1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2021 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 #include <linux/crash_dump.h> 39 #ifdef CONFIG_X86 40 #include <asm/set_memory.h> 41 #endif 42 43 #include "lpfc_hw4.h" 44 #include "lpfc_hw.h" 45 #include "lpfc_sli.h" 46 #include "lpfc_sli4.h" 47 #include "lpfc_nl.h" 48 #include "lpfc_disc.h" 49 #include "lpfc.h" 50 #include "lpfc_scsi.h" 51 #include "lpfc_nvme.h" 52 #include "lpfc_crtn.h" 53 #include "lpfc_logmsg.h" 54 #include "lpfc_compat.h" 55 #include "lpfc_debugfs.h" 56 #include "lpfc_vport.h" 57 #include "lpfc_version.h" 58 59 /* There are only four IOCB completion types. */ 60 typedef enum _lpfc_iocb_type { 61 LPFC_UNKNOWN_IOCB, 62 LPFC_UNSOL_IOCB, 63 LPFC_SOL_IOCB, 64 LPFC_ABORT_IOCB 65 } lpfc_iocb_type; 66 67 68 /* Provide function prototypes local to this module. */ 69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 70 uint32_t); 71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint8_t *, uint32_t *); 73 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 74 struct lpfc_iocbq *); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 80 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_queue *eq, 85 struct lpfc_eqe *eqe); 86 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 87 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 88 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 89 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 90 struct lpfc_queue *cq, 91 struct lpfc_cqe *cqe); 92 93 union lpfc_wqe128 lpfc_iread_cmd_template; 94 union lpfc_wqe128 lpfc_iwrite_cmd_template; 95 union lpfc_wqe128 lpfc_icmnd_cmd_template; 96 97 static IOCB_t * 98 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 99 { 100 return &iocbq->iocb; 101 } 102 103 /* Setup WQE templates for IOs */ 104 void lpfc_wqe_cmd_template(void) 105 { 106 union lpfc_wqe128 *wqe; 107 108 /* IREAD template */ 109 wqe = &lpfc_iread_cmd_template; 110 memset(wqe, 0, sizeof(union lpfc_wqe128)); 111 112 /* Word 0, 1, 2 - BDE is variable */ 113 114 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 115 116 /* Word 4 - total_xfer_len is variable */ 117 118 /* Word 5 - is zero */ 119 120 /* Word 6 - ctxt_tag, xri_tag is variable */ 121 122 /* Word 7 */ 123 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 124 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 125 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 126 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 127 128 /* Word 8 - abort_tag is variable */ 129 130 /* Word 9 - reqtag is variable */ 131 132 /* Word 10 - dbde, wqes is variable */ 133 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 134 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 135 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 136 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 137 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 138 139 /* Word 11 - pbde is variable */ 140 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 141 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 142 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 143 144 /* Word 12 - is zero */ 145 146 /* Word 13, 14, 15 - PBDE is variable */ 147 148 /* IWRITE template */ 149 wqe = &lpfc_iwrite_cmd_template; 150 memset(wqe, 0, sizeof(union lpfc_wqe128)); 151 152 /* Word 0, 1, 2 - BDE is variable */ 153 154 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 155 156 /* Word 4 - total_xfer_len is variable */ 157 158 /* Word 5 - initial_xfer_len is variable */ 159 160 /* Word 6 - ctxt_tag, xri_tag is variable */ 161 162 /* Word 7 */ 163 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 164 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 165 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 166 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 167 168 /* Word 8 - abort_tag is variable */ 169 170 /* Word 9 - reqtag is variable */ 171 172 /* Word 10 - dbde, wqes is variable */ 173 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 174 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 175 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 176 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 177 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 178 179 /* Word 11 - pbde is variable */ 180 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 181 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 182 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 183 184 /* Word 12 - is zero */ 185 186 /* Word 13, 14, 15 - PBDE is variable */ 187 188 /* ICMND template */ 189 wqe = &lpfc_icmnd_cmd_template; 190 memset(wqe, 0, sizeof(union lpfc_wqe128)); 191 192 /* Word 0, 1, 2 - BDE is variable */ 193 194 /* Word 3 - payload_offset_len is variable */ 195 196 /* Word 4, 5 - is zero */ 197 198 /* Word 6 - ctxt_tag, xri_tag is variable */ 199 200 /* Word 7 */ 201 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 202 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 203 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 204 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 205 206 /* Word 8 - abort_tag is variable */ 207 208 /* Word 9 - reqtag is variable */ 209 210 /* Word 10 - dbde, wqes is variable */ 211 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 212 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 213 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 214 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 215 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 216 217 /* Word 11 */ 218 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 219 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 220 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 221 222 /* Word 12, 13, 14, 15 - is zero */ 223 } 224 225 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 226 /** 227 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 228 * @srcp: Source memory pointer. 229 * @destp: Destination memory pointer. 230 * @cnt: Number of words required to be copied. 231 * Must be a multiple of sizeof(uint64_t) 232 * 233 * This function is used for copying data between driver memory 234 * and the SLI WQ. This function also changes the endianness 235 * of each word if native endianness is different from SLI 236 * endianness. This function can be called with or without 237 * lock. 238 **/ 239 static void 240 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 241 { 242 uint64_t *src = srcp; 243 uint64_t *dest = destp; 244 int i; 245 246 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 247 *dest++ = *src++; 248 } 249 #else 250 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 251 #endif 252 253 /** 254 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 255 * @q: The Work Queue to operate on. 256 * @wqe: The work Queue Entry to put on the Work queue. 