba->BIOSVersion)); 6040 6041 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6042 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, " 6043 "flash_id: x%02x, asic_rev: x%02x\n", 6044 phba->sli4_hba.lnk_info.lnk_tp, 6045 phba->sli4_hba.lnk_info.lnk_no, 6046 phba->BIOSVersion, phba->sli4_hba.flash_id, 6047 phba->sli4_hba.asic_rev); 6048 out_free_mboxq: 6049 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6050 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6051 else 6052 mempool_free(mboxq, phba->mbox_mem_pool); 6053 return rc; 6054 } 6055 6056 /** 6057 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 6058 * @phba: pointer to lpfc hba data structure. 6059 * 6060 * This routine retrieves SLI4 device physical port name this PCI function 6061 * is attached to. 6062 * 6063 * Return codes 6064 * 0 - successful 6065 * otherwise - failed to retrieve physical port name 6066 **/ 6067 static int 6068 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 6069 { 6070 LPFC_MBOXQ_t *mboxq; 6071 struct lpfc_mbx_get_port_name *get_port_name; 6072 uint32_t shdr_status, shdr_add_status; 6073 union lpfc_sli4_cfg_shdr *shdr; 6074 char cport_name = 0; 6075 int rc; 6076 6077 /* We assume nothing at this point */ 6078 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6079 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 6080 6081 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6082 if (!mboxq) 6083 return -ENOMEM; 6084 /* obtain link type and link number via READ_CONFIG */ 6085 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6086 lpfc_sli4_read_config(phba); 6087 6088 if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) 6089 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC; 6090 6091 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 6092 goto retrieve_ppname; 6093 6094 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 6095 rc = lpfc_sli4_get_ctl_attr(phba); 6096 if (rc) 6097 goto out_free_mboxq; 6098 6099 retrieve_ppname: 6100 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 6101 LPFC_MBOX_OPCODE_GET_PORT_NAME, 6102 sizeof(struct lpfc_mbx_get_port_name) - 6103 sizeof(struct lpfc_sli4_cfg_mhdr), 6104 LPFC_SLI4_MBX_EMBED); 6105 get_port_name = &mboxq->u.mqe.un.get_port_name; 6106 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 6107 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 6108 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 6109 phba->sli4_hba.lnk_info.lnk_tp); 6110 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6111 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6112 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6113 if (shdr_status || shdr_add_status || rc) { 6114 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6115 "3087 Mailbox x%x (x%x/x%x) failed: " 6116 "rc:x%x, status:x%x, add_status:x%x\n", 6117 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6118 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6119 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6120 rc, shdr_status, shdr_add_status); 6121 rc = -ENXIO; 6122 goto out_free_mboxq; 6123 } 6124 switch (phba->sli4_hba.lnk_info.lnk_no) { 6125 case LPFC_LINK_NUMBER_0: 6126 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 6127 &get_port_name->u.response); 6128 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6129 break; 6130 case LPFC_LINK_NUMBER_1: 6131 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 6132 &get_port_name->u.response); 6133 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6134 break; 6135 case LPFC_LINK_NUMBER_2: 6136 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 6137 &get_port_name->u.response); 6138 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6139 break; 6140 case LPFC_LINK_NUMBER_3: 6141 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 6142 &get_port_name->u.response); 6143 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6144 break; 6145 default: 6146 break; 6147 } 6148 6149 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 6150 phba->Port[0] = cport_name; 6151 phba->Port[1] = '\0'; 6152 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6153 "3091 SLI get port name: %s\n", phba->Port); 6154 } 6155 6156 out_free_mboxq: 6157 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6158 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6159 else 6160 mempool_free(mboxq, phba->mbox_mem_pool); 6161 return rc; 6162 } 6163 6164 /** 6165 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 6166 * @phba: pointer to lpfc hba data structure. 6167 * 6168 * This routine is called to explicitly arm the SLI4 device's completion and 6169 * event queues 6170 **/ 6171 static void 6172 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 6173 { 6174 int qidx; 6175 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 6176 struct lpfc_sli4_hdw_queue *qp; 6177 struct lpfc_queue *eq; 6178 6179 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 6180 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 6181 if (sli4_hba->nvmels_cq) 6182 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 6183 LPFC_QUEUE_REARM); 6184 6185 if (sli4_hba->hdwq) { 6186 /* Loop thru all Hardware Queues */ 6187 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 6188 qp = &sli4_hba->hdwq[qidx]; 6189 /* ARM the corresponding CQ */ 6190 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 6191 LPFC_QUEUE_REARM); 6192 } 6193 6194 /* Loop thru all IRQ vectors */ 6195 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 6196 eq = sli4_hba->hba_eq_hdl[qidx].eq; 6197 /* ARM the corresponding EQ */ 6198 sli4_hba->sli4_write_eq_db(phba, eq, 6199 0, LPFC_QUEUE_REARM); 6200 } 6201 } 6202 6203 if (phba->nvmet_support) { 6204 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 6205 sli4_hba->sli4_write_cq_db(phba, 6206 sli4_hba->nvmet_cqset[qidx], 0, 6207 LPFC_QUEUE_REARM); 6208 } 6209 } 6210 } 6211 6212 /** 6213 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 6214 * @phba: Pointer to HBA context object. 6215 * @type: The resource extent type. 6216 * @extnt_count: buffer to hold port available extent count. 6217 * @extnt_size: buffer to hold element count per extent. 6218 * 6219 * This function calls the port and retrievs the number of available 6220 * extents and their size for a particular extent type. 6221 * 6222 * Returns: 0 if successful. Nonzero otherwise. 6223 **/ 6224 int 6225 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 6226 uint16_t *extnt_count, uint16_t *extnt_size) 6227 { 6228 int rc = 0; 6229 uint32_t length; 6230 uint32_t mbox_tmo; 6231 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 6232 LPFC_MBOXQ_t *mbox; 6233 6234 *extnt_count = 0; 6235 *extnt_size = 0; 6236 6237 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6238 if (!mbox) 6239 return -ENOMEM; 6240 6241 /* Find out how many extents are available for this resource type */ 6242 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 6243 sizeof(struct lpfc_sli4_cfg_mhdr)); 6244 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6245 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 6246 length, LPFC_SLI4_MBX_EMBED); 6247 6248 /* Send an extents count of 0 - the GET doesn't use it. */ 6249 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6250 LPFC_SLI4_MBX_EMBED); 6251 if (unlikely(rc)) { 6252 rc = -EIO; 6253 goto err_exit; 6254 } 6255 6256 if (!phba->sli4_hba.intr_enable) 6257 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6258 else { 6259 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6260 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6261 } 6262 if (unlikely(rc)) { 6263 rc = -EIO; 6264 goto err_exit; 6265 } 6266 6267 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 6268 if (bf_get(lpfc_mbox_hdr_status, 6269 &rsrc_info->header.cfg_shdr.response)) { 6270 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6271 "2930 Failed to get resource extents " 6272 "Status 0x%x Add'l Status 0x%x\n", 6273 bf_get(lpfc_mbox_hdr_status, 6274 &rsrc_info->header.cfg_shdr.response), 6275 bf_get(lpfc_mbox_hdr_add_status, 6276 &rsrc_info->header.cfg_shdr.response)); 6277 rc = -EIO; 6278 goto err_exit; 6279 } 6280 6281 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 6282 &rsrc_info->u.rsp); 6283 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 6284 &rsrc_info->u.rsp); 6285 6286 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6287 "3162 Retrieved extents type-%d from port: count:%d, " 6288 "size:%d\n", type, *extnt_count, *extnt_size); 6289 6290 err_exit: 6291 mempool_free(mbox, phba->mbox_mem_pool); 6292 return rc; 6293 } 6294 6295 /** 6296 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 6297 * @phba: Pointer to HBA context object. 6298 * @type: The extent type to check. 6299 * 6300 * This function reads the current available extents from the port and checks 6301 * if the extent count or extent size has changed since the last access. 6302 * Callers use this routine post port reset to understand if there is a 6303 * extent reprovisioning requirement. 6304 * 6305 * Returns: 6306 * -Error: error indicates problem. 6307 * 1: Extent count or size has changed. 6308 * 0: No changes. 6309 **/ 6310 static int 6311 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 6312 { 6313 uint16_t curr_ext_cnt, rsrc_ext_cnt; 6314 uint16_t size_diff, rsrc_ext_size; 6315 int rc = 0; 6316 struct lpfc_rsrc_blks *rsrc_entry; 6317 struct list_head *rsrc_blk_list = NULL; 6318 6319 size_diff = 0; 6320 curr_ext_cnt = 0; 6321 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6322 &rsrc_ext_cnt, 6323 &rsrc_ext_size); 6324 if (unlikely(rc)) 6325 return -EIO; 6326 6327 switch (type) { 6328 case LPFC_RSC_TYPE_FCOE_RPI: 6329 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6330 break; 6331 case LPFC_RSC_TYPE_FCOE_VPI: 6332 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 6333 break; 6334 case LPFC_RSC_TYPE_FCOE_XRI: 6335 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6336 break; 6337 case LPFC_RSC_TYPE_FCOE_VFI: 6338 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6339 break; 6340 default: 6341 break; 6342 } 6343 6344 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 6345 curr_ext_cnt++; 6346 if (rsrc_entry->rsrc_size != rsrc_ext_size) 6347 size_diff++; 6348 } 6349 6350 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 6351 rc = 1; 6352 6353 return rc; 6354 } 6355 6356 /** 6357 * lpfc_sli4_cfg_post_extnts - 6358 * @phba: Pointer to HBA context object. 6359 * @extnt_cnt: number of available extents. 6360 * @type: the extent type (rpi, xri, vfi, vpi). 6361 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 6362 * @mbox: pointer to the caller's allocated mailbox structure. 6363 * 6364 * This function executes the extents allocation request. It also 6365 * takes care of the amount of memory needed to allocate or get the 6366 * allocated extents. It is the caller's responsibility to evaluate 6367 * the response. 6368 * 6369 * Returns: 6370 * -Error: Error value describes the condition found. 6371 * 0: if successful 6372 **/ 6373 static int 6374 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6375 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6376 { 6377 int rc = 0; 6378 uint32_t req_len; 6379 uint32_t emb_len; 6380 uint32_t alloc_len, mbox_tmo; 6381 6382 /* Calculate the total requested length of the dma memory */ 6383 req_len = extnt_cnt * sizeof(uint16_t); 6384 6385 /* 6386 * Calculate the size of an embedded mailbox. The uint32_t 6387 * accounts for extents-specific word. 6388 */ 6389 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6390 sizeof(uint32_t); 6391 6392 /* 6393 * Presume the allocation and response will fit into an embedded 6394 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6395 */ 6396 *emb = LPFC_SLI4_MBX_EMBED; 6397 if (req_len > emb_len) { 6398 req_len = extnt_cnt * sizeof(uint16_t) + 6399 sizeof(union lpfc_sli4_cfg_shdr) + 6400 sizeof(uint32_t); 6401 *emb = LPFC_SLI4_MBX_NEMBED; 6402 } 6403 6404 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6405 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6406 req_len, *emb); 6407 if (alloc_len < req_len) { 6408 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6409 "2982 Allocated DMA memory size (x%x) is " 6410 "less than the requested DMA memory " 6411 "size (x%x)\n", alloc_len, req_len); 6412 return -ENOMEM; 6413 } 6414 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6415 if (unlikely(rc)) 6416 return -EIO; 6417 6418 if (!phba->sli4_hba.intr_enable) 6419 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6420 else { 6421 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6422 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6423 } 6424 6425 if (unlikely(rc)) 6426 rc = -EIO; 6427 return rc; 6428 } 6429 6430 /** 6431 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6432 * @phba: Pointer to HBA context object. 6433 * @type: The resource extent type to allocate. 6434 * 6435 * This function allocates the number of elements for the specified 6436 * resource type. 6437 **/ 6438 static int 6439 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6440 { 6441 bool emb = false; 6442 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6443 uint16_t rsrc_id, rsrc_start, j, k; 6444 uint16_t *ids; 6445 int i, rc; 6446 unsigned long longs; 6447 unsigned long *bmask; 6448 struct lpfc_rsrc_blks *rsrc_blks; 6449 LPFC_MBOXQ_t *mbox; 6450 uint32_t length; 6451 struct lpfc_id_range *id_array = NULL; 6452 void *virtaddr = NULL; 6453 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6454 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6455 struct list_head *ext_blk_list; 6456 6457 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6458 &rsrc_cnt, 6459 &rsrc_size); 6460 if (unlikely(rc)) 6461 return -EIO; 6462 6463 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6464 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6465 "3009 No available Resource Extents " 6466 "for resource type 0x%x: Count: 0x%x, " 6467 "Size 0x%x\n", type, rsrc_cnt, 6468 rsrc_size); 6469 return -ENOMEM; 6470 } 6471 6472 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6473 "2903 Post resource extents type-0x%x: " 6474 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6475 6476 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6477 if (!mbox) 6478 return -ENOMEM; 6479 6480 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6481 if (unlikely(rc)) { 6482 rc = -EIO; 6483 goto err_exit; 6484 } 6485 6486 /* 6487 * Figure out where the response is located. Then get local pointers 6488 * to the response data. The port does not guarantee to respond to 6489 * all extents counts request so update the local variable with the 6490 * allocated count from the port. 6491 */ 6492 if (emb == LPFC_SLI4_MBX_EMBED) { 6493 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6494 id_array = &rsrc_ext->u.rsp.id[0]; 6495 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6496 } else { 6497 virtaddr = mbox->sge_array->addr[0]; 6498 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6499 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6500 id_array = &n_rsrc->id; 6501 } 6502 6503 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6504 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6505 6506 /* 6507 * Based on the resource size and count, correct the base and max 6508 * resource values. 6509 */ 6510 length = sizeof(struct lpfc_rsrc_blks); 6511 switch (type) { 6512 case LPFC_RSC_TYPE_FCOE_RPI: 6513 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6514 sizeof(unsigned long), 6515 GFP_KERNEL); 6516 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6517 rc = -ENOMEM; 6518 goto err_exit; 6519 } 6520 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6521 sizeof(uint16_t), 6522 GFP_KERNEL); 6523 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6524 kfree(phba->sli4_hba.rpi_bmask); 6525 rc = -ENOMEM; 6526 goto err_exit; 6527 } 6528 6529 /* 6530 * The next_rpi was initialized with the maximum available 6531 * count but the port may allocate a smaller number. Catch 6532 * that case and update the next_rpi. 6533 */ 6534 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6535 6536 /* Initialize local ptrs for common extent processing later. */ 6537 bmask = phba->sli4_hba.rpi_bmask; 6538 ids = phba->sli4_hba.rpi_ids; 6539 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6540 break; 6541 case LPFC_RSC_TYPE_FCOE_VPI: 6542 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6543 GFP_KERNEL); 6544 if (unlikely(!phba->vpi_bmask)) { 6545 rc = -ENOMEM; 6546 goto err_exit; 6547 } 6548 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6549 GFP_KERNEL); 6550 if (unlikely(!phba->vpi_ids)) { 6551 kfree(phba->vpi_bmask); 6552 rc = -ENOMEM; 6553 goto err_exit; 6554 } 6555 6556 /* Initialize local ptrs for common extent processing later. */ 6557 bmask = phba->vpi_bmask; 6558 ids = phba->vpi_ids; 6559 ext_blk_list = &phba->lpfc_vpi_blk_list; 6560 break; 6561 case LPFC_RSC_TYPE_FCOE_XRI: 6562 phba->sli4_hba.xri_bmask = kcalloc(longs, 6563 sizeof(unsigned long), 6564 GFP_KERNEL); 6565 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6566 rc = -ENOMEM; 6567 goto err_exit; 6568 } 6569 phba->sli4_hba.max_cfg_param.xri_used = 0; 6570 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6571 sizeof(uint16_t), 6572 GFP_KERNEL); 6573 if (unlikely(!phba->sli4_hba.xri_ids)) { 6574 kfree(phba->sli4_hba.xri_bmask); 6575 rc = -ENOMEM; 6576 goto err_exit; 6577 } 6578 6579 /* Initialize local ptrs for common extent processing later. */ 6580 bmask = phba->sli4_hba.xri_bmask; 6581 ids = phba->sli4_hba.xri_ids; 6582 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6583 break; 6584 case LPFC_RSC_TYPE_FCOE_VFI: 6585 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6586 sizeof(unsigned long), 6587 GFP_KERNEL); 6588 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6589 rc = -ENOMEM; 6590 goto err_exit; 6591 } 6592 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6593 sizeof(uint16_t), 6594 GFP_KERNEL); 6595 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6596 kfree(phba->sli4_hba.vfi_bmask); 6597 rc = -ENOMEM; 6598 goto err_exit; 6599 } 6600 6601 /* Initialize local ptrs for common extent processing later. */ 6602 bmask = phba->sli4_hba.vfi_bmask; 6603 ids = phba->sli4_hba.vfi_ids; 6604 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6605 break; 6606 default: 6607 /* Unsupported Opcode. Fail call. */ 6608 id_array = NULL; 6609 bmask = NULL; 6610 ids = NULL; 6611 ext_blk_list = NULL; 6612 goto err_exit; 6613 } 6614 6615 /* 6616 * Complete initializing the extent configuration with the 6617 * allocated ids assigned to this function. The bitmask serves 6618 * as an index into the array and manages the available ids. The 6619 * array just stores the ids communicated to the port via the wqes. 6620 */ 6621 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6622 if ((i % 2) == 0) 6623 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6624 &id_array[k]); 6625 else 6626 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6627 &id_array[k]); 6628 6629 rsrc_blks = kzalloc(length, GFP_KERNEL); 6630 if (unlikely(!rsrc_blks)) { 6631 rc = -ENOMEM; 6632 kfree(bmask); 6633 kfree(ids); 6634 goto err_exit; 6635 } 6636 rsrc_blks->rsrc_start = rsrc_id; 6637 rsrc_blks->rsrc_size = rsrc_size; 6638 list_add_tail(&rsrc_blks->list, ext_blk_list); 6639 rsrc_start = rsrc_id; 6640 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6641 phba->sli4_hba.io_xri_start = rsrc_start + 6642 lpfc_sli4_get_iocb_cnt(phba); 6643 } 6644 6645 while (rsrc_id < (rsrc_start + rsrc_size)) { 6646 ids[j] = rsrc_id; 6647 rsrc_id++; 6648 j++; 6649 } 6650 /* Entire word processed. Get next word.*/ 6651 if ((i % 2) == 1) 6652 k++; 6653 } 6654 err_exit: 6655 lpfc_sli4_mbox_cmd_free(phba, mbox); 6656 return rc; 6657 } 6658 6659 6660 6661 /** 6662 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6663 * @phba: Pointer to HBA context object. 6664 * @type: the extent's type. 6665 * 6666 * This function deallocates all extents of a particular resource type. 6667 * SLI4 does not allow for deallocating a particular extent range. It 6668 * is the caller's responsibility to release all kernel memory resources. 6669 **/ 6670 static int 6671 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6672 { 6673 int rc; 6674 uint32_t length, mbox_tmo = 0; 6675 LPFC_MBOXQ_t *mbox; 6676 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6677 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6678 6679 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6680 if (!mbox) 6681 return -ENOMEM; 6682 6683 /* 6684 * This function sends an embedded mailbox because it only sends the 6685 * the resource type. All extents of this type are released by the 6686 * port. 6687 */ 6688 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6689 sizeof(struct lpfc_sli4_cfg_mhdr)); 6690 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6691 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6692 length, LPFC_SLI4_MBX_EMBED); 6693 6694 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6695 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6696 LPFC_SLI4_MBX_EMBED); 6697 if (unlikely(rc)) { 6698 rc = -EIO; 6699 goto out_free_mbox; 6700 } 6701 if (!phba->sli4_hba.intr_enable) 6702 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6703 else { 6704 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6705 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6706 } 6707 if (unlikely(rc)) { 6708 rc = -EIO; 6709 goto out_free_mbox; 6710 } 6711 6712 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6713 if (bf_get(lpfc_mbox_hdr_status, 6714 &dealloc_rsrc->header.cfg_shdr.response)) { 6715 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6716 "2919 Failed to release resource extents " 6717 "for type %d - Status 0x%x Add'l Status 0x%x. " 6718 "Resource memory not released.\n", 6719 type, 6720 bf_get(lpfc_mbox_hdr_status, 6721 &dealloc_rsrc->header.cfg_shdr.response), 6722 bf_get(lpfc_mbox_hdr_add_status, 6723 &dealloc_rsrc->header.cfg_shdr.response)); 6724 rc = -EIO; 6725 goto out_free_mbox; 6726 } 6727 6728 /* Release kernel memory resources for the specific type. */ 6729 switch (type) { 6730 case LPFC_RSC_TYPE_FCOE_VPI: 6731 kfree(phba->vpi_bmask); 6732 kfree(phba->vpi_ids); 6733 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6734 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6735 &phba->lpfc_vpi_blk_list, list) { 6736 list_del_init(&rsrc_blk->list); 6737 kfree(rsrc_blk); 6738 } 6739 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6740 break; 6741 case LPFC_RSC_TYPE_FCOE_XRI: 6742 kfree(phba->sli4_hba.xri_bmask); 6743 kfree(phba->sli4_hba.xri_ids); 6744 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6745 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6746 list_del_init(&rsrc_blk->list); 6747 kfree(rsrc_blk); 6748 } 6749 break; 6750 case LPFC_RSC_TYPE_FCOE_VFI: 6751 kfree(phba->sli4_hba.vfi_bmask); 6752 kfree(phba->sli4_hba.vfi_ids); 6753 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6754 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6755 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6756 list_del_init(&rsrc_blk->list); 6757 kfree(rsrc_blk); 6758 } 6759 break; 6760 case LPFC_RSC_TYPE_FCOE_RPI: 6761 /* RPI bitmask and physical id array are cleaned up earlier. */ 6762 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6763 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6764 list_del_init(&rsrc_blk->list); 6765 kfree(rsrc_blk); 6766 } 6767 break; 6768 default: 6769 break; 6770 } 6771 6772 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6773 6774 out_free_mbox: 6775 mempool_free(mbox, phba->mbox_mem_pool); 6776 return rc; 6777 } 6778 6779 static void 6780 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6781 uint32_t feature) 6782 { 6783 uint32_t len; 6784 u32 sig_freq = 0; 6785 6786 len = sizeof(struct lpfc_mbx_set_feature) - 6787 sizeof(struct lpfc_sli4_cfg_mhdr); 6788 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6789 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6790 LPFC_SLI4_MBX_EMBED); 6791 6792 switch (feature) { 6793 case LPFC_SET_UE_RECOVERY: 6794 bf_set(lpfc_mbx_set_feature_UER, 6795 &mbox->u.mqe.un.set_feature, 1); 6796 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6797 mbox->u.mqe.un.set_feature.param_len = 8; 6798 break; 6799 case LPFC_SET_MDS_DIAGS: 6800 bf_set(lpfc_mbx_set_feature_mds, 6801 &mbox->u.mqe.un.set_feature, 1); 6802 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6803 &mbox->u.mqe.un.set_feature, 1); 6804 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6805 mbox->u.mqe.un.set_feature.param_len = 8; 6806 break; 6807 case LPFC_SET_CGN_SIGNAL: 6808 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6809 sig_freq = 0; 6810 else 6811 sig_freq = phba->cgn_sig_freq; 6812 6813 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6814 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq, 6815 &mbox->u.mqe.un.set_feature, sig_freq); 6816 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6817 &mbox->u.mqe.un.set_feature, sig_freq); 6818 } 6819 6820 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY) 6821 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6822 &mbox->u.mqe.un.set_feature, sig_freq); 6823 6824 if (phba->cmf_active_mode == LPFC_CFG_OFF || 6825 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED) 6826 sig_freq = 0; 6827 else 6828 sig_freq = lpfc_acqe_cgn_frequency; 6829 6830 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq, 6831 &mbox->u.mqe.un.set_feature, sig_freq); 6832 6833 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL; 6834 mbox->u.mqe.un.set_feature.param_len = 12; 6835 break; 6836 case LPFC_SET_DUAL_DUMP: 6837 bf_set(lpfc_mbx_set_feature_dd, 6838 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6839 bf_set(lpfc_mbx_set_feature_ddquery, 6840 &mbox->u.mqe.un.set_feature, 0); 6841 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6842 mbox->u.mqe.un.set_feature.param_len = 4; 6843 break; 6844 case LPFC_SET_ENABLE_MI: 6845 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI; 6846 mbox->u.mqe.un.set_feature.param_len = 4; 6847 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature, 6848 phba->pport->cfg_lun_queue_depth); 6849 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature, 6850 phba->sli4_hba.pc_sli4_params.mi_ver); 6851 break; 6852 case LPFC_SET_LD_SIGNAL: 6853 mbox->u.mqe.un.set_feature.feature = LPFC_SET_LD_SIGNAL; 6854 mbox->u.mqe.un.set_feature.param_len = 16; 6855 bf_set(lpfc_mbx_set_feature_lds_qry, 6856 &mbox->u.mqe.un.set_feature, LPFC_QUERY_LDS_OP); 6857 break; 6858 case LPFC_SET_ENABLE_CMF: 6859 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF; 6860 mbox->u.mqe.un.set_feature.param_len = 4; 6861 bf_set(lpfc_mbx_set_feature_cmf, 6862 &mbox->u.mqe.un.set_feature, 1); 6863 break; 6864 } 6865 return; 6866 } 6867 6868 /** 6869 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6870 * @phba: Pointer to HBA context object. 6871 * 6872 * Disable FW logging into host memory on the adapter. To 6873 * be done before reading logs from the host memory. 6874 **/ 6875 void 6876 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6877 { 6878 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6879 6880 spin_lock_irq(&phba->hbalock); 6881 ras_fwlog->state = INACTIVE; 6882 spin_unlock_irq(&phba->hbalock); 6883 6884 /* Disable FW logging to host memory */ 6885 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6886 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6887 6888 /* Wait 10ms for firmware to stop using DMA buffer */ 6889 usleep_range(10 * 1000, 20 * 1000); 6890 } 6891 6892 /** 6893 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6894 * @phba: Pointer to HBA context object. 6895 * 6896 * This function is called to free memory allocated for RAS FW logging 6897 * support in the driver. 6898 **/ 6899 void 6900 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6901 { 6902 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6903 struct lpfc_dmabuf *dmabuf, *next; 6904 6905 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6906 list_for_each_entry_safe(dmabuf, next, 6907 &ras_fwlog->fwlog_buff_list, 6908 list) { 6909 list_del(&dmabuf->list); 6910 dma_free_coherent(&phba->pcidev->dev, 6911 LPFC_RAS_MAX_ENTRY_SIZE, 6912 dmabuf->virt, dmabuf->phys); 6913 kfree(dmabuf); 6914 } 6915 } 6916 6917 if (ras_fwlog->lwpd.virt) { 6918 dma_free_coherent(&phba->pcidev->dev, 6919 sizeof(uint32_t) * 2, 6920 ras_fwlog->lwpd.virt, 6921 ras_fwlog->lwpd.phys); 6922 ras_fwlog->lwpd.virt = NULL; 6923 } 6924 6925 spin_lock_irq(&phba->hbalock); 6926 ras_fwlog->state = INACTIVE; 6927 spin_unlock_irq(&phba->hbalock); 6928 } 6929 6930 /** 6931 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6932 * @phba: Pointer to HBA context object. 6933 * @fwlog_buff_count: Count of buffers to be created. 6934 * 6935 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6936 * to update FW log is posted to the adapter. 6937 * Buffer count is calculated based on module param ras_fwlog_buffsize 6938 * Size of each buffer posted to FW is 64K. 6939 **/ 6940 6941 static int 6942 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6943 uint32_t fwlog_buff_count) 6944 { 6945 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6946 struct lpfc_dmabuf *dmabuf; 6947 int rc = 0, i = 0; 6948 6949 /* Initialize List */ 6950 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6951 6952 /* Allocate memory for the LWPD */ 6953 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6954 sizeof(uint32_t) * 2, 6955 &ras_fwlog->lwpd.phys, 6956 GFP_KERNEL); 6957 if (!ras_fwlog->lwpd.virt) { 6958 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6959 "6185 LWPD Memory Alloc Failed\n"); 6960 6961 return -ENOMEM; 6962 } 6963 6964 ras_fwlog->fw_buffcount = fwlog_buff_count; 6965 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6966 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6967 GFP_KERNEL); 6968 if (!dmabuf) { 6969 rc = -ENOMEM; 6970 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6971 "6186 Memory Alloc failed FW logging"); 6972 goto free_mem; 6973 } 6974 6975 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6976 LPFC_RAS_MAX_ENTRY_SIZE, 6977 &dmabuf->phys, GFP_KERNEL); 6978 if (!dmabuf->virt) { 6979 kfree(dmabuf); 6980 rc = -ENOMEM; 6981 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6982 "6187 DMA Alloc Failed FW logging"); 6983 goto free_mem; 6984 } 6985 dmabuf->buffer_tag = i; 6986 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6987 } 6988 6989 free_mem: 6990 if (rc) 6991 lpfc_sli4_ras_dma_free(phba); 6992 6993 return rc; 6994 } 6995 6996 /** 6997 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6998 * @phba: pointer to lpfc hba data structure. 6999 * @pmb: pointer to the driver internal queue element for mailbox command. 7000 * 7001 * Completion handler for driver's RAS MBX command to the device. 7002 **/ 7003 static void 7004 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7005 { 7006 MAILBOX_t *mb; 7007 union lpfc_sli4_cfg_shdr *shdr; 7008 uint32_t shdr_status, shdr_add_status; 7009 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 7010 7011 mb = &pmb->u.mb; 7012 7013 shdr = (union lpfc_sli4_cfg_shdr *) 7014 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 7015 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7016 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7017 7018 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 7019 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7020 "6188 FW LOG mailbox " 7021 "completed with status x%x add_status x%x," 7022 " mbx status x%x\n", 7023 shdr_status, shdr_add_status, mb->mbxStatus); 7024 7025 ras_fwlog->ras_hwsupport = false; 7026 goto disable_ras; 7027 } 7028 7029 spin_lock_irq(&phba->hbalock); 7030 ras_fwlog->state = ACTIVE; 7031 spin_unlock_irq(&phba->hbalock); 7032 mempool_free(pmb, phba->mbox_mem_pool); 7033 7034 return; 7035 7036 disable_ras: 7037 /* Free RAS DMA memory */ 7038 lpfc_sli4_ras_dma_free(phba); 7039 mempool_free(pmb, phba->mbox_mem_pool); 7040 } 7041 7042 /** 7043 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 7044 * @phba: pointer to lpfc hba data structure. 7045 * @fwlog_level: Logging verbosity level. 7046 * @fwlog_enable: Enable/Disable logging. 7047 * 7048 * Initialize memory and post mailbox command to enable FW logging in host 7049 * memory. 7050 **/ 7051 int 7052 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 7053 uint32_t fwlog_level, 7054 uint32_t fwlog_enable) 7055 { 7056 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 7057 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 7058 struct lpfc_dmabuf *dmabuf; 7059 LPFC_MBOXQ_t *mbox; 7060 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 7061 int rc = 0; 7062 7063 spin_lock_irq(&phba->hbalock); 7064 ras_fwlog->state = INACTIVE; 7065 spin_unlock_irq(&phba->hbalock); 7066 7067 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 7068 phba->cfg_ras_fwlog_buffsize); 7069 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 7070 7071 /* 7072 * If re-enabling FW logging support use earlier allocated 7073 * DMA buffers while posting MBX command. 7074 **/ 7075 if (!ras_fwlog->lwpd.virt) { 7076 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 7077 if (rc) { 7078 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7079 "6189 FW Log Memory Allocation Failed"); 7080 return rc; 7081 } 7082 } 7083 7084 /* Setup Mailbox command */ 7085 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7086 if (!mbox) { 7087 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7088 "6190 RAS MBX Alloc Failed"); 7089 rc = -ENOMEM; 7090 goto mem_free; 7091 } 7092 7093 ras_fwlog->fw_loglevel = fwlog_level; 7094 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 7095 sizeof(struct lpfc_sli4_cfg_mhdr)); 7096 7097 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 7098 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 7099 len, LPFC_SLI4_MBX_EMBED); 7100 7101 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 7102 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 7103 fwlog_enable); 7104 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 7105 ras_fwlog->fw_loglevel); 7106 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 7107 ras_fwlog->fw_buffcount); 7108 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 7109 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 7110 7111 /* Update DMA buffer address */ 7112 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 7113 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 7114 7115 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 7116 putPaddrLow(dmabuf->phys); 7117 7118 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 7119 putPaddrHigh(dmabuf->phys); 7120 } 7121 7122 /* Update LPWD address */ 7123 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 7124 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 7125 7126 spin_lock_irq(&phba->hbalock); 7127 ras_fwlog->state = REG_INPROGRESS; 7128 spin_unlock_irq(&phba->hbalock); 7129 mbox->vport = phba->pport; 7130 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 7131 7132 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 7133 7134 if (rc == MBX_NOT_FINISHED) { 7135 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7136 "6191 FW-Log Mailbox failed. " 7137 "status %d mbxStatus : x%x", rc, 7138 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 7139 mempool_free(mbox, phba->mbox_mem_pool); 7140 rc = -EIO; 7141 goto mem_free; 7142 } else 7143 rc = 0; 7144 mem_free: 7145 if (rc) 7146 lpfc_sli4_ras_dma_free(phba); 7147 7148 return rc; 7149 } 7150 7151 /** 7152 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 7153 * @phba: Pointer to HBA context object. 7154 * 7155 * Check if RAS is supported on the adapter and initialize it. 7156 **/ 7157 void 7158 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 7159 { 7160 /* Check RAS FW Log needs to be enabled or not */ 7161 if (lpfc_check_fwlog_support(phba)) 7162 return; 7163 7164 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 7165 LPFC_RAS_ENABLE_LOGGING); 7166 } 7167 7168 /** 7169 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 7170 * @phba: Pointer to HBA context object. 7171 * 7172 * This function allocates all SLI4 resource identifiers. 7173 **/ 7174 int 7175 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 7176 { 7177 int i, rc, error = 0; 7178 uint16_t count, base; 7179 unsigned long longs; 7180 7181 if (!phba->sli4_hba.rpi_hdrs_in_use) 7182 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 7183 if (phba->sli4_hba.extents_in_use) { 7184 /* 7185 * The port supports resource extents. The XRI, VPI, VFI, RPI 7186 * resource extent count must be read and allocated before 7187 * provisioning the resource id arrays. 7188 */ 7189 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7190 LPFC_IDX_RSRC_RDY) { 7191 /* 7192 * Extent-based resources are set - the driver could 7193 * be in a port reset. Figure out if any corrective 7194 * actions need to be taken. 7195 */ 7196 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7197 LPFC_RSC_TYPE_FCOE_VFI); 7198 if (rc != 0) 7199 error++; 7200 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7201 LPFC_RSC_TYPE_FCOE_VPI); 7202 if (rc != 0) 7203 error++; 7204 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7205 LPFC_RSC_TYPE_FCOE_XRI); 7206 if (rc != 0) 7207 error++; 7208 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7209 LPFC_RSC_TYPE_FCOE_RPI); 7210 if (rc != 0) 7211 error++; 7212 7213 /* 7214 * It's possible that the number of resources 7215 * provided to this port instance changed between 7216 * resets. Detect this condition and reallocate 7217 * resources. Otherwise, there is no action. 7218 */ 7219 if (error) { 7220 lpfc_printf_log(phba, KERN_INFO, 7221 LOG_MBOX | LOG_INIT, 7222 "2931 Detected extent resource " 7223 "change. Reallocating all " 7224 "extents.\n"); 7225 rc = lpfc_sli4_dealloc_extent(phba, 7226 LPFC_RSC_TYPE_FCOE_VFI); 7227 rc = lpfc_sli4_dealloc_extent(phba, 7228 LPFC_RSC_TYPE_FCOE_VPI); 7229 rc = lpfc_sli4_dealloc_extent(phba, 7230 LPFC_RSC_TYPE_FCOE_XRI); 7231 rc = lpfc_sli4_dealloc_extent(phba, 7232 LPFC_RSC_TYPE_FCOE_RPI); 7233 } else 7234 return 0; 7235 } 7236 7237 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7238 if (unlikely(rc)) 7239 goto err_exit; 7240 7241 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7242 if (unlikely(rc)) 7243 goto err_exit; 7244 7245 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7246 if (unlikely(rc)) 7247 goto err_exit; 7248 7249 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7250 if (unlikely(rc)) 7251 goto err_exit; 7252 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7253 LPFC_IDX_RSRC_RDY); 7254 return rc; 7255 } else { 7256 /* 7257 * The port does not support resource extents. The XRI, VPI, 7258 * VFI, RPI resource ids were determined from READ_CONFIG. 7259 * Just allocate the bitmasks and provision the resource id 7260 * arrays. If a port reset is active, the resources don't 7261 * need any action - just exit. 7262 */ 7263 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7264 LPFC_IDX_RSRC_RDY) { 7265 lpfc_sli4_dealloc_resource_identifiers(phba); 7266 lpfc_sli4_remove_rpis(phba); 7267 } 7268 /* RPIs. */ 7269 count = phba->sli4_hba.max_cfg_param.max_rpi; 7270 if (count <= 0) { 7271 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7272 "3279 Invalid provisioning of " 7273 "rpi:%d\n", count); 7274 rc = -EINVAL; 7275 goto err_exit; 7276 } 7277 base = phba->sli4_hba.max_cfg_param.rpi_base; 7278 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7279 phba->sli4_hba.rpi_bmask = kcalloc(longs, 7280 sizeof(unsigned long), 7281 GFP_KERNEL); 7282 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 7283 rc = -ENOMEM; 7284 goto err_exit; 7285 } 7286 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 7287 GFP_KERNEL); 7288 if (unlikely(!phba->sli4_hba.rpi_ids)) { 7289 rc = -ENOMEM; 7290 goto free_rpi_bmask; 7291 } 7292 7293 for (i = 0; i < count; i++) 7294 phba->sli4_hba.rpi_ids[i] = base + i; 7295 7296 /* VPIs. */ 7297 count = phba->sli4_hba.max_cfg_param.max_vpi; 7298 if (count <= 0) { 7299 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7300 "3280 Invalid provisioning of " 7301 "vpi:%d\n", count); 7302 rc = -EINVAL; 7303 goto free_rpi_ids; 7304 } 7305 base = phba->sli4_hba.max_cfg_param.vpi_base; 7306 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7307 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 7308 GFP_KERNEL); 7309 if (unlikely(!phba->vpi_bmask)) { 7310 rc = -ENOMEM; 7311 goto free_rpi_ids; 7312 } 7313 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 7314 GFP_KERNEL); 7315 if (unlikely(!phba->vpi_ids)) { 7316 rc = -ENOMEM; 7317 goto free_vpi_bmask; 7318 } 7319 7320 for (i = 0; i < count; i++) 7321 phba->vpi_ids[i] = base + i; 7322 7323 /* XRIs. */ 7324 count = phba->sli4_hba.max_cfg_param.max_xri; 7325 if (count <= 0) { 7326 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7327 "3281 Invalid provisioning of " 7328 "xri:%d\n", count); 7329 rc = -EINVAL; 7330 goto free_vpi_ids; 7331 } 7332 base = phba->sli4_hba.max_cfg_param.xri_base; 7333 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7334 phba->sli4_hba.xri_bmask = kcalloc(longs, 7335 sizeof(unsigned long), 7336 GFP_KERNEL); 7337 if (unlikely(!phba->sli4_hba.xri_bmask)) { 7338 rc = -ENOMEM; 7339 goto free_vpi_ids; 7340 } 7341 phba->sli4_hba.max_cfg_param.xri_used = 0; 7342 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 7343 GFP_KERNEL); 7344 if (unlikely(!phba->sli4_hba.xri_ids)) { 7345 rc = -ENOMEM; 7346 goto free_xri_bmask; 7347 } 7348 7349 for (i = 0; i < count; i++) 7350 phba->sli4_hba.xri_ids[i] = base + i; 7351 7352 /* VFIs. */ 7353 count = phba->sli4_hba.max_cfg_param.max_vfi; 7354 if (count <= 0) { 7355 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7356 "3282 Invalid provisioning of " 7357 "vfi:%d\n", count); 7358 rc = -EINVAL; 7359 goto free_xri_ids; 7360 } 7361 base = phba->sli4_hba.max_cfg_param.vfi_base; 7362 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7363 phba->sli4_hba.vfi_bmask = kcalloc(longs, 7364 sizeof(unsigned long), 7365 GFP_KERNEL); 7366 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 7367 rc = -ENOMEM; 7368 goto free_xri_ids; 7369 } 7370 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 7371 GFP_KERNEL); 7372 if (unlikely(!phba->sli4_hba.vfi_ids)) { 7373 rc = -ENOMEM; 7374 goto free_vfi_bmask; 7375 } 7376 7377 for (i = 0; i < count; i++) 7378 phba->sli4_hba.vfi_ids[i] = base + i; 7379 7380 /* 7381 * Mark all resources ready. An HBA reset doesn't need 7382 * to reset the initialization. 7383 */ 7384 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7385 LPFC_IDX_RSRC_RDY); 7386 return 0; 7387 } 7388 7389 free_vfi_bmask: 7390 kfree(phba->sli4_hba.vfi_bmask); 7391 phba->sli4_hba.vfi_bmask = NULL; 7392 free_xri_ids: 7393 kfree(phba->sli4_hba.xri_ids); 7394 phba->sli4_hba.xri_ids = NULL; 7395 free_xri_bmask: 7396 kfree(phba->sli4_hba.xri_bmask); 7397 phba->sli4_hba.xri_bmask = NULL; 7398 free_vpi_ids: 7399 kfree(phba->vpi_ids); 7400 phba->vpi_ids = NULL; 7401 free_vpi_bmask: 7402 kfree(phba->vpi_bmask); 7403 phba->vpi_bmask = NULL; 7404 free_rpi_ids: 7405 kfree(phba->sli4_hba.rpi_ids); 7406 phba->sli4_hba.rpi_ids = NULL; 7407 free_rpi_bmask: 7408 kfree(phba->sli4_hba.rpi_bmask); 7409 phba->sli4_hba.rpi_bmask = NULL; 7410 err_exit: 7411 return rc; 7412 } 7413 7414 /** 7415 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 7416 * @phba: Pointer to HBA context object. 7417 * 7418 * This function allocates the number of elements for the specified 7419 * resource type. 7420 **/ 7421 int 7422 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7423 { 7424 if (phba->sli4_hba.extents_in_use) { 7425 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7426 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7427 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7428 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7429 } else { 7430 kfree(phba->vpi_bmask); 7431 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7432 kfree(phba->vpi_ids); 7433 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7434 kfree(phba->sli4_hba.xri_bmask); 7435 kfree(phba->sli4_hba.xri_ids); 7436 kfree(phba->sli4_hba.vfi_bmask); 7437 kfree(phba->sli4_hba.vfi_ids); 7438 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7439 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7440 } 7441 7442 return 0; 7443 } 7444 7445 /** 7446 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7447 * @phba: Pointer to HBA context object. 7448 * @type: The resource extent type. 7449 * @extnt_cnt: buffer to hold port extent count response 7450 * @extnt_size: buffer to hold port extent size response. 7451 * 7452 * This function calls the port to read the host allocated extents 7453 * for a particular type. 7454 **/ 7455 int 7456 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7457 uint16_t *extnt_cnt, uint16_t *extnt_size) 7458 { 7459 bool emb; 7460 int rc = 0; 7461 uint16_t curr_blks = 0; 7462 uint32_t req_len, emb_len; 7463 uint32_t alloc_len, mbox_tmo; 7464 struct list_head *blk_list_head; 7465 struct lpfc_rsrc_blks *rsrc_blk; 7466 LPFC_MBOXQ_t *mbox; 7467 void *virtaddr = NULL; 7468 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7469 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7470 union lpfc_sli4_cfg_shdr *shdr; 7471 7472 switch (type) { 7473 case LPFC_RSC_TYPE_FCOE_VPI: 7474 blk_list_head = &phba->lpfc_vpi_blk_list; 7475 break; 7476 case LPFC_RSC_TYPE_FCOE_XRI: 7477 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7478 break; 7479 case LPFC_RSC_TYPE_FCOE_VFI: 7480 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7481 break; 7482 case LPFC_RSC_TYPE_FCOE_RPI: 7483 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7484 break; 7485 default: 7486 return -EIO; 7487 } 7488 7489 /* Count the number of extents currently allocatd for this type. */ 7490 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7491 if (curr_blks == 0) { 7492 /* 7493 * The GET_ALLOCATED mailbox does not return the size, 7494 * just the count. The size should be just the size 7495 * stored in the current allocated block and all sizes 7496 * for an extent type are the same so set the return 7497 * value now. 7498 */ 7499 *extnt_size = rsrc_blk->rsrc_size; 7500 } 7501 curr_blks++; 7502 } 7503 7504 /* 7505 * Calculate the size of an embedded mailbox. The uint32_t 7506 * accounts for extents-specific word. 7507 */ 7508 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7509 sizeof(uint32_t); 7510 7511 /* 7512 * Presume the allocation and response will fit into an embedded 7513 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7514 */ 7515 emb = LPFC_SLI4_MBX_EMBED; 7516 req_len = emb_len; 7517 if (req_len > emb_len) { 7518 req_len = curr_blks * sizeof(uint16_t) + 7519 sizeof(union lpfc_sli4_cfg_shdr) + 7520 sizeof(uint32_t); 7521 emb = LPFC_SLI4_MBX_NEMBED; 7522 } 7523 7524 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7525 if (!mbox) 7526 return -ENOMEM; 7527 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7528 7529 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7530 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7531 req_len, emb); 7532 if (alloc_len < req_len) { 7533 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7534 "2983 Allocated DMA memory size (x%x) is " 7535 "less than the requested DMA memory " 7536 "size (x%x)\n", alloc_len, req_len); 7537 rc = -ENOMEM; 7538 goto err_exit; 7539 } 7540 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7541 if (unlikely(rc)) { 7542 rc = -EIO; 7543 goto err_exit; 7544 } 7545 7546 if (!phba->sli4_hba.intr_enable) 7547 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7548 else { 7549 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7550 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7551 } 7552 7553 if (unlikely(rc)) { 7554 rc = -EIO; 7555 goto err_exit; 7556 } 7557 7558 /* 7559 * Figure out where the response is located. Then get local pointers 7560 * to the response data. The port does not guarantee to respond to 7561 * all extents counts request so update the local variable with the 7562 * allocated count from the port. 7563 */ 7564 if (emb == LPFC_SLI4_MBX_EMBED) { 7565 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7566 shdr = &rsrc_ext->header.cfg_shdr; 7567 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7568 } else { 7569 virtaddr = mbox->sge_array->addr[0]; 7570 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7571 shdr = &n_rsrc->cfg_shdr; 7572 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7573 } 7574 7575 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7576 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7577 "2984 Failed to read allocated resources " 7578 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7579 type, 7580 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7581 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7582 rc = -EIO; 7583 goto err_exit; 7584 } 7585 err_exit: 7586 lpfc_sli4_mbox_cmd_free(phba, mbox); 7587 return rc; 7588 } 7589 7590 /** 7591 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7592 * @phba: pointer to lpfc hba data structure. 7593 * @sgl_list: linked link of sgl buffers to post 7594 * @cnt: number of linked list buffers 7595 * 7596 * This routine walks the list of buffers that have been allocated and 7597 * repost them to the port by using SGL block post. This is needed after a 7598 * pci_function_reset/warm_start or start. It attempts to construct blocks 7599 * of buffer sgls which contains contiguous xris and uses the non-embedded 7600 * SGL block post mailbox commands to post them to the port. For single 7601 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7602 * mailbox command for posting. 7603 * 7604 * Returns: 0 = success, non-zero failure. 7605 **/ 7606 static int 7607 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7608 struct list_head *sgl_list, int cnt) 7609 { 7610 struct lpfc_sglq *sglq_entry = NULL; 7611 struct lpfc_sglq *sglq_entry_next = NULL; 7612 struct lpfc_sglq *sglq_entry_first = NULL; 7613 int status, total_cnt; 7614 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7615 int last_xritag = NO_XRI; 7616 LIST_HEAD(prep_sgl_list); 7617 LIST_HEAD(blck_sgl_list); 7618 LIST_HEAD(allc_sgl_list); 7619 LIST_HEAD(post_sgl_list); 7620 LIST_HEAD(free_sgl_list); 7621 7622 spin_lock_irq(&phba->hbalock); 7623 spin_lock(&phba->sli4_hba.sgl_list_lock); 7624 list_splice_init(sgl_list, &allc_sgl_list); 7625 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7626 spin_unlock_irq(&phba->hbalock); 7627 7628 total_cnt = cnt; 7629 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7630 &allc_sgl_list, list) { 7631 list_del_init(&sglq_entry->list); 7632 block_cnt++; 7633 if ((last_xritag != NO_XRI) && 7634 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7635 /* a hole in xri block, form a sgl posting block */ 7636 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7637 post_cnt = block_cnt - 1; 7638 /* prepare list for next posting block */ 7639 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7640 block_cnt = 1; 7641 } else { 7642 /* prepare list for next posting block */ 7643 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7644 /* enough sgls for non-embed sgl mbox command */ 7645 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7646 list_splice_init(&prep_sgl_list, 7647 &blck_sgl_list); 7648 post_cnt = block_cnt; 7649 block_cnt = 0; 7650 } 7651 } 7652 num_posted++; 7653 7654 /* keep track of last sgl's xritag */ 7655 last_xritag = sglq_entry->sli4_xritag; 7656 7657 /* end of repost sgl list condition for buffers */ 7658 if (num_posted == total_cnt) { 7659 if (post_cnt == 0) { 7660 list_splice_init(&prep_sgl_list, 7661 &blck_sgl_list); 7662 post_cnt = block_cnt; 7663 } else if (block_cnt == 1) { 7664 status = lpfc_sli4_post_sgl(phba, 7665 sglq_entry->phys, 0, 7666 sglq_entry->sli4_xritag); 7667 if (!status) { 7668 /* successful, put sgl to posted list */ 7669 list_add_tail(&sglq_entry->list, 7670 &post_sgl_list); 7671 } else { 7672 /* Failure, put sgl to free list */ 7673 lpfc_printf_log(phba, KERN_WARNING, 7674 LOG_SLI, 7675 "3159 Failed to post " 7676 "sgl, xritag:x%x\n", 7677 sglq_entry->sli4_xritag); 7678 list_add_tail(&sglq_entry->list, 7679 &free_sgl_list); 7680 total_cnt--; 7681 } 7682 } 7683 } 7684 7685 /* continue until a nembed page worth of sgls */ 7686 if (post_cnt == 0) 7687 continue; 7688 7689 /* post the buffer list sgls as a block */ 7690 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7691 post_cnt); 7692 7693 if (!status) { 7694 /* success, put sgl list to posted sgl list */ 7695 list_splice_init(&blck_sgl_list, &post_sgl_list); 7696 } else { 7697 /* Failure, put sgl list to free sgl list */ 7698 sglq_entry_first = list_first_entry(&blck_sgl_list, 7699 struct lpfc_sglq, 7700 list); 7701 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7702 "3160 Failed to post sgl-list, " 7703 "xritag:x%x-x%x\n", 7704 sglq_entry_first->sli4_xritag, 7705 (sglq_entry_first->sli4_xritag + 7706 post_cnt - 1)); 7707 list_splice_init(&blck_sgl_list, &free_sgl_list); 7708 total_cnt -= post_cnt; 7709 } 7710 7711 /* don't reset xirtag due to hole in xri block */ 7712 if (block_cnt == 0) 7713 last_xritag = NO_XRI; 7714 7715 /* reset sgl post count for next round of posting */ 7716 post_cnt = 0; 7717 } 7718 7719 /* free the sgls failed to post */ 7720 lpfc_free_sgl_list(phba, &free_sgl_list); 7721 7722 /* push sgls posted to the available list */ 7723 if (!list_empty(&post_sgl_list)) { 7724 spin_lock_irq(&phba->hbalock); 7725 spin_lock(&phba->sli4_hba.sgl_list_lock); 7726 list_splice_init(&post_sgl_list, sgl_list); 7727 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7728 spin_unlock_irq(&phba->hbalock); 7729 } else { 7730 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7731 "3161 Failure to post sgl to port.\n"); 7732 return -EIO; 7733 } 7734 7735 /* return the number of XRIs actually posted */ 7736 return total_cnt; 7737 } 7738 7739 /** 7740 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7741 * @phba: pointer to lpfc hba data structure. 7742 * 7743 * This routine walks the list of nvme buffers that have been allocated and 7744 * repost them to the port by using SGL block post. This is needed after a 7745 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7746 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7747 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7748 * 7749 * Returns: 0 = success, non-zero failure. 7750 **/ 7751 static int 7752 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7753 { 7754 LIST_HEAD(post_nblist); 7755 int num_posted, rc = 0; 7756 7757 /* get all NVME buffers need to repost to a local list */ 7758 lpfc_io_buf_flush(phba, &post_nblist); 7759 7760 /* post the list of nvme buffer sgls to port if available */ 7761 if (!list_empty(&post_nblist)) { 7762 num_posted = lpfc_sli4_post_io_sgl_list( 7763 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7764 /* failed to post any nvme buffer, return error */ 7765 if (num_posted == 0) 7766 rc = -EIO; 7767 } 7768 return rc; 7769 } 7770 7771 static void 7772 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7773 { 7774 uint32_t len; 7775 7776 len = sizeof(struct lpfc_mbx_set_host_data) - 7777 sizeof(struct lpfc_sli4_cfg_mhdr); 7778 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7779 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7780 LPFC_SLI4_MBX_EMBED); 7781 7782 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7783 mbox->u.mqe.un.set_host_data.param_len = 7784 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7785 snprintf(mbox->u.mqe.un.set_host_data.un.data, 7786 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7787 "Linux %s v"LPFC_DRIVER_VERSION, 7788 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7789 } 7790 7791 int 7792 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7793 struct lpfc_queue *drq, int count, int idx) 7794 { 7795 int rc, i; 7796 struct lpfc_rqe hrqe; 7797 struct lpfc_rqe drqe; 7798 struct lpfc_rqb *rqbp; 7799 unsigned long flags; 7800 struct rqb_dmabuf *rqb_buffer; 7801 LIST_HEAD(rqb_buf_list); 7802 7803 rqbp = hrq->rqbp; 7804 for (i = 0; i < count; i++) { 7805 spin_lock_irqsave(&phba->hbalock, flags); 7806 /* IF RQ is already full, don't bother */ 7807 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7808 spin_unlock_irqrestore(&phba->hbalock, flags); 7809 break; 7810 } 7811 spin_unlock_irqrestore(&phba->hbalock, flags); 7812 7813 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7814 if (!rqb_buffer) 7815 break; 7816 rqb_buffer->hrq = hrq; 7817 rqb_buffer->drq = drq; 7818 rqb_buffer->idx = idx; 7819 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7820 } 7821 7822 spin_lock_irqsave(&phba->hbalock, flags); 7823 while (!list_empty(&rqb_buf_list)) { 7824 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7825 hbuf.list); 7826 7827 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7828 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7829 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7830 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7831 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7832 if (rc < 0) { 7833 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7834 "6421 Cannot post to HRQ %d: %x %x %x " 7835 "DRQ %x %x\n", 7836 hrq->queue_id, 7837 hrq->host_index, 7838 hrq->hba_index, 7839 hrq->entry_count, 7840 drq->host_index, 7841 drq->hba_index); 7842 rqbp->rqb_free_buffer(phba, rqb_buffer); 7843 } else { 7844 list_add_tail(&rqb_buffer->hbuf.list, 7845 &rqbp->rqb_buffer_list); 7846 rqbp->buffer_count++; 7847 } 7848 } 7849 spin_unlock_irqrestore(&phba->hbalock, flags); 7850 return 1; 7851 } 7852 7853 static void 7854 lpfc_mbx_cmpl_read_lds_params(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7855 { 7856 union lpfc_sli4_cfg_shdr *shdr; 7857 u32 shdr_status, shdr_add_status; 7858 7859 shdr = (union lpfc_sli4_cfg_shdr *) 7860 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7861 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7862 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7863 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7864 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT | LOG_MBOX, 7865 "4622 SET_FEATURE (x%x) mbox failed, " 7866 "status x%x add_status x%x, mbx status x%x\n", 7867 LPFC_SET_LD_SIGNAL, shdr_status, 7868 shdr_add_status, pmb->u.mb.mbxStatus); 7869 phba->degrade_activate_threshold = 0; 7870 phba->degrade_deactivate_threshold = 0; 7871 phba->fec_degrade_interval = 0; 7872 goto out; 7873 } 7874 7875 phba->degrade_activate_threshold = pmb->u.mqe.un.set_feature.word7; 7876 phba->degrade_deactivate_threshold = pmb->u.mqe.un.set_feature.word8; 7877 phba->fec_degrade_interval = pmb->u.mqe.un.set_feature.word10; 7878 7879 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT, 7880 "4624 Success: da x%x dd x%x interval x%x\n", 7881 phba->degrade_activate_threshold, 7882 phba->degrade_deactivate_threshold, 7883 phba->fec_degrade_interval); 7884 out: 7885 mempool_free(pmb, phba->mbox_mem_pool); 7886 } 7887 7888 int 7889 lpfc_read_lds_params(struct lpfc_hba *phba) 7890 { 7891 LPFC_MBOXQ_t *mboxq; 7892 int rc; 7893 7894 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7895 if (!mboxq) 7896 return -ENOMEM; 7897 7898 lpfc_set_features(phba, mboxq, LPFC_SET_LD_SIGNAL); 7899 mboxq->vport = phba->pport; 7900 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_lds_params; 7901 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7902 if (rc == MBX_NOT_FINISHED) { 7903 mempool_free(mboxq, phba->mbox_mem_pool); 7904 return -EIO; 7905 } 7906 return 0; 7907 } 7908 7909 static void 7910 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7911 { 7912 struct lpfc_vport *vport = pmb->vport; 7913 union lpfc_sli4_cfg_shdr *shdr; 7914 u32 shdr_status, shdr_add_status; 7915 u32 sig, acqe; 7916 7917 /* Two outcomes. (1) Set featurs was successul and EDC negotiation 7918 * is done. (2) Mailbox failed and send FPIN support only. 7919 */ 7920 shdr = (union lpfc_sli4_cfg_shdr *) 7921 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7922 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7923 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7924 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7925 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 7926 "2516 CGN SET_FEATURE mbox failed with " 7927 "status x%x add_status x%x, mbx status x%x " 7928 "Reset Congestion to FPINs only\n", 7929 shdr_status, shdr_add_status, 7930 pmb->u.mb.mbxStatus); 7931 /* If there is a mbox error, move on to RDF */ 7932 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7933 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7934 goto out; 7935 } 7936 7937 /* Zero out Congestion Signal ACQE counter */ 7938 phba->cgn_acqe_cnt = 0; 7939 7940 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq, 7941 &pmb->u.mqe.un.set_feature); 7942 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq, 7943 &pmb->u.mqe.un.set_feature); 7944 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7945 "4620 SET_FEATURES Success: Freq: %ds %dms " 7946 " Reg: x%x x%x\n", acqe, sig, 7947 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7948 out: 7949 mempool_free(pmb, phba->mbox_mem_pool); 7950 7951 /* Register for FPIN events from the fabric now that the 7952 * EDC common_set_features has completed. 7953 */ 7954 lpfc_issue_els_rdf(vport, 0); 7955 } 7956 7957 int 7958 lpfc_config_cgn_signal(struct lpfc_hba *phba) 7959 { 7960 LPFC_MBOXQ_t *mboxq; 7961 u32 rc; 7962 7963 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7964 if (!mboxq) 7965 goto out_rdf; 7966 7967 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL); 7968 mboxq->vport = phba->pport; 7969 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs; 7970 7971 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7972 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: " 7973 "Reg: x%x x%x\n", 7974 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency, 7975 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7976 7977 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7978 if (rc == MBX_NOT_FINISHED) 7979 goto out; 7980 return 0; 7981 7982 out: 7983 mempool_free(mboxq, phba->mbox_mem_pool); 7984 out_rdf: 7985 /* If there is a mbox error, move on to RDF */ 7986 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7987 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7988 lpfc_issue_els_rdf(phba->pport, 0); 7989 return -EIO; 7990 } 7991 7992 /** 7993 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7994 * @phba: pointer to lpfc hba data structure. 7995 * 7996 * This routine initializes the per-cq idle_stat to dynamically dictate 7997 * polling decisions. 7998 * 7999 * Return codes: 8000 * None 8001 **/ 8002 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 8003 { 8004 int i; 8005 struct lpfc_sli4_hdw_queue *hdwq; 8006 struct lpfc_queue *cq; 8007 struct lpfc_idle_stat *idle_stat; 8008 u64 wall; 8009 8010 for_each_present_cpu(i) { 8011 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 8012 cq = hdwq->io_cq; 8013 8014 /* Skip if we've already handled this cq's primary CPU */ 8015 if (cq->chann != i) 8016 continue; 8017 8018 idle_stat = &phba->sli4_hba.idle_stat[i]; 8019 8020 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 8021 idle_stat->prev_wall = wall; 8022 8023 if (phba->nvmet_support || 8024 phba->cmf_active_mode != LPFC_CFG_OFF) 8025 cq->poll_mode = LPFC_QUEUE_WORK; 8026 else 8027 cq->poll_mode = LPFC_IRQ_POLL; 8028 } 8029 8030 if (!phba->nvmet_support) 8031 schedule_delayed_work(&phba->idle_stat_delay_work, 8032 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 8033 } 8034 8035 static void lpfc_sli4_dip(struct lpfc_hba *phba) 8036 { 8037 uint32_t if_type; 8038 8039 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 8040 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 8041 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 8042 struct lpfc_register reg_data; 8043 8044 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 8045 ®_data.word0)) 8046 return; 8047 8048 if (bf_get(lpfc_sliport_status_dip, ®_data)) 8049 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8050 "2904 Firmware Dump Image Present" 8051 " on Adapter"); 8052 } 8053 } 8054 8055 /** 8056 * lpfc_rx_monitor_create_ring - Initialize ring buffer for rx_monitor 8057 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8058 * @entries: Number of rx_info_entry objects to allocate in ring 8059 * 8060 * Return: 8061 * 0 - Success 8062 * ENOMEM - Failure to kmalloc 8063 **/ 8064 int lpfc_rx_monitor_create_ring(struct lpfc_rx_info_monitor *rx_monitor, 8065 u32 entries) 8066 { 8067 rx_monitor->ring = kmalloc_array(entries, sizeof(struct rx_info_entry), 8068 GFP_KERNEL); 8069 if (!rx_monitor->ring) 8070 return -ENOMEM; 8071 8072 rx_monitor->head_idx = 0; 8073 rx_monitor->tail_idx = 0; 8074 spin_lock_init(&rx_monitor->lock); 8075 rx_monitor->entries = entries; 8076 8077 return 0; 8078 } 8079 8080 /** 8081 * lpfc_rx_monitor_destroy_ring - Free ring buffer for rx_monitor 8082 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8083 **/ 8084 void lpfc_rx_monitor_destroy_ring(struct lpfc_rx_info_monitor *rx_monitor) 8085 { 8086 spin_lock(&rx_monitor->lock); 8087 kfree(rx_monitor->ring); 8088 rx_monitor->ring = NULL; 8089 rx_monitor->entries = 0; 8090 rx_monitor->head_idx = 0; 8091 rx_monitor->tail_idx = 0; 8092 spin_unlock(&rx_monitor->lock); 8093 } 8094 8095 /** 8096 * lpfc_rx_monitor_record - Insert an entry into rx_monitor's ring 8097 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8098 * @entry: Pointer to rx_info_entry 8099 * 8100 * Used to insert an rx_info_entry into rx_monitor's ring. Note that this is a 8101 * deep copy of rx_info_entry not a shallow copy of the rx_info_entry ptr. 8102 * 8103 * This is called from lpfc_cmf_timer, which is in timer/softirq context. 8104 * 8105 * In cases of old data overflow, we do a best effort of FIFO order. 8106 **/ 8107 void lpfc_rx_monitor_record(struct lpfc_rx_info_monitor *rx_monitor, 8108 struct rx_info_entry *entry) 8109 { 8110 struct rx_info_entry *ring = rx_monitor->ring; 8111 u32 *head_idx = &rx_monitor->head_idx; 8112 u32 *tail_idx = &rx_monitor->tail_idx; 8113 spinlock_t *ring_lock = &rx_monitor->lock; 8114 u32 ring_size = rx_monitor->entries; 8115 8116 spin_lock(ring_lock); 8117 memcpy(&ring[*tail_idx], entry, sizeof(*entry)); 8118 *tail_idx = (*tail_idx + 1) % ring_size; 8119 8120 /* Best effort of FIFO saved data */ 8121 if (*tail_idx == *head_idx) 8122 *head_idx = (*head_idx + 1) % ring_size; 8123 8124 spin_unlock(ring_lock); 8125 } 8126 8127 /** 8128 * lpfc_rx_monitor_report - Read out rx_monitor's ring 8129 * @phba: Pointer to lpfc_hba object 8130 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8131 * @buf: Pointer to char buffer that will contain rx monitor info data 8132 * @buf_len: Length buf including null char 8133 * @max_read_entries: Maximum number of entries to read out of ring 8134 * 8135 * Used to dump/read what's in rx_monitor's ring buffer. 8136 * 8137 * If buf is NULL || buf_len == 0, then it is implied that we want to log the 8138 * information to kmsg instead of filling out buf. 8139 * 8140 * Return: 8141 * Number of entries read out of the ring 8142 **/ 8143 u32 lpfc_rx_monitor_report(struct lpfc_hba *phba, 8144 struct lpfc_rx_info_monitor *rx_monitor, char *buf, 8145 u32 buf_len, u32 max_read_entries) 8146 { 8147 struct rx_info_entry *ring = rx_monitor->ring; 8148 struct rx_info_entry *entry; 8149 u32 *head_idx = &rx_monitor->head_idx; 8150 u32 *tail_idx = &rx_monitor->tail_idx; 8151 spinlock_t *ring_lock = &rx_monitor->lock; 8152 u32 ring_size = rx_monitor->entries; 8153 u32 cnt = 0; 8154 char tmp[DBG_LOG_STR_SZ] = {0}; 8155 bool log_to_kmsg = (!buf || !buf_len) ? true : false; 8156 8157 if (!log_to_kmsg) { 8158 /* clear the buffer to be sure */ 8159 memset(buf, 0, buf_len); 8160 8161 scnprintf(buf, buf_len, "\t%-16s%-16s%-16s%-16s%-8s%-8s%-8s" 8162 "%-8s%-8s%-8s%-16s\n", 8163 "MaxBPI", "Tot_Data_CMF", 8164 "Tot_Data_Cmd", "Tot_Data_Cmpl", 8165 "Lat(us)", "Avg_IO", "Max_IO", "Bsy", 8166 "IO_cnt", "Info", "BWutil(ms)"); 8167 } 8168 8169 /* Needs to be _irq because record is called from timer interrupt 8170 * context 8171 */ 8172 spin_lock_irq(ring_lock); 8173 while (*head_idx != *tail_idx) { 8174 entry = &ring[*head_idx]; 8175 8176 /* Read out this entry's data. */ 8177 if (!log_to_kmsg) { 8178 /* If !log_to_kmsg, then store to buf. */ 8179 scnprintf(tmp, sizeof(tmp), 8180 "%03d:\t%-16llu%-16llu%-16llu%-16llu%-8llu" 8181 "%-8llu%-8llu%-8u%-8u%-8u%u(%u)\n", 8182 *head_idx, entry->max_bytes_per_interval, 8183 entry->cmf_bytes, entry->total_bytes, 8184 entry->rcv_bytes, entry->avg_io_latency, 8185 entry->avg_io_size, entry->max_read_cnt, 8186 entry->cmf_busy, entry->io_cnt, 8187 entry->cmf_info, entry->timer_utilization, 8188 entry->timer_interval); 8189 8190 /* Check for buffer overflow */ 8191 if ((strlen(buf) + strlen(tmp)) >= buf_len) 8192 break; 8193 8194 /* Append entry's data to buffer */ 8195 strlcat(buf, tmp, buf_len); 8196 } else { 8197 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 8198 "4410 %02u: MBPI %llu Xmit %llu " 8199 "Cmpl %llu Lat %llu ASz %llu Info %02u " 8200 "BWUtil %u Int %u slot %u\n", 8201 cnt, entry->max_bytes_per_interval, 8202 entry->total_bytes, entry->rcv_bytes, 8203 entry->avg_io_latency, 8204 entry->avg_io_size, entry->cmf_info, 8205 entry->timer_utilization, 8206 entry->timer_interval, *head_idx); 8207 } 8208 8209 *head_idx = (*head_idx + 1) % ring_size; 8210 8211 /* Don't feed more than max_read_entries */ 8212 cnt++; 8213 if (cnt >= max_read_entries) 8214 break; 8215 } 8216 spin_unlock_irq(ring_lock); 8217 8218 return cnt; 8219 } 8220 8221 /** 8222 * lpfc_cmf_setup - Initialize idle_stat tracking 8223 * @phba: Pointer to HBA context object. 8224 * 8225 * This is called from HBA setup during driver load or when the HBA 8226 * comes online. this does all the initialization to support CMF and MI. 8227 **/ 8228 static int 8229 lpfc_cmf_setup(struct lpfc_hba *phba) 8230 { 8231 LPFC_MBOXQ_t *mboxq; 8232 struct lpfc_dmabuf *mp; 8233 struct lpfc_pc_sli4_params *sli4_params; 8234 int rc, cmf, mi_ver; 8235 8236 rc = lpfc_sli4_refresh_params(phba); 8237 if (unlikely(rc)) 8238 return rc; 8239 8240 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8241 if (!mboxq) 8242 return -ENOMEM; 8243 8244 sli4_params = &phba->sli4_hba.pc_sli4_params; 8245 8246 /* Always try to enable MI feature if we can */ 8247 if (sli4_params->mi_ver) { 8248 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI); 8249 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8250 mi_ver = bf_get(lpfc_mbx_set_feature_mi, 8251 &mboxq->u.mqe.un.set_feature); 8252 8253 if (rc == MBX_SUCCESS) { 8254 if (mi_ver) { 8255 lpfc_printf_log(phba, 8256 KERN_WARNING, LOG_CGN_MGMT, 8257 "6215 MI is enabled\n"); 8258 sli4_params->mi_ver = mi_ver; 8259 } else { 8260 lpfc_printf_log(phba, 8261 KERN_WARNING, LOG_CGN_MGMT, 8262 "6338 MI is disabled\n"); 8263 sli4_params->mi_ver = 0; 8264 } 8265 } else { 8266 /* mi_ver is already set from GET_SLI4_PARAMETERS */ 8267 lpfc_printf_log(phba, KERN_INFO, 8268 LOG_CGN_MGMT | LOG_INIT, 8269 "6245 Enable MI Mailbox x%x (x%x/x%x) " 8270 "failed, rc:x%x mi:x%x\n", 8271 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8272 lpfc_sli_config_mbox_subsys_get 8273 (phba, mboxq), 8274 lpfc_sli_config_mbox_opcode_get 8275 (phba, mboxq), 8276 rc, sli4_params->mi_ver); 8277 } 8278 } else { 8279 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8280 "6217 MI is disabled\n"); 8281 } 8282 8283 /* Ensure FDMI is enabled for MI if enable_mi is set */ 8284 if (sli4_params->mi_ver) 8285 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT; 8286 8287 /* Always try to enable CMF feature if we can */ 8288 if (sli4_params->cmf) { 8289 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF); 8290 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8291 cmf = bf_get(lpfc_mbx_set_feature_cmf, 8292 &mboxq->u.mqe.un.set_feature); 8293 if (rc == MBX_SUCCESS && cmf) { 8294 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8295 "6218 CMF is enabled: mode %d\n", 8296 phba->cmf_active_mode); 8297 } else { 8298 lpfc_printf_log(phba, KERN_WARNING, 8299 LOG_CGN_MGMT | LOG_INIT, 8300 "6219 Enable CMF Mailbox x%x (x%x/x%x) " 8301 "failed, rc:x%x dd:x%x\n", 8302 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8303 lpfc_sli_config_mbox_subsys_get 8304 (phba, mboxq), 8305 lpfc_sli_config_mbox_opcode_get 8306 (phba, mboxq), 8307 rc, cmf); 8308 sli4_params->cmf = 0; 8309 phba->cmf_active_mode = LPFC_CFG_OFF; 8310 goto no_cmf; 8311 } 8312 8313 /* Allocate Congestion Information Buffer */ 8314 if (!phba->cgn_i) { 8315 mp = kmalloc(sizeof(*mp), GFP_KERNEL); 8316 if (mp) 8317 mp->virt = dma_alloc_coherent 8318 (&phba->pcidev->dev, 8319 sizeof(struct lpfc_cgn_info), 8320 &mp->phys, GFP_KERNEL); 8321 if (!mp || !mp->virt) { 8322 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8323 "2640 Failed to alloc memory " 8324 "for Congestion Info\n"); 8325 kfree(mp); 8326 sli4_params->cmf = 0; 8327 phba->cmf_active_mode = LPFC_CFG_OFF; 8328 goto no_cmf; 8329 } 8330 phba->cgn_i = mp; 8331 8332 /* initialize congestion buffer info */ 8333 lpfc_init_congestion_buf(phba); 8334 lpfc_init_congestion_stat(phba); 8335 8336 /* Zero out Congestion Signal counters */ 8337 atomic64_set(&phba->cgn_acqe_stat.alarm, 0); 8338 atomic64_set(&phba->cgn_acqe_stat.warn, 0); 8339 } 8340 8341 rc = lpfc_sli4_cgn_params_read(phba); 8342 if (rc < 0) { 8343 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8344 "6242 Error reading Cgn Params (%d)\n", 8345 rc); 8346 /* Ensure CGN Mode is off */ 8347 sli4_params->cmf = 0; 8348 } else if (!rc) { 8349 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8350 "6243 CGN Event empty object.