xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_sli.c (revision 1f0214a8)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2022 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.     *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/pci.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/lockdep.h>
30 
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport_fc.h>
36 #include <scsi/fc/fc_fs.h>
37 #include <linux/aer.h>
38 #include <linux/crash_dump.h>
39 #ifdef CONFIG_X86
40 #include <asm/set_memory.h>
41 #endif
42 
43 #include "lpfc_hw4.h"
44 #include "lpfc_hw.h"
45 #include "lpfc_sli.h"
46 #include "lpfc_sli4.h"
47 #include "lpfc_nl.h"
48 #include "lpfc_disc.h"
49 #include "lpfc.h"
50 #include "lpfc_scsi.h"
51 #include "lpfc_nvme.h"
52 #include "lpfc_crtn.h"
53 #include "lpfc_logmsg.h"
54 #include "lpfc_compat.h"
55 #include "lpfc_debugfs.h"
56 #include "lpfc_vport.h"
57 #include "lpfc_version.h"
58 
59 /* There are only four IOCB completion types. */
60 typedef enum _lpfc_iocb_type {
61 	LPFC_UNKNOWN_IOCB,
62 	LPFC_UNSOL_IOCB,
63 	LPFC_SOL_IOCB,
64 	LPFC_ABORT_IOCB
65 } lpfc_iocb_type;
66 
67 
68 /* Provide function prototypes local to this module. */
69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
70 				  uint32_t);
71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
72 			      uint8_t *, uint32_t *);
73 static struct lpfc_iocbq *
74 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba,
75 				  struct lpfc_iocbq *rspiocbq);
76 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
77 				      struct hbq_dmabuf *);
78 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
79 					  struct hbq_dmabuf *dmabuf);
80 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba,
81 				   struct lpfc_queue *cq, struct lpfc_cqe *cqe);
82 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
83 				       int);
84 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba,
85 				     struct lpfc_queue *eq,
86 				     struct lpfc_eqe *eqe);
87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
89 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q);
90 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba,
91 				    struct lpfc_queue *cq,
92 				    struct lpfc_cqe *cqe);
93 static uint16_t lpfc_wqe_bpl2sgl(struct lpfc_hba *phba,
94 				 struct lpfc_iocbq *pwqeq,
95 				 struct lpfc_sglq *sglq);
96 
97 union lpfc_wqe128 lpfc_iread_cmd_template;
98 union lpfc_wqe128 lpfc_iwrite_cmd_template;
99 union lpfc_wqe128 lpfc_icmnd_cmd_template;
100 
101 /* Setup WQE templates for IOs */
102 void lpfc_wqe_cmd_template(void)
103 {
104 	union lpfc_wqe128 *wqe;
105 
106 	/* IREAD template */
107 	wqe = &lpfc_iread_cmd_template;
108 	memset(wqe, 0, sizeof(union lpfc_wqe128));
109 
110 	/* Word 0, 1, 2 - BDE is variable */
111 
112 	/* Word 3 - cmd_buff_len, payload_offset_len is zero */
113 
114 	/* Word 4 - total_xfer_len is variable */
115 
116 	/* Word 5 - is zero */
117 
118 	/* Word 6 - ctxt_tag, xri_tag is variable */
119 
120 	/* Word 7 */
121 	bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE);
122 	bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK);
123 	bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3);
124 	bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI);
125 
126 	/* Word 8 - abort_tag is variable */
127 
128 	/* Word 9  - reqtag is variable */
129 
130 	/* Word 10 - dbde, wqes is variable */
131 	bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0);
132 	bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
133 	bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4);
134 	bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
135 	bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
136 
137 	/* Word 11 - pbde is variable */
138 	bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN);
139 	bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
140 	bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
141 
142 	/* Word 12 - is zero */
143 
144 	/* Word 13, 14, 15 - PBDE is variable */
145 
146 	/* IWRITE template */
147 	wqe = &lpfc_iwrite_cmd_template;
148 	memset(wqe, 0, sizeof(union lpfc_wqe128));
149 
150 	/* Word 0, 1, 2 - BDE is variable */
151 
152 	/* Word 3 - cmd_buff_len, payload_offset_len is zero */
153 
154 	/* Word 4 - total_xfer_len is variable */
155 
156 	/* Word 5 - initial_xfer_len is variable */
157 
158 	/* Word 6 - ctxt_tag, xri_tag is variable */
159 
160 	/* Word 7 */
161 	bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE);
162 	bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK);
163 	bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3);
164 	bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI);
165 
166 	/* Word 8 - abort_tag is variable */
167 
168 	/* Word 9  - reqtag is variable */
169 
170 	/* Word 10 - dbde, wqes is variable */
171 	bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0);
172 	bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
173 	bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4);
174 	bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
175 	bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
176 
177 	/* Word 11 - pbde is variable */
178 	bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT);
179 	bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
180 	bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
181 
182 	/* Word 12 - is zero */
183 
184 	/* Word 13, 14, 15 - PBDE is variable */
185 
186 	/* ICMND template */
187 	wqe = &lpfc_icmnd_cmd_template;
188 	memset(wqe, 0, sizeof(union lpfc_wqe128));
189 
190 	/* Word 0, 1, 2 - BDE is variable */
191 
192 	/* Word 3 - payload_offset_len is variable */
193 
194 	/* Word 4, 5 - is zero */
195 
196 	/* Word 6 - ctxt_tag, xri_tag is variable */
197 
198 	/* Word 7 */
199 	bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE);
200 	bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
201 	bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3);
202 	bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI);
203 
204 	/* Word 8 - abort_tag is variable */
205 
206 	/* Word 9  - reqtag is variable */
207 
208 	/* Word 10 - dbde, wqes is variable */
209 	bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
210 	bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE);
211 	bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE);
212 	bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
213 	bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
214 
215 	/* Word 11 */
216 	bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN);
217 	bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
218 	bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0);
219 
220 	/* Word 12, 13, 14, 15 - is zero */
221 }
222 
223 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN)
224 /**
225  * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function
226  * @srcp: Source memory pointer.
227  * @destp: Destination memory pointer.
228  * @cnt: Number of words required to be copied.
229  *       Must be a multiple of sizeof(uint64_t)
230  *
231  * This function is used for copying data between driver memory
232  * and the SLI WQ. This function also changes the endianness
233  * of each word if native endianness is different from SLI
234  * endianness. This function can be called with or without
235  * lock.
236  **/
237 static void
238 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
239 {
240 	uint64_t *src = srcp;
241 	uint64_t *dest = destp;
242 	int i;
243 
244 	for (i = 0; i < (int)cnt; i += sizeof(uint64_t))
245 		*dest++ = *src++;
246 }
247 #else
248 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c)
249 #endif
250 
251 /**
252  * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
253  * @q: The Work Queue to operate on.
254  * @wqe: The work Queue Entry to put on the Work queue.
255  *
256  * This routine will copy the contents of @wqe to the next available entry on
257  * the @q. This function will then ring the Work Queue Doorbell to signal the
258  * HBA to start processing the Work Queue Entry. This function returns 0 if
259  * successful. If no entries are available on @q then this function will return
260  * -ENOMEM.
261  * The caller is expected to hold the hbalock when calling this routine.
262  **/
263 static int
264 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe)
265 {
266 	union lpfc_wqe *temp_wqe;
267 	struct lpfc_register doorbell;
268 	uint32_t host_index;
269 	uint32_t idx;
270 	uint32_t i = 0;
271 	uint8_t *tmp;
272 	u32 if_type;
273 
274 	/* sanity check on queue memory */
275 	if (unlikely(!q))
276 		return -ENOMEM;
277 
278 	temp_wqe = lpfc_sli4_qe(q, q->host_index);
279 
280 	/* If the host has not yet processed the next entry then we are done */
281 	idx = ((q->host_index + 1) % q->entry_count);
282 	if (idx == q->hba_index) {
283 		q->WQ_overflow++;
284 		return -EBUSY;
285 	}
286 	q->WQ_posted++;
287 	/* set consumption flag every once in a while */
288 	if (!((q->host_index + 1) % q->notify_interval))
289 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
290 	else
291 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 0);
292 	if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
293 		bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
294 	lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
295 	if (q->dpp_enable && q->phba->cfg_enable_dpp) {
296 		/* write to DPP aperture taking advatage of Combined Writes */
297 		tmp = (uint8_t *)temp_wqe;
298 #ifdef __raw_writeq
299 		for (i = 0; i < q->entry_size; i += sizeof(uint64_t))
300 			__raw_writeq(*((uint64_t *)(tmp + i)),
301 					q->dpp_regaddr + i);
302 #else
303 		for (i = 0; i < q->entry_size; i += sizeof(uint32_t))
304 			__raw_writel(*((uint32_t *)(tmp + i)),
305 					q->dpp_regaddr + i);
306 #endif
307 	}
308 	/* ensure WQE bcopy and DPP flushed before doorbell write */
309 	wmb();
310 
311 	/* Update the host index before invoking device */
312 	host_index = q->host_index;
313 
314 	q->host_index = idx;
315 
316 	/* Ring Doorbell */
317 	doorbell.word0 = 0;
318 	if (q->db_format == LPFC_DB_LIST_FORMAT) {
319 		if (q->dpp_enable && q->phba->cfg_enable_dpp) {
320 			bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1);
321 			bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1);
322 			bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell,
323 			    q->dpp_id);
324 			bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell,
325 			    q->queue_id);
326 		} else {
327 			bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
328 			bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
329 
330 			/* Leave bits <23:16> clear for if_type 6 dpp */
331 			if_type = bf_get(lpfc_sli_intf_if_type,
332 					 &q->phba->sli4_hba.sli_intf);
333 			if (if_type != LPFC_SLI_INTF_IF_TYPE_6)
334 				bf_set(lpfc_wq_db_list_fm_index, &doorbell,
335 				       host_index);
336 		}
337 	} else if (q->db_format == LPFC_DB_RING_FORMAT) {
338 		bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
339 		bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
340 	} else {
341 		return -EINVAL;
342 	}
343 	writel(doorbell.word0, q->db_regaddr);
344 
345 	return 0;
346 }
347 
348 /**
349  * lpfc_sli4_wq_release - Updates internal hba index for WQ
350  * @q: The Work Queue to operate on.
351  * @index: The index to advance the hba index to.
352  *
353  * This routine will update the HBA index of a queue to reflect consumption of
354  * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
355  * an entry the host calls this function to update the queue's internal
356  * pointers.
357  **/
358 static void
359 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
360 {
361 	/* sanity check on queue memory */
362 	if (unlikely(!q))
363 		return;
364 
365 	q->hba_index = index;
366 }
367 
368 /**
369  * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
370  * @q: The Mailbox Queue to operate on.
371  * @mqe: The Mailbox Queue Entry to put on the Work queue.
372  *
373  * This routine will copy the contents of @mqe to the next available entry on
374  * the @q. This function will then ring the Work Queue Doorbell to signal the
375  * HBA to start processing the Work Queue Entry. This function returns 0 if
376  * successful. If no entries are available on @q then this function will return
377  * -ENOMEM.
378  * The caller is expected to hold the hbalock when calling this routine.
379  **/
380 static uint32_t
381 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
382 {
383 	struct lpfc_mqe *temp_mqe;
384 	struct lpfc_register doorbell;
385 
386 	/* sanity check on queue memory */
387 	if (unlikely(!q))
388 		return -ENOMEM;
389 	temp_mqe = lpfc_sli4_qe(q, q->host_index);
390 
391 	/* If the host has not yet processed the next entry then we are done */
392 	if (((q->host_index + 1) % q->entry_count) == q->hba_index)
393 		return -ENOMEM;
394 	lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
395 	/* Save off the mailbox pointer for completion */
396 	q->phba->mbox = (MAILBOX_t *)temp_mqe;
397 
398 	/* Update the host index before invoking device */
399 	q->host_index = ((q->host_index + 1) % q->entry_count);
400 
401 	/* Ring Doorbell */
402 	doorbell.word0 = 0;
403 	bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
404 	bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
405 	writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
406 	return 0;
407 }
408 
409 /**
410  * lpfc_sli4_mq_release - Updates internal hba index for MQ
411  * @q: The Mailbox Queue to operate on.
412  *
413  * This routine will update the HBA index of a queue to reflect consumption of
414  * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
415  * an entry the host calls this function to update the queue's internal
416  * pointers. This routine returns the number of entries that were consumed by
417  * the HBA.
418  **/
419 static uint32_t
420 lpfc_sli4_mq_release(struct lpfc_queue *q)
421 {
422 	/* sanity check on queue memory */
423 	if (unlikely(!q))
424 		return 0;
425 
426 	/* Clear the mailbox pointer for completion */
427 	q->phba->mbox = NULL;
428 	q->hba_index = ((q->hba_index + 1) % q->entry_count);
429 	return 1;
430 }
431 
432 /**
433  * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
434  * @q: The Event Queue to get the first valid EQE from
435  *
436  * This routine will get the first valid Event Queue Entry from @q, update
437  * the queue's internal hba index, and return the EQE. If no valid EQEs are in
438  * the Queue (no more work to do), or the Queue is full of EQEs that have been
439  * processed, but not popped back to the HBA then this routine will return NULL.
440  **/
441 static struct lpfc_eqe *
442 lpfc_sli4_eq_get(struct lpfc_queue *q)
443 {
444 	struct lpfc_eqe *eqe;
445 
446 	/* sanity check on queue memory */
447 	if (unlikely(!q))
448 		return NULL;
449 	eqe = lpfc_sli4_qe(q, q->host_index);
450 
451 	/* If the next EQE is not valid then we are done */
452 	if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid)
453 		return NULL;
454 
455 	/*
456 	 * insert barrier for instruction interlock : data from the hardware
457 	 * must have the valid bit checked before it can be copied and acted
458 	 * upon. Speculative instructions were allowing a bcopy at the start
459 	 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
460 	 * after our return, to copy data before the valid bit check above
461 	 * was done. As such, some of the copied data was stale. The barrier
462 	 * ensures the check is before any data is copied.
463 	 */
464 	mb();
465 	return eqe;
466 }
467 
468 /**
469  * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
470  * @q: The Event Queue to disable interrupts
471  *
472  **/
473 void
474 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
475 {
476 	struct lpfc_register doorbell;
477 
478 	doorbell.word0 = 0;
479 	bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
480 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
481 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
482 		(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
483 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
484 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
485 }
486 
487 /**
488  * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ
489  * @q: The Event Queue to disable interrupts
490  *
491  **/
492 void
493 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q)
494 {
495 	struct lpfc_register doorbell;
496 
497 	doorbell.word0 = 0;
498 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
499 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
500 }
501 
502 /**
503  * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state
504  * @phba: adapter with EQ
505  * @q: The Event Queue that the host has completed processing for.
506  * @count: Number of elements that have been consumed
507  * @arm: Indicates whether the host wants to arms this CQ.
508  *
509  * This routine will notify the HBA, by ringing the doorbell, that count
510  * number of EQEs have been processed. The @arm parameter indicates whether
511  * the queue should be rearmed when ringing the doorbell.
512  **/
513 void
514 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
515 		     uint32_t count, bool arm)
516 {
517 	struct lpfc_register doorbell;
518 
519 	/* sanity check on queue memory */
520 	if (unlikely(!q || (count == 0 && !arm)))
521 		return;
522 
523 	/* ring doorbell for number popped */
524 	doorbell.word0 = 0;
525 	if (arm) {
526 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
527 		bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
528 	}
529 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
530 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
531 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
532 			(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
533 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
534 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
535 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
536 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
537 		readl(q->phba->sli4_hba.EQDBregaddr);
538 }
539 
540 /**
541  * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state
542  * @phba: adapter with EQ
543  * @q: The Event Queue that the host has completed processing for.
544  * @count: Number of elements that have been consumed
545  * @arm: Indicates whether the host wants to arms this CQ.
546  *
547  * This routine will notify the HBA, by ringing the doorbell, that count
548  * number of EQEs have been processed. The @arm parameter indicates whether
549  * the queue should be rearmed when ringing the doorbell.
550  **/
551 void
552 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
553 			  uint32_t count, bool arm)
554 {
555 	struct lpfc_register doorbell;
556 
557 	/* sanity check on queue memory */
558 	if (unlikely(!q || (count == 0 && !arm)))
559 		return;
560 
561 	/* ring doorbell for number popped */
562 	doorbell.word0 = 0;
563 	if (arm)
564 		bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1);
565 	bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count);
566 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
567 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
568 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
569 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
570 		readl(q->phba->sli4_hba.EQDBregaddr);
571 }
572 
573 static void
574 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
575 			struct lpfc_eqe *eqe)
576 {
577 	if (!phba->sli4_hba.pc_sli4_params.eqav)
578 		bf_set_le32(lpfc_eqe_valid, eqe, 0);
579 
580 	eq->host_index = ((eq->host_index + 1) % eq->entry_count);
581 
582 	/* if the index wrapped around, toggle the valid bit */
583 	if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index)
584 		eq->qe_valid = (eq->qe_valid) ? 0 : 1;
585 }
586 
587 static void
588 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
589 {
590 	struct lpfc_eqe *eqe = NULL;
591 	u32 eq_count = 0, cq_count = 0;
592 	struct lpfc_cqe *cqe = NULL;
593 	struct lpfc_queue *cq = NULL, *childq = NULL;
594 	int cqid = 0;
595 
596 	/* walk all the EQ entries and drop on the floor */
597 	eqe = lpfc_sli4_eq_get(eq);
598 	while (eqe) {
599 		/* Get the reference to the corresponding CQ */
600 		cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
601 		cq = NULL;
602 
603 		list_for_each_entry(childq, &eq->child_list, list) {
604 			if (childq->queue_id == cqid) {
605 				cq = childq;
606 				break;
607 			}
608 		}
609 		/* If CQ is valid, iterate through it and drop all the CQEs */
610 		if (cq) {
611 			cqe = lpfc_sli4_cq_get(cq);
612 			while (cqe) {
613 				__lpfc_sli4_consume_cqe(phba, cq, cqe);
614 				cq_count++;
615 				cqe = lpfc_sli4_cq_get(cq);
616 			}
617 			/* Clear and re-arm the CQ */
618 			phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count,
619 			    LPFC_QUEUE_REARM);
620 			cq_count = 0;
621 		}
622 		__lpfc_sli4_consume_eqe(phba, eq, eqe);
623 		eq_count++;
624 		eqe = lpfc_sli4_eq_get(eq);
625 	}
626 
627 	/* Clear and re-arm the EQ */
628 	phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM);
629 }
630 
631 static int
632 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq,
633 		     uint8_t rearm)
634 {
635 	struct lpfc_eqe *eqe;
636 	int count = 0, consumed = 0;
637 
638 	if (cmpxchg(&eq->queue_claimed, 0, 1) != 0)
639 		goto rearm_and_exit;
640 
641 	eqe = lpfc_sli4_eq_get(eq);
642 	while (eqe) {
643 		lpfc_sli4_hba_handle_eqe(phba, eq, eqe);
644 		__lpfc_sli4_consume_eqe(phba, eq, eqe);
645 
646 		consumed++;
647 		if (!(++count % eq->max_proc_limit))
648 			break;
649 
650 		if (!(count % eq->notify_interval)) {
651 			phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed,
652 							LPFC_QUEUE_NOARM);
653 			consumed = 0;
654 		}
655 
656 		eqe = lpfc_sli4_eq_get(eq);
657 	}
658 	eq->EQ_processed += count;
659 
660 	/* Track the max number of EQEs processed in 1 intr */
661 	if (count > eq->EQ_max_eqe)
662 		eq->EQ_max_eqe = count;
663 
664 	xchg(&eq->queue_claimed, 0);
665 
666 rearm_and_exit:
667 	/* Always clear the EQ. */
668 	phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm);
669 
670 	return count;
671 }
672 
673 /**
674  * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
675  * @q: The Completion Queue to get the first valid CQE from
676  *
677  * This routine will get the first valid Completion Queue Entry from @q, update
678  * the queue's internal hba index, and return the CQE. If no valid CQEs are in
679  * the Queue (no more work to do), or the Queue is full of CQEs that have been
680  * processed, but not popped back to the HBA then this routine will return NULL.
681  **/
682 static struct lpfc_cqe *
683 lpfc_sli4_cq_get(struct lpfc_queue *q)
684 {
685 	struct lpfc_cqe *cqe;
686 
687 	/* sanity check on queue memory */
688 	if (unlikely(!q))
689 		return NULL;
690 	cqe = lpfc_sli4_qe(q, q->host_index);
691 
692 	/* If the next CQE is not valid then we are done */
693 	if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid)
694 		return NULL;
695 
696 	/*
697 	 * insert barrier for instruction interlock : data from the hardware
698 	 * must have the valid bit checked before it can be copied and acted
699 	 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
700 	 * instructions allowing action on content before valid bit checked,
701 	 * add barrier here as well. May not be needed as "content" is a
702 	 * single 32-bit entity here (vs multi word structure for cq's).
703 	 */
704 	mb();
705 	return cqe;
706 }
707 
708 static void
709 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
710 			struct lpfc_cqe *cqe)
711 {
712 	if (!phba->sli4_hba.pc_sli4_params.cqav)
713 		bf_set_le32(lpfc_cqe_valid, cqe, 0);
714 
715 	cq->host_index = ((cq->host_index + 1) % cq->entry_count);
716 
717 	/* if the index wrapped around, toggle the valid bit */
718 	if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index)
719 		cq->qe_valid = (cq->qe_valid) ? 0 : 1;
720 }
721 
722 /**
723  * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state.
724  * @phba: the adapter with the CQ
725  * @q: The Completion Queue that the host has completed processing for.
726  * @count: the number of elements that were consumed
727  * @arm: Indicates whether the host wants to arms this CQ.
728  *
729  * This routine will notify the HBA, by ringing the doorbell, that the
730  * CQEs have been processed. The @arm parameter specifies whether the
731  * queue should be rearmed when ringing the doorbell.
732  **/
733 void
734 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
735 		     uint32_t count, bool arm)
736 {
737 	struct lpfc_register doorbell;
738 
739 	/* sanity check on queue memory */
740 	if (unlikely(!q || (count == 0 && !arm)))
741 		return;
742 
743 	/* ring doorbell for number popped */
744 	doorbell.word0 = 0;
745 	if (arm)
746 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
747 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
748 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
749 	bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
750 			(q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
751 	bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
752 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
753 }
754 
755 /**
756  * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state.
757  * @phba: the adapter with the CQ
758  * @q: The Completion Queue that the host has completed processing for.
759  * @count: the number of elements that were consumed
760  * @arm: Indicates whether the host wants to arms this CQ.
761  *
762  * This routine will notify the HBA, by ringing the doorbell, that the
763  * CQEs have been processed. The @arm parameter specifies whether the
764  * queue should be rearmed when ringing the doorbell.
765  **/
766 void
767 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
768 			 uint32_t count, bool arm)
769 {
770 	struct lpfc_register doorbell;
771 
772 	/* sanity check on queue memory */
773 	if (unlikely(!q || (count == 0 && !arm)))
774 		return;
775 
776 	/* ring doorbell for number popped */
777 	doorbell.word0 = 0;
778 	if (arm)
779 		bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1);
780 	bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count);
781 	bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id);
782 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
783 }
784 
785 /*
786  * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
787  *
788  * This routine will copy the contents of @wqe to the next available entry on
789  * the @q. This function will then ring the Receive Queue Doorbell to signal the
790  * HBA to start processing the Receive Queue Entry. This function returns the
791  * index that the rqe was copied to if successful. If no entries are available
792  * on @q then this function will return -ENOMEM.
793  * The caller is expected to hold the hbalock when calling this routine.
794  **/
795 int
796 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
797 		 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
798 {
799 	struct lpfc_rqe *temp_hrqe;
800 	struct lpfc_rqe *temp_drqe;
801 	struct lpfc_register doorbell;
802 	int hq_put_index;
803 	int dq_put_index;
804 
805 	/* sanity check on queue memory */
806 	if (unlikely(!hq) || unlikely(!dq))
807 		return -ENOMEM;
808 	hq_put_index = hq->host_index;
809 	dq_put_index = dq->host_index;
810 	temp_hrqe = lpfc_sli4_qe(hq, hq_put_index);
811 	temp_drqe = lpfc_sli4_qe(dq, dq_put_index);
812 
813 	if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
814 		return -EINVAL;
815 	if (hq_put_index != dq_put_index)
816 		return -EINVAL;
817 	/* If the host has not yet processed the next entry then we are done */
818 	if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index)
819 		return -EBUSY;
820 	lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
821 	lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
822 
823 	/* Update the host index to point to the next slot */
824 	hq->host_index = ((hq_put_index + 1) % hq->entry_count);
825 	dq->host_index = ((dq_put_index + 1) % dq->entry_count);
826 	hq->RQ_buf_posted++;
827 
828 	/* Ring The Header Receive Queue Doorbell */
829 	if (!(hq->host_index % hq->notify_interval)) {
830 		doorbell.word0 = 0;
831 		if (hq->db_format == LPFC_DB_RING_FORMAT) {
832 			bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
833 			       hq->notify_interval);
834 			bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
835 		} else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
836 			bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
837 			       hq->notify_interval);
838 			bf_set(lpfc_rq_db_list_fm_index, &doorbell,
839 			       hq->host_index);
840 			bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
841 		} else {
842 			return -EINVAL;
843 		}
844 		writel(doorbell.word0, hq->db_regaddr);
845 	}
846 	return hq_put_index;
847 }
848 
849 /*
850  * lpfc_sli4_rq_release - Updates internal hba index for RQ
851  *
852  * This routine will update the HBA index of a queue to reflect consumption of
853  * one Receive Queue Entry by the HBA. When the HBA indicates that it has
854  * consumed an entry the host calls this function to update the queue's
855  * internal pointers. This routine returns the number of entries that were
856  * consumed by the HBA.
857  **/
858 static uint32_t
859 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
860 {
861 	/* sanity check on queue memory */
862 	if (unlikely(!hq) || unlikely(!dq))
863 		return 0;
864 
865 	if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
866 		return 0;
867 	hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
868 	dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
869 	return 1;
870 }
871 
872 /**
873  * lpfc_cmd_iocb - Get next command iocb entry in the ring
874  * @phba: Pointer to HBA context object.
875  * @pring: Pointer to driver SLI ring object.
876  *
877  * This function returns pointer to next command iocb entry
878  * in the command ring. The caller must hold hbalock to prevent
879  * other threads consume the next command iocb.
880  * SLI-2/SLI-3 provide different sized iocbs.
881  **/
882 static inline IOCB_t *
883 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
884 {
885 	return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
886 			   pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
887 }
888 
889 /**
890  * lpfc_resp_iocb - Get next response iocb entry in the ring
891  * @phba: Pointer to HBA context object.
892  * @pring: Pointer to driver SLI ring object.
893  *
894  * This function returns pointer to next response iocb entry
895  * in the response ring. The caller must hold hbalock to make sure
896  * that no other thread consume the next response iocb.
897  * SLI-2/SLI-3 provide different sized iocbs.
898  **/
899 static inline IOCB_t *
900 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
901 {
902 	return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
903 			   pring->sli.sli3.rspidx * phba->iocb_rsp_size);
904 }
905 
906 /**
907  * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
908  * @phba: Pointer to HBA context object.
909  *
910  * This function is called with hbalock held. This function
911  * allocates a new driver iocb object from the iocb pool. If the
912  * allocation is successful, it returns pointer to the newly
913  * allocated iocb object else it returns NULL.
914  **/
915 struct lpfc_iocbq *
916 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
917 {
918 	struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
919 	struct lpfc_iocbq * iocbq = NULL;
920 
921 	lockdep_assert_held(&phba->hbalock);
922 
923 	list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
924 	if (iocbq)
925 		phba->iocb_cnt++;
926 	if (phba->iocb_cnt > phba->iocb_max)
927 		phba->iocb_max = phba->iocb_cnt;
928 	return iocbq;
929 }
930 
931 /**
932  * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
933  * @phba: Pointer to HBA context object.
934  * @xritag: XRI value.
935  *
936  * This function clears the sglq pointer from the array of active
937  * sglq's. The xritag that is passed in is used to index into the
938  * array. Before the xritag can be used it needs to be adjusted
939  * by subtracting the xribase.
940  *
941  * Returns sglq ponter = success, NULL = Failure.
942  **/
943 struct lpfc_sglq *
944 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
945 {
946 	struct lpfc_sglq *sglq;
947 
948 	sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
949 	phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
950 	return sglq;
951 }
952 
953 /**
954  * __lpfc_get_active_sglq - Get the active sglq for this XRI.
955  * @phba: Pointer to HBA context object.
956  * @xritag: XRI value.
957  *
958  * This function returns the sglq pointer from the array of active
959  * sglq's. The xritag that is passed in is used to index into the
960  * array. Before the xritag can be used it needs to be adjusted
961  * by subtracting the xribase.
962  *
963  * Returns sglq ponter = success, NULL = Failure.
964  **/
965 struct lpfc_sglq *
966 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
967 {
968 	struct lpfc_sglq *sglq;
969 
970 	sglq =  phba->sli4_hba.lpfc_sglq_active_list[xritag];
971 	return sglq;
972 }
973 
974 /**
975  * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
976  * @phba: Pointer to HBA context object.
977  * @xritag: xri used in this exchange.
978  * @rrq: The RRQ to be cleared.
979  *
980  **/
981 void
982 lpfc_clr_rrq_active(struct lpfc_hba *phba,
983 		    uint16_t xritag,
984 		    struct lpfc_node_rrq *rrq)
985 {
986 	struct lpfc_nodelist *ndlp = NULL;
987 
988 	/* Lookup did to verify if did is still active on this vport */
989 	if (rrq->vport)
990 		ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
991 
992 	if (!ndlp)
993 		goto out;
994 
995 	if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
996 		rrq->send_rrq = 0;
997 		rrq->xritag = 0;
998 		rrq->rrq_stop_time = 0;
999 	}
1000 out:
1001 	mempool_free(rrq, phba->rrq_pool);
1002 }
1003 
1004 /**
1005  * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
1006  * @phba: Pointer to HBA context object.
1007  *
1008  * This function is called with hbalock held. This function
1009  * Checks if stop_time (ratov from setting rrq active) has
1010  * been reached, if it has and the send_rrq flag is set then
1011  * it will call lpfc_send_rrq. If the send_rrq flag is not set
1012  * then it will just call the routine to clear the rrq and
1013  * free the rrq resource.
1014  * The timer is set to the next rrq that is going to expire before
1015  * leaving the routine.
1016  *
1017  **/
1018 void
1019 lpfc_handle_rrq_active(struct lpfc_hba *phba)
1020 {
1021 	struct lpfc_node_rrq *rrq;
1022 	struct lpfc_node_rrq *nextrrq;
1023 	unsigned long next_time;
1024 	unsigned long iflags;
1025 	LIST_HEAD(send_rrq);
1026 
1027 	spin_lock_irqsave(&phba->hbalock, iflags);
1028 	phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1029 	next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1030 	list_for_each_entry_safe(rrq, nextrrq,
1031 				 &phba->active_rrq_list, list) {
1032 		if (time_after(jiffies, rrq->rrq_stop_time))
1033 			list_move(&rrq->list, &send_rrq);
1034 		else if (time_before(rrq->rrq_stop_time, next_time))
1035 			next_time = rrq->rrq_stop_time;
1036 	}
1037 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1038 	if ((!list_empty(&phba->active_rrq_list)) &&
1039 	    (!(phba->pport->load_flag & FC_UNLOADING)))
1040 		mod_timer(&phba->rrq_tmr, next_time);
1041 	list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
1042 		list_del(&rrq->list);
1043 		if (!rrq->send_rrq) {
1044 			/* this call will free the rrq */
1045 			lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1046 		} else if (lpfc_send_rrq(phba, rrq)) {
1047 			/* if we send the rrq then the completion handler
1048 			*  will clear the bit in the xribitmap.
1049 			*/
1050 			lpfc_clr_rrq_active(phba, rrq->xritag,
1051 					    rrq);
1052 		}
1053 	}
1054 }
1055 
1056 /**
1057  * lpfc_get_active_rrq - Get the active RRQ for this exchange.
1058  * @vport: Pointer to vport context object.
1059  * @xri: The xri used in the exchange.
1060  * @did: The targets DID for this exchange.
1061  *
1062  * returns NULL = rrq not found in the phba->active_rrq_list.
1063  *         rrq = rrq for this xri and target.
1064  **/
1065 struct lpfc_node_rrq *
1066 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
1067 {
1068 	struct lpfc_hba *phba = vport->phba;
1069 	struct lpfc_node_rrq *rrq;
1070 	struct lpfc_node_rrq *nextrrq;
1071 	unsigned long iflags;
1072 
1073 	if (phba->sli_rev != LPFC_SLI_REV4)
1074 		return NULL;
1075 	spin_lock_irqsave(&phba->hbalock, iflags);
1076 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
1077 		if (rrq->vport == vport && rrq->xritag == xri &&
1078 				rrq->nlp_DID == did){
1079 			list_del(&rrq->list);
1080 			spin_unlock_irqrestore(&phba->hbalock, iflags);
1081 			return rrq;
1082 		}
1083 	}
1084 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1085 	return NULL;
1086 }
1087 
1088 /**
1089  * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
1090  * @vport: Pointer to vport context object.
1091  * @ndlp: Pointer to the lpfc_node_list structure.
1092  * If ndlp is NULL Remove all active RRQs for this vport from the
1093  * phba->active_rrq_list and clear the rrq.
1094  * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
1095  **/
1096 void
1097 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
1098 
1099 {
1100 	struct lpfc_hba *phba = vport->phba;
1101 	struct lpfc_node_rrq *rrq;
1102 	struct lpfc_node_rrq *nextrrq;
1103 	unsigned long iflags;
1104 	LIST_HEAD(rrq_list);
1105 
1106 	if (phba->sli_rev != LPFC_SLI_REV4)
1107 		return;
1108 	if (!ndlp) {
1109 		lpfc_sli4_vport_delete_els_xri_aborted(vport);
1110 		lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
1111 	}
1112 	spin_lock_irqsave(&phba->hbalock, iflags);
1113 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
1114 		if (rrq->vport != vport)
1115 			continue;
1116 
1117 		if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID))
1118 			list_move(&rrq->list, &rrq_list);
1119 
1120 	}
1121 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1122 
1123 	list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
1124 		list_del(&rrq->list);
1125 		lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1126 	}
1127 }
1128 
1129 /**
1130  * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
1131  * @phba: Pointer to HBA context object.
1132  * @ndlp: Targets nodelist pointer for this exchange.
1133  * @xritag: the xri in the bitmap to test.
1134  *
1135  * This function returns:
1136  * 0 = rrq not active for this xri
1137  * 1 = rrq is valid for this xri.
1138  **/
1139 int
1140 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1141 			uint16_t  xritag)
1142 {
1143 	if (!ndlp)
1144 		return 0;
1145 	if (!ndlp->active_rrqs_xri_bitmap)
1146 		return 0;
1147 	if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1148 		return 1;
1149 	else
1150 		return 0;
1151 }
1152 
1153 /**
1154  * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
1155  * @phba: Pointer to HBA context object.
1156  * @ndlp: nodelist pointer for this target.
1157  * @xritag: xri used in this exchange.
1158  * @rxid: Remote Exchange ID.
1159  * @send_rrq: Flag used to determine if we should send rrq els cmd.
1160  *
1161  * This function takes the hbalock.
1162  * The active bit is always set in the active rrq xri_bitmap even
1163  * if there is no slot avaiable for the other rrq information.
1164  *
1165  * returns 0 rrq actived for this xri
1166  *         < 0 No memory or invalid ndlp.
1167  **/
1168 int
1169 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1170 		    uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
1171 {
1172 	unsigned long iflags;
1173 	struct lpfc_node_rrq *rrq;
1174 	int empty;
1175 
1176 	if (!ndlp)
1177 		return -EINVAL;
1178 
1179 	if (!phba->cfg_enable_rrq)
1180 		return -EINVAL;
1181 
1182 	spin_lock_irqsave(&phba->hbalock, iflags);
1183 	if (phba->pport->load_flag & FC_UNLOADING) {
1184 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1185 		goto out;
1186 	}
1187 
1188 	if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
1189 		goto out;
1190 
1191 	if (!ndlp->active_rrqs_xri_bitmap)
1192 		goto out;
1193 
1194 	if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1195 		goto out;
1196 
1197 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1198 	rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC);
1199 	if (!rrq) {
1200 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1201 				"3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
1202 				" DID:0x%x Send:%d\n",
1203 				xritag, rxid, ndlp->nlp_DID, send_rrq);
1204 		return -EINVAL;
1205 	}
1206 	if (phba->cfg_enable_rrq == 1)
1207 		rrq->send_rrq = send_rrq;
1208 	else
1209 		rrq->send_rrq = 0;
1210 	rrq->xritag = xritag;
1211 	rrq->rrq_stop_time = jiffies +
1212 				msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1213 	rrq->nlp_DID = ndlp->nlp_DID;
1214 	rrq->vport = ndlp->vport;
1215 	rrq->rxid = rxid;
1216 	spin_lock_irqsave(&phba->hbalock, iflags);
1217 	empty = list_empty(&phba->active_rrq_list);
1218 	list_add_tail(&rrq->list, &phba->active_rrq_list);
1219 	phba->hba_flag |= HBA_RRQ_ACTIVE;
1220 	if (empty)
1221 		lpfc_worker_wake_up(phba);
1222 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1223 	return 0;
1224 out:
1225 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1226 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1227 			"2921 Can't set rrq active xri:0x%x rxid:0x%x"
1228 			" DID:0x%x Send:%d\n",
1229 			xritag, rxid, ndlp->nlp_DID, send_rrq);
1230 	return -EINVAL;
1231 }
1232 
1233 /**
1234  * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
1235  * @phba: Pointer to HBA context object.
1236  * @piocbq: Pointer to the iocbq.
1237  *
1238  * The driver calls this function with either the nvme ls ring lock
1239  * or the fc els ring lock held depending on the iocb usage.  This function
1240  * gets a new driver sglq object from the sglq list. If the list is not empty
1241  * then it is successful, it returns pointer to the newly allocated sglq
1242  * object else it returns NULL.
1243  **/
1244 static struct lpfc_sglq *
1245 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1246 {
1247 	struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
1248 	struct lpfc_sglq *sglq = NULL;
1249 	struct lpfc_sglq *start_sglq = NULL;
1250 	struct lpfc_io_buf *lpfc_cmd;
1251 	struct lpfc_nodelist *ndlp;
1252 	int found = 0;
1253 	u8 cmnd;
1254 
1255 	cmnd = get_job_cmnd(phba, piocbq);
1256 
1257 	if (piocbq->cmd_flag &  LPFC_IO_FCP) {
1258 		lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1;
1259 		ndlp = lpfc_cmd->rdata->pnode;
1260 	} else  if ((cmnd == CMD_GEN_REQUEST64_CR) &&
1261 			!(piocbq->cmd_flag & LPFC_IO_LIBDFC)) {
1262 		ndlp = piocbq->context_un.ndlp;
1263 	} else  if (piocbq->cmd_flag & LPFC_IO_LIBDFC) {
1264 		if (piocbq->cmd_flag & LPFC_IO_LOOPBACK)
1265 			ndlp = NULL;
1266 		else
1267 			ndlp = piocbq->context_un.ndlp;
1268 	} else {
1269 		ndlp = piocbq->context1;
1270 	}
1271 
1272 	spin_lock(&phba->sli4_hba.sgl_list_lock);
1273 	list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
1274 	start_sglq = sglq;
1275 	while (!found) {
1276 		if (!sglq)
1277 			break;
1278 		if (ndlp && ndlp->active_rrqs_xri_bitmap &&
1279 		    test_bit(sglq->sli4_lxritag,
1280 		    ndlp->active_rrqs_xri_bitmap)) {
1281 			/* This xri has an rrq outstanding for this DID.
1282 			 * put it back in the list and get another xri.
1283 			 */
1284 			list_add_tail(&sglq->list, lpfc_els_sgl_list);
1285 			sglq = NULL;
1286 			list_remove_head(lpfc_els_sgl_list, sglq,
1287 						struct lpfc_sglq, list);
1288 			if (sglq == start_sglq) {
1289 				list_add_tail(&sglq->list, lpfc_els_sgl_list);
1290 				sglq = NULL;
1291 				break;
1292 			} else
1293 				continue;
1294 		}
1295 		sglq->ndlp = ndlp;
1296 		found = 1;
1297 		phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1298 		sglq->state = SGL_ALLOCATED;
1299 	}
1300 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
1301 	return sglq;
1302 }
1303 
1304 /**
1305  * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
1306  * @phba: Pointer to HBA context object.
1307  * @piocbq: Pointer to the iocbq.
1308  *
1309  * This function is called with the sgl_list lock held. This function
1310  * gets a new driver sglq object from the sglq list. If the
1311  * list is not empty then it is successful, it returns pointer to the newly
1312  * allocated sglq object else it returns NULL.
1313  **/
1314 struct lpfc_sglq *
1315 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1316 {
1317 	struct list_head *lpfc_nvmet_sgl_list;
1318 	struct lpfc_sglq *sglq = NULL;
1319 
1320 	lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
1321 
1322 	lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
1323 
1324 	list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
1325 	if (!sglq)
1326 		return NULL;
1327 	phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1328 	sglq->state = SGL_ALLOCATED;
1329 	return sglq;
1330 }
1331 
1332 /**
1333  * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
1334  * @phba: Pointer to HBA context object.
1335  *
1336  * This function is called with no lock held. This function
1337  * allocates a new driver iocb object from the iocb pool. If the
1338  * allocation is successful, it returns pointer to the newly
1339  * allocated iocb object else it returns NULL.
1340  **/
1341 struct lpfc_iocbq *
1342 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
1343 {
1344 	struct lpfc_iocbq * iocbq = NULL;
1345 	unsigned long iflags;
1346 
1347 	spin_lock_irqsave(&phba->hbalock, iflags);
1348 	iocbq = __lpfc_sli_get_iocbq(phba);
1349 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1350 	return iocbq;
1351 }
1352 
1353 /**
1354  * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
1355  * @phba: Pointer to HBA context object.
1356  * @iocbq: Pointer to driver iocb object.
1357  *
1358  * This function is called to release the driver iocb object
1359  * to the iocb pool. The iotag in the iocb object
1360  * does not change for each use of the iocb object. This function
1361  * clears all other fields of the iocb object when it is freed.
1362  * The sqlq structure that holds the xritag and phys and virtual
1363  * mappings for the scatter gather list is retrieved from the
1364  * active array of sglq. The get of the sglq pointer also clears
1365  * the entry in the array. If the status of the IO indiactes that
1366  * this IO was aborted then the sglq entry it put on the
1367  * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1368  * IO has good status or fails for any other reason then the sglq
1369  * entry is added to the free list (lpfc_els_sgl_list). The hbalock is
1370  *  asserted held in the code path calling this routine.
1371  **/
1372 static void
1373 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1374 {
1375 	struct lpfc_sglq *sglq;
1376 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1377 	unsigned long iflag = 0;
1378 	struct lpfc_sli_ring *pring;
1379 
1380 	if (iocbq->sli4_xritag == NO_XRI)
1381 		sglq = NULL;
1382 	else
1383 		sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1384 
1385 
1386 	if (sglq)  {
1387 		if (iocbq->cmd_flag & LPFC_IO_NVMET) {
1388 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1389 					  iflag);
1390 			sglq->state = SGL_FREED;
1391 			sglq->ndlp = NULL;
1392 			list_add_tail(&sglq->list,
1393 				      &phba->sli4_hba.lpfc_nvmet_sgl_list);
1394 			spin_unlock_irqrestore(
1395 				&phba->sli4_hba.sgl_list_lock, iflag);
1396 			goto out;
1397 		}
1398 
1399 		if ((iocbq->cmd_flag & LPFC_EXCHANGE_BUSY) &&
1400 		    (!(unlikely(pci_channel_offline(phba->pcidev)))) &&
1401 		    sglq->state != SGL_XRI_ABORTED) {
1402 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1403 					  iflag);
1404 
1405 			/* Check if we can get a reference on ndlp */
1406 			if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp))
1407 				sglq->ndlp = NULL;
1408 
1409 			list_add(&sglq->list,
1410 				 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1411 			spin_unlock_irqrestore(
1412 				&phba->sli4_hba.sgl_list_lock, iflag);
1413 		} else {
1414 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1415 					  iflag);
1416 			sglq->state = SGL_FREED;
1417 			sglq->ndlp = NULL;
1418 			list_add_tail(&sglq->list,
1419 				      &phba->sli4_hba.lpfc_els_sgl_list);
1420 			spin_unlock_irqrestore(
1421 				&phba->sli4_hba.sgl_list_lock, iflag);
1422 			pring = lpfc_phba_elsring(phba);
1423 			/* Check if TXQ queue needs to be serviced */
1424 			if (pring && (!list_empty(&pring->txq)))
1425 				lpfc_worker_wake_up(phba);
1426 		}
1427 	}
1428 
1429 out:
1430 	/*
1431 	 * Clean all volatile data fields, preserve iotag and node struct.
1432 	 */
1433 	memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1434 	iocbq->sli4_lxritag = NO_XRI;
1435 	iocbq->sli4_xritag = NO_XRI;
1436 	iocbq->cmd_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF |
1437 			      LPFC_IO_NVME_LS);
1438 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1439 }
1440 
1441 
1442 /**
1443  * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1444  * @phba: Pointer to HBA context object.
1445  * @iocbq: Pointer to driver iocb object.
1446  *
1447  * This function is called to release the driver iocb object to the
1448  * iocb pool. The iotag in the iocb object does not change for each
1449  * use of the iocb object. This function clears all other fields of
1450  * the iocb object when it is freed. The hbalock is asserted held in
1451  * the code path calling this routine.
1452  **/
1453 static void
1454 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1455 {
1456 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1457 
1458 	/*
1459 	 * Clean all volatile data fields, preserve iotag and node struct.
1460 	 */
1461 	memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1462 	iocbq->sli4_xritag = NO_XRI;
1463 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1464 }
1465 
1466 /**
1467  * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1468  * @phba: Pointer to HBA context object.
1469  * @iocbq: Pointer to driver iocb object.
1470  *
1471  * This function is called with hbalock held to release driver
1472  * iocb object to the iocb pool. The iotag in the iocb object
1473  * does not change for each use of the iocb object. This function
1474  * clears all other fields of the iocb object when it is freed.
1475  **/
1476 static void
1477 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1478 {
1479 	lockdep_assert_held(&phba->hbalock);
1480 
1481 	phba->__lpfc_sli_release_iocbq(phba, iocbq);
1482 	phba->iocb_cnt--;
1483 }
1484 
1485 /**
1486  * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1487  * @phba: Pointer to HBA context object.
1488  * @iocbq: Pointer to driver iocb object.
1489  *
1490  * This function is called with no lock held to release the iocb to
1491  * iocb pool.
1492  **/
1493 void
1494 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1495 {
1496 	unsigned long iflags;
1497 
1498 	/*
1499 	 * Clean all volatile data fields, preserve iotag and node struct.
1500 	 */
1501 	spin_lock_irqsave(&phba->hbalock, iflags);
1502 	__lpfc_sli_release_iocbq(phba, iocbq);
1503 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1504 }
1505 
1506 /**
1507  * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1508  * @phba: Pointer to HBA context object.
1509  * @iocblist: List of IOCBs.
1510  * @ulpstatus: ULP status in IOCB command field.
1511  * @ulpWord4: ULP word-4 in IOCB command field.
1512  *
1513  * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1514  * on the list by invoking the complete callback function associated with the
1515  * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1516  * fields.
1517  **/
1518 void
1519 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1520 		      uint32_t ulpstatus, uint32_t ulpWord4)
1521 {
1522 	struct lpfc_iocbq *piocb;
1523 
1524 	while (!list_empty(iocblist)) {
1525 		list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1526 		if (piocb->cmd_cmpl) {
1527 			if (piocb->cmd_flag & LPFC_IO_NVME) {
1528 				lpfc_nvme_cancel_iocb(phba, piocb,
1529 						      ulpstatus, ulpWord4);
1530 			} else {
1531 				if (phba->sli_rev == LPFC_SLI_REV4) {
1532 					bf_set(lpfc_wcqe_c_status,
1533 					       &piocb->wcqe_cmpl, ulpstatus);
1534 					piocb->wcqe_cmpl.parameter = ulpWord4;
1535 				} else {
1536 					piocb->iocb.ulpStatus = ulpstatus;
1537 					piocb->iocb.un.ulpWord[4] = ulpWord4;
1538 				}
1539 				(piocb->cmd_cmpl) (phba, piocb, piocb);
1540 			}
1541 		} else {
1542 			lpfc_sli_release_iocbq(phba, piocb);
1543 		}
1544 	}
1545 	return;
1546 }
1547 
1548 /**
1549  * lpfc_sli_iocb_cmd_type - Get the iocb type
1550  * @iocb_cmnd: iocb command code.
1551  *
1552  * This function is called by ring event handler function to get the iocb type.
1553  * This function translates the iocb command to an iocb command type used to
1554  * decide the final disposition of each completed IOCB.
1555  * The function returns
1556  * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1557  * LPFC_SOL_IOCB     if it is a solicited iocb completion
1558  * LPFC_ABORT_IOCB   if it is an abort iocb
1559  * LPFC_UNSOL_IOCB   if it is an unsolicited iocb
1560  *
1561  * The caller is not required to hold any lock.
1562  **/
1563 static lpfc_iocb_type
1564 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1565 {
1566 	lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1567 
1568 	if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1569 		return 0;
1570 
1571 	switch (iocb_cmnd) {
1572 	case CMD_XMIT_SEQUENCE_CR:
1573 	case CMD_XMIT_SEQUENCE_CX:
1574 	case CMD_XMIT_BCAST_CN:
1575 	case CMD_XMIT_BCAST_CX:
1576 	case CMD_ELS_REQUEST_CR:
1577 	case CMD_ELS_REQUEST_CX:
1578 	case CMD_CREATE_XRI_CR:
1579 	case CMD_CREATE_XRI_CX:
1580 	case CMD_GET_RPI_CN:
1581 	case CMD_XMIT_ELS_RSP_CX:
1582 	case CMD_GET_RPI_CR:
1583 	case CMD_FCP_IWRITE_CR:
1584 	case CMD_FCP_IWRITE_CX:
1585 	case CMD_FCP_IREAD_CR:
1586 	case CMD_FCP_IREAD_CX:
1587 	case CMD_FCP_ICMND_CR:
1588 	case CMD_FCP_ICMND_CX:
1589 	case CMD_FCP_TSEND_CX:
1590 	case CMD_FCP_TRSP_CX:
1591 	case CMD_FCP_TRECEIVE_CX:
1592 	case CMD_FCP_AUTO_TRSP_CX:
1593 	case CMD_ADAPTER_MSG:
1594 	case CMD_ADAPTER_DUMP:
1595 	case CMD_XMIT_SEQUENCE64_CR:
1596 	case CMD_XMIT_SEQUENCE64_CX:
1597 	case CMD_XMIT_BCAST64_CN:
1598 	case CMD_XMIT_BCAST64_CX:
1599 	case CMD_ELS_REQUEST64_CR:
1600 	case CMD_ELS_REQUEST64_CX:
1601 	case CMD_FCP_IWRITE64_CR:
1602 	case CMD_FCP_IWRITE64_CX:
1603 	case CMD_FCP_IREAD64_CR:
1604 	case CMD_FCP_IREAD64_CX:
1605 	case CMD_FCP_ICMND64_CR:
1606 	case CMD_FCP_ICMND64_CX:
1607 	case CMD_FCP_TSEND64_CX:
1608 	case CMD_FCP_TRSP64_CX:
1609 	case CMD_FCP_TRECEIVE64_CX:
1610 	case CMD_GEN_REQUEST64_CR:
1611 	case CMD_GEN_REQUEST64_CX:
1612 	case CMD_XMIT_ELS_RSP64_CX:
1613 	case DSSCMD_IWRITE64_CR:
1614 	case DSSCMD_IWRITE64_CX:
1615 	case DSSCMD_IREAD64_CR:
1616 	case DSSCMD_IREAD64_CX:
1617 	case CMD_SEND_FRAME:
1618 		type = LPFC_SOL_IOCB;
1619 		break;
1620 	case CMD_ABORT_XRI_CN:
1621 	case CMD_ABORT_XRI_CX:
1622 	case CMD_CLOSE_XRI_CN:
1623 	case CMD_CLOSE_XRI_CX:
1624 	case CMD_XRI_ABORTED_CX:
1625 	case CMD_ABORT_MXRI64_CN:
1626 	case CMD_XMIT_BLS_RSP64_CX:
1627 		type = LPFC_ABORT_IOCB;
1628 		break;
1629 	case CMD_RCV_SEQUENCE_CX:
1630 	case CMD_RCV_ELS_REQ_CX:
1631 	case CMD_RCV_SEQUENCE64_CX:
1632 	case CMD_RCV_ELS_REQ64_CX:
1633 	case CMD_ASYNC_STATUS:
1634 	case CMD_IOCB_RCV_SEQ64_CX:
1635 	case CMD_IOCB_RCV_ELS64_CX:
1636 	case CMD_IOCB_RCV_CONT64_CX:
1637 	case CMD_IOCB_RET_XRI64_CX:
1638 		type = LPFC_UNSOL_IOCB;
1639 		break;
1640 	case CMD_IOCB_XMIT_MSEQ64_CR:
1641 	case CMD_IOCB_XMIT_MSEQ64_CX:
1642 	case CMD_IOCB_RCV_SEQ_LIST64_CX:
1643 	case CMD_IOCB_RCV_ELS_LIST64_CX:
1644 	case CMD_IOCB_CLOSE_EXTENDED_CN:
1645 	case CMD_IOCB_ABORT_EXTENDED_CN:
1646 	case CMD_IOCB_RET_HBQE64_CN:
1647 	case CMD_IOCB_FCP_IBIDIR64_CR:
1648 	case CMD_IOCB_FCP_IBIDIR64_CX:
1649 	case CMD_IOCB_FCP_ITASKMGT64_CX:
1650 	case CMD_IOCB_LOGENTRY_CN:
1651 	case CMD_IOCB_LOGENTRY_ASYNC_CN:
1652 		printk("%s - Unhandled SLI-3 Command x%x\n",
1653 				__func__, iocb_cmnd);
1654 		type = LPFC_UNKNOWN_IOCB;
1655 		break;
1656 	default:
1657 		type = LPFC_UNKNOWN_IOCB;
1658 		break;
1659 	}
1660 
1661 	return type;
1662 }
1663 
1664 /**
1665  * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1666  * @phba: Pointer to HBA context object.
1667  *
1668  * This function is called from SLI initialization code
1669  * to configure every ring of the HBA's SLI interface. The
1670  * caller is not required to hold any lock. This function issues
1671  * a config_ring mailbox command for each ring.
1672  * This function returns zero if successful else returns a negative
1673  * error code.
1674  **/
1675 static int
1676 lpfc_sli_ring_map(struct lpfc_hba *phba)
1677 {
1678 	struct lpfc_sli *psli = &phba->sli;
1679 	LPFC_MBOXQ_t *pmb;
1680 	MAILBOX_t *pmbox;
1681 	int i, rc, ret = 0;
1682 
1683 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1684 	if (!pmb)
1685 		return -ENOMEM;
1686 	pmbox = &pmb->u.mb;
1687 	phba->link_state = LPFC_INIT_MBX_CMDS;
1688 	for (i = 0; i < psli->num_rings; i++) {
1689 		lpfc_config_ring(phba, i, pmb);
1690 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1691 		if (rc != MBX_SUCCESS) {
1692 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1693 					"0446 Adapter failed to init (%d), "
1694 					"mbxCmd x%x CFG_RING, mbxStatus x%x, "
1695 					"ring %d\n",
1696 					rc, pmbox->mbxCommand,
1697 					pmbox->mbxStatus, i);
1698 			phba->link_state = LPFC_HBA_ERROR;
1699 			ret = -ENXIO;
1700 			break;
1701 		}
1702 	}
1703 	mempool_free(pmb, phba->mbox_mem_pool);
1704 	return ret;
1705 }
1706 
1707 /**
1708  * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1709  * @phba: Pointer to HBA context object.
1710  * @pring: Pointer to driver SLI ring object.
1711  * @piocb: Pointer to the driver iocb object.
1712  *
1713  * The driver calls this function with the hbalock held for SLI3 ports or
1714  * the ring lock held for SLI4 ports. The function adds the
1715  * new iocb to txcmplq of the given ring. This function always returns
1716  * 0. If this function is called for ELS ring, this function checks if
1717  * there is a vport associated with the ELS command. This function also
1718  * starts els_tmofunc timer if this is an ELS command.
1719  **/
1720 static int
1721 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1722 			struct lpfc_iocbq *piocb)
1723 {
1724 	u32 ulp_command = 0;
1725 
1726 	BUG_ON(!piocb);
1727 	ulp_command = get_job_cmnd(phba, piocb);
1728 
1729 	list_add_tail(&piocb->list, &pring->txcmplq);
1730 	piocb->cmd_flag |= LPFC_IO_ON_TXCMPLQ;
1731 	pring->txcmplq_cnt++;
1732 	if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1733 	   (ulp_command != CMD_ABORT_XRI_WQE) &&
1734 	   (ulp_command != CMD_ABORT_XRI_CN) &&
1735 	   (ulp_command != CMD_CLOSE_XRI_CN)) {
1736 		BUG_ON(!piocb->vport);
1737 		if (!(piocb->vport->load_flag & FC_UNLOADING))
1738 			mod_timer(&piocb->vport->els_tmofunc,
1739 				  jiffies +
1740 				  msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
1741 	}
1742 
1743 	return 0;
1744 }
1745 
1746 /**
1747  * lpfc_sli_ringtx_get - Get first element of the txq
1748  * @phba: Pointer to HBA context object.
1749  * @pring: Pointer to driver SLI ring object.
1750  *
1751  * This function is called with hbalock held to get next
1752  * iocb in txq of the given ring. If there is any iocb in
1753  * the txq, the function returns first iocb in the list after
1754  * removing the iocb from the list, else it returns NULL.
1755  **/
1756 struct lpfc_iocbq *
1757 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1758 {
1759 	struct lpfc_iocbq *cmd_iocb;
1760 
1761 	lockdep_assert_held(&phba->hbalock);
1762 
1763 	list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1764 	return cmd_iocb;
1765 }
1766 
1767 /**
1768  * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl
1769  * @phba: Pointer to HBA context object.
1770  * @cmdiocb: Pointer to driver command iocb object.
1771  * @rspiocb: Pointer to driver response iocb object.
1772  *
1773  * This routine will inform the driver of any BW adjustments we need
1774  * to make. These changes will be picked up during the next CMF
1775  * timer interrupt. In addition, any BW changes will be logged
1776  * with LOG_CGN_MGMT.
1777  **/
1778 static void
1779 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
1780 		   struct lpfc_iocbq *rspiocb)
1781 {
1782 	union lpfc_wqe128 *wqe;
1783 	uint32_t status, info;
1784 	struct lpfc_wcqe_complete *wcqe = &rspiocb->wcqe_cmpl;
1785 	uint64_t bw, bwdif, slop;
1786 	uint64_t pcent, bwpcent;
1787 	int asig, afpin, sigcnt, fpincnt;
1788 	int wsigmax, wfpinmax, cg, tdp;
1789 	char *s;
1790 
1791 	/* First check for error */
1792 	status = bf_get(lpfc_wcqe_c_status, wcqe);
1793 	if (status) {
1794 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1795 				"6211 CMF_SYNC_WQE Error "
1796 				"req_tag x%x status x%x hwstatus x%x "
1797 				"tdatap x%x parm x%x\n",
1798 				bf_get(lpfc_wcqe_c_request_tag, wcqe),
1799 				bf_get(lpfc_wcqe_c_status, wcqe),
1800 				bf_get(lpfc_wcqe_c_hw_status, wcqe),
1801 				wcqe->total_data_placed,
1802 				wcqe->parameter);
1803 		goto out;
1804 	}
1805 
1806 	/* Gather congestion information on a successful cmpl */
1807 	info = wcqe->parameter;
1808 	phba->cmf_active_info = info;
1809 
1810 	/* See if firmware info count is valid or has changed */
1811 	if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info)
1812 		info = 0;
1813 	else
1814 		phba->cmf_info_per_interval = info;
1815 
1816 	tdp = bf_get(lpfc_wcqe_c_cmf_bw, wcqe);
1817 	cg = bf_get(lpfc_wcqe_c_cmf_cg, wcqe);
1818 
1819 	/* Get BW requirement from firmware */
1820 	bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE;
1821 	if (!bw) {
1822 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1823 				"6212 CMF_SYNC_WQE x%x: NULL bw\n",
1824 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
1825 		goto out;
1826 	}
1827 
1828 	/* Gather information needed for logging if a BW change is required */
1829 	wqe = &cmdiocb->wqe;
1830 	asig = bf_get(cmf_sync_asig, &wqe->cmf_sync);
1831 	afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync);
1832 	fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync);
1833 	sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync);
1834 	if (phba->cmf_max_bytes_per_interval != bw ||
1835 	    (asig || afpin || sigcnt || fpincnt)) {
1836 		/* Are we increasing or decreasing BW */
1837 		if (phba->cmf_max_bytes_per_interval <  bw) {
1838 			bwdif = bw - phba->cmf_max_bytes_per_interval;
1839 			s = "Increase";
1840 		} else {
1841 			bwdif = phba->cmf_max_bytes_per_interval - bw;
1842 			s = "Decrease";
1843 		}
1844 
1845 		/* What is the change percentage */
1846 		slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/
1847 		pcent = div64_u64(bwdif * 100 + slop,
1848 				  phba->cmf_link_byte_count);
1849 		bwpcent = div64_u64(bw * 100 + slop,
1850 				    phba->cmf_link_byte_count);
1851 		if (asig) {
1852 			lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1853 					"6237 BW Threshold %lld%% (%lld): "
1854 					"%lld%% %s: Signal Alarm: cg:%d "
1855 					"Info:%u\n",
1856 					bwpcent, bw, pcent, s, cg,
1857 					phba->cmf_active_info);
1858 		} else if (afpin) {
1859 			lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1860 					"6238 BW Threshold %lld%% (%lld): "
1861 					"%lld%% %s: FPIN Alarm: cg:%d "
1862 					"Info:%u\n",
1863 					bwpcent, bw, pcent, s, cg,
1864 					phba->cmf_active_info);
1865 		} else if (sigcnt) {
1866 			wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync);
1867 			lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1868 					"6239 BW Threshold %lld%% (%lld): "
1869 					"%lld%% %s: Signal Warning: "
1870 					"Cnt %d Max %d: cg:%d Info:%u\n",
1871 					bwpcent, bw, pcent, s, sigcnt,
1872 					wsigmax, cg, phba->cmf_active_info);
1873 		} else if (fpincnt) {
1874 			wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync);
1875 			lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1876 					"6240 BW Threshold %lld%% (%lld): "
1877 					"%lld%% %s: FPIN Warning: "
1878 					"Cnt %d Max %d: cg:%d Info:%u\n",
1879 					bwpcent, bw, pcent, s, fpincnt,
1880 					wfpinmax, cg, phba->cmf_active_info);
1881 		} else {
1882 			lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1883 					"6241 BW Threshold %lld%% (%lld): "
1884 					"CMF %lld%% %s: cg:%d Info:%u\n",
1885 					bwpcent, bw, pcent, s, cg,
1886 					phba->cmf_active_info);
1887 		}
1888 	} else if (info) {
1889 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1890 				"6246 Info Threshold %u\n", info);
1891 	}
1892 
1893 	/* Save BW change to be picked up during next timer interrupt */
1894 	phba->cmf_last_sync_bw = bw;
1895 out:
1896 	lpfc_sli_release_iocbq(phba, cmdiocb);
1897 }
1898 
1899 /**
1900  * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE
1901  * @phba: Pointer to HBA context object.
1902  * @ms:   ms to set in WQE interval, 0 means use init op
1903  * @total: Total rcv bytes for this interval
1904  *
1905  * This routine is called every CMF timer interrupt. Its purpose is
1906  * to issue a CMF_SYNC_WQE to the firmware to inform it of any events
1907  * that may indicate we have congestion (FPINs or Signals). Upon
1908  * completion, the firmware will indicate any BW restrictions the
1909  * driver may need to take.
1910  **/
1911 int
1912 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total)
1913 {
1914 	union lpfc_wqe128 *wqe;
1915 	struct lpfc_iocbq *sync_buf;
1916 	unsigned long iflags;
1917 	u32 ret_val;
1918 	u32 atot, wtot, max;
1919 
1920 	/* First address any alarm / warning activity */
1921 	atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0);
1922 	wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0);
1923 
1924 	/* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */
1925 	if (phba->cmf_active_mode != LPFC_CFG_MANAGED ||
1926 	    phba->link_state == LPFC_LINK_DOWN)
1927 		return 0;
1928 
1929 	spin_lock_irqsave(&phba->hbalock, iflags);
1930 	sync_buf = __lpfc_sli_get_iocbq(phba);
1931 	if (!sync_buf) {
1932 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
1933 				"6213 No available WQEs for CMF_SYNC_WQE\n");
1934 		ret_val = ENOMEM;
1935 		goto out_unlock;
1936 	}
1937 
1938 	wqe = &sync_buf->wqe;
1939 
1940 	/* WQEs are reused.  Clear stale data and set key fields to zero */
1941 	memset(wqe, 0, sizeof(*wqe));
1942 
1943 	/* If this is the very first CMF_SYNC_WQE, issue an init operation */
1944 	if (!ms) {
1945 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1946 				"6441 CMF Init %d - CMF_SYNC_WQE\n",
1947 				phba->fc_eventTag);
1948 		bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */
1949 		bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL);
1950 		goto initpath;
1951 	}
1952 
1953 	bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */
1954 	bf_set(cmf_sync_interval, &wqe->cmf_sync, ms);
1955 
1956 	/* Check for alarms / warnings */
1957 	if (atot) {
1958 		if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
1959 			/* We hit an Signal alarm condition */
1960 			bf_set(cmf_sync_asig, &wqe->cmf_sync, 1);
1961 		} else {
1962 			/* We hit a FPIN alarm condition */
1963 			bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1);
1964 		}
1965 	} else if (wtot) {
1966 		if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
1967 		    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
1968 			/* We hit an Signal warning condition */
1969 			max = LPFC_SEC_TO_MSEC / lpfc_fabric_cgn_frequency *
1970 				lpfc_acqe_cgn_frequency;
1971 			bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max);
1972 			bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot);
1973 		} else {
1974 			/* We hit a FPIN warning condition */
1975 			bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1);
1976 			bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1);
1977 		}
1978 	}
1979 
1980 	/* Update total read blocks during previous timer interval */
1981 	wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE);
1982 
1983 initpath:
1984 	bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER);
1985 	wqe->cmf_sync.event_tag = phba->fc_eventTag;
1986 	bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE);
1987 
1988 	/* Setup reqtag to match the wqe completion. */
1989 	bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag);
1990 
1991 	bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1);
1992 
1993 	bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND);
1994 	bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1);
1995 	bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT);
1996 
1997 	sync_buf->vport = phba->pport;
1998 	sync_buf->cmd_cmpl = lpfc_cmf_sync_cmpl;
1999 	sync_buf->context1 = NULL;
2000 	sync_buf->context2 = NULL;
2001 	sync_buf->context3 = NULL;
2002 	sync_buf->sli4_xritag = NO_XRI;
2003 
2004 	sync_buf->cmd_flag |= LPFC_IO_CMF;
2005 	ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf);
2006 	if (ret_val)
2007 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
2008 				"6214 Cannot issue CMF_SYNC_WQE: x%x\n",
2009 				ret_val);
2010 out_unlock:
2011 	spin_unlock_irqrestore(&phba->hbalock, iflags);
2012 	return ret_val;
2013 }
2014 
2015 /**
2016  * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
2017  * @phba: Pointer to HBA context object.
2018  * @pring: Pointer to driver SLI ring object.
2019  *
2020  * This function is called with hbalock held and the caller must post the
2021  * iocb without releasing the lock. If the caller releases the lock,
2022  * iocb slot returned by the function is not guaranteed to be available.
2023  * The function returns pointer to the next available iocb slot if there
2024  * is available slot in the ring, else it returns NULL.
2025  * If the get index of the ring is ahead of the put index, the function
2026  * will post an error attention event to the worker thread to take the
2027  * HBA to offline state.
2028  **/
2029 static IOCB_t *
2030 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2031 {
2032 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
2033 	uint32_t  max_cmd_idx = pring->sli.sli3.numCiocb;
2034 
2035 	lockdep_assert_held(&phba->hbalock);
2036 
2037 	if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
2038 	   (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
2039 		pring->sli.sli3.next_cmdidx = 0;
2040 
2041 	if (unlikely(pring->sli.sli3.local_getidx ==
2042 		pring->sli.sli3.next_cmdidx)) {
2043 
2044 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
2045 
2046 		if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
2047 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2048 					"0315 Ring %d issue: portCmdGet %d "
2049 					"is bigger than cmd ring %d\n",
2050 					pring->ringno,
2051 					pring->sli.sli3.local_getidx,
2052 					max_cmd_idx);
2053 
2054 			phba->link_state = LPFC_HBA_ERROR;
2055 			/*
2056 			 * All error attention handlers are posted to
2057 			 * worker thread
2058 			 */
2059 			phba->work_ha |= HA_ERATT;
2060 			phba->work_hs = HS_FFER3;
2061 
2062 			lpfc_worker_wake_up(phba);
2063 
2064 			return NULL;
2065 		}
2066 
2067 		if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
2068 			return NULL;
2069 	}
2070 
2071 	return lpfc_cmd_iocb(phba, pring);
2072 }
2073 
2074 /**
2075  * lpfc_sli_next_iotag - Get an iotag for the iocb
2076  * @phba: Pointer to HBA context object.
2077  * @iocbq: Pointer to driver iocb object.
2078  *
2079  * This function gets an iotag for the iocb. If there is no unused iotag and
2080  * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
2081  * array and assigns a new iotag.
2082  * The function returns the allocated iotag if successful, else returns zero.
2083  * Zero is not a valid iotag.
2084  * The caller is not required to hold any lock.
2085  **/
2086 uint16_t
2087 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
2088 {
2089 	struct lpfc_iocbq **new_arr;
2090 	struct lpfc_iocbq **old_arr;
2091 	size_t new_len;
2092 	struct lpfc_sli *psli = &phba->sli;
2093 	uint16_t iotag;
2094 
2095 	spin_lock_irq(&phba->hbalock);
2096 	iotag = psli->last_iotag;
2097 	if(++iotag < psli->iocbq_lookup_len) {
2098 		psli->last_iotag = iotag;
2099 		psli->iocbq_lookup[iotag] = iocbq;
2100 		spin_unlock_irq(&phba->hbalock);
2101 		iocbq->iotag = iotag;
2102 		return iotag;
2103 	} else if (psli->iocbq_lookup_len < (0xffff
2104 					   - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
2105 		new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
2106 		spin_unlock_irq(&phba->hbalock);
2107 		new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *),
2108 				  GFP_KERNEL);
2109 		if (new_arr) {
2110 			spin_lock_irq(&phba->hbalock);
2111 			old_arr = psli->iocbq_lookup;
2112 			if (new_len <= psli->iocbq_lookup_len) {
2113 				/* highly unprobable case */
2114 				kfree(new_arr);
2115 				iotag = psli->last_iotag;
2116 				if(++iotag < psli->iocbq_lookup_len) {
2117 					psli->last_iotag = iotag;
2118 					psli->iocbq_lookup[iotag] = iocbq;
2119 					spin_unlock_irq(&phba->hbalock);
2120 					iocbq->iotag = iotag;
2121 					return iotag;
2122 				}
2123 				spin_unlock_irq(&phba->hbalock);
2124 				return 0;
2125 			}
2126 			if (psli->iocbq_lookup)
2127 				memcpy(new_arr, old_arr,
2128 				       ((psli->last_iotag  + 1) *
2129 					sizeof (struct lpfc_iocbq *)));
2130 			psli->iocbq_lookup = new_arr;
2131 			psli->iocbq_lookup_len = new_len;
2132 			psli->last_iotag = iotag;
2133 			psli->iocbq_lookup[iotag] = iocbq;
2134 			spin_unlock_irq(&phba->hbalock);
2135 			iocbq->iotag = iotag;
2136 			kfree(old_arr);
2137 			return iotag;
2138 		}
2139 	} else
2140 		spin_unlock_irq(&phba->hbalock);
2141 
2142 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2143 			"0318 Failed to allocate IOTAG.last IOTAG is %d\n",
2144 			psli->last_iotag);
2145 
2146 	return 0;
2147 }
2148 
2149 /**
2150  * lpfc_sli_submit_iocb - Submit an iocb to the firmware
2151  * @phba: Pointer to HBA context object.
2152  * @pring: Pointer to driver SLI ring object.
2153  * @iocb: Pointer to iocb slot in the ring.
2154  * @nextiocb: Pointer to driver iocb object which need to be
2155  *            posted to firmware.
2156  *
2157  * This function is called to post a new iocb to the firmware. This
2158  * function copies the new iocb to ring iocb slot and updates the
2159  * ring pointers. It adds the new iocb to txcmplq if there is
2160  * a completion call back for this iocb else the function will free the
2161  * iocb object.  The hbalock is asserted held in the code path calling
2162  * this routine.
2163  **/
2164 static void
2165 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2166 		IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
2167 {
2168 	/*
2169 	 * Set up an iotag
2170 	 */
2171 	nextiocb->iocb.ulpIoTag = (nextiocb->cmd_cmpl) ? nextiocb->iotag : 0;
2172 
2173 
2174 	if (pring->ringno == LPFC_ELS_RING) {
2175 		lpfc_debugfs_slow_ring_trc(phba,
2176 			"IOCB cmd ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
2177 			*(((uint32_t *) &nextiocb->iocb) + 4),
2178 			*(((uint32_t *) &nextiocb->iocb) + 6),
2179 			*(((uint32_t *) &nextiocb->iocb) + 7));
2180 	}
2181 
2182 	/*
2183 	 * Issue iocb command to adapter
2184 	 */
2185 	lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
2186 	wmb();
2187 	pring->stats.iocb_cmd++;
2188 
2189 	/*
2190 	 * If there is no completion routine to call, we can release the
2191 	 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
2192 	 * that have no rsp ring completion, cmd_cmpl MUST be NULL.
2193 	 */
2194 	if (nextiocb->cmd_cmpl)
2195 		lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
2196 	else
2197 		__lpfc_sli_release_iocbq(phba, nextiocb);
2198 
2199 	/*
2200 	 * Let the HBA know what IOCB slot will be the next one the
2201 	 * driver will put a command into.
2202 	 */
2203 	pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
2204 	writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
2205 }
2206 
2207 /**
2208  * lpfc_sli_update_full_ring - Update the chip attention register
2209  * @phba: Pointer to HBA context object.
2210  * @pring: Pointer to driver SLI ring object.
2211  *
2212  * The caller is not required to hold any lock for calling this function.
2213  * This function updates the chip attention bits for the ring to inform firmware
2214  * that there are pending work to be done for this ring and requests an
2215  * interrupt when there is space available in the ring. This function is
2216  * called when the driver is unable to post more iocbs to the ring due
2217  * to unavailability of space in the ring.
2218  **/
2219 static void
2220 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2221 {
2222 	int ringno = pring->ringno;
2223 
2224 	pring->flag |= LPFC_CALL_RING_AVAILABLE;
2225 
2226 	wmb();
2227 
2228 	/*
2229 	 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
2230 	 * The HBA will tell us when an IOCB entry is available.
2231 	 */
2232 	writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
2233 	readl(phba->CAregaddr); /* flush */
2234 
2235 	pring->stats.iocb_cmd_full++;
2236 }
2237 
2238 /**
2239  * lpfc_sli_update_ring - Update chip attention register
2240  * @phba: Pointer to HBA context object.
2241  * @pring: Pointer to driver SLI ring object.
2242  *
2243  * This function updates the chip attention register bit for the
2244  * given ring to inform HBA that there is more work to be done
2245  * in this ring. The caller is not required to hold any lock.
2246  **/
2247 static void
2248 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2249 {
2250 	int ringno = pring->ringno;
2251 
2252 	/*
2253 	 * Tell the HBA that there is work to do in this ring.
2254 	 */
2255 	if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
2256 		wmb();
2257 		writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
2258 		readl(phba->CAregaddr); /* flush */
2259 	}
2260 }
2261 
2262 /**
2263  * lpfc_sli_resume_iocb - Process iocbs in the txq
2264  * @phba: Pointer to HBA context object.
2265  * @pring: Pointer to driver SLI ring object.
2266  *
2267  * This function is called with hbalock held to post pending iocbs
2268  * in the txq to the firmware. This function is called when driver
2269  * detects space available in the ring.
2270  **/
2271 static void
2272 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2273 {
2274 	IOCB_t *iocb;
2275 	struct lpfc_iocbq *nextiocb;
2276 
2277 	lockdep_assert_held(&phba->hbalock);
2278 
2279 	/*
2280 	 * Check to see if:
2281 	 *  (a) there is anything on the txq to send
2282 	 *  (b) link is up
2283 	 *  (c) link attention events can be processed (fcp ring only)
2284 	 *  (d) IOCB processing is not blocked by the outstanding mbox command.
2285 	 */
2286 
2287 	if (lpfc_is_link_up(phba) &&
2288 	    (!list_empty(&pring->txq)) &&
2289 	    (pring->ringno != LPFC_FCP_RING ||
2290 	     phba->sli.sli_flag & LPFC_PROCESS_LA)) {
2291 
2292 		while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
2293 		       (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
2294 			lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
2295 
2296 		if (iocb)
2297 			lpfc_sli_update_ring(phba, pring);
2298 		else
2299 			lpfc_sli_update_full_ring(phba, pring);
2300 	}
2301 
2302 	return;
2303 }
2304 
2305 /**
2306  * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
2307  * @phba: Pointer to HBA context object.
2308  * @hbqno: HBQ number.
2309  *
2310  * This function is called with hbalock held to get the next
2311  * available slot for the given HBQ. If there is free slot
2312  * available for the HBQ it will return pointer to the next available
2313  * HBQ entry else it will return NULL.
2314  **/
2315 static struct lpfc_hbq_entry *
2316 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
2317 {
2318 	struct hbq_s *hbqp = &phba->hbqs[hbqno];
2319 
2320 	lockdep_assert_held(&phba->hbalock);
2321 
2322 	if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
2323 	    ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
2324 		hbqp->next_hbqPutIdx = 0;
2325 
2326 	if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
2327 		uint32_t raw_index = phba->hbq_get[hbqno];
2328 		uint32_t getidx = le32_to_cpu(raw_index);
2329 
2330 		hbqp->local_hbqGetIdx = getidx;
2331 
2332 		if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
2333 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2334 					"1802 HBQ %d: local_hbqGetIdx "
2335 					"%u is > than hbqp->entry_count %u\n",
2336 					hbqno, hbqp->local_hbqGetIdx,
2337 					hbqp->entry_count);
2338 
2339 			phba->link_state = LPFC_HBA_ERROR;
2340 			return NULL;
2341 		}
2342 
2343 		if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
2344 			return NULL;
2345 	}
2346 
2347 	return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
2348 			hbqp->hbqPutIdx;
2349 }
2350 
2351 /**
2352  * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
2353  * @phba: Pointer to HBA context object.
2354  *
2355  * This function is called with no lock held to free all the
2356  * hbq buffers while uninitializing the SLI interface. It also
2357  * frees the HBQ buffers returned by the firmware but not yet
2358  * processed by the upper layers.
2359  **/
2360 void
2361 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
2362 {
2363 	struct lpfc_dmabuf *dmabuf, *next_dmabuf;
2364 	struct hbq_dmabuf *hbq_buf;
2365 	unsigned long flags;
2366 	int i, hbq_count;
2367 
2368 	hbq_count = lpfc_sli_hbq_count();
2369 	/* Return all memory used by all HBQs */
2370 	spin_lock_irqsave(&phba->hbalock, flags);
2371 	for (i = 0; i < hbq_count; ++i) {
2372 		list_for_each_entry_safe(dmabuf, next_dmabuf,
2373 				&phba->hbqs[i].hbq_buffer_list, list) {
2374 			hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
2375 			list_del(&hbq_buf->dbuf.list);
2376 			(phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
2377 		}
2378 		phba->hbqs[i].buffer_count = 0;
2379 	}
2380 
2381 	/* Mark the HBQs not in use */
2382 	phba->hbq_in_use = 0;
2383 	spin_unlock_irqrestore(&phba->hbalock, flags);
2384 }
2385 
2386 /**
2387  * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
2388  * @phba: Pointer to HBA context object.
2389  * @hbqno: HBQ number.
2390  * @hbq_buf: Pointer to HBQ buffer.
2391  *
2392  * This function is called with the hbalock held to post a
2393  * hbq buffer to the firmware. If the function finds an empty
2394  * slot in the HBQ, it will post the buffer. The function will return
2395  * pointer to the hbq entry if it successfully post the buffer
2396  * else it will return NULL.
2397  **/
2398 static int
2399 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
2400 			 struct hbq_dmabuf *hbq_buf)
2401 {
2402 	lockdep_assert_held(&phba->hbalock);
2403 	return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
2404 }
2405 
2406 /**
2407  * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
2408  * @phba: Pointer to HBA context object.
2409  * @hbqno: HBQ number.
2410  * @hbq_buf: Pointer to HBQ buffer.
2411  *
2412  * This function is called with the hbalock held to post a hbq buffer to the
2413  * firmware. If the function finds an empty slot in the HBQ, it will post the
2414  * buffer and place it on the hbq_buffer_list. The function will return zero if
2415  * it successfully post the buffer else it will return an error.
2416  **/
2417 static int
2418 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
2419 			    struct hbq_dmabuf *hbq_buf)
2420 {
2421 	struct lpfc_hbq_entry *hbqe;
2422 	dma_addr_t physaddr = hbq_buf->dbuf.phys;
2423 
2424 	lockdep_assert_held(&phba->hbalock);
2425 	/* Get next HBQ entry slot to use */
2426 	hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
2427 	if (hbqe) {
2428 		struct hbq_s *hbqp = &phba->hbqs[hbqno];
2429 
2430 		hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
2431 		hbqe->bde.addrLow  = le32_to_cpu(putPaddrLow(physaddr));
2432 		hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
2433 		hbqe->bde.tus.f.bdeFlags = 0;
2434 		hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
2435 		hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
2436 				/* Sync SLIM */
2437 		hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
2438 		writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
2439 				/* flush */
2440 		readl(phba->hbq_put + hbqno);
2441 		list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
2442 		return 0;
2443 	} else
2444 		return -ENOMEM;
2445 }
2446 
2447 /**
2448  * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
2449  * @phba: Pointer to HBA context object.
2450  * @hbqno: HBQ number.
2451  * @hbq_buf: Pointer to HBQ buffer.
2452  *
2453  * This function is called with the hbalock held to post an RQE to the SLI4
2454  * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
2455  * the hbq_buffer_list and return zero, otherwise it will return an error.
2456  **/
2457 static int
2458 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
2459 			    struct hbq_dmabuf *hbq_buf)
2460 {
2461 	int rc;
2462 	struct lpfc_rqe hrqe;
2463 	struct lpfc_rqe drqe;
2464 	struct lpfc_queue *hrq;
2465 	struct lpfc_queue *drq;
2466 
2467 	if (hbqno != LPFC_ELS_HBQ)
2468 		return 1;
2469 	hrq = phba->sli4_hba.hdr_rq;
2470 	drq = phba->sli4_hba.dat_rq;
2471 
2472 	lockdep_assert_held(&phba->hbalock);
2473 	hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
2474 	hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
2475 	drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
2476 	drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
2477 	rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
2478 	if (rc < 0)
2479 		return rc;
2480 	hbq_buf->tag = (rc | (hbqno << 16));
2481 	list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
2482 	return 0;
2483 }
2484 
2485 /* HBQ for ELS and CT traffic. */
2486 static struct lpfc_hbq_init lpfc_els_hbq = {
2487 	.rn = 1,
2488 	.entry_count = 256,
2489 	.mask_count = 0,
2490 	.profile = 0,
2491 	.ring_mask = (1 << LPFC_ELS_RING),
2492 	.buffer_count = 0,
2493 	.init_count = 40,
2494 	.add_count = 40,
2495 };
2496 
2497 /* Array of HBQs */
2498 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
2499 	&lpfc_els_hbq,
2500 };
2501 
2502 /**
2503  * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
2504  * @phba: Pointer to HBA context object.
2505  * @hbqno: HBQ number.
2506  * @count: Number of HBQ buffers to be posted.
2507  *
2508  * This function is called with no lock held to post more hbq buffers to the
2509  * given HBQ. The function returns the number of HBQ buffers successfully
2510  * posted.
2511  **/
2512 static int
2513 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
2514 {
2515 	uint32_t i, posted = 0;
2516 	unsigned long flags;
2517 	struct hbq_dmabuf *hbq_buffer;
2518 	LIST_HEAD(hbq_buf_list);
2519 	if (!phba->hbqs[hbqno].hbq_alloc_buffer)
2520 		return 0;
2521 
2522 	if ((phba->hbqs[hbqno].buffer_count + count) >
2523 	    lpfc_hbq_defs[hbqno]->entry_count)
2524 		count = lpfc_hbq_defs[hbqno]->entry_count -
2525 					phba->hbqs[hbqno].buffer_count;
2526 	if (!count)
2527 		return 0;
2528 	/* Allocate HBQ entries */
2529 	for (i = 0; i < count; i++) {
2530 		hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
2531 		if (!hbq_buffer)
2532 			break;
2533 		list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
2534 	}
2535 	/* Check whether HBQ is still in use */
2536 	spin_lock_irqsave(&phba->hbalock, flags);
2537 	if (!phba->hbq_in_use)
2538 		goto err;
2539 	while (!list_empty(&hbq_buf_list)) {
2540 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2541 				 dbuf.list);
2542 		hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
2543 				      (hbqno << 16));
2544 		if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
2545 			phba->hbqs[hbqno].buffer_count++;
2546 			posted++;
2547 		} else
2548 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2549 	}
2550 	spin_unlock_irqrestore(&phba->hbalock, flags);
2551 	return posted;
2552 err:
2553 	spin_unlock_irqrestore(&phba->hbalock, flags);
2554 	while (!list_empty(&hbq_buf_list)) {
2555 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2556 				 dbuf.list);
2557 		(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2558 	}
2559 	return 0;
2560 }
2561 
2562 /**
2563  * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
2564  * @phba: Pointer to HBA context object.
2565  * @qno: HBQ number.
2566  *
2567  * This function posts more buffers to the HBQ. This function
2568  * is called with no lock held. The function returns the number of HBQ entries
2569  * successfully allocated.
2570  **/
2571 int
2572 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
2573 {
2574 	if (phba->sli_rev == LPFC_SLI_REV4)
2575 		return 0;
2576 	else
2577 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2578 					 lpfc_hbq_defs[qno]->add_count);
2579 }
2580 
2581 /**
2582  * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
2583  * @phba: Pointer to HBA context object.
2584  * @qno:  HBQ queue number.
2585  *
2586  * This function is called from SLI initialization code path with
2587  * no lock held to post initial HBQ buffers to firmware. The
2588  * function returns the number of HBQ entries successfully allocated.
2589  **/
2590 static int
2591 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
2592 {
2593 	if (phba->sli_rev == LPFC_SLI_REV4)
2594 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2595 					lpfc_hbq_defs[qno]->entry_count);
2596 	else
2597 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2598 					 lpfc_hbq_defs[qno]->init_count);
2599 }
2600 
2601 /*
2602  * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
2603  *
2604  * This function removes the first hbq buffer on an hbq list and returns a
2605  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2606  **/
2607 static struct hbq_dmabuf *
2608 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
2609 {
2610 	struct lpfc_dmabuf *d_buf;
2611 
2612 	list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
2613 	if (!d_buf)
2614 		return NULL;
2615 	return container_of(d_buf, struct hbq_dmabuf, dbuf);
2616 }
2617 
2618 /**
2619  * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
2620  * @phba: Pointer to HBA context object.
2621  * @hrq: HBQ number.
2622  *
2623  * This function removes the first RQ buffer on an RQ buffer list and returns a
2624  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2625  **/
2626 static struct rqb_dmabuf *
2627 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
2628 {
2629 	struct lpfc_dmabuf *h_buf;
2630 	struct lpfc_rqb *rqbp;
2631 
2632 	rqbp = hrq->rqbp;
2633 	list_remove_head(&rqbp->rqb_buffer_list, h_buf,
2634 			 struct lpfc_dmabuf, list);
2635 	if (!h_buf)
2636 		return NULL;
2637 	rqbp->buffer_count--;
2638 	return container_of(h_buf, struct rqb_dmabuf, hbuf);
2639 }
2640 
2641 /**
2642  * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2643  * @phba: Pointer to HBA context object.
2644  * @tag: Tag of the hbq buffer.
2645  *
2646  * This function searches for the hbq buffer associated with the given tag in
2647  * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2648  * otherwise it returns NULL.
2649  **/
2650 static struct hbq_dmabuf *
2651 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2652 {
2653 	struct lpfc_dmabuf *d_buf;
2654 	struct hbq_dmabuf *hbq_buf;
2655 	uint32_t hbqno;
2656 
2657 	hbqno = tag >> 16;
2658 	if (hbqno >= LPFC_MAX_HBQS)
2659 		return NULL;
2660 
2661 	spin_lock_irq(&phba->hbalock);
2662 	list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2663 		hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2664 		if (hbq_buf->tag == tag) {
2665 			spin_unlock_irq(&phba->hbalock);
2666 			return hbq_buf;
2667 		}
2668 	}
2669 	spin_unlock_irq(&phba->hbalock);
2670 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2671 			"1803 Bad hbq tag. Data: x%x x%x\n",
2672 			tag, phba->hbqs[tag >> 16].buffer_count);
2673 	return NULL;
2674 }
2675 
2676 /**
2677  * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2678  * @phba: Pointer to HBA context object.
2679  * @hbq_buffer: Pointer to HBQ buffer.
2680  *
2681  * This function is called with hbalock. This function gives back
2682  * the hbq buffer to firmware. If the HBQ does not have space to
2683  * post the buffer, it will free the buffer.
2684  **/
2685 void
2686 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2687 {
2688 	uint32_t hbqno;
2689 
2690 	if (hbq_buffer) {
2691 		hbqno = hbq_buffer->tag >> 16;
2692 		if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2693 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2694 	}
2695 }
2696 
2697 /**
2698  * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2699  * @mbxCommand: mailbox command code.
2700  *
2701  * This function is called by the mailbox event handler function to verify
2702  * that the completed mailbox command is a legitimate mailbox command. If the
2703  * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2704  * and the mailbox event handler will take the HBA offline.
2705  **/
2706 static int
2707 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2708 {
2709 	uint8_t ret;
2710 
2711 	switch (mbxCommand) {
2712 	case MBX_LOAD_SM:
2713 	case MBX_READ_NV:
2714 	case MBX_WRITE_NV:
2715 	case MBX_WRITE_VPARMS:
2716 	case MBX_RUN_BIU_DIAG:
2717 	case MBX_INIT_LINK:
2718 	case MBX_DOWN_LINK:
2719 	case MBX_CONFIG_LINK:
2720 	case MBX_CONFIG_RING:
2721 	case MBX_RESET_RING:
2722 	case MBX_READ_CONFIG:
2723 	case MBX_READ_RCONFIG:
2724 	case MBX_READ_SPARM:
2725 	case MBX_READ_STATUS:
2726 	case MBX_READ_RPI:
2727 	case MBX_READ_XRI:
2728 	case MBX_READ_REV:
2729 	case MBX_READ_LNK_STAT:
2730 	case MBX_REG_LOGIN:
2731 	case MBX_UNREG_LOGIN:
2732 	case MBX_CLEAR_LA:
2733 	case MBX_DUMP_MEMORY:
2734 	case MBX_DUMP_CONTEXT:
2735 	case MBX_RUN_DIAGS:
2736 	case MBX_RESTART:
2737 	case MBX_UPDATE_CFG:
2738 	case MBX_DOWN_LOAD:
2739 	case MBX_DEL_LD_ENTRY:
2740 	case MBX_RUN_PROGRAM:
2741 	case MBX_SET_MASK:
2742 	case MBX_SET_VARIABLE:
2743 	case MBX_UNREG_D_ID:
2744 	case MBX_KILL_BOARD:
2745 	case MBX_CONFIG_FARP:
2746 	case MBX_BEACON:
2747 	case MBX_LOAD_AREA:
2748 	case MBX_RUN_BIU_DIAG64:
2749 	case MBX_CONFIG_PORT:
2750 	case MBX_READ_SPARM64:
2751 	case MBX_READ_RPI64:
2752 	case MBX_REG_LOGIN64:
2753 	case MBX_READ_TOPOLOGY:
2754 	case MBX_WRITE_WWN:
2755 	case MBX_SET_DEBUG:
2756 	case MBX_LOAD_EXP_ROM:
2757 	case MBX_ASYNCEVT_ENABLE:
2758 	case MBX_REG_VPI:
2759 	case MBX_UNREG_VPI:
2760 	case MBX_HEARTBEAT:
2761 	case MBX_PORT_CAPABILITIES:
2762 	case MBX_PORT_IOV_CONTROL:
2763 	case MBX_SLI4_CONFIG:
2764 	case MBX_SLI4_REQ_FTRS:
2765 	case MBX_REG_FCFI:
2766 	case MBX_UNREG_FCFI:
2767 	case MBX_REG_VFI:
2768 	case MBX_UNREG_VFI:
2769 	case MBX_INIT_VPI:
2770 	case MBX_INIT_VFI:
2771 	case MBX_RESUME_RPI:
2772 	case MBX_READ_EVENT_LOG_STATUS:
2773 	case MBX_READ_EVENT_LOG:
2774 	case MBX_SECURITY_MGMT:
2775 	case MBX_AUTH_PORT:
2776 	case MBX_ACCESS_VDATA:
2777 		ret = mbxCommand;
2778 		break;
2779 	default:
2780 		ret = MBX_SHUTDOWN;
2781 		break;
2782 	}
2783 	return ret;
2784 }
2785 
2786 /**
2787  * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2788  * @phba: Pointer to HBA context object.
2789  * @pmboxq: Pointer to mailbox command.
2790  *
2791  * This is completion handler function for mailbox commands issued from
2792  * lpfc_sli_issue_mbox_wait function. This function is called by the
2793  * mailbox event handler function with no lock held. This function
2794  * will wake up thread waiting on the wait queue pointed by context1
2795  * of the mailbox.
2796  **/
2797 void
2798 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2799 {
2800 	unsigned long drvr_flag;
2801 	struct completion *pmbox_done;
2802 
2803 	/*
2804 	 * If pmbox_done is empty, the driver thread gave up waiting and
2805 	 * continued running.
2806 	 */
2807 	pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2808 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
2809 	pmbox_done = (struct completion *)pmboxq->context3;
2810 	if (pmbox_done)
2811 		complete(pmbox_done);
2812 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2813 	return;
2814 }
2815 
2816 static void
2817 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
2818 {
2819 	unsigned long iflags;
2820 
2821 	if (ndlp->nlp_flag & NLP_RELEASE_RPI) {
2822 		lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi);
2823 		spin_lock_irqsave(&ndlp->lock, iflags);
2824 		ndlp->nlp_flag &= ~NLP_RELEASE_RPI;
2825 		ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
2826 		spin_unlock_irqrestore(&ndlp->lock, iflags);
2827 	}
2828 	ndlp->nlp_flag &= ~NLP_UNREG_INP;
2829 }
2830 
2831 /**
2832  * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2833  * @phba: Pointer to HBA context object.
2834  * @pmb: Pointer to mailbox object.
2835  *
2836  * This function is the default mailbox completion handler. It
2837  * frees the memory resources associated with the completed mailbox
2838  * command. If the completed command is a REG_LOGIN mailbox command,
2839  * this function will issue a UREG_LOGIN to re-claim the RPI.
2840  **/
2841 void
2842 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2843 {
2844 	struct lpfc_vport  *vport = pmb->vport;
2845 	struct lpfc_dmabuf *mp;
2846 	struct lpfc_nodelist *ndlp;
2847 	struct Scsi_Host *shost;
2848 	uint16_t rpi, vpi;
2849 	int rc;
2850 
2851 	mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
2852 
2853 	if (mp) {
2854 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
2855 		kfree(mp);
2856 	}
2857 
2858 	/*
2859 	 * If a REG_LOGIN succeeded  after node is destroyed or node
2860 	 * is in re-discovery driver need to cleanup the RPI.
2861 	 */
2862 	if (!(phba->pport->load_flag & FC_UNLOADING) &&
2863 	    pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2864 	    !pmb->u.mb.mbxStatus) {
2865 		rpi = pmb->u.mb.un.varWords[0];
2866 		vpi = pmb->u.mb.un.varRegLogin.vpi;
2867 		if (phba->sli_rev == LPFC_SLI_REV4)
2868 			vpi -= phba->sli4_hba.max_cfg_param.vpi_base;
2869 		lpfc_unreg_login(phba, vpi, rpi, pmb);
2870 		pmb->vport = vport;
2871 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2872 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2873 		if (rc != MBX_NOT_FINISHED)
2874 			return;
2875 	}
2876 
2877 	if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2878 		!(phba->pport->load_flag & FC_UNLOADING) &&
2879 		!pmb->u.mb.mbxStatus) {
2880 		shost = lpfc_shost_from_vport(vport);
2881 		spin_lock_irq(shost->host_lock);
2882 		vport->vpi_state |= LPFC_VPI_REGISTERED;
2883 		vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
2884 		spin_unlock_irq(shost->host_lock);
2885 	}
2886 
2887 	if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2888 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2889 		lpfc_nlp_put(ndlp);
2890 		pmb->ctx_buf = NULL;
2891 		pmb->ctx_ndlp = NULL;
2892 	}
2893 
2894 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2895 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2896 
2897 		/* Check to see if there are any deferred events to process */
2898 		if (ndlp) {
2899 			lpfc_printf_vlog(
2900 				vport,
2901 				KERN_INFO, LOG_MBOX | LOG_DISCOVERY,
2902 				"1438 UNREG cmpl deferred mbox x%x "
2903 				"on NPort x%x Data: x%x x%x x%px x%x x%x\n",
2904 				ndlp->nlp_rpi, ndlp->nlp_DID,
2905 				ndlp->nlp_flag, ndlp->nlp_defer_did,
2906 				ndlp, vport->load_flag, kref_read(&ndlp->kref));
2907 
2908 			if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2909 			    (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) {
2910 				ndlp->nlp_flag &= ~NLP_UNREG_INP;
2911 				ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING;
2912 				lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
2913 			} else {
2914 				__lpfc_sli_rpi_release(vport, ndlp);
2915 			}
2916 
2917 			/* The unreg_login mailbox is complete and had a
2918 			 * reference that has to be released.  The PLOGI
2919 			 * got its own ref.
2920 			 */
2921 			lpfc_nlp_put(ndlp);
2922 			pmb->ctx_ndlp = NULL;
2923 		}
2924 	}
2925 
2926 	/* This nlp_put pairs with lpfc_sli4_resume_rpi */
2927 	if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) {
2928 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2929 		lpfc_nlp_put(ndlp);
2930 	}
2931 
2932 	/* Check security permission status on INIT_LINK mailbox command */
2933 	if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2934 	    (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2935 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2936 				"2860 SLI authentication is required "
2937 				"for INIT_LINK but has not done yet\n");
2938 
2939 	if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2940 		lpfc_sli4_mbox_cmd_free(phba, pmb);
2941 	else
2942 		mempool_free(pmb, phba->mbox_mem_pool);
2943 }
2944  /**
2945  * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2946  * @phba: Pointer to HBA context object.
2947  * @pmb: Pointer to mailbox object.
2948  *
2949  * This function is the unreg rpi mailbox completion handler. It
2950  * frees the memory resources associated with the completed mailbox
2951  * command. An additional reference is put on the ndlp to prevent
2952  * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2953  * the unreg mailbox command completes, this routine puts the
2954  * reference back.