257 * 258 * This routine will copy the contents of @wqe to the next available entry on 259 * the @q. This function will then ring the Work Queue Doorbell to signal the 260 * HBA to start processing the Work Queue Entry. This function returns 0 if 261 * successful. If no entries are available on @q then this function will return 262 * -ENOMEM. 263 * The caller is expected to hold the hbalock when calling this routine. 264 **/ 265 static int 266 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 267 { 268 union lpfc_wqe *temp_wqe; 269 struct lpfc_register doorbell; 270 uint32_t host_index; 271 uint32_t idx; 272 uint32_t i = 0; 273 uint8_t *tmp; 274 u32 if_type; 275 276 /* sanity check on queue memory */ 277 if (unlikely(!q)) 278 return -ENOMEM; 279 280 temp_wqe = lpfc_sli4_qe(q, q->host_index); 281 282 /* If the host has not yet processed the next entry then we are done */ 283 idx = ((q->host_index + 1) % q->entry_count); 284 if (idx == q->hba_index) { 285 q->WQ_overflow++; 286 return -EBUSY; 287 } 288 q->WQ_posted++; 289 /* set consumption flag every once in a while */ 290 if (!((q->host_index + 1) % q->notify_interval)) 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 292 else 293 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 294 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 295 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 296 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 297 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 298 /* write to DPP aperture taking advatage of Combined Writes */ 299 tmp = (uint8_t *)temp_wqe; 300 #ifdef __raw_writeq 301 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 302 __raw_writeq(*((uint64_t *)(tmp + i)), 303 q->dpp_regaddr + i); 304 #else 305 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 306 __raw_writel(*((uint32_t *)(tmp + i)), 307 q->dpp_regaddr + i); 308 #endif 309 } 310 /* ensure WQE bcopy and DPP flushed before doorbell write */ 311 wmb(); 312 313 /* Update the host index before invoking device */ 314 host_index = q->host_index; 315 316 q->host_index = idx; 317 318 /* Ring Doorbell */ 319 doorbell.word0 = 0; 320 if (q->db_format == LPFC_DB_LIST_FORMAT) { 321 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 322 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 323 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 324 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 325 q->dpp_id); 326 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 327 q->queue_id); 328 } else { 329 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 330 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 331 332 /* Leave bits <23:16> clear for if_type 6 dpp */ 333 if_type = bf_get(lpfc_sli_intf_if_type, 334 &q->phba->sli4_hba.sli_intf); 335 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 336 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 337 host_index); 338 } 339 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 340 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 341 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 342 } else { 343 return -EINVAL; 344 } 345 writel(doorbell.word0, q->db_regaddr); 346 347 return 0; 348 } 349 350 /** 351 * lpfc_sli4_wq_release - Updates internal hba index for WQ 352 * @q: The Work Queue to operate on. 353 * @index: The index to advance the hba index to. 354 * 355 * This routine will update the HBA index of a queue to reflect consumption of 356 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 357 * an entry the host calls this function to update the queue's internal 358 * pointers. 359 **/ 360 static void 361 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 362 { 363 /* sanity check on queue memory */ 364 if (unlikely(!q)) 365 return; 366 367 q->hba_index = index; 368 } 369 370 /** 371 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 372 * @q: The Mailbox Queue to operate on. 373 * @mqe: The Mailbox Queue Entry to put on the Work queue. 374 * 375 * This routine will copy the contents of @mqe to the next available entry on 376 * the @q. This function will then ring the Work Queue Doorbell to signal the 377 * HBA to start processing the Work Queue Entry. This function returns 0 if 378 * successful. If no entries are available on @q then this function will return 379 * -ENOMEM. 380 * The caller is expected to hold the hbalock when calling this routine. 381 **/ 382 static uint32_t 383 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 384 { 385 struct lpfc_mqe *temp_mqe; 386 struct lpfc_register doorbell; 387 388 /* sanity check on queue memory */ 389 if (unlikely(!q)) 390 return -ENOMEM; 391 temp_mqe = lpfc_sli4_qe(q, q->host_index); 392 393 /* If the host has not yet processed the next entry then we are done */ 394 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 395 return -ENOMEM; 396 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 397 /* Save off the mailbox pointer for completion */ 398 q->phba->mbox = (MAILBOX_t *)temp_mqe; 399 400 /* Update the host index before invoking device */ 401 q->host_index = ((q->host_index + 1) % q->entry_count); 402 403 /* Ring Doorbell */ 404 doorbell.word0 = 0; 405 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 406 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 407 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 408 return 0; 409 } 410 411 /** 412 * lpfc_sli4_mq_release - Updates internal hba index for MQ 413 * @q: The Mailbox Queue to operate on. 414 * 415 * This routine will update the HBA index of a queue to reflect consumption of 416 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 417 * an entry the host calls this function to update the queue's internal 418 * pointers. This routine returns the number of entries that were consumed by 419 * the HBA. 420 **/ 421 static uint32_t 422 lpfc_sli4_mq_release(struct lpfc_queue *q) 423 { 424 /* sanity check on queue memory */ 425 if (unlikely(!q)) 426 return 0; 427 428 /* Clear the mailbox pointer for completion */ 429 q->phba->mbox = NULL; 430 q->hba_index = ((q->hba_index + 1) % q->entry_count); 431 return 1; 432 } 433 434 /** 435 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 436 * @q: The Event Queue to get the first valid EQE from 437 * 438 * This routine will get the first valid Event Queue Entry from @q, update 439 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 440 * the Queue (no more work to do), or the Queue is full of EQEs that have been 441 * processed, but not popped back to the HBA then this routine will return NULL. 442 **/ 443 static struct lpfc_eqe * 444 lpfc_sli4_eq_get(struct lpfc_queue *q) 445 { 446 struct lpfc_eqe *eqe; 447 448 /* sanity check on queue memory */ 449 if (unlikely(!q)) 450 return NULL; 451 eqe = lpfc_sli4_qe(q, q->host_index); 452 453 /* If the next EQE is not valid then we are done */ 454 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 455 return NULL; 456 457 /* 458 * insert barrier for instruction interlock : data from the hardware 459 * must have the valid bit checked before it can be copied and acted 460 * upon. Speculative instructions were allowing a bcopy at the start 461 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 462 * after our return, to copy data before the valid bit check above 463 * was done. As such, some of the copied data was stale. The barrier 464 * ensures the check is before any data is copied. 