\n"); 8351 /* Ensure CGN Mode is off */ 8352 sli4_params->cmf = 0; 8353 } 8354 } else { 8355 no_cmf: 8356 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8357 "6220 CMF is disabled\n"); 8358 } 8359 8360 /* Only register congestion buffer with firmware if BOTH 8361 * CMF and E2E are enabled. 8362 */ 8363 if (sli4_params->cmf && sli4_params->mi_ver) { 8364 rc = lpfc_reg_congestion_buf(phba); 8365 if (rc) { 8366 dma_free_coherent(&phba->pcidev->dev, 8367 sizeof(struct lpfc_cgn_info), 8368 phba->cgn_i->virt, phba->cgn_i->phys); 8369 kfree(phba->cgn_i); 8370 phba->cgn_i = NULL; 8371 /* Ensure CGN Mode is off */ 8372 phba->cmf_active_mode = LPFC_CFG_OFF; 8373 sli4_params->cmf = 0; 8374 return 0; 8375 } 8376 } 8377 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8378 "6470 Setup MI version %d CMF %d mode %d\n", 8379 sli4_params->mi_ver, sli4_params->cmf, 8380 phba->cmf_active_mode); 8381 8382 mempool_free(mboxq, phba->mbox_mem_pool); 8383 8384 /* Initialize atomic counters */ 8385 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 8386 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 8387 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 8388 atomic_set(&phba->cgn_sync_warn_cnt, 0); 8389 atomic_set(&phba->cgn_driver_evt_cnt, 0); 8390 atomic_set(&phba->cgn_latency_evt_cnt, 0); 8391 atomic64_set(&phba->cgn_latency_evt, 0); 8392 8393 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 8394 8395 /* Allocate RX Monitor Buffer */ 8396 if (!phba->rx_monitor) { 8397 phba->rx_monitor = kzalloc(sizeof(*phba->rx_monitor), 8398 GFP_KERNEL); 8399 8400 if (!phba->rx_monitor) { 8401 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8402 "2644 Failed to alloc memory " 8403 "for RX Monitor Buffer\n"); 8404 return -ENOMEM; 8405 } 8406 8407 /* Instruct the rx_monitor object to instantiate its ring */ 8408 if (lpfc_rx_monitor_create_ring(phba->rx_monitor, 8409 LPFC_MAX_RXMONITOR_ENTRY)) { 8410 kfree(phba->rx_monitor); 8411 phba->rx_monitor = NULL; 8412 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8413 "2645 Failed to alloc memory " 8414 "for RX Monitor's Ring\n"); 8415 return -ENOMEM; 8416 } 8417 } 8418 8419 return 0; 8420 } 8421 8422 static int 8423 lpfc_set_host_tm(struct lpfc_hba *phba) 8424 { 8425 LPFC_MBOXQ_t *mboxq; 8426 uint32_t len, rc; 8427 struct timespec64 cur_time; 8428 struct tm broken; 8429 uint32_t month, day, year; 8430 uint32_t hour, minute, second; 8431 struct lpfc_mbx_set_host_date_time *tm; 8432 8433 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8434 if (!mboxq) 8435 return -ENOMEM; 8436 8437 len = sizeof(struct lpfc_mbx_set_host_data) - 8438 sizeof(struct lpfc_sli4_cfg_mhdr); 8439 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 8440 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 8441 LPFC_SLI4_MBX_EMBED); 8442 8443 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME; 8444 mboxq->u.mqe.un.set_host_data.param_len = 8445 sizeof(struct lpfc_mbx_set_host_date_time); 8446 tm = &mboxq->u.mqe.un.set_host_data.un.tm; 8447 ktime_get_real_ts64(&cur_time); 8448 time64_to_tm(cur_time.tv_sec, 0, &broken); 8449 month = broken.tm_mon + 1; 8450 day = broken.tm_mday; 8451 year = broken.tm_year - 100; 8452 hour = broken.tm_hour; 8453 minute = broken.tm_min; 8454 second = broken.tm_sec; 8455 bf_set(lpfc_mbx_set_host_month, tm, month); 8456 bf_set(lpfc_mbx_set_host_day, tm, day); 8457 bf_set(lpfc_mbx_set_host_year, tm, year); 8458 bf_set(lpfc_mbx_set_host_hour, tm, hour); 8459 bf_set(lpfc_mbx_set_host_min, tm, minute); 8460 bf_set(lpfc_mbx_set_host_sec, tm, second); 8461 8462 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8463 mempool_free(mboxq, phba->mbox_mem_pool); 8464 return rc; 8465 } 8466 8467 /** 8468 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 8469 * @phba: Pointer to HBA context object. 8470 * 8471 * This function is the main SLI4 device initialization PCI function. This 8472 * function is called by the HBA initialization code, HBA reset code and 8473 * HBA error attention handler code. Caller is not required to hold any 8474 * locks. 8475 **/ 8476 int 8477 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 8478 { 8479 int rc, i, cnt, len, dd; 8480 LPFC_MBOXQ_t *mboxq; 8481 struct lpfc_mqe *mqe; 8482 uint8_t *vpd; 8483 uint32_t vpd_size; 8484 uint32_t ftr_rsp = 0; 8485 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 8486 struct lpfc_vport *vport = phba->pport; 8487 struct lpfc_dmabuf *mp; 8488 struct lpfc_rqb *rqbp; 8489 u32 flg; 8490 8491 /* Perform a PCI function reset to start from clean */ 8492 rc = lpfc_pci_function_reset(phba); 8493 if (unlikely(rc)) 8494 return -ENODEV; 8495 8496 /* Check the HBA Host Status Register for readyness */ 8497 rc = lpfc_sli4_post_status_check(phba); 8498 if (unlikely(rc)) 8499 return -ENODEV; 8500 else { 8501 spin_lock_irq(&phba->hbalock); 8502 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 8503 flg = phba->sli.sli_flag; 8504 spin_unlock_irq(&phba->hbalock); 8505 /* Allow a little time after setting SLI_ACTIVE for any polled 8506 * MBX commands to complete via BSG. 8507 */ 8508 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) { 8509 msleep(20); 8510 spin_lock_irq(&phba->hbalock); 8511 flg = phba->sli.sli_flag; 8512 spin_unlock_irq(&phba->hbalock); 8513 } 8514 } 8515 8516 lpfc_sli4_dip(phba); 8517 8518 /* 8519 * Allocate a single mailbox container for initializing the 8520 * port. 8521 */ 8522 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8523 if (!mboxq) 8524 return -ENOMEM; 8525 8526 /* Issue READ_REV to collect vpd and FW information. */ 8527 vpd_size = SLI4_PAGE_SIZE; 8528 vpd = kzalloc(vpd_size, GFP_KERNEL); 8529 if (!vpd) { 8530 rc = -ENOMEM; 8531 goto out_free_mbox; 8532 } 8533 8534 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 8535 if (unlikely(rc)) { 8536 kfree(vpd); 8537 goto out_free_mbox; 8538 } 8539 8540 mqe = &mboxq->u.mqe; 8541 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 8542 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 8543 phba->hba_flag |= HBA_FCOE_MODE; 8544 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 8545 } else { 8546 phba->hba_flag &= ~HBA_FCOE_MODE; 8547 } 8548 8549 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 8550 LPFC_DCBX_CEE_MODE) 8551 phba->hba_flag |= HBA_FIP_SUPPORT; 8552 else 8553 phba->hba_flag &= ~HBA_FIP_SUPPORT; 8554 8555 phba->hba_flag &= ~HBA_IOQ_FLUSH; 8556 8557 if (phba->sli_rev != LPFC_SLI_REV4) { 8558 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8559 "0376 READ_REV Error. SLI Level %d " 8560 "FCoE enabled %d\n", 8561 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 8562 rc = -EIO; 8563 kfree(vpd); 8564 goto out_free_mbox; 8565 } 8566 8567 rc = lpfc_set_host_tm(phba); 8568 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 8569 "6468 Set host date / time: Status x%x:\n", rc); 8570 8571 /* 8572 * Continue initialization with default values even if driver failed 8573 * to read FCoE param config regions, only read parameters if the 8574 * board is FCoE 8575 */ 8576 if (phba->hba_flag & HBA_FCOE_MODE && 8577 lpfc_sli4_read_fcoe_params(phba)) 8578 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 8579 "2570 Failed to read FCoE parameters\n"); 8580 8581 /* 8582 * Retrieve sli4 device physical port name, failure of doing it 8583 * is considered as non-fatal. 8584 */ 8585 rc = lpfc_sli4_retrieve_pport_name(phba); 8586 if (!rc) 8587 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8588 "3080 Successful retrieving SLI4 device " 8589 "physical port name: %s.\n", phba->Port); 8590 8591 rc = lpfc_sli4_get_ctl_attr(phba); 8592 if (!rc) 8593 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8594 "8351 Successful retrieving SLI4 device " 8595 "CTL ATTR\n"); 8596 8597 /* 8598 * Evaluate the read rev and vpd data. Populate the driver 8599 * state with the results. If this routine fails, the failure 8600 * is not fatal as the driver will use generic values. 8601 */ 8602 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 8603 if (unlikely(!rc)) { 8604 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8605 "0377 Error %d parsing vpd. " 8606 "Using defaults.\n", rc); 8607 rc = 0; 8608 } 8609 kfree(vpd); 8610 8611 /* Save information as VPD data */ 8612 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 8613 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 8614 8615 /* 8616 * This is because first G7 ASIC doesn't support the standard 8617 * 0x5a NVME cmd descriptor type/subtype 8618 */ 8619 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8620 LPFC_SLI_INTF_IF_TYPE_6) && 8621 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 8622 (phba->vpd.rev.smRev == 0) && 8623 (phba->cfg_nvme_embed_cmd == 1)) 8624 phba->cfg_nvme_embed_cmd = 0; 8625 8626 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 8627 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 8628 &mqe->un.read_rev); 8629 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 8630 &mqe->un.read_rev); 8631 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 8632 &mqe->un.read_rev); 8633 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 8634 &mqe->un.read_rev); 8635 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 8636 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 8637 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 8638 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 8639 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 8640 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 8641 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8642 "(%d):0380 READ_REV Status x%x " 8643 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 8644 mboxq->vport ? mboxq->vport->vpi : 0, 8645 bf_get(lpfc_mqe_status, mqe), 8646 phba->vpd.rev.opFwName, 8647 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 8648 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 8649 8650 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8651 LPFC_SLI_INTF_IF_TYPE_0) { 8652 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 8653 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8654 if (rc == MBX_SUCCESS) { 8655 phba->hba_flag |= HBA_RECOVERABLE_UE; 8656 /* Set 1Sec interval to detect UE */ 8657 phba->eratt_poll_interval = 1; 8658 phba->sli4_hba.ue_to_sr = bf_get( 8659 lpfc_mbx_set_feature_UESR, 8660 &mboxq->u.mqe.un.set_feature); 8661 phba->sli4_hba.ue_to_rp = bf_get( 8662 lpfc_mbx_set_feature_UERP, 8663 &mboxq->u.mqe.un.set_feature); 8664 } 8665 } 8666 8667 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 8668 /* Enable MDS Diagnostics only if the SLI Port supports it */ 8669 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 8670 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8671 if (rc != MBX_SUCCESS) 8672 phba->mds_diags_support = 0; 8673 } 8674 8675 /* 8676 * Discover the port's supported feature set and match it against the 8677 * hosts requests. 8678 */ 8679 lpfc_request_features(phba, mboxq); 8680 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8681 if (unlikely(rc)) { 8682 rc = -EIO; 8683 goto out_free_mbox; 8684 } 8685 8686 /* Disable VMID if app header is not supported */ 8687 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, 8688 &mqe->un.req_ftrs))) { 8689 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); 8690 phba->cfg_vmid_app_header = 0; 8691 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, 8692 "1242 vmid feature not supported\n"); 8693 } 8694 8695 /* 8696 * The port must support FCP initiator mode as this is the 8697 * only mode running in the host. 8698 */ 8699 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 8700 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8701 "0378 No support for fcpi mode.\n"); 8702 ftr_rsp++; 8703 } 8704 8705 /* Performance Hints are ONLY for FCoE */ 8706 if (phba->hba_flag & HBA_FCOE_MODE) { 8707 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 8708 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 8709 else 8710 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 8711 } 8712 8713 /* 8714 * If the port cannot support the host's requested features 8715 * then turn off the global config parameters to disable the 8716 * feature in the driver. This is not a fatal error. 8717 */ 8718 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8719 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 8720 phba->cfg_enable_bg = 0; 8721 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 8722 ftr_rsp++; 8723 } 8724 } 8725 8726 if (phba->max_vpi && phba->cfg_enable_npiv && 8727 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8728 ftr_rsp++; 8729 8730 if (ftr_rsp) { 8731 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8732 "0379 Feature Mismatch Data: x%08x %08x " 8733 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 8734 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 8735 phba->cfg_enable_npiv, phba->max_vpi); 8736 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 8737 phba->cfg_enable_bg = 0; 8738 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8739 phba->cfg_enable_npiv = 0; 8740 } 8741 8742 /* These SLI3 features are assumed in SLI4 */ 8743 spin_lock_irq(&phba->hbalock); 8744 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 8745 spin_unlock_irq(&phba->hbalock); 8746 8747 /* Always try to enable dual dump feature if we can */ 8748 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 8749 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8750 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 8751 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 8752 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8753 "6448 Dual Dump is enabled\n"); 8754 else 8755 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 8756 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 8757 "rc:x%x dd:x%x\n", 8758 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8759 lpfc_sli_config_mbox_subsys_get( 8760 phba, mboxq), 8761 lpfc_sli_config_mbox_opcode_get( 8762 phba, mboxq), 8763 rc, dd); 8764 /* 8765 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 8766 * calls depends on these resources to complete port setup. 8767 */ 8768 rc = lpfc_sli4_alloc_resource_identifiers(phba); 8769 if (rc) { 8770 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8771 "2920 Failed to alloc Resource IDs " 8772 "rc = x%x\n", rc); 8773 goto out_free_mbox; 8774 } 8775 8776 lpfc_set_host_data(phba, mboxq); 8777 8778 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8779 if (rc) { 8780 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8781 "2134 Failed to set host os driver version %x", 8782 rc); 8783 } 8784 8785 /* Read the port's service parameters. */ 8786 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 8787 if (rc) { 8788 phba->link_state = LPFC_HBA_ERROR; 8789 rc = -ENOMEM; 8790 goto out_free_mbox; 8791 } 8792 8793 mboxq->vport = vport; 8794 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8795 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 8796 if (rc == MBX_SUCCESS) { 8797 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 8798 rc = 0; 8799 } 8800 8801 /* 8802 * This memory was allocated by the lpfc_read_sparam routine but is 8803 * no longer needed. It is released and ctx_buf NULLed to prevent 8804 * unintended pointer access as the mbox is reused. 8805 */ 8806 lpfc_mbuf_free(phba, mp->virt, mp->phys); 8807 kfree(mp); 8808 mboxq->ctx_buf = NULL; 8809 if (unlikely(rc)) { 8810 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8811 "0382 READ_SPARAM command failed " 8812 "status %d, mbxStatus x%x\n", 8813 rc, bf_get(lpfc_mqe_status, mqe)); 8814 phba->link_state = LPFC_HBA_ERROR; 8815 rc = -EIO; 8816 goto out_free_mbox; 8817 } 8818 8819 lpfc_update_vport_wwn(vport); 8820 8821 /* Update the fc_host data structures with new wwn. */ 8822 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 8823 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 8824 8825 /* Create all the SLI4 queues */ 8826 rc = lpfc_sli4_queue_create(phba); 8827 if (rc) { 8828 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8829 "3089 Failed to allocate queues\n"); 8830 rc = -ENODEV; 8831 goto out_free_mbox; 8832 } 8833 /* Set up all the queues to the device */ 8834 rc = lpfc_sli4_queue_setup(phba); 8835 if (unlikely(rc)) { 8836 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8837 "0381 Error %d during queue setup.\n ", rc); 8838 goto out_stop_timers; 8839 } 8840 /* Initialize the driver internal SLI layer lists. */ 8841 lpfc_sli4_setup(phba); 8842 lpfc_sli4_queue_init(phba); 8843 8844 /* update host els xri-sgl sizes and mappings */ 8845 rc = lpfc_sli4_els_sgl_update(phba); 8846 if (unlikely(rc)) { 8847 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8848 "1400 Failed to update xri-sgl size and " 8849 "mapping: %d\n", rc); 8850 goto out_destroy_queue; 8851 } 8852 8853 /* register the els sgl pool to the port */ 8854 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 8855 phba->sli4_hba.els_xri_cnt); 8856 if (unlikely(rc < 0)) { 8857 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8858 "0582 Error %d during els sgl post " 8859 "operation\n", rc); 8860 rc = -ENODEV; 8861 goto out_destroy_queue; 8862 } 8863 phba->sli4_hba.els_xri_cnt = rc; 8864 8865 if (phba->nvmet_support) { 8866 /* update host nvmet xri-sgl sizes and mappings */ 8867 rc = lpfc_sli4_nvmet_sgl_update(phba); 8868 if (unlikely(rc)) { 8869 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8870 "6308 Failed to update nvmet-sgl size " 8871 "and mapping: %d\n", rc); 8872 goto out_destroy_queue; 8873 } 8874 8875 /* register the nvmet sgl pool to the port */ 8876 rc = lpfc_sli4_repost_sgl_list( 8877 phba, 8878 &phba->sli4_hba.lpfc_nvmet_sgl_list, 8879 phba->sli4_hba.nvmet_xri_cnt); 8880 if (unlikely(rc < 0)) { 8881 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8882 "3117 Error %d during nvmet " 8883 "sgl post\n", rc); 8884 rc = -ENODEV; 8885 goto out_destroy_queue; 8886 } 8887 phba->sli4_hba.nvmet_xri_cnt = rc; 8888 8889 /* We allocate an iocbq for every receive context SGL. 8890 * The additional allocation is for abort and ls handling. 8891 */ 8892 cnt = phba->sli4_hba.nvmet_xri_cnt + 8893 phba->sli4_hba.max_cfg_param.max_xri; 8894 } else { 8895 /* update host common xri-sgl sizes and mappings */ 8896 rc = lpfc_sli4_io_sgl_update(phba); 8897 if (unlikely(rc)) { 8898 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8899 "6082 Failed to update nvme-sgl size " 8900 "and mapping: %d\n", rc); 8901 goto out_destroy_queue; 8902 } 8903 8904 /* register the allocated common sgl pool to the port */ 8905 rc = lpfc_sli4_repost_io_sgl_list(phba); 8906 if (unlikely(rc)) { 8907 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8908 "6116 Error %d during nvme sgl post " 8909 "operation\n", rc); 8910 /* Some NVME buffers were moved to abort nvme list */ 8911 /* A pci function reset will repost them */ 8912 rc = -ENODEV; 8913 goto out_destroy_queue; 8914 } 8915 /* Each lpfc_io_buf job structure has an iocbq element. 8916 * This cnt provides for abort, els, ct and ls requests. 8917 */ 8918 cnt = phba->sli4_hba.max_cfg_param.max_xri; 8919 } 8920 8921 if (!phba->sli.iocbq_lookup) { 8922 /* Initialize and populate the iocb list per host */ 8923 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8924 "2821 initialize iocb list with %d entries\n", 8925 cnt); 8926 rc = lpfc_init_iocb_list(phba, cnt); 8927 if (rc) { 8928 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8929 "1413 Failed to init iocb list.\n"); 8930 goto out_destroy_queue; 8931 } 8932 } 8933 8934 if (phba->nvmet_support) 8935 lpfc_nvmet_create_targetport(phba); 8936 8937 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 8938 /* Post initial buffers to all RQs created */ 8939 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 8940 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 8941 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 8942 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 8943 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 8944 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 8945 rqbp->buffer_count = 0; 8946 8947 lpfc_post_rq_buffer( 8948 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 8949 phba->sli4_hba.nvmet_mrq_data[i], 8950 phba->cfg_nvmet_mrq_post, i); 8951 } 8952 } 8953 8954 /* Post the rpi header region to the device. */ 8955 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 8956 if (unlikely(rc)) { 8957 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8958 "0393 Error %d during rpi post operation\n", 8959 rc); 8960 rc = -ENODEV; 8961 goto out_free_iocblist; 8962 } 8963 lpfc_sli4_node_prep(phba); 8964 8965 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 8966 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 8967 /* 8968 * The FC Port needs to register FCFI (index 0) 8969 */ 8970 lpfc_reg_fcfi(phba, mboxq); 8971 mboxq->vport = phba->pport; 8972 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8973 if (rc != MBX_SUCCESS) 8974 goto out_unset_queue; 8975 rc = 0; 8976 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 8977 &mboxq->u.mqe.un.reg_fcfi); 8978 } else { 8979 /* We are a NVME Target mode with MRQ > 1 */ 8980 8981 /* First register the FCFI */ 8982 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 8983 mboxq->vport = phba->pport; 8984 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8985 if (rc != MBX_SUCCESS) 8986 goto out_unset_queue; 8987 rc = 0; 8988 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 8989 &mboxq->u.mqe.un.reg_fcfi_mrq); 8990 8991 /* Next register the MRQs */ 8992 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 8993 mboxq->vport = phba->pport; 8994 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8995 if (rc != MBX_SUCCESS) 8996 goto out_unset_queue; 8997 rc = 0; 8998 } 8999 /* Check if the port is configured to be disabled */ 9000 lpfc_sli_read_link_ste(phba); 9001 } 9002 9003 /* Don't post more new bufs if repost already recovered 9004 * the nvme sgls. 9005 */ 9006 if (phba->nvmet_support == 0) { 9007 if (phba->sli4_hba.io_xri_cnt == 0) { 9008 len = lpfc_new_io_buf( 9009 phba, phba->sli4_hba.io_xri_max); 9010 if (len == 0) { 9011 rc = -ENOMEM; 9012 goto out_unset_queue; 9013 } 9014 9015 if (phba->cfg_xri_rebalancing) 9016 lpfc_create_multixri_pools(phba); 9017 } 9018 } else { 9019 phba->cfg_xri_rebalancing = 0; 9020 } 9021 9022 /* Allow asynchronous mailbox command to go through */ 9023 spin_lock_irq(&phba->hbalock); 9024 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9025 spin_unlock_irq(&phba->hbalock); 9026 9027 /* Post receive buffers to the device */ 9028 lpfc_sli4_rb_setup(phba); 9029 9030 /* Reset HBA FCF states after HBA reset */ 9031 phba->fcf.fcf_flag = 0; 9032 phba->fcf.current_rec.flag = 0; 9033 9034 /* Start the ELS watchdog timer */ 9035 mod_timer(&vport->els_tmofunc, 9036 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 9037 9038 /* Start heart beat timer */ 9039 mod_timer(&phba->hb_tmofunc, 9040 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 9041 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 9042 phba->last_completion_time = jiffies; 9043 9044 /* start eq_delay heartbeat */ 9045 if (phba->cfg_auto_imax) 9046 queue_delayed_work(phba->wq, &phba->eq_delay_work, 9047 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 9048 9049 /* start per phba idle_stat_delay heartbeat */ 9050 lpfc_init_idle_stat_hb(phba); 9051 9052 /* Start error attention (ERATT) polling timer */ 9053 mod_timer(&phba->eratt_poll, 9054 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 9055 9056 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 9057 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 9058 rc = pci_enable_pcie_error_reporting(phba->pcidev); 9059 if (!rc) { 9060 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9061 "2829 This device supports " 9062 "Advanced Error Reporting (AER)\n"); 9063 spin_lock_irq(&phba->hbalock); 9064 phba->hba_flag |= HBA_AER_ENABLED; 9065 spin_unlock_irq(&phba->hbalock); 9066 } else { 9067 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9068 "2830 This device does not support " 9069 "Advanced Error Reporting (AER)\n"); 9070 phba->cfg_aer_support = 0; 9071 } 9072 rc = 0; 9073 } 9074 9075 /* 9076 * The port is ready, set the host's link state to LINK_DOWN 9077 * in preparation for link interrupts. 9078 */ 9079 spin_lock_irq(&phba->hbalock); 9080 phba->link_state = LPFC_LINK_DOWN; 9081 9082 /* Check if physical ports are trunked */ 9083 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 9084 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 9085 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 9086 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 9087 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 9088 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 9089 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 9090 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 9091 spin_unlock_irq(&phba->hbalock); 9092 9093 /* Arm the CQs and then EQs on device */ 9094 lpfc_sli4_arm_cqeq_intr(phba); 9095 9096 /* Indicate device interrupt mode */ 9097 phba->sli4_hba.intr_enable = 1; 9098 9099 /* Setup CMF after HBA is initialized */ 9100 lpfc_cmf_setup(phba); 9101 9102 if (!(phba->hba_flag & HBA_FCOE_MODE) && 9103 (phba->hba_flag & LINK_DISABLED)) { 9104 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9105 "3103 Adapter Link is disabled.\n"); 9106 lpfc_down_link(phba, mboxq); 9107 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 9108 if (rc != MBX_SUCCESS) { 9109 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9110 "3104 Adapter failed to issue " 9111 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 9112 goto out_io_buff_free; 9113 } 9114 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 9115 /* don't perform init_link on SLI4 FC port loopback test */ 9116 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 9117 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 9118 if (rc) 9119 goto out_io_buff_free; 9120 } 9121 } 9122 mempool_free(mboxq, phba->mbox_mem_pool); 9123 9124 /* Enable RAS FW log support */ 9125 lpfc_sli4_ras_setup(phba); 9126 9127 phba->hba_flag |= HBA_SETUP; 9128 return rc; 9129 9130 out_io_buff_free: 9131 /* Free allocated IO Buffers */ 9132 lpfc_io_free(phba); 9133 out_unset_queue: 9134 /* Unset all the queues set up in this routine when error out */ 9135 lpfc_sli4_queue_unset(phba); 9136 out_free_iocblist: 9137 lpfc_free_iocb_list(phba); 9138 out_destroy_queue: 9139 lpfc_sli4_queue_destroy(phba); 9140 out_stop_timers: 9141 lpfc_stop_hba_timers(phba); 9142 out_free_mbox: 9143 mempool_free(mboxq, phba->mbox_mem_pool); 9144 return rc; 9145 } 9146 9147 /** 9148 * lpfc_mbox_timeout - Timeout call back function for mbox timer 9149 * @t: Context to fetch pointer to hba structure from. 9150 * 9151 * This is the callback function for mailbox timer. The mailbox 9152 * timer is armed when a new mailbox command is issued and the timer 9153 * is deleted when the mailbox complete. The function is called by 9154 * the kernel timer code when a mailbox does not complete within 9155 * expected time. This function wakes up the worker thread to 9156 * process the mailbox timeout and returns. All the processing is 9157 * done by the worker thread function lpfc_mbox_timeout_handler. 9158 **/ 9159 void 9160 lpfc_mbox_timeout(struct timer_list *t) 9161 { 9162 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 9163 unsigned long iflag; 9164 uint32_t tmo_posted; 9165 9166 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 9167 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 9168 if (!tmo_posted) 9169 phba->pport->work_port_events |= WORKER_MBOX_TMO; 9170 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 9171 9172 if (!tmo_posted) 9173 lpfc_worker_wake_up(phba); 9174 return; 9175 } 9176 9177 /** 9178 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 9179 * are pending 9180 * @phba: Pointer to HBA context object. 9181 * 9182 * This function checks if any mailbox completions are present on the mailbox 9183 * completion queue. 9184 **/ 9185 static bool 9186 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 9187 { 9188 9189 uint32_t idx; 9190 struct lpfc_queue *mcq; 9191 struct lpfc_mcqe *mcqe; 9192 bool pending_completions = false; 9193 uint8_t qe_valid; 9194 9195 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9196 return false; 9197 9198 /* Check for completions on mailbox completion queue */ 9199 9200 mcq = phba->sli4_hba.mbx_cq; 9201 idx = mcq->hba_index; 9202 qe_valid = mcq->qe_valid; 9203 while (bf_get_le32(lpfc_cqe_valid, 9204 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 9205 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 9206 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 9207 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 9208 pending_completions = true; 9209 break; 9210 } 9211 idx = (idx + 1) % mcq->entry_count; 9212 if (mcq->hba_index == idx) 9213 break; 9214 9215 /* if the index wrapped around, toggle the valid bit */ 9216 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 9217 qe_valid = (qe_valid) ? 0 : 1; 9218 } 9219 return pending_completions; 9220 9221 } 9222 9223 /** 9224 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 9225 * that were missed. 9226 * @phba: Pointer to HBA context object. 9227 * 9228 * For sli4, it is possible to miss an interrupt. As such mbox completions 9229 * maybe missed causing erroneous mailbox timeouts to occur. This function 9230 * checks to see if mbox completions are on the mailbox completion queue 9231 * and will process all the completions associated with the eq for the 9232 * mailbox completion queue. 9233 **/ 9234 static bool 9235 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 9236 { 9237 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 9238 uint32_t eqidx; 9239 struct lpfc_queue *fpeq = NULL; 9240 struct lpfc_queue *eq; 9241 bool mbox_pending; 9242 9243 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9244 return false; 9245 9246 /* Find the EQ associated with the mbox CQ */ 9247 if (sli4_hba->hdwq) { 9248 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 9249 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 9250 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 9251 fpeq = eq; 9252 break; 9253 } 9254 } 9255 } 9256 if (!fpeq) 9257 return false; 9258 9259 /* Turn off interrupts from this EQ */ 9260 9261 sli4_hba->sli4_eq_clr_intr(fpeq); 9262 9263 /* Check to see if a mbox completion is pending */ 9264 9265 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 9266 9267 /* 9268 * If a mbox completion is pending, process all the events on EQ 9269 * associated with the mbox completion queue (this could include 9270 * mailbox commands, async events, els commands, receive queue data 9271 * and fcp commands) 9272 */ 9273 9274 if (mbox_pending) 9275 /* process and rearm the EQ */ 9276 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 9277 else 9278 /* Always clear and re-arm the EQ */ 9279 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 9280 9281 return mbox_pending; 9282 9283 } 9284 9285 /** 9286 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 9287 * @phba: Pointer to HBA context object. 9288 * 9289 * This function is called from worker thread when a mailbox command times out. 9290 * The caller is not required to hold any locks. This function will reset the 9291 * HBA and recover all the pending commands. 9292 **/ 9293 void 9294 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 9295 { 9296 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 9297 MAILBOX_t *mb = NULL; 9298 9299 struct lpfc_sli *psli = &phba->sli; 9300 9301 /* If the mailbox completed, process the completion */ 9302 lpfc_sli4_process_missed_mbox_completions(phba); 9303 9304 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 9305 return; 9306 9307 if (pmbox != NULL) 9308 mb = &pmbox->u.mb; 9309 /* Check the pmbox pointer first. There is a race condition 9310 * between the mbox timeout handler getting executed in the 9311 * worklist and the mailbox actually completing. When this 9312 * race condition occurs, the mbox_active will be NULL. 9313 */ 9314 spin_lock_irq(&phba->hbalock); 9315 if (pmbox == NULL) { 9316 lpfc_printf_log(phba, KERN_WARNING, 9317 LOG_MBOX | LOG_SLI, 9318 "0353 Active Mailbox cleared - mailbox timeout " 9319 "exiting\n"); 9320 spin_unlock_irq(&phba->hbalock); 9321 return; 9322 } 9323 9324 /* Mbox cmd <mbxCommand> timeout */ 9325 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9326 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 9327 mb->mbxCommand, 9328 phba->pport->port_state, 9329 phba->sli.sli_flag, 9330 phba->sli.mbox_active); 9331 spin_unlock_irq(&phba->hbalock); 9332 9333 /* Setting state unknown so lpfc_sli_abort_iocb_ring 9334 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 9335 * it to fail all outstanding SCSI IO. 9336 */ 9337 spin_lock_irq(&phba->pport->work_port_lock); 9338 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 9339 spin_unlock_irq(&phba->pport->work_port_lock); 9340 spin_lock_irq(&phba->hbalock); 9341 phba->link_state = LPFC_LINK_UNKNOWN; 9342 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 9343 spin_unlock_irq(&phba->hbalock); 9344 9345 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9346 "0345 Resetting board due to mailbox timeout\n"); 9347 9348 /* Reset the HBA device */ 9349 lpfc_reset_hba(phba); 9350 } 9351 9352 /** 9353 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 9354 * @phba: Pointer to HBA context object. 9355 * @pmbox: Pointer to mailbox object. 9356 * @flag: Flag indicating how the mailbox need to be processed. 9357 * 9358 * This function is called by discovery code and HBA management code 9359 * to submit a mailbox command to firmware with SLI-3 interface spec. This 9360 * function gets the hbalock to protect the data structures. 9361 * The mailbox command can be submitted in polling mode, in which case 9362 * this function will wait in a polling loop for the completion of the 9363 * mailbox. 9364 * If the mailbox is submitted in no_wait mode (not polling) the 9365 * function will submit the command and returns immediately without waiting 9366 * for the mailbox completion. The no_wait is supported only when HBA 9367 * is in SLI2/SLI3 mode - interrupts are enabled. 9368 * The SLI interface allows only one mailbox pending at a time. If the 9369 * mailbox is issued in polling mode and there is already a mailbox 9370 * pending, then the function will return an error. If the mailbox is issued 9371 * in NO_WAIT mode and there is a mailbox pending already, the function 9372 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 9373 * The sli layer owns the mailbox object until the completion of mailbox 9374 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 9375 * return codes the caller owns the mailbox command after the return of 9376 * the function. 9377 **/ 9378 static int 9379 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 9380 uint32_t flag) 9381 { 9382 MAILBOX_t *mbx; 9383 struct lpfc_sli *psli = &phba->sli; 9384 uint32_t status, evtctr; 9385 uint32_t ha_copy, hc_copy; 9386 int i; 9387 unsigned long timeout; 9388 unsigned long drvr_flag = 0; 9389 uint32_t word0, ldata; 9390 void __iomem *to_slim; 9391 int processing_queue = 0; 9392 9393 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9394 if (!pmbox) { 9395 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9396 /* processing mbox queue from intr_handler */ 9397 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9398 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9399 return MBX_SUCCESS; 9400 } 9401 processing_queue = 1; 9402 pmbox = lpfc_mbox_get(phba); 9403 if (!pmbox) { 9404 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9405 return MBX_SUCCESS; 9406 } 9407 } 9408 9409 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 9410 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 9411 if(!pmbox->vport) { 9412 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9413 lpfc_printf_log(phba, KERN_ERR, 9414 LOG_MBOX | LOG_VPORT, 9415 "1806 Mbox x%x failed. No vport\n", 9416 pmbox->u.mb.mbxCommand); 9417 dump_stack(); 9418 goto out_not_finished; 9419 } 9420 } 9421 9422 /* If the PCI channel is in offline state, do not post mbox. */ 9423 if (unlikely(pci_channel_offline(phba->pcidev))) { 9424 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9425 goto out_not_finished; 9426 } 9427 9428 /* If HBA has a deferred error attention, fail the iocb. */ 9429 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 9430 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9431 goto out_not_finished; 9432 } 9433 9434 psli = &phba->sli; 9435 9436 mbx = &pmbox->u.mb; 9437 status = MBX_SUCCESS; 9438 9439 if (phba->link_state == LPFC_HBA_ERROR) { 9440 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9441 9442 /* Mbox command <mbxCommand> cannot issue */ 9443 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9444 "(%d):0311 Mailbox command x%x cannot " 9445 "issue Data: x%x x%x\n", 9446 pmbox->vport ? pmbox->vport->vpi : 0, 9447 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9448 goto out_not_finished; 9449 } 9450 9451 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 9452 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 9453 !(hc_copy & HC_MBINT_ENA)) { 9454 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9455 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9456 "(%d):2528 Mailbox command x%x cannot " 9457 "issue Data: x%x x%x\n", 9458 pmbox->vport ? pmbox->vport->vpi : 0, 9459 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9460 goto out_not_finished; 9461 } 9462 } 9463 9464 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9465 /* Polling for a mbox command when another one is already active 9466 * is not allowed in SLI. Also, the driver must have established 9467 * SLI2 mode to queue and process multiple mbox commands. 9468 */ 9469 9470 if (flag & MBX_POLL) { 9471 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9472 9473 /* Mbox command <mbxCommand> cannot issue */ 9474 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9475 "(%d):2529 Mailbox command x%x " 9476 "cannot issue Data: x%x x%x\n", 9477 pmbox->vport ? pmbox->vport->vpi : 0, 9478 pmbox->u.mb.mbxCommand, 9479 psli->sli_flag, flag); 9480 goto out_not_finished; 9481 } 9482 9483 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 9484 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9485 /* Mbox command <mbxCommand> cannot issue */ 9486 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9487 "(%d):2530 Mailbox command x%x " 9488 "cannot issue Data: x%x x%x\n", 9489 pmbox->vport ? pmbox->vport->vpi : 0, 9490 pmbox->u.mb.mbxCommand, 9491 psli->sli_flag, flag); 9492 goto out_not_finished; 9493 } 9494 9495 /* Another mailbox command is still being processed, queue this 9496 * command to be processed later. 9497 */ 9498 lpfc_mbox_put(phba, pmbox); 9499 9500 /* Mbox cmd issue - BUSY */ 9501 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9502 "(%d):0308 Mbox cmd issue - BUSY Data: " 9503 "x%x x%x x%x x%x\n", 9504 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 9505 mbx->mbxCommand, 9506 phba->pport ? phba->pport->port_state : 0xff, 9507 psli->sli_flag, flag); 9508 9509 psli->slistat.mbox_busy++; 9510 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9511 9512 if (pmbox->vport) { 9513 lpfc_debugfs_disc_trc(pmbox->vport, 9514 LPFC_DISC_TRC_MBOX_VPORT, 9515 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 9516 (uint32_t)mbx->mbxCommand, 9517 mbx->un.varWords[0], mbx->un.varWords[1]); 9518 } 9519 else { 9520 lpfc_debugfs_disc_trc(phba->pport, 9521 LPFC_DISC_TRC_MBOX, 9522 "MBOX Bsy: cmd:x%x mb:x%x x%x", 9523 (uint32_t)mbx->mbxCommand, 9524 mbx->un.varWords[0], mbx->un.varWords[1]); 9525 } 9526 9527 return MBX_BUSY; 9528 } 9529 9530 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9531 9532 /* If we are not polling, we MUST be in SLI2 mode */ 9533 if (flag != MBX_POLL) { 9534 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 9535 (mbx->mbxCommand != MBX_KILL_BOARD)) { 9536 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9537 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9538 /* Mbox command <mbxCommand> cannot issue */ 9539 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9540 "(%d):2531 Mailbox command x%x " 9541 "cannot issue Data: x%x x%x\n", 9542 pmbox->vport ? pmbox->vport->vpi : 0, 9543 pmbox->u.mb.mbxCommand, 9544 psli->sli_flag, flag); 9545 goto out_not_finished; 9546 } 9547 /* timeout active mbox command */ 9548 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9549 1000); 9550 mod_timer(&psli->mbox_tmo, jiffies + timeout); 9551 } 9552 9553 /* Mailbox cmd <cmd> issue */ 9554 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9555 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 9556 "x%x\n", 9557 pmbox->vport ? pmbox->vport->vpi : 0, 9558 mbx->mbxCommand, 9559 phba->pport ? phba->pport->port_state : 0xff, 9560 psli->sli_flag, flag); 9561 9562 if (mbx->mbxCommand != MBX_HEARTBEAT) { 9563 if (pmbox->vport) { 9564 lpfc_debugfs_disc_trc(pmbox->vport, 9565 LPFC_DISC_TRC_MBOX_VPORT, 9566 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9567 (uint32_t)mbx->mbxCommand, 9568 mbx->un.varWords[0], mbx->un.varWords[1]); 9569 } 9570 else { 9571 lpfc_debugfs_disc_trc(phba->pport, 9572 LPFC_DISC_TRC_MBOX, 9573 "MBOX Send: cmd:x%x mb:x%x x%x", 9574 (uint32_t)mbx->mbxCommand, 9575 mbx->un.varWords[0], mbx->un.varWords[1]); 9576 } 9577 } 9578 9579 psli->slistat.mbox_cmd++; 9580 evtctr = psli->slistat.mbox_event; 9581 9582 /* next set own bit for the adapter and copy over command word */ 9583 mbx->mbxOwner = OWN_CHIP; 9584 9585 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9586 /* Populate mbox extension offset word. */ 9587 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 9588 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9589 = (uint8_t *)phba->mbox_ext 9590 - (uint8_t *)phba->mbox; 9591 } 9592 9593 /* Copy the mailbox extension data */ 9594 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 9595 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 9596 (uint8_t *)phba->mbox_ext, 9597 pmbox->in_ext_byte_len); 9598 } 9599 /* Copy command data to host SLIM area */ 9600 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 9601 } else { 9602 /* Populate mbox extension offset word. */ 9603 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 9604 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9605 = MAILBOX_HBA_EXT_OFFSET; 9606 9607 /* Copy the mailbox extension data */ 9608 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 9609 lpfc_memcpy_to_slim(phba->MBslimaddr + 9610 MAILBOX_HBA_EXT_OFFSET, 9611 pmbox->ctx_buf, pmbox->in_ext_byte_len); 9612 9613 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9614 /* copy command data into host mbox for cmpl */ 9615 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 9616 MAILBOX_CMD_SIZE); 9617 9618 /* First copy mbox command data to HBA SLIM, skip past first 9619 word */ 9620 to_slim = phba->MBslimaddr + sizeof (uint32_t); 9621 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 9622 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 9623 9624 /* Next copy over first word, with mbxOwner set */ 9625 ldata = *((uint32_t *)mbx); 9626 to_slim = phba->MBslimaddr; 9627 writel(ldata, to_slim); 9628 readl(to_slim); /* flush */ 9629 9630 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9631 /* switch over to host mailbox */ 9632 psli->sli_flag |= LPFC_SLI_ACTIVE; 9633 } 9634 9635 wmb(); 9636 9637 switch (flag) { 9638 case MBX_NOWAIT: 9639 /* Set up reference to mailbox command */ 9640 psli->mbox_active = pmbox; 9641 /* Interrupt board to do it */ 9642 writel(CA_MBATT, phba->CAregaddr); 9643 readl(phba->CAregaddr); /* flush */ 9644 /* Don't wait for it to finish, just return */ 9645 break; 9646 9647 case MBX_POLL: 9648 /* Set up null reference to mailbox command */ 9649 psli->mbox_active = NULL; 9650 /* Interrupt board to do it */ 9651 writel(CA_MBATT, phba->CAregaddr); 9652 readl(phba->CAregaddr); /* flush */ 9653 9654 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9655 /* First read mbox status word */ 9656 word0 = *((uint32_t *)phba->mbox); 9657 word0 = le32_to_cpu(word0); 9658 } else { 9659 /* First read mbox status word */ 9660 if (lpfc_readl(phba->MBslimaddr, &word0)) { 9661 spin_unlock_irqrestore(&phba->hbalock, 9662 drvr_flag); 9663 goto out_not_finished; 9664 } 9665 } 9666 9667 /* Read the HBA Host Attention Register */ 9668 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9669 spin_unlock_irqrestore(&phba->hbalock, 9670 drvr_flag); 9671 goto out_not_finished; 9672 } 9673 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9674 1000) + jiffies; 9675 i = 0; 9676 /* Wait for command to complete */ 9677 while (((word0 & OWN_CHIP) == OWN_CHIP) || 9678 (!(ha_copy & HA_MBATT) && 9679 (phba->link_state > LPFC_WARM_START))) { 9680 if (time_after(jiffies, timeout)) { 9681 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9682 spin_unlock_irqrestore(&phba->hbalock, 9683 drvr_flag); 9684 goto out_not_finished; 9685 } 9686 9687 /* Check if we took a mbox interrupt while we were 9688 polling */ 9689 if (((word0 & OWN_CHIP) != OWN_CHIP) 9690 && (evtctr != psli->slistat.mbox_event)) 9691 break; 9692 9693 if (i++ > 10) { 9694 spin_unlock_irqrestore(&phba->hbalock, 9695 drvr_flag); 9696 msleep(1); 9697 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9698 } 9699 9700 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9701 /* First copy command data */ 9702 word0 = *((uint32_t *)phba->mbox); 9703 word0 = le32_to_cpu(word0); 9704 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 9705 MAILBOX_t *slimmb; 9706 uint32_t slimword0; 9707 /* Check real SLIM for any errors */ 9708 slimword0 = readl(phba->MBslimaddr); 9709 slimmb = (MAILBOX_t *) & slimword0; 9710 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 9711 && slimmb->mbxStatus) { 9712 psli->sli_flag &= 9713 ~LPFC_SLI_ACTIVE; 9714 word0 = slimword0; 9715 } 9716 } 9717 } else { 9718 /* First copy command data */ 9719 word0 = readl(phba->MBslimaddr); 9720 } 9721 /* Read the HBA Host Attention Register */ 9722 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9723 spin_unlock_irqrestore(&phba->hbalock, 9724 drvr_flag); 9725 goto out_not_finished; 9726 } 9727 } 9728 9729 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9730 /* copy results back to user */ 9731 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 9732 MAILBOX_CMD_SIZE); 9733 /* Copy the mailbox extension data */ 9734 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9735 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 9736 pmbox->ctx_buf, 9737 pmbox->out_ext_byte_len); 9738 } 9739 } else { 9740 /* First copy command data */ 9741 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 9742 MAILBOX_CMD_SIZE); 9743 /* Copy the mailbox extension data */ 9744 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9745 lpfc_memcpy_from_slim( 9746 pmbox->ctx_buf, 9747 phba->MBslimaddr + 9748 MAILBOX_HBA_EXT_OFFSET, 9749 pmbox->out_ext_byte_len); 9750 } 9751 } 9752 9753 writel(HA_MBATT, phba->HAregaddr); 9754 readl(phba->HAregaddr); /* flush */ 9755 9756 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9757 status = mbx->mbxStatus; 9758 } 9759 9760 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9761 return status; 9762 9763 out_not_finished: 9764 if (processing_queue) { 9765 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 9766 lpfc_mbox_cmpl_put(phba, pmbox); 9767 } 9768 return MBX_NOT_FINISHED; 9769 } 9770 9771 /** 9772 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 9773 * @phba: Pointer to HBA context object. 9774 * 9775 * The function blocks the posting of SLI4 asynchronous mailbox commands from 9776 * the driver internal pending mailbox queue. It will then try to wait out the 9777 * possible outstanding mailbox command before return. 9778 * 9779 * Returns: 9780 * 0 - the outstanding mailbox command completed; otherwise, the wait for 9781 * the outstanding mailbox command timed out. 9782 **/ 9783 static int 9784 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 9785 { 9786 struct lpfc_sli *psli = &phba->sli; 9787 LPFC_MBOXQ_t *mboxq; 9788 int rc = 0; 9789 unsigned long timeout = 0; 9790 u32 sli_flag; 9791 u8 cmd, subsys, opcode; 9792 9793 /* Mark the asynchronous mailbox command posting as blocked */ 9794 spin_lock_irq(&phba->hbalock); 9795 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 9796 /* Determine how long we might wait for the active mailbox 9797 * command to be gracefully completed by firmware. 9798 */ 9799 if (phba->sli.mbox_active) 9800 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 9801 phba->sli.mbox_active) * 9802 1000) + jiffies; 9803 spin_unlock_irq(&phba->hbalock); 9804 9805 /* Make sure the mailbox is really active */ 9806 if (timeout) 9807 lpfc_sli4_process_missed_mbox_completions(phba); 9808 9809 /* Wait for the outstanding mailbox command to complete */ 9810 while (phba->sli.mbox_active) { 9811 /* Check active mailbox complete status every 2ms */ 9812 msleep(2); 9813 if (time_after(jiffies, timeout)) { 9814 /* Timeout, mark the outstanding cmd not complete */ 9815 9816 /* Sanity check sli.mbox_active has not completed or 9817 * cancelled from another context during last 2ms sleep, 9818 * so take hbalock to be sure before logging. 9819 */ 9820 spin_lock_irq(&phba->hbalock); 9821 if (phba->sli.mbox_active) { 9822 mboxq = phba->sli.mbox_active; 9823 cmd = mboxq->u.mb.mbxCommand; 9824 subsys = lpfc_sli_config_mbox_subsys_get(phba, 9825 mboxq); 9826 opcode = lpfc_sli_config_mbox_opcode_get(phba, 9827 mboxq); 9828 sli_flag = psli->sli_flag; 9829 spin_unlock_irq(&phba->hbalock); 9830 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9831 "2352 Mailbox command x%x " 9832 "(x%x/x%x) sli_flag x%x could " 9833 "not complete\n", 9834 cmd, subsys, opcode, 9835 sli_flag); 9836 } else { 9837 spin_unlock_irq(&phba->hbalock); 9838 } 9839 9840 rc = 1; 9841 break; 9842 } 9843 } 9844 9845 /* Can not cleanly block async mailbox command, fails it */ 9846 if (rc) { 9847 spin_lock_irq(&phba->hbalock); 9848 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9849 spin_unlock_irq(&phba->hbalock); 9850 } 9851 return rc; 9852 } 9853 9854 /** 9855 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 9856 * @phba: Pointer to HBA context object. 9857 * 9858 * The function unblocks and resume posting of SLI4 asynchronous mailbox 9859 * commands from the driver internal pending mailbox queue. It makes sure 9860 * that there is no outstanding mailbox command before resuming posting 9861 * asynchronous mailbox commands. If, for any reason, there is outstanding 9862 * mailbox command, it will try to wait it out before resuming asynchronous 9863 * mailbox command posting. 9864 **/ 9865 static void 9866 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 9867 { 9868 struct lpfc_sli *psli = &phba->sli; 9869 9870 spin_lock_irq(&phba->hbalock); 9871 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9872 /* Asynchronous mailbox posting is not blocked, do nothing */ 9873 spin_unlock_irq(&phba->hbalock); 9874 return; 9875 } 9876 9877 /* Outstanding synchronous mailbox command is guaranteed to be done, 9878 * successful or timeout, after timing-out the outstanding mailbox 9879 * command shall always be removed, so just unblock posting async 9880 * mailbox command and resume 9881 */ 9882 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9883 spin_unlock_irq(&phba->hbalock); 9884 9885 /* wake up worker thread to post asynchronous mailbox command */ 9886 lpfc_worker_wake_up(phba); 9887 } 9888 9889 /** 9890 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 9891 * @phba: Pointer to HBA context object. 9892 * @mboxq: Pointer to mailbox object. 9893 * 9894 * The function waits for the bootstrap mailbox register ready bit from 9895 * port for twice the regular mailbox command timeout value. 9896 * 9897 * 0 - no timeout on waiting for bootstrap mailbox register ready. 9898 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 9899 **/ 9900 static int 9901 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9902 { 9903 uint32_t db_ready; 9904 unsigned long timeout; 9905 struct lpfc_register bmbx_reg; 9906 9907 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 9908 * 1000) + jiffies; 9909 9910 do { 9911 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 9912 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 9913 if (!db_ready) 9914 mdelay(2); 9915 9916 if (time_after(jiffies, timeout)) 9917 return MBXERR_ERROR; 9918 } while (!db_ready); 9919 9920 return 0; 9921 } 9922 9923 /** 9924 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 9925 * @phba: Pointer to HBA context object. 9926 * @mboxq: Pointer to mailbox object. 9927 * 9928 * The function posts a mailbox to the port. The mailbox is expected 9929 * to be comletely filled in and ready for the port to operate on it. 9930 * This routine executes a synchronous completion operation on the 9931 * mailbox by polling for its completion. 9932 * 9933 * The caller must not be holding any locks when calling this routine. 9934 * 9935 * Returns: 9936 * MBX_SUCCESS - mailbox posted successfully 9937 * Any of the MBX error values. 9938 **/ 9939 static int 9940 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9941 { 9942 int rc = MBX_SUCCESS; 9943 unsigned long iflag; 9944 uint32_t mcqe_status; 9945 uint32_t mbx_cmnd; 9946 struct lpfc_sli *psli = &phba->sli; 9947 struct lpfc_mqe *mb = &mboxq->u.mqe; 9948 struct lpfc_bmbx_create *mbox_rgn; 9949 struct dma_address *dma_address; 9950 9951 /* 9952 * Only one mailbox can be active to the bootstrap mailbox region 9953 * at a time and there is no queueing provided. 9954 */ 9955 spin_lock_irqsave(&phba->hbalock, iflag); 9956 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9957 spin_unlock_irqrestore(&phba->hbalock, iflag); 9958 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9959 "(%d):2532 Mailbox command x%x (x%x/x%x) " 9960 "cannot issue Data: x%x x%x\n", 9961 mboxq->vport ? mboxq->vport->vpi : 0, 9962 mboxq->u.mb.mbxCommand, 9963 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9964 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9965 psli->sli_flag, MBX_POLL); 9966 return MBXERR_ERROR; 9967 } 9968 /* The server grabs the token and owns it until release */ 9969 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9970 phba->sli.mbox_active = mboxq; 9971 spin_unlock_irqrestore(&phba->hbalock, iflag); 9972 9973 /* wait for bootstrap mbox register for readyness */ 9974 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9975 if (rc) 9976 goto exit; 9977 /* 9978 * Initialize the bootstrap memory region to avoid stale data areas 9979 * in the mailbox post. Then copy the caller's mailbox contents to 9980 * the bmbx mailbox region. 9981 */ 9982 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 9983 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 9984 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 9985 sizeof(struct lpfc_mqe)); 9986 9987 /* Post the high mailbox dma address to the port and wait for ready. */ 9988 dma_address = &phba->sli4_hba.bmbx.dma_address; 9989 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 9990 9991 /* wait for bootstrap mbox register for hi-address write done */ 9992 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9993 if (rc) 9994 goto exit; 9995 9996 /* Post the low mailbox dma address to the port. */ 9997 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 9998 9999 /* wait for bootstrap mbox register for low address write done */ 10000 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 10001 if (rc) 10002 goto exit; 10003 10004 /* 10005 * Read the CQ to ensure the mailbox has completed. 10006 * If so, update the mailbox status so that the upper layers 10007 * can complete the request normally. 10008 */ 10009 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 10010 sizeof(struct lpfc_mqe)); 10011 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 10012 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 10013 sizeof(struct lpfc_mcqe)); 10014 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 10015 /* 10016 * When the CQE status indicates a failure and the mailbox status 10017 * indicates success then copy the CQE status into the mailbox status 10018 * (and prefix it with x4000). 10019 */ 10020 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 10021 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 10022 bf_set(lpfc_mqe_status, mb, 10023 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 10024 rc = MBXERR_ERROR; 10025 } else 10026 lpfc_sli4_swap_str(phba, mboxq); 10027 10028 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10029 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 10030 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 10031 " x%x x%x CQ: x%x x%x x%x x%x\n", 10032 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10033 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10034 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10035 bf_get(lpfc_mqe_status, mb), 10036 mb->un.mb_words[0], mb->un.mb_words[1], 10037 mb->un.mb_words[2], mb->un.mb_words[3], 10038 mb->un.mb_words[4], mb->un.mb_words[5], 10039 mb->un.mb_words[6], mb->un.mb_words[7], 10040 mb->un.mb_words[8], mb->un.mb_words[9], 10041 mb->un.mb_words[10], mb->un.mb_words[11], 10042 mb->un.mb_words[12], mboxq->mcqe.word0, 10043 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 10044 mboxq->mcqe.trailer); 10045 exit: 10046 /* We are holding the token, no needed for lock when release */ 10047 spin_lock_irqsave(&phba->hbalock, iflag); 10048 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10049 phba->sli.mbox_active = NULL; 10050 spin_unlock_irqrestore(&phba->hbalock, iflag); 10051 return rc; 10052 } 10053 10054 /** 10055 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 10056 * @phba: Pointer to HBA context object. 10057 * @mboxq: Pointer to mailbox object. 10058 * @flag: Flag indicating how the mailbox need to be processed. 10059 * 10060 * This function is called by discovery code and HBA management code to submit 10061 * a mailbox command to firmware with SLI-4 interface spec. 10062 * 10063 * Return codes the caller owns the mailbox command after the return of the 10064 * function. 10065 **/ 10066 static int 10067 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 10068 uint32_t flag) 10069 { 10070 struct lpfc_sli *psli = &phba->sli; 10071 unsigned long iflags; 10072 int rc; 10073 10074 /* dump from issue mailbox command if setup */ 10075 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 10076 10077 rc = lpfc_mbox_dev_check(phba); 10078 if (unlikely(rc)) { 10079 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10080 "(%d):2544 Mailbox command x%x (x%x/x%x) " 10081 "cannot issue Data: x%x x%x\n", 10082 mboxq->vport ? mboxq->vport->vpi : 0, 10083 mboxq->u.mb.mbxCommand, 10084 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10085 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10086 psli->sli_flag, flag); 10087 goto out_not_finished; 10088 } 10089 10090 /* Detect polling mode and jump to a handler */ 10091 if (!phba->sli4_hba.intr_enable) { 10092 if (flag == MBX_POLL) 10093 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10094 else 10095 rc = -EIO; 10096 if (rc != MBX_SUCCESS) 10097 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10098 "(%d):2541 Mailbox command x%x " 10099 "(x%x/x%x) failure: " 10100 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10101 "Data: x%x x%x\n", 10102 mboxq->vport ? mboxq->vport->vpi : 0, 10103 mboxq->u.mb.mbxCommand, 10104 lpfc_sli_config_mbox_subsys_get(phba, 10105 mboxq), 10106 lpfc_sli_config_mbox_opcode_get(phba, 10107 mboxq), 10108 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10109 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10110 bf_get(lpfc_mcqe_ext_status, 10111 &mboxq->mcqe), 10112 psli->sli_flag, flag); 10113 return rc; 10114 } else if (flag == MBX_POLL) { 10115 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10116 "(%d):2542 Try to issue mailbox command " 10117 "x%x (x%x/x%x) synchronously ahead of async " 10118 "mailbox command queue: x%x x%x\n", 10119 mboxq->vport ? mboxq->vport->vpi : 0, 10120 mboxq->u.mb.mbxCommand, 10121 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10122 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10123 psli->sli_flag, flag); 10124 /* Try to block the asynchronous mailbox posting */ 10125 rc = lpfc_sli4_async_mbox_block(phba); 10126 if (!rc) { 10127 /* Successfully blocked, now issue sync mbox cmd */ 10128 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10129 if (rc != MBX_SUCCESS) 10130 lpfc_printf_log(phba, KERN_WARNING, 10131 LOG_MBOX | LOG_SLI, 10132 "(%d):2597 Sync Mailbox command " 10133 "x%x (x%x/x%x) failure: " 10134 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10135 "Data: x%x x%x\n", 10136 mboxq->vport ? mboxq->vport->vpi : 0, 10137 mboxq->u.mb.mbxCommand, 10138 lpfc_sli_config_mbox_subsys_get(phba, 10139 mboxq), 10140 lpfc_sli_config_mbox_opcode_get(phba, 10141 mboxq), 10142 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10143 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10144 bf_get(lpfc_mcqe_ext_status, 10145 &mboxq->mcqe), 10146 psli->sli_flag, flag); 10147 /* Unblock the async mailbox posting afterward */ 10148 lpfc_sli4_async_mbox_unblock(phba); 10149 } 10150 return rc; 10151 } 10152 10153 /* Now, interrupt mode asynchronous mailbox command */ 10154 rc = lpfc_mbox_cmd_check(phba, mboxq); 10155 if (rc) { 10156 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10157 "(%d):2543 Mailbox command x%x (x%x/x%x) " 10158 "cannot issue Data: x%x x%x\n", 10159 mboxq->vport ? mboxq->vport->vpi : 0, 10160 mboxq->u.mb.mbxCommand, 10161 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10162 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10163 psli->sli_flag, flag); 10164 goto out_not_finished; 10165 } 10166 10167 /* Put the mailbox command to the driver internal FIFO */ 10168 psli->slistat.mbox_busy++; 10169 spin_lock_irqsave(&phba->hbalock, iflags); 10170 lpfc_mbox_put(phba, mboxq); 10171 spin_unlock_irqrestore(&phba->hbalock, iflags); 10172 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10173 "(%d):0354 Mbox cmd issue - Enqueue Data: " 10174 "x%x (x%x/x%x) x%x x%x x%x\n", 10175 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 10176 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 10177 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10178 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10179 phba->pport->port_state, 10180 psli->sli_flag, MBX_NOWAIT); 10181 /* Wake up worker thread to transport mailbox command from head */ 10182 lpfc_worker_wake_up(phba); 10183 10184 return MBX_BUSY; 10185 10186 out_not_finished: 10187 return MBX_NOT_FINISHED; 10188 } 10189 10190 /** 10191 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 10192 * @phba: Pointer to HBA context object. 10193 * 10194 * This function is called by worker thread to send a mailbox command to 10195 * SLI4 HBA firmware. 10196 * 10197 **/ 10198 int 10199 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 10200 { 10201 struct lpfc_sli *psli = &phba->sli; 10202 LPFC_MBOXQ_t *mboxq; 10203 int rc = MBX_SUCCESS; 10204 unsigned long iflags; 10205 struct lpfc_mqe *mqe; 10206 uint32_t mbx_cmnd; 10207 10208 /* Check interrupt mode before post async mailbox command */ 10209 if (unlikely(!phba->sli4_hba.intr_enable)) 10210 return MBX_NOT_FINISHED; 10211 10212 /* Check for mailbox command service token */ 10213 spin_lock_irqsave(&phba->hbalock, iflags); 10214 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 10215 spin_unlock_irqrestore(&phba->hbalock, iflags); 10216 return MBX_NOT_FINISHED; 10217 } 10218 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 10219 spin_unlock_irqrestore(&phba->hbalock, iflags); 10220 return MBX_NOT_FINISHED; 10221 } 10222 if (unlikely(phba->sli.mbox_active)) { 10223 spin_unlock_irqrestore(&phba->hbalock, iflags); 10224 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10225 "0384 There is pending active mailbox cmd\n"); 10226 return MBX_NOT_FINISHED; 10227 } 10228 /* Take the mailbox command service token */ 10229 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 10230 10231 /* Get the next mailbox command from head of queue */ 10232 mboxq = lpfc_mbox_get(phba); 10233 10234 /* If no more mailbox command waiting for post, we're done */ 10235 if (!mboxq) { 10236 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10237 spin_unlock_irqrestore(&phba->hbalock, iflags); 10238 return MBX_SUCCESS; 10239 } 10240 phba->sli.mbox_active = mboxq; 10241 spin_unlock_irqrestore(&phba->hbalock, iflags); 10242 10243 /* Check device readiness for posting mailbox command */ 10244 rc = lpfc_mbox_dev_check(phba); 10245 if (unlikely(rc)) 10246 /* Driver clean routine will clean up pending mailbox */ 10247 goto out_not_finished; 10248 10249 /* Prepare the mbox command to be posted */ 10250 mqe = &mboxq->u.mqe; 10251 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 10252 10253 /* Start timer for the mbox_tmo and log some mailbox post messages */ 10254 mod_timer(&psli->mbox_tmo, (jiffies + 10255 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 10256 10257 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10258 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 10259 "x%x x%x\n", 10260 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10261 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10262 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10263 phba->pport->port_state, psli->sli_flag); 10264 10265 if (mbx_cmnd != MBX_HEARTBEAT) { 10266 if (mboxq->vport) { 10267 lpfc_debugfs_disc_trc(mboxq->vport, 10268 LPFC_DISC_TRC_MBOX_VPORT, 10269 "MBOX Send vport: cmd:x%x mb:x%x x%x", 10270 mbx_cmnd, mqe->un.mb_words[0], 10271 mqe->un.mb_words[1]); 10272 } else { 10273 lpfc_debugfs_disc_trc(phba->pport, 10274 LPFC_DISC_TRC_MBOX, 10275 "MBOX Send: cmd:x%x mb:x%x x%x", 10276 mbx_cmnd, mqe->un.mb_words[0], 10277 mqe->un.mb_words[1]); 10278 } 10279 } 10280 psli->slistat.mbox_cmd++; 10281 10282 /* Post the mailbox command to the port */ 10283 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 10284 if (rc != MBX_SUCCESS) { 10285 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10286 "(%d):2533 Mailbox command x%x (x%x/x%x) " 10287 "cannot issue Data: x%x x%x\n", 10288 mboxq->vport ? mboxq->vport->vpi : 0, 10289 mboxq->u.mb.mbxCommand, 10290 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10291 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10292 psli->sli_flag, MBX_NOWAIT); 10293 goto out_not_finished; 10294 } 10295 10296 return rc; 10297 10298 out_not_finished: 10299 spin_lock_irqsave(&phba->hbalock, iflags); 10300 if (phba->sli.mbox_active) { 10301 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 10302 __lpfc_mbox_cmpl_put(phba, mboxq); 10303 /* Release the token */ 10304 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10305 phba->sli.mbox_active = NULL; 10306 } 10307 spin_unlock_irqrestore(&phba->hbalock, iflags); 10308 10309 return MBX_NOT_FINISHED; 10310 } 10311 10312 /** 10313 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 10314 * @phba: Pointer to HBA context object. 10315 * @pmbox: Pointer to mailbox object. 10316 * @flag: Flag indicating how the mailbox need to be processed. 10317 * 10318 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 10319 * the API jump table function pointer from the lpfc_hba struct. 10320 * 10321 * Return codes the caller owns the mailbox command after the return of the 10322 * function. 10323 **/ 10324 int 10325 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 10326 { 10327 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 10328 } 10329 10330 /** 10331 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 10332 * @phba: The hba struct for which this call is being executed. 10333 * @dev_grp: The HBA PCI-Device group number. 10334 * 10335 * This routine sets up the mbox interface API function jump table in @phba 10336 * struct. 10337 * Returns: 0 - success, -ENODEV - failure. 10338 **/ 10339 int 10340 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10341 { 10342 10343 switch (dev_grp) { 10344 case LPFC_PCI_DEV_LP: 10345 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 10346 phba->lpfc_sli_handle_slow_ring_event = 10347 lpfc_sli_handle_slow_ring_event_s3; 10348 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 10349 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 10350 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 10351 break; 10352 case LPFC_PCI_DEV_OC: 10353 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 10354 phba->lpfc_sli_handle_slow_ring_event = 10355 lpfc_sli_handle_slow_ring_event_s4; 10356 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 10357 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 10358 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 10359 break; 10360 default: 10361 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10362 "1420 Invalid HBA PCI-device group: 0x%x\n", 10363 dev_grp); 10364 return -ENODEV; 10365 } 10366 return 0; 10367 } 10368 10369 /** 10370 * __lpfc_sli_ringtx_put - Add an iocb to the txq 10371 * @phba: Pointer to HBA context object. 10372 * @pring: Pointer to driver SLI ring object. 10373 * @piocb: Pointer to address of newly added command iocb. 10374 * 10375 * This function is called with hbalock held for SLI3 ports or 10376 * the ring lock held for SLI4 ports to add a command 10377 * iocb to the txq when SLI layer cannot submit the command iocb 10378 * to the ring. 10379 **/ 10380 void 10381 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10382 struct lpfc_iocbq *piocb) 10383 { 10384 if (phba->sli_rev == LPFC_SLI_REV4) 10385 lockdep_assert_held(&pring->ring_lock); 10386 else 10387 lockdep_assert_held(&phba->hbalock); 10388 /* Insert the caller's iocb in the txq tail for later processing. */ 10389 list_add_tail(&piocb->list, &pring->txq); 10390 } 10391 10392 /** 10393 * lpfc_sli_next_iocb - Get the next iocb in the txq 10394 * @phba: Pointer to HBA context object. 10395 * @pring: Pointer to driver SLI ring object. 