2955  *
2956  **/
2957 void
2958 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2959 {
2960 	struct lpfc_vport  *vport = pmb->vport;
2961 	struct lpfc_nodelist *ndlp;
2962 
2963 	ndlp = pmb->ctx_ndlp;
2964 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2965 		if (phba->sli_rev == LPFC_SLI_REV4 &&
2966 		    (bf_get(lpfc_sli_intf_if_type,
2967 		     &phba->sli4_hba.sli_intf) >=
2968 		     LPFC_SLI_INTF_IF_TYPE_2)) {
2969 			if (ndlp) {
2970 				lpfc_printf_vlog(
2971 					 vport, KERN_INFO, LOG_MBOX | LOG_SLI,
2972 					 "0010 UNREG_LOGIN vpi:%x "
2973 					 "rpi:%x DID:%x defer x%x flg x%x "
2974 					 "x%px\n",
2975 					 vport->vpi, ndlp->nlp_rpi,
2976 					 ndlp->nlp_DID, ndlp->nlp_defer_did,
2977 					 ndlp->nlp_flag,
2978 					 ndlp);
2979 				ndlp->nlp_flag &= ~NLP_LOGO_ACC;
2980 
2981 				/* Check to see if there are any deferred
2982 				 * events to process
2983 				 */
2984 				if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2985 				    (ndlp->nlp_defer_did !=
2986 				    NLP_EVT_NOTHING_PENDING)) {
2987 					lpfc_printf_vlog(
2988 						vport, KERN_INFO, LOG_DISCOVERY,
2989 						"4111 UNREG cmpl deferred "
2990 						"clr x%x on "
2991 						"NPort x%x Data: x%x x%px\n",
2992 						ndlp->nlp_rpi, ndlp->nlp_DID,
2993 						ndlp->nlp_defer_did, ndlp);
2994 					ndlp->nlp_flag &= ~NLP_UNREG_INP;
2995 					ndlp->nlp_defer_did =
2996 						NLP_EVT_NOTHING_PENDING;
2997 					lpfc_issue_els_plogi(
2998 						vport, ndlp->nlp_DID, 0);
2999 				} else {
3000 					__lpfc_sli_rpi_release(vport, ndlp);
3001 				}
3002 				lpfc_nlp_put(ndlp);
3003 			}
3004 		}
3005 	}
3006 
3007 	mempool_free(pmb, phba->mbox_mem_pool);
3008 }
3009 
3010 /**
3011  * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
3012  * @phba: Pointer to HBA context object.
3013  *
3014  * This function is called with no lock held. This function processes all
3015  * the completed mailbox commands and gives it to upper layers. The interrupt
3016  * service routine processes mailbox completion interrupt and adds completed
3017  * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
3018  * Worker thread call lpfc_sli_handle_mb_event, which will return the
3019  * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
3020  * function returns the mailbox commands to the upper layer by calling the
3021  * completion handler function of each mailbox.
3022  **/
3023 int
3024 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
3025 {
3026 	MAILBOX_t *pmbox;
3027 	LPFC_MBOXQ_t *pmb;
3028 	int rc;
3029 	LIST_HEAD(cmplq);
3030 
3031 	phba->sli.slistat.mbox_event++;
3032 
3033 	/* Get all completed mailboxe buffers into the cmplq */
3034 	spin_lock_irq(&phba->hbalock);
3035 	list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
3036 	spin_unlock_irq(&phba->hbalock);
3037 
3038 	/* Get a Mailbox buffer to setup mailbox commands for callback */
3039 	do {
3040 		list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
3041 		if (pmb == NULL)
3042 			break;
3043 
3044 		pmbox = &pmb->u.mb;
3045 
3046 		if (pmbox->mbxCommand != MBX_HEARTBEAT) {
3047 			if (pmb->vport) {
3048 				lpfc_debugfs_disc_trc(pmb->vport,
3049 					LPFC_DISC_TRC_MBOX_VPORT,
3050 					"MBOX cmpl vport: cmd:x%x mb:x%x x%x",
3051 					(uint32_t)pmbox->mbxCommand,
3052 					pmbox->un.varWords[0],
3053 					pmbox->un.varWords[1]);
3054 			}
3055 			else {
3056 				lpfc_debugfs_disc_trc(phba->pport,
3057 					LPFC_DISC_TRC_MBOX,
3058 					"MBOX cmpl:       cmd:x%x mb:x%x x%x",
3059 					(uint32_t)pmbox->mbxCommand,
3060 					pmbox->un.varWords[0],
3061 					pmbox->un.varWords[1]);
3062 			}
3063 		}
3064 
3065 		/*
3066 		 * It is a fatal error if unknown mbox command completion.
3067 		 */
3068 		if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
3069 		    MBX_SHUTDOWN) {
3070 			/* Unknown mailbox command compl */
3071 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3072 					"(%d):0323 Unknown Mailbox command "
3073 					"x%x (x%x/x%x) Cmpl\n",
3074 					pmb->vport ? pmb->vport->vpi :
3075 					LPFC_VPORT_UNKNOWN,
3076 					pmbox->mbxCommand,
3077 					lpfc_sli_config_mbox_subsys_get(phba,
3078 									pmb),
3079 					lpfc_sli_config_mbox_opcode_get(phba,
3080 									pmb));
3081 			phba->link_state = LPFC_HBA_ERROR;
3082 			phba->work_hs = HS_FFER3;
3083 			lpfc_handle_eratt(phba);
3084 			continue;
3085 		}
3086 
3087 		if (pmbox->mbxStatus) {
3088 			phba->sli.slistat.mbox_stat_err++;
3089 			if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
3090 				/* Mbox cmd cmpl error - RETRYing */
3091 				lpfc_printf_log(phba, KERN_INFO,
3092 					LOG_MBOX | LOG_SLI,
3093 					"(%d):0305 Mbox cmd cmpl "
3094 					"error - RETRYing Data: x%x "
3095 					"(x%x/x%x) x%x x%x x%x\n",
3096 					pmb->vport ? pmb->vport->vpi :
3097 					LPFC_VPORT_UNKNOWN,
3098 					pmbox->mbxCommand,
3099 					lpfc_sli_config_mbox_subsys_get(phba,
3100 									pmb),
3101 					lpfc_sli_config_mbox_opcode_get(phba,
3102 									pmb),
3103 					pmbox->mbxStatus,
3104 					pmbox->un.varWords[0],
3105 					pmb->vport ? pmb->vport->port_state :
3106 					LPFC_VPORT_UNKNOWN);
3107 				pmbox->mbxStatus = 0;
3108 				pmbox->mbxOwner = OWN_HOST;
3109 				rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
3110 				if (rc != MBX_NOT_FINISHED)
3111 					continue;
3112 			}
3113 		}
3114 
3115 		/* Mailbox cmd <cmd> Cmpl <cmpl> */
3116 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
3117 				"(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps "
3118 				"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
3119 				"x%x x%x x%x\n",
3120 				pmb->vport ? pmb->vport->vpi : 0,
3121 				pmbox->mbxCommand,
3122 				lpfc_sli_config_mbox_subsys_get(phba, pmb),
3123 				lpfc_sli_config_mbox_opcode_get(phba, pmb),
3124 				pmb->mbox_cmpl,
3125 				*((uint32_t *) pmbox),
3126 				pmbox->un.varWords[0],
3127 				pmbox->un.varWords[1],
3128 				pmbox->un.varWords[2],
3129 				pmbox->un.varWords[3],
3130 				pmbox->un.varWords[4],
3131 				pmbox->un.varWords[5],
3132 				pmbox->un.varWords[6],
3133 				pmbox->un.varWords[7],
3134 				pmbox->un.varWords[8],
3135 				pmbox->un.varWords[9],
3136 				pmbox->un.varWords[10]);
3137 
3138 		if (pmb->mbox_cmpl)
3139 			pmb->mbox_cmpl(phba,pmb);
3140 	} while (1);
3141 	return 0;
3142 }
3143 
3144 /**
3145  * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
3146  * @phba: Pointer to HBA context object.
3147  * @pring: Pointer to driver SLI ring object.
3148  * @tag: buffer tag.
3149  *
3150  * This function is called with no lock held. When QUE_BUFTAG_BIT bit
3151  * is set in the tag the buffer is posted for a particular exchange,
3152  * the function will return the buffer without replacing the buffer.
3153  * If the buffer is for unsolicited ELS or CT traffic, this function
3154  * returns the buffer and also posts another buffer to the firmware.
3155  **/
3156 static struct lpfc_dmabuf *
3157 lpfc_sli_get_buff(struct lpfc_hba *phba,
3158 		  struct lpfc_sli_ring *pring,
3159 		  uint32_t tag)
3160 {
3161 	struct hbq_dmabuf *hbq_entry;
3162 
3163 	if (tag & QUE_BUFTAG_BIT)
3164 		return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
3165 	hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
3166 	if (!hbq_entry)
3167 		return NULL;
3168 	return &hbq_entry->dbuf;
3169 }
3170 
3171 /**
3172  * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer
3173  *                              containing a NVME LS request.
3174  * @phba: pointer to lpfc hba data structure.
3175  * @piocb: pointer to the iocbq struct representing the sequence starting
3176  *        frame.
3177  *
3178  * This routine initially validates the NVME LS, validates there is a login
3179  * with the port that sent the LS, and then calls the appropriate nvme host
3180  * or target LS request handler.
3181  **/
3182 static void
3183 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
3184 {
3185 	struct lpfc_nodelist *ndlp;
3186 	struct lpfc_dmabuf *d_buf;
3187 	struct hbq_dmabuf *nvmebuf;
3188 	struct fc_frame_header *fc_hdr;
3189 	struct lpfc_async_xchg_ctx *axchg = NULL;
3190 	char *failwhy = NULL;
3191 	uint32_t oxid, sid, did, fctl, size;
3192 	int ret = 1;
3193 
3194 	d_buf = piocb->context2;
3195 
3196 	nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
3197 	fc_hdr = nvmebuf->hbuf.virt;
3198 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
3199 	sid = sli4_sid_from_fc_hdr(fc_hdr);
3200 	did = sli4_did_from_fc_hdr(fc_hdr);
3201 	fctl = (fc_hdr->fh_f_ctl[0] << 16 |
3202 		fc_hdr->fh_f_ctl[1] << 8 |
3203 		fc_hdr->fh_f_ctl[2]);
3204 	size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl);
3205 
3206 	lpfc_nvmeio_data(phba, "NVME LS    RCV: xri x%x sz %d from %06x\n",
3207 			 oxid, size, sid);
3208 
3209 	if (phba->pport->load_flag & FC_UNLOADING) {
3210 		failwhy = "Driver Unloading";
3211 	} else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) {
3212 		failwhy = "NVME FC4 Disabled";
3213 	} else if (!phba->nvmet_support && !phba->pport->localport) {
3214 		failwhy = "No Localport";
3215 	} else if (phba->nvmet_support && !phba->targetport) {
3216 		failwhy = "No Targetport";
3217 	} else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) {
3218 		failwhy = "Bad NVME LS R_CTL";
3219 	} else if (unlikely((fctl & 0x00FF0000) !=
3220 			(FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) {
3221 		failwhy = "Bad NVME LS F_CTL";
3222 	} else {
3223 		axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC);
3224 		if (!axchg)
3225 			failwhy = "No CTX memory";
3226 	}
3227 
3228 	if (unlikely(failwhy)) {
3229 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3230 				"6154 Drop NVME LS: SID %06X OXID x%X: %s\n",
3231 				sid, oxid, failwhy);
3232 		goto out_fail;
3233 	}
3234 
3235 	/* validate the source of the LS is logged in */
3236 	ndlp = lpfc_findnode_did(phba->pport, sid);
3237 	if (!ndlp ||
3238 	    ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
3239 	     (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
3240 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
3241 				"6216 NVME Unsol rcv: No ndlp: "
3242 				"NPort_ID x%x oxid x%x\n",
3243 				sid, oxid);
3244 		goto out_fail;
3245 	}
3246 
3247 	axchg->phba = phba;
3248 	axchg->ndlp = ndlp;
3249 	axchg->size = size;
3250 	axchg->oxid = oxid;
3251 	axchg->sid = sid;
3252 	axchg->wqeq = NULL;
3253 	axchg->state = LPFC_NVME_STE_LS_RCV;
3254 	axchg->entry_cnt = 1;
3255 	axchg->rqb_buffer = (void *)nvmebuf;
3256 	axchg->hdwq = &phba->sli4_hba.hdwq[0];
3257 	axchg->payload = nvmebuf->dbuf.virt;
3258 	INIT_LIST_HEAD(&axchg->list);
3259 
3260 	if (phba->nvmet_support) {
3261 		ret = lpfc_nvmet_handle_lsreq(phba, axchg);
3262 		spin_lock_irq(&ndlp->lock);
3263 		if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) {
3264 			ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH;
3265 			spin_unlock_irq(&ndlp->lock);
3266 
3267 			/* This reference is a single occurrence to hold the
3268 			 * node valid until the nvmet transport calls
3269 			 * host_release.
3270 			 */
3271 			if (!lpfc_nlp_get(ndlp))
3272 				goto out_fail;
3273 
3274 			lpfc_printf_log(phba, KERN_ERR, LOG_NODE,
3275 					"6206 NVMET unsol ls_req ndlp x%px "
3276 					"DID x%x xflags x%x refcnt %d\n",
3277 					ndlp, ndlp->nlp_DID,
3278 					ndlp->fc4_xpt_flags,
3279 					kref_read(&ndlp->kref));
3280 		} else {
3281 			spin_unlock_irq(&ndlp->lock);
3282 		}
3283 	} else {
3284 		ret = lpfc_nvme_handle_lsreq(phba, axchg);
3285 	}
3286 
3287 	/* if zero, LS was successfully handled. If non-zero, LS not handled */
3288 	if (!ret)
3289 		return;
3290 
3291 out_fail:
3292 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3293 			"6155 Drop NVME LS from DID %06X: SID %06X OXID x%X "
3294 			"NVMe%s handler failed %d\n",
3295 			did, sid, oxid,
3296 			(phba->nvmet_support) ? "T" : "I", ret);
3297 
3298 	/* recycle receive buffer */
3299 	lpfc_in_buf_free(phba, &nvmebuf->dbuf);
3300 
3301 	/* If start of new exchange, abort it */
3302 	if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX)))
3303 		ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid);
3304 
3305 	if (ret)
3306 		kfree(axchg);
3307 }
3308 
3309 /**
3310  * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
3311  * @phba: Pointer to HBA context object.
3312  * @pring: Pointer to driver SLI ring object.
3313  * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
3314  * @fch_r_ctl: the r_ctl for the first frame of the sequence.
3315  * @fch_type: the type for the first frame of the sequence.
3316  *
3317  * This function is called with no lock held. This function uses the r_ctl and
3318  * type of the received sequence to find the correct callback function to call
3319  * to process the sequence.
3320  **/
3321 static int
3322 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3323 			 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
3324 			 uint32_t fch_type)
3325 {
3326 	int i;
3327 
3328 	switch (fch_type) {
3329 	case FC_TYPE_NVME:
3330 		lpfc_nvme_unsol_ls_handler(phba, saveq);
3331 		return 1;
3332 	default:
3333 		break;
3334 	}
3335 
3336 	/* unSolicited Responses */
3337 	if (pring->prt[0].profile) {
3338 		if (pring->prt[0].lpfc_sli_rcv_unsol_event)
3339 			(pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
3340 									saveq);
3341 		return 1;
3342 	}
3343 	/* We must search, based on rctl / type
3344 	   for the right routine */
3345 	for (i = 0; i < pring->num_mask; i++) {
3346 		if ((pring->prt[i].rctl == fch_r_ctl) &&
3347 		    (pring->prt[i].type == fch_type)) {
3348 			if (pring->prt[i].lpfc_sli_rcv_unsol_event)
3349 				(pring->prt[i].lpfc_sli_rcv_unsol_event)
3350 						(phba, pring, saveq);
3351 			return 1;
3352 		}
3353 	}
3354 	return 0;
3355 }
3356 
3357 static void
3358 lpfc_sli_prep_unsol_wqe(struct lpfc_hba *phba,
3359 			struct lpfc_iocbq *saveq)
3360 {
3361 	IOCB_t *irsp;
3362 	union lpfc_wqe128 *wqe;
3363 	u16 i = 0;
3364 
3365 	irsp = &saveq->iocb;
3366 	wqe = &saveq->wqe;
3367 
3368 	/* Fill wcqe with the IOCB status fields */
3369 	bf_set(lpfc_wcqe_c_status, &saveq->wcqe_cmpl, irsp->ulpStatus);
3370 	saveq->wcqe_cmpl.word3 = irsp->ulpBdeCount;
3371 	saveq->wcqe_cmpl.parameter = irsp->un.ulpWord[4];
3372 	saveq->wcqe_cmpl.total_data_placed = irsp->unsli3.rcvsli3.acc_len;
3373 
3374 	/* Source ID */
3375 	bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, irsp->un.rcvels.parmRo);
3376 
3377 	/* rx-id of the response frame */
3378 	bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, irsp->ulpContext);
3379 
3380 	/* ox-id of the frame */
3381 	bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
3382 	       irsp->unsli3.rcvsli3.ox_id);
3383 
3384 	/* DID */
3385 	bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
3386 	       irsp->un.rcvels.remoteID);
3387 
3388 	/* unsol data len */
3389 	for (i = 0; i < irsp->ulpBdeCount; i++) {
3390 		struct lpfc_hbq_entry *hbqe = NULL;
3391 
3392 		if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
3393 			if (i == 0) {
3394 				hbqe = (struct lpfc_hbq_entry *)
3395 					&irsp->un.ulpWord[0];
3396 				saveq->wqe.gen_req.bde.tus.f.bdeSize =
3397 					hbqe->bde.tus.f.bdeSize;
3398 			} else if (i == 1) {
3399 				hbqe = (struct lpfc_hbq_entry *)
3400 					&irsp->unsli3.sli3Words[4];
3401 				saveq->unsol_rcv_len = hbqe->bde.tus.f.bdeSize;
3402 			}
3403 		}
3404 	}
3405 }
3406 
3407 /**
3408  * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
3409  * @phba: Pointer to HBA context object.
3410  * @pring: Pointer to driver SLI ring object.
3411  * @saveq: Pointer to the unsolicited iocb.
3412  *
3413  * This function is called with no lock held by the ring event handler
3414  * when there is an unsolicited iocb posted to the response ring by the
3415  * firmware. This function gets the buffer associated with the iocbs
3416  * and calls the event handler for the ring. This function handles both
3417  * qring buffers and hbq buffers.
3418  * When the function returns 1 the caller can free the iocb object otherwise
3419  * upper layer functions will free the iocb objects.
3420  **/
3421 static int
3422 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3423 			    struct lpfc_iocbq *saveq)
3424 {
3425 	IOCB_t           * irsp;
3426 	WORD5            * w5p;
3427 	dma_addr_t	 paddr;
3428 	uint32_t           Rctl, Type;
3429 	struct lpfc_iocbq *iocbq;
3430 	struct lpfc_dmabuf *dmzbuf;
3431 
3432 	irsp = &saveq->iocb;
3433 	saveq->vport = phba->pport;
3434 
3435 	if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
3436 		if (pring->lpfc_sli_rcv_async_status)
3437 			pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
3438 		else
3439 			lpfc_printf_log(phba,
3440 					KERN_WARNING,
3441 					LOG_SLI,
3442 					"0316 Ring %d handler: unexpected "
3443 					"ASYNC_STATUS iocb received evt_code "
3444 					"0x%x\n",
3445 					pring->ringno,
3446 					irsp->un.asyncstat.evt_code);
3447 		return 1;
3448 	}
3449 
3450 	if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
3451 	    (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
3452 		if (irsp->ulpBdeCount > 0) {
3453 			dmzbuf = lpfc_sli_get_buff(phba, pring,
3454 						   irsp->un.ulpWord[3]);
3455 			lpfc_in_buf_free(phba, dmzbuf);
3456 		}
3457 
3458 		if (irsp->ulpBdeCount > 1) {
3459 			dmzbuf = lpfc_sli_get_buff(phba, pring,
3460 						   irsp->unsli3.sli3Words[3]);
3461 			lpfc_in_buf_free(phba, dmzbuf);
3462 		}
3463 
3464 		if (irsp->ulpBdeCount > 2) {
3465 			dmzbuf = lpfc_sli_get_buff(phba, pring,
3466 						   irsp->unsli3.sli3Words[7]);
3467 			lpfc_in_buf_free(phba, dmzbuf);
3468 		}
3469 
3470 		return 1;
3471 	}
3472 
3473 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
3474 		if (irsp->ulpBdeCount != 0) {
3475 			saveq->context2 = lpfc_sli_get_buff(phba, pring,
3476 						irsp->un.ulpWord[3]);
3477 			if (!saveq->context2)
3478 				lpfc_printf_log(phba,
3479 					KERN_ERR,
3480 					LOG_SLI,
3481 					"0341 Ring %d Cannot find buffer for "
3482 					"an unsolicited iocb. tag 0x%x\n",
3483 					pring->ringno,
3484 					irsp->un.ulpWord[3]);
3485 		}
3486 		if (irsp->ulpBdeCount == 2) {
3487 			saveq->context3 = lpfc_sli_get_buff(phba, pring,
3488 						irsp->unsli3.sli3Words[7]);
3489 			if (!saveq->context3)
3490 				lpfc_printf_log(phba,
3491 					KERN_ERR,
3492 					LOG_SLI,
3493 					"0342 Ring %d Cannot find buffer for an"
3494 					" unsolicited iocb. tag 0x%x\n",
3495 					pring->ringno,
3496 					irsp->unsli3.sli3Words[7]);
3497 		}
3498 		list_for_each_entry(iocbq, &saveq->list, list) {
3499 			irsp = &iocbq->iocb;
3500 			if (irsp->ulpBdeCount != 0) {
3501 				iocbq->context2 = lpfc_sli_get_buff(phba,
3502 							pring,
3503 							irsp->un.ulpWord[3]);
3504 				if (!iocbq->context2)
3505 					lpfc_printf_log(phba,
3506 						KERN_ERR,
3507 						LOG_SLI,
3508 						"0343 Ring %d Cannot find "
3509 						"buffer for an unsolicited iocb"
3510 						". tag 0x%x\n", pring->ringno,
3511 						irsp->un.ulpWord[3]);
3512 			}
3513 			if (irsp->ulpBdeCount == 2) {
3514 				iocbq->context3 = lpfc_sli_get_buff(phba,
3515 						pring,
3516 						irsp->unsli3.sli3Words[7]);
3517 				if (!iocbq->context3)
3518 					lpfc_printf_log(phba,
3519 						KERN_ERR,
3520 						LOG_SLI,
3521 						"0344 Ring %d Cannot find "
3522 						"buffer for an unsolicited "
3523 						"iocb. tag 0x%x\n",
3524 						pring->ringno,
3525 						irsp->unsli3.sli3Words[7]);
3526 			}
3527 		}
3528 	} else {
3529 		paddr = getPaddr(irsp->un.cont64[0].addrHigh,
3530 				 irsp->un.cont64[0].addrLow);
3531 		saveq->context2 = lpfc_sli_ringpostbuf_get(phba, pring,
3532 							     paddr);
3533 		if (irsp->ulpBdeCount == 2) {
3534 			paddr = getPaddr(irsp->un.cont64[1].addrHigh,
3535 					 irsp->un.cont64[1].addrLow);
3536 			saveq->context3 = lpfc_sli_ringpostbuf_get(phba,
3537 								   pring,
3538 								   paddr);
3539 		}
3540 	}
3541 
3542 	if (irsp->ulpBdeCount != 0 &&
3543 	    (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
3544 	     irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
3545 		int found = 0;
3546 
3547 		/* search continue save q for same XRI */
3548 		list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
3549 			if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
3550 				saveq->iocb.unsli3.rcvsli3.ox_id) {
3551 				list_add_tail(&saveq->list, &iocbq->list);
3552 				found = 1;
3553 				break;
3554 			}
3555 		}
3556 		if (!found)
3557 			list_add_tail(&saveq->clist,
3558 				      &pring->iocb_continue_saveq);
3559 
3560 		if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
3561 			list_del_init(&iocbq->clist);
3562 			saveq = iocbq;
3563 			irsp = &saveq->iocb;
3564 		} else {
3565 			return 0;
3566 		}
3567 	}
3568 	if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
3569 	    (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
3570 	    (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
3571 		Rctl = FC_RCTL_ELS_REQ;
3572 		Type = FC_TYPE_ELS;
3573 	} else {
3574 		w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
3575 		Rctl = w5p->hcsw.Rctl;
3576 		Type = w5p->hcsw.Type;
3577 
3578 		/* Firmware Workaround */
3579 		if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
3580 			(irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
3581 			 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
3582 			Rctl = FC_RCTL_ELS_REQ;
3583 			Type = FC_TYPE_ELS;
3584 			w5p->hcsw.Rctl = Rctl;
3585 			w5p->hcsw.Type = Type;
3586 		}
3587 	}
3588 
3589 	if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) &&
3590 	    (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX ||
3591 	    irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
3592 		if (irsp->unsli3.rcvsli3.vpi == 0xffff)
3593 			saveq->vport = phba->pport;
3594 		else
3595 			saveq->vport = lpfc_find_vport_by_vpid(phba,
3596 					       irsp->unsli3.rcvsli3.vpi);
3597 	}
3598 
3599 	/* Prepare WQE with Unsol frame */
3600 	lpfc_sli_prep_unsol_wqe(phba, saveq);
3601 
3602 	if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
3603 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3604 				"0313 Ring %d handler: unexpected Rctl x%x "
3605 				"Type x%x received\n",
3606 				pring->ringno, Rctl, Type);
3607 
3608 	return 1;
3609 }
3610 
3611 /**
3612  * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
3613  * @phba: Pointer to HBA context object.
3614  * @pring: Pointer to driver SLI ring object.
3615  * @prspiocb: Pointer to response iocb object.
3616  *
3617  * This function looks up the iocb_lookup table to get the command iocb
3618  * corresponding to the given response iocb using the iotag of the
3619  * response iocb. The driver calls this function with the hbalock held
3620  * for SLI3 ports or the ring lock held for SLI4 ports.
3621  * This function returns the command iocb object if it finds the command
3622  * iocb else returns NULL.
3623  **/
3624 static struct lpfc_iocbq *
3625 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
3626 		      struct lpfc_sli_ring *pring,
3627 		      struct lpfc_iocbq *prspiocb)
3628 {
3629 	struct lpfc_iocbq *cmd_iocb = NULL;
3630 	u16 iotag;
3631 
3632 	if (phba->sli_rev == LPFC_SLI_REV4)
3633 		iotag = get_wqe_reqtag(prspiocb);
3634 	else
3635 		iotag = prspiocb->iocb.ulpIoTag;
3636 
3637 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3638 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
3639 		if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) {
3640 			/* remove from txcmpl queue list */
3641 			list_del_init(&cmd_iocb->list);
3642 			cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
3643 			pring->txcmplq_cnt--;
3644 			return cmd_iocb;
3645 		}
3646 	}
3647 
3648 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3649 			"0317 iotag x%x is out of "
3650 			"range: max iotag x%x\n",
3651 			iotag, phba->sli.last_iotag);
3652 	return NULL;
3653 }
3654 
3655 /**
3656  * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
3657  * @phba: Pointer to HBA context object.
3658  * @pring: Pointer to driver SLI ring object.
3659  * @iotag: IOCB tag.
3660  *
3661  * This function looks up the iocb_lookup table to get the command iocb
3662  * corresponding to the given iotag. The driver calls this function with
3663  * the ring lock held because this function is an SLI4 port only helper.
3664  * This function returns the command iocb object if it finds the command
3665  * iocb else returns NULL.
3666  **/
3667 static struct lpfc_iocbq *
3668 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
3669 			     struct lpfc_sli_ring *pring, uint16_t iotag)
3670 {
3671 	struct lpfc_iocbq *cmd_iocb = NULL;
3672 
3673 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3674 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
3675 		if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) {
3676 			/* remove from txcmpl queue list */
3677 			list_del_init(&cmd_iocb->list);
3678 			cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
3679 			pring->txcmplq_cnt--;
3680 			return cmd_iocb;
3681 		}
3682 	}
3683 
3684 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3685 			"0372 iotag x%x lookup error: max iotag (x%x) "
3686 			"cmd_flag x%x\n",
3687 			iotag, phba->sli.last_iotag,
3688 			cmd_iocb ? cmd_iocb->cmd_flag : 0xffff);
3689 	return NULL;
3690 }
3691 
3692 /**
3693  * lpfc_sli_process_sol_iocb - process solicited iocb completion
3694  * @phba: Pointer to HBA context object.
3695  * @pring: Pointer to driver SLI ring object.
3696  * @saveq: Pointer to the response iocb to be processed.
3697  *
3698  * This function is called by the ring event handler for non-fcp
3699  * rings when there is a new response iocb in the response ring.
3700  * The caller is not required to hold any locks. This function
3701  * gets the command iocb associated with the response iocb and
3702  * calls the completion handler for the command iocb. If there
3703  * is no completion handler, the function will free the resources
3704  * associated with command iocb. If the response iocb is for
3705  * an already aborted command iocb, the status of the completion
3706  * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
3707  * This function always returns 1.
3708  **/
3709 static int
3710 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3711 			  struct lpfc_iocbq *saveq)
3712 {
3713 	struct lpfc_iocbq *cmdiocbp;
3714 	int rc = 1;
3715 	unsigned long iflag;
3716 	u32 ulp_command, ulp_status, ulp_word4, ulp_context, iotag;
3717 
3718 	cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
3719 
3720 	ulp_command = get_job_cmnd(phba, saveq);
3721 	ulp_status = get_job_ulpstatus(phba, saveq);
3722 	ulp_word4 = get_job_word4(phba, saveq);
3723 	ulp_context = get_job_ulpcontext(phba, saveq);
3724 	if (phba->sli_rev == LPFC_SLI_REV4)
3725 		iotag = get_wqe_reqtag(saveq);
3726 	else
3727 		iotag = saveq->iocb.ulpIoTag;
3728 
3729 	if (cmdiocbp) {
3730 		ulp_command = get_job_cmnd(phba, cmdiocbp);
3731 		if (cmdiocbp->cmd_cmpl) {
3732 			/*
3733 			 * If an ELS command failed send an event to mgmt
3734 			 * application.
3735 			 */
3736 			if (ulp_status &&
3737 			     (pring->ringno == LPFC_ELS_RING) &&
3738 			     (ulp_command == CMD_ELS_REQUEST64_CR))
3739 				lpfc_send_els_failure_event(phba,
3740 					cmdiocbp, saveq);
3741 
3742 			/*
3743 			 * Post all ELS completions to the worker thread.
3744 			 * All other are passed to the completion callback.
3745 			 */
3746 			if (pring->ringno == LPFC_ELS_RING) {
3747 				if ((phba->sli_rev < LPFC_SLI_REV4) &&
3748 				    (cmdiocbp->cmd_flag &
3749 							LPFC_DRIVER_ABORTED)) {
3750 					spin_lock_irqsave(&phba->hbalock,
3751 							  iflag);
3752 					cmdiocbp->cmd_flag &=
3753 						~LPFC_DRIVER_ABORTED;
3754 					spin_unlock_irqrestore(&phba->hbalock,
3755 							       iflag);
3756 					saveq->iocb.ulpStatus =
3757 						IOSTAT_LOCAL_REJECT;
3758 					saveq->iocb.un.ulpWord[4] =
3759 						IOERR_SLI_ABORTED;
3760 
3761 					/* Firmware could still be in progress
3762 					 * of DMAing payload, so don't free data
3763 					 * buffer till after a hbeat.
3764 					 */
3765 					spin_lock_irqsave(&phba->hbalock,
3766 							  iflag);
3767 					saveq->cmd_flag |= LPFC_DELAY_MEM_FREE;
3768 					spin_unlock_irqrestore(&phba->hbalock,
3769 							       iflag);
3770 				}
3771 				if (phba->sli_rev == LPFC_SLI_REV4) {
3772 					if (saveq->cmd_flag &
3773 					    LPFC_EXCHANGE_BUSY) {
3774 						/* Set cmdiocb flag for the
3775 						 * exchange busy so sgl (xri)
3776 						 * will not be released until
3777 						 * the abort xri is received
3778 						 * from hba.
3779 						 */
3780 						spin_lock_irqsave(
3781 							&phba->hbalock, iflag);
3782 						cmdiocbp->cmd_flag |=
3783 							LPFC_EXCHANGE_BUSY;
3784 						spin_unlock_irqrestore(
3785 							&phba->hbalock, iflag);
3786 					}
3787 					if (cmdiocbp->cmd_flag &
3788 					    LPFC_DRIVER_ABORTED) {
3789 						/*
3790 						 * Clear LPFC_DRIVER_ABORTED
3791 						 * bit in case it was driver
3792 						 * initiated abort.
3793 						 */
3794 						spin_lock_irqsave(
3795 							&phba->hbalock, iflag);
3796 						cmdiocbp->cmd_flag &=
3797 							~LPFC_DRIVER_ABORTED;
3798 						spin_unlock_irqrestore(
3799 							&phba->hbalock, iflag);
3800 						set_job_ulpstatus(cmdiocbp,
3801 								  IOSTAT_LOCAL_REJECT);
3802 						set_job_ulpword4(cmdiocbp,
3803 								 IOERR_ABORT_REQUESTED);
3804 						/*
3805 						 * For SLI4, irsiocb contains
3806 						 * NO_XRI in sli_xritag, it
3807 						 * shall not affect releasing
3808 						 * sgl (xri) process.
3809 						 */
3810 						set_job_ulpstatus(saveq,
3811 								  IOSTAT_LOCAL_REJECT);
3812 						set_job_ulpword4(saveq,
3813 								 IOERR_SLI_ABORTED);
3814 						spin_lock_irqsave(
3815 							&phba->hbalock, iflag);
3816 						saveq->cmd_flag |=
3817 							LPFC_DELAY_MEM_FREE;
3818 						spin_unlock_irqrestore(
3819 							&phba->hbalock, iflag);
3820 					}
3821 				}
3822 			}
3823 			(cmdiocbp->cmd_cmpl) (phba, cmdiocbp, saveq);
3824 		} else
3825 			lpfc_sli_release_iocbq(phba, cmdiocbp);
3826 	} else {
3827 		/*
3828 		 * Unknown initiating command based on the response iotag.
3829 		 * This could be the case on the ELS ring because of
3830 		 * lpfc_els_abort().
3831 		 */
3832 		if (pring->ringno != LPFC_ELS_RING) {
3833 			/*
3834 			 * Ring <ringno> handler: unexpected completion IoTag
3835 			 * <IoTag>
3836 			 */
3837 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3838 					 "0322 Ring %d handler: "
3839 					 "unexpected completion IoTag x%x "
3840 					 "Data: x%x x%x x%x x%x\n",
3841 					 pring->ringno, iotag, ulp_status,
3842 					 ulp_word4, ulp_command, ulp_context);
3843 		}
3844 	}
3845 
3846 	return rc;
3847 }
3848 
3849 /**
3850  * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
3851  * @phba: Pointer to HBA context object.
3852  * @pring: Pointer to driver SLI ring object.
3853  *
3854  * This function is called from the iocb ring event handlers when
3855  * put pointer is ahead of the get pointer for a ring. This function signal
3856  * an error attention condition to the worker thread and the worker
3857  * thread will transition the HBA to offline state.
3858  **/
3859 static void
3860 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3861 {
3862 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3863 	/*
3864 	 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3865 	 * rsp ring <portRspMax>
3866 	 */
3867 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3868 			"0312 Ring %d handler: portRspPut %d "
3869 			"is bigger than rsp ring %d\n",
3870 			pring->ringno, le32_to_cpu(pgp->rspPutInx),
3871 			pring->sli.sli3.numRiocb);
3872 
3873 	phba->link_state = LPFC_HBA_ERROR;
3874 
3875 	/*
3876 	 * All error attention handlers are posted to
3877 	 * worker thread
3878 	 */
3879 	phba->work_ha |= HA_ERATT;
3880 	phba->work_hs = HS_FFER3;
3881 
3882 	lpfc_worker_wake_up(phba);
3883 
3884 	return;
3885 }
3886 
3887 /**
3888  * lpfc_poll_eratt - Error attention polling timer timeout handler
3889  * @t: Context to fetch pointer to address of HBA context object from.
3890  *
3891  * This function is invoked by the Error Attention polling timer when the
3892  * timer times out. It will check the SLI Error Attention register for
3893  * possible attention events. If so, it will post an Error Attention event
3894  * and wake up worker thread to process it. Otherwise, it will set up the
3895  * Error Attention polling timer for the next poll.
3896  **/
3897 void lpfc_poll_eratt(struct timer_list *t)
3898 {
3899 	struct lpfc_hba *phba;
3900 	uint32_t eratt = 0;
3901 	uint64_t sli_intr, cnt;
3902 
3903 	phba = from_timer(phba, t, eratt_poll);
3904 
3905 	/* Here we will also keep track of interrupts per sec of the hba */
3906 	sli_intr = phba->sli.slistat.sli_intr;
3907 
3908 	if (phba->sli.slistat.sli_prev_intr > sli_intr)
3909 		cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
3910 			sli_intr);
3911 	else
3912 		cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
3913 
3914 	/* 64-bit integer division not supported on 32-bit x86 - use do_div */
3915 	do_div(cnt, phba->eratt_poll_interval);
3916 	phba->sli.slistat.sli_ips = cnt;
3917 
3918 	phba->sli.slistat.sli_prev_intr = sli_intr;
3919 
3920 	/* Check chip HA register for error event */
3921 	eratt = lpfc_sli_check_eratt(phba);
3922 
3923 	if (eratt)
3924 		/* Tell the worker thread there is work to do */
3925 		lpfc_worker_wake_up(phba);
3926 	else
3927 		/* Restart the timer for next eratt poll */
3928 		mod_timer(&phba->eratt_poll,
3929 			  jiffies +
3930 			  msecs_to_jiffies(1000 * phba->eratt_poll_interval));
3931 	return;
3932 }
3933 
3934 
3935 /**
3936  * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
3937  * @phba: Pointer to HBA context object.
3938  * @pring: Pointer to driver SLI ring object.
3939  * @mask: Host attention register mask for this ring.
3940  *
3941  * This function is called from the interrupt context when there is a ring
3942  * event for the fcp ring. The caller does not hold any lock.
3943  * The function processes each response iocb in the response ring until it
3944  * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
3945  * LE bit set. The function will call the completion handler of the command iocb
3946  * if the response iocb indicates a completion for a command iocb or it is
3947  * an abort completion. The function will call lpfc_sli_process_unsol_iocb
3948  * function if this is an unsolicited iocb.
3949  * This routine presumes LPFC_FCP_RING handling and doesn't bother
3950  * to check it explicitly.
3951  */
3952 int
3953 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
3954 				struct lpfc_sli_ring *pring, uint32_t mask)
3955 {
3956 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3957 	IOCB_t *irsp = NULL;
3958 	IOCB_t *entry = NULL;
3959 	struct lpfc_iocbq *cmdiocbq = NULL;
3960 	struct lpfc_iocbq rspiocbq;
3961 	uint32_t status;
3962 	uint32_t portRspPut, portRspMax;
3963 	int rc = 1;
3964 	lpfc_iocb_type type;
3965 	unsigned long iflag;
3966 	uint32_t rsp_cmpl = 0;
3967 
3968 	spin_lock_irqsave(&phba->hbalock, iflag);
3969 	pring->stats.iocb_event++;
3970 
3971 	/*
3972 	 * The next available response entry should never exceed the maximum
3973 	 * entries.  If it does, treat it as an adapter hardware error.
3974 	 */
3975 	portRspMax = pring->sli.sli3.numRiocb;
3976 	portRspPut = le32_to_cpu(pgp->rspPutInx);
3977 	if (unlikely(portRspPut >= portRspMax)) {
3978 		lpfc_sli_rsp_pointers_error(phba, pring);
3979 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3980 		return 1;
3981 	}
3982 	if (phba->fcp_ring_in_use) {
3983 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3984 		return 1;
3985 	} else
3986 		phba->fcp_ring_in_use = 1;
3987 
3988 	rmb();
3989 	while (pring->sli.sli3.rspidx != portRspPut) {
3990 		/*
3991 		 * Fetch an entry off the ring and copy it into a local data
3992 		 * structure.  The copy involves a byte-swap since the
3993 		 * network byte order and pci byte orders are different.
3994 		 */
3995 		entry = lpfc_resp_iocb(phba, pring);
3996 		phba->last_completion_time = jiffies;
3997 
3998 		if (++pring->sli.sli3.rspidx >= portRspMax)
3999 			pring->sli.sli3.rspidx = 0;
4000 
4001 		lpfc_sli_pcimem_bcopy((uint32_t *) entry,
4002 				      (uint32_t *) &rspiocbq.iocb,
4003 				      phba->iocb_rsp_size);
4004 		INIT_LIST_HEAD(&(rspiocbq.list));
4005 		irsp = &rspiocbq.iocb;
4006 
4007 		type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
4008 		pring->stats.iocb_rsp++;
4009 		rsp_cmpl++;
4010 
4011 		if (unlikely(irsp->ulpStatus)) {
4012 			/*
4013 			 * If resource errors reported from HBA, reduce
4014 			 * queuedepths of the SCSI device.
4015 			 */
4016 			if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
4017 			    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
4018 			     IOERR_NO_RESOURCES)) {
4019 				spin_unlock_irqrestore(&phba->hbalock, iflag);
4020 				phba->lpfc_rampdown_queue_depth(phba);
4021 				spin_lock_irqsave(&phba->hbalock, iflag);
4022 			}
4023 
4024 			/* Rsp ring <ringno> error: IOCB */
4025 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
4026 					"0336 Rsp Ring %d error: IOCB Data: "
4027 					"x%x x%x x%x x%x x%x x%x x%x x%x\n",
4028 					pring->ringno,
4029 					irsp->un.ulpWord[0],
4030 					irsp->un.ulpWord[1],
4031 					irsp->un.ulpWord[2],
4032 					irsp->un.ulpWord[3],
4033 					irsp->un.ulpWord[4],
4034 					irsp->un.ulpWord[5],
4035 					*(uint32_t *)&irsp->un1,
4036 					*((uint32_t *)&irsp->un1 + 1));
4037 		}
4038 
4039 		switch (type) {
4040 		case LPFC_ABORT_IOCB:
4041 		case LPFC_SOL_IOCB:
4042 			/*
4043 			 * Idle exchange closed via ABTS from port.  No iocb
4044 			 * resources need to be recovered.
4045 			 */
4046 			if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
4047 				lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4048 						"0333 IOCB cmd 0x%x"
4049 						" processed. Skipping"
4050 						" completion\n",
4051 						irsp->ulpCommand);
4052 				break;
4053 			}
4054 
4055 			spin_unlock_irqrestore(&phba->hbalock, iflag);
4056 			cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
4057 							 &rspiocbq);
4058 			spin_lock_irqsave(&phba->hbalock, iflag);
4059 			if (unlikely(!cmdiocbq))
4060 				break;
4061 			if (cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED)
4062 				cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED;
4063 			if (cmdiocbq->cmd_cmpl) {
4064 				spin_unlock_irqrestore(&phba->hbalock, iflag);
4065 				(cmdiocbq->cmd_cmpl)(phba, cmdiocbq,
4066 						      &rspiocbq);
4067 				spin_lock_irqsave(&phba->hbalock, iflag);
4068 			}
4069 			break;
4070 		case LPFC_UNSOL_IOCB:
4071 			spin_unlock_irqrestore(&phba->hbalock, iflag);
4072 			lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
4073 			spin_lock_irqsave(&phba->hbalock, iflag);
4074 			break;
4075 		default:
4076 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
4077 				char adaptermsg[LPFC_MAX_ADPTMSG];
4078 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
4079 				memcpy(&adaptermsg[0], (uint8_t *) irsp,
4080 				       MAX_MSG_DATA);
4081 				dev_warn(&((phba->pcidev)->dev),
4082 					 "lpfc%d: %s\n",
4083 					 phba->brd_no, adaptermsg);
4084 			} else {
4085 				/* Unknown IOCB command */
4086 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4087 						"0334 Unknown IOCB command "
4088 						"Data: x%x, x%x x%x x%x x%x\n",
4089 						type, irsp->ulpCommand,
4090 						irsp->ulpStatus,
4091 						irsp->ulpIoTag,
4092 						irsp->ulpContext);
4093 			}
4094 			break;
4095 		}
4096 
4097 		/*
4098 		 * The response IOCB has been processed.  Update the ring
4099 		 * pointer in SLIM.  If the port response put pointer has not
4100 		 * been updated, sync the pgp->rspPutInx and fetch the new port
4101 		 * response put pointer.
4102 		 */
4103 		writel(pring->sli.sli3.rspidx,
4104 			&phba->host_gp[pring->ringno].rspGetInx);
4105 
4106 		if (pring->sli.sli3.rspidx == portRspPut)
4107 			portRspPut = le32_to_cpu(pgp->rspPutInx);
4108 	}
4109 
4110 	if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
4111 		pring->stats.iocb_rsp_full++;
4112 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
4113 		writel(status, phba->CAregaddr);
4114 		readl(phba->CAregaddr);
4115 	}
4116 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
4117 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
4118 		pring->stats.iocb_cmd_empty++;
4119 
4120 		/* Force update of the local copy of cmdGetInx */
4121 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
4122 		lpfc_sli_resume_iocb(phba, pring);
4123 
4124 		if ((pring->lpfc_sli_cmd_available))
4125 			(pring->lpfc_sli_cmd_available) (phba, pring);
4126 
4127 	}
4128 
4129 	phba->fcp_ring_in_use = 0;
4130 	spin_unlock_irqrestore(&phba->hbalock, iflag);
4131 	return rc;
4132 }
4133 
4134 /**
4135  * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
4136  * @phba: Pointer to HBA context object.
4137  * @pring: Pointer to driver SLI ring object.
4138  * @rspiocbp: Pointer to driver response IOCB object.
4139  *
4140  * This function is called from the worker thread when there is a slow-path
4141  * response IOCB to process. This function chains all the response iocbs until
4142  * seeing the iocb with the LE bit set. The function will call
4143  * lpfc_sli_process_sol_iocb function if the response iocb indicates a
4144  * completion of a command iocb. The function will call the
4145  * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
4146  * The function frees the resources or calls the completion handler if this
4147  * iocb is an abort completion. The function returns NULL when the response
4148  * iocb has the LE bit set and all the chained iocbs are processed, otherwise
4149  * this function shall chain the iocb on to the iocb_continueq and return the
4150  * response iocb passed in.
4151  **/
4152 static struct lpfc_iocbq *
4153 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
4154 			struct lpfc_iocbq *rspiocbp)
4155 {
4156 	struct lpfc_iocbq *saveq;
4157 	struct lpfc_iocbq *cmdiocb;
4158 	struct lpfc_iocbq *next_iocb;
4159 	IOCB_t *irsp;
4160 	uint32_t free_saveq;
4161 	u8 cmd_type;
4162 	lpfc_iocb_type type;
4163 	unsigned long iflag;
4164 	u32 ulp_status = get_job_ulpstatus(phba, rspiocbp);
4165 	u32 ulp_word4 = get_job_word4(phba, rspiocbp);
4166 	u32 ulp_command = get_job_cmnd(phba, rspiocbp);
4167 	int rc;
4168 
4169 	spin_lock_irqsave(&phba->hbalock, iflag);
4170 	/* First add the response iocb to the countinueq list */
4171 	list_add_tail(&rspiocbp->list, &pring->iocb_continueq);
4172 	pring->iocb_continueq_cnt++;
4173 
4174 	/*
4175 	 * By default, the driver expects to free all resources
4176 	 * associated with this iocb completion.
4177 	 */
4178 	free_saveq = 1;
4179 	saveq = list_get_first(&pring->iocb_continueq,
4180 			       struct lpfc_iocbq, list);
4181 	list_del_init(&pring->iocb_continueq);
4182 	pring->iocb_continueq_cnt = 0;
4183 
4184 	pring->stats.iocb_rsp++;
4185 
4186 	/*
4187 	 * If resource errors reported from HBA, reduce
4188 	 * queuedepths of the SCSI device.
4189 	 */
4190 	if (ulp_status == IOSTAT_LOCAL_REJECT &&
4191 	    ((ulp_word4 & IOERR_PARAM_MASK) ==
4192 	     IOERR_NO_RESOURCES)) {
4193 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4194 		phba->lpfc_rampdown_queue_depth(phba);
4195 		spin_lock_irqsave(&phba->hbalock, iflag);
4196 	}
4197 
4198 	if (ulp_status) {
4199 		/* Rsp ring <ringno> error: IOCB */
4200 		if (phba->sli_rev < LPFC_SLI_REV4) {
4201 			irsp = &rspiocbp->iocb;
4202 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
4203 					"0328 Rsp Ring %d error: ulp_status x%x "
4204 					"IOCB Data: "
4205 					"x%08x x%08x x%08x x%08x "
4206 					"x%08x x%08x x%08x x%08x "
4207 					"x%08x x%08x x%08x x%08x "
4208 					"x%08x x%08x x%08x x%08x\n",
4209 					pring->ringno, ulp_status,
4210 					get_job_ulpword(rspiocbp, 0),
4211 					get_job_ulpword(rspiocbp, 1),
4212 					get_job_ulpword(rspiocbp, 2),
4213 					get_job_ulpword(rspiocbp, 3),
4214 					get_job_ulpword(rspiocbp, 4),
4215 					get_job_ulpword(rspiocbp, 5),
4216 					*(((uint32_t *)irsp) + 6),
4217 					*(((uint32_t *)irsp) + 7),
4218 					*(((uint32_t *)irsp) + 8),
4219 					*(((uint32_t *)irsp) + 9),
4220 					*(((uint32_t *)irsp) + 10),
4221 					*(((uint32_t *)irsp) + 11),
4222 					*(((uint32_t *)irsp) + 12),
4223 					*(((uint32_t *)irsp) + 13),
4224 					*(((uint32_t *)irsp) + 14),
4225 					*(((uint32_t *)irsp) + 15));
4226 		} else {
4227 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
4228 					"0321 Rsp Ring %d error: "
4229 					"IOCB Data: "
4230 					"x%x x%x x%x x%x\n",
4231 					pring->ringno,
4232 					rspiocbp->wcqe_cmpl.word0,
4233 					rspiocbp->wcqe_cmpl.total_data_placed,
4234 					rspiocbp->wcqe_cmpl.parameter,
4235 					rspiocbp->wcqe_cmpl.word3);
4236 		}
4237 	}
4238 
4239 
4240 	/*
4241 	 * Fetch the iocb command type and call the correct completion
4242 	 * routine. Solicited and Unsolicited IOCBs on the ELS ring
4243 	 * get freed back to the lpfc_iocb_list by the discovery
4244 	 * kernel thread.
4245 	 */
4246 	cmd_type = ulp_command & CMD_IOCB_MASK;
4247 	type = lpfc_sli_iocb_cmd_type(cmd_type);
4248 	switch (type) {
4249 	case LPFC_SOL_IOCB:
4250 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4251 		rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
4252 		spin_lock_irqsave(&phba->hbalock, iflag);
4253 		break;
4254 	case LPFC_UNSOL_IOCB:
4255 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4256 		rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
4257 		spin_lock_irqsave(&phba->hbalock, iflag);
4258 		if (!rc)
4259 			free_saveq = 0;
4260 		break;
4261 	case LPFC_ABORT_IOCB:
4262 		cmdiocb = NULL;
4263 		if (ulp_command != CMD_XRI_ABORTED_CX)
4264 			cmdiocb = lpfc_sli_iocbq_lookup(phba, pring,
4265 							saveq);
4266 		if (cmdiocb) {
4267 			/* Call the specified completion routine */
4268 			if (cmdiocb->cmd_cmpl) {
4269 				spin_unlock_irqrestore(&phba->hbalock, iflag);
4270 				cmdiocb->cmd_cmpl(phba, cmdiocb, saveq);
4271 				spin_lock_irqsave(&phba->hbalock, iflag);
4272 			} else {
4273 				__lpfc_sli_release_iocbq(phba, cmdiocb);
4274 			}
4275 		}
4276 		break;
4277 	case LPFC_UNKNOWN_IOCB:
4278 		if (ulp_command == CMD_ADAPTER_MSG) {
4279 			char adaptermsg[LPFC_MAX_ADPTMSG];
4280 
4281 			memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
4282 			memcpy(&adaptermsg[0], (uint8_t *)&rspiocbp->wqe,
4283 			       MAX_MSG_DATA);
4284 			dev_warn(&((phba->pcidev)->dev),
4285 				 "lpfc%d: %s\n",
4286 				 phba->brd_no, adaptermsg);
4287 		} else {
4288 			/* Unknown command */
4289 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4290 					"0335 Unknown IOCB "
4291 					"command Data: x%x "
4292 					"x%x x%x x%x\n",
4293 					ulp_command,
4294 					ulp_status,
4295 					get_wqe_reqtag(rspiocbp),
4296 					get_job_ulpcontext(phba, rspiocbp));
4297 		}
4298 		break;
4299 	}
4300 
4301 	if (free_saveq) {
4302 		list_for_each_entry_safe(rspiocbp, next_iocb,
4303 					 &saveq->list, list) {
4304 			list_del_init(&rspiocbp->list);
4305 			__lpfc_sli_release_iocbq(phba, rspiocbp);
4306 		}
4307 		__lpfc_sli_release_iocbq(phba, saveq);
4308 	}
4309 	rspiocbp = NULL;
4310 	spin_unlock_irqrestore(&phba->hbalock, iflag);
4311 	return rspiocbp;
4312 }
4313 
4314 /**
4315  * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
4316  * @phba: Pointer to HBA context object.
4317  * @pring: Pointer to driver SLI ring object.
4318  * @mask: Host attention register mask for this ring.
4319  *
4320  * This routine wraps the actual slow_ring event process routine from the
4321  * API jump table function pointer from the lpfc_hba struct.
4322  **/
4323 void
4324 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
4325 				struct lpfc_sli_ring *pring, uint32_t mask)
4326 {
4327 	phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
4328 }
4329 
4330 /**
4331  * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
4332  * @phba: Pointer to HBA context object.
4333  * @pring: Pointer to driver SLI ring object.
4334  * @mask: Host attention register mask for this ring.
4335  *
4336  * This function is called from the worker thread when there is a ring event
4337  * for non-fcp rings. The caller does not hold any lock. The function will
4338  * remove each response iocb in the response ring and calls the handle
4339  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
4340  **/
4341 static void
4342 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
4343 				   struct lpfc_sli_ring *pring, uint32_t mask)
4344 {
4345 	struct lpfc_pgp *pgp;
4346 	IOCB_t *entry;
4347 	IOCB_t *irsp = NULL;
4348 	struct lpfc_iocbq *rspiocbp = NULL;
4349 	uint32_t portRspPut, portRspMax;
4350 	unsigned long iflag;
4351 	uint32_t status;
4352 
4353 	pgp = &phba->port_gp[pring->ringno];
4354 	spin_lock_irqsave(&phba->hbalock, iflag);
4355 	pring->stats.iocb_event++;
4356 
4357 	/*
4358 	 * The next available response entry should never exceed the maximum
4359 	 * entries.  If it does, treat it as an adapter hardware error.
4360 	 */
4361 	portRspMax = pring->sli.sli3.numRiocb;
4362 	portRspPut = le32_to_cpu(pgp->rspPutInx);
4363 	if (portRspPut >= portRspMax) {
4364 		/*
4365 		 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
4366 		 * rsp ring <portRspMax>
4367 		 */
4368 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4369 				"0303 Ring %d handler: portRspPut %d "
4370 				"is bigger than rsp ring %d\n",
4371 				pring->ringno, portRspPut, portRspMax);
4372 
4373 		phba->link_state = LPFC_HBA_ERROR;
4374 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4375 
4376 		phba->work_hs = HS_FFER3;
4377 		lpfc_handle_eratt(phba);
4378 
4379 		return;
4380 	}
4381 
4382 	rmb();
4383 	while (pring->sli.sli3.rspidx != portRspPut) {
4384 		/*
4385 		 * Build a completion list and call the appropriate handler.
4386 		 * The process is to get the next available response iocb, get
4387 		 * a free iocb from the list, copy the response data into the
4388 		 * free iocb, insert to the continuation list, and update the
4389 		 * next response index to slim.  This process makes response
4390 		 * iocb's in the ring available to DMA as fast as possible but
4391 		 * pays a penalty for a copy operation.  Since the iocb is
4392 		 * only 32 bytes, this penalty is considered small relative to
4393 		 * the PCI reads for register values and a slim write.  When
4394 		 * the ulpLe field is set, the entire Command has been
4395 		 * received.
4396 		 */
4397 		entry = lpfc_resp_iocb(phba, pring);
4398 
4399 		phba->last_completion_time = jiffies;
4400 		rspiocbp = __lpfc_sli_get_iocbq(phba);
4401 		if (rspiocbp == NULL) {
4402 			printk(KERN_ERR "%s: out of buffers! Failing "
4403 			       "completion.\n", __func__);
4404 			break;
4405 		}
4406 
4407 		lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
4408 				      phba->iocb_rsp_size);
4409 		irsp = &rspiocbp->iocb;
4410 
4411 		if (++pring->sli.sli3.rspidx >= portRspMax)
4412 			pring->sli.sli3.rspidx = 0;
4413 
4414 		if (pring->ringno == LPFC_ELS_RING) {
4415 			lpfc_debugfs_slow_ring_trc(phba,
4416 			"IOCB rsp ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
4417 				*(((uint32_t *) irsp) + 4),
4418 				*(((uint32_t *) irsp) + 6),
4419 				*(((uint32_t *) irsp) + 7));
4420 		}
4421 
4422 		writel(pring->sli.sli3.rspidx,
4423 			&phba->host_gp[pring->ringno].rspGetInx);
4424 
4425 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4426 		/* Handle the response IOCB */
4427 		rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
4428 		spin_lock_irqsave(&phba->hbalock, iflag);
4429 
4430 		/*
4431 		 * If the port response put pointer has not been updated, sync
4432 		 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
4433 		 * response put pointer.
4434 		 */
4435 		if (pring->sli.sli3.rspidx == portRspPut) {
4436 			portRspPut = le32_to_cpu(pgp->rspPutInx);
4437 		}
4438 	} /* while (pring->sli.sli3.rspidx != portRspPut) */
4439 
4440 	if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
4441 		/* At least one response entry has been freed */
4442 		pring->stats.iocb_rsp_full++;
4443 		/* SET RxRE_RSP in Chip Att register */
4444 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
4445 		writel(status, phba->CAregaddr);
4446 		readl(phba->CAregaddr); /* flush */
4447 	}
4448 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
4449 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
4450 		pring->stats.iocb_cmd_empty++;
4451 
4452 		/* Force update of the local copy of cmdGetInx */
4453 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
4454 		lpfc_sli_resume_iocb(phba, pring);
4455 
4456 		if ((pring->lpfc_sli_cmd_available))
4457 			(pring->lpfc_sli_cmd_available) (phba, pring);
4458 
4459 	}
4460 
4461 	spin_unlock_irqrestore(&phba->hbalock, iflag);
4462 	return;
4463 }
4464 
4465 /**
4466  * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
4467  * @phba: Pointer to HBA context object.
4468  * @pring: Pointer to driver SLI ring object.
4469  * @mask: Host attention register mask for this ring.
4470  *
4471  * This function is called from the worker thread when there is a pending
4472  * ELS response iocb on the driver internal slow-path response iocb worker
4473  * queue. The caller does not hold any lock. The function will remove each
4474  * response iocb from the response worker queue and calls the handle
4475  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
4476  **/
4477 static void
4478 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
4479 				   struct lpfc_sli_ring *pring, uint32_t mask)
4480 {
4481 	struct lpfc_iocbq *irspiocbq;
4482 	struct hbq_dmabuf *dmabuf;
4483 	struct lpfc_cq_event *cq_event;
4484 	unsigned long iflag;
4485 	int count = 0;
4486 
4487 	spin_lock_irqsave(&phba->hbalock, iflag);
4488 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
4489 	spin_unlock_irqrestore(&phba->hbalock, iflag);
4490 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
4491 		/* Get the response iocb from the head of work queue */
4492 		spin_lock_irqsave(&phba->hbalock, iflag);
4493 		list_remove_head(&phba->sli4_hba.sp_queue_event,
4494 				 cq_event, struct lpfc_cq_event, list);
4495 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4496 
4497 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
4498 		case CQE_CODE_COMPL_WQE:
4499 			irspiocbq = container_of(cq_event, struct lpfc_iocbq,
4500 						 cq_event);
4501 			/* Translate ELS WCQE to response IOCBQ */
4502 			irspiocbq = lpfc_sli4_els_preprocess_rspiocbq(phba,
4503 								      irspiocbq);
4504 			if (irspiocbq)
4505 				lpfc_sli_sp_handle_rspiocb(phba, pring,
4506 							   irspiocbq);
4507 			count++;
4508 			break;
4509 		case CQE_CODE_RECEIVE:
4510 		case CQE_CODE_RECEIVE_V1:
4511 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
4512 					      cq_event);
4513 			lpfc_sli4_handle_received_buffer(phba, dmabuf);
4514 			count++;
4515 			break;
4516 		default:
4517 			break;
4518 		}
4519 
4520 		/* Limit the number of events to 64 to avoid soft lockups */
4521 		if (count == 64)
4522 			break;
4523 	}
4524 }
4525 
4526 /**
4527  * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
4528  * @phba: Pointer to HBA context object.
4529  * @pring: Pointer to driver SLI ring object.
4530  *
4531  * This function aborts all iocbs in the given ring and frees all the iocb
4532  * objects in txq. This function issues an abort iocb for all the iocb commands
4533  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4534  * the return of this function. The caller is not required to hold any locks.
4535  **/
4536 void
4537 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
4538 {
4539 	LIST_HEAD(completions);
4540 	struct lpfc_iocbq *iocb, *next_iocb;
4541 
4542 	if (pring->ringno == LPFC_ELS_RING) {
4543 		lpfc_fabric_abort_hba(phba);
4544 	}
4545 
4546 	/* Error everything on txq and txcmplq
4547 	 * First do the txq.
4548 	 */
4549 	if (phba->sli_rev >= LPFC_SLI_REV4) {
4550 		spin_lock_irq(&pring->ring_lock);
4551 		list_splice_init(&pring->txq, &completions);
4552 		pring->txq_cnt = 0;
4553 		spin_unlock_irq(&pring->ring_lock);
4554 
4555 		spin_lock_irq(&phba->hbalock);
4556 		/* Next issue ABTS for everything on the txcmplq */
4557 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
4558 			lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL);
4559 		spin_unlock_irq(&phba->hbalock);
4560 	} else {
4561 		spin_lock_irq(&phba->hbalock);
4562 		list_splice_init(&pring->txq, &completions);
4563 		pring->txq_cnt = 0;
4564 
4565 		/* Next issue ABTS for everything on the txcmplq */
4566 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
4567 			lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL);
4568 		spin_unlock_irq(&phba->hbalock);
4569 	}
4570 	/* Make sure HBA is alive */
4571 	lpfc_issue_hb_tmo(phba);
4572 
4573 	/* Cancel all the IOCBs from the completions list */
4574 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
4575 			      IOERR_SLI_ABORTED);
4576 }
4577 
4578 /**
4579  * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
4580  * @phba: Pointer to HBA context object.
4581  *
4582  * This function aborts all iocbs in FCP rings and frees all the iocb
4583  * objects in txq. This function issues an abort iocb for all the iocb commands
4584  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4585  * the return of this function. The caller is not required to hold any locks.
4586  **/
4587 void
4588 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
4589 {
4590 	struct lpfc_sli *psli = &phba->sli;
4591 	struct lpfc_sli_ring  *pring;
4592 	uint32_t i;
4593 
4594 	/* Look on all the FCP Rings for the iotag */
4595 	if (phba->sli_rev >= LPFC_SLI_REV4) {
4596 		for (i = 0; i < phba->cfg_hdw_queue; i++) {
4597 			pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4598 			lpfc_sli_abort_iocb_ring(phba, pring);
4599 		}
4600 	} else {
4601 		pring = &psli->sli3_ring[LPFC_FCP_RING];
4602 		lpfc_sli_abort_iocb_ring(phba, pring);
4603 	}
4604 }
4605 
4606 /**
4607  * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring
4608  * @phba: Pointer to HBA context object.
4609  *
4610  * This function flushes all iocbs in the IO ring and frees all the iocb
4611  * objects in txq and txcmplq. This function will not issue abort iocbs
4612  * for all the iocb commands in txcmplq, they will just be returned with
4613  * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
4614  * slot has been permanently disabled.
4615  **/
4616 void
4617 lpfc_sli_flush_io_rings(struct lpfc_hba *phba)
4618 {
4619 	LIST_HEAD(txq);
4620 	LIST_HEAD(txcmplq);
4621 	struct lpfc_sli *psli = &phba->sli;
4622 	struct lpfc_sli_ring  *pring;
4623 	uint32_t i;
4624 	struct lpfc_iocbq *piocb, *next_iocb;
4625 
4626 	spin_lock_irq(&phba->hbalock);
4627 	if (phba->hba_flag & HBA_IOQ_FLUSH ||
4628 	    !phba->sli4_hba.hdwq) {
4629 		spin_unlock_irq(&phba->hbalock);
4630 		return;
4631 	}
4632 	/* Indicate the I/O queues are flushed */
4633 	phba->hba_flag |= HBA_IOQ_FLUSH;
4634 	spin_unlock_irq(&phba->hbalock);
4635 
4636 	/* Look on all the FCP Rings for the iotag */
4637 	if (phba->sli_rev >= LPFC_SLI_REV4) {
4638 		for (i = 0; i < phba->cfg_hdw_queue; i++) {
4639 			pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4640 
4641 			spin_lock_irq(&pring->ring_lock);
4642 			/* Retrieve everything on txq */
4643 			list_splice_init(&pring->txq, &txq);
4644 			list_for_each_entry_safe(piocb, next_iocb,
4645 						 &pring->txcmplq, list)
4646 				piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
4647 			/* Retrieve everything on the txcmplq */
4648 			list_splice_init(&pring->txcmplq, &txcmplq);
4649 			pring->txq_cnt = 0;
4650 			pring->txcmplq_cnt = 0;
4651 			spin_unlock_irq(&pring->ring_lock);
4652 
4653 			/* Flush the txq */
4654 			lpfc_sli_cancel_iocbs(phba, &txq,
4655 					      IOSTAT_LOCAL_REJECT,
4656 					      IOERR_SLI_DOWN);
4657 			/* Flush the txcmplq */
4658 			lpfc_sli_cancel_iocbs(phba, &txcmplq,
4659 					      IOSTAT_LOCAL_REJECT,
4660 					      IOERR_SLI_DOWN);
4661 			if (unlikely(pci_channel_offline(phba->pcidev)))
4662 				lpfc_sli4_io_xri_aborted(phba, NULL, 0);
4663 		}
4664 	} else {
4665 		pring = &psli->sli3_ring[LPFC_FCP_RING];
4666 
4667 		spin_lock_irq(&phba->hbalock);
4668 		/* Retrieve everything on txq */
4669 		list_splice_init(&pring->txq, &txq);
4670 		list_for_each_entry_safe(piocb, next_iocb,
4671 					 &pring->txcmplq, list)
4672 			piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ;
4673 		/* Retrieve everything on the txcmplq */
4674 		list_splice_init(&pring->txcmplq, &txcmplq);
4675 		pring->txq_cnt = 0;
4676 		pring->txcmplq_cnt = 0;
4677 		spin_unlock_irq(&phba->hbalock);
4678 
4679 		/* Flush the txq */
4680 		lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
4681 				      IOERR_SLI_DOWN);
4682 		/* Flush the txcmpq */
4683 		lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
4684 				      IOERR_SLI_DOWN);
4685 	}
4686 }
4687 
4688 /**
4689  * lpfc_sli_brdready_s3 - Check for sli3 host ready status
4690  * @phba: Pointer to HBA context object.
4691  * @mask: Bit mask to be checked.
4692  *
4693  * This function reads the host status register and compares
4694  * with the provided bit mask to check if HBA completed
4695  * the restart. This function will wait in a loop for the
4696  * HBA to complete restart. If the HBA does not restart within
4697  * 15 iterations, the function will reset the HBA again. The
4698  * function returns 1 when HBA fail to restart otherwise returns
4699  * zero.
4700  **/
4701 static int
4702 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
4703 {
4704 	uint32_t status;
4705 	int i = 0;
4706 	int retval = 0;
4707 
4708 	/* Read the HBA Host Status Register */
4709 	if (lpfc_readl(phba->HSregaddr, &status))
4710 		return 1;
4711 
4712 	phba->hba_flag |= HBA_NEEDS_CFG_PORT;
4713 
4714 	/*
4715 	 * Check status register every 100ms for 5 retries, then every
4716 	 * 500ms for 5, then every 2.5 sec for 5, then reset board and
4717 	 * every 2.5 sec for 4.
4718 	 * Break our of the loop if errors occurred during init.
4719 	 */
4720 	while (((status & mask) != mask) &&
4721 	       !(status & HS_FFERM) &&
4722 	       i++ < 20) {
4723 
4724 		if (i <= 5)
4725 			msleep(10);
4726 		else if (i <= 10)
4727 			msleep(500);
4728 		else
4729 			msleep(2500);
4730 
4731 		if (i == 15) {
4732 				/* Do post */
4733 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4734 			lpfc_sli_brdrestart(phba);
4735 		}
4736 		/* Read the HBA Host Status Register */
4737 		if (lpfc_readl(phba->HSregaddr, &status)) {
4738 			retval = 1;
4739 			break;
4740 		}
4741 	}
4742 
4743 	/* Check to see if any errors occurred during init */
4744 	if ((status & HS_FFERM) || (i >= 20)) {
4745 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4746 				"2751 Adapter failed to restart, "
4747 				"status reg x%x, FW Data: A8 x%x AC x%x\n",
4748 				status,
4749 				readl(phba->MBslimaddr + 0xa8),
4750 				readl(phba->MBslimaddr + 0xac));
4751 		phba->link_state = LPFC_HBA_ERROR;
4752 		retval = 1;
4753 	}
4754 
4755 	return retval;
4756 }
4757 
4758 /**
4759  * lpfc_sli_brdready_s4 - Check for sli4 host ready status
4760  * @phba: Pointer to HBA context object.
4761  * @mask: Bit mask to be checked.
4762  *
4763  * This function checks the host status register to check if HBA is
4764  * ready. This function will wait in a loop for the HBA to be ready
4765  * If the HBA is not ready , the function will will reset the HBA PCI
4766  * function again. The function returns 1 when HBA fail to be ready
4767  * otherwise returns zero.
4768  **/
4769 static int
4770 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
4771 {
4772 	uint32_t status;
4773 	int retval = 0;
4774 
4775 	/* Read the HBA Host Status Register */
4776 	status = lpfc_sli4_post_status_check(phba);
4777 
4778 	if (status) {
4779 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4780 		lpfc_sli_brdrestart(phba);
4781 		status = lpfc_sli4_post_status_check(phba);
4782 	}
4783 
4784 	/* Check to see if any errors occurred during init */
4785 	if (status) {
4786 		phba->link_state = LPFC_HBA_ERROR;
4787 		retval = 1;
4788 	} else
4789 		phba->sli4_hba.intr_enable = 0;
4790 
4791 	phba->hba_flag &= ~HBA_SETUP;
4792 	return retval;
4793 }
4794 
4795 /**
4796  * lpfc_sli_brdready - Wrapper func for checking the hba readyness
4797  * @phba: Pointer to HBA context object.
4798  * @mask: Bit mask to be checked.
4799  *
4800  * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
4801  * from the API jump table function pointer from the lpfc_hba struct.
4802  **/
4803 int
4804 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
4805 {
4806 	return phba->lpfc_sli_brdready(phba, mask);
4807 }
4808 
4809 #define BARRIER_TEST_PATTERN (0xdeadbeef)
4810 
4811 /**
4812  * lpfc_reset_barrier - Make HBA ready for HBA reset
4813  * @phba: Pointer to HBA context object.
4814  *
4815  * This function is called before resetting an HBA. This function is called
4816  * with hbalock held and requests HBA to quiesce DMAs before a reset.
4817  **/
4818 void lpfc_reset_barrier(struct lpfc_hba *phba)
4819 {
4820 	uint32_t __iomem *resp_buf;
4821 	uint32_t __iomem *mbox_buf;
4822 	volatile struct MAILBOX_word0 mbox;
4823 	uint32_t hc_copy, ha_copy, resp_data;
4824 	int  i;
4825 	uint8_t hdrtype;
4826 
4827 	lockdep_assert_held(&phba->hbalock);
4828 
4829 	pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
4830 	if (hdrtype != 0x80 ||
4831 	    (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
4832 	     FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
4833 		return;
4834 
4835 	/*
4836 	 * Tell the other part of the chip to suspend temporarily all
4837 	 * its DMA activity.
4838 	 */
4839 	resp_buf = phba->MBslimaddr;
4840 
4841 	/* Disable the error attention */
4842 	if (lpfc_readl(phba->HCregaddr, &hc_copy))
4843 		return;
4844 	writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
4845 	readl(phba->HCregaddr); /* flush */
4846 	phba->link_flag |= LS_IGNORE_ERATT;
4847 
4848 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4849 		return;
4850 	if (ha_copy & HA_ERATT) {
4851 		/* Clear Chip error bit */
4852 		writel(HA_ERATT, phba->HAregaddr);
4853 		phba->pport->stopped = 1;
4854 	}
4855 
4856 	mbox.word0 = 0;
4857 	mbox.mbxCommand = MBX_KILL_BOARD;
4858 	mbox.mbxOwner = OWN_CHIP;
4859 
4860 	writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
4861 	mbox_buf = phba->MBslimaddr;
4862 	writel(mbox.word0, mbox_buf);
4863 
4864 	for (i = 0; i < 50; i++) {
4865 		if (lpfc_readl((resp_buf + 1), &resp_data))
4866 			return;
4867 		if (resp_data != ~(BARRIER_TEST_PATTERN))
4868 			mdelay(1);
4869 		else
4870 			break;
4871 	}
4872 	resp_data = 0;
4873 	if (lpfc_readl((resp_buf + 1), &resp_data))
4874 		return;
4875 	if (resp_data  != ~(BARRIER_TEST_PATTERN)) {
4876 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
4877 		    phba->pport->stopped)
4878 			goto restore_hc;
4879 		else
4880 			goto clear_errat;
4881 	}
4882 
4883 	mbox.mbxOwner = OWN_HOST;
4884 	resp_data = 0;
4885 	for (i = 0; i < 500; i++) {
4886 		if (lpfc_readl(resp_buf, &resp_data))
4887 			return;
4888 		if (resp_data != mbox.word0)
4889 			mdelay(1);
4890 		else
4891 			break;
4892 	}
4893 
4894 clear_errat:
4895 
4896 	while (++i < 500) {
4897 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4898 			return;
4899 		if (!(ha_copy & HA_ERATT))
4900 			mdelay(1);
4901 		else
4902 			break;
4903 	}
4904 
4905 	if (readl(phba->HAregaddr) & HA_ERATT) {
4906 		writel(HA_ERATT, phba->HAregaddr);
4907 		phba->pport->stopped = 1;
4908 	}
4909 
4910 restore_hc:
4911 	phba->link_flag &= ~LS_IGNORE_ERATT;
4912 	writel(hc_copy, phba->HCregaddr);
4913 	readl(phba->HCregaddr); /* flush */
4914 }
4915 
4916 /**
4917  * lpfc_sli_brdkill - Issue a kill_board mailbox command
4918  * @phba: Pointer to HBA context object.
4919  *
4920  * This function issues a kill_board mailbox command and waits for
4921  * the error attention interrupt. This function is called for stopping
4922  * the firmware processing. The caller is not required to hold any
4923  * locks. This function calls lpfc_hba_down_post function to free
4924  * any pending commands after the kill. The function will return 1 when it
4925  * fails to kill the board else will return 0.
4926  **/
4927 int
4928 lpfc_sli_brdkill(struct lpfc_hba *phba)
4929 {
4930 	struct lpfc_sli *psli;
4931 	LPFC_MBOXQ_t *pmb;
4932 	uint32_t status;
4933 	uint32_t ha_copy;
4934 	int retval;
4935 	int i = 0;
4936 
4937 	psli = &phba->sli;
4938 
4939 	/* Kill HBA */
4940 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4941 			"0329 Kill HBA Data: x%x x%x\n",
4942 			phba->pport->port_state, psli->sli_flag);
4943 
4944 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4945 	if (!pmb)
4946 		return 1;
4947 
4948 	/* Disable the error attention */
4949 	spin_lock_irq(&phba->hbalock);
4950 	if (lpfc_readl(phba->HCregaddr, &status)) {
4951 		spin_unlock_irq(&phba->hbalock);
4952 		mempool_free(pmb, phba->mbox_mem_pool);
4953 		return 1;
4954 	}
4955 	status &= ~HC_ERINT_ENA;
4956 	writel(status, phba->HCregaddr);
4957 	readl(phba->HCregaddr); /* flush */
4958 	phba->link_flag |= LS_IGNORE_ERATT;
4959 	spin_unlock_irq(&phba->hbalock);
4960 
4961 	lpfc_kill_board(phba, pmb);
4962 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
4963 	retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
4964 
4965 	if (retval != MBX_SUCCESS) {
4966 		if (retval != MBX_BUSY)
4967 			mempool_free(pmb, phba->mbox_mem_pool);
4968 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4969 				"2752 KILL_BOARD command failed retval %d\n",
4970 				retval);
4971 		spin_lock_irq(&phba->hbalock);
4972 		phba->link_flag &= ~LS_IGNORE_ERATT;
4973 		spin_unlock_irq(&phba->hbalock);
4974 		return 1;
4975 	}
4976 
4977 	spin_lock_irq(&phba->hbalock);
4978 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
4979 	spin_unlock_irq(&phba->hbalock);
4980 
4981 	mempool_free(pmb, phba->mbox_mem_pool);
4982 
4983 	/* There is no completion for a KILL_BOARD mbox cmd. Check for an error
4984 	 * attention every 100ms for 3 seconds. If we don't get ERATT after
4985 	 * 3 seconds we still set HBA_ERROR state because the status of the
4986 	 * board is now undefined.
4987 	 */
4988 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4989 		return 1;
4990 	while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
4991 		mdelay(100);
4992 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4993 			return 1;
4994 	}
4995 
4996 	del_timer_sync(&psli->mbox_tmo);
4997 	if (ha_copy & HA_ERATT) {
4998 		writel(HA_ERATT, phba->HAregaddr);
4999 		phba->pport->stopped = 1;
5000 	}
5001 	spin_lock_irq(&phba->hbalock);
5002 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
5003 	psli->mbox_active = NULL;
5004 	phba->link_flag &= ~LS_IGNORE_ERATT;
5005 	spin_unlock_irq(&phba->hbalock);
5006 
5007 	lpfc_hba_down_post(phba);
5008 	phba->link_state = LPFC_HBA_ERROR;
5009 
5010 	return ha_copy & HA_ERATT ? 0 : 1;
5011 }
5012 
5013 /**
5014  * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
5015  * @phba: Pointer to HBA context object.
5016  *
5017  * This function resets the HBA by writing HC_INITFF to the control
5018  * register. After the HBA resets, this function resets all the iocb ring
5019  * indices. This function disables PCI layer parity checking during
5020  * the reset.
5021  * This function returns 0 always.
5022  * The caller is not required to hold any locks.
5023  **/
5024 int
5025 lpfc_sli_brdreset(struct lpfc_hba *phba)
5026 {
5027 	struct lpfc_sli *psli;
5028 	struct lpfc_sli_ring *pring;
5029 	uint16_t cfg_value;
5030 	int i;
5031 
5032 	psli = &phba->sli;
5033 
5034 	/* Reset HBA */
5035 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5036 			"0325 Reset HBA Data: x%x x%x\n",
5037 			(phba->pport) ? phba->pport->port_state : 0,
5038 			psli->sli_flag);
5039 
5040 	/* perform board reset */
5041 	phba->fc_eventTag = 0;
5042 	phba->link_events = 0;
5043 	phba->hba_flag |= HBA_NEEDS_CFG_PORT;
5044 	if (phba->pport) {
5045 		phba->pport->fc_myDID = 0;
5046 		phba->pport->fc_prevDID = 0;
5047 	}
5048 
5049 	/* Turn off parity checking and serr during the physical reset */
5050 	if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value))
5051 		return -EIO;
5052 
5053 	pci_write_config_word(phba->pcidev, PCI_COMMAND,
5054 			      (cfg_value &
5055 			       ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
5056 
5057 	psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
5058 
5059 	/* Now toggle INITFF bit in the Host Control Register */
5060 	writel(HC_INITFF, phba->HCregaddr);
5061 	mdelay(1);
5062 	readl(phba->HCregaddr); /* flush */
5063 	writel(0, phba->HCregaddr);
5064 	readl(phba->HCregaddr); /* flush */
5065 
5066 	/* Restore PCI cmd register */
5067 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
5068 
5069 	/* Initialize relevant SLI info */
5070 	for (i = 0; i < psli->num_rings; i++) {
5071 		pring = &psli->sli3_ring[i];
5072 		pring->flag = 0;
5073 		pring->sli.sli3.rspidx = 0;
5074 		pring->sli.sli3.next_cmdidx  = 0;
5075 		pring->sli.sli3.local_getidx = 0;
5076 		pring->sli.sli3.cmdidx = 0;
5077 		pring->missbufcnt = 0;
5078 	}
5079 
5080 	phba->link_state = LPFC_WARM_START;
5081 	return 0;
5082 }
5083 
5084 /**
5085  * lpfc_sli4_brdreset - Reset a sli-4 HBA
5086  * @phba: Pointer to HBA context object.
5087  *
5088  * This function resets a SLI4 HBA. This function disables PCI layer parity
5089  * checking during resets the device. The caller is not required to hold
5090  * any locks.
5091  *
5092  * This function returns 0 on success else returns negative error code.
5093  **/
5094 int
5095 lpfc_sli4_brdreset(struct lpfc_hba *phba)
5096 {
5097 	struct lpfc_sli *psli = &phba->sli;
5098 	uint16_t cfg_value;
5099 	int rc = 0;
5100 
5101 	/* Reset HBA */
5102 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5103 			"0295 Reset HBA Data: x%x x%x x%x\n",
5104 			phba->pport->port_state, psli->sli_flag,
5105 			phba->hba_flag);
5106 
5107 	/* perform board reset */
5108 	phba->fc_eventTag = 0;
5109 	phba->link_events = 0;
5110 	phba->pport->fc_myDID = 0;
5111 	phba->pport->fc_prevDID = 0;
5112 	phba->hba_flag &= ~HBA_SETUP;
5113 
5114 	spin_lock_irq(&phba->hbalock);
5115 	psli->sli_flag &= ~(LPFC_PROCESS_LA);
5116 	phba->fcf.fcf_flag = 0;
5117 	spin_unlock_irq(&phba->hbalock);
5118 
5119 	/* Now physically reset the device */
5120 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5121 			"0389 Performing PCI function reset!\n");
5122 
5123 	/* Turn off parity checking and serr during the physical reset */
5124 	if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) {
5125 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5126 				"3205 PCI read Config failed\n");
5127 		return -EIO;
5128 	}
5129 
5130 	pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
5131 			      ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
5132 
5133 	/* Perform FCoE PCI function reset before freeing queue memory */
5134 	rc = lpfc_pci_function_reset(phba);
5135 
5136 	/* Restore PCI cmd register */
5137 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
5138 
5139 	return rc;
5140 }
5141 
5142 /**
5143  * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
5144  * @phba: Pointer to HBA context object.
5145  *
5146  * This function is called in the SLI initialization code path to
5147  * restart the HBA. The caller is not required to hold any lock.
5148  * This function writes MBX_RESTART mailbox command to the SLIM and
5149  * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
5150  * function to free any pending commands. The function enables
5151  * POST only during the first initialization. The function returns zero.
5152  * The function does not guarantee completion of MBX_RESTART mailbox
5153  * command before the return of this function.
5154  **/
5155 static int
5156 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
5157 {
5158 	volatile struct MAILBOX_word0 mb;
5159 	struct lpfc_sli *psli;
5160 	void __iomem *to_slim;
5161 	uint32_t hba_aer_enabled;
5162 
5163 	spin_lock_irq(&phba->hbalock);
5164 
5165 	/* Take PCIe device Advanced Error Reporting (AER) state */
5166 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
5167 
5168 	psli = &phba->sli;
5169 
5170 	/* Restart HBA */
5171 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5172 			"0337 Restart HBA Data: x%x x%x\n",
5173 			(phba->pport) ? phba->pport->port_state : 0,
5174 			psli->sli_flag);
5175 
5176 	mb.word0 = 0;
5177 	mb.mbxCommand = MBX_RESTART;
5178 	mb.mbxHc = 1;
5179 
5180 	lpfc_reset_barrier(phba);
5181 
5182 	to_slim = phba->MBslimaddr;
5183 	writel(mb.word0, to_slim);
5184 	readl(to_slim); /* flush */
5185 
5186 	/* Only skip post after fc_ffinit is completed */
5187 	if (phba->pport && phba->pport->port_state)
5188 		mb.word0 = 1;	/* This is really setting up word1 */
5189 	else
5190 		mb.word0 = 0;	/* This is really setting up word1 */
5191 	to_slim = phba->MBslimaddr + sizeof (uint32_t);
5192 	writel(mb.word0, to_slim);
5193 	readl(to_slim); /* flush */
5194 
5195 	lpfc_sli_brdreset(phba);
5196 	if (phba->pport)
5197 		phba->pport->stopped = 0;
5198 	phba->link_state = LPFC_INIT_START;
5199 	phba->hba_flag = 0;
5200 	spin_unlock_irq(&phba->hbalock);
5201 
5202 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
5203 	psli->stats_start = ktime_get_seconds();
5204 
5205 	/* Give the INITFF and Post time to settle. */
5206 	mdelay(100);
5207 
5208 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
5209 	if (hba_aer_enabled)
5210 		pci_disable_pcie_error_reporting(phba->pcidev);
5211 
5212 	lpfc_hba_down_post(phba);
5213 
5214 	return 0;
5215 }
5216 
5217 /**
5218  * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
5219  * @phba: Pointer to HBA context object.
5220  *
5221  * This function is called in the SLI initialization code path to restart
5222  * a SLI4 HBA. The caller is not required to hold any lock.
5223  * At the end of the function, it calls lpfc_hba_down_post function to
5224  * free any pending commands.
5225  **/
5226 static int
5227 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
5228 {
5229 	struct lpfc_sli *psli = &phba->sli;
5230 	uint32_t hba_aer_enabled;
5231 	int rc;
5232 
5233 	/* Restart HBA */
5234 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5235 			"0296 Restart HBA Data: x%x x%x\n",
5236 			phba->pport->port_state, psli->sli_flag);
5237 
5238 	/* Take PCIe device Advanced Error Reporting (AER) state */
5239 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
5240 
5241 	rc = lpfc_sli4_brdreset(phba);
5242 	if (rc) {
5243 		phba->link_state = LPFC_HBA_ERROR;
5244 		goto hba_down_queue;
5245 	}
5246 
5247 	spin_lock_irq(&phba->hbalock);
5248 	phba->pport->stopped = 0;
5249 	phba->link_state = LPFC_INIT_START;
5250 	phba->hba_flag = 0;
5251 	spin_unlock_irq(&phba->hbalock);
5252 
5253 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
5254 	psli->stats_start = ktime_get_seconds();
5255 
5256 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
5257 	if (hba_aer_enabled)
5258 		pci_disable_pcie_error_reporting(phba->pcidev);
5259 
5260 hba_down_queue:
5261 	lpfc_hba_down_post(phba);
5262 	lpfc_sli4_queue_destroy(phba);
5263 
5264 	return rc;
5265 }
5266 
5267 /**
5268  * lpfc_sli_brdrestart - Wrapper func for restarting hba
5269  * @phba: Pointer to HBA context object.
5270  *
5271  * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
5272  * API jump table function pointer from the lpfc_hba struct.
5273 **/
5274 int
5275 lpfc_sli_brdrestart(struct lpfc_hba *phba)
5276 {
5277 	return phba->lpfc_sli_brdrestart(phba);
5278 }
5279 
5280 /**
5281  * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
5282  * @phba: Pointer to HBA context object.
5283  *
5284  * This function is called after a HBA restart to wait for successful
5285  * restart of the HBA. Successful restart of the HBA is indicated by
5286  * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
5287  * iteration, the function will restart the HBA again. The function returns
5288  * zero if HBA successfully restarted else returns negative error code.
5289  **/
5290 int
5291 lpfc_sli_chipset_init(struct lpfc_hba *phba)
5292 {
5293 	uint32_t status, i = 0;
5294 
5295 	/* Read the HBA Host Status Register */
5296 	if (lpfc_readl(phba->HSregaddr, &status))
5297 		return -EIO;
5298 
5299 	/* Check status register to see what current state is */
5300 	i = 0;
5301 	while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
5302 
5303 		/* Check every 10ms for 10 retries, then every 100ms for 90
5304 		 * retries, then every 1 sec for 50 retires for a total of
5305 		 * ~60 seconds before reset the board again and check every
5306 		 * 1 sec for 50 retries. The up to 60 seconds before the
5307 		 * board ready is required by the Falcon FIPS zeroization
5308 		 * complete, and any reset the board in between shall cause
5309 		 * restart of zeroization, further delay the board ready.
5310 		 */
5311 		if (i++ >= 200) {
5312 			/* Adapter failed to init, timeout, status reg
5313 			   <status> */
5314 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5315 					"0436 Adapter failed to init, "
5316 					"timeout, status reg x%x, "
5317 					"FW Data: A8 x%x AC x%x\n", status,
5318 					readl(phba->MBslimaddr + 0xa8),
5319 					readl(phba->MBslimaddr + 0xac));
5320 			phba->link_state = LPFC_HBA_ERROR;
5321 			return -ETIMEDOUT;
5322 		}
5323 
5324 		/* Check to see if any errors occurred during init */
5325 		if (status & HS_FFERM) {
5326 			/* ERROR: During chipset initialization */
5327 			/* Adapter failed to init, chipset, status reg
5328 			   <status> */
5329 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5330 					"0437 Adapter failed to init, "
5331 					"chipset, status reg x%x, "
5332 					"FW Data: A8 x%x AC x%x\n", status,
5333 					readl(phba->MBslimaddr + 0xa8),
5334 					readl(phba->MBslimaddr + 0xac));
5335 			phba->link_state = LPFC_HBA_ERROR;
5336 			return -EIO;
5337 		}
5338 
5339 		if (i <= 10)
5340 			msleep(10);
5341 		else if (i <= 100)
5342 			msleep(100);
5343 		else
5344 			msleep(1000);
5345 
5346 		if (i == 150) {
5347 			/* Do post */
5348 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
5349 			lpfc_sli_brdrestart(phba);
5350 		}
5351 		/* Read the HBA Host Status Register */
5352 		if (lpfc_readl(phba->HSregaddr, &status))
5353 			return -EIO;
5354 	}
5355 
5356 	/* Check to see if any errors occurred during init */
5357 	if (status & HS_FFERM) {
5358 		/* ERROR: During chipset initialization */
5359 		/* Adapter failed to init, chipset, status reg <status> */
5360 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5361 				"0438 Adapter failed to init, chipset, "
5362 				"status reg x%x, "
5363 				"FW Data: A8 x%x AC x%x\n", status,
5364 				readl(phba->MBslimaddr + 0xa8),
5365 				readl(phba->MBslimaddr + 0xac));
5366 		phba->link_state = LPFC_HBA_ERROR;
5367 		return -EIO;
5368 	}
5369 
5370 	phba->hba_flag |= HBA_NEEDS_CFG_PORT;
5371 
5372 	/* Clear all interrupt enable conditions */
5373 	writel(0, phba->HCregaddr);
5374 	readl(phba->HCregaddr); /* flush */
5375 
5376 	/* setup host attn register */
5377 	writel(0xffffffff, phba->HAregaddr);
5378 	readl(phba->HAregaddr); /* flush */
5379 	return 0;
5380 }
5381 
5382 /**
5383  * lpfc_sli_hbq_count - Get the number of HBQs to be configured
5384  *
5385  * This function calculates and returns the number of HBQs required to be
5386  * configured.
5387  **/
5388 int
5389 lpfc_sli_hbq_count(void)
5390 {
5391 	return ARRAY_SIZE(lpfc_hbq_defs);
5392 }
5393 
5394 /**
5395  * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
5396  *
5397  * This function adds the number of hbq entries in every HBQ to get
5398  * the total number of hbq entries required for the HBA and returns
5399  * the total count.
5400  **/
5401 static int
5402 lpfc_sli_hbq_entry_count(void)
5403 {
5404 	int  hbq_count = lpfc_sli_hbq_count();
5405 	int  count = 0;
5406 	int  i;
5407 
5408 	for (i = 0; i < hbq_count; ++i)
5409 		count += lpfc_hbq_defs[i]->entry_count;
5410 	return count;
5411 }
5412 
5413 /**
5414  * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
5415  *
5416  * This function calculates amount of memory required for all hbq entries
5417  * to be configured and returns the total memory required.
5418  **/
5419 int
5420 lpfc_sli_hbq_size(void)
5421 {
5422 	return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
5423 }
5424 
5425 /**
5426  * lpfc_sli_hbq_setup - configure and initialize HBQs
5427  * @phba: Pointer to HBA context object.
5428  *
5429  * This function is called during the SLI initialization to configure
5430  * all the HBQs and post buffers to the HBQ. The caller is not
5431  * required to hold any locks. This function will return zero if successful
5432  * else it will return negative error code.
5433  **/
5434 static int
5435 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
5436 {
5437 	int  hbq_count = lpfc_sli_hbq_count();
5438 	LPFC_MBOXQ_t *pmb;
5439 	MAILBOX_t *pmbox;
5440 	uint32_t hbqno;
5441 	uint32_t hbq_entry_index;
5442 
5443 				/* Get a Mailbox buffer to setup mailbox
5444 				 * commands for HBA initialization
5445 				 */
5446 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5447 
5448 	if (!pmb)
5449 		return -ENOMEM;
5450 
5451 	pmbox = &pmb->u.mb;
5452 
5453 	/* Initialize the struct lpfc_sli_hbq structure for each hbq */
5454 	phba->link_state = LPFC_INIT_MBX_CMDS;
5455 	phba->hbq_in_use = 1;
5456 
5457 	hbq_entry_index = 0;
5458 	for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
5459 		phba->hbqs[hbqno].next_hbqPutIdx = 0;
5460 		phba->hbqs[hbqno].hbqPutIdx      = 0;
5461 		phba->hbqs[hbqno].local_hbqGetIdx   = 0;
5462 		phba->hbqs[hbqno].entry_count =
5463 			lpfc_hbq_defs[hbqno]->entry_count;
5464 		lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
5465 			hbq_entry_index, pmb);
5466 		hbq_entry_index += phba->hbqs[hbqno].entry_count;
5467 
5468 		if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
5469 			/* Adapter failed to init, mbxCmd <cmd> CFG_RING,
5470 			   mbxStatus <status>, ring <num> */
5471 
5472 			lpfc_printf_log(phba, KERN_ERR,
5473 					LOG_SLI | LOG_VPORT,
5474 					"1805 Adapter failed to init. "
5475 					"Data: x%x x%x x%x\n",
5476 					pmbox->mbxCommand,
5477 					pmbox->mbxStatus, hbqno);
5478 
5479 			phba->link_state = LPFC_HBA_ERROR;
5480 			mempool_free(pmb, phba->mbox_mem_pool);
5481 			return -ENXIO;
5482 		}
5483 	}
5484 	phba->hbq_count = hbq_count;
5485 
5486 	mempool_free(pmb, phba->mbox_mem_pool);
5487 
5488 	/* Initially populate or replenish the HBQs */
5489 	for (hbqno = 0; hbqno < hbq_count; ++hbqno)
5490 		lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
5491 	return 0;
5492 }
5493 
5494 /**
5495  * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
5496  * @phba: Pointer to HBA context object.
5497  *
5498  * This function is called during the SLI initialization to configure
5499  * all the HBQs and post buffers to the HBQ. The caller is not
5500  * required to hold any locks. This function will return zero if successful
5501  * else it will return negative error code.
5502  **/
5503 static int
5504 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
5505 {
5506 	phba->hbq_in_use = 1;
5507 	/**
5508 	 * Specific case when the MDS diagnostics is enabled and supported.
5509 	 * The receive buffer count is truncated to manage the incoming
5510 	 * traffic.
5511 	 **/
5512 	if (phba->cfg_enable_mds_diags && phba->mds_diags_support)
5513 		phba->hbqs[LPFC_ELS_HBQ].entry_count =
5514 			lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1;
5515 	else
5516 		phba->hbqs[LPFC_ELS_HBQ].entry_count =
5517 			lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
5518 	phba->hbq_count = 1;
5519 	lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
5520 	/* Initially populate or replenish the HBQs */
5521 	return 0;
5522 }
5523 
5524 /**
5525  * lpfc_sli_config_port - Issue config port mailbox command
5526  * @phba: Pointer to HBA context object.
5527  * @sli_mode: sli mode - 2/3
5528  *
5529  * This function is called by the sli initialization code path
5530  * to issue config_port mailbox command. This function restarts the
5531  * HBA firmware and issues a config_port mailbox command to configure
5532  * the SLI interface in the sli mode specified by sli_mode
5533  * variable. The caller is not required to hold any locks.
5534  * The function returns 0 if successful, else returns negative error
5535  * code.
5536  **/
5537 int
5538 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
5539 {
5540 	LPFC_MBOXQ_t *pmb;
5541 	uint32_t resetcount = 0, rc = 0, done = 0;
5542 
5543 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5544 	if (!pmb) {
5545 		phba->link_state = LPFC_HBA_ERROR;
5546 		return -ENOMEM;
5547 	}
5548 
5549 	phba->sli_rev = sli_mode;
5550 	while (resetcount < 2 && !done) {
5551 		spin_lock_irq(&phba->hbalock);
5552 		phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
5553 		spin_unlock_irq(&phba->hbalock);
5554 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
5555 		lpfc_sli_brdrestart(phba);
5556 		rc = lpfc_sli_chipset_init(phba);
5557 		if (rc)
5558 			break;
5559 
5560 		spin_lock_irq(&phba->hbalock);
5561 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
5562 		spin_unlock_irq(&phba->hbalock);
5563 		resetcount++;
5564 
5565 		/* Call pre CONFIG_PORT mailbox command initialization.  A
5566 		 * value of 0 means the call was successful.  Any other
5567 		 * nonzero value is a failure, but if ERESTART is returned,
5568 		 * the driver may reset the HBA and try again.
5569 		 */
5570 		rc = lpfc_config_port_prep(phba);
5571 		if (rc == -ERESTART) {
5572 			phba->link_state = LPFC_LINK_UNKNOWN;
5573 			continue;
5574 		} else if (rc)
5575 			break;
5576 
5577 		phba->link_state = LPFC_INIT_MBX_CMDS;
5578 		lpfc_config_port(phba, pmb);
5579 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
5580 		phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
5581 					LPFC_SLI3_HBQ_ENABLED |
5582 					LPFC_SLI3_CRP_ENABLED |
5583 					LPFC_SLI3_DSS_ENABLED);
5584 		if (rc != MBX_SUCCESS) {
5585 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5586 				"0442 Adapter failed to init, mbxCmd x%x "
5587 				"CONFIG_PORT, mbxStatus x%x Data: x%x\n",
5588 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
5589 			spin_lock_irq(&phba->hbalock);
5590 			phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
5591 			spin_unlock_irq(&phba->hbalock);
5592 			rc = -ENXIO;
5593 		} else {
5594 			/* Allow asynchronous mailbox command to go through */
5595 			spin_lock_irq(&phba->hbalock);
5596 			phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
5597 			spin_unlock_irq(&phba->hbalock);
5598 			done = 1;
5599 
5600 			if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
5601 			    (pmb->u.mb.un.varCfgPort.gasabt == 0))
5602 				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
5603 					"3110 Port did not grant ASABT\n");
5604 		}
5605 	}
5606 	if (!done) {
5607 		rc = -EINVAL;
5608 		goto do_prep_failed;
5609 	}
5610 	if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
5611 		if (!pmb->u.mb.un.varCfgPort.cMA) {
5612 			rc = -ENXIO;
5613 			goto do_prep_failed;
5614 		}
5615 		if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
5616 			phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
5617 			phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
5618 			phba->max_vports = (phba->max_vpi > phba->max_vports) ?
5619 				phba->max_vpi : phba->max_vports;
5620 
5621 		} else
5622 			phba->max_vpi = 0;
5623 		if (pmb->u.mb.un.varCfgPort.gerbm)
5624 			phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
5625 		if (pmb->u.mb.un.varCfgPort.gcrp)
5626 			phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
5627 
5628 		phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
5629 		phba->port_gp = phba->mbox->us.s3_pgp.port;
5630 
5631 		if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
5632 			if (pmb->u.mb.un.varCfgPort.gbg == 0) {
5633 				phba->cfg_enable_bg = 0;
5634 				phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
5635 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5636 						"0443 Adapter did not grant "
5637 						"BlockGuard\n");
5638 			}
5639 		}
5640 	} else {
5641 		phba->hbq_get = NULL;
5642 		phba->port_gp = phba->mbox->us.s2.port;
5643 		phba->max_vpi = 0;
5644 	}
5645 do_prep_failed:
5646 	mempool_free(pmb, phba->mbox_mem_pool);
5647 	return rc;
5648 }
5649 
5650 
5651 /**
5652  * lpfc_sli_hba_setup - SLI initialization function
5653  * @phba: Pointer to HBA context object.
5654  *
5655  * This function is the main SLI initialization function. This function
5656  * is called by the HBA initialization code, HBA reset code and HBA
5657  * error attention handler code. Caller is not required to hold any
5658  * locks. This function issues config_port mailbox command to configure
5659  * the SLI, setup iocb rings and HBQ rings. In the end the function
5660  * calls the config_port_post function to issue init_link mailbox
5661  * command and to start the discovery. The function will return zero
5662  * if successful, else it will return negative error code.