465 */ 466 mb(); 467 return eqe; 468 } 469 470 /** 471 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 472 * @q: The Event Queue to disable interrupts 473 * 474 **/ 475 void 476 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 477 { 478 struct lpfc_register doorbell; 479 480 doorbell.word0 = 0; 481 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 482 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 483 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 484 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 485 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 486 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 487 } 488 489 /** 490 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 491 * @q: The Event Queue to disable interrupts 492 * 493 **/ 494 void 495 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 496 { 497 struct lpfc_register doorbell; 498 499 doorbell.word0 = 0; 500 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 501 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 502 } 503 504 /** 505 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 506 * @phba: adapter with EQ 507 * @q: The Event Queue that the host has completed processing for. 508 * @count: Number of elements that have been consumed 509 * @arm: Indicates whether the host wants to arms this CQ. 510 * 511 * This routine will notify the HBA, by ringing the doorbell, that count 512 * number of EQEs have been processed. The @arm parameter indicates whether 513 * the queue should be rearmed when ringing the doorbell. 514 **/ 515 void 516 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 517 uint32_t count, bool arm) 518 { 519 struct lpfc_register doorbell; 520 521 /* sanity check on queue memory */ 522 if (unlikely(!q || (count == 0 && !arm))) 523 return; 524 525 /* ring doorbell for number popped */ 526 doorbell.word0 = 0; 527 if (arm) { 528 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 529 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 530 } 531 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 532 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 533 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 534 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 535 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 536 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 537 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 538 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 539 readl(q->phba->sli4_hba.EQDBregaddr); 540 } 541 542 /** 543 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 544 * @phba: adapter with EQ 545 * @q: The Event Queue that the host has completed processing for. 546 * @count: Number of elements that have been consumed 547 * @arm: Indicates whether the host wants to arms this CQ. 548 * 549 * This routine will notify the HBA, by ringing the doorbell, that count 550 * number of EQEs have been processed. The @arm parameter indicates whether 551 * the queue should be rearmed when ringing the doorbell. 552 **/ 553 void 554 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 555 uint32_t count, bool arm) 556 { 557 struct lpfc_register doorbell; 558 559 /* sanity check on queue memory */ 560 if (unlikely(!q || (count == 0 && !arm))) 561 return; 562 563 /* ring doorbell for number popped */ 564 doorbell.word0 = 0; 565 if (arm) 566 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 567 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 568 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 569 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 570 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 571 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 572 readl(q->phba->sli4_hba.EQDBregaddr); 573 } 574 575 static void 576 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 577 struct lpfc_eqe *eqe) 578 { 579 if (!phba->sli4_hba.pc_sli4_params.eqav) 580 bf_set_le32(lpfc_eqe_valid, eqe, 0); 581 582 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 583 584 /* if the index wrapped around, toggle the valid bit */ 585 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 586 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 587 } 588 589 static void 590 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 591 { 592 struct lpfc_eqe *eqe = NULL; 593 u32 eq_count = 0, cq_count = 0; 594 struct lpfc_cqe *cqe = NULL; 595 struct lpfc_queue *cq = NULL, *childq = NULL; 596 int cqid = 0; 597 598 /* walk all the EQ entries and drop on the floor */ 599 eqe = lpfc_sli4_eq_get(eq); 600 while (eqe) { 601 /* Get the reference to the corresponding CQ */ 602 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 603 cq = NULL; 604 605 list_for_each_entry(childq, &eq->child_list, list) { 606 if (childq->queue_id == cqid) { 607 cq = childq; 608 break; 609 } 610 } 611 /* If CQ is valid, iterate through it and drop all the CQEs */ 612 if (cq) { 613 cqe = lpfc_sli4_cq_get(cq); 614 while (cqe) { 615 __lpfc_sli4_consume_cqe(phba, cq, cqe); 616 cq_count++; 617 cqe = lpfc_sli4_cq_get(cq); 618 } 619 /* Clear and re-arm the CQ */ 620 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 621 LPFC_QUEUE_REARM); 622 cq_count = 0; 623 } 624 __lpfc_sli4_consume_eqe(phba, eq, eqe); 625 eq_count++; 626 eqe = lpfc_sli4_eq_get(eq); 627 } 628 629 /* Clear and re-arm the EQ */ 630 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 631 } 632 633 static int 634 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 635 uint8_t rearm) 636 { 637 struct lpfc_eqe *eqe; 638 int count = 0, consumed = 0; 639 640 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 641 goto rearm_and_exit; 642 643 eqe = lpfc_sli4_eq_get(eq); 644 while (eqe) { 645 lpfc_sli4_hba_handle_eqe(phba, eq, eqe); 646 __lpfc_sli4_consume_eqe(phba, eq, eqe); 647 648 consumed++; 649 if (!(++count % eq->max_proc_limit)) 650 break; 651 652 if (!