10396 * @piocb: Pointer to address of newly added command iocb. 10397 * 10398 * This function is called with hbalock held before a new 10399 * iocb is submitted to the firmware. This function checks 10400 * txq to flush the iocbs in txq to Firmware before 10401 * submitting new iocbs to the Firmware. 10402 * If there are iocbs in the txq which need to be submitted 10403 * to firmware, lpfc_sli_next_iocb returns the first element 10404 * of the txq after dequeuing it from txq. 10405 * If there is no iocb in the txq then the function will return 10406 * *piocb and *piocb is set to NULL. Caller needs to check 10407 * *piocb to find if there are more commands in the txq. 10408 **/ 10409 static struct lpfc_iocbq * 10410 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10411 struct lpfc_iocbq **piocb) 10412 { 10413 struct lpfc_iocbq * nextiocb; 10414 10415 lockdep_assert_held(&phba->hbalock); 10416 10417 nextiocb = lpfc_sli_ringtx_get(phba, pring); 10418 if (!nextiocb) { 10419 nextiocb = *piocb; 10420 *piocb = NULL; 10421 } 10422 10423 return nextiocb; 10424 } 10425 10426 /** 10427 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 10428 * @phba: Pointer to HBA context object. 10429 * @ring_number: SLI ring number to issue iocb on. 10430 * @piocb: Pointer to command iocb. 10431 * @flag: Flag indicating if this command can be put into txq. 10432 * 10433 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 10434 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 10435 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 10436 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 10437 * this function allows only iocbs for posting buffers. This function finds 10438 * next available slot in the command ring and posts the command to the 10439 * available slot and writes the port attention register to request HBA start 10440 * processing new iocb. If there is no slot available in the ring and 10441 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 10442 * the function returns IOCB_BUSY. 10443 * 10444 * This function is called with hbalock held. The function will return success 10445 * after it successfully submit the iocb to firmware or after adding to the 10446 * txq. 10447 **/ 10448 static int 10449 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 10450 struct lpfc_iocbq *piocb, uint32_t flag) 10451 { 10452 struct lpfc_iocbq *nextiocb; 10453 IOCB_t *iocb; 10454 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 10455 10456 lockdep_assert_held(&phba->hbalock); 10457 10458 if (piocb->cmd_cmpl && (!piocb->vport) && 10459 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 10460 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 10461 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10462 "1807 IOCB x%x failed. No vport\n", 10463 piocb->iocb.ulpCommand); 10464 dump_stack(); 10465 return IOCB_ERROR; 10466 } 10467 10468 10469 /* If the PCI channel is in offline state, do not post iocbs. */ 10470 if (unlikely(pci_channel_offline(phba->pcidev))) 10471 return IOCB_ERROR; 10472 10473 /* If HBA has a deferred error attention, fail the iocb. */ 10474 if (unlikely(phba->hba_flag & DEFER_ERATT)) 10475 return IOCB_ERROR; 10476 10477 /* 10478 * We should never get an IOCB if we are in a < LINK_DOWN state 10479 */ 10480 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10481 return IOCB_ERROR; 10482 10483 /* 10484 * Check to see if we are blocking IOCB processing because of a 10485 * outstanding event. 10486 */ 10487 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 10488 goto iocb_busy; 10489 10490 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 10491 /* 10492 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 10493 * can be issued if the link is not up. 10494 */ 10495 switch (piocb->iocb.ulpCommand) { 10496 case CMD_QUE_RING_BUF_CN: 10497 case CMD_QUE_RING_BUF64_CN: 10498 /* 10499 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 10500 * completion, cmd_cmpl MUST be 0. 10501 */ 10502 if (piocb->cmd_cmpl) 10503 piocb->cmd_cmpl = NULL; 10504 fallthrough; 10505 case CMD_CREATE_XRI_CR: 10506 case CMD_CLOSE_XRI_CN: 10507 case CMD_CLOSE_XRI_CX: 10508 break; 10509 default: 10510 goto iocb_busy; 10511 } 10512 10513 /* 10514 * For FCP commands, we must be in a state where we can process link 10515 * attention events. 10516 */ 10517 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 10518 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 10519 goto iocb_busy; 10520 } 10521 10522 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 10523 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 10524 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 10525 10526 if (iocb) 10527 lpfc_sli_update_ring(phba, pring); 10528 else 10529 lpfc_sli_update_full_ring(phba, pring); 10530 10531 if (!piocb) 10532 return IOCB_SUCCESS; 10533 10534 goto out_busy; 10535 10536 iocb_busy: 10537 pring->stats.iocb_cmd_delay++; 10538 10539 out_busy: 10540 10541 if (!(flag & SLI_IOCB_RET_IOCB)) { 10542 __lpfc_sli_ringtx_put(phba, pring, piocb); 10543 return IOCB_SUCCESS; 10544 } 10545 10546 return IOCB_BUSY; 10547 } 10548 10549 /** 10550 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10551 * @phba: Pointer to HBA context object. 10552 * @ring_number: SLI ring number to issue wqe on. 10553 * @piocb: Pointer to command iocb. 10554 * @flag: Flag indicating if this command can be put into txq. 10555 * 10556 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10557 * send an iocb command to an HBA with SLI-3 interface spec. 10558 * 10559 * This function takes the hbalock before invoking the lockless version. 10560 * The function will return success after it successfully submit the wqe to 10561 * firmware or after adding to the txq. 10562 **/ 10563 static int 10564 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10565 struct lpfc_iocbq *piocb, uint32_t flag) 10566 { 10567 unsigned long iflags; 10568 int rc; 10569 10570 spin_lock_irqsave(&phba->hbalock, iflags); 10571 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10572 spin_unlock_irqrestore(&phba->hbalock, iflags); 10573 10574 return rc; 10575 } 10576 10577 /** 10578 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10579 * @phba: Pointer to HBA context object. 10580 * @ring_number: SLI ring number to issue wqe on. 10581 * @piocb: Pointer to command iocb. 10582 * @flag: Flag indicating if this command can be put into txq. 10583 * 10584 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10585 * an wqe command to an HBA with SLI-4 interface spec. 10586 * 10587 * This function is a lockless version. The function will return success 10588 * after it successfully submit the wqe to firmware or after adding to the 10589 * txq. 10590 **/ 10591 static int 10592 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10593 struct lpfc_iocbq *piocb, uint32_t flag) 10594 { 10595 struct lpfc_io_buf *lpfc_cmd = piocb->io_buf; 10596 10597 lpfc_prep_embed_io(phba, lpfc_cmd); 10598 return lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 10599 } 10600 10601 void 10602 lpfc_prep_embed_io(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) 10603 { 10604 struct lpfc_iocbq *piocb = &lpfc_cmd->cur_iocbq; 10605 union lpfc_wqe128 *wqe = &lpfc_cmd->cur_iocbq.wqe; 10606 struct sli4_sge *sgl; 10607 10608 /* 128 byte wqe support here */ 10609 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10610 10611 if (phba->fcp_embed_io) { 10612 struct fcp_cmnd *fcp_cmnd; 10613 u32 *ptr; 10614 10615 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10616 10617 /* Word 0-2 - FCP_CMND */ 10618 wqe->generic.bde.tus.f.bdeFlags = 10619 BUFF_TYPE_BDE_IMMED; 10620 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10621 wqe->generic.bde.addrHigh = 0; 10622 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10623 10624 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10625 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10626 10627 /* Word 22-29 FCP CMND Payload */ 10628 ptr = &wqe->words[22]; 10629 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10630 } else { 10631 /* Word 0-2 - Inline BDE */ 10632 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10633 wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd); 10634 wqe->generic.bde.addrHigh = sgl->addr_hi; 10635 wqe->generic.bde.addrLow = sgl->addr_lo; 10636 10637 /* Word 10 */ 10638 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10639 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10640 } 10641 10642 /* add the VMID tags as per switch response */ 10643 if (unlikely(piocb->cmd_flag & LPFC_IO_VMID)) { 10644 if (phba->pport->vmid_flag & LPFC_VMID_TYPE_PRIO) { 10645 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 10646 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10647 (piocb->vmid_tag.cs_ctl_vmid)); 10648 } else if (phba->cfg_vmid_app_header) { 10649 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); 10650 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10651 wqe->words[31] = piocb->vmid_tag.app_id; 10652 } 10653 } 10654 } 10655 10656 /** 10657 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10658 * @phba: Pointer to HBA context object. 10659 * @ring_number: SLI ring number to issue iocb on. 10660 * @piocb: Pointer to command iocb. 10661 * @flag: Flag indicating if this command can be put into txq. 10662 * 10663 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10664 * an iocb command to an HBA with SLI-4 interface spec. 10665 * 10666 * This function is called with ringlock held. The function will return success 10667 * after it successfully submit the iocb to firmware or after adding to the 10668 * txq. 10669 **/ 10670 static int 10671 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10672 struct lpfc_iocbq *piocb, uint32_t flag) 10673 { 10674 struct lpfc_sglq *sglq; 10675 union lpfc_wqe128 *wqe; 10676 struct lpfc_queue *wq; 10677 struct lpfc_sli_ring *pring; 10678 u32 ulp_command = get_job_cmnd(phba, piocb); 10679 10680 /* Get the WQ */ 10681 if ((piocb->cmd_flag & LPFC_IO_FCP) || 10682 (piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 10683 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10684 } else { 10685 wq = phba->sli4_hba.els_wq; 10686 } 10687 10688 /* Get corresponding ring */ 10689 pring = wq->pring; 10690 10691 /* 10692 * The WQE can be either 64 or 128 bytes, 10693 */ 10694 10695 lockdep_assert_held(&pring->ring_lock); 10696 wqe = &piocb->wqe; 10697 if (piocb->sli4_xritag == NO_XRI) { 10698 if (ulp_command == CMD_ABORT_XRI_CX) 10699 sglq = NULL; 10700 else { 10701 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10702 if (!sglq) { 10703 if (!(flag & SLI_IOCB_RET_IOCB)) { 10704 __lpfc_sli_ringtx_put(phba, 10705 pring, 10706 piocb); 10707 return IOCB_SUCCESS; 10708 } else { 10709 return IOCB_BUSY; 10710 } 10711 } 10712 } 10713 } else if (piocb->cmd_flag & LPFC_IO_FCP) { 10714 /* These IO's already have an XRI and a mapped sgl. */ 10715 sglq = NULL; 10716 } 10717 else { 10718 /* 10719 * This is a continuation of a commandi,(CX) so this 10720 * sglq is on the active list 10721 */ 10722 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10723 if (!sglq) 10724 return IOCB_ERROR; 10725 } 10726 10727 if (sglq) { 10728 piocb->sli4_lxritag = sglq->sli4_lxritag; 10729 piocb->sli4_xritag = sglq->sli4_xritag; 10730 10731 /* ABTS sent by initiator to CT exchange, the 10732 * RX_ID field will be filled with the newly 10733 * allocated responder XRI. 10734 */ 10735 if (ulp_command == CMD_XMIT_BLS_RSP64_CX && 10736 piocb->abort_bls == LPFC_ABTS_UNSOL_INT) 10737 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10738 piocb->sli4_xritag); 10739 10740 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, 10741 piocb->sli4_xritag); 10742 10743 if (lpfc_wqe_bpl2sgl(phba, piocb, sglq) == NO_XRI) 10744 return IOCB_ERROR; 10745 } 10746 10747 if (lpfc_sli4_wq_put(wq, wqe)) 10748 return IOCB_ERROR; 10749 10750 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10751 10752 return 0; 10753 } 10754 10755 /* 10756 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 10757 * 10758 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 10759 * or IOCB for sli-3 function. 10760 * pointer from the lpfc_hba struct. 10761 * 10762 * Return codes: 10763 * IOCB_ERROR - Error 10764 * IOCB_SUCCESS - Success 10765 * IOCB_BUSY - Busy 10766 **/ 10767 int 10768 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 10769 struct lpfc_iocbq *piocb, uint32_t flag) 10770 { 10771 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 10772 } 10773 10774 /* 10775 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10776 * 10777 * This routine wraps the actual lockless version for issusing IOCB function 10778 * pointer from the lpfc_hba struct. 10779 * 10780 * Return codes: 10781 * IOCB_ERROR - Error 10782 * IOCB_SUCCESS - Success 10783 * IOCB_BUSY - Busy 10784 **/ 10785 int 10786 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10787 struct lpfc_iocbq *piocb, uint32_t flag) 10788 { 10789 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10790 } 10791 10792 static void 10793 __lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq *cmdiocbq, 10794 struct lpfc_vport *vport, 10795 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10796 u32 elscmd, u8 tmo, u8 expect_rsp) 10797 { 10798 struct lpfc_hba *phba = vport->phba; 10799 IOCB_t *cmd; 10800 10801 cmd = &cmdiocbq->iocb; 10802 memset(cmd, 0, sizeof(*cmd)); 10803 10804 cmd->un.elsreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10805 cmd->un.elsreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10806 cmd->un.elsreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10807 10808 if (expect_rsp) { 10809 cmd->un.elsreq64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); 10810 cmd->un.elsreq64.remoteID = did; /* DID */ 10811 cmd->ulpCommand = CMD_ELS_REQUEST64_CR; 10812 cmd->ulpTimeout = tmo; 10813 } else { 10814 cmd->un.elsreq64.bdl.bdeSize = sizeof(struct ulp_bde64); 10815 cmd->un.genreq64.xmit_els_remoteID = did; /* DID */ 10816 cmd->ulpCommand = CMD_XMIT_ELS_RSP64_CX; 10817 cmd->ulpPU = PARM_NPIV_DID; 10818 } 10819 cmd->ulpBdeCount = 1; 10820 cmd->ulpLe = 1; 10821 cmd->ulpClass = CLASS3; 10822 10823 /* If we have NPIV enabled, we want to send ELS traffic by VPI. */ 10824 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) { 10825 if (expect_rsp) { 10826 cmd->un.elsreq64.myID = vport->fc_myDID; 10827 10828 /* For ELS_REQUEST64_CR, use the VPI by default */ 10829 cmd->ulpContext = phba->vpi_ids[vport->vpi]; 10830 } 10831 10832 cmd->ulpCt_h = 0; 10833 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10834 if (elscmd == ELS_CMD_ECHO) 10835 cmd->ulpCt_l = 0; /* context = invalid RPI */ 10836 else 10837 cmd->ulpCt_l = 1; /* context = VPI */ 10838 } 10839 } 10840 10841 static void 10842 __lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq *cmdiocbq, 10843 struct lpfc_vport *vport, 10844 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10845 u32 elscmd, u8 tmo, u8 expect_rsp) 10846 { 10847 struct lpfc_hba *phba = vport->phba; 10848 union lpfc_wqe128 *wqe; 10849 struct ulp_bde64_le *bde; 10850 u8 els_id; 10851 10852 wqe = &cmdiocbq->wqe; 10853 memset(wqe, 0, sizeof(*wqe)); 10854 10855 /* Word 0 - 2 BDE */ 10856 bde = (struct ulp_bde64_le *)&wqe->generic.bde; 10857 bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys)); 10858 bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys)); 10859 bde->type_size = cpu_to_le32(cmd_size); 10860 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10861 10862 if (expect_rsp) { 10863 bf_set(wqe_cmnd, &wqe->els_req.wqe_com, CMD_ELS_REQUEST64_WQE); 10864 10865 /* Transfer length */ 10866 wqe->els_req.payload_len = cmd_size; 10867 wqe->els_req.max_response_payload_len = FCELSSIZE; 10868 10869 /* DID */ 10870 bf_set(wqe_els_did, &wqe->els_req.wqe_dest, did); 10871 10872 /* Word 11 - ELS_ID */ 10873 switch (elscmd) { 10874 case ELS_CMD_PLOGI: 10875 els_id = LPFC_ELS_ID_PLOGI; 10876 break; 10877 case ELS_CMD_FLOGI: 10878 els_id = LPFC_ELS_ID_FLOGI; 10879 break; 10880 case ELS_CMD_LOGO: 10881 els_id = LPFC_ELS_ID_LOGO; 10882 break; 10883 case ELS_CMD_FDISC: 10884 if (!vport->fc_myDID) { 10885 els_id = LPFC_ELS_ID_FDISC; 10886 break; 10887 } 10888 fallthrough; 10889 default: 10890 els_id = LPFC_ELS_ID_DEFAULT; 10891 break; 10892 } 10893 10894 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 10895 } else { 10896 /* DID */ 10897 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, did); 10898 10899 /* Transfer length */ 10900 wqe->xmit_els_rsp.response_payload_len = cmd_size; 10901 10902 bf_set(wqe_cmnd, &wqe->xmit_els_rsp.wqe_com, 10903 CMD_XMIT_ELS_RSP64_WQE); 10904 } 10905 10906 bf_set(wqe_tmo, &wqe->generic.wqe_com, tmo); 10907 bf_set(wqe_reqtag, &wqe->generic.wqe_com, cmdiocbq->iotag); 10908 bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3); 10909 10910 /* If we have NPIV enabled, we want to send ELS traffic by VPI. 10911 * For SLI4, since the driver controls VPIs we also want to include 10912 * all ELS pt2pt protocol traffic as well. 10913 */ 10914 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) || 10915 (vport->fc_flag & FC_PT2PT)) { 10916 if (expect_rsp) { 10917 bf_set(els_req64_sid, &wqe->els_req, vport->fc_myDID); 10918 10919 /* For ELS_REQUEST64_WQE, use the VPI by default */ 10920 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10921 phba->vpi_ids[vport->vpi]); 10922 } 10923 10924 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10925 if (elscmd == ELS_CMD_ECHO) 10926 bf_set(wqe_ct, &wqe->generic.wqe_com, 0); 10927 else 10928 bf_set(wqe_ct, &wqe->generic.wqe_com, 1); 10929 } 10930 } 10931 10932 void 10933 lpfc_sli_prep_els_req_rsp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10934 struct lpfc_vport *vport, struct lpfc_dmabuf *bmp, 10935 u16 cmd_size, u32 did, u32 elscmd, u8 tmo, 10936 u8 expect_rsp) 10937 { 10938 phba->__lpfc_sli_prep_els_req_rsp(cmdiocbq, vport, bmp, cmd_size, did, 10939 elscmd, tmo, expect_rsp); 10940 } 10941 10942 static void 10943 __lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10944 u16 rpi, u32 num_entry, u8 tmo) 10945 { 10946 IOCB_t *cmd; 10947 10948 cmd = &cmdiocbq->iocb; 10949 memset(cmd, 0, sizeof(*cmd)); 10950 10951 cmd->un.genreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10952 cmd->un.genreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10953 cmd->un.genreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10954 cmd->un.genreq64.bdl.bdeSize = num_entry * sizeof(struct ulp_bde64); 10955 10956 cmd->un.genreq64.w5.hcsw.Rctl = FC_RCTL_DD_UNSOL_CTL; 10957 cmd->un.genreq64.w5.hcsw.Type = FC_TYPE_CT; 10958 cmd->un.genreq64.w5.hcsw.Fctl = (SI | LA); 10959 10960 cmd->ulpContext = rpi; 10961 cmd->ulpClass = CLASS3; 10962 cmd->ulpCommand = CMD_GEN_REQUEST64_CR; 10963 cmd->ulpBdeCount = 1; 10964 cmd->ulpLe = 1; 10965 cmd->ulpOwner = OWN_CHIP; 10966 cmd->ulpTimeout = tmo; 10967 } 10968 10969 static void 10970 __lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10971 u16 rpi, u32 num_entry, u8 tmo) 10972 { 10973 union lpfc_wqe128 *cmdwqe; 10974 struct ulp_bde64_le *bde, *bpl; 10975 u32 xmit_len = 0, total_len = 0, size, type, i; 10976 10977 cmdwqe = &cmdiocbq->wqe; 10978 memset(cmdwqe, 0, sizeof(*cmdwqe)); 10979 10980 /* Calculate total_len and xmit_len */ 10981 bpl = (struct ulp_bde64_le *)bmp->virt; 10982 for (i = 0; i < num_entry; i++) { 10983 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10984 total_len += size; 10985 } 10986 for (i = 0; i < num_entry; i++) { 10987 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10988 type = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_TYPE_MASK; 10989 if (type != ULP_BDE64_TYPE_BDE_64) 10990 break; 10991 xmit_len += size; 10992 } 10993 10994 /* Words 0 - 2 */ 10995 bde = (struct ulp_bde64_le *)&cmdwqe->generic.bde; 10996 bde->addr_low = bpl->addr_low; 10997 bde->addr_high = bpl->addr_high; 10998 bde->type_size = cpu_to_le32(xmit_len); 10999 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 11000 11001 /* Word 3 */ 11002 cmdwqe->gen_req.request_payload_len = xmit_len; 11003 11004 /* Word 5 */ 11005 bf_set(wqe_type, &cmdwqe->gen_req.wge_ctl, FC_TYPE_CT); 11006 bf_set(wqe_rctl, &cmdwqe->gen_req.wge_ctl, FC_RCTL_DD_UNSOL_CTL); 11007 bf_set(wqe_si, &cmdwqe->gen_req.wge_ctl, 1); 11008 bf_set(wqe_la, &cmdwqe->gen_req.wge_ctl, 1); 11009 11010 /* Word 6 */ 11011 bf_set(wqe_ctxt_tag, &cmdwqe->gen_req.wqe_com, rpi); 11012 11013 /* Word 7 */ 11014 bf_set(wqe_tmo, &cmdwqe->gen_req.wqe_com, tmo); 11015 bf_set(wqe_class, &cmdwqe->gen_req.wqe_com, CLASS3); 11016 bf_set(wqe_cmnd, &cmdwqe->gen_req.wqe_com, CMD_GEN_REQUEST64_CR); 11017 bf_set(wqe_ct, &cmdwqe->gen_req.wqe_com, SLI4_CT_RPI); 11018 11019 /* Word 12 */ 11020 cmdwqe->gen_req.max_response_payload_len = total_len - xmit_len; 11021 } 11022 11023 void 11024 lpfc_sli_prep_gen_req(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11025 struct lpfc_dmabuf *bmp, u16 rpi, u32 num_entry, u8 tmo) 11026 { 11027 phba->__lpfc_sli_prep_gen_req(cmdiocbq, bmp, rpi, num_entry, tmo); 11028 } 11029 11030 static void 11031 __lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq *cmdiocbq, 11032 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11033 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11034 { 11035 IOCB_t *icmd; 11036 11037 icmd = &cmdiocbq->iocb; 11038 memset(icmd, 0, sizeof(*icmd)); 11039 11040 icmd->un.xseq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 11041 icmd->un.xseq64.bdl.addrLow = putPaddrLow(bmp->phys); 11042 icmd->un.xseq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 11043 icmd->un.xseq64.bdl.bdeSize = (num_entry * sizeof(struct ulp_bde64)); 11044 icmd->un.xseq64.w5.hcsw.Fctl = LA; 11045 if (last_seq) 11046 icmd->un.xseq64.w5.hcsw.Fctl |= LS; 11047 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 11048 icmd->un.xseq64.w5.hcsw.Rctl = rctl; 11049 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_CT; 11050 11051 icmd->ulpBdeCount = 1; 11052 icmd->ulpLe = 1; 11053 icmd->ulpClass = CLASS3; 11054 11055 switch (cr_cx_cmd) { 11056 case CMD_XMIT_SEQUENCE64_CR: 11057 icmd->ulpContext = rpi; 11058 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CR; 11059 break; 11060 case CMD_XMIT_SEQUENCE64_CX: 11061 icmd->ulpContext = ox_id; 11062 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CX; 11063 break; 11064 default: 11065 break; 11066 } 11067 } 11068 11069 static void 11070 __lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq *cmdiocbq, 11071 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11072 u32 full_size, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11073 { 11074 union lpfc_wqe128 *wqe; 11075 struct ulp_bde64 *bpl; 11076 11077 wqe = &cmdiocbq->wqe; 11078 memset(wqe, 0, sizeof(*wqe)); 11079 11080 /* Words 0 - 2 */ 11081 bpl = (struct ulp_bde64 *)bmp->virt; 11082 wqe->xmit_sequence.bde.addrHigh = bpl->addrHigh; 11083 wqe->xmit_sequence.bde.addrLow = bpl->addrLow; 11084 wqe->xmit_sequence.bde.tus.w = bpl->tus.w; 11085 11086 /* Word 5 */ 11087 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, last_seq); 11088 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 1); 11089 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 11090 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, rctl); 11091 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_CT); 11092 11093 /* Word 6 */ 11094 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, rpi); 11095 11096 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 11097 CMD_XMIT_SEQUENCE64_WQE); 11098 11099 /* Word 7 */ 11100 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 11101 11102 /* Word 9 */ 11103 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ox_id); 11104 11105 /* Word 12 */ 11106 if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK)) 11107 wqe->xmit_sequence.xmit_len = full_size; 11108 else 11109 wqe->xmit_sequence.xmit_len = 11110 wqe->xmit_sequence.bde.tus.f.bdeSize; 11111 } 11112 11113 void 11114 lpfc_sli_prep_xmit_seq64(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11115 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11116 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11117 { 11118 phba->__lpfc_sli_prep_xmit_seq64(cmdiocbq, bmp, rpi, ox_id, num_entry, 11119 rctl, last_seq, cr_cx_cmd); 11120 } 11121 11122 static void 11123 __lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11124 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11125 bool wqec) 11126 { 11127 IOCB_t *icmd = NULL; 11128 11129 icmd = &cmdiocbq->iocb; 11130 memset(icmd, 0, sizeof(*icmd)); 11131 11132 /* Word 5 */ 11133 icmd->un.acxri.abortContextTag = ulp_context; 11134 icmd->un.acxri.abortIoTag = iotag; 11135 11136 if (ia) { 11137 /* Word 7 */ 11138 icmd->ulpCommand = CMD_CLOSE_XRI_CN; 11139 } else { 11140 /* Word 3 */ 11141 icmd->un.acxri.abortType = ABORT_TYPE_ABTS; 11142 11143 /* Word 7 */ 11144 icmd->ulpClass = ulp_class; 11145 icmd->ulpCommand = CMD_ABORT_XRI_CN; 11146 } 11147 11148 /* Word 7 */ 11149 icmd->ulpLe = 1; 11150 } 11151 11152 static void 11153 __lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11154 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11155 bool wqec) 11156 { 11157 union lpfc_wqe128 *wqe; 11158 11159 wqe = &cmdiocbq->wqe; 11160 memset(wqe, 0, sizeof(*wqe)); 11161 11162 /* Word 3 */ 11163 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 11164 if (ia) 11165 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 11166 else 11167 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 11168 11169 /* Word 7 */ 11170 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_WQE); 11171 11172 /* Word 8 */ 11173 wqe->abort_cmd.wqe_com.abort_tag = ulp_context; 11174 11175 /* Word 9 */ 11176 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, iotag); 11177 11178 /* Word 10 */ 11179 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 11180 11181 /* Word 11 */ 11182 if (wqec) 11183 bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1); 11184 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, cqid); 11185 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND); 11186 } 11187 11188 void 11189 lpfc_sli_prep_abort_xri(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11190 u16 ulp_context, u16 iotag, u8 ulp_class, u16 cqid, 11191 bool ia, bool wqec) 11192 { 11193 phba->__lpfc_sli_prep_abort_xri(cmdiocbq, ulp_context, iotag, ulp_class, 11194 cqid, ia, wqec); 11195 } 11196 11197 /** 11198 * lpfc_sli_api_table_setup - Set up sli api function jump table 11199 * @phba: The hba struct for which this call is being executed. 11200 * @dev_grp: The HBA PCI-Device group number. 11201 * 11202 * This routine sets up the SLI interface API function jump table in @phba 11203 * struct. 11204 * Returns: 0 - success, -ENODEV - failure. 11205 **/ 11206 int 11207 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 11208 { 11209 11210 switch (dev_grp) { 11211 case LPFC_PCI_DEV_LP: 11212 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 11213 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 11214 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 11215 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s3; 11216 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s3; 11217 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s3; 11218 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s3; 11219 break; 11220 case LPFC_PCI_DEV_OC: 11221 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 11222 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 11223 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 11224 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s4; 11225 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s4; 11226 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s4; 11227 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s4; 11228 break; 11229 default: 11230 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11231 "1419 Invalid HBA PCI-device group: 0x%x\n", 11232 dev_grp); 11233 return -ENODEV; 11234 } 11235 return 0; 11236 } 11237 11238 /** 11239 * lpfc_sli4_calc_ring - Calculates which ring to use 11240 * @phba: Pointer to HBA context object. 11241 * @piocb: Pointer to command iocb. 11242 * 11243 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 11244 * hba_wqidx, thus we need to calculate the corresponding ring. 11245 * Since ABORTS must go on the same WQ of the command they are 11246 * aborting, we use command's hba_wqidx. 11247 */ 11248 struct lpfc_sli_ring * 11249 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 11250 { 11251 struct lpfc_io_buf *lpfc_cmd; 11252 11253 if (piocb->cmd_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 11254 if (unlikely(!phba->sli4_hba.hdwq)) 11255 return NULL; 11256 /* 11257 * for abort iocb hba_wqidx should already 11258 * be setup based on what work queue we used. 11259 */ 11260 if (!(piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 11261 lpfc_cmd = piocb->io_buf; 11262 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 11263 } 11264 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 11265 } else { 11266 if (unlikely(!phba->sli4_hba.els_wq)) 11267 return NULL; 11268 piocb->hba_wqidx = 0; 11269 return phba->sli4_hba.els_wq->pring; 11270 } 11271 } 11272 11273 /** 11274 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 11275 * @phba: Pointer to HBA context object. 11276 * @ring_number: Ring number 11277 * @piocb: Pointer to command iocb. 11278 * @flag: Flag indicating if this command can be put into txq. 11279 * 11280 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 11281 * function. This function gets the hbalock and calls 11282 * __lpfc_sli_issue_iocb function and will return the error returned 11283 * by __lpfc_sli_issue_iocb function. This wrapper is used by 11284 * functions which do not hold hbalock. 11285 **/ 11286 int 11287 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11288 struct lpfc_iocbq *piocb, uint32_t flag) 11289 { 11290 struct lpfc_sli_ring *pring; 11291 struct lpfc_queue *eq; 11292 unsigned long iflags; 11293 int rc; 11294 11295 /* If the PCI channel is in offline state, do not post iocbs. */ 11296 if (unlikely(pci_channel_offline(phba->pcidev))) 11297 return IOCB_ERROR; 11298 11299 if (phba->sli_rev == LPFC_SLI_REV4) { 11300 lpfc_sli_prep_wqe(phba, piocb); 11301 11302 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 11303 11304 pring = lpfc_sli4_calc_ring(phba, piocb); 11305 if (unlikely(pring == NULL)) 11306 return IOCB_ERROR; 11307 11308 spin_lock_irqsave(&pring->ring_lock, iflags); 11309 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11310 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11311 11312 lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH); 11313 } else { 11314 /* For now, SLI2/3 will still use hbalock */ 11315 spin_lock_irqsave(&phba->hbalock, iflags); 11316 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11317 spin_unlock_irqrestore(&phba->hbalock, iflags); 11318 } 11319 return rc; 11320 } 11321 11322 /** 11323 * lpfc_extra_ring_setup - Extra ring setup function 11324 * @phba: Pointer to HBA context object. 11325 * 11326 * This function is called while driver attaches with the 11327 * HBA to setup the extra ring. The extra ring is used 11328 * only when driver needs to support target mode functionality 11329 * or IP over FC functionalities. 11330 * 11331 * This function is called with no lock held. SLI3 only. 11332 **/ 11333 static int 11334 lpfc_extra_ring_setup( struct lpfc_hba *phba) 11335 { 11336 struct lpfc_sli *psli; 11337 struct lpfc_sli_ring *pring; 11338 11339 psli = &phba->sli; 11340 11341 /* Adjust cmd/rsp ring iocb entries more evenly */ 11342 11343 /* Take some away from the FCP ring */ 11344 pring = &psli->sli3_ring[LPFC_FCP_RING]; 11345 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11346 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11347 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11348 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11349 11350 /* and give them to the extra ring */ 11351 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 11352 11353 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11354 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11355 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11356 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11357 11358 /* Setup default profile for this ring */ 11359 pring->iotag_max = 4096; 11360 pring->num_mask = 1; 11361 pring->prt[0].profile = 0; /* Mask 0 */ 11362 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 11363 pring->prt[0].type = phba->cfg_multi_ring_type; 11364 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 11365 return 0; 11366 } 11367 11368 static void 11369 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 11370 struct lpfc_nodelist *ndlp) 11371 { 11372 unsigned long iflags; 11373 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 11374 11375 spin_lock_irqsave(&phba->hbalock, iflags); 11376 if (!list_empty(&evtp->evt_listp)) { 11377 spin_unlock_irqrestore(&phba->hbalock, iflags); 11378 return; 11379 } 11380 11381 /* Incrementing the reference count until the queued work is done. */ 11382 evtp->evt_arg1 = lpfc_nlp_get(ndlp); 11383 if (!evtp->evt_arg1) { 11384 spin_unlock_irqrestore(&phba->hbalock, iflags); 11385 return; 11386 } 11387 evtp->evt = LPFC_EVT_RECOVER_PORT; 11388 list_add_tail(&evtp->evt_listp, &phba->work_list); 11389 spin_unlock_irqrestore(&phba->hbalock, iflags); 11390 11391 lpfc_worker_wake_up(phba); 11392 } 11393 11394 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 11395 * @phba: Pointer to HBA context object. 11396 * @iocbq: Pointer to iocb object. 11397 * 11398 * The async_event handler calls this routine when it receives 11399 * an ASYNC_STATUS_CN event from the port. The port generates 11400 * this event when an Abort Sequence request to an rport fails 11401 * twice in succession. The abort could be originated by the 11402 * driver or by the port. The ABTS could have been for an ELS 11403 * or FCP IO. The port only generates this event when an ABTS 11404 * fails to complete after one retry. 11405 */ 11406 static void 11407 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 11408 struct lpfc_iocbq *iocbq) 11409 { 11410 struct lpfc_nodelist *ndlp = NULL; 11411 uint16_t rpi = 0, vpi = 0; 11412 struct lpfc_vport *vport = NULL; 11413 11414 /* The rpi in the ulpContext is vport-sensitive. */ 11415 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 11416 rpi = iocbq->iocb.ulpContext; 11417 11418 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11419 "3092 Port generated ABTS async event " 11420 "on vpi %d rpi %d status 0x%x\n", 11421 vpi, rpi, iocbq->iocb.ulpStatus); 11422 11423 vport = lpfc_find_vport_by_vpid(phba, vpi); 11424 if (!vport) 11425 goto err_exit; 11426 ndlp = lpfc_findnode_rpi(vport, rpi); 11427 if (!ndlp) 11428 goto err_exit; 11429 11430 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 11431 lpfc_sli_abts_recover_port(vport, ndlp); 11432 return; 11433 11434 err_exit: 11435 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11436 "3095 Event Context not found, no " 11437 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 11438 vpi, rpi, iocbq->iocb.ulpStatus, 11439 iocbq->iocb.ulpContext); 11440 } 11441 11442 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 11443 * @phba: pointer to HBA context object. 11444 * @ndlp: nodelist pointer for the impacted rport. 11445 * @axri: pointer to the wcqe containing the failed exchange. 11446 * 11447 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 11448 * port. The port generates this event when an abort exchange request to an 11449 * rport fails twice in succession with no reply. The abort could be originated 11450 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 11451 */ 11452 void 11453 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 11454 struct lpfc_nodelist *ndlp, 11455 struct sli4_wcqe_xri_aborted *axri) 11456 { 11457 uint32_t ext_status = 0; 11458 11459 if (!ndlp) { 11460 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11461 "3115 Node Context not found, driver " 11462 "ignoring abts err event\n"); 11463 return; 11464 } 11465 11466 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11467 "3116 Port generated FCP XRI ABORT event on " 11468 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 11469 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 11470 bf_get(lpfc_wcqe_xa_xri, axri), 11471 bf_get(lpfc_wcqe_xa_status, axri), 11472 axri->parameter); 11473 11474 /* 11475 * Catch the ABTS protocol failure case. Older OCe FW releases returned 11476 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 11477 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 11478 */ 11479 ext_status = axri->parameter & IOERR_PARAM_MASK; 11480 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 11481 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 11482 lpfc_sli_post_recovery_event(phba, ndlp); 11483 } 11484 11485 /** 11486 * lpfc_sli_async_event_handler - ASYNC iocb handler function 11487 * @phba: Pointer to HBA context object. 11488 * @pring: Pointer to driver SLI ring object. 11489 * @iocbq: Pointer to iocb object. 11490 * 11491 * This function is called by the slow ring event handler 11492 * function when there is an ASYNC event iocb in the ring. 11493 * This function is called with no lock held. 11494 * Currently this function handles only temperature related 11495 * ASYNC events. The function decodes the temperature sensor 11496 * event message and posts events for the management applications. 11497 **/ 11498 static void 11499 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 11500 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 11501 { 11502 IOCB_t *icmd; 11503 uint16_t evt_code; 11504 struct temp_event temp_event_data; 11505 struct Scsi_Host *shost; 11506 uint32_t *iocb_w; 11507 11508 icmd = &iocbq->iocb; 11509 evt_code = icmd->un.asyncstat.evt_code; 11510 11511 switch (evt_code) { 11512 case ASYNC_TEMP_WARN: 11513 case ASYNC_TEMP_SAFE: 11514 temp_event_data.data = (uint32_t) icmd->ulpContext; 11515 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 11516 if (evt_code == ASYNC_TEMP_WARN) { 11517 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 11518 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11519 "0347 Adapter is very hot, please take " 11520 "corrective action. temperature : %d Celsius\n", 11521 (uint32_t) icmd->ulpContext); 11522 } else { 11523 temp_event_data.event_code = LPFC_NORMAL_TEMP; 11524 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11525 "0340 Adapter temperature is OK now. " 11526 "temperature : %d Celsius\n", 11527 (uint32_t) icmd->ulpContext); 11528 } 11529 11530 /* Send temperature change event to applications */ 11531 shost = lpfc_shost_from_vport(phba->pport); 11532 fc_host_post_vendor_event(shost, fc_get_event_number(), 11533 sizeof(temp_event_data), (char *) &temp_event_data, 11534 LPFC_NL_VENDOR_ID); 11535 break; 11536 case ASYNC_STATUS_CN: 11537 lpfc_sli_abts_err_handler(phba, iocbq); 11538 break; 11539 default: 11540 iocb_w = (uint32_t *) icmd; 11541 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11542 "0346 Ring %d handler: unexpected ASYNC_STATUS" 11543 " evt_code 0x%x\n" 11544 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 11545 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 11546 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 11547 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 11548 pring->ringno, icmd->un.asyncstat.evt_code, 11549 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 11550 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 11551 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 11552 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 11553 11554 break; 11555 } 11556 } 11557 11558 11559 /** 11560 * lpfc_sli4_setup - SLI ring setup function 11561 * @phba: Pointer to HBA context object. 11562 * 11563 * lpfc_sli_setup sets up rings of the SLI interface with 11564 * number of iocbs per ring and iotags. This function is 11565 * called while driver attach to the HBA and before the 11566 * interrupts are enabled. So there is no need for locking. 11567 * 11568 * This function always returns 0. 11569 **/ 11570 int 11571 lpfc_sli4_setup(struct lpfc_hba *phba) 11572 { 11573 struct lpfc_sli_ring *pring; 11574 11575 pring = phba->sli4_hba.els_wq->pring; 11576 pring->num_mask = LPFC_MAX_RING_MASK; 11577 pring->prt[0].profile = 0; /* Mask 0 */ 11578 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11579 pring->prt[0].type = FC_TYPE_ELS; 11580 pring->prt[0].lpfc_sli_rcv_unsol_event = 11581 lpfc_els_unsol_event; 11582 pring->prt[1].profile = 0; /* Mask 1 */ 11583 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11584 pring->prt[1].type = FC_TYPE_ELS; 11585 pring->prt[1].lpfc_sli_rcv_unsol_event = 11586 lpfc_els_unsol_event; 11587 pring->prt[2].profile = 0; /* Mask 2 */ 11588 /* NameServer Inquiry */ 11589 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11590 /* NameServer */ 11591 pring->prt[2].type = FC_TYPE_CT; 11592 pring->prt[2].lpfc_sli_rcv_unsol_event = 11593 lpfc_ct_unsol_event; 11594 pring->prt[3].profile = 0; /* Mask 3 */ 11595 /* NameServer response */ 11596 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11597 /* NameServer */ 11598 pring->prt[3].type = FC_TYPE_CT; 11599 pring->prt[3].lpfc_sli_rcv_unsol_event = 11600 lpfc_ct_unsol_event; 11601 return 0; 11602 } 11603 11604 /** 11605 * lpfc_sli_setup - SLI ring setup function 11606 * @phba: Pointer to HBA context object. 11607 * 11608 * lpfc_sli_setup sets up rings of the SLI interface with 11609 * number of iocbs per ring and iotags. This function is 11610 * called while driver attach to the HBA and before the 11611 * interrupts are enabled. So there is no need for locking. 11612 * 11613 * This function always returns 0. SLI3 only. 11614 **/ 11615 int 11616 lpfc_sli_setup(struct lpfc_hba *phba) 11617 { 11618 int i, totiocbsize = 0; 11619 struct lpfc_sli *psli = &phba->sli; 11620 struct lpfc_sli_ring *pring; 11621 11622 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 11623 psli->sli_flag = 0; 11624 11625 psli->iocbq_lookup = NULL; 11626 psli->iocbq_lookup_len = 0; 11627 psli->last_iotag = 0; 11628 11629 for (i = 0; i < psli->num_rings; i++) { 11630 pring = &psli->sli3_ring[i]; 11631 switch (i) { 11632 case LPFC_FCP_RING: /* ring 0 - FCP */ 11633 /* numCiocb and numRiocb are used in config_port */ 11634 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 11635 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 11636 pring->sli.sli3.numCiocb += 11637 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11638 pring->sli.sli3.numRiocb += 11639 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11640 pring->sli.sli3.numCiocb += 11641 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11642 pring->sli.sli3.numRiocb += 11643 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11644 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11645 SLI3_IOCB_CMD_SIZE : 11646 SLI2_IOCB_CMD_SIZE; 11647 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11648 SLI3_IOCB_RSP_SIZE : 11649 SLI2_IOCB_RSP_SIZE; 11650 pring->iotag_ctr = 0; 11651 pring->iotag_max = 11652 (phba->cfg_hba_queue_depth * 2); 11653 pring->fast_iotag = pring->iotag_max; 11654 pring->num_mask = 0; 11655 break; 11656 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 11657 /* numCiocb and numRiocb are used in config_port */ 11658 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 11659 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 11660 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11661 SLI3_IOCB_CMD_SIZE : 11662 SLI2_IOCB_CMD_SIZE; 11663 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11664 SLI3_IOCB_RSP_SIZE : 11665 SLI2_IOCB_RSP_SIZE; 11666 pring->iotag_max = phba->cfg_hba_queue_depth; 11667 pring->num_mask = 0; 11668 break; 11669 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 11670 /* numCiocb and numRiocb are used in config_port */ 11671 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 11672 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 11673 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11674 SLI3_IOCB_CMD_SIZE : 11675 SLI2_IOCB_CMD_SIZE; 11676 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11677 SLI3_IOCB_RSP_SIZE : 11678 SLI2_IOCB_RSP_SIZE; 11679 pring->fast_iotag = 0; 11680 pring->iotag_ctr = 0; 11681 pring->iotag_max = 4096; 11682 pring->lpfc_sli_rcv_async_status = 11683 lpfc_sli_async_event_handler; 11684 pring->num_mask = LPFC_MAX_RING_MASK; 11685 pring->prt[0].profile = 0; /* Mask 0 */ 11686 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11687 pring->prt[0].type = FC_TYPE_ELS; 11688 pring->prt[0].lpfc_sli_rcv_unsol_event = 11689 lpfc_els_unsol_event; 11690 pring->prt[1].profile = 0; /* Mask 1 */ 11691 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11692 pring->prt[1].type = FC_TYPE_ELS; 11693 pring->prt[1].lpfc_sli_rcv_unsol_event = 11694 lpfc_els_unsol_event; 11695 pring->prt[2].profile = 0; /* Mask 2 */ 11696 /* NameServer Inquiry */ 11697 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11698 /* NameServer */ 11699 pring->prt[2].type = FC_TYPE_CT; 11700 pring->prt[2].lpfc_sli_rcv_unsol_event = 11701 lpfc_ct_unsol_event; 11702 pring->prt[3].profile = 0; /* Mask 3 */ 11703 /* NameServer response */ 11704 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11705 /* NameServer */ 11706 pring->prt[3].type = FC_TYPE_CT; 11707 pring->prt[3].lpfc_sli_rcv_unsol_event = 11708 lpfc_ct_unsol_event; 11709 break; 11710 } 11711 totiocbsize += (pring->sli.sli3.numCiocb * 11712 pring->sli.sli3.sizeCiocb) + 11713 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 11714 } 11715 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 11716 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 11717 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 11718 "SLI2 SLIM Data: x%x x%lx\n", 11719 phba->brd_no, totiocbsize, 11720 (unsigned long) MAX_SLIM_IOCB_SIZE); 11721 } 11722 if (phba->cfg_multi_ring_support == 2) 11723 lpfc_extra_ring_setup(phba); 11724 11725 return 0; 11726 } 11727 11728 /** 11729 * lpfc_sli4_queue_init - Queue initialization function 11730 * @phba: Pointer to HBA context object. 11731 * 11732 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 11733 * ring. This function also initializes ring indices of each ring. 11734 * This function is called during the initialization of the SLI 11735 * interface of an HBA. 11736 * This function is called with no lock held and always returns 11737 * 1. 11738 **/ 11739 void 11740 lpfc_sli4_queue_init(struct lpfc_hba *phba) 11741 { 11742 struct lpfc_sli *psli; 11743 struct lpfc_sli_ring *pring; 11744 int i; 11745 11746 psli = &phba->sli; 11747 spin_lock_irq(&phba->hbalock); 11748 INIT_LIST_HEAD(&psli->mboxq); 11749 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11750 /* Initialize list headers for txq and txcmplq as double linked lists */ 11751 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11752 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11753 pring->flag = 0; 11754 pring->ringno = LPFC_FCP_RING; 11755 pring->txcmplq_cnt = 0; 11756 INIT_LIST_HEAD(&pring->txq); 11757 INIT_LIST_HEAD(&pring->txcmplq); 11758 INIT_LIST_HEAD(&pring->iocb_continueq); 11759 spin_lock_init(&pring->ring_lock); 11760 } 11761 pring = phba->sli4_hba.els_wq->pring; 11762 pring->flag = 0; 11763 pring->ringno = LPFC_ELS_RING; 11764 pring->txcmplq_cnt = 0; 11765 INIT_LIST_HEAD(&pring->txq); 11766 INIT_LIST_HEAD(&pring->txcmplq); 11767 INIT_LIST_HEAD(&pring->iocb_continueq); 11768 spin_lock_init(&pring->ring_lock); 11769 11770 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11771 pring = phba->sli4_hba.nvmels_wq->pring; 11772 pring->flag = 0; 11773 pring->ringno = LPFC_ELS_RING; 11774 pring->txcmplq_cnt = 0; 11775 INIT_LIST_HEAD(&pring->txq); 11776 INIT_LIST_HEAD(&pring->txcmplq); 11777 INIT_LIST_HEAD(&pring->iocb_continueq); 11778 spin_lock_init(&pring->ring_lock); 11779 } 11780 11781 spin_unlock_irq(&phba->hbalock); 11782 } 11783 11784 /** 11785 * lpfc_sli_queue_init - Queue initialization function 11786 * @phba: Pointer to HBA context object. 11787 * 11788 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11789 * ring. This function also initializes ring indices of each ring. 11790 * This function is called during the initialization of the SLI 11791 * interface of an HBA. 11792 * This function is called with no lock held and always returns 11793 * 1. 11794 **/ 11795 void 11796 lpfc_sli_queue_init(struct lpfc_hba *phba) 11797 { 11798 struct lpfc_sli *psli; 11799 struct lpfc_sli_ring *pring; 11800 int i; 11801 11802 psli = &phba->sli; 11803 spin_lock_irq(&phba->hbalock); 11804 INIT_LIST_HEAD(&psli->mboxq); 11805 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11806 /* Initialize list headers for txq and txcmplq as double linked lists */ 11807 for (i = 0; i < psli->num_rings; i++) { 11808 pring = &psli->sli3_ring[i]; 11809 pring->ringno = i; 11810 pring->sli.sli3.next_cmdidx = 0; 11811 pring->sli.sli3.local_getidx = 0; 11812 pring->sli.sli3.cmdidx = 0; 11813 INIT_LIST_HEAD(&pring->iocb_continueq); 11814 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11815 INIT_LIST_HEAD(&pring->postbufq); 11816 pring->flag = 0; 11817 INIT_LIST_HEAD(&pring->txq); 11818 INIT_LIST_HEAD(&pring->txcmplq); 11819 spin_lock_init(&pring->ring_lock); 11820 } 11821 spin_unlock_irq(&phba->hbalock); 11822 } 11823 11824 /** 11825 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11826 * @phba: Pointer to HBA context object. 11827 * 11828 * This routine flushes the mailbox command subsystem. It will unconditionally 11829 * flush all the mailbox commands in the three possible stages in the mailbox 11830 * command sub-system: pending mailbox command queue; the outstanding mailbox 11831 * command; and completed mailbox command queue. It is caller's responsibility 11832 * to make sure that the driver is in the proper state to flush the mailbox 11833 * command sub-system. Namely, the posting of mailbox commands into the 11834 * pending mailbox command queue from the various clients must be stopped; 11835 * either the HBA is in a state that it will never works on the outstanding 11836 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11837 * mailbox command has been completed. 11838 **/ 11839 static void 11840 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11841 { 11842 LIST_HEAD(completions); 11843 struct lpfc_sli *psli = &phba->sli; 11844 LPFC_MBOXQ_t *pmb; 11845 unsigned long iflag; 11846 11847 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11848 local_bh_disable(); 11849 11850 /* Flush all the mailbox commands in the mbox system */ 11851 spin_lock_irqsave(&phba->hbalock, iflag); 11852 11853 /* The pending mailbox command queue */ 11854 list_splice_init(&phba->sli.mboxq, &completions); 11855 /* The outstanding active mailbox command */ 11856 if (psli->mbox_active) { 11857 list_add_tail(&psli->mbox_active->list, &completions); 11858 psli->mbox_active = NULL; 11859 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11860 } 11861 /* The completed mailbox command queue */ 11862 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11863 spin_unlock_irqrestore(&phba->hbalock, iflag); 11864 11865 /* Enable softirqs again, done with phba->hbalock */ 11866 local_bh_enable(); 11867 11868 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11869 while (!list_empty(&completions)) { 11870 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11871 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11872 if (pmb->mbox_cmpl) 11873 pmb->mbox_cmpl(phba, pmb); 11874 } 11875 } 11876 11877 /** 11878 * lpfc_sli_host_down - Vport cleanup function 11879 * @vport: Pointer to virtual port object. 11880 * 11881 * lpfc_sli_host_down is called to clean up the resources 11882 * associated with a vport before destroying virtual 11883 * port data structures. 11884 * This function does following operations: 11885 * - Free discovery resources associated with this virtual 11886 * port. 11887 * - Free iocbs associated with this virtual port in 11888 * the txq. 11889 * - Send abort for all iocb commands associated with this 11890 * vport in txcmplq. 11891 * 11892 * This function is called with no lock held and always returns 1. 11893 **/ 11894 int 11895 lpfc_sli_host_down(struct lpfc_vport *vport) 11896 { 11897 LIST_HEAD(completions); 11898 struct lpfc_hba *phba = vport->phba; 11899 struct lpfc_sli *psli = &phba->sli; 11900 struct lpfc_queue *qp = NULL; 11901 struct lpfc_sli_ring *pring; 11902 struct lpfc_iocbq *iocb, *next_iocb; 11903 int i; 11904 unsigned long flags = 0; 11905 uint16_t prev_pring_flag; 11906 11907 lpfc_cleanup_discovery_resources(vport); 11908 11909 spin_lock_irqsave(&phba->hbalock, flags); 11910 11911 /* 11912 * Error everything on the txq since these iocbs 11913 * have not been given to the FW yet. 11914 * Also issue ABTS for everything on the txcmplq 11915 */ 11916 if (phba->sli_rev != LPFC_SLI_REV4) { 11917 for (i = 0; i < psli->num_rings; i++) { 11918 pring = &psli->sli3_ring[i]; 11919 prev_pring_flag = pring->flag; 11920 /* Only slow rings */ 11921 if (pring->ringno == LPFC_ELS_RING) { 11922 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11923 /* Set the lpfc data pending flag */ 11924 set_bit(LPFC_DATA_READY, &phba->data_flags); 11925 } 11926 list_for_each_entry_safe(iocb, next_iocb, 11927 &pring->txq, list) { 11928 if (iocb->vport != vport) 11929 continue; 11930 list_move_tail(&iocb->list, &completions); 11931 } 11932 list_for_each_entry_safe(iocb, next_iocb, 11933 &pring->txcmplq, list) { 11934 if (iocb->vport != vport) 11935 continue; 11936 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11937 NULL); 11938 } 11939 pring->flag = prev_pring_flag; 11940 } 11941 } else { 11942 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11943 pring = qp->pring; 11944 if (!pring) 11945 continue; 11946 if (pring == phba->sli4_hba.els_wq->pring) { 11947 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11948 /* Set the lpfc data pending flag */ 11949 set_bit(LPFC_DATA_READY, &phba->data_flags); 11950 } 11951 prev_pring_flag = pring->flag; 11952 spin_lock(&pring->ring_lock); 11953 list_for_each_entry_safe(iocb, next_iocb, 11954 &pring->txq, list) { 11955 if (iocb->vport != vport) 11956 continue; 11957 list_move_tail(&iocb->list, &completions); 11958 } 11959 spin_unlock(&pring->ring_lock); 11960 list_for_each_entry_safe(iocb, next_iocb, 11961 &pring->txcmplq, list) { 11962 if (iocb->vport != vport) 11963 continue; 11964 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11965 NULL); 11966 } 11967 pring->flag = prev_pring_flag; 11968 } 11969 } 11970 spin_unlock_irqrestore(&phba->hbalock, flags); 11971 11972 /* Make sure HBA is alive */ 11973 lpfc_issue_hb_tmo(phba); 11974 11975 /* Cancel all the IOCBs from the completions list */ 11976 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11977 IOERR_SLI_DOWN); 11978 return 1; 11979 } 11980 11981 /** 11982 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11983 * @phba: Pointer to HBA context object. 11984 * 11985 * This function cleans up all iocb, buffers, mailbox commands 11986 * while shutting down the HBA. This function is called with no 11987 * lock held and always returns 1. 11988 * This function does the following to cleanup driver resources: 11989 * - Free discovery resources for each virtual port 11990 * - Cleanup any pending fabric iocbs 11991 * - Iterate through the iocb txq and free each entry 11992 * in the list. 11993 * - Free up any buffer posted to the HBA 11994 * - Free mailbox commands in the mailbox queue. 11995 **/ 11996 int 11997 lpfc_sli_hba_down(struct lpfc_hba *phba) 11998 { 11999 LIST_HEAD(completions); 12000 struct lpfc_sli *psli = &phba->sli; 12001 struct lpfc_queue *qp = NULL; 12002 struct lpfc_sli_ring *pring; 12003 struct lpfc_dmabuf *buf_ptr; 12004 unsigned long flags = 0; 12005 int i; 12006 12007 /* Shutdown the mailbox command sub-system */ 12008 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 12009 12010 lpfc_hba_down_prep(phba); 12011 12012 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12013 local_bh_disable(); 12014 12015 lpfc_fabric_abort_hba(phba); 12016 12017 spin_lock_irqsave(&phba->hbalock, flags); 12018 12019 /* 12020 * Error everything on the txq since these iocbs 12021 * have not been given to the FW yet. 12022 */ 12023 if (phba->sli_rev != LPFC_SLI_REV4) { 12024 for (i = 0; i < psli->num_rings; i++) { 12025 pring = &psli->sli3_ring[i]; 12026 /* Only slow rings */ 12027 if (pring->ringno == LPFC_ELS_RING) { 12028 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12029 /* Set the lpfc data pending flag */ 12030 set_bit(LPFC_DATA_READY, &phba->data_flags); 12031 } 12032 list_splice_init(&pring->txq, &completions); 12033 } 12034 } else { 12035 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12036 pring = qp->pring; 12037 if (!pring) 12038 continue; 12039 spin_lock(&pring->ring_lock); 12040 list_splice_init(&pring->txq, &completions); 12041 spin_unlock(&pring->ring_lock); 12042 if (pring == phba->sli4_hba.els_wq->pring) { 12043 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12044 /* Set the lpfc data pending flag */ 12045 set_bit(LPFC_DATA_READY, &phba->data_flags); 12046 } 12047 } 12048 } 12049 spin_unlock_irqrestore(&phba->hbalock, flags); 12050 12051 /* Cancel all the IOCBs from the completions list */ 12052 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 12053 IOERR_SLI_DOWN); 12054 12055 spin_lock_irqsave(&phba->hbalock, flags); 12056 list_splice_init(&phba->elsbuf, &completions); 12057 phba->elsbuf_cnt = 0; 12058 phba->elsbuf_prev_cnt = 0; 12059 spin_unlock_irqrestore(&phba->hbalock, flags); 12060 12061 while (!list_empty(&completions)) { 12062 list_remove_head(&completions, buf_ptr, 12063 struct lpfc_dmabuf, list); 12064 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 12065 kfree(buf_ptr); 12066 } 12067 12068 /* Enable softirqs again, done with phba->hbalock */ 12069 local_bh_enable(); 12070 12071 /* Return any active mbox cmds */ 12072 del_timer_sync(&psli->mbox_tmo); 12073 12074 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 12075 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12076 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 12077 12078 return 1; 12079 } 12080 12081 /** 12082 * lpfc_sli_pcimem_bcopy - SLI memory copy function 12083 * @srcp: Source memory pointer. 12084 * @destp: Destination memory pointer. 12085 * @cnt: Number of words required to be copied. 12086 * 12087 * This function is used for copying data between driver memory 12088 * and the SLI memory. This function also changes the endianness 12089 * of each word if native endianness is different from SLI 12090 * endianness. This function can be called with or without 12091 * lock. 12092 **/ 12093 void 12094 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 12095 { 12096 uint32_t *src = srcp; 12097 uint32_t *dest = destp; 12098 uint32_t ldata; 12099 int i; 12100 12101 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 12102 ldata = *src; 12103 ldata = le32_to_cpu(ldata); 12104 *dest = ldata; 12105 src++; 12106 dest++; 12107 } 12108 } 12109 12110 12111 /** 12112 * lpfc_sli_bemem_bcopy - SLI memory copy function 12113 * @srcp: Source memory pointer. 12114 * @destp: Destination memory pointer. 12115 * @cnt: Number of words required to be copied. 12116 * 12117 * This function is used for copying data between a data structure 12118 * with big endian representation to local endianness. 12119 * This function can be called with or without lock. 12120 **/ 12121 void 12122 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 12123 { 12124 uint32_t *src = srcp; 12125 uint32_t *dest = destp; 12126 uint32_t ldata; 12127 int i; 12128 12129 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 12130 ldata = *src; 12131 ldata = be32_to_cpu(ldata); 12132 *dest = ldata; 12133 src++; 12134 dest++; 12135 } 12136 } 12137 12138 /** 12139 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 12140 * @phba: Pointer to HBA context object. 12141 * @pring: Pointer to driver SLI ring object. 12142 * @mp: Pointer to driver buffer object. 12143 * 12144 * This function is called with no lock held. 12145 * It always return zero after adding the buffer to the postbufq 12146 * buffer list. 12147 **/ 12148 int 12149 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12150 struct lpfc_dmabuf *mp) 12151 { 12152 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 12153 later */ 12154 spin_lock_irq(&phba->hbalock); 12155 list_add_tail(&mp->list, &pring->postbufq); 12156 pring->postbufq_cnt++; 12157 spin_unlock_irq(&phba->hbalock); 12158 return 0; 12159 } 12160 12161 /** 12162 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 12163 * @phba: Pointer to HBA context object. 12164 * 12165 * When HBQ is enabled, buffers are searched based on tags. This function 12166 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 12167 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 12168 * does not conflict with tags of buffer posted for unsolicited events. 12169 * The function returns the allocated tag. The function is called with 12170 * no locks held. 12171 **/ 12172 uint32_t 12173 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 12174 { 12175 spin_lock_irq(&phba->hbalock); 12176 phba->buffer_tag_count++; 12177 /* 12178 * Always set the QUE_BUFTAG_BIT to distiguish between 12179 * a tag assigned by HBQ. 12180 */ 12181 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 12182 spin_unlock_irq(&phba->hbalock); 12183 return phba->buffer_tag_count; 12184 } 12185 12186 /** 12187 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 12188 * @phba: Pointer to HBA context object. 12189 * @pring: Pointer to driver SLI ring object. 12190 * @tag: Buffer tag. 12191 * 12192 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 12193 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 12194 * iocb is posted to the response ring with the tag of the buffer. 12195 * This function searches the pring->postbufq list using the tag 12196 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 12197 * iocb. If the buffer is found then lpfc_dmabuf object of the 12198 * buffer is returned to the caller else NULL is returned. 12199 * This function is called with no lock held. 12200 **/ 12201 struct lpfc_dmabuf * 12202 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12203 uint32_t tag) 12204 { 12205 struct lpfc_dmabuf *mp, *next_mp; 12206 struct list_head *slp = &pring->postbufq; 12207 12208 /* Search postbufq, from the beginning, looking for a match on tag */ 12209 spin_lock_irq(&phba->hbalock); 12210 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12211 if (mp->buffer_tag == tag) { 12212 list_del_init(&mp->list); 12213 pring->postbufq_cnt--; 12214 spin_unlock_irq(&phba->hbalock); 12215 return mp; 12216 } 12217 } 12218 12219 spin_unlock_irq(&phba->hbalock); 12220 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12221 "0402 Cannot find virtual addr for buffer tag on " 12222 "ring %d Data x%lx x%px x%px x%x\n", 12223 pring->ringno, (unsigned long) tag, 12224 slp->next, slp->prev, pring->postbufq_cnt); 12225 12226 return NULL; 12227 } 12228 12229 /** 12230 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 12231 * @phba: Pointer to HBA context object. 12232 * @pring: Pointer to driver SLI ring object. 12233 * @phys: DMA address of the buffer. 12234 * 12235 * This function searches the buffer list using the dma_address 12236 * of unsolicited event to find the driver's lpfc_dmabuf object 12237 * corresponding to the dma_address. The function returns the 12238 * lpfc_dmabuf object if a buffer is found else it returns NULL. 12239 * This function is called by the ct and els unsolicited event 12240 * handlers to get the buffer associated with the unsolicited 12241 * event. 12242 * 12243 * This function is called with no lock held. 12244 **/ 12245 struct lpfc_dmabuf * 12246 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12247 dma_addr_t phys) 12248 { 12249 struct lpfc_dmabuf *mp, *next_mp; 12250 struct list_head *slp = &pring->postbufq; 12251 12252 /* Search postbufq, from the beginning, looking for a match on phys */ 12253 spin_lock_irq(&phba->hbalock); 12254 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12255 if (mp->phys == phys) { 12256 list_del_init(&mp->list); 12257 pring->postbufq_cnt--; 12258 spin_unlock_irq(&phba->hbalock); 12259 return mp; 12260 } 12261 } 12262 12263 spin_unlock_irq(&phba->hbalock); 12264 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12265 "0410 Cannot find virtual addr for mapped buf on " 12266 "ring %d Data x%llx x%px x%px x%x\n", 12267 pring->ringno, (unsigned long long)phys, 12268 slp->next, slp->prev, pring->postbufq_cnt); 12269 return NULL; 12270 } 12271 12272 /** 12273 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 12274 * @phba: Pointer to HBA context object. 12275 * @cmdiocb: Pointer to driver command iocb object. 12276 * @rspiocb: Pointer to driver response iocb object. 12277 * 12278 * This function is the completion handler for the abort iocbs for 12279 * ELS commands. This function is called from the ELS ring event 12280 * handler with no lock held. This function frees memory resources 12281 * associated with the abort iocb. 12282 **/ 12283 static void 12284 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12285 struct lpfc_iocbq *rspiocb) 12286 { 12287 u32 ulp_status = get_job_ulpstatus(phba, rspiocb); 12288 u32 ulp_word4 = get_job_word4(phba, rspiocb); 12289 u8 cmnd = get_job_cmnd(phba, cmdiocb); 12290 12291 if (ulp_status) { 12292 /* 12293 * Assume that the port already completed and returned, or 12294 * will return the iocb. Just Log the message. 12295 */ 12296 if (phba->sli_rev < LPFC_SLI_REV4) { 12297 if (cmnd == CMD_ABORT_XRI_CX && 12298 ulp_status == IOSTAT_LOCAL_REJECT && 12299 ulp_word4 == IOERR_ABORT_REQUESTED) { 12300 goto release_iocb; 12301 } 12302 } 12303 12304 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 12305 "0327 Cannot abort els iocb x%px " 12306 "with io cmd xri %x abort tag : x%x, " 12307 "abort status %x abort code %x\n", 12308 cmdiocb, get_job_abtsiotag(phba, cmdiocb), 12309 (phba->sli_rev == LPFC_SLI_REV4) ? 12310 get_wqe_reqtag(cmdiocb) : 12311 cmdiocb->iocb.un.acxri.abortContextTag, 12312 ulp_status, ulp_word4); 12313 12314 } 12315 release_iocb: 12316 lpfc_sli_release_iocbq(phba, cmdiocb); 12317 return; 12318 } 12319 12320 /** 12321 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 12322 * @phba: Pointer to HBA context object. 12323 * @cmdiocb: Pointer to driver command iocb object. 12324 * @rspiocb: Pointer to driver response iocb object. 12325 * 12326 * The function is called from SLI ring event handler with no 12327 * lock held. This function is the completion handler for ELS commands 12328 * which are aborted. The function frees memory resources used for 12329 * the aborted ELS commands. 12330 **/ 12331 void 12332 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12333 struct lpfc_iocbq *rspiocb) 12334 { 12335 struct lpfc_nodelist *ndlp = cmdiocb->ndlp; 12336 IOCB_t *irsp; 12337 LPFC_MBOXQ_t *mbox; 12338 u32 ulp_command, ulp_status, ulp_word4, iotag; 12339 12340 ulp_command = get_job_cmnd(phba, cmdiocb); 12341 ulp_status = get_job_ulpstatus(phba, rspiocb); 12342 ulp_word4 = get_job_word4(phba, rspiocb); 12343 12344 if (phba->sli_rev == LPFC_SLI_REV4) { 12345 iotag = get_wqe_reqtag(cmdiocb); 12346 } else { 12347 irsp = &rspiocb->iocb; 12348 iotag = irsp->ulpIoTag; 12349 12350 /* It is possible a PLOGI_RJT for NPIV ports to get aborted. 12351 * The MBX_REG_LOGIN64 mbox command is freed back to the 12352 * mbox_mem_pool here. 12353 */ 12354 if (cmdiocb->context_un.mbox) { 12355 mbox = cmdiocb->context_un.mbox; 12356 lpfc_mbox_rsrc_cleanup(phba, mbox, MBOX_THD_UNLOCKED); 12357 cmdiocb->context_un.mbox = NULL; 12358 } 12359 } 12360 12361 /* ELS cmd tag <ulpIoTag> completes */ 12362 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 12363 "0139 Ignoring ELS cmd code x%x completion Data: " 12364 "x%x x%x x%x x%px\n", 12365 ulp_command, ulp_status, ulp_word4, iotag, 12366 cmdiocb->ndlp); 12367 /* 12368 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp 12369 * if exchange is busy. 12370 */ 12371 if (ulp_command == CMD_GEN_REQUEST64_CR) 12372 lpfc_ct_free_iocb(phba, cmdiocb); 12373 else 12374 lpfc_els_free_iocb(phba, cmdiocb); 12375 12376 lpfc_nlp_put(ndlp); 12377 } 12378 12379 /** 12380 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 12381 * @phba: Pointer to HBA context object. 12382 * @pring: Pointer to driver SLI ring object. 12383 * @cmdiocb: Pointer to driver command iocb object. 12384 * @cmpl: completion function. 12385 * 12386 * This function issues an abort iocb for the provided command iocb. In case 12387 * of unloading, the abort iocb will not be issued to commands on the ELS 12388 * ring. Instead, the callback function shall be changed to those commands 12389 * so that nothing happens when them finishes. This function is called with 12390 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 12391 * when the command iocb is an abort request. 12392 * 12393 **/ 12394 int 12395 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12396 struct lpfc_iocbq *cmdiocb, void *cmpl) 12397 { 12398 struct lpfc_vport *vport = cmdiocb->vport; 12399 struct lpfc_iocbq *abtsiocbp; 12400 int retval = IOCB_ERROR; 12401 unsigned long iflags; 12402 struct lpfc_nodelist *ndlp = NULL; 12403 u32 ulp_command = get_job_cmnd(phba, cmdiocb); 12404 u16 ulp_context, iotag; 12405 bool ia; 12406 12407 /* 12408 * There are certain command types we don't want to abort. And we 12409 * don't want to abort commands that are already in the process of 12410 * being aborted. 12411 */ 12412 if (ulp_command == CMD_ABORT_XRI_WQE || 12413 ulp_command == CMD_ABORT_XRI_CN || 12414 ulp_command == CMD_CLOSE_XRI_CN || 12415 cmdiocb->cmd_flag & LPFC_DRIVER_ABORTED) 12416 return IOCB_ABORTING; 12417 12418 if (!pring) { 12419 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12420 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12421 else 12422 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12423 return retval; 12424 } 12425 12426 /* 12427 * If we're unloading, don't abort iocb on the ELS ring, but change 12428 * the callback so that nothing happens when it finishes. 12429 */ 12430 if ((vport->load_flag & FC_UNLOADING) && 12431 pring->ringno == LPFC_ELS_RING) { 12432 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12433 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12434 else 12435 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12436 return retval; 12437 } 12438 12439 /* issue ABTS for this IOCB based on iotag */ 12440 abtsiocbp = __lpfc_sli_get_iocbq(phba); 12441 if (abtsiocbp == NULL) 12442 return IOCB_NORESOURCE; 12443 12444 /* This signals the response to set the correct status 12445 * before calling the completion handler 12446 */ 12447 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 12448 12449 if (phba->sli_rev == LPFC_SLI_REV4) { 12450 ulp_context = cmdiocb->sli4_xritag; 12451 iotag = abtsiocbp->iotag; 12452 } else { 12453 iotag = cmdiocb->iocb.ulpIoTag; 12454 if (pring->ringno == LPFC_ELS_RING) { 12455 ndlp = cmdiocb->ndlp; 12456 ulp_context = ndlp->nlp_rpi; 12457 } else { 12458 ulp_context = cmdiocb->iocb.ulpContext; 12459 } 12460 } 12461 12462 if (phba->link_state < LPFC_LINK_UP || 12463 (phba->sli_rev == LPFC_SLI_REV4 && 12464 phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN) || 12465 (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12466 ia = true; 12467 else 12468 ia = false; 12469 12470 lpfc_sli_prep_abort_xri(phba, abtsiocbp, ulp_context, iotag, 12471 cmdiocb->iocb.ulpClass, 12472 LPFC_WQE_CQ_ID_DEFAULT, ia, false); 12473 12474 abtsiocbp->vport = vport; 12475 12476 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12477 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 12478 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 12479 abtsiocbp->cmd_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX); 12480 12481 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 12482 abtsiocbp->cmd_flag |= LPFC_IO_FOF; 12483 12484 if (cmpl) 12485 abtsiocbp->cmd_cmpl = cmpl; 12486 else 12487 abtsiocbp->cmd_cmpl = lpfc_sli_abort_els_cmpl; 12488 abtsiocbp->vport = vport; 12489 12490 if (phba->sli_rev == LPFC_SLI_REV4) { 12491 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 12492 if (unlikely(pring == NULL)) 12493 goto abort_iotag_exit; 12494 /* Note: both hbalock and ring_lock need to be set here */ 12495 spin_lock_irqsave(&pring->ring_lock, iflags); 12496 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12497 abtsiocbp, 0); 12498 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12499 } else { 12500 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12501 abtsiocbp, 0); 12502 } 12503 12504 abort_iotag_exit: 12505 12506 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 12507 "0339 Abort IO XRI x%x, Original iotag x%x, " 12508 "abort tag x%x Cmdjob : x%px Abortjob : x%px " 12509 "retval x%x\n", 12510 ulp_context, (phba->sli_rev == LPFC_SLI_REV4) ? 