5663  **/
5664 int
5665 lpfc_sli_hba_setup(struct lpfc_hba *phba)
5666 {
5667 	uint32_t rc;
5668 	int  i;
5669 	int longs;
5670 
5671 	/* Enable ISR already does config_port because of config_msi mbx */
5672 	if (phba->hba_flag & HBA_NEEDS_CFG_PORT) {
5673 		rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
5674 		if (rc)
5675 			return -EIO;
5676 		phba->hba_flag &= ~HBA_NEEDS_CFG_PORT;
5677 	}
5678 	phba->fcp_embed_io = 0;	/* SLI4 FC support only */
5679 
5680 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
5681 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
5682 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
5683 		if (!rc) {
5684 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5685 					"2709 This device supports "
5686 					"Advanced Error Reporting (AER)\n");
5687 			spin_lock_irq(&phba->hbalock);
5688 			phba->hba_flag |= HBA_AER_ENABLED;
5689 			spin_unlock_irq(&phba->hbalock);
5690 		} else {
5691 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5692 					"2708 This device does not support "
5693 					"Advanced Error Reporting (AER): %d\n",
5694 					rc);
5695 			phba->cfg_aer_support = 0;
5696 		}
5697 	}
5698 
5699 	if (phba->sli_rev == 3) {
5700 		phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
5701 		phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
5702 	} else {
5703 		phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
5704 		phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
5705 		phba->sli3_options = 0;
5706 	}
5707 
5708 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5709 			"0444 Firmware in SLI %x mode. Max_vpi %d\n",
5710 			phba->sli_rev, phba->max_vpi);
5711 	rc = lpfc_sli_ring_map(phba);
5712 
5713 	if (rc)
5714 		goto lpfc_sli_hba_setup_error;
5715 
5716 	/* Initialize VPIs. */
5717 	if (phba->sli_rev == LPFC_SLI_REV3) {
5718 		/*
5719 		 * The VPI bitmask and physical ID array are allocated
5720 		 * and initialized once only - at driver load.  A port
5721 		 * reset doesn't need to reinitialize this memory.
5722 		 */
5723 		if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
5724 			longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
5725 			phba->vpi_bmask = kcalloc(longs,
5726 						  sizeof(unsigned long),
5727 						  GFP_KERNEL);
5728 			if (!phba->vpi_bmask) {
5729 				rc = -ENOMEM;
5730 				goto lpfc_sli_hba_setup_error;
5731 			}
5732 
5733 			phba->vpi_ids = kcalloc(phba->max_vpi + 1,
5734 						sizeof(uint16_t),
5735 						GFP_KERNEL);
5736 			if (!phba->vpi_ids) {
5737 				kfree(phba->vpi_bmask);
5738 				rc = -ENOMEM;
5739 				goto lpfc_sli_hba_setup_error;
5740 			}
5741 			for (i = 0; i < phba->max_vpi; i++)
5742 				phba->vpi_ids[i] = i;
5743 		}
5744 	}
5745 
5746 	/* Init HBQs */
5747 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
5748 		rc = lpfc_sli_hbq_setup(phba);
5749 		if (rc)
5750 			goto lpfc_sli_hba_setup_error;
5751 	}
5752 	spin_lock_irq(&phba->hbalock);
5753 	phba->sli.sli_flag |= LPFC_PROCESS_LA;
5754 	spin_unlock_irq(&phba->hbalock);
5755 
5756 	rc = lpfc_config_port_post(phba);
5757 	if (rc)
5758 		goto lpfc_sli_hba_setup_error;
5759 
5760 	return rc;
5761 
5762 lpfc_sli_hba_setup_error:
5763 	phba->link_state = LPFC_HBA_ERROR;
5764 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5765 			"0445 Firmware initialization failed\n");
5766 	return rc;
5767 }
5768 
5769 /**
5770  * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
5771  * @phba: Pointer to HBA context object.
5772  *
5773  * This function issue a dump mailbox command to read config region
5774  * 23 and parse the records in the region and populate driver
5775  * data structure.
5776  **/
5777 static int
5778 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
5779 {
5780 	LPFC_MBOXQ_t *mboxq;
5781 	struct lpfc_dmabuf *mp;
5782 	struct lpfc_mqe *mqe;
5783 	uint32_t data_length;
5784 	int rc;
5785 
5786 	/* Program the default value of vlan_id and fc_map */
5787 	phba->valid_vlan = 0;
5788 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
5789 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
5790 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
5791 
5792 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5793 	if (!mboxq)
5794 		return -ENOMEM;
5795 
5796 	mqe = &mboxq->u.mqe;
5797 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
5798 		rc = -ENOMEM;
5799 		goto out_free_mboxq;
5800 	}
5801 
5802 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
5803 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5804 
5805 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5806 			"(%d):2571 Mailbox cmd x%x Status x%x "
5807 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5808 			"x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5809 			"CQ: x%x x%x x%x x%x\n",
5810 			mboxq->vport ? mboxq->vport->vpi : 0,
5811 			bf_get(lpfc_mqe_command, mqe),
5812 			bf_get(lpfc_mqe_status, mqe),
5813 			mqe->un.mb_words[0], mqe->un.mb_words[1],
5814 			mqe->un.mb_words[2], mqe->un.mb_words[3],
5815 			mqe->un.mb_words[4], mqe->un.mb_words[5],
5816 			mqe->un.mb_words[6], mqe->un.mb_words[7],
5817 			mqe->un.mb_words[8], mqe->un.mb_words[9],
5818 			mqe->un.mb_words[10], mqe->un.mb_words[11],
5819 			mqe->un.mb_words[12], mqe->un.mb_words[13],
5820 			mqe->un.mb_words[14], mqe->un.mb_words[15],
5821 			mqe->un.mb_words[16], mqe->un.mb_words[50],
5822 			mboxq->mcqe.word0,
5823 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
5824 			mboxq->mcqe.trailer);
5825 
5826 	if (rc) {
5827 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5828 		kfree(mp);
5829 		rc = -EIO;
5830 		goto out_free_mboxq;
5831 	}
5832 	data_length = mqe->un.mb_words[5];
5833 	if (data_length > DMP_RGN23_SIZE) {
5834 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5835 		kfree(mp);
5836 		rc = -EIO;
5837 		goto out_free_mboxq;
5838 	}
5839 
5840 	lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
5841 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
5842 	kfree(mp);
5843 	rc = 0;
5844 
5845 out_free_mboxq:
5846 	mempool_free(mboxq, phba->mbox_mem_pool);
5847 	return rc;
5848 }
5849 
5850 /**
5851  * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
5852  * @phba: pointer to lpfc hba data structure.
5853  * @mboxq: pointer to the LPFC_MBOXQ_t structure.
5854  * @vpd: pointer to the memory to hold resulting port vpd data.
5855  * @vpd_size: On input, the number of bytes allocated to @vpd.
5856  *	      On output, the number of data bytes in @vpd.
5857  *
5858  * This routine executes a READ_REV SLI4 mailbox command.  In
5859  * addition, this routine gets the port vpd data.
5860  *
5861  * Return codes
5862  * 	0 - successful
5863  * 	-ENOMEM - could not allocated memory.
5864  **/
5865 static int
5866 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5867 		    uint8_t *vpd, uint32_t *vpd_size)
5868 {
5869 	int rc = 0;
5870 	uint32_t dma_size;
5871 	struct lpfc_dmabuf *dmabuf;
5872 	struct lpfc_mqe *mqe;
5873 
5874 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5875 	if (!dmabuf)
5876 		return -ENOMEM;
5877 
5878 	/*
5879 	 * Get a DMA buffer for the vpd data resulting from the READ_REV
5880 	 * mailbox command.
5881 	 */
5882 	dma_size = *vpd_size;
5883 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size,
5884 					  &dmabuf->phys, GFP_KERNEL);
5885 	if (!dmabuf->virt) {
5886 		kfree(dmabuf);
5887 		return -ENOMEM;
5888 	}
5889 
5890 	/*
5891 	 * The SLI4 implementation of READ_REV conflicts at word1,
5892 	 * bits 31:16 and SLI4 adds vpd functionality not present
5893 	 * in SLI3.  This code corrects the conflicts.
5894 	 */
5895 	lpfc_read_rev(phba, mboxq);
5896 	mqe = &mboxq->u.mqe;
5897 	mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
5898 	mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
5899 	mqe->un.read_rev.word1 &= 0x0000FFFF;
5900 	bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
5901 	bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
5902 
5903 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5904 	if (rc) {
5905 		dma_free_coherent(&phba->pcidev->dev, dma_size,
5906 				  dmabuf->virt, dmabuf->phys);
5907 		kfree(dmabuf);
5908 		return -EIO;
5909 	}
5910 
5911 	/*
5912 	 * The available vpd length cannot be bigger than the
5913 	 * DMA buffer passed to the port.  Catch the less than
5914 	 * case and update the caller's size.
5915 	 */
5916 	if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
5917 		*vpd_size = mqe->un.read_rev.avail_vpd_len;
5918 
5919 	memcpy(vpd, dmabuf->virt, *vpd_size);
5920 
5921 	dma_free_coherent(&phba->pcidev->dev, dma_size,
5922 			  dmabuf->virt, dmabuf->phys);
5923 	kfree(dmabuf);
5924 	return 0;
5925 }
5926 
5927 /**
5928  * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes
5929  * @phba: pointer to lpfc hba data structure.
5930  *
5931  * This routine retrieves SLI4 device physical port name this PCI function
5932  * is attached to.
5933  *
5934  * Return codes
5935  *      0 - successful
5936  *      otherwise - failed to retrieve controller attributes
5937  **/
5938 static int
5939 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba)
5940 {
5941 	LPFC_MBOXQ_t *mboxq;
5942 	struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
5943 	struct lpfc_controller_attribute *cntl_attr;
5944 	void *virtaddr = NULL;
5945 	uint32_t alloclen, reqlen;
5946 	uint32_t shdr_status, shdr_add_status;
5947 	union lpfc_sli4_cfg_shdr *shdr;
5948 	int rc;
5949 
5950 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5951 	if (!mboxq)
5952 		return -ENOMEM;
5953 
5954 	/* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */
5955 	reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
5956 	alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5957 			LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
5958 			LPFC_SLI4_MBX_NEMBED);
5959 
5960 	if (alloclen < reqlen) {
5961 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5962 				"3084 Allocated DMA memory size (%d) is "
5963 				"less than the requested DMA memory size "
5964 				"(%d)\n", alloclen, reqlen);
5965 		rc = -ENOMEM;
5966 		goto out_free_mboxq;
5967 	}
5968 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5969 	virtaddr = mboxq->sge_array->addr[0];
5970 	mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5971 	shdr = &mbx_cntl_attr->cfg_shdr;
5972 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5973 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5974 	if (shdr_status || shdr_add_status || rc) {
5975 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5976 				"3085 Mailbox x%x (x%x/x%x) failed, "
5977 				"rc:x%x, status:x%x, add_status:x%x\n",
5978 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5979 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5980 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5981 				rc, shdr_status, shdr_add_status);
5982 		rc = -ENXIO;
5983 		goto out_free_mboxq;
5984 	}
5985 
5986 	cntl_attr = &mbx_cntl_attr->cntl_attr;
5987 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
5988 	phba->sli4_hba.lnk_info.lnk_tp =
5989 		bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
5990 	phba->sli4_hba.lnk_info.lnk_no =
5991 		bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
5992 	phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr);
5993 	phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr);
5994 
5995 	memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion));
5996 	strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str,
5997 		sizeof(phba->BIOSVersion));
5998 
5999 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6000 			"3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, "
6001 			"flash_id: x%02x, asic_rev: x%02x\n",
6002 			phba->sli4_hba.lnk_info.lnk_tp,
6003 			phba->sli4_hba.lnk_info.lnk_no,
6004 			phba->BIOSVersion, phba->sli4_hba.flash_id,
6005 			phba->sli4_hba.asic_rev);
6006 out_free_mboxq:
6007 	if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
6008 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
6009 	else
6010 		mempool_free(mboxq, phba->mbox_mem_pool);
6011 	return rc;
6012 }
6013 
6014 /**
6015  * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
6016  * @phba: pointer to lpfc hba data structure.
6017  *
6018  * This routine retrieves SLI4 device physical port name this PCI function
6019  * is attached to.
6020  *
6021  * Return codes
6022  *      0 - successful
6023  *      otherwise - failed to retrieve physical port name
6024  **/
6025 static int
6026 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
6027 {
6028 	LPFC_MBOXQ_t *mboxq;
6029 	struct lpfc_mbx_get_port_name *get_port_name;
6030 	uint32_t shdr_status, shdr_add_status;
6031 	union lpfc_sli4_cfg_shdr *shdr;
6032 	char cport_name = 0;
6033 	int rc;
6034 
6035 	/* We assume nothing at this point */
6036 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
6037 	phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
6038 
6039 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6040 	if (!mboxq)
6041 		return -ENOMEM;
6042 	/* obtain link type and link number via READ_CONFIG */
6043 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
6044 	lpfc_sli4_read_config(phba);
6045 	if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
6046 		goto retrieve_ppname;
6047 
6048 	/* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
6049 	rc = lpfc_sli4_get_ctl_attr(phba);
6050 	if (rc)
6051 		goto out_free_mboxq;
6052 
6053 retrieve_ppname:
6054 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
6055 		LPFC_MBOX_OPCODE_GET_PORT_NAME,
6056 		sizeof(struct lpfc_mbx_get_port_name) -
6057 		sizeof(struct lpfc_sli4_cfg_mhdr),
6058 		LPFC_SLI4_MBX_EMBED);
6059 	get_port_name = &mboxq->u.mqe.un.get_port_name;
6060 	shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
6061 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
6062 	bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
6063 		phba->sli4_hba.lnk_info.lnk_tp);
6064 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6065 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6066 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6067 	if (shdr_status || shdr_add_status || rc) {
6068 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6069 				"3087 Mailbox x%x (x%x/x%x) failed: "
6070 				"rc:x%x, status:x%x, add_status:x%x\n",
6071 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
6072 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
6073 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
6074 				rc, shdr_status, shdr_add_status);
6075 		rc = -ENXIO;
6076 		goto out_free_mboxq;
6077 	}
6078 	switch (phba->sli4_hba.lnk_info.lnk_no) {
6079 	case LPFC_LINK_NUMBER_0:
6080 		cport_name = bf_get(lpfc_mbx_get_port_name_name0,
6081 				&get_port_name->u.response);
6082 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6083 		break;
6084 	case LPFC_LINK_NUMBER_1:
6085 		cport_name = bf_get(lpfc_mbx_get_port_name_name1,
6086 				&get_port_name->u.response);
6087 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6088 		break;
6089 	case LPFC_LINK_NUMBER_2:
6090 		cport_name = bf_get(lpfc_mbx_get_port_name_name2,
6091 				&get_port_name->u.response);
6092 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6093 		break;
6094 	case LPFC_LINK_NUMBER_3:
6095 		cport_name = bf_get(lpfc_mbx_get_port_name_name3,
6096 				&get_port_name->u.response);
6097 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6098 		break;
6099 	default:
6100 		break;
6101 	}
6102 
6103 	if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
6104 		phba->Port[0] = cport_name;
6105 		phba->Port[1] = '\0';
6106 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6107 				"3091 SLI get port name: %s\n", phba->Port);
6108 	}
6109 
6110 out_free_mboxq:
6111 	if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
6112 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
6113 	else
6114 		mempool_free(mboxq, phba->mbox_mem_pool);
6115 	return rc;
6116 }
6117 
6118 /**
6119  * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
6120  * @phba: pointer to lpfc hba data structure.
6121  *
6122  * This routine is called to explicitly arm the SLI4 device's completion and
6123  * event queues
6124  **/
6125 static void
6126 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
6127 {
6128 	int qidx;
6129 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
6130 	struct lpfc_sli4_hdw_queue *qp;
6131 	struct lpfc_queue *eq;
6132 
6133 	sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM);
6134 	sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM);
6135 	if (sli4_hba->nvmels_cq)
6136 		sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0,
6137 					   LPFC_QUEUE_REARM);
6138 
6139 	if (sli4_hba->hdwq) {
6140 		/* Loop thru all Hardware Queues */
6141 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
6142 			qp = &sli4_hba->hdwq[qidx];
6143 			/* ARM the corresponding CQ */
6144 			sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0,
6145 						LPFC_QUEUE_REARM);
6146 		}
6147 
6148 		/* Loop thru all IRQ vectors */
6149 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
6150 			eq = sli4_hba->hba_eq_hdl[qidx].eq;
6151 			/* ARM the corresponding EQ */
6152 			sli4_hba->sli4_write_eq_db(phba, eq,
6153 						   0, LPFC_QUEUE_REARM);
6154 		}
6155 	}
6156 
6157 	if (phba->nvmet_support) {
6158 		for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
6159 			sli4_hba->sli4_write_cq_db(phba,
6160 				sli4_hba->nvmet_cqset[qidx], 0,
6161 				LPFC_QUEUE_REARM);
6162 		}
6163 	}
6164 }
6165 
6166 /**
6167  * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
6168  * @phba: Pointer to HBA context object.
6169  * @type: The resource extent type.
6170  * @extnt_count: buffer to hold port available extent count.
6171  * @extnt_size: buffer to hold element count per extent.
6172  *
6173  * This function calls the port and retrievs the number of available
6174  * extents and their size for a particular extent type.
6175  *
6176  * Returns: 0 if successful.  Nonzero otherwise.
6177  **/
6178 int
6179 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
6180 			       uint16_t *extnt_count, uint16_t *extnt_size)
6181 {
6182 	int rc = 0;
6183 	uint32_t length;
6184 	uint32_t mbox_tmo;
6185 	struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
6186 	LPFC_MBOXQ_t *mbox;
6187 
6188 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6189 	if (!mbox)
6190 		return -ENOMEM;
6191 
6192 	/* Find out how many extents are available for this resource type */
6193 	length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
6194 		  sizeof(struct lpfc_sli4_cfg_mhdr));
6195 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6196 			 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
6197 			 length, LPFC_SLI4_MBX_EMBED);
6198 
6199 	/* Send an extents count of 0 - the GET doesn't use it. */
6200 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6201 					LPFC_SLI4_MBX_EMBED);
6202 	if (unlikely(rc)) {
6203 		rc = -EIO;
6204 		goto err_exit;
6205 	}
6206 
6207 	if (!phba->sli4_hba.intr_enable)
6208 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6209 	else {
6210 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6211 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6212 	}
6213 	if (unlikely(rc)) {
6214 		rc = -EIO;
6215 		goto err_exit;
6216 	}
6217 
6218 	rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
6219 	if (bf_get(lpfc_mbox_hdr_status,
6220 		   &rsrc_info->header.cfg_shdr.response)) {
6221 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6222 				"2930 Failed to get resource extents "
6223 				"Status 0x%x Add'l Status 0x%x\n",
6224 				bf_get(lpfc_mbox_hdr_status,
6225 				       &rsrc_info->header.cfg_shdr.response),
6226 				bf_get(lpfc_mbox_hdr_add_status,
6227 				       &rsrc_info->header.cfg_shdr.response));
6228 		rc = -EIO;
6229 		goto err_exit;
6230 	}
6231 
6232 	*extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
6233 			      &rsrc_info->u.rsp);
6234 	*extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
6235 			     &rsrc_info->u.rsp);
6236 
6237 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6238 			"3162 Retrieved extents type-%d from port: count:%d, "
6239 			"size:%d\n", type, *extnt_count, *extnt_size);
6240 
6241 err_exit:
6242 	mempool_free(mbox, phba->mbox_mem_pool);
6243 	return rc;
6244 }
6245 
6246 /**
6247  * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
6248  * @phba: Pointer to HBA context object.
6249  * @type: The extent type to check.
6250  *
6251  * This function reads the current available extents from the port and checks
6252  * if the extent count or extent size has changed since the last access.
6253  * Callers use this routine post port reset to understand if there is a
6254  * extent reprovisioning requirement.
6255  *
6256  * Returns:
6257  *   -Error: error indicates problem.
6258  *   1: Extent count or size has changed.
6259  *   0: No changes.
6260  **/
6261 static int
6262 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
6263 {
6264 	uint16_t curr_ext_cnt, rsrc_ext_cnt;
6265 	uint16_t size_diff, rsrc_ext_size;
6266 	int rc = 0;
6267 	struct lpfc_rsrc_blks *rsrc_entry;
6268 	struct list_head *rsrc_blk_list = NULL;
6269 
6270 	size_diff = 0;
6271 	curr_ext_cnt = 0;
6272 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
6273 					    &rsrc_ext_cnt,
6274 					    &rsrc_ext_size);
6275 	if (unlikely(rc))
6276 		return -EIO;
6277 
6278 	switch (type) {
6279 	case LPFC_RSC_TYPE_FCOE_RPI:
6280 		rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
6281 		break;
6282 	case LPFC_RSC_TYPE_FCOE_VPI:
6283 		rsrc_blk_list = &phba->lpfc_vpi_blk_list;
6284 		break;
6285 	case LPFC_RSC_TYPE_FCOE_XRI:
6286 		rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
6287 		break;
6288 	case LPFC_RSC_TYPE_FCOE_VFI:
6289 		rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
6290 		break;
6291 	default:
6292 		break;
6293 	}
6294 
6295 	list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
6296 		curr_ext_cnt++;
6297 		if (rsrc_entry->rsrc_size != rsrc_ext_size)
6298 			size_diff++;
6299 	}
6300 
6301 	if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
6302 		rc = 1;
6303 
6304 	return rc;
6305 }
6306 
6307 /**
6308  * lpfc_sli4_cfg_post_extnts -
6309  * @phba: Pointer to HBA context object.
6310  * @extnt_cnt: number of available extents.
6311  * @type: the extent type (rpi, xri, vfi, vpi).
6312  * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation.
6313  * @mbox: pointer to the caller's allocated mailbox structure.
6314  *
6315  * This function executes the extents allocation request.  It also
6316  * takes care of the amount of memory needed to allocate or get the
6317  * allocated extents. It is the caller's responsibility to evaluate
6318  * the response.
6319  *
6320  * Returns:
6321  *   -Error:  Error value describes the condition found.
6322  *   0: if successful
6323  **/
6324 static int
6325 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
6326 			  uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
6327 {
6328 	int rc = 0;
6329 	uint32_t req_len;
6330 	uint32_t emb_len;
6331 	uint32_t alloc_len, mbox_tmo;
6332 
6333 	/* Calculate the total requested length of the dma memory */
6334 	req_len = extnt_cnt * sizeof(uint16_t);
6335 
6336 	/*
6337 	 * Calculate the size of an embedded mailbox.  The uint32_t
6338 	 * accounts for extents-specific word.
6339 	 */
6340 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6341 		sizeof(uint32_t);
6342 
6343 	/*
6344 	 * Presume the allocation and response will fit into an embedded
6345 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
6346 	 */
6347 	*emb = LPFC_SLI4_MBX_EMBED;
6348 	if (req_len > emb_len) {
6349 		req_len = extnt_cnt * sizeof(uint16_t) +
6350 			sizeof(union lpfc_sli4_cfg_shdr) +
6351 			sizeof(uint32_t);
6352 		*emb = LPFC_SLI4_MBX_NEMBED;
6353 	}
6354 
6355 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6356 				     LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
6357 				     req_len, *emb);
6358 	if (alloc_len < req_len) {
6359 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6360 			"2982 Allocated DMA memory size (x%x) is "
6361 			"less than the requested DMA memory "
6362 			"size (x%x)\n", alloc_len, req_len);
6363 		return -ENOMEM;
6364 	}
6365 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
6366 	if (unlikely(rc))
6367 		return -EIO;
6368 
6369 	if (!phba->sli4_hba.intr_enable)
6370 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6371 	else {
6372 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6373 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6374 	}
6375 
6376 	if (unlikely(rc))
6377 		rc = -EIO;
6378 	return rc;
6379 }
6380 
6381 /**
6382  * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
6383  * @phba: Pointer to HBA context object.
6384  * @type:  The resource extent type to allocate.
6385  *
6386  * This function allocates the number of elements for the specified
6387  * resource type.
6388  **/
6389 static int
6390 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
6391 {
6392 	bool emb = false;
6393 	uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
6394 	uint16_t rsrc_id, rsrc_start, j, k;
6395 	uint16_t *ids;
6396 	int i, rc;
6397 	unsigned long longs;
6398 	unsigned long *bmask;
6399 	struct lpfc_rsrc_blks *rsrc_blks;
6400 	LPFC_MBOXQ_t *mbox;
6401 	uint32_t length;
6402 	struct lpfc_id_range *id_array = NULL;
6403 	void *virtaddr = NULL;
6404 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6405 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6406 	struct list_head *ext_blk_list;
6407 
6408 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
6409 					    &rsrc_cnt,
6410 					    &rsrc_size);
6411 	if (unlikely(rc))
6412 		return -EIO;
6413 
6414 	if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
6415 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6416 			"3009 No available Resource Extents "
6417 			"for resource type 0x%x: Count: 0x%x, "
6418 			"Size 0x%x\n", type, rsrc_cnt,
6419 			rsrc_size);
6420 		return -ENOMEM;
6421 	}
6422 
6423 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
6424 			"2903 Post resource extents type-0x%x: "
6425 			"count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
6426 
6427 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6428 	if (!mbox)
6429 		return -ENOMEM;
6430 
6431 	rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
6432 	if (unlikely(rc)) {
6433 		rc = -EIO;
6434 		goto err_exit;
6435 	}
6436 
6437 	/*
6438 	 * Figure out where the response is located.  Then get local pointers
6439 	 * to the response data.  The port does not guarantee to respond to
6440 	 * all extents counts request so update the local variable with the
6441 	 * allocated count from the port.
6442 	 */
6443 	if (emb == LPFC_SLI4_MBX_EMBED) {
6444 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
6445 		id_array = &rsrc_ext->u.rsp.id[0];
6446 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
6447 	} else {
6448 		virtaddr = mbox->sge_array->addr[0];
6449 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
6450 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
6451 		id_array = &n_rsrc->id;
6452 	}
6453 
6454 	longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
6455 	rsrc_id_cnt = rsrc_cnt * rsrc_size;
6456 
6457 	/*
6458 	 * Based on the resource size and count, correct the base and max
6459 	 * resource values.
6460 	 */
6461 	length = sizeof(struct lpfc_rsrc_blks);
6462 	switch (type) {
6463 	case LPFC_RSC_TYPE_FCOE_RPI:
6464 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
6465 						   sizeof(unsigned long),
6466 						   GFP_KERNEL);
6467 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6468 			rc = -ENOMEM;
6469 			goto err_exit;
6470 		}
6471 		phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt,
6472 						 sizeof(uint16_t),
6473 						 GFP_KERNEL);
6474 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
6475 			kfree(phba->sli4_hba.rpi_bmask);
6476 			rc = -ENOMEM;
6477 			goto err_exit;
6478 		}
6479 
6480 		/*
6481 		 * The next_rpi was initialized with the maximum available
6482 		 * count but the port may allocate a smaller number.  Catch
6483 		 * that case and update the next_rpi.
6484 		 */
6485 		phba->sli4_hba.next_rpi = rsrc_id_cnt;
6486 
6487 		/* Initialize local ptrs for common extent processing later. */
6488 		bmask = phba->sli4_hba.rpi_bmask;
6489 		ids = phba->sli4_hba.rpi_ids;
6490 		ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
6491 		break;
6492 	case LPFC_RSC_TYPE_FCOE_VPI:
6493 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6494 					  GFP_KERNEL);
6495 		if (unlikely(!phba->vpi_bmask)) {
6496 			rc = -ENOMEM;
6497 			goto err_exit;
6498 		}
6499 		phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t),
6500 					 GFP_KERNEL);
6501 		if (unlikely(!phba->vpi_ids)) {
6502 			kfree(phba->vpi_bmask);
6503 			rc = -ENOMEM;
6504 			goto err_exit;
6505 		}
6506 
6507 		/* Initialize local ptrs for common extent processing later. */
6508 		bmask = phba->vpi_bmask;
6509 		ids = phba->vpi_ids;
6510 		ext_blk_list = &phba->lpfc_vpi_blk_list;
6511 		break;
6512 	case LPFC_RSC_TYPE_FCOE_XRI:
6513 		phba->sli4_hba.xri_bmask = kcalloc(longs,
6514 						   sizeof(unsigned long),
6515 						   GFP_KERNEL);
6516 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
6517 			rc = -ENOMEM;
6518 			goto err_exit;
6519 		}
6520 		phba->sli4_hba.max_cfg_param.xri_used = 0;
6521 		phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt,
6522 						 sizeof(uint16_t),
6523 						 GFP_KERNEL);
6524 		if (unlikely(!phba->sli4_hba.xri_ids)) {
6525 			kfree(phba->sli4_hba.xri_bmask);
6526 			rc = -ENOMEM;
6527 			goto err_exit;
6528 		}
6529 
6530 		/* Initialize local ptrs for common extent processing later. */
6531 		bmask = phba->sli4_hba.xri_bmask;
6532 		ids = phba->sli4_hba.xri_ids;
6533 		ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
6534 		break;
6535 	case LPFC_RSC_TYPE_FCOE_VFI:
6536 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
6537 						   sizeof(unsigned long),
6538 						   GFP_KERNEL);
6539 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6540 			rc = -ENOMEM;
6541 			goto err_exit;
6542 		}
6543 		phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt,
6544 						 sizeof(uint16_t),
6545 						 GFP_KERNEL);
6546 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
6547 			kfree(phba->sli4_hba.vfi_bmask);
6548 			rc = -ENOMEM;
6549 			goto err_exit;
6550 		}
6551 
6552 		/* Initialize local ptrs for common extent processing later. */
6553 		bmask = phba->sli4_hba.vfi_bmask;
6554 		ids = phba->sli4_hba.vfi_ids;
6555 		ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
6556 		break;
6557 	default:
6558 		/* Unsupported Opcode.  Fail call. */
6559 		id_array = NULL;
6560 		bmask = NULL;
6561 		ids = NULL;
6562 		ext_blk_list = NULL;
6563 		goto err_exit;
6564 	}
6565 
6566 	/*
6567 	 * Complete initializing the extent configuration with the
6568 	 * allocated ids assigned to this function.  The bitmask serves
6569 	 * as an index into the array and manages the available ids.  The
6570 	 * array just stores the ids communicated to the port via the wqes.
6571 	 */
6572 	for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
6573 		if ((i % 2) == 0)
6574 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
6575 					 &id_array[k]);
6576 		else
6577 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
6578 					 &id_array[k]);
6579 
6580 		rsrc_blks = kzalloc(length, GFP_KERNEL);
6581 		if (unlikely(!rsrc_blks)) {
6582 			rc = -ENOMEM;
6583 			kfree(bmask);
6584 			kfree(ids);
6585 			goto err_exit;
6586 		}
6587 		rsrc_blks->rsrc_start = rsrc_id;
6588 		rsrc_blks->rsrc_size = rsrc_size;
6589 		list_add_tail(&rsrc_blks->list, ext_blk_list);
6590 		rsrc_start = rsrc_id;
6591 		if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
6592 			phba->sli4_hba.io_xri_start = rsrc_start +
6593 				lpfc_sli4_get_iocb_cnt(phba);
6594 		}
6595 
6596 		while (rsrc_id < (rsrc_start + rsrc_size)) {
6597 			ids[j] = rsrc_id;
6598 			rsrc_id++;
6599 			j++;
6600 		}
6601 		/* Entire word processed.  Get next word.*/
6602 		if ((i % 2) == 1)
6603 			k++;
6604 	}
6605  err_exit:
6606 	lpfc_sli4_mbox_cmd_free(phba, mbox);
6607 	return rc;
6608 }
6609 
6610 
6611 
6612 /**
6613  * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
6614  * @phba: Pointer to HBA context object.
6615  * @type: the extent's type.
6616  *
6617  * This function deallocates all extents of a particular resource type.
6618  * SLI4 does not allow for deallocating a particular extent range.  It
6619  * is the caller's responsibility to release all kernel memory resources.
6620  **/
6621 static int
6622 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
6623 {
6624 	int rc;
6625 	uint32_t length, mbox_tmo = 0;
6626 	LPFC_MBOXQ_t *mbox;
6627 	struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
6628 	struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
6629 
6630 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6631 	if (!mbox)
6632 		return -ENOMEM;
6633 
6634 	/*
6635 	 * This function sends an embedded mailbox because it only sends the
6636 	 * the resource type.  All extents of this type are released by the
6637 	 * port.
6638 	 */
6639 	length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
6640 		  sizeof(struct lpfc_sli4_cfg_mhdr));
6641 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6642 			 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
6643 			 length, LPFC_SLI4_MBX_EMBED);
6644 
6645 	/* Send an extents count of 0 - the dealloc doesn't use it. */
6646 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6647 					LPFC_SLI4_MBX_EMBED);
6648 	if (unlikely(rc)) {
6649 		rc = -EIO;
6650 		goto out_free_mbox;
6651 	}
6652 	if (!phba->sli4_hba.intr_enable)
6653 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6654 	else {
6655 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6656 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6657 	}
6658 	if (unlikely(rc)) {
6659 		rc = -EIO;
6660 		goto out_free_mbox;
6661 	}
6662 
6663 	dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
6664 	if (bf_get(lpfc_mbox_hdr_status,
6665 		   &dealloc_rsrc->header.cfg_shdr.response)) {
6666 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6667 				"2919 Failed to release resource extents "
6668 				"for type %d - Status 0x%x Add'l Status 0x%x. "
6669 				"Resource memory not released.\n",
6670 				type,
6671 				bf_get(lpfc_mbox_hdr_status,
6672 				    &dealloc_rsrc->header.cfg_shdr.response),
6673 				bf_get(lpfc_mbox_hdr_add_status,
6674 				    &dealloc_rsrc->header.cfg_shdr.response));
6675 		rc = -EIO;
6676 		goto out_free_mbox;
6677 	}
6678 
6679 	/* Release kernel memory resources for the specific type. */
6680 	switch (type) {
6681 	case LPFC_RSC_TYPE_FCOE_VPI:
6682 		kfree(phba->vpi_bmask);
6683 		kfree(phba->vpi_ids);
6684 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6685 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6686 				    &phba->lpfc_vpi_blk_list, list) {
6687 			list_del_init(&rsrc_blk->list);
6688 			kfree(rsrc_blk);
6689 		}
6690 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
6691 		break;
6692 	case LPFC_RSC_TYPE_FCOE_XRI:
6693 		kfree(phba->sli4_hba.xri_bmask);
6694 		kfree(phba->sli4_hba.xri_ids);
6695 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6696 				    &phba->sli4_hba.lpfc_xri_blk_list, list) {
6697 			list_del_init(&rsrc_blk->list);
6698 			kfree(rsrc_blk);
6699 		}
6700 		break;
6701 	case LPFC_RSC_TYPE_FCOE_VFI:
6702 		kfree(phba->sli4_hba.vfi_bmask);
6703 		kfree(phba->sli4_hba.vfi_ids);
6704 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6705 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6706 				    &phba->sli4_hba.lpfc_vfi_blk_list, list) {
6707 			list_del_init(&rsrc_blk->list);
6708 			kfree(rsrc_blk);
6709 		}
6710 		break;
6711 	case LPFC_RSC_TYPE_FCOE_RPI:
6712 		/* RPI bitmask and physical id array are cleaned up earlier. */
6713 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6714 				    &phba->sli4_hba.lpfc_rpi_blk_list, list) {
6715 			list_del_init(&rsrc_blk->list);
6716 			kfree(rsrc_blk);
6717 		}
6718 		break;
6719 	default:
6720 		break;
6721 	}
6722 
6723 	bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6724 
6725  out_free_mbox:
6726 	mempool_free(mbox, phba->mbox_mem_pool);
6727 	return rc;
6728 }
6729 
6730 static void
6731 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
6732 		  uint32_t feature)
6733 {
6734 	uint32_t len;
6735 	u32 sig_freq = 0;
6736 
6737 	len = sizeof(struct lpfc_mbx_set_feature) -
6738 		sizeof(struct lpfc_sli4_cfg_mhdr);
6739 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6740 			 LPFC_MBOX_OPCODE_SET_FEATURES, len,
6741 			 LPFC_SLI4_MBX_EMBED);
6742 
6743 	switch (feature) {
6744 	case LPFC_SET_UE_RECOVERY:
6745 		bf_set(lpfc_mbx_set_feature_UER,
6746 		       &mbox->u.mqe.un.set_feature, 1);
6747 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
6748 		mbox->u.mqe.un.set_feature.param_len = 8;
6749 		break;
6750 	case LPFC_SET_MDS_DIAGS:
6751 		bf_set(lpfc_mbx_set_feature_mds,
6752 		       &mbox->u.mqe.un.set_feature, 1);
6753 		bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
6754 		       &mbox->u.mqe.un.set_feature, 1);
6755 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
6756 		mbox->u.mqe.un.set_feature.param_len = 8;
6757 		break;
6758 	case LPFC_SET_CGN_SIGNAL:
6759 		if (phba->cmf_active_mode == LPFC_CFG_OFF)
6760 			sig_freq = 0;
6761 		else
6762 			sig_freq = phba->cgn_sig_freq;
6763 
6764 		if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6765 			bf_set(lpfc_mbx_set_feature_CGN_alarm_freq,
6766 			       &mbox->u.mqe.un.set_feature, sig_freq);
6767 			bf_set(lpfc_mbx_set_feature_CGN_warn_freq,
6768 			       &mbox->u.mqe.un.set_feature, sig_freq);
6769 		}
6770 
6771 		if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY)
6772 			bf_set(lpfc_mbx_set_feature_CGN_warn_freq,
6773 			       &mbox->u.mqe.un.set_feature, sig_freq);
6774 
6775 		if (phba->cmf_active_mode == LPFC_CFG_OFF ||
6776 		    phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED)
6777 			sig_freq = 0;
6778 		else
6779 			sig_freq = lpfc_acqe_cgn_frequency;
6780 
6781 		bf_set(lpfc_mbx_set_feature_CGN_acqe_freq,
6782 		       &mbox->u.mqe.un.set_feature, sig_freq);
6783 
6784 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL;
6785 		mbox->u.mqe.un.set_feature.param_len = 12;
6786 		break;
6787 	case LPFC_SET_DUAL_DUMP:
6788 		bf_set(lpfc_mbx_set_feature_dd,
6789 		       &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP);
6790 		bf_set(lpfc_mbx_set_feature_ddquery,
6791 		       &mbox->u.mqe.un.set_feature, 0);
6792 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP;
6793 		mbox->u.mqe.un.set_feature.param_len = 4;
6794 		break;
6795 	case LPFC_SET_ENABLE_MI:
6796 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI;
6797 		mbox->u.mqe.un.set_feature.param_len = 4;
6798 		bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature,
6799 		       phba->pport->cfg_lun_queue_depth);
6800 		bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature,
6801 		       phba->sli4_hba.pc_sli4_params.mi_ver);
6802 		break;
6803 	case LPFC_SET_ENABLE_CMF:
6804 		bf_set(lpfc_mbx_set_feature_dd, &mbox->u.mqe.un.set_feature, 1);
6805 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF;
6806 		mbox->u.mqe.un.set_feature.param_len = 4;
6807 		bf_set(lpfc_mbx_set_feature_cmf,
6808 		       &mbox->u.mqe.un.set_feature, 1);
6809 		break;
6810 	}
6811 	return;
6812 }
6813 
6814 /**
6815  * lpfc_ras_stop_fwlog: Disable FW logging by the adapter
6816  * @phba: Pointer to HBA context object.
6817  *
6818  * Disable FW logging into host memory on the adapter. To
6819  * be done before reading logs from the host memory.
6820  **/
6821 void
6822 lpfc_ras_stop_fwlog(struct lpfc_hba *phba)
6823 {
6824 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6825 
6826 	spin_lock_irq(&phba->hbalock);
6827 	ras_fwlog->state = INACTIVE;
6828 	spin_unlock_irq(&phba->hbalock);
6829 
6830 	/* Disable FW logging to host memory */
6831 	writel(LPFC_CTL_PDEV_CTL_DDL_RAS,
6832 	       phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET);
6833 
6834 	/* Wait 10ms for firmware to stop using DMA buffer */
6835 	usleep_range(10 * 1000, 20 * 1000);
6836 }
6837 
6838 /**
6839  * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging.
6840  * @phba: Pointer to HBA context object.
6841  *
6842  * This function is called to free memory allocated for RAS FW logging
6843  * support in the driver.
6844  **/
6845 void
6846 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba)
6847 {
6848 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6849 	struct lpfc_dmabuf *dmabuf, *next;
6850 
6851 	if (!list_empty(&ras_fwlog->fwlog_buff_list)) {
6852 		list_for_each_entry_safe(dmabuf, next,
6853 				    &ras_fwlog->fwlog_buff_list,
6854 				    list) {
6855 			list_del(&dmabuf->list);
6856 			dma_free_coherent(&phba->pcidev->dev,
6857 					  LPFC_RAS_MAX_ENTRY_SIZE,
6858 					  dmabuf->virt, dmabuf->phys);
6859 			kfree(dmabuf);
6860 		}
6861 	}
6862 
6863 	if (ras_fwlog->lwpd.virt) {
6864 		dma_free_coherent(&phba->pcidev->dev,
6865 				  sizeof(uint32_t) * 2,
6866 				  ras_fwlog->lwpd.virt,
6867 				  ras_fwlog->lwpd.phys);
6868 		ras_fwlog->lwpd.virt = NULL;
6869 	}
6870 
6871 	spin_lock_irq(&phba->hbalock);
6872 	ras_fwlog->state = INACTIVE;
6873 	spin_unlock_irq(&phba->hbalock);
6874 }
6875 
6876 /**
6877  * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support
6878  * @phba: Pointer to HBA context object.
6879  * @fwlog_buff_count: Count of buffers to be created.
6880  *
6881  * This routine DMA memory for Log Write Position Data[LPWD] and buffer
6882  * to update FW log is posted to the adapter.
6883  * Buffer count is calculated based on module param ras_fwlog_buffsize
6884  * Size of each buffer posted to FW is 64K.
6885  **/
6886 
6887 static int
6888 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba,
6889 			uint32_t fwlog_buff_count)
6890 {
6891 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6892 	struct lpfc_dmabuf *dmabuf;
6893 	int rc = 0, i = 0;
6894 
6895 	/* Initialize List */
6896 	INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list);
6897 
6898 	/* Allocate memory for the LWPD */
6899 	ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev,
6900 					    sizeof(uint32_t) * 2,
6901 					    &ras_fwlog->lwpd.phys,
6902 					    GFP_KERNEL);
6903 	if (!ras_fwlog->lwpd.virt) {
6904 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6905 				"6185 LWPD Memory Alloc Failed\n");
6906 
6907 		return -ENOMEM;
6908 	}
6909 
6910 	ras_fwlog->fw_buffcount = fwlog_buff_count;
6911 	for (i = 0; i < ras_fwlog->fw_buffcount; i++) {
6912 		dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
6913 				 GFP_KERNEL);
6914 		if (!dmabuf) {
6915 			rc = -ENOMEM;
6916 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6917 					"6186 Memory Alloc failed FW logging");
6918 			goto free_mem;
6919 		}
6920 
6921 		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
6922 						  LPFC_RAS_MAX_ENTRY_SIZE,
6923 						  &dmabuf->phys, GFP_KERNEL);
6924 		if (!dmabuf->virt) {
6925 			kfree(dmabuf);
6926 			rc = -ENOMEM;
6927 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6928 					"6187 DMA Alloc Failed FW logging");
6929 			goto free_mem;
6930 		}
6931 		dmabuf->buffer_tag = i;
6932 		list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list);
6933 	}
6934 
6935 free_mem:
6936 	if (rc)
6937 		lpfc_sli4_ras_dma_free(phba);
6938 
6939 	return rc;
6940 }
6941 
6942 /**
6943  * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command
6944  * @phba: pointer to lpfc hba data structure.
6945  * @pmb: pointer to the driver internal queue element for mailbox command.
6946  *
6947  * Completion handler for driver's RAS MBX command to the device.
6948  **/
6949 static void
6950 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
6951 {
6952 	MAILBOX_t *mb;
6953 	union lpfc_sli4_cfg_shdr *shdr;
6954 	uint32_t shdr_status, shdr_add_status;
6955 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6956 
6957 	mb = &pmb->u.mb;
6958 
6959 	shdr = (union lpfc_sli4_cfg_shdr *)
6960 		&pmb->u.mqe.un.ras_fwlog.header.cfg_shdr;
6961 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6962 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6963 
6964 	if (mb->mbxStatus != MBX_SUCCESS || shdr_status) {
6965 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6966 				"6188 FW LOG mailbox "
6967 				"completed with status x%x add_status x%x,"
6968 				" mbx status x%x\n",
6969 				shdr_status, shdr_add_status, mb->mbxStatus);
6970 
6971 		ras_fwlog->ras_hwsupport = false;
6972 		goto disable_ras;
6973 	}
6974 
6975 	spin_lock_irq(&phba->hbalock);
6976 	ras_fwlog->state = ACTIVE;
6977 	spin_unlock_irq(&phba->hbalock);
6978 	mempool_free(pmb, phba->mbox_mem_pool);
6979 
6980 	return;
6981 
6982 disable_ras:
6983 	/* Free RAS DMA memory */
6984 	lpfc_sli4_ras_dma_free(phba);
6985 	mempool_free(pmb, phba->mbox_mem_pool);
6986 }
6987 
6988 /**
6989  * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command
6990  * @phba: pointer to lpfc hba data structure.
6991  * @fwlog_level: Logging verbosity level.
6992  * @fwlog_enable: Enable/Disable logging.
6993  *
6994  * Initialize memory and post mailbox command to enable FW logging in host
6995  * memory.
6996  **/
6997 int
6998 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba,
6999 			 uint32_t fwlog_level,
7000 			 uint32_t fwlog_enable)
7001 {
7002 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
7003 	struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL;
7004 	struct lpfc_dmabuf *dmabuf;
7005 	LPFC_MBOXQ_t *mbox;
7006 	uint32_t len = 0, fwlog_buffsize, fwlog_entry_count;
7007 	int rc = 0;
7008 
7009 	spin_lock_irq(&phba->hbalock);
7010 	ras_fwlog->state = INACTIVE;
7011 	spin_unlock_irq(&phba->hbalock);
7012 
7013 	fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE *
7014 			  phba->cfg_ras_fwlog_buffsize);
7015 	fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE);
7016 
7017 	/*
7018 	 * If re-enabling FW logging support use earlier allocated
7019 	 * DMA buffers while posting MBX command.
7020 	 **/
7021 	if (!ras_fwlog->lwpd.virt) {
7022 		rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count);
7023 		if (rc) {
7024 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7025 					"6189 FW Log Memory Allocation Failed");
7026 			return rc;
7027 		}
7028 	}
7029 
7030 	/* Setup Mailbox command */
7031 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7032 	if (!mbox) {
7033 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7034 				"6190 RAS MBX Alloc Failed");
7035 		rc = -ENOMEM;
7036 		goto mem_free;
7037 	}
7038 
7039 	ras_fwlog->fw_loglevel = fwlog_level;
7040 	len = (sizeof(struct lpfc_mbx_set_ras_fwlog) -
7041 		sizeof(struct lpfc_sli4_cfg_mhdr));
7042 
7043 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL,
7044 			 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION,
7045 			 len, LPFC_SLI4_MBX_EMBED);
7046 
7047 	mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog;
7048 	bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request,
7049 	       fwlog_enable);
7050 	bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request,
7051 	       ras_fwlog->fw_loglevel);
7052 	bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request,
7053 	       ras_fwlog->fw_buffcount);
7054 	bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request,
7055 	       LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE);
7056 
7057 	/* Update DMA buffer address */
7058 	list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) {
7059 		memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE);
7060 
7061 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo =
7062 			putPaddrLow(dmabuf->phys);
7063 
7064 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi =
7065 			putPaddrHigh(dmabuf->phys);
7066 	}
7067 
7068 	/* Update LPWD address */
7069 	mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys);
7070 	mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys);
7071 
7072 	spin_lock_irq(&phba->hbalock);
7073 	ras_fwlog->state = REG_INPROGRESS;
7074 	spin_unlock_irq(&phba->hbalock);
7075 	mbox->vport = phba->pport;
7076 	mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl;
7077 
7078 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
7079 
7080 	if (rc == MBX_NOT_FINISHED) {
7081 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7082 				"6191 FW-Log Mailbox failed. "
7083 				"status %d mbxStatus : x%x", rc,
7084 				bf_get(lpfc_mqe_status, &mbox->u.mqe));
7085 		mempool_free(mbox, phba->mbox_mem_pool);
7086 		rc = -EIO;
7087 		goto mem_free;
7088 	} else
7089 		rc = 0;
7090 mem_free:
7091 	if (rc)
7092 		lpfc_sli4_ras_dma_free(phba);
7093 
7094 	return rc;
7095 }
7096 
7097 /**
7098  * lpfc_sli4_ras_setup - Check if RAS supported on the adapter
7099  * @phba: Pointer to HBA context object.
7100  *
7101  * Check if RAS is supported on the adapter and initialize it.
7102  **/
7103 void
7104 lpfc_sli4_ras_setup(struct lpfc_hba *phba)
7105 {
7106 	/* Check RAS FW Log needs to be enabled or not */
7107 	if (lpfc_check_fwlog_support(phba))
7108 		return;
7109 
7110 	lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level,
7111 				 LPFC_RAS_ENABLE_LOGGING);
7112 }
7113 
7114 /**
7115  * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
7116  * @phba: Pointer to HBA context object.
7117  *
7118  * This function allocates all SLI4 resource identifiers.
7119  **/
7120 int
7121 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
7122 {
7123 	int i, rc, error = 0;
7124 	uint16_t count, base;
7125 	unsigned long longs;
7126 
7127 	if (!phba->sli4_hba.rpi_hdrs_in_use)
7128 		phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
7129 	if (phba->sli4_hba.extents_in_use) {
7130 		/*
7131 		 * The port supports resource extents. The XRI, VPI, VFI, RPI
7132 		 * resource extent count must be read and allocated before
7133 		 * provisioning the resource id arrays.
7134 		 */
7135 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
7136 		    LPFC_IDX_RSRC_RDY) {
7137 			/*
7138 			 * Extent-based resources are set - the driver could
7139 			 * be in a port reset. Figure out if any corrective
7140 			 * actions need to be taken.
7141 			 */
7142 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7143 						 LPFC_RSC_TYPE_FCOE_VFI);
7144 			if (rc != 0)
7145 				error++;
7146 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7147 						 LPFC_RSC_TYPE_FCOE_VPI);
7148 			if (rc != 0)
7149 				error++;
7150 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7151 						 LPFC_RSC_TYPE_FCOE_XRI);
7152 			if (rc != 0)
7153 				error++;
7154 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7155 						 LPFC_RSC_TYPE_FCOE_RPI);
7156 			if (rc != 0)
7157 				error++;
7158 
7159 			/*
7160 			 * It's possible that the number of resources
7161 			 * provided to this port instance changed between
7162 			 * resets.  Detect this condition and reallocate
7163 			 * resources.  Otherwise, there is no action.
7164 			 */
7165 			if (error) {
7166 				lpfc_printf_log(phba, KERN_INFO,
7167 						LOG_MBOX | LOG_INIT,
7168 						"2931 Detected extent resource "
7169 						"change.  Reallocating all "
7170 						"extents.\n");
7171 				rc = lpfc_sli4_dealloc_extent(phba,
7172 						 LPFC_RSC_TYPE_FCOE_VFI);
7173 				rc = lpfc_sli4_dealloc_extent(phba,
7174 						 LPFC_RSC_TYPE_FCOE_VPI);
7175 				rc = lpfc_sli4_dealloc_extent(phba,
7176 						 LPFC_RSC_TYPE_FCOE_XRI);
7177 				rc = lpfc_sli4_dealloc_extent(phba,
7178 						 LPFC_RSC_TYPE_FCOE_RPI);
7179 			} else
7180 				return 0;
7181 		}
7182 
7183 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
7184 		if (unlikely(rc))
7185 			goto err_exit;
7186 
7187 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
7188 		if (unlikely(rc))
7189 			goto err_exit;
7190 
7191 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
7192 		if (unlikely(rc))
7193 			goto err_exit;
7194 
7195 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
7196 		if (unlikely(rc))
7197 			goto err_exit;
7198 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
7199 		       LPFC_IDX_RSRC_RDY);
7200 		return rc;
7201 	} else {
7202 		/*
7203 		 * The port does not support resource extents.  The XRI, VPI,
7204 		 * VFI, RPI resource ids were determined from READ_CONFIG.
7205 		 * Just allocate the bitmasks and provision the resource id
7206 		 * arrays.  If a port reset is active, the resources don't
7207 		 * need any action - just exit.
7208 		 */
7209 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
7210 		    LPFC_IDX_RSRC_RDY) {
7211 			lpfc_sli4_dealloc_resource_identifiers(phba);
7212 			lpfc_sli4_remove_rpis(phba);
7213 		}
7214 		/* RPIs. */
7215 		count = phba->sli4_hba.max_cfg_param.max_rpi;
7216 		if (count <= 0) {
7217 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7218 					"3279 Invalid provisioning of "
7219 					"rpi:%d\n", count);
7220 			rc = -EINVAL;
7221 			goto err_exit;
7222 		}
7223 		base = phba->sli4_hba.max_cfg_param.rpi_base;
7224 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7225 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
7226 						   sizeof(unsigned long),
7227 						   GFP_KERNEL);
7228 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
7229 			rc = -ENOMEM;
7230 			goto err_exit;
7231 		}
7232 		phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t),
7233 						 GFP_KERNEL);
7234 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
7235 			rc = -ENOMEM;
7236 			goto free_rpi_bmask;
7237 		}
7238 
7239 		for (i = 0; i < count; i++)
7240 			phba->sli4_hba.rpi_ids[i] = base + i;
7241 
7242 		/* VPIs. */
7243 		count = phba->sli4_hba.max_cfg_param.max_vpi;
7244 		if (count <= 0) {
7245 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7246 					"3280 Invalid provisioning of "
7247 					"vpi:%d\n", count);
7248 			rc = -EINVAL;
7249 			goto free_rpi_ids;
7250 		}
7251 		base = phba->sli4_hba.max_cfg_param.vpi_base;
7252 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7253 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
7254 					  GFP_KERNEL);
7255 		if (unlikely(!phba->vpi_bmask)) {
7256 			rc = -ENOMEM;
7257 			goto free_rpi_ids;
7258 		}
7259 		phba->vpi_ids = kcalloc(count, sizeof(uint16_t),
7260 					GFP_KERNEL);
7261 		if (unlikely(!phba->vpi_ids)) {
7262 			rc = -ENOMEM;
7263 			goto free_vpi_bmask;
7264 		}
7265 
7266 		for (i = 0; i < count; i++)
7267 			phba->vpi_ids[i] = base + i;
7268 
7269 		/* XRIs. */
7270 		count = phba->sli4_hba.max_cfg_param.max_xri;
7271 		if (count <= 0) {
7272 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7273 					"3281 Invalid provisioning of "
7274 					"xri:%d\n", count);
7275 			rc = -EINVAL;
7276 			goto free_vpi_ids;
7277 		}
7278 		base = phba->sli4_hba.max_cfg_param.xri_base;
7279 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7280 		phba->sli4_hba.xri_bmask = kcalloc(longs,
7281 						   sizeof(unsigned long),
7282 						   GFP_KERNEL);
7283 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
7284 			rc = -ENOMEM;
7285 			goto free_vpi_ids;
7286 		}
7287 		phba->sli4_hba.max_cfg_param.xri_used = 0;
7288 		phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t),
7289 						 GFP_KERNEL);
7290 		if (unlikely(!phba->sli4_hba.xri_ids)) {
7291 			rc = -ENOMEM;
7292 			goto free_xri_bmask;
7293 		}
7294 
7295 		for (i = 0; i < count; i++)
7296 			phba->sli4_hba.xri_ids[i] = base + i;
7297 
7298 		/* VFIs. */
7299 		count = phba->sli4_hba.max_cfg_param.max_vfi;
7300 		if (count <= 0) {
7301 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7302 					"3282 Invalid provisioning of "
7303 					"vfi:%d\n", count);
7304 			rc = -EINVAL;
7305 			goto free_xri_ids;
7306 		}
7307 		base = phba->sli4_hba.max_cfg_param.vfi_base;
7308 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7309 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
7310 						   sizeof(unsigned long),
7311 						   GFP_KERNEL);
7312 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
7313 			rc = -ENOMEM;
7314 			goto free_xri_ids;
7315 		}
7316 		phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t),
7317 						 GFP_KERNEL);
7318 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
7319 			rc = -ENOMEM;
7320 			goto free_vfi_bmask;
7321 		}
7322 
7323 		for (i = 0; i < count; i++)
7324 			phba->sli4_hba.vfi_ids[i] = base + i;
7325 
7326 		/*
7327 		 * Mark all resources ready.  An HBA reset doesn't need
7328 		 * to reset the initialization.
7329 		 */
7330 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
7331 		       LPFC_IDX_RSRC_RDY);
7332 		return 0;
7333 	}
7334 
7335  free_vfi_bmask:
7336 	kfree(phba->sli4_hba.vfi_bmask);
7337 	phba->sli4_hba.vfi_bmask = NULL;
7338  free_xri_ids:
7339 	kfree(phba->sli4_hba.xri_ids);
7340 	phba->sli4_hba.xri_ids = NULL;
7341  free_xri_bmask:
7342 	kfree(phba->sli4_hba.xri_bmask);
7343 	phba->sli4_hba.xri_bmask = NULL;
7344  free_vpi_ids:
7345 	kfree(phba->vpi_ids);
7346 	phba->vpi_ids = NULL;
7347  free_vpi_bmask:
7348 	kfree(phba->vpi_bmask);
7349 	phba->vpi_bmask = NULL;
7350  free_rpi_ids:
7351 	kfree(phba->sli4_hba.rpi_ids);
7352 	phba->sli4_hba.rpi_ids = NULL;
7353  free_rpi_bmask:
7354 	kfree(phba->sli4_hba.rpi_bmask);
7355 	phba->sli4_hba.rpi_bmask = NULL;
7356  err_exit:
7357 	return rc;
7358 }
7359 
7360 /**
7361  * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
7362  * @phba: Pointer to HBA context object.
7363  *
7364  * This function allocates the number of elements for the specified
7365  * resource type.
7366  **/
7367 int
7368 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
7369 {
7370 	if (phba->sli4_hba.extents_in_use) {
7371 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
7372 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
7373 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
7374 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
7375 	} else {
7376 		kfree(phba->vpi_bmask);
7377 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
7378 		kfree(phba->vpi_ids);
7379 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7380 		kfree(phba->sli4_hba.xri_bmask);
7381 		kfree(phba->sli4_hba.xri_ids);
7382 		kfree(phba->sli4_hba.vfi_bmask);
7383 		kfree(phba->sli4_hba.vfi_ids);
7384 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7385 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7386 	}
7387 
7388 	return 0;
7389 }
7390 
7391 /**
7392  * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
7393  * @phba: Pointer to HBA context object.
7394  * @type: The resource extent type.
7395  * @extnt_cnt: buffer to hold port extent count response
7396  * @extnt_size: buffer to hold port extent size response.
7397  *
7398  * This function calls the port to read the host allocated extents
7399  * for a particular type.
7400  **/
7401 int
7402 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
7403 			       uint16_t *extnt_cnt, uint16_t *extnt_size)
7404 {
7405 	bool emb;
7406 	int rc = 0;
7407 	uint16_t curr_blks = 0;
7408 	uint32_t req_len, emb_len;
7409 	uint32_t alloc_len, mbox_tmo;
7410 	struct list_head *blk_list_head;
7411 	struct lpfc_rsrc_blks *rsrc_blk;
7412 	LPFC_MBOXQ_t *mbox;
7413 	void *virtaddr = NULL;
7414 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
7415 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
7416 	union  lpfc_sli4_cfg_shdr *shdr;
7417 
7418 	switch (type) {
7419 	case LPFC_RSC_TYPE_FCOE_VPI:
7420 		blk_list_head = &phba->lpfc_vpi_blk_list;
7421 		break;
7422 	case LPFC_RSC_TYPE_FCOE_XRI:
7423 		blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
7424 		break;
7425 	case LPFC_RSC_TYPE_FCOE_VFI:
7426 		blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
7427 		break;
7428 	case LPFC_RSC_TYPE_FCOE_RPI:
7429 		blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
7430 		break;
7431 	default:
7432 		return -EIO;
7433 	}
7434 
7435 	/* Count the number of extents currently allocatd for this type. */
7436 	list_for_each_entry(rsrc_blk, blk_list_head, list) {
7437 		if (curr_blks == 0) {
7438 			/*
7439 			 * The GET_ALLOCATED mailbox does not return the size,
7440 			 * just the count.  The size should be just the size
7441 			 * stored in the current allocated block and all sizes
7442 			 * for an extent type are the same so set the return
7443 			 * value now.
7444 			 */
7445 			*extnt_size = rsrc_blk->rsrc_size;
7446 		}
7447 		curr_blks++;
7448 	}
7449 
7450 	/*
7451 	 * Calculate the size of an embedded mailbox.  The uint32_t
7452 	 * accounts for extents-specific word.
7453 	 */
7454 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
7455 		sizeof(uint32_t);
7456 
7457 	/*
7458 	 * Presume the allocation and response will fit into an embedded
7459 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
7460 	 */
7461 	emb = LPFC_SLI4_MBX_EMBED;
7462 	req_len = emb_len;
7463 	if (req_len > emb_len) {
7464 		req_len = curr_blks * sizeof(uint16_t) +
7465 			sizeof(union lpfc_sli4_cfg_shdr) +
7466 			sizeof(uint32_t);
7467 		emb = LPFC_SLI4_MBX_NEMBED;
7468 	}
7469 
7470 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7471 	if (!mbox)
7472 		return -ENOMEM;
7473 	memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
7474 
7475 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7476 				     LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
7477 				     req_len, emb);
7478 	if (alloc_len < req_len) {
7479 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7480 			"2983 Allocated DMA memory size (x%x) is "
7481 			"less than the requested DMA memory "
7482 			"size (x%x)\n", alloc_len, req_len);
7483 		rc = -ENOMEM;
7484 		goto err_exit;
7485 	}
7486 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
7487 	if (unlikely(rc)) {
7488 		rc = -EIO;
7489 		goto err_exit;
7490 	}
7491 
7492 	if (!phba->sli4_hba.intr_enable)
7493 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
7494 	else {
7495 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
7496 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
7497 	}
7498 
7499 	if (unlikely(rc)) {
7500 		rc = -EIO;
7501 		goto err_exit;
7502 	}
7503 
7504 	/*
7505 	 * Figure out where the response is located.  Then get local pointers
7506 	 * to the response data.  The port does not guarantee to respond to
7507 	 * all extents counts request so update the local variable with the
7508 	 * allocated count from the port.
7509 	 */
7510 	if (emb == LPFC_SLI4_MBX_EMBED) {
7511 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
7512 		shdr = &rsrc_ext->header.cfg_shdr;
7513 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
7514 	} else {
7515 		virtaddr = mbox->sge_array->addr[0];
7516 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
7517 		shdr = &n_rsrc->cfg_shdr;
7518 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
7519 	}
7520 
7521 	if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
7522 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7523 			"2984 Failed to read allocated resources "
7524 			"for type %d - Status 0x%x Add'l Status 0x%x.\n",
7525 			type,
7526 			bf_get(lpfc_mbox_hdr_status, &shdr->response),
7527 			bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
7528 		rc = -EIO;
7529 		goto err_exit;
7530 	}
7531  err_exit:
7532 	lpfc_sli4_mbox_cmd_free(phba, mbox);
7533 	return rc;
7534 }
7535 
7536 /**
7537  * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block
7538  * @phba: pointer to lpfc hba data structure.
7539  * @sgl_list: linked link of sgl buffers to post
7540  * @cnt: number of linked list buffers
7541  *
7542  * This routine walks the list of buffers that have been allocated and
7543  * repost them to the port by using SGL block post. This is needed after a
7544  * pci_function_reset/warm_start or start. It attempts to construct blocks
7545  * of buffer sgls which contains contiguous xris and uses the non-embedded
7546  * SGL block post mailbox commands to post them to the port. For single
7547  * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
7548  * mailbox command for posting.
7549  *
7550  * Returns: 0 = success, non-zero failure.
7551  **/
7552 static int
7553 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
7554 			  struct list_head *sgl_list, int cnt)
7555 {
7556 	struct lpfc_sglq *sglq_entry = NULL;
7557 	struct lpfc_sglq *sglq_entry_next = NULL;
7558 	struct lpfc_sglq *sglq_entry_first = NULL;
7559 	int status, total_cnt;
7560 	int post_cnt = 0, num_posted = 0, block_cnt = 0;
7561 	int last_xritag = NO_XRI;
7562 	LIST_HEAD(prep_sgl_list);
7563 	LIST_HEAD(blck_sgl_list);
7564 	LIST_HEAD(allc_sgl_list);
7565 	LIST_HEAD(post_sgl_list);
7566 	LIST_HEAD(free_sgl_list);
7567 
7568 	spin_lock_irq(&phba->hbalock);
7569 	spin_lock(&phba->sli4_hba.sgl_list_lock);
7570 	list_splice_init(sgl_list, &allc_sgl_list);
7571 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
7572 	spin_unlock_irq(&phba->hbalock);
7573 
7574 	total_cnt = cnt;
7575 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
7576 				 &allc_sgl_list, list) {
7577 		list_del_init(&sglq_entry->list);
7578 		block_cnt++;
7579 		if ((last_xritag != NO_XRI) &&
7580 		    (sglq_entry->sli4_xritag != last_xritag + 1)) {
7581 			/* a hole in xri block, form a sgl posting block */
7582 			list_splice_init(&prep_sgl_list, &blck_sgl_list);
7583 			post_cnt = block_cnt - 1;
7584 			/* prepare list for next posting block */
7585 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
7586 			block_cnt = 1;
7587 		} else {
7588 			/* prepare list for next posting block */
7589 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
7590 			/* enough sgls for non-embed sgl mbox command */
7591 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
7592 				list_splice_init(&prep_sgl_list,
7593 						 &blck_sgl_list);
7594 				post_cnt = block_cnt;
7595 				block_cnt = 0;
7596 			}
7597 		}
7598 		num_posted++;
7599 
7600 		/* keep track of last sgl's xritag */
7601 		last_xritag = sglq_entry->sli4_xritag;
7602 
7603 		/* end of repost sgl list condition for buffers */
7604 		if (num_posted == total_cnt) {
7605 			if (post_cnt == 0) {
7606 				list_splice_init(&prep_sgl_list,
7607 						 &blck_sgl_list);
7608 				post_cnt = block_cnt;
7609 			} else if (block_cnt == 1) {
7610 				status = lpfc_sli4_post_sgl(phba,
7611 						sglq_entry->phys, 0,
7612 						sglq_entry->sli4_xritag);
7613 				if (!status) {
7614 					/* successful, put sgl to posted list */
7615 					list_add_tail(&sglq_entry->list,
7616 						      &post_sgl_list);
7617 				} else {
7618 					/* Failure, put sgl to free list */
7619 					lpfc_printf_log(phba, KERN_WARNING,
7620 						LOG_SLI,
7621 						"3159 Failed to post "
7622 						"sgl, xritag:x%x\n",
7623 						sglq_entry->sli4_xritag);
7624 					list_add_tail(&sglq_entry->list,
7625 						      &free_sgl_list);
7626 					total_cnt--;
7627 				}
7628 			}
7629 		}
7630 
7631 		/* continue until a nembed page worth of sgls */
7632 		if (post_cnt == 0)
7633 			continue;
7634 
7635 		/* post the buffer list sgls as a block */
7636 		status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
7637 						 post_cnt);
7638 
7639 		if (!status) {
7640 			/* success, put sgl list to posted sgl list */
7641 			list_splice_init(&blck_sgl_list, &post_sgl_list);
7642 		} else {
7643 			/* Failure, put sgl list to free sgl list */
7644 			sglq_entry_first = list_first_entry(&blck_sgl_list,
7645 							    struct lpfc_sglq,
7646 							    list);
7647 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
7648 					"3160 Failed to post sgl-list, "
7649 					"xritag:x%x-x%x\n",
7650 					sglq_entry_first->sli4_xritag,
7651 					(sglq_entry_first->sli4_xritag +
7652 					 post_cnt - 1));
7653 			list_splice_init(&blck_sgl_list, &free_sgl_list);
7654 			total_cnt -= post_cnt;
7655 		}
7656 
7657 		/* don't reset xirtag due to hole in xri block */
7658 		if (block_cnt == 0)
7659 			last_xritag = NO_XRI;
7660 
7661 		/* reset sgl post count for next round of posting */
7662 		post_cnt = 0;
7663 	}
7664 
7665 	/* free the sgls failed to post */
7666 	lpfc_free_sgl_list(phba, &free_sgl_list);
7667 
7668 	/* push sgls posted to the available list */
7669 	if (!list_empty(&post_sgl_list)) {
7670 		spin_lock_irq(&phba->hbalock);
7671 		spin_lock(&phba->sli4_hba.sgl_list_lock);
7672 		list_splice_init(&post_sgl_list, sgl_list);
7673 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
7674 		spin_unlock_irq(&phba->hbalock);
7675 	} else {
7676 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7677 				"3161 Failure to post sgl to port.\n");
7678 		return -EIO;
7679 	}
7680 
7681 	/* return the number of XRIs actually posted */
7682 	return total_cnt;
7683 }
7684 
7685 /**
7686  * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls
7687  * @phba: pointer to lpfc hba data structure.
7688  *
7689  * This routine walks the list of nvme buffers that have been allocated and
7690  * repost them to the port by using SGL block post. This is needed after a
7691  * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
7692  * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list
7693  * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers.
7694  *
7695  * Returns: 0 = success, non-zero failure.
7696  **/
7697 static int
7698 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba)
7699 {
7700 	LIST_HEAD(post_nblist);
7701 	int num_posted, rc = 0;
7702 
7703 	/* get all NVME buffers need to repost to a local list */
7704 	lpfc_io_buf_flush(phba, &post_nblist);
7705 
7706 	/* post the list of nvme buffer sgls to port if available */
7707 	if (!list_empty(&post_nblist)) {
7708 		num_posted = lpfc_sli4_post_io_sgl_list(
7709 			phba, &post_nblist, phba->sli4_hba.io_xri_cnt);
7710 		/* failed to post any nvme buffer, return error */
7711 		if (num_posted == 0)
7712 			rc = -EIO;
7713 	}
7714 	return rc;
7715 }
7716 
7717 static void
7718 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
7719 {
7720 	uint32_t len;
7721 
7722 	len = sizeof(struct lpfc_mbx_set_host_data) -
7723 		sizeof(struct lpfc_sli4_cfg_mhdr);
7724 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7725 			 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
7726 			 LPFC_SLI4_MBX_EMBED);
7727 
7728 	mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
7729 	mbox->u.mqe.un.set_host_data.param_len =
7730 					LPFC_HOST_OS_DRIVER_VERSION_SIZE;
7731 	snprintf(mbox->u.mqe.un.set_host_data.un.data,
7732 		 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
7733 		 "Linux %s v"LPFC_DRIVER_VERSION,
7734 		 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC");
7735 }
7736 
7737 int
7738 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq,
7739 		    struct lpfc_queue *drq, int count, int idx)
7740 {
7741 	int rc, i;
7742 	struct lpfc_rqe hrqe;
7743 	struct lpfc_rqe drqe;
7744 	struct lpfc_rqb *rqbp;
7745 	unsigned long flags;
7746 	struct rqb_dmabuf *rqb_buffer;
7747 	LIST_HEAD(rqb_buf_list);
7748 
7749 	rqbp = hrq->rqbp;
7750 	for (i = 0; i < count; i++) {
7751 		spin_lock_irqsave(&phba->hbalock, flags);
7752 		/* IF RQ is already full, don't bother */
7753 		if (rqbp->buffer_count + i >= rqbp->entry_count - 1) {
7754 			spin_unlock_irqrestore(&phba->hbalock, flags);
7755 			break;
7756 		}
7757 		spin_unlock_irqrestore(&phba->hbalock, flags);
7758 
7759 		rqb_buffer = rqbp->rqb_alloc_buffer(phba);
7760 		if (!rqb_buffer)
7761 			break;
7762 		rqb_buffer->hrq = hrq;
7763 		rqb_buffer->drq = drq;
7764 		rqb_buffer->idx = idx;
7765 		list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list);
7766 	}
7767 
7768 	spin_lock_irqsave(&phba->hbalock, flags);
7769 	while (!list_empty(&rqb_buf_list)) {
7770 		list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf,
7771 				 hbuf.list);
7772 
7773 		hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys);
7774 		hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys);
7775 		drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys);
7776 		drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys);
7777 		rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
7778 		if (rc < 0) {
7779 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7780 					"6421 Cannot post to HRQ %d: %x %x %x "
7781 					"DRQ %x %x\n",
7782 					hrq->queue_id,
7783 					hrq->host_index,
7784 					hrq->hba_index,
7785 					hrq->entry_count,
7786 					drq->host_index,
7787 					drq->hba_index);
7788 			rqbp->rqb_free_buffer(phba, rqb_buffer);
7789 		} else {
7790 			list_add_tail(&rqb_buffer->hbuf.list,
7791 				      &rqbp->rqb_buffer_list);
7792 			rqbp->buffer_count++;
7793 		}
7794 	}
7795 	spin_unlock_irqrestore(&phba->hbalock, flags);
7796 	return 1;
7797 }
7798 
7799 static void
7800 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
7801 {
7802 	struct lpfc_vport *vport = pmb->vport;
7803 	union lpfc_sli4_cfg_shdr *shdr;
7804 	u32 shdr_status, shdr_add_status;
7805 	u32 sig, acqe;
7806 
7807 	/* Two outcomes. (1) Set featurs was successul and EDC negotiation
7808 	 * is done. (2) Mailbox failed and send FPIN support only.
7809 	 */
7810 	shdr = (union lpfc_sli4_cfg_shdr *)
7811 		&pmb->u.mqe.un.sli4_config.header.cfg_shdr;
7812 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
7813 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
7814 	if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) {
7815 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT,
7816 				"2516 CGN SET_FEATURE mbox failed with "
7817 				"status x%x add_status x%x, mbx status x%x "
7818 				"Reset Congestion to FPINs only\n",
7819 				shdr_status, shdr_add_status,
7820 				pmb->u.mb.mbxStatus);
7821 		/* If there is a mbox error, move on to RDF */
7822 		phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
7823 		phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM;
7824 		goto out;
7825 	}
7826 
7827 	/* Zero out Congestion Signal ACQE counter */
7828 	phba->cgn_acqe_cnt = 0;
7829 
7830 	acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq,
7831 		      &pmb->u.mqe.un.set_feature);
7832 	sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq,
7833 		     &pmb->u.mqe.un.set_feature);
7834 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
7835 			"4620 SET_FEATURES Success: Freq: %ds %dms "
7836 			" Reg: x%x x%x\n", acqe, sig,
7837 			phba->cgn_reg_signal, phba->cgn_reg_fpin);
7838 out:
7839 	mempool_free(pmb, phba->mbox_mem_pool);
7840 
7841 	/* Register for FPIN events from the fabric now that the
7842 	 * EDC common_set_features has completed.
7843 	 */
7844 	lpfc_issue_els_rdf(vport, 0);
7845 }
7846 
7847 int
7848 lpfc_config_cgn_signal(struct lpfc_hba *phba)
7849 {
7850 	LPFC_MBOXQ_t *mboxq;
7851 	u32 rc;
7852 
7853 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7854 	if (!mboxq)
7855 		goto out_rdf;
7856 
7857 	lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL);
7858 	mboxq->vport = phba->pport;
7859 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs;
7860 
7861 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
7862 			"4621 SET_FEATURES: FREQ sig x%x acqe x%x: "
7863 			"Reg: x%x x%x\n",
7864 			phba->cgn_sig_freq, lpfc_acqe_cgn_frequency,
7865 			phba->cgn_reg_signal, phba->cgn_reg_fpin);
7866 
7867 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
7868 	if (rc == MBX_NOT_FINISHED)
7869 		goto out;
7870 	return 0;
7871 
7872 out:
7873 	mempool_free(mboxq, phba->mbox_mem_pool);
7874 out_rdf:
7875 	/* If there is a mbox error, move on to RDF */
7876 	phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM;
7877 	phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
7878 	lpfc_issue_els_rdf(phba->pport, 0);
7879 	return -EIO;
7880 }
7881 
7882 /**
7883  * lpfc_init_idle_stat_hb - Initialize idle_stat tracking
7884  * @phba: pointer to lpfc hba data structure.
7885  *
7886  * This routine initializes the per-cq idle_stat to dynamically dictate
7887  * polling decisions.
7888  *
7889  * Return codes:
7890  *   None
7891  **/
7892 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba)
7893 {
7894 	int i;
7895 	struct lpfc_sli4_hdw_queue *hdwq;
7896 	struct lpfc_queue *cq;
7897 	struct lpfc_idle_stat *idle_stat;
7898 	u64 wall;
7899 
7900 	for_each_present_cpu(i) {
7901 		hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
7902 		cq = hdwq->io_cq;
7903 
7904 		/* Skip if we've already handled this cq's primary CPU */
7905 		if (cq->chann != i)
7906 			continue;
7907 
7908 		idle_stat = &phba->sli4_hba.idle_stat[i];
7909 
7910 		idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1);
7911 		idle_stat->prev_wall = wall;
7912 
7913 		if (phba->nvmet_support ||
7914 		    phba->cmf_active_mode != LPFC_CFG_OFF)
7915 			cq->poll_mode = LPFC_QUEUE_WORK;
7916 		else
7917 			cq->poll_mode = LPFC_IRQ_POLL;
7918 	}
7919 
7920 	if (!phba->nvmet_support)
7921 		schedule_delayed_work(&phba->idle_stat_delay_work,
7922 				      msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
7923 }
7924 
7925 static void lpfc_sli4_dip(struct lpfc_hba *phba)
7926 {
7927 	uint32_t if_type;
7928 
7929 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
7930 	if (if_type == LPFC_SLI_INTF_IF_TYPE_2 ||
7931 	    if_type == LPFC_SLI_INTF_IF_TYPE_6) {
7932 		struct lpfc_register reg_data;
7933 
7934 		if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
7935 			       &reg_data.word0))
7936 			return;
7937 
7938 		if (bf_get(lpfc_sliport_status_dip, &reg_data))
7939 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7940 					"2904 Firmware Dump Image Present"
7941 					" on Adapter");
7942 	}
7943 }
7944 
7945 /**
7946  * lpfc_cmf_setup - Initialize idle_stat tracking
7947  * @phba: Pointer to HBA context object.
7948  *
7949  * This is called from HBA setup during driver load or when the HBA
7950  * comes online. this does all the initialization to support CMF and MI.
7951  **/
7952 static int
7953 lpfc_cmf_setup(struct lpfc_hba *phba)
7954 {
7955 	LPFC_MBOXQ_t *mboxq;
7956 	struct lpfc_dmabuf *mp;
7957 	struct lpfc_pc_sli4_params *sli4_params;
7958 	int rc, cmf, mi_ver;
7959 
7960 	rc = lpfc_sli4_refresh_params(phba);
7961 	if (unlikely(rc))
7962 		return rc;
7963 
7964 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7965 	if (!mboxq)
7966 		return -ENOMEM;
7967 
7968 	sli4_params = &phba->sli4_hba.pc_sli4_params;
7969 
7970 	/* Are we forcing MI off via module parameter? */
7971 	if (!phba->cfg_enable_mi)
7972 		sli4_params->mi_ver = 0;
7973 
7974 	/* Always try to enable MI feature if we can */
7975 	if (sli4_params->mi_ver) {
7976 		lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI);
7977 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7978 		mi_ver = bf_get(lpfc_mbx_set_feature_mi,
7979 				 &mboxq->u.mqe.un.set_feature);
7980 
7981 		if (rc == MBX_SUCCESS) {
7982 			if (mi_ver) {
7983 				lpfc_printf_log(phba,
7984 						KERN_WARNING, LOG_CGN_MGMT,
7985 						"6215 MI is enabled\n");
7986 				sli4_params->mi_ver = mi_ver;
7987 			} else {
7988 				lpfc_printf_log(phba,
7989 						KERN_WARNING, LOG_CGN_MGMT,
7990 						"6338 MI is disabled\n");
7991 				sli4_params->mi_ver = 0;
7992 			}
7993 		} else {
7994 			/* mi_ver is already set from GET_SLI4_PARAMETERS */
7995 			lpfc_printf_log(phba, KERN_INFO,
7996 					LOG_CGN_MGMT | LOG_INIT,
7997 					"6245 Enable MI Mailbox x%x (x%x/x%x) "
7998 					"failed, rc:x%x mi:x%x\n",
7999 					bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8000 					lpfc_sli_config_mbox_subsys_get
8001 						(phba, mboxq),
8002 					lpfc_sli_config_mbox_opcode_get
8003 						(phba, mboxq),
8004 					rc, sli4_params->mi_ver);
8005 		}
8006 	} else {
8007 		lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT,
8008 				"6217 MI is disabled\n");
8009 	}
8010 
8011 	/* Ensure FDMI is enabled for MI if enable_mi is set */
8012 	if (sli4_params->mi_ver)
8013 		phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT;
8014 
8015 	/* Always try to enable CMF feature if we can */
8016 	if (sli4_params->cmf) {
8017 		lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF);
8018 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8019 		cmf = bf_get(lpfc_mbx_set_feature_cmf,
8020 			     &mboxq->u.mqe.un.set_feature);
8021 		if (rc == MBX_SUCCESS && cmf) {
8022 			lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT,
8023 					"6218 CMF is enabled: mode %d\n",
8024 					phba->cmf_active_mode);
8025 		} else {
8026 			lpfc_printf_log(phba, KERN_WARNING,
8027 					LOG_CGN_MGMT | LOG_INIT,
8028 					"6219 Enable CMF Mailbox x%x (x%x/x%x) "
8029 					"failed, rc:x%x dd:x%x\n",
8030 					bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8031 					lpfc_sli_config_mbox_subsys_get
8032 						(phba, mboxq),
8033 					lpfc_sli_config_mbox_opcode_get
8034 						(phba, mboxq),
8035 					rc, cmf);
8036 			sli4_params->cmf = 0;
8037 			phba->cmf_active_mode = LPFC_CFG_OFF;
8038 			goto no_cmf;
8039 		}
8040 
8041 		/* Allocate Congestion Information Buffer */
8042 		if (!phba->cgn_i) {
8043 			mp = kmalloc(sizeof(*mp), GFP_KERNEL);
8044 			if (mp)
8045 				mp->virt = dma_alloc_coherent
8046 						(&phba->pcidev->dev,
8047 						sizeof(struct lpfc_cgn_info),
8048 						&mp->phys, GFP_KERNEL);
8049 			if (!mp || !mp->virt) {
8050 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8051 						"2640 Failed to alloc memory "
8052 						"for Congestion Info\n");
8053 				kfree(mp);
8054 				sli4_params->cmf = 0;
8055 				phba->cmf_active_mode = LPFC_CFG_OFF;
8056 				goto no_cmf;
8057 			}
8058 			phba->cgn_i = mp;
8059 
8060 			/* initialize congestion buffer info */
8061 			lpfc_init_congestion_buf(phba);
8062 			lpfc_init_congestion_stat(phba);
8063 
8064 			/* Zero out Congestion Signal counters */
8065 			atomic64_set(&phba->cgn_acqe_stat.alarm, 0);
8066 			atomic64_set(&phba->cgn_acqe_stat.warn, 0);
8067 		}
8068 
8069 		rc = lpfc_sli4_cgn_params_read(phba);
8070 		if (rc < 0) {
8071 			lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
8072 					"6242 Error reading Cgn Params (%d)\n",
8073 					rc);
8074 			/* Ensure CGN Mode is off */
8075 			sli4_params->cmf = 0;
8076 		} else if (!rc) {
8077 			lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
8078 					"6243 CGN Event empty object.\n");
8079 			/* Ensure CGN Mode is off */
8080 			sli4_params->cmf = 0;
8081 		}
8082 	} else {
8083 no_cmf:
8084 		lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT,
8085 				"6220 CMF is disabled\n");
8086 	}
8087 
8088 	/* Only register congestion buffer with firmware if BOTH
8089 	 * CMF and E2E are enabled.
8090 	 */
8091 	if (sli4_params->cmf && sli4_params->mi_ver) {
8092 		rc = lpfc_reg_congestion_buf(phba);
8093 		if (rc) {
8094 			dma_free_coherent(&phba->pcidev->dev,
8095 					  sizeof(struct lpfc_cgn_info),
8096 					  phba->cgn_i->virt, phba->cgn_i->phys);
8097 			kfree(phba->cgn_i);
8098 			phba->cgn_i = NULL;
8099 			/* Ensure CGN Mode is off */
8100 			phba->cmf_active_mode = LPFC_CFG_OFF;
8101 			return 0;
8102 		}
8103 	}
8104 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8105 			"6470 Setup MI version %d CMF %d mode %d\n",
8106 			sli4_params->mi_ver, sli4_params->cmf,
8107 			phba->cmf_active_mode);
8108 
8109 	mempool_free(mboxq, phba->mbox_mem_pool);
8110 
8111 	/* Initialize atomic counters */
8112 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
8113 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
8114 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
8115 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
8116 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
8117 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
8118 	atomic64_set(&phba->cgn_latency_evt, 0);
8119 
8120 	phba->cmf_interval_rate = LPFC_CMF_INTERVAL;
8121 
8122 	/* Allocate RX Monitor Buffer */
8123 	if (!phba->rxtable) {
8124 		phba->rxtable = kmalloc_array(LPFC_MAX_RXMONITOR_ENTRY,
8125 					      sizeof(struct rxtable_entry),
8126 					      GFP_KERNEL);
8127 		if (!phba->rxtable) {
8128 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8129 					"2644 Failed to alloc memory "
8130 					"for RX Monitor Buffer\n");
8131 			return -ENOMEM;
8132 		}
8133 	}
8134 	atomic_set(&phba->rxtable_idx_head, 0);
8135 	atomic_set(&phba->rxtable_idx_tail, 0);
8136 	return 0;
8137 }
8138 
8139 static int
8140 lpfc_set_host_tm(struct lpfc_hba *phba)
8141 {
8142 	LPFC_MBOXQ_t *mboxq;
8143 	uint32_t len, rc;
8144 	struct timespec64 cur_time;
8145 	struct tm broken;
8146 	uint32_t month, day, year;
8147 	uint32_t hour, minute, second;
8148 	struct lpfc_mbx_set_host_date_time *tm;
8149 
8150 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
8151 	if (!mboxq)
8152 		return -ENOMEM;
8153 
8154 	len = sizeof(struct lpfc_mbx_set_host_data) -
8155 		sizeof(struct lpfc_sli4_cfg_mhdr);
8156 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
8157 			 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
8158 			 LPFC_SLI4_MBX_EMBED);
8159 
8160 	mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME;
8161 	mboxq->u.mqe.un.set_host_data.param_len =
8162 			sizeof(struct lpfc_mbx_set_host_date_time);
8163 	tm = &mboxq->u.mqe.un.set_host_data.un.tm;
8164 	ktime_get_real_ts64(&cur_time);
8165 	time64_to_tm(cur_time.tv_sec, 0, &broken);
8166 	month = broken.tm_mon + 1;
8167 	day = broken.tm_mday;
8168 	year = broken.tm_year - 100;
8169 	hour = broken.tm_hour;
8170 	minute = broken.tm_min;
8171 	second = broken.tm_sec;
8172 	bf_set(lpfc_mbx_set_host_month, tm, month);
8173 	bf_set(lpfc_mbx_set_host_day, tm, day);
8174 	bf_set(lpfc_mbx_set_host_year, tm, year);
8175 	bf_set(lpfc_mbx_set_host_hour, tm, hour);
8176 	bf_set(lpfc_mbx_set_host_min, tm, minute);
8177 	bf_set(lpfc_mbx_set_host_sec, tm, second);
8178 
8179 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8180 	mempool_free(mboxq, phba->mbox_mem_pool);
8181 	return rc;
8182 }
8183 
8184 /**
8185  * lpfc_sli4_hba_setup - SLI4 device initialization PCI function
8186  * @phba: Pointer to HBA context object.
8187  *
8188  * This function is the main SLI4 device initialization PCI function. This
8189  * function is called by the HBA initialization code, HBA reset code and
8190  * HBA error attention handler code. Caller is not required to hold any
8191  * locks.
8192  **/
8193 int
8194 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
8195 {
8196 	int rc, i, cnt, len, dd;
8197 	LPFC_MBOXQ_t *mboxq;
8198 	struct lpfc_mqe *mqe;
8199 	uint8_t *vpd;
8200 	uint32_t vpd_size;
8201 	uint32_t ftr_rsp = 0;
8202 	struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
8203 	struct lpfc_vport *vport = phba->pport;
8204 	struct lpfc_dmabuf *mp;
8205 	struct lpfc_rqb *rqbp;
8206 	u32 flg;
8207 
8208 	/* Perform a PCI function reset to start from clean */
8209 	rc = lpfc_pci_function_reset(phba);
8210 	if (unlikely(rc))
8211 		return -ENODEV;
8212 
8213 	/* Check the HBA Host Status Register for readyness */
8214 	rc = lpfc_sli4_post_status_check(phba);
8215 	if (unlikely(rc))
8216 		return -ENODEV;
8217 	else {
8218 		spin_lock_irq(&phba->hbalock);
8219 		phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
8220 		flg = phba->sli.sli_flag;
8221 		spin_unlock_irq(&phba->hbalock);
8222 		/* Allow a little time after setting SLI_ACTIVE for any polled
8223 		 * MBX commands to complete via BSG.
8224 		 */
8225 		for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) {
8226 			msleep(20);
8227 			spin_lock_irq(&phba->hbalock);
8228 			flg = phba->sli.sli_flag;
8229 			spin_unlock_irq(&phba->hbalock);
8230 		}
8231 	}
8232 
8233 	lpfc_sli4_dip(phba);
8234 
8235 	/*
8236 	 * Allocate a single mailbox container for initializing the
8237 	 * port.
8238 	 */
8239 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
8240 	if (!mboxq)
8241 		return -ENOMEM;
8242 
8243 	/* Issue READ_REV to collect vpd and FW information. */
8244 	vpd_size = SLI4_PAGE_SIZE;
8245 	vpd = kzalloc(vpd_size, GFP_KERNEL);
8246 	if (!vpd) {
8247 		rc = -ENOMEM;
8248 		goto out_free_mbox;
8249 	}
8250 
8251 	rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
8252 	if (unlikely(rc)) {
8253 		kfree(vpd);
8254 		goto out_free_mbox;
8255 	}
8256 
8257 	mqe = &mboxq->u.mqe;
8258 	phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
8259 	if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
8260 		phba->hba_flag |= HBA_FCOE_MODE;
8261 		phba->fcp_embed_io = 0;	/* SLI4 FC support only */
8262 	} else {
8263 		phba->hba_flag &= ~HBA_FCOE_MODE;
8264 	}
8265 
8266 	if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
8267 		LPFC_DCBX_CEE_MODE)
8268 		phba->hba_flag |= HBA_FIP_SUPPORT;
8269 	else
8270 		phba->hba_flag &= ~HBA_FIP_SUPPORT;
8271 
8272 	phba->hba_flag &= ~HBA_IOQ_FLUSH;
8273 
8274 	if (phba->sli_rev != LPFC_SLI_REV4) {
8275 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8276 			"0376 READ_REV Error. SLI Level %d "
8277 			"FCoE enabled %d\n",
8278 			phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
8279 		rc = -EIO;
8280 		kfree(vpd);
8281 		goto out_free_mbox;
8282 	}
8283 
8284 	rc = lpfc_set_host_tm(phba);
8285 	lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
8286 			"6468 Set host date / time: Status x%x:\n", rc);
8287 
8288 	/*
8289 	 * Continue initialization with default values even if driver failed
8290 	 * to read FCoE param config regions, only read parameters if the
8291 	 * board is FCoE
8292 	 */
8293 	if (phba->hba_flag & HBA_FCOE_MODE &&
8294 	    lpfc_sli4_read_fcoe_params(phba))
8295 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
8296 			"2570 Failed to read FCoE parameters\n");
8297 
8298 	/*
8299 	 * Retrieve sli4 device physical port name, failure of doing it
8300 	 * is considered as non-fatal.
8301 	 */
8302 	rc = lpfc_sli4_retrieve_pport_name(phba);
8303 	if (!rc)
8304 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8305 				"3080 Successful retrieving SLI4 device "
8306 				"physical port name: %s.\n", phba->Port);
8307 
8308 	rc = lpfc_sli4_get_ctl_attr(phba);
8309 	if (!rc)
8310 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8311 				"8351 Successful retrieving SLI4 device "
8312 				"CTL ATTR\n");
8313 
8314 	/*
8315 	 * Evaluate the read rev and vpd data. Populate the driver
8316 	 * state with the results. If this routine fails, the failure
8317 	 * is not fatal as the driver will use generic values.
8318 	 */
8319 	rc = lpfc_parse_vpd(phba, vpd, vpd_size);
8320 	if (unlikely(!rc)) {
8321 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8322 				"0377 Error %d parsing vpd. "
8323 				"Using defaults.\n", rc);
8324 		rc = 0;
8325 	}
8326 	kfree(vpd);
8327 
8328 	/* Save information as VPD data */
8329 	phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
8330 	phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
8331 
8332 	/*
8333 	 * This is because first G7 ASIC doesn't support the standard
8334 	 * 0x5a NVME cmd descriptor type/subtype
8335 	 */
8336 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8337 			LPFC_SLI_INTF_IF_TYPE_6) &&
8338 	    (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) &&
8339 	    (phba->vpd.rev.smRev == 0) &&
8340 	    (phba->cfg_nvme_embed_cmd == 1))
8341 		phba->cfg_nvme_embed_cmd = 0;
8342 
8343 	phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
8344 	phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
8345 					 &mqe->un.read_rev);
8346 	phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
8347 				       &mqe->un.read_rev);
8348 	phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
8349 					    &mqe->un.read_rev);
8350 	phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
8351 					   &mqe->un.read_rev);
8352 	phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
8353 	memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
8354 	phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
8355 	memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
8356 	phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
8357 	memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
8358 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8359 			"(%d):0380 READ_REV Status x%x "
8360 			"fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
8361 			mboxq->vport ? mboxq->vport->vpi : 0,
8362 			bf_get(lpfc_mqe_status, mqe),
8363 			phba->vpd.rev.opFwName,
8364 			phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
8365 			phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
8366 
8367 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8368 	    LPFC_SLI_INTF_IF_TYPE_0) {
8369 		lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
8370 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8371 		if (rc == MBX_SUCCESS) {
8372 			phba->hba_flag |= HBA_RECOVERABLE_UE;
8373 			/* Set 1Sec interval to detect UE */
8374 			phba->eratt_poll_interval = 1;
8375 			phba->sli4_hba.ue_to_sr = bf_get(
8376 					lpfc_mbx_set_feature_UESR,
8377 					&mboxq->u.mqe.un.set_feature);
8378 			phba->sli4_hba.ue_to_rp = bf_get(
8379 					lpfc_mbx_set_feature_UERP,
8380 					&mboxq->u.mqe.un.set_feature);
8381 		}
8382 	}
8383 
8384 	if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
8385 		/* Enable MDS Diagnostics only if the SLI Port supports it */
8386 		lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
8387 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8388 		if (rc != MBX_SUCCESS)
8389 			phba->mds_diags_support = 0;
8390 	}
8391 
8392 	/*
8393 	 * Discover the port's supported feature set and match it against the
8394 	 * hosts requests.
8395 	 */
8396 	lpfc_request_features(phba, mboxq);
8397 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8398 	if (unlikely(rc)) {
8399 		rc = -EIO;
8400 		goto out_free_mbox;
8401 	}
8402 
8403 	/* Disable VMID if app header is not supported */
8404 	if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr,
8405 						  &mqe->un.req_ftrs))) {
8406 		bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0);
8407 		phba->cfg_vmid_app_header = 0;
8408 		lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI,
8409 				"1242 vmid feature not supported\n");
8410 	}
8411 
8412 	/*
8413 	 * The port must support FCP initiator mode as this is the
8414 	 * only mode running in the host.
8415 	 */
8416 	if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
8417 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8418 				"0378 No support for fcpi mode.\n");
8419 		ftr_rsp++;
8420 	}
8421 
8422 	/* Performance Hints are ONLY for FCoE */
8423 	if (phba->hba_flag & HBA_FCOE_MODE) {
8424 		if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
8425 			phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
8426 		else
8427 			phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
8428 	}
8429 
8430 	/*
8431 	 * If the port cannot support the host's requested features
8432 	 * then turn off the global config parameters to disable the
8433 	 * feature in the driver.  This is not a fatal error.
8434 	 */
8435 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
8436 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) {
8437 			phba->cfg_enable_bg = 0;
8438 			phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
8439 			ftr_rsp++;
8440 		}
8441 	}
8442 
8443 	if (phba->max_vpi && phba->cfg_enable_npiv &&
8444 	    !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
8445 		ftr_rsp++;
8446 
8447 	if (ftr_rsp) {
8448 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8449 				"0379 Feature Mismatch Data: x%08x %08x "
8450 				"x%x x%x x%x\n", mqe->un.req_ftrs.word2,
8451 				mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
8452 				phba->cfg_enable_npiv, phba->max_vpi);
8453 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
8454 			phba->cfg_enable_bg = 0;
8455 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
8456 			phba->cfg_enable_npiv = 0;
8457 	}
8458 
8459 	/* These SLI3 features are assumed in SLI4 */
8460 	spin_lock_irq(&phba->hbalock);
8461 	phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
8462 	spin_unlock_irq(&phba->hbalock);
8463 
8464 	/* Always try to enable dual dump feature if we can */
8465 	lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP);
8466 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8467 	dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature);
8468 	if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP))
8469 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8470 				"6448 Dual Dump is enabled\n");
8471 	else
8472 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT,
8473 				"6447 Dual Dump Mailbox x%x (x%x/x%x) failed, "
8474 				"rc:x%x dd:x%x\n",
8475 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8476 				lpfc_sli_config_mbox_subsys_get(
8477 					phba, mboxq),
8478 				lpfc_sli_config_mbox_opcode_get(
8479 					phba, mboxq),
8480 				rc, dd);
8481 	/*
8482 	 * Allocate all resources (xri,rpi,vpi,vfi) now.  Subsequent
8483 	 * calls depends on these resources to complete port setup.
8484 	 */
8485 	rc = lpfc_sli4_alloc_resource_identifiers(phba);
8486 	if (rc) {
8487 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8488 				"2920 Failed to alloc Resource IDs "
8489 				"rc = x%x\n", rc);
8490 		goto out_free_mbox;
8491 	}
8492 
8493 	lpfc_set_host_data(phba, mboxq);
8494 
8495 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8496 	if (rc) {
8497 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8498 				"2134 Failed to set host os driver version %x",
8499 				rc);
8500 	}
8501 
8502 	/* Read the port's service parameters. */
8503 	rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
8504 	if (rc) {
8505 		phba->link_state = LPFC_HBA_ERROR;
8506 		rc = -ENOMEM;
8507 		goto out_free_mbox;
8508 	}
8509 
8510 	mboxq->vport = vport;
8511 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8512 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
8513 	if (rc == MBX_SUCCESS) {
8514 		memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
8515 		rc = 0;
8516 	}
8517 
8518 	/*
8519 	 * This memory was allocated by the lpfc_read_sparam routine. Release
8520 	 * it to the mbuf pool.