(count % eq->notify_interval)) { 653 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 654 LPFC_QUEUE_NOARM); 655 consumed = 0; 656 } 657 658 eqe = lpfc_sli4_eq_get(eq); 659 } 660 eq->EQ_processed += count; 661 662 /* Track the max number of EQEs processed in 1 intr */ 663 if (count > eq->EQ_max_eqe) 664 eq->EQ_max_eqe = count; 665 666 xchg(&eq->queue_claimed, 0); 667 668 rearm_and_exit: 669 /* Always clear the EQ. */ 670 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 671 672 return count; 673 } 674 675 /** 676 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 677 * @q: The Completion Queue to get the first valid CQE from 678 * 679 * This routine will get the first valid Completion Queue Entry from @q, update 680 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 681 * the Queue (no more work to do), or the Queue is full of CQEs that have been 682 * processed, but not popped back to the HBA then this routine will return NULL. 683 **/ 684 static struct lpfc_cqe * 685 lpfc_sli4_cq_get(struct lpfc_queue *q) 686 { 687 struct lpfc_cqe *cqe; 688 689 /* sanity check on queue memory */ 690 if (unlikely(!q)) 691 return NULL; 692 cqe = lpfc_sli4_qe(q, q->host_index); 693 694 /* If the next CQE is not valid then we are done */ 695 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 696 return NULL; 697 698 /* 699 * insert barrier for instruction interlock : data from the hardware 700 * must have the valid bit checked before it can be copied and acted 701 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 702 * instructions allowing action on content before valid bit checked, 703 * add barrier here as well. May not be needed as "content" is a 704 * single 32-bit entity here (vs multi word structure for cq's). 705 */ 706 mb(); 707 return cqe; 708 } 709 710 static void 711 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 712 struct lpfc_cqe *cqe) 713 { 714 if (!phba->sli4_hba.pc_sli4_params.cqav) 715 bf_set_le32(lpfc_cqe_valid, cqe, 0); 716 717 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 718 719 /* if the index wrapped around, toggle the valid bit */ 720 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 721 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 722 } 723 724 /** 725 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 726 * @phba: the adapter with the CQ 727 * @q: The Completion Queue that the host has completed processing for. 728 * @count: the number of elements that were consumed 729 * @arm: Indicates whether the host wants to arms this CQ. 730 * 731 * This routine will notify the HBA, by ringing the doorbell, that the 732 * CQEs have been processed. The @arm parameter specifies whether the 733 * queue should be rearmed when ringing the doorbell. 734 **/ 735 void 736 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 737 uint32_t count, bool arm) 738 { 739 struct lpfc_register doorbell; 740 741 /* sanity check on queue memory */ 742 if (unlikely(!q || (count == 0 && !arm))) 743 return; 744 745 /* ring doorbell for number popped */ 746 doorbell.word0 = 0; 747 if (arm) 748 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 749 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 750 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 751 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 752 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 753 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 754 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 755 } 756 757 /** 758 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 759 * @phba: the adapter with the CQ 760 * @q: The Completion Queue that the host has completed processing for. 761 * @count: the number of elements that were consumed 762 * @arm: Indicates whether the host wants to arms this CQ. 763 * 764 * This routine will notify the HBA, by ringing the doorbell, that the 765 * CQEs have been processed. The @arm parameter specifies whether the 766 * queue should be rearmed when ringing the doorbell. 767 **/ 768 void 769 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 770 uint32_t count, bool arm) 771 { 772 struct lpfc_register doorbell; 773 774 /* sanity check on queue memory */ 775 if (unlikely(!q || (count == 0 && !arm))) 776 return; 777 778 /* ring doorbell for number popped */ 779 doorbell.word0 = 0; 780 if (arm) 781 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 782 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 783 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 784 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 785 } 786 787 /* 788 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 789 * 790 * This routine will copy the contents of @wqe to the next available entry on 791 * the @q. This function will then ring the Receive Queue Doorbell to signal the 792 * HBA to start processing the Receive Queue Entry. This function returns the 793 * index that the rqe was copied to if successful. If no entries are available 794 * on @q then this function will return -ENOMEM. 795 * The caller is expected to hold the hbalock when calling this routine. 796 **/ 797 int 798 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 799 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 800 { 801 struct lpfc_rqe *temp_hrqe; 802 struct lpfc_rqe *temp_drqe; 803 struct lpfc_register doorbell; 804 int hq_put_index; 805 int dq_put_index; 806 807 /* sanity check on queue memory */ 808 if (unlikely(!hq) || unlikely(!dq)) 809 return -ENOMEM; 810 hq_put_index = hq->host_index; 811 dq_put_index = dq->host_index; 812 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 813 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 814 815 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 816 return -EINVAL; 817 if (hq_put_index != dq_put_index) 818 return -EINVAL; 819 /* If the host has not yet processed the next entry then we are done */ 820 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 821 return -EBUSY; 822 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 823 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 824 825 /* Update the host index to point to the next slot */ 826 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 827 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 828 hq->RQ_buf_posted++; 829 830 /* Ring The Header Receive Queue Doorbell */ 831 if (!