12511 cmdiocb->iotag : iotag, iotag, cmdiocb, abtsiocbp, 12512 retval); 12513 if (retval) { 12514 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 12515 __lpfc_sli_release_iocbq(phba, abtsiocbp); 12516 } 12517 12518 /* 12519 * Caller to this routine should check for IOCB_ERROR 12520 * and handle it properly. This routine no longer removes 12521 * iocb off txcmplq and call compl in case of IOCB_ERROR. 12522 */ 12523 return retval; 12524 } 12525 12526 /** 12527 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 12528 * @phba: pointer to lpfc HBA data structure. 12529 * 12530 * This routine will abort all pending and outstanding iocbs to an HBA. 12531 **/ 12532 void 12533 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 12534 { 12535 struct lpfc_sli *psli = &phba->sli; 12536 struct lpfc_sli_ring *pring; 12537 struct lpfc_queue *qp = NULL; 12538 int i; 12539 12540 if (phba->sli_rev != LPFC_SLI_REV4) { 12541 for (i = 0; i < psli->num_rings; i++) { 12542 pring = &psli->sli3_ring[i]; 12543 lpfc_sli_abort_iocb_ring(phba, pring); 12544 } 12545 return; 12546 } 12547 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12548 pring = qp->pring; 12549 if (!pring) 12550 continue; 12551 lpfc_sli_abort_iocb_ring(phba, pring); 12552 } 12553 } 12554 12555 /** 12556 * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts 12557 * @iocbq: Pointer to iocb object. 12558 * @vport: Pointer to driver virtual port object. 12559 * 12560 * This function acts as an iocb filter for functions which abort FCP iocbs. 12561 * 12562 * Return values 12563 * -ENODEV, if a null iocb or vport ptr is encountered 12564 * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as 12565 * driver already started the abort process, or is an abort iocb itself 12566 * 0, passes criteria for aborting the FCP I/O iocb 12567 **/ 12568 static int 12569 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq, 12570 struct lpfc_vport *vport) 12571 { 12572 u8 ulp_command; 12573 12574 /* No null ptr vports */ 12575 if (!iocbq || iocbq->vport != vport) 12576 return -ENODEV; 12577 12578 /* iocb must be for FCP IO, already exists on the TX cmpl queue, 12579 * can't be premarked as driver aborted, nor be an ABORT iocb itself 12580 */ 12581 ulp_command = get_job_cmnd(vport->phba, iocbq); 12582 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12583 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ) || 12584 (iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12585 (ulp_command == CMD_ABORT_XRI_CN || 12586 ulp_command == CMD_CLOSE_XRI_CN || 12587 ulp_command == CMD_ABORT_XRI_WQE)) 12588 return -EINVAL; 12589 12590 return 0; 12591 } 12592 12593 /** 12594 * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target 12595 * @iocbq: Pointer to driver iocb object. 12596 * @vport: Pointer to driver virtual port object. 12597 * @tgt_id: SCSI ID of the target. 12598 * @lun_id: LUN ID of the scsi device. 12599 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 12600 * 12601 * This function acts as an iocb filter for validating a lun/SCSI target/SCSI 12602 * host. 12603 * 12604 * It will return 12605 * 0 if the filtering criteria is met for the given iocb and will return 12606 * 1 if the filtering criteria is not met. 12607 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 12608 * given iocb is for the SCSI device specified by vport, tgt_id and 12609 * lun_id parameter. 12610 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 12611 * given iocb is for the SCSI target specified by vport and tgt_id 12612 * parameters. 12613 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 12614 * given iocb is for the SCSI host associated with the given vport. 12615 * This function is called with no locks held. 12616 **/ 12617 static int 12618 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 12619 uint16_t tgt_id, uint64_t lun_id, 12620 lpfc_ctx_cmd ctx_cmd) 12621 { 12622 struct lpfc_io_buf *lpfc_cmd; 12623 int rc = 1; 12624 12625 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12626 12627 if (lpfc_cmd->pCmd == NULL) 12628 return rc; 12629 12630 switch (ctx_cmd) { 12631 case LPFC_CTX_LUN: 12632 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12633 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 12634 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 12635 rc = 0; 12636 break; 12637 case LPFC_CTX_TGT: 12638 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12639 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 12640 rc = 0; 12641 break; 12642 case LPFC_CTX_HOST: 12643 rc = 0; 12644 break; 12645 default: 12646 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 12647 __func__, ctx_cmd); 12648 break; 12649 } 12650 12651 return rc; 12652 } 12653 12654 /** 12655 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 12656 * @vport: Pointer to virtual port. 12657 * @tgt_id: SCSI ID of the target. 12658 * @lun_id: LUN ID of the scsi device. 12659 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12660 * 12661 * This function returns number of FCP commands pending for the vport. 12662 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 12663 * commands pending on the vport associated with SCSI device specified 12664 * by tgt_id and lun_id parameters. 12665 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 12666 * commands pending on the vport associated with SCSI target specified 12667 * by tgt_id parameter. 12668 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 12669 * commands pending on the vport. 12670 * This function returns the number of iocbs which satisfy the filter. 12671 * This function is called without any lock held. 12672 **/ 12673 int 12674 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 12675 lpfc_ctx_cmd ctx_cmd) 12676 { 12677 struct lpfc_hba *phba = vport->phba; 12678 struct lpfc_iocbq *iocbq; 12679 int sum, i; 12680 unsigned long iflags; 12681 u8 ulp_command; 12682 12683 spin_lock_irqsave(&phba->hbalock, iflags); 12684 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 12685 iocbq = phba->sli.iocbq_lookup[i]; 12686 12687 if (!iocbq || iocbq->vport != vport) 12688 continue; 12689 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12690 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) 12691 continue; 12692 12693 /* Include counting outstanding aborts */ 12694 ulp_command = get_job_cmnd(phba, iocbq); 12695 if (ulp_command == CMD_ABORT_XRI_CN || 12696 ulp_command == CMD_CLOSE_XRI_CN || 12697 ulp_command == CMD_ABORT_XRI_WQE) { 12698 sum++; 12699 continue; 12700 } 12701 12702 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12703 ctx_cmd) == 0) 12704 sum++; 12705 } 12706 spin_unlock_irqrestore(&phba->hbalock, iflags); 12707 12708 return sum; 12709 } 12710 12711 /** 12712 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12713 * @phba: Pointer to HBA context object 12714 * @cmdiocb: Pointer to command iocb object. 12715 * @rspiocb: Pointer to response iocb object. 12716 * 12717 * This function is called when an aborted FCP iocb completes. This 12718 * function is called by the ring event handler with no lock held. 12719 * This function frees the iocb. 12720 **/ 12721 void 12722 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12723 struct lpfc_iocbq *rspiocb) 12724 { 12725 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12726 "3096 ABORT_XRI_CX completing on rpi x%x " 12727 "original iotag x%x, abort cmd iotag x%x " 12728 "status 0x%x, reason 0x%x\n", 12729 (phba->sli_rev == LPFC_SLI_REV4) ? 12730 cmdiocb->sli4_xritag : 12731 cmdiocb->iocb.un.acxri.abortContextTag, 12732 get_job_abtsiotag(phba, cmdiocb), 12733 cmdiocb->iotag, get_job_ulpstatus(phba, rspiocb), 12734 get_job_word4(phba, rspiocb)); 12735 lpfc_sli_release_iocbq(phba, cmdiocb); 12736 return; 12737 } 12738 12739 /** 12740 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 12741 * @vport: Pointer to virtual port. 12742 * @tgt_id: SCSI ID of the target. 12743 * @lun_id: LUN ID of the scsi device. 12744 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12745 * 12746 * This function sends an abort command for every SCSI command 12747 * associated with the given virtual port pending on the ring 12748 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12749 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12750 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12751 * followed by lpfc_sli_validate_fcp_iocb. 12752 * 12753 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 12754 * FCP iocbs associated with lun specified by tgt_id and lun_id 12755 * parameters 12756 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 12757 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12758 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 12759 * FCP iocbs associated with virtual port. 12760 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 12761 * lpfc_sli4_calc_ring is used. 12762 * This function returns number of iocbs it failed to abort. 12763 * This function is called with no locks held. 12764 **/ 12765 int 12766 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 12767 lpfc_ctx_cmd abort_cmd) 12768 { 12769 struct lpfc_hba *phba = vport->phba; 12770 struct lpfc_sli_ring *pring = NULL; 12771 struct lpfc_iocbq *iocbq; 12772 int errcnt = 0, ret_val = 0; 12773 unsigned long iflags; 12774 int i; 12775 12776 /* all I/Os are in process of being flushed */ 12777 if (phba->hba_flag & HBA_IOQ_FLUSH) 12778 return errcnt; 12779 12780 for (i = 1; i <= phba->sli.last_iotag; i++) { 12781 iocbq = phba->sli.iocbq_lookup[i]; 12782 12783 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12784 continue; 12785 12786 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12787 abort_cmd) != 0) 12788 continue; 12789 12790 spin_lock_irqsave(&phba->hbalock, iflags); 12791 if (phba->sli_rev == LPFC_SLI_REV3) { 12792 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12793 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12794 pring = lpfc_sli4_calc_ring(phba, iocbq); 12795 } 12796 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12797 lpfc_sli_abort_fcp_cmpl); 12798 spin_unlock_irqrestore(&phba->hbalock, iflags); 12799 if (ret_val != IOCB_SUCCESS) 12800 errcnt++; 12801 } 12802 12803 return errcnt; 12804 } 12805 12806 /** 12807 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12808 * @vport: Pointer to virtual port. 12809 * @pring: Pointer to driver SLI ring object. 12810 * @tgt_id: SCSI ID of the target. 12811 * @lun_id: LUN ID of the scsi device. 12812 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12813 * 12814 * This function sends an abort command for every SCSI command 12815 * associated with the given virtual port pending on the ring 12816 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12817 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12818 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12819 * followed by lpfc_sli_validate_fcp_iocb. 12820 * 12821 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12822 * FCP iocbs associated with lun specified by tgt_id and lun_id 12823 * parameters 12824 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12825 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12826 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12827 * FCP iocbs associated with virtual port. 12828 * This function returns number of iocbs it aborted . 12829 * This function is called with no locks held right after a taskmgmt 12830 * command is sent. 12831 **/ 12832 int 12833 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12834 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12835 { 12836 struct lpfc_hba *phba = vport->phba; 12837 struct lpfc_io_buf *lpfc_cmd; 12838 struct lpfc_iocbq *abtsiocbq; 12839 struct lpfc_nodelist *ndlp = NULL; 12840 struct lpfc_iocbq *iocbq; 12841 int sum, i, ret_val; 12842 unsigned long iflags; 12843 struct lpfc_sli_ring *pring_s4 = NULL; 12844 u16 ulp_context, iotag, cqid = LPFC_WQE_CQ_ID_DEFAULT; 12845 bool ia; 12846 12847 spin_lock_irqsave(&phba->hbalock, iflags); 12848 12849 /* all I/Os are in process of being flushed */ 12850 if (phba->hba_flag & HBA_IOQ_FLUSH) { 12851 spin_unlock_irqrestore(&phba->hbalock, iflags); 12852 return 0; 12853 } 12854 sum = 0; 12855 12856 for (i = 1; i <= phba->sli.last_iotag; i++) { 12857 iocbq = phba->sli.iocbq_lookup[i]; 12858 12859 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12860 continue; 12861 12862 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12863 cmd) != 0) 12864 continue; 12865 12866 /* Guard against IO completion being called at same time */ 12867 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12868 spin_lock(&lpfc_cmd->buf_lock); 12869 12870 if (!lpfc_cmd->pCmd) { 12871 spin_unlock(&lpfc_cmd->buf_lock); 12872 continue; 12873 } 12874 12875 if (phba->sli_rev == LPFC_SLI_REV4) { 12876 pring_s4 = 12877 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12878 if (!pring_s4) { 12879 spin_unlock(&lpfc_cmd->buf_lock); 12880 continue; 12881 } 12882 /* Note: both hbalock and ring_lock must be set here */ 12883 spin_lock(&pring_s4->ring_lock); 12884 } 12885 12886 /* 12887 * If the iocbq is already being aborted, don't take a second 12888 * action, but do count it. 12889 */ 12890 if ((iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12891 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) { 12892 if (phba->sli_rev == LPFC_SLI_REV4) 12893 spin_unlock(&pring_s4->ring_lock); 12894 spin_unlock(&lpfc_cmd->buf_lock); 12895 continue; 12896 } 12897 12898 /* issue ABTS for this IOCB based on iotag */ 12899 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12900 if (!abtsiocbq) { 12901 if (phba->sli_rev == LPFC_SLI_REV4) 12902 spin_unlock(&pring_s4->ring_lock); 12903 spin_unlock(&lpfc_cmd->buf_lock); 12904 continue; 12905 } 12906 12907 if (phba->sli_rev == LPFC_SLI_REV4) { 12908 iotag = abtsiocbq->iotag; 12909 ulp_context = iocbq->sli4_xritag; 12910 cqid = lpfc_cmd->hdwq->io_cq_map; 12911 } else { 12912 iotag = iocbq->iocb.ulpIoTag; 12913 if (pring->ringno == LPFC_ELS_RING) { 12914 ndlp = iocbq->ndlp; 12915 ulp_context = ndlp->nlp_rpi; 12916 } else { 12917 ulp_context = iocbq->iocb.ulpContext; 12918 } 12919 } 12920 12921 ndlp = lpfc_cmd->rdata->pnode; 12922 12923 if (lpfc_is_link_up(phba) && 12924 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE) && 12925 !(phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12926 ia = false; 12927 else 12928 ia = true; 12929 12930 lpfc_sli_prep_abort_xri(phba, abtsiocbq, ulp_context, iotag, 12931 iocbq->iocb.ulpClass, cqid, 12932 ia, false); 12933 12934 abtsiocbq->vport = vport; 12935 12936 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12937 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12938 if (iocbq->cmd_flag & LPFC_IO_FCP) 12939 abtsiocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 12940 if (iocbq->cmd_flag & LPFC_IO_FOF) 12941 abtsiocbq->cmd_flag |= LPFC_IO_FOF; 12942 12943 /* Setup callback routine and issue the command. */ 12944 abtsiocbq->cmd_cmpl = lpfc_sli_abort_fcp_cmpl; 12945 12946 /* 12947 * Indicate the IO is being aborted by the driver and set 12948 * the caller's flag into the aborted IO. 12949 */ 12950 iocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 12951 12952 if (phba->sli_rev == LPFC_SLI_REV4) { 12953 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12954 abtsiocbq, 0); 12955 spin_unlock(&pring_s4->ring_lock); 12956 } else { 12957 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12958 abtsiocbq, 0); 12959 } 12960 12961 spin_unlock(&lpfc_cmd->buf_lock); 12962 12963 if (ret_val == IOCB_ERROR) 12964 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12965 else 12966 sum++; 12967 } 12968 spin_unlock_irqrestore(&phba->hbalock, iflags); 12969 return sum; 12970 } 12971 12972 /** 12973 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12974 * @phba: Pointer to HBA context object. 12975 * @cmdiocbq: Pointer to command iocb. 12976 * @rspiocbq: Pointer to response iocb. 12977 * 12978 * This function is the completion handler for iocbs issued using 12979 * lpfc_sli_issue_iocb_wait function. This function is called by the 12980 * ring event handler function without any lock held. This function 12981 * can be called from both worker thread context and interrupt 12982 * context. This function also can be called from other thread which 12983 * cleans up the SLI layer objects. 12984 * This function copy the contents of the response iocb to the 12985 * response iocb memory object provided by the caller of 12986 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12987 * sleeps for the iocb completion. 12988 **/ 12989 static void 12990 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12991 struct lpfc_iocbq *cmdiocbq, 12992 struct lpfc_iocbq *rspiocbq) 12993 { 12994 wait_queue_head_t *pdone_q; 12995 unsigned long iflags; 12996 struct lpfc_io_buf *lpfc_cmd; 12997 size_t offset = offsetof(struct lpfc_iocbq, wqe); 12998 12999 spin_lock_irqsave(&phba->hbalock, iflags); 13000 if (cmdiocbq->cmd_flag & LPFC_IO_WAKE_TMO) { 13001 13002 /* 13003 * A time out has occurred for the iocb. If a time out 13004 * completion handler has been supplied, call it. Otherwise, 13005 * just free the iocbq. 13006 */ 13007 13008 spin_unlock_irqrestore(&phba->hbalock, iflags); 13009 cmdiocbq->cmd_cmpl = cmdiocbq->wait_cmd_cmpl; 13010 cmdiocbq->wait_cmd_cmpl = NULL; 13011 if (cmdiocbq->cmd_cmpl) 13012 cmdiocbq->cmd_cmpl(phba, cmdiocbq, NULL); 13013 else 13014 lpfc_sli_release_iocbq(phba, cmdiocbq); 13015 return; 13016 } 13017 13018 /* Copy the contents of the local rspiocb into the caller's buffer. */ 13019 cmdiocbq->cmd_flag |= LPFC_IO_WAKE; 13020 if (cmdiocbq->rsp_iocb && rspiocbq) 13021 memcpy((char *)cmdiocbq->rsp_iocb + offset, 13022 (char *)rspiocbq + offset, sizeof(*rspiocbq) - offset); 13023 13024 /* Set the exchange busy flag for task management commands */ 13025 if ((cmdiocbq->cmd_flag & LPFC_IO_FCP) && 13026 !(cmdiocbq->cmd_flag & LPFC_IO_LIBDFC)) { 13027 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 13028 cur_iocbq); 13029 if (rspiocbq && (rspiocbq->cmd_flag & LPFC_EXCHANGE_BUSY)) 13030 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 13031 else 13032 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 13033 } 13034 13035 pdone_q = cmdiocbq->context_un.wait_queue; 13036 if (pdone_q) 13037 wake_up(pdone_q); 13038 spin_unlock_irqrestore(&phba->hbalock, iflags); 13039 return; 13040 } 13041 13042 /** 13043 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 13044 * @phba: Pointer to HBA context object.. 13045 * @piocbq: Pointer to command iocb. 13046 * @flag: Flag to test. 13047 * 13048 * This routine grabs the hbalock and then test the cmd_flag to 13049 * see if the passed in flag is set. 13050 * Returns: 13051 * 1 if flag is set. 13052 * 0 if flag is not set. 13053 **/ 13054 static int 13055 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 13056 struct lpfc_iocbq *piocbq, uint32_t flag) 13057 { 13058 unsigned long iflags; 13059 int ret; 13060 13061 spin_lock_irqsave(&phba->hbalock, iflags); 13062 ret = piocbq->cmd_flag & flag; 13063 spin_unlock_irqrestore(&phba->hbalock, iflags); 13064 return ret; 13065 13066 } 13067 13068 /** 13069 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 13070 * @phba: Pointer to HBA context object.. 13071 * @ring_number: Ring number 13072 * @piocb: Pointer to command iocb. 13073 * @prspiocbq: Pointer to response iocb. 13074 * @timeout: Timeout in number of seconds. 13075 * 13076 * This function issues the iocb to firmware and waits for the 13077 * iocb to complete. The cmd_cmpl field of the shall be used 13078 * to handle iocbs which time out. If the field is NULL, the 13079 * function shall free the iocbq structure. If more clean up is 13080 * needed, the caller is expected to provide a completion function 13081 * that will provide the needed clean up. If the iocb command is 13082 * not completed within timeout seconds, the function will either 13083 * free the iocbq structure (if cmd_cmpl == NULL) or execute the 13084 * completion function set in the cmd_cmpl field and then return 13085 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 13086 * resources if this function returns IOCB_TIMEDOUT. 13087 * The function waits for the iocb completion using an 13088 * non-interruptible wait. 13089 * This function will sleep while waiting for iocb completion. 13090 * So, this function should not be called from any context which 13091 * does not allow sleeping. Due to the same reason, this function 13092 * cannot be called with interrupt disabled. 13093 * This function assumes that the iocb completions occur while 13094 * this function sleep. So, this function cannot be called from 13095 * the thread which process iocb completion for this ring. 13096 * This function clears the cmd_flag of the iocb object before 13097 * issuing the iocb and the iocb completion handler sets this 13098 * flag and wakes this thread when the iocb completes. 13099 * The contents of the response iocb will be copied to prspiocbq 13100 * by the completion handler when the command completes. 13101 * This function returns IOCB_SUCCESS when success. 13102 * This function is called with no lock held. 13103 **/ 13104 int 13105 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 13106 uint32_t ring_number, 13107 struct lpfc_iocbq *piocb, 13108 struct lpfc_iocbq *prspiocbq, 13109 uint32_t timeout) 13110 { 13111 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 13112 long timeleft, timeout_req = 0; 13113 int retval = IOCB_SUCCESS; 13114 uint32_t creg_val; 13115 struct lpfc_iocbq *iocb; 13116 int txq_cnt = 0; 13117 int txcmplq_cnt = 0; 13118 struct lpfc_sli_ring *pring; 13119 unsigned long iflags; 13120 bool iocb_completed = true; 13121 13122 if (phba->sli_rev >= LPFC_SLI_REV4) { 13123 lpfc_sli_prep_wqe(phba, piocb); 13124 13125 pring = lpfc_sli4_calc_ring(phba, piocb); 13126 } else 13127 pring = &phba->sli.sli3_ring[ring_number]; 13128 /* 13129 * If the caller has provided a response iocbq buffer, then rsp_iocb 13130 * is NULL or its an error. 13131 */ 13132 if (prspiocbq) { 13133 if (piocb->rsp_iocb) 13134 return IOCB_ERROR; 13135 piocb->rsp_iocb = prspiocbq; 13136 } 13137 13138 piocb->wait_cmd_cmpl = piocb->cmd_cmpl; 13139 piocb->cmd_cmpl = lpfc_sli_wake_iocb_wait; 13140 piocb->context_un.wait_queue = &done_q; 13141 piocb->cmd_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 13142 13143 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13144 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13145 return IOCB_ERROR; 13146 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 13147 writel(creg_val, phba->HCregaddr); 13148 readl(phba->HCregaddr); /* flush */ 13149 } 13150 13151 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 13152 SLI_IOCB_RET_IOCB); 13153 if (retval == IOCB_SUCCESS) { 13154 timeout_req = msecs_to_jiffies(timeout * 1000); 13155 timeleft = wait_event_timeout(done_q, 13156 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 13157 timeout_req); 13158 spin_lock_irqsave(&phba->hbalock, iflags); 13159 if (!(piocb->cmd_flag & LPFC_IO_WAKE)) { 13160 13161 /* 13162 * IOCB timed out. Inform the wake iocb wait 13163 * completion function and set local status 13164 */ 13165 13166 iocb_completed = false; 13167 piocb->cmd_flag |= LPFC_IO_WAKE_TMO; 13168 } 13169 spin_unlock_irqrestore(&phba->hbalock, iflags); 13170 if (iocb_completed) { 13171 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13172 "0331 IOCB wake signaled\n"); 13173 /* Note: we are not indicating if the IOCB has a success 13174 * status or not - that's for the caller to check. 13175 * IOCB_SUCCESS means just that the command was sent and 13176 * completed. Not that it completed successfully. 13177 * */ 13178 } else if (timeleft == 0) { 13179 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13180 "0338 IOCB wait timeout error - no " 13181 "wake response Data x%x\n", timeout); 13182 retval = IOCB_TIMEDOUT; 13183 } else { 13184 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13185 "0330 IOCB wake NOT set, " 13186 "Data x%x x%lx\n", 13187 timeout, (timeleft / jiffies)); 13188 retval = IOCB_TIMEDOUT; 13189 } 13190 } else if (retval == IOCB_BUSY) { 13191 if (phba->cfg_log_verbose & LOG_SLI) { 13192 list_for_each_entry(iocb, &pring->txq, list) { 13193 txq_cnt++; 13194 } 13195 list_for_each_entry(iocb, &pring->txcmplq, list) { 13196 txcmplq_cnt++; 13197 } 13198 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13199 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 13200 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 13201 } 13202 return retval; 13203 } else { 13204 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13205 "0332 IOCB wait issue failed, Data x%x\n", 13206 retval); 13207 retval = IOCB_ERROR; 13208 } 13209 13210 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13211 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13212 return IOCB_ERROR; 13213 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 13214 writel(creg_val, phba->HCregaddr); 13215 readl(phba->HCregaddr); /* flush */ 13216 } 13217 13218 if (prspiocbq) 13219 piocb->rsp_iocb = NULL; 13220 13221 piocb->context_un.wait_queue = NULL; 13222 piocb->cmd_cmpl = NULL; 13223 return retval; 13224 } 13225 13226 /** 13227 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 13228 * @phba: Pointer to HBA context object. 13229 * @pmboxq: Pointer to driver mailbox object. 13230 * @timeout: Timeout in number of seconds. 13231 * 13232 * This function issues the mailbox to firmware and waits for the 13233 * mailbox command to complete. If the mailbox command is not 13234 * completed within timeout seconds, it returns MBX_TIMEOUT. 13235 * The function waits for the mailbox completion using an 13236 * interruptible wait. If the thread is woken up due to a 13237 * signal, MBX_TIMEOUT error is returned to the caller. Caller 13238 * should not free the mailbox resources, if this function returns 13239 * MBX_TIMEOUT. 13240 * This function will sleep while waiting for mailbox completion. 13241 * So, this function should not be called from any context which 13242 * does not allow sleeping. Due to the same reason, this function 13243 * cannot be called with interrupt disabled. 13244 * This function assumes that the mailbox completion occurs while 13245 * this function sleep. So, this function cannot be called from 13246 * the worker thread which processes mailbox completion. 13247 * This function is called in the context of HBA management 13248 * applications. 13249 * This function returns MBX_SUCCESS when successful. 13250 * This function is called with no lock held. 13251 **/ 13252 int 13253 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 13254 uint32_t timeout) 13255 { 13256 struct completion mbox_done; 13257 int retval; 13258 unsigned long flag; 13259 13260 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 13261 /* setup wake call as IOCB callback */ 13262 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 13263 13264 /* setup context3 field to pass wait_queue pointer to wake function */ 13265 init_completion(&mbox_done); 13266 pmboxq->context3 = &mbox_done; 13267 /* now issue the command */ 13268 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 13269 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 13270 wait_for_completion_timeout(&mbox_done, 13271 msecs_to_jiffies(timeout * 1000)); 13272 13273 spin_lock_irqsave(&phba->hbalock, flag); 13274 pmboxq->context3 = NULL; 13275 /* 13276 * if LPFC_MBX_WAKE flag is set the mailbox is completed 13277 * else do not free the resources. 13278 */ 13279 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 13280 retval = MBX_SUCCESS; 13281 } else { 13282 retval = MBX_TIMEOUT; 13283 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13284 } 13285 spin_unlock_irqrestore(&phba->hbalock, flag); 13286 } 13287 return retval; 13288 } 13289 13290 /** 13291 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 13292 * @phba: Pointer to HBA context. 13293 * @mbx_action: Mailbox shutdown options. 13294 * 13295 * This function is called to shutdown the driver's mailbox sub-system. 13296 * It first marks the mailbox sub-system is in a block state to prevent 13297 * the asynchronous mailbox command from issued off the pending mailbox 13298 * command queue. If the mailbox command sub-system shutdown is due to 13299 * HBA error conditions such as EEH or ERATT, this routine shall invoke 13300 * the mailbox sub-system flush routine to forcefully bring down the 13301 * mailbox sub-system. Otherwise, if it is due to normal condition (such 13302 * as with offline or HBA function reset), this routine will wait for the 13303 * outstanding mailbox command to complete before invoking the mailbox 13304 * sub-system flush routine to gracefully bring down mailbox sub-system. 13305 **/ 13306 void 13307 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 13308 { 13309 struct lpfc_sli *psli = &phba->sli; 13310 unsigned long timeout; 13311 13312 if (mbx_action == LPFC_MBX_NO_WAIT) { 13313 /* delay 100ms for port state */ 13314 msleep(100); 13315 lpfc_sli_mbox_sys_flush(phba); 13316 return; 13317 } 13318 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 13319 13320 /* Disable softirqs, including timers from obtaining phba->hbalock */ 13321 local_bh_disable(); 13322 13323 spin_lock_irq(&phba->hbalock); 13324 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13325 13326 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 13327 /* Determine how long we might wait for the active mailbox 13328 * command to be gracefully completed by firmware. 13329 */ 13330 if (phba->sli.mbox_active) 13331 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 13332 phba->sli.mbox_active) * 13333 1000) + jiffies; 13334 spin_unlock_irq(&phba->hbalock); 13335 13336 /* Enable softirqs again, done with phba->hbalock */ 13337 local_bh_enable(); 13338 13339 while (phba->sli.mbox_active) { 13340 /* Check active mailbox complete status every 2ms */ 13341 msleep(2); 13342 if (time_after(jiffies, timeout)) 13343 /* Timeout, let the mailbox flush routine to 13344 * forcefully release active mailbox command 13345 */ 13346 break; 13347 } 13348 } else { 13349 spin_unlock_irq(&phba->hbalock); 13350 13351 /* Enable softirqs again, done with phba->hbalock */ 13352 local_bh_enable(); 13353 } 13354 13355 lpfc_sli_mbox_sys_flush(phba); 13356 } 13357 13358 /** 13359 * lpfc_sli_eratt_read - read sli-3 error attention events 13360 * @phba: Pointer to HBA context. 13361 * 13362 * This function is called to read the SLI3 device error attention registers 13363 * for possible error attention events. The caller must hold the hostlock 13364 * with spin_lock_irq(). 13365 * 13366 * This function returns 1 when there is Error Attention in the Host Attention 13367 * Register and returns 0 otherwise. 13368 **/ 13369 static int 13370 lpfc_sli_eratt_read(struct lpfc_hba *phba) 13371 { 13372 uint32_t ha_copy; 13373 13374 /* Read chip Host Attention (HA) register */ 13375 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13376 goto unplug_err; 13377 13378 if (ha_copy & HA_ERATT) { 13379 /* Read host status register to retrieve error event */ 13380 if (lpfc_sli_read_hs(phba)) 13381 goto unplug_err; 13382 13383 /* Check if there is a deferred error condition is active */ 13384 if ((HS_FFER1 & phba->work_hs) && 13385 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13386 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 13387 phba->hba_flag |= DEFER_ERATT; 13388 /* Clear all interrupt enable conditions */ 13389 writel(0, phba->HCregaddr); 13390 readl(phba->HCregaddr); 13391 } 13392 13393 /* Set the driver HA work bitmap */ 13394 phba->work_ha |= HA_ERATT; 13395 /* Indicate polling handles this ERATT */ 13396 phba->hba_flag |= HBA_ERATT_HANDLED; 13397 return 1; 13398 } 13399 return 0; 13400 13401 unplug_err: 13402 /* Set the driver HS work bitmap */ 13403 phba->work_hs |= UNPLUG_ERR; 13404 /* Set the driver HA work bitmap */ 13405 phba->work_ha |= HA_ERATT; 13406 /* Indicate polling handles this ERATT */ 13407 phba->hba_flag |= HBA_ERATT_HANDLED; 13408 return 1; 13409 } 13410 13411 /** 13412 * lpfc_sli4_eratt_read - read sli-4 error attention events 13413 * @phba: Pointer to HBA context. 13414 * 13415 * This function is called to read the SLI4 device error attention registers 13416 * for possible error attention events. The caller must hold the hostlock 13417 * with spin_lock_irq(). 13418 * 13419 * This function returns 1 when there is Error Attention in the Host Attention 13420 * Register and returns 0 otherwise. 13421 **/ 13422 static int 13423 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 13424 { 13425 uint32_t uerr_sta_hi, uerr_sta_lo; 13426 uint32_t if_type, portsmphr; 13427 struct lpfc_register portstat_reg; 13428 u32 logmask; 13429 13430 /* 13431 * For now, use the SLI4 device internal unrecoverable error 13432 * registers for error attention. This can be changed later. 13433 */ 13434 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 13435 switch (if_type) { 13436 case LPFC_SLI_INTF_IF_TYPE_0: 13437 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 13438 &uerr_sta_lo) || 13439 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 13440 &uerr_sta_hi)) { 13441 phba->work_hs |= UNPLUG_ERR; 13442 phba->work_ha |= HA_ERATT; 13443 phba->hba_flag |= HBA_ERATT_HANDLED; 13444 return 1; 13445 } 13446 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 13447 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 13448 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13449 "1423 HBA Unrecoverable error: " 13450 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 13451 "ue_mask_lo_reg=0x%x, " 13452 "ue_mask_hi_reg=0x%x\n", 13453 uerr_sta_lo, uerr_sta_hi, 13454 phba->sli4_hba.ue_mask_lo, 13455 phba->sli4_hba.ue_mask_hi); 13456 phba->work_status[0] = uerr_sta_lo; 13457 phba->work_status[1] = uerr_sta_hi; 13458 phba->work_ha |= HA_ERATT; 13459 phba->hba_flag |= HBA_ERATT_HANDLED; 13460 return 1; 13461 } 13462 break; 13463 case LPFC_SLI_INTF_IF_TYPE_2: 13464 case LPFC_SLI_INTF_IF_TYPE_6: 13465 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 13466 &portstat_reg.word0) || 13467 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 13468 &portsmphr)){ 13469 phba->work_hs |= UNPLUG_ERR; 13470 phba->work_ha |= HA_ERATT; 13471 phba->hba_flag |= HBA_ERATT_HANDLED; 13472 return 1; 13473 } 13474 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 13475 phba->work_status[0] = 13476 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 13477 phba->work_status[1] = 13478 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 13479 logmask = LOG_TRACE_EVENT; 13480 if (phba->work_status[0] == 13481 SLIPORT_ERR1_REG_ERR_CODE_2 && 13482 phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART) 13483 logmask = LOG_SLI; 13484 lpfc_printf_log(phba, KERN_ERR, logmask, 13485 "2885 Port Status Event: " 13486 "port status reg 0x%x, " 13487 "port smphr reg 0x%x, " 13488 "error 1=0x%x, error 2=0x%x\n", 13489 portstat_reg.word0, 13490 portsmphr, 13491 phba->work_status[0], 13492 phba->work_status[1]); 13493 phba->work_ha |= HA_ERATT; 13494 phba->hba_flag |= HBA_ERATT_HANDLED; 13495 return 1; 13496 } 13497 break; 13498 case LPFC_SLI_INTF_IF_TYPE_1: 13499 default: 13500 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13501 "2886 HBA Error Attention on unsupported " 13502 "if type %d.", if_type); 13503 return 1; 13504 } 13505 13506 return 0; 13507 } 13508 13509 /** 13510 * lpfc_sli_check_eratt - check error attention events 13511 * @phba: Pointer to HBA context. 13512 * 13513 * This function is called from timer soft interrupt context to check HBA's 13514 * error attention register bit for error attention events. 13515 * 13516 * This function returns 1 when there is Error Attention in the Host Attention 13517 * Register and returns 0 otherwise. 13518 **/ 13519 int 13520 lpfc_sli_check_eratt(struct lpfc_hba *phba) 13521 { 13522 uint32_t ha_copy; 13523 13524 /* If somebody is waiting to handle an eratt, don't process it 13525 * here. The brdkill function will do this. 13526 */ 13527 if (phba->link_flag & LS_IGNORE_ERATT) 13528 return 0; 13529 13530 /* Check if interrupt handler handles this ERATT */ 13531 spin_lock_irq(&phba->hbalock); 13532 if (phba->hba_flag & HBA_ERATT_HANDLED) { 13533 /* Interrupt handler has handled ERATT */ 13534 spin_unlock_irq(&phba->hbalock); 13535 return 0; 13536 } 13537 13538 /* 13539 * If there is deferred error attention, do not check for error 13540 * attention 13541 */ 13542 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13543 spin_unlock_irq(&phba->hbalock); 13544 return 0; 13545 } 13546 13547 /* If PCI channel is offline, don't process it */ 13548 if (unlikely(pci_channel_offline(phba->pcidev))) { 13549 spin_unlock_irq(&phba->hbalock); 13550 return 0; 13551 } 13552 13553 switch (phba->sli_rev) { 13554 case LPFC_SLI_REV2: 13555 case LPFC_SLI_REV3: 13556 /* Read chip Host Attention (HA) register */ 13557 ha_copy = lpfc_sli_eratt_read(phba); 13558 break; 13559 case LPFC_SLI_REV4: 13560 /* Read device Uncoverable Error (UERR) registers */ 13561 ha_copy = lpfc_sli4_eratt_read(phba); 13562 break; 13563 default: 13564 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13565 "0299 Invalid SLI revision (%d)\n", 13566 phba->sli_rev); 13567 ha_copy = 0; 13568 break; 13569 } 13570 spin_unlock_irq(&phba->hbalock); 13571 13572 return ha_copy; 13573 } 13574 13575 /** 13576 * lpfc_intr_state_check - Check device state for interrupt handling 13577 * @phba: Pointer to HBA context. 13578 * 13579 * This inline routine checks whether a device or its PCI slot is in a state 13580 * that the interrupt should be handled. 13581 * 13582 * This function returns 0 if the device or the PCI slot is in a state that 13583 * interrupt should be handled, otherwise -EIO. 13584 */ 13585 static inline int 13586 lpfc_intr_state_check(struct lpfc_hba *phba) 13587 { 13588 /* If the pci channel is offline, ignore all the interrupts */ 13589 if (unlikely(pci_channel_offline(phba->pcidev))) 13590 return -EIO; 13591 13592 /* Update device level interrupt statistics */ 13593 phba->sli.slistat.sli_intr++; 13594 13595 /* Ignore all interrupts during initialization. */ 13596 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 13597 return -EIO; 13598 13599 return 0; 13600 } 13601 13602 /** 13603 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 13604 * @irq: Interrupt number. 13605 * @dev_id: The device context pointer. 13606 * 13607 * This function is directly called from the PCI layer as an interrupt 13608 * service routine when device with SLI-3 interface spec is enabled with 13609 * MSI-X multi-message interrupt mode and there are slow-path events in 13610 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 13611 * interrupt mode, this function is called as part of the device-level 13612 * interrupt handler. When the PCI slot is in error recovery or the HBA 13613 * is undergoing initialization, the interrupt handler will not process 13614 * the interrupt. The link attention and ELS ring attention events are 13615 * handled by the worker thread. The interrupt handler signals the worker 13616 * thread and returns for these events. This function is called without 13617 * any lock held. It gets the hbalock to access and update SLI data 13618 * structures. 13619 * 13620 * This function returns IRQ_HANDLED when interrupt is handled else it 13621 * returns IRQ_NONE. 13622 **/ 13623 irqreturn_t 13624 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 13625 { 13626 struct lpfc_hba *phba; 13627 uint32_t ha_copy, hc_copy; 13628 uint32_t work_ha_copy; 13629 unsigned long status; 13630 unsigned long iflag; 13631 uint32_t control; 13632 13633 MAILBOX_t *mbox, *pmbox; 13634 struct lpfc_vport *vport; 13635 struct lpfc_nodelist *ndlp; 13636 struct lpfc_dmabuf *mp; 13637 LPFC_MBOXQ_t *pmb; 13638 int rc; 13639 13640 /* 13641 * Get the driver's phba structure from the dev_id and 13642 * assume the HBA is not interrupting. 13643 */ 13644 phba = (struct lpfc_hba *)dev_id; 13645 13646 if (unlikely(!phba)) 13647 return IRQ_NONE; 13648 13649 /* 13650 * Stuff needs to be attented to when this function is invoked as an 13651 * individual interrupt handler in MSI-X multi-message interrupt mode 13652 */ 13653 if (phba->intr_type == MSIX) { 13654 /* Check device state for handling interrupt */ 13655 if (lpfc_intr_state_check(phba)) 13656 return IRQ_NONE; 13657 /* Need to read HA REG for slow-path events */ 13658 spin_lock_irqsave(&phba->hbalock, iflag); 13659 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13660 goto unplug_error; 13661 /* If somebody is waiting to handle an eratt don't process it 13662 * here. The brdkill function will do this. 13663 */ 13664 if (phba->link_flag & LS_IGNORE_ERATT) 13665 ha_copy &= ~HA_ERATT; 13666 /* Check the need for handling ERATT in interrupt handler */ 13667 if (ha_copy & HA_ERATT) { 13668 if (phba->hba_flag & HBA_ERATT_HANDLED) 13669 /* ERATT polling has handled ERATT */ 13670 ha_copy &= ~HA_ERATT; 13671 else 13672 /* Indicate interrupt handler handles ERATT */ 13673 phba->hba_flag |= HBA_ERATT_HANDLED; 13674 } 13675 13676 /* 13677 * If there is deferred error attention, do not check for any 13678 * interrupt. 13679 */ 13680 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13681 spin_unlock_irqrestore(&phba->hbalock, iflag); 13682 return IRQ_NONE; 13683 } 13684 13685 /* Clear up only attention source related to slow-path */ 13686 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 13687 goto unplug_error; 13688 13689 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 13690 HC_LAINT_ENA | HC_ERINT_ENA), 13691 phba->HCregaddr); 13692 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 13693 phba->HAregaddr); 13694 writel(hc_copy, phba->HCregaddr); 13695 readl(phba->HAregaddr); /* flush */ 13696 spin_unlock_irqrestore(&phba->hbalock, iflag); 13697 } else 13698 ha_copy = phba->ha_copy; 13699 13700 work_ha_copy = ha_copy & phba->work_ha_mask; 13701 13702 if (work_ha_copy) { 13703 if (work_ha_copy & HA_LATT) { 13704 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 13705 /* 13706 * Turn off Link Attention interrupts 13707 * until CLEAR_LA done 13708 */ 13709 spin_lock_irqsave(&phba->hbalock, iflag); 13710 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 13711 if (lpfc_readl(phba->HCregaddr, &control)) 13712 goto unplug_error; 13713 control &= ~HC_LAINT_ENA; 13714 writel(control, phba->HCregaddr); 13715 readl(phba->HCregaddr); /* flush */ 13716 spin_unlock_irqrestore(&phba->hbalock, iflag); 13717 } 13718 else 13719 work_ha_copy &= ~HA_LATT; 13720 } 13721 13722 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 13723 /* 13724 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 13725 * the only slow ring. 13726 */ 13727 status = (work_ha_copy & 13728 (HA_RXMASK << (4*LPFC_ELS_RING))); 13729 status >>= (4*LPFC_ELS_RING); 13730 if (status & HA_RXMASK) { 13731 spin_lock_irqsave(&phba->hbalock, iflag); 13732 if (lpfc_readl(phba->HCregaddr, &control)) 13733 goto unplug_error; 13734 13735 lpfc_debugfs_slow_ring_trc(phba, 13736 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 13737 control, status, 13738 (uint32_t)phba->sli.slistat.sli_intr); 13739 13740 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 13741 lpfc_debugfs_slow_ring_trc(phba, 13742 "ISR Disable ring:" 13743 "pwork:x%x hawork:x%x wait:x%x", 13744 phba->work_ha, work_ha_copy, 13745 (uint32_t)((unsigned long) 13746 &phba->work_waitq)); 13747 13748 control &= 13749 ~(HC_R0INT_ENA << LPFC_ELS_RING); 13750 writel(control, phba->HCregaddr); 13751 readl(phba->HCregaddr); /* flush */ 13752 } 13753 else { 13754 lpfc_debugfs_slow_ring_trc(phba, 13755 "ISR slow ring: pwork:" 13756 "x%x hawork:x%x wait:x%x", 13757 phba->work_ha, work_ha_copy, 13758 (uint32_t)((unsigned long) 13759 &phba->work_waitq)); 13760 } 13761 spin_unlock_irqrestore(&phba->hbalock, iflag); 13762 } 13763 } 13764 spin_lock_irqsave(&phba->hbalock, iflag); 13765 if (work_ha_copy & HA_ERATT) { 13766 if (lpfc_sli_read_hs(phba)) 13767 goto unplug_error; 13768 /* 13769 * Check if there is a deferred error condition 13770 * is active 13771 */ 13772 if ((HS_FFER1 & phba->work_hs) && 13773 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13774 HS_FFER6 | HS_FFER7 | HS_FFER8) & 13775 phba->work_hs)) { 13776 phba->hba_flag |= DEFER_ERATT; 13777 /* Clear all interrupt enable conditions */ 13778 writel(0, phba->HCregaddr); 13779 readl(phba->HCregaddr); 13780 } 13781 } 13782 13783 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 13784 pmb = phba->sli.mbox_active; 13785 pmbox = &pmb->u.mb; 13786 mbox = phba->mbox; 13787 vport = pmb->vport; 13788 13789 /* First check out the status word */ 13790 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 13791 if (pmbox->mbxOwner != OWN_HOST) { 13792 spin_unlock_irqrestore(&phba->hbalock, iflag); 13793 /* 13794 * Stray Mailbox Interrupt, mbxCommand <cmd> 13795 * mbxStatus <status> 13796 */ 13797 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13798 "(%d):0304 Stray Mailbox " 13799 "Interrupt mbxCommand x%x " 13800 "mbxStatus x%x\n", 13801 (vport ? vport->vpi : 0), 13802 pmbox->mbxCommand, 13803 pmbox->mbxStatus); 13804 /* clear mailbox attention bit */ 13805 work_ha_copy &= ~HA_MBATT; 13806 } else { 13807 phba->sli.mbox_active = NULL; 13808 spin_unlock_irqrestore(&phba->hbalock, iflag); 13809 phba->last_completion_time = jiffies; 13810 del_timer(&phba->sli.mbox_tmo); 13811 if (pmb->mbox_cmpl) { 13812 lpfc_sli_pcimem_bcopy(mbox, pmbox, 13813 MAILBOX_CMD_SIZE); 13814 if (pmb->out_ext_byte_len && 13815 pmb->ctx_buf) 13816 lpfc_sli_pcimem_bcopy( 13817 phba->mbox_ext, 13818 pmb->ctx_buf, 13819 pmb->out_ext_byte_len); 13820 } 13821 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13822 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13823 13824 lpfc_debugfs_disc_trc(vport, 13825 LPFC_DISC_TRC_MBOX_VPORT, 13826 "MBOX dflt rpi: : " 13827 "status:x%x rpi:x%x", 13828 (uint32_t)pmbox->mbxStatus, 13829 pmbox->un.varWords[0], 0); 13830 13831 if (!pmbox->mbxStatus) { 13832 mp = (struct lpfc_dmabuf *) 13833 (pmb->ctx_buf); 13834 ndlp = (struct lpfc_nodelist *) 13835 pmb->ctx_ndlp; 13836 13837 /* Reg_LOGIN of dflt RPI was 13838 * successful. new lets get 13839 * rid of the RPI using the 13840 * same mbox buffer. 13841 */ 13842 lpfc_unreg_login(phba, 13843 vport->vpi, 13844 pmbox->un.varWords[0], 13845 pmb); 13846 pmb->mbox_cmpl = 13847 lpfc_mbx_cmpl_dflt_rpi; 13848 pmb->ctx_buf = mp; 13849 pmb->ctx_ndlp = ndlp; 13850 pmb->vport = vport; 13851 rc = lpfc_sli_issue_mbox(phba, 13852 pmb, 13853 MBX_NOWAIT); 13854 if (rc != MBX_BUSY) 13855 lpfc_printf_log(phba, 13856 KERN_ERR, 13857 LOG_TRACE_EVENT, 13858 "0350 rc should have" 13859 "been MBX_BUSY\n"); 13860 if (rc != MBX_NOT_FINISHED) 13861 goto send_current_mbox; 13862 } 13863 } 13864 spin_lock_irqsave( 13865 &phba->pport->work_port_lock, 13866 iflag); 13867 phba->pport->work_port_events &= 13868 ~WORKER_MBOX_TMO; 13869 spin_unlock_irqrestore( 13870 &phba->pport->work_port_lock, 13871 iflag); 13872 13873 /* Do NOT queue MBX_HEARTBEAT to the worker 13874 * thread for processing. 13875 */ 13876 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13877 /* Process mbox now */ 13878 phba->sli.mbox_active = NULL; 13879 phba->sli.sli_flag &= 13880 ~LPFC_SLI_MBOX_ACTIVE; 13881 if (pmb->mbox_cmpl) 13882 pmb->mbox_cmpl(phba, pmb); 13883 } else { 13884 /* Queue to worker thread to process */ 13885 lpfc_mbox_cmpl_put(phba, pmb); 13886 } 13887 } 13888 } else 13889 spin_unlock_irqrestore(&phba->hbalock, iflag); 13890 13891 if ((work_ha_copy & HA_MBATT) && 13892 (phba->sli.mbox_active == NULL)) { 13893 send_current_mbox: 13894 /* Process next mailbox command if there is one */ 13895 do { 13896 rc = lpfc_sli_issue_mbox(phba, NULL, 13897 MBX_NOWAIT); 13898 } while (rc == MBX_NOT_FINISHED); 13899 if (rc != MBX_SUCCESS) 13900 lpfc_printf_log(phba, KERN_ERR, 13901 LOG_TRACE_EVENT, 13902 "0349 rc should be " 13903 "MBX_SUCCESS\n"); 13904 } 13905 13906 spin_lock_irqsave(&phba->hbalock, iflag); 13907 phba->work_ha |= work_ha_copy; 13908 spin_unlock_irqrestore(&phba->hbalock, iflag); 13909 lpfc_worker_wake_up(phba); 13910 } 13911 return IRQ_HANDLED; 13912 unplug_error: 13913 spin_unlock_irqrestore(&phba->hbalock, iflag); 13914 return IRQ_HANDLED; 13915 13916 } /* lpfc_sli_sp_intr_handler */ 13917 13918 /** 13919 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13920 * @irq: Interrupt number. 13921 * @dev_id: The device context pointer. 13922 * 13923 * This function is directly called from the PCI layer as an interrupt 13924 * service routine when device with SLI-3 interface spec is enabled with 13925 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13926 * ring event in the HBA. However, when the device is enabled with either 13927 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13928 * device-level interrupt handler. When the PCI slot is in error recovery 13929 * or the HBA is undergoing initialization, the interrupt handler will not 13930 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13931 * the intrrupt context. This function is called without any lock held. 13932 * It gets the hbalock to access and update SLI data structures. 13933 * 13934 * This function returns IRQ_HANDLED when interrupt is handled else it 13935 * returns IRQ_NONE. 13936 **/ 13937 irqreturn_t 13938 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13939 { 13940 struct lpfc_hba *phba; 13941 uint32_t ha_copy; 13942 unsigned long status; 13943 unsigned long iflag; 13944 struct lpfc_sli_ring *pring; 13945 13946 /* Get the driver's phba structure from the dev_id and 13947 * assume the HBA is not interrupting. 13948 */ 13949 phba = (struct lpfc_hba *) dev_id; 13950 13951 if (unlikely(!phba)) 13952 return IRQ_NONE; 13953 13954 /* 13955 * Stuff needs to be attented to when this function is invoked as an 13956 * individual interrupt handler in MSI-X multi-message interrupt mode 13957 */ 13958 if (phba->intr_type == MSIX) { 13959 /* Check device state for handling interrupt */ 13960 if (lpfc_intr_state_check(phba)) 13961 return IRQ_NONE; 13962 /* Need to read HA REG for FCP ring and other ring events */ 13963 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13964 return IRQ_HANDLED; 13965 /* Clear up only attention source related to fast-path */ 13966 spin_lock_irqsave(&phba->hbalock, iflag); 13967 /* 13968 * If there is deferred error attention, do not check for 13969 * any interrupt. 13970 */ 13971 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13972 spin_unlock_irqrestore(&phba->hbalock, iflag); 13973 return IRQ_NONE; 13974 } 13975 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13976 phba->HAregaddr); 13977 readl(phba->HAregaddr); /* flush */ 13978 spin_unlock_irqrestore(&phba->hbalock, iflag); 13979 } else 13980 ha_copy = phba->ha_copy; 13981 13982 /* 13983 * Process all events on FCP ring. Take the optimized path for FCP IO. 13984 */ 13985 ha_copy &= ~(phba->work_ha_mask); 13986 13987 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13988 status >>= (4*LPFC_FCP_RING); 13989 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13990 if (status & HA_RXMASK) 13991 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13992 13993 if (phba->cfg_multi_ring_support == 2) { 13994 /* 13995 * Process all events on extra ring. Take the optimized path 13996 * for extra ring IO. 13997 */ 13998 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13999 status >>= (4*LPFC_EXTRA_RING); 14000 if (status & HA_RXMASK) { 14001 lpfc_sli_handle_fast_ring_event(phba, 14002 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 14003 status); 14004 } 14005 } 14006 return IRQ_HANDLED; 14007 } /* lpfc_sli_fp_intr_handler */ 14008 14009 /** 14010 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 14011 * @irq: Interrupt number. 14012 * @dev_id: The device context pointer. 14013 * 14014 * This function is the HBA device-level interrupt handler to device with 14015 * SLI-3 interface spec, called from the PCI layer when either MSI or 14016 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 14017 * requires driver attention. This function invokes the slow-path interrupt 14018 * attention handling function and fast-path interrupt attention handling 14019 * function in turn to process the relevant HBA attention events. This 14020 * function is called without any lock held. It gets the hbalock to access 14021 * and update SLI data structures. 14022 * 14023 * This function returns IRQ_HANDLED when interrupt is handled, else it 14024 * returns IRQ_NONE. 14025 **/ 14026 irqreturn_t 14027 lpfc_sli_intr_handler(int irq, void *dev_id) 14028 { 14029 struct lpfc_hba *phba; 14030 irqreturn_t sp_irq_rc, fp_irq_rc; 14031 unsigned long status1, status2; 14032 uint32_t hc_copy; 14033 14034 /* 14035 * Get the driver's phba structure from the dev_id and 14036 * assume the HBA is not interrupting. 14037 */ 14038 phba = (struct lpfc_hba *) dev_id; 14039 14040 if (unlikely(!phba)) 14041 return IRQ_NONE; 14042 14043 /* Check device state for handling interrupt */ 14044 if (lpfc_intr_state_check(phba)) 14045 return IRQ_NONE; 14046 14047 spin_lock(&phba->hbalock); 14048 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 14049 spin_unlock(&phba->hbalock); 14050 return IRQ_HANDLED; 14051 } 14052 14053 if (unlikely(!phba->ha_copy)) { 14054 spin_unlock(&phba->hbalock); 14055 return IRQ_NONE; 14056 } else if (phba->ha_copy & HA_ERATT) { 14057 if (phba->hba_flag & HBA_ERATT_HANDLED) 14058 /* ERATT polling has handled ERATT */ 14059 phba->ha_copy &= ~HA_ERATT; 14060 else 14061 /* Indicate interrupt handler handles ERATT */ 14062 phba->hba_flag |= HBA_ERATT_HANDLED; 14063 } 14064 14065 /* 14066 * If there is deferred error attention, do not check for any interrupt. 14067 */ 14068 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 14069 spin_unlock(&phba->hbalock); 14070 return IRQ_NONE; 14071 } 14072 14073 /* Clear attention sources except link and error attentions */ 14074 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 14075 spin_unlock(&phba->hbalock); 14076 return IRQ_HANDLED; 14077 } 14078 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 14079 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 14080 phba->HCregaddr); 14081 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 14082 writel(hc_copy, phba->HCregaddr); 14083 readl(phba->HAregaddr); /* flush */ 14084 spin_unlock(&phba->hbalock); 14085 14086 /* 14087 * Invokes slow-path host attention interrupt handling as appropriate. 14088 */ 14089 14090 /* status of events with mailbox and link attention */ 14091 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 14092 14093 /* status of events with ELS ring */ 14094 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 14095 status2 >>= (4*LPFC_ELS_RING); 14096 14097 if (status1 || (status2 & HA_RXMASK)) 14098 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 14099 else 14100 sp_irq_rc = IRQ_NONE; 14101 14102 /* 14103 * Invoke fast-path host attention interrupt handling as appropriate. 14104 */ 14105 14106 /* status of events with FCP ring */ 14107 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 14108 status1 >>= (4*LPFC_FCP_RING); 14109 14110 /* status of events with extra ring */ 14111 if (phba->cfg_multi_ring_support == 2) { 14112 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 14113 status2 >>= (4*LPFC_EXTRA_RING); 14114 } else 14115 status2 = 0; 14116 14117 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 14118 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 14119 else 14120 fp_irq_rc = IRQ_NONE; 14121 14122 /* Return device-level interrupt handling status */ 14123 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 14124 } /* lpfc_sli_intr_handler */ 14125 14126 /** 14127 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 14128 * @phba: pointer to lpfc hba data structure. 14129 * 14130 * This routine is invoked by the worker thread to process all the pending 14131 * SLI4 els abort xri events. 14132 **/ 14133 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 14134 { 14135 struct lpfc_cq_event *cq_event; 14136 unsigned long iflags; 14137 14138 /* First, declare the els xri abort event has been handled */ 14139 spin_lock_irqsave(&phba->hbalock, iflags); 14140 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 14141 spin_unlock_irqrestore(&phba->hbalock, iflags); 14142 14143 /* Now, handle all the els xri abort events */ 14144 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14145 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 14146 /* Get the first event from the head of the event queue */ 14147 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 14148 cq_event, struct lpfc_cq_event, list); 14149 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14150 iflags); 14151 /* Notify aborted XRI for ELS work queue */ 14152 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 14153 14154 /* Free the event processed back to the free pool */ 14155 lpfc_sli4_cq_event_release(phba, cq_event); 14156 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14157 iflags); 14158 } 14159 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14160 } 14161 14162 /** 14163 * lpfc_sli4_els_preprocess_rspiocbq - Get response iocbq from els wcqe 14164 * @phba: Pointer to HBA context object. 14165 * @irspiocbq: Pointer to work-queue completion queue entry. 14166 * 14167 * This routine handles an ELS work-queue completion event and construct 14168 * a pseudo response ELS IOCBQ from the SLI4 ELS WCQE for the common 14169 * discovery engine to handle. 14170 * 14171 * Return: Pointer to the receive IOCBQ, NULL otherwise. 14172 **/ 14173 static struct lpfc_iocbq * 14174 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 14175 struct lpfc_iocbq *irspiocbq) 14176 { 14177 struct lpfc_sli_ring *pring; 14178 struct lpfc_iocbq *cmdiocbq; 14179 struct lpfc_wcqe_complete *wcqe; 14180 unsigned long iflags; 14181 14182 pring = lpfc_phba_elsring(phba); 14183 if (unlikely(!pring)) 14184 return NULL; 14185 14186 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 14187 spin_lock_irqsave(&pring->ring_lock, iflags); 14188 pring->stats.iocb_event++; 14189 /* Look up the ELS command IOCB and create pseudo response IOCB */ 14190 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14191 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14192 if (unlikely(!cmdiocbq)) { 14193 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14194 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14195 "0386 ELS complete with no corresponding " 14196 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 14197 wcqe->word0, wcqe->total_data_placed, 14198 wcqe->parameter, wcqe->word3); 14199 lpfc_sli_release_iocbq(phba, irspiocbq); 14200 return NULL; 14201 } 14202 14203 memcpy(&irspiocbq->wqe, &cmdiocbq->wqe, sizeof(union lpfc_wqe128)); 14204 memcpy(&irspiocbq->wcqe_cmpl, wcqe, sizeof(*wcqe)); 14205 14206 /* Put the iocb back on the txcmplq */ 14207 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 14208 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14209 14210 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 14211 spin_lock_irqsave(&phba->hbalock, iflags); 14212 irspiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 14213 spin_unlock_irqrestore(&phba->hbalock, iflags); 14214 } 14215 14216 return irspiocbq; 14217 } 14218 14219 inline struct lpfc_cq_event * 14220 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 14221 { 14222 struct lpfc_cq_event *cq_event; 14223 14224 /* Allocate a new internal CQ_EVENT entry */ 14225 cq_event = lpfc_sli4_cq_event_alloc(phba); 14226 if (!cq_event) { 14227 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14228 "0602 Failed to alloc CQ_EVENT entry\n"); 14229 return NULL; 14230 } 14231 14232 /* Move the CQE into the event */ 14233 memcpy(&cq_event->cqe, entry, size); 14234 return cq_event; 14235 } 14236 14237 /** 14238 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 14239 * @phba: Pointer to HBA context object. 14240 * @mcqe: Pointer to mailbox completion queue entry. 14241 * 14242 * This routine process a mailbox completion queue entry with asynchronous 14243 * event. 14244 * 14245 * Return: true if work posted to worker thread, otherwise false. 14246 **/ 14247 static bool 14248 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14249 { 14250 struct lpfc_cq_event *cq_event; 14251 unsigned long iflags; 14252 14253 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14254 "0392 Async Event: word0:x%x, word1:x%x, " 14255 "word2:x%x, word3:x%x\n", mcqe->word0, 14256 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 14257 14258 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 14259 if (!cq_event) 14260 return false; 14261 14262 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 14263 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 14264 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 14265 14266 /* Set the async event flag */ 14267 spin_lock_irqsave(&phba->hbalock, iflags); 14268 phba->hba_flag |= ASYNC_EVENT; 14269 spin_unlock_irqrestore(&phba->hbalock, iflags); 14270 14271 return true; 14272 } 14273 14274 /** 14275 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 14276 * @phba: Pointer to HBA context object. 14277 * @mcqe: Pointer to mailbox completion queue entry. 14278 * 14279 * This routine process a mailbox completion queue entry with mailbox 14280 * completion event. 14281 * 14282 * Return: true if work posted to worker thread, otherwise false. 14283 **/ 14284 static bool 14285 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14286 { 14287 uint32_t mcqe_status; 14288 MAILBOX_t *mbox, *pmbox; 14289 struct lpfc_mqe *mqe; 14290 struct lpfc_vport *vport; 14291 struct lpfc_nodelist *ndlp; 14292 struct lpfc_dmabuf *mp; 14293 unsigned long iflags; 14294 LPFC_MBOXQ_t *pmb; 14295 bool workposted = false; 14296 int rc; 14297 14298 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 14299 if (!bf_get(lpfc_trailer_completed, mcqe)) 14300 goto out_no_mqe_complete; 14301 14302 /* Get the reference to the active mbox command */ 14303 spin_lock_irqsave(&phba->hbalock, iflags); 14304 pmb = phba->sli.mbox_active; 14305 if (unlikely(!pmb)) { 14306 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14307 "1832 No pending MBOX command to handle\n"); 14308 spin_unlock_irqrestore(&phba->hbalock, iflags); 14309 goto out_no_mqe_complete; 14310 } 14311 spin_unlock_irqrestore(&phba->hbalock, iflags); 14312 mqe = &pmb->u.mqe; 14313 pmbox = (MAILBOX_t *)&pmb->u.mqe; 14314 mbox = phba->mbox; 14315 vport = pmb->vport; 14316 14317 /* Reset heartbeat timer */ 14318 phba->last_completion_time = jiffies; 14319 del_timer(&phba->sli.mbox_tmo); 14320 14321 /* Move mbox data to caller's mailbox region, do endian swapping */ 14322 if (pmb->mbox_cmpl && mbox) 14323 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 14324 14325 /* 14326 * For mcqe errors, conditionally move a modified error code to 14327 * the mbox so that the error will not be missed. 14328 */ 14329 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 14330 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 14331 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 14332 bf_set(lpfc_mqe_status, mqe, 14333 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 14334 } 14335 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 14336 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 14337 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 14338 "MBOX dflt rpi: status:x%x rpi:x%x", 14339 mcqe_status, 14340 pmbox->un.varWords[0], 0); 14341 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 14342 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 14343 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 14344 14345 /* Reg_LOGIN of dflt RPI was successful. Mark the 14346 * node as having an UNREG_LOGIN in progress to stop 14347 * an unsolicited PLOGI from the same NPortId from 14348 * starting another mailbox transaction. 14349 */ 14350 spin_lock_irqsave(&ndlp->lock, iflags); 14351 ndlp->nlp_flag |= NLP_UNREG_INP; 14352 spin_unlock_irqrestore(&ndlp->lock, iflags); 14353 lpfc_unreg_login(phba, vport->vpi, 14354 pmbox->un.varWords[0], pmb); 14355 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 14356 pmb->ctx_buf = mp; 14357 14358 /* No reference taken here. This is a default 14359 * RPI reg/immediate unreg cycle. The reference was 14360 * taken in the reg rpi path and is released when 14361 * this mailbox completes. 14362 */ 14363 pmb->ctx_ndlp = ndlp; 14364 pmb->vport = vport; 14365 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 14366 if (rc != MBX_BUSY) 14367 lpfc_printf_log(phba, KERN_ERR, 14368 LOG_TRACE_EVENT, 14369 "0385 rc should " 14370 "have been MBX_BUSY\n"); 14371 if (rc != MBX_NOT_FINISHED) 14372 goto send_current_mbox; 14373 } 14374 } 14375 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 14376 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 14377 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 14378 14379 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 14380 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 14381 spin_lock_irqsave(&phba->hbalock, iflags); 14382 /* Release the mailbox command posting token */ 14383 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14384 phba->sli.mbox_active = NULL; 14385 if (bf_get(lpfc_trailer_consumed, mcqe)) 14386 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14387 spin_unlock_irqrestore(&phba->hbalock, iflags); 14388 14389 /* Post the next mbox command, if there is one */ 14390 lpfc_sli4_post_async_mbox(phba); 14391 14392 /* Process cmpl now */ 14393 if (pmb->mbox_cmpl) 14394 pmb->mbox_cmpl(phba, pmb); 14395 return false; 14396 } 14397 14398 /* There is mailbox completion work to queue to the worker thread */ 14399 spin_lock_irqsave(&phba->hbalock, iflags); 14400 __lpfc_mbox_cmpl_put(phba, pmb); 14401 phba->work_ha |= HA_MBATT; 14402 spin_unlock_irqrestore(&phba->hbalock, iflags); 14403 workposted = true; 14404 14405 send_current_mbox: 14406 spin_lock_irqsave(&phba->hbalock, iflags); 14407 /* Release the mailbox command posting token */ 14408 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14409 /* Setting active mailbox pointer need to be in sync to flag clear */ 14410 phba->sli.mbox_active = NULL; 14411 if (bf_get(lpfc_trailer_consumed, mcqe)) 14412 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14413 spin_unlock_irqrestore(&phba->hbalock, iflags); 14414 /* Wake up worker thread to post the next pending mailbox command */ 14415 lpfc_worker_wake_up(phba); 14416 return workposted; 14417 14418 out_no_mqe_complete: 14419 spin_lock_irqsave(&phba->hbalock, iflags); 14420 if (bf_get(lpfc_trailer_consumed, mcqe)) 14421 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14422 spin_unlock_irqrestore(&phba->hbalock, iflags); 14423 return false; 14424 } 14425 14426 /** 14427 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 14428 * @phba: Pointer to HBA context object. 14429 * @cq: Pointer to associated CQ 14430 * @cqe: Pointer to mailbox completion queue entry. 14431 * 14432 * This routine process a mailbox completion queue entry, it invokes the 14433 * proper mailbox complete handling or asynchronous event handling routine 14434 * according to the MCQE's async bit. 14435 * 14436 * Return: true if work posted to worker thread, otherwise false. 14437 **/ 14438 static bool 14439 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14440 struct lpfc_cqe *cqe) 14441 { 14442 struct lpfc_mcqe mcqe; 14443 bool workposted; 14444 14445 cq->CQ_mbox++; 14446 14447 /* Copy the mailbox MCQE and convert endian order as needed */ 14448 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 14449 14450 /* Invoke the proper event handling routine */ 14451 if (!bf_get(lpfc_trailer_async, &mcqe)) 14452 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 14453 else 14454 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 14455 return workposted; 14456 } 14457 14458 /** 14459 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 14460 * @phba: Pointer to HBA context object. 14461 * @cq: Pointer to associated CQ 14462 * @wcqe: Pointer to work-queue completion queue entry. 14463 * 14464 * This routine handles an ELS work-queue completion event. 14465 * 14466 * Return: true if work posted to worker thread, otherwise false. 14467 **/ 14468 static bool 14469 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14470 struct lpfc_wcqe_complete *wcqe) 14471 { 14472 struct lpfc_iocbq *irspiocbq; 14473 unsigned long iflags; 14474 struct lpfc_sli_ring *pring = cq->pring; 14475 int txq_cnt = 0; 14476 int txcmplq_cnt = 0; 14477 14478 /* Check for response status */ 14479 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14480 /* Log the error status */ 14481 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14482 "0357 ELS CQE error: status=x%x: " 14483 "CQE: %08x %08x %08x %08x\n", 14484 bf_get(lpfc_wcqe_c_status, wcqe), 14485 wcqe->word0, wcqe->total_data_placed, 14486 wcqe->parameter, wcqe->word3); 14487 } 14488 14489 /* Get an irspiocbq for later ELS response processing use */ 14490 irspiocbq = lpfc_sli_get_iocbq(phba); 14491 if (!irspiocbq) { 14492 if (!list_empty(&pring->txq)) 14493 txq_cnt++; 14494 if (!list_empty(&pring->txcmplq)) 14495 txcmplq_cnt++; 14496 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14497 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 14498 "els_txcmplq_cnt=%d\n", 14499 txq_cnt, phba->iocb_cnt, 14500 txcmplq_cnt); 14501 return false; 14502 } 14503 14504 /* Save off the slow-path queue event for work thread to process */ 14505 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 14506 spin_lock_irqsave(&phba->hbalock, iflags); 14507 list_add_tail(&irspiocbq->cq_event.list, 14508 &phba->sli4_hba.sp_queue_event); 14509 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14510 spin_unlock_irqrestore(&phba->hbalock, iflags); 14511 14512 return true; 14513 } 14514 14515 /** 14516 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 14517 * @phba: Pointer to HBA context object. 14518 * @wcqe: Pointer to work-queue completion queue entry. 14519 * 14520 * This routine handles slow-path WQ entry consumed event by invoking the 14521 * proper WQ release routine to the slow-path WQ. 14522 **/ 14523 static void 14524 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 14525 struct lpfc_wcqe_release *wcqe) 14526 { 14527 /* sanity check on queue memory */ 14528 if (unlikely(!phba->sli4_hba.els_wq)) 14529 return; 14530 /* Check for the slow-path ELS work queue */ 14531 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 14532 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 14533 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14534 else 14535 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14536 "2579 Slow-path wqe consume event carries " 14537 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 14538 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 14539 phba->sli4_hba.els_wq->queue_id); 14540 } 14541 14542 /** 14543 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 14544 * @phba: Pointer to HBA context object. 14545 * @cq: Pointer to a WQ completion queue. 14546 * @wcqe: Pointer to work-queue completion queue entry. 14547 * 14548 * This routine handles an XRI abort event. 14549 * 14550 * Return: true if work posted to worker thread, otherwise false. 