8521 	 */
8522 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
8523 	kfree(mp);
8524 	mboxq->ctx_buf = NULL;
8525 	if (unlikely(rc)) {
8526 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8527 				"0382 READ_SPARAM command failed "
8528 				"status %d, mbxStatus x%x\n",
8529 				rc, bf_get(lpfc_mqe_status, mqe));
8530 		phba->link_state = LPFC_HBA_ERROR;
8531 		rc = -EIO;
8532 		goto out_free_mbox;
8533 	}
8534 
8535 	lpfc_update_vport_wwn(vport);
8536 
8537 	/* Update the fc_host data structures with new wwn. */
8538 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
8539 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
8540 
8541 	/* Create all the SLI4 queues */
8542 	rc = lpfc_sli4_queue_create(phba);
8543 	if (rc) {
8544 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8545 				"3089 Failed to allocate queues\n");
8546 		rc = -ENODEV;
8547 		goto out_free_mbox;
8548 	}
8549 	/* Set up all the queues to the device */
8550 	rc = lpfc_sli4_queue_setup(phba);
8551 	if (unlikely(rc)) {
8552 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8553 				"0381 Error %d during queue setup.\n ", rc);
8554 		goto out_stop_timers;
8555 	}
8556 	/* Initialize the driver internal SLI layer lists. */
8557 	lpfc_sli4_setup(phba);
8558 	lpfc_sli4_queue_init(phba);
8559 
8560 	/* update host els xri-sgl sizes and mappings */
8561 	rc = lpfc_sli4_els_sgl_update(phba);
8562 	if (unlikely(rc)) {
8563 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8564 				"1400 Failed to update xri-sgl size and "
8565 				"mapping: %d\n", rc);
8566 		goto out_destroy_queue;
8567 	}
8568 
8569 	/* register the els sgl pool to the port */
8570 	rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
8571 				       phba->sli4_hba.els_xri_cnt);
8572 	if (unlikely(rc < 0)) {
8573 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8574 				"0582 Error %d during els sgl post "
8575 				"operation\n", rc);
8576 		rc = -ENODEV;
8577 		goto out_destroy_queue;
8578 	}
8579 	phba->sli4_hba.els_xri_cnt = rc;
8580 
8581 	if (phba->nvmet_support) {
8582 		/* update host nvmet xri-sgl sizes and mappings */
8583 		rc = lpfc_sli4_nvmet_sgl_update(phba);
8584 		if (unlikely(rc)) {
8585 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8586 					"6308 Failed to update nvmet-sgl size "
8587 					"and mapping: %d\n", rc);
8588 			goto out_destroy_queue;
8589 		}
8590 
8591 		/* register the nvmet sgl pool to the port */
8592 		rc = lpfc_sli4_repost_sgl_list(
8593 			phba,
8594 			&phba->sli4_hba.lpfc_nvmet_sgl_list,
8595 			phba->sli4_hba.nvmet_xri_cnt);
8596 		if (unlikely(rc < 0)) {
8597 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8598 					"3117 Error %d during nvmet "
8599 					"sgl post\n", rc);
8600 			rc = -ENODEV;
8601 			goto out_destroy_queue;
8602 		}
8603 		phba->sli4_hba.nvmet_xri_cnt = rc;
8604 
8605 		/* We allocate an iocbq for every receive context SGL.
8606 		 * The additional allocation is for abort and ls handling.
8607 		 */
8608 		cnt = phba->sli4_hba.nvmet_xri_cnt +
8609 			phba->sli4_hba.max_cfg_param.max_xri;
8610 	} else {
8611 		/* update host common xri-sgl sizes and mappings */
8612 		rc = lpfc_sli4_io_sgl_update(phba);
8613 		if (unlikely(rc)) {
8614 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8615 					"6082 Failed to update nvme-sgl size "
8616 					"and mapping: %d\n", rc);
8617 			goto out_destroy_queue;
8618 		}
8619 
8620 		/* register the allocated common sgl pool to the port */
8621 		rc = lpfc_sli4_repost_io_sgl_list(phba);
8622 		if (unlikely(rc)) {
8623 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8624 					"6116 Error %d during nvme sgl post "
8625 					"operation\n", rc);
8626 			/* Some NVME buffers were moved to abort nvme list */
8627 			/* A pci function reset will repost them */
8628 			rc = -ENODEV;
8629 			goto out_destroy_queue;
8630 		}
8631 		/* Each lpfc_io_buf job structure has an iocbq element.
8632 		 * This cnt provides for abort, els, ct and ls requests.
8633 		 */
8634 		cnt = phba->sli4_hba.max_cfg_param.max_xri;
8635 	}
8636 
8637 	if (!phba->sli.iocbq_lookup) {
8638 		/* Initialize and populate the iocb list per host */
8639 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8640 				"2821 initialize iocb list with %d entries\n",
8641 				cnt);
8642 		rc = lpfc_init_iocb_list(phba, cnt);
8643 		if (rc) {
8644 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8645 					"1413 Failed to init iocb list.\n");
8646 			goto out_destroy_queue;
8647 		}
8648 	}
8649 
8650 	if (phba->nvmet_support)
8651 		lpfc_nvmet_create_targetport(phba);
8652 
8653 	if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
8654 		/* Post initial buffers to all RQs created */
8655 		for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
8656 			rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
8657 			INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
8658 			rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
8659 			rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
8660 			rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT;
8661 			rqbp->buffer_count = 0;
8662 
8663 			lpfc_post_rq_buffer(
8664 				phba, phba->sli4_hba.nvmet_mrq_hdr[i],
8665 				phba->sli4_hba.nvmet_mrq_data[i],
8666 				phba->cfg_nvmet_mrq_post, i);
8667 		}
8668 	}
8669 
8670 	/* Post the rpi header region to the device. */
8671 	rc = lpfc_sli4_post_all_rpi_hdrs(phba);
8672 	if (unlikely(rc)) {
8673 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8674 				"0393 Error %d during rpi post operation\n",
8675 				rc);
8676 		rc = -ENODEV;
8677 		goto out_free_iocblist;
8678 	}
8679 	lpfc_sli4_node_prep(phba);
8680 
8681 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
8682 		if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
8683 			/*
8684 			 * The FC Port needs to register FCFI (index 0)
8685 			 */
8686 			lpfc_reg_fcfi(phba, mboxq);
8687 			mboxq->vport = phba->pport;
8688 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8689 			if (rc != MBX_SUCCESS)
8690 				goto out_unset_queue;
8691 			rc = 0;
8692 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
8693 						&mboxq->u.mqe.un.reg_fcfi);
8694 		} else {
8695 			/* We are a NVME Target mode with MRQ > 1 */
8696 
8697 			/* First register the FCFI */
8698 			lpfc_reg_fcfi_mrq(phba, mboxq, 0);
8699 			mboxq->vport = phba->pport;
8700 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8701 			if (rc != MBX_SUCCESS)
8702 				goto out_unset_queue;
8703 			rc = 0;
8704 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
8705 						&mboxq->u.mqe.un.reg_fcfi_mrq);
8706 
8707 			/* Next register the MRQs */
8708 			lpfc_reg_fcfi_mrq(phba, mboxq, 1);
8709 			mboxq->vport = phba->pport;
8710 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8711 			if (rc != MBX_SUCCESS)
8712 				goto out_unset_queue;
8713 			rc = 0;
8714 		}
8715 		/* Check if the port is configured to be disabled */
8716 		lpfc_sli_read_link_ste(phba);
8717 	}
8718 
8719 	/* Don't post more new bufs if repost already recovered
8720 	 * the nvme sgls.
8721 	 */
8722 	if (phba->nvmet_support == 0) {
8723 		if (phba->sli4_hba.io_xri_cnt == 0) {
8724 			len = lpfc_new_io_buf(
8725 					      phba, phba->sli4_hba.io_xri_max);
8726 			if (len == 0) {
8727 				rc = -ENOMEM;
8728 				goto out_unset_queue;
8729 			}
8730 
8731 			if (phba->cfg_xri_rebalancing)
8732 				lpfc_create_multixri_pools(phba);
8733 		}
8734 	} else {
8735 		phba->cfg_xri_rebalancing = 0;
8736 	}
8737 
8738 	/* Allow asynchronous mailbox command to go through */
8739 	spin_lock_irq(&phba->hbalock);
8740 	phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8741 	spin_unlock_irq(&phba->hbalock);
8742 
8743 	/* Post receive buffers to the device */
8744 	lpfc_sli4_rb_setup(phba);
8745 
8746 	/* Reset HBA FCF states after HBA reset */
8747 	phba->fcf.fcf_flag = 0;
8748 	phba->fcf.current_rec.flag = 0;
8749 
8750 	/* Start the ELS watchdog timer */
8751 	mod_timer(&vport->els_tmofunc,
8752 		  jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
8753 
8754 	/* Start heart beat timer */
8755 	mod_timer(&phba->hb_tmofunc,
8756 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
8757 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
8758 	phba->last_completion_time = jiffies;
8759 
8760 	/* start eq_delay heartbeat */
8761 	if (phba->cfg_auto_imax)
8762 		queue_delayed_work(phba->wq, &phba->eq_delay_work,
8763 				   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
8764 
8765 	/* start per phba idle_stat_delay heartbeat */
8766 	lpfc_init_idle_stat_hb(phba);
8767 
8768 	/* Start error attention (ERATT) polling timer */
8769 	mod_timer(&phba->eratt_poll,
8770 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
8771 
8772 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
8773 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
8774 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
8775 		if (!rc) {
8776 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8777 					"2829 This device supports "
8778 					"Advanced Error Reporting (AER)\n");
8779 			spin_lock_irq(&phba->hbalock);
8780 			phba->hba_flag |= HBA_AER_ENABLED;
8781 			spin_unlock_irq(&phba->hbalock);
8782 		} else {
8783 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8784 					"2830 This device does not support "
8785 					"Advanced Error Reporting (AER)\n");
8786 			phba->cfg_aer_support = 0;
8787 		}
8788 		rc = 0;
8789 	}
8790 
8791 	/*
8792 	 * The port is ready, set the host's link state to LINK_DOWN
8793 	 * in preparation for link interrupts.
8794 	 */
8795 	spin_lock_irq(&phba->hbalock);
8796 	phba->link_state = LPFC_LINK_DOWN;
8797 
8798 	/* Check if physical ports are trunked */
8799 	if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba))
8800 		phba->trunk_link.link0.state = LPFC_LINK_DOWN;
8801 	if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba))
8802 		phba->trunk_link.link1.state = LPFC_LINK_DOWN;
8803 	if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba))
8804 		phba->trunk_link.link2.state = LPFC_LINK_DOWN;
8805 	if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba))
8806 		phba->trunk_link.link3.state = LPFC_LINK_DOWN;
8807 	spin_unlock_irq(&phba->hbalock);
8808 
8809 	/* Arm the CQs and then EQs on device */
8810 	lpfc_sli4_arm_cqeq_intr(phba);
8811 
8812 	/* Indicate device interrupt mode */
8813 	phba->sli4_hba.intr_enable = 1;
8814 
8815 	/* Setup CMF after HBA is initialized */
8816 	lpfc_cmf_setup(phba);
8817 
8818 	if (!(phba->hba_flag & HBA_FCOE_MODE) &&
8819 	    (phba->hba_flag & LINK_DISABLED)) {
8820 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8821 				"3103 Adapter Link is disabled.\n");
8822 		lpfc_down_link(phba, mboxq);
8823 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8824 		if (rc != MBX_SUCCESS) {
8825 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8826 					"3104 Adapter failed to issue "
8827 					"DOWN_LINK mbox cmd, rc:x%x\n", rc);
8828 			goto out_io_buff_free;
8829 		}
8830 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
8831 		/* don't perform init_link on SLI4 FC port loopback test */
8832 		if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
8833 			rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
8834 			if (rc)
8835 				goto out_io_buff_free;
8836 		}
8837 	}
8838 	mempool_free(mboxq, phba->mbox_mem_pool);
8839 
8840 	phba->hba_flag |= HBA_SETUP;
8841 	return rc;
8842 
8843 out_io_buff_free:
8844 	/* Free allocated IO Buffers */
8845 	lpfc_io_free(phba);
8846 out_unset_queue:
8847 	/* Unset all the queues set up in this routine when error out */
8848 	lpfc_sli4_queue_unset(phba);
8849 out_free_iocblist:
8850 	lpfc_free_iocb_list(phba);
8851 out_destroy_queue:
8852 	lpfc_sli4_queue_destroy(phba);
8853 out_stop_timers:
8854 	lpfc_stop_hba_timers(phba);
8855 out_free_mbox:
8856 	mempool_free(mboxq, phba->mbox_mem_pool);
8857 	return rc;
8858 }
8859 
8860 /**
8861  * lpfc_mbox_timeout - Timeout call back function for mbox timer
8862  * @t: Context to fetch pointer to hba structure from.
8863  *
8864  * This is the callback function for mailbox timer. The mailbox
8865  * timer is armed when a new mailbox command is issued and the timer
8866  * is deleted when the mailbox complete. The function is called by
8867  * the kernel timer code when a mailbox does not complete within
8868  * expected time. This function wakes up the worker thread to
8869  * process the mailbox timeout and returns. All the processing is
8870  * done by the worker thread function lpfc_mbox_timeout_handler.
8871  **/
8872 void
8873 lpfc_mbox_timeout(struct timer_list *t)
8874 {
8875 	struct lpfc_hba  *phba = from_timer(phba, t, sli.mbox_tmo);
8876 	unsigned long iflag;
8877 	uint32_t tmo_posted;
8878 
8879 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
8880 	tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
8881 	if (!tmo_posted)
8882 		phba->pport->work_port_events |= WORKER_MBOX_TMO;
8883 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
8884 
8885 	if (!tmo_posted)
8886 		lpfc_worker_wake_up(phba);
8887 	return;
8888 }
8889 
8890 /**
8891  * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
8892  *                                    are pending
8893  * @phba: Pointer to HBA context object.
8894  *
8895  * This function checks if any mailbox completions are present on the mailbox
8896  * completion queue.
8897  **/
8898 static bool
8899 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
8900 {
8901 
8902 	uint32_t idx;
8903 	struct lpfc_queue *mcq;
8904 	struct lpfc_mcqe *mcqe;
8905 	bool pending_completions = false;
8906 	uint8_t	qe_valid;
8907 
8908 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
8909 		return false;
8910 
8911 	/* Check for completions on mailbox completion queue */
8912 
8913 	mcq = phba->sli4_hba.mbx_cq;
8914 	idx = mcq->hba_index;
8915 	qe_valid = mcq->qe_valid;
8916 	while (bf_get_le32(lpfc_cqe_valid,
8917 	       (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) {
8918 		mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx));
8919 		if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
8920 		    (!bf_get_le32(lpfc_trailer_async, mcqe))) {
8921 			pending_completions = true;
8922 			break;
8923 		}
8924 		idx = (idx + 1) % mcq->entry_count;
8925 		if (mcq->hba_index == idx)
8926 			break;
8927 
8928 		/* if the index wrapped around, toggle the valid bit */
8929 		if (phba->sli4_hba.pc_sli4_params.cqav && !idx)
8930 			qe_valid = (qe_valid) ? 0 : 1;
8931 	}
8932 	return pending_completions;
8933 
8934 }
8935 
8936 /**
8937  * lpfc_sli4_process_missed_mbox_completions - process mbox completions
8938  *					      that were missed.
8939  * @phba: Pointer to HBA context object.
8940  *
8941  * For sli4, it is possible to miss an interrupt. As such mbox completions
8942  * maybe missed causing erroneous mailbox timeouts to occur. This function
8943  * checks to see if mbox completions are on the mailbox completion queue
8944  * and will process all the completions associated with the eq for the
8945  * mailbox completion queue.
8946  **/
8947 static bool
8948 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
8949 {
8950 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
8951 	uint32_t eqidx;
8952 	struct lpfc_queue *fpeq = NULL;
8953 	struct lpfc_queue *eq;
8954 	bool mbox_pending;
8955 
8956 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
8957 		return false;
8958 
8959 	/* Find the EQ associated with the mbox CQ */
8960 	if (sli4_hba->hdwq) {
8961 		for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) {
8962 			eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq;
8963 			if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) {
8964 				fpeq = eq;
8965 				break;
8966 			}
8967 		}
8968 	}
8969 	if (!fpeq)
8970 		return false;
8971 
8972 	/* Turn off interrupts from this EQ */
8973 
8974 	sli4_hba->sli4_eq_clr_intr(fpeq);
8975 
8976 	/* Check to see if a mbox completion is pending */
8977 
8978 	mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
8979 
8980 	/*
8981 	 * If a mbox completion is pending, process all the events on EQ
8982 	 * associated with the mbox completion queue (this could include
8983 	 * mailbox commands, async events, els commands, receive queue data
8984 	 * and fcp commands)
8985 	 */
8986 
8987 	if (mbox_pending)
8988 		/* process and rearm the EQ */
8989 		lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM);
8990 	else
8991 		/* Always clear and re-arm the EQ */
8992 		sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM);
8993 
8994 	return mbox_pending;
8995 
8996 }
8997 
8998 /**
8999  * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
9000  * @phba: Pointer to HBA context object.
9001  *
9002  * This function is called from worker thread when a mailbox command times out.
9003  * The caller is not required to hold any locks. This function will reset the
9004  * HBA and recover all the pending commands.
9005  **/
9006 void
9007 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
9008 {
9009 	LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
9010 	MAILBOX_t *mb = NULL;
9011 
9012 	struct lpfc_sli *psli = &phba->sli;
9013 
9014 	/* If the mailbox completed, process the completion */
9015 	lpfc_sli4_process_missed_mbox_completions(phba);
9016 
9017 	if (!(psli->sli_flag & LPFC_SLI_ACTIVE))
9018 		return;
9019 
9020 	if (pmbox != NULL)
9021 		mb = &pmbox->u.mb;
9022 	/* Check the pmbox pointer first.  There is a race condition
9023 	 * between the mbox timeout handler getting executed in the
9024 	 * worklist and the mailbox actually completing. When this
9025 	 * race condition occurs, the mbox_active will be NULL.
9026 	 */
9027 	spin_lock_irq(&phba->hbalock);
9028 	if (pmbox == NULL) {
9029 		lpfc_printf_log(phba, KERN_WARNING,
9030 				LOG_MBOX | LOG_SLI,
9031 				"0353 Active Mailbox cleared - mailbox timeout "
9032 				"exiting\n");
9033 		spin_unlock_irq(&phba->hbalock);
9034 		return;
9035 	}
9036 
9037 	/* Mbox cmd <mbxCommand> timeout */
9038 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9039 			"0310 Mailbox command x%x timeout Data: x%x x%x x%px\n",
9040 			mb->mbxCommand,
9041 			phba->pport->port_state,
9042 			phba->sli.sli_flag,
9043 			phba->sli.mbox_active);
9044 	spin_unlock_irq(&phba->hbalock);
9045 
9046 	/* Setting state unknown so lpfc_sli_abort_iocb_ring
9047 	 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
9048 	 * it to fail all outstanding SCSI IO.
9049 	 */
9050 	spin_lock_irq(&phba->pport->work_port_lock);
9051 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
9052 	spin_unlock_irq(&phba->pport->work_port_lock);
9053 	spin_lock_irq(&phba->hbalock);
9054 	phba->link_state = LPFC_LINK_UNKNOWN;
9055 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
9056 	spin_unlock_irq(&phba->hbalock);
9057 
9058 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9059 			"0345 Resetting board due to mailbox timeout\n");
9060 
9061 	/* Reset the HBA device */
9062 	lpfc_reset_hba(phba);
9063 }
9064 
9065 /**
9066  * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
9067  * @phba: Pointer to HBA context object.
9068  * @pmbox: Pointer to mailbox object.
9069  * @flag: Flag indicating how the mailbox need to be processed.
9070  *
9071  * This function is called by discovery code and HBA management code
9072  * to submit a mailbox command to firmware with SLI-3 interface spec. This
9073  * function gets the hbalock to protect the data structures.
9074  * The mailbox command can be submitted in polling mode, in which case
9075  * this function will wait in a polling loop for the completion of the
9076  * mailbox.
9077  * If the mailbox is submitted in no_wait mode (not polling) the
9078  * function will submit the command and returns immediately without waiting
9079  * for the mailbox completion. The no_wait is supported only when HBA
9080  * is in SLI2/SLI3 mode - interrupts are enabled.
9081  * The SLI interface allows only one mailbox pending at a time. If the
9082  * mailbox is issued in polling mode and there is already a mailbox
9083  * pending, then the function will return an error. If the mailbox is issued
9084  * in NO_WAIT mode and there is a mailbox pending already, the function
9085  * will return MBX_BUSY after queuing the mailbox into mailbox queue.
9086  * The sli layer owns the mailbox object until the completion of mailbox
9087  * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
9088  * return codes the caller owns the mailbox command after the return of
9089  * the function.
9090  **/
9091 static int
9092 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
9093 		       uint32_t flag)
9094 {
9095 	MAILBOX_t *mbx;
9096 	struct lpfc_sli *psli = &phba->sli;
9097 	uint32_t status, evtctr;
9098 	uint32_t ha_copy, hc_copy;
9099 	int i;
9100 	unsigned long timeout;
9101 	unsigned long drvr_flag = 0;
9102 	uint32_t word0, ldata;
9103 	void __iomem *to_slim;
9104 	int processing_queue = 0;
9105 
9106 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
9107 	if (!pmbox) {
9108 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9109 		/* processing mbox queue from intr_handler */
9110 		if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
9111 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9112 			return MBX_SUCCESS;
9113 		}
9114 		processing_queue = 1;
9115 		pmbox = lpfc_mbox_get(phba);
9116 		if (!pmbox) {
9117 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9118 			return MBX_SUCCESS;
9119 		}
9120 	}
9121 
9122 	if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
9123 		pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
9124 		if(!pmbox->vport) {
9125 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9126 			lpfc_printf_log(phba, KERN_ERR,
9127 					LOG_MBOX | LOG_VPORT,
9128 					"1806 Mbox x%x failed. No vport\n",
9129 					pmbox->u.mb.mbxCommand);
9130 			dump_stack();
9131 			goto out_not_finished;
9132 		}
9133 	}
9134 
9135 	/* If the PCI channel is in offline state, do not post mbox. */
9136 	if (unlikely(pci_channel_offline(phba->pcidev))) {
9137 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9138 		goto out_not_finished;
9139 	}
9140 
9141 	/* If HBA has a deferred error attention, fail the iocb. */
9142 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
9143 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9144 		goto out_not_finished;
9145 	}
9146 
9147 	psli = &phba->sli;
9148 
9149 	mbx = &pmbox->u.mb;
9150 	status = MBX_SUCCESS;
9151 
9152 	if (phba->link_state == LPFC_HBA_ERROR) {
9153 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9154 
9155 		/* Mbox command <mbxCommand> cannot issue */
9156 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9157 				"(%d):0311 Mailbox command x%x cannot "
9158 				"issue Data: x%x x%x\n",
9159 				pmbox->vport ? pmbox->vport->vpi : 0,
9160 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
9161 		goto out_not_finished;
9162 	}
9163 
9164 	if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
9165 		if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
9166 			!(hc_copy & HC_MBINT_ENA)) {
9167 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9168 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9169 				"(%d):2528 Mailbox command x%x cannot "
9170 				"issue Data: x%x x%x\n",
9171 				pmbox->vport ? pmbox->vport->vpi : 0,
9172 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
9173 			goto out_not_finished;
9174 		}
9175 	}
9176 
9177 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
9178 		/* Polling for a mbox command when another one is already active
9179 		 * is not allowed in SLI. Also, the driver must have established
9180 		 * SLI2 mode to queue and process multiple mbox commands.
9181 		 */
9182 
9183 		if (flag & MBX_POLL) {
9184 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9185 
9186 			/* Mbox command <mbxCommand> cannot issue */
9187 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9188 					"(%d):2529 Mailbox command x%x "
9189 					"cannot issue Data: x%x x%x\n",
9190 					pmbox->vport ? pmbox->vport->vpi : 0,
9191 					pmbox->u.mb.mbxCommand,
9192 					psli->sli_flag, flag);
9193 			goto out_not_finished;
9194 		}
9195 
9196 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
9197 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9198 			/* Mbox command <mbxCommand> cannot issue */
9199 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9200 					"(%d):2530 Mailbox command x%x "
9201 					"cannot issue Data: x%x x%x\n",
9202 					pmbox->vport ? pmbox->vport->vpi : 0,
9203 					pmbox->u.mb.mbxCommand,
9204 					psli->sli_flag, flag);
9205 			goto out_not_finished;
9206 		}
9207 
9208 		/* Another mailbox command is still being processed, queue this
9209 		 * command to be processed later.
9210 		 */
9211 		lpfc_mbox_put(phba, pmbox);
9212 
9213 		/* Mbox cmd issue - BUSY */
9214 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9215 				"(%d):0308 Mbox cmd issue - BUSY Data: "
9216 				"x%x x%x x%x x%x\n",
9217 				pmbox->vport ? pmbox->vport->vpi : 0xffffff,
9218 				mbx->mbxCommand,
9219 				phba->pport ? phba->pport->port_state : 0xff,
9220 				psli->sli_flag, flag);
9221 
9222 		psli->slistat.mbox_busy++;
9223 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9224 
9225 		if (pmbox->vport) {
9226 			lpfc_debugfs_disc_trc(pmbox->vport,
9227 				LPFC_DISC_TRC_MBOX_VPORT,
9228 				"MBOX Bsy vport:  cmd:x%x mb:x%x x%x",
9229 				(uint32_t)mbx->mbxCommand,
9230 				mbx->un.varWords[0], mbx->un.varWords[1]);
9231 		}
9232 		else {
9233 			lpfc_debugfs_disc_trc(phba->pport,
9234 				LPFC_DISC_TRC_MBOX,
9235 				"MBOX Bsy:        cmd:x%x mb:x%x x%x",
9236 				(uint32_t)mbx->mbxCommand,
9237 				mbx->un.varWords[0], mbx->un.varWords[1]);
9238 		}
9239 
9240 		return MBX_BUSY;
9241 	}
9242 
9243 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
9244 
9245 	/* If we are not polling, we MUST be in SLI2 mode */
9246 	if (flag != MBX_POLL) {
9247 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
9248 		    (mbx->mbxCommand != MBX_KILL_BOARD)) {
9249 			psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9250 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9251 			/* Mbox command <mbxCommand> cannot issue */
9252 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9253 					"(%d):2531 Mailbox command x%x "
9254 					"cannot issue Data: x%x x%x\n",
9255 					pmbox->vport ? pmbox->vport->vpi : 0,
9256 					pmbox->u.mb.mbxCommand,
9257 					psli->sli_flag, flag);
9258 			goto out_not_finished;
9259 		}
9260 		/* timeout active mbox command */
9261 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
9262 					   1000);
9263 		mod_timer(&psli->mbox_tmo, jiffies + timeout);
9264 	}
9265 
9266 	/* Mailbox cmd <cmd> issue */
9267 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9268 			"(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
9269 			"x%x\n",
9270 			pmbox->vport ? pmbox->vport->vpi : 0,
9271 			mbx->mbxCommand,
9272 			phba->pport ? phba->pport->port_state : 0xff,
9273 			psli->sli_flag, flag);
9274 
9275 	if (mbx->mbxCommand != MBX_HEARTBEAT) {
9276 		if (pmbox->vport) {
9277 			lpfc_debugfs_disc_trc(pmbox->vport,
9278 				LPFC_DISC_TRC_MBOX_VPORT,
9279 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
9280 				(uint32_t)mbx->mbxCommand,
9281 				mbx->un.varWords[0], mbx->un.varWords[1]);
9282 		}
9283 		else {
9284 			lpfc_debugfs_disc_trc(phba->pport,
9285 				LPFC_DISC_TRC_MBOX,
9286 				"MBOX Send:       cmd:x%x mb:x%x x%x",
9287 				(uint32_t)mbx->mbxCommand,
9288 				mbx->un.varWords[0], mbx->un.varWords[1]);
9289 		}
9290 	}
9291 
9292 	psli->slistat.mbox_cmd++;
9293 	evtctr = psli->slistat.mbox_event;
9294 
9295 	/* next set own bit for the adapter and copy over command word */
9296 	mbx->mbxOwner = OWN_CHIP;
9297 
9298 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9299 		/* Populate mbox extension offset word. */
9300 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
9301 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
9302 				= (uint8_t *)phba->mbox_ext
9303 				  - (uint8_t *)phba->mbox;
9304 		}
9305 
9306 		/* Copy the mailbox extension data */
9307 		if (pmbox->in_ext_byte_len && pmbox->ctx_buf) {
9308 			lpfc_sli_pcimem_bcopy(pmbox->ctx_buf,
9309 					      (uint8_t *)phba->mbox_ext,
9310 					      pmbox->in_ext_byte_len);
9311 		}
9312 		/* Copy command data to host SLIM area */
9313 		lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
9314 	} else {
9315 		/* Populate mbox extension offset word. */
9316 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
9317 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
9318 				= MAILBOX_HBA_EXT_OFFSET;
9319 
9320 		/* Copy the mailbox extension data */
9321 		if (pmbox->in_ext_byte_len && pmbox->ctx_buf)
9322 			lpfc_memcpy_to_slim(phba->MBslimaddr +
9323 				MAILBOX_HBA_EXT_OFFSET,
9324 				pmbox->ctx_buf, pmbox->in_ext_byte_len);
9325 
9326 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
9327 			/* copy command data into host mbox for cmpl */
9328 			lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
9329 					      MAILBOX_CMD_SIZE);
9330 
9331 		/* First copy mbox command data to HBA SLIM, skip past first
9332 		   word */
9333 		to_slim = phba->MBslimaddr + sizeof (uint32_t);
9334 		lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
9335 			    MAILBOX_CMD_SIZE - sizeof (uint32_t));
9336 
9337 		/* Next copy over first word, with mbxOwner set */
9338 		ldata = *((uint32_t *)mbx);
9339 		to_slim = phba->MBslimaddr;
9340 		writel(ldata, to_slim);
9341 		readl(to_slim); /* flush */
9342 
9343 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
9344 			/* switch over to host mailbox */
9345 			psli->sli_flag |= LPFC_SLI_ACTIVE;
9346 	}
9347 
9348 	wmb();
9349 
9350 	switch (flag) {
9351 	case MBX_NOWAIT:
9352 		/* Set up reference to mailbox command */
9353 		psli->mbox_active = pmbox;
9354 		/* Interrupt board to do it */
9355 		writel(CA_MBATT, phba->CAregaddr);
9356 		readl(phba->CAregaddr); /* flush */
9357 		/* Don't wait for it to finish, just return */
9358 		break;
9359 
9360 	case MBX_POLL:
9361 		/* Set up null reference to mailbox command */
9362 		psli->mbox_active = NULL;
9363 		/* Interrupt board to do it */
9364 		writel(CA_MBATT, phba->CAregaddr);
9365 		readl(phba->CAregaddr); /* flush */
9366 
9367 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9368 			/* First read mbox status word */
9369 			word0 = *((uint32_t *)phba->mbox);
9370 			word0 = le32_to_cpu(word0);
9371 		} else {
9372 			/* First read mbox status word */
9373 			if (lpfc_readl(phba->MBslimaddr, &word0)) {
9374 				spin_unlock_irqrestore(&phba->hbalock,
9375 						       drvr_flag);
9376 				goto out_not_finished;
9377 			}
9378 		}
9379 
9380 		/* Read the HBA Host Attention Register */
9381 		if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
9382 			spin_unlock_irqrestore(&phba->hbalock,
9383 						       drvr_flag);
9384 			goto out_not_finished;
9385 		}
9386 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
9387 							1000) + jiffies;
9388 		i = 0;
9389 		/* Wait for command to complete */
9390 		while (((word0 & OWN_CHIP) == OWN_CHIP) ||
9391 		       (!(ha_copy & HA_MBATT) &&
9392 			(phba->link_state > LPFC_WARM_START))) {
9393 			if (time_after(jiffies, timeout)) {
9394 				psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9395 				spin_unlock_irqrestore(&phba->hbalock,
9396 						       drvr_flag);
9397 				goto out_not_finished;
9398 			}
9399 
9400 			/* Check if we took a mbox interrupt while we were
9401 			   polling */
9402 			if (((word0 & OWN_CHIP) != OWN_CHIP)
9403 			    && (evtctr != psli->slistat.mbox_event))
9404 				break;
9405 
9406 			if (i++ > 10) {
9407 				spin_unlock_irqrestore(&phba->hbalock,
9408 						       drvr_flag);
9409 				msleep(1);
9410 				spin_lock_irqsave(&phba->hbalock, drvr_flag);
9411 			}
9412 
9413 			if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9414 				/* First copy command data */
9415 				word0 = *((uint32_t *)phba->mbox);
9416 				word0 = le32_to_cpu(word0);
9417 				if (mbx->mbxCommand == MBX_CONFIG_PORT) {
9418 					MAILBOX_t *slimmb;
9419 					uint32_t slimword0;
9420 					/* Check real SLIM for any errors */
9421 					slimword0 = readl(phba->MBslimaddr);
9422 					slimmb = (MAILBOX_t *) & slimword0;
9423 					if (((slimword0 & OWN_CHIP) != OWN_CHIP)
9424 					    && slimmb->mbxStatus) {
9425 						psli->sli_flag &=
9426 						    ~LPFC_SLI_ACTIVE;
9427 						word0 = slimword0;
9428 					}
9429 				}
9430 			} else {
9431 				/* First copy command data */
9432 				word0 = readl(phba->MBslimaddr);
9433 			}
9434 			/* Read the HBA Host Attention Register */
9435 			if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
9436 				spin_unlock_irqrestore(&phba->hbalock,
9437 						       drvr_flag);
9438 				goto out_not_finished;
9439 			}
9440 		}
9441 
9442 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9443 			/* copy results back to user */
9444 			lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
9445 						MAILBOX_CMD_SIZE);
9446 			/* Copy the mailbox extension data */
9447 			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
9448 				lpfc_sli_pcimem_bcopy(phba->mbox_ext,
9449 						      pmbox->ctx_buf,
9450 						      pmbox->out_ext_byte_len);
9451 			}
9452 		} else {
9453 			/* First copy command data */
9454 			lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
9455 						MAILBOX_CMD_SIZE);
9456 			/* Copy the mailbox extension data */
9457 			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
9458 				lpfc_memcpy_from_slim(
9459 					pmbox->ctx_buf,
9460 					phba->MBslimaddr +
9461 					MAILBOX_HBA_EXT_OFFSET,
9462 					pmbox->out_ext_byte_len);
9463 			}
9464 		}
9465 
9466 		writel(HA_MBATT, phba->HAregaddr);
9467 		readl(phba->HAregaddr); /* flush */
9468 
9469 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9470 		status = mbx->mbxStatus;
9471 	}
9472 
9473 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9474 	return status;
9475 
9476 out_not_finished:
9477 	if (processing_queue) {
9478 		pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
9479 		lpfc_mbox_cmpl_put(phba, pmbox);
9480 	}
9481 	return MBX_NOT_FINISHED;
9482 }
9483 
9484 /**
9485  * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
9486  * @phba: Pointer to HBA context object.
9487  *
9488  * The function blocks the posting of SLI4 asynchronous mailbox commands from
9489  * the driver internal pending mailbox queue. It will then try to wait out the
9490  * possible outstanding mailbox command before return.
9491  *
9492  * Returns:
9493  * 	0 - the outstanding mailbox command completed; otherwise, the wait for
9494  * 	the outstanding mailbox command timed out.
9495  **/
9496 static int
9497 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
9498 {
9499 	struct lpfc_sli *psli = &phba->sli;
9500 	LPFC_MBOXQ_t *mboxq;
9501 	int rc = 0;
9502 	unsigned long timeout = 0;
9503 	u32 sli_flag;
9504 	u8 cmd, subsys, opcode;
9505 
9506 	/* Mark the asynchronous mailbox command posting as blocked */
9507 	spin_lock_irq(&phba->hbalock);
9508 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
9509 	/* Determine how long we might wait for the active mailbox
9510 	 * command to be gracefully completed by firmware.
9511 	 */
9512 	if (phba->sli.mbox_active)
9513 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
9514 						phba->sli.mbox_active) *
9515 						1000) + jiffies;
9516 	spin_unlock_irq(&phba->hbalock);
9517 
9518 	/* Make sure the mailbox is really active */
9519 	if (timeout)
9520 		lpfc_sli4_process_missed_mbox_completions(phba);
9521 
9522 	/* Wait for the outstanding mailbox command to complete */
9523 	while (phba->sli.mbox_active) {
9524 		/* Check active mailbox complete status every 2ms */
9525 		msleep(2);
9526 		if (time_after(jiffies, timeout)) {
9527 			/* Timeout, mark the outstanding cmd not complete */
9528 
9529 			/* Sanity check sli.mbox_active has not completed or
9530 			 * cancelled from another context during last 2ms sleep,
9531 			 * so take hbalock to be sure before logging.
9532 			 */
9533 			spin_lock_irq(&phba->hbalock);
9534 			if (phba->sli.mbox_active) {
9535 				mboxq = phba->sli.mbox_active;
9536 				cmd = mboxq->u.mb.mbxCommand;
9537 				subsys = lpfc_sli_config_mbox_subsys_get(phba,
9538 									 mboxq);
9539 				opcode = lpfc_sli_config_mbox_opcode_get(phba,
9540 									 mboxq);
9541 				sli_flag = psli->sli_flag;
9542 				spin_unlock_irq(&phba->hbalock);
9543 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9544 						"2352 Mailbox command x%x "
9545 						"(x%x/x%x) sli_flag x%x could "
9546 						"not complete\n",
9547 						cmd, subsys, opcode,
9548 						sli_flag);
9549 			} else {
9550 				spin_unlock_irq(&phba->hbalock);
9551 			}
9552 
9553 			rc = 1;
9554 			break;
9555 		}
9556 	}
9557 
9558 	/* Can not cleanly block async mailbox command, fails it */
9559 	if (rc) {
9560 		spin_lock_irq(&phba->hbalock);
9561 		psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
9562 		spin_unlock_irq(&phba->hbalock);
9563 	}
9564 	return rc;
9565 }
9566 
9567 /**
9568  * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
9569  * @phba: Pointer to HBA context object.
9570  *
9571  * The function unblocks and resume posting of SLI4 asynchronous mailbox
9572  * commands from the driver internal pending mailbox queue. It makes sure
9573  * that there is no outstanding mailbox command before resuming posting
9574  * asynchronous mailbox commands. If, for any reason, there is outstanding
9575  * mailbox command, it will try to wait it out before resuming asynchronous
9576  * mailbox command posting.
9577  **/
9578 static void
9579 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
9580 {
9581 	struct lpfc_sli *psli = &phba->sli;
9582 
9583 	spin_lock_irq(&phba->hbalock);
9584 	if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
9585 		/* Asynchronous mailbox posting is not blocked, do nothing */
9586 		spin_unlock_irq(&phba->hbalock);
9587 		return;
9588 	}
9589 
9590 	/* Outstanding synchronous mailbox command is guaranteed to be done,
9591 	 * successful or timeout, after timing-out the outstanding mailbox
9592 	 * command shall always be removed, so just unblock posting async
9593 	 * mailbox command and resume
9594 	 */
9595 	psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
9596 	spin_unlock_irq(&phba->hbalock);
9597 
9598 	/* wake up worker thread to post asynchronous mailbox command */
9599 	lpfc_worker_wake_up(phba);
9600 }
9601 
9602 /**
9603  * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
9604  * @phba: Pointer to HBA context object.
9605  * @mboxq: Pointer to mailbox object.
9606  *
9607  * The function waits for the bootstrap mailbox register ready bit from
9608  * port for twice the regular mailbox command timeout value.
9609  *
9610  *      0 - no timeout on waiting for bootstrap mailbox register ready.
9611  *      MBXERR_ERROR - wait for bootstrap mailbox register timed out.
9612  **/
9613 static int
9614 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
9615 {
9616 	uint32_t db_ready;
9617 	unsigned long timeout;
9618 	struct lpfc_register bmbx_reg;
9619 
9620 	timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
9621 				   * 1000) + jiffies;
9622 
9623 	do {
9624 		bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
9625 		db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
9626 		if (!db_ready)
9627 			mdelay(2);
9628 
9629 		if (time_after(jiffies, timeout))
9630 			return MBXERR_ERROR;
9631 	} while (!db_ready);
9632 
9633 	return 0;
9634 }
9635 
9636 /**
9637  * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
9638  * @phba: Pointer to HBA context object.
9639  * @mboxq: Pointer to mailbox object.
9640  *
9641  * The function posts a mailbox to the port.  The mailbox is expected
9642  * to be comletely filled in and ready for the port to operate on it.
9643  * This routine executes a synchronous completion operation on the
9644  * mailbox by polling for its completion.
9645  *
9646  * The caller must not be holding any locks when calling this routine.
9647  *
9648  * Returns:
9649  *	MBX_SUCCESS - mailbox posted successfully
9650  *	Any of the MBX error values.
9651  **/
9652 static int
9653 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
9654 {
9655 	int rc = MBX_SUCCESS;
9656 	unsigned long iflag;
9657 	uint32_t mcqe_status;
9658 	uint32_t mbx_cmnd;
9659 	struct lpfc_sli *psli = &phba->sli;
9660 	struct lpfc_mqe *mb = &mboxq->u.mqe;
9661 	struct lpfc_bmbx_create *mbox_rgn;
9662 	struct dma_address *dma_address;
9663 
9664 	/*
9665 	 * Only one mailbox can be active to the bootstrap mailbox region
9666 	 * at a time and there is no queueing provided.
9667 	 */
9668 	spin_lock_irqsave(&phba->hbalock, iflag);
9669 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
9670 		spin_unlock_irqrestore(&phba->hbalock, iflag);
9671 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9672 				"(%d):2532 Mailbox command x%x (x%x/x%x) "
9673 				"cannot issue Data: x%x x%x\n",
9674 				mboxq->vport ? mboxq->vport->vpi : 0,
9675 				mboxq->u.mb.mbxCommand,
9676 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9677 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9678 				psli->sli_flag, MBX_POLL);
9679 		return MBXERR_ERROR;
9680 	}
9681 	/* The server grabs the token and owns it until release */
9682 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
9683 	phba->sli.mbox_active = mboxq;
9684 	spin_unlock_irqrestore(&phba->hbalock, iflag);
9685 
9686 	/* wait for bootstrap mbox register for readyness */
9687 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
9688 	if (rc)
9689 		goto exit;
9690 	/*
9691 	 * Initialize the bootstrap memory region to avoid stale data areas
9692 	 * in the mailbox post.  Then copy the caller's mailbox contents to
9693 	 * the bmbx mailbox region.
9694 	 */
9695 	mbx_cmnd = bf_get(lpfc_mqe_command, mb);
9696 	memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
9697 	lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
9698 			       sizeof(struct lpfc_mqe));
9699 
9700 	/* Post the high mailbox dma address to the port and wait for ready. */
9701 	dma_address = &phba->sli4_hba.bmbx.dma_address;
9702 	writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
9703 
9704 	/* wait for bootstrap mbox register for hi-address write done */
9705 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
9706 	if (rc)
9707 		goto exit;
9708 
9709 	/* Post the low mailbox dma address to the port. */
9710 	writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
9711 
9712 	/* wait for bootstrap mbox register for low address write done */
9713 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
9714 	if (rc)
9715 		goto exit;
9716 
9717 	/*
9718 	 * Read the CQ to ensure the mailbox has completed.
9719 	 * If so, update the mailbox status so that the upper layers
9720 	 * can complete the request normally.
9721 	 */
9722 	lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
9723 			       sizeof(struct lpfc_mqe));
9724 	mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
9725 	lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
9726 			       sizeof(struct lpfc_mcqe));
9727 	mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
9728 	/*
9729 	 * When the CQE status indicates a failure and the mailbox status
9730 	 * indicates success then copy the CQE status into the mailbox status
9731 	 * (and prefix it with x4000).
9732 	 */
9733 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
9734 		if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
9735 			bf_set(lpfc_mqe_status, mb,
9736 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
9737 		rc = MBXERR_ERROR;
9738 	} else
9739 		lpfc_sli4_swap_str(phba, mboxq);
9740 
9741 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9742 			"(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
9743 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
9744 			" x%x x%x CQ: x%x x%x x%x x%x\n",
9745 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
9746 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9747 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9748 			bf_get(lpfc_mqe_status, mb),
9749 			mb->un.mb_words[0], mb->un.mb_words[1],
9750 			mb->un.mb_words[2], mb->un.mb_words[3],
9751 			mb->un.mb_words[4], mb->un.mb_words[5],
9752 			mb->un.mb_words[6], mb->un.mb_words[7],
9753 			mb->un.mb_words[8], mb->un.mb_words[9],
9754 			mb->un.mb_words[10], mb->un.mb_words[11],
9755 			mb->un.mb_words[12], mboxq->mcqe.word0,
9756 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
9757 			mboxq->mcqe.trailer);
9758 exit:
9759 	/* We are holding the token, no needed for lock when release */
9760 	spin_lock_irqsave(&phba->hbalock, iflag);
9761 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9762 	phba->sli.mbox_active = NULL;
9763 	spin_unlock_irqrestore(&phba->hbalock, iflag);
9764 	return rc;
9765 }
9766 
9767 /**
9768  * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
9769  * @phba: Pointer to HBA context object.
9770  * @mboxq: Pointer to mailbox object.
9771  * @flag: Flag indicating how the mailbox need to be processed.
9772  *
9773  * This function is called by discovery code and HBA management code to submit
9774  * a mailbox command to firmware with SLI-4 interface spec.
9775  *
9776  * Return codes the caller owns the mailbox command after the return of the
9777  * function.
9778  **/
9779 static int
9780 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
9781 		       uint32_t flag)
9782 {
9783 	struct lpfc_sli *psli = &phba->sli;
9784 	unsigned long iflags;
9785 	int rc;
9786 
9787 	/* dump from issue mailbox command if setup */
9788 	lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
9789 
9790 	rc = lpfc_mbox_dev_check(phba);
9791 	if (unlikely(rc)) {
9792 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9793 				"(%d):2544 Mailbox command x%x (x%x/x%x) "
9794 				"cannot issue Data: x%x x%x\n",
9795 				mboxq->vport ? mboxq->vport->vpi : 0,
9796 				mboxq->u.mb.mbxCommand,
9797 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9798 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9799 				psli->sli_flag, flag);
9800 		goto out_not_finished;
9801 	}
9802 
9803 	/* Detect polling mode and jump to a handler */
9804 	if (!phba->sli4_hba.intr_enable) {
9805 		if (flag == MBX_POLL)
9806 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
9807 		else
9808 			rc = -EIO;
9809 		if (rc != MBX_SUCCESS)
9810 			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
9811 					"(%d):2541 Mailbox command x%x "
9812 					"(x%x/x%x) failure: "
9813 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
9814 					"Data: x%x x%x\n",
9815 					mboxq->vport ? mboxq->vport->vpi : 0,
9816 					mboxq->u.mb.mbxCommand,
9817 					lpfc_sli_config_mbox_subsys_get(phba,
9818 									mboxq),
9819 					lpfc_sli_config_mbox_opcode_get(phba,
9820 									mboxq),
9821 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
9822 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
9823 					bf_get(lpfc_mcqe_ext_status,
9824 					       &mboxq->mcqe),
9825 					psli->sli_flag, flag);
9826 		return rc;
9827 	} else if (flag == MBX_POLL) {
9828 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
9829 				"(%d):2542 Try to issue mailbox command "
9830 				"x%x (x%x/x%x) synchronously ahead of async "
9831 				"mailbox command queue: x%x x%x\n",
9832 				mboxq->vport ? mboxq->vport->vpi : 0,
9833 				mboxq->u.mb.mbxCommand,
9834 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9835 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9836 				psli->sli_flag, flag);
9837 		/* Try to block the asynchronous mailbox posting */
9838 		rc = lpfc_sli4_async_mbox_block(phba);
9839 		if (!rc) {
9840 			/* Successfully blocked, now issue sync mbox cmd */
9841 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
9842 			if (rc != MBX_SUCCESS)
9843 				lpfc_printf_log(phba, KERN_WARNING,
9844 					LOG_MBOX | LOG_SLI,
9845 					"(%d):2597 Sync Mailbox command "
9846 					"x%x (x%x/x%x) failure: "
9847 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
9848 					"Data: x%x x%x\n",
9849 					mboxq->vport ? mboxq->vport->vpi : 0,
9850 					mboxq->u.mb.mbxCommand,
9851 					lpfc_sli_config_mbox_subsys_get(phba,
9852 									mboxq),
9853 					lpfc_sli_config_mbox_opcode_get(phba,
9854 									mboxq),
9855 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
9856 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
9857 					bf_get(lpfc_mcqe_ext_status,
9858 					       &mboxq->mcqe),
9859 					psli->sli_flag, flag);
9860 			/* Unblock the async mailbox posting afterward */
9861 			lpfc_sli4_async_mbox_unblock(phba);
9862 		}
9863 		return rc;
9864 	}
9865 
9866 	/* Now, interrupt mode asynchronous mailbox command */
9867 	rc = lpfc_mbox_cmd_check(phba, mboxq);
9868 	if (rc) {
9869 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9870 				"(%d):2543 Mailbox command x%x (x%x/x%x) "
9871 				"cannot issue Data: x%x x%x\n",
9872 				mboxq->vport ? mboxq->vport->vpi : 0,
9873 				mboxq->u.mb.mbxCommand,
9874 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9875 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9876 				psli->sli_flag, flag);
9877 		goto out_not_finished;
9878 	}
9879 
9880 	/* Put the mailbox command to the driver internal FIFO */
9881 	psli->slistat.mbox_busy++;
9882 	spin_lock_irqsave(&phba->hbalock, iflags);
9883 	lpfc_mbox_put(phba, mboxq);
9884 	spin_unlock_irqrestore(&phba->hbalock, iflags);
9885 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9886 			"(%d):0354 Mbox cmd issue - Enqueue Data: "
9887 			"x%x (x%x/x%x) x%x x%x x%x\n",
9888 			mboxq->vport ? mboxq->vport->vpi : 0xffffff,
9889 			bf_get(lpfc_mqe_command, &mboxq->u.mqe),
9890 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9891 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9892 			phba->pport->port_state,
9893 			psli->sli_flag, MBX_NOWAIT);
9894 	/* Wake up worker thread to transport mailbox command from head */
9895 	lpfc_worker_wake_up(phba);
9896 
9897 	return MBX_BUSY;
9898 
9899 out_not_finished:
9900 	return MBX_NOT_FINISHED;
9901 }
9902 
9903 /**
9904  * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
9905  * @phba: Pointer to HBA context object.
9906  *
9907  * This function is called by worker thread to send a mailbox command to
9908  * SLI4 HBA firmware.
9909  *
9910  **/
9911 int
9912 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
9913 {
9914 	struct lpfc_sli *psli = &phba->sli;
9915 	LPFC_MBOXQ_t *mboxq;
9916 	int rc = MBX_SUCCESS;
9917 	unsigned long iflags;
9918 	struct lpfc_mqe *mqe;
9919 	uint32_t mbx_cmnd;
9920 
9921 	/* Check interrupt mode before post async mailbox command */
9922 	if (unlikely(!phba->sli4_hba.intr_enable))
9923 		return MBX_NOT_FINISHED;
9924 
9925 	/* Check for mailbox command service token */
9926 	spin_lock_irqsave(&phba->hbalock, iflags);
9927 	if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
9928 		spin_unlock_irqrestore(&phba->hbalock, iflags);
9929 		return MBX_NOT_FINISHED;
9930 	}
9931 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
9932 		spin_unlock_irqrestore(&phba->hbalock, iflags);
9933 		return MBX_NOT_FINISHED;
9934 	}
9935 	if (unlikely(phba->sli.mbox_active)) {
9936 		spin_unlock_irqrestore(&phba->hbalock, iflags);
9937 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9938 				"0384 There is pending active mailbox cmd\n");
9939 		return MBX_NOT_FINISHED;
9940 	}
9941 	/* Take the mailbox command service token */
9942 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
9943 
9944 	/* Get the next mailbox command from head of queue */
9945 	mboxq = lpfc_mbox_get(phba);
9946 
9947 	/* If no more mailbox command waiting for post, we're done */
9948 	if (!mboxq) {
9949 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9950 		spin_unlock_irqrestore(&phba->hbalock, iflags);
9951 		return MBX_SUCCESS;
9952 	}
9953 	phba->sli.mbox_active = mboxq;
9954 	spin_unlock_irqrestore(&phba->hbalock, iflags);
9955 
9956 	/* Check device readiness for posting mailbox command */
9957 	rc = lpfc_mbox_dev_check(phba);
9958 	if (unlikely(rc))
9959 		/* Driver clean routine will clean up pending mailbox */
9960 		goto out_not_finished;
9961 
9962 	/* Prepare the mbox command to be posted */
9963 	mqe = &mboxq->u.mqe;
9964 	mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
9965 
9966 	/* Start timer for the mbox_tmo and log some mailbox post messages */
9967 	mod_timer(&psli->mbox_tmo, (jiffies +
9968 		  msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
9969 
9970 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9971 			"(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
9972 			"x%x x%x\n",
9973 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
9974 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9975 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9976 			phba->pport->port_state, psli->sli_flag);
9977 
9978 	if (mbx_cmnd != MBX_HEARTBEAT) {
9979 		if (mboxq->vport) {
9980 			lpfc_debugfs_disc_trc(mboxq->vport,
9981 				LPFC_DISC_TRC_MBOX_VPORT,
9982 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
9983 				mbx_cmnd, mqe->un.mb_words[0],
9984 				mqe->un.mb_words[1]);
9985 		} else {
9986 			lpfc_debugfs_disc_trc(phba->pport,
9987 				LPFC_DISC_TRC_MBOX,
9988 				"MBOX Send: cmd:x%x mb:x%x x%x",
9989 				mbx_cmnd, mqe->un.mb_words[0],
9990 				mqe->un.mb_words[1]);
9991 		}
9992 	}
9993 	psli->slistat.mbox_cmd++;
9994 
9995 	/* Post the mailbox command to the port */
9996 	rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
9997 	if (rc != MBX_SUCCESS) {
9998 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9999 				"(%d):2533 Mailbox command x%x (x%x/x%x) "
10000 				"cannot issue Data: x%x x%x\n",
10001 				mboxq->vport ? mboxq->vport->vpi : 0,
10002 				mboxq->u.mb.mbxCommand,
10003 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
10004 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
10005 				psli->sli_flag, MBX_NOWAIT);
10006 		goto out_not_finished;
10007 	}
10008 
10009 	return rc;
10010 
10011 out_not_finished:
10012 	spin_lock_irqsave(&phba->hbalock, iflags);
10013 	if (phba->sli.mbox_active) {
10014 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
10015 		__lpfc_mbox_cmpl_put(phba, mboxq);
10016 		/* Release the token */
10017 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10018 		phba->sli.mbox_active = NULL;
10019 	}
10020 	spin_unlock_irqrestore(&phba->hbalock, iflags);
10021 
10022 	return MBX_NOT_FINISHED;
10023 }
10024 
10025 /**
10026  * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
10027  * @phba: Pointer to HBA context object.
10028  * @pmbox: Pointer to mailbox object.
10029  * @flag: Flag indicating how the mailbox need to be processed.
10030  *
10031  * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
10032  * the API jump table function pointer from the lpfc_hba struct.
10033  *
10034  * Return codes the caller owns the mailbox command after the return of the
10035  * function.
10036  **/
10037 int
10038 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
10039 {
10040 	return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
10041 }
10042 
10043 /**
10044  * lpfc_mbox_api_table_setup - Set up mbox api function jump table
10045  * @phba: The hba struct for which this call is being executed.
10046  * @dev_grp: The HBA PCI-Device group number.
10047  *
10048  * This routine sets up the mbox interface API function jump table in @phba
10049  * struct.
10050  * Returns: 0 - success, -ENODEV - failure.
10051  **/
10052 int
10053 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
10054 {
10055 
10056 	switch (dev_grp) {
10057 	case LPFC_PCI_DEV_LP:
10058 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
10059 		phba->lpfc_sli_handle_slow_ring_event =
10060 				lpfc_sli_handle_slow_ring_event_s3;
10061 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
10062 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
10063 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
10064 		break;
10065 	case LPFC_PCI_DEV_OC:
10066 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
10067 		phba->lpfc_sli_handle_slow_ring_event =
10068 				lpfc_sli_handle_slow_ring_event_s4;
10069 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
10070 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
10071 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
10072 		break;
10073 	default:
10074 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10075 				"1420 Invalid HBA PCI-device group: 0x%x\n",
10076 				dev_grp);
10077 		return -ENODEV;
10078 	}
10079 	return 0;
10080 }
10081 
10082 /**
10083  * __lpfc_sli_ringtx_put - Add an iocb to the txq
10084  * @phba: Pointer to HBA context object.
10085  * @pring: Pointer to driver SLI ring object.
10086  * @piocb: Pointer to address of newly added command iocb.
10087  *
10088  * This function is called with hbalock held for SLI3 ports or
10089  * the ring lock held for SLI4 ports to add a command
10090  * iocb to the txq when SLI layer cannot submit the command iocb
10091  * to the ring.
10092  **/
10093 void
10094 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10095 		    struct lpfc_iocbq *piocb)
10096 {
10097 	if (phba->sli_rev == LPFC_SLI_REV4)
10098 		lockdep_assert_held(&pring->ring_lock);
10099 	else
10100 		lockdep_assert_held(&phba->hbalock);
10101 	/* Insert the caller's iocb in the txq tail for later processing. */
10102 	list_add_tail(&piocb->list, &pring->txq);
10103 }
10104 
10105 /**
10106  * lpfc_sli_next_iocb - Get the next iocb in the txq
10107  * @phba: Pointer to HBA context object.
10108  * @pring: Pointer to driver SLI ring object.
10109  * @piocb: Pointer to address of newly added command iocb.
10110  *
10111  * This function is called with hbalock held before a new
10112  * iocb is submitted to the firmware. This function checks
10113  * txq to flush the iocbs in txq to Firmware before
10114  * submitting new iocbs to the Firmware.
10115  * If there are iocbs in the txq which need to be submitted
10116  * to firmware, lpfc_sli_next_iocb returns the first element
10117  * of the txq after dequeuing it from txq.
10118  * If there is no iocb in the txq then the function will return
10119  * *piocb and *piocb is set to NULL. Caller needs to check
10120  * *piocb to find if there are more commands in the txq.
10121  **/
10122 static struct lpfc_iocbq *
10123 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10124 		   struct lpfc_iocbq **piocb)
10125 {
10126 	struct lpfc_iocbq * nextiocb;
10127 
10128 	lockdep_assert_held(&phba->hbalock);
10129 
10130 	nextiocb = lpfc_sli_ringtx_get(phba, pring);
10131 	if (!nextiocb) {
10132 		nextiocb = *piocb;
10133 		*piocb = NULL;
10134 	}
10135 
10136 	return nextiocb;
10137 }
10138 
10139 /**
10140  * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
10141  * @phba: Pointer to HBA context object.
10142  * @ring_number: SLI ring number to issue iocb on.
10143  * @piocb: Pointer to command iocb.
10144  * @flag: Flag indicating if this command can be put into txq.
10145  *
10146  * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
10147  * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
10148  * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
10149  * flag is turned on, the function returns IOCB_ERROR. When the link is down,
10150  * this function allows only iocbs for posting buffers. This function finds
10151  * next available slot in the command ring and posts the command to the
10152  * available slot and writes the port attention register to request HBA start
10153  * processing new iocb. If there is no slot available in the ring and
10154  * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
10155  * the function returns IOCB_BUSY.
10156  *
10157  * This function is called with hbalock held. The function will return success
10158  * after it successfully submit the iocb to firmware or after adding to the
10159  * txq.
10160  **/
10161 static int
10162 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
10163 		    struct lpfc_iocbq *piocb, uint32_t flag)
10164 {
10165 	struct lpfc_iocbq *nextiocb;
10166 	IOCB_t *iocb;
10167 	struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
10168 
10169 	lockdep_assert_held(&phba->hbalock);
10170 
10171 	if (piocb->cmd_cmpl && (!piocb->vport) &&
10172 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
10173 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
10174 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10175 				"1807 IOCB x%x failed. No vport\n",
10176 				piocb->iocb.ulpCommand);
10177 		dump_stack();
10178 		return IOCB_ERROR;
10179 	}
10180 
10181 
10182 	/* If the PCI channel is in offline state, do not post iocbs. */
10183 	if (unlikely(pci_channel_offline(phba->pcidev)))
10184 		return IOCB_ERROR;
10185 
10186 	/* If HBA has a deferred error attention, fail the iocb. */
10187 	if (unlikely(phba->hba_flag & DEFER_ERATT))
10188 		return IOCB_ERROR;
10189 
10190 	/*
10191 	 * We should never get an IOCB if we are in a < LINK_DOWN state
10192 	 */
10193 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
10194 		return IOCB_ERROR;
10195 
10196 	/*
10197 	 * Check to see if we are blocking IOCB processing because of a
10198 	 * outstanding event.
10199 	 */
10200 	if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
10201 		goto iocb_busy;
10202 
10203 	if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
10204 		/*
10205 		 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
10206 		 * can be issued if the link is not up.
10207 		 */
10208 		switch (piocb->iocb.ulpCommand) {
10209 		case CMD_GEN_REQUEST64_CR:
10210 		case CMD_GEN_REQUEST64_CX:
10211 			if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) ||
10212 				(piocb->iocb.un.genreq64.w5.hcsw.Rctl !=
10213 					FC_RCTL_DD_UNSOL_CMD) ||
10214 				(piocb->iocb.un.genreq64.w5.hcsw.Type !=
10215 					MENLO_TRANSPORT_TYPE))
10216 
10217 				goto iocb_busy;
10218 			break;
10219 		case CMD_QUE_RING_BUF_CN:
10220 		case CMD_QUE_RING_BUF64_CN:
10221 			/*
10222 			 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
10223 			 * completion, cmd_cmpl MUST be 0.
10224 			 */
10225 			if (piocb->cmd_cmpl)
10226 				piocb->cmd_cmpl = NULL;
10227 			fallthrough;
10228 		case CMD_CREATE_XRI_CR:
10229 		case CMD_CLOSE_XRI_CN:
10230 		case CMD_CLOSE_XRI_CX:
10231 			break;
10232 		default:
10233 			goto iocb_busy;
10234 		}
10235 
10236 	/*
10237 	 * For FCP commands, we must be in a state where we can process link
10238 	 * attention events.
10239 	 */
10240 	} else if (unlikely(pring->ringno == LPFC_FCP_RING &&
10241 			    !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
10242 		goto iocb_busy;
10243 	}
10244 
10245 	while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
10246 	       (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
10247 		lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
10248 
10249 	if (iocb)
10250 		lpfc_sli_update_ring(phba, pring);
10251 	else
10252 		lpfc_sli_update_full_ring(phba, pring);
10253 
10254 	if (!piocb)
10255 		return IOCB_SUCCESS;
10256 
10257 	goto out_busy;
10258 
10259  iocb_busy:
10260 	pring->stats.iocb_cmd_delay++;
10261 
10262  out_busy:
10263 
10264 	if (!(flag & SLI_IOCB_RET_IOCB)) {
10265 		__lpfc_sli_ringtx_put(phba, pring, piocb);
10266 		return IOCB_SUCCESS;
10267 	}
10268 
10269 	return IOCB_BUSY;
10270 }
10271 
10272 /**
10273  * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb
10274  * @phba: Pointer to HBA context object.
10275  * @ring_number: SLI ring number to issue wqe on.
10276  * @piocb: Pointer to command iocb.
10277  * @flag: Flag indicating if this command can be put into txq.
10278  *
10279  * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to
10280  * send  an iocb command to an HBA with SLI-4 interface spec.
10281  *
10282  * This function takes the hbalock before invoking the lockless version.
10283  * The function will return success after it successfully submit the wqe to
10284  * firmware or after adding to the txq.
10285  **/
10286 static int
10287 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number,
10288 			   struct lpfc_iocbq *piocb, uint32_t flag)
10289 {
10290 	unsigned long iflags;
10291 	int rc;
10292 
10293 	spin_lock_irqsave(&phba->hbalock, iflags);
10294 	rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag);
10295 	spin_unlock_irqrestore(&phba->hbalock, iflags);
10296 
10297 	return rc;
10298 }
10299 
10300 /**
10301  * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe
10302  * @phba: Pointer to HBA context object.
10303  * @ring_number: SLI ring number to issue wqe on.
10304  * @piocb: Pointer to command iocb.
10305  * @flag: Flag indicating if this command can be put into txq.
10306  *
10307  * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue
10308  * an wqe command to an HBA with SLI-4 interface spec.
10309  *
10310  * This function is a lockless version. The function will return success
10311  * after it successfully submit the wqe to firmware or after adding to the
10312  * txq.
10313  **/
10314 static int
10315 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number,
10316 			   struct lpfc_iocbq *piocb, uint32_t flag)
10317 {
10318 	int rc;
10319 	struct lpfc_io_buf *lpfc_cmd =
10320 		(struct lpfc_io_buf *)piocb->context1;
10321 
10322 	lpfc_prep_embed_io(phba, lpfc_cmd);
10323 	rc = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb);
10324 	return rc;
10325 }
10326 
10327 void
10328 lpfc_prep_embed_io(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd)
10329 {
10330 	struct lpfc_iocbq *piocb = &lpfc_cmd->cur_iocbq;
10331 	union lpfc_wqe128 *wqe = &lpfc_cmd->cur_iocbq.wqe;
10332 	struct sli4_sge *sgl;
10333 
10334 	/* 128 byte wqe support here */
10335 	sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
10336 
10337 	if (phba->fcp_embed_io) {
10338 		struct fcp_cmnd *fcp_cmnd;
10339 		u32 *ptr;
10340 
10341 		fcp_cmnd = lpfc_cmd->fcp_cmnd;
10342 
10343 		/* Word 0-2 - FCP_CMND */
10344 		wqe->generic.bde.tus.f.bdeFlags =
10345 			BUFF_TYPE_BDE_IMMED;
10346 		wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
10347 		wqe->generic.bde.addrHigh = 0;
10348 		wqe->generic.bde.addrLow =  88;  /* Word 22 */
10349 
10350 		bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
10351 		bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
10352 
10353 		/* Word 22-29  FCP CMND Payload */
10354 		ptr = &wqe->words[22];
10355 		memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
10356 	} else {
10357 		/* Word 0-2 - Inline BDE */
10358 		wqe->generic.bde.tus.f.bdeFlags =  BUFF_TYPE_BDE_64;
10359 		wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd);
10360 		wqe->generic.bde.addrHigh = sgl->addr_hi;
10361 		wqe->generic.bde.addrLow =  sgl->addr_lo;
10362 
10363 		/* Word 10 */
10364 		bf_set(wqe_dbde, &wqe->generic.wqe_com, 1);
10365 		bf_set(wqe_wqes, &wqe->generic.wqe_com, 0);
10366 	}
10367 
10368 	/* add the VMID tags as per switch response */
10369 	if (unlikely(piocb->cmd_flag & LPFC_IO_VMID)) {
10370 		if (phba->pport->vmid_priority_tagging) {
10371 			bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
10372 			bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
10373 					(piocb->vmid_tag.cs_ctl_vmid));
10374 		} else {
10375 			bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1);
10376 			bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
10377 			wqe->words[31] = piocb->vmid_tag.app_id;
10378 		}
10379 	}
10380 }
10381 
10382 /**
10383  * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
10384  * @phba: Pointer to HBA context object.
10385  * @ring_number: SLI ring number to issue iocb on.
10386  * @piocb: Pointer to command iocb.
10387  * @flag: Flag indicating if this command can be put into txq.
10388  *
10389  * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
10390  * an iocb command to an HBA with SLI-4 interface spec.
10391  *
10392  * This function is called with ringlock held. The function will return success
10393  * after it successfully submit the iocb to firmware or after adding to the
10394  * txq.
10395  **/
10396 static int
10397 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
10398 			 struct lpfc_iocbq *piocb, uint32_t flag)
10399 {
10400 	struct lpfc_sglq *sglq;
10401 	union lpfc_wqe128 *wqe;
10402 	struct lpfc_queue *wq;
10403 	struct lpfc_sli_ring *pring;
10404 	u32 ulp_command = get_job_cmnd(phba, piocb);
10405 
10406 	/* Get the WQ */
10407 	if ((piocb->cmd_flag & LPFC_IO_FCP) ||
10408 	    (piocb->cmd_flag & LPFC_USE_FCPWQIDX)) {
10409 		wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq;
10410 	} else {
10411 		wq = phba->sli4_hba.els_wq;
10412 	}
10413 
10414 	/* Get corresponding ring */
10415 	pring = wq->pring;
10416 
10417 	/*
10418 	 * The WQE can be either 64 or 128 bytes,
10419 	 */
10420 
10421 	lockdep_assert_held(&pring->ring_lock);
10422 	wqe = &piocb->wqe;
10423 	if (piocb->sli4_xritag == NO_XRI) {
10424 		if (ulp_command == CMD_ABORT_XRI_CX)
10425 			sglq = NULL;
10426 		else {
10427 			sglq = __lpfc_sli_get_els_sglq(phba, piocb);
10428 			if (!sglq) {
10429 				if (!(flag & SLI_IOCB_RET_IOCB)) {
10430 					__lpfc_sli_ringtx_put(phba,
10431 							pring,
10432 							piocb);
10433 					return IOCB_SUCCESS;
10434 				} else {
10435 					return IOCB_BUSY;
10436 				}
10437 			}
10438 		}
10439 	} else if (piocb->cmd_flag &  LPFC_IO_FCP) {
10440 		/* These IO's already have an XRI and a mapped sgl. */
10441 		sglq = NULL;
10442 	}
10443 	else {
10444 		/*
10445 		 * This is a continuation of a commandi,(CX) so this
10446 		 * sglq is on the active list
10447 		 */
10448 		sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
10449 		if (!sglq)
10450 			return IOCB_ERROR;
10451 	}
10452 
10453 	if (sglq) {
10454 		piocb->sli4_lxritag = sglq->sli4_lxritag;
10455 		piocb->sli4_xritag = sglq->sli4_xritag;
10456 
10457 		/* ABTS sent by initiator to CT exchange, the
10458 		 * RX_ID field will be filled with the newly
10459 		 * allocated responder XRI.
10460 		 */
10461 		if (ulp_command == CMD_XMIT_BLS_RSP64_CX &&
10462 		    piocb->abort_bls == LPFC_ABTS_UNSOL_INT)
10463 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
10464 			       piocb->sli4_xritag);
10465 
10466 		bf_set(wqe_xri_tag, &wqe->generic.wqe_com,
10467 		       piocb->sli4_xritag);
10468 
10469 		if (lpfc_wqe_bpl2sgl(phba, piocb, sglq) == NO_XRI)
10470 			return IOCB_ERROR;
10471 	}
10472 
10473 	if (lpfc_sli4_wq_put(wq, wqe))
10474 		return IOCB_ERROR;
10475 
10476 	lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
10477 
10478 	return 0;
10479 }
10480 
10481 /*
10482  * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o
10483  *
10484  * This routine wraps the actual fcp i/o function for issusing WQE for sli-4
10485  * or IOCB for sli-3  function.
10486  * pointer from the lpfc_hba struct.
10487  *
10488  * Return codes:
10489  * IOCB_ERROR - Error
10490  * IOCB_SUCCESS - Success
10491  * IOCB_BUSY - Busy
10492  **/
10493 int
10494 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number,
10495 		      struct lpfc_iocbq *piocb, uint32_t flag)
10496 {
10497 	return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag);
10498 }
10499 
10500 /*
10501  * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
10502  *
10503  * This routine wraps the actual lockless version for issusing IOCB function
10504  * pointer from the lpfc_hba struct.
10505  *
10506  * Return codes:
10507  * IOCB_ERROR - Error
10508  * IOCB_SUCCESS - Success
10509  * IOCB_BUSY - Busy
10510  **/
10511 int
10512 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10513 		struct lpfc_iocbq *piocb, uint32_t flag)
10514 {
10515 	return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10516 }
10517 
10518 static void
10519 __lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq *cmdiocbq,
10520 			       struct lpfc_vport *vport,
10521 			       struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did,
10522 			       u32 elscmd, u8 tmo, u8 expect_rsp)
10523 {
10524 	struct lpfc_hba *phba = vport->phba;
10525 	IOCB_t *cmd;
10526 
10527 	cmd = &cmdiocbq->iocb;
10528 	memset(cmd, 0, sizeof(*cmd));
10529 
10530 	cmd->un.elsreq64.bdl.addrHigh = putPaddrHigh(bmp->phys);
10531 	cmd->un.elsreq64.bdl.addrLow = putPaddrLow(bmp->phys);
10532 	cmd->un.elsreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
10533 
10534 	if (expect_rsp) {
10535 		cmd->un.elsreq64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64));
10536 		cmd->un.elsreq64.remoteID = did; /* DID */
10537 		cmd->ulpCommand = CMD_ELS_REQUEST64_CR;
10538 		cmd->ulpTimeout = tmo;
10539 	} else {
10540 		cmd->un.elsreq64.bdl.bdeSize = sizeof(struct ulp_bde64);
10541 		cmd->un.genreq64.xmit_els_remoteID = did; /* DID */
10542 		cmd->ulpCommand = CMD_XMIT_ELS_RSP64_CX;
10543 	}
10544 	cmd->ulpBdeCount = 1;
10545 	cmd->ulpLe = 1;
10546 	cmd->ulpClass = CLASS3;
10547 
10548 	/* If we have NPIV enabled, we want to send ELS traffic by VPI. */
10549 	if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) {
10550 		if (expect_rsp) {
10551 			cmd->un.elsreq64.myID = vport->fc_myDID;
10552 
10553 			/* For ELS_REQUEST64_CR, use the VPI by default */
10554 			cmd->ulpContext = phba->vpi_ids[vport->vpi];
10555 		}
10556 
10557 		cmd->ulpCt_h = 0;
10558 		/* The CT field must be 0=INVALID_RPI for the ECHO cmd */
10559 		if (elscmd == ELS_CMD_ECHO)
10560 			cmd->ulpCt_l = 0; /* context = invalid RPI */
10561 		else
10562 			cmd->ulpCt_l = 1; /* context = VPI */
10563 	}
10564 }
10565 
10566 static void
10567 __lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq *cmdiocbq,
10568 			       struct lpfc_vport *vport,
10569 			       struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did,
10570 			       u32 elscmd, u8 tmo, u8 expect_rsp)
10571 {
10572 	struct lpfc_hba  *phba = vport->phba;
10573 	union lpfc_wqe128 *wqe;
10574 	struct ulp_bde64_le *bde;
10575 
10576 	wqe = &cmdiocbq->wqe;
10577 	memset(wqe, 0, sizeof(*wqe));
10578 
10579 	/* Word 0 - 2 BDE */
10580 	bde = (struct ulp_bde64_le *)&wqe->generic.bde;
10581 	bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys));
10582 	bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys));
10583 	bde->type_size = cpu_to_le32(cmd_size);
10584 	bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64);
10585 
10586 	if (expect_rsp) {
10587 		bf_set(wqe_cmnd, &wqe->els_req.wqe_com, CMD_ELS_REQUEST64_CR);
10588 
10589 		/* Transfer length */
10590 		wqe->els_req.payload_len = cmd_size;
10591 		wqe->els_req.max_response_payload_len = FCELSSIZE;
10592 
10593 		/* DID */
10594 		bf_set(wqe_els_did, &wqe->els_req.wqe_dest, did);
10595 	} else {
10596 		/* DID */
10597 		bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, did);
10598 
10599 		/* Transfer length */
10600 		wqe->xmit_els_rsp.response_payload_len = cmd_size;
10601 
10602 		bf_set(wqe_cmnd, &wqe->xmit_els_rsp.wqe_com,
10603 		       CMD_XMIT_ELS_RSP64_CX);
10604 	}
10605 
10606 	bf_set(wqe_tmo, &wqe->generic.wqe_com, tmo);
10607 	bf_set(wqe_reqtag, &wqe->generic.wqe_com, cmdiocbq->iotag);
10608 	bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3);
10609 
10610 	/* If we have NPIV enabled, we want to send ELS traffic by VPI.
10611 	 * For SLI4, since the driver controls VPIs we also want to include
10612 	 * all ELS pt2pt protocol traffic as well.
10613 	 */
10614 	if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) ||
10615 	    (vport->fc_flag & FC_PT2PT)) {
10616 		if (expect_rsp) {
10617 			bf_set(els_req64_sid, &wqe->els_req, vport->fc_myDID);
10618 
10619 			/* For ELS_REQUEST64_CR, use the VPI by default */
10620 			bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
10621 			       phba->vpi_ids[vport->vpi]);
10622 		}
10623 
10624 		/* The CT field must be 0=INVALID_RPI for the ECHO cmd */
10625 		if (elscmd == ELS_CMD_ECHO)
10626 			bf_set(wqe_ct, &wqe->generic.wqe_com, 0);
10627 		else
10628 			bf_set(wqe_ct, &wqe->generic.wqe_com, 1);
10629 	}
10630 }
10631 
10632 void
10633 lpfc_sli_prep_els_req_rsp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq,
10634 			  struct lpfc_vport *vport, struct lpfc_dmabuf *bmp,
10635 			  u16 cmd_size, u32 did, u32 elscmd, u8 tmo,
10636 			  u8 expect_rsp)
10637 {
10638 	phba->__lpfc_sli_prep_els_req_rsp(cmdiocbq, vport, bmp, cmd_size, did,
10639 					  elscmd, tmo, expect_rsp);
10640 }
10641 
10642 static void
10643 __lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp,
10644 			   u16 rpi, u32 num_entry, u8 tmo)
10645 {
10646 	IOCB_t *cmd;
10647 
10648 	cmd = &cmdiocbq->iocb;
10649 	memset(cmd, 0, sizeof(*cmd));
10650 
10651 	cmd->un.genreq64.bdl.addrHigh = putPaddrHigh(bmp->phys);
10652 	cmd->un.genreq64.bdl.addrLow = putPaddrLow(bmp->phys);
10653 	cmd->un.genreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
10654 	cmd->un.genreq64.bdl.bdeSize = num_entry * sizeof(struct ulp_bde64);
10655 
10656 	cmd->un.genreq64.w5.hcsw.Rctl = FC_RCTL_DD_UNSOL_CTL;
10657 	cmd->un.genreq64.w5.hcsw.Type = FC_TYPE_CT;
10658 	cmd->un.genreq64.w5.hcsw.Fctl = (SI | LA);
10659 
10660 	cmd->ulpContext = rpi;
10661 	cmd->ulpClass = CLASS3;
10662 	cmd->ulpCommand = CMD_GEN_REQUEST64_CR;
10663 	cmd->ulpBdeCount = 1;
10664 	cmd->ulpLe = 1;
10665 	cmd->ulpOwner = OWN_CHIP;
10666 	cmd->ulpTimeout = tmo;
10667 }
10668 
10669 static void
10670 __lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp,
10671 			   u16 rpi, u32 num_entry, u8 tmo)
10672 {
10673 	union lpfc_wqe128 *cmdwqe;
10674 	struct ulp_bde64_le *bde, *bpl;
10675 	u32 xmit_len = 0, total_len = 0, size, type, i;
10676 
10677 	cmdwqe = &cmdiocbq->wqe;
10678 	memset(cmdwqe, 0, sizeof(*cmdwqe));
10679 
10680 	/* Calculate total_len and xmit_len */
10681 	bpl = (struct ulp_bde64_le *)bmp->virt;
10682 	for (i = 0; i < num_entry; i++) {
10683 		size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK;
10684 		total_len += size;
10685 	}
10686 	for (i = 0; i < num_entry; i++) {
10687 		size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK;
10688 		type = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_TYPE_MASK;
10689 		if (type != ULP_BDE64_TYPE_BDE_64)
10690 			break;
10691 		xmit_len += size;
10692 	}
10693 
10694 	/* Words 0 - 2 */
10695 	bde = (struct ulp_bde64_le *)&cmdwqe->generic.bde;
10696 	bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys));
10697 	bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys));
10698 	bde->type_size = cpu_to_le32(xmit_len);
10699 	bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BLP_64);
10700 
10701 	/* Word 3 */
10702 	cmdwqe->gen_req.request_payload_len = xmit_len;
10703 
10704 	/* Word 5 */
10705 	bf_set(wqe_type, &cmdwqe->gen_req.wge_ctl, FC_TYPE_CT);
10706 	bf_set(wqe_rctl, &cmdwqe->gen_req.wge_ctl, FC_RCTL_DD_UNSOL_CTL);
10707 	bf_set(wqe_si, &cmdwqe->gen_req.wge_ctl, 1);
10708 	bf_set(wqe_la, &cmdwqe->gen_req.wge_ctl, 1);
10709 
10710 	/* Word 6 */
10711 	bf_set(wqe_ctxt_tag, &cmdwqe->gen_req.wqe_com, rpi);
10712 
10713 	/* Word 7 */
10714 	bf_set(wqe_tmo, &cmdwqe->gen_req.wqe_com, tmo);
10715 	bf_set(wqe_class, &cmdwqe->gen_req.wqe_com, CLASS3);
10716 	bf_set(wqe_cmnd, &cmdwqe->gen_req.wqe_com, CMD_GEN_REQUEST64_CR);
10717 	bf_set(wqe_ct, &cmdwqe->gen_req.wqe_com, SLI4_CT_RPI);
10718 
10719 	/* Word 12 */
10720 	cmdwqe->gen_req.max_response_payload_len = total_len - xmit_len;
10721 }
10722 
10723 void
10724 lpfc_sli_prep_gen_req(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq,
10725 		      struct lpfc_dmabuf *bmp, u16 rpi, u32 num_entry, u8 tmo)
10726 {
10727 	phba->__lpfc_sli_prep_gen_req(cmdiocbq, bmp, rpi, num_entry, tmo);
10728 }
10729 
10730 static void
10731 __lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq *cmdiocbq,
10732 			      struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id,
10733 			      u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd)
10734 {
10735 	IOCB_t *icmd;
10736 
10737 	icmd = &cmdiocbq->iocb;
10738 	memset(icmd, 0, sizeof(*icmd));
10739 
10740 	icmd->un.xseq64.bdl.addrHigh = putPaddrHigh(bmp->phys);
10741 	icmd->un.xseq64.bdl.addrLow = putPaddrLow(bmp->phys);
10742 	icmd->un.xseq64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
10743 	icmd->un.xseq64.bdl.bdeSize = (num_entry * sizeof(struct ulp_bde64));
10744 	icmd->un.xseq64.w5.hcsw.Fctl = LA;
10745 	if (last_seq)
10746 		icmd->un.xseq64.w5.hcsw.Fctl |= LS;
10747 	icmd->un.xseq64.w5.hcsw.Dfctl = 0;
10748 	icmd->un.xseq64.w5.hcsw.Rctl = rctl;
10749 	icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_CT;
10750 
10751 	icmd->ulpBdeCount = 1;
10752 	icmd->ulpLe = 1;
10753 	icmd->ulpClass = CLASS3;
10754 
10755 	switch (cr_cx_cmd) {
10756 	case CMD_XMIT_SEQUENCE64_CR:
10757 		icmd->ulpContext = rpi;
10758 		icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CR;
10759 		break;
10760 	case CMD_XMIT_SEQUENCE64_CX:
10761 		icmd->ulpContext = ox_id;
10762 		icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CX;
10763 		break;
10764 	default:
10765 		break;
10766 	}
10767 }
10768 
10769 static void
10770 __lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq *cmdiocbq,
10771 			      struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id,
10772 			      u32 full_size, u8 rctl, u8 last_seq, u8 cr_cx_cmd)
10773 {
10774 	union lpfc_wqe128 *wqe;
10775 	struct ulp_bde64 *bpl;
10776 	struct ulp_bde64_le *bde;
10777 
10778 	wqe = &cmdiocbq->wqe;
10779 	memset(wqe, 0, sizeof(*wqe));
10780 
10781 	/* Words 0 - 2 */
10782 	bpl = (struct ulp_bde64 *)bmp->virt;
10783 	if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK)) {
10784 		wqe->xmit_sequence.bde.addrHigh = bpl->addrHigh;
10785 		wqe->xmit_sequence.bde.addrLow = bpl->addrLow;
10786 		wqe->xmit_sequence.bde.tus.w = bpl->tus.w;
10787 	} else {
10788 		bde = (struct ulp_bde64_le *)&wqe->xmit_sequence.bde;
10789 		bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys));
10790 		bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys));
10791 		bde->type_size = cpu_to_le32(bpl->tus.f.bdeSize);
10792 		bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64);
10793 	}
10794 
10795 	/* Word 5 */
10796 	bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, last_seq);
10797 	bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 1);
10798 	bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0);
10799 	bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, rctl);
10800 	bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_CT);
10801 
10802 	/* Word 6 */
10803 	bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, rpi);
10804 
10805 	bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com,
10806 	       CMD_XMIT_SEQUENCE64_WQE);
10807 
10808 	/* Word 7 */
10809 	bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3);
10810 
10811 	/* Word 9 */
10812 	bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ox_id);
10813 
10814 	/* Word 12 */
10815 	if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK))
10816 		wqe->xmit_sequence.xmit_len = full_size;
10817 	else
10818 		wqe->xmit_sequence.xmit_len =
10819 			wqe->xmit_sequence.bde.tus.f.bdeSize;
10820 }
10821 
10822 void
10823 lpfc_sli_prep_xmit_seq64(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq,
10824 			 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id,
10825 			 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd)
10826 {
10827 	phba->__lpfc_sli_prep_xmit_seq64(cmdiocbq, bmp, rpi, ox_id, num_entry,
10828 					 rctl, last_seq, cr_cx_cmd);
10829 }
10830 
10831 static void
10832 __lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq *cmdiocbq, u16 ulp_context,
10833 			     u16 iotag, u8 ulp_class, u16 cqid, bool ia)
10834 {
10835 	IOCB_t *icmd = NULL;
10836 
10837 	icmd = &cmdiocbq->iocb;
10838 	memset(icmd, 0, sizeof(*icmd));
10839 
10840 	/* Word 5 */
10841 	icmd->un.acxri.abortContextTag = ulp_context;
10842 	icmd->un.acxri.abortIoTag = iotag;
10843 
10844 	if (ia) {
10845 		/* Word 7 */
10846 		icmd->ulpCommand = CMD_CLOSE_XRI_CN;
10847 	} else {
10848 		/* Word 3 */
10849 		icmd->un.acxri.abortType = ABORT_TYPE_ABTS;
10850 
10851 		/* Word 7 */
10852 		icmd->ulpClass = ulp_class;
10853 		icmd->ulpCommand = CMD_ABORT_XRI_CN;
10854 	}
10855 
10856 	/* Word 7 */
10857 	icmd->ulpLe = 1;
10858 }
10859 
10860 static void
10861 __lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq *cmdiocbq, u16 ulp_context,
10862 			     u16 iotag, u8 ulp_class, u16 cqid, bool ia)
10863 {
10864 	union lpfc_wqe128 *wqe;
10865 
10866 	wqe = &cmdiocbq->wqe;
10867 	memset(wqe, 0, sizeof(*wqe));
10868 
10869 	/* Word 3 */
10870 	bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
10871 	if (ia)
10872 		bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
10873 	else
10874 		bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
10875 
10876 	/* Word 7 */
10877 	bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_WQE);
10878 
10879 	/* Word 8 */
10880 	wqe->abort_cmd.wqe_com.abort_tag = ulp_context;
10881 
10882 	/* Word 9 */
10883 	bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, iotag);
10884 
10885 	/* Word 10 */
10886 	bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
10887 
10888 	/* Word 11 */
10889 	bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, cqid);
10890 	bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND);
10891 }
10892 
10893 void
10894 lpfc_sli_prep_abort_xri(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq,
10895 			u16 ulp_context, u16 iotag, u8 ulp_class, u16 cqid,
10896 			bool ia)
10897 {
10898 	phba->__lpfc_sli_prep_abort_xri(cmdiocbq, ulp_context, iotag, ulp_class,
10899 					cqid, ia);
10900 }
10901 
10902 /**
10903  * lpfc_sli_api_table_setup - Set up sli api function jump table
10904  * @phba: The hba struct for which this call is being executed.
10905  * @dev_grp: The HBA PCI-Device group number.
10906  *
10907  * This routine sets up the SLI interface API function jump table in @phba
10908  * struct.
10909  * Returns: 0 - success, -ENODEV - failure.
10910  **/
10911 int
10912 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
10913 {
10914 
10915 	switch (dev_grp) {
10916 	case LPFC_PCI_DEV_LP:
10917 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
10918 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
10919 		phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3;
10920 		phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s3;
10921 		phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s3;
10922 		phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s3;
10923 		phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s3;
10924 		break;
10925 	case LPFC_PCI_DEV_OC:
10926 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
10927 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
10928 		phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4;
10929 		phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s4;
10930 		phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s4;
10931 		phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s4;
10932 		phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s4;
10933 		break;
10934 	default:
10935 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10936 				"1419 Invalid HBA PCI-device group: 0x%x\n",
10937 				dev_grp);
10938 		return -ENODEV;
10939 	}
10940 	return 0;
10941 }
10942 
10943 /**
10944  * lpfc_sli4_calc_ring - Calculates which ring to use
10945  * @phba: Pointer to HBA context object.
10946  * @piocb: Pointer to command iocb.
10947  *
10948  * For SLI4 only, FCP IO can deferred to one fo many WQs, based on
10949  * hba_wqidx, thus we need to calculate the corresponding ring.
10950  * Since ABORTS must go on the same WQ of the command they are
10951  * aborting, we use command's hba_wqidx.
10952  */
10953 struct lpfc_sli_ring *
10954 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
10955 {
10956 	struct lpfc_io_buf *lpfc_cmd;
10957 
10958 	if (piocb->cmd_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
10959 		if (unlikely(!phba->sli4_hba.hdwq))
10960 			return NULL;
10961 		/*
10962 		 * for abort iocb hba_wqidx should already
10963 		 * be setup based on what work queue we used.
10964 		 */
10965 		if (!(piocb->cmd_flag & LPFC_USE_FCPWQIDX)) {
10966 			lpfc_cmd = (struct lpfc_io_buf *)piocb->context1;
10967 			piocb->hba_wqidx = lpfc_cmd->hdwq_no;
10968 		}
10969 		return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring;
10970 	} else {
10971 		if (unlikely(!phba->sli4_hba.els_wq))
10972 			return NULL;
10973 		piocb->hba_wqidx = 0;
10974 		return phba->sli4_hba.els_wq->pring;
10975 	}
10976 }
10977 
10978 /**
10979  * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
10980  * @phba: Pointer to HBA context object.
10981  * @ring_number: Ring number
10982  * @piocb: Pointer to command iocb.
10983  * @flag: Flag indicating if this command can be put into txq.
10984  *
10985  * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
10986  * function. This function gets the hbalock and calls
10987  * __lpfc_sli_issue_iocb function and will return the error returned
10988  * by __lpfc_sli_issue_iocb function. This wrapper is used by
10989  * functions which do not hold hbalock.
10990  **/
10991 int
10992 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10993 		    struct lpfc_iocbq *piocb, uint32_t flag)
10994 {
10995 	struct lpfc_sli_ring *pring;
10996 	struct lpfc_queue *eq;
10997 	unsigned long iflags;
10998 	int rc;
10999 
11000 	if (phba->sli_rev == LPFC_SLI_REV4) {
11001 		lpfc_sli_prep_wqe(phba, piocb);
11002 
11003 		eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq;
11004 
11005 		pring = lpfc_sli4_calc_ring(phba, piocb);
11006 		if (unlikely(pring == NULL))
11007 			return IOCB_ERROR;
11008 
11009 		spin_lock_irqsave(&pring->ring_lock, iflags);
11010 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
11011 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
11012 
11013 		lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH);
11014 	} else {
11015 		/* For now, SLI2/3 will still use hbalock */
11016 		spin_lock_irqsave(&phba->hbalock, iflags);
11017 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
11018 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11019 	}
11020 	return rc;
11021 }
11022 
11023 /**
11024  * lpfc_extra_ring_setup - Extra ring setup function
11025  * @phba: Pointer to HBA context object.
11026  *
11027  * This function is called while driver attaches with the
11028  * HBA to setup the extra ring. The extra ring is used
11029  * only when driver needs to support target mode functionality
11030  * or IP over FC functionalities.
11031  *
11032  * This function is called with no lock held. SLI3 only.
11033  **/
11034 static int
11035 lpfc_extra_ring_setup( struct lpfc_hba *phba)
11036 {
11037 	struct lpfc_sli *psli;
11038 	struct lpfc_sli_ring *pring;
11039 
11040 	psli = &phba->sli;
11041 
11042 	/* Adjust cmd/rsp ring iocb entries more evenly */
11043 
11044 	/* Take some away from the FCP ring */
11045 	pring = &psli->sli3_ring[LPFC_FCP_RING];
11046 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
11047 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
11048 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
11049 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
11050 
11051 	/* and give them to the extra ring */
11052 	pring = &psli->sli3_ring[LPFC_EXTRA_RING];
11053 
11054 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
11055 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
11056 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
11057 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
11058 
11059 	/* Setup default profile for this ring */
11060 	pring->iotag_max = 4096;
11061 	pring->num_mask = 1;
11062 	pring->prt[0].profile = 0;      /* Mask 0 */
11063 	pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
11064 	pring->prt[0].type = phba->cfg_multi_ring_type;
11065 	pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
11066 	return 0;
11067 }
11068 
11069 static void
11070 lpfc_sli_post_recovery_event(struct lpfc_hba *phba,
11071 			     struct lpfc_nodelist *ndlp)
11072 {
11073 	unsigned long iflags;
11074 	struct lpfc_work_evt  *evtp = &ndlp->recovery_evt;
11075 
11076 	spin_lock_irqsave(&phba->hbalock, iflags);
11077 	if (!list_empty(&evtp->evt_listp)) {
11078 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11079 		return;
11080 	}
11081 
11082 	/* Incrementing the reference count until the queued work is done. */
11083 	evtp->evt_arg1  = lpfc_nlp_get(ndlp);
11084 	if (!evtp->evt_arg1) {
11085 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11086 		return;
11087 	}
11088 	evtp->evt = LPFC_EVT_RECOVER_PORT;
11089 	list_add_tail(&evtp->evt_listp, &phba->work_list);
11090 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11091 
11092 	lpfc_worker_wake_up(phba);
11093 }
11094 
11095 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
11096  * @phba: Pointer to HBA context object.
11097  * @iocbq: Pointer to iocb object.
11098  *
11099  * The async_event handler calls this routine when it receives
11100  * an ASYNC_STATUS_CN event from the port.  The port generates
11101  * this event when an Abort Sequence request to an rport fails
11102  * twice in succession.  The abort could be originated by the
11103  * driver or by the port.  The ABTS could have been for an ELS
11104  * or FCP IO.  The port only generates this event when an ABTS
11105  * fails to complete after one retry.
11106  */
11107 static void
11108 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
11109 			  struct lpfc_iocbq *iocbq)
11110 {
11111 	struct lpfc_nodelist *ndlp = NULL;
11112 	uint16_t rpi = 0, vpi = 0;
11113 	struct lpfc_vport *vport = NULL;
11114 
11115 	/* The rpi in the ulpContext is vport-sensitive. */
11116 	vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
11117 	rpi = iocbq->iocb.ulpContext;
11118 
11119 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
11120 			"3092 Port generated ABTS async event "
11121 			"on vpi %d rpi %d status 0x%x\n",
11122 			vpi, rpi, iocbq->iocb.ulpStatus);
11123 
11124 	vport = lpfc_find_vport_by_vpid(phba, vpi);
11125 	if (!vport)
11126 		goto err_exit;
11127 	ndlp = lpfc_findnode_rpi(vport, rpi);
11128 	if (!ndlp)
11129 		goto err_exit;
11130 
11131 	if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
11132 		lpfc_sli_abts_recover_port(vport, ndlp);
11133 	return;
11134 
11135  err_exit:
11136 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11137 			"3095 Event Context not found, no "
11138 			"action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
11139 			vpi, rpi, iocbq->iocb.ulpStatus,
11140 			iocbq->iocb.ulpContext);
11141 }
11142 
11143 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
11144  * @phba: pointer to HBA context object.
11145  * @ndlp: nodelist pointer for the impacted rport.
11146  * @axri: pointer to the wcqe containing the failed exchange.
11147  *
11148  * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
11149  * port.  The port generates this event when an abort exchange request to an
11150  * rport fails twice in succession with no reply.  The abort could be originated
11151  * by the driver or by the port.  The ABTS could have been for an ELS or FCP IO.
11152  */
11153 void
11154 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
11155 			   struct lpfc_nodelist *ndlp,
11156 			   struct sli4_wcqe_xri_aborted *axri)
11157 {
11158 	uint32_t ext_status = 0;
11159 
11160 	if (!ndlp) {
11161 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11162 				"3115 Node Context not found, driver "
11163 				"ignoring abts err event\n");
11164 		return;
11165 	}
11166 
11167 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
11168 			"3116 Port generated FCP XRI ABORT event on "
11169 			"vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
11170 			ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
11171 			bf_get(lpfc_wcqe_xa_xri, axri),
11172 			bf_get(lpfc_wcqe_xa_status, axri),
11173 			axri->parameter);
11174 
11175 	/*
11176 	 * Catch the ABTS protocol failure case.  Older OCe FW releases returned
11177 	 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
11178 	 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
11179 	 */
11180 	ext_status = axri->parameter & IOERR_PARAM_MASK;
11181 	if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
11182 	    ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
11183 		lpfc_sli_post_recovery_event(phba, ndlp);
11184 }
11185 
11186 /**
11187  * lpfc_sli_async_event_handler - ASYNC iocb handler function
11188  * @phba: Pointer to HBA context object.
11189  * @pring: Pointer to driver SLI ring object.
11190  * @iocbq: Pointer to iocb object.
11191  *
11192  * This function is called by the slow ring event handler
11193  * function when there is an ASYNC event iocb in the ring.
11194  * This function is called with no lock held.
11195  * Currently this function handles only temperature related
11196  * ASYNC events. The function decodes the temperature sensor
11197  * event message and posts events for the management applications.
11198  **/
11199 static void
11200 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
11201 	struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
11202 {
11203 	IOCB_t *icmd;
11204 	uint16_t evt_code;
11205 	struct temp_event temp_event_data;
11206 	struct Scsi_Host *shost;
11207 	uint32_t *iocb_w;
11208 
11209 	icmd = &iocbq->iocb;
11210 	evt_code = icmd->un.asyncstat.evt_code;
11211 
11212 	switch (evt_code) {
11213 	case ASYNC_TEMP_WARN:
11214 	case ASYNC_TEMP_SAFE:
11215 		temp_event_data.data = (uint32_t) icmd->ulpContext;
11216 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
11217 		if (evt_code == ASYNC_TEMP_WARN) {
11218 			temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
11219 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11220 				"0347 Adapter is very hot, please take "
11221 				"corrective action. temperature : %d Celsius\n",
11222 				(uint32_t) icmd->ulpContext);
11223 		} else {
11224 			temp_event_data.event_code = LPFC_NORMAL_TEMP;
11225 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11226 				"0340 Adapter temperature is OK now. "
11227 				"temperature : %d Celsius\n",
11228 				(uint32_t) icmd->ulpContext);
11229 		}
11230 
11231 		/* Send temperature change event to applications */
11232 		shost = lpfc_shost_from_vport(phba->pport);
11233 		fc_host_post_vendor_event(shost, fc_get_event_number(),
11234 			sizeof(temp_event_data), (char *) &temp_event_data,
11235 			LPFC_NL_VENDOR_ID);
11236 		break;
11237 	case ASYNC_STATUS_CN:
11238 		lpfc_sli_abts_err_handler(phba, iocbq);
11239 		break;
11240 	default:
11241 		iocb_w = (uint32_t *) icmd;
11242 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11243 			"0346 Ring %d handler: unexpected ASYNC_STATUS"
11244 			" evt_code 0x%x\n"
11245 			"W0  0x%08x W1  0x%08x W2  0x%08x W3  0x%08x\n"
11246 			"W4  0x%08x W5  0x%08x W6  0x%08x W7  0x%08x\n"
11247 			"W8  0x%08x W9  0x%08x W10 0x%08x W11 0x%08x\n"
11248 			"W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
11249 			pring->ringno, icmd->un.asyncstat.evt_code,
11250 			iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
11251 			iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
11252 			iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
11253 			iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
11254 
11255 		break;
11256 	}
11257 }
11258 
11259 
11260 /**
11261  * lpfc_sli4_setup - SLI ring setup function
11262  * @phba: Pointer to HBA context object.
11263  *
11264  * lpfc_sli_setup sets up rings of the SLI interface with
11265  * number of iocbs per ring and iotags. This function is
11266  * called while driver attach to the HBA and before the
11267  * interrupts are enabled. So there is no need for locking.
11268  *
11269  * This function always returns 0.
11270  **/
11271 int
11272 lpfc_sli4_setup(struct lpfc_hba *phba)
11273 {
11274 	struct lpfc_sli_ring *pring;
11275 
11276 	pring = phba->sli4_hba.els_wq->pring;
11277 	pring->num_mask = LPFC_MAX_RING_MASK;
11278 	pring->prt[0].profile = 0;	/* Mask 0 */
11279 	pring->prt[0].rctl = FC_RCTL_ELS_REQ;
11280 	pring->prt[0].type = FC_TYPE_ELS;
11281 	pring->prt[0].lpfc_sli_rcv_unsol_event =
11282 	    lpfc_els_unsol_event;
11283 	pring->prt[1].profile = 0;	/* Mask 1 */
11284 	pring->prt[1].rctl = FC_RCTL_ELS_REP;
11285 	pring->prt[1].type = FC_TYPE_ELS;
11286 	pring->prt[1].lpfc_sli_rcv_unsol_event =
11287 	    lpfc_els_unsol_event;
11288 	pring->prt[2].profile = 0;	/* Mask 2 */
11289 	/* NameServer Inquiry */
11290 	pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
11291 	/* NameServer */
11292 	pring->prt[2].type = FC_TYPE_CT;
11293 	pring->prt[2].lpfc_sli_rcv_unsol_event =
11294 	    lpfc_ct_unsol_event;
11295 	pring->prt[3].profile = 0;	/* Mask 3 */
11296 	/* NameServer response */
11297 	pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
11298 	/* NameServer */
11299 	pring->prt[3].type = FC_TYPE_CT;
11300 	pring->prt[3].lpfc_sli_rcv_unsol_event =
11301 	    lpfc_ct_unsol_event;
11302 	return 0;
11303 }
11304 
11305 /**
11306  * lpfc_sli_setup - SLI ring setup function
11307  * @phba: Pointer to HBA context object.