(hq->host_index % hq->notify_interval)) { 832 doorbell.word0 = 0; 833 if (hq->db_format == LPFC_DB_RING_FORMAT) { 834 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 835 hq->notify_interval); 836 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 837 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 838 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 839 hq->notify_interval); 840 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 841 hq->host_index); 842 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 843 } else { 844 return -EINVAL; 845 } 846 writel(doorbell.word0, hq->db_regaddr); 847 } 848 return hq_put_index; 849 } 850 851 /* 852 * lpfc_sli4_rq_release - Updates internal hba index for RQ 853 * 854 * This routine will update the HBA index of a queue to reflect consumption of 855 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 856 * consumed an entry the host calls this function to update the queue's 857 * internal pointers. This routine returns the number of entries that were 858 * consumed by the HBA. 859 **/ 860 static uint32_t 861 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 862 { 863 /* sanity check on queue memory */ 864 if (unlikely(!hq) || unlikely(!dq)) 865 return 0; 866 867 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 868 return 0; 869 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 870 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 871 return 1; 872 } 873 874 /** 875 * lpfc_cmd_iocb - Get next command iocb entry in the ring 876 * @phba: Pointer to HBA context object. 877 * @pring: Pointer to driver SLI ring object. 878 * 879 * This function returns pointer to next command iocb entry 880 * in the command ring. The caller must hold hbalock to prevent 881 * other threads consume the next command iocb. 882 * SLI-2/SLI-3 provide different sized iocbs. 883 **/ 884 static inline IOCB_t * 885 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 886 { 887 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 888 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 889 } 890 891 /** 892 * lpfc_resp_iocb - Get next response iocb entry in the ring 893 * @phba: Pointer to HBA context object. 894 * @pring: Pointer to driver SLI ring object. 895 * 896 * This function returns pointer to next response iocb entry 897 * in the response ring. The caller must hold hbalock to make sure 898 * that no other thread consume the next response iocb. 899 * SLI-2/SLI-3 provide different sized iocbs. 900 **/ 901 static inline IOCB_t * 902 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 903 { 904 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 905 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 906 } 907 908 /** 909 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 910 * @phba: Pointer to HBA context object. 911 * 912 * This function is called with hbalock held. This function 913 * allocates a new driver iocb object from the iocb pool. If the 914 * allocation is successful, it returns pointer to the newly 915 * allocated iocb object else it returns NULL. 916 **/ 917 struct lpfc_iocbq * 918 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 919 { 920 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 921 struct lpfc_iocbq * iocbq = NULL; 922 923 lockdep_assert_held(&phba->hbalock); 924 925 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 926 if (iocbq) 927 phba->iocb_cnt++; 928 if (phba->iocb_cnt > phba->iocb_max) 929 phba->iocb_max = phba->iocb_cnt; 930 return iocbq; 931 } 932 933 /** 934 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 935 * @phba: Pointer to HBA context object. 936 * @xritag: XRI value. 937 * 938 * This function clears the sglq pointer from the array of active 939 * sglq's. The xritag that is passed in is used to index into the 940 * array. Before the xritag can be used it needs to be adjusted 941 * by subtracting the xribase. 942 * 943 * Returns sglq ponter = success, NULL = Failure. 944 **/ 945 struct lpfc_sglq * 946 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 947 { 948 struct lpfc_sglq *sglq; 949 950 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 951 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 952 return sglq; 953 } 954 955 /** 956 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 957 * @phba: Pointer to HBA context object. 958 * @xritag: XRI value. 959 * 960 * This function returns the sglq pointer from the array of active 961 * sglq's. The xritag that is passed in is used to index into the 962 * array. Before the xritag can be used it needs to be adjusted 963 * by subtracting the xribase. 964 * 965 * Returns sglq ponter = success, NULL = Failure. 966 **/ 967 struct lpfc_sglq * 968 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 969 { 970 struct lpfc_sglq *sglq; 971 972 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 973 return sglq; 974 } 975 976 /** 977 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 978 * @phba: Pointer to HBA context object. 979 * @xritag: xri used in this exchange. 980 * @rrq: The RRQ to be cleared. 981 * 982 **/ 983 void 984 lpfc_clr_rrq_active(struct lpfc_hba *phba, 985 uint16_t xritag, 986 struct lpfc_node_rrq *rrq) 987 { 988 struct lpfc_nodelist *ndlp = NULL; 989 990 /* Lookup did to verify if did is still active on this vport */ 991 if (rrq->vport) 992 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 993 994 if (!ndlp) 995 goto out; 996 997 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 998 rrq->send_rrq = 0; 999 rrq->xritag = 0; 1000 rrq->rrq_stop_time = 0; 1001 } 1002 out: 1003 mempool_free(rrq, phba->rrq_pool); 1004 } 1005 1006 /** 1007 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1008 * @phba: Pointer to HBA context object. 1009 * 1010 * This function is called with hbalock held. This function 1011 * Checks if stop_time (ratov from setting rrq active) has 1012 * been reached, if it has and the send_rrq flag is set then 1013 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1014 * then it will just call the routine to clear the rrq and 1015 * free the rrq resource. 1016 * The timer is set to the next rrq that is going to expire before 1017 * leaving the routine. 1018 * 1019 **/ 1020 void 1021 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1022 { 1023 struct lpfc_node_rrq *rrq; 1024 struct lpfc_node_rrq *nextrrq; 1025 unsigned long next_time; 1026 unsigned long iflags; 1027 LIST_HEAD(send_rrq); 1028 1029 spin_lock_irqsave(&phba->hbalock, iflags); 1030 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1031 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1032 list_for_each_entry_safe(rrq, nextrrq, 1033 &phba->active_rrq_list, list) { 1034 if (time_after(jiffies, rrq->rrq_stop_time)) 1035 list_move(&rrq->list, &send_rrq); 1036 else if (time_before(rrq->rrq_stop_time, next_time)) 1037 next_time = rrq->rrq_stop_time; 1038 } 1039 spin_unlock_irqrestore(&phba->hbalock, iflags); 1040 if ((!list_empty(&phba->active_rrq_list)) && 1041 (!(phba->pport->load_flag & FC_UNLOADING))) 1042 mod_timer(&phba->rrq_tmr, next_time); 1043 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1044 list_del(&rrq->list); 1045 if (!rrq->send_rrq) { 1046 /* this call will free the rrq */ 1047 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1048 } else if (lpfc_send_rrq(phba, rrq)) { 1049 /* if we send the rrq then the completion handler 1050 * will clear the bit in the xribitmap. 