14551 **/ 14552 static bool 14553 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 14554 struct lpfc_queue *cq, 14555 struct sli4_wcqe_xri_aborted *wcqe) 14556 { 14557 bool workposted = false; 14558 struct lpfc_cq_event *cq_event; 14559 unsigned long iflags; 14560 14561 switch (cq->subtype) { 14562 case LPFC_IO: 14563 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 14564 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14565 /* Notify aborted XRI for NVME work queue */ 14566 if (phba->nvmet_support) 14567 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 14568 } 14569 workposted = false; 14570 break; 14571 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 14572 case LPFC_ELS: 14573 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 14574 if (!cq_event) { 14575 workposted = false; 14576 break; 14577 } 14578 cq_event->hdwq = cq->hdwq; 14579 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14580 iflags); 14581 list_add_tail(&cq_event->list, 14582 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 14583 /* Set the els xri abort event flag */ 14584 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 14585 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14586 iflags); 14587 workposted = true; 14588 break; 14589 default: 14590 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14591 "0603 Invalid CQ subtype %d: " 14592 "%08x %08x %08x %08x\n", 14593 cq->subtype, wcqe->word0, wcqe->parameter, 14594 wcqe->word2, wcqe->word3); 14595 workposted = false; 14596 break; 14597 } 14598 return workposted; 14599 } 14600 14601 #define FC_RCTL_MDS_DIAGS 0xF4 14602 14603 /** 14604 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 14605 * @phba: Pointer to HBA context object. 14606 * @rcqe: Pointer to receive-queue completion queue entry. 14607 * 14608 * This routine process a receive-queue completion queue entry. 14609 * 14610 * Return: true if work posted to worker thread, otherwise false. 14611 **/ 14612 static bool 14613 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 14614 { 14615 bool workposted = false; 14616 struct fc_frame_header *fc_hdr; 14617 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 14618 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 14619 struct lpfc_nvmet_tgtport *tgtp; 14620 struct hbq_dmabuf *dma_buf; 14621 uint32_t status, rq_id; 14622 unsigned long iflags; 14623 14624 /* sanity check on queue memory */ 14625 if (unlikely(!hrq) || unlikely(!drq)) 14626 return workposted; 14627 14628 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14629 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14630 else 14631 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14632 if (rq_id != hrq->queue_id) 14633 goto out; 14634 14635 status = bf_get(lpfc_rcqe_status, rcqe); 14636 switch (status) { 14637 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14638 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14639 "2537 Receive Frame Truncated!!\n"); 14640 fallthrough; 14641 case FC_STATUS_RQ_SUCCESS: 14642 spin_lock_irqsave(&phba->hbalock, iflags); 14643 lpfc_sli4_rq_release(hrq, drq); 14644 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14645 if (!dma_buf) { 14646 hrq->RQ_no_buf_found++; 14647 spin_unlock_irqrestore(&phba->hbalock, iflags); 14648 goto out; 14649 } 14650 hrq->RQ_rcv_buf++; 14651 hrq->RQ_buf_posted--; 14652 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 14653 14654 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14655 14656 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 14657 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 14658 spin_unlock_irqrestore(&phba->hbalock, iflags); 14659 /* Handle MDS Loopback frames */ 14660 if (!(phba->pport->load_flag & FC_UNLOADING)) 14661 lpfc_sli4_handle_mds_loopback(phba->pport, 14662 dma_buf); 14663 else 14664 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14665 break; 14666 } 14667 14668 /* save off the frame for the work thread to process */ 14669 list_add_tail(&dma_buf->cq_event.list, 14670 &phba->sli4_hba.sp_queue_event); 14671 /* Frame received */ 14672 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14673 spin_unlock_irqrestore(&phba->hbalock, iflags); 14674 workposted = true; 14675 break; 14676 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14677 if (phba->nvmet_support) { 14678 tgtp = phba->targetport->private; 14679 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14680 "6402 RQE Error x%x, posted %d err_cnt " 14681 "%d: %x %x %x\n", 14682 status, hrq->RQ_buf_posted, 14683 hrq->RQ_no_posted_buf, 14684 atomic_read(&tgtp->rcv_fcp_cmd_in), 14685 atomic_read(&tgtp->rcv_fcp_cmd_out), 14686 atomic_read(&tgtp->xmt_fcp_release)); 14687 } 14688 fallthrough; 14689 14690 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14691 hrq->RQ_no_posted_buf++; 14692 /* Post more buffers if possible */ 14693 spin_lock_irqsave(&phba->hbalock, iflags); 14694 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 14695 spin_unlock_irqrestore(&phba->hbalock, iflags); 14696 workposted = true; 14697 break; 14698 } 14699 out: 14700 return workposted; 14701 } 14702 14703 /** 14704 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 14705 * @phba: Pointer to HBA context object. 14706 * @cq: Pointer to the completion queue. 14707 * @cqe: Pointer to a completion queue entry. 14708 * 14709 * This routine process a slow-path work-queue or receive queue completion queue 14710 * entry. 14711 * 14712 * Return: true if work posted to worker thread, otherwise false. 14713 **/ 14714 static bool 14715 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14716 struct lpfc_cqe *cqe) 14717 { 14718 struct lpfc_cqe cqevt; 14719 bool workposted = false; 14720 14721 /* Copy the work queue CQE and convert endian order if needed */ 14722 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14723 14724 /* Check and process for different type of WCQE and dispatch */ 14725 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14726 case CQE_CODE_COMPL_WQE: 14727 /* Process the WQ/RQ complete event */ 14728 phba->last_completion_time = jiffies; 14729 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14730 (struct lpfc_wcqe_complete *)&cqevt); 14731 break; 14732 case CQE_CODE_RELEASE_WQE: 14733 /* Process the WQ release event */ 14734 lpfc_sli4_sp_handle_rel_wcqe(phba, 14735 (struct lpfc_wcqe_release *)&cqevt); 14736 break; 14737 case CQE_CODE_XRI_ABORTED: 14738 /* Process the WQ XRI abort event */ 14739 phba->last_completion_time = jiffies; 14740 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14741 (struct sli4_wcqe_xri_aborted *)&cqevt); 14742 break; 14743 case CQE_CODE_RECEIVE: 14744 case CQE_CODE_RECEIVE_V1: 14745 /* Process the RQ event */ 14746 phba->last_completion_time = jiffies; 14747 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14748 (struct lpfc_rcqe *)&cqevt); 14749 break; 14750 default: 14751 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14752 "0388 Not a valid WCQE code: x%x\n", 14753 bf_get(lpfc_cqe_code, &cqevt)); 14754 break; 14755 } 14756 return workposted; 14757 } 14758 14759 /** 14760 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14761 * @phba: Pointer to HBA context object. 14762 * @eqe: Pointer to fast-path event queue entry. 14763 * @speq: Pointer to slow-path event queue. 14764 * 14765 * This routine process a event queue entry from the slow-path event queue. 14766 * It will check the MajorCode and MinorCode to determine this is for a 14767 * completion event on a completion queue, if not, an error shall be logged 14768 * and just return. Otherwise, it will get to the corresponding completion 14769 * queue and process all the entries on that completion queue, rearm the 14770 * completion queue, and then return. 14771 * 14772 **/ 14773 static void 14774 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14775 struct lpfc_queue *speq) 14776 { 14777 struct lpfc_queue *cq = NULL, *childq; 14778 uint16_t cqid; 14779 int ret = 0; 14780 14781 /* Get the reference to the corresponding CQ */ 14782 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14783 14784 list_for_each_entry(childq, &speq->child_list, list) { 14785 if (childq->queue_id == cqid) { 14786 cq = childq; 14787 break; 14788 } 14789 } 14790 if (unlikely(!cq)) { 14791 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14792 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14793 "0365 Slow-path CQ identifier " 14794 "(%d) does not exist\n", cqid); 14795 return; 14796 } 14797 14798 /* Save EQ associated with this CQ */ 14799 cq->assoc_qp = speq; 14800 14801 if (is_kdump_kernel()) 14802 ret = queue_work(phba->wq, &cq->spwork); 14803 else 14804 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14805 14806 if (!ret) 14807 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14808 "0390 Cannot schedule queue work " 14809 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14810 cqid, cq->queue_id, raw_smp_processor_id()); 14811 } 14812 14813 /** 14814 * __lpfc_sli4_process_cq - Process elements of a CQ 14815 * @phba: Pointer to HBA context object. 14816 * @cq: Pointer to CQ to be processed 14817 * @handler: Routine to process each cqe 14818 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14819 * @poll_mode: Polling mode we were called from 14820 * 14821 * This routine processes completion queue entries in a CQ. While a valid 14822 * queue element is found, the handler is called. During processing checks 14823 * are made for periodic doorbell writes to let the hardware know of 14824 * element consumption. 14825 * 14826 * If the max limit on cqes to process is hit, or there are no more valid 14827 * entries, the loop stops. If we processed a sufficient number of elements, 14828 * meaning there is sufficient load, rather than rearming and generating 14829 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14830 * indicates no rescheduling. 14831 * 14832 * Returns True if work scheduled, False otherwise. 14833 **/ 14834 static bool 14835 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14836 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14837 struct lpfc_cqe *), unsigned long *delay, 14838 enum lpfc_poll_mode poll_mode) 14839 { 14840 struct lpfc_cqe *cqe; 14841 bool workposted = false; 14842 int count = 0, consumed = 0; 14843 bool arm = true; 14844 14845 /* default - no reschedule */ 14846 *delay = 0; 14847 14848 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14849 goto rearm_and_exit; 14850 14851 /* Process all the entries to the CQ */ 14852 cq->q_flag = 0; 14853 cqe = lpfc_sli4_cq_get(cq); 14854 while (cqe) { 14855 workposted |= handler(phba, cq, cqe); 14856 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14857 14858 consumed++; 14859 if (!(++count % cq->max_proc_limit)) 14860 break; 14861 14862 if (!(count % cq->notify_interval)) { 14863 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14864 LPFC_QUEUE_NOARM); 14865 consumed = 0; 14866 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14867 } 14868 14869 if (count == LPFC_NVMET_CQ_NOTIFY) 14870 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14871 14872 cqe = lpfc_sli4_cq_get(cq); 14873 } 14874 if (count >= phba->cfg_cq_poll_threshold) { 14875 *delay = 1; 14876 arm = false; 14877 } 14878 14879 /* Note: complete the irq_poll softirq before rearming CQ */ 14880 if (poll_mode == LPFC_IRQ_POLL) 14881 irq_poll_complete(&cq->iop); 14882 14883 /* Track the max number of CQEs processed in 1 EQ */ 14884 if (count > cq->CQ_max_cqe) 14885 cq->CQ_max_cqe = count; 14886 14887 cq->assoc_qp->EQ_cqe_cnt += count; 14888 14889 /* Catch the no cq entry condition */ 14890 if (unlikely(count == 0)) 14891 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14892 "0369 No entry from completion queue " 14893 "qid=%d\n", cq->queue_id); 14894 14895 xchg(&cq->queue_claimed, 0); 14896 14897 rearm_and_exit: 14898 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14899 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14900 14901 return workposted; 14902 } 14903 14904 /** 14905 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14906 * @cq: pointer to CQ to process 14907 * 14908 * This routine calls the cq processing routine with a handler specific 14909 * to the type of queue bound to it. 14910 * 14911 * The CQ routine returns two values: the first is the calling status, 14912 * which indicates whether work was queued to the background discovery 14913 * thread. If true, the routine should wakeup the discovery thread; 14914 * the second is the delay parameter. If non-zero, rather than rearming 14915 * the CQ and yet another interrupt, the CQ handler should be queued so 14916 * that it is processed in a subsequent polling action. The value of 14917 * the delay indicates when to reschedule it. 14918 **/ 14919 static void 14920 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14921 { 14922 struct lpfc_hba *phba = cq->phba; 14923 unsigned long delay; 14924 bool workposted = false; 14925 int ret = 0; 14926 14927 /* Process and rearm the CQ */ 14928 switch (cq->type) { 14929 case LPFC_MCQ: 14930 workposted |= __lpfc_sli4_process_cq(phba, cq, 14931 lpfc_sli4_sp_handle_mcqe, 14932 &delay, LPFC_QUEUE_WORK); 14933 break; 14934 case LPFC_WCQ: 14935 if (cq->subtype == LPFC_IO) 14936 workposted |= __lpfc_sli4_process_cq(phba, cq, 14937 lpfc_sli4_fp_handle_cqe, 14938 &delay, LPFC_QUEUE_WORK); 14939 else 14940 workposted |= __lpfc_sli4_process_cq(phba, cq, 14941 lpfc_sli4_sp_handle_cqe, 14942 &delay, LPFC_QUEUE_WORK); 14943 break; 14944 default: 14945 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14946 "0370 Invalid completion queue type (%d)\n", 14947 cq->type); 14948 return; 14949 } 14950 14951 if (delay) { 14952 if (is_kdump_kernel()) 14953 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14954 delay); 14955 else 14956 ret = queue_delayed_work_on(cq->chann, phba->wq, 14957 &cq->sched_spwork, delay); 14958 if (!ret) 14959 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14960 "0394 Cannot schedule queue work " 14961 "for cqid=%d on CPU %d\n", 14962 cq->queue_id, cq->chann); 14963 } 14964 14965 /* wake up worker thread if there are works to be done */ 14966 if (workposted) 14967 lpfc_worker_wake_up(phba); 14968 } 14969 14970 /** 14971 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 14972 * interrupt 14973 * @work: pointer to work element 14974 * 14975 * translates from the work handler and calls the slow-path handler. 14976 **/ 14977 static void 14978 lpfc_sli4_sp_process_cq(struct work_struct *work) 14979 { 14980 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 14981 14982 __lpfc_sli4_sp_process_cq(cq); 14983 } 14984 14985 /** 14986 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 14987 * @work: pointer to work element 14988 * 14989 * translates from the work handler and calls the slow-path handler. 14990 **/ 14991 static void 14992 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 14993 { 14994 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14995 struct lpfc_queue, sched_spwork); 14996 14997 __lpfc_sli4_sp_process_cq(cq); 14998 } 14999 15000 /** 15001 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 15002 * @phba: Pointer to HBA context object. 15003 * @cq: Pointer to associated CQ 15004 * @wcqe: Pointer to work-queue completion queue entry. 15005 * 15006 * This routine process a fast-path work queue completion entry from fast-path 15007 * event queue for FCP command response completion. 15008 **/ 15009 static void 15010 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15011 struct lpfc_wcqe_complete *wcqe) 15012 { 15013 struct lpfc_sli_ring *pring = cq->pring; 15014 struct lpfc_iocbq *cmdiocbq; 15015 unsigned long iflags; 15016 15017 /* Check for response status */ 15018 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 15019 /* If resource errors reported from HBA, reduce queue 15020 * depth of the SCSI device. 15021 */ 15022 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 15023 IOSTAT_LOCAL_REJECT)) && 15024 ((wcqe->parameter & IOERR_PARAM_MASK) == 15025 IOERR_NO_RESOURCES)) 15026 phba->lpfc_rampdown_queue_depth(phba); 15027 15028 /* Log the cmpl status */ 15029 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 15030 "0373 FCP CQE cmpl: status=x%x: " 15031 "CQE: %08x %08x %08x %08x\n", 15032 bf_get(lpfc_wcqe_c_status, wcqe), 15033 wcqe->word0, wcqe->total_data_placed, 15034 wcqe->parameter, wcqe->word3); 15035 } 15036 15037 /* Look up the FCP command IOCB and create pseudo response IOCB */ 15038 spin_lock_irqsave(&pring->ring_lock, iflags); 15039 pring->stats.iocb_event++; 15040 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 15041 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15042 spin_unlock_irqrestore(&pring->ring_lock, iflags); 15043 if (unlikely(!cmdiocbq)) { 15044 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15045 "0374 FCP complete with no corresponding " 15046 "cmdiocb: iotag (%d)\n", 15047 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15048 return; 15049 } 15050 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 15051 cmdiocbq->isr_timestamp = cq->isr_timestamp; 15052 #endif 15053 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 15054 spin_lock_irqsave(&phba->hbalock, iflags); 15055 cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 15056 spin_unlock_irqrestore(&phba->hbalock, iflags); 15057 } 15058 15059 if (cmdiocbq->cmd_cmpl) { 15060 /* For FCP the flag is cleared in cmd_cmpl */ 15061 if (!(cmdiocbq->cmd_flag & LPFC_IO_FCP) && 15062 cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) { 15063 spin_lock_irqsave(&phba->hbalock, iflags); 15064 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 15065 spin_unlock_irqrestore(&phba->hbalock, iflags); 15066 } 15067 15068 /* Pass the cmd_iocb and the wcqe to the upper layer */ 15069 memcpy(&cmdiocbq->wcqe_cmpl, wcqe, 15070 sizeof(struct lpfc_wcqe_complete)); 15071 cmdiocbq->cmd_cmpl(phba, cmdiocbq, cmdiocbq); 15072 } else { 15073 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15074 "0375 FCP cmdiocb not callback function " 15075 "iotag: (%d)\n", 15076 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15077 } 15078 } 15079 15080 /** 15081 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 15082 * @phba: Pointer to HBA context object. 15083 * @cq: Pointer to completion queue. 15084 * @wcqe: Pointer to work-queue completion queue entry. 15085 * 15086 * This routine handles an fast-path WQ entry consumed event by invoking the 15087 * proper WQ release routine to the slow-path WQ. 15088 **/ 15089 static void 15090 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15091 struct lpfc_wcqe_release *wcqe) 15092 { 15093 struct lpfc_queue *childwq; 15094 bool wqid_matched = false; 15095 uint16_t hba_wqid; 15096 15097 /* Check for fast-path FCP work queue release */ 15098 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 15099 list_for_each_entry(childwq, &cq->child_list, list) { 15100 if (childwq->queue_id == hba_wqid) { 15101 lpfc_sli4_wq_release(childwq, 15102 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 15103 if (childwq->q_flag & HBA_NVMET_WQFULL) 15104 lpfc_nvmet_wqfull_process(phba, childwq); 15105 wqid_matched = true; 15106 break; 15107 } 15108 } 15109 /* Report warning log message if no match found */ 15110 if (wqid_matched != true) 15111 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15112 "2580 Fast-path wqe consume event carries " 15113 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 15114 } 15115 15116 /** 15117 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 15118 * @phba: Pointer to HBA context object. 15119 * @cq: Pointer to completion queue. 15120 * @rcqe: Pointer to receive-queue completion queue entry. 15121 * 15122 * This routine process a receive-queue completion queue entry. 15123 * 15124 * Return: true if work posted to worker thread, otherwise false. 15125 **/ 15126 static bool 15127 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15128 struct lpfc_rcqe *rcqe) 15129 { 15130 bool workposted = false; 15131 struct lpfc_queue *hrq; 15132 struct lpfc_queue *drq; 15133 struct rqb_dmabuf *dma_buf; 15134 struct fc_frame_header *fc_hdr; 15135 struct lpfc_nvmet_tgtport *tgtp; 15136 uint32_t status, rq_id; 15137 unsigned long iflags; 15138 uint32_t fctl, idx; 15139 15140 if ((phba->nvmet_support == 0) || 15141 (phba->sli4_hba.nvmet_cqset == NULL)) 15142 return workposted; 15143 15144 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 15145 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 15146 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 15147 15148 /* sanity check on queue memory */ 15149 if (unlikely(!hrq) || unlikely(!drq)) 15150 return workposted; 15151 15152 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 15153 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 15154 else 15155 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 15156 15157 if ((phba->nvmet_support == 0) || 15158 (rq_id != hrq->queue_id)) 15159 return workposted; 15160 15161 status = bf_get(lpfc_rcqe_status, rcqe); 15162 switch (status) { 15163 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 15164 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15165 "6126 Receive Frame Truncated!!\n"); 15166 fallthrough; 15167 case FC_STATUS_RQ_SUCCESS: 15168 spin_lock_irqsave(&phba->hbalock, iflags); 15169 lpfc_sli4_rq_release(hrq, drq); 15170 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15171 if (!dma_buf) { 15172 hrq->RQ_no_buf_found++; 15173 spin_unlock_irqrestore(&phba->hbalock, iflags); 15174 goto out; 15175 } 15176 spin_unlock_irqrestore(&phba->hbalock, iflags); 15177 hrq->RQ_rcv_buf++; 15178 hrq->RQ_buf_posted--; 15179 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 15180 15181 /* Just some basic sanity checks on FCP Command frame */ 15182 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 15183 fc_hdr->fh_f_ctl[1] << 8 | 15184 fc_hdr->fh_f_ctl[2]); 15185 if (((fctl & 15186 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 15187 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 15188 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 15189 goto drop; 15190 15191 if (fc_hdr->fh_type == FC_TYPE_FCP) { 15192 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 15193 lpfc_nvmet_unsol_fcp_event( 15194 phba, idx, dma_buf, cq->isr_timestamp, 15195 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 15196 return false; 15197 } 15198 drop: 15199 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15200 break; 15201 case FC_STATUS_INSUFF_BUF_FRM_DISC: 15202 if (phba->nvmet_support) { 15203 tgtp = phba->targetport->private; 15204 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15205 "6401 RQE Error x%x, posted %d err_cnt " 15206 "%d: %x %x %x\n", 15207 status, hrq->RQ_buf_posted, 15208 hrq->RQ_no_posted_buf, 15209 atomic_read(&tgtp->rcv_fcp_cmd_in), 15210 atomic_read(&tgtp->rcv_fcp_cmd_out), 15211 atomic_read(&tgtp->xmt_fcp_release)); 15212 } 15213 fallthrough; 15214 15215 case FC_STATUS_INSUFF_BUF_NEED_BUF: 15216 hrq->RQ_no_posted_buf++; 15217 /* Post more buffers if possible */ 15218 break; 15219 } 15220 out: 15221 return workposted; 15222 } 15223 15224 /** 15225 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 15226 * @phba: adapter with cq 15227 * @cq: Pointer to the completion queue. 15228 * @cqe: Pointer to fast-path completion queue entry. 15229 * 15230 * This routine process a fast-path work queue completion entry from fast-path 15231 * event queue for FCP command response completion. 15232 * 15233 * Return: true if work posted to worker thread, otherwise false. 15234 **/ 15235 static bool 15236 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15237 struct lpfc_cqe *cqe) 15238 { 15239 struct lpfc_wcqe_release wcqe; 15240 bool workposted = false; 15241 15242 /* Copy the work queue CQE and convert endian order if needed */ 15243 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 15244 15245 /* Check and process for different type of WCQE and dispatch */ 15246 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 15247 case CQE_CODE_COMPL_WQE: 15248 case CQE_CODE_NVME_ERSP: 15249 cq->CQ_wq++; 15250 /* Process the WQ complete event */ 15251 phba->last_completion_time = jiffies; 15252 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 15253 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 15254 (struct lpfc_wcqe_complete *)&wcqe); 15255 break; 15256 case CQE_CODE_RELEASE_WQE: 15257 cq->CQ_release_wqe++; 15258 /* Process the WQ release event */ 15259 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 15260 (struct lpfc_wcqe_release *)&wcqe); 15261 break; 15262 case CQE_CODE_XRI_ABORTED: 15263 cq->CQ_xri_aborted++; 15264 /* Process the WQ XRI abort event */ 15265 phba->last_completion_time = jiffies; 15266 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 15267 (struct sli4_wcqe_xri_aborted *)&wcqe); 15268 break; 15269 case CQE_CODE_RECEIVE_V1: 15270 case CQE_CODE_RECEIVE: 15271 phba->last_completion_time = jiffies; 15272 if (cq->subtype == LPFC_NVMET) { 15273 workposted = lpfc_sli4_nvmet_handle_rcqe( 15274 phba, cq, (struct lpfc_rcqe *)&wcqe); 15275 } 15276 break; 15277 default: 15278 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15279 "0144 Not a valid CQE code: x%x\n", 15280 bf_get(lpfc_wcqe_c_code, &wcqe)); 15281 break; 15282 } 15283 return workposted; 15284 } 15285 15286 /** 15287 * lpfc_sli4_sched_cq_work - Schedules cq work 15288 * @phba: Pointer to HBA context object. 15289 * @cq: Pointer to CQ 15290 * @cqid: CQ ID 15291 * 15292 * This routine checks the poll mode of the CQ corresponding to 15293 * cq->chann, then either schedules a softirq or queue_work to complete 15294 * cq work. 15295 * 15296 * queue_work path is taken if in NVMET mode, or if poll_mode is in 15297 * LPFC_QUEUE_WORK mode. Otherwise, softirq path is taken. 15298 * 15299 **/ 15300 static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba, 15301 struct lpfc_queue *cq, uint16_t cqid) 15302 { 15303 int ret = 0; 15304 15305 switch (cq->poll_mode) { 15306 case LPFC_IRQ_POLL: 15307 /* CGN mgmt is mutually exclusive from softirq processing */ 15308 if (phba->cmf_active_mode == LPFC_CFG_OFF) { 15309 irq_poll_sched(&cq->iop); 15310 break; 15311 } 15312 fallthrough; 15313 case LPFC_QUEUE_WORK: 15314 default: 15315 if (is_kdump_kernel()) 15316 ret = queue_work(phba->wq, &cq->irqwork); 15317 else 15318 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 15319 if (!ret) 15320 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15321 "0383 Cannot schedule queue work " 15322 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 15323 cqid, cq->queue_id, 15324 raw_smp_processor_id()); 15325 } 15326 } 15327 15328 /** 15329 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 15330 * @phba: Pointer to HBA context object. 15331 * @eq: Pointer to the queue structure. 15332 * @eqe: Pointer to fast-path event queue entry. 15333 * 15334 * This routine process a event queue entry from the fast-path event queue. 15335 * It will check the MajorCode and MinorCode to determine this is for a 15336 * completion event on a completion queue, if not, an error shall be logged 15337 * and just return. Otherwise, it will get to the corresponding completion 15338 * queue and process all the entries on the completion queue, rearm the 15339 * completion queue, and then return. 15340 **/ 15341 static void 15342 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 15343 struct lpfc_eqe *eqe) 15344 { 15345 struct lpfc_queue *cq = NULL; 15346 uint32_t qidx = eq->hdwq; 15347 uint16_t cqid, id; 15348 15349 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 15350 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15351 "0366 Not a valid completion " 15352 "event: majorcode=x%x, minorcode=x%x\n", 15353 bf_get_le32(lpfc_eqe_major_code, eqe), 15354 bf_get_le32(lpfc_eqe_minor_code, eqe)); 15355 return; 15356 } 15357 15358 /* Get the reference to the corresponding CQ */ 15359 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 15360 15361 /* Use the fast lookup method first */ 15362 if (cqid <= phba->sli4_hba.cq_max) { 15363 cq = phba->sli4_hba.cq_lookup[cqid]; 15364 if (cq) 15365 goto work_cq; 15366 } 15367 15368 /* Next check for NVMET completion */ 15369 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 15370 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 15371 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 15372 /* Process NVMET unsol rcv */ 15373 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 15374 goto process_cq; 15375 } 15376 } 15377 15378 if (phba->sli4_hba.nvmels_cq && 15379 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 15380 /* Process NVME unsol rcv */ 15381 cq = phba->sli4_hba.nvmels_cq; 15382 } 15383 15384 /* Otherwise this is a Slow path event */ 15385 if (cq == NULL) { 15386 lpfc_sli4_sp_handle_eqe(phba, eqe, 15387 phba->sli4_hba.hdwq[qidx].hba_eq); 15388 return; 15389 } 15390 15391 process_cq: 15392 if (unlikely(cqid != cq->queue_id)) { 15393 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15394 "0368 Miss-matched fast-path completion " 15395 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 15396 cqid, cq->queue_id); 15397 return; 15398 } 15399 15400 work_cq: 15401 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 15402 if (phba->ktime_on) 15403 cq->isr_timestamp = ktime_get_ns(); 15404 else 15405 cq->isr_timestamp = 0; 15406 #endif 15407 lpfc_sli4_sched_cq_work(phba, cq, cqid); 15408 } 15409 15410 /** 15411 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 15412 * @cq: Pointer to CQ to be processed 15413 * @poll_mode: Enum lpfc_poll_state to determine poll mode 15414 * 15415 * This routine calls the cq processing routine with the handler for 15416 * fast path CQEs. 15417 * 15418 * The CQ routine returns two values: the first is the calling status, 15419 * which indicates whether work was queued to the background discovery 15420 * thread. If true, the routine should wakeup the discovery thread; 15421 * the second is the delay parameter. If non-zero, rather than rearming 15422 * the CQ and yet another interrupt, the CQ handler should be queued so 15423 * that it is processed in a subsequent polling action. The value of 15424 * the delay indicates when to reschedule it. 15425 **/ 15426 static void 15427 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq, 15428 enum lpfc_poll_mode poll_mode) 15429 { 15430 struct lpfc_hba *phba = cq->phba; 15431 unsigned long delay; 15432 bool workposted = false; 15433 int ret = 0; 15434 15435 /* process and rearm the CQ */ 15436 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 15437 &delay, poll_mode); 15438 15439 if (delay) { 15440 if (is_kdump_kernel()) 15441 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 15442 delay); 15443 else 15444 ret = queue_delayed_work_on(cq->chann, phba->wq, 15445 &cq->sched_irqwork, delay); 15446 if (!ret) 15447 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15448 "0367 Cannot schedule queue work " 15449 "for cqid=%d on CPU %d\n", 15450 cq->queue_id, cq->chann); 15451 } 15452 15453 /* wake up worker thread if there are works to be done */ 15454 if (workposted) 15455 lpfc_worker_wake_up(phba); 15456 } 15457 15458 /** 15459 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 15460 * interrupt 15461 * @work: pointer to work element 15462 * 15463 * translates from the work handler and calls the fast-path handler. 15464 **/ 15465 static void 15466 lpfc_sli4_hba_process_cq(struct work_struct *work) 15467 { 15468 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 15469 15470 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 15471 } 15472 15473 /** 15474 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 15475 * @work: pointer to work element 15476 * 15477 * translates from the work handler and calls the fast-path handler. 15478 **/ 15479 static void 15480 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 15481 { 15482 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15483 struct lpfc_queue, sched_irqwork); 15484 15485 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 15486 } 15487 15488 /** 15489 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 15490 * @irq: Interrupt number. 15491 * @dev_id: The device context pointer. 15492 * 15493 * This function is directly called from the PCI layer as an interrupt 15494 * service routine when device with SLI-4 interface spec is enabled with 15495 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 15496 * ring event in the HBA. However, when the device is enabled with either 15497 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 15498 * device-level interrupt handler. When the PCI slot is in error recovery 15499 * or the HBA is undergoing initialization, the interrupt handler will not 15500 * process the interrupt. The SCSI FCP fast-path ring event are handled in 15501 * the intrrupt context. This function is called without any lock held. 15502 * It gets the hbalock to access and update SLI data structures. Note that, 15503 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 15504 * equal to that of FCP CQ index. 15505 * 15506 * The link attention and ELS ring attention events are handled 15507 * by the worker thread. The interrupt handler signals the worker thread 15508 * and returns for these events. This function is called without any lock 15509 * held. It gets the hbalock to access and update SLI data structures. 15510 * 15511 * This function returns IRQ_HANDLED when interrupt is handled else it 15512 * returns IRQ_NONE. 15513 **/ 15514 irqreturn_t 15515 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 15516 { 15517 struct lpfc_hba *phba; 15518 struct lpfc_hba_eq_hdl *hba_eq_hdl; 15519 struct lpfc_queue *fpeq; 15520 unsigned long iflag; 15521 int ecount = 0; 15522 int hba_eqidx; 15523 struct lpfc_eq_intr_info *eqi; 15524 15525 /* Get the driver's phba structure from the dev_id */ 15526 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 15527 phba = hba_eq_hdl->phba; 15528 hba_eqidx = hba_eq_hdl->idx; 15529 15530 if (unlikely(!phba)) 15531 return IRQ_NONE; 15532 if (unlikely(!phba->sli4_hba.hdwq)) 15533 return IRQ_NONE; 15534 15535 /* Get to the EQ struct associated with this vector */ 15536 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 15537 if (unlikely(!fpeq)) 15538 return IRQ_NONE; 15539 15540 /* Check device state for handling interrupt */ 15541 if (unlikely(lpfc_intr_state_check(phba))) { 15542 /* Check again for link_state with lock held */ 15543 spin_lock_irqsave(&phba->hbalock, iflag); 15544 if (phba->link_state < LPFC_LINK_DOWN) 15545 /* Flush, clear interrupt, and rearm the EQ */ 15546 lpfc_sli4_eqcq_flush(phba, fpeq); 15547 spin_unlock_irqrestore(&phba->hbalock, iflag); 15548 return IRQ_NONE; 15549 } 15550 15551 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 15552 eqi->icnt++; 15553 15554 fpeq->last_cpu = raw_smp_processor_id(); 15555 15556 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 15557 fpeq->q_flag & HBA_EQ_DELAY_CHK && 15558 phba->cfg_auto_imax && 15559 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 15560 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 15561 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 15562 15563 /* process and rearm the EQ */ 15564 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 15565 15566 if (unlikely(ecount == 0)) { 15567 fpeq->EQ_no_entry++; 15568 if (phba->intr_type == MSIX) 15569 /* MSI-X treated interrupt served as no EQ share INT */ 15570 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15571 "0358 MSI-X interrupt with no EQE\n"); 15572 else 15573 /* Non MSI-X treated on interrupt as EQ share INT */ 15574 return IRQ_NONE; 15575 } 15576 15577 return IRQ_HANDLED; 15578 } /* lpfc_sli4_hba_intr_handler */ 15579 15580 /** 15581 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 15582 * @irq: Interrupt number. 15583 * @dev_id: The device context pointer. 15584 * 15585 * This function is the device-level interrupt handler to device with SLI-4 15586 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 15587 * interrupt mode is enabled and there is an event in the HBA which requires 15588 * driver attention. This function invokes the slow-path interrupt attention 15589 * handling function and fast-path interrupt attention handling function in 15590 * turn to process the relevant HBA attention events. This function is called 15591 * without any lock held. It gets the hbalock to access and update SLI data 15592 * structures. 15593 * 15594 * This function returns IRQ_HANDLED when interrupt is handled, else it 15595 * returns IRQ_NONE. 15596 **/ 15597 irqreturn_t 15598 lpfc_sli4_intr_handler(int irq, void *dev_id) 15599 { 15600 struct lpfc_hba *phba; 15601 irqreturn_t hba_irq_rc; 15602 bool hba_handled = false; 15603 int qidx; 15604 15605 /* Get the driver's phba structure from the dev_id */ 15606 phba = (struct lpfc_hba *)dev_id; 15607 15608 if (unlikely(!phba)) 15609 return IRQ_NONE; 15610 15611 /* 15612 * Invoke fast-path host attention interrupt handling as appropriate. 15613 */ 15614 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 15615 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 15616 &phba->sli4_hba.hba_eq_hdl[qidx]); 15617 if (hba_irq_rc == IRQ_HANDLED) 15618 hba_handled |= true; 15619 } 15620 15621 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 15622 } /* lpfc_sli4_intr_handler */ 15623 15624 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 15625 { 15626 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 15627 struct lpfc_queue *eq; 15628 int i = 0; 15629 15630 rcu_read_lock(); 15631 15632 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 15633 i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH); 15634 if (!list_empty(&phba->poll_list)) 15635 mod_timer(&phba->cpuhp_poll_timer, 15636 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15637 15638 rcu_read_unlock(); 15639 } 15640 15641 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path) 15642 { 15643 struct lpfc_hba *phba = eq->phba; 15644 int i = 0; 15645 15646 /* 15647 * Unlocking an irq is one of the entry point to check 15648 * for re-schedule, but we are good for io submission 15649 * path as midlayer does a get_cpu to glue us in. Flush 15650 * out the invalidate queue so we can see the updated 15651 * value for flag. 15652 */ 15653 smp_rmb(); 15654 15655 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 15656 /* We will not likely get the completion for the caller 15657 * during this iteration but i guess that's fine. 15658 * Future io's coming on this eq should be able to 15659 * pick it up. As for the case of single io's, they 15660 * will be handled through a sched from polling timer 15661 * function which is currently triggered every 1msec. 15662 */ 15663 i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM); 15664 15665 return i; 15666 } 15667 15668 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 15669 { 15670 struct lpfc_hba *phba = eq->phba; 15671 15672 /* kickstart slowpath processing if needed */ 15673 if (list_empty(&phba->poll_list)) 15674 mod_timer(&phba->cpuhp_poll_timer, 15675 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15676 15677 list_add_rcu(&eq->_poll_list, &phba->poll_list); 15678 synchronize_rcu(); 15679 } 15680 15681 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 15682 { 15683 struct lpfc_hba *phba = eq->phba; 15684 15685 /* Disable slowpath processing for this eq. Kick start the eq 15686 * by RE-ARMING the eq's ASAP 15687 */ 15688 list_del_rcu(&eq->_poll_list); 15689 synchronize_rcu(); 15690 15691 if (list_empty(&phba->poll_list)) 15692 del_timer_sync(&phba->cpuhp_poll_timer); 15693 } 15694 15695 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 15696 { 15697 struct lpfc_queue *eq, *next; 15698 15699 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 15700 list_del(&eq->_poll_list); 15701 15702 INIT_LIST_HEAD(&phba->poll_list); 15703 synchronize_rcu(); 15704 } 15705 15706 static inline void 15707 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15708 { 15709 if (mode == eq->mode) 15710 return; 15711 /* 15712 * currently this function is only called during a hotplug 15713 * event and the cpu on which this function is executing 15714 * is going offline. By now the hotplug has instructed 15715 * the scheduler to remove this cpu from cpu active mask. 15716 * So we don't need to work about being put aside by the 15717 * scheduler for a high priority process. Yes, the inte- 15718 * rrupts could come but they are known to retire ASAP. 15719 */ 15720 15721 /* Disable polling in the fastpath */ 15722 WRITE_ONCE(eq->mode, mode); 15723 /* flush out the store buffer */ 15724 smp_wmb(); 15725 15726 /* 15727 * Add this eq to the polling list and start polling. For 15728 * a grace period both interrupt handler and poller will 15729 * try to process the eq _but_ that's fine. We have a 15730 * synchronization mechanism in place (queue_claimed) to 15731 * deal with it. This is just a draining phase for int- 15732 * errupt handler (not eq's) as we have guranteed through 15733 * barrier that all the CPUs have seen the new CQ_POLLED 15734 * state. which will effectively disable the REARMING of 15735 * the EQ. The whole idea is eq's die off eventually as 15736 * we are not rearming EQ's anymore. 15737 */ 15738 mode ? lpfc_sli4_add_to_poll_list(eq) : 15739 lpfc_sli4_remove_from_poll_list(eq); 15740 } 15741 15742 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15743 { 15744 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15745 } 15746 15747 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15748 { 15749 struct lpfc_hba *phba = eq->phba; 15750 15751 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15752 15753 /* Kick start for the pending io's in h/w. 15754 * Once we switch back to interrupt processing on a eq 15755 * the io path completion will only arm eq's when it 15756 * receives a completion. But since eq's are in disa- 15757 * rmed state it doesn't receive a completion. This 15758 * creates a deadlock scenaro. 15759 */ 15760 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15761 } 15762 15763 /** 15764 * lpfc_sli4_queue_free - free a queue structure and associated memory 15765 * @queue: The queue structure to free. 15766 * 15767 * This function frees a queue structure and the DMAable memory used for 15768 * the host resident queue. This function must be called after destroying the 15769 * queue on the HBA. 15770 **/ 15771 void 15772 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15773 { 15774 struct lpfc_dmabuf *dmabuf; 15775 15776 if (!queue) 15777 return; 15778 15779 if (!list_empty(&queue->wq_list)) 15780 list_del(&queue->wq_list); 15781 15782 while (!list_empty(&queue->page_list)) { 15783 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15784 list); 15785 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15786 dmabuf->virt, dmabuf->phys); 15787 kfree(dmabuf); 15788 } 15789 if (queue->rqbp) { 15790 lpfc_free_rq_buffer(queue->phba, queue); 15791 kfree(queue->rqbp); 15792 } 15793 15794 if (!list_empty(&queue->cpu_list)) 15795 list_del(&queue->cpu_list); 15796 15797 kfree(queue); 15798 return; 15799 } 15800 15801 /** 15802 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15803 * @phba: The HBA that this queue is being created on. 15804 * @page_size: The size of a queue page 15805 * @entry_size: The size of each queue entry for this queue. 15806 * @entry_count: The number of entries that this queue will handle. 15807 * @cpu: The cpu that will primarily utilize this queue. 15808 * 15809 * This function allocates a queue structure and the DMAable memory used for 15810 * the host resident queue. This function must be called before creating the 15811 * queue on the HBA. 15812 **/ 15813 struct lpfc_queue * 15814 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15815 uint32_t entry_size, uint32_t entry_count, int cpu) 15816 { 15817 struct lpfc_queue *queue; 15818 struct lpfc_dmabuf *dmabuf; 15819 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15820 uint16_t x, pgcnt; 15821 15822 if (!phba->sli4_hba.pc_sli4_params.supported) 15823 hw_page_size = page_size; 15824 15825 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15826 15827 /* If needed, Adjust page count to match the max the adapter supports */ 15828 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15829 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15830 15831 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15832 GFP_KERNEL, cpu_to_node(cpu)); 15833 if (!queue) 15834 return NULL; 15835 15836 INIT_LIST_HEAD(&queue->list); 15837 INIT_LIST_HEAD(&queue->_poll_list); 15838 INIT_LIST_HEAD(&queue->wq_list); 15839 INIT_LIST_HEAD(&queue->wqfull_list); 15840 INIT_LIST_HEAD(&queue->page_list); 15841 INIT_LIST_HEAD(&queue->child_list); 15842 INIT_LIST_HEAD(&queue->cpu_list); 15843 15844 /* Set queue parameters now. If the system cannot provide memory 15845 * resources, the free routine needs to know what was allocated. 15846 */ 15847 queue->page_count = pgcnt; 15848 queue->q_pgs = (void **)&queue[1]; 15849 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15850 queue->entry_size = entry_size; 15851 queue->entry_count = entry_count; 15852 queue->page_size = hw_page_size; 15853 queue->phba = phba; 15854 15855 for (x = 0; x < queue->page_count; x++) { 15856 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15857 dev_to_node(&phba->pcidev->dev)); 15858 if (!dmabuf) 15859 goto out_fail; 15860 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15861 hw_page_size, &dmabuf->phys, 15862 GFP_KERNEL); 15863 if (!dmabuf->virt) { 15864 kfree(dmabuf); 15865 goto out_fail; 15866 } 15867 dmabuf->buffer_tag = x; 15868 list_add_tail(&dmabuf->list, &queue->page_list); 15869 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15870 queue->q_pgs[x] = dmabuf->virt; 15871 } 15872 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15873 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15874 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15875 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15876 15877 /* notify_interval will be set during q creation */ 15878 15879 return queue; 15880 out_fail: 15881 lpfc_sli4_queue_free(queue); 15882 return NULL; 15883 } 15884 15885 /** 15886 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15887 * @phba: HBA structure that indicates port to create a queue on. 15888 * @pci_barset: PCI BAR set flag. 15889 * 15890 * This function shall perform iomap of the specified PCI BAR address to host 15891 * memory address if not already done so and return it. The returned host 15892 * memory address can be NULL. 15893 */ 15894 static void __iomem * 15895 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15896 { 15897 if (!phba->pcidev) 15898 return NULL; 15899 15900 switch (pci_barset) { 15901 case WQ_PCI_BAR_0_AND_1: 15902 return phba->pci_bar0_memmap_p; 15903 case WQ_PCI_BAR_2_AND_3: 15904 return phba->pci_bar2_memmap_p; 15905 case WQ_PCI_BAR_4_AND_5: 15906 return phba->pci_bar4_memmap_p; 15907 default: 15908 break; 15909 } 15910 return NULL; 15911 } 15912 15913 /** 15914 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15915 * @phba: HBA structure that EQs are on. 15916 * @startq: The starting EQ index to modify 15917 * @numq: The number of EQs (consecutive indexes) to modify 15918 * @usdelay: amount of delay 15919 * 15920 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15921 * is set either by writing to a register (if supported by the SLI Port) 15922 * or by mailbox command. The mailbox command allows several EQs to be 15923 * updated at once. 15924 * 15925 * The @phba struct is used to send a mailbox command to HBA. The @startq 15926 * is used to get the starting EQ index to change. The @numq value is 15927 * used to specify how many consecutive EQ indexes, starting at EQ index, 15928 * are to be changed. This function is asynchronous and will wait for any 15929 * mailbox commands to finish before returning. 15930 * 15931 * On success this function will return a zero. If unable to allocate 15932 * enough memory this function will return -ENOMEM. If a mailbox command 15933 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15934 * have had their delay multipler changed. 15935 **/ 15936 void 15937 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15938 uint32_t numq, uint32_t usdelay) 15939 { 15940 struct lpfc_mbx_modify_eq_delay *eq_delay; 15941 LPFC_MBOXQ_t *mbox; 15942 struct lpfc_queue *eq; 15943 int cnt = 0, rc, length; 15944 uint32_t shdr_status, shdr_add_status; 15945 uint32_t dmult; 15946 int qidx; 15947 union lpfc_sli4_cfg_shdr *shdr; 15948 15949 if (startq >= phba->cfg_irq_chann) 15950 return; 15951 15952 if (usdelay > 0xFFFF) { 15953 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15954 "6429 usdelay %d too large. Scaled down to " 15955 "0xFFFF.\n", usdelay); 15956 usdelay = 0xFFFF; 15957 } 15958 15959 /* set values by EQ_DELAY register if supported */ 15960 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15961 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15962 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15963 if (!eq) 15964 continue; 15965 15966 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15967 15968 if (++cnt >= numq) 15969 break; 15970 } 15971 return; 15972 } 15973 15974 /* Otherwise, set values by mailbox cmd */ 15975 15976 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15977 if (!mbox) { 15978 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15979 "6428 Failed allocating mailbox cmd buffer." 15980 " EQ delay was not set.\n"); 15981 return; 15982 } 15983 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 15984 sizeof(struct lpfc_sli4_cfg_mhdr)); 15985 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15986 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 15987 length, LPFC_SLI4_MBX_EMBED); 15988 eq_delay = &mbox->u.mqe.un.eq_delay; 15989 15990 /* Calculate delay multiper from maximum interrupt per second */ 15991 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 15992 if (dmult) 15993 dmult--; 15994 if (dmult > LPFC_DMULT_MAX) 15995 dmult = LPFC_DMULT_MAX; 15996 15997 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15998 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15999 if (!eq) 16000 continue; 16001 eq->q_mode = usdelay; 16002 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 16003 eq_delay->u.request.eq[cnt].phase = 0; 16004 eq_delay->u.request.eq[cnt].delay_multi = dmult; 16005 16006 if (++cnt >= numq) 16007 break; 16008 } 16009 eq_delay->u.request.num_eq = cnt; 16010 16011 mbox->vport = phba->pport; 16012 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16013 mbox->ctx_ndlp = NULL; 16014 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16015 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 16016 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16017 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16018 if (shdr_status || shdr_add_status || rc) { 16019 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16020 "2512 MODIFY_EQ_DELAY mailbox failed with " 16021 "status x%x add_status x%x, mbx status x%x\n", 16022 shdr_status, shdr_add_status, rc); 16023 } 16024 mempool_free(mbox, phba->mbox_mem_pool); 16025 return; 16026 } 16027 16028 /** 16029 * lpfc_eq_create - Create an Event Queue on the HBA 16030 * @phba: HBA structure that indicates port to create a queue on. 16031 * @eq: The queue structure to use to create the event queue. 16032 * @imax: The maximum interrupt per second limit. 16033 * 16034 * This function creates an event queue, as detailed in @eq, on a port, 16035 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 16036 * 16037 * The @phba struct is used to send mailbox command to HBA. The @eq struct 16038 * is used to get the entry count and entry size that are necessary to 16039 * determine the number of pages to allocate and use for this queue. This 16040 * function will send the EQ_CREATE mailbox command to the HBA to setup the 16041 * event queue. This function is asynchronous and will wait for the mailbox 16042 * command to finish before continuing. 16043 * 16044 * On success this function will return a zero. If unable to allocate enough 16045 * memory this function will return -ENOMEM. If the queue create mailbox command 16046 * fails this function will return -ENXIO. 16047 **/ 16048 int 16049 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 16050 { 16051 struct lpfc_mbx_eq_create *eq_create; 16052 LPFC_MBOXQ_t *mbox; 16053 int rc, length, status = 0; 16054 struct lpfc_dmabuf *dmabuf; 16055 uint32_t shdr_status, shdr_add_status; 16056 union lpfc_sli4_cfg_shdr *shdr; 16057 uint16_t dmult; 16058 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16059 16060 /* sanity check on queue memory */ 16061 if (!eq) 16062 return -ENODEV; 16063 if (!phba->sli4_hba.pc_sli4_params.supported) 16064 hw_page_size = SLI4_PAGE_SIZE; 16065 16066 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16067 if (!mbox) 16068 return -ENOMEM; 16069 length = (sizeof(struct lpfc_mbx_eq_create) - 16070 sizeof(struct lpfc_sli4_cfg_mhdr)); 16071 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16072 LPFC_MBOX_OPCODE_EQ_CREATE, 16073 length, LPFC_SLI4_MBX_EMBED); 16074 eq_create = &mbox->u.mqe.un.eq_create; 16075 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 16076 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 16077 eq->page_count); 16078 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 16079 LPFC_EQE_SIZE); 16080 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 16081 16082 /* Use version 2 of CREATE_EQ if eqav is set */ 16083 if (phba->sli4_hba.pc_sli4_params.eqav) { 16084 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16085 LPFC_Q_CREATE_VERSION_2); 16086 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 16087 phba->sli4_hba.pc_sli4_params.eqav); 16088 } 16089 16090 /* don't setup delay multiplier using EQ_CREATE */ 16091 dmult = 0; 16092 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 16093 dmult); 16094 switch (eq->entry_count) { 16095 default: 16096 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16097 "0360 Unsupported EQ count. (%d)\n", 16098 eq->entry_count); 16099 if (eq->entry_count < 256) { 16100 status = -EINVAL; 16101 goto out; 16102 } 16103 fallthrough; /* otherwise default to smallest count */ 16104 case 256: 16105 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16106 LPFC_EQ_CNT_256); 16107 break; 16108 case 512: 16109 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16110 LPFC_EQ_CNT_512); 16111 break; 16112 case 1024: 16113 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16114 LPFC_EQ_CNT_1024); 16115 break; 16116 case 2048: 16117 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16118 LPFC_EQ_CNT_2048); 16119 break; 16120 case 4096: 16121 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16122 LPFC_EQ_CNT_4096); 16123 break; 16124 } 16125 list_for_each_entry(dmabuf, &eq->page_list, list) { 16126 memset(dmabuf->virt, 0, hw_page_size); 16127 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16128 putPaddrLow(dmabuf->phys); 16129 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16130 putPaddrHigh(dmabuf->phys); 16131 } 16132 mbox->vport = phba->pport; 16133 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16134 mbox->ctx_buf = NULL; 16135 mbox->ctx_ndlp = NULL; 16136 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16137 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16138 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16139 if (shdr_status || shdr_add_status || rc) { 16140 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16141 "2500 EQ_CREATE mailbox failed with " 16142 "status x%x add_status x%x, mbx status x%x\n", 16143 shdr_status, shdr_add_status, rc); 16144 status = -ENXIO; 16145 } 16146 eq->type = LPFC_EQ; 16147 eq->subtype = LPFC_NONE; 16148 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 16149 if (eq->queue_id == 0xFFFF) 16150 status = -ENXIO; 16151 eq->host_index = 0; 16152 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 16153 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 16154 out: 16155 mempool_free(mbox, phba->mbox_mem_pool); 16156 return status; 16157 } 16158 16159 static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget) 16160 { 16161 struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop); 16162 16163 __lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL); 16164 16165 return 1; 16166 } 16167 16168 /** 16169 * lpfc_cq_create - Create a Completion Queue on the HBA 16170 * @phba: HBA structure that indicates port to create a queue on. 16171 * @cq: The queue structure to use to create the completion queue. 16172 * @eq: The event queue to bind this completion queue to. 16173 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16174 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16175 * 16176 * This function creates a completion queue, as detailed in @wq, on a port, 16177 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 16178 * 16179 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16180 * is used to get the entry count and entry size that are necessary to 16181 * determine the number of pages to allocate and use for this queue. The @eq 16182 * is used to indicate which event queue to bind this completion queue to. This 16183 * function will send the CQ_CREATE mailbox command to the HBA to setup the 16184 * completion queue. This function is asynchronous and will wait for the mailbox 16185 * command to finish before continuing. 16186 * 16187 * On success this function will return a zero. If unable to allocate enough 16188 * memory this function will return -ENOMEM. If the queue create mailbox command 16189 * fails this function will return -ENXIO. 16190 **/ 16191 int 16192 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 16193 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 16194 { 16195 struct lpfc_mbx_cq_create *cq_create; 16196 struct lpfc_dmabuf *dmabuf; 16197 LPFC_MBOXQ_t *mbox; 16198 int rc, length, status = 0; 16199 uint32_t shdr_status, shdr_add_status; 16200 union lpfc_sli4_cfg_shdr *shdr; 16201 16202 /* sanity check on queue memory */ 16203 if (!cq || !eq) 16204 return -ENODEV; 16205 16206 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16207 if (!mbox) 16208 return -ENOMEM; 16209 length = (sizeof(struct lpfc_mbx_cq_create) - 16210 sizeof(struct lpfc_sli4_cfg_mhdr)); 16211 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16212 LPFC_MBOX_OPCODE_CQ_CREATE, 16213 length, LPFC_SLI4_MBX_EMBED); 16214 cq_create = &mbox->u.mqe.un.cq_create; 16215 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 16216 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 16217 cq->page_count); 16218 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 16219 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 16220 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16221 phba->sli4_hba.pc_sli4_params.cqv); 16222 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 16223 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 16224 (cq->page_size / SLI4_PAGE_SIZE)); 16225 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 16226 eq->queue_id); 16227 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 16228 phba->sli4_hba.pc_sli4_params.cqav); 16229 } else { 16230 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 16231 eq->queue_id); 16232 } 16233 switch (cq->entry_count) { 16234 case 2048: 16235 case 4096: 16236 if (phba->sli4_hba.pc_sli4_params.cqv == 16237 LPFC_Q_CREATE_VERSION_2) { 16238 cq_create->u.request.context.lpfc_cq_context_count = 16239 cq->entry_count; 16240 bf_set(lpfc_cq_context_count, 16241 &cq_create->u.request.context, 16242 LPFC_CQ_CNT_WORD7); 16243 break; 16244 } 16245 fallthrough; 16246 default: 16247 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16248 "0361 Unsupported CQ count: " 16249 "entry cnt %d sz %d pg cnt %d\n", 16250 cq->entry_count, cq->entry_size, 16251 cq->page_count); 16252 if (cq->entry_count < 256) { 16253 status = -EINVAL; 16254 goto out; 16255 } 16256 fallthrough; /* otherwise default to smallest count */ 16257 case 256: 16258 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16259 LPFC_CQ_CNT_256); 16260 break; 16261 case 512: 16262 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16263 LPFC_CQ_CNT_512); 16264 break; 16265 case 1024: 16266 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16267 LPFC_CQ_CNT_1024); 16268 break; 16269 } 16270 list_for_each_entry(dmabuf, &cq->page_list, list) { 16271 memset(dmabuf->virt, 0, cq->page_size); 16272 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16273 putPaddrLow(dmabuf->phys); 16274 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16275 putPaddrHigh(dmabuf->phys); 16276 } 16277 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16278 16279 /* The IOCTL status is embedded in the mailbox subheader. */ 16280 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16281 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16282 if (shdr_status || shdr_add_status || rc) { 16283 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16284 "2501 CQ_CREATE mailbox failed with " 16285 "status x%x add_status x%x, mbx status x%x\n", 16286 shdr_status, shdr_add_status, rc); 16287 status = -ENXIO; 16288 goto out; 16289 } 16290 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16291 if (cq->queue_id == 0xFFFF) { 16292 status = -ENXIO; 16293 goto out; 16294 } 16295 /* link the cq onto the parent eq child list */ 16296 list_add_tail(&cq->list, &eq->child_list); 16297 /* Set up completion queue's type and subtype */ 16298 cq->type = type; 16299 cq->subtype = subtype; 16300 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16301 cq->assoc_qid = eq->queue_id; 16302 cq->assoc_qp = eq; 16303 cq->host_index = 0; 16304 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16305 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 16306 16307 if (cq->queue_id > phba->sli4_hba.cq_max) 16308 phba->sli4_hba.cq_max = cq->queue_id; 16309 16310 irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler); 16311 out: 16312 mempool_free(mbox, phba->mbox_mem_pool); 16313 return status; 16314 } 16315 16316 /** 16317 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 16318 * @phba: HBA structure that indicates port to create a queue on. 16319 * @cqp: The queue structure array to use to create the completion queues. 16320 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 16321 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16322 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16323 * 16324 * This function creates a set of completion queue, s to support MRQ 16325 * as detailed in @cqp, on a port, 16326 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 16327 * 16328 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16329 * is used to get the entry count and entry size that are necessary to 16330 * determine the number of pages to allocate and use for this queue. The @eq 16331 * is used to indicate which event queue to bind this completion queue to. This 16332 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 16333 * completion queue. This function is asynchronous and will wait for the mailbox 16334 * command to finish before continuing. 16335 * 16336 * On success this function will return a zero. If unable to allocate enough 16337 * memory this function will return -ENOMEM. If the queue create mailbox command 16338 * fails this function will return -ENXIO. 16339 **/ 16340 int 16341 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 16342 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 16343 uint32_t subtype) 16344 { 16345 struct lpfc_queue *cq; 16346 struct lpfc_queue *eq; 16347 struct lpfc_mbx_cq_create_set *cq_set; 16348 struct lpfc_dmabuf *dmabuf; 16349 LPFC_MBOXQ_t *mbox; 16350 int rc, length, alloclen, status = 0; 16351 int cnt, idx, numcq, page_idx = 0; 16352 uint32_t shdr_status, shdr_add_status; 16353 union lpfc_sli4_cfg_shdr *shdr; 16354 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16355 16356 /* sanity check on queue memory */ 16357 numcq = phba->cfg_nvmet_mrq; 16358 if (!cqp || !hdwq || !numcq) 16359 return -ENODEV; 16360 16361 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16362 if (!mbox) 16363 return -ENOMEM; 16364 16365 length = sizeof(struct lpfc_mbx_cq_create_set); 16366 length += ((numcq * cqp[0]->page_count) * 16367 sizeof(struct dma_address)); 16368 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16369 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 16370 LPFC_SLI4_MBX_NEMBED); 16371 if (alloclen < length) { 16372 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16373 "3098 Allocated DMA memory size (%d) is " 16374 "less than the requested DMA memory size " 16375 "(%d)\n", alloclen, length); 16376 status = -ENOMEM; 16377 goto out; 16378 } 16379 cq_set = mbox->sge_array->addr[0]; 16380 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 16381 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 16382 16383 for (idx = 0; idx < numcq; idx++) { 16384 cq = cqp[idx]; 16385 eq = hdwq[idx].hba_eq; 16386 if (!cq || !eq) { 16387 status = -ENOMEM; 16388 goto out; 16389 } 16390 if (!phba->sli4_hba.pc_sli4_params.supported) 16391 hw_page_size = cq->page_size; 16392 16393 switch (idx) { 16394 case 0: 16395 bf_set(lpfc_mbx_cq_create_set_page_size, 16396 &cq_set->u.request, 16397 (hw_page_size / SLI4_PAGE_SIZE)); 16398 bf_set(lpfc_mbx_cq_create_set_num_pages, 16399 &cq_set->u.request, cq->page_count); 16400 bf_set(lpfc_mbx_cq_create_set_evt, 16401 &cq_set->u.request, 1); 16402 bf_set(lpfc_mbx_cq_create_set_valid, 16403 &cq_set->u.request, 1); 16404 bf_set(lpfc_mbx_cq_create_set_cqe_size, 16405 &cq_set->u.request, 0); 16406 bf_set(lpfc_mbx_cq_create_set_num_cq, 16407 &cq_set->u.request, numcq); 16408 bf_set(lpfc_mbx_cq_create_set_autovalid, 16409 &cq_set->u.request, 16410 phba->sli4_hba.pc_sli4_params.cqav); 16411 switch (cq->entry_count) { 16412 case 2048: 16413 case 4096: 16414 if (phba->sli4_hba.pc_sli4_params.cqv == 16415 LPFC_Q_CREATE_VERSION_2) { 16416 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16417 &cq_set->u.request, 16418 cq->entry_count); 16419 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16420 &cq_set->u.request, 16421 LPFC_CQ_CNT_WORD7); 16422 break; 16423 } 16424 fallthrough; 16425 default: 16426 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16427 "3118 Bad CQ count. (%d)\n", 16428 cq->entry_count); 16429 if (cq->entry_count < 256) { 16430 status = -EINVAL; 16431 goto out; 16432 } 16433 fallthrough; /* otherwise default to smallest */ 16434 case 256: 16435 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16436 &cq_set->u.request, LPFC_CQ_CNT_256); 16437 break; 16438 case 512: 16439 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16440 &cq_set->u.request, LPFC_CQ_CNT_512); 16441 break; 16442 case 1024: 16443 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16444 &cq_set->u.request, LPFC_CQ_CNT_1024); 16445 break; 16446 } 16447 bf_set(lpfc_mbx_cq_create_set_eq_id0, 16448 &cq_set->u.request, eq->queue_id); 16449 break; 16450 case 1: 16451 bf_set(lpfc_mbx_cq_create_set_eq_id1, 16452 &cq_set->u.request, eq->queue_id); 16453 break; 16454 case 2: 16455 bf_set(lpfc_mbx_cq_create_set_eq_id2, 16456 &cq_set->u.request, eq->queue_id); 16457 break; 16458 case 3: 16459 bf_set(lpfc_mbx_cq_create_set_eq_id3, 16460 &cq_set->u.request, eq->queue_id); 16461 break; 16462 case 4: 16463 bf_set(lpfc_mbx_cq_create_set_eq_id4, 16464 &cq_set->u.request, eq->queue_id); 16465 break; 16466 case 5: 16467 bf_set(lpfc_mbx_cq_create_set_eq_id5, 16468 &cq_set->u.request, eq->queue_id); 16469 break; 16470 case 6: 16471 bf_set(lpfc_mbx_cq_create_set_eq_id6, 16472 &cq_set->u.request, eq->queue_id); 16473 break; 16474 case 7: 16475 bf_set(lpfc_mbx_cq_create_set_eq_id7, 16476 &cq_set->u.request, eq->queue_id); 16477 break; 16478 case 8: 16479 bf_set(lpfc_mbx_cq_create_set_eq_id8, 16480 &cq_set->u.request, eq->queue_id); 16481 break; 16482 case 9: 16483 bf_set(lpfc_mbx_cq_create_set_eq_id9, 16484 &cq_set->u.request, eq->queue_id); 16485 break; 16486 case 10: 16487 bf_set(lpfc_mbx_cq_create_set_eq_id10, 16488 &cq_set->u.request, eq->queue_id); 16489 break; 16490 case 11: 16491 bf_set(lpfc_mbx_cq_create_set_eq_id11, 16492 &cq_set->u.request, eq->queue_id); 16493 break; 16494 case 12: 16495 bf_set(lpfc_mbx_cq_create_set_eq_id12, 16496 &cq_set->u.request, eq->queue_id); 16497 break; 16498 case 13: 16499 bf_set(lpfc_mbx_cq_create_set_eq_id13, 16500 &cq_set->u.request, eq->queue_id); 16501 break; 16502 case 14: 16503 bf_set(lpfc_mbx_cq_create_set_eq_id14, 16504 &cq_set->u.request, eq->queue_id); 16505 break; 16506 case 15: 16507 bf_set(lpfc_mbx_cq_create_set_eq_id15, 16508 &cq_set->u.request, eq->queue_id); 16509 break; 16510 } 16511 16512 /* link the cq onto the parent eq child list */ 16513 list_add_tail(&cq->list, &eq->child_list); 16514 /* Set up completion queue's type and subtype */ 16515 cq->type = type; 16516 cq->subtype = subtype; 16517 cq->assoc_qid = eq->queue_id; 16518 cq->assoc_qp = eq; 16519 cq->host_index = 0; 16520 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16521 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 16522 cq->entry_count); 16523 cq->chann = idx; 16524 16525 rc = 0; 16526 list_for_each_entry(dmabuf, &cq->page_list, list) { 16527 memset(dmabuf->virt, 0, hw_page_size); 16528 cnt = page_idx + dmabuf->buffer_tag; 16529 cq_set->u.request.page[cnt].addr_lo = 16530 putPaddrLow(dmabuf->phys); 16531 cq_set->u.request.page[cnt].addr_hi = 16532 putPaddrHigh(dmabuf->phys); 16533 rc++; 16534 } 16535 page_idx += rc; 16536 } 16537 16538 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16539 16540 /* The IOCTL status is embedded in the mailbox subheader. */ 16541 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16542 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16543 if (shdr_status || shdr_add_status || rc) { 16544 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16545 "3119 CQ_CREATE_SET mailbox failed with " 16546 "status x%x add_status x%x, mbx status x%x\n", 16547 shdr_status, shdr_add_status, rc); 16548 status = -ENXIO; 16549 goto out; 16550 } 16551 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 16552 if (rc == 0xFFFF) { 16553 status = -ENXIO; 16554 goto out; 16555 } 16556 16557 for (idx = 0; idx < numcq; idx++) { 16558 cq = cqp[idx]; 16559 cq->queue_id = rc + idx; 16560 if (cq->queue_id > phba->sli4_hba.cq_max) 16561 phba->sli4_hba.cq_max = cq->queue_id; 16562 } 16563 16564 out: 16565 lpfc_sli4_mbox_cmd_free(phba, mbox); 16566 return status; 16567 } 16568 16569 /** 16570 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 16571 * @phba: HBA structure that indicates port to create a queue on. 16572 * @mq: The queue structure to use to create the mailbox queue. 16573 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 16574 * @cq: The completion queue to associate with this cq. 16575 * 16576 * This function provides failback (fb) functionality when the 16577 * mq_create_ext fails on older FW generations. It's purpose is identical 16578 * to mq_create_ext otherwise. 16579 * 16580 * This routine cannot fail as all attributes were previously accessed and 16581 * initialized in mq_create_ext. 16582 **/ 16583 static void 16584 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 16585 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 16586 { 16587 struct lpfc_mbx_mq_create *mq_create; 16588 struct lpfc_dmabuf *dmabuf; 16589 int length; 16590 16591 length = (sizeof(struct lpfc_mbx_mq_create) - 16592 sizeof(struct lpfc_sli4_cfg_mhdr)); 16593 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16594 LPFC_MBOX_OPCODE_MQ_CREATE, 16595 length, LPFC_SLI4_MBX_EMBED); 16596 mq_create = &mbox->u.mqe.un.mq_create; 16597 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 16598 mq->page_count); 16599 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 16600 cq->queue_id); 16601 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 16602 switch (mq->entry_count) { 16603 case 16: 16604 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16605 LPFC_MQ_RING_SIZE_16); 16606 break; 16607 case 32: 16608 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16609 LPFC_MQ_RING_SIZE_32); 16610 break; 16611 case 64: 16612 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16613 LPFC_MQ_RING_SIZE_64); 16614 break; 16615 case 128: 16616 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16617 LPFC_MQ_RING_SIZE_128); 16618 break; 16619 } 16620 list_for_each_entry(dmabuf, &mq->page_list, list) { 16621 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16622 putPaddrLow(dmabuf->phys); 16623 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16624 putPaddrHigh(dmabuf->phys); 16625 } 16626 } 16627 16628 /** 16629 * lpfc_mq_create - Create a mailbox Queue on the HBA 16630 * @phba: HBA structure that indicates port to create a queue on. 16631 * @mq: The queue structure to use to create the mailbox queue. 