11308  *
11309  * lpfc_sli_setup sets up rings of the SLI interface with
11310  * number of iocbs per ring and iotags. This function is
11311  * called while driver attach to the HBA and before the
11312  * interrupts are enabled. So there is no need for locking.
11313  *
11314  * This function always returns 0. SLI3 only.
11315  **/
11316 int
11317 lpfc_sli_setup(struct lpfc_hba *phba)
11318 {
11319 	int i, totiocbsize = 0;
11320 	struct lpfc_sli *psli = &phba->sli;
11321 	struct lpfc_sli_ring *pring;
11322 
11323 	psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
11324 	psli->sli_flag = 0;
11325 
11326 	psli->iocbq_lookup = NULL;
11327 	psli->iocbq_lookup_len = 0;
11328 	psli->last_iotag = 0;
11329 
11330 	for (i = 0; i < psli->num_rings; i++) {
11331 		pring = &psli->sli3_ring[i];
11332 		switch (i) {
11333 		case LPFC_FCP_RING:	/* ring 0 - FCP */
11334 			/* numCiocb and numRiocb are used in config_port */
11335 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
11336 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
11337 			pring->sli.sli3.numCiocb +=
11338 				SLI2_IOCB_CMD_R1XTRA_ENTRIES;
11339 			pring->sli.sli3.numRiocb +=
11340 				SLI2_IOCB_RSP_R1XTRA_ENTRIES;
11341 			pring->sli.sli3.numCiocb +=
11342 				SLI2_IOCB_CMD_R3XTRA_ENTRIES;
11343 			pring->sli.sli3.numRiocb +=
11344 				SLI2_IOCB_RSP_R3XTRA_ENTRIES;
11345 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
11346 							SLI3_IOCB_CMD_SIZE :
11347 							SLI2_IOCB_CMD_SIZE;
11348 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
11349 							SLI3_IOCB_RSP_SIZE :
11350 							SLI2_IOCB_RSP_SIZE;
11351 			pring->iotag_ctr = 0;
11352 			pring->iotag_max =
11353 			    (phba->cfg_hba_queue_depth * 2);
11354 			pring->fast_iotag = pring->iotag_max;
11355 			pring->num_mask = 0;
11356 			break;
11357 		case LPFC_EXTRA_RING:	/* ring 1 - EXTRA */
11358 			/* numCiocb and numRiocb are used in config_port */
11359 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
11360 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
11361 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
11362 							SLI3_IOCB_CMD_SIZE :
11363 							SLI2_IOCB_CMD_SIZE;
11364 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
11365 							SLI3_IOCB_RSP_SIZE :
11366 							SLI2_IOCB_RSP_SIZE;
11367 			pring->iotag_max = phba->cfg_hba_queue_depth;
11368 			pring->num_mask = 0;
11369 			break;
11370 		case LPFC_ELS_RING:	/* ring 2 - ELS / CT */
11371 			/* numCiocb and numRiocb are used in config_port */
11372 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
11373 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
11374 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
11375 							SLI3_IOCB_CMD_SIZE :
11376 							SLI2_IOCB_CMD_SIZE;
11377 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
11378 							SLI3_IOCB_RSP_SIZE :
11379 							SLI2_IOCB_RSP_SIZE;
11380 			pring->fast_iotag = 0;
11381 			pring->iotag_ctr = 0;
11382 			pring->iotag_max = 4096;
11383 			pring->lpfc_sli_rcv_async_status =
11384 				lpfc_sli_async_event_handler;
11385 			pring->num_mask = LPFC_MAX_RING_MASK;
11386 			pring->prt[0].profile = 0;	/* Mask 0 */
11387 			pring->prt[0].rctl = FC_RCTL_ELS_REQ;
11388 			pring->prt[0].type = FC_TYPE_ELS;
11389 			pring->prt[0].lpfc_sli_rcv_unsol_event =
11390 			    lpfc_els_unsol_event;
11391 			pring->prt[1].profile = 0;	/* Mask 1 */
11392 			pring->prt[1].rctl = FC_RCTL_ELS_REP;
11393 			pring->prt[1].type = FC_TYPE_ELS;
11394 			pring->prt[1].lpfc_sli_rcv_unsol_event =
11395 			    lpfc_els_unsol_event;
11396 			pring->prt[2].profile = 0;	/* Mask 2 */
11397 			/* NameServer Inquiry */
11398 			pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
11399 			/* NameServer */
11400 			pring->prt[2].type = FC_TYPE_CT;
11401 			pring->prt[2].lpfc_sli_rcv_unsol_event =
11402 			    lpfc_ct_unsol_event;
11403 			pring->prt[3].profile = 0;	/* Mask 3 */
11404 			/* NameServer response */
11405 			pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
11406 			/* NameServer */
11407 			pring->prt[3].type = FC_TYPE_CT;
11408 			pring->prt[3].lpfc_sli_rcv_unsol_event =
11409 			    lpfc_ct_unsol_event;
11410 			break;
11411 		}
11412 		totiocbsize += (pring->sli.sli3.numCiocb *
11413 			pring->sli.sli3.sizeCiocb) +
11414 			(pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
11415 	}
11416 	if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
11417 		/* Too many cmd / rsp ring entries in SLI2 SLIM */
11418 		printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
11419 		       "SLI2 SLIM Data: x%x x%lx\n",
11420 		       phba->brd_no, totiocbsize,
11421 		       (unsigned long) MAX_SLIM_IOCB_SIZE);
11422 	}
11423 	if (phba->cfg_multi_ring_support == 2)
11424 		lpfc_extra_ring_setup(phba);
11425 
11426 	return 0;
11427 }
11428 
11429 /**
11430  * lpfc_sli4_queue_init - Queue initialization function
11431  * @phba: Pointer to HBA context object.
11432  *
11433  * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
11434  * ring. This function also initializes ring indices of each ring.
11435  * This function is called during the initialization of the SLI
11436  * interface of an HBA.
11437  * This function is called with no lock held and always returns
11438  * 1.
11439  **/
11440 void
11441 lpfc_sli4_queue_init(struct lpfc_hba *phba)
11442 {
11443 	struct lpfc_sli *psli;
11444 	struct lpfc_sli_ring *pring;
11445 	int i;
11446 
11447 	psli = &phba->sli;
11448 	spin_lock_irq(&phba->hbalock);
11449 	INIT_LIST_HEAD(&psli->mboxq);
11450 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
11451 	/* Initialize list headers for txq and txcmplq as double linked lists */
11452 	for (i = 0; i < phba->cfg_hdw_queue; i++) {
11453 		pring = phba->sli4_hba.hdwq[i].io_wq->pring;
11454 		pring->flag = 0;
11455 		pring->ringno = LPFC_FCP_RING;
11456 		pring->txcmplq_cnt = 0;
11457 		INIT_LIST_HEAD(&pring->txq);
11458 		INIT_LIST_HEAD(&pring->txcmplq);
11459 		INIT_LIST_HEAD(&pring->iocb_continueq);
11460 		spin_lock_init(&pring->ring_lock);
11461 	}
11462 	pring = phba->sli4_hba.els_wq->pring;
11463 	pring->flag = 0;
11464 	pring->ringno = LPFC_ELS_RING;
11465 	pring->txcmplq_cnt = 0;
11466 	INIT_LIST_HEAD(&pring->txq);
11467 	INIT_LIST_HEAD(&pring->txcmplq);
11468 	INIT_LIST_HEAD(&pring->iocb_continueq);
11469 	spin_lock_init(&pring->ring_lock);
11470 
11471 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11472 		pring = phba->sli4_hba.nvmels_wq->pring;
11473 		pring->flag = 0;
11474 		pring->ringno = LPFC_ELS_RING;
11475 		pring->txcmplq_cnt = 0;
11476 		INIT_LIST_HEAD(&pring->txq);
11477 		INIT_LIST_HEAD(&pring->txcmplq);
11478 		INIT_LIST_HEAD(&pring->iocb_continueq);
11479 		spin_lock_init(&pring->ring_lock);
11480 	}
11481 
11482 	spin_unlock_irq(&phba->hbalock);
11483 }
11484 
11485 /**
11486  * lpfc_sli_queue_init - Queue initialization function
11487  * @phba: Pointer to HBA context object.
11488  *
11489  * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
11490  * ring. This function also initializes ring indices of each ring.
11491  * This function is called during the initialization of the SLI
11492  * interface of an HBA.
11493  * This function is called with no lock held and always returns
11494  * 1.
11495  **/
11496 void
11497 lpfc_sli_queue_init(struct lpfc_hba *phba)
11498 {
11499 	struct lpfc_sli *psli;
11500 	struct lpfc_sli_ring *pring;
11501 	int i;
11502 
11503 	psli = &phba->sli;
11504 	spin_lock_irq(&phba->hbalock);
11505 	INIT_LIST_HEAD(&psli->mboxq);
11506 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
11507 	/* Initialize list headers for txq and txcmplq as double linked lists */
11508 	for (i = 0; i < psli->num_rings; i++) {
11509 		pring = &psli->sli3_ring[i];
11510 		pring->ringno = i;
11511 		pring->sli.sli3.next_cmdidx  = 0;
11512 		pring->sli.sli3.local_getidx = 0;
11513 		pring->sli.sli3.cmdidx = 0;
11514 		INIT_LIST_HEAD(&pring->iocb_continueq);
11515 		INIT_LIST_HEAD(&pring->iocb_continue_saveq);
11516 		INIT_LIST_HEAD(&pring->postbufq);
11517 		pring->flag = 0;
11518 		INIT_LIST_HEAD(&pring->txq);
11519 		INIT_LIST_HEAD(&pring->txcmplq);
11520 		spin_lock_init(&pring->ring_lock);
11521 	}
11522 	spin_unlock_irq(&phba->hbalock);
11523 }
11524 
11525 /**
11526  * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
11527  * @phba: Pointer to HBA context object.
11528  *
11529  * This routine flushes the mailbox command subsystem. It will unconditionally
11530  * flush all the mailbox commands in the three possible stages in the mailbox
11531  * command sub-system: pending mailbox command queue; the outstanding mailbox
11532  * command; and completed mailbox command queue. It is caller's responsibility
11533  * to make sure that the driver is in the proper state to flush the mailbox
11534  * command sub-system. Namely, the posting of mailbox commands into the
11535  * pending mailbox command queue from the various clients must be stopped;
11536  * either the HBA is in a state that it will never works on the outstanding
11537  * mailbox command (such as in EEH or ERATT conditions) or the outstanding
11538  * mailbox command has been completed.
11539  **/
11540 static void
11541 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
11542 {
11543 	LIST_HEAD(completions);
11544 	struct lpfc_sli *psli = &phba->sli;
11545 	LPFC_MBOXQ_t *pmb;
11546 	unsigned long iflag;
11547 
11548 	/* Disable softirqs, including timers from obtaining phba->hbalock */
11549 	local_bh_disable();
11550 
11551 	/* Flush all the mailbox commands in the mbox system */
11552 	spin_lock_irqsave(&phba->hbalock, iflag);
11553 
11554 	/* The pending mailbox command queue */
11555 	list_splice_init(&phba->sli.mboxq, &completions);
11556 	/* The outstanding active mailbox command */
11557 	if (psli->mbox_active) {
11558 		list_add_tail(&psli->mbox_active->list, &completions);
11559 		psli->mbox_active = NULL;
11560 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
11561 	}
11562 	/* The completed mailbox command queue */
11563 	list_splice_init(&phba->sli.mboxq_cmpl, &completions);
11564 	spin_unlock_irqrestore(&phba->hbalock, iflag);
11565 
11566 	/* Enable softirqs again, done with phba->hbalock */
11567 	local_bh_enable();
11568 
11569 	/* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
11570 	while (!list_empty(&completions)) {
11571 		list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
11572 		pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
11573 		if (pmb->mbox_cmpl)
11574 			pmb->mbox_cmpl(phba, pmb);
11575 	}
11576 }
11577 
11578 /**
11579  * lpfc_sli_host_down - Vport cleanup function
11580  * @vport: Pointer to virtual port object.
11581  *
11582  * lpfc_sli_host_down is called to clean up the resources
11583  * associated with a vport before destroying virtual
11584  * port data structures.
11585  * This function does following operations:
11586  * - Free discovery resources associated with this virtual
11587  *   port.
11588  * - Free iocbs associated with this virtual port in
11589  *   the txq.
11590  * - Send abort for all iocb commands associated with this
11591  *   vport in txcmplq.
11592  *
11593  * This function is called with no lock held and always returns 1.
11594  **/
11595 int
11596 lpfc_sli_host_down(struct lpfc_vport *vport)
11597 {
11598 	LIST_HEAD(completions);
11599 	struct lpfc_hba *phba = vport->phba;
11600 	struct lpfc_sli *psli = &phba->sli;
11601 	struct lpfc_queue *qp = NULL;
11602 	struct lpfc_sli_ring *pring;
11603 	struct lpfc_iocbq *iocb, *next_iocb;
11604 	int i;
11605 	unsigned long flags = 0;
11606 	uint16_t prev_pring_flag;
11607 
11608 	lpfc_cleanup_discovery_resources(vport);
11609 
11610 	spin_lock_irqsave(&phba->hbalock, flags);
11611 
11612 	/*
11613 	 * Error everything on the txq since these iocbs
11614 	 * have not been given to the FW yet.
11615 	 * Also issue ABTS for everything on the txcmplq
11616 	 */
11617 	if (phba->sli_rev != LPFC_SLI_REV4) {
11618 		for (i = 0; i < psli->num_rings; i++) {
11619 			pring = &psli->sli3_ring[i];
11620 			prev_pring_flag = pring->flag;
11621 			/* Only slow rings */
11622 			if (pring->ringno == LPFC_ELS_RING) {
11623 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
11624 				/* Set the lpfc data pending flag */
11625 				set_bit(LPFC_DATA_READY, &phba->data_flags);
11626 			}
11627 			list_for_each_entry_safe(iocb, next_iocb,
11628 						 &pring->txq, list) {
11629 				if (iocb->vport != vport)
11630 					continue;
11631 				list_move_tail(&iocb->list, &completions);
11632 			}
11633 			list_for_each_entry_safe(iocb, next_iocb,
11634 						 &pring->txcmplq, list) {
11635 				if (iocb->vport != vport)
11636 					continue;
11637 				lpfc_sli_issue_abort_iotag(phba, pring, iocb,
11638 							   NULL);
11639 			}
11640 			pring->flag = prev_pring_flag;
11641 		}
11642 	} else {
11643 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11644 			pring = qp->pring;
11645 			if (!pring)
11646 				continue;
11647 			if (pring == phba->sli4_hba.els_wq->pring) {
11648 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
11649 				/* Set the lpfc data pending flag */
11650 				set_bit(LPFC_DATA_READY, &phba->data_flags);
11651 			}
11652 			prev_pring_flag = pring->flag;
11653 			spin_lock(&pring->ring_lock);
11654 			list_for_each_entry_safe(iocb, next_iocb,
11655 						 &pring->txq, list) {
11656 				if (iocb->vport != vport)
11657 					continue;
11658 				list_move_tail(&iocb->list, &completions);
11659 			}
11660 			spin_unlock(&pring->ring_lock);
11661 			list_for_each_entry_safe(iocb, next_iocb,
11662 						 &pring->txcmplq, list) {
11663 				if (iocb->vport != vport)
11664 					continue;
11665 				lpfc_sli_issue_abort_iotag(phba, pring, iocb,
11666 							   NULL);
11667 			}
11668 			pring->flag = prev_pring_flag;
11669 		}
11670 	}
11671 	spin_unlock_irqrestore(&phba->hbalock, flags);
11672 
11673 	/* Make sure HBA is alive */
11674 	lpfc_issue_hb_tmo(phba);
11675 
11676 	/* Cancel all the IOCBs from the completions list */
11677 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
11678 			      IOERR_SLI_DOWN);
11679 	return 1;
11680 }
11681 
11682 /**
11683  * lpfc_sli_hba_down - Resource cleanup function for the HBA
11684  * @phba: Pointer to HBA context object.
11685  *
11686  * This function cleans up all iocb, buffers, mailbox commands
11687  * while shutting down the HBA. This function is called with no
11688  * lock held and always returns 1.
11689  * This function does the following to cleanup driver resources:
11690  * - Free discovery resources for each virtual port
11691  * - Cleanup any pending fabric iocbs
11692  * - Iterate through the iocb txq and free each entry
11693  *   in the list.
11694  * - Free up any buffer posted to the HBA
11695  * - Free mailbox commands in the mailbox queue.
11696  **/
11697 int
11698 lpfc_sli_hba_down(struct lpfc_hba *phba)
11699 {
11700 	LIST_HEAD(completions);
11701 	struct lpfc_sli *psli = &phba->sli;
11702 	struct lpfc_queue *qp = NULL;
11703 	struct lpfc_sli_ring *pring;
11704 	struct lpfc_dmabuf *buf_ptr;
11705 	unsigned long flags = 0;
11706 	int i;
11707 
11708 	/* Shutdown the mailbox command sub-system */
11709 	lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
11710 
11711 	lpfc_hba_down_prep(phba);
11712 
11713 	/* Disable softirqs, including timers from obtaining phba->hbalock */
11714 	local_bh_disable();
11715 
11716 	lpfc_fabric_abort_hba(phba);
11717 
11718 	spin_lock_irqsave(&phba->hbalock, flags);
11719 
11720 	/*
11721 	 * Error everything on the txq since these iocbs
11722 	 * have not been given to the FW yet.
11723 	 */
11724 	if (phba->sli_rev != LPFC_SLI_REV4) {
11725 		for (i = 0; i < psli->num_rings; i++) {
11726 			pring = &psli->sli3_ring[i];
11727 			/* Only slow rings */
11728 			if (pring->ringno == LPFC_ELS_RING) {
11729 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
11730 				/* Set the lpfc data pending flag */
11731 				set_bit(LPFC_DATA_READY, &phba->data_flags);
11732 			}
11733 			list_splice_init(&pring->txq, &completions);
11734 		}
11735 	} else {
11736 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11737 			pring = qp->pring;
11738 			if (!pring)
11739 				continue;
11740 			spin_lock(&pring->ring_lock);
11741 			list_splice_init(&pring->txq, &completions);
11742 			spin_unlock(&pring->ring_lock);
11743 			if (pring == phba->sli4_hba.els_wq->pring) {
11744 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
11745 				/* Set the lpfc data pending flag */
11746 				set_bit(LPFC_DATA_READY, &phba->data_flags);
11747 			}
11748 		}
11749 	}
11750 	spin_unlock_irqrestore(&phba->hbalock, flags);
11751 
11752 	/* Cancel all the IOCBs from the completions list */
11753 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
11754 			      IOERR_SLI_DOWN);
11755 
11756 	spin_lock_irqsave(&phba->hbalock, flags);
11757 	list_splice_init(&phba->elsbuf, &completions);
11758 	phba->elsbuf_cnt = 0;
11759 	phba->elsbuf_prev_cnt = 0;
11760 	spin_unlock_irqrestore(&phba->hbalock, flags);
11761 
11762 	while (!list_empty(&completions)) {
11763 		list_remove_head(&completions, buf_ptr,
11764 			struct lpfc_dmabuf, list);
11765 		lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
11766 		kfree(buf_ptr);
11767 	}
11768 
11769 	/* Enable softirqs again, done with phba->hbalock */
11770 	local_bh_enable();
11771 
11772 	/* Return any active mbox cmds */
11773 	del_timer_sync(&psli->mbox_tmo);
11774 
11775 	spin_lock_irqsave(&phba->pport->work_port_lock, flags);
11776 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
11777 	spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
11778 
11779 	return 1;
11780 }
11781 
11782 /**
11783  * lpfc_sli_pcimem_bcopy - SLI memory copy function
11784  * @srcp: Source memory pointer.
11785  * @destp: Destination memory pointer.
11786  * @cnt: Number of words required to be copied.
11787  *
11788  * This function is used for copying data between driver memory
11789  * and the SLI memory. This function also changes the endianness
11790  * of each word if native endianness is different from SLI
11791  * endianness. This function can be called with or without
11792  * lock.
11793  **/
11794 void
11795 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
11796 {
11797 	uint32_t *src = srcp;
11798 	uint32_t *dest = destp;
11799 	uint32_t ldata;
11800 	int i;
11801 
11802 	for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
11803 		ldata = *src;
11804 		ldata = le32_to_cpu(ldata);
11805 		*dest = ldata;
11806 		src++;
11807 		dest++;
11808 	}
11809 }
11810 
11811 
11812 /**
11813  * lpfc_sli_bemem_bcopy - SLI memory copy function
11814  * @srcp: Source memory pointer.
11815  * @destp: Destination memory pointer.
11816  * @cnt: Number of words required to be copied.
11817  *
11818  * This function is used for copying data between a data structure
11819  * with big endian representation to local endianness.
11820  * This function can be called with or without lock.
11821  **/
11822 void
11823 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
11824 {
11825 	uint32_t *src = srcp;
11826 	uint32_t *dest = destp;
11827 	uint32_t ldata;
11828 	int i;
11829 
11830 	for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
11831 		ldata = *src;
11832 		ldata = be32_to_cpu(ldata);
11833 		*dest = ldata;
11834 		src++;
11835 		dest++;
11836 	}
11837 }
11838 
11839 /**
11840  * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
11841  * @phba: Pointer to HBA context object.
11842  * @pring: Pointer to driver SLI ring object.
11843  * @mp: Pointer to driver buffer object.
11844  *
11845  * This function is called with no lock held.
11846  * It always return zero after adding the buffer to the postbufq
11847  * buffer list.
11848  **/
11849 int
11850 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11851 			 struct lpfc_dmabuf *mp)
11852 {
11853 	/* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
11854 	   later */
11855 	spin_lock_irq(&phba->hbalock);
11856 	list_add_tail(&mp->list, &pring->postbufq);
11857 	pring->postbufq_cnt++;
11858 	spin_unlock_irq(&phba->hbalock);
11859 	return 0;
11860 }
11861 
11862 /**
11863  * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
11864  * @phba: Pointer to HBA context object.
11865  *
11866  * When HBQ is enabled, buffers are searched based on tags. This function
11867  * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
11868  * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
11869  * does not conflict with tags of buffer posted for unsolicited events.
11870  * The function returns the allocated tag. The function is called with
11871  * no locks held.
11872  **/
11873 uint32_t
11874 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
11875 {
11876 	spin_lock_irq(&phba->hbalock);
11877 	phba->buffer_tag_count++;
11878 	/*
11879 	 * Always set the QUE_BUFTAG_BIT to distiguish between
11880 	 * a tag assigned by HBQ.
11881 	 */
11882 	phba->buffer_tag_count |= QUE_BUFTAG_BIT;
11883 	spin_unlock_irq(&phba->hbalock);
11884 	return phba->buffer_tag_count;
11885 }
11886 
11887 /**
11888  * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
11889  * @phba: Pointer to HBA context object.
11890  * @pring: Pointer to driver SLI ring object.
11891  * @tag: Buffer tag.
11892  *
11893  * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
11894  * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
11895  * iocb is posted to the response ring with the tag of the buffer.
11896  * This function searches the pring->postbufq list using the tag
11897  * to find buffer associated with CMD_IOCB_RET_XRI64_CX
11898  * iocb. If the buffer is found then lpfc_dmabuf object of the
11899  * buffer is returned to the caller else NULL is returned.
11900  * This function is called with no lock held.
11901  **/
11902 struct lpfc_dmabuf *
11903 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11904 			uint32_t tag)
11905 {
11906 	struct lpfc_dmabuf *mp, *next_mp;
11907 	struct list_head *slp = &pring->postbufq;
11908 
11909 	/* Search postbufq, from the beginning, looking for a match on tag */
11910 	spin_lock_irq(&phba->hbalock);
11911 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
11912 		if (mp->buffer_tag == tag) {
11913 			list_del_init(&mp->list);
11914 			pring->postbufq_cnt--;
11915 			spin_unlock_irq(&phba->hbalock);
11916 			return mp;
11917 		}
11918 	}
11919 
11920 	spin_unlock_irq(&phba->hbalock);
11921 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11922 			"0402 Cannot find virtual addr for buffer tag on "
11923 			"ring %d Data x%lx x%px x%px x%x\n",
11924 			pring->ringno, (unsigned long) tag,
11925 			slp->next, slp->prev, pring->postbufq_cnt);
11926 
11927 	return NULL;
11928 }
11929 
11930 /**
11931  * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
11932  * @phba: Pointer to HBA context object.
11933  * @pring: Pointer to driver SLI ring object.
11934  * @phys: DMA address of the buffer.
11935  *
11936  * This function searches the buffer list using the dma_address
11937  * of unsolicited event to find the driver's lpfc_dmabuf object
11938  * corresponding to the dma_address. The function returns the
11939  * lpfc_dmabuf object if a buffer is found else it returns NULL.
11940  * This function is called by the ct and els unsolicited event
11941  * handlers to get the buffer associated with the unsolicited
11942  * event.
11943  *
11944  * This function is called with no lock held.
11945  **/
11946 struct lpfc_dmabuf *
11947 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11948 			 dma_addr_t phys)
11949 {
11950 	struct lpfc_dmabuf *mp, *next_mp;
11951 	struct list_head *slp = &pring->postbufq;
11952 
11953 	/* Search postbufq, from the beginning, looking for a match on phys */
11954 	spin_lock_irq(&phba->hbalock);
11955 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
11956 		if (mp->phys == phys) {
11957 			list_del_init(&mp->list);
11958 			pring->postbufq_cnt--;
11959 			spin_unlock_irq(&phba->hbalock);
11960 			return mp;
11961 		}
11962 	}
11963 
11964 	spin_unlock_irq(&phba->hbalock);
11965 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11966 			"0410 Cannot find virtual addr for mapped buf on "
11967 			"ring %d Data x%llx x%px x%px x%x\n",
11968 			pring->ringno, (unsigned long long)phys,
11969 			slp->next, slp->prev, pring->postbufq_cnt);
11970 	return NULL;
11971 }
11972 
11973 /**
11974  * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
11975  * @phba: Pointer to HBA context object.
11976  * @cmdiocb: Pointer to driver command iocb object.
11977  * @rspiocb: Pointer to driver response iocb object.
11978  *
11979  * This function is the completion handler for the abort iocbs for
11980  * ELS commands. This function is called from the ELS ring event
11981  * handler with no lock held. This function frees memory resources
11982  * associated with the abort iocb.
11983  **/
11984 static void
11985 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11986 			struct lpfc_iocbq *rspiocb)
11987 {
11988 	u32 ulp_status = get_job_ulpstatus(phba, rspiocb);
11989 	u32 ulp_word4 = get_job_word4(phba, rspiocb);
11990 	u8 cmnd = get_job_cmnd(phba, cmdiocb);
11991 
11992 	if (ulp_status) {
11993 		/*
11994 		 * Assume that the port already completed and returned, or
11995 		 * will return the iocb. Just Log the message.
11996 		 */
11997 		if (phba->sli_rev < LPFC_SLI_REV4) {
11998 			if (cmnd == CMD_ABORT_XRI_CX &&
11999 			    ulp_status == IOSTAT_LOCAL_REJECT &&
12000 			    ulp_word4 == IOERR_ABORT_REQUESTED) {
12001 				goto release_iocb;
12002 			}
12003 		}
12004 
12005 		lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
12006 				"0327 Cannot abort els iocb x%px "
12007 				"with io cmd xri %x abort tag : x%x, "
12008 				"abort status %x abort code %x\n",
12009 				cmdiocb, get_job_abtsiotag(phba, cmdiocb),
12010 				(phba->sli_rev == LPFC_SLI_REV4) ?
12011 				get_wqe_reqtag(cmdiocb) :
12012 				cmdiocb->iocb.un.acxri.abortContextTag,
12013 				ulp_status, ulp_word4);
12014 
12015 	}
12016 release_iocb:
12017 	lpfc_sli_release_iocbq(phba, cmdiocb);
12018 	return;
12019 }
12020 
12021 /**
12022  * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
12023  * @phba: Pointer to HBA context object.
12024  * @cmdiocb: Pointer to driver command iocb object.
12025  * @rspiocb: Pointer to driver response iocb object.
12026  *
12027  * The function is called from SLI ring event handler with no
12028  * lock held. This function is the completion handler for ELS commands
12029  * which are aborted. The function frees memory resources used for
12030  * the aborted ELS commands.
12031  **/
12032 void
12033 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
12034 		     struct lpfc_iocbq *rspiocb)
12035 {
12036 	struct lpfc_nodelist *ndlp = NULL;
12037 	IOCB_t *irsp;
12038 	u32 ulp_command, ulp_status, ulp_word4, iotag;
12039 
12040 	ulp_command = get_job_cmnd(phba, cmdiocb);
12041 	ulp_status = get_job_ulpstatus(phba, rspiocb);
12042 	ulp_word4 = get_job_word4(phba, rspiocb);
12043 
12044 	if (phba->sli_rev == LPFC_SLI_REV4) {
12045 		iotag = get_wqe_reqtag(cmdiocb);
12046 	} else {
12047 		irsp = &rspiocb->iocb;
12048 		iotag = irsp->ulpIoTag;
12049 	}
12050 
12051 	/* ELS cmd tag <ulpIoTag> completes */
12052 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
12053 			"0139 Ignoring ELS cmd code x%x completion Data: "
12054 			"x%x x%x x%x\n",
12055 			ulp_command, ulp_status, ulp_word4, iotag);
12056 
12057 	/*
12058 	 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp
12059 	 * if exchange is busy.
12060 	 */
12061 	if (ulp_command == CMD_GEN_REQUEST64_CR) {
12062 		ndlp = cmdiocb->context_un.ndlp;
12063 		lpfc_ct_free_iocb(phba, cmdiocb);
12064 	} else {
12065 		ndlp = (struct lpfc_nodelist *) cmdiocb->context1;
12066 		lpfc_els_free_iocb(phba, cmdiocb);
12067 	}
12068 
12069 	lpfc_nlp_put(ndlp);
12070 }
12071 
12072 /**
12073  * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
12074  * @phba: Pointer to HBA context object.
12075  * @pring: Pointer to driver SLI ring object.
12076  * @cmdiocb: Pointer to driver command iocb object.
12077  * @cmpl: completion function.
12078  *
12079  * This function issues an abort iocb for the provided command iocb. In case
12080  * of unloading, the abort iocb will not be issued to commands on the ELS
12081  * ring. Instead, the callback function shall be changed to those commands
12082  * so that nothing happens when them finishes. This function is called with
12083  * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS
12084  * when the command iocb is an abort request.
12085  *
12086  **/
12087 int
12088 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
12089 			   struct lpfc_iocbq *cmdiocb, void *cmpl)
12090 {
12091 	struct lpfc_vport *vport = cmdiocb->vport;
12092 	struct lpfc_iocbq *abtsiocbp;
12093 	int retval = IOCB_ERROR;
12094 	unsigned long iflags;
12095 	struct lpfc_nodelist *ndlp = NULL;
12096 	u32 ulp_command = get_job_cmnd(phba, cmdiocb);
12097 	u16 ulp_context, iotag;
12098 	bool ia;
12099 
12100 	/*
12101 	 * There are certain command types we don't want to abort.  And we
12102 	 * don't want to abort commands that are already in the process of
12103 	 * being aborted.
12104 	 */
12105 	if (ulp_command == CMD_ABORT_XRI_WQE ||
12106 	    ulp_command == CMD_ABORT_XRI_CN ||
12107 	    ulp_command == CMD_CLOSE_XRI_CN ||
12108 	    cmdiocb->cmd_flag & LPFC_DRIVER_ABORTED)
12109 		return IOCB_ABORTING;
12110 
12111 	if (!pring) {
12112 		if (cmdiocb->cmd_flag & LPFC_IO_FABRIC)
12113 			cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl;
12114 		else
12115 			cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl;
12116 		return retval;
12117 	}
12118 
12119 	/*
12120 	 * If we're unloading, don't abort iocb on the ELS ring, but change
12121 	 * the callback so that nothing happens when it finishes.
12122 	 */
12123 	if ((vport->load_flag & FC_UNLOADING) &&
12124 	    pring->ringno == LPFC_ELS_RING) {
12125 		if (cmdiocb->cmd_flag & LPFC_IO_FABRIC)
12126 			cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl;
12127 		else
12128 			cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl;
12129 		return retval;
12130 	}
12131 
12132 	/* issue ABTS for this IOCB based on iotag */
12133 	abtsiocbp = __lpfc_sli_get_iocbq(phba);
12134 	if (abtsiocbp == NULL)
12135 		return IOCB_NORESOURCE;
12136 
12137 	/* This signals the response to set the correct status
12138 	 * before calling the completion handler
12139 	 */
12140 	cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED;
12141 
12142 	if (phba->sli_rev == LPFC_SLI_REV4) {
12143 		ulp_context = cmdiocb->sli4_xritag;
12144 		iotag = abtsiocbp->iotag;
12145 	} else {
12146 		iotag = cmdiocb->iocb.ulpIoTag;
12147 		if (pring->ringno == LPFC_ELS_RING) {
12148 			ndlp = (struct lpfc_nodelist *)(cmdiocb->context1);
12149 			ulp_context = ndlp->nlp_rpi;
12150 		} else {
12151 			ulp_context = cmdiocb->iocb.ulpContext;
12152 		}
12153 	}
12154 
12155 	if (phba->link_state < LPFC_LINK_UP ||
12156 	    (phba->sli_rev == LPFC_SLI_REV4 &&
12157 	     phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN))
12158 		ia = true;
12159 	else
12160 		ia = false;
12161 
12162 	lpfc_sli_prep_abort_xri(phba, abtsiocbp, ulp_context, iotag,
12163 				cmdiocb->iocb.ulpClass,
12164 				LPFC_WQE_CQ_ID_DEFAULT, ia);
12165 
12166 	abtsiocbp->vport = vport;
12167 
12168 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
12169 	abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
12170 	if (cmdiocb->cmd_flag & LPFC_IO_FCP)
12171 		abtsiocbp->cmd_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX);
12172 
12173 	if (cmdiocb->cmd_flag & LPFC_IO_FOF)
12174 		abtsiocbp->cmd_flag |= LPFC_IO_FOF;
12175 
12176 	if (cmpl)
12177 		abtsiocbp->cmd_cmpl = cmpl;
12178 	else
12179 		abtsiocbp->cmd_cmpl = lpfc_sli_abort_els_cmpl;
12180 	abtsiocbp->vport = vport;
12181 
12182 	if (phba->sli_rev == LPFC_SLI_REV4) {
12183 		pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
12184 		if (unlikely(pring == NULL))
12185 			goto abort_iotag_exit;
12186 		/* Note: both hbalock and ring_lock need to be set here */
12187 		spin_lock_irqsave(&pring->ring_lock, iflags);
12188 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
12189 			abtsiocbp, 0);
12190 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
12191 	} else {
12192 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
12193 			abtsiocbp, 0);
12194 	}
12195 
12196 abort_iotag_exit:
12197 
12198 	lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
12199 			 "0339 Abort IO XRI x%x, Original iotag x%x, "
12200 			 "abort tag x%x Cmdjob : x%px Abortjob : x%px "
12201 			 "retval x%x\n",
12202 			 ulp_context, (phba->sli_rev == LPFC_SLI_REV4) ?
12203 			 cmdiocb->iotag : iotag, iotag, cmdiocb, abtsiocbp,
12204 			 retval);
12205 	if (retval) {
12206 		cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED;
12207 		__lpfc_sli_release_iocbq(phba, abtsiocbp);
12208 	}
12209 
12210 	/*
12211 	 * Caller to this routine should check for IOCB_ERROR
12212 	 * and handle it properly.  This routine no longer removes
12213 	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
12214 	 */
12215 	return retval;
12216 }
12217 
12218 /**
12219  * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
12220  * @phba: pointer to lpfc HBA data structure.
12221  *
12222  * This routine will abort all pending and outstanding iocbs to an HBA.
12223  **/
12224 void
12225 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
12226 {
12227 	struct lpfc_sli *psli = &phba->sli;
12228 	struct lpfc_sli_ring *pring;
12229 	struct lpfc_queue *qp = NULL;
12230 	int i;
12231 
12232 	if (phba->sli_rev != LPFC_SLI_REV4) {
12233 		for (i = 0; i < psli->num_rings; i++) {
12234 			pring = &psli->sli3_ring[i];
12235 			lpfc_sli_abort_iocb_ring(phba, pring);
12236 		}
12237 		return;
12238 	}
12239 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
12240 		pring = qp->pring;
12241 		if (!pring)
12242 			continue;
12243 		lpfc_sli_abort_iocb_ring(phba, pring);
12244 	}
12245 }
12246 
12247 /**
12248  * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts
12249  * @iocbq: Pointer to iocb object.
12250  * @vport: Pointer to driver virtual port object.
12251  *
12252  * This function acts as an iocb filter for functions which abort FCP iocbs.
12253  *
12254  * Return values
12255  * -ENODEV, if a null iocb or vport ptr is encountered
12256  * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as
12257  *          driver already started the abort process, or is an abort iocb itself
12258  * 0, passes criteria for aborting the FCP I/O iocb
12259  **/
12260 static int
12261 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq,
12262 				     struct lpfc_vport *vport)
12263 {
12264 	u8 ulp_command;
12265 
12266 	/* No null ptr vports */
12267 	if (!iocbq || iocbq->vport != vport)
12268 		return -ENODEV;
12269 
12270 	/* iocb must be for FCP IO, already exists on the TX cmpl queue,
12271 	 * can't be premarked as driver aborted, nor be an ABORT iocb itself
12272 	 */
12273 	ulp_command = get_job_cmnd(vport->phba, iocbq);
12274 	if (!(iocbq->cmd_flag & LPFC_IO_FCP) ||
12275 	    !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ) ||
12276 	    (iocbq->cmd_flag & LPFC_DRIVER_ABORTED) ||
12277 	    (ulp_command == CMD_ABORT_XRI_CN ||
12278 	     ulp_command == CMD_CLOSE_XRI_CN ||
12279 	     ulp_command == CMD_ABORT_XRI_WQE))
12280 		return -EINVAL;
12281 
12282 	return 0;
12283 }
12284 
12285 /**
12286  * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target
12287  * @iocbq: Pointer to driver iocb object.
12288  * @vport: Pointer to driver virtual port object.
12289  * @tgt_id: SCSI ID of the target.
12290  * @lun_id: LUN ID of the scsi device.
12291  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
12292  *
12293  * This function acts as an iocb filter for validating a lun/SCSI target/SCSI
12294  * host.
12295  *
12296  * It will return
12297  * 0 if the filtering criteria is met for the given iocb and will return
12298  * 1 if the filtering criteria is not met.
12299  * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
12300  * given iocb is for the SCSI device specified by vport, tgt_id and
12301  * lun_id parameter.
12302  * If ctx_cmd == LPFC_CTX_TGT,  the function returns 0 only if the
12303  * given iocb is for the SCSI target specified by vport and tgt_id
12304  * parameters.
12305  * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
12306  * given iocb is for the SCSI host associated with the given vport.
12307  * This function is called with no locks held.
12308  **/
12309 static int
12310 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
12311 			   uint16_t tgt_id, uint64_t lun_id,
12312 			   lpfc_ctx_cmd ctx_cmd)
12313 {
12314 	struct lpfc_io_buf *lpfc_cmd;
12315 	int rc = 1;
12316 
12317 	lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
12318 
12319 	if (lpfc_cmd->pCmd == NULL)
12320 		return rc;
12321 
12322 	switch (ctx_cmd) {
12323 	case LPFC_CTX_LUN:
12324 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
12325 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
12326 		    (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
12327 			rc = 0;
12328 		break;
12329 	case LPFC_CTX_TGT:
12330 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
12331 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
12332 			rc = 0;
12333 		break;
12334 	case LPFC_CTX_HOST:
12335 		rc = 0;
12336 		break;
12337 	default:
12338 		printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
12339 			__func__, ctx_cmd);
12340 		break;
12341 	}
12342 
12343 	return rc;
12344 }
12345 
12346 /**
12347  * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
12348  * @vport: Pointer to virtual port.
12349  * @tgt_id: SCSI ID of the target.
12350  * @lun_id: LUN ID of the scsi device.
12351  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
12352  *
12353  * This function returns number of FCP commands pending for the vport.
12354  * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
12355  * commands pending on the vport associated with SCSI device specified
12356  * by tgt_id and lun_id parameters.
12357  * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
12358  * commands pending on the vport associated with SCSI target specified
12359  * by tgt_id parameter.
12360  * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
12361  * commands pending on the vport.
12362  * This function returns the number of iocbs which satisfy the filter.
12363  * This function is called without any lock held.
12364  **/
12365 int
12366 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
12367 		  lpfc_ctx_cmd ctx_cmd)
12368 {
12369 	struct lpfc_hba *phba = vport->phba;
12370 	struct lpfc_iocbq *iocbq;
12371 	int sum, i;
12372 	unsigned long iflags;
12373 	u8 ulp_command;
12374 
12375 	spin_lock_irqsave(&phba->hbalock, iflags);
12376 	for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
12377 		iocbq = phba->sli.iocbq_lookup[i];
12378 
12379 		if (!iocbq || iocbq->vport != vport)
12380 			continue;
12381 		if (!(iocbq->cmd_flag & LPFC_IO_FCP) ||
12382 		    !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ))
12383 			continue;
12384 
12385 		/* Include counting outstanding aborts */
12386 		ulp_command = get_job_cmnd(phba, iocbq);
12387 		if (ulp_command == CMD_ABORT_XRI_CN ||
12388 		    ulp_command == CMD_CLOSE_XRI_CN ||
12389 		    ulp_command == CMD_ABORT_XRI_WQE) {
12390 			sum++;
12391 			continue;
12392 		}
12393 
12394 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
12395 					       ctx_cmd) == 0)
12396 			sum++;
12397 	}
12398 	spin_unlock_irqrestore(&phba->hbalock, iflags);
12399 
12400 	return sum;
12401 }
12402 
12403 /**
12404  * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
12405  * @phba: Pointer to HBA context object
12406  * @cmdiocb: Pointer to command iocb object.
12407  * @rspiocb: Pointer to response iocb object.
12408  *
12409  * This function is called when an aborted FCP iocb completes. This
12410  * function is called by the ring event handler with no lock held.
12411  * This function frees the iocb.
12412  **/
12413 void
12414 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
12415 			struct lpfc_iocbq *rspiocb)
12416 {
12417 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12418 			"3096 ABORT_XRI_CX completing on rpi x%x "
12419 			"original iotag x%x, abort cmd iotag x%x "
12420 			"status 0x%x, reason 0x%x\n",
12421 			(phba->sli_rev == LPFC_SLI_REV4) ?
12422 			cmdiocb->sli4_xritag :
12423 			cmdiocb->iocb.un.acxri.abortContextTag,
12424 			get_job_abtsiotag(phba, cmdiocb),
12425 			cmdiocb->iotag, get_job_ulpstatus(phba, rspiocb),
12426 			get_job_word4(phba, rspiocb));
12427 	lpfc_sli_release_iocbq(phba, cmdiocb);
12428 	return;
12429 }
12430 
12431 /**
12432  * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
12433  * @vport: Pointer to virtual port.
12434  * @tgt_id: SCSI ID of the target.
12435  * @lun_id: LUN ID of the scsi device.
12436  * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
12437  *
12438  * This function sends an abort command for every SCSI command
12439  * associated with the given virtual port pending on the ring
12440  * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then
12441  * lpfc_sli_validate_fcp_iocb function.  The ordering for validation before
12442  * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort
12443  * followed by lpfc_sli_validate_fcp_iocb.
12444  *
12445  * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
12446  * FCP iocbs associated with lun specified by tgt_id and lun_id
12447  * parameters
12448  * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
12449  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
12450  * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
12451  * FCP iocbs associated with virtual port.
12452  * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4
12453  * lpfc_sli4_calc_ring is used.
12454  * This function returns number of iocbs it failed to abort.
12455  * This function is called with no locks held.
12456  **/
12457 int
12458 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id,
12459 		    lpfc_ctx_cmd abort_cmd)
12460 {
12461 	struct lpfc_hba *phba = vport->phba;
12462 	struct lpfc_sli_ring *pring = NULL;
12463 	struct lpfc_iocbq *iocbq;
12464 	int errcnt = 0, ret_val = 0;
12465 	unsigned long iflags;
12466 	int i;
12467 
12468 	/* all I/Os are in process of being flushed */
12469 	if (phba->hba_flag & HBA_IOQ_FLUSH)
12470 		return errcnt;
12471 
12472 	for (i = 1; i <= phba->sli.last_iotag; i++) {
12473 		iocbq = phba->sli.iocbq_lookup[i];
12474 
12475 		if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport))
12476 			continue;
12477 
12478 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
12479 					       abort_cmd) != 0)
12480 			continue;
12481 
12482 		spin_lock_irqsave(&phba->hbalock, iflags);
12483 		if (phba->sli_rev == LPFC_SLI_REV3) {
12484 			pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
12485 		} else if (phba->sli_rev == LPFC_SLI_REV4) {
12486 			pring = lpfc_sli4_calc_ring(phba, iocbq);
12487 		}
12488 		ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq,
12489 						     lpfc_sli_abort_fcp_cmpl);
12490 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12491 		if (ret_val != IOCB_SUCCESS)
12492 			errcnt++;
12493 	}
12494 
12495 	return errcnt;
12496 }
12497 
12498 /**
12499  * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
12500  * @vport: Pointer to virtual port.
12501  * @pring: Pointer to driver SLI ring object.
12502  * @tgt_id: SCSI ID of the target.
12503  * @lun_id: LUN ID of the scsi device.
12504  * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
12505  *
12506  * This function sends an abort command for every SCSI command
12507  * associated with the given virtual port pending on the ring
12508  * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then
12509  * lpfc_sli_validate_fcp_iocb function.  The ordering for validation before
12510  * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort
12511  * followed by lpfc_sli_validate_fcp_iocb.
12512  *
12513  * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
12514  * FCP iocbs associated with lun specified by tgt_id and lun_id
12515  * parameters
12516  * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
12517  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
12518  * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
12519  * FCP iocbs associated with virtual port.
12520  * This function returns number of iocbs it aborted .
12521  * This function is called with no locks held right after a taskmgmt
12522  * command is sent.
12523  **/
12524 int
12525 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
12526 			uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
12527 {
12528 	struct lpfc_hba *phba = vport->phba;
12529 	struct lpfc_io_buf *lpfc_cmd;
12530 	struct lpfc_iocbq *abtsiocbq;
12531 	struct lpfc_nodelist *ndlp = NULL;
12532 	struct lpfc_iocbq *iocbq;
12533 	int sum, i, ret_val;
12534 	unsigned long iflags;
12535 	struct lpfc_sli_ring *pring_s4 = NULL;
12536 	u16 ulp_context, iotag, cqid = LPFC_WQE_CQ_ID_DEFAULT;
12537 	bool ia;
12538 
12539 	spin_lock_irqsave(&phba->hbalock, iflags);
12540 
12541 	/* all I/Os are in process of being flushed */
12542 	if (phba->hba_flag & HBA_IOQ_FLUSH) {
12543 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12544 		return 0;
12545 	}
12546 	sum = 0;
12547 
12548 	for (i = 1; i <= phba->sli.last_iotag; i++) {
12549 		iocbq = phba->sli.iocbq_lookup[i];
12550 
12551 		if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport))
12552 			continue;
12553 
12554 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
12555 					       cmd) != 0)
12556 			continue;
12557 
12558 		/* Guard against IO completion being called at same time */
12559 		lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
12560 		spin_lock(&lpfc_cmd->buf_lock);
12561 
12562 		if (!lpfc_cmd->pCmd) {
12563 			spin_unlock(&lpfc_cmd->buf_lock);
12564 			continue;
12565 		}
12566 
12567 		if (phba->sli_rev == LPFC_SLI_REV4) {
12568 			pring_s4 =
12569 			    phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring;
12570 			if (!pring_s4) {
12571 				spin_unlock(&lpfc_cmd->buf_lock);
12572 				continue;
12573 			}
12574 			/* Note: both hbalock and ring_lock must be set here */
12575 			spin_lock(&pring_s4->ring_lock);
12576 		}
12577 
12578 		/*
12579 		 * If the iocbq is already being aborted, don't take a second
12580 		 * action, but do count it.
12581 		 */
12582 		if ((iocbq->cmd_flag & LPFC_DRIVER_ABORTED) ||
12583 		    !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) {
12584 			if (phba->sli_rev == LPFC_SLI_REV4)
12585 				spin_unlock(&pring_s4->ring_lock);
12586 			spin_unlock(&lpfc_cmd->buf_lock);
12587 			continue;
12588 		}
12589 
12590 		/* issue ABTS for this IOCB based on iotag */
12591 		abtsiocbq = __lpfc_sli_get_iocbq(phba);
12592 		if (!abtsiocbq) {
12593 			if (phba->sli_rev == LPFC_SLI_REV4)
12594 				spin_unlock(&pring_s4->ring_lock);
12595 			spin_unlock(&lpfc_cmd->buf_lock);
12596 			continue;
12597 		}
12598 
12599 		if (phba->sli_rev == LPFC_SLI_REV4) {
12600 			iotag = abtsiocbq->iotag;
12601 			ulp_context = iocbq->sli4_xritag;
12602 			cqid = lpfc_cmd->hdwq->io_cq_map;
12603 		} else {
12604 			iotag = iocbq->iocb.ulpIoTag;
12605 			if (pring->ringno == LPFC_ELS_RING) {
12606 				ndlp = (struct lpfc_nodelist *)(iocbq->context1);
12607 				ulp_context = ndlp->nlp_rpi;
12608 			} else {
12609 				ulp_context = iocbq->iocb.ulpContext;
12610 			}
12611 		}
12612 
12613 		ndlp = lpfc_cmd->rdata->pnode;
12614 
12615 		if (lpfc_is_link_up(phba) &&
12616 		    (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE))
12617 			ia = false;
12618 		else
12619 			ia = true;
12620 
12621 		lpfc_sli_prep_abort_xri(phba, abtsiocbq, ulp_context, iotag,
12622 					iocbq->iocb.ulpClass, cqid,
12623 					ia);
12624 
12625 		abtsiocbq->vport = vport;
12626 
12627 		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
12628 		abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
12629 		if (iocbq->cmd_flag & LPFC_IO_FCP)
12630 			abtsiocbq->cmd_flag |= LPFC_USE_FCPWQIDX;
12631 		if (iocbq->cmd_flag & LPFC_IO_FOF)
12632 			abtsiocbq->cmd_flag |= LPFC_IO_FOF;
12633 
12634 		/* Setup callback routine and issue the command. */
12635 		abtsiocbq->cmd_cmpl = lpfc_sli_abort_fcp_cmpl;
12636 
12637 		/*
12638 		 * Indicate the IO is being aborted by the driver and set
12639 		 * the caller's flag into the aborted IO.
12640 		 */
12641 		iocbq->cmd_flag |= LPFC_DRIVER_ABORTED;
12642 
12643 		if (phba->sli_rev == LPFC_SLI_REV4) {
12644 			ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
12645 							abtsiocbq, 0);
12646 			spin_unlock(&pring_s4->ring_lock);
12647 		} else {
12648 			ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
12649 							abtsiocbq, 0);
12650 		}
12651 
12652 		spin_unlock(&lpfc_cmd->buf_lock);
12653 
12654 		if (ret_val == IOCB_ERROR)
12655 			__lpfc_sli_release_iocbq(phba, abtsiocbq);
12656 		else
12657 			sum++;
12658 	}
12659 	spin_unlock_irqrestore(&phba->hbalock, iflags);
12660 	return sum;
12661 }
12662 
12663 /**
12664  * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
12665  * @phba: Pointer to HBA context object.
12666  * @cmdiocbq: Pointer to command iocb.
12667  * @rspiocbq: Pointer to response iocb.
12668  *
12669  * This function is the completion handler for iocbs issued using
12670  * lpfc_sli_issue_iocb_wait function. This function is called by the
12671  * ring event handler function without any lock held. This function
12672  * can be called from both worker thread context and interrupt
12673  * context. This function also can be called from other thread which
12674  * cleans up the SLI layer objects.
12675  * This function copy the contents of the response iocb to the
12676  * response iocb memory object provided by the caller of
12677  * lpfc_sli_issue_iocb_wait and then wakes up the thread which
12678  * sleeps for the iocb completion.
12679  **/
12680 static void
12681 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
12682 			struct lpfc_iocbq *cmdiocbq,
12683 			struct lpfc_iocbq *rspiocbq)
12684 {
12685 	wait_queue_head_t *pdone_q;
12686 	unsigned long iflags;
12687 	struct lpfc_io_buf *lpfc_cmd;
12688 	size_t offset = offsetof(struct lpfc_iocbq, wqe);
12689 
12690 	spin_lock_irqsave(&phba->hbalock, iflags);
12691 	if (cmdiocbq->cmd_flag & LPFC_IO_WAKE_TMO) {
12692 
12693 		/*
12694 		 * A time out has occurred for the iocb.  If a time out
12695 		 * completion handler has been supplied, call it.  Otherwise,
12696 		 * just free the iocbq.
12697 		 */
12698 
12699 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12700 		cmdiocbq->cmd_cmpl = cmdiocbq->wait_cmd_cmpl;
12701 		cmdiocbq->wait_cmd_cmpl = NULL;
12702 		if (cmdiocbq->cmd_cmpl)
12703 			(cmdiocbq->cmd_cmpl)(phba, cmdiocbq, NULL);
12704 		else
12705 			lpfc_sli_release_iocbq(phba, cmdiocbq);
12706 		return;
12707 	}
12708 
12709 	/* Copy the contents of the local rspiocb into the caller's buffer. */
12710 	cmdiocbq->cmd_flag |= LPFC_IO_WAKE;
12711 	if (cmdiocbq->context2 && rspiocbq)
12712 		memcpy((char *)cmdiocbq->context2 + offset,
12713 		       (char *)rspiocbq + offset, sizeof(*rspiocbq) - offset);
12714 
12715 	/* Set the exchange busy flag for task management commands */
12716 	if ((cmdiocbq->cmd_flag & LPFC_IO_FCP) &&
12717 		!(cmdiocbq->cmd_flag & LPFC_IO_LIBDFC)) {
12718 		lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf,
12719 			cur_iocbq);
12720 		if (rspiocbq && (rspiocbq->cmd_flag & LPFC_EXCHANGE_BUSY))
12721 			lpfc_cmd->flags |= LPFC_SBUF_XBUSY;
12722 		else
12723 			lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY;
12724 	}
12725 
12726 	pdone_q = cmdiocbq->context_un.wait_queue;
12727 	if (pdone_q)
12728 		wake_up(pdone_q);
12729 	spin_unlock_irqrestore(&phba->hbalock, iflags);
12730 	return;
12731 }
12732 
12733 /**
12734  * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
12735  * @phba: Pointer to HBA context object..
12736  * @piocbq: Pointer to command iocb.
12737  * @flag: Flag to test.
12738  *
12739  * This routine grabs the hbalock and then test the cmd_flag to
12740  * see if the passed in flag is set.
12741  * Returns:
12742  * 1 if flag is set.
12743  * 0 if flag is not set.
12744  **/
12745 static int
12746 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
12747 		 struct lpfc_iocbq *piocbq, uint32_t flag)
12748 {
12749 	unsigned long iflags;
12750 	int ret;
12751 
12752 	spin_lock_irqsave(&phba->hbalock, iflags);
12753 	ret = piocbq->cmd_flag & flag;
12754 	spin_unlock_irqrestore(&phba->hbalock, iflags);
12755 	return ret;
12756 
12757 }
12758 
12759 /**
12760  * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
12761  * @phba: Pointer to HBA context object..
12762  * @ring_number: Ring number
12763  * @piocb: Pointer to command iocb.
12764  * @prspiocbq: Pointer to response iocb.
12765  * @timeout: Timeout in number of seconds.
12766  *
12767  * This function issues the iocb to firmware and waits for the
12768  * iocb to complete. The cmd_cmpl field of the shall be used
12769  * to handle iocbs which time out. If the field is NULL, the
12770  * function shall free the iocbq structure.  If more clean up is
12771  * needed, the caller is expected to provide a completion function
12772  * that will provide the needed clean up.  If the iocb command is
12773  * not completed within timeout seconds, the function will either
12774  * free the iocbq structure (if cmd_cmpl == NULL) or execute the
12775  * completion function set in the cmd_cmpl field and then return
12776  * a status of IOCB_TIMEDOUT.  The caller should not free the iocb
12777  * resources if this function returns IOCB_TIMEDOUT.
12778  * The function waits for the iocb completion using an
12779  * non-interruptible wait.
12780  * This function will sleep while waiting for iocb completion.
12781  * So, this function should not be called from any context which
12782  * does not allow sleeping. Due to the same reason, this function
12783  * cannot be called with interrupt disabled.
12784  * This function assumes that the iocb completions occur while
12785  * this function sleep. So, this function cannot be called from
12786  * the thread which process iocb completion for this ring.
12787  * This function clears the cmd_flag of the iocb object before
12788  * issuing the iocb and the iocb completion handler sets this
12789  * flag and wakes this thread when the iocb completes.
12790  * The contents of the response iocb will be copied to prspiocbq
12791  * by the completion handler when the command completes.
12792  * This function returns IOCB_SUCCESS when success.
12793  * This function is called with no lock held.
12794  **/
12795 int
12796 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
12797 			 uint32_t ring_number,
12798 			 struct lpfc_iocbq *piocb,
12799 			 struct lpfc_iocbq *prspiocbq,
12800 			 uint32_t timeout)
12801 {
12802 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
12803 	long timeleft, timeout_req = 0;
12804 	int retval = IOCB_SUCCESS;
12805 	uint32_t creg_val;
12806 	struct lpfc_iocbq *iocb;
12807 	int txq_cnt = 0;
12808 	int txcmplq_cnt = 0;
12809 	struct lpfc_sli_ring *pring;
12810 	unsigned long iflags;
12811 	bool iocb_completed = true;
12812 
12813 	if (phba->sli_rev >= LPFC_SLI_REV4) {
12814 		lpfc_sli_prep_wqe(phba, piocb);
12815 
12816 		pring = lpfc_sli4_calc_ring(phba, piocb);
12817 	} else
12818 		pring = &phba->sli.sli3_ring[ring_number];
12819 	/*
12820 	 * If the caller has provided a response iocbq buffer, then context2
12821 	 * is NULL or its an error.
12822 	 */
12823 	if (prspiocbq) {
12824 		if (piocb->context2)
12825 			return IOCB_ERROR;
12826 		piocb->context2 = prspiocbq;
12827 	}
12828 
12829 	piocb->wait_cmd_cmpl = piocb->cmd_cmpl;
12830 	piocb->cmd_cmpl = lpfc_sli_wake_iocb_wait;
12831 	piocb->context_un.wait_queue = &done_q;
12832 	piocb->cmd_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
12833 
12834 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
12835 		if (lpfc_readl(phba->HCregaddr, &creg_val))
12836 			return IOCB_ERROR;
12837 		creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
12838 		writel(creg_val, phba->HCregaddr);
12839 		readl(phba->HCregaddr); /* flush */
12840 	}
12841 
12842 	retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
12843 				     SLI_IOCB_RET_IOCB);
12844 	if (retval == IOCB_SUCCESS) {
12845 		timeout_req = msecs_to_jiffies(timeout * 1000);
12846 		timeleft = wait_event_timeout(done_q,
12847 				lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
12848 				timeout_req);
12849 		spin_lock_irqsave(&phba->hbalock, iflags);
12850 		if (!(piocb->cmd_flag & LPFC_IO_WAKE)) {
12851 
12852 			/*
12853 			 * IOCB timed out.  Inform the wake iocb wait
12854 			 * completion function and set local status
12855 			 */
12856 
12857 			iocb_completed = false;
12858 			piocb->cmd_flag |= LPFC_IO_WAKE_TMO;
12859 		}
12860 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12861 		if (iocb_completed) {
12862 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12863 					"0331 IOCB wake signaled\n");
12864 			/* Note: we are not indicating if the IOCB has a success
12865 			 * status or not - that's for the caller to check.
12866 			 * IOCB_SUCCESS means just that the command was sent and
12867 			 * completed. Not that it completed successfully.
12868 			 * */
12869 		} else if (timeleft == 0) {
12870 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12871 					"0338 IOCB wait timeout error - no "
12872 					"wake response Data x%x\n", timeout);
12873 			retval = IOCB_TIMEDOUT;
12874 		} else {
12875 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12876 					"0330 IOCB wake NOT set, "
12877 					"Data x%x x%lx\n",
12878 					timeout, (timeleft / jiffies));
12879 			retval = IOCB_TIMEDOUT;
12880 		}
12881 	} else if (retval == IOCB_BUSY) {
12882 		if (phba->cfg_log_verbose & LOG_SLI) {
12883 			list_for_each_entry(iocb, &pring->txq, list) {
12884 				txq_cnt++;
12885 			}
12886 			list_for_each_entry(iocb, &pring->txcmplq, list) {
12887 				txcmplq_cnt++;
12888 			}
12889 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12890 				"2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
12891 				phba->iocb_cnt, txq_cnt, txcmplq_cnt);
12892 		}
12893 		return retval;
12894 	} else {
12895 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12896 				"0332 IOCB wait issue failed, Data x%x\n",
12897 				retval);
12898 		retval = IOCB_ERROR;
12899 	}
12900 
12901 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
12902 		if (lpfc_readl(phba->HCregaddr, &creg_val))
12903 			return IOCB_ERROR;
12904 		creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
12905 		writel(creg_val, phba->HCregaddr);
12906 		readl(phba->HCregaddr); /* flush */
12907 	}
12908 
12909 	if (prspiocbq)
12910 		piocb->context2 = NULL;
12911 
12912 	piocb->context_un.wait_queue = NULL;
12913 	piocb->cmd_cmpl = NULL;
12914 	return retval;
12915 }
12916 
12917 /**
12918  * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
12919  * @phba: Pointer to HBA context object.
12920  * @pmboxq: Pointer to driver mailbox object.
12921  * @timeout: Timeout in number of seconds.
12922  *
12923  * This function issues the mailbox to firmware and waits for the
12924  * mailbox command to complete. If the mailbox command is not
12925  * completed within timeout seconds, it returns MBX_TIMEOUT.
12926  * The function waits for the mailbox completion using an
12927  * interruptible wait. If the thread is woken up due to a
12928  * signal, MBX_TIMEOUT error is returned to the caller. Caller
12929  * should not free the mailbox resources, if this function returns
12930  * MBX_TIMEOUT.
12931  * This function will sleep while waiting for mailbox completion.
12932  * So, this function should not be called from any context which
12933  * does not allow sleeping. Due to the same reason, this function
12934  * cannot be called with interrupt disabled.
12935  * This function assumes that the mailbox completion occurs while
12936  * this function sleep. So, this function cannot be called from
12937  * the worker thread which processes mailbox completion.
12938  * This function is called in the context of HBA management
12939  * applications.
12940  * This function returns MBX_SUCCESS when successful.
12941  * This function is called with no lock held.
12942  **/
12943 int
12944 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
12945 			 uint32_t timeout)
12946 {
12947 	struct completion mbox_done;
12948 	int retval;
12949 	unsigned long flag;
12950 
12951 	pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
12952 	/* setup wake call as IOCB callback */
12953 	pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
12954 
12955 	/* setup context3 field to pass wait_queue pointer to wake function  */
12956 	init_completion(&mbox_done);
12957 	pmboxq->context3 = &mbox_done;
12958 	/* now issue the command */
12959 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
12960 	if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
12961 		wait_for_completion_timeout(&mbox_done,
12962 					    msecs_to_jiffies(timeout * 1000));
12963 
12964 		spin_lock_irqsave(&phba->hbalock, flag);
12965 		pmboxq->context3 = NULL;
12966 		/*
12967 		 * if LPFC_MBX_WAKE flag is set the mailbox is completed
12968 		 * else do not free the resources.
12969 		 */
12970 		if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
12971 			retval = MBX_SUCCESS;
12972 		} else {
12973 			retval = MBX_TIMEOUT;
12974 			pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
12975 		}
12976 		spin_unlock_irqrestore(&phba->hbalock, flag);
12977 	}
12978 	return retval;
12979 }
12980 
12981 /**
12982  * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
12983  * @phba: Pointer to HBA context.
12984  * @mbx_action: Mailbox shutdown options.
12985  *
12986  * This function is called to shutdown the driver's mailbox sub-system.
12987  * It first marks the mailbox sub-system is in a block state to prevent
12988  * the asynchronous mailbox command from issued off the pending mailbox
12989  * command queue. If the mailbox command sub-system shutdown is due to
12990  * HBA error conditions such as EEH or ERATT, this routine shall invoke
12991  * the mailbox sub-system flush routine to forcefully bring down the
12992  * mailbox sub-system. Otherwise, if it is due to normal condition (such
12993  * as with offline or HBA function reset), this routine will wait for the
12994  * outstanding mailbox command to complete before invoking the mailbox
12995  * sub-system flush routine to gracefully bring down mailbox sub-system.
12996  **/
12997 void
12998 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
12999 {
13000 	struct lpfc_sli *psli = &phba->sli;
13001 	unsigned long timeout;
13002 
13003 	if (mbx_action == LPFC_MBX_NO_WAIT) {
13004 		/* delay 100ms for port state */
13005 		msleep(100);
13006 		lpfc_sli_mbox_sys_flush(phba);
13007 		return;
13008 	}
13009 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
13010 
13011 	/* Disable softirqs, including timers from obtaining phba->hbalock */
13012 	local_bh_disable();
13013 
13014 	spin_lock_irq(&phba->hbalock);
13015 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
13016 
13017 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
13018 		/* Determine how long we might wait for the active mailbox
13019 		 * command to be gracefully completed by firmware.
13020 		 */
13021 		if (phba->sli.mbox_active)
13022 			timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
13023 						phba->sli.mbox_active) *
13024 						1000) + jiffies;
13025 		spin_unlock_irq(&phba->hbalock);
13026 
13027 		/* Enable softirqs again, done with phba->hbalock */
13028 		local_bh_enable();
13029 
13030 		while (phba->sli.mbox_active) {
13031 			/* Check active mailbox complete status every 2ms */
13032 			msleep(2);
13033 			if (time_after(jiffies, timeout))
13034 				/* Timeout, let the mailbox flush routine to
13035 				 * forcefully release active mailbox command
13036 				 */
13037 				break;
13038 		}
13039 	} else {
13040 		spin_unlock_irq(&phba->hbalock);
13041 
13042 		/* Enable softirqs again, done with phba->hbalock */
13043 		local_bh_enable();
13044 	}
13045 
13046 	lpfc_sli_mbox_sys_flush(phba);
13047 }
13048 
13049 /**
13050  * lpfc_sli_eratt_read - read sli-3 error attention events
13051  * @phba: Pointer to HBA context.
13052  *
13053  * This function is called to read the SLI3 device error attention registers
13054  * for possible error attention events. The caller must hold the hostlock
13055  * with spin_lock_irq().
13056  *
13057  * This function returns 1 when there is Error Attention in the Host Attention
13058  * Register and returns 0 otherwise.
13059  **/
13060 static int
13061 lpfc_sli_eratt_read(struct lpfc_hba *phba)
13062 {
13063 	uint32_t ha_copy;
13064 
13065 	/* Read chip Host Attention (HA) register */
13066 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
13067 		goto unplug_err;
13068 
13069 	if (ha_copy & HA_ERATT) {
13070 		/* Read host status register to retrieve error event */
13071 		if (lpfc_sli_read_hs(phba))
13072 			goto unplug_err;
13073 
13074 		/* Check if there is a deferred error condition is active */
13075 		if ((HS_FFER1 & phba->work_hs) &&
13076 		    ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
13077 		      HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
13078 			phba->hba_flag |= DEFER_ERATT;
13079 			/* Clear all interrupt enable conditions */
13080 			writel(0, phba->HCregaddr);
13081 			readl(phba->HCregaddr);
13082 		}
13083 
13084 		/* Set the driver HA work bitmap */
13085 		phba->work_ha |= HA_ERATT;
13086 		/* Indicate polling handles this ERATT */
13087 		phba->hba_flag |= HBA_ERATT_HANDLED;
13088 		return 1;
13089 	}
13090 	return 0;
13091 
13092 unplug_err:
13093 	/* Set the driver HS work bitmap */
13094 	phba->work_hs |= UNPLUG_ERR;
13095 	/* Set the driver HA work bitmap */
13096 	phba->work_ha |= HA_ERATT;
13097 	/* Indicate polling handles this ERATT */
13098 	phba->hba_flag |= HBA_ERATT_HANDLED;
13099 	return 1;
13100 }
13101 
13102 /**
13103  * lpfc_sli4_eratt_read - read sli-4 error attention events
13104  * @phba: Pointer to HBA context.
13105  *
13106  * This function is called to read the SLI4 device error attention registers
13107  * for possible error attention events. The caller must hold the hostlock
13108  * with spin_lock_irq().
13109  *
13110  * This function returns 1 when there is Error Attention in the Host Attention
13111  * Register and returns 0 otherwise.
13112  **/
13113 static int
13114 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
13115 {
13116 	uint32_t uerr_sta_hi, uerr_sta_lo;
13117 	uint32_t if_type, portsmphr;
13118 	struct lpfc_register portstat_reg;
13119 	u32 logmask;
13120 
13121 	/*
13122 	 * For now, use the SLI4 device internal unrecoverable error
13123 	 * registers for error attention. This can be changed later.
13124 	 */
13125 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
13126 	switch (if_type) {
13127 	case LPFC_SLI_INTF_IF_TYPE_0:
13128 		if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
13129 			&uerr_sta_lo) ||
13130 			lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
13131 			&uerr_sta_hi)) {
13132 			phba->work_hs |= UNPLUG_ERR;
13133 			phba->work_ha |= HA_ERATT;
13134 			phba->hba_flag |= HBA_ERATT_HANDLED;
13135 			return 1;
13136 		}
13137 		if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
13138 		    (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
13139 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13140 					"1423 HBA Unrecoverable error: "
13141 					"uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
13142 					"ue_mask_lo_reg=0x%x, "
13143 					"ue_mask_hi_reg=0x%x\n",
13144 					uerr_sta_lo, uerr_sta_hi,
13145 					phba->sli4_hba.ue_mask_lo,
13146 					phba->sli4_hba.ue_mask_hi);
13147 			phba->work_status[0] = uerr_sta_lo;
13148 			phba->work_status[1] = uerr_sta_hi;
13149 			phba->work_ha |= HA_ERATT;
13150 			phba->hba_flag |= HBA_ERATT_HANDLED;
13151 			return 1;
13152 		}
13153 		break;
13154 	case LPFC_SLI_INTF_IF_TYPE_2:
13155 	case LPFC_SLI_INTF_IF_TYPE_6:
13156 		if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
13157 			&portstat_reg.word0) ||
13158 			lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
13159 			&portsmphr)){
13160 			phba->work_hs |= UNPLUG_ERR;
13161 			phba->work_ha |= HA_ERATT;
13162 			phba->hba_flag |= HBA_ERATT_HANDLED;
13163 			return 1;
13164 		}
13165 		if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
13166 			phba->work_status[0] =
13167 				readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
13168 			phba->work_status[1] =
13169 				readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
13170 			logmask = LOG_TRACE_EVENT;
13171 			if (phba->work_status[0] ==
13172 				SLIPORT_ERR1_REG_ERR_CODE_2 &&
13173 			    phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART)
13174 				logmask = LOG_SLI;
13175 			lpfc_printf_log(phba, KERN_ERR, logmask,
13176 					"2885 Port Status Event: "
13177 					"port status reg 0x%x, "
13178 					"port smphr reg 0x%x, "
13179 					"error 1=0x%x, error 2=0x%x\n",
13180 					portstat_reg.word0,
13181 					portsmphr,
13182 					phba->work_status[0],
13183 					phba->work_status[1]);
13184 			phba->work_ha |= HA_ERATT;
13185 			phba->hba_flag |= HBA_ERATT_HANDLED;
13186 			return 1;
13187 		}
13188 		break;
13189 	case LPFC_SLI_INTF_IF_TYPE_1:
13190 	default:
13191 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13192 				"2886 HBA Error Attention on unsupported "
13193 				"if type %d.", if_type);
13194 		return 1;
13195 	}
13196 
13197 	return 0;
13198 }
13199 
13200 /**
13201  * lpfc_sli_check_eratt - check error attention events
13202  * @phba: Pointer to HBA context.
13203  *
13204  * This function is called from timer soft interrupt context to check HBA's
13205  * error attention register bit for error attention events.
13206  *
13207  * This function returns 1 when there is Error Attention in the Host Attention
13208  * Register and returns 0 otherwise.
13209  **/
13210 int
13211 lpfc_sli_check_eratt(struct lpfc_hba *phba)
13212 {
13213 	uint32_t ha_copy;
13214 
13215 	/* If somebody is waiting to handle an eratt, don't process it
13216 	 * here. The brdkill function will do this.
13217 	 */
13218 	if (phba->link_flag & LS_IGNORE_ERATT)
13219 		return 0;
13220 
13221 	/* Check if interrupt handler handles this ERATT */
13222 	spin_lock_irq(&phba->hbalock);
13223 	if (phba->hba_flag & HBA_ERATT_HANDLED) {
13224 		/* Interrupt handler has handled ERATT */
13225 		spin_unlock_irq(&phba->hbalock);
13226 		return 0;
13227 	}
13228 
13229 	/*
13230 	 * If there is deferred error attention, do not check for error
13231 	 * attention
13232 	 */
13233 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
13234 		spin_unlock_irq(&phba->hbalock);
13235 		return 0;
13236 	}
13237 
13238 	/* If PCI channel is offline, don't process it */
13239 	if (unlikely(pci_channel_offline(phba->pcidev))) {
13240 		spin_unlock_irq(&phba->hbalock);
13241 		return 0;
13242 	}
13243 
13244 	switch (phba->sli_rev) {
13245 	case LPFC_SLI_REV2:
13246 	case LPFC_SLI_REV3:
13247 		/* Read chip Host Attention (HA) register */
13248 		ha_copy = lpfc_sli_eratt_read(phba);
13249 		break;
13250 	case LPFC_SLI_REV4:
13251 		/* Read device Uncoverable Error (UERR) registers */
13252 		ha_copy = lpfc_sli4_eratt_read(phba);
13253 		break;
13254 	default:
13255 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13256 				"0299 Invalid SLI revision (%d)\n",
13257 				phba->sli_rev);
13258 		ha_copy = 0;
13259 		break;
13260 	}
13261 	spin_unlock_irq(&phba->hbalock);
13262 
13263 	return ha_copy;
13264 }
13265 
13266 /**
13267  * lpfc_intr_state_check - Check device state for interrupt handling
13268  * @phba: Pointer to HBA context.
13269  *
13270  * This inline routine checks whether a device or its PCI slot is in a state
13271  * that the interrupt should be handled.
13272  *
13273  * This function returns 0 if the device or the PCI slot is in a state that
13274  * interrupt should be handled, otherwise -EIO.
13275  */
13276 static inline int
13277 lpfc_intr_state_check(struct lpfc_hba *phba)
13278 {
13279 	/* If the pci channel is offline, ignore all the interrupts */
13280 	if (unlikely(pci_channel_offline(phba->pcidev)))
13281 		return -EIO;
13282 
13283 	/* Update device level interrupt statistics */
13284 	phba->sli.slistat.sli_intr++;
13285 
13286 	/* Ignore all interrupts during initialization. */
13287 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
13288 		return -EIO;
13289 
13290 	return 0;
13291 }
13292 
13293 /**
13294  * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
13295  * @irq: Interrupt number.
13296  * @dev_id: The device context pointer.
13297  *
13298  * This function is directly called from the PCI layer as an interrupt
13299  * service routine when device with SLI-3 interface spec is enabled with
13300  * MSI-X multi-message interrupt mode and there are slow-path events in
13301  * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
13302  * interrupt mode, this function is called as part of the device-level
13303  * interrupt handler. When the PCI slot is in error recovery or the HBA
13304  * is undergoing initialization, the interrupt handler will not process
13305  * the interrupt. The link attention and ELS ring attention events are
13306  * handled by the worker thread. The interrupt handler signals the worker
13307  * thread and returns for these events. This function is called without
13308  * any lock held. It gets the hbalock to access and update SLI data
13309  * structures.
13310  *
13311  * This function returns IRQ_HANDLED when interrupt is handled else it
13312  * returns IRQ_NONE.
13313  **/
13314 irqreturn_t
13315 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
13316 {
13317 	struct lpfc_hba  *phba;
13318 	uint32_t ha_copy, hc_copy;
13319 	uint32_t work_ha_copy;
13320 	unsigned long status;
13321 	unsigned long iflag;
13322 	uint32_t control;
13323 
13324 	MAILBOX_t *mbox, *pmbox;
13325 	struct lpfc_vport *vport;
13326 	struct lpfc_nodelist *ndlp;
13327 	struct lpfc_dmabuf *mp;
13328 	LPFC_MBOXQ_t *pmb;
13329 	int rc;
13330 
13331 	/*
13332 	 * Get the driver's phba structure from the dev_id and
13333 	 * assume the HBA is not interrupting.
13334 	 */
13335 	phba = (struct lpfc_hba *)dev_id;
13336 
13337 	if (unlikely(!phba))
13338 		return IRQ_NONE;
13339 
13340 	/*
13341 	 * Stuff needs to be attented to when this function is invoked as an
13342 	 * individual interrupt handler in MSI-X multi-message interrupt mode
13343 	 */
13344 	if (phba->intr_type == MSIX) {
13345 		/* Check device state for handling interrupt */
13346 		if (lpfc_intr_state_check(phba))
13347 			return IRQ_NONE;
13348 		/* Need to read HA REG for slow-path events */
13349 		spin_lock_irqsave(&phba->hbalock, iflag);
13350 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
13351 			goto unplug_error;
13352 		/* If somebody is waiting to handle an eratt don't process it
13353 		 * here. The brdkill function will do this.
13354 		 */
13355 		if (phba->link_flag & LS_IGNORE_ERATT)
13356 			ha_copy &= ~HA_ERATT;
13357 		/* Check the need for handling ERATT in interrupt handler */
13358 		if (ha_copy & HA_ERATT) {
13359 			if (phba->hba_flag & HBA_ERATT_HANDLED)
13360 				/* ERATT polling has handled ERATT */
13361 				ha_copy &= ~HA_ERATT;
13362 			else
13363 				/* Indicate interrupt handler handles ERATT */
13364 				phba->hba_flag |= HBA_ERATT_HANDLED;
13365 		}
13366 
13367 		/*
13368 		 * If there is deferred error attention, do not check for any
13369 		 * interrupt.
13370 		 */
13371 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
13372 			spin_unlock_irqrestore(&phba->hbalock, iflag);
13373 			return IRQ_NONE;
13374 		}
13375 
13376 		/* Clear up only attention source related to slow-path */
13377 		if (lpfc_readl(phba->HCregaddr, &hc_copy))
13378 			goto unplug_error;
13379 
13380 		writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
13381 			HC_LAINT_ENA | HC_ERINT_ENA),
13382 			phba->HCregaddr);
13383 		writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
13384 			phba->HAregaddr);
13385 		writel(hc_copy, phba->HCregaddr);
13386 		readl(phba->HAregaddr); /* flush */
13387 		spin_unlock_irqrestore(&phba->hbalock, iflag);
13388 	} else
13389 		ha_copy = phba->ha_copy;
13390 
13391 	work_ha_copy = ha_copy & phba->work_ha_mask;
13392 
13393 	if (work_ha_copy) {
13394 		if (work_ha_copy & HA_LATT) {
13395 			if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
13396 				/*
13397 				 * Turn off Link Attention interrupts
13398 				 * until CLEAR_LA done
13399 				 */
13400 				spin_lock_irqsave(&phba->hbalock, iflag);
13401 				phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
13402 				if (lpfc_readl(phba->HCregaddr, &control))
13403 					goto unplug_error;
13404 				control &= ~HC_LAINT_ENA;
13405 				writel(control, phba->HCregaddr);
13406 				readl(phba->HCregaddr); /* flush */
13407 				spin_unlock_irqrestore(&phba->hbalock, iflag);
13408 			}
13409 			else
13410 				work_ha_copy &= ~HA_LATT;
13411 		}
13412 
13413 		if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
13414 			/*
13415 			 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
13416 			 * the only slow ring.
13417 			 */
13418 			status = (work_ha_copy &
13419 				(HA_RXMASK  << (4*LPFC_ELS_RING)));
13420 			status >>= (4*LPFC_ELS_RING);
13421 			if (status & HA_RXMASK) {
13422 				spin_lock_irqsave(&phba->hbalock, iflag);
13423 				if (lpfc_readl(phba->HCregaddr, &control))
13424 					goto unplug_error;
13425 
13426 				lpfc_debugfs_slow_ring_trc(phba,
13427 				"ISR slow ring:   ctl:x%x stat:x%x isrcnt:x%x",
13428 				control, status,
13429 				(uint32_t)phba->sli.slistat.sli_intr);
13430 
13431 				if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
13432 					lpfc_debugfs_slow_ring_trc(phba,
13433 						"ISR Disable ring:"
13434 						"pwork:x%x hawork:x%x wait:x%x",
13435 						phba->work_ha, work_ha_copy,
13436 						(uint32_t)((unsigned long)
13437 						&phba->work_waitq));
13438 
13439 					control &=
13440 					    ~(HC_R0INT_ENA << LPFC_ELS_RING);
13441 					writel(control, phba->HCregaddr);
13442 					readl(phba->HCregaddr); /* flush */
13443 				}
13444 				else {
13445 					lpfc_debugfs_slow_ring_trc(phba,
13446 						"ISR slow ring:   pwork:"
13447 						"x%x hawork:x%x wait:x%x",
13448 						phba->work_ha, work_ha_copy,
13449 						(uint32_t)((unsigned long)
13450 						&phba->work_waitq));
13451 				}
13452 				spin_unlock_irqrestore(&phba->hbalock, iflag);
13453 			}
13454 		}
13455 		spin_lock_irqsave(&phba->hbalock, iflag);
13456 		if (work_ha_copy & HA_ERATT) {
13457 			if (lpfc_sli_read_hs(phba))
13458 				goto unplug_error;
13459 			/*
13460 			 * Check if there is a deferred error condition
13461 			 * is active
13462 			 */
13463 			if ((HS_FFER1 & phba->work_hs) &&
13464 				((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
13465 				  HS_FFER6 | HS_FFER7 | HS_FFER8) &
13466 				  phba->work_hs)) {
13467 				phba->hba_flag |= DEFER_ERATT;
13468 				/* Clear all interrupt enable conditions */
13469 				writel(0, phba->HCregaddr);
13470 				readl(phba->HCregaddr);
13471 			}
13472 		}
13473 
13474 		if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
13475 			pmb = phba->sli.mbox_active;
13476 			pmbox = &pmb->u.mb;
13477 			mbox = phba->mbox;
13478 			vport = pmb->vport;
13479 
13480 			/* First check out the status word */
13481 			lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
13482 			if (pmbox->mbxOwner != OWN_HOST) {
13483 				spin_unlock_irqrestore(&phba->hbalock, iflag);
13484 				/*
13485 				 * Stray Mailbox Interrupt, mbxCommand <cmd>
13486 				 * mbxStatus <status>
13487 				 */
13488 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13489 						"(%d):0304 Stray Mailbox "
13490 						"Interrupt mbxCommand x%x "
13491 						"mbxStatus x%x\n",
13492 						(vport ? vport->vpi : 0),
13493 						pmbox->mbxCommand,
13494 						pmbox->mbxStatus);
13495 				/* clear mailbox attention bit */
13496 				work_ha_copy &= ~HA_MBATT;
13497 			} else {
13498 				phba->sli.mbox_active = NULL;
13499 				spin_unlock_irqrestore(&phba->hbalock, iflag);
13500 				phba->last_completion_time = jiffies;
13501 				del_timer(&phba->sli.mbox_tmo);
13502 				if (pmb->mbox_cmpl) {
13503 					lpfc_sli_pcimem_bcopy(mbox, pmbox,
13504 							MAILBOX_CMD_SIZE);
13505 					if (pmb->out_ext_byte_len &&
13506 						pmb->ctx_buf)
13507 						lpfc_sli_pcimem_bcopy(
13508 						phba->mbox_ext,
13509 						pmb->ctx_buf,
13510 						pmb->out_ext_byte_len);
13511 				}
13512 				if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
13513 					pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
13514 
13515 					lpfc_debugfs_disc_trc(vport,
13516 						LPFC_DISC_TRC_MBOX_VPORT,
13517 						"MBOX dflt rpi: : "
13518 						"status:x%x rpi:x%x",
13519 						(uint32_t)pmbox->mbxStatus,
13520 						pmbox->un.varWords[0], 0);
13521 
13522 					if (!pmbox->mbxStatus) {
13523 						mp = (struct lpfc_dmabuf *)
13524 							(pmb->ctx_buf);
13525 						ndlp = (struct lpfc_nodelist *)
13526 							pmb->ctx_ndlp;
13527 
13528 						/* Reg_LOGIN of dflt RPI was
13529 						 * successful. new lets get
13530 						 * rid of the RPI using the
13531 						 * same mbox buffer.
13532 						 */
13533 						lpfc_unreg_login(phba,
13534 							vport->vpi,
13535 							pmbox->un.varWords[0],
13536 							pmb);
13537 						pmb->mbox_cmpl =
13538 							lpfc_mbx_cmpl_dflt_rpi;
13539 						pmb->ctx_buf = mp;
13540 						pmb->ctx_ndlp = ndlp;
13541 						pmb->vport = vport;
13542 						rc = lpfc_sli_issue_mbox(phba,
13543 								pmb,
13544 								MBX_NOWAIT);
13545 						if (rc != MBX_BUSY)
13546 							lpfc_printf_log(phba,
13547 							KERN_ERR,
13548 							LOG_TRACE_EVENT,
13549 							"0350 rc should have"
13550 							"been MBX_BUSY\n");
13551 						if (rc != MBX_NOT_FINISHED)
13552 							goto send_current_mbox;
13553 					}
13554 				}
13555 				spin_lock_irqsave(
13556 						&phba->pport->work_port_lock,
13557 						iflag);
13558 				phba->pport->work_port_events &=
13559 					~WORKER_MBOX_TMO;
13560 				spin_unlock_irqrestore(
13561 						&phba->pport->work_port_lock,
13562 						iflag);
13563 
13564 				/* Do NOT queue MBX_HEARTBEAT to the worker
13565 				 * thread for processing.
13566 				 */
13567 				if (pmbox->mbxCommand == MBX_HEARTBEAT) {
13568 					/* Process mbox now */
13569 					phba->sli.mbox_active = NULL;
13570 					phba->sli.sli_flag &=
13571 						~LPFC_SLI_MBOX_ACTIVE;
13572 					if (pmb->mbox_cmpl)
13573 						pmb->mbox_cmpl(phba, pmb);
13574 				} else {
13575 					/* Queue to worker thread to process */
13576 					lpfc_mbox_cmpl_put(phba, pmb);
13577 				}
13578 			}
13579 		} else
13580 			spin_unlock_irqrestore(&phba->hbalock, iflag);
13581 
13582 		if ((work_ha_copy & HA_MBATT) &&
13583 		    (phba->sli.mbox_active == NULL)) {
13584 send_current_mbox:
13585 			/* Process next mailbox command if there is one */
13586 			do {
13587 				rc = lpfc_sli_issue_mbox(phba, NULL,
13588 							 MBX_NOWAIT);
13589 			} while (rc == MBX_NOT_FINISHED);
13590 			if (rc != MBX_SUCCESS)
13591 				lpfc_printf_log(phba, KERN_ERR,
13592 						LOG_TRACE_EVENT,
13593 						"0349 rc should be "
13594 						"MBX_SUCCESS\n");
13595 		}
13596 
13597 		spin_lock_irqsave(&phba->hbalock, iflag);
13598 		phba->work_ha |= work_ha_copy;
13599 		spin_unlock_irqrestore(&phba->hbalock, iflag);
13600 		lpfc_worker_wake_up(phba);
13601 	}
13602 	return IRQ_HANDLED;
13603 unplug_error:
13604 	spin_unlock_irqrestore(&phba->hbalock, iflag);
13605 	return IRQ_HANDLED;
13606 
13607 } /* lpfc_sli_sp_intr_handler */
13608 
13609 /**
13610  * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
13611  * @irq: Interrupt number.
13612  * @dev_id: The device context pointer.
13613  *
13614  * This function is directly called from the PCI layer as an interrupt
13615  * service routine when device with SLI-3 interface spec is enabled with
13616  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
13617  * ring event in the HBA. However, when the device is enabled with either
13618  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
13619  * device-level interrupt handler. When the PCI slot is in error recovery
13620  * or the HBA is undergoing initialization, the interrupt handler will not
13621  * process the interrupt. The SCSI FCP fast-path ring event are handled in
13622  * the intrrupt context. This function is called without any lock held.
13623  * It gets the hbalock to access and update SLI data structures.
13624  *
13625  * This function returns IRQ_HANDLED when interrupt is handled else it
13626  * returns IRQ_NONE.
13627  **/
13628 irqreturn_t
13629 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
13630 {
13631 	struct lpfc_hba  *phba;
13632 	uint32_t ha_copy;
13633 	unsigned long status;
13634 	unsigned long iflag;
13635 	struct lpfc_sli_ring *pring;
13636 
13637 	/* Get the driver's phba structure from the dev_id and
13638 	 * assume the HBA is not interrupting.
13639 	 */
13640 	phba = (struct lpfc_hba *) dev_id;
13641 
13642 	if (unlikely(!phba))
13643 		return IRQ_NONE;
13644 
13645 	/*
13646 	 * Stuff needs to be attented to when this function is invoked as an
13647 	 * individual interrupt handler in MSI-X multi-message interrupt mode
13648 	 */
13649 	if (phba->intr_type == MSIX) {
13650 		/* Check device state for handling interrupt */
13651 		if (lpfc_intr_state_check(phba))
13652 			return IRQ_NONE;
13653 		/* Need to read HA REG for FCP ring and other ring events */
13654 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
13655 			return IRQ_HANDLED;
13656 		/* Clear up only attention source related to fast-path */
13657 		spin_lock_irqsave(&phba->hbalock, iflag);
13658 		/*
13659 		 * If there is deferred error attention, do not check for
13660 		 * any interrupt.
13661 		 */
13662 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
13663 			spin_unlock_irqrestore(&phba->hbalock, iflag);
13664 			return IRQ_NONE;
13665 		}
13666 		writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
13667 			phba->HAregaddr);
13668 		readl(phba->HAregaddr); /* flush */
13669 		spin_unlock_irqrestore(&phba->hbalock, iflag);
13670 	} else
13671 		ha_copy = phba->ha_copy;
13672 
13673 	/*
13674 	 * Process all events on FCP ring. Take the optimized path for FCP IO.
13675 	 */
13676 	ha_copy &= ~(phba->work_ha_mask);
13677 
13678 	status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
13679 	status >>= (4*LPFC_FCP_RING);
13680 	pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
13681 	if (status & HA_RXMASK)
13682 		lpfc_sli_handle_fast_ring_event(phba, pring, status);
13683 
13684 	if (phba->cfg_multi_ring_support == 2) {
13685 		/*
13686 		 * Process all events on extra ring. Take the optimized path
13687 		 * for extra ring IO.
13688 		 */
13689 		status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
13690 		status >>= (4*LPFC_EXTRA_RING);
13691 		if (status & HA_RXMASK) {
13692 			lpfc_sli_handle_fast_ring_event(phba,
13693 					&phba->sli.sli3_ring[LPFC_EXTRA_RING],
13694 					status);
13695 		}
13696 	}
13697 	return IRQ_HANDLED;
13698 }  /* lpfc_sli_fp_intr_handler */
13699 
13700 /**
13701  * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
13702  * @irq: Interrupt number.
13703  * @dev_id: The device context pointer.
13704  *
13705  * This function is the HBA device-level interrupt handler to device with
13706  * SLI-3 interface spec, called from the PCI layer when either MSI or
13707  * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
13708  * requires driver attention. This function invokes the slow-path interrupt
13709  * attention handling function and fast-path interrupt attention handling
13710  * function in turn to process the relevant HBA attention events. This
13711  * function is called without any lock held. It gets the hbalock to access
13712  * and update SLI data structures.
13713  *
13714  * This function returns IRQ_HANDLED when interrupt is handled, else it
13715  * returns IRQ_NONE.
13716  **/
13717 irqreturn_t
13718 lpfc_sli_intr_handler(int irq, void *dev_id)
13719 {
13720 	struct lpfc_hba  *phba;
13721 	irqreturn_t sp_irq_rc, fp_irq_rc;
13722 	unsigned long status1, status2;
13723 	uint32_t hc_copy;
13724 
13725 	/*
13726 	 * Get the driver's phba structure from the dev_id and
13727 	 * assume the HBA is not interrupting.
13728 	 */
13729 	phba = (struct lpfc_hba *) dev_id;
13730 
13731 	if (unlikely(!phba))
13732 		return IRQ_NONE;
13733 
13734 	/* Check device state for handling interrupt */
13735 	if (lpfc_intr_state_check(phba))
13736 		return IRQ_NONE;
13737 
13738 	spin_lock(&phba->hbalock);
13739 	if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
13740 		spin_unlock(&phba->hbalock);
13741 		return IRQ_HANDLED;
13742 	}
13743 
13744 	if (unlikely(!phba->ha_copy)) {
13745 		spin_unlock(&phba->hbalock);
13746 		return IRQ_NONE;
13747 	} else if (phba->ha_copy & HA_ERATT) {
13748 		if (phba->hba_flag & HBA_ERATT_HANDLED)
13749 			/* ERATT polling has handled ERATT */
13750 			phba->ha_copy &= ~HA_ERATT;
13751 		else
13752 			/* Indicate interrupt handler handles ERATT */
13753 			phba->hba_flag |= HBA_ERATT_HANDLED;
13754 	}
13755 
13756 	/*
13757 	 * If there is deferred error attention, do not check for any interrupt.
13758 	 */
13759 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
13760 		spin_unlock(&phba->hbalock);
13761 		return IRQ_NONE;
13762 	}
13763 
13764 	/* Clear attention sources except link and error attentions */
13765 	if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
13766 		spin_unlock(&phba->hbalock);
13767 		return IRQ_HANDLED;
13768 	}
13769 	writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
13770 		| HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
13771 		phba->HCregaddr);
13772 	writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
13773 	writel(hc_copy, phba->HCregaddr);
13774 	readl(phba->HAregaddr); /* flush */
13775 	spin_unlock(&phba->hbalock);
13776 
13777 	/*
13778 	 * Invokes slow-path host attention interrupt handling as appropriate.
13779 	 */
13780 
13781 	/* status of events with mailbox and link attention */
13782 	status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
13783 
13784 	/* status of events with ELS ring */
13785 	status2 = (phba->ha_copy & (HA_RXMASK  << (4*LPFC_ELS_RING)));
13786 	status2 >>= (4*LPFC_ELS_RING);
13787 
13788 	if (status1 || (status2 & HA_RXMASK))
13789 		sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
13790 	else
13791 		sp_irq_rc = IRQ_NONE;
13792 
13793 	/*
13794 	 * Invoke fast-path host attention interrupt handling as appropriate.
13795 	 */
13796 
13797 	/* status of events with FCP ring */
13798 	status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
13799 	status1 >>= (4*LPFC_FCP_RING);
13800 
13801 	/* status of events with extra ring */
13802 	if (phba->cfg_multi_ring_support == 2) {
13803 		status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
13804 		status2 >>= (4*LPFC_EXTRA_RING);
13805 	} else
13806 		status2 = 0;
13807 
13808 	if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
13809 		fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
13810 	else
13811 		fp_irq_rc = IRQ_NONE;
13812 
13813 	/* Return device-level interrupt handling status */
13814 	return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
13815 }  /* lpfc_sli_intr_handler */
13816 
13817 /**
13818  * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
13819  * @phba: pointer to lpfc hba data structure.
13820  *
13821  * This routine is invoked by the worker thread to process all the pending
13822  * SLI4 els abort xri events.
13823  **/
13824 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
13825 {
13826 	struct lpfc_cq_event *cq_event;
13827 	unsigned long iflags;
13828 
13829 	/* First, declare the els xri abort event has been handled */
13830 	spin_lock_irqsave(&phba->hbalock, iflags);
13831 	phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
13832 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13833 
13834 	/* Now, handle all the els xri abort events */
13835 	spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
13836 	while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
13837 		/* Get the first event from the head of the event queue */
13838 		list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
13839 				 cq_event, struct lpfc_cq_event, list);
13840 		spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock,
13841 				       iflags);
13842 		/* Notify aborted XRI for ELS work queue */
13843 		lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
13844 
13845 		/* Free the event processed back to the free pool */
13846 		lpfc_sli4_cq_event_release(phba, cq_event);
13847 		spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock,
13848 				  iflags);
13849 	}
13850 	spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
13851 }
13852 
13853 /**
13854  * lpfc_sli4_els_preprocess_rspiocbq - Get response iocbq from els wcqe
13855  * @phba: Pointer to HBA context object.
13856  * @irspiocbq: Pointer to work-queue completion queue entry.
13857  *
13858  * This routine handles an ELS work-queue completion event and construct
13859  * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common
13860  * discovery engine to handle.
13861  *
13862  * Return: Pointer to the receive IOCBQ, NULL otherwise.
13863  **/
13864 static struct lpfc_iocbq *
13865 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba,
13866 				  struct lpfc_iocbq *irspiocbq)
13867 {
13868 	struct lpfc_sli_ring *pring;
13869 	struct lpfc_iocbq *cmdiocbq;
13870 	struct lpfc_wcqe_complete *wcqe;
13871 	unsigned long iflags;
13872 
13873 	pring = lpfc_phba_elsring(phba);
13874 	if (unlikely(!pring))
13875 		return NULL;
13876 
13877 	wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
13878 	spin_lock_irqsave(&pring->ring_lock, iflags);
13879 	pring->stats.iocb_event++;
13880 	/* Look up the ELS command IOCB and create pseudo response IOCB */
13881 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13882 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13883 	if (unlikely(!cmdiocbq)) {
13884 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
13885 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13886 				"0386 ELS complete with no corresponding "
13887 				"cmdiocb: 0x%x 0x%x 0x%x 0x%x\n",
13888 				wcqe->word0, wcqe->total_data_placed,
13889 				wcqe->parameter, wcqe->word3);
13890 		lpfc_sli_release_iocbq(phba, irspiocbq);
13891 		return NULL;
13892 	}
13893 
13894 	memcpy(&irspiocbq->wqe, &cmdiocbq->wqe, sizeof(union lpfc_wqe128));
13895 	memcpy(&irspiocbq->wcqe_cmpl, wcqe, sizeof(*wcqe));
13896 
13897 	/* Put the iocb back on the txcmplq */
13898 	lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
13899 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
13900 
13901 	if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
13902 		spin_lock_irqsave(&phba->hbalock, iflags);
13903 		cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY;
13904 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13905 	}
13906 
13907 	return irspiocbq;
13908 }
13909 
13910 inline struct lpfc_cq_event *
13911 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size)
13912 {
13913 	struct lpfc_cq_event *cq_event;
13914 
13915 	/* Allocate a new internal CQ_EVENT entry */
13916 	cq_event = lpfc_sli4_cq_event_alloc(phba);
13917 	if (!cq_event) {
13918 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13919 				"0602 Failed to alloc CQ_EVENT entry\n");
13920 		return NULL;
13921 	}
13922 
13923 	/* Move the CQE into the event */
13924 	memcpy(&cq_event->cqe, entry, size);
13925 	return cq_event;
13926 }
13927 
13928 /**
13929  * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event
13930  * @phba: Pointer to HBA context object.
13931  * @mcqe: Pointer to mailbox completion queue entry.
13932  *
13933  * This routine process a mailbox completion queue entry with asynchronous
13934  * event.
13935  *
13936  * Return: true if work posted to worker thread, otherwise false.
13937  **/
13938 static bool
13939 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13940 {
13941 	struct lpfc_cq_event *cq_event;
13942 	unsigned long iflags;
13943 
13944 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13945 			"0392 Async Event: word0:x%x, word1:x%x, "
13946 			"word2:x%x, word3:x%x\n", mcqe->word0,
13947 			mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
13948 
13949 	cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe));
13950 	if (!cq_event)
13951 		return false;
13952 
13953 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
13954 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
13955 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
13956 
13957 	/* Set the async event flag */
13958 	spin_lock_irqsave(&phba->hbalock, iflags);
13959 	phba->hba_flag |= ASYNC_EVENT;
13960 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13961 
13962 	return true;
13963 }
13964 
13965 /**
13966  * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
13967  * @phba: Pointer to HBA context object.
13968  * @mcqe: Pointer to mailbox completion queue entry.