1051 */ 1052 lpfc_clr_rrq_active(phba, rrq->xritag, 1053 rrq); 1054 } 1055 } 1056 } 1057 1058 /** 1059 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1060 * @vport: Pointer to vport context object. 1061 * @xri: The xri used in the exchange. 1062 * @did: The targets DID for this exchange. 1063 * 1064 * returns NULL = rrq not found in the phba->active_rrq_list. 1065 * rrq = rrq for this xri and target. 1066 **/ 1067 struct lpfc_node_rrq * 1068 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1069 { 1070 struct lpfc_hba *phba = vport->phba; 1071 struct lpfc_node_rrq *rrq; 1072 struct lpfc_node_rrq *nextrrq; 1073 unsigned long iflags; 1074 1075 if (phba->sli_rev != LPFC_SLI_REV4) 1076 return NULL; 1077 spin_lock_irqsave(&phba->hbalock, iflags); 1078 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1079 if (rrq->vport == vport && rrq->xritag == xri && 1080 rrq->nlp_DID == did){ 1081 list_del(&rrq->list); 1082 spin_unlock_irqrestore(&phba->hbalock, iflags); 1083 return rrq; 1084 } 1085 } 1086 spin_unlock_irqrestore(&phba->hbalock, iflags); 1087 return NULL; 1088 } 1089 1090 /** 1091 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1092 * @vport: Pointer to vport context object. 1093 * @ndlp: Pointer to the lpfc_node_list structure. 1094 * If ndlp is NULL Remove all active RRQs for this vport from the 1095 * phba->active_rrq_list and clear the rrq. 1096 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1097 **/ 1098 void 1099 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1100 1101 { 1102 struct lpfc_hba *phba = vport->phba; 1103 struct lpfc_node_rrq *rrq; 1104 struct lpfc_node_rrq *nextrrq; 1105 unsigned long iflags; 1106 LIST_HEAD(rrq_list); 1107 1108 if (phba->sli_rev != LPFC_SLI_REV4) 1109 return; 1110 if (!ndlp) { 1111 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1112 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1113 } 1114 spin_lock_irqsave(&phba->hbalock, iflags); 1115 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1116 if (rrq->vport != vport) 1117 continue; 1118 1119 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1120 list_move(&rrq->list, &rrq_list); 1121 1122 } 1123 spin_unlock_irqrestore(&phba->hbalock, iflags); 1124 1125 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1126 list_del(&rrq->list); 1127 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1128 } 1129 } 1130 1131 /** 1132 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1133 * @phba: Pointer to HBA context object. 1134 * @ndlp: Targets nodelist pointer for this exchange. 1135 * @xritag: the xri in the bitmap to test. 1136 * 1137 * This function returns: 1138 * 0 = rrq not active for this xri 1139 * 1 = rrq is valid for this xri. 1140 **/ 1141 int 1142 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1143 uint16_t xritag) 1144 { 1145 if (!ndlp) 1146 return 0; 1147 if (!ndlp->active_rrqs_xri_bitmap) 1148 return 0; 1149 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1150 return 1; 1151 else 1152 return 0; 1153 } 1154 1155 /** 1156 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1157 * @phba: Pointer to HBA context object. 1158 * @ndlp: nodelist pointer for this target. 1159 * @xritag: xri used in this exchange. 1160 * @rxid: Remote Exchange ID. 1161 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1162 * 1163 * This function takes the hbalock. 1164 * The active bit is always set in the active rrq xri_bitmap even 1165 * if there is no slot avaiable for the other rrq information. 1166 * 1167 * returns 0 rrq actived for this xri 1168 * < 0 No memory or invalid ndlp. 1169 **/ 1170 int 1171 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1172 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1173 { 1174 unsigned long iflags; 1175 struct lpfc_node_rrq *rrq; 1176 int empty; 1177 1178 if (!ndlp) 1179 return -EINVAL; 1180 1181 if (!phba->cfg_enable_rrq) 1182 return -EINVAL; 1183 1184 spin_lock_irqsave(&phba->hbalock, iflags); 1185 if (phba->pport->load_flag & FC_UNLOADING) { 1186 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1187 goto out; 1188 } 1189 1190 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1191 goto out; 1192 1193 if (!ndlp->active_rrqs_xri_bitmap) 1194 goto out; 1195 1196 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1197 goto out; 1198 1199 spin_unlock_irqrestore(&phba->hbalock, iflags); 1200 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1201 if (!rrq) { 1202 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1203 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1204 " DID:0x%x Send:%d\n", 1205 xritag, rxid, ndlp->nlp_DID, send_rrq); 1206 return -EINVAL; 1207 } 1208 if (phba->cfg_enable_rrq == 1) 1209 rrq->send_rrq = send_rrq; 1210 else 1211 rrq->send_rrq = 0; 1212 rrq->xritag = xritag; 1213 rrq->rrq_stop_time = jiffies + 1214 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1215 rrq->nlp_DID = ndlp->nlp_DID; 1216 rrq->vport = ndlp->vport; 1217 rrq->rxid = rxid; 1218 spin_lock_irqsave(&phba->hbalock, iflags); 1219 empty = list_empty(&phba->active_rrq_list); 1220 list_add_tail(&rrq->list, &phba->active_rrq_list); 1221 phba->hba_flag |= HBA_RRQ_ACTIVE; 1222 if (empty) 1223 lpfc_worker_wake_up(phba); 1224 spin_unlock_irqrestore(&phba->hbalock, iflags); 1225 return 0; 1226 out: 1227 spin_unlock_irqrestore(&phba->hbalock, iflags); 1228 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1229 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1230 " DID:0x%x Send:%d\n", 1231 xritag, rxid, ndlp->nlp_DID, send_rrq); 1232 return -EINVAL; 1233 } 1234 1235 /** 1236 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1237 * @phba: Pointer to HBA context object. 1238 * @piocbq: Pointer to the iocbq. 1239 * 1240 * The driver calls this function with either the nvme ls ring lock 1241 * or the fc els ring lock held depending on the iocb usage. This function 1242 * gets a new driver sglq object from the sglq list. If the list is not empty 1243 * then it is successful, it returns pointer to the newly allocated sglq 1244 * object else it returns NULL. 1245 **/ 1246 static struct lpfc_sglq * 1247 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1248 { 1249 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1250 struct lpfc_sglq *sglq = NULL; 1251 struct lpfc_sglq *start_sglq = NULL; 1252 struct lpfc_io_buf *lpfc_cmd; 1253 struct lpfc_nodelist *ndlp; 1254 struct lpfc_sli_ring *pring = NULL; 1255 int found = 0; 1256 1257 if (piocbq->iocb_flag & LPFC_IO_NVME_LS) 1258 pring = phba->sli4_hba.nvmels_wq->pring; 1259 else 1260 pring = lpfc_phba_elsring(phba); 1261 1262 lockdep_assert_held(&pring->ring_lock); 1263 1264 if (piocbq->iocb_flag & LPFC_IO_FCP) { 1265 lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1; 1266 ndlp = lpfc_cmd->rdata->pnode; 1267 