16632 * @cq: The completion queue to associate with this cq. 16633 * @subtype: The queue's subtype. 16634 * 16635 * This function creates a mailbox queue, as detailed in @mq, on a port, 16636 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 16637 * 16638 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16639 * is used to get the entry count and entry size that are necessary to 16640 * determine the number of pages to allocate and use for this queue. This 16641 * function will send the MQ_CREATE mailbox command to the HBA to setup the 16642 * mailbox queue. This function is asynchronous and will wait for the mailbox 16643 * command to finish before continuing. 16644 * 16645 * On success this function will return a zero. If unable to allocate enough 16646 * memory this function will return -ENOMEM. If the queue create mailbox command 16647 * fails this function will return -ENXIO. 16648 **/ 16649 int32_t 16650 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 16651 struct lpfc_queue *cq, uint32_t subtype) 16652 { 16653 struct lpfc_mbx_mq_create *mq_create; 16654 struct lpfc_mbx_mq_create_ext *mq_create_ext; 16655 struct lpfc_dmabuf *dmabuf; 16656 LPFC_MBOXQ_t *mbox; 16657 int rc, length, status = 0; 16658 uint32_t shdr_status, shdr_add_status; 16659 union lpfc_sli4_cfg_shdr *shdr; 16660 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16661 16662 /* sanity check on queue memory */ 16663 if (!mq || !cq) 16664 return -ENODEV; 16665 if (!phba->sli4_hba.pc_sli4_params.supported) 16666 hw_page_size = SLI4_PAGE_SIZE; 16667 16668 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16669 if (!mbox) 16670 return -ENOMEM; 16671 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 16672 sizeof(struct lpfc_sli4_cfg_mhdr)); 16673 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16674 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 16675 length, LPFC_SLI4_MBX_EMBED); 16676 16677 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 16678 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 16679 bf_set(lpfc_mbx_mq_create_ext_num_pages, 16680 &mq_create_ext->u.request, mq->page_count); 16681 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 16682 &mq_create_ext->u.request, 1); 16683 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 16684 &mq_create_ext->u.request, 1); 16685 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 16686 &mq_create_ext->u.request, 1); 16687 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 16688 &mq_create_ext->u.request, 1); 16689 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 16690 &mq_create_ext->u.request, 1); 16691 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 16692 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16693 phba->sli4_hba.pc_sli4_params.mqv); 16694 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 16695 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 16696 cq->queue_id); 16697 else 16698 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 16699 cq->queue_id); 16700 switch (mq->entry_count) { 16701 default: 16702 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16703 "0362 Unsupported MQ count. (%d)\n", 16704 mq->entry_count); 16705 if (mq->entry_count < 16) { 16706 status = -EINVAL; 16707 goto out; 16708 } 16709 fallthrough; /* otherwise default to smallest count */ 16710 case 16: 16711 bf_set(lpfc_mq_context_ring_size, 16712 &mq_create_ext->u.request.context, 16713 LPFC_MQ_RING_SIZE_16); 16714 break; 16715 case 32: 16716 bf_set(lpfc_mq_context_ring_size, 16717 &mq_create_ext->u.request.context, 16718 LPFC_MQ_RING_SIZE_32); 16719 break; 16720 case 64: 16721 bf_set(lpfc_mq_context_ring_size, 16722 &mq_create_ext->u.request.context, 16723 LPFC_MQ_RING_SIZE_64); 16724 break; 16725 case 128: 16726 bf_set(lpfc_mq_context_ring_size, 16727 &mq_create_ext->u.request.context, 16728 LPFC_MQ_RING_SIZE_128); 16729 break; 16730 } 16731 list_for_each_entry(dmabuf, &mq->page_list, list) { 16732 memset(dmabuf->virt, 0, hw_page_size); 16733 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16734 putPaddrLow(dmabuf->phys); 16735 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16736 putPaddrHigh(dmabuf->phys); 16737 } 16738 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16739 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16740 &mq_create_ext->u.response); 16741 if (rc != MBX_SUCCESS) { 16742 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16743 "2795 MQ_CREATE_EXT failed with " 16744 "status x%x. Failback to MQ_CREATE.\n", 16745 rc); 16746 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16747 mq_create = &mbox->u.mqe.un.mq_create; 16748 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16749 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16750 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16751 &mq_create->u.response); 16752 } 16753 16754 /* The IOCTL status is embedded in the mailbox subheader. */ 16755 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16756 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16757 if (shdr_status || shdr_add_status || rc) { 16758 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16759 "2502 MQ_CREATE mailbox failed with " 16760 "status x%x add_status x%x, mbx status x%x\n", 16761 shdr_status, shdr_add_status, rc); 16762 status = -ENXIO; 16763 goto out; 16764 } 16765 if (mq->queue_id == 0xFFFF) { 16766 status = -ENXIO; 16767 goto out; 16768 } 16769 mq->type = LPFC_MQ; 16770 mq->assoc_qid = cq->queue_id; 16771 mq->subtype = subtype; 16772 mq->host_index = 0; 16773 mq->hba_index = 0; 16774 16775 /* link the mq onto the parent cq child list */ 16776 list_add_tail(&mq->list, &cq->child_list); 16777 out: 16778 mempool_free(mbox, phba->mbox_mem_pool); 16779 return status; 16780 } 16781 16782 /** 16783 * lpfc_wq_create - Create a Work Queue on the HBA 16784 * @phba: HBA structure that indicates port to create a queue on. 16785 * @wq: The queue structure to use to create the work queue. 16786 * @cq: The completion queue to bind this work queue to. 16787 * @subtype: The subtype of the work queue indicating its functionality. 16788 * 16789 * This function creates a work queue, as detailed in @wq, on a port, described 16790 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16791 * 16792 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16793 * is used to get the entry count and entry size that are necessary to 16794 * determine the number of pages to allocate and use for this queue. The @cq 16795 * is used to indicate which completion queue to bind this work queue to. This 16796 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16797 * work queue. This function is asynchronous and will wait for the mailbox 16798 * command to finish before continuing. 16799 * 16800 * On success this function will return a zero. If unable to allocate enough 16801 * memory this function will return -ENOMEM. If the queue create mailbox command 16802 * fails this function will return -ENXIO. 16803 **/ 16804 int 16805 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16806 struct lpfc_queue *cq, uint32_t subtype) 16807 { 16808 struct lpfc_mbx_wq_create *wq_create; 16809 struct lpfc_dmabuf *dmabuf; 16810 LPFC_MBOXQ_t *mbox; 16811 int rc, length, status = 0; 16812 uint32_t shdr_status, shdr_add_status; 16813 union lpfc_sli4_cfg_shdr *shdr; 16814 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16815 struct dma_address *page; 16816 void __iomem *bar_memmap_p; 16817 uint32_t db_offset; 16818 uint16_t pci_barset; 16819 uint8_t dpp_barset; 16820 uint32_t dpp_offset; 16821 uint8_t wq_create_version; 16822 #ifdef CONFIG_X86 16823 unsigned long pg_addr; 16824 #endif 16825 16826 /* sanity check on queue memory */ 16827 if (!wq || !cq) 16828 return -ENODEV; 16829 if (!phba->sli4_hba.pc_sli4_params.supported) 16830 hw_page_size = wq->page_size; 16831 16832 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16833 if (!mbox) 16834 return -ENOMEM; 16835 length = (sizeof(struct lpfc_mbx_wq_create) - 16836 sizeof(struct lpfc_sli4_cfg_mhdr)); 16837 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16838 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16839 length, LPFC_SLI4_MBX_EMBED); 16840 wq_create = &mbox->u.mqe.un.wq_create; 16841 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16842 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16843 wq->page_count); 16844 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16845 cq->queue_id); 16846 16847 /* wqv is the earliest version supported, NOT the latest */ 16848 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16849 phba->sli4_hba.pc_sli4_params.wqv); 16850 16851 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16852 (wq->page_size > SLI4_PAGE_SIZE)) 16853 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16854 else 16855 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16856 16857 switch (wq_create_version) { 16858 case LPFC_Q_CREATE_VERSION_1: 16859 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16860 wq->entry_count); 16861 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16862 LPFC_Q_CREATE_VERSION_1); 16863 16864 switch (wq->entry_size) { 16865 default: 16866 case 64: 16867 bf_set(lpfc_mbx_wq_create_wqe_size, 16868 &wq_create->u.request_1, 16869 LPFC_WQ_WQE_SIZE_64); 16870 break; 16871 case 128: 16872 bf_set(lpfc_mbx_wq_create_wqe_size, 16873 &wq_create->u.request_1, 16874 LPFC_WQ_WQE_SIZE_128); 16875 break; 16876 } 16877 /* Request DPP by default */ 16878 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16879 bf_set(lpfc_mbx_wq_create_page_size, 16880 &wq_create->u.request_1, 16881 (wq->page_size / SLI4_PAGE_SIZE)); 16882 page = wq_create->u.request_1.page; 16883 break; 16884 default: 16885 page = wq_create->u.request.page; 16886 break; 16887 } 16888 16889 list_for_each_entry(dmabuf, &wq->page_list, list) { 16890 memset(dmabuf->virt, 0, hw_page_size); 16891 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16892 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16893 } 16894 16895 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16896 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16897 16898 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16899 /* The IOCTL status is embedded in the mailbox subheader. */ 16900 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16901 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16902 if (shdr_status || shdr_add_status || rc) { 16903 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16904 "2503 WQ_CREATE mailbox failed with " 16905 "status x%x add_status x%x, mbx status x%x\n", 16906 shdr_status, shdr_add_status, rc); 16907 status = -ENXIO; 16908 goto out; 16909 } 16910 16911 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16912 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16913 &wq_create->u.response); 16914 else 16915 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16916 &wq_create->u.response_1); 16917 16918 if (wq->queue_id == 0xFFFF) { 16919 status = -ENXIO; 16920 goto out; 16921 } 16922 16923 wq->db_format = LPFC_DB_LIST_FORMAT; 16924 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 16925 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16926 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 16927 &wq_create->u.response); 16928 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 16929 (wq->db_format != LPFC_DB_RING_FORMAT)) { 16930 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16931 "3265 WQ[%d] doorbell format " 16932 "not supported: x%x\n", 16933 wq->queue_id, wq->db_format); 16934 status = -EINVAL; 16935 goto out; 16936 } 16937 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 16938 &wq_create->u.response); 16939 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16940 pci_barset); 16941 if (!bar_memmap_p) { 16942 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16943 "3263 WQ[%d] failed to memmap " 16944 "pci barset:x%x\n", 16945 wq->queue_id, pci_barset); 16946 status = -ENOMEM; 16947 goto out; 16948 } 16949 db_offset = wq_create->u.response.doorbell_offset; 16950 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 16951 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 16952 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16953 "3252 WQ[%d] doorbell offset " 16954 "not supported: x%x\n", 16955 wq->queue_id, db_offset); 16956 status = -EINVAL; 16957 goto out; 16958 } 16959 wq->db_regaddr = bar_memmap_p + db_offset; 16960 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16961 "3264 WQ[%d]: barset:x%x, offset:x%x, " 16962 "format:x%x\n", wq->queue_id, 16963 pci_barset, db_offset, wq->db_format); 16964 } else 16965 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16966 } else { 16967 /* Check if DPP was honored by the firmware */ 16968 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 16969 &wq_create->u.response_1); 16970 if (wq->dpp_enable) { 16971 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 16972 &wq_create->u.response_1); 16973 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16974 pci_barset); 16975 if (!bar_memmap_p) { 16976 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16977 "3267 WQ[%d] failed to memmap " 16978 "pci barset:x%x\n", 16979 wq->queue_id, pci_barset); 16980 status = -ENOMEM; 16981 goto out; 16982 } 16983 db_offset = wq_create->u.response_1.doorbell_offset; 16984 wq->db_regaddr = bar_memmap_p + db_offset; 16985 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 16986 &wq_create->u.response_1); 16987 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 16988 &wq_create->u.response_1); 16989 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16990 dpp_barset); 16991 if (!bar_memmap_p) { 16992 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16993 "3268 WQ[%d] failed to memmap " 16994 "pci barset:x%x\n", 16995 wq->queue_id, dpp_barset); 16996 status = -ENOMEM; 16997 goto out; 16998 } 16999 dpp_offset = wq_create->u.response_1.dpp_offset; 17000 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 17001 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17002 "3271 WQ[%d]: barset:x%x, offset:x%x, " 17003 "dpp_id:x%x dpp_barset:x%x " 17004 "dpp_offset:x%x\n", 17005 wq->queue_id, pci_barset, db_offset, 17006 wq->dpp_id, dpp_barset, dpp_offset); 17007 17008 #ifdef CONFIG_X86 17009 /* Enable combined writes for DPP aperture */ 17010 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 17011 rc = set_memory_wc(pg_addr, 1); 17012 if (rc) { 17013 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17014 "3272 Cannot setup Combined " 17015 "Write on WQ[%d] - disable DPP\n", 17016 wq->queue_id); 17017 phba->cfg_enable_dpp = 0; 17018 } 17019 #else 17020 phba->cfg_enable_dpp = 0; 17021 #endif 17022 } else 17023 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17024 } 17025 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 17026 if (wq->pring == NULL) { 17027 status = -ENOMEM; 17028 goto out; 17029 } 17030 wq->type = LPFC_WQ; 17031 wq->assoc_qid = cq->queue_id; 17032 wq->subtype = subtype; 17033 wq->host_index = 0; 17034 wq->hba_index = 0; 17035 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 17036 17037 /* link the wq onto the parent cq child list */ 17038 list_add_tail(&wq->list, &cq->child_list); 17039 out: 17040 mempool_free(mbox, phba->mbox_mem_pool); 17041 return status; 17042 } 17043 17044 /** 17045 * lpfc_rq_create - Create a Receive Queue on the HBA 17046 * @phba: HBA structure that indicates port to create a queue on. 17047 * @hrq: The queue structure to use to create the header receive queue. 17048 * @drq: The queue structure to use to create the data receive queue. 17049 * @cq: The completion queue to bind this work queue to. 17050 * @subtype: The subtype of the work queue indicating its functionality. 17051 * 17052 * This function creates a receive buffer queue pair , as detailed in @hrq and 17053 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17054 * to the HBA. 17055 * 17056 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17057 * struct is used to get the entry count that is necessary to determine the 17058 * number of pages to use for this queue. The @cq is used to indicate which 17059 * completion queue to bind received buffers that are posted to these queues to. 17060 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17061 * receive queue pair. This function is asynchronous and will wait for the 17062 * mailbox command to finish before continuing. 17063 * 17064 * On success this function will return a zero. If unable to allocate enough 17065 * memory this function will return -ENOMEM. If the queue create mailbox command 17066 * fails this function will return -ENXIO. 17067 **/ 17068 int 17069 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17070 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 17071 { 17072 struct lpfc_mbx_rq_create *rq_create; 17073 struct lpfc_dmabuf *dmabuf; 17074 LPFC_MBOXQ_t *mbox; 17075 int rc, length, status = 0; 17076 uint32_t shdr_status, shdr_add_status; 17077 union lpfc_sli4_cfg_shdr *shdr; 17078 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17079 void __iomem *bar_memmap_p; 17080 uint32_t db_offset; 17081 uint16_t pci_barset; 17082 17083 /* sanity check on queue memory */ 17084 if (!hrq || !drq || !cq) 17085 return -ENODEV; 17086 if (!phba->sli4_hba.pc_sli4_params.supported) 17087 hw_page_size = SLI4_PAGE_SIZE; 17088 17089 if (hrq->entry_count != drq->entry_count) 17090 return -EINVAL; 17091 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17092 if (!mbox) 17093 return -ENOMEM; 17094 length = (sizeof(struct lpfc_mbx_rq_create) - 17095 sizeof(struct lpfc_sli4_cfg_mhdr)); 17096 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17097 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17098 length, LPFC_SLI4_MBX_EMBED); 17099 rq_create = &mbox->u.mqe.un.rq_create; 17100 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17101 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17102 phba->sli4_hba.pc_sli4_params.rqv); 17103 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17104 bf_set(lpfc_rq_context_rqe_count_1, 17105 &rq_create->u.request.context, 17106 hrq->entry_count); 17107 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 17108 bf_set(lpfc_rq_context_rqe_size, 17109 &rq_create->u.request.context, 17110 LPFC_RQE_SIZE_8); 17111 bf_set(lpfc_rq_context_page_size, 17112 &rq_create->u.request.context, 17113 LPFC_RQ_PAGE_SIZE_4096); 17114 } else { 17115 switch (hrq->entry_count) { 17116 default: 17117 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17118 "2535 Unsupported RQ count. (%d)\n", 17119 hrq->entry_count); 17120 if (hrq->entry_count < 512) { 17121 status = -EINVAL; 17122 goto out; 17123 } 17124 fallthrough; /* otherwise default to smallest count */ 17125 case 512: 17126 bf_set(lpfc_rq_context_rqe_count, 17127 &rq_create->u.request.context, 17128 LPFC_RQ_RING_SIZE_512); 17129 break; 17130 case 1024: 17131 bf_set(lpfc_rq_context_rqe_count, 17132 &rq_create->u.request.context, 17133 LPFC_RQ_RING_SIZE_1024); 17134 break; 17135 case 2048: 17136 bf_set(lpfc_rq_context_rqe_count, 17137 &rq_create->u.request.context, 17138 LPFC_RQ_RING_SIZE_2048); 17139 break; 17140 case 4096: 17141 bf_set(lpfc_rq_context_rqe_count, 17142 &rq_create->u.request.context, 17143 LPFC_RQ_RING_SIZE_4096); 17144 break; 17145 } 17146 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 17147 LPFC_HDR_BUF_SIZE); 17148 } 17149 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17150 cq->queue_id); 17151 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17152 hrq->page_count); 17153 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17154 memset(dmabuf->virt, 0, hw_page_size); 17155 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17156 putPaddrLow(dmabuf->phys); 17157 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17158 putPaddrHigh(dmabuf->phys); 17159 } 17160 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17161 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17162 17163 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17164 /* The IOCTL status is embedded in the mailbox subheader. */ 17165 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17166 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17167 if (shdr_status || shdr_add_status || rc) { 17168 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17169 "2504 RQ_CREATE mailbox failed with " 17170 "status x%x add_status x%x, mbx status x%x\n", 17171 shdr_status, shdr_add_status, rc); 17172 status = -ENXIO; 17173 goto out; 17174 } 17175 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17176 if (hrq->queue_id == 0xFFFF) { 17177 status = -ENXIO; 17178 goto out; 17179 } 17180 17181 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 17182 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 17183 &rq_create->u.response); 17184 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 17185 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 17186 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17187 "3262 RQ [%d] doorbell format not " 17188 "supported: x%x\n", hrq->queue_id, 17189 hrq->db_format); 17190 status = -EINVAL; 17191 goto out; 17192 } 17193 17194 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 17195 &rq_create->u.response); 17196 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 17197 if (!bar_memmap_p) { 17198 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17199 "3269 RQ[%d] failed to memmap pci " 17200 "barset:x%x\n", hrq->queue_id, 17201 pci_barset); 17202 status = -ENOMEM; 17203 goto out; 17204 } 17205 17206 db_offset = rq_create->u.response.doorbell_offset; 17207 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 17208 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 17209 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17210 "3270 RQ[%d] doorbell offset not " 17211 "supported: x%x\n", hrq->queue_id, 17212 db_offset); 17213 status = -EINVAL; 17214 goto out; 17215 } 17216 hrq->db_regaddr = bar_memmap_p + db_offset; 17217 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17218 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 17219 "format:x%x\n", hrq->queue_id, pci_barset, 17220 db_offset, hrq->db_format); 17221 } else { 17222 hrq->db_format = LPFC_DB_RING_FORMAT; 17223 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17224 } 17225 hrq->type = LPFC_HRQ; 17226 hrq->assoc_qid = cq->queue_id; 17227 hrq->subtype = subtype; 17228 hrq->host_index = 0; 17229 hrq->hba_index = 0; 17230 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17231 17232 /* now create the data queue */ 17233 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17234 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17235 length, LPFC_SLI4_MBX_EMBED); 17236 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17237 phba->sli4_hba.pc_sli4_params.rqv); 17238 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17239 bf_set(lpfc_rq_context_rqe_count_1, 17240 &rq_create->u.request.context, hrq->entry_count); 17241 if (subtype == LPFC_NVMET) 17242 rq_create->u.request.context.buffer_size = 17243 LPFC_NVMET_DATA_BUF_SIZE; 17244 else 17245 rq_create->u.request.context.buffer_size = 17246 LPFC_DATA_BUF_SIZE; 17247 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 17248 LPFC_RQE_SIZE_8); 17249 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 17250 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17251 } else { 17252 switch (drq->entry_count) { 17253 default: 17254 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17255 "2536 Unsupported RQ count. (%d)\n", 17256 drq->entry_count); 17257 if (drq->entry_count < 512) { 17258 status = -EINVAL; 17259 goto out; 17260 } 17261 fallthrough; /* otherwise default to smallest count */ 17262 case 512: 17263 bf_set(lpfc_rq_context_rqe_count, 17264 &rq_create->u.request.context, 17265 LPFC_RQ_RING_SIZE_512); 17266 break; 17267 case 1024: 17268 bf_set(lpfc_rq_context_rqe_count, 17269 &rq_create->u.request.context, 17270 LPFC_RQ_RING_SIZE_1024); 17271 break; 17272 case 2048: 17273 bf_set(lpfc_rq_context_rqe_count, 17274 &rq_create->u.request.context, 17275 LPFC_RQ_RING_SIZE_2048); 17276 break; 17277 case 4096: 17278 bf_set(lpfc_rq_context_rqe_count, 17279 &rq_create->u.request.context, 17280 LPFC_RQ_RING_SIZE_4096); 17281 break; 17282 } 17283 if (subtype == LPFC_NVMET) 17284 bf_set(lpfc_rq_context_buf_size, 17285 &rq_create->u.request.context, 17286 LPFC_NVMET_DATA_BUF_SIZE); 17287 else 17288 bf_set(lpfc_rq_context_buf_size, 17289 &rq_create->u.request.context, 17290 LPFC_DATA_BUF_SIZE); 17291 } 17292 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17293 cq->queue_id); 17294 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17295 drq->page_count); 17296 list_for_each_entry(dmabuf, &drq->page_list, list) { 17297 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17298 putPaddrLow(dmabuf->phys); 17299 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17300 putPaddrHigh(dmabuf->phys); 17301 } 17302 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17303 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17304 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17305 /* The IOCTL status is embedded in the mailbox subheader. */ 17306 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17307 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17308 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17309 if (shdr_status || shdr_add_status || rc) { 17310 status = -ENXIO; 17311 goto out; 17312 } 17313 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17314 if (drq->queue_id == 0xFFFF) { 17315 status = -ENXIO; 17316 goto out; 17317 } 17318 drq->type = LPFC_DRQ; 17319 drq->assoc_qid = cq->queue_id; 17320 drq->subtype = subtype; 17321 drq->host_index = 0; 17322 drq->hba_index = 0; 17323 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17324 17325 /* link the header and data RQs onto the parent cq child list */ 17326 list_add_tail(&hrq->list, &cq->child_list); 17327 list_add_tail(&drq->list, &cq->child_list); 17328 17329 out: 17330 mempool_free(mbox, phba->mbox_mem_pool); 17331 return status; 17332 } 17333 17334 /** 17335 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 17336 * @phba: HBA structure that indicates port to create a queue on. 17337 * @hrqp: The queue structure array to use to create the header receive queues. 17338 * @drqp: The queue structure array to use to create the data receive queues. 17339 * @cqp: The completion queue array to bind these receive queues to. 17340 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 17341 * 17342 * This function creates a receive buffer queue pair , as detailed in @hrq and 17343 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17344 * to the HBA. 17345 * 17346 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17347 * struct is used to get the entry count that is necessary to determine the 17348 * number of pages to use for this queue. The @cq is used to indicate which 17349 * completion queue to bind received buffers that are posted to these queues to. 17350 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17351 * receive queue pair. This function is asynchronous and will wait for the 17352 * mailbox command to finish before continuing. 17353 * 17354 * On success this function will return a zero. If unable to allocate enough 17355 * memory this function will return -ENOMEM. If the queue create mailbox command 17356 * fails this function will return -ENXIO. 17357 **/ 17358 int 17359 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 17360 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 17361 uint32_t subtype) 17362 { 17363 struct lpfc_queue *hrq, *drq, *cq; 17364 struct lpfc_mbx_rq_create_v2 *rq_create; 17365 struct lpfc_dmabuf *dmabuf; 17366 LPFC_MBOXQ_t *mbox; 17367 int rc, length, alloclen, status = 0; 17368 int cnt, idx, numrq, page_idx = 0; 17369 uint32_t shdr_status, shdr_add_status; 17370 union lpfc_sli4_cfg_shdr *shdr; 17371 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17372 17373 numrq = phba->cfg_nvmet_mrq; 17374 /* sanity check on array memory */ 17375 if (!hrqp || !drqp || !cqp || !numrq) 17376 return -ENODEV; 17377 if (!phba->sli4_hba.pc_sli4_params.supported) 17378 hw_page_size = SLI4_PAGE_SIZE; 17379 17380 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17381 if (!mbox) 17382 return -ENOMEM; 17383 17384 length = sizeof(struct lpfc_mbx_rq_create_v2); 17385 length += ((2 * numrq * hrqp[0]->page_count) * 17386 sizeof(struct dma_address)); 17387 17388 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17389 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 17390 LPFC_SLI4_MBX_NEMBED); 17391 if (alloclen < length) { 17392 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17393 "3099 Allocated DMA memory size (%d) is " 17394 "less than the requested DMA memory size " 17395 "(%d)\n", alloclen, length); 17396 status = -ENOMEM; 17397 goto out; 17398 } 17399 17400 17401 17402 rq_create = mbox->sge_array->addr[0]; 17403 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 17404 17405 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 17406 cnt = 0; 17407 17408 for (idx = 0; idx < numrq; idx++) { 17409 hrq = hrqp[idx]; 17410 drq = drqp[idx]; 17411 cq = cqp[idx]; 17412 17413 /* sanity check on queue memory */ 17414 if (!hrq || !drq || !cq) { 17415 status = -ENODEV; 17416 goto out; 17417 } 17418 17419 if (hrq->entry_count != drq->entry_count) { 17420 status = -EINVAL; 17421 goto out; 17422 } 17423 17424 if (idx == 0) { 17425 bf_set(lpfc_mbx_rq_create_num_pages, 17426 &rq_create->u.request, 17427 hrq->page_count); 17428 bf_set(lpfc_mbx_rq_create_rq_cnt, 17429 &rq_create->u.request, (numrq * 2)); 17430 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 17431 1); 17432 bf_set(lpfc_rq_context_base_cq, 17433 &rq_create->u.request.context, 17434 cq->queue_id); 17435 bf_set(lpfc_rq_context_data_size, 17436 &rq_create->u.request.context, 17437 LPFC_NVMET_DATA_BUF_SIZE); 17438 bf_set(lpfc_rq_context_hdr_size, 17439 &rq_create->u.request.context, 17440 LPFC_HDR_BUF_SIZE); 17441 bf_set(lpfc_rq_context_rqe_count_1, 17442 &rq_create->u.request.context, 17443 hrq->entry_count); 17444 bf_set(lpfc_rq_context_rqe_size, 17445 &rq_create->u.request.context, 17446 LPFC_RQE_SIZE_8); 17447 bf_set(lpfc_rq_context_page_size, 17448 &rq_create->u.request.context, 17449 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17450 } 17451 rc = 0; 17452 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17453 memset(dmabuf->virt, 0, hw_page_size); 17454 cnt = page_idx + dmabuf->buffer_tag; 17455 rq_create->u.request.page[cnt].addr_lo = 17456 putPaddrLow(dmabuf->phys); 17457 rq_create->u.request.page[cnt].addr_hi = 17458 putPaddrHigh(dmabuf->phys); 17459 rc++; 17460 } 17461 page_idx += rc; 17462 17463 rc = 0; 17464 list_for_each_entry(dmabuf, &drq->page_list, list) { 17465 memset(dmabuf->virt, 0, hw_page_size); 17466 cnt = page_idx + dmabuf->buffer_tag; 17467 rq_create->u.request.page[cnt].addr_lo = 17468 putPaddrLow(dmabuf->phys); 17469 rq_create->u.request.page[cnt].addr_hi = 17470 putPaddrHigh(dmabuf->phys); 17471 rc++; 17472 } 17473 page_idx += rc; 17474 17475 hrq->db_format = LPFC_DB_RING_FORMAT; 17476 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17477 hrq->type = LPFC_HRQ; 17478 hrq->assoc_qid = cq->queue_id; 17479 hrq->subtype = subtype; 17480 hrq->host_index = 0; 17481 hrq->hba_index = 0; 17482 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17483 17484 drq->db_format = LPFC_DB_RING_FORMAT; 17485 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17486 drq->type = LPFC_DRQ; 17487 drq->assoc_qid = cq->queue_id; 17488 drq->subtype = subtype; 17489 drq->host_index = 0; 17490 drq->hba_index = 0; 17491 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17492 17493 list_add_tail(&hrq->list, &cq->child_list); 17494 list_add_tail(&drq->list, &cq->child_list); 17495 } 17496 17497 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17498 /* The IOCTL status is embedded in the mailbox subheader. */ 17499 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17500 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17501 if (shdr_status || shdr_add_status || rc) { 17502 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17503 "3120 RQ_CREATE mailbox failed with " 17504 "status x%x add_status x%x, mbx status x%x\n", 17505 shdr_status, shdr_add_status, rc); 17506 status = -ENXIO; 17507 goto out; 17508 } 17509 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17510 if (rc == 0xFFFF) { 17511 status = -ENXIO; 17512 goto out; 17513 } 17514 17515 /* Initialize all RQs with associated queue id */ 17516 for (idx = 0; idx < numrq; idx++) { 17517 hrq = hrqp[idx]; 17518 hrq->queue_id = rc + (2 * idx); 17519 drq = drqp[idx]; 17520 drq->queue_id = rc + (2 * idx) + 1; 17521 } 17522 17523 out: 17524 lpfc_sli4_mbox_cmd_free(phba, mbox); 17525 return status; 17526 } 17527 17528 /** 17529 * lpfc_eq_destroy - Destroy an event Queue on the HBA 17530 * @phba: HBA structure that indicates port to destroy a queue on. 17531 * @eq: The queue structure associated with the queue to destroy. 17532 * 17533 * This function destroys a queue, as detailed in @eq by sending an mailbox 17534 * command, specific to the type of queue, to the HBA. 17535 * 17536 * The @eq struct is used to get the queue ID of the queue to destroy. 17537 * 17538 * On success this function will return a zero. If the queue destroy mailbox 17539 * command fails this function will return -ENXIO. 17540 **/ 17541 int 17542 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 17543 { 17544 LPFC_MBOXQ_t *mbox; 17545 int rc, length, status = 0; 17546 uint32_t shdr_status, shdr_add_status; 17547 union lpfc_sli4_cfg_shdr *shdr; 17548 17549 /* sanity check on queue memory */ 17550 if (!eq) 17551 return -ENODEV; 17552 17553 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 17554 if (!mbox) 17555 return -ENOMEM; 17556 length = (sizeof(struct lpfc_mbx_eq_destroy) - 17557 sizeof(struct lpfc_sli4_cfg_mhdr)); 17558 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17559 LPFC_MBOX_OPCODE_EQ_DESTROY, 17560 length, LPFC_SLI4_MBX_EMBED); 17561 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 17562 eq->queue_id); 17563 mbox->vport = eq->phba->pport; 17564 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17565 17566 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 17567 /* The IOCTL status is embedded in the mailbox subheader. */ 17568 shdr = (union lpfc_sli4_cfg_shdr *) 17569 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 17570 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17571 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17572 if (shdr_status || shdr_add_status || rc) { 17573 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17574 "2505 EQ_DESTROY mailbox failed with " 17575 "status x%x add_status x%x, mbx status x%x\n", 17576 shdr_status, shdr_add_status, rc); 17577 status = -ENXIO; 17578 } 17579 17580 /* Remove eq from any list */ 17581 list_del_init(&eq->list); 17582 mempool_free(mbox, eq->phba->mbox_mem_pool); 17583 return status; 17584 } 17585 17586 /** 17587 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 17588 * @phba: HBA structure that indicates port to destroy a queue on. 17589 * @cq: The queue structure associated with the queue to destroy. 17590 * 17591 * This function destroys a queue, as detailed in @cq by sending an mailbox 17592 * command, specific to the type of queue, to the HBA. 17593 * 17594 * The @cq struct is used to get the queue ID of the queue to destroy. 17595 * 17596 * On success this function will return a zero. If the queue destroy mailbox 17597 * command fails this function will return -ENXIO. 17598 **/ 17599 int 17600 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 17601 { 17602 LPFC_MBOXQ_t *mbox; 17603 int rc, length, status = 0; 17604 uint32_t shdr_status, shdr_add_status; 17605 union lpfc_sli4_cfg_shdr *shdr; 17606 17607 /* sanity check on queue memory */ 17608 if (!cq) 17609 return -ENODEV; 17610 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 17611 if (!mbox) 17612 return -ENOMEM; 17613 length = (sizeof(struct lpfc_mbx_cq_destroy) - 17614 sizeof(struct lpfc_sli4_cfg_mhdr)); 17615 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17616 LPFC_MBOX_OPCODE_CQ_DESTROY, 17617 length, LPFC_SLI4_MBX_EMBED); 17618 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 17619 cq->queue_id); 17620 mbox->vport = cq->phba->pport; 17621 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17622 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 17623 /* The IOCTL status is embedded in the mailbox subheader. */ 17624 shdr = (union lpfc_sli4_cfg_shdr *) 17625 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 17626 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17627 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17628 if (shdr_status || shdr_add_status || rc) { 17629 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17630 "2506 CQ_DESTROY mailbox failed with " 17631 "status x%x add_status x%x, mbx status x%x\n", 17632 shdr_status, shdr_add_status, rc); 17633 status = -ENXIO; 17634 } 17635 /* Remove cq from any list */ 17636 list_del_init(&cq->list); 17637 mempool_free(mbox, cq->phba->mbox_mem_pool); 17638 return status; 17639 } 17640 17641 /** 17642 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 17643 * @phba: HBA structure that indicates port to destroy a queue on. 17644 * @mq: The queue structure associated with the queue to destroy. 17645 * 17646 * This function destroys a queue, as detailed in @mq by sending an mailbox 17647 * command, specific to the type of queue, to the HBA. 17648 * 17649 * The @mq struct is used to get the queue ID of the queue to destroy. 17650 * 17651 * On success this function will return a zero. If the queue destroy mailbox 17652 * command fails this function will return -ENXIO. 17653 **/ 17654 int 17655 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 17656 { 17657 LPFC_MBOXQ_t *mbox; 17658 int rc, length, status = 0; 17659 uint32_t shdr_status, shdr_add_status; 17660 union lpfc_sli4_cfg_shdr *shdr; 17661 17662 /* sanity check on queue memory */ 17663 if (!mq) 17664 return -ENODEV; 17665 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 17666 if (!mbox) 17667 return -ENOMEM; 17668 length = (sizeof(struct lpfc_mbx_mq_destroy) - 17669 sizeof(struct lpfc_sli4_cfg_mhdr)); 17670 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17671 LPFC_MBOX_OPCODE_MQ_DESTROY, 17672 length, LPFC_SLI4_MBX_EMBED); 17673 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 17674 mq->queue_id); 17675 mbox->vport = mq->phba->pport; 17676 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17677 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 17678 /* The IOCTL status is embedded in the mailbox subheader. */ 17679 shdr = (union lpfc_sli4_cfg_shdr *) 17680 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 17681 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17682 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17683 if (shdr_status || shdr_add_status || rc) { 17684 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17685 "2507 MQ_DESTROY mailbox failed with " 17686 "status x%x add_status x%x, mbx status x%x\n", 17687 shdr_status, shdr_add_status, rc); 17688 status = -ENXIO; 17689 } 17690 /* Remove mq from any list */ 17691 list_del_init(&mq->list); 17692 mempool_free(mbox, mq->phba->mbox_mem_pool); 17693 return status; 17694 } 17695 17696 /** 17697 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 17698 * @phba: HBA structure that indicates port to destroy a queue on. 17699 * @wq: The queue structure associated with the queue to destroy. 17700 * 17701 * This function destroys a queue, as detailed in @wq by sending an mailbox 17702 * command, specific to the type of queue, to the HBA. 17703 * 17704 * The @wq struct is used to get the queue ID of the queue to destroy. 17705 * 17706 * On success this function will return a zero. If the queue destroy mailbox 17707 * command fails this function will return -ENXIO. 17708 **/ 17709 int 17710 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17711 { 17712 LPFC_MBOXQ_t *mbox; 17713 int rc, length, status = 0; 17714 uint32_t shdr_status, shdr_add_status; 17715 union lpfc_sli4_cfg_shdr *shdr; 17716 17717 /* sanity check on queue memory */ 17718 if (!wq) 17719 return -ENODEV; 17720 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17721 if (!mbox) 17722 return -ENOMEM; 17723 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17724 sizeof(struct lpfc_sli4_cfg_mhdr)); 17725 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17726 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17727 length, LPFC_SLI4_MBX_EMBED); 17728 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17729 wq->queue_id); 17730 mbox->vport = wq->phba->pport; 17731 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17732 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17733 shdr = (union lpfc_sli4_cfg_shdr *) 17734 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17735 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17736 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17737 if (shdr_status || shdr_add_status || rc) { 17738 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17739 "2508 WQ_DESTROY mailbox failed with " 17740 "status x%x add_status x%x, mbx status x%x\n", 17741 shdr_status, shdr_add_status, rc); 17742 status = -ENXIO; 17743 } 17744 /* Remove wq from any list */ 17745 list_del_init(&wq->list); 17746 kfree(wq->pring); 17747 wq->pring = NULL; 17748 mempool_free(mbox, wq->phba->mbox_mem_pool); 17749 return status; 17750 } 17751 17752 /** 17753 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17754 * @phba: HBA structure that indicates port to destroy a queue on. 17755 * @hrq: The queue structure associated with the queue to destroy. 17756 * @drq: The queue structure associated with the queue to destroy. 17757 * 17758 * This function destroys a queue, as detailed in @rq by sending an mailbox 17759 * command, specific to the type of queue, to the HBA. 17760 * 17761 * The @rq struct is used to get the queue ID of the queue to destroy. 17762 * 17763 * On success this function will return a zero. If the queue destroy mailbox 17764 * command fails this function will return -ENXIO. 17765 **/ 17766 int 17767 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17768 struct lpfc_queue *drq) 17769 { 17770 LPFC_MBOXQ_t *mbox; 17771 int rc, length, status = 0; 17772 uint32_t shdr_status, shdr_add_status; 17773 union lpfc_sli4_cfg_shdr *shdr; 17774 17775 /* sanity check on queue memory */ 17776 if (!hrq || !drq) 17777 return -ENODEV; 17778 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17779 if (!mbox) 17780 return -ENOMEM; 17781 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17782 sizeof(struct lpfc_sli4_cfg_mhdr)); 17783 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17784 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17785 length, LPFC_SLI4_MBX_EMBED); 17786 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17787 hrq->queue_id); 17788 mbox->vport = hrq->phba->pport; 17789 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17790 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17791 /* The IOCTL status is embedded in the mailbox subheader. */ 17792 shdr = (union lpfc_sli4_cfg_shdr *) 17793 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17794 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17795 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17796 if (shdr_status || shdr_add_status || rc) { 17797 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17798 "2509 RQ_DESTROY mailbox failed with " 17799 "status x%x add_status x%x, mbx status x%x\n", 17800 shdr_status, shdr_add_status, rc); 17801 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17802 return -ENXIO; 17803 } 17804 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17805 drq->queue_id); 17806 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17807 shdr = (union lpfc_sli4_cfg_shdr *) 17808 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17809 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17810 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17811 if (shdr_status || shdr_add_status || rc) { 17812 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17813 "2510 RQ_DESTROY mailbox failed with " 17814 "status x%x add_status x%x, mbx status x%x\n", 17815 shdr_status, shdr_add_status, rc); 17816 status = -ENXIO; 17817 } 17818 list_del_init(&hrq->list); 17819 list_del_init(&drq->list); 17820 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17821 return status; 17822 } 17823 17824 /** 17825 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17826 * @phba: The virtual port for which this call being executed. 17827 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17828 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17829 * @xritag: the xritag that ties this io to the SGL pages. 17830 * 17831 * This routine will post the sgl pages for the IO that has the xritag 17832 * that is in the iocbq structure. The xritag is assigned during iocbq 17833 * creation and persists for as long as the driver is loaded. 17834 * if the caller has fewer than 256 scatter gather segments to map then 17835 * pdma_phys_addr1 should be 0. 17836 * If the caller needs to map more than 256 scatter gather segment then 17837 * pdma_phys_addr1 should be a valid physical address. 17838 * physical address for SGLs must be 64 byte aligned. 17839 * If you are going to map 2 SGL's then the first one must have 256 entries 17840 * the second sgl can have between 1 and 256 entries. 17841 * 17842 * Return codes: 17843 * 0 - Success 17844 * -ENXIO, -ENOMEM - Failure 17845 **/ 17846 int 17847 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17848 dma_addr_t pdma_phys_addr0, 17849 dma_addr_t pdma_phys_addr1, 17850 uint16_t xritag) 17851 { 17852 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17853 LPFC_MBOXQ_t *mbox; 17854 int rc; 17855 uint32_t shdr_status, shdr_add_status; 17856 uint32_t mbox_tmo; 17857 union lpfc_sli4_cfg_shdr *shdr; 17858 17859 if (xritag == NO_XRI) { 17860 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17861 "0364 Invalid param:\n"); 17862 return -EINVAL; 17863 } 17864 17865 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17866 if (!mbox) 17867 return -ENOMEM; 17868 17869 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17870 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17871 sizeof(struct lpfc_mbx_post_sgl_pages) - 17872 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17873 17874 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17875 &mbox->u.mqe.un.post_sgl_pages; 17876 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17877 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17878 17879 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17880 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17881 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17882 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17883 17884 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17885 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17886 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17887 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17888 if (!phba->sli4_hba.intr_enable) 17889 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17890 else { 17891 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17892 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17893 } 17894 /* The IOCTL status is embedded in the mailbox subheader. */ 17895 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17896 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17897 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17898 if (!phba->sli4_hba.intr_enable) 17899 mempool_free(mbox, phba->mbox_mem_pool); 17900 else if (rc != MBX_TIMEOUT) 17901 mempool_free(mbox, phba->mbox_mem_pool); 17902 if (shdr_status || shdr_add_status || rc) { 17903 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17904 "2511 POST_SGL mailbox failed with " 17905 "status x%x add_status x%x, mbx status x%x\n", 17906 shdr_status, shdr_add_status, rc); 17907 } 17908 return 0; 17909 } 17910 17911 /** 17912 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17913 * @phba: pointer to lpfc hba data structure. 17914 * 17915 * This routine is invoked to post rpi header templates to the 17916 * HBA consistent with the SLI-4 interface spec. This routine 17917 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17918 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17919 * 17920 * Returns 17921 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17922 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17923 **/ 17924 static uint16_t 17925 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 17926 { 17927 unsigned long xri; 17928 17929 /* 17930 * Fetch the next logical xri. Because this index is logical, 17931 * the driver starts at 0 each time. 17932 */ 17933 spin_lock_irq(&phba->hbalock); 17934 xri = find_first_zero_bit(phba->sli4_hba.xri_bmask, 17935 phba->sli4_hba.max_cfg_param.max_xri); 17936 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 17937 spin_unlock_irq(&phba->hbalock); 17938 return NO_XRI; 17939 } else { 17940 set_bit(xri, phba->sli4_hba.xri_bmask); 17941 phba->sli4_hba.max_cfg_param.xri_used++; 17942 } 17943 spin_unlock_irq(&phba->hbalock); 17944 return xri; 17945 } 17946 17947 /** 17948 * __lpfc_sli4_free_xri - Release an xri for reuse. 17949 * @phba: pointer to lpfc hba data structure. 17950 * @xri: xri to release. 17951 * 17952 * This routine is invoked to release an xri to the pool of 17953 * available rpis maintained by the driver. 17954 **/ 17955 static void 17956 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17957 { 17958 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 17959 phba->sli4_hba.max_cfg_param.xri_used--; 17960 } 17961 } 17962 17963 /** 17964 * lpfc_sli4_free_xri - Release an xri for reuse. 17965 * @phba: pointer to lpfc hba data structure. 17966 * @xri: xri to release. 17967 * 17968 * This routine is invoked to release an xri to the pool of 17969 * available rpis maintained by the driver. 17970 **/ 17971 void 17972 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17973 { 17974 spin_lock_irq(&phba->hbalock); 17975 __lpfc_sli4_free_xri(phba, xri); 17976 spin_unlock_irq(&phba->hbalock); 17977 } 17978 17979 /** 17980 * lpfc_sli4_next_xritag - Get an xritag for the io 17981 * @phba: Pointer to HBA context object. 17982 * 17983 * This function gets an xritag for the iocb. If there is no unused xritag 17984 * it will return 0xffff. 17985 * The function returns the allocated xritag if successful, else returns zero. 17986 * Zero is not a valid xritag. 17987 * The caller is not required to hold any lock. 17988 **/ 17989 uint16_t 17990 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 17991 { 17992 uint16_t xri_index; 17993 17994 xri_index = lpfc_sli4_alloc_xri(phba); 17995 if (xri_index == NO_XRI) 17996 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 17997 "2004 Failed to allocate XRI.last XRITAG is %d" 17998 " Max XRI is %d, Used XRI is %d\n", 17999 xri_index, 18000 phba->sli4_hba.max_cfg_param.max_xri, 18001 phba->sli4_hba.max_cfg_param.xri_used); 18002 return xri_index; 18003 } 18004 18005 /** 18006 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 18007 * @phba: pointer to lpfc hba data structure. 18008 * @post_sgl_list: pointer to els sgl entry list. 18009 * @post_cnt: number of els sgl entries on the list. 18010 * 18011 * This routine is invoked to post a block of driver's sgl pages to the 18012 * HBA using non-embedded mailbox command. No Lock is held. This routine 18013 * is only called when the driver is loading and after all IO has been 18014 * stopped. 18015 **/ 18016 static int 18017 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 18018 struct list_head *post_sgl_list, 18019 int post_cnt) 18020 { 18021 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 18022 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18023 struct sgl_page_pairs *sgl_pg_pairs; 18024 void *viraddr; 18025 LPFC_MBOXQ_t *mbox; 18026 uint32_t reqlen, alloclen, pg_pairs; 18027 uint32_t mbox_tmo; 18028 uint16_t xritag_start = 0; 18029 int rc = 0; 18030 uint32_t shdr_status, shdr_add_status; 18031 union lpfc_sli4_cfg_shdr *shdr; 18032 18033 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 18034 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18035 if (reqlen > SLI4_PAGE_SIZE) { 18036 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18037 "2559 Block sgl registration required DMA " 18038 "size (%d) great than a page\n", reqlen); 18039 return -ENOMEM; 18040 } 18041 18042 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18043 if (!mbox) 18044 return -ENOMEM; 18045 18046 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18047 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18048 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 18049 LPFC_SLI4_MBX_NEMBED); 18050 18051 if (alloclen < reqlen) { 18052 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18053 "0285 Allocated DMA memory size (%d) is " 18054 "less than the requested DMA memory " 18055 "size (%d)\n", alloclen, reqlen); 18056 lpfc_sli4_mbox_cmd_free(phba, mbox); 18057 return -ENOMEM; 18058 } 18059 /* Set up the SGL pages in the non-embedded DMA pages */ 18060 viraddr = mbox->sge_array->addr[0]; 18061 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18062 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18063 18064 pg_pairs = 0; 18065 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 18066 /* Set up the sge entry */ 18067 sgl_pg_pairs->sgl_pg0_addr_lo = 18068 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 18069 sgl_pg_pairs->sgl_pg0_addr_hi = 18070 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 18071 sgl_pg_pairs->sgl_pg1_addr_lo = 18072 cpu_to_le32(putPaddrLow(0)); 18073 sgl_pg_pairs->sgl_pg1_addr_hi = 18074 cpu_to_le32(putPaddrHigh(0)); 18075 18076 /* Keep the first xritag on the list */ 18077 if (pg_pairs == 0) 18078 xritag_start = sglq_entry->sli4_xritag; 18079 sgl_pg_pairs++; 18080 pg_pairs++; 18081 } 18082 18083 /* Complete initialization and perform endian conversion. */ 18084 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18085 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 18086 sgl->word0 = cpu_to_le32(sgl->word0); 18087 18088 if (!phba->sli4_hba.intr_enable) 18089 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18090 else { 18091 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18092 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18093 } 18094 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 18095 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18096 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18097 if (!phba->sli4_hba.intr_enable) 18098 lpfc_sli4_mbox_cmd_free(phba, mbox); 18099 else if (rc != MBX_TIMEOUT) 18100 lpfc_sli4_mbox_cmd_free(phba, mbox); 18101 if (shdr_status || shdr_add_status || rc) { 18102 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18103 "2513 POST_SGL_BLOCK mailbox command failed " 18104 "status x%x add_status x%x mbx status x%x\n", 18105 shdr_status, shdr_add_status, rc); 18106 rc = -ENXIO; 18107 } 18108 return rc; 18109 } 18110 18111 /** 18112 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 18113 * @phba: pointer to lpfc hba data structure. 18114 * @nblist: pointer to nvme buffer list. 18115 * @count: number of scsi buffers on the list. 18116 * 18117 * This routine is invoked to post a block of @count scsi sgl pages from a 18118 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 18119 * No Lock is held. 18120 * 18121 **/ 18122 static int 18123 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 18124 int count) 18125 { 18126 struct lpfc_io_buf *lpfc_ncmd; 18127 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18128 struct sgl_page_pairs *sgl_pg_pairs; 18129 void *viraddr; 18130 LPFC_MBOXQ_t *mbox; 18131 uint32_t reqlen, alloclen, pg_pairs; 18132 uint32_t mbox_tmo; 18133 uint16_t xritag_start = 0; 18134 int rc = 0; 18135 uint32_t shdr_status, shdr_add_status; 18136 dma_addr_t pdma_phys_bpl1; 18137 union lpfc_sli4_cfg_shdr *shdr; 18138 18139 /* Calculate the requested length of the dma memory */ 18140 reqlen = count * sizeof(struct sgl_page_pairs) + 18141 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18142 if (reqlen > SLI4_PAGE_SIZE) { 18143 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 18144 "6118 Block sgl registration required DMA " 18145 "size (%d) great than a page\n", reqlen); 18146 return -ENOMEM; 18147 } 18148 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18149 if (!mbox) { 18150 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18151 "6119 Failed to allocate mbox cmd memory\n"); 18152 return -ENOMEM; 18153 } 18154 18155 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18156 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18157 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 18158 reqlen, LPFC_SLI4_MBX_NEMBED); 18159 18160 if (alloclen < reqlen) { 18161 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18162 "6120 Allocated DMA memory size (%d) is " 18163 "less than the requested DMA memory " 18164 "size (%d)\n", alloclen, reqlen); 18165 lpfc_sli4_mbox_cmd_free(phba, mbox); 18166 return -ENOMEM; 18167 } 18168 18169 /* Get the first SGE entry from the non-embedded DMA memory */ 18170 viraddr = mbox->sge_array->addr[0]; 18171 18172 /* Set up the SGL pages in the non-embedded DMA pages */ 18173 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18174 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18175 18176 pg_pairs = 0; 18177 list_for_each_entry(lpfc_ncmd, nblist, list) { 18178 /* Set up the sge entry */ 18179 sgl_pg_pairs->sgl_pg0_addr_lo = 18180 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 18181 sgl_pg_pairs->sgl_pg0_addr_hi = 18182 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 18183 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 18184 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 18185 SGL_PAGE_SIZE; 18186 else 18187 pdma_phys_bpl1 = 0; 18188 sgl_pg_pairs->sgl_pg1_addr_lo = 18189 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 18190 sgl_pg_pairs->sgl_pg1_addr_hi = 18191 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 18192 /* Keep the first xritag on the list */ 18193 if (pg_pairs == 0) 18194 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 18195 sgl_pg_pairs++; 18196 pg_pairs++; 18197 } 18198 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18199 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 18200 /* Perform endian conversion if necessary */ 18201 sgl->word0 = cpu_to_le32(sgl->word0); 18202 18203 if (!phba->sli4_hba.intr_enable) { 18204 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18205 } else { 18206 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18207 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18208 } 18209 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 18210 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18211 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18212 if (!phba->sli4_hba.intr_enable) 18213 lpfc_sli4_mbox_cmd_free(phba, mbox); 18214 else if (rc != MBX_TIMEOUT) 18215 lpfc_sli4_mbox_cmd_free(phba, mbox); 18216 if (shdr_status || shdr_add_status || rc) { 18217 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18218 "6125 POST_SGL_BLOCK mailbox command failed " 18219 "status x%x add_status x%x mbx status x%x\n", 18220 shdr_status, shdr_add_status, rc); 18221 rc = -ENXIO; 18222 } 18223 return rc; 18224 } 18225 18226 /** 18227 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 18228 * @phba: pointer to lpfc hba data structure. 18229 * @post_nblist: pointer to the nvme buffer list. 18230 * @sb_count: number of nvme buffers. 18231 * 18232 * This routine walks a list of nvme buffers that was passed in. It attempts 18233 * to construct blocks of nvme buffer sgls which contains contiguous xris and 18234 * uses the non-embedded SGL block post mailbox commands to post to the port. 18235 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 18236 * embedded SGL post mailbox command for posting. The @post_nblist passed in 18237 * must be local list, thus no lock is needed when manipulate the list. 18238 * 18239 * Returns: 0 = failure, non-zero number of successfully posted buffers. 18240 **/ 18241 int 18242 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 18243 struct list_head *post_nblist, int sb_count) 18244 { 18245 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 18246 int status, sgl_size; 18247 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 18248 dma_addr_t pdma_phys_sgl1; 18249 int last_xritag = NO_XRI; 18250 int cur_xritag; 18251 LIST_HEAD(prep_nblist); 18252 LIST_HEAD(blck_nblist); 18253 LIST_HEAD(nvme_nblist); 18254 18255 /* sanity check */ 18256 if (sb_count <= 0) 18257 return -EINVAL; 18258 18259 sgl_size = phba->cfg_sg_dma_buf_size; 18260 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 18261 list_del_init(&lpfc_ncmd->list); 18262 block_cnt++; 18263 if ((last_xritag != NO_XRI) && 18264 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 18265 /* a hole in xri block, form a sgl posting block */ 18266 list_splice_init(&prep_nblist, &blck_nblist); 18267 post_cnt = block_cnt - 1; 18268 /* prepare list for next posting block */ 18269 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18270 block_cnt = 1; 18271 } else { 18272 /* prepare list for next posting block */ 18273 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18274 /* enough sgls for non-embed sgl mbox command */ 18275 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 18276 list_splice_init(&prep_nblist, &blck_nblist); 18277 post_cnt = block_cnt; 18278 block_cnt = 0; 18279 } 18280 } 18281 num_posting++; 18282 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18283 18284 /* end of repost sgl list condition for NVME buffers */ 18285 if (num_posting == sb_count) { 18286 if (post_cnt == 0) { 18287 /* last sgl posting block */ 18288 list_splice_init(&prep_nblist, &blck_nblist); 18289 post_cnt = block_cnt; 18290 } else if (block_cnt == 1) { 18291 /* last single sgl with non-contiguous xri */ 18292 if (sgl_size > SGL_PAGE_SIZE) 18293 pdma_phys_sgl1 = 18294 lpfc_ncmd->dma_phys_sgl + 18295 SGL_PAGE_SIZE; 18296 else 18297 pdma_phys_sgl1 = 0; 18298 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18299 status = lpfc_sli4_post_sgl( 18300 phba, lpfc_ncmd->dma_phys_sgl, 18301 pdma_phys_sgl1, cur_xritag); 18302 if (status) { 18303 /* Post error. Buffer unavailable. */ 18304 lpfc_ncmd->flags |= 18305 LPFC_SBUF_NOT_POSTED; 18306 } else { 18307 /* Post success. Bffer available. */ 18308 lpfc_ncmd->flags &= 18309 ~LPFC_SBUF_NOT_POSTED; 18310 lpfc_ncmd->status = IOSTAT_SUCCESS; 18311 num_posted++; 18312 } 18313 /* success, put on NVME buffer sgl list */ 18314 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18315 } 18316 } 18317 18318 /* continue until a nembed page worth of sgls */ 18319 if (post_cnt == 0) 18320 continue; 18321 18322 /* post block of NVME buffer list sgls */ 18323 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 18324 post_cnt); 18325 18326 /* don't reset xirtag due to hole in xri block */ 18327 if (block_cnt == 0) 18328 last_xritag = NO_XRI; 18329 18330 /* reset NVME buffer post count for next round of posting */ 18331 post_cnt = 0; 18332 18333 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 18334 while (!list_empty(&blck_nblist)) { 18335 list_remove_head(&blck_nblist, lpfc_ncmd, 18336 struct lpfc_io_buf, list); 18337 if (status) { 18338 /* Post error. Mark buffer unavailable. */ 18339 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 18340 } else { 18341 /* Post success, Mark buffer available. */ 18342 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 18343 lpfc_ncmd->status = IOSTAT_SUCCESS; 18344 num_posted++; 18345 } 18346 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18347 } 18348 } 18349 /* Push NVME buffers with sgl posted to the available list */ 18350 lpfc_io_buf_replenish(phba, &nvme_nblist); 18351 18352 return num_posted; 18353 } 18354 18355 /** 18356 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 18357 * @phba: pointer to lpfc_hba struct that the frame was received on 18358 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18359 * 18360 * This function checks the fields in the @fc_hdr to see if the FC frame is a 18361 * valid type of frame that the LPFC driver will handle. This function will 18362 * return a zero if the frame is a valid frame or a non zero value when the 18363 * frame does not pass the check. 18364 **/ 18365 static int 18366 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 18367 { 18368 /* make rctl_names static to save stack space */ 18369 struct fc_vft_header *fc_vft_hdr; 18370 uint32_t *header = (uint32_t *) fc_hdr; 18371 18372 #define FC_RCTL_MDS_DIAGS 0xF4 18373 18374 switch (fc_hdr->fh_r_ctl) { 18375 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 18376 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 18377 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 18378 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 18379 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 18380 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 18381 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 18382 case FC_RCTL_DD_CMD_STATUS: /* command status */ 18383 case FC_RCTL_ELS_REQ: /* extended link services request */ 18384 case FC_RCTL_ELS_REP: /* extended link services reply */ 18385 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 18386 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 18387 case FC_RCTL_BA_ABTS: /* basic link service abort */ 18388 case FC_RCTL_BA_RMC: /* remove connection */ 18389 case FC_RCTL_BA_ACC: /* basic accept */ 18390 case FC_RCTL_BA_RJT: /* basic reject */ 18391 case FC_RCTL_BA_PRMT: 18392 case FC_RCTL_ACK_1: /* acknowledge_1 */ 18393 case FC_RCTL_ACK_0: /* acknowledge_0 */ 18394 case FC_RCTL_P_RJT: /* port reject */ 18395 case FC_RCTL_F_RJT: /* fabric reject */ 18396 case FC_RCTL_P_BSY: /* port busy */ 18397 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 18398 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 18399 case FC_RCTL_LCR: /* link credit reset */ 18400 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 18401 case FC_RCTL_END: /* end */ 18402 break; 18403 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 18404 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18405 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 18406 return lpfc_fc_frame_check(phba, fc_hdr); 18407 case FC_RCTL_BA_NOP: /* basic link service NOP */ 18408 default: 18409 goto drop; 18410 } 18411 18412 switch (fc_hdr->fh_type) { 18413 case FC_TYPE_BLS: 18414 case FC_TYPE_ELS: 18415 case FC_TYPE_FCP: 18416 case FC_TYPE_CT: 18417 case FC_TYPE_NVME: 18418 break; 18419 case FC_TYPE_IP: 18420 case FC_TYPE_ILS: 18421 default: 18422 goto drop; 18423 } 18424 18425 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 18426 "2538 Received frame rctl:x%x, type:x%x, " 18427 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 18428 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 18429 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 18430 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 18431 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 18432 be32_to_cpu(header[6])); 18433 return 0; 18434 drop: 18435 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 18436 "2539 Dropped frame rctl:x%x type:x%x\n", 18437 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18438 return 1; 18439 } 18440 18441 /** 18442 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 18443 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18444 * 18445 * This function processes the FC header to retrieve the VFI from the VF 18446 * header, if one exists. This function will return the VFI if one exists 18447 * or 0 if no VSAN Header exists. 18448 **/ 18449 static uint32_t 18450 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 18451 { 18452 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18453 18454 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 18455 return 0; 18456 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 18457 } 18458 18459 /** 18460 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 18461 * @phba: Pointer to the HBA structure to search for the vport on 18462 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18463 * @fcfi: The FC Fabric ID that the frame came from 18464 * @did: Destination ID to match against 18465 * 18466 * This function searches the @phba for a vport that matches the content of the 18467 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 18468 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 18469 * returns the matching vport pointer or NULL if unable to match frame to a 18470 * vport. 18471 **/ 18472 static struct lpfc_vport * 18473 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 18474 uint16_t fcfi, uint32_t did) 18475 { 18476 struct lpfc_vport **vports; 18477 struct lpfc_vport *vport = NULL; 18478 int i; 18479 18480 if (did == Fabric_DID) 18481 return phba->pport; 18482 if ((phba->pport->fc_flag & FC_PT2PT) && 18483 !(phba->link_state == LPFC_HBA_READY)) 18484 return phba->pport; 18485 18486 vports = lpfc_create_vport_work_array(phba); 18487 if (vports != NULL) { 18488 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 18489 if (phba->fcf.fcfi == fcfi && 18490 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 18491 vports[i]->fc_myDID == did) { 18492 vport = vports[i]; 18493 break; 18494 } 18495 } 18496 } 18497 lpfc_destroy_vport_work_array(phba, vports); 18498 return vport; 18499 } 18500 18501 /** 18502 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 18503 * @vport: The vport to work on. 18504 * 18505 * This function updates the receive sequence time stamp for this vport. The 18506 * receive sequence time stamp indicates the time that the last frame of the 18507 * the sequence that has been idle for the longest amount of time was received. 18508 * the driver uses this time stamp to indicate if any received sequences have 18509 * timed out. 18510 **/ 18511 static void 18512 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 18513 { 18514 struct lpfc_dmabuf *h_buf; 18515 struct hbq_dmabuf *dmabuf = NULL; 18516 18517 /* get the oldest sequence on the rcv list */ 18518 h_buf = list_get_first(&vport->rcv_buffer_list, 18519 struct lpfc_dmabuf, list); 18520 if (!h_buf) 18521 return; 18522 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18523 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 18524 } 18525 18526 /** 18527 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 18528 * @vport: The vport that the received sequences were sent to. 18529 * 18530 * This function cleans up all outstanding received sequences. This is called 18531 * by the driver when a link event or user action invalidates all the received 18532 * sequences. 