13969  *
13970  * This routine process a mailbox completion queue entry with mailbox
13971  * completion event.
13972  *
13973  * Return: true if work posted to worker thread, otherwise false.
13974  **/
13975 static bool
13976 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13977 {
13978 	uint32_t mcqe_status;
13979 	MAILBOX_t *mbox, *pmbox;
13980 	struct lpfc_mqe *mqe;
13981 	struct lpfc_vport *vport;
13982 	struct lpfc_nodelist *ndlp;
13983 	struct lpfc_dmabuf *mp;
13984 	unsigned long iflags;
13985 	LPFC_MBOXQ_t *pmb;
13986 	bool workposted = false;
13987 	int rc;
13988 
13989 	/* If not a mailbox complete MCQE, out by checking mailbox consume */
13990 	if (!bf_get(lpfc_trailer_completed, mcqe))
13991 		goto out_no_mqe_complete;
13992 
13993 	/* Get the reference to the active mbox command */
13994 	spin_lock_irqsave(&phba->hbalock, iflags);
13995 	pmb = phba->sli.mbox_active;
13996 	if (unlikely(!pmb)) {
13997 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13998 				"1832 No pending MBOX command to handle\n");
13999 		spin_unlock_irqrestore(&phba->hbalock, iflags);
14000 		goto out_no_mqe_complete;
14001 	}
14002 	spin_unlock_irqrestore(&phba->hbalock, iflags);
14003 	mqe = &pmb->u.mqe;
14004 	pmbox = (MAILBOX_t *)&pmb->u.mqe;
14005 	mbox = phba->mbox;
14006 	vport = pmb->vport;
14007 
14008 	/* Reset heartbeat timer */
14009 	phba->last_completion_time = jiffies;
14010 	del_timer(&phba->sli.mbox_tmo);
14011 
14012 	/* Move mbox data to caller's mailbox region, do endian swapping */
14013 	if (pmb->mbox_cmpl && mbox)
14014 		lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
14015 
14016 	/*
14017 	 * For mcqe errors, conditionally move a modified error code to
14018 	 * the mbox so that the error will not be missed.
14019 	 */
14020 	mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
14021 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
14022 		if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
14023 			bf_set(lpfc_mqe_status, mqe,
14024 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
14025 	}
14026 	if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
14027 		pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
14028 		lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
14029 				      "MBOX dflt rpi: status:x%x rpi:x%x",
14030 				      mcqe_status,
14031 				      pmbox->un.varWords[0], 0);
14032 		if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
14033 			mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
14034 			ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
14035 
14036 			/* Reg_LOGIN of dflt RPI was successful. Mark the
14037 			 * node as having an UNREG_LOGIN in progress to stop
14038 			 * an unsolicited PLOGI from the same NPortId from
14039 			 * starting another mailbox transaction.
14040 			 */
14041 			spin_lock_irqsave(&ndlp->lock, iflags);
14042 			ndlp->nlp_flag |= NLP_UNREG_INP;
14043 			spin_unlock_irqrestore(&ndlp->lock, iflags);
14044 			lpfc_unreg_login(phba, vport->vpi,
14045 					 pmbox->un.varWords[0], pmb);
14046 			pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
14047 			pmb->ctx_buf = mp;
14048 
14049 			/* No reference taken here.  This is a default
14050 			 * RPI reg/immediate unreg cycle. The reference was
14051 			 * taken in the reg rpi path and is released when
14052 			 * this mailbox completes.
14053 			 */
14054 			pmb->ctx_ndlp = ndlp;
14055 			pmb->vport = vport;
14056 			rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
14057 			if (rc != MBX_BUSY)
14058 				lpfc_printf_log(phba, KERN_ERR,
14059 						LOG_TRACE_EVENT,
14060 						"0385 rc should "
14061 						"have been MBX_BUSY\n");
14062 			if (rc != MBX_NOT_FINISHED)
14063 				goto send_current_mbox;
14064 		}
14065 	}
14066 	spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
14067 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
14068 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
14069 
14070 	/* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */
14071 	if (pmbox->mbxCommand == MBX_HEARTBEAT) {
14072 		spin_lock_irqsave(&phba->hbalock, iflags);
14073 		/* Release the mailbox command posting token */
14074 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
14075 		phba->sli.mbox_active = NULL;
14076 		if (bf_get(lpfc_trailer_consumed, mcqe))
14077 			lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
14078 		spin_unlock_irqrestore(&phba->hbalock, iflags);
14079 
14080 		/* Post the next mbox command, if there is one */
14081 		lpfc_sli4_post_async_mbox(phba);
14082 
14083 		/* Process cmpl now */
14084 		if (pmb->mbox_cmpl)
14085 			pmb->mbox_cmpl(phba, pmb);
14086 		return false;
14087 	}
14088 
14089 	/* There is mailbox completion work to queue to the worker thread */
14090 	spin_lock_irqsave(&phba->hbalock, iflags);
14091 	__lpfc_mbox_cmpl_put(phba, pmb);
14092 	phba->work_ha |= HA_MBATT;
14093 	spin_unlock_irqrestore(&phba->hbalock, iflags);
14094 	workposted = true;
14095 
14096 send_current_mbox:
14097 	spin_lock_irqsave(&phba->hbalock, iflags);
14098 	/* Release the mailbox command posting token */
14099 	phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
14100 	/* Setting active mailbox pointer need to be in sync to flag clear */
14101 	phba->sli.mbox_active = NULL;
14102 	if (bf_get(lpfc_trailer_consumed, mcqe))
14103 		lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
14104 	spin_unlock_irqrestore(&phba->hbalock, iflags);
14105 	/* Wake up worker thread to post the next pending mailbox command */
14106 	lpfc_worker_wake_up(phba);
14107 	return workposted;
14108 
14109 out_no_mqe_complete:
14110 	spin_lock_irqsave(&phba->hbalock, iflags);
14111 	if (bf_get(lpfc_trailer_consumed, mcqe))
14112 		lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
14113 	spin_unlock_irqrestore(&phba->hbalock, iflags);
14114 	return false;
14115 }
14116 
14117 /**
14118  * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
14119  * @phba: Pointer to HBA context object.
14120  * @cq: Pointer to associated CQ
14121  * @cqe: Pointer to mailbox completion queue entry.
14122  *
14123  * This routine process a mailbox completion queue entry, it invokes the
14124  * proper mailbox complete handling or asynchronous event handling routine
14125  * according to the MCQE's async bit.
14126  *
14127  * Return: true if work posted to worker thread, otherwise false.
14128  **/
14129 static bool
14130 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14131 			 struct lpfc_cqe *cqe)
14132 {
14133 	struct lpfc_mcqe mcqe;
14134 	bool workposted;
14135 
14136 	cq->CQ_mbox++;
14137 
14138 	/* Copy the mailbox MCQE and convert endian order as needed */
14139 	lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
14140 
14141 	/* Invoke the proper event handling routine */
14142 	if (!bf_get(lpfc_trailer_async, &mcqe))
14143 		workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
14144 	else
14145 		workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
14146 	return workposted;
14147 }
14148 
14149 /**
14150  * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
14151  * @phba: Pointer to HBA context object.
14152  * @cq: Pointer to associated CQ
14153  * @wcqe: Pointer to work-queue completion queue entry.
14154  *
14155  * This routine handles an ELS work-queue completion event.
14156  *
14157  * Return: true if work posted to worker thread, otherwise false.
14158  **/
14159 static bool
14160 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14161 			     struct lpfc_wcqe_complete *wcqe)
14162 {
14163 	struct lpfc_iocbq *irspiocbq;
14164 	unsigned long iflags;
14165 	struct lpfc_sli_ring *pring = cq->pring;
14166 	int txq_cnt = 0;
14167 	int txcmplq_cnt = 0;
14168 
14169 	/* Check for response status */
14170 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
14171 		/* Log the error status */
14172 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14173 				"0357 ELS CQE error: status=x%x: "
14174 				"CQE: %08x %08x %08x %08x\n",
14175 				bf_get(lpfc_wcqe_c_status, wcqe),
14176 				wcqe->word0, wcqe->total_data_placed,
14177 				wcqe->parameter, wcqe->word3);
14178 	}
14179 
14180 	/* Get an irspiocbq for later ELS response processing use */
14181 	irspiocbq = lpfc_sli_get_iocbq(phba);
14182 	if (!irspiocbq) {
14183 		if (!list_empty(&pring->txq))
14184 			txq_cnt++;
14185 		if (!list_empty(&pring->txcmplq))
14186 			txcmplq_cnt++;
14187 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14188 			"0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
14189 			"els_txcmplq_cnt=%d\n",
14190 			txq_cnt, phba->iocb_cnt,
14191 			txcmplq_cnt);
14192 		return false;
14193 	}
14194 
14195 	/* Save off the slow-path queue event for work thread to process */
14196 	memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
14197 	spin_lock_irqsave(&phba->hbalock, iflags);
14198 	list_add_tail(&irspiocbq->cq_event.list,
14199 		      &phba->sli4_hba.sp_queue_event);
14200 	phba->hba_flag |= HBA_SP_QUEUE_EVT;
14201 	spin_unlock_irqrestore(&phba->hbalock, iflags);
14202 
14203 	return true;
14204 }
14205 
14206 /**
14207  * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
14208  * @phba: Pointer to HBA context object.
14209  * @wcqe: Pointer to work-queue completion queue entry.
14210  *
14211  * This routine handles slow-path WQ entry consumed event by invoking the
14212  * proper WQ release routine to the slow-path WQ.
14213  **/
14214 static void
14215 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
14216 			     struct lpfc_wcqe_release *wcqe)
14217 {
14218 	/* sanity check on queue memory */
14219 	if (unlikely(!phba->sli4_hba.els_wq))
14220 		return;
14221 	/* Check for the slow-path ELS work queue */
14222 	if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
14223 		lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
14224 				     bf_get(lpfc_wcqe_r_wqe_index, wcqe));
14225 	else
14226 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14227 				"2579 Slow-path wqe consume event carries "
14228 				"miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
14229 				bf_get(lpfc_wcqe_r_wqe_index, wcqe),
14230 				phba->sli4_hba.els_wq->queue_id);
14231 }
14232 
14233 /**
14234  * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
14235  * @phba: Pointer to HBA context object.
14236  * @cq: Pointer to a WQ completion queue.
14237  * @wcqe: Pointer to work-queue completion queue entry.
14238  *
14239  * This routine handles an XRI abort event.
14240  *
14241  * Return: true if work posted to worker thread, otherwise false.
14242  **/
14243 static bool
14244 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
14245 				   struct lpfc_queue *cq,
14246 				   struct sli4_wcqe_xri_aborted *wcqe)
14247 {
14248 	bool workposted = false;
14249 	struct lpfc_cq_event *cq_event;
14250 	unsigned long iflags;
14251 
14252 	switch (cq->subtype) {
14253 	case LPFC_IO:
14254 		lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq);
14255 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14256 			/* Notify aborted XRI for NVME work queue */
14257 			if (phba->nvmet_support)
14258 				lpfc_sli4_nvmet_xri_aborted(phba, wcqe);
14259 		}
14260 		workposted = false;
14261 		break;
14262 	case LPFC_NVME_LS: /* NVME LS uses ELS resources */
14263 	case LPFC_ELS:
14264 		cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe));
14265 		if (!cq_event) {
14266 			workposted = false;
14267 			break;
14268 		}
14269 		cq_event->hdwq = cq->hdwq;
14270 		spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock,
14271 				  iflags);
14272 		list_add_tail(&cq_event->list,
14273 			      &phba->sli4_hba.sp_els_xri_aborted_work_queue);
14274 		/* Set the els xri abort event flag */
14275 		phba->hba_flag |= ELS_XRI_ABORT_EVENT;
14276 		spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock,
14277 				       iflags);
14278 		workposted = true;
14279 		break;
14280 	default:
14281 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14282 				"0603 Invalid CQ subtype %d: "
14283 				"%08x %08x %08x %08x\n",
14284 				cq->subtype, wcqe->word0, wcqe->parameter,
14285 				wcqe->word2, wcqe->word3);
14286 		workposted = false;
14287 		break;
14288 	}
14289 	return workposted;
14290 }
14291 
14292 #define FC_RCTL_MDS_DIAGS	0xF4
14293 
14294 /**
14295  * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
14296  * @phba: Pointer to HBA context object.
14297  * @rcqe: Pointer to receive-queue completion queue entry.
14298  *
14299  * This routine process a receive-queue completion queue entry.
14300  *
14301  * Return: true if work posted to worker thread, otherwise false.
14302  **/
14303 static bool
14304 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
14305 {
14306 	bool workposted = false;
14307 	struct fc_frame_header *fc_hdr;
14308 	struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
14309 	struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
14310 	struct lpfc_nvmet_tgtport *tgtp;
14311 	struct hbq_dmabuf *dma_buf;
14312 	uint32_t status, rq_id;
14313 	unsigned long iflags;
14314 
14315 	/* sanity check on queue memory */
14316 	if (unlikely(!hrq) || unlikely(!drq))
14317 		return workposted;
14318 
14319 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
14320 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
14321 	else
14322 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
14323 	if (rq_id != hrq->queue_id)
14324 		goto out;
14325 
14326 	status = bf_get(lpfc_rcqe_status, rcqe);
14327 	switch (status) {
14328 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
14329 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14330 				"2537 Receive Frame Truncated!!\n");
14331 		fallthrough;
14332 	case FC_STATUS_RQ_SUCCESS:
14333 		spin_lock_irqsave(&phba->hbalock, iflags);
14334 		lpfc_sli4_rq_release(hrq, drq);
14335 		dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
14336 		if (!dma_buf) {
14337 			hrq->RQ_no_buf_found++;
14338 			spin_unlock_irqrestore(&phba->hbalock, iflags);
14339 			goto out;
14340 		}
14341 		hrq->RQ_rcv_buf++;
14342 		hrq->RQ_buf_posted--;
14343 		memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
14344 
14345 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
14346 
14347 		if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
14348 		    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
14349 			spin_unlock_irqrestore(&phba->hbalock, iflags);
14350 			/* Handle MDS Loopback frames */
14351 			if  (!(phba->pport->load_flag & FC_UNLOADING))
14352 				lpfc_sli4_handle_mds_loopback(phba->pport,
14353 							      dma_buf);
14354 			else
14355 				lpfc_in_buf_free(phba, &dma_buf->dbuf);
14356 			break;
14357 		}
14358 
14359 		/* save off the frame for the work thread to process */
14360 		list_add_tail(&dma_buf->cq_event.list,
14361 			      &phba->sli4_hba.sp_queue_event);
14362 		/* Frame received */
14363 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
14364 		spin_unlock_irqrestore(&phba->hbalock, iflags);
14365 		workposted = true;
14366 		break;
14367 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
14368 		if (phba->nvmet_support) {
14369 			tgtp = phba->targetport->private;
14370 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14371 					"6402 RQE Error x%x, posted %d err_cnt "
14372 					"%d: %x %x %x\n",
14373 					status, hrq->RQ_buf_posted,
14374 					hrq->RQ_no_posted_buf,
14375 					atomic_read(&tgtp->rcv_fcp_cmd_in),
14376 					atomic_read(&tgtp->rcv_fcp_cmd_out),
14377 					atomic_read(&tgtp->xmt_fcp_release));
14378 		}
14379 		fallthrough;
14380 
14381 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
14382 		hrq->RQ_no_posted_buf++;
14383 		/* Post more buffers if possible */
14384 		spin_lock_irqsave(&phba->hbalock, iflags);
14385 		phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
14386 		spin_unlock_irqrestore(&phba->hbalock, iflags);
14387 		workposted = true;
14388 		break;
14389 	}
14390 out:
14391 	return workposted;
14392 }
14393 
14394 /**
14395  * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
14396  * @phba: Pointer to HBA context object.
14397  * @cq: Pointer to the completion queue.
14398  * @cqe: Pointer to a completion queue entry.
14399  *
14400  * This routine process a slow-path work-queue or receive queue completion queue
14401  * entry.
14402  *
14403  * Return: true if work posted to worker thread, otherwise false.
14404  **/
14405 static bool
14406 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14407 			 struct lpfc_cqe *cqe)
14408 {
14409 	struct lpfc_cqe cqevt;
14410 	bool workposted = false;
14411 
14412 	/* Copy the work queue CQE and convert endian order if needed */
14413 	lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
14414 
14415 	/* Check and process for different type of WCQE and dispatch */
14416 	switch (bf_get(lpfc_cqe_code, &cqevt)) {
14417 	case CQE_CODE_COMPL_WQE:
14418 		/* Process the WQ/RQ complete event */
14419 		phba->last_completion_time = jiffies;
14420 		workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
14421 				(struct lpfc_wcqe_complete *)&cqevt);
14422 		break;
14423 	case CQE_CODE_RELEASE_WQE:
14424 		/* Process the WQ release event */
14425 		lpfc_sli4_sp_handle_rel_wcqe(phba,
14426 				(struct lpfc_wcqe_release *)&cqevt);
14427 		break;
14428 	case CQE_CODE_XRI_ABORTED:
14429 		/* Process the WQ XRI abort event */
14430 		phba->last_completion_time = jiffies;
14431 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
14432 				(struct sli4_wcqe_xri_aborted *)&cqevt);
14433 		break;
14434 	case CQE_CODE_RECEIVE:
14435 	case CQE_CODE_RECEIVE_V1:
14436 		/* Process the RQ event */
14437 		phba->last_completion_time = jiffies;
14438 		workposted = lpfc_sli4_sp_handle_rcqe(phba,
14439 				(struct lpfc_rcqe *)&cqevt);
14440 		break;
14441 	default:
14442 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14443 				"0388 Not a valid WCQE code: x%x\n",
14444 				bf_get(lpfc_cqe_code, &cqevt));
14445 		break;
14446 	}
14447 	return workposted;
14448 }
14449 
14450 /**
14451  * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
14452  * @phba: Pointer to HBA context object.
14453  * @eqe: Pointer to fast-path event queue entry.
14454  * @speq: Pointer to slow-path event queue.
14455  *
14456  * This routine process a event queue entry from the slow-path event queue.
14457  * It will check the MajorCode and MinorCode to determine this is for a
14458  * completion event on a completion queue, if not, an error shall be logged
14459  * and just return. Otherwise, it will get to the corresponding completion
14460  * queue and process all the entries on that completion queue, rearm the
14461  * completion queue, and then return.
14462  *
14463  **/
14464 static void
14465 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
14466 	struct lpfc_queue *speq)
14467 {
14468 	struct lpfc_queue *cq = NULL, *childq;
14469 	uint16_t cqid;
14470 	int ret = 0;
14471 
14472 	/* Get the reference to the corresponding CQ */
14473 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14474 
14475 	list_for_each_entry(childq, &speq->child_list, list) {
14476 		if (childq->queue_id == cqid) {
14477 			cq = childq;
14478 			break;
14479 		}
14480 	}
14481 	if (unlikely(!cq)) {
14482 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
14483 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14484 					"0365 Slow-path CQ identifier "
14485 					"(%d) does not exist\n", cqid);
14486 		return;
14487 	}
14488 
14489 	/* Save EQ associated with this CQ */
14490 	cq->assoc_qp = speq;
14491 
14492 	if (is_kdump_kernel())
14493 		ret = queue_work(phba->wq, &cq->spwork);
14494 	else
14495 		ret = queue_work_on(cq->chann, phba->wq, &cq->spwork);
14496 
14497 	if (!ret)
14498 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14499 				"0390 Cannot schedule queue work "
14500 				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14501 				cqid, cq->queue_id, raw_smp_processor_id());
14502 }
14503 
14504 /**
14505  * __lpfc_sli4_process_cq - Process elements of a CQ
14506  * @phba: Pointer to HBA context object.
14507  * @cq: Pointer to CQ to be processed
14508  * @handler: Routine to process each cqe
14509  * @delay: Pointer to usdelay to set in case of rescheduling of the handler
14510  * @poll_mode: Polling mode we were called from
14511  *
14512  * This routine processes completion queue entries in a CQ. While a valid
14513  * queue element is found, the handler is called. During processing checks
14514  * are made for periodic doorbell writes to let the hardware know of
14515  * element consumption.
14516  *
14517  * If the max limit on cqes to process is hit, or there are no more valid
14518  * entries, the loop stops. If we processed a sufficient number of elements,
14519  * meaning there is sufficient load, rather than rearming and generating
14520  * another interrupt, a cq rescheduling delay will be set. A delay of 0
14521  * indicates no rescheduling.
14522  *
14523  * Returns True if work scheduled, False otherwise.
14524  **/
14525 static bool
14526 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq,
14527 	bool (*handler)(struct lpfc_hba *, struct lpfc_queue *,
14528 			struct lpfc_cqe *), unsigned long *delay,
14529 			enum lpfc_poll_mode poll_mode)
14530 {
14531 	struct lpfc_cqe *cqe;
14532 	bool workposted = false;
14533 	int count = 0, consumed = 0;
14534 	bool arm = true;
14535 
14536 	/* default - no reschedule */
14537 	*delay = 0;
14538 
14539 	if (cmpxchg(&cq->queue_claimed, 0, 1) != 0)
14540 		goto rearm_and_exit;
14541 
14542 	/* Process all the entries to the CQ */
14543 	cq->q_flag = 0;
14544 	cqe = lpfc_sli4_cq_get(cq);
14545 	while (cqe) {
14546 		workposted |= handler(phba, cq, cqe);
14547 		__lpfc_sli4_consume_cqe(phba, cq, cqe);
14548 
14549 		consumed++;
14550 		if (!(++count % cq->max_proc_limit))
14551 			break;
14552 
14553 		if (!(count % cq->notify_interval)) {
14554 			phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
14555 						LPFC_QUEUE_NOARM);
14556 			consumed = 0;
14557 			cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK;
14558 		}
14559 
14560 		if (count == LPFC_NVMET_CQ_NOTIFY)
14561 			cq->q_flag |= HBA_NVMET_CQ_NOTIFY;
14562 
14563 		cqe = lpfc_sli4_cq_get(cq);
14564 	}
14565 	if (count >= phba->cfg_cq_poll_threshold) {
14566 		*delay = 1;
14567 		arm = false;
14568 	}
14569 
14570 	/* Note: complete the irq_poll softirq before rearming CQ */
14571 	if (poll_mode == LPFC_IRQ_POLL)
14572 		irq_poll_complete(&cq->iop);
14573 
14574 	/* Track the max number of CQEs processed in 1 EQ */
14575 	if (count > cq->CQ_max_cqe)
14576 		cq->CQ_max_cqe = count;
14577 
14578 	cq->assoc_qp->EQ_cqe_cnt += count;
14579 
14580 	/* Catch the no cq entry condition */
14581 	if (unlikely(count == 0))
14582 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14583 				"0369 No entry from completion queue "
14584 				"qid=%d\n", cq->queue_id);
14585 
14586 	xchg(&cq->queue_claimed, 0);
14587 
14588 rearm_and_exit:
14589 	phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
14590 			arm ?  LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM);
14591 
14592 	return workposted;
14593 }
14594 
14595 /**
14596  * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry
14597  * @cq: pointer to CQ to process
14598  *
14599  * This routine calls the cq processing routine with a handler specific
14600  * to the type of queue bound to it.
14601  *
14602  * The CQ routine returns two values: the first is the calling status,
14603  * which indicates whether work was queued to the  background discovery
14604  * thread. If true, the routine should wakeup the discovery thread;
14605  * the second is the delay parameter. If non-zero, rather than rearming
14606  * the CQ and yet another interrupt, the CQ handler should be queued so
14607  * that it is processed in a subsequent polling action. The value of
14608  * the delay indicates when to reschedule it.
14609  **/
14610 static void
14611 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq)
14612 {
14613 	struct lpfc_hba *phba = cq->phba;
14614 	unsigned long delay;
14615 	bool workposted = false;
14616 	int ret = 0;
14617 
14618 	/* Process and rearm the CQ */
14619 	switch (cq->type) {
14620 	case LPFC_MCQ:
14621 		workposted |= __lpfc_sli4_process_cq(phba, cq,
14622 						lpfc_sli4_sp_handle_mcqe,
14623 						&delay, LPFC_QUEUE_WORK);
14624 		break;
14625 	case LPFC_WCQ:
14626 		if (cq->subtype == LPFC_IO)
14627 			workposted |= __lpfc_sli4_process_cq(phba, cq,
14628 						lpfc_sli4_fp_handle_cqe,
14629 						&delay, LPFC_QUEUE_WORK);
14630 		else
14631 			workposted |= __lpfc_sli4_process_cq(phba, cq,
14632 						lpfc_sli4_sp_handle_cqe,
14633 						&delay, LPFC_QUEUE_WORK);
14634 		break;
14635 	default:
14636 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14637 				"0370 Invalid completion queue type (%d)\n",
14638 				cq->type);
14639 		return;
14640 	}
14641 
14642 	if (delay) {
14643 		if (is_kdump_kernel())
14644 			ret = queue_delayed_work(phba->wq, &cq->sched_spwork,
14645 						delay);
14646 		else
14647 			ret = queue_delayed_work_on(cq->chann, phba->wq,
14648 						&cq->sched_spwork, delay);
14649 		if (!ret)
14650 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14651 				"0394 Cannot schedule queue work "
14652 				"for cqid=%d on CPU %d\n",
14653 				cq->queue_id, cq->chann);
14654 	}
14655 
14656 	/* wake up worker thread if there are works to be done */
14657 	if (workposted)
14658 		lpfc_worker_wake_up(phba);
14659 }
14660 
14661 /**
14662  * lpfc_sli4_sp_process_cq - slow-path work handler when started by
14663  *   interrupt
14664  * @work: pointer to work element
14665  *
14666  * translates from the work handler and calls the slow-path handler.
14667  **/
14668 static void
14669 lpfc_sli4_sp_process_cq(struct work_struct *work)
14670 {
14671 	struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork);
14672 
14673 	__lpfc_sli4_sp_process_cq(cq);
14674 }
14675 
14676 /**
14677  * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer
14678  * @work: pointer to work element
14679  *
14680  * translates from the work handler and calls the slow-path handler.
14681  **/
14682 static void
14683 lpfc_sli4_dly_sp_process_cq(struct work_struct *work)
14684 {
14685 	struct lpfc_queue *cq = container_of(to_delayed_work(work),
14686 					struct lpfc_queue, sched_spwork);
14687 
14688 	__lpfc_sli4_sp_process_cq(cq);
14689 }
14690 
14691 /**
14692  * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
14693  * @phba: Pointer to HBA context object.
14694  * @cq: Pointer to associated CQ
14695  * @wcqe: Pointer to work-queue completion queue entry.
14696  *
14697  * This routine process a fast-path work queue completion entry from fast-path
14698  * event queue for FCP command response completion.
14699  **/
14700 static void
14701 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14702 			     struct lpfc_wcqe_complete *wcqe)
14703 {
14704 	struct lpfc_sli_ring *pring = cq->pring;
14705 	struct lpfc_iocbq *cmdiocbq;
14706 	unsigned long iflags;
14707 
14708 	/* Check for response status */
14709 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
14710 		/* If resource errors reported from HBA, reduce queue
14711 		 * depth of the SCSI device.
14712 		 */
14713 		if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
14714 		     IOSTAT_LOCAL_REJECT)) &&
14715 		    ((wcqe->parameter & IOERR_PARAM_MASK) ==
14716 		     IOERR_NO_RESOURCES))
14717 			phba->lpfc_rampdown_queue_depth(phba);
14718 
14719 		/* Log the cmpl status */
14720 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14721 				"0373 FCP CQE cmpl: status=x%x: "
14722 				"CQE: %08x %08x %08x %08x\n",
14723 				bf_get(lpfc_wcqe_c_status, wcqe),
14724 				wcqe->word0, wcqe->total_data_placed,
14725 				wcqe->parameter, wcqe->word3);
14726 	}
14727 
14728 	/* Look up the FCP command IOCB and create pseudo response IOCB */
14729 	spin_lock_irqsave(&pring->ring_lock, iflags);
14730 	pring->stats.iocb_event++;
14731 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
14732 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
14733 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
14734 	if (unlikely(!cmdiocbq)) {
14735 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14736 				"0374 FCP complete with no corresponding "
14737 				"cmdiocb: iotag (%d)\n",
14738 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
14739 		return;
14740 	}
14741 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
14742 	cmdiocbq->isr_timestamp = cq->isr_timestamp;
14743 #endif
14744 	if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
14745 		spin_lock_irqsave(&phba->hbalock, iflags);
14746 		cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY;
14747 		spin_unlock_irqrestore(&phba->hbalock, iflags);
14748 	}
14749 
14750 	if (cmdiocbq->cmd_cmpl) {
14751 		/* For FCP the flag is cleared in cmd_cmpl */
14752 		if (!(cmdiocbq->cmd_flag & LPFC_IO_FCP) &&
14753 		    cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) {
14754 			spin_lock_irqsave(&phba->hbalock, iflags);
14755 			cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED;
14756 			spin_unlock_irqrestore(&phba->hbalock, iflags);
14757 		}
14758 
14759 		/* Pass the cmd_iocb and the wcqe to the upper layer */
14760 		memcpy(&cmdiocbq->wcqe_cmpl, wcqe,
14761 		       sizeof(struct lpfc_wcqe_complete));
14762 		(cmdiocbq->cmd_cmpl)(phba, cmdiocbq, cmdiocbq);
14763 	} else {
14764 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14765 				"0375 FCP cmdiocb not callback function "
14766 				"iotag: (%d)\n",
14767 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
14768 	}
14769 }
14770 
14771 /**
14772  * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
14773  * @phba: Pointer to HBA context object.
14774  * @cq: Pointer to completion queue.
14775  * @wcqe: Pointer to work-queue completion queue entry.
14776  *
14777  * This routine handles an fast-path WQ entry consumed event by invoking the
14778  * proper WQ release routine to the slow-path WQ.
14779  **/
14780 static void
14781 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14782 			     struct lpfc_wcqe_release *wcqe)
14783 {
14784 	struct lpfc_queue *childwq;
14785 	bool wqid_matched = false;
14786 	uint16_t hba_wqid;
14787 
14788 	/* Check for fast-path FCP work queue release */
14789 	hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
14790 	list_for_each_entry(childwq, &cq->child_list, list) {
14791 		if (childwq->queue_id == hba_wqid) {
14792 			lpfc_sli4_wq_release(childwq,
14793 					bf_get(lpfc_wcqe_r_wqe_index, wcqe));
14794 			if (childwq->q_flag & HBA_NVMET_WQFULL)
14795 				lpfc_nvmet_wqfull_process(phba, childwq);
14796 			wqid_matched = true;
14797 			break;
14798 		}
14799 	}
14800 	/* Report warning log message if no match found */
14801 	if (wqid_matched != true)
14802 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14803 				"2580 Fast-path wqe consume event carries "
14804 				"miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
14805 }
14806 
14807 /**
14808  * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
14809  * @phba: Pointer to HBA context object.
14810  * @cq: Pointer to completion queue.
14811  * @rcqe: Pointer to receive-queue completion queue entry.
14812  *
14813  * This routine process a receive-queue completion queue entry.
14814  *
14815  * Return: true if work posted to worker thread, otherwise false.
14816  **/
14817 static bool
14818 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14819 			    struct lpfc_rcqe *rcqe)
14820 {
14821 	bool workposted = false;
14822 	struct lpfc_queue *hrq;
14823 	struct lpfc_queue *drq;
14824 	struct rqb_dmabuf *dma_buf;
14825 	struct fc_frame_header *fc_hdr;
14826 	struct lpfc_nvmet_tgtport *tgtp;
14827 	uint32_t status, rq_id;
14828 	unsigned long iflags;
14829 	uint32_t fctl, idx;
14830 
14831 	if ((phba->nvmet_support == 0) ||
14832 	    (phba->sli4_hba.nvmet_cqset == NULL))
14833 		return workposted;
14834 
14835 	idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
14836 	hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
14837 	drq = phba->sli4_hba.nvmet_mrq_data[idx];
14838 
14839 	/* sanity check on queue memory */
14840 	if (unlikely(!hrq) || unlikely(!drq))
14841 		return workposted;
14842 
14843 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
14844 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
14845 	else
14846 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
14847 
14848 	if ((phba->nvmet_support == 0) ||
14849 	    (rq_id != hrq->queue_id))
14850 		return workposted;
14851 
14852 	status = bf_get(lpfc_rcqe_status, rcqe);
14853 	switch (status) {
14854 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
14855 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14856 				"6126 Receive Frame Truncated!!\n");
14857 		fallthrough;
14858 	case FC_STATUS_RQ_SUCCESS:
14859 		spin_lock_irqsave(&phba->hbalock, iflags);
14860 		lpfc_sli4_rq_release(hrq, drq);
14861 		dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
14862 		if (!dma_buf) {
14863 			hrq->RQ_no_buf_found++;
14864 			spin_unlock_irqrestore(&phba->hbalock, iflags);
14865 			goto out;
14866 		}
14867 		spin_unlock_irqrestore(&phba->hbalock, iflags);
14868 		hrq->RQ_rcv_buf++;
14869 		hrq->RQ_buf_posted--;
14870 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
14871 
14872 		/* Just some basic sanity checks on FCP Command frame */
14873 		fctl = (fc_hdr->fh_f_ctl[0] << 16 |
14874 			fc_hdr->fh_f_ctl[1] << 8 |
14875 			fc_hdr->fh_f_ctl[2]);
14876 		if (((fctl &
14877 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
14878 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
14879 		    (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
14880 			goto drop;
14881 
14882 		if (fc_hdr->fh_type == FC_TYPE_FCP) {
14883 			dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe);
14884 			lpfc_nvmet_unsol_fcp_event(
14885 				phba, idx, dma_buf, cq->isr_timestamp,
14886 				cq->q_flag & HBA_NVMET_CQ_NOTIFY);
14887 			return false;
14888 		}
14889 drop:
14890 		lpfc_rq_buf_free(phba, &dma_buf->hbuf);
14891 		break;
14892 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
14893 		if (phba->nvmet_support) {
14894 			tgtp = phba->targetport->private;
14895 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14896 					"6401 RQE Error x%x, posted %d err_cnt "
14897 					"%d: %x %x %x\n",
14898 					status, hrq->RQ_buf_posted,
14899 					hrq->RQ_no_posted_buf,
14900 					atomic_read(&tgtp->rcv_fcp_cmd_in),
14901 					atomic_read(&tgtp->rcv_fcp_cmd_out),
14902 					atomic_read(&tgtp->xmt_fcp_release));
14903 		}
14904 		fallthrough;
14905 
14906 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
14907 		hrq->RQ_no_posted_buf++;
14908 		/* Post more buffers if possible */
14909 		break;
14910 	}
14911 out:
14912 	return workposted;
14913 }
14914 
14915 /**
14916  * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
14917  * @phba: adapter with cq
14918  * @cq: Pointer to the completion queue.
14919  * @cqe: Pointer to fast-path completion queue entry.
14920  *
14921  * This routine process a fast-path work queue completion entry from fast-path
14922  * event queue for FCP command response completion.
14923  *
14924  * Return: true if work posted to worker thread, otherwise false.
14925  **/
14926 static bool
14927 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14928 			 struct lpfc_cqe *cqe)
14929 {
14930 	struct lpfc_wcqe_release wcqe;
14931 	bool workposted = false;
14932 
14933 	/* Copy the work queue CQE and convert endian order if needed */
14934 	lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
14935 
14936 	/* Check and process for different type of WCQE and dispatch */
14937 	switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
14938 	case CQE_CODE_COMPL_WQE:
14939 	case CQE_CODE_NVME_ERSP:
14940 		cq->CQ_wq++;
14941 		/* Process the WQ complete event */
14942 		phba->last_completion_time = jiffies;
14943 		if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS)
14944 			lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
14945 				(struct lpfc_wcqe_complete *)&wcqe);
14946 		break;
14947 	case CQE_CODE_RELEASE_WQE:
14948 		cq->CQ_release_wqe++;
14949 		/* Process the WQ release event */
14950 		lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
14951 				(struct lpfc_wcqe_release *)&wcqe);
14952 		break;
14953 	case CQE_CODE_XRI_ABORTED:
14954 		cq->CQ_xri_aborted++;
14955 		/* Process the WQ XRI abort event */
14956 		phba->last_completion_time = jiffies;
14957 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
14958 				(struct sli4_wcqe_xri_aborted *)&wcqe);
14959 		break;
14960 	case CQE_CODE_RECEIVE_V1:
14961 	case CQE_CODE_RECEIVE:
14962 		phba->last_completion_time = jiffies;
14963 		if (cq->subtype == LPFC_NVMET) {
14964 			workposted = lpfc_sli4_nvmet_handle_rcqe(
14965 				phba, cq, (struct lpfc_rcqe *)&wcqe);
14966 		}
14967 		break;
14968 	default:
14969 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14970 				"0144 Not a valid CQE code: x%x\n",
14971 				bf_get(lpfc_wcqe_c_code, &wcqe));
14972 		break;
14973 	}
14974 	return workposted;
14975 }
14976 
14977 /**
14978  * lpfc_sli4_sched_cq_work - Schedules cq work
14979  * @phba: Pointer to HBA context object.
14980  * @cq: Pointer to CQ
14981  * @cqid: CQ ID
14982  *
14983  * This routine checks the poll mode of the CQ corresponding to
14984  * cq->chann, then either schedules a softirq or queue_work to complete
14985  * cq work.
14986  *
14987  * queue_work path is taken if in NVMET mode, or if poll_mode is in
14988  * LPFC_QUEUE_WORK mode.  Otherwise, softirq path is taken.
14989  *
14990  **/
14991 static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba,
14992 				    struct lpfc_queue *cq, uint16_t cqid)
14993 {
14994 	int ret = 0;
14995 
14996 	switch (cq->poll_mode) {
14997 	case LPFC_IRQ_POLL:
14998 		/* CGN mgmt is mutually exclusive from softirq processing */
14999 		if (phba->cmf_active_mode == LPFC_CFG_OFF) {
15000 			irq_poll_sched(&cq->iop);
15001 			break;
15002 		}
15003 		fallthrough;
15004 	case LPFC_QUEUE_WORK:
15005 	default:
15006 		if (is_kdump_kernel())
15007 			ret = queue_work(phba->wq, &cq->irqwork);
15008 		else
15009 			ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork);
15010 		if (!ret)
15011 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15012 					"0383 Cannot schedule queue work "
15013 					"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
15014 					cqid, cq->queue_id,
15015 					raw_smp_processor_id());
15016 	}
15017 }
15018 
15019 /**
15020  * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
15021  * @phba: Pointer to HBA context object.
15022  * @eq: Pointer to the queue structure.
15023  * @eqe: Pointer to fast-path event queue entry.
15024  *
15025  * This routine process a event queue entry from the fast-path event queue.
15026  * It will check the MajorCode and MinorCode to determine this is for a
15027  * completion event on a completion queue, if not, an error shall be logged
15028  * and just return. Otherwise, it will get to the corresponding completion
15029  * queue and process all the entries on the completion queue, rearm the
15030  * completion queue, and then return.
15031  **/
15032 static void
15033 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
15034 			 struct lpfc_eqe *eqe)
15035 {
15036 	struct lpfc_queue *cq = NULL;
15037 	uint32_t qidx = eq->hdwq;
15038 	uint16_t cqid, id;
15039 
15040 	if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
15041 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15042 				"0366 Not a valid completion "
15043 				"event: majorcode=x%x, minorcode=x%x\n",
15044 				bf_get_le32(lpfc_eqe_major_code, eqe),
15045 				bf_get_le32(lpfc_eqe_minor_code, eqe));
15046 		return;
15047 	}
15048 
15049 	/* Get the reference to the corresponding CQ */
15050 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
15051 
15052 	/* Use the fast lookup method first */
15053 	if (cqid <= phba->sli4_hba.cq_max) {
15054 		cq = phba->sli4_hba.cq_lookup[cqid];
15055 		if (cq)
15056 			goto  work_cq;
15057 	}
15058 
15059 	/* Next check for NVMET completion */
15060 	if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
15061 		id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
15062 		if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
15063 			/* Process NVMET unsol rcv */
15064 			cq = phba->sli4_hba.nvmet_cqset[cqid - id];
15065 			goto  process_cq;
15066 		}
15067 	}
15068 
15069 	if (phba->sli4_hba.nvmels_cq &&
15070 	    (cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
15071 		/* Process NVME unsol rcv */
15072 		cq = phba->sli4_hba.nvmels_cq;
15073 	}
15074 
15075 	/* Otherwise this is a Slow path event */
15076 	if (cq == NULL) {
15077 		lpfc_sli4_sp_handle_eqe(phba, eqe,
15078 					phba->sli4_hba.hdwq[qidx].hba_eq);
15079 		return;
15080 	}
15081 
15082 process_cq:
15083 	if (unlikely(cqid != cq->queue_id)) {
15084 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15085 				"0368 Miss-matched fast-path completion "
15086 				"queue identifier: eqcqid=%d, fcpcqid=%d\n",
15087 				cqid, cq->queue_id);
15088 		return;
15089 	}
15090 
15091 work_cq:
15092 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS)
15093 	if (phba->ktime_on)
15094 		cq->isr_timestamp = ktime_get_ns();
15095 	else
15096 		cq->isr_timestamp = 0;
15097 #endif
15098 	lpfc_sli4_sched_cq_work(phba, cq, cqid);
15099 }
15100 
15101 /**
15102  * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry
15103  * @cq: Pointer to CQ to be processed
15104  * @poll_mode: Enum lpfc_poll_state to determine poll mode
15105  *
15106  * This routine calls the cq processing routine with the handler for
15107  * fast path CQEs.
15108  *
15109  * The CQ routine returns two values: the first is the calling status,
15110  * which indicates whether work was queued to the  background discovery
15111  * thread. If true, the routine should wakeup the discovery thread;
15112  * the second is the delay parameter. If non-zero, rather than rearming
15113  * the CQ and yet another interrupt, the CQ handler should be queued so
15114  * that it is processed in a subsequent polling action. The value of
15115  * the delay indicates when to reschedule it.
15116  **/
15117 static void
15118 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq,
15119 			   enum lpfc_poll_mode poll_mode)
15120 {
15121 	struct lpfc_hba *phba = cq->phba;
15122 	unsigned long delay;
15123 	bool workposted = false;
15124 	int ret = 0;
15125 
15126 	/* process and rearm the CQ */
15127 	workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe,
15128 					     &delay, poll_mode);
15129 
15130 	if (delay) {
15131 		if (is_kdump_kernel())
15132 			ret = queue_delayed_work(phba->wq, &cq->sched_irqwork,
15133 						delay);
15134 		else
15135 			ret = queue_delayed_work_on(cq->chann, phba->wq,
15136 						&cq->sched_irqwork, delay);
15137 		if (!ret)
15138 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15139 					"0367 Cannot schedule queue work "
15140 					"for cqid=%d on CPU %d\n",
15141 					cq->queue_id, cq->chann);
15142 	}
15143 
15144 	/* wake up worker thread if there are works to be done */
15145 	if (workposted)
15146 		lpfc_worker_wake_up(phba);
15147 }
15148 
15149 /**
15150  * lpfc_sli4_hba_process_cq - fast-path work handler when started by
15151  *   interrupt
15152  * @work: pointer to work element
15153  *
15154  * translates from the work handler and calls the fast-path handler.
15155  **/
15156 static void
15157 lpfc_sli4_hba_process_cq(struct work_struct *work)
15158 {
15159 	struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork);
15160 
15161 	__lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK);
15162 }
15163 
15164 /**
15165  * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer
15166  * @work: pointer to work element
15167  *
15168  * translates from the work handler and calls the fast-path handler.
15169  **/
15170 static void
15171 lpfc_sli4_dly_hba_process_cq(struct work_struct *work)
15172 {
15173 	struct lpfc_queue *cq = container_of(to_delayed_work(work),
15174 					struct lpfc_queue, sched_irqwork);
15175 
15176 	__lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK);
15177 }
15178 
15179 /**
15180  * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
15181  * @irq: Interrupt number.
15182  * @dev_id: The device context pointer.
15183  *
15184  * This function is directly called from the PCI layer as an interrupt
15185  * service routine when device with SLI-4 interface spec is enabled with
15186  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
15187  * ring event in the HBA. However, when the device is enabled with either
15188  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
15189  * device-level interrupt handler. When the PCI slot is in error recovery
15190  * or the HBA is undergoing initialization, the interrupt handler will not
15191  * process the interrupt. The SCSI FCP fast-path ring event are handled in
15192  * the intrrupt context. This function is called without any lock held.
15193  * It gets the hbalock to access and update SLI data structures. Note that,
15194  * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
15195  * equal to that of FCP CQ index.
15196  *
15197  * The link attention and ELS ring attention events are handled
15198  * by the worker thread. The interrupt handler signals the worker thread
15199  * and returns for these events. This function is called without any lock
15200  * held. It gets the hbalock to access and update SLI data structures.
15201  *
15202  * This function returns IRQ_HANDLED when interrupt is handled else it
15203  * returns IRQ_NONE.
15204  **/
15205 irqreturn_t
15206 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
15207 {
15208 	struct lpfc_hba *phba;
15209 	struct lpfc_hba_eq_hdl *hba_eq_hdl;
15210 	struct lpfc_queue *fpeq;
15211 	unsigned long iflag;
15212 	int ecount = 0;
15213 	int hba_eqidx;
15214 	struct lpfc_eq_intr_info *eqi;
15215 
15216 	/* Get the driver's phba structure from the dev_id */
15217 	hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
15218 	phba = hba_eq_hdl->phba;
15219 	hba_eqidx = hba_eq_hdl->idx;
15220 
15221 	if (unlikely(!phba))
15222 		return IRQ_NONE;
15223 	if (unlikely(!phba->sli4_hba.hdwq))
15224 		return IRQ_NONE;
15225 
15226 	/* Get to the EQ struct associated with this vector */
15227 	fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq;
15228 	if (unlikely(!fpeq))
15229 		return IRQ_NONE;
15230 
15231 	/* Check device state for handling interrupt */
15232 	if (unlikely(lpfc_intr_state_check(phba))) {
15233 		/* Check again for link_state with lock held */
15234 		spin_lock_irqsave(&phba->hbalock, iflag);
15235 		if (phba->link_state < LPFC_LINK_DOWN)
15236 			/* Flush, clear interrupt, and rearm the EQ */
15237 			lpfc_sli4_eqcq_flush(phba, fpeq);
15238 		spin_unlock_irqrestore(&phba->hbalock, iflag);
15239 		return IRQ_NONE;
15240 	}
15241 
15242 	eqi = this_cpu_ptr(phba->sli4_hba.eq_info);
15243 	eqi->icnt++;
15244 
15245 	fpeq->last_cpu = raw_smp_processor_id();
15246 
15247 	if (eqi->icnt > LPFC_EQD_ISR_TRIGGER &&
15248 	    fpeq->q_flag & HBA_EQ_DELAY_CHK &&
15249 	    phba->cfg_auto_imax &&
15250 	    fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY &&
15251 	    phba->sli.sli_flag & LPFC_SLI_USE_EQDR)
15252 		lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY);
15253 
15254 	/* process and rearm the EQ */
15255 	ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM);
15256 
15257 	if (unlikely(ecount == 0)) {
15258 		fpeq->EQ_no_entry++;
15259 		if (phba->intr_type == MSIX)
15260 			/* MSI-X treated interrupt served as no EQ share INT */
15261 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15262 					"0358 MSI-X interrupt with no EQE\n");
15263 		else
15264 			/* Non MSI-X treated on interrupt as EQ share INT */
15265 			return IRQ_NONE;
15266 	}
15267 
15268 	return IRQ_HANDLED;
15269 } /* lpfc_sli4_hba_intr_handler */
15270 
15271 /**
15272  * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
15273  * @irq: Interrupt number.
15274  * @dev_id: The device context pointer.
15275  *
15276  * This function is the device-level interrupt handler to device with SLI-4
15277  * interface spec, called from the PCI layer when either MSI or Pin-IRQ
15278  * interrupt mode is enabled and there is an event in the HBA which requires
15279  * driver attention. This function invokes the slow-path interrupt attention
15280  * handling function and fast-path interrupt attention handling function in
15281  * turn to process the relevant HBA attention events. This function is called
15282  * without any lock held. It gets the hbalock to access and update SLI data
15283  * structures.
15284  *
15285  * This function returns IRQ_HANDLED when interrupt is handled, else it
15286  * returns IRQ_NONE.
15287  **/
15288 irqreturn_t
15289 lpfc_sli4_intr_handler(int irq, void *dev_id)
15290 {
15291 	struct lpfc_hba  *phba;
15292 	irqreturn_t hba_irq_rc;
15293 	bool hba_handled = false;
15294 	int qidx;
15295 
15296 	/* Get the driver's phba structure from the dev_id */
15297 	phba = (struct lpfc_hba *)dev_id;
15298 
15299 	if (unlikely(!phba))
15300 		return IRQ_NONE;
15301 
15302 	/*
15303 	 * Invoke fast-path host attention interrupt handling as appropriate.
15304 	 */
15305 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
15306 		hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
15307 					&phba->sli4_hba.hba_eq_hdl[qidx]);
15308 		if (hba_irq_rc == IRQ_HANDLED)
15309 			hba_handled |= true;
15310 	}
15311 
15312 	return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
15313 } /* lpfc_sli4_intr_handler */
15314 
15315 void lpfc_sli4_poll_hbtimer(struct timer_list *t)
15316 {
15317 	struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer);
15318 	struct lpfc_queue *eq;
15319 	int i = 0;
15320 
15321 	rcu_read_lock();
15322 
15323 	list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list)
15324 		i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH);
15325 	if (!list_empty(&phba->poll_list))
15326 		mod_timer(&phba->cpuhp_poll_timer,
15327 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
15328 
15329 	rcu_read_unlock();
15330 }
15331 
15332 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path)
15333 {
15334 	struct lpfc_hba *phba = eq->phba;
15335 	int i = 0;
15336 
15337 	/*
15338 	 * Unlocking an irq is one of the entry point to check
15339 	 * for re-schedule, but we are good for io submission
15340 	 * path as midlayer does a get_cpu to glue us in. Flush
15341 	 * out the invalidate queue so we can see the updated
15342 	 * value for flag.
15343 	 */
15344 	smp_rmb();
15345 
15346 	if (READ_ONCE(eq->mode) == LPFC_EQ_POLL)
15347 		/* We will not likely get the completion for the caller
15348 		 * during this iteration but i guess that's fine.
15349 		 * Future io's coming on this eq should be able to
15350 		 * pick it up.  As for the case of single io's, they
15351 		 * will be handled through a sched from polling timer
15352 		 * function which is currently triggered every 1msec.
15353 		 */
15354 		i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM);
15355 
15356 	return i;
15357 }
15358 
15359 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq)
15360 {
15361 	struct lpfc_hba *phba = eq->phba;
15362 
15363 	/* kickstart slowpath processing if needed */
15364 	if (list_empty(&phba->poll_list))
15365 		mod_timer(&phba->cpuhp_poll_timer,
15366 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
15367 
15368 	list_add_rcu(&eq->_poll_list, &phba->poll_list);
15369 	synchronize_rcu();
15370 }
15371 
15372 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq)
15373 {
15374 	struct lpfc_hba *phba = eq->phba;
15375 
15376 	/* Disable slowpath processing for this eq.  Kick start the eq
15377 	 * by RE-ARMING the eq's ASAP
15378 	 */
15379 	list_del_rcu(&eq->_poll_list);
15380 	synchronize_rcu();
15381 
15382 	if (list_empty(&phba->poll_list))
15383 		del_timer_sync(&phba->cpuhp_poll_timer);
15384 }
15385 
15386 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba)
15387 {
15388 	struct lpfc_queue *eq, *next;
15389 
15390 	list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list)
15391 		list_del(&eq->_poll_list);
15392 
15393 	INIT_LIST_HEAD(&phba->poll_list);
15394 	synchronize_rcu();
15395 }
15396 
15397 static inline void
15398 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode)
15399 {
15400 	if (mode == eq->mode)
15401 		return;
15402 	/*
15403 	 * currently this function is only called during a hotplug
15404 	 * event and the cpu on which this function is executing
15405 	 * is going offline.  By now the hotplug has instructed
15406 	 * the scheduler to remove this cpu from cpu active mask.
15407 	 * So we don't need to work about being put aside by the
15408 	 * scheduler for a high priority process.  Yes, the inte-
15409 	 * rrupts could come but they are known to retire ASAP.
15410 	 */
15411 
15412 	/* Disable polling in the fastpath */
15413 	WRITE_ONCE(eq->mode, mode);
15414 	/* flush out the store buffer */
15415 	smp_wmb();
15416 
15417 	/*
15418 	 * Add this eq to the polling list and start polling. For
15419 	 * a grace period both interrupt handler and poller will
15420 	 * try to process the eq _but_ that's fine.  We have a
15421 	 * synchronization mechanism in place (queue_claimed) to
15422 	 * deal with it.  This is just a draining phase for int-
15423 	 * errupt handler (not eq's) as we have guranteed through
15424 	 * barrier that all the CPUs have seen the new CQ_POLLED
15425 	 * state. which will effectively disable the REARMING of
15426 	 * the EQ.  The whole idea is eq's die off eventually as
15427 	 * we are not rearming EQ's anymore.
15428 	 */
15429 	mode ? lpfc_sli4_add_to_poll_list(eq) :
15430 	       lpfc_sli4_remove_from_poll_list(eq);
15431 }
15432 
15433 void lpfc_sli4_start_polling(struct lpfc_queue *eq)
15434 {
15435 	__lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL);
15436 }
15437 
15438 void lpfc_sli4_stop_polling(struct lpfc_queue *eq)
15439 {
15440 	struct lpfc_hba *phba = eq->phba;
15441 
15442 	__lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT);
15443 
15444 	/* Kick start for the pending io's in h/w.
15445 	 * Once we switch back to interrupt processing on a eq
15446 	 * the io path completion will only arm eq's when it
15447 	 * receives a completion.  But since eq's are in disa-
15448 	 * rmed state it doesn't receive a completion.  This
15449 	 * creates a deadlock scenaro.
15450 	 */
15451 	phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM);
15452 }
15453 
15454 /**
15455  * lpfc_sli4_queue_free - free a queue structure and associated memory
15456  * @queue: The queue structure to free.
15457  *
15458  * This function frees a queue structure and the DMAable memory used for
15459  * the host resident queue. This function must be called after destroying the
15460  * queue on the HBA.
15461  **/
15462 void
15463 lpfc_sli4_queue_free(struct lpfc_queue *queue)
15464 {
15465 	struct lpfc_dmabuf *dmabuf;
15466 
15467 	if (!queue)
15468 		return;
15469 
15470 	if (!list_empty(&queue->wq_list))
15471 		list_del(&queue->wq_list);
15472 
15473 	while (!list_empty(&queue->page_list)) {
15474 		list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
15475 				 list);
15476 		dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size,
15477 				  dmabuf->virt, dmabuf->phys);
15478 		kfree(dmabuf);
15479 	}
15480 	if (queue->rqbp) {
15481 		lpfc_free_rq_buffer(queue->phba, queue);
15482 		kfree(queue->rqbp);
15483 	}
15484 
15485 	if (!list_empty(&queue->cpu_list))
15486 		list_del(&queue->cpu_list);
15487 
15488 	kfree(queue);
15489 	return;
15490 }
15491 
15492 /**
15493  * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
15494  * @phba: The HBA that this queue is being created on.
15495  * @page_size: The size of a queue page
15496  * @entry_size: The size of each queue entry for this queue.
15497  * @entry_count: The number of entries that this queue will handle.
15498  * @cpu: The cpu that will primarily utilize this queue.
15499  *
15500  * This function allocates a queue structure and the DMAable memory used for
15501  * the host resident queue. This function must be called before creating the
15502  * queue on the HBA.
15503  **/
15504 struct lpfc_queue *
15505 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size,
15506 		      uint32_t entry_size, uint32_t entry_count, int cpu)
15507 {
15508 	struct lpfc_queue *queue;
15509 	struct lpfc_dmabuf *dmabuf;
15510 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15511 	uint16_t x, pgcnt;
15512 
15513 	if (!phba->sli4_hba.pc_sli4_params.supported)
15514 		hw_page_size = page_size;
15515 
15516 	pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size;
15517 
15518 	/* If needed, Adjust page count to match the max the adapter supports */
15519 	if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt)
15520 		pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt;
15521 
15522 	queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt),
15523 			     GFP_KERNEL, cpu_to_node(cpu));
15524 	if (!queue)
15525 		return NULL;
15526 
15527 	INIT_LIST_HEAD(&queue->list);
15528 	INIT_LIST_HEAD(&queue->_poll_list);
15529 	INIT_LIST_HEAD(&queue->wq_list);
15530 	INIT_LIST_HEAD(&queue->wqfull_list);
15531 	INIT_LIST_HEAD(&queue->page_list);
15532 	INIT_LIST_HEAD(&queue->child_list);
15533 	INIT_LIST_HEAD(&queue->cpu_list);
15534 
15535 	/* Set queue parameters now.  If the system cannot provide memory
15536 	 * resources, the free routine needs to know what was allocated.
15537 	 */
15538 	queue->page_count = pgcnt;
15539 	queue->q_pgs = (void **)&queue[1];
15540 	queue->entry_cnt_per_pg = hw_page_size / entry_size;
15541 	queue->entry_size = entry_size;
15542 	queue->entry_count = entry_count;
15543 	queue->page_size = hw_page_size;
15544 	queue->phba = phba;
15545 
15546 	for (x = 0; x < queue->page_count; x++) {
15547 		dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL,
15548 				      dev_to_node(&phba->pcidev->dev));
15549 		if (!dmabuf)
15550 			goto out_fail;
15551 		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
15552 						  hw_page_size, &dmabuf->phys,
15553 						  GFP_KERNEL);
15554 		if (!dmabuf->virt) {
15555 			kfree(dmabuf);
15556 			goto out_fail;
15557 		}
15558 		dmabuf->buffer_tag = x;
15559 		list_add_tail(&dmabuf->list, &queue->page_list);
15560 		/* use lpfc_sli4_qe to index a paritcular entry in this page */
15561 		queue->q_pgs[x] = dmabuf->virt;
15562 	}
15563 	INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq);
15564 	INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq);
15565 	INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq);
15566 	INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq);
15567 
15568 	/* notify_interval will be set during q creation */
15569 
15570 	return queue;
15571 out_fail:
15572 	lpfc_sli4_queue_free(queue);
15573 	return NULL;
15574 }
15575 
15576 /**
15577  * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
15578  * @phba: HBA structure that indicates port to create a queue on.
15579  * @pci_barset: PCI BAR set flag.
15580  *
15581  * This function shall perform iomap of the specified PCI BAR address to host
15582  * memory address if not already done so and return it. The returned host
15583  * memory address can be NULL.
15584  */
15585 static void __iomem *
15586 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
15587 {
15588 	if (!phba->pcidev)
15589 		return NULL;
15590 
15591 	switch (pci_barset) {
15592 	case WQ_PCI_BAR_0_AND_1:
15593 		return phba->pci_bar0_memmap_p;
15594 	case WQ_PCI_BAR_2_AND_3:
15595 		return phba->pci_bar2_memmap_p;
15596 	case WQ_PCI_BAR_4_AND_5:
15597 		return phba->pci_bar4_memmap_p;
15598 	default:
15599 		break;
15600 	}
15601 	return NULL;
15602 }
15603 
15604 /**
15605  * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs
15606  * @phba: HBA structure that EQs are on.
15607  * @startq: The starting EQ index to modify
15608  * @numq: The number of EQs (consecutive indexes) to modify
15609  * @usdelay: amount of delay
15610  *
15611  * This function revises the EQ delay on 1 or more EQs. The EQ delay
15612  * is set either by writing to a register (if supported by the SLI Port)
15613  * or by mailbox command. The mailbox command allows several EQs to be
15614  * updated at once.
15615  *
15616  * The @phba struct is used to send a mailbox command to HBA. The @startq
15617  * is used to get the starting EQ index to change. The @numq value is
15618  * used to specify how many consecutive EQ indexes, starting at EQ index,
15619  * are to be changed. This function is asynchronous and will wait for any
15620  * mailbox commands to finish before returning.
15621  *
15622  * On success this function will return a zero. If unable to allocate
15623  * enough memory this function will return -ENOMEM. If a mailbox command
15624  * fails this function will return -ENXIO. Note: on ENXIO, some EQs may
15625  * have had their delay multipler changed.
15626  **/
15627 void
15628 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq,
15629 			 uint32_t numq, uint32_t usdelay)
15630 {
15631 	struct lpfc_mbx_modify_eq_delay *eq_delay;
15632 	LPFC_MBOXQ_t *mbox;
15633 	struct lpfc_queue *eq;
15634 	int cnt = 0, rc, length;
15635 	uint32_t shdr_status, shdr_add_status;
15636 	uint32_t dmult;
15637 	int qidx;
15638 	union lpfc_sli4_cfg_shdr *shdr;
15639 
15640 	if (startq >= phba->cfg_irq_chann)
15641 		return;
15642 
15643 	if (usdelay > 0xFFFF) {
15644 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME,
15645 				"6429 usdelay %d too large. Scaled down to "
15646 				"0xFFFF.\n", usdelay);
15647 		usdelay = 0xFFFF;
15648 	}
15649 
15650 	/* set values by EQ_DELAY register if supported */
15651 	if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) {
15652 		for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
15653 			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
15654 			if (!eq)
15655 				continue;
15656 
15657 			lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay);
15658 
15659 			if (++cnt >= numq)
15660 				break;
15661 		}
15662 		return;
15663 	}
15664 
15665 	/* Otherwise, set values by mailbox cmd */
15666 
15667 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15668 	if (!mbox) {
15669 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15670 				"6428 Failed allocating mailbox cmd buffer."
15671 				" EQ delay was not set.\n");
15672 		return;
15673 	}
15674 	length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
15675 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15676 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15677 			 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
15678 			 length, LPFC_SLI4_MBX_EMBED);
15679 	eq_delay = &mbox->u.mqe.un.eq_delay;
15680 
15681 	/* Calculate delay multiper from maximum interrupt per second */
15682 	dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC;
15683 	if (dmult)
15684 		dmult--;
15685 	if (dmult > LPFC_DMULT_MAX)
15686 		dmult = LPFC_DMULT_MAX;
15687 
15688 	for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
15689 		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
15690 		if (!eq)
15691 			continue;
15692 		eq->q_mode = usdelay;
15693 		eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
15694 		eq_delay->u.request.eq[cnt].phase = 0;
15695 		eq_delay->u.request.eq[cnt].delay_multi = dmult;
15696 
15697 		if (++cnt >= numq)
15698 			break;
15699 	}
15700 	eq_delay->u.request.num_eq = cnt;
15701 
15702 	mbox->vport = phba->pport;
15703 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15704 	mbox->ctx_buf = NULL;
15705 	mbox->ctx_ndlp = NULL;
15706 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15707 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
15708 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15709 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15710 	if (shdr_status || shdr_add_status || rc) {
15711 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15712 				"2512 MODIFY_EQ_DELAY mailbox failed with "
15713 				"status x%x add_status x%x, mbx status x%x\n",
15714 				shdr_status, shdr_add_status, rc);
15715 	}
15716 	mempool_free(mbox, phba->mbox_mem_pool);
15717 	return;
15718 }
15719 
15720 /**
15721  * lpfc_eq_create - Create an Event Queue on the HBA
15722  * @phba: HBA structure that indicates port to create a queue on.
15723  * @eq: The queue structure to use to create the event queue.
15724  * @imax: The maximum interrupt per second limit.
15725  *
15726  * This function creates an event queue, as detailed in @eq, on a port,
15727  * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
15728  *
15729  * The @phba struct is used to send mailbox command to HBA. The @eq struct
15730  * is used to get the entry count and entry size that are necessary to
15731  * determine the number of pages to allocate and use for this queue. This
15732  * function will send the EQ_CREATE mailbox command to the HBA to setup the
15733  * event queue. This function is asynchronous and will wait for the mailbox
15734  * command to finish before continuing.
15735  *
15736  * On success this function will return a zero. If unable to allocate enough
15737  * memory this function will return -ENOMEM. If the queue create mailbox command
15738  * fails this function will return -ENXIO.
15739  **/
15740 int
15741 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
15742 {
15743 	struct lpfc_mbx_eq_create *eq_create;
15744 	LPFC_MBOXQ_t *mbox;
15745 	int rc, length, status = 0;
15746 	struct lpfc_dmabuf *dmabuf;
15747 	uint32_t shdr_status, shdr_add_status;
15748 	union lpfc_sli4_cfg_shdr *shdr;
15749 	uint16_t dmult;
15750 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15751 
15752 	/* sanity check on queue memory */
15753 	if (!eq)
15754 		return -ENODEV;
15755 	if (!phba->sli4_hba.pc_sli4_params.supported)
15756 		hw_page_size = SLI4_PAGE_SIZE;
15757 
15758 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15759 	if (!mbox)
15760 		return -ENOMEM;
15761 	length = (sizeof(struct lpfc_mbx_eq_create) -
15762 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15763 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15764 			 LPFC_MBOX_OPCODE_EQ_CREATE,
15765 			 length, LPFC_SLI4_MBX_EMBED);
15766 	eq_create = &mbox->u.mqe.un.eq_create;
15767 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
15768 	bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
15769 	       eq->page_count);
15770 	bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
15771 	       LPFC_EQE_SIZE);
15772 	bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
15773 
15774 	/* Use version 2 of CREATE_EQ if eqav is set */
15775 	if (phba->sli4_hba.pc_sli4_params.eqav) {
15776 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
15777 		       LPFC_Q_CREATE_VERSION_2);
15778 		bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context,
15779 		       phba->sli4_hba.pc_sli4_params.eqav);
15780 	}
15781 
15782 	/* don't setup delay multiplier using EQ_CREATE */
15783 	dmult = 0;
15784 	bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
15785 	       dmult);
15786 	switch (eq->entry_count) {
15787 	default:
15788 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15789 				"0360 Unsupported EQ count. (%d)\n",
15790 				eq->entry_count);
15791 		if (eq->entry_count < 256) {
15792 			status = -EINVAL;
15793 			goto out;
15794 		}
15795 		fallthrough;	/* otherwise default to smallest count */
15796 	case 256:
15797 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15798 		       LPFC_EQ_CNT_256);
15799 		break;
15800 	case 512:
15801 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15802 		       LPFC_EQ_CNT_512);
15803 		break;
15804 	case 1024:
15805 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15806 		       LPFC_EQ_CNT_1024);
15807 		break;
15808 	case 2048:
15809 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15810 		       LPFC_EQ_CNT_2048);
15811 		break;
15812 	case 4096:
15813 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15814 		       LPFC_EQ_CNT_4096);
15815 		break;
15816 	}
15817 	list_for_each_entry(dmabuf, &eq->page_list, list) {
15818 		memset(dmabuf->virt, 0, hw_page_size);
15819 		eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15820 					putPaddrLow(dmabuf->phys);
15821 		eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15822 					putPaddrHigh(dmabuf->phys);
15823 	}
15824 	mbox->vport = phba->pport;
15825 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15826 	mbox->ctx_buf = NULL;
15827 	mbox->ctx_ndlp = NULL;
15828 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15829 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15830 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15831 	if (shdr_status || shdr_add_status || rc) {
15832 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15833 				"2500 EQ_CREATE mailbox failed with "
15834 				"status x%x add_status x%x, mbx status x%x\n",
15835 				shdr_status, shdr_add_status, rc);
15836 		status = -ENXIO;
15837 	}
15838 	eq->type = LPFC_EQ;
15839 	eq->subtype = LPFC_NONE;
15840 	eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
15841 	if (eq->queue_id == 0xFFFF)
15842 		status = -ENXIO;
15843 	eq->host_index = 0;
15844 	eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL;
15845 	eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT;
15846 out:
15847 	mempool_free(mbox, phba->mbox_mem_pool);
15848 	return status;
15849 }
15850 
15851 static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget)
15852 {
15853 	struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop);
15854 
15855 	__lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL);
15856 
15857 	return 1;
15858 }
15859 
15860 /**
15861  * lpfc_cq_create - Create a Completion Queue on the HBA
15862  * @phba: HBA structure that indicates port to create a queue on.
15863  * @cq: The queue structure to use to create the completion queue.
15864  * @eq: The event queue to bind this completion queue to.
15865  * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc).
15866  * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
15867  *
15868  * This function creates a completion queue, as detailed in @wq, on a port,
15869  * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
15870  *
15871  * The @phba struct is used to send mailbox command to HBA. The @cq struct
15872  * is used to get the entry count and entry size that are necessary to
15873  * determine the number of pages to allocate and use for this queue. The @eq
15874  * is used to indicate which event queue to bind this completion queue to. This
15875  * function will send the CQ_CREATE mailbox command to the HBA to setup the
15876  * completion queue. This function is asynchronous and will wait for the mailbox
15877  * command to finish before continuing.
15878  *
15879  * On success this function will return a zero. If unable to allocate enough
15880  * memory this function will return -ENOMEM. If the queue create mailbox command
15881  * fails this function will return -ENXIO.
15882  **/
15883 int
15884 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
15885 	       struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
15886 {
15887 	struct lpfc_mbx_cq_create *cq_create;
15888 	struct lpfc_dmabuf *dmabuf;
15889 	LPFC_MBOXQ_t *mbox;
15890 	int rc, length, status = 0;
15891 	uint32_t shdr_status, shdr_add_status;
15892 	union lpfc_sli4_cfg_shdr *shdr;
15893 
15894 	/* sanity check on queue memory */
15895 	if (!cq || !eq)
15896 		return -ENODEV;
15897 
15898 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15899 	if (!mbox)
15900 		return -ENOMEM;
15901 	length = (sizeof(struct lpfc_mbx_cq_create) -
15902 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15903 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15904 			 LPFC_MBOX_OPCODE_CQ_CREATE,
15905 			 length, LPFC_SLI4_MBX_EMBED);
15906 	cq_create = &mbox->u.mqe.un.cq_create;
15907 	shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
15908 	bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
15909 		    cq->page_count);
15910 	bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
15911 	bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
15912 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15913 	       phba->sli4_hba.pc_sli4_params.cqv);
15914 	if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
15915 		bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request,
15916 		       (cq->page_size / SLI4_PAGE_SIZE));
15917 		bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
15918 		       eq->queue_id);
15919 		bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context,
15920 		       phba->sli4_hba.pc_sli4_params.cqav);
15921 	} else {
15922 		bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
15923 		       eq->queue_id);
15924 	}
15925 	switch (cq->entry_count) {
15926 	case 2048:
15927 	case 4096:
15928 		if (phba->sli4_hba.pc_sli4_params.cqv ==
15929 		    LPFC_Q_CREATE_VERSION_2) {
15930 			cq_create->u.request.context.lpfc_cq_context_count =
15931 				cq->entry_count;
15932 			bf_set(lpfc_cq_context_count,
15933 			       &cq_create->u.request.context,
15934 			       LPFC_CQ_CNT_WORD7);
15935 			break;
15936 		}
15937 		fallthrough;
15938 	default:
15939 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15940 				"0361 Unsupported CQ count: "
15941 				"entry cnt %d sz %d pg cnt %d\n",
15942 				cq->entry_count, cq->entry_size,
15943 				cq->page_count);
15944 		if (cq->entry_count < 256) {
15945 			status = -EINVAL;
15946 			goto out;
15947 		}
15948 		fallthrough;	/* otherwise default to smallest count */
15949 	case 256:
15950 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15951 		       LPFC_CQ_CNT_256);
15952 		break;
15953 	case 512:
15954 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15955 		       LPFC_CQ_CNT_512);
15956 		break;
15957 	case 1024:
15958 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15959 		       LPFC_CQ_CNT_1024);
15960 		break;
15961 	}
15962 	list_for_each_entry(dmabuf, &cq->page_list, list) {
15963 		memset(dmabuf->virt, 0, cq->page_size);
15964 		cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15965 					putPaddrLow(dmabuf->phys);
15966 		cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15967 					putPaddrHigh(dmabuf->phys);
15968 	}
15969 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15970 
15971 	/* The IOCTL status is embedded in the mailbox subheader. */
15972 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15973 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15974 	if (shdr_status || shdr_add_status || rc) {
15975 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15976 				"2501 CQ_CREATE mailbox failed with "
15977 				"status x%x add_status x%x, mbx status x%x\n",
15978 				shdr_status, shdr_add_status, rc);
15979 		status = -ENXIO;
15980 		goto out;
15981 	}
15982 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
15983 	if (cq->queue_id == 0xFFFF) {
15984 		status = -ENXIO;
15985 		goto out;
15986 	}
15987 	/* link the cq onto the parent eq child list */
15988 	list_add_tail(&cq->list, &eq->child_list);
15989 	/* Set up completion queue's type and subtype */
15990 	cq->type = type;
15991 	cq->subtype = subtype;
15992 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
15993 	cq->assoc_qid = eq->queue_id;
15994 	cq->assoc_qp = eq;
15995 	cq->host_index = 0;
15996 	cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
15997 	cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count);
15998 
15999 	if (cq->queue_id > phba->sli4_hba.cq_max)
16000 		phba->sli4_hba.cq_max = cq->queue_id;
16001 
16002 	irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler);
16003 out:
16004 	mempool_free(mbox, phba->mbox_mem_pool);
16005 	return status;
16006 }
16007 
16008 /**
16009  * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
16010  * @phba: HBA structure that indicates port to create a queue on.
16011  * @cqp: The queue structure array to use to create the completion queues.
16012  * @hdwq: The hardware queue array  with the EQ to bind completion queues to.
16013  * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc).
16014  * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
16015  *
16016  * This function creates a set of  completion queue, s to support MRQ
16017  * as detailed in @cqp, on a port,
16018  * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
16019  *
16020  * The @phba struct is used to send mailbox command to HBA. The @cq struct
16021  * is used to get the entry count and entry size that are necessary to
16022  * determine the number of pages to allocate and use for this queue. The @eq
16023  * is used to indicate which event queue to bind this completion queue to. This
16024  * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
16025  * completion queue. This function is asynchronous and will wait for the mailbox
16026  * command to finish before continuing.
16027  *
16028  * On success this function will return a zero. If unable to allocate enough
16029  * memory this function will return -ENOMEM. If the queue create mailbox command
16030  * fails this function will return -ENXIO.
16031  **/
16032 int
16033 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
16034 		   struct lpfc_sli4_hdw_queue *hdwq, uint32_t type,
16035 		   uint32_t subtype)
16036 {
16037 	struct lpfc_queue *cq;
16038 	struct lpfc_queue *eq;
16039 	struct lpfc_mbx_cq_create_set *cq_set;
16040 	struct lpfc_dmabuf *dmabuf;
16041 	LPFC_MBOXQ_t *mbox;
16042 	int rc, length, alloclen, status = 0;
16043 	int cnt, idx, numcq, page_idx = 0;
16044 	uint32_t shdr_status, shdr_add_status;
16045 	union lpfc_sli4_cfg_shdr *shdr;
16046 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16047 
16048 	/* sanity check on queue memory */
16049 	numcq = phba->cfg_nvmet_mrq;
16050 	if (!cqp || !hdwq || !numcq)
16051 		return -ENODEV;
16052 
16053 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16054 	if (!mbox)
16055 		return -ENOMEM;
16056 
16057 	length = sizeof(struct lpfc_mbx_cq_create_set);
16058 	length += ((numcq * cqp[0]->page_count) *
16059 		   sizeof(struct dma_address));
16060 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16061 			LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
16062 			LPFC_SLI4_MBX_NEMBED);
16063 	if (alloclen < length) {
16064 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16065 				"3098 Allocated DMA memory size (%d) is "
16066 				"less than the requested DMA memory size "
16067 				"(%d)\n", alloclen, length);
16068 		status = -ENOMEM;
16069 		goto out;
16070 	}
16071 	cq_set = mbox->sge_array->addr[0];
16072 	shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
16073 	bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
16074 
16075 	for (idx = 0; idx < numcq; idx++) {
16076 		cq = cqp[idx];
16077 		eq = hdwq[idx].hba_eq;
16078 		if (!cq || !eq) {
16079 			status = -ENOMEM;
16080 			goto out;
16081 		}
16082 		if (!phba->sli4_hba.pc_sli4_params.supported)
16083 			hw_page_size = cq->page_size;
16084 
16085 		switch (idx) {
16086 		case 0:
16087 			bf_set(lpfc_mbx_cq_create_set_page_size,
16088 			       &cq_set->u.request,
16089 			       (hw_page_size / SLI4_PAGE_SIZE));
16090 			bf_set(lpfc_mbx_cq_create_set_num_pages,
16091 			       &cq_set->u.request, cq->page_count);
16092 			bf_set(lpfc_mbx_cq_create_set_evt,
16093 			       &cq_set->u.request, 1);
16094 			bf_set(lpfc_mbx_cq_create_set_valid,
16095 			       &cq_set->u.request, 1);
16096 			bf_set(lpfc_mbx_cq_create_set_cqe_size,
16097 			       &cq_set->u.request, 0);
16098 			bf_set(lpfc_mbx_cq_create_set_num_cq,
16099 			       &cq_set->u.request, numcq);
16100 			bf_set(lpfc_mbx_cq_create_set_autovalid,
16101 			       &cq_set->u.request,
16102 			       phba->sli4_hba.pc_sli4_params.cqav);
16103 			switch (cq->entry_count) {
16104 			case 2048:
16105 			case 4096:
16106 				if (phba->sli4_hba.pc_sli4_params.cqv ==
16107 				    LPFC_Q_CREATE_VERSION_2) {
16108 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16109 					       &cq_set->u.request,
16110 						cq->entry_count);
16111 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16112 					       &cq_set->u.request,
16113 					       LPFC_CQ_CNT_WORD7);
16114 					break;
16115 				}
16116 				fallthrough;
16117 			default:
16118 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16119 						"3118 Bad CQ count. (%d)\n",
16120 						cq->entry_count);
16121 				if (cq->entry_count < 256) {
16122 					status = -EINVAL;
16123 					goto out;
16124 				}
16125 				fallthrough;	/* otherwise default to smallest */
16126 			case 256:
16127 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16128 				       &cq_set->u.request, LPFC_CQ_CNT_256);
16129 				break;
16130 			case 512:
16131 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16132 				       &cq_set->u.request, LPFC_CQ_CNT_512);
16133 				break;
16134 			case 1024:
16135 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16136 				       &cq_set->u.request, LPFC_CQ_CNT_1024);
16137 				break;
16138 			}
16139 			bf_set(lpfc_mbx_cq_create_set_eq_id0,
16140 			       &cq_set->u.request, eq->queue_id);
16141 			break;
16142 		case 1:
16143 			bf_set(lpfc_mbx_cq_create_set_eq_id1,
16144 			       &cq_set->u.request, eq->queue_id);
16145 			break;
16146 		case 2:
16147 			bf_set(lpfc_mbx_cq_create_set_eq_id2,
16148 			       &cq_set->u.request, eq->queue_id);
16149 			break;
16150 		case 3:
16151 			bf_set(lpfc_mbx_cq_create_set_eq_id3,
16152 			       &cq_set->u.request, eq->queue_id);
16153 			break;
16154 		case 4:
16155 			bf_set(lpfc_mbx_cq_create_set_eq_id4,
16156 			       &cq_set->u.request, eq->queue_id);
16157 			break;
16158 		case 5:
16159 			bf_set(lpfc_mbx_cq_create_set_eq_id5,
16160 			       &cq_set->u.request, eq->queue_id);
16161 			break;
16162 		case 6:
16163 			bf_set(lpfc_mbx_cq_create_set_eq_id6,
16164 			       &cq_set->u.request, eq->queue_id);
16165 			break;
16166 		case 7:
16167 			bf_set(lpfc_mbx_cq_create_set_eq_id7,
16168 			       &cq_set->u.request, eq->queue_id);
16169 			break;
16170 		case 8:
16171 			bf_set(lpfc_mbx_cq_create_set_eq_id8,
16172 			       &cq_set->u.request, eq->queue_id);
16173 			break;
16174 		case 9:
16175 			bf_set(lpfc_mbx_cq_create_set_eq_id9,
16176 			       &cq_set->u.request, eq->queue_id);
16177 			break;
16178 		case 10:
16179 			bf_set(lpfc_mbx_cq_create_set_eq_id10,
16180 			       &cq_set->u.request, eq->queue_id);
16181 			break;
16182 		case 11:
16183 			bf_set(lpfc_mbx_cq_create_set_eq_id11,
16184 			       &cq_set->u.request, eq->queue_id);
16185 			break;
16186 		case 12:
16187 			bf_set(lpfc_mbx_cq_create_set_eq_id12,
16188 			       &cq_set->u.request, eq->queue_id);
16189 			break;
16190 		case 13:
16191 			bf_set(lpfc_mbx_cq_create_set_eq_id13,
16192 			       &cq_set->u.request, eq->queue_id);
16193 			break;
16194 		case 14:
16195 			bf_set(lpfc_mbx_cq_create_set_eq_id14,
16196 			       &cq_set->u.request, eq->queue_id);
16197 			break;
16198 		case 15:
16199 			bf_set(lpfc_mbx_cq_create_set_eq_id15,
16200 			       &cq_set->u.request, eq->queue_id);
16201 			break;
16202 		}
16203 
16204 		/* link the cq onto the parent eq child list */
16205 		list_add_tail(&cq->list, &eq->child_list);
16206 		/* Set up completion queue's type and subtype */
16207 		cq->type = type;
16208 		cq->subtype = subtype;
16209 		cq->assoc_qid = eq->queue_id;
16210 		cq->assoc_qp = eq;
16211 		cq->host_index = 0;
16212 		cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
16213 		cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit,
16214 					 cq->entry_count);
16215 		cq->chann = idx;
16216 
16217 		rc = 0;
16218 		list_for_each_entry(dmabuf, &cq->page_list, list) {
16219 			memset(dmabuf->virt, 0, hw_page_size);
16220 			cnt = page_idx + dmabuf->buffer_tag;
16221 			cq_set->u.request.page[cnt].addr_lo =
16222 					putPaddrLow(dmabuf->phys);
16223 			cq_set->u.request.page[cnt].addr_hi =
16224 					putPaddrHigh(dmabuf->phys);
16225 			rc++;
16226 		}
16227 		page_idx += rc;
16228 	}
16229 
16230 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16231 
16232 	/* The IOCTL status is embedded in the mailbox subheader. */
16233 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16234 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16235 	if (shdr_status || shdr_add_status || rc) {
16236 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16237 				"3119 CQ_CREATE_SET mailbox failed with "
16238 				"status x%x add_status x%x, mbx status x%x\n",
16239 				shdr_status, shdr_add_status, rc);
16240 		status = -ENXIO;
16241 		goto out;
16242 	}
16243 	rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
16244 	if (rc == 0xFFFF) {
16245 		status = -ENXIO;
16246 		goto out;
16247 	}
16248 
16249 	for (idx = 0; idx < numcq; idx++) {
16250 		cq = cqp[idx];
16251 		cq->queue_id = rc + idx;
16252 		if (cq->queue_id > phba->sli4_hba.cq_max)
16253 			phba->sli4_hba.cq_max = cq->queue_id;
16254 	}
16255 
16256 out:
16257 	lpfc_sli4_mbox_cmd_free(phba, mbox);
16258 	return status;
16259 }
16260 
16261 /**
16262  * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
16263  * @phba: HBA structure that indicates port to create a queue on.
16264  * @mq: The queue structure to use to create the mailbox queue.
16265  * @mbox: An allocated pointer to type LPFC_MBOXQ_t
16266  * @cq: The completion queue to associate with this cq.
16267  *
16268  * This function provides failback (fb) functionality when the
16269  * mq_create_ext fails on older FW generations.  It's purpose is identical
16270  * to mq_create_ext otherwise.
16271  *
16272  * This routine cannot fail as all attributes were previously accessed and
16273  * initialized in mq_create_ext.
16274  **/
16275 static void
16276 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
16277 		       LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
16278 {
16279 	struct lpfc_mbx_mq_create *mq_create;
16280 	struct lpfc_dmabuf *dmabuf;
16281 	int length;
16282 
16283 	length = (sizeof(struct lpfc_mbx_mq_create) -
16284 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16285 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16286 			 LPFC_MBOX_OPCODE_MQ_CREATE,
16287 			 length, LPFC_SLI4_MBX_EMBED);
16288 	mq_create = &mbox->u.mqe.un.mq_create;
16289 	bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
16290 	       mq->page_count);
16291 	bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
16292 	       cq->queue_id);
16293 	bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
16294 	switch (mq->entry_count) {
16295 	case 16:
16296 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16297 		       LPFC_MQ_RING_SIZE_16);
16298 		break;
16299 	case 32:
16300 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16301 		       LPFC_MQ_RING_SIZE_32);
16302 		break;
16303 	case 64:
16304 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16305 		       LPFC_MQ_RING_SIZE_64);
16306 		break;
16307 	case 128:
16308 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16309 		       LPFC_MQ_RING_SIZE_128);
16310 		break;
16311 	}
16312 	list_for_each_entry(dmabuf, &mq->page_list, list) {
16313 		mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16314 			putPaddrLow(dmabuf->phys);
16315 		mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16316 			putPaddrHigh(dmabuf->phys);
16317 	}
16318 }
16319 
16320 /**
16321  * lpfc_mq_create - Create a mailbox Queue on the HBA
16322  * @phba: HBA structure that indicates port to create a queue on.
16323  * @mq: The queue structure to use to create the mailbox queue.
16324  * @cq: The completion queue to associate with this cq.
16325  * @subtype: The queue's subtype.
16326  *
16327  * This function creates a mailbox queue, as detailed in @mq, on a port,
16328  * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
16329  *
16330  * The @phba struct is used to send mailbox command to HBA. The @cq struct
16331  * is used to get the entry count and entry size that are necessary to
16332  * determine the number of pages to allocate and use for this queue. This
16333  * function will send the MQ_CREATE mailbox command to the HBA to setup the
16334  * mailbox queue. This function is asynchronous and will wait for the mailbox
16335  * command to finish before continuing.
16336  *
16337  * On success this function will return a zero. If unable to allocate enough
16338  * memory this function will return -ENOMEM. If the queue create mailbox command
16339  * fails this function will return -ENXIO.
16340  **/
16341 int32_t
16342 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
16343 	       struct lpfc_queue *cq, uint32_t subtype)
16344 {
16345 	struct lpfc_mbx_mq_create *mq_create;
16346 	struct lpfc_mbx_mq_create_ext *mq_create_ext;
16347 	struct lpfc_dmabuf *dmabuf;
16348 	LPFC_MBOXQ_t *mbox;
16349 	int rc, length, status = 0;
16350 	uint32_t shdr_status, shdr_add_status;
16351 	union lpfc_sli4_cfg_shdr *shdr;
16352 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16353 
16354 	/* sanity check on queue memory */
16355 	if (!mq || !cq)
16356 		return -ENODEV;
16357 	if (!phba->sli4_hba.pc_sli4_params.supported)
16358 		hw_page_size = SLI4_PAGE_SIZE;
16359 
16360 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16361 	if (!mbox)
16362 		return -ENOMEM;
16363 	length = (sizeof(struct lpfc_mbx_mq_create_ext) -
16364 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16365 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16366 			 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
16367 			 length, LPFC_SLI4_MBX_EMBED);
16368 
16369 	mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
16370 	shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
16371 	bf_set(lpfc_mbx_mq_create_ext_num_pages,
16372 	       &mq_create_ext->u.request, mq->page_count);
16373 	bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
16374 	       &mq_create_ext->u.request, 1);
16375 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
16376 	       &mq_create_ext->u.request, 1);
16377 	bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
16378 	       &mq_create_ext->u.request, 1);
16379 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
16380 	       &mq_create_ext->u.request, 1);
16381 	bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
16382 	       &mq_create_ext->u.request, 1);
16383 	bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
16384 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
16385 	       phba->sli4_hba.pc_sli4_params.mqv);
16386 	if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
16387 		bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
16388 		       cq->queue_id);
16389 	else
16390 		bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
16391 		       cq->queue_id);
16392 	switch (mq->entry_count) {
16393 	default:
16394 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16395 				"0362 Unsupported MQ count. (%d)\n",
16396 				mq->entry_count);
16397 		if (mq->entry_count < 16) {
16398 			status = -EINVAL;
16399 			goto out;
16400 		}
16401 		fallthrough;	/* otherwise default to smallest count */
16402 	case 16:
16403 		bf_set(lpfc_mq_context_ring_size,
16404 		       &mq_create_ext->u.request.context,
16405 		       LPFC_MQ_RING_SIZE_16);
16406 		break;
16407 	case 32:
16408 		bf_set(lpfc_mq_context_ring_size,
16409 		       &mq_create_ext->u.request.context,
16410 		       LPFC_MQ_RING_SIZE_32);
16411 		break;
16412 	case 64:
16413 		bf_set(lpfc_mq_context_ring_size,
16414 		       &mq_create_ext->u.request.context,
16415 		       LPFC_MQ_RING_SIZE_64);
16416 		break;
16417 	case 128:
16418 		bf_set(lpfc_mq_context_ring_size,
16419 		       &mq_create_ext->u.request.context,
16420 		       LPFC_MQ_RING_SIZE_128);
16421 		break;
16422 	}
16423 	list_for_each_entry(dmabuf, &mq->page_list, list) {
16424 		memset(dmabuf->virt, 0, hw_page_size);
16425 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
16426 					putPaddrLow(dmabuf->phys);
16427 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
16428 					putPaddrHigh(dmabuf->phys);
16429 	}
16430 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16431 	mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
16432 			      &mq_create_ext->u.response);
16433 	if (rc != MBX_SUCCESS) {
16434 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16435 				"2795 MQ_CREATE_EXT failed with "
16436 				"status x%x. Failback to MQ_CREATE.\n",
16437 				rc);
16438 		lpfc_mq_create_fb_init(phba, mq, mbox, cq);
16439 		mq_create = &mbox->u.mqe.un.mq_create;
16440 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16441 		shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
16442 		mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
16443 				      &mq_create->u.response);
16444 	}
16445 
16446 	/* The IOCTL status is embedded in the mailbox subheader. */
16447 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16448 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16449 	if (shdr_status || shdr_add_status || rc) {
16450 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16451 				"2502 MQ_CREATE mailbox failed with "
16452 				"status x%x add_status x%x, mbx status x%x\n",
16453 				shdr_status, shdr_add_status, rc);
16454 		status = -ENXIO;
16455 		goto out;
16456 	}
16457 	if (mq->queue_id == 0xFFFF) {
16458 		status = -ENXIO;
16459 		goto out;
16460 	}
16461 	mq->type = LPFC_MQ;
16462 	mq->assoc_qid = cq->queue_id;
16463 	mq->subtype = subtype;
16464 	mq->host_index = 0;
16465 	mq->hba_index = 0;
16466 
16467 	/* link the mq onto the parent cq child list */
16468 	list_add_tail(&mq->list, &cq->child_list);
16469 out:
16470 	mempool_free(mbox, phba->mbox_mem_pool);
16471 	return status;
16472 }
16473 
16474 /**
16475  * lpfc_wq_create - Create a Work Queue on the HBA
16476  * @phba: HBA structure that indicates port to create a queue on.
16477  * @wq: The queue structure to use to create the work queue.
16478  * @cq: The completion queue to bind this work queue to.
16479  * @subtype: The subtype of the work queue indicating its functionality.
16480  *
16481  * This function creates a work queue, as detailed in @wq, on a port, described
16482  * by @phba by sending a WQ_CREATE mailbox command to the HBA.
16483  *
16484  * The @phba struct is used to send mailbox command to HBA. The @wq struct
16485  * is used to get the entry count and entry size that are necessary to
16486  * determine the number of pages to allocate and use for this queue. The @cq
16487  * is used to indicate which completion queue to bind this work queue to. This
16488  * function will send the WQ_CREATE mailbox command to the HBA to setup the
16489  * work queue. This function is asynchronous and will wait for the mailbox
16490  * command to finish before continuing.
16491  *
16492  * On success this function will return a zero. If unable to allocate enough
16493  * memory this function will return -ENOMEM. If the queue create mailbox command
16494  * fails this function will return -ENXIO.
16495  **/
16496 int
16497 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
16498 	       struct lpfc_queue *cq, uint32_t subtype)
16499 {
16500 	struct lpfc_mbx_wq_create *wq_create;
16501 	struct lpfc_dmabuf *dmabuf;
16502 	LPFC_MBOXQ_t *mbox;
16503 	int rc, length, status = 0;
16504 	uint32_t shdr_status, shdr_add_status;
16505 	union lpfc_sli4_cfg_shdr *shdr;
16506 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16507 	struct dma_address *page;
16508 	void __iomem *bar_memmap_p;
16509 	uint32_t db_offset;
16510 	uint16_t pci_barset;
16511 	uint8_t dpp_barset;
16512 	uint32_t dpp_offset;
16513 	uint8_t wq_create_version;
16514 #ifdef CONFIG_X86
16515 	unsigned long pg_addr;
16516 #endif
16517 
16518 	/* sanity check on queue memory */
16519 	if (!wq || !cq)
16520 		return -ENODEV;
16521 	if (!phba->sli4_hba.pc_sli4_params.supported)
16522 		hw_page_size = wq->page_size;
16523 
16524 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16525 	if (!mbox)
16526 		return -ENOMEM;
16527 	length = (sizeof(struct lpfc_mbx_wq_create) -
16528 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16529 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16530 			 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
16531 			 length, LPFC_SLI4_MBX_EMBED);
16532 	wq_create = &mbox->u.mqe.un.wq_create;
16533 	shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
16534 	bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
16535 		    wq->page_count);
16536 	bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
16537 		    cq->queue_id);
16538 
16539 	/* wqv is the earliest version supported, NOT the latest */
16540 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
16541 	       phba->sli4_hba.pc_sli4_params.wqv);
16542 
16543 	if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) ||
16544 	    (wq->page_size > SLI4_PAGE_SIZE))
16545 		wq_create_version = LPFC_Q_CREATE_VERSION_1;
16546 	else
16547 		wq_create_version = LPFC_Q_CREATE_VERSION_0;
16548 
16549 	switch (wq_create_version) {
16550 	case LPFC_Q_CREATE_VERSION_1:
16551 		bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
16552 		       wq->entry_count);
16553 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
16554 		       LPFC_Q_CREATE_VERSION_1);
16555 
16556 		switch (wq->entry_size) {
16557 		default:
16558 		case 64:
16559 			bf_set(lpfc_mbx_wq_create_wqe_size,
16560 			       &wq_create->u.request_1,
16561 			       LPFC_WQ_WQE_SIZE_64);
16562 			break;
16563 		case 128:
16564 			bf_set(lpfc_mbx_wq_create_wqe_size,
16565 			       &wq_create->u.request_1,
16566 			       LPFC_WQ_WQE_SIZE_128);
16567 			break;
16568 		}
16569 		/* Request DPP by default */
16570 		bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1);
16571 		bf_set(lpfc_mbx_wq_create_page_size,
16572 		       &wq_create->u.request_1,
16573 		       (wq->page_size / SLI4_PAGE_SIZE));
16574 		page = wq_create->u.request_1.page;
16575 		break;
16576 	default:
16577 		page = wq_create->u.request.page;
16578 		break;
16579 	}
16580 
16581 	list_for_each_entry(dmabuf, &wq->page_list, list) {
16582 		memset(dmabuf->virt, 0, hw_page_size);
16583 		page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
16584 		page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
16585 	}
16586 
16587 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
16588 		bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
16589 
16590 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16591 	/* The IOCTL status is embedded in the mailbox subheader. */
16592 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16593 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16594 	if (shdr_status || shdr_add_status || rc) {
16595 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16596 				"2503 WQ_CREATE mailbox failed with "
16597 				"status x%x add_status x%x, mbx status x%x\n",
16598 				shdr_status, shdr_add_status, rc);
16599 		status = -ENXIO;
16600 		goto out;
16601 	}
16602 
16603 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0)
16604 		wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id,
16605 					&wq_create->u.response);
16606 	else
16607 		wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id,
16608 					&wq_create->u.response_1);
16609 
16610 	if (wq->queue_id == 0xFFFF) {
16611 		status = -ENXIO;
16612 		goto out;
16613 	}
16614 
16615 	wq->db_format = LPFC_DB_LIST_FORMAT;
16616 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0) {
16617 		if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
16618 			wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
16619 					       &wq_create->u.response);
16620 			if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
16621 			    (wq->db_format != LPFC_DB_RING_FORMAT)) {
16622 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16623 						"3265 WQ[%d] doorbell format "
16624 						"not supported: x%x\n",
16625 						wq->queue_id, wq->db_format);
16626 				status = -EINVAL;
16627 				goto out;
16628 			}
16629 			pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
16630 					    &wq_create->u.response);
16631 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
16632 								   pci_barset);
16633 			if (!bar_memmap_p) {
16634 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16635 						"3263 WQ[%d] failed to memmap "
16636 						"pci barset:x%x\n",
16637 						wq->queue_id, pci_barset);
16638 				status = -ENOMEM;
16639 				goto out;
16640 			}
16641 			db_offset = wq_create->u.response.doorbell_offset;
16642 			if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
16643 			    (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
16644 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16645 						"3252 WQ[%d] doorbell offset "
16646 						"not supported: x%x\n",
16647 						wq->queue_id, db_offset);
16648 				status = -EINVAL;
16649 				goto out;
16650 			}
16651 			wq->db_regaddr = bar_memmap_p + db_offset;
16652 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16653 					"3264 WQ[%d]: barset:x%x, offset:x%x, "
16654 					"format:x%x\n", wq->queue_id,
16655 					pci_barset, db_offset, wq->db_format);
16656 		} else
16657 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
16658 	} else {
16659 		/* Check if DPP was honored by the firmware */
16660 		wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp,
16661 				    &wq_create->u.response_1);
16662 		if (wq->dpp_enable) {
16663 			pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set,
16664 					    &wq_create->u.response_1);
16665 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
16666 								   pci_barset);
16667 			if (!bar_memmap_p) {
16668 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16669 						"3267 WQ[%d] failed to memmap "
16670 						"pci barset:x%x\n",
16671 						wq->queue_id, pci_barset);
16672 				status = -ENOMEM;
16673 				goto out;
16674 			}
16675 			db_offset = wq_create->u.response_1.doorbell_offset;
16676 			wq->db_regaddr = bar_memmap_p + db_offset;
16677 			wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id,
16678 					    &wq_create->u.response_1);
16679 			dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar,
16680 					    &wq_create->u.response_1);
16681 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
16682 								   dpp_barset);
16683 			if (!bar_memmap_p) {
16684 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16685 						"3268 WQ[%d] failed to memmap "
16686 						"pci barset:x%x\n",
16687 						wq->queue_id, dpp_barset);
16688 				status = -ENOMEM;
16689 				goto out;
16690 			}
16691 			dpp_offset = wq_create->u.response_1.dpp_offset;
16692 			wq->dpp_regaddr = bar_memmap_p + dpp_offset;
16693 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16694 					"3271 WQ[%d]: barset:x%x, offset:x%x, "
16695 					"dpp_id:x%x dpp_barset:x%x "
16696 					"dpp_offset:x%x\n",
16697 					wq->queue_id, pci_barset, db_offset,
16698 					wq->dpp_id, dpp_barset, dpp_offset);
16699 
16700 #ifdef CONFIG_X86
16701 			/* Enable combined writes for DPP aperture */
16702 			pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK;
16703 			rc = set_memory_wc(pg_addr, 1);
16704 			if (rc) {
16705 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16706 					"3272 Cannot setup Combined "
16707 					"Write on WQ[%d] - disable DPP\n",
16708 					wq->queue_id);
16709 				phba->cfg_enable_dpp = 0;
16710 			}
16711 #else
16712 			phba->cfg_enable_dpp = 0;
16713 #endif
16714 		} else
16715 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
16716 	}
16717 	wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
16718 	if (wq->pring == NULL) {
16719 		status = -ENOMEM;
16720 		goto out;
16721 	}
16722 	wq->type = LPFC_WQ;
16723 	wq->assoc_qid = cq->queue_id;
16724 	wq->subtype = subtype;
16725 	wq->host_index = 0;
16726 	wq->hba_index = 0;
16727 	wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL;
16728 
16729 	/* link the wq onto the parent cq child list */
16730 	list_add_tail(&wq->list, &cq->child_list);
16731 out:
16732 	mempool_free(mbox, phba->mbox_mem_pool);
16733 	return status;
16734 }
16735 
16736 /**
16737  * lpfc_rq_create - Create a Receive Queue on the HBA
16738  * @phba: HBA structure that indicates port to create a queue on.
16739  * @hrq: The queue structure to use to create the header receive queue.
16740  * @drq: The queue structure to use to create the data receive queue.
16741  * @cq: The completion queue to bind this work queue to.
16742  * @subtype: The subtype of the work queue indicating its functionality.
16743  *
16744  * This function creates a receive buffer queue pair , as detailed in @hrq and
16745  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
16746  * to the HBA.
16747  *
16748  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
16749  * struct is used to get the entry count that is necessary to determine the
16750  * number of pages to use for this queue. The @cq is used to indicate which
16751  * completion queue to bind received buffers that are posted to these queues to.