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 1268 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 1269 ndlp = piocbq->context_un.ndlp; 1270 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 1271 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 1272 ndlp = NULL; 1273 else 1274 ndlp = piocbq->context_un.ndlp; 1275 } else { 1276 ndlp = piocbq->context1; 1277 } 1278 1279 spin_lock(&phba->sli4_hba.sgl_list_lock); 1280 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1281 start_sglq = sglq; 1282 while (!found) { 1283 if (!sglq) 1284 break; 1285 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1286 test_bit(sglq->sli4_lxritag, 1287 ndlp->active_rrqs_xri_bitmap)) { 1288 /* This xri has an rrq outstanding for this DID. 1289 * put it back in the list and get another xri. 1290 */ 1291 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1292 sglq = NULL; 1293 list_remove_head(lpfc_els_sgl_list, sglq, 1294 struct lpfc_sglq, list); 1295 if (sglq == start_sglq) { 1296 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1297 sglq = NULL; 1298 break; 1299 } else 1300 continue; 1301 } 1302 sglq->ndlp = ndlp; 1303 found = 1; 1304 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1305 sglq->state = SGL_ALLOCATED; 1306 } 1307 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1308 return sglq; 1309 } 1310 1311 /** 1312 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1313 * @phba: Pointer to HBA context object. 1314 * @piocbq: Pointer to the iocbq. 1315 * 1316 * This function is called with the sgl_list lock held. This function 1317 * gets a new driver sglq object from the sglq list. If the 1318 * list is not empty then it is successful, it returns pointer to the newly 1319 * allocated sglq object else it returns NULL. 1320 **/ 1321 struct lpfc_sglq * 1322 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1323 { 1324 struct list_head *lpfc_nvmet_sgl_list; 1325 struct lpfc_sglq *sglq = NULL; 1326 1327 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1328 1329 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1330 1331 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1332 if (!sglq) 1333 return NULL; 1334 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1335 sglq->state = SGL_ALLOCATED; 1336 return sglq; 1337 } 1338 1339 /** 1340 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1341 * @phba: Pointer to HBA context object. 1342 * 1343 * This function is called with no lock held. This function 1344 * allocates a new driver iocb object from the iocb pool. If the 1345 * allocation is successful, it returns pointer to the newly 1346 * allocated iocb object else it returns NULL. 1347 **/ 1348 struct lpfc_iocbq * 1349 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1350 { 1351 struct lpfc_iocbq * iocbq = NULL; 1352 unsigned long iflags; 1353 1354 spin_lock_irqsave(&phba->hbalock, iflags); 1355 iocbq = __lpfc_sli_get_iocbq(phba); 1356 spin_unlock_irqrestore(&phba->hbalock, iflags); 1357 return iocbq; 1358 } 1359 1360 /** 1361 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1362 * @phba: Pointer to HBA context object. 1363 * @iocbq: Pointer to driver iocb object. 1364 * 1365 * This function is called to release the driver iocb object 1366 * to the iocb pool. The iotag in the iocb object 1367 * does not change for each use of the iocb object. This function 1368 * clears all other fields of the iocb object when it is freed. 1369 * The sqlq structure that holds the xritag and phys and virtual 1370 * mappings for the scatter gather list is retrieved from the 1371 * active array of sglq. The get of the sglq pointer also clears 1372 * the entry in the array. If the status of the IO indiactes that 1373 * this IO was aborted then the sglq entry it put on the 1374 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1375 * IO has good status or fails for any other reason then the sglq 1376 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1377 * asserted held in the code path calling this routine. 1378 **/ 1379 static void 1380 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1381 { 1382 struct lpfc_sglq *sglq; 1383 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1384 unsigned long iflag = 0; 1385 struct lpfc_sli_ring *pring; 1386 1387 if (iocbq->sli4_xritag == NO_XRI) 1388 sglq = NULL; 1389 else 1390 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1391 1392 1393 if (sglq) { 1394 if (iocbq->iocb_flag & LPFC_IO_NVMET) { 1395 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1396 iflag); 1397 sglq->state = SGL_FREED; 1398 sglq->ndlp = NULL; 1399 list_add_tail(&sglq->list, 1400 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1401 spin_unlock_irqrestore( 1402 &phba->sli4_hba.sgl_list_lock, iflag); 1403 goto out; 1404 } 1405 1406 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1407 (sglq->state != SGL_XRI_ABORTED)) { 1408 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1409 iflag); 1410 1411 /* Check if we can get a reference on ndlp */ 1412 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1413 sglq->ndlp = NULL; 1414 1415 list_add(&sglq->list, 1416 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1417 spin_unlock_irqrestore( 1418 &phba->sli4_hba.sgl_list_lock, iflag); 1419 } else { 1420 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1421 iflag); 1422 sglq->state = SGL_FREED; 1423 sglq->ndlp = NULL; 1424 list_add_tail(&sglq->list, 1425 &phba->sli4_hba.lpfc_els_sgl_list); 1426 spin_unlock_irqrestore( 1427 &phba->sli4_hba.sgl_list_lock, iflag); 1428 pring = lpfc_phba_elsring(phba); 1429 /* Check if TXQ queue needs to be serviced */ 1430 if (pring && (!list_empty(&pring->txq))) 1431 lpfc_worker_wake_up(phba); 1432 } 1433 } 1434 1435 out: 1436 /* 1437 * Clean all volatile data fields, preserve iotag and node struct. 1438 */ 1439 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1440 iocbq->sli4_lxritag = NO_XRI; 1441 iocbq->sli4_xritag = NO_XRI; 1442 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | 1443 LPFC_IO_NVME_LS); 1444 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1445 } 1446 1447 1448 /** 1449 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1450 * @phba: Pointer to HBA context object. 1451 * @iocbq: Pointer to driver iocb object. 1452 * 1453 * This function is called to release the driver iocb object to the 1454 * iocb pool. The iotag in the iocb object does not change for each 1455 * use of the iocb object. This function clears all other fields of 1456 * the iocb object when it is freed. The hbalock is asserted held in 1457 * the code path calling this routine. 1458 **/ 1459 static void 1460 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1461 { 1462 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1463 1464 /* 1465 * Clean all volatile data fields, preserve iotag and node struct. 