18533 **/ 18534 void 18535 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 18536 { 18537 struct lpfc_dmabuf *h_buf, *hnext; 18538 struct lpfc_dmabuf *d_buf, *dnext; 18539 struct hbq_dmabuf *dmabuf = NULL; 18540 18541 /* start with the oldest sequence on the rcv list */ 18542 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18543 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18544 list_del_init(&dmabuf->hbuf.list); 18545 list_for_each_entry_safe(d_buf, dnext, 18546 &dmabuf->dbuf.list, list) { 18547 list_del_init(&d_buf->list); 18548 lpfc_in_buf_free(vport->phba, d_buf); 18549 } 18550 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18551 } 18552 } 18553 18554 /** 18555 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 18556 * @vport: The vport that the received sequences were sent to. 18557 * 18558 * This function determines whether any received sequences have timed out by 18559 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 18560 * indicates that there is at least one timed out sequence this routine will 18561 * go through the received sequences one at a time from most inactive to most 18562 * active to determine which ones need to be cleaned up. Once it has determined 18563 * that a sequence needs to be cleaned up it will simply free up the resources 18564 * without sending an abort. 18565 **/ 18566 void 18567 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 18568 { 18569 struct lpfc_dmabuf *h_buf, *hnext; 18570 struct lpfc_dmabuf *d_buf, *dnext; 18571 struct hbq_dmabuf *dmabuf = NULL; 18572 unsigned long timeout; 18573 int abort_count = 0; 18574 18575 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18576 vport->rcv_buffer_time_stamp); 18577 if (list_empty(&vport->rcv_buffer_list) || 18578 time_before(jiffies, timeout)) 18579 return; 18580 /* start with the oldest sequence on the rcv list */ 18581 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18582 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18583 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18584 dmabuf->time_stamp); 18585 if (time_before(jiffies, timeout)) 18586 break; 18587 abort_count++; 18588 list_del_init(&dmabuf->hbuf.list); 18589 list_for_each_entry_safe(d_buf, dnext, 18590 &dmabuf->dbuf.list, list) { 18591 list_del_init(&d_buf->list); 18592 lpfc_in_buf_free(vport->phba, d_buf); 18593 } 18594 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18595 } 18596 if (abort_count) 18597 lpfc_update_rcv_time_stamp(vport); 18598 } 18599 18600 /** 18601 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 18602 * @vport: pointer to a vitural port 18603 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 18604 * 18605 * This function searches through the existing incomplete sequences that have 18606 * been sent to this @vport. If the frame matches one of the incomplete 18607 * sequences then the dbuf in the @dmabuf is added to the list of frames that 18608 * make up that sequence. If no sequence is found that matches this frame then 18609 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 18610 * This function returns a pointer to the first dmabuf in the sequence list that 18611 * the frame was linked to. 18612 **/ 18613 static struct hbq_dmabuf * 18614 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18615 { 18616 struct fc_frame_header *new_hdr; 18617 struct fc_frame_header *temp_hdr; 18618 struct lpfc_dmabuf *d_buf; 18619 struct lpfc_dmabuf *h_buf; 18620 struct hbq_dmabuf *seq_dmabuf = NULL; 18621 struct hbq_dmabuf *temp_dmabuf = NULL; 18622 uint8_t found = 0; 18623 18624 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18625 dmabuf->time_stamp = jiffies; 18626 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18627 18628 /* Use the hdr_buf to find the sequence that this frame belongs to */ 18629 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18630 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18631 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18632 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18633 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18634 continue; 18635 /* found a pending sequence that matches this frame */ 18636 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18637 break; 18638 } 18639 if (!seq_dmabuf) { 18640 /* 18641 * This indicates first frame received for this sequence. 18642 * Queue the buffer on the vport's rcv_buffer_list. 18643 */ 18644 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18645 lpfc_update_rcv_time_stamp(vport); 18646 return dmabuf; 18647 } 18648 temp_hdr = seq_dmabuf->hbuf.virt; 18649 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 18650 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18651 list_del_init(&seq_dmabuf->hbuf.list); 18652 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18653 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18654 lpfc_update_rcv_time_stamp(vport); 18655 return dmabuf; 18656 } 18657 /* move this sequence to the tail to indicate a young sequence */ 18658 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 18659 seq_dmabuf->time_stamp = jiffies; 18660 lpfc_update_rcv_time_stamp(vport); 18661 if (list_empty(&seq_dmabuf->dbuf.list)) { 18662 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18663 return seq_dmabuf; 18664 } 18665 /* find the correct place in the sequence to insert this frame */ 18666 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 18667 while (!found) { 18668 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18669 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 18670 /* 18671 * If the frame's sequence count is greater than the frame on 18672 * the list then insert the frame right after this frame 18673 */ 18674 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 18675 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18676 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 18677 found = 1; 18678 break; 18679 } 18680 18681 if (&d_buf->list == &seq_dmabuf->dbuf.list) 18682 break; 18683 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 18684 } 18685 18686 if (found) 18687 return seq_dmabuf; 18688 return NULL; 18689 } 18690 18691 /** 18692 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 18693 * @vport: pointer to a vitural port 18694 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18695 * 18696 * This function tries to abort from the partially assembed sequence, described 18697 * by the information from basic abbort @dmabuf. It checks to see whether such 18698 * partially assembled sequence held by the driver. If so, it shall free up all 18699 * the frames from the partially assembled sequence. 18700 * 18701 * Return 18702 * true -- if there is matching partially assembled sequence present and all 18703 * the frames freed with the sequence; 18704 * false -- if there is no matching partially assembled sequence present so 18705 * nothing got aborted in the lower layer driver 18706 **/ 18707 static bool 18708 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18709 struct hbq_dmabuf *dmabuf) 18710 { 18711 struct fc_frame_header *new_hdr; 18712 struct fc_frame_header *temp_hdr; 18713 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18714 struct hbq_dmabuf *seq_dmabuf = NULL; 18715 18716 /* Use the hdr_buf to find the sequence that matches this frame */ 18717 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18718 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18719 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18720 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18721 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18722 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18723 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18724 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18725 continue; 18726 /* found a pending sequence that matches this frame */ 18727 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18728 break; 18729 } 18730 18731 /* Free up all the frames from the partially assembled sequence */ 18732 if (seq_dmabuf) { 18733 list_for_each_entry_safe(d_buf, n_buf, 18734 &seq_dmabuf->dbuf.list, list) { 18735 list_del_init(&d_buf->list); 18736 lpfc_in_buf_free(vport->phba, d_buf); 18737 } 18738 return true; 18739 } 18740 return false; 18741 } 18742 18743 /** 18744 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18745 * @vport: pointer to a vitural port 18746 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18747 * 18748 * This function tries to abort from the assembed sequence from upper level 18749 * protocol, described by the information from basic abbort @dmabuf. It 18750 * checks to see whether such pending context exists at upper level protocol. 18751 * If so, it shall clean up the pending context. 18752 * 18753 * Return 18754 * true -- if there is matching pending context of the sequence cleaned 18755 * at ulp; 18756 * false -- if there is no matching pending context of the sequence present 18757 * at ulp. 18758 **/ 18759 static bool 18760 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18761 { 18762 struct lpfc_hba *phba = vport->phba; 18763 int handled; 18764 18765 /* Accepting abort at ulp with SLI4 only */ 18766 if (phba->sli_rev < LPFC_SLI_REV4) 18767 return false; 18768 18769 /* Register all caring upper level protocols to attend abort */ 18770 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18771 if (handled) 18772 return true; 18773 18774 return false; 18775 } 18776 18777 /** 18778 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18779 * @phba: Pointer to HBA context object. 18780 * @cmd_iocbq: pointer to the command iocbq structure. 18781 * @rsp_iocbq: pointer to the response iocbq structure. 18782 * 18783 * This function handles the sequence abort response iocb command complete 18784 * event. It properly releases the memory allocated to the sequence abort 18785 * accept iocb. 18786 **/ 18787 static void 18788 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18789 struct lpfc_iocbq *cmd_iocbq, 18790 struct lpfc_iocbq *rsp_iocbq) 18791 { 18792 if (cmd_iocbq) { 18793 lpfc_nlp_put(cmd_iocbq->ndlp); 18794 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18795 } 18796 18797 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18798 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18799 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18800 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18801 get_job_ulpstatus(phba, rsp_iocbq), 18802 get_job_word4(phba, rsp_iocbq)); 18803 } 18804 18805 /** 18806 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18807 * @phba: Pointer to HBA context object. 18808 * @xri: xri id in transaction. 18809 * 18810 * This function validates the xri maps to the known range of XRIs allocated an 18811 * used by the driver. 18812 **/ 18813 uint16_t 18814 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18815 uint16_t xri) 18816 { 18817 uint16_t i; 18818 18819 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18820 if (xri == phba->sli4_hba.xri_ids[i]) 18821 return i; 18822 } 18823 return NO_XRI; 18824 } 18825 18826 /** 18827 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18828 * @vport: pointer to a virtual port. 18829 * @fc_hdr: pointer to a FC frame header. 18830 * @aborted: was the partially assembled receive sequence successfully aborted 18831 * 18832 * This function sends a basic response to a previous unsol sequence abort 18833 * event after aborting the sequence handling. 18834 **/ 18835 void 18836 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18837 struct fc_frame_header *fc_hdr, bool aborted) 18838 { 18839 struct lpfc_hba *phba = vport->phba; 18840 struct lpfc_iocbq *ctiocb = NULL; 18841 struct lpfc_nodelist *ndlp; 18842 uint16_t oxid, rxid, xri, lxri; 18843 uint32_t sid, fctl; 18844 union lpfc_wqe128 *icmd; 18845 int rc; 18846 18847 if (!lpfc_is_link_up(phba)) 18848 return; 18849 18850 sid = sli4_sid_from_fc_hdr(fc_hdr); 18851 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18852 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18853 18854 ndlp = lpfc_findnode_did(vport, sid); 18855 if (!ndlp) { 18856 ndlp = lpfc_nlp_init(vport, sid); 18857 if (!ndlp) { 18858 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18859 "1268 Failed to allocate ndlp for " 18860 "oxid:x%x SID:x%x\n", oxid, sid); 18861 return; 18862 } 18863 /* Put ndlp onto pport node list */ 18864 lpfc_enqueue_node(vport, ndlp); 18865 } 18866 18867 /* Allocate buffer for rsp iocb */ 18868 ctiocb = lpfc_sli_get_iocbq(phba); 18869 if (!ctiocb) 18870 return; 18871 18872 icmd = &ctiocb->wqe; 18873 18874 /* Extract the F_CTL field from FC_HDR */ 18875 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18876 18877 ctiocb->ndlp = lpfc_nlp_get(ndlp); 18878 if (!ctiocb->ndlp) { 18879 lpfc_sli_release_iocbq(phba, ctiocb); 18880 return; 18881 } 18882 18883 ctiocb->vport = phba->pport; 18884 ctiocb->cmd_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18885 ctiocb->sli4_lxritag = NO_XRI; 18886 ctiocb->sli4_xritag = NO_XRI; 18887 ctiocb->abort_rctl = FC_RCTL_BA_ACC; 18888 18889 if (fctl & FC_FC_EX_CTX) 18890 /* Exchange responder sent the abort so we 18891 * own the oxid. 18892 */ 18893 xri = oxid; 18894 else 18895 xri = rxid; 18896 lxri = lpfc_sli4_xri_inrange(phba, xri); 18897 if (lxri != NO_XRI) 18898 lpfc_set_rrq_active(phba, ndlp, lxri, 18899 (xri == oxid) ? rxid : oxid, 0); 18900 /* For BA_ABTS from exchange responder, if the logical xri with 18901 * the oxid maps to the FCP XRI range, the port no longer has 18902 * that exchange context, send a BLS_RJT. Override the IOCB for 18903 * a BA_RJT. 18904 */ 18905 if ((fctl & FC_FC_EX_CTX) && 18906 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 18907 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 18908 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 18909 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 18910 FC_BA_RJT_INV_XID); 18911 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 18912 FC_BA_RJT_UNABLE); 18913 } 18914 18915 /* If BA_ABTS failed to abort a partially assembled receive sequence, 18916 * the driver no longer has that exchange, send a BLS_RJT. Override 18917 * the IOCB for a BA_RJT. 18918 */ 18919 if (aborted == false) { 18920 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 18921 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 18922 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 18923 FC_BA_RJT_INV_XID); 18924 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 18925 FC_BA_RJT_UNABLE); 18926 } 18927 18928 if (fctl & FC_FC_EX_CTX) { 18929 /* ABTS sent by responder to CT exchange, construction 18930 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 18931 * field and RX_ID from ABTS for RX_ID field. 18932 */ 18933 ctiocb->abort_bls = LPFC_ABTS_UNSOL_RSP; 18934 bf_set(xmit_bls_rsp64_rxid, &icmd->xmit_bls_rsp, rxid); 18935 } else { 18936 /* ABTS sent by initiator to CT exchange, construction 18937 * of BA_ACC will need to allocate a new XRI as for the 18938 * XRI_TAG field. 18939 */ 18940 ctiocb->abort_bls = LPFC_ABTS_UNSOL_INT; 18941 } 18942 18943 /* OX_ID is invariable to who sent ABTS to CT exchange */ 18944 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, oxid); 18945 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, rxid); 18946 18947 /* Use CT=VPI */ 18948 bf_set(wqe_els_did, &icmd->xmit_bls_rsp.wqe_dest, 18949 ndlp->nlp_DID); 18950 bf_set(xmit_bls_rsp64_temprpi, &icmd->xmit_bls_rsp, 18951 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 18952 bf_set(wqe_cmnd, &icmd->generic.wqe_com, CMD_XMIT_BLS_RSP64_CX); 18953 18954 /* Xmit CT abts response on exchange <xid> */ 18955 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 18956 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 18957 ctiocb->abort_rctl, oxid, phba->link_state); 18958 18959 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 18960 if (rc == IOCB_ERROR) { 18961 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 18962 "2925 Failed to issue CT ABTS RSP x%x on " 18963 "xri x%x, Data x%x\n", 18964 ctiocb->abort_rctl, oxid, 18965 phba->link_state); 18966 lpfc_nlp_put(ndlp); 18967 ctiocb->ndlp = NULL; 18968 lpfc_sli_release_iocbq(phba, ctiocb); 18969 } 18970 } 18971 18972 /** 18973 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 18974 * @vport: Pointer to the vport on which this sequence was received 18975 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18976 * 18977 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 18978 * receive sequence is only partially assembed by the driver, it shall abort 18979 * the partially assembled frames for the sequence. Otherwise, if the 18980 * unsolicited receive sequence has been completely assembled and passed to 18981 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 18982 * unsolicited sequence has been aborted. After that, it will issue a basic 18983 * accept to accept the abort. 18984 **/ 18985 static void 18986 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 18987 struct hbq_dmabuf *dmabuf) 18988 { 18989 struct lpfc_hba *phba = vport->phba; 18990 struct fc_frame_header fc_hdr; 18991 uint32_t fctl; 18992 bool aborted; 18993 18994 /* Make a copy of fc_hdr before the dmabuf being released */ 18995 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 18996 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 18997 18998 if (fctl & FC_FC_EX_CTX) { 18999 /* ABTS by responder to exchange, no cleanup needed */ 19000 aborted = true; 19001 } else { 19002 /* ABTS by initiator to exchange, need to do cleanup */ 19003 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 19004 if (aborted == false) 19005 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 19006 } 19007 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19008 19009 if (phba->nvmet_support) { 19010 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 19011 return; 19012 } 19013 19014 /* Respond with BA_ACC or BA_RJT accordingly */ 19015 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 19016 } 19017 19018 /** 19019 * lpfc_seq_complete - Indicates if a sequence is complete 19020 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19021 * 19022 * This function checks the sequence, starting with the frame described by 19023 * @dmabuf, to see if all the frames associated with this sequence are present. 19024 * the frames associated with this sequence are linked to the @dmabuf using the 19025 * dbuf list. This function looks for two major things. 1) That the first frame 19026 * has a sequence count of zero. 2) There is a frame with last frame of sequence 19027 * set. 3) That there are no holes in the sequence count. The function will 19028 * return 1 when the sequence is complete, otherwise it will return 0. 19029 **/ 19030 static int 19031 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 19032 { 19033 struct fc_frame_header *hdr; 19034 struct lpfc_dmabuf *d_buf; 19035 struct hbq_dmabuf *seq_dmabuf; 19036 uint32_t fctl; 19037 int seq_count = 0; 19038 19039 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19040 /* make sure first fame of sequence has a sequence count of zero */ 19041 if (hdr->fh_seq_cnt != seq_count) 19042 return 0; 19043 fctl = (hdr->fh_f_ctl[0] << 16 | 19044 hdr->fh_f_ctl[1] << 8 | 19045 hdr->fh_f_ctl[2]); 19046 /* If last frame of sequence we can return success. */ 19047 if (fctl & FC_FC_END_SEQ) 19048 return 1; 19049 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 19050 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19051 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19052 /* If there is a hole in the sequence count then fail. */ 19053 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 19054 return 0; 19055 fctl = (hdr->fh_f_ctl[0] << 16 | 19056 hdr->fh_f_ctl[1] << 8 | 19057 hdr->fh_f_ctl[2]); 19058 /* If last frame of sequence we can return success. */ 19059 if (fctl & FC_FC_END_SEQ) 19060 return 1; 19061 } 19062 return 0; 19063 } 19064 19065 /** 19066 * lpfc_prep_seq - Prep sequence for ULP processing 19067 * @vport: Pointer to the vport on which this sequence was received 19068 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 19069 * 19070 * This function takes a sequence, described by a list of frames, and creates 19071 * a list of iocbq structures to describe the sequence. This iocbq list will be 19072 * used to issue to the generic unsolicited sequence handler. This routine 19073 * returns a pointer to the first iocbq in the list. If the function is unable 19074 * to allocate an iocbq then it throw out the received frames that were not 19075 * able to be described and return a pointer to the first iocbq. If unable to 19076 * allocate any iocbqs (including the first) this function will return NULL. 19077 **/ 19078 static struct lpfc_iocbq * 19079 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 19080 { 19081 struct hbq_dmabuf *hbq_buf; 19082 struct lpfc_dmabuf *d_buf, *n_buf; 19083 struct lpfc_iocbq *first_iocbq, *iocbq; 19084 struct fc_frame_header *fc_hdr; 19085 uint32_t sid; 19086 uint32_t len, tot_len; 19087 19088 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19089 /* remove from receive buffer list */ 19090 list_del_init(&seq_dmabuf->hbuf.list); 19091 lpfc_update_rcv_time_stamp(vport); 19092 /* get the Remote Port's SID */ 19093 sid = sli4_sid_from_fc_hdr(fc_hdr); 19094 tot_len = 0; 19095 /* Get an iocbq struct to fill in. */ 19096 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 19097 if (first_iocbq) { 19098 /* Initialize the first IOCB. */ 19099 first_iocbq->wcqe_cmpl.total_data_placed = 0; 19100 bf_set(lpfc_wcqe_c_status, &first_iocbq->wcqe_cmpl, 19101 IOSTAT_SUCCESS); 19102 first_iocbq->vport = vport; 19103 19104 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 19105 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 19106 bf_set(els_rsp64_sid, &first_iocbq->wqe.xmit_els_rsp, 19107 sli4_did_from_fc_hdr(fc_hdr)); 19108 } 19109 19110 bf_set(wqe_ctxt_tag, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19111 NO_XRI); 19112 bf_set(wqe_rcvoxid, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19113 be16_to_cpu(fc_hdr->fh_ox_id)); 19114 19115 /* put the first buffer into the first iocb */ 19116 tot_len = bf_get(lpfc_rcqe_length, 19117 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 19118 19119 first_iocbq->cmd_dmabuf = &seq_dmabuf->dbuf; 19120 first_iocbq->bpl_dmabuf = NULL; 19121 /* Keep track of the BDE count */ 19122 first_iocbq->wcqe_cmpl.word3 = 1; 19123 19124 if (tot_len > LPFC_DATA_BUF_SIZE) 19125 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = 19126 LPFC_DATA_BUF_SIZE; 19127 else 19128 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = tot_len; 19129 19130 first_iocbq->wcqe_cmpl.total_data_placed = tot_len; 19131 bf_set(wqe_els_did, &first_iocbq->wqe.xmit_els_rsp.wqe_dest, 19132 sid); 19133 } 19134 iocbq = first_iocbq; 19135 /* 19136 * Each IOCBq can have two Buffers assigned, so go through the list 19137 * of buffers for this sequence and save two buffers in each IOCBq 19138 */ 19139 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 19140 if (!iocbq) { 19141 lpfc_in_buf_free(vport->phba, d_buf); 19142 continue; 19143 } 19144 if (!iocbq->bpl_dmabuf) { 19145 iocbq->bpl_dmabuf = d_buf; 19146 iocbq->wcqe_cmpl.word3++; 19147 /* We need to get the size out of the right CQE */ 19148 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19149 len = bf_get(lpfc_rcqe_length, 19150 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19151 iocbq->unsol_rcv_len = len; 19152 iocbq->wcqe_cmpl.total_data_placed += len; 19153 tot_len += len; 19154 } else { 19155 iocbq = lpfc_sli_get_iocbq(vport->phba); 19156 if (!iocbq) { 19157 if (first_iocbq) { 19158 bf_set(lpfc_wcqe_c_status, 19159 &first_iocbq->wcqe_cmpl, 19160 IOSTAT_SUCCESS); 19161 first_iocbq->wcqe_cmpl.parameter = 19162 IOERR_NO_RESOURCES; 19163 } 19164 lpfc_in_buf_free(vport->phba, d_buf); 19165 continue; 19166 } 19167 /* We need to get the size out of the right CQE */ 19168 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19169 len = bf_get(lpfc_rcqe_length, 19170 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19171 iocbq->cmd_dmabuf = d_buf; 19172 iocbq->bpl_dmabuf = NULL; 19173 iocbq->wcqe_cmpl.word3 = 1; 19174 19175 if (len > LPFC_DATA_BUF_SIZE) 19176 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19177 LPFC_DATA_BUF_SIZE; 19178 else 19179 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19180 len; 19181 19182 tot_len += len; 19183 iocbq->wcqe_cmpl.total_data_placed = tot_len; 19184 bf_set(wqe_els_did, &iocbq->wqe.xmit_els_rsp.wqe_dest, 19185 sid); 19186 list_add_tail(&iocbq->list, &first_iocbq->list); 19187 } 19188 } 19189 /* Free the sequence's header buffer */ 19190 if (!first_iocbq) 19191 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 19192 19193 return first_iocbq; 19194 } 19195 19196 static void 19197 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 19198 struct hbq_dmabuf *seq_dmabuf) 19199 { 19200 struct fc_frame_header *fc_hdr; 19201 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 19202 struct lpfc_hba *phba = vport->phba; 19203 19204 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19205 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 19206 if (!iocbq) { 19207 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19208 "2707 Ring %d handler: Failed to allocate " 19209 "iocb Rctl x%x Type x%x received\n", 19210 LPFC_ELS_RING, 19211 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19212 return; 19213 } 19214 if (!lpfc_complete_unsol_iocb(phba, 19215 phba->sli4_hba.els_wq->pring, 19216 iocbq, fc_hdr->fh_r_ctl, 19217 fc_hdr->fh_type)) { 19218 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19219 "2540 Ring %d handler: unexpected Rctl " 19220 "x%x Type x%x received\n", 19221 LPFC_ELS_RING, 19222 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19223 lpfc_in_buf_free(phba, &seq_dmabuf->dbuf); 19224 } 19225 19226 /* Free iocb created in lpfc_prep_seq */ 19227 list_for_each_entry_safe(curr_iocb, next_iocb, 19228 &iocbq->list, list) { 19229 list_del_init(&curr_iocb->list); 19230 lpfc_sli_release_iocbq(phba, curr_iocb); 19231 } 19232 lpfc_sli_release_iocbq(phba, iocbq); 19233 } 19234 19235 static void 19236 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 19237 struct lpfc_iocbq *rspiocb) 19238 { 19239 struct lpfc_dmabuf *pcmd = cmdiocb->cmd_dmabuf; 19240 19241 if (pcmd && pcmd->virt) 19242 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19243 kfree(pcmd); 19244 lpfc_sli_release_iocbq(phba, cmdiocb); 19245 lpfc_drain_txq(phba); 19246 } 19247 19248 static void 19249 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 19250 struct hbq_dmabuf *dmabuf) 19251 { 19252 struct fc_frame_header *fc_hdr; 19253 struct lpfc_hba *phba = vport->phba; 19254 struct lpfc_iocbq *iocbq = NULL; 19255 union lpfc_wqe128 *pwqe; 19256 struct lpfc_dmabuf *pcmd = NULL; 19257 uint32_t frame_len; 19258 int rc; 19259 unsigned long iflags; 19260 19261 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19262 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 19263 19264 /* Send the received frame back */ 19265 iocbq = lpfc_sli_get_iocbq(phba); 19266 if (!iocbq) { 19267 /* Queue cq event and wakeup worker thread to process it */ 19268 spin_lock_irqsave(&phba->hbalock, iflags); 19269 list_add_tail(&dmabuf->cq_event.list, 19270 &phba->sli4_hba.sp_queue_event); 19271 phba->hba_flag |= HBA_SP_QUEUE_EVT; 19272 spin_unlock_irqrestore(&phba->hbalock, iflags); 19273 lpfc_worker_wake_up(phba); 19274 return; 19275 } 19276 19277 /* Allocate buffer for command payload */ 19278 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 19279 if (pcmd) 19280 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 19281 &pcmd->phys); 19282 if (!pcmd || !pcmd->virt) 19283 goto exit; 19284 19285 INIT_LIST_HEAD(&pcmd->list); 19286 19287 /* copyin the payload */ 19288 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 19289 19290 iocbq->cmd_dmabuf = pcmd; 19291 iocbq->vport = vport; 19292 iocbq->cmd_flag &= ~LPFC_FIP_ELS_ID_MASK; 19293 iocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 19294 iocbq->num_bdes = 0; 19295 19296 pwqe = &iocbq->wqe; 19297 /* fill in BDE's for command */ 19298 pwqe->gen_req.bde.addrHigh = putPaddrHigh(pcmd->phys); 19299 pwqe->gen_req.bde.addrLow = putPaddrLow(pcmd->phys); 19300 pwqe->gen_req.bde.tus.f.bdeSize = frame_len; 19301 pwqe->gen_req.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 19302 19303 pwqe->send_frame.frame_len = frame_len; 19304 pwqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((__be32 *)fc_hdr)); 19305 pwqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((__be32 *)fc_hdr + 1)); 19306 pwqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((__be32 *)fc_hdr + 2)); 19307 pwqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((__be32 *)fc_hdr + 3)); 19308 pwqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((__be32 *)fc_hdr + 4)); 19309 pwqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((__be32 *)fc_hdr + 5)); 19310 19311 pwqe->generic.wqe_com.word7 = 0; 19312 pwqe->generic.wqe_com.word10 = 0; 19313 19314 bf_set(wqe_cmnd, &pwqe->generic.wqe_com, CMD_SEND_FRAME); 19315 bf_set(wqe_sof, &pwqe->generic.wqe_com, 0x2E); /* SOF byte */ 19316 bf_set(wqe_eof, &pwqe->generic.wqe_com, 0x41); /* EOF byte */ 19317 bf_set(wqe_lenloc, &pwqe->generic.wqe_com, 1); 19318 bf_set(wqe_xbl, &pwqe->generic.wqe_com, 1); 19319 bf_set(wqe_dbde, &pwqe->generic.wqe_com, 1); 19320 bf_set(wqe_xc, &pwqe->generic.wqe_com, 1); 19321 bf_set(wqe_cmd_type, &pwqe->generic.wqe_com, 0xA); 19322 bf_set(wqe_cqid, &pwqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 19323 bf_set(wqe_xri_tag, &pwqe->generic.wqe_com, iocbq->sli4_xritag); 19324 bf_set(wqe_reqtag, &pwqe->generic.wqe_com, iocbq->iotag); 19325 bf_set(wqe_class, &pwqe->generic.wqe_com, CLASS3); 19326 pwqe->generic.wqe_com.abort_tag = iocbq->iotag; 19327 19328 iocbq->cmd_cmpl = lpfc_sli4_mds_loopback_cmpl; 19329 19330 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 19331 if (rc == IOCB_ERROR) 19332 goto exit; 19333 19334 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19335 return; 19336 19337 exit: 19338 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 19339 "2023 Unable to process MDS loopback frame\n"); 19340 if (pcmd && pcmd->virt) 19341 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19342 kfree(pcmd); 19343 if (iocbq) 19344 lpfc_sli_release_iocbq(phba, iocbq); 19345 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19346 } 19347 19348 /** 19349 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 19350 * @phba: Pointer to HBA context object. 19351 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 19352 * 19353 * This function is called with no lock held. This function processes all 19354 * the received buffers and gives it to upper layers when a received buffer 19355 * indicates that it is the final frame in the sequence. The interrupt 19356 * service routine processes received buffers at interrupt contexts. 19357 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 19358 * appropriate receive function when the final frame in a sequence is received. 19359 **/ 19360 void 19361 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 19362 struct hbq_dmabuf *dmabuf) 19363 { 19364 struct hbq_dmabuf *seq_dmabuf; 19365 struct fc_frame_header *fc_hdr; 19366 struct lpfc_vport *vport; 19367 uint32_t fcfi; 19368 uint32_t did; 19369 19370 /* Process each received buffer */ 19371 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19372 19373 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 19374 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 19375 vport = phba->pport; 19376 /* Handle MDS Loopback frames */ 19377 if (!(phba->pport->load_flag & FC_UNLOADING)) 19378 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19379 else 19380 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19381 return; 19382 } 19383 19384 /* check to see if this a valid type of frame */ 19385 if (lpfc_fc_frame_check(phba, fc_hdr)) { 19386 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19387 return; 19388 } 19389 19390 if ((bf_get(lpfc_cqe_code, 19391 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 19392 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 19393 &dmabuf->cq_event.cqe.rcqe_cmpl); 19394 else 19395 fcfi = bf_get(lpfc_rcqe_fcf_id, 19396 &dmabuf->cq_event.cqe.rcqe_cmpl); 19397 19398 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 19399 vport = phba->pport; 19400 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 19401 "2023 MDS Loopback %d bytes\n", 19402 bf_get(lpfc_rcqe_length, 19403 &dmabuf->cq_event.cqe.rcqe_cmpl)); 19404 /* Handle MDS Loopback frames */ 19405 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19406 return; 19407 } 19408 19409 /* d_id this frame is directed to */ 19410 did = sli4_did_from_fc_hdr(fc_hdr); 19411 19412 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 19413 if (!vport) { 19414 /* throw out the frame */ 19415 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19416 return; 19417 } 19418 19419 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 19420 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 19421 (did != Fabric_DID)) { 19422 /* 19423 * Throw out the frame if we are not pt2pt. 19424 * The pt2pt protocol allows for discovery frames 19425 * to be received without a registered VPI. 19426 */ 19427 if (!(vport->fc_flag & FC_PT2PT) || 19428 (phba->link_state == LPFC_HBA_READY)) { 19429 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19430 return; 19431 } 19432 } 19433 19434 /* Handle the basic abort sequence (BA_ABTS) event */ 19435 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 19436 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 19437 return; 19438 } 19439 19440 /* Link this frame */ 19441 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 19442 if (!seq_dmabuf) { 19443 /* unable to add frame to vport - throw it out */ 19444 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19445 return; 19446 } 19447 /* If not last frame in sequence continue processing frames. */ 19448 if (!lpfc_seq_complete(seq_dmabuf)) 19449 return; 19450 19451 /* Send the complete sequence to the upper layer protocol */ 19452 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 19453 } 19454 19455 /** 19456 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 19457 * @phba: pointer to lpfc hba data structure. 19458 * 19459 * This routine is invoked to post rpi header templates to the 19460 * HBA consistent with the SLI-4 interface spec. This routine 19461 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19462 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19463 * 19464 * This routine does not require any locks. It's usage is expected 19465 * to be driver load or reset recovery when the driver is 19466 * sequential. 19467 * 19468 * Return codes 19469 * 0 - successful 19470 * -EIO - The mailbox failed to complete successfully. 19471 * When this error occurs, the driver is not guaranteed 19472 * to have any rpi regions posted to the device and 19473 * must either attempt to repost the regions or take a 19474 * fatal error. 19475 **/ 19476 int 19477 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 19478 { 19479 struct lpfc_rpi_hdr *rpi_page; 19480 uint32_t rc = 0; 19481 uint16_t lrpi = 0; 19482 19483 /* SLI4 ports that support extents do not require RPI headers. */ 19484 if (!phba->sli4_hba.rpi_hdrs_in_use) 19485 goto exit; 19486 if (phba->sli4_hba.extents_in_use) 19487 return -EIO; 19488 19489 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 19490 /* 19491 * Assign the rpi headers a physical rpi only if the driver 19492 * has not initialized those resources. A port reset only 19493 * needs the headers posted. 19494 */ 19495 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 19496 LPFC_RPI_RSRC_RDY) 19497 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19498 19499 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 19500 if (rc != MBX_SUCCESS) { 19501 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19502 "2008 Error %d posting all rpi " 19503 "headers\n", rc); 19504 rc = -EIO; 19505 break; 19506 } 19507 } 19508 19509 exit: 19510 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 19511 LPFC_RPI_RSRC_RDY); 19512 return rc; 19513 } 19514 19515 /** 19516 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 19517 * @phba: pointer to lpfc hba data structure. 19518 * @rpi_page: pointer to the rpi memory region. 19519 * 19520 * This routine is invoked to post a single rpi header to the 19521 * HBA consistent with the SLI-4 interface spec. This memory region 19522 * maps up to 64 rpi context regions. 19523 * 19524 * Return codes 19525 * 0 - successful 19526 * -ENOMEM - No available memory 19527 * -EIO - The mailbox failed to complete successfully. 19528 **/ 19529 int 19530 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 19531 { 19532 LPFC_MBOXQ_t *mboxq; 19533 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 19534 uint32_t rc = 0; 19535 uint32_t shdr_status, shdr_add_status; 19536 union lpfc_sli4_cfg_shdr *shdr; 19537 19538 /* SLI4 ports that support extents do not require RPI headers. */ 19539 if (!phba->sli4_hba.rpi_hdrs_in_use) 19540 return rc; 19541 if (phba->sli4_hba.extents_in_use) 19542 return -EIO; 19543 19544 /* The port is notified of the header region via a mailbox command. */ 19545 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19546 if (!mboxq) { 19547 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19548 "2001 Unable to allocate memory for issuing " 19549 "SLI_CONFIG_SPECIAL mailbox command\n"); 19550 return -ENOMEM; 19551 } 19552 19553 /* Post all rpi memory regions to the port. */ 19554 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 19555 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19556 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 19557 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 19558 sizeof(struct lpfc_sli4_cfg_mhdr), 19559 LPFC_SLI4_MBX_EMBED); 19560 19561 19562 /* Post the physical rpi to the port for this rpi header. */ 19563 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 19564 rpi_page->start_rpi); 19565 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 19566 hdr_tmpl, rpi_page->page_count); 19567 19568 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 19569 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 19570 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19571 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 19572 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19573 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19574 mempool_free(mboxq, phba->mbox_mem_pool); 19575 if (shdr_status || shdr_add_status || rc) { 19576 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19577 "2514 POST_RPI_HDR mailbox failed with " 19578 "status x%x add_status x%x, mbx status x%x\n", 19579 shdr_status, shdr_add_status, rc); 19580 rc = -ENXIO; 19581 } else { 19582 /* 19583 * The next_rpi stores the next logical module-64 rpi value used 19584 * to post physical rpis in subsequent rpi postings. 19585 */ 19586 spin_lock_irq(&phba->hbalock); 19587 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 19588 spin_unlock_irq(&phba->hbalock); 19589 } 19590 return rc; 19591 } 19592 19593 /** 19594 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 19595 * @phba: pointer to lpfc hba data structure. 19596 * 19597 * This routine is invoked to post rpi header templates to the 19598 * HBA consistent with the SLI-4 interface spec. This routine 19599 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19600 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19601 * 19602 * Returns 19603 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 19604 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 19605 **/ 19606 int 19607 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 19608 { 19609 unsigned long rpi; 19610 uint16_t max_rpi, rpi_limit; 19611 uint16_t rpi_remaining, lrpi = 0; 19612 struct lpfc_rpi_hdr *rpi_hdr; 19613 unsigned long iflag; 19614 19615 /* 19616 * Fetch the next logical rpi. Because this index is logical, 19617 * the driver starts at 0 each time. 19618 */ 19619 spin_lock_irqsave(&phba->hbalock, iflag); 19620 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 19621 rpi_limit = phba->sli4_hba.next_rpi; 19622 19623 rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit); 19624 if (rpi >= rpi_limit) 19625 rpi = LPFC_RPI_ALLOC_ERROR; 19626 else { 19627 set_bit(rpi, phba->sli4_hba.rpi_bmask); 19628 phba->sli4_hba.max_cfg_param.rpi_used++; 19629 phba->sli4_hba.rpi_count++; 19630 } 19631 lpfc_printf_log(phba, KERN_INFO, 19632 LOG_NODE | LOG_DISCOVERY, 19633 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 19634 (int) rpi, max_rpi, rpi_limit); 19635 19636 /* 19637 * Don't try to allocate more rpi header regions if the device limit 19638 * has been exhausted. 19639 */ 19640 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 19641 (phba->sli4_hba.rpi_count >= max_rpi)) { 19642 spin_unlock_irqrestore(&phba->hbalock, iflag); 19643 return rpi; 19644 } 19645 19646 /* 19647 * RPI header postings are not required for SLI4 ports capable of 19648 * extents. 19649 */ 19650 if (!phba->sli4_hba.rpi_hdrs_in_use) { 19651 spin_unlock_irqrestore(&phba->hbalock, iflag); 19652 return rpi; 19653 } 19654 19655 /* 19656 * If the driver is running low on rpi resources, allocate another 19657 * page now. Note that the next_rpi value is used because 19658 * it represents how many are actually in use whereas max_rpi notes 19659 * how many are supported max by the device. 19660 */ 19661 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 19662 spin_unlock_irqrestore(&phba->hbalock, iflag); 19663 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 19664 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 19665 if (!rpi_hdr) { 19666 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19667 "2002 Error Could not grow rpi " 19668 "count\n"); 19669 } else { 19670 lrpi = rpi_hdr->start_rpi; 19671 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19672 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 19673 } 19674 } 19675 19676 return rpi; 19677 } 19678 19679 /** 19680 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 19681 * @phba: pointer to lpfc hba data structure. 19682 * @rpi: rpi to free 19683 * 19684 * This routine is invoked to release an rpi to the pool of 19685 * available rpis maintained by the driver. 19686 **/ 19687 static void 19688 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19689 { 19690 /* 19691 * if the rpi value indicates a prior unreg has already 19692 * been done, skip the unreg. 19693 */ 19694 if (rpi == LPFC_RPI_ALLOC_ERROR) 19695 return; 19696 19697 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 19698 phba->sli4_hba.rpi_count--; 19699 phba->sli4_hba.max_cfg_param.rpi_used--; 19700 } else { 19701 lpfc_printf_log(phba, KERN_INFO, 19702 LOG_NODE | LOG_DISCOVERY, 19703 "2016 rpi %x not inuse\n", 19704 rpi); 19705 } 19706 } 19707 19708 /** 19709 * lpfc_sli4_free_rpi - Release an rpi for reuse. 19710 * @phba: pointer to lpfc hba data structure. 19711 * @rpi: rpi to free 19712 * 19713 * This routine is invoked to release an rpi to the pool of 19714 * available rpis maintained by the driver. 19715 **/ 19716 void 19717 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19718 { 19719 spin_lock_irq(&phba->hbalock); 19720 __lpfc_sli4_free_rpi(phba, rpi); 19721 spin_unlock_irq(&phba->hbalock); 19722 } 19723 19724 /** 19725 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19726 * @phba: pointer to lpfc hba data structure. 19727 * 19728 * This routine is invoked to remove the memory region that 19729 * provided rpi via a bitmask. 19730 **/ 19731 void 19732 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19733 { 19734 kfree(phba->sli4_hba.rpi_bmask); 19735 kfree(phba->sli4_hba.rpi_ids); 19736 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19737 } 19738 19739 /** 19740 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19741 * @ndlp: pointer to lpfc nodelist data structure. 19742 * @cmpl: completion call-back. 19743 * @arg: data to load as MBox 'caller buffer information' 19744 * 19745 * This routine is invoked to remove the memory region that 19746 * provided rpi via a bitmask. 19747 **/ 19748 int 19749 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19750 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 19751 { 19752 LPFC_MBOXQ_t *mboxq; 19753 struct lpfc_hba *phba = ndlp->phba; 19754 int rc; 19755 19756 /* The port is notified of the header region via a mailbox command. */ 19757 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19758 if (!mboxq) 19759 return -ENOMEM; 19760 19761 /* If cmpl assigned, then this nlp_get pairs with 19762 * lpfc_mbx_cmpl_resume_rpi. 19763 * 19764 * Else cmpl is NULL, then this nlp_get pairs with 19765 * lpfc_sli_def_mbox_cmpl. 19766 */ 19767 if (!lpfc_nlp_get(ndlp)) { 19768 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19769 "2122 %s: Failed to get nlp ref\n", 19770 __func__); 19771 mempool_free(mboxq, phba->mbox_mem_pool); 19772 return -EIO; 19773 } 19774 19775 /* Post all rpi memory regions to the port. */ 19776 lpfc_resume_rpi(mboxq, ndlp); 19777 if (cmpl) { 19778 mboxq->mbox_cmpl = cmpl; 19779 mboxq->ctx_buf = arg; 19780 } else 19781 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19782 mboxq->ctx_ndlp = ndlp; 19783 mboxq->vport = ndlp->vport; 19784 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19785 if (rc == MBX_NOT_FINISHED) { 19786 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19787 "2010 Resume RPI Mailbox failed " 19788 "status %d, mbxStatus x%x\n", rc, 19789 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19790 lpfc_nlp_put(ndlp); 19791 mempool_free(mboxq, phba->mbox_mem_pool); 19792 return -EIO; 19793 } 19794 return 0; 19795 } 19796 19797 /** 19798 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19799 * @vport: Pointer to the vport for which the vpi is being initialized 19800 * 19801 * This routine is invoked to activate a vpi with the port. 19802 * 19803 * Returns: 19804 * 0 success 19805 * -Evalue otherwise 19806 **/ 19807 int 19808 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19809 { 19810 LPFC_MBOXQ_t *mboxq; 19811 int rc = 0; 19812 int retval = MBX_SUCCESS; 19813 uint32_t mbox_tmo; 19814 struct lpfc_hba *phba = vport->phba; 19815 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19816 if (!mboxq) 19817 return -ENOMEM; 19818 lpfc_init_vpi(phba, mboxq, vport->vpi); 19819 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19820 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19821 if (rc != MBX_SUCCESS) { 19822 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19823 "2022 INIT VPI Mailbox failed " 19824 "status %d, mbxStatus x%x\n", rc, 19825 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19826 retval = -EIO; 19827 } 19828 if (rc != MBX_TIMEOUT) 19829 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19830 19831 return retval; 19832 } 19833 19834 /** 19835 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19836 * @phba: pointer to lpfc hba data structure. 19837 * @mboxq: Pointer to mailbox object. 19838 * 19839 * This routine is invoked to manually add a single FCF record. The caller 19840 * must pass a completely initialized FCF_Record. This routine takes 19841 * care of the nonembedded mailbox operations. 19842 **/ 19843 static void 19844 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19845 { 19846 void *virt_addr; 19847 union lpfc_sli4_cfg_shdr *shdr; 19848 uint32_t shdr_status, shdr_add_status; 19849 19850 virt_addr = mboxq->sge_array->addr[0]; 19851 /* The IOCTL status is embedded in the mailbox subheader. */ 19852 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19853 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19854 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19855 19856 if ((shdr_status || shdr_add_status) && 19857 (shdr_status != STATUS_FCF_IN_USE)) 19858 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19859 "2558 ADD_FCF_RECORD mailbox failed with " 19860 "status x%x add_status x%x\n", 19861 shdr_status, shdr_add_status); 19862 19863 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19864 } 19865 19866 /** 19867 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19868 * @phba: pointer to lpfc hba data structure. 19869 * @fcf_record: pointer to the initialized fcf record to add. 19870 * 19871 * This routine is invoked to manually add a single FCF record. The caller 19872 * must pass a completely initialized FCF_Record. This routine takes 19873 * care of the nonembedded mailbox operations. 19874 **/ 19875 int 19876 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19877 { 19878 int rc = 0; 19879 LPFC_MBOXQ_t *mboxq; 19880 uint8_t *bytep; 19881 void *virt_addr; 19882 struct lpfc_mbx_sge sge; 19883 uint32_t alloc_len, req_len; 19884 uint32_t fcfindex; 19885 19886 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19887 if (!mboxq) { 19888 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19889 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 19890 return -ENOMEM; 19891 } 19892 19893 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 19894 sizeof(uint32_t); 19895 19896 /* Allocate DMA memory and set up the non-embedded mailbox command */ 19897 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19898 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 19899 req_len, LPFC_SLI4_MBX_NEMBED); 19900 if (alloc_len < req_len) { 19901 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19902 "2523 Allocated DMA memory size (x%x) is " 19903 "less than the requested DMA memory " 19904 "size (x%x)\n", alloc_len, req_len); 19905 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19906 return -ENOMEM; 19907 } 19908 19909 /* 19910 * Get the first SGE entry from the non-embedded DMA memory. This 19911 * routine only uses a single SGE. 19912 */ 19913 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 19914 virt_addr = mboxq->sge_array->addr[0]; 19915 /* 19916 * Configure the FCF record for FCFI 0. This is the driver's 19917 * hardcoded default and gets used in nonFIP mode. 19918 */ 19919 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 19920 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 19921 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 19922 19923 /* 19924 * Copy the fcf_index and the FCF Record Data. The data starts after 19925 * the FCoE header plus word10. The data copy needs to be endian 19926 * correct. 19927 */ 19928 bytep += sizeof(uint32_t); 19929 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 19930 mboxq->vport = phba->pport; 19931 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 19932 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19933 if (rc == MBX_NOT_FINISHED) { 19934 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19935 "2515 ADD_FCF_RECORD mailbox failed with " 19936 "status 0x%x\n", rc); 19937 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19938 rc = -EIO; 19939 } else 19940 rc = 0; 19941 19942 return rc; 19943 } 19944 19945 /** 19946 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 19947 * @phba: pointer to lpfc hba data structure. 19948 * @fcf_record: pointer to the fcf record to write the default data. 19949 * @fcf_index: FCF table entry index. 19950 * 19951 * This routine is invoked to build the driver's default FCF record. The 19952 * values used are hardcoded. This routine handles memory initialization. 19953 * 19954 **/ 19955 void 19956 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 19957 struct fcf_record *fcf_record, 19958 uint16_t fcf_index) 19959 { 19960 memset(fcf_record, 0, sizeof(struct fcf_record)); 19961 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 19962 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 19963 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 19964 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 19965 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 19966 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 19967 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 19968 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 19969 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 19970 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 19971 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 19972 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 19973 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 19974 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 19975 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 19976 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 19977 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 19978 /* Set the VLAN bit map */ 19979 if (phba->valid_vlan) { 19980 fcf_record->vlan_bitmap[phba->vlan_id / 8] 19981 = 1 << (phba->vlan_id % 8); 19982 } 19983 } 19984 19985 /** 19986 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 19987 * @phba: pointer to lpfc hba data structure. 19988 * @fcf_index: FCF table entry offset. 19989 * 19990 * This routine is invoked to scan the entire FCF table by reading FCF 19991 * record and processing it one at a time starting from the @fcf_index 19992 * for initial FCF discovery or fast FCF failover rediscovery. 19993 * 19994 * Return 0 if the mailbox command is submitted successfully, none 0 19995 * otherwise. 19996 **/ 19997 int 19998 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19999 { 20000 int rc = 0, error; 20001 LPFC_MBOXQ_t *mboxq; 20002 20003 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 20004 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 20005 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20006 if (!mboxq) { 20007 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20008 "2000 Failed to allocate mbox for " 20009 "READ_FCF cmd\n"); 20010 error = -ENOMEM; 20011 goto fail_fcf_scan; 20012 } 20013 /* Construct the read FCF record mailbox command */ 20014 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20015 if (rc) { 20016 error = -EINVAL; 20017 goto fail_fcf_scan; 20018 } 20019 /* Issue the mailbox command asynchronously */ 20020 mboxq->vport = phba->pport; 20021 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 20022 20023 spin_lock_irq(&phba->hbalock); 20024 phba->hba_flag |= FCF_TS_INPROG; 20025 spin_unlock_irq(&phba->hbalock); 20026 20027 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20028 if (rc == MBX_NOT_FINISHED) 20029 error = -EIO; 20030 else { 20031 /* Reset eligible FCF count for new scan */ 20032 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 20033 phba->fcf.eligible_fcf_cnt = 0; 20034 error = 0; 20035 } 20036 fail_fcf_scan: 20037 if (error) { 20038 if (mboxq) 20039 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20040 /* FCF scan failed, clear FCF_TS_INPROG flag */ 20041 spin_lock_irq(&phba->hbalock); 20042 phba->hba_flag &= ~FCF_TS_INPROG; 20043 spin_unlock_irq(&phba->hbalock); 20044 } 20045 return error; 20046 } 20047 20048 /** 20049 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 20050 * @phba: pointer to lpfc hba data structure. 20051 * @fcf_index: FCF table entry offset. 20052 * 20053 * This routine is invoked to read an FCF record indicated by @fcf_index 20054 * and to use it for FLOGI roundrobin FCF failover. 20055 * 20056 * Return 0 if the mailbox command is submitted successfully, none 0 20057 * otherwise. 20058 **/ 20059 int 20060 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20061 { 20062 int rc = 0, error; 20063 LPFC_MBOXQ_t *mboxq; 20064 20065 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20066 if (!mboxq) { 20067 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20068 "2763 Failed to allocate mbox for " 20069 "READ_FCF cmd\n"); 20070 error = -ENOMEM; 20071 goto fail_fcf_read; 20072 } 20073 /* Construct the read FCF record mailbox command */ 20074 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20075 if (rc) { 20076 error = -EINVAL; 20077 goto fail_fcf_read; 20078 } 20079 /* Issue the mailbox command asynchronously */ 20080 mboxq->vport = phba->pport; 20081 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 20082 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20083 if (rc == MBX_NOT_FINISHED) 20084 error = -EIO; 20085 else 20086 error = 0; 20087 20088 fail_fcf_read: 20089 if (error && mboxq) 20090 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20091 return error; 20092 } 20093 20094 /** 20095 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 20096 * @phba: pointer to lpfc hba data structure. 20097 * @fcf_index: FCF table entry offset. 20098 * 20099 * This routine is invoked to read an FCF record indicated by @fcf_index to 20100 * determine whether it's eligible for FLOGI roundrobin failover list. 20101 * 20102 * Return 0 if the mailbox command is submitted successfully, none 0 20103 * otherwise. 20104 **/ 20105 int 20106 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20107 { 20108 int rc = 0, error; 20109 LPFC_MBOXQ_t *mboxq; 20110 20111 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20112 if (!mboxq) { 20113 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20114 "2758 Failed to allocate mbox for " 20115 "READ_FCF cmd\n"); 20116 error = -ENOMEM; 20117 goto fail_fcf_read; 20118 } 20119 /* Construct the read FCF record mailbox command */ 20120 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20121 if (rc) { 20122 error = -EINVAL; 20123 goto fail_fcf_read; 20124 } 20125 /* Issue the mailbox command asynchronously */ 20126 mboxq->vport = phba->pport; 20127 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 20128 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20129 if (rc == MBX_NOT_FINISHED) 20130 error = -EIO; 20131 else 20132 error = 0; 20133 20134 fail_fcf_read: 20135 if (error && mboxq) 20136 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20137 return error; 20138 } 20139 20140 /** 20141 * lpfc_check_next_fcf_pri_level 20142 * @phba: pointer to the lpfc_hba struct for this port. 20143 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 20144 * routine when the rr_bmask is empty. The FCF indecies are put into the 20145 * rr_bmask based on their priority level. Starting from the highest priority 20146 * to the lowest. The most likely FCF candidate will be in the highest 20147 * priority group. When this routine is called it searches the fcf_pri list for 20148 * next lowest priority group and repopulates the rr_bmask with only those 20149 * fcf_indexes. 20150 * returns: 20151 * 1=success 0=failure 20152 **/ 20153 static int 20154 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 20155 { 20156 uint16_t next_fcf_pri; 20157 uint16_t last_index; 20158 struct lpfc_fcf_pri *fcf_pri; 20159 int rc; 20160 int ret = 0; 20161 20162 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20163 LPFC_SLI4_FCF_TBL_INDX_MAX); 20164 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20165 "3060 Last IDX %d\n", last_index); 20166 20167 /* Verify the priority list has 2 or more entries */ 20168 spin_lock_irq(&phba->hbalock); 20169 if (list_empty(&phba->fcf.fcf_pri_list) || 20170 list_is_singular(&phba->fcf.fcf_pri_list)) { 20171 spin_unlock_irq(&phba->hbalock); 20172 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20173 "3061 Last IDX %d\n", last_index); 20174 return 0; /* Empty rr list */ 20175 } 20176 spin_unlock_irq(&phba->hbalock); 20177 20178 next_fcf_pri = 0; 20179 /* 20180 * Clear the rr_bmask and set all of the bits that are at this 20181 * priority. 20182 */ 20183 memset(phba->fcf.fcf_rr_bmask, 0, 20184 sizeof(*phba->fcf.fcf_rr_bmask)); 20185 spin_lock_irq(&phba->hbalock); 20186 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20187 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 20188 continue; 20189 /* 20190 * the 1st priority that has not FLOGI failed 20191 * will be the highest. 20192 */ 20193 if (!next_fcf_pri) 20194 next_fcf_pri = fcf_pri->fcf_rec.priority; 20195 spin_unlock_irq(&phba->hbalock); 20196 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20197 rc = lpfc_sli4_fcf_rr_index_set(phba, 20198 fcf_pri->fcf_rec.fcf_index); 20199 if (rc) 20200 return 0; 20201 } 20202 spin_lock_irq(&phba->hbalock); 20203 } 20204 /* 20205 * if next_fcf_pri was not set above and the list is not empty then 20206 * we have failed flogis on all of them. So reset flogi failed 20207 * and start at the beginning. 20208 */ 20209 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 20210 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20211 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 20212 /* 20213 * the 1st priority that has not FLOGI failed 20214 * will be the highest. 20215 */ 20216 if (!next_fcf_pri) 20217 next_fcf_pri = fcf_pri->fcf_rec.priority; 20218 spin_unlock_irq(&phba->hbalock); 20219 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20220 rc = lpfc_sli4_fcf_rr_index_set(phba, 20221 fcf_pri->fcf_rec.fcf_index); 20222 if (rc) 20223 return 0; 20224 } 20225 spin_lock_irq(&phba->hbalock); 20226 } 20227 } else 20228 ret = 1; 20229 spin_unlock_irq(&phba->hbalock); 20230 20231 return ret; 20232 } 20233 /** 20234 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 20235 * @phba: pointer to lpfc hba data structure. 20236 * 20237 * This routine is to get the next eligible FCF record index in a round 20238 * robin fashion. If the next eligible FCF record index equals to the 20239 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 20240 * shall be returned, otherwise, the next eligible FCF record's index 20241 * shall be returned. 20242 **/ 20243 uint16_t 20244 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 20245 { 20246 uint16_t next_fcf_index; 20247 20248 initial_priority: 20249 /* Search start from next bit of currently registered FCF index */ 20250 next_fcf_index = phba->fcf.current_rec.fcf_indx; 20251 20252 next_priority: 20253 /* Determine the next fcf index to check */ 20254 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 20255 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 20256 LPFC_SLI4_FCF_TBL_INDX_MAX, 20257 next_fcf_index); 20258 20259 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 20260 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20261 /* 20262 * If we have wrapped then we need to clear the bits that 20263 * have been tested so that we can detect when we should 20264 * change the priority level. 20265 */ 20266 next_fcf_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20267 LPFC_SLI4_FCF_TBL_INDX_MAX); 20268 } 20269 20270 20271 /* Check roundrobin failover list empty condition */ 20272 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 20273 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 20274 /* 20275 * If next fcf index is not found check if there are lower 20276 * Priority level fcf's in the fcf_priority list. 20277 * Set up the rr_bmask with all of the avaiable fcf bits 20278 * at that level and continue the selection process. 20279 */ 20280 if (lpfc_check_next_fcf_pri_level(phba)) 20281 goto initial_priority; 20282 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 20283 "2844 No roundrobin failover FCF available\n"); 20284 20285 return LPFC_FCOE_FCF_NEXT_NONE; 20286 } 20287 20288 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 20289 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 20290 LPFC_FCF_FLOGI_FAILED) { 20291 if (list_is_singular(&phba->fcf.fcf_pri_list)) 20292 return LPFC_FCOE_FCF_NEXT_NONE; 20293 20294 goto next_priority; 20295 } 20296 20297 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20298 "2845 Get next roundrobin failover FCF (x%x)\n", 20299 next_fcf_index); 20300 20301 return next_fcf_index; 20302 } 20303 20304 /** 20305 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 20306 * @phba: pointer to lpfc hba data structure. 20307 * @fcf_index: index into the FCF table to 'set' 20308 * 20309 * This routine sets the FCF record index in to the eligible bmask for 20310 * roundrobin failover search. It checks to make sure that the index 20311 * does not go beyond the range of the driver allocated bmask dimension 20312 * before setting the bit. 20313 * 20314 * Returns 0 if the index bit successfully set, otherwise, it returns 20315 * -EINVAL. 20316 **/ 20317 int 20318 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 20319 { 20320 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20321 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20322 "2610 FCF (x%x) reached driver's book " 20323 "keeping dimension:x%x\n", 20324 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20325 return -EINVAL; 20326 } 20327 /* Set the eligible FCF record index bmask */ 20328 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20329 20330 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20331 "2790 Set FCF (x%x) to roundrobin FCF failover " 20332 "bmask\n", fcf_index); 20333 20334 return 0; 20335 } 20336 20337 /** 20338 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 20339 * @phba: pointer to lpfc hba data structure. 20340 * @fcf_index: index into the FCF table to 'clear' 20341 * 20342 * This routine clears the FCF record index from the eligible bmask for 20343 * roundrobin failover search. It checks to make sure that the index 20344 * does not go beyond the range of the driver allocated bmask dimension 20345 * before clearing the bit. 20346 **/ 20347 void 20348 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 20349 { 20350 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 20351 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20352 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20353 "2762 FCF (x%x) reached driver's book " 20354 "keeping dimension:x%x\n", 20355 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20356 return; 20357 } 20358 /* Clear the eligible FCF record index bmask */ 20359 spin_lock_irq(&phba->hbalock); 20360 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 20361 list) { 20362 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 20363 list_del_init(&fcf_pri->list); 20364 break; 20365 } 20366 } 20367 spin_unlock_irq(&phba->hbalock); 20368 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20369 20370 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20371 "2791 Clear FCF (x%x) from roundrobin failover " 20372 "bmask\n", fcf_index); 20373 } 20374 20375 /** 20376 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 20377 * @phba: pointer to lpfc hba data structure. 20378 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 20379 * 20380 * This routine is the completion routine for the rediscover FCF table mailbox 20381 * command. If the mailbox command returned failure, it will try to stop the 20382 * FCF rediscover wait timer. 20383 **/ 20384 static void 20385 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 20386 { 20387 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20388 uint32_t shdr_status, shdr_add_status; 20389 20390 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20391 20392 shdr_status = bf_get(lpfc_mbox_hdr_status, 20393 &redisc_fcf->header.cfg_shdr.response); 20394 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20395 &redisc_fcf->header.cfg_shdr.response); 20396 if (shdr_status || shdr_add_status) { 20397 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20398 "2746 Requesting for FCF rediscovery failed " 20399 "status x%x add_status x%x\n", 20400 shdr_status, shdr_add_status); 20401 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 20402 spin_lock_irq(&phba->hbalock); 20403 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 20404 spin_unlock_irq(&phba->hbalock); 20405 /* 20406 * CVL event triggered FCF rediscover request failed, 20407 * last resort to re-try current registered FCF entry. 20408 */ 20409 lpfc_retry_pport_discovery(phba); 20410 } else { 20411 spin_lock_irq(&phba->hbalock); 20412 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 20413 spin_unlock_irq(&phba->hbalock); 20414 /* 20415 * DEAD FCF event triggered FCF rediscover request 20416 * failed, last resort to fail over as a link down 20417 * to FCF registration. 20418 */ 20419 lpfc_sli4_fcf_dead_failthrough(phba); 20420 } 20421 } else { 20422 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20423 "2775 Start FCF rediscover quiescent timer\n"); 20424 /* 20425 * Start FCF rediscovery wait timer for pending FCF 20426 * before rescan FCF record table. 20427 */ 20428 lpfc_fcf_redisc_wait_start_timer(phba); 20429 } 20430 20431 mempool_free(mbox, phba->mbox_mem_pool); 20432 } 20433 20434 /** 20435 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 20436 * @phba: pointer to lpfc hba data structure. 20437 * 20438 * This routine is invoked to request for rediscovery of the entire FCF table 20439 * by the port. 20440 **/ 20441 int 20442 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 20443 { 20444 LPFC_MBOXQ_t *mbox; 20445 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20446 int rc, length; 20447 20448 /* Cancel retry delay timers to all vports before FCF rediscover */ 20449 lpfc_cancel_all_vport_retry_delay_timer(phba); 20450 20451 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20452 if (!mbox) { 20453 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20454 "2745 Failed to allocate mbox for " 20455 "requesting FCF rediscover.\n"); 20456 return -ENOMEM; 20457 } 20458 20459 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 20460 sizeof(struct lpfc_sli4_cfg_mhdr)); 20461 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 20462 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 20463 length, LPFC_SLI4_MBX_EMBED); 20464 20465 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20466 /* Set count to 0 for invalidating the entire FCF database */ 20467 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 20468 20469 /* Issue the mailbox command asynchronously */ 20470 mbox->vport = phba->pport; 20471 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 20472 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 20473 20474 if (rc == MBX_NOT_FINISHED) { 20475 mempool_free(mbox, phba->mbox_mem_pool); 20476 return -EIO; 20477 } 20478 return 0; 20479 } 20480 20481 /** 20482 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 20483 * @phba: pointer to lpfc hba data structure. 20484 * 20485 * This function is the failover routine as a last resort to the FCF DEAD 20486 * event when driver failed to perform fast FCF failover. 20487 **/ 20488 void 20489 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 20490 { 20491 uint32_t link_state; 20492 20493 /* 20494 * Last resort as FCF DEAD event failover will treat this as 20495 * a link down, but save the link state because we don't want 20496 * it to be changed to Link Down unless it is already down. 20497 */ 20498 link_state = phba->link_state; 20499 lpfc_linkdown(phba); 20500 phba->link_state = link_state; 20501 20502 /* Unregister FCF if no devices connected to it */ 20503 lpfc_unregister_unused_fcf(phba); 20504 } 20505 20506 /** 20507 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 20508 * @phba: pointer to lpfc hba data structure. 20509 * @rgn23_data: pointer to configure region 23 data. 20510 * 20511 * This function gets SLI3 port configure region 23 data through memory dump 20512 * mailbox command. When it successfully retrieves data, the size of the data 20513 * will be returned, otherwise, 0 will be returned. 20514 **/ 20515 static uint32_t 20516 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20517 { 20518 LPFC_MBOXQ_t *pmb = NULL; 20519 MAILBOX_t *mb; 20520 uint32_t offset = 0; 20521 int rc; 20522 20523 if (!rgn23_data) 20524 return 0; 20525 20526 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20527 if (!pmb) { 20528 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20529 "2600 failed to allocate mailbox memory\n"); 20530 return 0; 20531 } 20532 mb = &pmb->u.mb; 20533 20534 do { 20535 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 20536 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 20537 20538 if (rc != MBX_SUCCESS) { 20539 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20540 "2601 failed to read config " 20541 "region 23, rc 0x%x Status 0x%x\n", 20542 rc, mb->mbxStatus); 20543 mb->un.varDmp.word_cnt = 0; 20544 } 20545 /* 20546 * dump mem may return a zero when finished or we got a 20547 * mailbox error, either way we are done. 20548 */ 20549 if (mb->un.varDmp.word_cnt == 0) 20550 break; 20551 20552 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 20553 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 20554 20555 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 20556 rgn23_data + offset, 20557 mb->un.varDmp.word_cnt); 20558 offset += mb->un.varDmp.word_cnt; 20559 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 20560 20561 mempool_free(pmb, phba->mbox_mem_pool); 20562 return offset; 20563 } 20564 20565 /** 20566 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 20567 * @phba: pointer to lpfc hba data structure. 