16752  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
16753  * receive queue pair. This function is asynchronous and will wait for the
16754  * mailbox command to finish before continuing.
16755  *
16756  * On success this function will return a zero. If unable to allocate enough
16757  * memory this function will return -ENOMEM. If the queue create mailbox command
16758  * fails this function will return -ENXIO.
16759  **/
16760 int
16761 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
16762 	       struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
16763 {
16764 	struct lpfc_mbx_rq_create *rq_create;
16765 	struct lpfc_dmabuf *dmabuf;
16766 	LPFC_MBOXQ_t *mbox;
16767 	int rc, length, status = 0;
16768 	uint32_t shdr_status, shdr_add_status;
16769 	union lpfc_sli4_cfg_shdr *shdr;
16770 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16771 	void __iomem *bar_memmap_p;
16772 	uint32_t db_offset;
16773 	uint16_t pci_barset;
16774 
16775 	/* sanity check on queue memory */
16776 	if (!hrq || !drq || !cq)
16777 		return -ENODEV;
16778 	if (!phba->sli4_hba.pc_sli4_params.supported)
16779 		hw_page_size = SLI4_PAGE_SIZE;
16780 
16781 	if (hrq->entry_count != drq->entry_count)
16782 		return -EINVAL;
16783 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16784 	if (!mbox)
16785 		return -ENOMEM;
16786 	length = (sizeof(struct lpfc_mbx_rq_create) -
16787 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16788 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16789 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
16790 			 length, LPFC_SLI4_MBX_EMBED);
16791 	rq_create = &mbox->u.mqe.un.rq_create;
16792 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
16793 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
16794 	       phba->sli4_hba.pc_sli4_params.rqv);
16795 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
16796 		bf_set(lpfc_rq_context_rqe_count_1,
16797 		       &rq_create->u.request.context,
16798 		       hrq->entry_count);
16799 		rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
16800 		bf_set(lpfc_rq_context_rqe_size,
16801 		       &rq_create->u.request.context,
16802 		       LPFC_RQE_SIZE_8);
16803 		bf_set(lpfc_rq_context_page_size,
16804 		       &rq_create->u.request.context,
16805 		       LPFC_RQ_PAGE_SIZE_4096);
16806 	} else {
16807 		switch (hrq->entry_count) {
16808 		default:
16809 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16810 					"2535 Unsupported RQ count. (%d)\n",
16811 					hrq->entry_count);
16812 			if (hrq->entry_count < 512) {
16813 				status = -EINVAL;
16814 				goto out;
16815 			}
16816 			fallthrough;	/* otherwise default to smallest count */
16817 		case 512:
16818 			bf_set(lpfc_rq_context_rqe_count,
16819 			       &rq_create->u.request.context,
16820 			       LPFC_RQ_RING_SIZE_512);
16821 			break;
16822 		case 1024:
16823 			bf_set(lpfc_rq_context_rqe_count,
16824 			       &rq_create->u.request.context,
16825 			       LPFC_RQ_RING_SIZE_1024);
16826 			break;
16827 		case 2048:
16828 			bf_set(lpfc_rq_context_rqe_count,
16829 			       &rq_create->u.request.context,
16830 			       LPFC_RQ_RING_SIZE_2048);
16831 			break;
16832 		case 4096:
16833 			bf_set(lpfc_rq_context_rqe_count,
16834 			       &rq_create->u.request.context,
16835 			       LPFC_RQ_RING_SIZE_4096);
16836 			break;
16837 		}
16838 		bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
16839 		       LPFC_HDR_BUF_SIZE);
16840 	}
16841 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
16842 	       cq->queue_id);
16843 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
16844 	       hrq->page_count);
16845 	list_for_each_entry(dmabuf, &hrq->page_list, list) {
16846 		memset(dmabuf->virt, 0, hw_page_size);
16847 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16848 					putPaddrLow(dmabuf->phys);
16849 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16850 					putPaddrHigh(dmabuf->phys);
16851 	}
16852 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
16853 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
16854 
16855 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16856 	/* The IOCTL status is embedded in the mailbox subheader. */
16857 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16858 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16859 	if (shdr_status || shdr_add_status || rc) {
16860 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16861 				"2504 RQ_CREATE mailbox failed with "
16862 				"status x%x add_status x%x, mbx status x%x\n",
16863 				shdr_status, shdr_add_status, rc);
16864 		status = -ENXIO;
16865 		goto out;
16866 	}
16867 	hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16868 	if (hrq->queue_id == 0xFFFF) {
16869 		status = -ENXIO;
16870 		goto out;
16871 	}
16872 
16873 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
16874 		hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
16875 					&rq_create->u.response);
16876 		if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
16877 		    (hrq->db_format != LPFC_DB_RING_FORMAT)) {
16878 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16879 					"3262 RQ [%d] doorbell format not "
16880 					"supported: x%x\n", hrq->queue_id,
16881 					hrq->db_format);
16882 			status = -EINVAL;
16883 			goto out;
16884 		}
16885 
16886 		pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
16887 				    &rq_create->u.response);
16888 		bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
16889 		if (!bar_memmap_p) {
16890 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16891 					"3269 RQ[%d] failed to memmap pci "
16892 					"barset:x%x\n", hrq->queue_id,
16893 					pci_barset);
16894 			status = -ENOMEM;
16895 			goto out;
16896 		}
16897 
16898 		db_offset = rq_create->u.response.doorbell_offset;
16899 		if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
16900 		    (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
16901 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16902 					"3270 RQ[%d] doorbell offset not "
16903 					"supported: x%x\n", hrq->queue_id,
16904 					db_offset);
16905 			status = -EINVAL;
16906 			goto out;
16907 		}
16908 		hrq->db_regaddr = bar_memmap_p + db_offset;
16909 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16910 				"3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
16911 				"format:x%x\n", hrq->queue_id, pci_barset,
16912 				db_offset, hrq->db_format);
16913 	} else {
16914 		hrq->db_format = LPFC_DB_RING_FORMAT;
16915 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16916 	}
16917 	hrq->type = LPFC_HRQ;
16918 	hrq->assoc_qid = cq->queue_id;
16919 	hrq->subtype = subtype;
16920 	hrq->host_index = 0;
16921 	hrq->hba_index = 0;
16922 	hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16923 
16924 	/* now create the data queue */
16925 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16926 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
16927 			 length, LPFC_SLI4_MBX_EMBED);
16928 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
16929 	       phba->sli4_hba.pc_sli4_params.rqv);
16930 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
16931 		bf_set(lpfc_rq_context_rqe_count_1,
16932 		       &rq_create->u.request.context, hrq->entry_count);
16933 		if (subtype == LPFC_NVMET)
16934 			rq_create->u.request.context.buffer_size =
16935 				LPFC_NVMET_DATA_BUF_SIZE;
16936 		else
16937 			rq_create->u.request.context.buffer_size =
16938 				LPFC_DATA_BUF_SIZE;
16939 		bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
16940 		       LPFC_RQE_SIZE_8);
16941 		bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
16942 		       (PAGE_SIZE/SLI4_PAGE_SIZE));
16943 	} else {
16944 		switch (drq->entry_count) {
16945 		default:
16946 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16947 					"2536 Unsupported RQ count. (%d)\n",
16948 					drq->entry_count);
16949 			if (drq->entry_count < 512) {
16950 				status = -EINVAL;
16951 				goto out;
16952 			}
16953 			fallthrough;	/* otherwise default to smallest count */
16954 		case 512:
16955 			bf_set(lpfc_rq_context_rqe_count,
16956 			       &rq_create->u.request.context,
16957 			       LPFC_RQ_RING_SIZE_512);
16958 			break;
16959 		case 1024:
16960 			bf_set(lpfc_rq_context_rqe_count,
16961 			       &rq_create->u.request.context,
16962 			       LPFC_RQ_RING_SIZE_1024);
16963 			break;
16964 		case 2048:
16965 			bf_set(lpfc_rq_context_rqe_count,
16966 			       &rq_create->u.request.context,
16967 			       LPFC_RQ_RING_SIZE_2048);
16968 			break;
16969 		case 4096:
16970 			bf_set(lpfc_rq_context_rqe_count,
16971 			       &rq_create->u.request.context,
16972 			       LPFC_RQ_RING_SIZE_4096);
16973 			break;
16974 		}
16975 		if (subtype == LPFC_NVMET)
16976 			bf_set(lpfc_rq_context_buf_size,
16977 			       &rq_create->u.request.context,
16978 			       LPFC_NVMET_DATA_BUF_SIZE);
16979 		else
16980 			bf_set(lpfc_rq_context_buf_size,
16981 			       &rq_create->u.request.context,
16982 			       LPFC_DATA_BUF_SIZE);
16983 	}
16984 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
16985 	       cq->queue_id);
16986 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
16987 	       drq->page_count);
16988 	list_for_each_entry(dmabuf, &drq->page_list, list) {
16989 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16990 					putPaddrLow(dmabuf->phys);
16991 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16992 					putPaddrHigh(dmabuf->phys);
16993 	}
16994 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
16995 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
16996 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16997 	/* The IOCTL status is embedded in the mailbox subheader. */
16998 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
16999 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17000 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17001 	if (shdr_status || shdr_add_status || rc) {
17002 		status = -ENXIO;
17003 		goto out;
17004 	}
17005 	drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
17006 	if (drq->queue_id == 0xFFFF) {
17007 		status = -ENXIO;
17008 		goto out;
17009 	}
17010 	drq->type = LPFC_DRQ;
17011 	drq->assoc_qid = cq->queue_id;
17012 	drq->subtype = subtype;
17013 	drq->host_index = 0;
17014 	drq->hba_index = 0;
17015 	drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17016 
17017 	/* link the header and data RQs onto the parent cq child list */
17018 	list_add_tail(&hrq->list, &cq->child_list);
17019 	list_add_tail(&drq->list, &cq->child_list);
17020 
17021 out:
17022 	mempool_free(mbox, phba->mbox_mem_pool);
17023 	return status;
17024 }
17025 
17026 /**
17027  * lpfc_mrq_create - Create MRQ Receive Queues on the HBA
17028  * @phba: HBA structure that indicates port to create a queue on.
17029  * @hrqp: The queue structure array to use to create the header receive queues.
17030  * @drqp: The queue structure array to use to create the data receive queues.
17031  * @cqp: The completion queue array to bind these receive queues to.
17032  * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
17033  *
17034  * This function creates a receive buffer queue pair , as detailed in @hrq and
17035  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
17036  * to the HBA.
17037  *
17038  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
17039  * struct is used to get the entry count that is necessary to determine the
17040  * number of pages to use for this queue. The @cq is used to indicate which
17041  * completion queue to bind received buffers that are posted to these queues to.
17042  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
17043  * receive queue pair. This function is asynchronous and will wait for the
17044  * mailbox command to finish before continuing.
17045  *
17046  * On success this function will return a zero. If unable to allocate enough
17047  * memory this function will return -ENOMEM. If the queue create mailbox command
17048  * fails this function will return -ENXIO.
17049  **/
17050 int
17051 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
17052 		struct lpfc_queue **drqp, struct lpfc_queue **cqp,
17053 		uint32_t subtype)
17054 {
17055 	struct lpfc_queue *hrq, *drq, *cq;
17056 	struct lpfc_mbx_rq_create_v2 *rq_create;
17057 	struct lpfc_dmabuf *dmabuf;
17058 	LPFC_MBOXQ_t *mbox;
17059 	int rc, length, alloclen, status = 0;
17060 	int cnt, idx, numrq, page_idx = 0;
17061 	uint32_t shdr_status, shdr_add_status;
17062 	union lpfc_sli4_cfg_shdr *shdr;
17063 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
17064 
17065 	numrq = phba->cfg_nvmet_mrq;
17066 	/* sanity check on array memory */
17067 	if (!hrqp || !drqp || !cqp || !numrq)
17068 		return -ENODEV;
17069 	if (!phba->sli4_hba.pc_sli4_params.supported)
17070 		hw_page_size = SLI4_PAGE_SIZE;
17071 
17072 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17073 	if (!mbox)
17074 		return -ENOMEM;
17075 
17076 	length = sizeof(struct lpfc_mbx_rq_create_v2);
17077 	length += ((2 * numrq * hrqp[0]->page_count) *
17078 		   sizeof(struct dma_address));
17079 
17080 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17081 				    LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
17082 				    LPFC_SLI4_MBX_NEMBED);
17083 	if (alloclen < length) {
17084 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17085 				"3099 Allocated DMA memory size (%d) is "
17086 				"less than the requested DMA memory size "
17087 				"(%d)\n", alloclen, length);
17088 		status = -ENOMEM;
17089 		goto out;
17090 	}
17091 
17092 
17093 
17094 	rq_create = mbox->sge_array->addr[0];
17095 	shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
17096 
17097 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
17098 	cnt = 0;
17099 
17100 	for (idx = 0; idx < numrq; idx++) {
17101 		hrq = hrqp[idx];
17102 		drq = drqp[idx];
17103 		cq  = cqp[idx];
17104 
17105 		/* sanity check on queue memory */
17106 		if (!hrq || !drq || !cq) {
17107 			status = -ENODEV;
17108 			goto out;
17109 		}
17110 
17111 		if (hrq->entry_count != drq->entry_count) {
17112 			status = -EINVAL;
17113 			goto out;
17114 		}
17115 
17116 		if (idx == 0) {
17117 			bf_set(lpfc_mbx_rq_create_num_pages,
17118 			       &rq_create->u.request,
17119 			       hrq->page_count);
17120 			bf_set(lpfc_mbx_rq_create_rq_cnt,
17121 			       &rq_create->u.request, (numrq * 2));
17122 			bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
17123 			       1);
17124 			bf_set(lpfc_rq_context_base_cq,
17125 			       &rq_create->u.request.context,
17126 			       cq->queue_id);
17127 			bf_set(lpfc_rq_context_data_size,
17128 			       &rq_create->u.request.context,
17129 			       LPFC_NVMET_DATA_BUF_SIZE);
17130 			bf_set(lpfc_rq_context_hdr_size,
17131 			       &rq_create->u.request.context,
17132 			       LPFC_HDR_BUF_SIZE);
17133 			bf_set(lpfc_rq_context_rqe_count_1,
17134 			       &rq_create->u.request.context,
17135 			       hrq->entry_count);
17136 			bf_set(lpfc_rq_context_rqe_size,
17137 			       &rq_create->u.request.context,
17138 			       LPFC_RQE_SIZE_8);
17139 			bf_set(lpfc_rq_context_page_size,
17140 			       &rq_create->u.request.context,
17141 			       (PAGE_SIZE/SLI4_PAGE_SIZE));
17142 		}
17143 		rc = 0;
17144 		list_for_each_entry(dmabuf, &hrq->page_list, list) {
17145 			memset(dmabuf->virt, 0, hw_page_size);
17146 			cnt = page_idx + dmabuf->buffer_tag;
17147 			rq_create->u.request.page[cnt].addr_lo =
17148 					putPaddrLow(dmabuf->phys);
17149 			rq_create->u.request.page[cnt].addr_hi =
17150 					putPaddrHigh(dmabuf->phys);
17151 			rc++;
17152 		}
17153 		page_idx += rc;
17154 
17155 		rc = 0;
17156 		list_for_each_entry(dmabuf, &drq->page_list, list) {
17157 			memset(dmabuf->virt, 0, hw_page_size);
17158 			cnt = page_idx + dmabuf->buffer_tag;
17159 			rq_create->u.request.page[cnt].addr_lo =
17160 					putPaddrLow(dmabuf->phys);
17161 			rq_create->u.request.page[cnt].addr_hi =
17162 					putPaddrHigh(dmabuf->phys);
17163 			rc++;
17164 		}
17165 		page_idx += rc;
17166 
17167 		hrq->db_format = LPFC_DB_RING_FORMAT;
17168 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
17169 		hrq->type = LPFC_HRQ;
17170 		hrq->assoc_qid = cq->queue_id;
17171 		hrq->subtype = subtype;
17172 		hrq->host_index = 0;
17173 		hrq->hba_index = 0;
17174 		hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17175 
17176 		drq->db_format = LPFC_DB_RING_FORMAT;
17177 		drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
17178 		drq->type = LPFC_DRQ;
17179 		drq->assoc_qid = cq->queue_id;
17180 		drq->subtype = subtype;
17181 		drq->host_index = 0;
17182 		drq->hba_index = 0;
17183 		drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17184 
17185 		list_add_tail(&hrq->list, &cq->child_list);
17186 		list_add_tail(&drq->list, &cq->child_list);
17187 	}
17188 
17189 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17190 	/* The IOCTL status is embedded in the mailbox subheader. */
17191 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17192 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17193 	if (shdr_status || shdr_add_status || rc) {
17194 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17195 				"3120 RQ_CREATE mailbox failed with "
17196 				"status x%x add_status x%x, mbx status x%x\n",
17197 				shdr_status, shdr_add_status, rc);
17198 		status = -ENXIO;
17199 		goto out;
17200 	}
17201 	rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
17202 	if (rc == 0xFFFF) {
17203 		status = -ENXIO;
17204 		goto out;
17205 	}
17206 
17207 	/* Initialize all RQs with associated queue id */
17208 	for (idx = 0; idx < numrq; idx++) {
17209 		hrq = hrqp[idx];
17210 		hrq->queue_id = rc + (2 * idx);
17211 		drq = drqp[idx];
17212 		drq->queue_id = rc + (2 * idx) + 1;
17213 	}
17214 
17215 out:
17216 	lpfc_sli4_mbox_cmd_free(phba, mbox);
17217 	return status;
17218 }
17219 
17220 /**
17221  * lpfc_eq_destroy - Destroy an event Queue on the HBA
17222  * @phba: HBA structure that indicates port to destroy a queue on.
17223  * @eq: The queue structure associated with the queue to destroy.
17224  *
17225  * This function destroys a queue, as detailed in @eq by sending an mailbox
17226  * command, specific to the type of queue, to the HBA.
17227  *
17228  * The @eq struct is used to get the queue ID of the queue to destroy.
17229  *
17230  * On success this function will return a zero. If the queue destroy mailbox
17231  * command fails this function will return -ENXIO.
17232  **/
17233 int
17234 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
17235 {
17236 	LPFC_MBOXQ_t *mbox;
17237 	int rc, length, status = 0;
17238 	uint32_t shdr_status, shdr_add_status;
17239 	union lpfc_sli4_cfg_shdr *shdr;
17240 
17241 	/* sanity check on queue memory */
17242 	if (!eq)
17243 		return -ENODEV;
17244 
17245 	mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
17246 	if (!mbox)
17247 		return -ENOMEM;
17248 	length = (sizeof(struct lpfc_mbx_eq_destroy) -
17249 		  sizeof(struct lpfc_sli4_cfg_mhdr));
17250 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
17251 			 LPFC_MBOX_OPCODE_EQ_DESTROY,
17252 			 length, LPFC_SLI4_MBX_EMBED);
17253 	bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
17254 	       eq->queue_id);
17255 	mbox->vport = eq->phba->pport;
17256 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17257 
17258 	rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
17259 	/* The IOCTL status is embedded in the mailbox subheader. */
17260 	shdr = (union lpfc_sli4_cfg_shdr *)
17261 		&mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
17262 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17263 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17264 	if (shdr_status || shdr_add_status || rc) {
17265 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17266 				"2505 EQ_DESTROY mailbox failed with "
17267 				"status x%x add_status x%x, mbx status x%x\n",
17268 				shdr_status, shdr_add_status, rc);
17269 		status = -ENXIO;
17270 	}
17271 
17272 	/* Remove eq from any list */
17273 	list_del_init(&eq->list);
17274 	mempool_free(mbox, eq->phba->mbox_mem_pool);
17275 	return status;
17276 }
17277 
17278 /**
17279  * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
17280  * @phba: HBA structure that indicates port to destroy a queue on.
17281  * @cq: The queue structure associated with the queue to destroy.
17282  *
17283  * This function destroys a queue, as detailed in @cq by sending an mailbox
17284  * command, specific to the type of queue, to the HBA.
17285  *
17286  * The @cq struct is used to get the queue ID of the queue to destroy.
17287  *
17288  * On success this function will return a zero. If the queue destroy mailbox
17289  * command fails this function will return -ENXIO.
17290  **/
17291 int
17292 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
17293 {
17294 	LPFC_MBOXQ_t *mbox;
17295 	int rc, length, status = 0;
17296 	uint32_t shdr_status, shdr_add_status;
17297 	union lpfc_sli4_cfg_shdr *shdr;
17298 
17299 	/* sanity check on queue memory */
17300 	if (!cq)
17301 		return -ENODEV;
17302 	mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
17303 	if (!mbox)
17304 		return -ENOMEM;
17305 	length = (sizeof(struct lpfc_mbx_cq_destroy) -
17306 		  sizeof(struct lpfc_sli4_cfg_mhdr));
17307 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
17308 			 LPFC_MBOX_OPCODE_CQ_DESTROY,
17309 			 length, LPFC_SLI4_MBX_EMBED);
17310 	bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
17311 	       cq->queue_id);
17312 	mbox->vport = cq->phba->pport;
17313 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17314 	rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
17315 	/* The IOCTL status is embedded in the mailbox subheader. */
17316 	shdr = (union lpfc_sli4_cfg_shdr *)
17317 		&mbox->u.mqe.un.wq_create.header.cfg_shdr;
17318 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17319 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17320 	if (shdr_status || shdr_add_status || rc) {
17321 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17322 				"2506 CQ_DESTROY mailbox failed with "
17323 				"status x%x add_status x%x, mbx status x%x\n",
17324 				shdr_status, shdr_add_status, rc);
17325 		status = -ENXIO;
17326 	}
17327 	/* Remove cq from any list */
17328 	list_del_init(&cq->list);
17329 	mempool_free(mbox, cq->phba->mbox_mem_pool);
17330 	return status;
17331 }
17332 
17333 /**
17334  * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
17335  * @phba: HBA structure that indicates port to destroy a queue on.
17336  * @mq: The queue structure associated with the queue to destroy.
17337  *
17338  * This function destroys a queue, as detailed in @mq by sending an mailbox
17339  * command, specific to the type of queue, to the HBA.
17340  *
17341  * The @mq struct is used to get the queue ID of the queue to destroy.
17342  *
17343  * On success this function will return a zero. If the queue destroy mailbox
17344  * command fails this function will return -ENXIO.
17345  **/
17346 int
17347 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
17348 {
17349 	LPFC_MBOXQ_t *mbox;
17350 	int rc, length, status = 0;
17351 	uint32_t shdr_status, shdr_add_status;
17352 	union lpfc_sli4_cfg_shdr *shdr;
17353 
17354 	/* sanity check on queue memory */
17355 	if (!mq)
17356 		return -ENODEV;
17357 	mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
17358 	if (!mbox)
17359 		return -ENOMEM;
17360 	length = (sizeof(struct lpfc_mbx_mq_destroy) -
17361 		  sizeof(struct lpfc_sli4_cfg_mhdr));
17362 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
17363 			 LPFC_MBOX_OPCODE_MQ_DESTROY,
17364 			 length, LPFC_SLI4_MBX_EMBED);
17365 	bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
17366 	       mq->queue_id);
17367 	mbox->vport = mq->phba->pport;
17368 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17369 	rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
17370 	/* The IOCTL status is embedded in the mailbox subheader. */
17371 	shdr = (union lpfc_sli4_cfg_shdr *)
17372 		&mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
17373 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17374 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17375 	if (shdr_status || shdr_add_status || rc) {
17376 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17377 				"2507 MQ_DESTROY mailbox failed with "
17378 				"status x%x add_status x%x, mbx status x%x\n",
17379 				shdr_status, shdr_add_status, rc);
17380 		status = -ENXIO;
17381 	}
17382 	/* Remove mq from any list */
17383 	list_del_init(&mq->list);
17384 	mempool_free(mbox, mq->phba->mbox_mem_pool);
17385 	return status;
17386 }
17387 
17388 /**
17389  * lpfc_wq_destroy - Destroy a Work Queue on the HBA
17390  * @phba: HBA structure that indicates port to destroy a queue on.
17391  * @wq: The queue structure associated with the queue to destroy.
17392  *
17393  * This function destroys a queue, as detailed in @wq by sending an mailbox
17394  * command, specific to the type of queue, to the HBA.
17395  *
17396  * The @wq struct is used to get the queue ID of the queue to destroy.
17397  *
17398  * On success this function will return a zero. If the queue destroy mailbox
17399  * command fails this function will return -ENXIO.
17400  **/
17401 int
17402 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
17403 {
17404 	LPFC_MBOXQ_t *mbox;
17405 	int rc, length, status = 0;
17406 	uint32_t shdr_status, shdr_add_status;
17407 	union lpfc_sli4_cfg_shdr *shdr;
17408 
17409 	/* sanity check on queue memory */
17410 	if (!wq)
17411 		return -ENODEV;
17412 	mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
17413 	if (!mbox)
17414 		return -ENOMEM;
17415 	length = (sizeof(struct lpfc_mbx_wq_destroy) -
17416 		  sizeof(struct lpfc_sli4_cfg_mhdr));
17417 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17418 			 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
17419 			 length, LPFC_SLI4_MBX_EMBED);
17420 	bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
17421 	       wq->queue_id);
17422 	mbox->vport = wq->phba->pport;
17423 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17424 	rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
17425 	shdr = (union lpfc_sli4_cfg_shdr *)
17426 		&mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
17427 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17428 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17429 	if (shdr_status || shdr_add_status || rc) {
17430 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17431 				"2508 WQ_DESTROY mailbox failed with "
17432 				"status x%x add_status x%x, mbx status x%x\n",
17433 				shdr_status, shdr_add_status, rc);
17434 		status = -ENXIO;
17435 	}
17436 	/* Remove wq from any list */
17437 	list_del_init(&wq->list);
17438 	kfree(wq->pring);
17439 	wq->pring = NULL;
17440 	mempool_free(mbox, wq->phba->mbox_mem_pool);
17441 	return status;
17442 }
17443 
17444 /**
17445  * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
17446  * @phba: HBA structure that indicates port to destroy a queue on.
17447  * @hrq: The queue structure associated with the queue to destroy.
17448  * @drq: The queue structure associated with the queue to destroy.
17449  *
17450  * This function destroys a queue, as detailed in @rq by sending an mailbox
17451  * command, specific to the type of queue, to the HBA.
17452  *
17453  * The @rq struct is used to get the queue ID of the queue to destroy.
17454  *
17455  * On success this function will return a zero. If the queue destroy mailbox
17456  * command fails this function will return -ENXIO.
17457  **/
17458 int
17459 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
17460 		struct lpfc_queue *drq)
17461 {
17462 	LPFC_MBOXQ_t *mbox;
17463 	int rc, length, status = 0;
17464 	uint32_t shdr_status, shdr_add_status;
17465 	union lpfc_sli4_cfg_shdr *shdr;
17466 
17467 	/* sanity check on queue memory */
17468 	if (!hrq || !drq)
17469 		return -ENODEV;
17470 	mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
17471 	if (!mbox)
17472 		return -ENOMEM;
17473 	length = (sizeof(struct lpfc_mbx_rq_destroy) -
17474 		  sizeof(struct lpfc_sli4_cfg_mhdr));
17475 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17476 			 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
17477 			 length, LPFC_SLI4_MBX_EMBED);
17478 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
17479 	       hrq->queue_id);
17480 	mbox->vport = hrq->phba->pport;
17481 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17482 	rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
17483 	/* The IOCTL status is embedded in the mailbox subheader. */
17484 	shdr = (union lpfc_sli4_cfg_shdr *)
17485 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
17486 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17487 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17488 	if (shdr_status || shdr_add_status || rc) {
17489 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17490 				"2509 RQ_DESTROY mailbox failed with "
17491 				"status x%x add_status x%x, mbx status x%x\n",
17492 				shdr_status, shdr_add_status, rc);
17493 		mempool_free(mbox, hrq->phba->mbox_mem_pool);
17494 		return -ENXIO;
17495 	}
17496 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
17497 	       drq->queue_id);
17498 	rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
17499 	shdr = (union lpfc_sli4_cfg_shdr *)
17500 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
17501 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17502 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17503 	if (shdr_status || shdr_add_status || rc) {
17504 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17505 				"2510 RQ_DESTROY mailbox failed with "
17506 				"status x%x add_status x%x, mbx status x%x\n",
17507 				shdr_status, shdr_add_status, rc);
17508 		status = -ENXIO;
17509 	}
17510 	list_del_init(&hrq->list);
17511 	list_del_init(&drq->list);
17512 	mempool_free(mbox, hrq->phba->mbox_mem_pool);
17513 	return status;
17514 }
17515 
17516 /**
17517  * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
17518  * @phba: The virtual port for which this call being executed.
17519  * @pdma_phys_addr0: Physical address of the 1st SGL page.
17520  * @pdma_phys_addr1: Physical address of the 2nd SGL page.
17521  * @xritag: the xritag that ties this io to the SGL pages.
17522  *
17523  * This routine will post the sgl pages for the IO that has the xritag
17524  * that is in the iocbq structure. The xritag is assigned during iocbq
17525  * creation and persists for as long as the driver is loaded.
17526  * if the caller has fewer than 256 scatter gather segments to map then
17527  * pdma_phys_addr1 should be 0.
17528  * If the caller needs to map more than 256 scatter gather segment then
17529  * pdma_phys_addr1 should be a valid physical address.
17530  * physical address for SGLs must be 64 byte aligned.
17531  * If you are going to map 2 SGL's then the first one must have 256 entries
17532  * the second sgl can have between 1 and 256 entries.
17533  *
17534  * Return codes:
17535  * 	0 - Success
17536  * 	-ENXIO, -ENOMEM - Failure
17537  **/
17538 int
17539 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
17540 		dma_addr_t pdma_phys_addr0,
17541 		dma_addr_t pdma_phys_addr1,
17542 		uint16_t xritag)
17543 {
17544 	struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
17545 	LPFC_MBOXQ_t *mbox;
17546 	int rc;
17547 	uint32_t shdr_status, shdr_add_status;
17548 	uint32_t mbox_tmo;
17549 	union lpfc_sli4_cfg_shdr *shdr;
17550 
17551 	if (xritag == NO_XRI) {
17552 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17553 				"0364 Invalid param:\n");
17554 		return -EINVAL;
17555 	}
17556 
17557 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17558 	if (!mbox)
17559 		return -ENOMEM;
17560 
17561 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17562 			LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
17563 			sizeof(struct lpfc_mbx_post_sgl_pages) -
17564 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
17565 
17566 	post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
17567 				&mbox->u.mqe.un.post_sgl_pages;
17568 	bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
17569 	bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
17570 
17571 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo	=
17572 				cpu_to_le32(putPaddrLow(pdma_phys_addr0));
17573 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
17574 				cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
17575 
17576 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo	=
17577 				cpu_to_le32(putPaddrLow(pdma_phys_addr1));
17578 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
17579 				cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
17580 	if (!phba->sli4_hba.intr_enable)
17581 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17582 	else {
17583 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
17584 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
17585 	}
17586 	/* The IOCTL status is embedded in the mailbox subheader. */
17587 	shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
17588 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17589 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17590 	if (!phba->sli4_hba.intr_enable)
17591 		mempool_free(mbox, phba->mbox_mem_pool);
17592 	else if (rc != MBX_TIMEOUT)
17593 		mempool_free(mbox, phba->mbox_mem_pool);
17594 	if (shdr_status || shdr_add_status || rc) {
17595 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17596 				"2511 POST_SGL mailbox failed with "
17597 				"status x%x add_status x%x, mbx status x%x\n",
17598 				shdr_status, shdr_add_status, rc);
17599 	}
17600 	return 0;
17601 }
17602 
17603 /**
17604  * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
17605  * @phba: pointer to lpfc hba data structure.
17606  *
17607  * This routine is invoked to post rpi header templates to the
17608  * HBA consistent with the SLI-4 interface spec.  This routine
17609  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
17610  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
17611  *
17612  * Returns
17613  *	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
17614  *	LPFC_RPI_ALLOC_ERROR if no rpis are available.
17615  **/
17616 static uint16_t
17617 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
17618 {
17619 	unsigned long xri;
17620 
17621 	/*
17622 	 * Fetch the next logical xri.  Because this index is logical,
17623 	 * the driver starts at 0 each time.
17624 	 */
17625 	spin_lock_irq(&phba->hbalock);
17626 	xri = find_first_zero_bit(phba->sli4_hba.xri_bmask,
17627 				 phba->sli4_hba.max_cfg_param.max_xri);
17628 	if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
17629 		spin_unlock_irq(&phba->hbalock);
17630 		return NO_XRI;
17631 	} else {
17632 		set_bit(xri, phba->sli4_hba.xri_bmask);
17633 		phba->sli4_hba.max_cfg_param.xri_used++;
17634 	}
17635 	spin_unlock_irq(&phba->hbalock);
17636 	return xri;
17637 }
17638 
17639 /**
17640  * __lpfc_sli4_free_xri - Release an xri for reuse.
17641  * @phba: pointer to lpfc hba data structure.
17642  * @xri: xri to release.
17643  *
17644  * This routine is invoked to release an xri to the pool of
17645  * available rpis maintained by the driver.
17646  **/
17647 static void
17648 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
17649 {
17650 	if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
17651 		phba->sli4_hba.max_cfg_param.xri_used--;
17652 	}
17653 }
17654 
17655 /**
17656  * lpfc_sli4_free_xri - Release an xri for reuse.
17657  * @phba: pointer to lpfc hba data structure.
17658  * @xri: xri to release.
17659  *
17660  * This routine is invoked to release an xri to the pool of
17661  * available rpis maintained by the driver.
17662  **/
17663 void
17664 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
17665 {
17666 	spin_lock_irq(&phba->hbalock);
17667 	__lpfc_sli4_free_xri(phba, xri);
17668 	spin_unlock_irq(&phba->hbalock);
17669 }
17670 
17671 /**
17672  * lpfc_sli4_next_xritag - Get an xritag for the io
17673  * @phba: Pointer to HBA context object.
17674  *
17675  * This function gets an xritag for the iocb. If there is no unused xritag
17676  * it will return 0xffff.
17677  * The function returns the allocated xritag if successful, else returns zero.
17678  * Zero is not a valid xritag.
17679  * The caller is not required to hold any lock.
17680  **/
17681 uint16_t
17682 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
17683 {
17684 	uint16_t xri_index;
17685 
17686 	xri_index = lpfc_sli4_alloc_xri(phba);
17687 	if (xri_index == NO_XRI)
17688 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
17689 				"2004 Failed to allocate XRI.last XRITAG is %d"
17690 				" Max XRI is %d, Used XRI is %d\n",
17691 				xri_index,
17692 				phba->sli4_hba.max_cfg_param.max_xri,
17693 				phba->sli4_hba.max_cfg_param.xri_used);
17694 	return xri_index;
17695 }
17696 
17697 /**
17698  * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
17699  * @phba: pointer to lpfc hba data structure.
17700  * @post_sgl_list: pointer to els sgl entry list.
17701  * @post_cnt: number of els sgl entries on the list.
17702  *
17703  * This routine is invoked to post a block of driver's sgl pages to the
17704  * HBA using non-embedded mailbox command. No Lock is held. This routine
17705  * is only called when the driver is loading and after all IO has been
17706  * stopped.
17707  **/
17708 static int
17709 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
17710 			    struct list_head *post_sgl_list,
17711 			    int post_cnt)
17712 {
17713 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
17714 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
17715 	struct sgl_page_pairs *sgl_pg_pairs;
17716 	void *viraddr;
17717 	LPFC_MBOXQ_t *mbox;
17718 	uint32_t reqlen, alloclen, pg_pairs;
17719 	uint32_t mbox_tmo;
17720 	uint16_t xritag_start = 0;
17721 	int rc = 0;
17722 	uint32_t shdr_status, shdr_add_status;
17723 	union lpfc_sli4_cfg_shdr *shdr;
17724 
17725 	reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
17726 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
17727 	if (reqlen > SLI4_PAGE_SIZE) {
17728 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17729 				"2559 Block sgl registration required DMA "
17730 				"size (%d) great than a page\n", reqlen);
17731 		return -ENOMEM;
17732 	}
17733 
17734 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17735 	if (!mbox)
17736 		return -ENOMEM;
17737 
17738 	/* Allocate DMA memory and set up the non-embedded mailbox command */
17739 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17740 			 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
17741 			 LPFC_SLI4_MBX_NEMBED);
17742 
17743 	if (alloclen < reqlen) {
17744 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17745 				"0285 Allocated DMA memory size (%d) is "
17746 				"less than the requested DMA memory "
17747 				"size (%d)\n", alloclen, reqlen);
17748 		lpfc_sli4_mbox_cmd_free(phba, mbox);
17749 		return -ENOMEM;
17750 	}
17751 	/* Set up the SGL pages in the non-embedded DMA pages */
17752 	viraddr = mbox->sge_array->addr[0];
17753 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
17754 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
17755 
17756 	pg_pairs = 0;
17757 	list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
17758 		/* Set up the sge entry */
17759 		sgl_pg_pairs->sgl_pg0_addr_lo =
17760 				cpu_to_le32(putPaddrLow(sglq_entry->phys));
17761 		sgl_pg_pairs->sgl_pg0_addr_hi =
17762 				cpu_to_le32(putPaddrHigh(sglq_entry->phys));
17763 		sgl_pg_pairs->sgl_pg1_addr_lo =
17764 				cpu_to_le32(putPaddrLow(0));
17765 		sgl_pg_pairs->sgl_pg1_addr_hi =
17766 				cpu_to_le32(putPaddrHigh(0));
17767 
17768 		/* Keep the first xritag on the list */
17769 		if (pg_pairs == 0)
17770 			xritag_start = sglq_entry->sli4_xritag;
17771 		sgl_pg_pairs++;
17772 		pg_pairs++;
17773 	}
17774 
17775 	/* Complete initialization and perform endian conversion. */
17776 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
17777 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
17778 	sgl->word0 = cpu_to_le32(sgl->word0);
17779 
17780 	if (!phba->sli4_hba.intr_enable)
17781 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17782 	else {
17783 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
17784 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
17785 	}
17786 	shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
17787 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17788 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17789 	if (!phba->sli4_hba.intr_enable)
17790 		lpfc_sli4_mbox_cmd_free(phba, mbox);
17791 	else if (rc != MBX_TIMEOUT)
17792 		lpfc_sli4_mbox_cmd_free(phba, mbox);
17793 	if (shdr_status || shdr_add_status || rc) {
17794 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17795 				"2513 POST_SGL_BLOCK mailbox command failed "
17796 				"status x%x add_status x%x mbx status x%x\n",
17797 				shdr_status, shdr_add_status, rc);
17798 		rc = -ENXIO;
17799 	}
17800 	return rc;
17801 }
17802 
17803 /**
17804  * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware
17805  * @phba: pointer to lpfc hba data structure.
17806  * @nblist: pointer to nvme buffer list.
17807  * @count: number of scsi buffers on the list.
17808  *
17809  * This routine is invoked to post a block of @count scsi sgl pages from a
17810  * SCSI buffer list @nblist to the HBA using non-embedded mailbox command.
17811  * No Lock is held.
17812  *
17813  **/
17814 static int
17815 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist,
17816 			    int count)
17817 {
17818 	struct lpfc_io_buf *lpfc_ncmd;
17819 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
17820 	struct sgl_page_pairs *sgl_pg_pairs;
17821 	void *viraddr;
17822 	LPFC_MBOXQ_t *mbox;
17823 	uint32_t reqlen, alloclen, pg_pairs;
17824 	uint32_t mbox_tmo;
17825 	uint16_t xritag_start = 0;
17826 	int rc = 0;
17827 	uint32_t shdr_status, shdr_add_status;
17828 	dma_addr_t pdma_phys_bpl1;
17829 	union lpfc_sli4_cfg_shdr *shdr;
17830 
17831 	/* Calculate the requested length of the dma memory */
17832 	reqlen = count * sizeof(struct sgl_page_pairs) +
17833 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
17834 	if (reqlen > SLI4_PAGE_SIZE) {
17835 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
17836 				"6118 Block sgl registration required DMA "
17837 				"size (%d) great than a page\n", reqlen);
17838 		return -ENOMEM;
17839 	}
17840 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17841 	if (!mbox) {
17842 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17843 				"6119 Failed to allocate mbox cmd memory\n");
17844 		return -ENOMEM;
17845 	}
17846 
17847 	/* Allocate DMA memory and set up the non-embedded mailbox command */
17848 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17849 				    LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
17850 				    reqlen, LPFC_SLI4_MBX_NEMBED);
17851 
17852 	if (alloclen < reqlen) {
17853 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17854 				"6120 Allocated DMA memory size (%d) is "
17855 				"less than the requested DMA memory "
17856 				"size (%d)\n", alloclen, reqlen);
17857 		lpfc_sli4_mbox_cmd_free(phba, mbox);
17858 		return -ENOMEM;
17859 	}
17860 
17861 	/* Get the first SGE entry from the non-embedded DMA memory */
17862 	viraddr = mbox->sge_array->addr[0];
17863 
17864 	/* Set up the SGL pages in the non-embedded DMA pages */
17865 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
17866 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
17867 
17868 	pg_pairs = 0;
17869 	list_for_each_entry(lpfc_ncmd, nblist, list) {
17870 		/* Set up the sge entry */
17871 		sgl_pg_pairs->sgl_pg0_addr_lo =
17872 			cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl));
17873 		sgl_pg_pairs->sgl_pg0_addr_hi =
17874 			cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl));
17875 		if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
17876 			pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl +
17877 						SGL_PAGE_SIZE;
17878 		else
17879 			pdma_phys_bpl1 = 0;
17880 		sgl_pg_pairs->sgl_pg1_addr_lo =
17881 			cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
17882 		sgl_pg_pairs->sgl_pg1_addr_hi =
17883 			cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
17884 		/* Keep the first xritag on the list */
17885 		if (pg_pairs == 0)
17886 			xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag;
17887 		sgl_pg_pairs++;
17888 		pg_pairs++;
17889 	}
17890 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
17891 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
17892 	/* Perform endian conversion if necessary */
17893 	sgl->word0 = cpu_to_le32(sgl->word0);
17894 
17895 	if (!phba->sli4_hba.intr_enable) {
17896 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17897 	} else {
17898 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
17899 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
17900 	}
17901 	shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr;
17902 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17903 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17904 	if (!phba->sli4_hba.intr_enable)
17905 		lpfc_sli4_mbox_cmd_free(phba, mbox);
17906 	else if (rc != MBX_TIMEOUT)
17907 		lpfc_sli4_mbox_cmd_free(phba, mbox);
17908 	if (shdr_status || shdr_add_status || rc) {
17909 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17910 				"6125 POST_SGL_BLOCK mailbox command failed "
17911 				"status x%x add_status x%x mbx status x%x\n",
17912 				shdr_status, shdr_add_status, rc);
17913 		rc = -ENXIO;
17914 	}
17915 	return rc;
17916 }
17917 
17918 /**
17919  * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list
17920  * @phba: pointer to lpfc hba data structure.
17921  * @post_nblist: pointer to the nvme buffer list.
17922  * @sb_count: number of nvme buffers.
17923  *
17924  * This routine walks a list of nvme buffers that was passed in. It attempts
17925  * to construct blocks of nvme buffer sgls which contains contiguous xris and
17926  * uses the non-embedded SGL block post mailbox commands to post to the port.
17927  * For single NVME buffer sgl with non-contiguous xri, if any, it shall use
17928  * embedded SGL post mailbox command for posting. The @post_nblist passed in
17929  * must be local list, thus no lock is needed when manipulate the list.
17930  *
17931  * Returns: 0 = failure, non-zero number of successfully posted buffers.
17932  **/
17933 int
17934 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba,
17935 			   struct list_head *post_nblist, int sb_count)
17936 {
17937 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
17938 	int status, sgl_size;
17939 	int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0;
17940 	dma_addr_t pdma_phys_sgl1;
17941 	int last_xritag = NO_XRI;
17942 	int cur_xritag;
17943 	LIST_HEAD(prep_nblist);
17944 	LIST_HEAD(blck_nblist);
17945 	LIST_HEAD(nvme_nblist);
17946 
17947 	/* sanity check */
17948 	if (sb_count <= 0)
17949 		return -EINVAL;
17950 
17951 	sgl_size = phba->cfg_sg_dma_buf_size;
17952 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) {
17953 		list_del_init(&lpfc_ncmd->list);
17954 		block_cnt++;
17955 		if ((last_xritag != NO_XRI) &&
17956 		    (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) {
17957 			/* a hole in xri block, form a sgl posting block */
17958 			list_splice_init(&prep_nblist, &blck_nblist);
17959 			post_cnt = block_cnt - 1;
17960 			/* prepare list for next posting block */
17961 			list_add_tail(&lpfc_ncmd->list, &prep_nblist);
17962 			block_cnt = 1;
17963 		} else {
17964 			/* prepare list for next posting block */
17965 			list_add_tail(&lpfc_ncmd->list, &prep_nblist);
17966 			/* enough sgls for non-embed sgl mbox command */
17967 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
17968 				list_splice_init(&prep_nblist, &blck_nblist);
17969 				post_cnt = block_cnt;
17970 				block_cnt = 0;
17971 			}
17972 		}
17973 		num_posting++;
17974 		last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
17975 
17976 		/* end of repost sgl list condition for NVME buffers */
17977 		if (num_posting == sb_count) {
17978 			if (post_cnt == 0) {
17979 				/* last sgl posting block */
17980 				list_splice_init(&prep_nblist, &blck_nblist);
17981 				post_cnt = block_cnt;
17982 			} else if (block_cnt == 1) {
17983 				/* last single sgl with non-contiguous xri */
17984 				if (sgl_size > SGL_PAGE_SIZE)
17985 					pdma_phys_sgl1 =
17986 						lpfc_ncmd->dma_phys_sgl +
17987 						SGL_PAGE_SIZE;
17988 				else
17989 					pdma_phys_sgl1 = 0;
17990 				cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
17991 				status = lpfc_sli4_post_sgl(
17992 						phba, lpfc_ncmd->dma_phys_sgl,
17993 						pdma_phys_sgl1, cur_xritag);
17994 				if (status) {
17995 					/* Post error.  Buffer unavailable. */
17996 					lpfc_ncmd->flags |=
17997 						LPFC_SBUF_NOT_POSTED;
17998 				} else {
17999 					/* Post success. Bffer available. */
18000 					lpfc_ncmd->flags &=
18001 						~LPFC_SBUF_NOT_POSTED;
18002 					lpfc_ncmd->status = IOSTAT_SUCCESS;
18003 					num_posted++;
18004 				}
18005 				/* success, put on NVME buffer sgl list */
18006 				list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
18007 			}
18008 		}
18009 
18010 		/* continue until a nembed page worth of sgls */
18011 		if (post_cnt == 0)
18012 			continue;
18013 
18014 		/* post block of NVME buffer list sgls */
18015 		status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist,
18016 						     post_cnt);
18017 
18018 		/* don't reset xirtag due to hole in xri block */
18019 		if (block_cnt == 0)
18020 			last_xritag = NO_XRI;
18021 
18022 		/* reset NVME buffer post count for next round of posting */
18023 		post_cnt = 0;
18024 
18025 		/* put posted NVME buffer-sgl posted on NVME buffer sgl list */
18026 		while (!list_empty(&blck_nblist)) {
18027 			list_remove_head(&blck_nblist, lpfc_ncmd,
18028 					 struct lpfc_io_buf, list);
18029 			if (status) {
18030 				/* Post error.  Mark buffer unavailable. */
18031 				lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED;
18032 			} else {
18033 				/* Post success, Mark buffer available. */
18034 				lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED;
18035 				lpfc_ncmd->status = IOSTAT_SUCCESS;
18036 				num_posted++;
18037 			}
18038 			list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
18039 		}
18040 	}
18041 	/* Push NVME buffers with sgl posted to the available list */
18042 	lpfc_io_buf_replenish(phba, &nvme_nblist);
18043 
18044 	return num_posted;
18045 }
18046 
18047 /**
18048  * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
18049  * @phba: pointer to lpfc_hba struct that the frame was received on
18050  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
18051  *
18052  * This function checks the fields in the @fc_hdr to see if the FC frame is a
18053  * valid type of frame that the LPFC driver will handle. This function will
18054  * return a zero if the frame is a valid frame or a non zero value when the
18055  * frame does not pass the check.
18056  **/
18057 static int
18058 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
18059 {
18060 	/*  make rctl_names static to save stack space */
18061 	struct fc_vft_header *fc_vft_hdr;
18062 	uint32_t *header = (uint32_t *) fc_hdr;
18063 
18064 #define FC_RCTL_MDS_DIAGS	0xF4
18065 
18066 	switch (fc_hdr->fh_r_ctl) {
18067 	case FC_RCTL_DD_UNCAT:		/* uncategorized information */
18068 	case FC_RCTL_DD_SOL_DATA:	/* solicited data */
18069 	case FC_RCTL_DD_UNSOL_CTL:	/* unsolicited control */
18070 	case FC_RCTL_DD_SOL_CTL:	/* solicited control or reply */
18071 	case FC_RCTL_DD_UNSOL_DATA:	/* unsolicited data */
18072 	case FC_RCTL_DD_DATA_DESC:	/* data descriptor */
18073 	case FC_RCTL_DD_UNSOL_CMD:	/* unsolicited command */
18074 	case FC_RCTL_DD_CMD_STATUS:	/* command status */
18075 	case FC_RCTL_ELS_REQ:	/* extended link services request */
18076 	case FC_RCTL_ELS_REP:	/* extended link services reply */
18077 	case FC_RCTL_ELS4_REQ:	/* FC-4 ELS request */
18078 	case FC_RCTL_ELS4_REP:	/* FC-4 ELS reply */
18079 	case FC_RCTL_BA_NOP:  	/* basic link service NOP */
18080 	case FC_RCTL_BA_ABTS: 	/* basic link service abort */
18081 	case FC_RCTL_BA_RMC: 	/* remove connection */
18082 	case FC_RCTL_BA_ACC:	/* basic accept */
18083 	case FC_RCTL_BA_RJT:	/* basic reject */
18084 	case FC_RCTL_BA_PRMT:
18085 	case FC_RCTL_ACK_1:	/* acknowledge_1 */
18086 	case FC_RCTL_ACK_0:	/* acknowledge_0 */
18087 	case FC_RCTL_P_RJT:	/* port reject */
18088 	case FC_RCTL_F_RJT:	/* fabric reject */
18089 	case FC_RCTL_P_BSY:	/* port busy */
18090 	case FC_RCTL_F_BSY:	/* fabric busy to data frame */
18091 	case FC_RCTL_F_BSYL:	/* fabric busy to link control frame */
18092 	case FC_RCTL_LCR:	/* link credit reset */
18093 	case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */
18094 	case FC_RCTL_END:	/* end */
18095 		break;
18096 	case FC_RCTL_VFTH:	/* Virtual Fabric tagging Header */
18097 		fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
18098 		fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
18099 		return lpfc_fc_frame_check(phba, fc_hdr);
18100 	default:
18101 		goto drop;
18102 	}
18103 
18104 	switch (fc_hdr->fh_type) {
18105 	case FC_TYPE_BLS:
18106 	case FC_TYPE_ELS:
18107 	case FC_TYPE_FCP:
18108 	case FC_TYPE_CT:
18109 	case FC_TYPE_NVME:
18110 		break;
18111 	case FC_TYPE_IP:
18112 	case FC_TYPE_ILS:
18113 	default:
18114 		goto drop;
18115 	}
18116 
18117 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
18118 			"2538 Received frame rctl:x%x, type:x%x, "
18119 			"frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
18120 			fc_hdr->fh_r_ctl, fc_hdr->fh_type,
18121 			be32_to_cpu(header[0]), be32_to_cpu(header[1]),
18122 			be32_to_cpu(header[2]), be32_to_cpu(header[3]),
18123 			be32_to_cpu(header[4]), be32_to_cpu(header[5]),
18124 			be32_to_cpu(header[6]));
18125 	return 0;
18126 drop:
18127 	lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
18128 			"2539 Dropped frame rctl:x%x type:x%x\n",
18129 			fc_hdr->fh_r_ctl, fc_hdr->fh_type);
18130 	return 1;
18131 }
18132 
18133 /**
18134  * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
18135  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
18136  *
18137  * This function processes the FC header to retrieve the VFI from the VF
18138  * header, if one exists. This function will return the VFI if one exists
18139  * or 0 if no VSAN Header exists.
18140  **/
18141 static uint32_t
18142 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
18143 {
18144 	struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
18145 
18146 	if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
18147 		return 0;
18148 	return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
18149 }
18150 
18151 /**
18152  * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
18153  * @phba: Pointer to the HBA structure to search for the vport on
18154  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
18155  * @fcfi: The FC Fabric ID that the frame came from
18156  * @did: Destination ID to match against
18157  *
18158  * This function searches the @phba for a vport that matches the content of the
18159  * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
18160  * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
18161  * returns the matching vport pointer or NULL if unable to match frame to a
18162  * vport.
18163  **/
18164 static struct lpfc_vport *
18165 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
18166 		       uint16_t fcfi, uint32_t did)
18167 {
18168 	struct lpfc_vport **vports;
18169 	struct lpfc_vport *vport = NULL;
18170 	int i;
18171 
18172 	if (did == Fabric_DID)
18173 		return phba->pport;
18174 	if ((phba->pport->fc_flag & FC_PT2PT) &&
18175 		!(phba->link_state == LPFC_HBA_READY))
18176 		return phba->pport;
18177 
18178 	vports = lpfc_create_vport_work_array(phba);
18179 	if (vports != NULL) {
18180 		for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
18181 			if (phba->fcf.fcfi == fcfi &&
18182 			    vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
18183 			    vports[i]->fc_myDID == did) {
18184 				vport = vports[i];
18185 				break;
18186 			}
18187 		}
18188 	}
18189 	lpfc_destroy_vport_work_array(phba, vports);
18190 	return vport;
18191 }
18192 
18193 /**
18194  * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
18195  * @vport: The vport to work on.
18196  *
18197  * This function updates the receive sequence time stamp for this vport. The
18198  * receive sequence time stamp indicates the time that the last frame of the
18199  * the sequence that has been idle for the longest amount of time was received.
18200  * the driver uses this time stamp to indicate if any received sequences have
18201  * timed out.
18202  **/
18203 static void
18204 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
18205 {
18206 	struct lpfc_dmabuf *h_buf;
18207 	struct hbq_dmabuf *dmabuf = NULL;
18208 
18209 	/* get the oldest sequence on the rcv list */
18210 	h_buf = list_get_first(&vport->rcv_buffer_list,
18211 			       struct lpfc_dmabuf, list);
18212 	if (!h_buf)
18213 		return;
18214 	dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18215 	vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
18216 }
18217 
18218 /**
18219  * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
18220  * @vport: The vport that the received sequences were sent to.
18221  *
18222  * This function cleans up all outstanding received sequences. This is called
18223  * by the driver when a link event or user action invalidates all the received
18224  * sequences.
18225  **/
18226 void
18227 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
18228 {
18229 	struct lpfc_dmabuf *h_buf, *hnext;
18230 	struct lpfc_dmabuf *d_buf, *dnext;
18231 	struct hbq_dmabuf *dmabuf = NULL;
18232 
18233 	/* start with the oldest sequence on the rcv list */
18234 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
18235 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18236 		list_del_init(&dmabuf->hbuf.list);
18237 		list_for_each_entry_safe(d_buf, dnext,
18238 					 &dmabuf->dbuf.list, list) {
18239 			list_del_init(&d_buf->list);
18240 			lpfc_in_buf_free(vport->phba, d_buf);
18241 		}
18242 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
18243 	}
18244 }
18245 
18246 /**
18247  * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
18248  * @vport: The vport that the received sequences were sent to.
18249  *
18250  * This function determines whether any received sequences have timed out by
18251  * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
18252  * indicates that there is at least one timed out sequence this routine will
18253  * go through the received sequences one at a time from most inactive to most
18254  * active to determine which ones need to be cleaned up. Once it has determined
18255  * that a sequence needs to be cleaned up it will simply free up the resources
18256  * without sending an abort.
18257  **/
18258 void
18259 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
18260 {
18261 	struct lpfc_dmabuf *h_buf, *hnext;
18262 	struct lpfc_dmabuf *d_buf, *dnext;
18263 	struct hbq_dmabuf *dmabuf = NULL;
18264 	unsigned long timeout;
18265 	int abort_count = 0;
18266 
18267 	timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
18268 		   vport->rcv_buffer_time_stamp);
18269 	if (list_empty(&vport->rcv_buffer_list) ||
18270 	    time_before(jiffies, timeout))
18271 		return;
18272 	/* start with the oldest sequence on the rcv list */
18273 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
18274 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18275 		timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
18276 			   dmabuf->time_stamp);
18277 		if (time_before(jiffies, timeout))
18278 			break;
18279 		abort_count++;
18280 		list_del_init(&dmabuf->hbuf.list);
18281 		list_for_each_entry_safe(d_buf, dnext,
18282 					 &dmabuf->dbuf.list, list) {
18283 			list_del_init(&d_buf->list);
18284 			lpfc_in_buf_free(vport->phba, d_buf);
18285 		}
18286 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
18287 	}
18288 	if (abort_count)
18289 		lpfc_update_rcv_time_stamp(vport);
18290 }
18291 
18292 /**
18293  * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
18294  * @vport: pointer to a vitural port
18295  * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
18296  *
18297  * This function searches through the existing incomplete sequences that have
18298  * been sent to this @vport. If the frame matches one of the incomplete
18299  * sequences then the dbuf in the @dmabuf is added to the list of frames that
18300  * make up that sequence. If no sequence is found that matches this frame then
18301  * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
18302  * This function returns a pointer to the first dmabuf in the sequence list that
18303  * the frame was linked to.
18304  **/
18305 static struct hbq_dmabuf *
18306 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
18307 {
18308 	struct fc_frame_header *new_hdr;
18309 	struct fc_frame_header *temp_hdr;
18310 	struct lpfc_dmabuf *d_buf;
18311 	struct lpfc_dmabuf *h_buf;
18312 	struct hbq_dmabuf *seq_dmabuf = NULL;
18313 	struct hbq_dmabuf *temp_dmabuf = NULL;
18314 	uint8_t	found = 0;
18315 
18316 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
18317 	dmabuf->time_stamp = jiffies;
18318 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18319 
18320 	/* Use the hdr_buf to find the sequence that this frame belongs to */
18321 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
18322 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
18323 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
18324 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
18325 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
18326 			continue;
18327 		/* found a pending sequence that matches this frame */
18328 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18329 		break;
18330 	}
18331 	if (!seq_dmabuf) {
18332 		/*
18333 		 * This indicates first frame received for this sequence.
18334 		 * Queue the buffer on the vport's rcv_buffer_list.
18335 		 */
18336 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
18337 		lpfc_update_rcv_time_stamp(vport);
18338 		return dmabuf;
18339 	}
18340 	temp_hdr = seq_dmabuf->hbuf.virt;
18341 	if (be16_to_cpu(new_hdr->fh_seq_cnt) <
18342 		be16_to_cpu(temp_hdr->fh_seq_cnt)) {
18343 		list_del_init(&seq_dmabuf->hbuf.list);
18344 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
18345 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
18346 		lpfc_update_rcv_time_stamp(vport);
18347 		return dmabuf;
18348 	}
18349 	/* move this sequence to the tail to indicate a young sequence */
18350 	list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
18351 	seq_dmabuf->time_stamp = jiffies;
18352 	lpfc_update_rcv_time_stamp(vport);
18353 	if (list_empty(&seq_dmabuf->dbuf.list)) {
18354 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
18355 		return seq_dmabuf;
18356 	}
18357 	/* find the correct place in the sequence to insert this frame */
18358 	d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
18359 	while (!found) {
18360 		temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
18361 		temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
18362 		/*
18363 		 * If the frame's sequence count is greater than the frame on
18364 		 * the list then insert the frame right after this frame
18365 		 */
18366 		if (be16_to_cpu(new_hdr->fh_seq_cnt) >
18367 			be16_to_cpu(temp_hdr->fh_seq_cnt)) {
18368 			list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
18369 			found = 1;
18370 			break;
18371 		}
18372 
18373 		if (&d_buf->list == &seq_dmabuf->dbuf.list)
18374 			break;
18375 		d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
18376 	}
18377 
18378 	if (found)
18379 		return seq_dmabuf;
18380 	return NULL;
18381 }
18382 
18383 /**
18384  * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
18385  * @vport: pointer to a vitural port
18386  * @dmabuf: pointer to a dmabuf that describes the FC sequence
18387  *
18388  * This function tries to abort from the partially assembed sequence, described
18389  * by the information from basic abbort @dmabuf. It checks to see whether such
18390  * partially assembled sequence held by the driver. If so, it shall free up all
18391  * the frames from the partially assembled sequence.
18392  *
18393  * Return
18394  * true  -- if there is matching partially assembled sequence present and all
18395  *          the frames freed with the sequence;
18396  * false -- if there is no matching partially assembled sequence present so
18397  *          nothing got aborted in the lower layer driver
18398  **/
18399 static bool
18400 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
18401 			    struct hbq_dmabuf *dmabuf)
18402 {
18403 	struct fc_frame_header *new_hdr;
18404 	struct fc_frame_header *temp_hdr;
18405 	struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
18406 	struct hbq_dmabuf *seq_dmabuf = NULL;
18407 
18408 	/* Use the hdr_buf to find the sequence that matches this frame */
18409 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
18410 	INIT_LIST_HEAD(&dmabuf->hbuf.list);
18411 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18412 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
18413 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
18414 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
18415 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
18416 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
18417 			continue;
18418 		/* found a pending sequence that matches this frame */
18419 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18420 		break;
18421 	}
18422 
18423 	/* Free up all the frames from the partially assembled sequence */
18424 	if (seq_dmabuf) {
18425 		list_for_each_entry_safe(d_buf, n_buf,
18426 					 &seq_dmabuf->dbuf.list, list) {
18427 			list_del_init(&d_buf->list);
18428 			lpfc_in_buf_free(vport->phba, d_buf);
18429 		}
18430 		return true;
18431 	}
18432 	return false;
18433 }
18434 
18435 /**
18436  * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
18437  * @vport: pointer to a vitural port
18438  * @dmabuf: pointer to a dmabuf that describes the FC sequence
18439  *
18440  * This function tries to abort from the assembed sequence from upper level
18441  * protocol, described by the information from basic abbort @dmabuf. It
18442  * checks to see whether such pending context exists at upper level protocol.
18443  * If so, it shall clean up the pending context.
18444  *
18445  * Return
18446  * true  -- if there is matching pending context of the sequence cleaned
18447  *          at ulp;
18448  * false -- if there is no matching pending context of the sequence present
18449  *          at ulp.
18450  **/
18451 static bool
18452 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
18453 {
18454 	struct lpfc_hba *phba = vport->phba;
18455 	int handled;
18456 
18457 	/* Accepting abort at ulp with SLI4 only */
18458 	if (phba->sli_rev < LPFC_SLI_REV4)
18459 		return false;
18460 
18461 	/* Register all caring upper level protocols to attend abort */
18462 	handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
18463 	if (handled)
18464 		return true;
18465 
18466 	return false;
18467 }
18468 
18469 /**
18470  * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
18471  * @phba: Pointer to HBA context object.
18472  * @cmd_iocbq: pointer to the command iocbq structure.
18473  * @rsp_iocbq: pointer to the response iocbq structure.
18474  *
18475  * This function handles the sequence abort response iocb command complete
18476  * event. It properly releases the memory allocated to the sequence abort
18477  * accept iocb.
18478  **/
18479 static void
18480 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
18481 			     struct lpfc_iocbq *cmd_iocbq,
18482 			     struct lpfc_iocbq *rsp_iocbq)
18483 {
18484 	struct lpfc_nodelist *ndlp;
18485 
18486 	if (cmd_iocbq) {
18487 		ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1;
18488 		lpfc_nlp_put(ndlp);
18489 		lpfc_sli_release_iocbq(phba, cmd_iocbq);
18490 	}
18491 
18492 	/* Failure means BLS ABORT RSP did not get delivered to remote node*/
18493 	if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
18494 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18495 			"3154 BLS ABORT RSP failed, data:  x%x/x%x\n",
18496 			get_job_ulpstatus(phba, rsp_iocbq),
18497 			get_job_word4(phba, rsp_iocbq));
18498 }
18499 
18500 /**
18501  * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
18502  * @phba: Pointer to HBA context object.
18503  * @xri: xri id in transaction.
18504  *
18505  * This function validates the xri maps to the known range of XRIs allocated an
18506  * used by the driver.
18507  **/
18508 uint16_t
18509 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
18510 		      uint16_t xri)
18511 {
18512 	uint16_t i;
18513 
18514 	for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
18515 		if (xri == phba->sli4_hba.xri_ids[i])
18516 			return i;
18517 	}
18518 	return NO_XRI;
18519 }
18520 
18521 /**
18522  * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
18523  * @vport: pointer to a virtual port.
18524  * @fc_hdr: pointer to a FC frame header.
18525  * @aborted: was the partially assembled receive sequence successfully aborted
18526  *
18527  * This function sends a basic response to a previous unsol sequence abort
18528  * event after aborting the sequence handling.
18529  **/
18530 void
18531 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
18532 			struct fc_frame_header *fc_hdr, bool aborted)
18533 {
18534 	struct lpfc_hba *phba = vport->phba;
18535 	struct lpfc_iocbq *ctiocb = NULL;
18536 	struct lpfc_nodelist *ndlp;
18537 	uint16_t oxid, rxid, xri, lxri;
18538 	uint32_t sid, fctl;
18539 	union lpfc_wqe128 *icmd;
18540 	int rc;
18541 
18542 	if (!lpfc_is_link_up(phba))
18543 		return;
18544 
18545 	sid = sli4_sid_from_fc_hdr(fc_hdr);
18546 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
18547 	rxid = be16_to_cpu(fc_hdr->fh_rx_id);
18548 
18549 	ndlp = lpfc_findnode_did(vport, sid);
18550 	if (!ndlp) {
18551 		ndlp = lpfc_nlp_init(vport, sid);
18552 		if (!ndlp) {
18553 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
18554 					 "1268 Failed to allocate ndlp for "
18555 					 "oxid:x%x SID:x%x\n", oxid, sid);
18556 			return;
18557 		}
18558 		/* Put ndlp onto pport node list */
18559 		lpfc_enqueue_node(vport, ndlp);
18560 	}
18561 
18562 	/* Allocate buffer for rsp iocb */
18563 	ctiocb = lpfc_sli_get_iocbq(phba);
18564 	if (!ctiocb)
18565 		return;
18566 
18567 	icmd = &ctiocb->wqe;
18568 
18569 	/* Extract the F_CTL field from FC_HDR */
18570 	fctl = sli4_fctl_from_fc_hdr(fc_hdr);
18571 
18572 	ctiocb->context1 = lpfc_nlp_get(ndlp);
18573 	if (!ctiocb->context1) {
18574 		lpfc_sli_release_iocbq(phba, ctiocb);
18575 		return;
18576 	}
18577 
18578 	ctiocb->vport = phba->pport;
18579 	ctiocb->cmd_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
18580 	ctiocb->sli4_lxritag = NO_XRI;
18581 	ctiocb->sli4_xritag = NO_XRI;
18582 	ctiocb->abort_rctl = FC_RCTL_BA_ACC;
18583 
18584 	if (fctl & FC_FC_EX_CTX)
18585 		/* Exchange responder sent the abort so we
18586 		 * own the oxid.
18587 		 */
18588 		xri = oxid;
18589 	else
18590 		xri = rxid;
18591 	lxri = lpfc_sli4_xri_inrange(phba, xri);
18592 	if (lxri != NO_XRI)
18593 		lpfc_set_rrq_active(phba, ndlp, lxri,
18594 			(xri == oxid) ? rxid : oxid, 0);
18595 	/* For BA_ABTS from exchange responder, if the logical xri with
18596 	 * the oxid maps to the FCP XRI range, the port no longer has
18597 	 * that exchange context, send a BLS_RJT. Override the IOCB for
18598 	 * a BA_RJT.
18599 	 */
18600 	if ((fctl & FC_FC_EX_CTX) &&
18601 	    (lxri > lpfc_sli4_get_iocb_cnt(phba))) {
18602 		ctiocb->abort_rctl = FC_RCTL_BA_RJT;
18603 		bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0);
18604 		bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp,
18605 		       FC_BA_RJT_INV_XID);
18606 		bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp,
18607 		       FC_BA_RJT_UNABLE);
18608 	}
18609 
18610 	/* If BA_ABTS failed to abort a partially assembled receive sequence,
18611 	 * the driver no longer has that exchange, send a BLS_RJT. Override
18612 	 * the IOCB for a BA_RJT.
18613 	 */
18614 	if (aborted == false) {
18615 		ctiocb->abort_rctl = FC_RCTL_BA_RJT;
18616 		bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0);
18617 		bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp,
18618 		       FC_BA_RJT_INV_XID);
18619 		bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp,
18620 		       FC_BA_RJT_UNABLE);
18621 	}
18622 
18623 	if (fctl & FC_FC_EX_CTX) {
18624 		/* ABTS sent by responder to CT exchange, construction
18625 		 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
18626 		 * field and RX_ID from ABTS for RX_ID field.
18627 		 */
18628 		ctiocb->abort_bls = LPFC_ABTS_UNSOL_RSP;
18629 		bf_set(xmit_bls_rsp64_rxid, &icmd->xmit_bls_rsp, rxid);
18630 	} else {
18631 		/* ABTS sent by initiator to CT exchange, construction
18632 		 * of BA_ACC will need to allocate a new XRI as for the
18633 		 * XRI_TAG field.
18634 		 */
18635 		ctiocb->abort_bls = LPFC_ABTS_UNSOL_INT;
18636 	}
18637 
18638 	/* OX_ID is invariable to who sent ABTS to CT exchange */
18639 	bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, oxid);
18640 	bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, rxid);
18641 
18642 	/* Use CT=VPI */
18643 	bf_set(wqe_els_did, &icmd->xmit_bls_rsp.wqe_dest,
18644 	       ndlp->nlp_DID);
18645 	bf_set(xmit_bls_rsp64_temprpi, &icmd->xmit_bls_rsp,
18646 	       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
18647 	bf_set(wqe_cmnd, &icmd->generic.wqe_com, CMD_XMIT_BLS_RSP64_CX);
18648 
18649 
18650 	/* Xmit CT abts response on exchange <xid> */
18651 	lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
18652 			 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
18653 			 ctiocb->abort_rctl, oxid, phba->link_state);
18654 
18655 	lpfc_sli_prep_wqe(phba, ctiocb);
18656 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
18657 	if (rc == IOCB_ERROR) {
18658 		lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
18659 				 "2925 Failed to issue CT ABTS RSP x%x on "
18660 				 "xri x%x, Data x%x\n",
18661 				 ctiocb->abort_rctl, oxid,
18662 				 phba->link_state);
18663 		lpfc_nlp_put(ndlp);
18664 		ctiocb->context1 = NULL;
18665 		lpfc_sli_release_iocbq(phba, ctiocb);
18666 	}
18667 }
18668 
18669 /**
18670  * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
18671  * @vport: Pointer to the vport on which this sequence was received
18672  * @dmabuf: pointer to a dmabuf that describes the FC sequence
18673  *
18674  * This function handles an SLI-4 unsolicited abort event. If the unsolicited
18675  * receive sequence is only partially assembed by the driver, it shall abort
18676  * the partially assembled frames for the sequence. Otherwise, if the
18677  * unsolicited receive sequence has been completely assembled and passed to
18678  * the Upper Layer Protocol (ULP), it then mark the per oxid status for the
18679  * unsolicited sequence has been aborted. After that, it will issue a basic
18680  * accept to accept the abort.
18681  **/
18682 static void
18683 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
18684 			     struct hbq_dmabuf *dmabuf)
18685 {
18686 	struct lpfc_hba *phba = vport->phba;
18687 	struct fc_frame_header fc_hdr;
18688 	uint32_t fctl;
18689 	bool aborted;
18690 
18691 	/* Make a copy of fc_hdr before the dmabuf being released */
18692 	memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
18693 	fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
18694 
18695 	if (fctl & FC_FC_EX_CTX) {
18696 		/* ABTS by responder to exchange, no cleanup needed */
18697 		aborted = true;
18698 	} else {
18699 		/* ABTS by initiator to exchange, need to do cleanup */
18700 		aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
18701 		if (aborted == false)
18702 			aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
18703 	}
18704 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
18705 
18706 	if (phba->nvmet_support) {
18707 		lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr);
18708 		return;
18709 	}
18710 
18711 	/* Respond with BA_ACC or BA_RJT accordingly */
18712 	lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
18713 }
18714 
18715 /**
18716  * lpfc_seq_complete - Indicates if a sequence is complete
18717  * @dmabuf: pointer to a dmabuf that describes the FC sequence
18718  *
18719  * This function checks the sequence, starting with the frame described by
18720  * @dmabuf, to see if all the frames associated with this sequence are present.
18721  * the frames associated with this sequence are linked to the @dmabuf using the
18722  * dbuf list. This function looks for two major things. 1) That the first frame
18723  * has a sequence count of zero. 2) There is a frame with last frame of sequence
18724  * set. 3) That there are no holes in the sequence count. The function will
18725  * return 1 when the sequence is complete, otherwise it will return 0.
18726  **/
18727 static int
18728 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
18729 {
18730 	struct fc_frame_header *hdr;
18731 	struct lpfc_dmabuf *d_buf;
18732 	struct hbq_dmabuf *seq_dmabuf;
18733 	uint32_t fctl;
18734 	int seq_count = 0;
18735 
18736 	hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18737 	/* make sure first fame of sequence has a sequence count of zero */
18738 	if (hdr->fh_seq_cnt != seq_count)
18739 		return 0;
18740 	fctl = (hdr->fh_f_ctl[0] << 16 |
18741 		hdr->fh_f_ctl[1] << 8 |
18742 		hdr->fh_f_ctl[2]);
18743 	/* If last frame of sequence we can return success. */
18744 	if (fctl & FC_FC_END_SEQ)
18745 		return 1;
18746 	list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
18747 		seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
18748 		hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
18749 		/* If there is a hole in the sequence count then fail. */
18750 		if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
18751 			return 0;
18752 		fctl = (hdr->fh_f_ctl[0] << 16 |
18753 			hdr->fh_f_ctl[1] << 8 |
18754 			hdr->fh_f_ctl[2]);
18755 		/* If last frame of sequence we can return success. */
18756 		if (fctl & FC_FC_END_SEQ)
18757 			return 1;
18758 	}
18759 	return 0;
18760 }
18761 
18762 /**
18763  * lpfc_prep_seq - Prep sequence for ULP processing
18764  * @vport: Pointer to the vport on which this sequence was received
18765  * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence
18766  *
18767  * This function takes a sequence, described by a list of frames, and creates
18768  * a list of iocbq structures to describe the sequence. This iocbq list will be
18769  * used to issue to the generic unsolicited sequence handler. This routine
18770  * returns a pointer to the first iocbq in the list. If the function is unable
18771  * to allocate an iocbq then it throw out the received frames that were not
18772  * able to be described and return a pointer to the first iocbq. If unable to
18773  * allocate any iocbqs (including the first) this function will return NULL.
18774  **/
18775 static struct lpfc_iocbq *
18776 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
18777 {
18778 	struct hbq_dmabuf *hbq_buf;
18779 	struct lpfc_dmabuf *d_buf, *n_buf;
18780 	struct lpfc_iocbq *first_iocbq, *iocbq;
18781 	struct fc_frame_header *fc_hdr;
18782 	uint32_t sid;
18783 	uint32_t len, tot_len;
18784 
18785 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
18786 	/* remove from receive buffer list */
18787 	list_del_init(&seq_dmabuf->hbuf.list);
18788 	lpfc_update_rcv_time_stamp(vport);
18789 	/* get the Remote Port's SID */
18790 	sid = sli4_sid_from_fc_hdr(fc_hdr);
18791 	tot_len = 0;
18792 	/* Get an iocbq struct to fill in. */
18793 	first_iocbq = lpfc_sli_get_iocbq(vport->phba);
18794 	if (first_iocbq) {
18795 		/* Initialize the first IOCB. */
18796 		first_iocbq->wcqe_cmpl.total_data_placed = 0;
18797 		bf_set(lpfc_wcqe_c_status, &first_iocbq->wcqe_cmpl,
18798 		       IOSTAT_SUCCESS);
18799 		first_iocbq->vport = vport;
18800 
18801 		/* Check FC Header to see what TYPE of frame we are rcv'ing */
18802 		if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
18803 			bf_set(els_rsp64_sid, &first_iocbq->wqe.xmit_els_rsp,
18804 			       sli4_did_from_fc_hdr(fc_hdr));
18805 		}
18806 
18807 		bf_set(wqe_ctxt_tag, &first_iocbq->wqe.xmit_els_rsp.wqe_com,
18808 		       NO_XRI);
18809 		bf_set(wqe_rcvoxid, &first_iocbq->wqe.xmit_els_rsp.wqe_com,
18810 		       be16_to_cpu(fc_hdr->fh_ox_id));
18811 
18812 		/* put the first buffer into the first iocb */
18813 		tot_len = bf_get(lpfc_rcqe_length,
18814 				 &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
18815 
18816 		first_iocbq->context2 = &seq_dmabuf->dbuf;
18817 		first_iocbq->context3 = NULL;
18818 		/* Keep track of the BDE count */
18819 		first_iocbq->wcqe_cmpl.word3 = 1;
18820 
18821 		if (tot_len > LPFC_DATA_BUF_SIZE)
18822 			first_iocbq->wqe.gen_req.bde.tus.f.bdeSize =
18823 				LPFC_DATA_BUF_SIZE;
18824 		else
18825 			first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = tot_len;
18826 
18827 		first_iocbq->wcqe_cmpl.total_data_placed = tot_len;
18828 		bf_set(wqe_els_did, &first_iocbq->wqe.xmit_els_rsp.wqe_dest,
18829 		       sid);
18830 	}
18831 	iocbq = first_iocbq;
18832 	/*
18833 	 * Each IOCBq can have two Buffers assigned, so go through the list
18834 	 * of buffers for this sequence and save two buffers in each IOCBq
18835 	 */
18836 	list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
18837 		if (!iocbq) {
18838 			lpfc_in_buf_free(vport->phba, d_buf);
18839 			continue;
18840 		}
18841 		if (!iocbq->context3) {
18842 			iocbq->context3 = d_buf;
18843 			iocbq->wcqe_cmpl.word3++;
18844 			/* We need to get the size out of the right CQE */
18845 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
18846 			len = bf_get(lpfc_rcqe_length,
18847 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
18848 			iocbq->unsol_rcv_len = len;
18849 			iocbq->wcqe_cmpl.total_data_placed += len;
18850 			tot_len += len;
18851 		} else {
18852 			iocbq = lpfc_sli_get_iocbq(vport->phba);
18853 			if (!iocbq) {
18854 				if (first_iocbq) {
18855 					bf_set(lpfc_wcqe_c_status,
18856 					       &first_iocbq->wcqe_cmpl,
18857 					       IOSTAT_SUCCESS);
18858 					first_iocbq->wcqe_cmpl.parameter =
18859 						IOERR_NO_RESOURCES;
18860 				}
18861 				lpfc_in_buf_free(vport->phba, d_buf);
18862 				continue;
18863 			}
18864 			/* We need to get the size out of the right CQE */
18865 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
18866 			len = bf_get(lpfc_rcqe_length,
18867 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
18868 			iocbq->context2 = d_buf;
18869 			iocbq->context3 = NULL;
18870 			iocbq->wcqe_cmpl.word3 = 1;
18871 
18872 			if (len > LPFC_DATA_BUF_SIZE)
18873 				iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize =
18874 					LPFC_DATA_BUF_SIZE;
18875 			else
18876 				iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize =
18877 					len;
18878 
18879 			tot_len += len;
18880 			iocbq->wcqe_cmpl.total_data_placed = tot_len;
18881 			bf_set(wqe_els_did, &iocbq->wqe.xmit_els_rsp.wqe_dest,
18882 			       sid);
18883 			list_add_tail(&iocbq->list, &first_iocbq->list);
18884 		}
18885 	}
18886 	/* Free the sequence's header buffer */
18887 	if (!first_iocbq)
18888 		lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf);
18889 
18890 	return first_iocbq;
18891 }
18892 
18893 static void
18894 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
18895 			  struct hbq_dmabuf *seq_dmabuf)
18896 {
18897 	struct fc_frame_header *fc_hdr;
18898 	struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
18899 	struct lpfc_hba *phba = vport->phba;
18900 
18901 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
18902 	iocbq = lpfc_prep_seq(vport, seq_dmabuf);
18903 	if (!iocbq) {
18904 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18905 				"2707 Ring %d handler: Failed to allocate "
18906 				"iocb Rctl x%x Type x%x received\n",
18907 				LPFC_ELS_RING,
18908 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
18909 		return;
18910 	}
18911 	if (!lpfc_complete_unsol_iocb(phba,
18912 				      phba->sli4_hba.els_wq->pring,
18913 				      iocbq, fc_hdr->fh_r_ctl,
18914 				      fc_hdr->fh_type))
18915 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18916 				"2540 Ring %d handler: unexpected Rctl "
18917 				"x%x Type x%x received\n",
18918 				LPFC_ELS_RING,
18919 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
18920 
18921 	/* Free iocb created in lpfc_prep_seq */
18922 	list_for_each_entry_safe(curr_iocb, next_iocb,
18923 		&iocbq->list, list) {
18924 		list_del_init(&curr_iocb->list);
18925 		lpfc_sli_release_iocbq(phba, curr_iocb);
18926 	}
18927 	lpfc_sli_release_iocbq(phba, iocbq);
18928 }
18929 
18930 static void
18931 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
18932 			    struct lpfc_iocbq *rspiocb)
18933 {
18934 	struct lpfc_dmabuf *pcmd = cmdiocb->context2;
18935 
18936 	if (pcmd && pcmd->virt)
18937 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
18938 	kfree(pcmd);
18939 	lpfc_sli_release_iocbq(phba, cmdiocb);
18940 	lpfc_drain_txq(phba);
18941 }
18942 
18943 static void
18944 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
18945 			      struct hbq_dmabuf *dmabuf)
18946 {
18947 	struct fc_frame_header *fc_hdr;
18948 	struct lpfc_hba *phba = vport->phba;
18949 	struct lpfc_iocbq *iocbq = NULL;
18950 	union  lpfc_wqe128 *pwqe;
18951 	struct lpfc_dmabuf *pcmd = NULL;
18952 	uint32_t frame_len;
18953 	int rc;
18954 	unsigned long iflags;
18955 
18956 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18957 	frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl);
18958 
18959 	/* Send the received frame back */
18960 	iocbq = lpfc_sli_get_iocbq(phba);
18961 	if (!iocbq) {
18962 		/* Queue cq event and wakeup worker thread to process it */
18963 		spin_lock_irqsave(&phba->hbalock, iflags);
18964 		list_add_tail(&dmabuf->cq_event.list,
18965 			      &phba->sli4_hba.sp_queue_event);
18966 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
18967 		spin_unlock_irqrestore(&phba->hbalock, iflags);
18968 		lpfc_worker_wake_up(phba);
18969 		return;
18970 	}
18971 
18972 	/* Allocate buffer for command payload */
18973 	pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
18974 	if (pcmd)
18975 		pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL,
18976 					    &pcmd->phys);
18977 	if (!pcmd || !pcmd->virt)
18978 		goto exit;
18979 
18980 	INIT_LIST_HEAD(&pcmd->list);
18981 
18982 	/* copyin the payload */
18983 	memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len);
18984 
18985 	iocbq->context2 = pcmd;
18986 	iocbq->vport = vport;
18987 	iocbq->cmd_flag &= ~LPFC_FIP_ELS_ID_MASK;
18988 	iocbq->cmd_flag |= LPFC_USE_FCPWQIDX;
18989 	iocbq->num_bdes = 0;
18990 
18991 	pwqe = &iocbq->wqe;
18992 	/* fill in BDE's for command */
18993 	pwqe->gen_req.bde.addrHigh = putPaddrHigh(pcmd->phys);
18994 	pwqe->gen_req.bde.addrLow = putPaddrLow(pcmd->phys);
18995 	pwqe->gen_req.bde.tus.f.bdeSize = frame_len;
18996 	pwqe->gen_req.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
18997 
18998 	pwqe->send_frame.frame_len = frame_len;
18999 	pwqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((__be32 *)fc_hdr));
19000 	pwqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((__be32 *)fc_hdr + 1));
19001 	pwqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((__be32 *)fc_hdr + 2));
19002 	pwqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((__be32 *)fc_hdr + 3));
19003 	pwqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((__be32 *)fc_hdr + 4));
19004 	pwqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((__be32 *)fc_hdr + 5));
19005 
19006 	pwqe->generic.wqe_com.word7 = 0;
19007 	pwqe->generic.wqe_com.word10 = 0;
19008 
19009 	bf_set(wqe_cmnd, &pwqe->generic.wqe_com, CMD_SEND_FRAME);
19010 	bf_set(wqe_sof, &pwqe->generic.wqe_com, 0x2E); /* SOF byte */
19011 	bf_set(wqe_eof, &pwqe->generic.wqe_com, 0x41); /* EOF byte */
19012 	bf_set(wqe_lenloc, &pwqe->generic.wqe_com, 1);
19013 	bf_set(wqe_xbl, &pwqe->generic.wqe_com, 1);
19014 	bf_set(wqe_dbde, &pwqe->generic.wqe_com, 1);
19015 	bf_set(wqe_xc, &pwqe->generic.wqe_com, 1);
19016 	bf_set(wqe_cmd_type, &pwqe->generic.wqe_com, 0xA);
19017 	bf_set(wqe_cqid, &pwqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
19018 	bf_set(wqe_xri_tag, &pwqe->generic.wqe_com, iocbq->sli4_xritag);
19019 	bf_set(wqe_reqtag, &pwqe->generic.wqe_com, iocbq->iotag);
19020 	bf_set(wqe_class, &pwqe->generic.wqe_com, CLASS3);
19021 	pwqe->generic.wqe_com.abort_tag = iocbq->iotag;
19022 
19023 	iocbq->cmd_cmpl = lpfc_sli4_mds_loopback_cmpl;
19024 
19025 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0);
19026 	if (rc == IOCB_ERROR)
19027 		goto exit;
19028 
19029 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
19030 	return;
19031 
19032 exit:
19033 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
19034 			"2023 Unable to process MDS loopback frame\n");
19035 	if (pcmd && pcmd->virt)
19036 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
19037 	kfree(pcmd);
19038 	if (iocbq)
19039 		lpfc_sli_release_iocbq(phba, iocbq);
19040 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
19041 }
19042 
19043 /**
19044  * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
19045  * @phba: Pointer to HBA context object.
19046  * @dmabuf: Pointer to a dmabuf that describes the FC sequence.
19047  *
19048  * This function is called with no lock held. This function processes all
19049  * the received buffers and gives it to upper layers when a received buffer
19050  * indicates that it is the final frame in the sequence. The interrupt
19051  * service routine processes received buffers at interrupt contexts.
19052  * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
19053  * appropriate receive function when the final frame in a sequence is received.
19054  **/
19055 void
19056 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
19057 				 struct hbq_dmabuf *dmabuf)
19058 {
19059 	struct hbq_dmabuf *seq_dmabuf;
19060 	struct fc_frame_header *fc_hdr;
19061 	struct lpfc_vport *vport;
19062 	uint32_t fcfi;
19063 	uint32_t did;
19064 
19065 	/* Process each received buffer */
19066 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
19067 
19068 	if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
19069 	    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
19070 		vport = phba->pport;
19071 		/* Handle MDS Loopback frames */
19072 		if  (!(phba->pport->load_flag & FC_UNLOADING))
19073 			lpfc_sli4_handle_mds_loopback(vport, dmabuf);
19074 		else
19075 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
19076 		return;
19077 	}
19078 
19079 	/* check to see if this a valid type of frame */
19080 	if (lpfc_fc_frame_check(phba, fc_hdr)) {
19081 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
19082 		return;
19083 	}
19084 
19085 	if ((bf_get(lpfc_cqe_code,
19086 		    &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
19087 		fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
19088 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
19089 	else
19090 		fcfi = bf_get(lpfc_rcqe_fcf_id,
19091 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
19092 
19093 	if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) {
19094 		vport = phba->pport;
19095 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
19096 				"2023 MDS Loopback %d bytes\n",
19097 				bf_get(lpfc_rcqe_length,
19098 				       &dmabuf->cq_event.cqe.rcqe_cmpl));
19099 		/* Handle MDS Loopback frames */
19100 		lpfc_sli4_handle_mds_loopback(vport, dmabuf);
19101 		return;
19102 	}
19103 
19104 	/* d_id this frame is directed to */
19105 	did = sli4_did_from_fc_hdr(fc_hdr);
19106 
19107 	vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
19108 	if (!vport) {
19109 		/* throw out the frame */
19110 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
19111 		return;
19112 	}
19113 
19114 	/* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
19115 	if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
19116 		(did != Fabric_DID)) {
19117 		/*
19118 		 * Throw out the frame if we are not pt2pt.
19119 		 * The pt2pt protocol allows for discovery frames
19120 		 * to be received without a registered VPI.
19121 		 */
19122 		if (!(vport->fc_flag & FC_PT2PT) ||
19123 			(phba->link_state == LPFC_HBA_READY)) {
19124 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
19125 			return;
19126 		}
19127 	}
19128 
19129 	/* Handle the basic abort sequence (BA_ABTS) event */
19130 	if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
19131 		lpfc_sli4_handle_unsol_abort(vport, dmabuf);
19132 		return;
19133 	}
19134 
19135 	/* Link this frame */
19136 	seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
19137 	if (!seq_dmabuf) {
19138 		/* unable to add frame to vport - throw it out */
19139 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
19140 		return;
19141 	}
19142 	/* If not last frame in sequence continue processing frames. */
19143 	if (!lpfc_seq_complete(seq_dmabuf))
19144 		return;
19145 
19146 	/* Send the complete sequence to the upper layer protocol */
19147 	lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
19148 }
19149 
19150 /**
19151  * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
19152  * @phba: pointer to lpfc hba data structure.
19153  *
19154  * This routine is invoked to post rpi header templates to the
19155  * HBA consistent with the SLI-4 interface spec.  This routine
19156  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
19157  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
19158  *
19159  * This routine does not require any locks.  It's usage is expected
19160  * to be driver load or reset recovery when the driver is
19161  * sequential.
19162  *
19163  * Return codes
19164  * 	0 - successful
19165  *      -EIO - The mailbox failed to complete successfully.
19166  * 	When this error occurs, the driver is not guaranteed
19167  *	to have any rpi regions posted to the device and
19168  *	must either attempt to repost the regions or take a
19169  *	fatal error.
19170  **/
19171 int
19172 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
19173 {
19174 	struct lpfc_rpi_hdr *rpi_page;
19175 	uint32_t rc = 0;
19176 	uint16_t lrpi = 0;
19177 
19178 	/* SLI4 ports that support extents do not require RPI headers. */
19179 	if (!phba->sli4_hba.rpi_hdrs_in_use)
19180 		goto exit;
19181 	if (phba->sli4_hba.extents_in_use)
19182 		return -EIO;
19183 
19184 	list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
19185 		/*
19186 		 * Assign the rpi headers a physical rpi only if the driver
19187 		 * has not initialized those resources.  A port reset only
19188 		 * needs the headers posted.
19189 		 */
19190 		if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
19191 		    LPFC_RPI_RSRC_RDY)
19192 			rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
19193 
19194 		rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
19195 		if (rc != MBX_SUCCESS) {
19196 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19197 					"2008 Error %d posting all rpi "
19198 					"headers\n", rc);
19199 			rc = -EIO;
19200 			break;
19201 		}
19202 	}
19203 
19204  exit:
19205 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
19206 	       LPFC_RPI_RSRC_RDY);
19207 	return rc;
19208 }
19209 
19210 /**
19211  * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
19212  * @phba: pointer to lpfc hba data structure.
19213  * @rpi_page:  pointer to the rpi memory region.
19214  *
19215  * This routine is invoked to post a single rpi header to the
19216  * HBA consistent with the SLI-4 interface spec.  This memory region
19217  * maps up to 64 rpi context regions.
19218  *
19219  * Return codes
19220  * 	0 - successful
19221  * 	-ENOMEM - No available memory
19222  *      -EIO - The mailbox failed to complete successfully.
19223  **/
19224 int
19225 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
19226 {
19227 	LPFC_MBOXQ_t *mboxq;
19228 	struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
19229 	uint32_t rc = 0;
19230 	uint32_t shdr_status, shdr_add_status;
19231 	union lpfc_sli4_cfg_shdr *shdr;
19232 
19233 	/* SLI4 ports that support extents do not require RPI headers. */
19234 	if (!phba->sli4_hba.rpi_hdrs_in_use)
19235 		return rc;
19236 	if (phba->sli4_hba.extents_in_use)
19237 		return -EIO;
19238 
19239 	/* The port is notified of the header region via a mailbox command. */
19240 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19241 	if (!mboxq) {
19242 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19243 				"2001 Unable to allocate memory for issuing "
19244 				"SLI_CONFIG_SPECIAL mailbox command\n");
19245 		return -ENOMEM;
19246 	}
19247 
19248 	/* Post all rpi memory regions to the port. */
19249 	hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
19250 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
19251 			 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
19252 			 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
19253 			 sizeof(struct lpfc_sli4_cfg_mhdr),
19254 			 LPFC_SLI4_MBX_EMBED);
19255 
19256 
19257 	/* Post the physical rpi to the port for this rpi header. */
19258 	bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
19259 	       rpi_page->start_rpi);
19260 	bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
19261 	       hdr_tmpl, rpi_page->page_count);
19262 
19263 	hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
19264 	hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
19265 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
19266 	shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
19267 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
19268 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
19269 	mempool_free(mboxq, phba->mbox_mem_pool);
19270 	if (shdr_status || shdr_add_status || rc) {
19271 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19272 				"2514 POST_RPI_HDR mailbox failed with "
19273 				"status x%x add_status x%x, mbx status x%x\n",
19274 				shdr_status, shdr_add_status, rc);
19275 		rc = -ENXIO;
19276 	} else {
19277 		/*
19278 		 * The next_rpi stores the next logical module-64 rpi value used
19279 		 * to post physical rpis in subsequent rpi postings.
19280 		 */
19281 		spin_lock_irq(&phba->hbalock);
19282 		phba->sli4_hba.next_rpi = rpi_page->next_rpi;
19283 		spin_unlock_irq(&phba->hbalock);
19284 	}
19285 	return rc;
19286 }
19287 
19288 /**
19289  * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
19290  * @phba: pointer to lpfc hba data structure.
19291  *
19292  * This routine is invoked to post rpi header templates to the
19293  * HBA consistent with the SLI-4 interface spec.  This routine
19294  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
19295  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
19296  *
19297  * Returns
19298  * 	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
19299  * 	LPFC_RPI_ALLOC_ERROR if no rpis are available.
19300  **/
19301 int
19302 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
19303 {
19304 	unsigned long rpi;
19305 	uint16_t max_rpi, rpi_limit;
19306 	uint16_t rpi_remaining, lrpi = 0;
19307 	struct lpfc_rpi_hdr *rpi_hdr;
19308 	unsigned long iflag;
19309 
19310 	/*
19311 	 * Fetch the next logical rpi.  Because this index is logical,
19312 	 * the  driver starts at 0 each time.
19313 	 */
19314 	spin_lock_irqsave(&phba->hbalock, iflag);
19315 	max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
19316 	rpi_limit = phba->sli4_hba.next_rpi;
19317 
19318 	rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit);
19319 	if (rpi >= rpi_limit)
19320 		rpi = LPFC_RPI_ALLOC_ERROR;
19321 	else {
19322 		set_bit(rpi, phba->sli4_hba.rpi_bmask);
19323 		phba->sli4_hba.max_cfg_param.rpi_used++;
19324 		phba->sli4_hba.rpi_count++;
19325 	}
19326 	lpfc_printf_log(phba, KERN_INFO,
19327 			LOG_NODE | LOG_DISCOVERY,
19328 			"0001 Allocated rpi:x%x max:x%x lim:x%x\n",
19329 			(int) rpi, max_rpi, rpi_limit);
19330 
19331 	/*
19332 	 * Don't try to allocate more rpi header regions if the device limit
19333 	 * has been exhausted.
19334 	 */
19335 	if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
19336 	    (phba->sli4_hba.rpi_count >= max_rpi)) {
19337 		spin_unlock_irqrestore(&phba->hbalock, iflag);
19338 		return rpi;
19339 	}
19340 
19341 	/*
19342 	 * RPI header postings are not required for SLI4 ports capable of
19343 	 * extents.
19344 	 */
19345 	if (!phba->sli4_hba.rpi_hdrs_in_use) {
19346 		spin_unlock_irqrestore(&phba->hbalock, iflag);
19347 		return rpi;
19348 	}
19349 
19350 	/*
19351 	 * If the driver is running low on rpi resources, allocate another
19352 	 * page now.  Note that the next_rpi value is used because
19353 	 * it represents how many are actually in use whereas max_rpi notes
19354 	 * how many are supported max by the device.
19355 	 */
19356 	rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
19357 	spin_unlock_irqrestore(&phba->hbalock, iflag);
19358 	if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
19359 		rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
19360 		if (!rpi_hdr) {
19361 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19362 					"2002 Error Could not grow rpi "
19363 					"count\n");
19364 		} else {
19365 			lrpi = rpi_hdr->start_rpi;
19366 			rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
19367 			lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
19368 		}
19369 	}
19370 
19371 	return rpi;
19372 }
19373 
19374 /**
19375  * __lpfc_sli4_free_rpi - Release an rpi for reuse.
19376  * @phba: pointer to lpfc hba data structure.
19377  * @rpi: rpi to free
19378  *
19379  * This routine is invoked to release an rpi to the pool of
19380  * available rpis maintained by the driver.
19381  **/
19382 static void
19383 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
19384 {
19385 	/*
19386 	 * if the rpi value indicates a prior unreg has already
19387 	 * been done, skip the unreg.
19388 	 */
19389 	if (rpi == LPFC_RPI_ALLOC_ERROR)
19390 		return;
19391 
19392 	if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
19393 		phba->sli4_hba.rpi_count--;
19394 		phba->sli4_hba.max_cfg_param.rpi_used--;
19395 	} else {
19396 		lpfc_printf_log(phba, KERN_INFO,
19397 				LOG_NODE | LOG_DISCOVERY,
19398 				"2016 rpi %x not inuse\n",
19399 				rpi);
19400 	}
19401 }
19402 
19403 /**
19404  * lpfc_sli4_free_rpi - Release an rpi for reuse.
19405  * @phba: pointer to lpfc hba data structure.
19406  * @rpi: rpi to free
19407  *
19408  * This routine is invoked to release an rpi to the pool of
19409  * available rpis maintained by the driver.
19410  **/
19411 void
19412 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
19413 {
19414 	spin_lock_irq(&phba->hbalock);
19415 	__lpfc_sli4_free_rpi(phba, rpi);
19416 	spin_unlock_irq(&phba->hbalock);
19417 }
19418 
19419 /**
19420  * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
19421  * @phba: pointer to lpfc hba data structure.
19422  *
19423  * This routine is invoked to remove the memory region that
19424  * provided rpi via a bitmask.
19425  **/
19426 void
19427 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
19428 {
19429 	kfree(phba->sli4_hba.rpi_bmask);
19430 	kfree(phba->sli4_hba.rpi_ids);
19431 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
19432 }
19433 
19434 /**
19435  * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
19436  * @ndlp: pointer to lpfc nodelist data structure.
19437  * @cmpl: completion call-back.
19438  * @arg: data to load as MBox 'caller buffer information'
19439  *
19440  * This routine is invoked to remove the memory region that
19441  * provided rpi via a bitmask.
19442  **/
19443 int
19444 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
19445 	void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
19446 {
19447 	LPFC_MBOXQ_t *mboxq;
19448 	struct lpfc_hba *phba = ndlp->phba;
19449 	int rc;
19450 
19451 	/* The port is notified of the header region via a mailbox command. */
19452 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19453 	if (!mboxq)
19454 		return -ENOMEM;
19455 
19456 	/* If cmpl assigned, then this nlp_get pairs with
19457 	 * lpfc_mbx_cmpl_resume_rpi.
19458 	 *
19459 	 * Else cmpl is NULL, then this nlp_get pairs with
19460 	 * lpfc_sli_def_mbox_cmpl.
19461 	 */
19462 	if (!lpfc_nlp_get(ndlp)) {
19463 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19464 				"2122 %s: Failed to get nlp ref\n",
19465 				__func__);
19466 		mempool_free(mboxq, phba->mbox_mem_pool);
19467 		return -EIO;
19468 	}
19469 
19470 	/* Post all rpi memory regions to the port. */
19471 	lpfc_resume_rpi(mboxq, ndlp);
19472 	if (cmpl) {
19473 		mboxq->mbox_cmpl = cmpl;
19474 		mboxq->ctx_buf = arg;
19475 	} else
19476 		mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19477 	mboxq->ctx_ndlp = ndlp;
19478 	mboxq->vport = ndlp->vport;
19479 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19480 	if (rc == MBX_NOT_FINISHED) {
19481 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19482 				"2010 Resume RPI Mailbox failed "
19483 				"status %d, mbxStatus x%x\n", rc,
19484 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
19485 		lpfc_nlp_put(ndlp);
19486 		mempool_free(mboxq, phba->mbox_mem_pool);
19487 		return -EIO;
19488 	}
19489 	return 0;
19490 }
19491 
19492 /**
19493  * lpfc_sli4_init_vpi - Initialize a vpi with the port
19494  * @vport: Pointer to the vport for which the vpi is being initialized
19495  *
19496  * This routine is invoked to activate a vpi with the port.