20568 * @rgn23_data: pointer to configure region 23 data. 20569 * 20570 * This function gets SLI4 port configure region 23 data through memory dump 20571 * mailbox command. When it successfully retrieves data, the size of the data 20572 * will be returned, otherwise, 0 will be returned. 20573 **/ 20574 static uint32_t 20575 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20576 { 20577 LPFC_MBOXQ_t *mboxq = NULL; 20578 struct lpfc_dmabuf *mp = NULL; 20579 struct lpfc_mqe *mqe; 20580 uint32_t data_length = 0; 20581 int rc; 20582 20583 if (!rgn23_data) 20584 return 0; 20585 20586 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20587 if (!mboxq) { 20588 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20589 "3105 failed to allocate mailbox memory\n"); 20590 return 0; 20591 } 20592 20593 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 20594 goto out; 20595 mqe = &mboxq->u.mqe; 20596 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 20597 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 20598 if (rc) 20599 goto out; 20600 data_length = mqe->un.mb_words[5]; 20601 if (data_length == 0) 20602 goto out; 20603 if (data_length > DMP_RGN23_SIZE) { 20604 data_length = 0; 20605 goto out; 20606 } 20607 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 20608 out: 20609 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 20610 return data_length; 20611 } 20612 20613 /** 20614 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 20615 * @phba: pointer to lpfc hba data structure. 20616 * 20617 * This function read region 23 and parse TLV for port status to 20618 * decide if the user disaled the port. If the TLV indicates the 20619 * port is disabled, the hba_flag is set accordingly. 20620 **/ 20621 void 20622 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 20623 { 20624 uint8_t *rgn23_data = NULL; 20625 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 20626 uint32_t offset = 0; 20627 20628 /* Get adapter Region 23 data */ 20629 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 20630 if (!rgn23_data) 20631 goto out; 20632 20633 if (phba->sli_rev < LPFC_SLI_REV4) 20634 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 20635 else { 20636 if_type = bf_get(lpfc_sli_intf_if_type, 20637 &phba->sli4_hba.sli_intf); 20638 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 20639 goto out; 20640 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 20641 } 20642 20643 if (!data_size) 20644 goto out; 20645 20646 /* Check the region signature first */ 20647 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 20648 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20649 "2619 Config region 23 has bad signature\n"); 20650 goto out; 20651 } 20652 offset += 4; 20653 20654 /* Check the data structure version */ 20655 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 20656 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20657 "2620 Config region 23 has bad version\n"); 20658 goto out; 20659 } 20660 offset += 4; 20661 20662 /* Parse TLV entries in the region */ 20663 while (offset < data_size) { 20664 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 20665 break; 20666 /* 20667 * If the TLV is not driver specific TLV or driver id is 20668 * not linux driver id, skip the record. 20669 */ 20670 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 20671 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 20672 (rgn23_data[offset + 3] != 0)) { 20673 offset += rgn23_data[offset + 1] * 4 + 4; 20674 continue; 20675 } 20676 20677 /* Driver found a driver specific TLV in the config region */ 20678 sub_tlv_len = rgn23_data[offset + 1] * 4; 20679 offset += 4; 20680 tlv_offset = 0; 20681 20682 /* 20683 * Search for configured port state sub-TLV. 20684 */ 20685 while ((offset < data_size) && 20686 (tlv_offset < sub_tlv_len)) { 20687 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 20688 offset += 4; 20689 tlv_offset += 4; 20690 break; 20691 } 20692 if (rgn23_data[offset] != PORT_STE_TYPE) { 20693 offset += rgn23_data[offset + 1] * 4 + 4; 20694 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 20695 continue; 20696 } 20697 20698 /* This HBA contains PORT_STE configured */ 20699 if (!rgn23_data[offset + 2]) 20700 phba->hba_flag |= LINK_DISABLED; 20701 20702 goto out; 20703 } 20704 } 20705 20706 out: 20707 kfree(rgn23_data); 20708 return; 20709 } 20710 20711 /** 20712 * lpfc_log_fw_write_cmpl - logs firmware write completion status 20713 * @phba: pointer to lpfc hba data structure 20714 * @shdr_status: wr_object rsp's status field 20715 * @shdr_add_status: wr_object rsp's add_status field 20716 * @shdr_add_status_2: wr_object rsp's add_status_2 field 20717 * @shdr_change_status: wr_object rsp's change_status field 20718 * @shdr_csf: wr_object rsp's csf bit 20719 * 20720 * This routine is intended to be called after a firmware write completes. 20721 * It will log next action items to be performed by the user to instantiate 20722 * the newly downloaded firmware or reason for incompatibility. 20723 **/ 20724 static void 20725 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status, 20726 u32 shdr_add_status, u32 shdr_add_status_2, 20727 u32 shdr_change_status, u32 shdr_csf) 20728 { 20729 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20730 "4198 %s: flash_id x%02x, asic_rev x%02x, " 20731 "status x%02x, add_status x%02x, add_status_2 x%02x, " 20732 "change_status x%02x, csf %01x\n", __func__, 20733 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev, 20734 shdr_status, shdr_add_status, shdr_add_status_2, 20735 shdr_change_status, shdr_csf); 20736 20737 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) { 20738 switch (shdr_add_status_2) { 20739 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH: 20740 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20741 "4199 Firmware write failed: " 20742 "image incompatible with flash x%02x\n", 20743 phba->sli4_hba.flash_id); 20744 break; 20745 case LPFC_ADD_STATUS_2_INCORRECT_ASIC: 20746 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20747 "4200 Firmware write failed: " 20748 "image incompatible with ASIC " 20749 "architecture x%02x\n", 20750 phba->sli4_hba.asic_rev); 20751 break; 20752 default: 20753 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20754 "4210 Firmware write failed: " 20755 "add_status_2 x%02x\n", 20756 shdr_add_status_2); 20757 break; 20758 } 20759 } else if (!shdr_status && !shdr_add_status) { 20760 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20761 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20762 if (shdr_csf) 20763 shdr_change_status = 20764 LPFC_CHANGE_STATUS_PCI_RESET; 20765 } 20766 20767 switch (shdr_change_status) { 20768 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20769 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20770 "3198 Firmware write complete: System " 20771 "reboot required to instantiate\n"); 20772 break; 20773 case (LPFC_CHANGE_STATUS_FW_RESET): 20774 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20775 "3199 Firmware write complete: " 20776 "Firmware reset required to " 20777 "instantiate\n"); 20778 break; 20779 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20780 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20781 "3200 Firmware write complete: Port " 20782 "Migration or PCI Reset required to " 20783 "instantiate\n"); 20784 break; 20785 case (LPFC_CHANGE_STATUS_PCI_RESET): 20786 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20787 "3201 Firmware write complete: PCI " 20788 "Reset required to instantiate\n"); 20789 break; 20790 default: 20791 break; 20792 } 20793 } 20794 } 20795 20796 /** 20797 * lpfc_wr_object - write an object to the firmware 20798 * @phba: HBA structure that indicates port to create a queue on. 20799 * @dmabuf_list: list of dmabufs to write to the port. 20800 * @size: the total byte value of the objects to write to the port. 20801 * @offset: the current offset to be used to start the transfer. 20802 * 20803 * This routine will create a wr_object mailbox command to send to the port. 20804 * the mailbox command will be constructed using the dma buffers described in 20805 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20806 * BDEs that the imbedded mailbox can support. The @offset variable will be 20807 * used to indicate the starting offset of the transfer and will also return 20808 * the offset after the write object mailbox has completed. @size is used to 20809 * determine the end of the object and whether the eof bit should be set. 20810 * 20811 * Return 0 is successful and offset will contain the the new offset to use 20812 * for the next write. 20813 * Return negative value for error cases. 20814 **/ 20815 int 20816 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20817 uint32_t size, uint32_t *offset) 20818 { 20819 struct lpfc_mbx_wr_object *wr_object; 20820 LPFC_MBOXQ_t *mbox; 20821 int rc = 0, i = 0; 20822 uint32_t shdr_status, shdr_add_status, shdr_add_status_2; 20823 uint32_t shdr_change_status = 0, shdr_csf = 0; 20824 uint32_t mbox_tmo; 20825 struct lpfc_dmabuf *dmabuf; 20826 uint32_t written = 0; 20827 bool check_change_status = false; 20828 20829 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20830 if (!mbox) 20831 return -ENOMEM; 20832 20833 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20834 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20835 sizeof(struct lpfc_mbx_wr_object) - 20836 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20837 20838 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20839 wr_object->u.request.write_offset = *offset; 20840 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20841 wr_object->u.request.object_name[0] = 20842 cpu_to_le32(wr_object->u.request.object_name[0]); 20843 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20844 list_for_each_entry(dmabuf, dmabuf_list, list) { 20845 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20846 break; 20847 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20848 wr_object->u.request.bde[i].addrHigh = 20849 putPaddrHigh(dmabuf->phys); 20850 if (written + SLI4_PAGE_SIZE >= size) { 20851 wr_object->u.request.bde[i].tus.f.bdeSize = 20852 (size - written); 20853 written += (size - written); 20854 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20855 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20856 check_change_status = true; 20857 } else { 20858 wr_object->u.request.bde[i].tus.f.bdeSize = 20859 SLI4_PAGE_SIZE; 20860 written += SLI4_PAGE_SIZE; 20861 } 20862 i++; 20863 } 20864 wr_object->u.request.bde_count = i; 20865 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20866 if (!phba->sli4_hba.intr_enable) 20867 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20868 else { 20869 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20870 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20871 } 20872 /* The IOCTL status is embedded in the mailbox subheader. */ 20873 shdr_status = bf_get(lpfc_mbox_hdr_status, 20874 &wr_object->header.cfg_shdr.response); 20875 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20876 &wr_object->header.cfg_shdr.response); 20877 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2, 20878 &wr_object->header.cfg_shdr.response); 20879 if (check_change_status) { 20880 shdr_change_status = bf_get(lpfc_wr_object_change_status, 20881 &wr_object->u.response); 20882 shdr_csf = bf_get(lpfc_wr_object_csf, 20883 &wr_object->u.response); 20884 } 20885 20886 if (!phba->sli4_hba.intr_enable) 20887 mempool_free(mbox, phba->mbox_mem_pool); 20888 else if (rc != MBX_TIMEOUT) 20889 mempool_free(mbox, phba->mbox_mem_pool); 20890 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) { 20891 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20892 "3025 Write Object mailbox failed with " 20893 "status x%x add_status x%x, add_status_2 x%x, " 20894 "mbx status x%x\n", 20895 shdr_status, shdr_add_status, shdr_add_status_2, 20896 rc); 20897 rc = -ENXIO; 20898 *offset = shdr_add_status; 20899 } else { 20900 *offset += wr_object->u.response.actual_write_length; 20901 } 20902 20903 if (rc || check_change_status) 20904 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status, 20905 shdr_add_status_2, shdr_change_status, 20906 shdr_csf); 20907 return rc; 20908 } 20909 20910 /** 20911 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 20912 * @vport: pointer to vport data structure. 20913 * 20914 * This function iterate through the mailboxq and clean up all REG_LOGIN 20915 * and REG_VPI mailbox commands associated with the vport. This function 20916 * is called when driver want to restart discovery of the vport due to 20917 * a Clear Virtual Link event. 20918 **/ 20919 void 20920 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 20921 { 20922 struct lpfc_hba *phba = vport->phba; 20923 LPFC_MBOXQ_t *mb, *nextmb; 20924 struct lpfc_nodelist *ndlp; 20925 struct lpfc_nodelist *act_mbx_ndlp = NULL; 20926 LIST_HEAD(mbox_cmd_list); 20927 uint8_t restart_loop; 20928 20929 /* Clean up internally queued mailbox commands with the vport */ 20930 spin_lock_irq(&phba->hbalock); 20931 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 20932 if (mb->vport != vport) 20933 continue; 20934 20935 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20936 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20937 continue; 20938 20939 list_move_tail(&mb->list, &mbox_cmd_list); 20940 } 20941 /* Clean up active mailbox command with the vport */ 20942 mb = phba->sli.mbox_active; 20943 if (mb && (mb->vport == vport)) { 20944 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 20945 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 20946 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20947 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20948 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20949 20950 /* This reference is local to this routine. The 20951 * reference is removed at routine exit. 20952 */ 20953 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 20954 20955 /* Unregister the RPI when mailbox complete */ 20956 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20957 } 20958 } 20959 /* Cleanup any mailbox completions which are not yet processed */ 20960 do { 20961 restart_loop = 0; 20962 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 20963 /* 20964 * If this mailox is already processed or it is 20965 * for another vport ignore it. 20966 */ 20967 if ((mb->vport != vport) || 20968 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 20969 continue; 20970 20971 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20972 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20973 continue; 20974 20975 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20976 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20977 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20978 /* Unregister the RPI when mailbox complete */ 20979 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20980 restart_loop = 1; 20981 spin_unlock_irq(&phba->hbalock); 20982 spin_lock(&ndlp->lock); 20983 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20984 spin_unlock(&ndlp->lock); 20985 spin_lock_irq(&phba->hbalock); 20986 break; 20987 } 20988 } 20989 } while (restart_loop); 20990 20991 spin_unlock_irq(&phba->hbalock); 20992 20993 /* Release the cleaned-up mailbox commands */ 20994 while (!list_empty(&mbox_cmd_list)) { 20995 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 20996 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20997 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20998 mb->ctx_ndlp = NULL; 20999 if (ndlp) { 21000 spin_lock(&ndlp->lock); 21001 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21002 spin_unlock(&ndlp->lock); 21003 lpfc_nlp_put(ndlp); 21004 } 21005 } 21006 lpfc_mbox_rsrc_cleanup(phba, mb, MBOX_THD_UNLOCKED); 21007 } 21008 21009 /* Release the ndlp with the cleaned-up active mailbox command */ 21010 if (act_mbx_ndlp) { 21011 spin_lock(&act_mbx_ndlp->lock); 21012 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21013 spin_unlock(&act_mbx_ndlp->lock); 21014 lpfc_nlp_put(act_mbx_ndlp); 21015 } 21016 } 21017 21018 /** 21019 * lpfc_drain_txq - Drain the txq 21020 * @phba: Pointer to HBA context object. 21021 * 21022 * This function attempt to submit IOCBs on the txq 21023 * to the adapter. For SLI4 adapters, the txq contains 21024 * ELS IOCBs that have been deferred because the there 21025 * are no SGLs. This congestion can occur with large 21026 * vport counts during node discovery. 21027 **/ 21028 21029 uint32_t 21030 lpfc_drain_txq(struct lpfc_hba *phba) 21031 { 21032 LIST_HEAD(completions); 21033 struct lpfc_sli_ring *pring; 21034 struct lpfc_iocbq *piocbq = NULL; 21035 unsigned long iflags = 0; 21036 char *fail_msg = NULL; 21037 uint32_t txq_cnt = 0; 21038 struct lpfc_queue *wq; 21039 int ret = 0; 21040 21041 if (phba->link_flag & LS_MDS_LOOPBACK) { 21042 /* MDS WQE are posted only to first WQ*/ 21043 wq = phba->sli4_hba.hdwq[0].io_wq; 21044 if (unlikely(!wq)) 21045 return 0; 21046 pring = wq->pring; 21047 } else { 21048 wq = phba->sli4_hba.els_wq; 21049 if (unlikely(!wq)) 21050 return 0; 21051 pring = lpfc_phba_elsring(phba); 21052 } 21053 21054 if (unlikely(!pring) || list_empty(&pring->txq)) 21055 return 0; 21056 21057 spin_lock_irqsave(&pring->ring_lock, iflags); 21058 list_for_each_entry(piocbq, &pring->txq, list) { 21059 txq_cnt++; 21060 } 21061 21062 if (txq_cnt > pring->txq_max) 21063 pring->txq_max = txq_cnt; 21064 21065 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21066 21067 while (!list_empty(&pring->txq)) { 21068 spin_lock_irqsave(&pring->ring_lock, iflags); 21069 21070 piocbq = lpfc_sli_ringtx_get(phba, pring); 21071 if (!piocbq) { 21072 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21073 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21074 "2823 txq empty and txq_cnt is %d\n ", 21075 txq_cnt); 21076 break; 21077 } 21078 txq_cnt--; 21079 21080 ret = __lpfc_sli_issue_iocb(phba, pring->ringno, piocbq, 0); 21081 21082 if (ret && ret != IOCB_BUSY) { 21083 fail_msg = " - Cannot send IO "; 21084 piocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21085 } 21086 if (fail_msg) { 21087 piocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 21088 /* Failed means we can't issue and need to cancel */ 21089 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21090 "2822 IOCB failed %s iotag 0x%x " 21091 "xri 0x%x %d flg x%x\n", 21092 fail_msg, piocbq->iotag, 21093 piocbq->sli4_xritag, ret, 21094 piocbq->cmd_flag); 21095 list_add_tail(&piocbq->list, &completions); 21096 fail_msg = NULL; 21097 } 21098 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21099 if (txq_cnt == 0 || ret == IOCB_BUSY) 21100 break; 21101 } 21102 /* Cancel all the IOCBs that cannot be issued */ 21103 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 21104 IOERR_SLI_ABORTED); 21105 21106 return txq_cnt; 21107 } 21108 21109 /** 21110 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 21111 * @phba: Pointer to HBA context object. 21112 * @pwqeq: Pointer to command WQE. 21113 * @sglq: Pointer to the scatter gather queue object. 21114 * 21115 * This routine converts the bpl or bde that is in the WQE 21116 * to a sgl list for the sli4 hardware. The physical address 21117 * of the bpl/bde is converted back to a virtual address. 21118 * If the WQE contains a BPL then the list of BDE's is 21119 * converted to sli4_sge's. If the WQE contains a single 21120 * BDE then it is converted to a single sli_sge. 21121 * The WQE is still in cpu endianness so the contents of 21122 * the bpl can be used without byte swapping. 21123 * 21124 * Returns valid XRI = Success, NO_XRI = Failure. 21125 */ 21126 static uint16_t 21127 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 21128 struct lpfc_sglq *sglq) 21129 { 21130 uint16_t xritag = NO_XRI; 21131 struct ulp_bde64 *bpl = NULL; 21132 struct ulp_bde64 bde; 21133 struct sli4_sge *sgl = NULL; 21134 struct lpfc_dmabuf *dmabuf; 21135 union lpfc_wqe128 *wqe; 21136 int numBdes = 0; 21137 int i = 0; 21138 uint32_t offset = 0; /* accumulated offset in the sg request list */ 21139 int inbound = 0; /* number of sg reply entries inbound from firmware */ 21140 uint32_t cmd; 21141 21142 if (!pwqeq || !sglq) 21143 return xritag; 21144 21145 sgl = (struct sli4_sge *)sglq->sgl; 21146 wqe = &pwqeq->wqe; 21147 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 21148 21149 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 21150 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 21151 return sglq->sli4_xritag; 21152 numBdes = pwqeq->num_bdes; 21153 if (numBdes) { 21154 /* The addrHigh and addrLow fields within the WQE 21155 * have not been byteswapped yet so there is no 21156 * need to swap them back. 21157 */ 21158 if (pwqeq->bpl_dmabuf) 21159 dmabuf = pwqeq->bpl_dmabuf; 21160 else 21161 return xritag; 21162 21163 bpl = (struct ulp_bde64 *)dmabuf->virt; 21164 if (!bpl) 21165 return xritag; 21166 21167 for (i = 0; i < numBdes; i++) { 21168 /* Should already be byte swapped. */ 21169 sgl->addr_hi = bpl->addrHigh; 21170 sgl->addr_lo = bpl->addrLow; 21171 21172 sgl->word2 = le32_to_cpu(sgl->word2); 21173 if ((i+1) == numBdes) 21174 bf_set(lpfc_sli4_sge_last, sgl, 1); 21175 else 21176 bf_set(lpfc_sli4_sge_last, sgl, 0); 21177 /* swap the size field back to the cpu so we 21178 * can assign it to the sgl. 21179 */ 21180 bde.tus.w = le32_to_cpu(bpl->tus.w); 21181 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 21182 /* The offsets in the sgl need to be accumulated 21183 * separately for the request and reply lists. 21184 * The request is always first, the reply follows. 21185 */ 21186 switch (cmd) { 21187 case CMD_GEN_REQUEST64_WQE: 21188 /* add up the reply sg entries */ 21189 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 21190 inbound++; 21191 /* first inbound? reset the offset */ 21192 if (inbound == 1) 21193 offset = 0; 21194 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21195 bf_set(lpfc_sli4_sge_type, sgl, 21196 LPFC_SGE_TYPE_DATA); 21197 offset += bde.tus.f.bdeSize; 21198 break; 21199 case CMD_FCP_TRSP64_WQE: 21200 bf_set(lpfc_sli4_sge_offset, sgl, 0); 21201 bf_set(lpfc_sli4_sge_type, sgl, 21202 LPFC_SGE_TYPE_DATA); 21203 break; 21204 case CMD_FCP_TSEND64_WQE: 21205 case CMD_FCP_TRECEIVE64_WQE: 21206 bf_set(lpfc_sli4_sge_type, sgl, 21207 bpl->tus.f.bdeFlags); 21208 if (i < 3) 21209 offset = 0; 21210 else 21211 offset += bde.tus.f.bdeSize; 21212 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21213 break; 21214 } 21215 sgl->word2 = cpu_to_le32(sgl->word2); 21216 bpl++; 21217 sgl++; 21218 } 21219 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 21220 /* The addrHigh and addrLow fields of the BDE have not 21221 * been byteswapped yet so they need to be swapped 21222 * before putting them in the sgl. 21223 */ 21224 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 21225 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 21226 sgl->word2 = le32_to_cpu(sgl->word2); 21227 bf_set(lpfc_sli4_sge_last, sgl, 1); 21228 sgl->word2 = cpu_to_le32(sgl->word2); 21229 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 21230 } 21231 return sglq->sli4_xritag; 21232 } 21233 21234 /** 21235 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 21236 * @phba: Pointer to HBA context object. 21237 * @qp: Pointer to HDW queue. 21238 * @pwqe: Pointer to command WQE. 21239 **/ 21240 int 21241 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21242 struct lpfc_iocbq *pwqe) 21243 { 21244 union lpfc_wqe128 *wqe = &pwqe->wqe; 21245 struct lpfc_async_xchg_ctx *ctxp; 21246 struct lpfc_queue *wq; 21247 struct lpfc_sglq *sglq; 21248 struct lpfc_sli_ring *pring; 21249 unsigned long iflags; 21250 uint32_t ret = 0; 21251 21252 /* NVME_LS and NVME_LS ABTS requests. */ 21253 if (pwqe->cmd_flag & LPFC_IO_NVME_LS) { 21254 pring = phba->sli4_hba.nvmels_wq->pring; 21255 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21256 qp, wq_access); 21257 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 21258 if (!sglq) { 21259 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21260 return WQE_BUSY; 21261 } 21262 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21263 pwqe->sli4_xritag = sglq->sli4_xritag; 21264 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 21265 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21266 return WQE_ERROR; 21267 } 21268 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21269 pwqe->sli4_xritag); 21270 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 21271 if (ret) { 21272 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21273 return ret; 21274 } 21275 21276 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21277 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21278 21279 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21280 return 0; 21281 } 21282 21283 /* NVME_FCREQ and NVME_ABTS requests */ 21284 if (pwqe->cmd_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) { 21285 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21286 wq = qp->io_wq; 21287 pring = wq->pring; 21288 21289 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21290 21291 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21292 qp, wq_access); 21293 ret = lpfc_sli4_wq_put(wq, wqe); 21294 if (ret) { 21295 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21296 return ret; 21297 } 21298 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21299 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21300 21301 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21302 return 0; 21303 } 21304 21305 /* NVMET requests */ 21306 if (pwqe->cmd_flag & LPFC_IO_NVMET) { 21307 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21308 wq = qp->io_wq; 21309 pring = wq->pring; 21310 21311 ctxp = pwqe->context_un.axchg; 21312 sglq = ctxp->ctxbuf->sglq; 21313 if (pwqe->sli4_xritag == NO_XRI) { 21314 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21315 pwqe->sli4_xritag = sglq->sli4_xritag; 21316 } 21317 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21318 pwqe->sli4_xritag); 21319 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21320 21321 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21322 qp, wq_access); 21323 ret = lpfc_sli4_wq_put(wq, wqe); 21324 if (ret) { 21325 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21326 return ret; 21327 } 21328 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21329 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21330 21331 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21332 return 0; 21333 } 21334 return WQE_ERROR; 21335 } 21336 21337 /** 21338 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 21339 * @phba: Pointer to HBA context object. 21340 * @cmdiocb: Pointer to driver command iocb object. 21341 * @cmpl: completion function. 21342 * 21343 * Fill the appropriate fields for the abort WQE and call 21344 * internal routine lpfc_sli4_issue_wqe to send the WQE 21345 * This function is called with hbalock held and no ring_lock held. 21346 * 21347 * RETURNS 0 - SUCCESS 21348 **/ 21349 21350 int 21351 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 21352 void *cmpl) 21353 { 21354 struct lpfc_vport *vport = cmdiocb->vport; 21355 struct lpfc_iocbq *abtsiocb = NULL; 21356 union lpfc_wqe128 *abtswqe; 21357 struct lpfc_io_buf *lpfc_cmd; 21358 int retval = IOCB_ERROR; 21359 u16 xritag = cmdiocb->sli4_xritag; 21360 21361 /* 21362 * The scsi command can not be in txq and it is in flight because the 21363 * pCmd is still pointing at the SCSI command we have to abort. There 21364 * is no need to search the txcmplq. Just send an abort to the FW. 21365 */ 21366 21367 abtsiocb = __lpfc_sli_get_iocbq(phba); 21368 if (!abtsiocb) 21369 return WQE_NORESOURCE; 21370 21371 /* Indicate the IO is being aborted by the driver. */ 21372 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 21373 21374 abtswqe = &abtsiocb->wqe; 21375 memset(abtswqe, 0, sizeof(*abtswqe)); 21376 21377 if (!lpfc_is_link_up(phba) || (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 21378 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 21379 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 21380 abtswqe->abort_cmd.rsrvd5 = 0; 21381 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 21382 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 21383 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 21384 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 21385 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 21386 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 21387 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 21388 21389 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 21390 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 21391 abtsiocb->cmd_flag |= LPFC_USE_FCPWQIDX; 21392 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 21393 abtsiocb->cmd_flag |= LPFC_IO_FCP; 21394 if (cmdiocb->cmd_flag & LPFC_IO_NVME) 21395 abtsiocb->cmd_flag |= LPFC_IO_NVME; 21396 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 21397 abtsiocb->cmd_flag |= LPFC_IO_FOF; 21398 abtsiocb->vport = vport; 21399 abtsiocb->cmd_cmpl = cmpl; 21400 21401 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 21402 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 21403 21404 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21405 "0359 Abort xri x%x, original iotag x%x, " 21406 "abort cmd iotag x%x retval x%x\n", 21407 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 21408 21409 if (retval) { 21410 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21411 __lpfc_sli_release_iocbq(phba, abtsiocb); 21412 } 21413 21414 return retval; 21415 } 21416 21417 #ifdef LPFC_MXP_STAT 21418 /** 21419 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 21420 * @phba: pointer to lpfc hba data structure. 21421 * @hwqid: belong to which HWQ. 21422 * 21423 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 21424 * 15 seconds after a test case is running. 21425 * 21426 * The user should call lpfc_debugfs_multixripools_write before running a test 21427 * case to clear stat_snapshot_taken. Then the user starts a test case. During 21428 * test case is running, stat_snapshot_taken is incremented by 1 every time when 21429 * this routine is called from heartbeat timer. When stat_snapshot_taken is 21430 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 21431 **/ 21432 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 21433 { 21434 struct lpfc_sli4_hdw_queue *qp; 21435 struct lpfc_multixri_pool *multixri_pool; 21436 struct lpfc_pvt_pool *pvt_pool; 21437 struct lpfc_pbl_pool *pbl_pool; 21438 u32 txcmplq_cnt; 21439 21440 qp = &phba->sli4_hba.hdwq[hwqid]; 21441 multixri_pool = qp->p_multixri_pool; 21442 if (!multixri_pool) 21443 return; 21444 21445 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 21446 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21447 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21448 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21449 21450 multixri_pool->stat_pbl_count = pbl_pool->count; 21451 multixri_pool->stat_pvt_count = pvt_pool->count; 21452 multixri_pool->stat_busy_count = txcmplq_cnt; 21453 } 21454 21455 multixri_pool->stat_snapshot_taken++; 21456 } 21457 #endif 21458 21459 /** 21460 * lpfc_adjust_pvt_pool_count - Adjust private pool count 21461 * @phba: pointer to lpfc hba data structure. 21462 * @hwqid: belong to which HWQ. 21463 * 21464 * This routine moves some XRIs from private to public pool when private pool 21465 * is not busy. 21466 **/ 21467 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 21468 { 21469 struct lpfc_multixri_pool *multixri_pool; 21470 u32 io_req_count; 21471 u32 prev_io_req_count; 21472 21473 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21474 if (!multixri_pool) 21475 return; 21476 io_req_count = multixri_pool->io_req_count; 21477 prev_io_req_count = multixri_pool->prev_io_req_count; 21478 21479 if (prev_io_req_count != io_req_count) { 21480 /* Private pool is busy */ 21481 multixri_pool->prev_io_req_count = io_req_count; 21482 } else { 21483 /* Private pool is not busy. 21484 * Move XRIs from private to public pool. 21485 */ 21486 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 21487 } 21488 } 21489 21490 /** 21491 * lpfc_adjust_high_watermark - Adjust high watermark 21492 * @phba: pointer to lpfc hba data structure. 21493 * @hwqid: belong to which HWQ. 21494 * 21495 * This routine sets high watermark as number of outstanding XRIs, 21496 * but make sure the new value is between xri_limit/2 and xri_limit. 21497 **/ 21498 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 21499 { 21500 u32 new_watermark; 21501 u32 watermark_max; 21502 u32 watermark_min; 21503 u32 xri_limit; 21504 u32 txcmplq_cnt; 21505 u32 abts_io_bufs; 21506 struct lpfc_multixri_pool *multixri_pool; 21507 struct lpfc_sli4_hdw_queue *qp; 21508 21509 qp = &phba->sli4_hba.hdwq[hwqid]; 21510 multixri_pool = qp->p_multixri_pool; 21511 if (!multixri_pool) 21512 return; 21513 xri_limit = multixri_pool->xri_limit; 21514 21515 watermark_max = xri_limit; 21516 watermark_min = xri_limit / 2; 21517 21518 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21519 abts_io_bufs = qp->abts_scsi_io_bufs; 21520 abts_io_bufs += qp->abts_nvme_io_bufs; 21521 21522 new_watermark = txcmplq_cnt + abts_io_bufs; 21523 new_watermark = min(watermark_max, new_watermark); 21524 new_watermark = max(watermark_min, new_watermark); 21525 multixri_pool->pvt_pool.high_watermark = new_watermark; 21526 21527 #ifdef LPFC_MXP_STAT 21528 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 21529 new_watermark); 21530 #endif 21531 } 21532 21533 /** 21534 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 21535 * @phba: pointer to lpfc hba data structure. 21536 * @hwqid: belong to which HWQ. 21537 * 21538 * This routine is called from hearbeat timer when pvt_pool is idle. 21539 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 21540 * The first step moves (all - low_watermark) amount of XRIs. 21541 * The second step moves the rest of XRIs. 21542 **/ 21543 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 21544 { 21545 struct lpfc_pbl_pool *pbl_pool; 21546 struct lpfc_pvt_pool *pvt_pool; 21547 struct lpfc_sli4_hdw_queue *qp; 21548 struct lpfc_io_buf *lpfc_ncmd; 21549 struct lpfc_io_buf *lpfc_ncmd_next; 21550 unsigned long iflag; 21551 struct list_head tmp_list; 21552 u32 tmp_count; 21553 21554 qp = &phba->sli4_hba.hdwq[hwqid]; 21555 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21556 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21557 tmp_count = 0; 21558 21559 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 21560 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 21561 21562 if (pvt_pool->count > pvt_pool->low_watermark) { 21563 /* Step 1: move (all - low_watermark) from pvt_pool 21564 * to pbl_pool 21565 */ 21566 21567 /* Move low watermark of bufs from pvt_pool to tmp_list */ 21568 INIT_LIST_HEAD(&tmp_list); 21569 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21570 &pvt_pool->list, list) { 21571 list_move_tail(&lpfc_ncmd->list, &tmp_list); 21572 tmp_count++; 21573 if (tmp_count >= pvt_pool->low_watermark) 21574 break; 21575 } 21576 21577 /* Move all bufs from pvt_pool to pbl_pool */ 21578 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21579 21580 /* Move all bufs from tmp_list to pvt_pool */ 21581 list_splice(&tmp_list, &pvt_pool->list); 21582 21583 pbl_pool->count += (pvt_pool->count - tmp_count); 21584 pvt_pool->count = tmp_count; 21585 } else { 21586 /* Step 2: move the rest from pvt_pool to pbl_pool */ 21587 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21588 pbl_pool->count += pvt_pool->count; 21589 pvt_pool->count = 0; 21590 } 21591 21592 spin_unlock(&pvt_pool->lock); 21593 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21594 } 21595 21596 /** 21597 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21598 * @phba: pointer to lpfc hba data structure 21599 * @qp: pointer to HDW queue 21600 * @pbl_pool: specified public free XRI pool 21601 * @pvt_pool: specified private free XRI pool 21602 * @count: number of XRIs to move 21603 * 21604 * This routine tries to move some free common bufs from the specified pbl_pool 21605 * to the specified pvt_pool. It might move less than count XRIs if there's not 21606 * enough in public pool. 21607 * 21608 * Return: 21609 * true - if XRIs are successfully moved from the specified pbl_pool to the 21610 * specified pvt_pool 21611 * false - if the specified pbl_pool is empty or locked by someone else 21612 **/ 21613 static bool 21614 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21615 struct lpfc_pbl_pool *pbl_pool, 21616 struct lpfc_pvt_pool *pvt_pool, u32 count) 21617 { 21618 struct lpfc_io_buf *lpfc_ncmd; 21619 struct lpfc_io_buf *lpfc_ncmd_next; 21620 unsigned long iflag; 21621 int ret; 21622 21623 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 21624 if (ret) { 21625 if (pbl_pool->count) { 21626 /* Move a batch of XRIs from public to private pool */ 21627 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 21628 list_for_each_entry_safe(lpfc_ncmd, 21629 lpfc_ncmd_next, 21630 &pbl_pool->list, 21631 list) { 21632 list_move_tail(&lpfc_ncmd->list, 21633 &pvt_pool->list); 21634 pvt_pool->count++; 21635 pbl_pool->count--; 21636 count--; 21637 if (count == 0) 21638 break; 21639 } 21640 21641 spin_unlock(&pvt_pool->lock); 21642 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21643 return true; 21644 } 21645 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21646 } 21647 21648 return false; 21649 } 21650 21651 /** 21652 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21653 * @phba: pointer to lpfc hba data structure. 21654 * @hwqid: belong to which HWQ. 21655 * @count: number of XRIs to move 21656 * 21657 * This routine tries to find some free common bufs in one of public pools with 21658 * Round Robin method. The search always starts from local hwqid, then the next 21659 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 21660 * a batch of free common bufs are moved to private pool on hwqid. 21661 * It might move less than count XRIs if there's not enough in public pool. 21662 **/ 21663 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 21664 { 21665 struct lpfc_multixri_pool *multixri_pool; 21666 struct lpfc_multixri_pool *next_multixri_pool; 21667 struct lpfc_pvt_pool *pvt_pool; 21668 struct lpfc_pbl_pool *pbl_pool; 21669 struct lpfc_sli4_hdw_queue *qp; 21670 u32 next_hwqid; 21671 u32 hwq_count; 21672 int ret; 21673 21674 qp = &phba->sli4_hba.hdwq[hwqid]; 21675 multixri_pool = qp->p_multixri_pool; 21676 pvt_pool = &multixri_pool->pvt_pool; 21677 pbl_pool = &multixri_pool->pbl_pool; 21678 21679 /* Check if local pbl_pool is available */ 21680 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 21681 if (ret) { 21682 #ifdef LPFC_MXP_STAT 21683 multixri_pool->local_pbl_hit_count++; 21684 #endif 21685 return; 21686 } 21687 21688 hwq_count = phba->cfg_hdw_queue; 21689 21690 /* Get the next hwqid which was found last time */ 21691 next_hwqid = multixri_pool->rrb_next_hwqid; 21692 21693 do { 21694 /* Go to next hwq */ 21695 next_hwqid = (next_hwqid + 1) % hwq_count; 21696 21697 next_multixri_pool = 21698 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 21699 pbl_pool = &next_multixri_pool->pbl_pool; 21700 21701 /* Check if the public free xri pool is available */ 21702 ret = _lpfc_move_xri_pbl_to_pvt( 21703 phba, qp, pbl_pool, pvt_pool, count); 21704 21705 /* Exit while-loop if success or all hwqid are checked */ 21706 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 21707 21708 /* Starting point for the next time */ 21709 multixri_pool->rrb_next_hwqid = next_hwqid; 21710 21711 if (!ret) { 21712 /* stats: all public pools are empty*/ 21713 multixri_pool->pbl_empty_count++; 21714 } 21715 21716 #ifdef LPFC_MXP_STAT 21717 if (ret) { 21718 if (next_hwqid == hwqid) 21719 multixri_pool->local_pbl_hit_count++; 21720 else 21721 multixri_pool->other_pbl_hit_count++; 21722 } 21723 #endif 21724 } 21725 21726 /** 21727 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 21728 * @phba: pointer to lpfc hba data structure. 21729 * @hwqid: belong to which HWQ. 21730 * 21731 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 21732 * low watermark. 21733 **/ 21734 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 21735 { 21736 struct lpfc_multixri_pool *multixri_pool; 21737 struct lpfc_pvt_pool *pvt_pool; 21738 21739 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21740 pvt_pool = &multixri_pool->pvt_pool; 21741 21742 if (pvt_pool->count < pvt_pool->low_watermark) 21743 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21744 } 21745 21746 /** 21747 * lpfc_release_io_buf - Return one IO buf back to free pool 21748 * @phba: pointer to lpfc hba data structure. 21749 * @lpfc_ncmd: IO buf to be returned. 21750 * @qp: belong to which HWQ. 21751 * 21752 * This routine returns one IO buf back to free pool. If this is an urgent IO, 21753 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 21754 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 21755 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 21756 * lpfc_io_buf_list_put. 21757 **/ 21758 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21759 struct lpfc_sli4_hdw_queue *qp) 21760 { 21761 unsigned long iflag; 21762 struct lpfc_pbl_pool *pbl_pool; 21763 struct lpfc_pvt_pool *pvt_pool; 21764 struct lpfc_epd_pool *epd_pool; 21765 u32 txcmplq_cnt; 21766 u32 xri_owned; 21767 u32 xri_limit; 21768 u32 abts_io_bufs; 21769 21770 /* MUST zero fields if buffer is reused by another protocol */ 21771 lpfc_ncmd->nvmeCmd = NULL; 21772 lpfc_ncmd->cur_iocbq.cmd_cmpl = NULL; 21773 21774 if (phba->cfg_xpsgl && !phba->nvmet_support && 21775 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21776 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21777 21778 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21779 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21780 21781 if (phba->cfg_xri_rebalancing) { 21782 if (lpfc_ncmd->expedite) { 21783 /* Return to expedite pool */ 21784 epd_pool = &phba->epd_pool; 21785 spin_lock_irqsave(&epd_pool->lock, iflag); 21786 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21787 epd_pool->count++; 21788 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21789 return; 21790 } 21791 21792 /* Avoid invalid access if an IO sneaks in and is being rejected 21793 * just _after_ xri pools are destroyed in lpfc_offline. 21794 * Nothing much can be done at this point. 21795 */ 21796 if (!qp->p_multixri_pool) 21797 return; 21798 21799 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21800 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21801 21802 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21803 abts_io_bufs = qp->abts_scsi_io_bufs; 21804 abts_io_bufs += qp->abts_nvme_io_bufs; 21805 21806 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21807 xri_limit = qp->p_multixri_pool->xri_limit; 21808 21809 #ifdef LPFC_MXP_STAT 21810 if (xri_owned <= xri_limit) 21811 qp->p_multixri_pool->below_limit_count++; 21812 else 21813 qp->p_multixri_pool->above_limit_count++; 21814 #endif 21815 21816 /* XRI goes to either public or private free xri pool 21817 * based on watermark and xri_limit 21818 */ 21819 if ((pvt_pool->count < pvt_pool->low_watermark) || 21820 (xri_owned < xri_limit && 21821 pvt_pool->count < pvt_pool->high_watermark)) { 21822 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21823 qp, free_pvt_pool); 21824 list_add_tail(&lpfc_ncmd->list, 21825 &pvt_pool->list); 21826 pvt_pool->count++; 21827 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21828 } else { 21829 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21830 qp, free_pub_pool); 21831 list_add_tail(&lpfc_ncmd->list, 21832 &pbl_pool->list); 21833 pbl_pool->count++; 21834 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21835 } 21836 } else { 21837 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21838 qp, free_xri); 21839 list_add_tail(&lpfc_ncmd->list, 21840 &qp->lpfc_io_buf_list_put); 21841 qp->put_io_bufs++; 21842 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21843 iflag); 21844 } 21845 } 21846 21847 /** 21848 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21849 * @phba: pointer to lpfc hba data structure. 21850 * @qp: pointer to HDW queue 21851 * @pvt_pool: pointer to private pool data structure. 21852 * @ndlp: pointer to lpfc nodelist data structure. 21853 * 21854 * This routine tries to get one free IO buf from private pool. 21855 * 21856 * Return: 21857 * pointer to one free IO buf - if private pool is not empty 21858 * NULL - if private pool is empty 21859 **/ 21860 static struct lpfc_io_buf * 21861 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21862 struct lpfc_sli4_hdw_queue *qp, 21863 struct lpfc_pvt_pool *pvt_pool, 21864 struct lpfc_nodelist *ndlp) 21865 { 21866 struct lpfc_io_buf *lpfc_ncmd; 21867 struct lpfc_io_buf *lpfc_ncmd_next; 21868 unsigned long iflag; 21869 21870 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21871 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21872 &pvt_pool->list, list) { 21873 if (lpfc_test_rrq_active( 21874 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21875 continue; 21876 list_del(&lpfc_ncmd->list); 21877 pvt_pool->count--; 21878 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21879 return lpfc_ncmd; 21880 } 21881 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21882 21883 return NULL; 21884 } 21885 21886 /** 21887 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 21888 * @phba: pointer to lpfc hba data structure. 21889 * 21890 * This routine tries to get one free IO buf from expedite pool. 21891 * 21892 * Return: 21893 * pointer to one free IO buf - if expedite pool is not empty 21894 * NULL - if expedite pool is empty 21895 **/ 21896 static struct lpfc_io_buf * 21897 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 21898 { 21899 struct lpfc_io_buf *lpfc_ncmd; 21900 struct lpfc_io_buf *lpfc_ncmd_next; 21901 unsigned long iflag; 21902 struct lpfc_epd_pool *epd_pool; 21903 21904 epd_pool = &phba->epd_pool; 21905 lpfc_ncmd = NULL; 21906 21907 spin_lock_irqsave(&epd_pool->lock, iflag); 21908 if (epd_pool->count > 0) { 21909 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21910 &epd_pool->list, list) { 21911 list_del(&lpfc_ncmd->list); 21912 epd_pool->count--; 21913 break; 21914 } 21915 } 21916 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21917 21918 return lpfc_ncmd; 21919 } 21920 21921 /** 21922 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 21923 * @phba: pointer to lpfc hba data structure. 21924 * @ndlp: pointer to lpfc nodelist data structure. 21925 * @hwqid: belong to which HWQ 21926 * @expedite: 1 means this request is urgent. 21927 * 21928 * This routine will do the following actions and then return a pointer to 21929 * one free IO buf. 21930 * 21931 * 1. If private free xri count is empty, move some XRIs from public to 21932 * private pool. 21933 * 2. Get one XRI from private free xri pool. 21934 * 3. If we fail to get one from pvt_pool and this is an expedite request, 21935 * get one free xri from expedite pool. 21936 * 21937 * Note: ndlp is only used on SCSI side for RRQ testing. 21938 * The caller should pass NULL for ndlp on NVME side. 21939 * 21940 * Return: 21941 * pointer to one free IO buf - if private pool is not empty 21942 * NULL - if private pool is empty 21943 **/ 21944 static struct lpfc_io_buf * 21945 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 21946 struct lpfc_nodelist *ndlp, 21947 int hwqid, int expedite) 21948 { 21949 struct lpfc_sli4_hdw_queue *qp; 21950 struct lpfc_multixri_pool *multixri_pool; 21951 struct lpfc_pvt_pool *pvt_pool; 21952 struct lpfc_io_buf *lpfc_ncmd; 21953 21954 qp = &phba->sli4_hba.hdwq[hwqid]; 21955 lpfc_ncmd = NULL; 21956 if (!qp) { 21957 lpfc_printf_log(phba, KERN_INFO, 21958 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21959 "5556 NULL qp for hwqid x%x\n", hwqid); 21960 return lpfc_ncmd; 21961 } 21962 multixri_pool = qp->p_multixri_pool; 21963 if (!multixri_pool) { 21964 lpfc_printf_log(phba, KERN_INFO, 21965 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21966 "5557 NULL multixri for hwqid x%x\n", hwqid); 21967 return lpfc_ncmd; 21968 } 21969 pvt_pool = &multixri_pool->pvt_pool; 21970 if (!pvt_pool) { 21971 lpfc_printf_log(phba, KERN_INFO, 21972 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21973 "5558 NULL pvt_pool for hwqid x%x\n", hwqid); 21974 return lpfc_ncmd; 21975 } 21976 multixri_pool->io_req_count++; 21977 21978 /* If pvt_pool is empty, move some XRIs from public to private pool */ 21979 if (pvt_pool->count == 0) 21980 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21981 21982 /* Get one XRI from private free xri pool */ 21983 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 21984 21985 if (lpfc_ncmd) { 21986 lpfc_ncmd->hdwq = qp; 21987 lpfc_ncmd->hdwq_no = hwqid; 21988 } else if (expedite) { 21989 /* If we fail to get one from pvt_pool and this is an expedite 21990 * request, get one free xri from expedite pool. 21991 */ 21992 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 21993 } 21994 21995 return lpfc_ncmd; 21996 } 21997 21998 static inline struct lpfc_io_buf * 21999 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 22000 { 22001 struct lpfc_sli4_hdw_queue *qp; 22002 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 22003 22004 qp = &phba->sli4_hba.hdwq[idx]; 22005 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 22006 &qp->lpfc_io_buf_list_get, list) { 22007 if (lpfc_test_rrq_active(phba, ndlp, 22008 lpfc_cmd->cur_iocbq.sli4_lxritag)) 22009 continue; 22010 22011 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 22012 continue; 22013 22014 list_del_init(&lpfc_cmd->list); 22015 qp->get_io_bufs--; 22016 lpfc_cmd->hdwq = qp; 22017 lpfc_cmd->hdwq_no = idx; 22018 return lpfc_cmd; 22019 } 22020 return NULL; 22021 } 22022 22023 /** 22024 * lpfc_get_io_buf - Get one IO buffer from free pool 22025 * @phba: The HBA for which this call is being executed. 22026 * @ndlp: pointer to lpfc nodelist data structure. 22027 * @hwqid: belong to which HWQ 22028 * @expedite: 1 means this request is urgent. 22029 * 22030 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 22031 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 22032 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 22033 * 22034 * Note: ndlp is only used on SCSI side for RRQ testing. 22035 * The caller should pass NULL for ndlp on NVME side. 22036 * 22037 * Return codes: 22038 * NULL - Error 22039 * Pointer to lpfc_io_buf - Success 22040 **/ 22041 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 22042 struct lpfc_nodelist *ndlp, 22043 u32 hwqid, int expedite) 22044 { 22045 struct lpfc_sli4_hdw_queue *qp; 22046 unsigned long iflag; 22047 struct lpfc_io_buf *lpfc_cmd; 22048 22049 qp = &phba->sli4_hba.hdwq[hwqid]; 22050 lpfc_cmd = NULL; 22051 if (!qp) { 22052 lpfc_printf_log(phba, KERN_WARNING, 22053 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22054 "5555 NULL qp for hwqid x%x\n", hwqid); 22055 return lpfc_cmd; 22056 } 22057 22058 if (phba->cfg_xri_rebalancing) 22059 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 22060 phba, ndlp, hwqid, expedite); 22061 else { 22062 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 22063 qp, alloc_xri_get); 22064 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 22065 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22066 if (!lpfc_cmd) { 22067 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 22068 qp, alloc_xri_put); 22069 list_splice(&qp->lpfc_io_buf_list_put, 22070 &qp->lpfc_io_buf_list_get); 22071 qp->get_io_bufs += qp->put_io_bufs; 22072 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 22073 qp->put_io_bufs = 0; 22074 spin_unlock(&qp->io_buf_list_put_lock); 22075 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 22076 expedite) 22077 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22078 } 22079 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 22080 } 22081 22082 return lpfc_cmd; 22083 } 22084 22085 /** 22086 * lpfc_read_object - Retrieve object data from HBA 22087 * @phba: The HBA for which this call is being executed. 22088 * @rdobject: Pathname of object data we want to read. 22089 * @datap: Pointer to where data will be copied to. 22090 * @datasz: size of data area 22091 * 22092 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less. 22093 * The data will be truncated if datasz is not large enough. 22094 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0. 22095 * Returns the actual bytes read from the object. 22096 */ 22097 int 22098 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap, 22099 uint32_t datasz) 22100 { 22101 struct lpfc_mbx_read_object *read_object; 22102 LPFC_MBOXQ_t *mbox; 22103 int rc, length, eof, j, byte_cnt = 0; 22104 uint32_t shdr_status, shdr_add_status; 22105 union lpfc_sli4_cfg_shdr *shdr; 22106 struct lpfc_dmabuf *pcmd; 22107 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0}; 22108 22109 /* sanity check on queue memory */ 22110 if (!datap) 22111 return -ENODEV; 22112 22113 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 22114 if (!mbox) 22115 return -ENOMEM; 22116 length = (sizeof(struct lpfc_mbx_read_object) - 22117 sizeof(struct lpfc_sli4_cfg_mhdr)); 22118 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 22119 LPFC_MBOX_OPCODE_READ_OBJECT, 22120 length, LPFC_SLI4_MBX_EMBED); 22121 read_object = &mbox->u.mqe.un.read_object; 22122 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr; 22123 22124 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0); 22125 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz); 22126 read_object->u.request.rd_object_offset = 0; 22127 read_object->u.request.rd_object_cnt = 1; 22128 22129 memset((void *)read_object->u.request.rd_object_name, 0, 22130 LPFC_OBJ_NAME_SZ); 22131 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject); 22132 for (j = 0; j < strlen(rdobject); j++) 22133 read_object->u.request.rd_object_name[j] = 22134 cpu_to_le32(rd_object_name[j]); 22135 22136 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL); 22137 if (pcmd) 22138 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys); 22139 if (!pcmd || !pcmd->virt) { 22140 kfree(pcmd); 22141 mempool_free(mbox, phba->mbox_mem_pool); 22142 return -ENOMEM; 22143 } 22144 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE); 22145 read_object->u.request.rd_object_hbuf[0].pa_lo = 22146 putPaddrLow(pcmd->phys); 22147 read_object->u.request.rd_object_hbuf[0].pa_hi = 22148 putPaddrHigh(pcmd->phys); 22149 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE; 22150 22151 mbox->vport = phba->pport; 22152 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 22153 mbox->ctx_ndlp = NULL; 22154 22155 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 22156 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 22157 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 22158 22159 if (shdr_status == STATUS_FAILED && 22160 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) { 22161 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22162 "4674 No port cfg file in FW.\n"); 22163 byte_cnt = -ENOENT; 22164 } else if (shdr_status || shdr_add_status || rc) { 22165 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22166 "2625 READ_OBJECT mailbox failed with " 22167 "status x%x add_status x%x, mbx status x%x\n", 22168 shdr_status, shdr_add_status, rc); 22169 byte_cnt = -ENXIO; 22170 } else { 22171 /* Success */ 22172 length = read_object->u.response.rd_object_actual_rlen; 22173 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response); 22174 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT, 22175 "2626 READ_OBJECT Success len %d:%d, EOF %d\n", 22176 length, datasz, eof); 22177 22178 /* Detect the port config file exists but is empty */ 22179 if (!length && eof) { 22180 byte_cnt = 0; 22181 goto exit; 22182 } 22183 22184 byte_cnt = length; 22185 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt); 22186 } 22187 22188 exit: 22189 /* This is an embedded SLI4 mailbox with an external buffer allocated. 22190 * Free the pcmd and then cleanup with the correct routine. 22191 */ 22192 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys); 22193 kfree(pcmd); 22194 lpfc_sli4_mbox_cmd_free(phba, mbox); 22195 return byte_cnt; 22196 } 22197 22198 /** 22199 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 22200 * @phba: The HBA for which this call is being executed. 22201 * @lpfc_buf: IO buf structure to append the SGL chunk 22202 * 22203 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 22204 * and will allocate an SGL chunk if the pool is empty. 22205 * 22206 * Return codes: 22207 * NULL - Error 22208 * Pointer to sli4_hybrid_sgl - Success 22209 **/ 22210 struct sli4_hybrid_sgl * 22211 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22212 { 22213 struct sli4_hybrid_sgl *list_entry = NULL; 22214 struct sli4_hybrid_sgl *tmp = NULL; 22215 struct sli4_hybrid_sgl *allocated_sgl = NULL; 22216 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22217 struct list_head *buf_list = &hdwq->sgl_list; 22218 unsigned long iflags; 22219 22220 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22221 22222 if (likely(!list_empty(buf_list))) { 22223 /* break off 1 chunk from the sgl_list */ 22224 list_for_each_entry_safe(list_entry, tmp, 22225 buf_list, list_node) { 22226 list_move_tail(&list_entry->list_node, 22227 &lpfc_buf->dma_sgl_xtra_list); 22228 break; 22229 } 22230 } else { 22231 /* allocate more */ 22232 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22233 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22234 cpu_to_node(hdwq->io_wq->chann)); 22235 if (!tmp) { 22236 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22237 "8353 error kmalloc memory for HDWQ " 22238 "%d %s\n", 22239 lpfc_buf->hdwq_no, __func__); 22240 return NULL; 22241 } 22242 22243 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 22244 GFP_ATOMIC, &tmp->dma_phys_sgl); 22245 if (!tmp->dma_sgl) { 22246 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22247 "8354 error pool_alloc memory for HDWQ " 22248 "%d %s\n", 22249 lpfc_buf->hdwq_no, __func__); 22250 kfree(tmp); 22251 return NULL; 22252 } 22253 22254 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22255 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 22256 } 22257 22258 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 22259 struct sli4_hybrid_sgl, 22260 list_node); 22261 22262 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22263 22264 return allocated_sgl; 22265 } 22266 22267 /** 22268 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 22269 * @phba: The HBA for which this call is being executed. 22270 * @lpfc_buf: IO buf structure with the SGL chunk 22271 * 22272 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 22273 * 22274 * Return codes: 22275 * 0 - Success 22276 * -EINVAL - Error 22277 **/ 22278 int 22279 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22280 { 22281 int rc = 0; 22282 struct sli4_hybrid_sgl *list_entry = NULL; 22283 struct sli4_hybrid_sgl *tmp = NULL; 22284 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22285 struct list_head *buf_list = &hdwq->sgl_list; 22286 unsigned long iflags; 22287 22288 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22289 22290 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 22291 list_for_each_entry_safe(list_entry, tmp, 22292 &lpfc_buf->dma_sgl_xtra_list, 22293 list_node) { 22294 list_move_tail(&list_entry->list_node, 22295 buf_list); 22296 } 22297 } else { 22298 rc = -EINVAL; 22299 } 22300 22301 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22302 return rc; 22303 } 22304 22305 /** 22306 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 22307 * @phba: phba object 22308 * @hdwq: hdwq to cleanup sgl buff resources on 22309 * 22310 * This routine frees all SGL chunks of hdwq SGL chunk pool. 22311 * 22312 * Return codes: 22313 * None 22314 **/ 22315 void 22316 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 22317 struct lpfc_sli4_hdw_queue *hdwq) 22318 { 22319 struct list_head *buf_list = &hdwq->sgl_list; 22320 struct sli4_hybrid_sgl *list_entry = NULL; 22321 struct sli4_hybrid_sgl *tmp = NULL; 22322 unsigned long iflags; 22323 22324 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22325 22326 /* Free sgl pool */ 22327 list_for_each_entry_safe(list_entry, tmp, 22328 buf_list, list_node) { 22329 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 22330 list_entry->dma_sgl, 22331 list_entry->dma_phys_sgl); 22332 list_del(&list_entry->list_node); 22333 kfree(list_entry); 22334 } 22335 22336 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22337 } 22338 22339 /** 22340 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 22341 * @phba: The HBA for which this call is being executed. 22342 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 22343 * 22344 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 22345 * and will allocate an CMD/RSP buffer if the pool is empty. 22346 * 22347 * Return codes: 22348 * NULL - Error 22349 * Pointer to fcp_cmd_rsp_buf - Success 22350 **/ 22351 struct fcp_cmd_rsp_buf * 22352 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22353 struct lpfc_io_buf *lpfc_buf) 22354 { 22355 struct fcp_cmd_rsp_buf *list_entry = NULL; 22356 struct fcp_cmd_rsp_buf *tmp = NULL; 22357 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 22358 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22359 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22360 unsigned long iflags; 22361 22362 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22363 22364 if (likely(!list_empty(buf_list))) { 22365 /* break off 1 chunk from the list */ 22366 list_for_each_entry_safe(list_entry, tmp, 22367 buf_list, 22368 list_node) { 22369 list_move_tail(&list_entry->list_node, 22370 &lpfc_buf->dma_cmd_rsp_list); 22371 break; 22372 } 22373 } else { 22374 /* allocate more */ 22375 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22376 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22377 cpu_to_node(hdwq->io_wq->chann)); 22378 if (!tmp) { 22379 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22380 "8355 error kmalloc memory for HDWQ " 22381 "%d %s\n", 22382 lpfc_buf->hdwq_no, __func__); 22383 return NULL; 22384 } 22385 22386 tmp->fcp_cmnd = dma_pool_zalloc(phba->lpfc_cmd_rsp_buf_pool, 22387 GFP_ATOMIC, 22388 &tmp->fcp_cmd_rsp_dma_handle); 22389 22390 if (!tmp->fcp_cmnd) { 22391 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22392 "8356 error pool_alloc memory for HDWQ " 22393 "%d %s\n", 22394 lpfc_buf->hdwq_no, __func__); 22395 kfree(tmp); 22396 return NULL; 22397 } 22398 22399 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 22400 sizeof(struct fcp_cmnd)); 22401 22402 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22403 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 22404 } 22405 22406 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 22407 struct fcp_cmd_rsp_buf, 22408 list_node); 22409 22410 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22411 22412 return allocated_buf; 22413 } 22414 22415 /** 22416 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 22417 * @phba: The HBA for which this call is being executed. 22418 * @lpfc_buf: IO buf structure with the CMD/RSP buf 22419 * 22420 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 22421 * 22422 * Return codes: 22423 * 0 - Success 22424 * -EINVAL - Error 22425 **/ 22426 int 22427 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22428 struct lpfc_io_buf *lpfc_buf) 22429 { 22430 int rc = 0; 22431 struct fcp_cmd_rsp_buf *list_entry = NULL; 22432 struct fcp_cmd_rsp_buf *tmp = NULL; 22433 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22434 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22435 unsigned long iflags; 22436 22437 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22438 22439 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 22440 list_for_each_entry_safe(list_entry, tmp, 22441 &lpfc_buf->dma_cmd_rsp_list, 22442 list_node) { 22443 list_move_tail(&list_entry->list_node, 22444 buf_list); 22445 } 22446 } else { 22447 rc = -EINVAL; 22448 } 22449 22450 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22451 return rc; 22452 } 22453 22454 /** 22455 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 22456 * @phba: phba object 22457 * @hdwq: hdwq to cleanup cmd rsp buff resources on 22458 * 22459 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 22460 * 22461 * Return codes: 22462 * None 22463 **/ 22464 void 22465 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22466 struct lpfc_sli4_hdw_queue *hdwq) 22467 { 22468 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22469 struct fcp_cmd_rsp_buf *list_entry = NULL; 22470 struct fcp_cmd_rsp_buf *tmp = NULL; 22471 unsigned long iflags; 22472 22473 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22474 22475 /* Free cmd_rsp buf pool */ 22476 list_for_each_entry_safe(list_entry, tmp, 22477 buf_list, 22478 list_node) { 22479 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 22480 list_entry->fcp_cmnd, 22481 list_entry->fcp_cmd_rsp_dma_handle); 22482 list_del(&list_entry->list_node); 22483 kfree(list_entry); 22484 } 22485 22486 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22487 } 22488 22489 /** 22490 * lpfc_sli_prep_wqe - Prepare WQE for the command to be posted 22491 * @phba: phba object 22492 * @job: job entry of the command to be posted. 22493 * 22494 * Fill the common fields of the wqe for each of the command. 22495 * 22496 * Return codes: 22497 * None 22498 **/ 22499 void 22500 lpfc_sli_prep_wqe(struct lpfc_hba *phba, struct lpfc_iocbq *job) 22501 { 22502 u8 cmnd; 22503 u32 *pcmd; 22504 u32 if_type = 0; 22505 u32 fip, abort_tag; 22506 struct lpfc_nodelist *ndlp = NULL; 22507 union lpfc_wqe128 *wqe = &job->wqe; 22508 u8 command_type = ELS_COMMAND_NON_FIP; 22509 22510 fip = phba->hba_flag & HBA_FIP_SUPPORT; 22511 /* The fcp commands will set command type */ 22512 if (job->cmd_flag & LPFC_IO_FCP) 22513 command_type = FCP_COMMAND; 22514 else if (fip && (job->cmd_flag & LPFC_FIP_ELS_ID_MASK)) 22515 command_type = ELS_COMMAND_FIP; 22516 else 22517 command_type = ELS_COMMAND_NON_FIP; 22518 22519 abort_tag = job->iotag; 22520 cmnd = bf_get(wqe_cmnd, &wqe->els_req.wqe_com); 22521 22522 switch (cmnd) { 22523 case CMD_ELS_REQUEST64_WQE: 22524 ndlp = job->ndlp; 22525 22526 if_type = bf_get(lpfc_sli_intf_if_type, 22527 &phba->sli4_hba.sli_intf); 22528 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22529 pcmd = (u32 *)job->cmd_dmabuf->virt; 22530 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 22531 *pcmd == ELS_CMD_SCR || 22532 *pcmd == ELS_CMD_RDF || 22533 *pcmd == ELS_CMD_EDC || 22534 *pcmd == ELS_CMD_RSCN_XMT || 22535 *pcmd == ELS_CMD_FDISC || 22536 *pcmd == ELS_CMD_LOGO || 22537 *pcmd == ELS_CMD_QFPA || 22538 *pcmd == ELS_CMD_UVEM || 22539 *pcmd == ELS_CMD_PLOGI)) { 22540 bf_set(els_req64_sp, &wqe->els_req, 1); 22541 bf_set(els_req64_sid, &wqe->els_req, 22542 job->vport->fc_myDID); 22543 22544 if ((*pcmd == ELS_CMD_FLOGI) && 22545 !(phba->fc_topology == 22546 LPFC_TOPOLOGY_LOOP)) 22547 bf_set(els_req64_sid, &wqe->els_req, 0); 22548 22549 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 22550 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22551 phba->vpi_ids[job->vport->vpi]); 22552 } else if (pcmd) { 22553 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 22554 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22555 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22556 } 22557 } 22558 22559 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 22560 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22561 22562 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 22563 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 22564 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 22565 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22566 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 22567 break; 22568 case CMD_XMIT_ELS_RSP64_WQE: 22569 ndlp = job->ndlp; 22570 22571 /* word4 */ 22572 wqe->xmit_els_rsp.word4 = 0; 22573 22574 if_type = bf_get(lpfc_sli_intf_if_type, 22575 &phba->sli4_hba.sli_intf); 22576 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22577 if (job->vport->fc_flag & FC_PT2PT) { 22578 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22579 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22580 job->vport->fc_myDID); 22581 if (job->vport->fc_myDID == Fabric_DID) { 22582 bf_set(wqe_els_did, 22583 &wqe->xmit_els_rsp.wqe_dest, 0); 22584 } 22585 } 22586 } 22587 22588 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 22589 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 22590 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 22591 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 22592 LPFC_WQE_LENLOC_WORD3); 22593 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 22594 22595 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 22596 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22597 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22598 job->vport->fc_myDID); 22599 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 22600 } 22601 22602 if (phba->sli_rev == LPFC_SLI_REV4) { 22603 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 22604 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22605 22606 if (bf_get(wqe_ct, &wqe->xmit_els_rsp.wqe_com)) 22607 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 22608 phba->vpi_ids[job->vport->vpi]); 22609 } 22610 command_type = OTHER_COMMAND; 22611 break; 22612 case CMD_GEN_REQUEST64_WQE: 22613 /* Word 10 */ 22614 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 22615 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 22616 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 22617 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22618 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 22619 command_type = OTHER_COMMAND; 22620 break; 22621 case CMD_XMIT_SEQUENCE64_WQE: 22622 if (phba->link_flag & LS_LOOPBACK_MODE) 22623 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 22624 22625 wqe->xmit_sequence.rsvd3 = 0; 22626 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 22627 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 22628 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 22629 LPFC_WQE_IOD_WRITE); 22630 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 22631 LPFC_WQE_LENLOC_WORD12); 22632 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 22633 command_type = OTHER_COMMAND; 22634 break; 22635 case CMD_XMIT_BLS_RSP64_WQE: 22636 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 22637 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 22638 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 22639 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 22640 phba->vpi_ids[phba->pport->vpi]); 22641 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 22642 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 22643 LPFC_WQE_LENLOC_NONE); 22644 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 22645 command_type = OTHER_COMMAND; 22646 break; 22647 case CMD_FCP_ICMND64_WQE: /* task mgmt commands */ 22648 case CMD_ABORT_XRI_WQE: /* abort iotag */ 22649 case CMD_SEND_FRAME: /* mds loopback */ 22650 /* cases already formatted for sli4 wqe - no chgs necessary */ 22651 return; 22652 default: 22653 dump_stack(); 22654 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 22655 "6207 Invalid command 0x%x\n", 22656 cmnd); 22657 break; 22658 } 22659 22660 wqe->generic.wqe_com.abort_tag = abort_tag; 22661 bf_set(wqe_reqtag, &wqe->generic.wqe_com, job->iotag); 22662 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 22663 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 22664 } 22665