19497  *
19498  * Returns:
19499  *    0 success
19500  *    -Evalue otherwise
19501  **/
19502 int
19503 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
19504 {
19505 	LPFC_MBOXQ_t *mboxq;
19506 	int rc = 0;
19507 	int retval = MBX_SUCCESS;
19508 	uint32_t mbox_tmo;
19509 	struct lpfc_hba *phba = vport->phba;
19510 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19511 	if (!mboxq)
19512 		return -ENOMEM;
19513 	lpfc_init_vpi(phba, mboxq, vport->vpi);
19514 	mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
19515 	rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
19516 	if (rc != MBX_SUCCESS) {
19517 		lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
19518 				"2022 INIT VPI Mailbox failed "
19519 				"status %d, mbxStatus x%x\n", rc,
19520 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
19521 		retval = -EIO;
19522 	}
19523 	if (rc != MBX_TIMEOUT)
19524 		mempool_free(mboxq, vport->phba->mbox_mem_pool);
19525 
19526 	return retval;
19527 }
19528 
19529 /**
19530  * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
19531  * @phba: pointer to lpfc hba data structure.
19532  * @mboxq: Pointer to mailbox object.
19533  *
19534  * This routine is invoked to manually add a single FCF record. The caller
19535  * must pass a completely initialized FCF_Record.  This routine takes
19536  * care of the nonembedded mailbox operations.
19537  **/
19538 static void
19539 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
19540 {
19541 	void *virt_addr;
19542 	union lpfc_sli4_cfg_shdr *shdr;
19543 	uint32_t shdr_status, shdr_add_status;
19544 
19545 	virt_addr = mboxq->sge_array->addr[0];
19546 	/* The IOCTL status is embedded in the mailbox subheader. */
19547 	shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
19548 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
19549 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
19550 
19551 	if ((shdr_status || shdr_add_status) &&
19552 		(shdr_status != STATUS_FCF_IN_USE))
19553 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19554 			"2558 ADD_FCF_RECORD mailbox failed with "
19555 			"status x%x add_status x%x\n",
19556 			shdr_status, shdr_add_status);
19557 
19558 	lpfc_sli4_mbox_cmd_free(phba, mboxq);
19559 }
19560 
19561 /**
19562  * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
19563  * @phba: pointer to lpfc hba data structure.
19564  * @fcf_record:  pointer to the initialized fcf record to add.
19565  *
19566  * This routine is invoked to manually add a single FCF record. The caller
19567  * must pass a completely initialized FCF_Record.  This routine takes
19568  * care of the nonembedded mailbox operations.
19569  **/
19570 int
19571 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
19572 {
19573 	int rc = 0;
19574 	LPFC_MBOXQ_t *mboxq;
19575 	uint8_t *bytep;
19576 	void *virt_addr;
19577 	struct lpfc_mbx_sge sge;
19578 	uint32_t alloc_len, req_len;
19579 	uint32_t fcfindex;
19580 
19581 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19582 	if (!mboxq) {
19583 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19584 			"2009 Failed to allocate mbox for ADD_FCF cmd\n");
19585 		return -ENOMEM;
19586 	}
19587 
19588 	req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
19589 		  sizeof(uint32_t);
19590 
19591 	/* Allocate DMA memory and set up the non-embedded mailbox command */
19592 	alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
19593 				     LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
19594 				     req_len, LPFC_SLI4_MBX_NEMBED);
19595 	if (alloc_len < req_len) {
19596 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19597 			"2523 Allocated DMA memory size (x%x) is "
19598 			"less than the requested DMA memory "
19599 			"size (x%x)\n", alloc_len, req_len);
19600 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
19601 		return -ENOMEM;
19602 	}
19603 
19604 	/*
19605 	 * Get the first SGE entry from the non-embedded DMA memory.  This
19606 	 * routine only uses a single SGE.
19607 	 */
19608 	lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
19609 	virt_addr = mboxq->sge_array->addr[0];
19610 	/*
19611 	 * Configure the FCF record for FCFI 0.  This is the driver's
19612 	 * hardcoded default and gets used in nonFIP mode.
19613 	 */
19614 	fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
19615 	bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
19616 	lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
19617 
19618 	/*
19619 	 * Copy the fcf_index and the FCF Record Data. The data starts after
19620 	 * the FCoE header plus word10. The data copy needs to be endian
19621 	 * correct.
19622 	 */
19623 	bytep += sizeof(uint32_t);
19624 	lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
19625 	mboxq->vport = phba->pport;
19626 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
19627 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19628 	if (rc == MBX_NOT_FINISHED) {
19629 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19630 			"2515 ADD_FCF_RECORD mailbox failed with "
19631 			"status 0x%x\n", rc);
19632 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
19633 		rc = -EIO;
19634 	} else
19635 		rc = 0;
19636 
19637 	return rc;
19638 }
19639 
19640 /**
19641  * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
19642  * @phba: pointer to lpfc hba data structure.
19643  * @fcf_record:  pointer to the fcf record to write the default data.
19644  * @fcf_index: FCF table entry index.
19645  *
19646  * This routine is invoked to build the driver's default FCF record.  The
19647  * values used are hardcoded.  This routine handles memory initialization.
19648  *
19649  **/
19650 void
19651 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
19652 				struct fcf_record *fcf_record,
19653 				uint16_t fcf_index)
19654 {
19655 	memset(fcf_record, 0, sizeof(struct fcf_record));
19656 	fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
19657 	fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
19658 	fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
19659 	bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
19660 	bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
19661 	bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
19662 	bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
19663 	bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
19664 	bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
19665 	bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
19666 	bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
19667 	bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
19668 	bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
19669 	bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
19670 	bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
19671 	bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
19672 		LPFC_FCF_FPMA | LPFC_FCF_SPMA);
19673 	/* Set the VLAN bit map */
19674 	if (phba->valid_vlan) {
19675 		fcf_record->vlan_bitmap[phba->vlan_id / 8]
19676 			= 1 << (phba->vlan_id % 8);
19677 	}
19678 }
19679 
19680 /**
19681  * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
19682  * @phba: pointer to lpfc hba data structure.
19683  * @fcf_index: FCF table entry offset.
19684  *
19685  * This routine is invoked to scan the entire FCF table by reading FCF
19686  * record and processing it one at a time starting from the @fcf_index
19687  * for initial FCF discovery or fast FCF failover rediscovery.
19688  *
19689  * Return 0 if the mailbox command is submitted successfully, none 0
19690  * otherwise.
19691  **/
19692 int
19693 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
19694 {
19695 	int rc = 0, error;
19696 	LPFC_MBOXQ_t *mboxq;
19697 
19698 	phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
19699 	phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
19700 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19701 	if (!mboxq) {
19702 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19703 				"2000 Failed to allocate mbox for "
19704 				"READ_FCF cmd\n");
19705 		error = -ENOMEM;
19706 		goto fail_fcf_scan;
19707 	}
19708 	/* Construct the read FCF record mailbox command */
19709 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
19710 	if (rc) {
19711 		error = -EINVAL;
19712 		goto fail_fcf_scan;
19713 	}
19714 	/* Issue the mailbox command asynchronously */
19715 	mboxq->vport = phba->pport;
19716 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
19717 
19718 	spin_lock_irq(&phba->hbalock);
19719 	phba->hba_flag |= FCF_TS_INPROG;
19720 	spin_unlock_irq(&phba->hbalock);
19721 
19722 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19723 	if (rc == MBX_NOT_FINISHED)
19724 		error = -EIO;
19725 	else {
19726 		/* Reset eligible FCF count for new scan */
19727 		if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
19728 			phba->fcf.eligible_fcf_cnt = 0;
19729 		error = 0;
19730 	}
19731 fail_fcf_scan:
19732 	if (error) {
19733 		if (mboxq)
19734 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
19735 		/* FCF scan failed, clear FCF_TS_INPROG flag */
19736 		spin_lock_irq(&phba->hbalock);
19737 		phba->hba_flag &= ~FCF_TS_INPROG;
19738 		spin_unlock_irq(&phba->hbalock);
19739 	}
19740 	return error;
19741 }
19742 
19743 /**
19744  * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
19745  * @phba: pointer to lpfc hba data structure.
19746  * @fcf_index: FCF table entry offset.
19747  *
19748  * This routine is invoked to read an FCF record indicated by @fcf_index
19749  * and to use it for FLOGI roundrobin FCF failover.
19750  *
19751  * Return 0 if the mailbox command is submitted successfully, none 0
19752  * otherwise.
19753  **/
19754 int
19755 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
19756 {
19757 	int rc = 0, error;
19758 	LPFC_MBOXQ_t *mboxq;
19759 
19760 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19761 	if (!mboxq) {
19762 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
19763 				"2763 Failed to allocate mbox for "
19764 				"READ_FCF cmd\n");
19765 		error = -ENOMEM;
19766 		goto fail_fcf_read;
19767 	}
19768 	/* Construct the read FCF record mailbox command */
19769 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
19770 	if (rc) {
19771 		error = -EINVAL;
19772 		goto fail_fcf_read;
19773 	}
19774 	/* Issue the mailbox command asynchronously */
19775 	mboxq->vport = phba->pport;
19776 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
19777 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19778 	if (rc == MBX_NOT_FINISHED)
19779 		error = -EIO;
19780 	else
19781 		error = 0;
19782 
19783 fail_fcf_read:
19784 	if (error && mboxq)
19785 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
19786 	return error;
19787 }
19788 
19789 /**
19790  * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
19791  * @phba: pointer to lpfc hba data structure.
19792  * @fcf_index: FCF table entry offset.
19793  *
19794  * This routine is invoked to read an FCF record indicated by @fcf_index to
19795  * determine whether it's eligible for FLOGI roundrobin failover list.
19796  *
19797  * Return 0 if the mailbox command is submitted successfully, none 0
19798  * otherwise.
19799  **/
19800 int
19801 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
19802 {
19803 	int rc = 0, error;
19804 	LPFC_MBOXQ_t *mboxq;
19805 
19806 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19807 	if (!mboxq) {
19808 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
19809 				"2758 Failed to allocate mbox for "
19810 				"READ_FCF cmd\n");
19811 				error = -ENOMEM;
19812 				goto fail_fcf_read;
19813 	}
19814 	/* Construct the read FCF record mailbox command */
19815 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
19816 	if (rc) {
19817 		error = -EINVAL;
19818 		goto fail_fcf_read;
19819 	}
19820 	/* Issue the mailbox command asynchronously */
19821 	mboxq->vport = phba->pport;
19822 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
19823 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19824 	if (rc == MBX_NOT_FINISHED)
19825 		error = -EIO;
19826 	else
19827 		error = 0;
19828 
19829 fail_fcf_read:
19830 	if (error && mboxq)
19831 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
19832 	return error;
19833 }
19834 
19835 /**
19836  * lpfc_check_next_fcf_pri_level
19837  * @phba: pointer to the lpfc_hba struct for this port.
19838  * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
19839  * routine when the rr_bmask is empty. The FCF indecies are put into the
19840  * rr_bmask based on their priority level. Starting from the highest priority
19841  * to the lowest. The most likely FCF candidate will be in the highest
19842  * priority group. When this routine is called it searches the fcf_pri list for
19843  * next lowest priority group and repopulates the rr_bmask with only those
19844  * fcf_indexes.
19845  * returns:
19846  * 1=success 0=failure
19847  **/
19848 static int
19849 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
19850 {
19851 	uint16_t next_fcf_pri;
19852 	uint16_t last_index;
19853 	struct lpfc_fcf_pri *fcf_pri;
19854 	int rc;
19855 	int ret = 0;
19856 
19857 	last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
19858 			LPFC_SLI4_FCF_TBL_INDX_MAX);
19859 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19860 			"3060 Last IDX %d\n", last_index);
19861 
19862 	/* Verify the priority list has 2 or more entries */
19863 	spin_lock_irq(&phba->hbalock);
19864 	if (list_empty(&phba->fcf.fcf_pri_list) ||
19865 	    list_is_singular(&phba->fcf.fcf_pri_list)) {
19866 		spin_unlock_irq(&phba->hbalock);
19867 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19868 			"3061 Last IDX %d\n", last_index);
19869 		return 0; /* Empty rr list */
19870 	}
19871 	spin_unlock_irq(&phba->hbalock);
19872 
19873 	next_fcf_pri = 0;
19874 	/*
19875 	 * Clear the rr_bmask and set all of the bits that are at this
19876 	 * priority.
19877 	 */
19878 	memset(phba->fcf.fcf_rr_bmask, 0,
19879 			sizeof(*phba->fcf.fcf_rr_bmask));
19880 	spin_lock_irq(&phba->hbalock);
19881 	list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
19882 		if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
19883 			continue;
19884 		/*
19885 		 * the 1st priority that has not FLOGI failed
19886 		 * will be the highest.
19887 		 */
19888 		if (!next_fcf_pri)
19889 			next_fcf_pri = fcf_pri->fcf_rec.priority;
19890 		spin_unlock_irq(&phba->hbalock);
19891 		if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
19892 			rc = lpfc_sli4_fcf_rr_index_set(phba,
19893 						fcf_pri->fcf_rec.fcf_index);
19894 			if (rc)
19895 				return 0;
19896 		}
19897 		spin_lock_irq(&phba->hbalock);
19898 	}
19899 	/*
19900 	 * if next_fcf_pri was not set above and the list is not empty then
19901 	 * we have failed flogis on all of them. So reset flogi failed
19902 	 * and start at the beginning.
19903 	 */
19904 	if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
19905 		list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
19906 			fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
19907 			/*
19908 			 * the 1st priority that has not FLOGI failed
19909 			 * will be the highest.
19910 			 */
19911 			if (!next_fcf_pri)
19912 				next_fcf_pri = fcf_pri->fcf_rec.priority;
19913 			spin_unlock_irq(&phba->hbalock);
19914 			if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
19915 				rc = lpfc_sli4_fcf_rr_index_set(phba,
19916 						fcf_pri->fcf_rec.fcf_index);
19917 				if (rc)
19918 					return 0;
19919 			}
19920 			spin_lock_irq(&phba->hbalock);
19921 		}
19922 	} else
19923 		ret = 1;
19924 	spin_unlock_irq(&phba->hbalock);
19925 
19926 	return ret;
19927 }
19928 /**
19929  * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
19930  * @phba: pointer to lpfc hba data structure.
19931  *
19932  * This routine is to get the next eligible FCF record index in a round
19933  * robin fashion. If the next eligible FCF record index equals to the
19934  * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
19935  * shall be returned, otherwise, the next eligible FCF record's index
19936  * shall be returned.
19937  **/
19938 uint16_t
19939 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
19940 {
19941 	uint16_t next_fcf_index;
19942 
19943 initial_priority:
19944 	/* Search start from next bit of currently registered FCF index */
19945 	next_fcf_index = phba->fcf.current_rec.fcf_indx;
19946 
19947 next_priority:
19948 	/* Determine the next fcf index to check */
19949 	next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
19950 	next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
19951 				       LPFC_SLI4_FCF_TBL_INDX_MAX,
19952 				       next_fcf_index);
19953 
19954 	/* Wrap around condition on phba->fcf.fcf_rr_bmask */
19955 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
19956 		/*
19957 		 * If we have wrapped then we need to clear the bits that
19958 		 * have been tested so that we can detect when we should
19959 		 * change the priority level.
19960 		 */
19961 		next_fcf_index = find_first_bit(phba->fcf.fcf_rr_bmask,
19962 					       LPFC_SLI4_FCF_TBL_INDX_MAX);
19963 	}
19964 
19965 
19966 	/* Check roundrobin failover list empty condition */
19967 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
19968 		next_fcf_index == phba->fcf.current_rec.fcf_indx) {
19969 		/*
19970 		 * If next fcf index is not found check if there are lower
19971 		 * Priority level fcf's in the fcf_priority list.
19972 		 * Set up the rr_bmask with all of the avaiable fcf bits
19973 		 * at that level and continue the selection process.
19974 		 */
19975 		if (lpfc_check_next_fcf_pri_level(phba))
19976 			goto initial_priority;
19977 		lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
19978 				"2844 No roundrobin failover FCF available\n");
19979 
19980 		return LPFC_FCOE_FCF_NEXT_NONE;
19981 	}
19982 
19983 	if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
19984 		phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
19985 		LPFC_FCF_FLOGI_FAILED) {
19986 		if (list_is_singular(&phba->fcf.fcf_pri_list))
19987 			return LPFC_FCOE_FCF_NEXT_NONE;
19988 
19989 		goto next_priority;
19990 	}
19991 
19992 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19993 			"2845 Get next roundrobin failover FCF (x%x)\n",
19994 			next_fcf_index);
19995 
19996 	return next_fcf_index;
19997 }
19998 
19999 /**
20000  * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
20001  * @phba: pointer to lpfc hba data structure.
20002  * @fcf_index: index into the FCF table to 'set'
20003  *
20004  * This routine sets the FCF record index in to the eligible bmask for
20005  * roundrobin failover search. It checks to make sure that the index
20006  * does not go beyond the range of the driver allocated bmask dimension
20007  * before setting the bit.
20008  *
20009  * Returns 0 if the index bit successfully set, otherwise, it returns
20010  * -EINVAL.
20011  **/
20012 int
20013 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
20014 {
20015 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
20016 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20017 				"2610 FCF (x%x) reached driver's book "
20018 				"keeping dimension:x%x\n",
20019 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
20020 		return -EINVAL;
20021 	}
20022 	/* Set the eligible FCF record index bmask */
20023 	set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
20024 
20025 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20026 			"2790 Set FCF (x%x) to roundrobin FCF failover "
20027 			"bmask\n", fcf_index);
20028 
20029 	return 0;
20030 }
20031 
20032 /**
20033  * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
20034  * @phba: pointer to lpfc hba data structure.
20035  * @fcf_index: index into the FCF table to 'clear'
20036  *
20037  * This routine clears the FCF record index from the eligible bmask for
20038  * roundrobin failover search. It checks to make sure that the index
20039  * does not go beyond the range of the driver allocated bmask dimension
20040  * before clearing the bit.
20041  **/
20042 void
20043 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
20044 {
20045 	struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
20046 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
20047 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20048 				"2762 FCF (x%x) reached driver's book "
20049 				"keeping dimension:x%x\n",
20050 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
20051 		return;
20052 	}
20053 	/* Clear the eligible FCF record index bmask */
20054 	spin_lock_irq(&phba->hbalock);
20055 	list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
20056 				 list) {
20057 		if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
20058 			list_del_init(&fcf_pri->list);
20059 			break;
20060 		}
20061 	}
20062 	spin_unlock_irq(&phba->hbalock);
20063 	clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
20064 
20065 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20066 			"2791 Clear FCF (x%x) from roundrobin failover "
20067 			"bmask\n", fcf_index);
20068 }
20069 
20070 /**
20071  * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
20072  * @phba: pointer to lpfc hba data structure.
20073  * @mbox: An allocated pointer to type LPFC_MBOXQ_t
20074  *
20075  * This routine is the completion routine for the rediscover FCF table mailbox
20076  * command. If the mailbox command returned failure, it will try to stop the
20077  * FCF rediscover wait timer.
20078  **/
20079 static void
20080 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
20081 {
20082 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
20083 	uint32_t shdr_status, shdr_add_status;
20084 
20085 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
20086 
20087 	shdr_status = bf_get(lpfc_mbox_hdr_status,
20088 			     &redisc_fcf->header.cfg_shdr.response);
20089 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
20090 			     &redisc_fcf->header.cfg_shdr.response);
20091 	if (shdr_status || shdr_add_status) {
20092 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20093 				"2746 Requesting for FCF rediscovery failed "
20094 				"status x%x add_status x%x\n",
20095 				shdr_status, shdr_add_status);
20096 		if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
20097 			spin_lock_irq(&phba->hbalock);
20098 			phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
20099 			spin_unlock_irq(&phba->hbalock);
20100 			/*
20101 			 * CVL event triggered FCF rediscover request failed,
20102 			 * last resort to re-try current registered FCF entry.
20103 			 */
20104 			lpfc_retry_pport_discovery(phba);
20105 		} else {
20106 			spin_lock_irq(&phba->hbalock);
20107 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
20108 			spin_unlock_irq(&phba->hbalock);
20109 			/*
20110 			 * DEAD FCF event triggered FCF rediscover request
20111 			 * failed, last resort to fail over as a link down
20112 			 * to FCF registration.
20113 			 */
20114 			lpfc_sli4_fcf_dead_failthrough(phba);
20115 		}
20116 	} else {
20117 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20118 				"2775 Start FCF rediscover quiescent timer\n");
20119 		/*
20120 		 * Start FCF rediscovery wait timer for pending FCF
20121 		 * before rescan FCF record table.
20122 		 */
20123 		lpfc_fcf_redisc_wait_start_timer(phba);
20124 	}
20125 
20126 	mempool_free(mbox, phba->mbox_mem_pool);
20127 }
20128 
20129 /**
20130  * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
20131  * @phba: pointer to lpfc hba data structure.
20132  *
20133  * This routine is invoked to request for rediscovery of the entire FCF table
20134  * by the port.
20135  **/
20136 int
20137 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
20138 {
20139 	LPFC_MBOXQ_t *mbox;
20140 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
20141 	int rc, length;
20142 
20143 	/* Cancel retry delay timers to all vports before FCF rediscover */
20144 	lpfc_cancel_all_vport_retry_delay_timer(phba);
20145 
20146 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20147 	if (!mbox) {
20148 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20149 				"2745 Failed to allocate mbox for "
20150 				"requesting FCF rediscover.\n");
20151 		return -ENOMEM;
20152 	}
20153 
20154 	length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
20155 		  sizeof(struct lpfc_sli4_cfg_mhdr));
20156 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
20157 			 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
20158 			 length, LPFC_SLI4_MBX_EMBED);
20159 
20160 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
20161 	/* Set count to 0 for invalidating the entire FCF database */
20162 	bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
20163 
20164 	/* Issue the mailbox command asynchronously */
20165 	mbox->vport = phba->pport;
20166 	mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
20167 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
20168 
20169 	if (rc == MBX_NOT_FINISHED) {
20170 		mempool_free(mbox, phba->mbox_mem_pool);
20171 		return -EIO;
20172 	}
20173 	return 0;
20174 }
20175 
20176 /**
20177  * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
20178  * @phba: pointer to lpfc hba data structure.
20179  *
20180  * This function is the failover routine as a last resort to the FCF DEAD
20181  * event when driver failed to perform fast FCF failover.
20182  **/
20183 void
20184 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
20185 {
20186 	uint32_t link_state;
20187 
20188 	/*
20189 	 * Last resort as FCF DEAD event failover will treat this as
20190 	 * a link down, but save the link state because we don't want
20191 	 * it to be changed to Link Down unless it is already down.
20192 	 */
20193 	link_state = phba->link_state;
20194 	lpfc_linkdown(phba);
20195 	phba->link_state = link_state;
20196 
20197 	/* Unregister FCF if no devices connected to it */
20198 	lpfc_unregister_unused_fcf(phba);
20199 }
20200 
20201 /**
20202  * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
20203  * @phba: pointer to lpfc hba data structure.
20204  * @rgn23_data: pointer to configure region 23 data.
20205  *
20206  * This function gets SLI3 port configure region 23 data through memory dump
20207  * mailbox command. When it successfully retrieves data, the size of the data
20208  * will be returned, otherwise, 0 will be returned.
20209  **/
20210 static uint32_t
20211 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
20212 {
20213 	LPFC_MBOXQ_t *pmb = NULL;
20214 	MAILBOX_t *mb;
20215 	uint32_t offset = 0;
20216 	int rc;
20217 
20218 	if (!rgn23_data)
20219 		return 0;
20220 
20221 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20222 	if (!pmb) {
20223 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20224 				"2600 failed to allocate mailbox memory\n");
20225 		return 0;
20226 	}
20227 	mb = &pmb->u.mb;
20228 
20229 	do {
20230 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
20231 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
20232 
20233 		if (rc != MBX_SUCCESS) {
20234 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
20235 					"2601 failed to read config "
20236 					"region 23, rc 0x%x Status 0x%x\n",
20237 					rc, mb->mbxStatus);
20238 			mb->un.varDmp.word_cnt = 0;
20239 		}
20240 		/*
20241 		 * dump mem may return a zero when finished or we got a
20242 		 * mailbox error, either way we are done.
20243 		 */
20244 		if (mb->un.varDmp.word_cnt == 0)
20245 			break;
20246 
20247 		if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
20248 			mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
20249 
20250 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
20251 				       rgn23_data + offset,
20252 				       mb->un.varDmp.word_cnt);
20253 		offset += mb->un.varDmp.word_cnt;
20254 	} while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
20255 
20256 	mempool_free(pmb, phba->mbox_mem_pool);
20257 	return offset;
20258 }
20259 
20260 /**
20261  * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
20262  * @phba: pointer to lpfc hba data structure.
20263  * @rgn23_data: pointer to configure region 23 data.
20264  *
20265  * This function gets SLI4 port configure region 23 data through memory dump
20266  * mailbox command. When it successfully retrieves data, the size of the data
20267  * will be returned, otherwise, 0 will be returned.
20268  **/
20269 static uint32_t
20270 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
20271 {
20272 	LPFC_MBOXQ_t *mboxq = NULL;
20273 	struct lpfc_dmabuf *mp = NULL;
20274 	struct lpfc_mqe *mqe;
20275 	uint32_t data_length = 0;
20276 	int rc;
20277 
20278 	if (!rgn23_data)
20279 		return 0;
20280 
20281 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20282 	if (!mboxq) {
20283 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20284 				"3105 failed to allocate mailbox memory\n");
20285 		return 0;
20286 	}
20287 
20288 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
20289 		goto out;
20290 	mqe = &mboxq->u.mqe;
20291 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
20292 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
20293 	if (rc)
20294 		goto out;
20295 	data_length = mqe->un.mb_words[5];
20296 	if (data_length == 0)
20297 		goto out;
20298 	if (data_length > DMP_RGN23_SIZE) {
20299 		data_length = 0;
20300 		goto out;
20301 	}
20302 	lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
20303 out:
20304 	mempool_free(mboxq, phba->mbox_mem_pool);
20305 	if (mp) {
20306 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
20307 		kfree(mp);
20308 	}
20309 	return data_length;
20310 }
20311 
20312 /**
20313  * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
20314  * @phba: pointer to lpfc hba data structure.
20315  *
20316  * This function read region 23 and parse TLV for port status to
20317  * decide if the user disaled the port. If the TLV indicates the
20318  * port is disabled, the hba_flag is set accordingly.
20319  **/
20320 void
20321 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
20322 {
20323 	uint8_t *rgn23_data = NULL;
20324 	uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
20325 	uint32_t offset = 0;
20326 
20327 	/* Get adapter Region 23 data */
20328 	rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
20329 	if (!rgn23_data)
20330 		goto out;
20331 
20332 	if (phba->sli_rev < LPFC_SLI_REV4)
20333 		data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
20334 	else {
20335 		if_type = bf_get(lpfc_sli_intf_if_type,
20336 				 &phba->sli4_hba.sli_intf);
20337 		if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
20338 			goto out;
20339 		data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
20340 	}
20341 
20342 	if (!data_size)
20343 		goto out;
20344 
20345 	/* Check the region signature first */
20346 	if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
20347 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20348 			"2619 Config region 23 has bad signature\n");
20349 			goto out;
20350 	}
20351 	offset += 4;
20352 
20353 	/* Check the data structure version */
20354 	if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
20355 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20356 			"2620 Config region 23 has bad version\n");
20357 		goto out;
20358 	}
20359 	offset += 4;
20360 
20361 	/* Parse TLV entries in the region */
20362 	while (offset < data_size) {
20363 		if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
20364 			break;
20365 		/*
20366 		 * If the TLV is not driver specific TLV or driver id is
20367 		 * not linux driver id, skip the record.
20368 		 */
20369 		if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
20370 		    (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
20371 		    (rgn23_data[offset + 3] != 0)) {
20372 			offset += rgn23_data[offset + 1] * 4 + 4;
20373 			continue;
20374 		}
20375 
20376 		/* Driver found a driver specific TLV in the config region */
20377 		sub_tlv_len = rgn23_data[offset + 1] * 4;
20378 		offset += 4;
20379 		tlv_offset = 0;
20380 
20381 		/*
20382 		 * Search for configured port state sub-TLV.
20383 		 */
20384 		while ((offset < data_size) &&
20385 			(tlv_offset < sub_tlv_len)) {
20386 			if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
20387 				offset += 4;
20388 				tlv_offset += 4;
20389 				break;
20390 			}
20391 			if (rgn23_data[offset] != PORT_STE_TYPE) {
20392 				offset += rgn23_data[offset + 1] * 4 + 4;
20393 				tlv_offset += rgn23_data[offset + 1] * 4 + 4;
20394 				continue;
20395 			}
20396 
20397 			/* This HBA contains PORT_STE configured */
20398 			if (!rgn23_data[offset + 2])
20399 				phba->hba_flag |= LINK_DISABLED;
20400 
20401 			goto out;
20402 		}
20403 	}
20404 
20405 out:
20406 	kfree(rgn23_data);
20407 	return;
20408 }
20409 
20410 /**
20411  * lpfc_log_fw_write_cmpl - logs firmware write completion status
20412  * @phba: pointer to lpfc hba data structure
20413  * @shdr_status: wr_object rsp's status field
20414  * @shdr_add_status: wr_object rsp's add_status field
20415  * @shdr_add_status_2: wr_object rsp's add_status_2 field
20416  * @shdr_change_status: wr_object rsp's change_status field
20417  * @shdr_csf: wr_object rsp's csf bit
20418  *
20419  * This routine is intended to be called after a firmware write completes.
20420  * It will log next action items to be performed by the user to instantiate
20421  * the newly downloaded firmware or reason for incompatibility.
20422  **/
20423 static void
20424 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status,
20425 		       u32 shdr_add_status, u32 shdr_add_status_2,
20426 		       u32 shdr_change_status, u32 shdr_csf)
20427 {
20428 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
20429 			"4198 %s: flash_id x%02x, asic_rev x%02x, "
20430 			"status x%02x, add_status x%02x, add_status_2 x%02x, "
20431 			"change_status x%02x, csf %01x\n", __func__,
20432 			phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev,
20433 			shdr_status, shdr_add_status, shdr_add_status_2,
20434 			shdr_change_status, shdr_csf);
20435 
20436 	if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) {
20437 		switch (shdr_add_status_2) {
20438 		case LPFC_ADD_STATUS_2_INCOMPAT_FLASH:
20439 			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
20440 					"4199 Firmware write failed: "
20441 					"image incompatible with flash x%02x\n",
20442 					phba->sli4_hba.flash_id);
20443 			break;
20444 		case LPFC_ADD_STATUS_2_INCORRECT_ASIC:
20445 			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
20446 					"4200 Firmware write failed: "
20447 					"image incompatible with ASIC "
20448 					"architecture x%02x\n",
20449 					phba->sli4_hba.asic_rev);
20450 			break;
20451 		default:
20452 			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
20453 					"4210 Firmware write failed: "
20454 					"add_status_2 x%02x\n",
20455 					shdr_add_status_2);
20456 			break;
20457 		}
20458 	} else if (!shdr_status && !shdr_add_status) {
20459 		if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET ||
20460 		    shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) {
20461 			if (shdr_csf)
20462 				shdr_change_status =
20463 						   LPFC_CHANGE_STATUS_PCI_RESET;
20464 		}
20465 
20466 		switch (shdr_change_status) {
20467 		case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET):
20468 			lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
20469 					"3198 Firmware write complete: System "
20470 					"reboot required to instantiate\n");
20471 			break;
20472 		case (LPFC_CHANGE_STATUS_FW_RESET):
20473 			lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
20474 					"3199 Firmware write complete: "
20475 					"Firmware reset required to "
20476 					"instantiate\n");
20477 			break;
20478 		case (LPFC_CHANGE_STATUS_PORT_MIGRATION):
20479 			lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
20480 					"3200 Firmware write complete: Port "
20481 					"Migration or PCI Reset required to "
20482 					"instantiate\n");
20483 			break;
20484 		case (LPFC_CHANGE_STATUS_PCI_RESET):
20485 			lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
20486 					"3201 Firmware write complete: PCI "
20487 					"Reset required to instantiate\n");
20488 			break;
20489 		default:
20490 			break;
20491 		}
20492 	}
20493 }
20494 
20495 /**
20496  * lpfc_wr_object - write an object to the firmware
20497  * @phba: HBA structure that indicates port to create a queue on.
20498  * @dmabuf_list: list of dmabufs to write to the port.
20499  * @size: the total byte value of the objects to write to the port.
20500  * @offset: the current offset to be used to start the transfer.
20501  *
20502  * This routine will create a wr_object mailbox command to send to the port.
20503  * the mailbox command will be constructed using the dma buffers described in
20504  * @dmabuf_list to create a list of BDEs. This routine will fill in as many
20505  * BDEs that the imbedded mailbox can support. The @offset variable will be
20506  * used to indicate the starting offset of the transfer and will also return
20507  * the offset after the write object mailbox has completed. @size is used to
20508  * determine the end of the object and whether the eof bit should be set.
20509  *
20510  * Return 0 is successful and offset will contain the the new offset to use
20511  * for the next write.
20512  * Return negative value for error cases.
20513  **/
20514 int
20515 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
20516 	       uint32_t size, uint32_t *offset)
20517 {
20518 	struct lpfc_mbx_wr_object *wr_object;
20519 	LPFC_MBOXQ_t *mbox;
20520 	int rc = 0, i = 0;
20521 	uint32_t shdr_status, shdr_add_status, shdr_add_status_2;
20522 	uint32_t shdr_change_status = 0, shdr_csf = 0;
20523 	uint32_t mbox_tmo;
20524 	struct lpfc_dmabuf *dmabuf;
20525 	uint32_t written = 0;
20526 	bool check_change_status = false;
20527 
20528 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20529 	if (!mbox)
20530 		return -ENOMEM;
20531 
20532 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
20533 			LPFC_MBOX_OPCODE_WRITE_OBJECT,
20534 			sizeof(struct lpfc_mbx_wr_object) -
20535 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
20536 
20537 	wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
20538 	wr_object->u.request.write_offset = *offset;
20539 	sprintf((uint8_t *)wr_object->u.request.object_name, "/");
20540 	wr_object->u.request.object_name[0] =
20541 		cpu_to_le32(wr_object->u.request.object_name[0]);
20542 	bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
20543 	list_for_each_entry(dmabuf, dmabuf_list, list) {
20544 		if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
20545 			break;
20546 		wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
20547 		wr_object->u.request.bde[i].addrHigh =
20548 			putPaddrHigh(dmabuf->phys);
20549 		if (written + SLI4_PAGE_SIZE >= size) {
20550 			wr_object->u.request.bde[i].tus.f.bdeSize =
20551 				(size - written);
20552 			written += (size - written);
20553 			bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
20554 			bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1);
20555 			check_change_status = true;
20556 		} else {
20557 			wr_object->u.request.bde[i].tus.f.bdeSize =
20558 				SLI4_PAGE_SIZE;
20559 			written += SLI4_PAGE_SIZE;
20560 		}
20561 		i++;
20562 	}
20563 	wr_object->u.request.bde_count = i;
20564 	bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
20565 	if (!phba->sli4_hba.intr_enable)
20566 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
20567 	else {
20568 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
20569 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
20570 	}
20571 	/* The IOCTL status is embedded in the mailbox subheader. */
20572 	shdr_status = bf_get(lpfc_mbox_hdr_status,
20573 			     &wr_object->header.cfg_shdr.response);
20574 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
20575 				 &wr_object->header.cfg_shdr.response);
20576 	shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2,
20577 				   &wr_object->header.cfg_shdr.response);
20578 	if (check_change_status) {
20579 		shdr_change_status = bf_get(lpfc_wr_object_change_status,
20580 					    &wr_object->u.response);
20581 		shdr_csf = bf_get(lpfc_wr_object_csf,
20582 				  &wr_object->u.response);
20583 	}
20584 
20585 	if (!phba->sli4_hba.intr_enable)
20586 		mempool_free(mbox, phba->mbox_mem_pool);
20587 	else if (rc != MBX_TIMEOUT)
20588 		mempool_free(mbox, phba->mbox_mem_pool);
20589 	if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) {
20590 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20591 				"3025 Write Object mailbox failed with "
20592 				"status x%x add_status x%x, add_status_2 x%x, "
20593 				"mbx status x%x\n",
20594 				shdr_status, shdr_add_status, shdr_add_status_2,
20595 				rc);
20596 		rc = -ENXIO;
20597 		*offset = shdr_add_status;
20598 	} else {
20599 		*offset += wr_object->u.response.actual_write_length;
20600 	}
20601 
20602 	if (rc || check_change_status)
20603 		lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status,
20604 				       shdr_add_status_2, shdr_change_status,
20605 				       shdr_csf);
20606 	return rc;
20607 }
20608 
20609 /**
20610  * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
20611  * @vport: pointer to vport data structure.
20612  *
20613  * This function iterate through the mailboxq and clean up all REG_LOGIN
20614  * and REG_VPI mailbox commands associated with the vport. This function
20615  * is called when driver want to restart discovery of the vport due to
20616  * a Clear Virtual Link event.
20617  **/
20618 void
20619 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
20620 {
20621 	struct lpfc_hba *phba = vport->phba;
20622 	LPFC_MBOXQ_t *mb, *nextmb;
20623 	struct lpfc_dmabuf *mp;
20624 	struct lpfc_nodelist *ndlp;
20625 	struct lpfc_nodelist *act_mbx_ndlp = NULL;
20626 	LIST_HEAD(mbox_cmd_list);
20627 	uint8_t restart_loop;
20628 
20629 	/* Clean up internally queued mailbox commands with the vport */
20630 	spin_lock_irq(&phba->hbalock);
20631 	list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
20632 		if (mb->vport != vport)
20633 			continue;
20634 
20635 		if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
20636 			(mb->u.mb.mbxCommand != MBX_REG_VPI))
20637 			continue;
20638 
20639 		list_move_tail(&mb->list, &mbox_cmd_list);
20640 	}
20641 	/* Clean up active mailbox command with the vport */
20642 	mb = phba->sli.mbox_active;
20643 	if (mb && (mb->vport == vport)) {
20644 		if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
20645 			(mb->u.mb.mbxCommand == MBX_REG_VPI))
20646 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
20647 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
20648 			act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
20649 			/* Put reference count for delayed processing */
20650 			act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
20651 			/* Unregister the RPI when mailbox complete */
20652 			mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
20653 		}
20654 	}
20655 	/* Cleanup any mailbox completions which are not yet processed */
20656 	do {
20657 		restart_loop = 0;
20658 		list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
20659 			/*
20660 			 * If this mailox is already processed or it is
20661 			 * for another vport ignore it.
20662 			 */
20663 			if ((mb->vport != vport) ||
20664 				(mb->mbox_flag & LPFC_MBX_IMED_UNREG))
20665 				continue;
20666 
20667 			if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
20668 				(mb->u.mb.mbxCommand != MBX_REG_VPI))
20669 				continue;
20670 
20671 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
20672 			if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
20673 				ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
20674 				/* Unregister the RPI when mailbox complete */
20675 				mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
20676 				restart_loop = 1;
20677 				spin_unlock_irq(&phba->hbalock);
20678 				spin_lock(&ndlp->lock);
20679 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
20680 				spin_unlock(&ndlp->lock);
20681 				spin_lock_irq(&phba->hbalock);
20682 				break;
20683 			}
20684 		}
20685 	} while (restart_loop);
20686 
20687 	spin_unlock_irq(&phba->hbalock);
20688 
20689 	/* Release the cleaned-up mailbox commands */
20690 	while (!list_empty(&mbox_cmd_list)) {
20691 		list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
20692 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
20693 			mp = (struct lpfc_dmabuf *)(mb->ctx_buf);
20694 			if (mp) {
20695 				__lpfc_mbuf_free(phba, mp->virt, mp->phys);
20696 				kfree(mp);
20697 			}
20698 			mb->ctx_buf = NULL;
20699 			ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
20700 			mb->ctx_ndlp = NULL;
20701 			if (ndlp) {
20702 				spin_lock(&ndlp->lock);
20703 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
20704 				spin_unlock(&ndlp->lock);
20705 				lpfc_nlp_put(ndlp);
20706 			}
20707 		}
20708 		mempool_free(mb, phba->mbox_mem_pool);
20709 	}
20710 
20711 	/* Release the ndlp with the cleaned-up active mailbox command */
20712 	if (act_mbx_ndlp) {
20713 		spin_lock(&act_mbx_ndlp->lock);
20714 		act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
20715 		spin_unlock(&act_mbx_ndlp->lock);
20716 		lpfc_nlp_put(act_mbx_ndlp);
20717 	}
20718 }
20719 
20720 /**
20721  * lpfc_drain_txq - Drain the txq
20722  * @phba: Pointer to HBA context object.
20723  *
20724  * This function attempt to submit IOCBs on the txq
20725  * to the adapter.  For SLI4 adapters, the txq contains
20726  * ELS IOCBs that have been deferred because the there
20727  * are no SGLs.  This congestion can occur with large
20728  * vport counts during node discovery.
20729  **/
20730 
20731 uint32_t
20732 lpfc_drain_txq(struct lpfc_hba *phba)
20733 {
20734 	LIST_HEAD(completions);
20735 	struct lpfc_sli_ring *pring;
20736 	struct lpfc_iocbq *piocbq = NULL;
20737 	unsigned long iflags = 0;
20738 	char *fail_msg = NULL;
20739 	uint32_t txq_cnt = 0;
20740 	struct lpfc_queue *wq;
20741 	int ret = 0;
20742 
20743 	if (phba->link_flag & LS_MDS_LOOPBACK) {
20744 		/* MDS WQE are posted only to first WQ*/
20745 		wq = phba->sli4_hba.hdwq[0].io_wq;
20746 		if (unlikely(!wq))
20747 			return 0;
20748 		pring = wq->pring;
20749 	} else {
20750 		wq = phba->sli4_hba.els_wq;
20751 		if (unlikely(!wq))
20752 			return 0;
20753 		pring = lpfc_phba_elsring(phba);
20754 	}
20755 
20756 	if (unlikely(!pring) || list_empty(&pring->txq))
20757 		return 0;
20758 
20759 	spin_lock_irqsave(&pring->ring_lock, iflags);
20760 	list_for_each_entry(piocbq, &pring->txq, list) {
20761 		txq_cnt++;
20762 	}
20763 
20764 	if (txq_cnt > pring->txq_max)
20765 		pring->txq_max = txq_cnt;
20766 
20767 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
20768 
20769 	while (!list_empty(&pring->txq)) {
20770 		spin_lock_irqsave(&pring->ring_lock, iflags);
20771 
20772 		piocbq = lpfc_sli_ringtx_get(phba, pring);
20773 		if (!piocbq) {
20774 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20775 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20776 				"2823 txq empty and txq_cnt is %d\n ",
20777 				txq_cnt);
20778 			break;
20779 		}
20780 		txq_cnt--;
20781 
20782 		ret = __lpfc_sli_issue_iocb(phba, pring->ringno, piocbq, 0);
20783 
20784 		if (ret && ret != IOCB_BUSY) {
20785 			fail_msg = " - Cannot send IO ";
20786 			piocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED;
20787 		}
20788 		if (fail_msg) {
20789 			piocbq->cmd_flag |= LPFC_DRIVER_ABORTED;
20790 			/* Failed means we can't issue and need to cancel */
20791 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20792 					"2822 IOCB failed %s iotag 0x%x "
20793 					"xri 0x%x %d flg x%x\n",
20794 					fail_msg, piocbq->iotag,
20795 					piocbq->sli4_xritag, ret,
20796 					piocbq->cmd_flag);
20797 			list_add_tail(&piocbq->list, &completions);
20798 			fail_msg = NULL;
20799 		}
20800 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
20801 		if (txq_cnt == 0 || ret == IOCB_BUSY)
20802 			break;
20803 	}
20804 	/* Cancel all the IOCBs that cannot be issued */
20805 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
20806 			      IOERR_SLI_ABORTED);
20807 
20808 	return txq_cnt;
20809 }
20810 
20811 /**
20812  * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
20813  * @phba: Pointer to HBA context object.
20814  * @pwqeq: Pointer to command WQE.
20815  * @sglq: Pointer to the scatter gather queue object.
20816  *
20817  * This routine converts the bpl or bde that is in the WQE
20818  * to a sgl list for the sli4 hardware. The physical address
20819  * of the bpl/bde is converted back to a virtual address.
20820  * If the WQE contains a BPL then the list of BDE's is
20821  * converted to sli4_sge's. If the WQE contains a single
20822  * BDE then it is converted to a single sli_sge.
20823  * The WQE is still in cpu endianness so the contents of
20824  * the bpl can be used without byte swapping.
20825  *
20826  * Returns valid XRI = Success, NO_XRI = Failure.
20827  */
20828 static uint16_t
20829 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
20830 		 struct lpfc_sglq *sglq)
20831 {
20832 	uint16_t xritag = NO_XRI;
20833 	struct ulp_bde64 *bpl = NULL;
20834 	struct ulp_bde64 bde;
20835 	struct sli4_sge *sgl  = NULL;
20836 	struct lpfc_dmabuf *dmabuf;
20837 	union lpfc_wqe128 *wqe;
20838 	int numBdes = 0;
20839 	int i = 0;
20840 	uint32_t offset = 0; /* accumulated offset in the sg request list */
20841 	int inbound = 0; /* number of sg reply entries inbound from firmware */
20842 	uint32_t cmd;
20843 
20844 	if (!pwqeq || !sglq)
20845 		return xritag;
20846 
20847 	sgl  = (struct sli4_sge *)sglq->sgl;
20848 	wqe = &pwqeq->wqe;
20849 	pwqeq->iocb.ulpIoTag = pwqeq->iotag;
20850 
20851 	cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
20852 	if (cmd == CMD_XMIT_BLS_RSP64_WQE)
20853 		return sglq->sli4_xritag;
20854 	numBdes = pwqeq->num_bdes;
20855 	if (numBdes) {
20856 		/* The addrHigh and addrLow fields within the WQE
20857 		 * have not been byteswapped yet so there is no
20858 		 * need to swap them back.
20859 		 */
20860 		if (pwqeq->context3)
20861 			dmabuf = (struct lpfc_dmabuf *)pwqeq->context3;
20862 		else
20863 			return xritag;
20864 
20865 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
20866 		if (!bpl)
20867 			return xritag;
20868 
20869 		for (i = 0; i < numBdes; i++) {
20870 			/* Should already be byte swapped. */
20871 			sgl->addr_hi = bpl->addrHigh;
20872 			sgl->addr_lo = bpl->addrLow;
20873 
20874 			sgl->word2 = le32_to_cpu(sgl->word2);
20875 			if ((i+1) == numBdes)
20876 				bf_set(lpfc_sli4_sge_last, sgl, 1);
20877 			else
20878 				bf_set(lpfc_sli4_sge_last, sgl, 0);
20879 			/* swap the size field back to the cpu so we
20880 			 * can assign it to the sgl.
20881 			 */
20882 			bde.tus.w = le32_to_cpu(bpl->tus.w);
20883 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
20884 			/* The offsets in the sgl need to be accumulated
20885 			 * separately for the request and reply lists.
20886 			 * The request is always first, the reply follows.
20887 			 */
20888 			switch (cmd) {
20889 			case CMD_GEN_REQUEST64_WQE:
20890 				/* add up the reply sg entries */
20891 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
20892 					inbound++;
20893 				/* first inbound? reset the offset */
20894 				if (inbound == 1)
20895 					offset = 0;
20896 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
20897 				bf_set(lpfc_sli4_sge_type, sgl,
20898 					LPFC_SGE_TYPE_DATA);
20899 				offset += bde.tus.f.bdeSize;
20900 				break;
20901 			case CMD_FCP_TRSP64_WQE:
20902 				bf_set(lpfc_sli4_sge_offset, sgl, 0);
20903 				bf_set(lpfc_sli4_sge_type, sgl,
20904 					LPFC_SGE_TYPE_DATA);
20905 				break;
20906 			case CMD_FCP_TSEND64_WQE:
20907 			case CMD_FCP_TRECEIVE64_WQE:
20908 				bf_set(lpfc_sli4_sge_type, sgl,
20909 					bpl->tus.f.bdeFlags);
20910 				if (i < 3)
20911 					offset = 0;
20912 				else
20913 					offset += bde.tus.f.bdeSize;
20914 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
20915 				break;
20916 			}
20917 			sgl->word2 = cpu_to_le32(sgl->word2);
20918 			bpl++;
20919 			sgl++;
20920 		}
20921 	} else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
20922 		/* The addrHigh and addrLow fields of the BDE have not
20923 		 * been byteswapped yet so they need to be swapped
20924 		 * before putting them in the sgl.
20925 		 */
20926 		sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
20927 		sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
20928 		sgl->word2 = le32_to_cpu(sgl->word2);
20929 		bf_set(lpfc_sli4_sge_last, sgl, 1);
20930 		sgl->word2 = cpu_to_le32(sgl->word2);
20931 		sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
20932 	}
20933 	return sglq->sli4_xritag;
20934 }
20935 
20936 /**
20937  * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
20938  * @phba: Pointer to HBA context object.
20939  * @qp: Pointer to HDW queue.
20940  * @pwqe: Pointer to command WQE.
20941  **/
20942 int
20943 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
20944 		    struct lpfc_iocbq *pwqe)
20945 {
20946 	union lpfc_wqe128 *wqe = &pwqe->wqe;
20947 	struct lpfc_async_xchg_ctx *ctxp;
20948 	struct lpfc_queue *wq;
20949 	struct lpfc_sglq *sglq;
20950 	struct lpfc_sli_ring *pring;
20951 	unsigned long iflags;
20952 	uint32_t ret = 0;
20953 
20954 	/* NVME_LS and NVME_LS ABTS requests. */
20955 	if (pwqe->cmd_flag & LPFC_IO_NVME_LS) {
20956 		pring =  phba->sli4_hba.nvmels_wq->pring;
20957 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
20958 					  qp, wq_access);
20959 		sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
20960 		if (!sglq) {
20961 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20962 			return WQE_BUSY;
20963 		}
20964 		pwqe->sli4_lxritag = sglq->sli4_lxritag;
20965 		pwqe->sli4_xritag = sglq->sli4_xritag;
20966 		if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
20967 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20968 			return WQE_ERROR;
20969 		}
20970 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
20971 		       pwqe->sli4_xritag);
20972 		ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe);
20973 		if (ret) {
20974 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20975 			return ret;
20976 		}
20977 
20978 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
20979 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
20980 
20981 		lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
20982 		return 0;
20983 	}
20984 
20985 	/* NVME_FCREQ and NVME_ABTS requests */
20986 	if (pwqe->cmd_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) {
20987 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
20988 		wq = qp->io_wq;
20989 		pring = wq->pring;
20990 
20991 		bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
20992 
20993 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
20994 					  qp, wq_access);
20995 		ret = lpfc_sli4_wq_put(wq, wqe);
20996 		if (ret) {
20997 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20998 			return ret;
20999 		}
21000 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
21001 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
21002 
21003 		lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
21004 		return 0;
21005 	}
21006 
21007 	/* NVMET requests */
21008 	if (pwqe->cmd_flag & LPFC_IO_NVMET) {
21009 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
21010 		wq = qp->io_wq;
21011 		pring = wq->pring;
21012 
21013 		ctxp = pwqe->context2;
21014 		sglq = ctxp->ctxbuf->sglq;
21015 		if (pwqe->sli4_xritag ==  NO_XRI) {
21016 			pwqe->sli4_lxritag = sglq->sli4_lxritag;
21017 			pwqe->sli4_xritag = sglq->sli4_xritag;
21018 		}
21019 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
21020 		       pwqe->sli4_xritag);
21021 		bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
21022 
21023 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
21024 					  qp, wq_access);
21025 		ret = lpfc_sli4_wq_put(wq, wqe);
21026 		if (ret) {
21027 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
21028 			return ret;
21029 		}
21030 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
21031 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
21032 
21033 		lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
21034 		return 0;
21035 	}
21036 	return WQE_ERROR;
21037 }
21038 
21039 /**
21040  * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort
21041  * @phba: Pointer to HBA context object.
21042  * @cmdiocb: Pointer to driver command iocb object.
21043  * @cmpl: completion function.
21044  *
21045  * Fill the appropriate fields for the abort WQE and call
21046  * internal routine lpfc_sli4_issue_wqe to send the WQE
21047  * This function is called with hbalock held and no ring_lock held.
21048  *
21049  * RETURNS 0 - SUCCESS
21050  **/
21051 
21052 int
21053 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
21054 			    void *cmpl)
21055 {
21056 	struct lpfc_vport *vport = cmdiocb->vport;
21057 	struct lpfc_iocbq *abtsiocb = NULL;
21058 	union lpfc_wqe128 *abtswqe;
21059 	struct lpfc_io_buf *lpfc_cmd;
21060 	int retval = IOCB_ERROR;
21061 	u16 xritag = cmdiocb->sli4_xritag;
21062 
21063 	/*
21064 	 * The scsi command can not be in txq and it is in flight because the
21065 	 * pCmd is still pointing at the SCSI command we have to abort. There
21066 	 * is no need to search the txcmplq. Just send an abort to the FW.
21067 	 */
21068 
21069 	abtsiocb = __lpfc_sli_get_iocbq(phba);
21070 	if (!abtsiocb)
21071 		return WQE_NORESOURCE;
21072 
21073 	/* Indicate the IO is being aborted by the driver. */
21074 	cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED;
21075 
21076 	abtswqe = &abtsiocb->wqe;
21077 	memset(abtswqe, 0, sizeof(*abtswqe));
21078 
21079 	if (!lpfc_is_link_up(phba))
21080 		bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1);
21081 	bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG);
21082 	abtswqe->abort_cmd.rsrvd5 = 0;
21083 	abtswqe->abort_cmd.wqe_com.abort_tag = xritag;
21084 	bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag);
21085 	bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
21086 	bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0);
21087 	bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1);
21088 	bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE);
21089 	bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND);
21090 
21091 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
21092 	abtsiocb->hba_wqidx = cmdiocb->hba_wqidx;
21093 	abtsiocb->cmd_flag |= LPFC_USE_FCPWQIDX;
21094 	if (cmdiocb->cmd_flag & LPFC_IO_FCP)
21095 		abtsiocb->cmd_flag |= LPFC_IO_FCP;
21096 	if (cmdiocb->cmd_flag & LPFC_IO_NVME)
21097 		abtsiocb->cmd_flag |= LPFC_IO_NVME;
21098 	if (cmdiocb->cmd_flag & LPFC_IO_FOF)
21099 		abtsiocb->cmd_flag |= LPFC_IO_FOF;
21100 	abtsiocb->vport = vport;
21101 	abtsiocb->cmd_cmpl = cmpl;
21102 
21103 	lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq);
21104 	retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb);
21105 
21106 	lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
21107 			 "0359 Abort xri x%x, original iotag x%x, "
21108 			 "abort cmd iotag x%x retval x%x\n",
21109 			 xritag, cmdiocb->iotag, abtsiocb->iotag, retval);
21110 
21111 	if (retval) {
21112 		cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED;
21113 		__lpfc_sli_release_iocbq(phba, abtsiocb);
21114 	}
21115 
21116 	return retval;
21117 }
21118 
21119 #ifdef LPFC_MXP_STAT
21120 /**
21121  * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count
21122  * @phba: pointer to lpfc hba data structure.
21123  * @hwqid: belong to which HWQ.
21124  *
21125  * The purpose of this routine is to take a snapshot of pbl, pvt and busy count
21126  * 15 seconds after a test case is running.
21127  *
21128  * The user should call lpfc_debugfs_multixripools_write before running a test
21129  * case to clear stat_snapshot_taken. Then the user starts a test case. During
21130  * test case is running, stat_snapshot_taken is incremented by 1 every time when
21131  * this routine is called from heartbeat timer. When stat_snapshot_taken is
21132  * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken.
21133  **/
21134 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid)
21135 {
21136 	struct lpfc_sli4_hdw_queue *qp;
21137 	struct lpfc_multixri_pool *multixri_pool;
21138 	struct lpfc_pvt_pool *pvt_pool;
21139 	struct lpfc_pbl_pool *pbl_pool;
21140 	u32 txcmplq_cnt;
21141 
21142 	qp = &phba->sli4_hba.hdwq[hwqid];
21143 	multixri_pool = qp->p_multixri_pool;
21144 	if (!multixri_pool)
21145 		return;
21146 
21147 	if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) {
21148 		pvt_pool = &qp->p_multixri_pool->pvt_pool;
21149 		pbl_pool = &qp->p_multixri_pool->pbl_pool;
21150 		txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
21151 
21152 		multixri_pool->stat_pbl_count = pbl_pool->count;
21153 		multixri_pool->stat_pvt_count = pvt_pool->count;
21154 		multixri_pool->stat_busy_count = txcmplq_cnt;
21155 	}
21156 
21157 	multixri_pool->stat_snapshot_taken++;
21158 }
21159 #endif
21160 
21161 /**
21162  * lpfc_adjust_pvt_pool_count - Adjust private pool count
21163  * @phba: pointer to lpfc hba data structure.
21164  * @hwqid: belong to which HWQ.
21165  *
21166  * This routine moves some XRIs from private to public pool when private pool
21167  * is not busy.
21168  **/
21169 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid)
21170 {
21171 	struct lpfc_multixri_pool *multixri_pool;
21172 	u32 io_req_count;
21173 	u32 prev_io_req_count;
21174 
21175 	multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
21176 	if (!multixri_pool)
21177 		return;
21178 	io_req_count = multixri_pool->io_req_count;
21179 	prev_io_req_count = multixri_pool->prev_io_req_count;
21180 
21181 	if (prev_io_req_count != io_req_count) {
21182 		/* Private pool is busy */
21183 		multixri_pool->prev_io_req_count = io_req_count;
21184 	} else {
21185 		/* Private pool is not busy.
21186 		 * Move XRIs from private to public pool.
21187 		 */
21188 		lpfc_move_xri_pvt_to_pbl(phba, hwqid);
21189 	}
21190 }
21191 
21192 /**
21193  * lpfc_adjust_high_watermark - Adjust high watermark
21194  * @phba: pointer to lpfc hba data structure.
21195  * @hwqid: belong to which HWQ.
21196  *
21197  * This routine sets high watermark as number of outstanding XRIs,
21198  * but make sure the new value is between xri_limit/2 and xri_limit.
21199  **/
21200 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid)
21201 {
21202 	u32 new_watermark;
21203 	u32 watermark_max;
21204 	u32 watermark_min;
21205 	u32 xri_limit;
21206 	u32 txcmplq_cnt;
21207 	u32 abts_io_bufs;
21208 	struct lpfc_multixri_pool *multixri_pool;
21209 	struct lpfc_sli4_hdw_queue *qp;
21210 
21211 	qp = &phba->sli4_hba.hdwq[hwqid];
21212 	multixri_pool = qp->p_multixri_pool;
21213 	if (!multixri_pool)
21214 		return;
21215 	xri_limit = multixri_pool->xri_limit;
21216 
21217 	watermark_max = xri_limit;
21218 	watermark_min = xri_limit / 2;
21219 
21220 	txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
21221 	abts_io_bufs = qp->abts_scsi_io_bufs;
21222 	abts_io_bufs += qp->abts_nvme_io_bufs;
21223 
21224 	new_watermark = txcmplq_cnt + abts_io_bufs;
21225 	new_watermark = min(watermark_max, new_watermark);
21226 	new_watermark = max(watermark_min, new_watermark);
21227 	multixri_pool->pvt_pool.high_watermark = new_watermark;
21228 
21229 #ifdef LPFC_MXP_STAT
21230 	multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm,
21231 					  new_watermark);
21232 #endif
21233 }
21234 
21235 /**
21236  * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool
21237  * @phba: pointer to lpfc hba data structure.
21238  * @hwqid: belong to which HWQ.
21239  *
21240  * This routine is called from hearbeat timer when pvt_pool is idle.
21241  * All free XRIs are moved from private to public pool on hwqid with 2 steps.
21242  * The first step moves (all - low_watermark) amount of XRIs.
21243  * The second step moves the rest of XRIs.
21244  **/
21245 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid)
21246 {
21247 	struct lpfc_pbl_pool *pbl_pool;
21248 	struct lpfc_pvt_pool *pvt_pool;
21249 	struct lpfc_sli4_hdw_queue *qp;
21250 	struct lpfc_io_buf *lpfc_ncmd;
21251 	struct lpfc_io_buf *lpfc_ncmd_next;
21252 	unsigned long iflag;
21253 	struct list_head tmp_list;
21254 	u32 tmp_count;
21255 
21256 	qp = &phba->sli4_hba.hdwq[hwqid];
21257 	pbl_pool = &qp->p_multixri_pool->pbl_pool;
21258 	pvt_pool = &qp->p_multixri_pool->pvt_pool;
21259 	tmp_count = 0;
21260 
21261 	lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool);
21262 	lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool);
21263 
21264 	if (pvt_pool->count > pvt_pool->low_watermark) {
21265 		/* Step 1: move (all - low_watermark) from pvt_pool
21266 		 * to pbl_pool
21267 		 */
21268 
21269 		/* Move low watermark of bufs from pvt_pool to tmp_list */
21270 		INIT_LIST_HEAD(&tmp_list);
21271 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
21272 					 &pvt_pool->list, list) {
21273 			list_move_tail(&lpfc_ncmd->list, &tmp_list);
21274 			tmp_count++;
21275 			if (tmp_count >= pvt_pool->low_watermark)
21276 				break;
21277 		}
21278 
21279 		/* Move all bufs from pvt_pool to pbl_pool */
21280 		list_splice_init(&pvt_pool->list, &pbl_pool->list);
21281 
21282 		/* Move all bufs from tmp_list to pvt_pool */
21283 		list_splice(&tmp_list, &pvt_pool->list);
21284 
21285 		pbl_pool->count += (pvt_pool->count - tmp_count);
21286 		pvt_pool->count = tmp_count;
21287 	} else {
21288 		/* Step 2: move the rest from pvt_pool to pbl_pool */
21289 		list_splice_init(&pvt_pool->list, &pbl_pool->list);
21290 		pbl_pool->count += pvt_pool->count;
21291 		pvt_pool->count = 0;
21292 	}
21293 
21294 	spin_unlock(&pvt_pool->lock);
21295 	spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21296 }
21297 
21298 /**
21299  * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
21300  * @phba: pointer to lpfc hba data structure
21301  * @qp: pointer to HDW queue
21302  * @pbl_pool: specified public free XRI pool
21303  * @pvt_pool: specified private free XRI pool
21304  * @count: number of XRIs to move
21305  *
21306  * This routine tries to move some free common bufs from the specified pbl_pool
21307  * to the specified pvt_pool. It might move less than count XRIs if there's not
21308  * enough in public pool.
21309  *
21310  * Return:
21311  *   true - if XRIs are successfully moved from the specified pbl_pool to the
21312  *          specified pvt_pool
21313  *   false - if the specified pbl_pool is empty or locked by someone else
21314  **/
21315 static bool
21316 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
21317 			  struct lpfc_pbl_pool *pbl_pool,
21318 			  struct lpfc_pvt_pool *pvt_pool, u32 count)
21319 {
21320 	struct lpfc_io_buf *lpfc_ncmd;
21321 	struct lpfc_io_buf *lpfc_ncmd_next;
21322 	unsigned long iflag;
21323 	int ret;
21324 
21325 	ret = spin_trylock_irqsave(&pbl_pool->lock, iflag);
21326 	if (ret) {
21327 		if (pbl_pool->count) {
21328 			/* Move a batch of XRIs from public to private pool */
21329 			lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool);
21330 			list_for_each_entry_safe(lpfc_ncmd,
21331 						 lpfc_ncmd_next,
21332 						 &pbl_pool->list,
21333 						 list) {
21334 				list_move_tail(&lpfc_ncmd->list,
21335 					       &pvt_pool->list);
21336 				pvt_pool->count++;
21337 				pbl_pool->count--;
21338 				count--;
21339 				if (count == 0)
21340 					break;
21341 			}
21342 
21343 			spin_unlock(&pvt_pool->lock);
21344 			spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21345 			return true;
21346 		}
21347 		spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21348 	}
21349 
21350 	return false;
21351 }
21352 
21353 /**
21354  * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
21355  * @phba: pointer to lpfc hba data structure.
21356  * @hwqid: belong to which HWQ.
21357  * @count: number of XRIs to move
21358  *
21359  * This routine tries to find some free common bufs in one of public pools with
21360  * Round Robin method. The search always starts from local hwqid, then the next
21361  * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found,
21362  * a batch of free common bufs are moved to private pool on hwqid.
21363  * It might move less than count XRIs if there's not enough in public pool.
21364  **/
21365 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count)
21366 {
21367 	struct lpfc_multixri_pool *multixri_pool;
21368 	struct lpfc_multixri_pool *next_multixri_pool;
21369 	struct lpfc_pvt_pool *pvt_pool;
21370 	struct lpfc_pbl_pool *pbl_pool;
21371 	struct lpfc_sli4_hdw_queue *qp;
21372 	u32 next_hwqid;
21373 	u32 hwq_count;
21374 	int ret;
21375 
21376 	qp = &phba->sli4_hba.hdwq[hwqid];
21377 	multixri_pool = qp->p_multixri_pool;
21378 	pvt_pool = &multixri_pool->pvt_pool;
21379 	pbl_pool = &multixri_pool->pbl_pool;
21380 
21381 	/* Check if local pbl_pool is available */
21382 	ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count);
21383 	if (ret) {
21384 #ifdef LPFC_MXP_STAT
21385 		multixri_pool->local_pbl_hit_count++;
21386 #endif
21387 		return;
21388 	}
21389 
21390 	hwq_count = phba->cfg_hdw_queue;
21391 
21392 	/* Get the next hwqid which was found last time */
21393 	next_hwqid = multixri_pool->rrb_next_hwqid;
21394 
21395 	do {
21396 		/* Go to next hwq */
21397 		next_hwqid = (next_hwqid + 1) % hwq_count;
21398 
21399 		next_multixri_pool =
21400 			phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool;
21401 		pbl_pool = &next_multixri_pool->pbl_pool;
21402 
21403 		/* Check if the public free xri pool is available */
21404 		ret = _lpfc_move_xri_pbl_to_pvt(
21405 			phba, qp, pbl_pool, pvt_pool, count);
21406 
21407 		/* Exit while-loop if success or all hwqid are checked */
21408 	} while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid);
21409 
21410 	/* Starting point for the next time */
21411 	multixri_pool->rrb_next_hwqid = next_hwqid;
21412 
21413 	if (!ret) {
21414 		/* stats: all public pools are empty*/
21415 		multixri_pool->pbl_empty_count++;
21416 	}
21417 
21418 #ifdef LPFC_MXP_STAT
21419 	if (ret) {
21420 		if (next_hwqid == hwqid)
21421 			multixri_pool->local_pbl_hit_count++;
21422 		else
21423 			multixri_pool->other_pbl_hit_count++;
21424 	}
21425 #endif
21426 }
21427 
21428 /**
21429  * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark
21430  * @phba: pointer to lpfc hba data structure.
21431  * @hwqid: belong to which HWQ.
21432  *
21433  * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than
21434  * low watermark.
21435  **/
21436 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid)
21437 {
21438 	struct lpfc_multixri_pool *multixri_pool;
21439 	struct lpfc_pvt_pool *pvt_pool;
21440 
21441 	multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
21442 	pvt_pool = &multixri_pool->pvt_pool;
21443 
21444 	if (pvt_pool->count < pvt_pool->low_watermark)
21445 		lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
21446 }
21447 
21448 /**
21449  * lpfc_release_io_buf - Return one IO buf back to free pool
21450  * @phba: pointer to lpfc hba data structure.
21451  * @lpfc_ncmd: IO buf to be returned.
21452  * @qp: belong to which HWQ.
21453  *
21454  * This routine returns one IO buf back to free pool. If this is an urgent IO,
21455  * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1,
21456  * the IO buf is returned to pbl_pool or pvt_pool based on watermark and
21457  * xri_limit.  If cfg_xri_rebalancing==0, the IO buf is returned to
21458  * lpfc_io_buf_list_put.
21459  **/
21460 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd,
21461 			 struct lpfc_sli4_hdw_queue *qp)
21462 {
21463 	unsigned long iflag;
21464 	struct lpfc_pbl_pool *pbl_pool;
21465 	struct lpfc_pvt_pool *pvt_pool;
21466 	struct lpfc_epd_pool *epd_pool;
21467 	u32 txcmplq_cnt;
21468 	u32 xri_owned;
21469 	u32 xri_limit;
21470 	u32 abts_io_bufs;
21471 
21472 	/* MUST zero fields if buffer is reused by another protocol */
21473 	lpfc_ncmd->nvmeCmd = NULL;
21474 	lpfc_ncmd->cur_iocbq.cmd_cmpl = NULL;
21475 
21476 	if (phba->cfg_xpsgl && !phba->nvmet_support &&
21477 	    !list_empty(&lpfc_ncmd->dma_sgl_xtra_list))
21478 		lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
21479 
21480 	if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list))
21481 		lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
21482 
21483 	if (phba->cfg_xri_rebalancing) {
21484 		if (lpfc_ncmd->expedite) {
21485 			/* Return to expedite pool */
21486 			epd_pool = &phba->epd_pool;
21487 			spin_lock_irqsave(&epd_pool->lock, iflag);
21488 			list_add_tail(&lpfc_ncmd->list, &epd_pool->list);
21489 			epd_pool->count++;
21490 			spin_unlock_irqrestore(&epd_pool->lock, iflag);
21491 			return;
21492 		}
21493 
21494 		/* Avoid invalid access if an IO sneaks in and is being rejected
21495 		 * just _after_ xri pools are destroyed in lpfc_offline.
21496 		 * Nothing much can be done at this point.
21497 		 */
21498 		if (!qp->p_multixri_pool)
21499 			return;
21500 
21501 		pbl_pool = &qp->p_multixri_pool->pbl_pool;
21502 		pvt_pool = &qp->p_multixri_pool->pvt_pool;
21503 
21504 		txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
21505 		abts_io_bufs = qp->abts_scsi_io_bufs;
21506 		abts_io_bufs += qp->abts_nvme_io_bufs;
21507 
21508 		xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs;
21509 		xri_limit = qp->p_multixri_pool->xri_limit;
21510 
21511 #ifdef LPFC_MXP_STAT
21512 		if (xri_owned <= xri_limit)
21513 			qp->p_multixri_pool->below_limit_count++;
21514 		else
21515 			qp->p_multixri_pool->above_limit_count++;
21516 #endif
21517 
21518 		/* XRI goes to either public or private free xri pool
21519 		 *     based on watermark and xri_limit
21520 		 */
21521 		if ((pvt_pool->count < pvt_pool->low_watermark) ||
21522 		    (xri_owned < xri_limit &&
21523 		     pvt_pool->count < pvt_pool->high_watermark)) {
21524 			lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag,
21525 						  qp, free_pvt_pool);
21526 			list_add_tail(&lpfc_ncmd->list,
21527 				      &pvt_pool->list);
21528 			pvt_pool->count++;
21529 			spin_unlock_irqrestore(&pvt_pool->lock, iflag);
21530 		} else {
21531 			lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag,
21532 						  qp, free_pub_pool);
21533 			list_add_tail(&lpfc_ncmd->list,
21534 				      &pbl_pool->list);
21535 			pbl_pool->count++;
21536 			spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21537 		}
21538 	} else {
21539 		lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag,
21540 					  qp, free_xri);
21541 		list_add_tail(&lpfc_ncmd->list,
21542 			      &qp->lpfc_io_buf_list_put);
21543 		qp->put_io_bufs++;
21544 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
21545 				       iflag);
21546 	}
21547 }
21548 
21549 /**
21550  * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool
21551  * @phba: pointer to lpfc hba data structure.
21552  * @qp: pointer to HDW queue
21553  * @pvt_pool: pointer to private pool data structure.
21554  * @ndlp: pointer to lpfc nodelist data structure.
21555  *
21556  * This routine tries to get one free IO buf from private pool.
21557  *
21558  * Return:
21559  *   pointer to one free IO buf - if private pool is not empty
21560  *   NULL - if private pool is empty
21561  **/
21562 static struct lpfc_io_buf *
21563 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba,
21564 				  struct lpfc_sli4_hdw_queue *qp,
21565 				  struct lpfc_pvt_pool *pvt_pool,
21566 				  struct lpfc_nodelist *ndlp)
21567 {
21568 	struct lpfc_io_buf *lpfc_ncmd;
21569 	struct lpfc_io_buf *lpfc_ncmd_next;
21570 	unsigned long iflag;
21571 
21572 	lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool);
21573 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
21574 				 &pvt_pool->list, list) {
21575 		if (lpfc_test_rrq_active(
21576 			phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag))
21577 			continue;
21578 		list_del(&lpfc_ncmd->list);
21579 		pvt_pool->count--;
21580 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
21581 		return lpfc_ncmd;
21582 	}
21583 	spin_unlock_irqrestore(&pvt_pool->lock, iflag);
21584 
21585 	return NULL;
21586 }
21587 
21588 /**
21589  * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool
21590  * @phba: pointer to lpfc hba data structure.
21591  *
21592  * This routine tries to get one free IO buf from expedite pool.
21593  *
21594  * Return:
21595  *   pointer to one free IO buf - if expedite pool is not empty
21596  *   NULL - if expedite pool is empty
21597  **/
21598 static struct lpfc_io_buf *
21599 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba)
21600 {
21601 	struct lpfc_io_buf *lpfc_ncmd;
21602 	struct lpfc_io_buf *lpfc_ncmd_next;
21603 	unsigned long iflag;
21604 	struct lpfc_epd_pool *epd_pool;
21605 
21606 	epd_pool = &phba->epd_pool;
21607 	lpfc_ncmd = NULL;
21608 
21609 	spin_lock_irqsave(&epd_pool->lock, iflag);
21610 	if (epd_pool->count > 0) {
21611 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
21612 					 &epd_pool->list, list) {
21613 			list_del(&lpfc_ncmd->list);
21614 			epd_pool->count--;
21615 			break;
21616 		}
21617 	}
21618 	spin_unlock_irqrestore(&epd_pool->lock, iflag);
21619 
21620 	return lpfc_ncmd;
21621 }
21622 
21623 /**
21624  * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs
21625  * @phba: pointer to lpfc hba data structure.
21626  * @ndlp: pointer to lpfc nodelist data structure.
21627  * @hwqid: belong to which HWQ
21628  * @expedite: 1 means this request is urgent.
21629  *
21630  * This routine will do the following actions and then return a pointer to
21631  * one free IO buf.
21632  *
21633  * 1. If private free xri count is empty, move some XRIs from public to
21634  *    private pool.
21635  * 2. Get one XRI from private free xri pool.
21636  * 3. If we fail to get one from pvt_pool and this is an expedite request,
21637  *    get one free xri from expedite pool.
21638  *
21639  * Note: ndlp is only used on SCSI side for RRQ testing.
21640  *       The caller should pass NULL for ndlp on NVME side.
21641  *
21642  * Return:
21643  *   pointer to one free IO buf - if private pool is not empty
21644  *   NULL - if private pool is empty
21645  **/
21646 static struct lpfc_io_buf *
21647 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba,
21648 				    struct lpfc_nodelist *ndlp,
21649 				    int hwqid, int expedite)
21650 {
21651 	struct lpfc_sli4_hdw_queue *qp;
21652 	struct lpfc_multixri_pool *multixri_pool;
21653 	struct lpfc_pvt_pool *pvt_pool;
21654 	struct lpfc_io_buf *lpfc_ncmd;
21655 
21656 	qp = &phba->sli4_hba.hdwq[hwqid];
21657 	lpfc_ncmd = NULL;
21658 	if (!qp) {
21659 		lpfc_printf_log(phba, KERN_INFO,
21660 				LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
21661 				"5556 NULL qp for hwqid  x%x\n", hwqid);
21662 		return lpfc_ncmd;
21663 	}
21664 	multixri_pool = qp->p_multixri_pool;
21665 	if (!multixri_pool) {
21666 		lpfc_printf_log(phba, KERN_INFO,
21667 				LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
21668 				"5557 NULL multixri for hwqid  x%x\n", hwqid);
21669 		return lpfc_ncmd;
21670 	}
21671 	pvt_pool = &multixri_pool->pvt_pool;
21672 	if (!pvt_pool) {
21673 		lpfc_printf_log(phba, KERN_INFO,
21674 				LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
21675 				"5558 NULL pvt_pool for hwqid  x%x\n", hwqid);
21676 		return lpfc_ncmd;
21677 	}
21678 	multixri_pool->io_req_count++;
21679 
21680 	/* If pvt_pool is empty, move some XRIs from public to private pool */
21681 	if (pvt_pool->count == 0)
21682 		lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
21683 
21684 	/* Get one XRI from private free xri pool */
21685 	lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp);
21686 
21687 	if (lpfc_ncmd) {
21688 		lpfc_ncmd->hdwq = qp;
21689 		lpfc_ncmd->hdwq_no = hwqid;
21690 	} else if (expedite) {
21691 		/* If we fail to get one from pvt_pool and this is an expedite
21692 		 * request, get one free xri from expedite pool.
21693 		 */
21694 		lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba);
21695 	}
21696 
21697 	return lpfc_ncmd;
21698 }
21699 
21700 static inline struct lpfc_io_buf *
21701 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx)
21702 {
21703 	struct lpfc_sli4_hdw_queue *qp;
21704 	struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next;
21705 
21706 	qp = &phba->sli4_hba.hdwq[idx];
21707 	list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next,
21708 				 &qp->lpfc_io_buf_list_get, list) {
21709 		if (lpfc_test_rrq_active(phba, ndlp,
21710 					 lpfc_cmd->cur_iocbq.sli4_lxritag))
21711 			continue;
21712 
21713 		if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED)
21714 			continue;
21715 
21716 		list_del_init(&lpfc_cmd->list);
21717 		qp->get_io_bufs--;
21718 		lpfc_cmd->hdwq = qp;
21719 		lpfc_cmd->hdwq_no = idx;
21720 		return lpfc_cmd;
21721 	}
21722 	return NULL;
21723 }
21724 
21725 /**
21726  * lpfc_get_io_buf - Get one IO buffer from free pool
21727  * @phba: The HBA for which this call is being executed.
21728  * @ndlp: pointer to lpfc nodelist data structure.
21729  * @hwqid: belong to which HWQ
21730  * @expedite: 1 means this request is urgent.
21731  *
21732  * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1,
21733  * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes
21734  * a IO buffer from head of @hdwq io_buf_list and returns to caller.
21735  *
21736  * Note: ndlp is only used on SCSI side for RRQ testing.
21737  *       The caller should pass NULL for ndlp on NVME side.
21738  *
21739  * Return codes:
21740  *   NULL - Error
21741  *   Pointer to lpfc_io_buf - Success
21742  **/
21743 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba,
21744 				    struct lpfc_nodelist *ndlp,
21745 				    u32 hwqid, int expedite)
21746 {
21747 	struct lpfc_sli4_hdw_queue *qp;
21748 	unsigned long iflag;
21749 	struct lpfc_io_buf *lpfc_cmd;
21750 
21751 	qp = &phba->sli4_hba.hdwq[hwqid];
21752 	lpfc_cmd = NULL;
21753 	if (!qp) {
21754 		lpfc_printf_log(phba, KERN_WARNING,
21755 				LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
21756 				"5555 NULL qp for hwqid  x%x\n", hwqid);
21757 		return lpfc_cmd;
21758 	}
21759 
21760 	if (phba->cfg_xri_rebalancing)
21761 		lpfc_cmd = lpfc_get_io_buf_from_multixri_pools(
21762 			phba, ndlp, hwqid, expedite);
21763 	else {
21764 		lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag,
21765 					  qp, alloc_xri_get);
21766 		if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite)
21767 			lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
21768 		if (!lpfc_cmd) {
21769 			lpfc_qp_spin_lock(&qp->io_buf_list_put_lock,
21770 					  qp, alloc_xri_put);
21771 			list_splice(&qp->lpfc_io_buf_list_put,
21772 				    &qp->lpfc_io_buf_list_get);
21773 			qp->get_io_bufs += qp->put_io_bufs;
21774 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
21775 			qp->put_io_bufs = 0;
21776 			spin_unlock(&qp->io_buf_list_put_lock);
21777 			if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT ||
21778 			    expedite)
21779 				lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
21780 		}
21781 		spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag);
21782 	}
21783 
21784 	return lpfc_cmd;
21785 }
21786 
21787 /**
21788  * lpfc_read_object - Retrieve object data from HBA
21789  * @phba: The HBA for which this call is being executed.
21790  * @rdobject: Pathname of object data we want to read.
21791  * @datap: Pointer to where data will be copied to.
21792  * @datasz: size of data area
21793  *
21794  * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less.
21795  * The data will be truncated if datasz is not large enough.
21796  * Version 1 is not supported with Embedded mbox cmd, so we must use version 0.
21797  * Returns the actual bytes read from the object.
21798  */
21799 int
21800 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap,
21801 		 uint32_t datasz)
21802 {
21803 	struct lpfc_mbx_read_object *read_object;
21804 	LPFC_MBOXQ_t *mbox;
21805 	int rc, length, eof, j, byte_cnt = 0;
21806 	uint32_t shdr_status, shdr_add_status;
21807 	union lpfc_sli4_cfg_shdr *shdr;
21808 	struct lpfc_dmabuf *pcmd;
21809 	u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0};
21810 
21811 	/* sanity check on queue memory */
21812 	if (!datap)
21813 		return -ENODEV;
21814 
21815 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
21816 	if (!mbox)
21817 		return -ENOMEM;
21818 	length = (sizeof(struct lpfc_mbx_read_object) -
21819 		  sizeof(struct lpfc_sli4_cfg_mhdr));
21820 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
21821 			 LPFC_MBOX_OPCODE_READ_OBJECT,
21822 			 length, LPFC_SLI4_MBX_EMBED);
21823 	read_object = &mbox->u.mqe.un.read_object;
21824 	shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr;
21825 
21826 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0);
21827 	bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz);
21828 	read_object->u.request.rd_object_offset = 0;
21829 	read_object->u.request.rd_object_cnt = 1;
21830 
21831 	memset((void *)read_object->u.request.rd_object_name, 0,
21832 	       LPFC_OBJ_NAME_SZ);
21833 	scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject);
21834 	for (j = 0; j < strlen(rdobject); j++)
21835 		read_object->u.request.rd_object_name[j] =
21836 			cpu_to_le32(rd_object_name[j]);
21837 
21838 	pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL);
21839 	if (pcmd)
21840 		pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys);
21841 	if (!pcmd || !pcmd->virt) {
21842 		kfree(pcmd);
21843 		mempool_free(mbox, phba->mbox_mem_pool);
21844 		return -ENOMEM;
21845 	}
21846 	memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE);
21847 	read_object->u.request.rd_object_hbuf[0].pa_lo =
21848 		putPaddrLow(pcmd->phys);
21849 	read_object->u.request.rd_object_hbuf[0].pa_hi =
21850 		putPaddrHigh(pcmd->phys);
21851 	read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE;
21852 
21853 	mbox->vport = phba->pport;
21854 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
21855 	mbox->ctx_buf = NULL;
21856 	mbox->ctx_ndlp = NULL;
21857 
21858 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
21859 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
21860 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
21861 
21862 	if (shdr_status == STATUS_FAILED &&
21863 	    shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) {
21864 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT,
21865 				"4674 No port cfg file in FW.\n");
21866 		byte_cnt = -ENOENT;
21867 	} else if (shdr_status || shdr_add_status || rc) {
21868 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT,
21869 				"2625 READ_OBJECT mailbox failed with "
21870 				"status x%x add_status x%x, mbx status x%x\n",
21871 				shdr_status, shdr_add_status, rc);
21872 		byte_cnt = -ENXIO;
21873 	} else {
21874 		/* Success */
21875 		length = read_object->u.response.rd_object_actual_rlen;
21876 		eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response);
21877 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT,
21878 				"2626 READ_OBJECT Success len %d:%d, EOF %d\n",
21879 				length, datasz, eof);
21880 
21881 		/* Detect the port config file exists but is empty */
21882 		if (!length && eof) {
21883 			byte_cnt = 0;
21884 			goto exit;
21885 		}
21886 
21887 		byte_cnt = length;
21888 		lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt);
21889 	}
21890 
21891  exit:
21892 	lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys);
21893 	kfree(pcmd);
21894 	mempool_free(mbox, phba->mbox_mem_pool);
21895 	return byte_cnt;
21896 }
21897 
21898 /**
21899  * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool
21900  * @phba: The HBA for which this call is being executed.
21901  * @lpfc_buf: IO buf structure to append the SGL chunk
21902  *
21903  * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool,
21904  * and will allocate an SGL chunk if the pool is empty.
21905  *
21906  * Return codes:
21907  *   NULL - Error
21908  *   Pointer to sli4_hybrid_sgl - Success
21909  **/
21910 struct sli4_hybrid_sgl *
21911 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
21912 {
21913 	struct sli4_hybrid_sgl *list_entry = NULL;
21914 	struct sli4_hybrid_sgl *tmp = NULL;
21915 	struct sli4_hybrid_sgl *allocated_sgl = NULL;
21916 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
21917 	struct list_head *buf_list = &hdwq->sgl_list;
21918 	unsigned long iflags;
21919 
21920 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21921 
21922 	if (likely(!list_empty(buf_list))) {
21923 		/* break off 1 chunk from the sgl_list */
21924 		list_for_each_entry_safe(list_entry, tmp,
21925 					 buf_list, list_node) {
21926 			list_move_tail(&list_entry->list_node,
21927 				       &lpfc_buf->dma_sgl_xtra_list);
21928 			break;
21929 		}
21930 	} else {
21931 		/* allocate more */
21932 		spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21933 		tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
21934 				   cpu_to_node(hdwq->io_wq->chann));
21935 		if (!tmp) {
21936 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
21937 					"8353 error kmalloc memory for HDWQ "
21938 					"%d %s\n",
21939 					lpfc_buf->hdwq_no, __func__);
21940 			return NULL;
21941 		}
21942 
21943 		tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool,
21944 					      GFP_ATOMIC, &tmp->dma_phys_sgl);
21945 		if (!tmp->dma_sgl) {
21946 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
21947 					"8354 error pool_alloc memory for HDWQ "
21948 					"%d %s\n",
21949 					lpfc_buf->hdwq_no, __func__);
21950 			kfree(tmp);
21951 			return NULL;
21952 		}
21953 
21954 		spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21955 		list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list);
21956 	}
21957 
21958 	allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list,
21959 					struct sli4_hybrid_sgl,
21960 					list_node);
21961 
21962 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21963 
21964 	return allocated_sgl;
21965 }
21966 
21967 /**
21968  * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool
21969  * @phba: The HBA for which this call is being executed.
21970  * @lpfc_buf: IO buf structure with the SGL chunk
21971  *
21972  * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool.
21973  *
21974  * Return codes:
21975  *   0 - Success
21976  *   -EINVAL - Error
21977  **/
21978 int
21979 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
21980 {
21981 	int rc = 0;
21982 	struct sli4_hybrid_sgl *list_entry = NULL;
21983 	struct sli4_hybrid_sgl *tmp = NULL;
21984 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
21985 	struct list_head *buf_list = &hdwq->sgl_list;
21986 	unsigned long iflags;
21987 
21988 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21989 
21990 	if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) {
21991 		list_for_each_entry_safe(list_entry, tmp,
21992 					 &lpfc_buf->dma_sgl_xtra_list,
21993 					 list_node) {
21994 			list_move_tail(&list_entry->list_node,
21995 				       buf_list);
21996 		}
21997 	} else {
21998 		rc = -EINVAL;
21999 	}
22000 
22001 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22002 	return rc;
22003 }
22004 
22005 /**
22006  * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool
22007  * @phba: phba object
22008  * @hdwq: hdwq to cleanup sgl buff resources on
22009  *
22010  * This routine frees all SGL chunks of hdwq SGL chunk pool.
22011  *
22012  * Return codes:
22013  *   None
22014  **/
22015 void
22016 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba,
22017 		       struct lpfc_sli4_hdw_queue *hdwq)
22018 {
22019 	struct list_head *buf_list = &hdwq->sgl_list;
22020 	struct sli4_hybrid_sgl *list_entry = NULL;
22021 	struct sli4_hybrid_sgl *tmp = NULL;
22022 	unsigned long iflags;
22023 
22024 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22025 
22026 	/* Free sgl pool */
22027 	list_for_each_entry_safe(list_entry, tmp,
22028 				 buf_list, list_node) {
22029 		dma_pool_free(phba->lpfc_sg_dma_buf_pool,
22030 			      list_entry->dma_sgl,
22031 			      list_entry->dma_phys_sgl);
22032 		list_del(&list_entry->list_node);
22033 		kfree(list_entry);
22034 	}
22035 
22036 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22037 }
22038 
22039 /**
22040  * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq
22041  * @phba: The HBA for which this call is being executed.
22042  * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer
22043  *
22044  * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool,
22045  * and will allocate an CMD/RSP buffer if the pool is empty.
22046  *
22047  * Return codes:
22048  *   NULL - Error
22049  *   Pointer to fcp_cmd_rsp_buf - Success
22050  **/
22051 struct fcp_cmd_rsp_buf *
22052 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
22053 			      struct lpfc_io_buf *lpfc_buf)
22054 {
22055 	struct fcp_cmd_rsp_buf *list_entry = NULL;
22056 	struct fcp_cmd_rsp_buf *tmp = NULL;
22057 	struct fcp_cmd_rsp_buf *allocated_buf = NULL;
22058 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22059 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
22060 	unsigned long iflags;
22061 
22062 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22063 
22064 	if (likely(!list_empty(buf_list))) {
22065 		/* break off 1 chunk from the list */
22066 		list_for_each_entry_safe(list_entry, tmp,
22067 					 buf_list,
22068 					 list_node) {
22069 			list_move_tail(&list_entry->list_node,
22070 				       &lpfc_buf->dma_cmd_rsp_list);
22071 			break;
22072 		}
22073 	} else {
22074 		/* allocate more */
22075 		spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22076 		tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
22077 				   cpu_to_node(hdwq->io_wq->chann));
22078 		if (!tmp) {
22079 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22080 					"8355 error kmalloc memory for HDWQ "
22081 					"%d %s\n",
22082 					lpfc_buf->hdwq_no, __func__);
22083 			return NULL;
22084 		}
22085 
22086 		tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool,
22087 						GFP_ATOMIC,
22088 						&tmp->fcp_cmd_rsp_dma_handle);
22089 
22090 		if (!tmp->fcp_cmnd) {
22091 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22092 					"8356 error pool_alloc memory for HDWQ "
22093 					"%d %s\n",
22094 					lpfc_buf->hdwq_no, __func__);
22095 			kfree(tmp);
22096 			return NULL;
22097 		}
22098 
22099 		tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd +
22100 				sizeof(struct fcp_cmnd));
22101 
22102 		spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22103 		list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list);
22104 	}
22105 
22106 	allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list,
22107 					struct fcp_cmd_rsp_buf,
22108 					list_node);
22109 
22110 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22111 
22112 	return allocated_buf;
22113 }
22114 
22115 /**
22116  * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool
22117  * @phba: The HBA for which this call is being executed.
22118  * @lpfc_buf: IO buf structure with the CMD/RSP buf
22119  *
22120  * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool.
22121  *
22122  * Return codes:
22123  *   0 - Success
22124  *   -EINVAL - Error
22125  **/
22126 int
22127 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
22128 			      struct lpfc_io_buf *lpfc_buf)
22129 {
22130 	int rc = 0;
22131 	struct fcp_cmd_rsp_buf *list_entry = NULL;
22132 	struct fcp_cmd_rsp_buf *tmp = NULL;
22133 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22134 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
22135 	unsigned long iflags;
22136 
22137 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22138 
22139 	if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) {
22140 		list_for_each_entry_safe(list_entry, tmp,
22141 					 &lpfc_buf->dma_cmd_rsp_list,
22142 					 list_node) {
22143 			list_move_tail(&list_entry->list_node,
22144 				       buf_list);
22145 		}
22146 	} else {
22147 		rc = -EINVAL;
22148 	}
22149 
22150 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22151 	return rc;
22152 }
22153 
22154 /**
22155  * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool
22156  * @phba: phba object
22157  * @hdwq: hdwq to cleanup cmd rsp buff resources on
22158  *
22159  * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool.
22160  *
22161  * Return codes:
22162  *   None
22163  **/
22164 void
22165 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
22166 			       struct lpfc_sli4_hdw_queue *hdwq)
22167 {
22168 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
22169 	struct fcp_cmd_rsp_buf *list_entry = NULL;
22170 	struct fcp_cmd_rsp_buf *tmp = NULL;
22171 	unsigned long iflags;
22172 
22173 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22174 
22175 	/* Free cmd_rsp buf pool */
22176 	list_for_each_entry_safe(list_entry, tmp,
22177 				 buf_list,
22178 				 list_node) {
22179 		dma_pool_free(phba->lpfc_cmd_rsp_buf_pool,
22180 			      list_entry->fcp_cmnd,
22181 			      list_entry->fcp_cmd_rsp_dma_handle);
22182 		list_del(&list_entry->list_node);
22183 		kfree(list_entry);
22184 	}
22185 
22186 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22187 }
22188 
22189 /**
22190  * lpfc_sli_prep_wqe - Prepare WQE for the command to be posted
22191  * @phba: phba object
22192  * @job: job entry of the command to be posted.
22193  *
22194  * Fill the common fields of the wqe for each of the command.
22195  *
22196  * Return codes:
22197  *	None
22198  **/
22199 void
22200 lpfc_sli_prep_wqe(struct lpfc_hba *phba, struct lpfc_iocbq *job)
22201 {
22202 	u8 cmnd;
22203 	u32 *pcmd;
22204 	u32 if_type = 0;
22205 	u32 fip, abort_tag;
22206 	struct lpfc_nodelist *ndlp = NULL;
22207 	union lpfc_wqe128 *wqe = &job->wqe;
22208 	struct lpfc_dmabuf *context2;
22209 	u32 els_id = LPFC_ELS_ID_DEFAULT;
22210 	u8 command_type = ELS_COMMAND_NON_FIP;
22211 
22212 	fip = phba->hba_flag & HBA_FIP_SUPPORT;
22213 	/* The fcp commands will set command type */
22214 	if (job->cmd_flag &  LPFC_IO_FCP)
22215 		command_type = FCP_COMMAND;
22216 	else if (fip && (job->cmd_flag & LPFC_FIP_ELS_ID_MASK))
22217 		command_type = ELS_COMMAND_FIP;
22218 	else
22219 		command_type = ELS_COMMAND_NON_FIP;
22220 
22221 	abort_tag = job->iotag;
22222 	cmnd = bf_get(wqe_cmnd, &wqe->els_req.wqe_com);
22223 
22224 	switch (cmnd) {
22225 	case CMD_ELS_REQUEST64_WQE:
22226 		if (job->cmd_flag & LPFC_IO_LIBDFC)
22227 			ndlp = job->context_un.ndlp;
22228 		else
22229 			ndlp = (struct lpfc_nodelist *)job->context1;
22230 
22231 		/* CCP CCPE PV PRI in word10 were set in the memcpy */
22232 		if (command_type == ELS_COMMAND_FIP)
22233 			els_id = ((job->cmd_flag & LPFC_FIP_ELS_ID_MASK)
22234 				  >> LPFC_FIP_ELS_ID_SHIFT);
22235 
22236 		if_type = bf_get(lpfc_sli_intf_if_type,
22237 				 &phba->sli4_hba.sli_intf);
22238 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
22239 			context2 = (struct lpfc_dmabuf *)job->context2;
22240 			pcmd = (u32 *)context2->virt;
22241 			if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
22242 				     *pcmd == ELS_CMD_SCR ||
22243 				     *pcmd == ELS_CMD_RDF ||
22244 				     *pcmd == ELS_CMD_EDC ||
22245 				     *pcmd == ELS_CMD_RSCN_XMT ||
22246 				     *pcmd == ELS_CMD_FDISC ||
22247 				     *pcmd == ELS_CMD_LOGO ||
22248 				     *pcmd == ELS_CMD_QFPA ||
22249 				     *pcmd == ELS_CMD_UVEM ||
22250 				     *pcmd == ELS_CMD_PLOGI)) {
22251 				bf_set(els_req64_sp, &wqe->els_req, 1);
22252 				bf_set(els_req64_sid, &wqe->els_req,
22253 				       job->vport->fc_myDID);
22254 
22255 				if ((*pcmd == ELS_CMD_FLOGI) &&
22256 				    !(phba->fc_topology ==
22257 				      LPFC_TOPOLOGY_LOOP))
22258 					bf_set(els_req64_sid, &wqe->els_req, 0);
22259 
22260 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
22261 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
22262 				       phba->vpi_ids[job->vport->vpi]);
22263 			} else if (pcmd) {
22264 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
22265 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
22266 				       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
22267 			}
22268 		}
22269 
22270 		bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
22271 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
22272 
22273 		bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
22274 		bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
22275 		bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
22276 		bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
22277 		bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
22278 		bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
22279 		break;
22280 	case CMD_XMIT_ELS_RSP64_WQE:
22281 		ndlp = (struct lpfc_nodelist *)job->context1;
22282 
22283 		/* word4 */
22284 		wqe->xmit_els_rsp.word4 = 0;
22285 
22286 		if_type = bf_get(lpfc_sli_intf_if_type,
22287 				 &phba->sli4_hba.sli_intf);
22288 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
22289 			if (job->vport->fc_flag & FC_PT2PT) {
22290 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
22291 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
22292 				       job->vport->fc_myDID);
22293 				if (job->vport->fc_myDID == Fabric_DID) {
22294 					bf_set(wqe_els_did,
22295 					       &wqe->xmit_els_rsp.wqe_dest, 0);
22296 				}
22297 			}
22298 		}
22299 
22300 		bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
22301 		bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
22302 		bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
22303 		bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
22304 		       LPFC_WQE_LENLOC_WORD3);
22305 		bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
22306 
22307 		if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
22308 			bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
22309 			bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
22310 			       job->vport->fc_myDID);
22311 			bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
22312 		}
22313 
22314 		if (phba->sli_rev == LPFC_SLI_REV4) {
22315 			bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
22316 			       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
22317 
22318 			if (bf_get(wqe_ct, &wqe->xmit_els_rsp.wqe_com))
22319 				bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
22320 				       phba->vpi_ids[job->vport->vpi]);
22321 		}
22322 		command_type = OTHER_COMMAND;
22323 		break;
22324 	case CMD_GEN_REQUEST64_WQE:
22325 		/* Word 10 */
22326 		bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
22327 		bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
22328 		bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
22329 		bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
22330 		bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
22331 		command_type = OTHER_COMMAND;
22332 		break;
22333 	case CMD_XMIT_SEQUENCE64_WQE:
22334 		if (phba->link_flag & LS_LOOPBACK_MODE)
22335 			bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
22336 
22337 		wqe->xmit_sequence.rsvd3 = 0;
22338 		bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
22339 		bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
22340 		bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
22341 		       LPFC_WQE_IOD_WRITE);
22342 		bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
22343 		       LPFC_WQE_LENLOC_WORD12);
22344 		bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
22345 		command_type = OTHER_COMMAND;
22346 		break;
22347 	case CMD_XMIT_BLS_RSP64_WQE:
22348 		bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
22349 		bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
22350 		bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
22351 		bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
22352 		       phba->vpi_ids[phba->pport->vpi]);
22353 		bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
22354 		bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
22355 		       LPFC_WQE_LENLOC_NONE);
22356 		/* Overwrite the pre-set comnd type with OTHER_COMMAND */
22357 		command_type = OTHER_COMMAND;
22358 		break;
22359 	case CMD_FCP_ICMND64_WQE:	/* task mgmt commands */
22360 	case CMD_ABORT_XRI_WQE:		/* abort iotag */
22361 	case CMD_SEND_FRAME:		/* mds loopback */
22362 		/* cases already formatted for sli4 wqe - no chgs necessary */
22363 		return;
22364 	default:
22365 		dump_stack();
22366 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
22367 				"6207 Invalid command 0x%x\n",
22368 				cmnd);
22369 		break;
22370 	}
22371 
22372 	wqe->generic.wqe_com.abort_tag = abort_tag;
22373 	bf_set(wqe_reqtag, &wqe->generic.wqe_com, job->iotag);
22374 	bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
22375 	bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
22376 }
22377