1466 */ 1467 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1468 iocbq->sli4_xritag = NO_XRI; 1469 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1470 } 1471 1472 /** 1473 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1474 * @phba: Pointer to HBA context object. 1475 * @iocbq: Pointer to driver iocb object. 1476 * 1477 * This function is called with hbalock held to release driver 1478 * iocb object to the iocb pool. The iotag in the iocb object 1479 * does not change for each use of the iocb object. This function 1480 * clears all other fields of the iocb object when it is freed. 1481 **/ 1482 static void 1483 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1484 { 1485 lockdep_assert_held(&phba->hbalock); 1486 1487 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1488 phba->iocb_cnt--; 1489 } 1490 1491 /** 1492 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1493 * @phba: Pointer to HBA context object. 1494 * @iocbq: Pointer to driver iocb object. 1495 * 1496 * This function is called with no lock held to release the iocb to 1497 * iocb pool. 1498 **/ 1499 void 1500 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1501 { 1502 unsigned long iflags; 1503 1504 /* 1505 * Clean all volatile data fields, preserve iotag and node struct. 1506 */ 1507 spin_lock_irqsave(&phba->hbalock, iflags); 1508 __lpfc_sli_release_iocbq(phba, iocbq); 1509 spin_unlock_irqrestore(&phba->hbalock, iflags); 1510 } 1511 1512 /** 1513 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1514 * @phba: Pointer to HBA context object. 1515 * @iocblist: List of IOCBs. 1516 * @ulpstatus: ULP status in IOCB command field. 1517 * @ulpWord4: ULP word-4 in IOCB command field. 1518 * 1519 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1520 * on the list by invoking the complete callback function associated with the 1521 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1522 * fields. 1523 **/ 1524 void 1525 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1526 uint32_t ulpstatus, uint32_t ulpWord4) 1527 { 1528 struct lpfc_iocbq *piocb; 1529 1530 while (!list_empty(iocblist)) { 1531 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1532 if (piocb->wqe_cmpl) { 1533 if (piocb->iocb_flag & LPFC_IO_NVME) 1534 lpfc_nvme_cancel_iocb(phba, piocb, 1535 ulpstatus, ulpWord4); 1536 else 1537 lpfc_sli_release_iocbq(phba, piocb); 1538 1539 } else if (piocb->iocb_cmpl) { 1540 piocb->iocb.ulpStatus = ulpstatus; 1541 piocb->iocb.un.ulpWord[4] = ulpWord4; 1542 (piocb->iocb_cmpl) (phba, piocb, piocb); 1543 } else { 1544 lpfc_sli_release_iocbq(phba, piocb); 1545 } 1546 } 1547 return; 1548 } 1549 1550 /** 1551 * lpfc_sli_iocb_cmd_type - Get the iocb type 1552 * @iocb_cmnd: iocb command code. 1553 * 1554 * This function is called by ring event handler function to get the iocb type. 1555 * This function translates the iocb command to an iocb command type used to 1556 * decide the final disposition of each completed IOCB. 1557 * The function returns 1558 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1559 * LPFC_SOL_IOCB if it is a solicited iocb completion 1560 * LPFC_ABORT_IOCB if it is an abort iocb 1561 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1562 * 1563 * The caller is not required to hold any lock. 1564 **/ 1565 static lpfc_iocb_type 1566 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1567 { 1568 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1569 1570 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1571 return 0; 1572 1573 switch (iocb_cmnd) { 1574 case CMD_XMIT_SEQUENCE_CR: 1575 case CMD_XMIT_SEQUENCE_CX: 1576 case CMD_XMIT_BCAST_CN: 1577 case CMD_XMIT_BCAST_CX: 1578 case CMD_ELS_REQUEST_CR: 1579 case CMD_ELS_REQUEST_CX: 1580 case CMD_CREATE_XRI_CR: 1581 case CMD_CREATE_XRI_CX: 1582 case CMD_GET_RPI_CN: 1583 case CMD_XMIT_ELS_RSP_CX: 1584 case CMD_GET_RPI_CR: 1585 case CMD_FCP_IWRITE_CR: 1586 case CMD_FCP_IWRITE_CX: 1587 case CMD_FCP_IREAD_CR: 1588 case CMD_FCP_IREAD_CX: 1589 case CMD_FCP_ICMND_CR: 1590 case CMD_FCP_ICMND_CX: 1591 case CMD_FCP_TSEND_CX: 1592 case CMD_FCP_TRSP_CX: 1593 case CMD_FCP_TRECEIVE_CX: 1594 case CMD_FCP_AUTO_TRSP_CX: 1595 case CMD_ADAPTER_MSG: 1596 case CMD_ADAPTER_DUMP: 1597 case CMD_XMIT_SEQUENCE64_CR: 1598 case CMD_XMIT_SEQUENCE64_CX: 1599 case CMD_XMIT_BCAST64_CN: 1600 case CMD_XMIT_BCAST64_CX: 1601 case CMD_ELS_REQUEST64_CR: 1602 case CMD_ELS_REQUEST64_CX: 1603 case CMD_FCP_IWRITE64_CR: 1604 case CMD_FCP_IWRITE64_CX: 1605 case CMD_FCP_IREAD64_CR: 1606 case CMD_FCP_IREAD64_CX: 1607 case CMD_FCP_ICMND64_CR: 1608 case CMD_FCP_ICMND64_CX: 1609 case CMD_FCP_TSEND64_CX: 1610 case CMD_FCP_TRSP64_CX: 1611 case CMD_FCP_TRECEIVE64_CX: 1612 case CMD_GEN_REQUEST64_CR: 1613 case CMD_GEN_REQUEST64_CX: 1614 case CMD_XMIT_ELS_RSP64_CX: 1615 case DSSCMD_IWRITE64_CR: 1616 case DSSCMD_IWRITE64_CX: 1617 case DSSCMD_IREAD64_CR: 1618 case DSSCMD_IREAD64_CX: 1619 case CMD_SEND_FRAME: 1620 type = LPFC_SOL_IOCB; 1621 break; 1622 case CMD_ABORT_XRI_CN: 1623 case CMD_ABORT_XRI_CX: 1624 case CMD_CLOSE_XRI_CN: 1625 case CMD_CLOSE_XRI_CX: 1626 case CMD_XRI_ABORTED_CX: 1627 case CMD_ABORT_MXRI64_CN: 1628 case CMD_XMIT_BLS_RSP64_CX: 1629 type = LPFC_ABORT_IOCB; 1630 break; 1631 case CMD_RCV_SEQUENCE_CX: 1632 case CMD_RCV_ELS_REQ_CX: 1633 case CMD_RCV_SEQUENCE64_CX: 1634 case CMD_RCV_ELS_REQ64_CX: 1635 case CMD_ASYNC_STATUS: 1636 case CMD_IOCB_RCV_SEQ64_CX: 1637 case CMD_IOCB_RCV_ELS64_CX: 1638 case CMD_IOCB_RCV_CONT64_CX: 1639 case CMD_IOCB_RET_XRI64_CX: 1640 type = LPFC_UNSOL_IOCB; 1641 break; 1642 case CMD_IOCB_XMIT_MSEQ64_CR: 1643 case CMD_IOCB_XMIT_MSEQ64_CX: 1644 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1645 case CMD_IOCB_RCV_ELS_LIST64_CX: 1646 case CMD_IOCB_CLOSE_EXTENDED_CN: 1647 case CMD_IOCB_ABORT_EXTENDED_CN: 1648 case CMD_IOCB_RET_HBQE64_CN: 1649 case CMD_IOCB_FCP_IBIDIR64_CR: 1650 case CMD_IOCB_FCP_IBIDIR64_CX: 1651 case CMD_IOCB_FCP_ITASKMGT64_CX: 1652 case CMD_IOCB_LOGENTRY_CN: 1653 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1654 printk("%s - Unhandled SLI-3 Command x%x\n", 1655 __func__, iocb_cmnd); 1656 type = LPFC_UNKNOWN_IOCB; 1657 break; 1658 default: 1659 type = LPFC_UNKNOWN_IOCB; 1660 break; 1661 } 1662 1663 return type; 1664 } 1665 1666 /** 1667 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1668 * @phba: Pointer to HBA context object. 1669 * 1670 * This function is called from SLI initialization code 1671 * to configure every ring of the HBA's SLI interface. The 1672 * caller is not required to hold any lock. This function issues 1673 * a config_ring mailbox command for each ring. 1674 * This function returns zero if successful else returns a negative 1675 * error code. 1676 **/ 1677 static int 1678 lpfc_sli_ring_map(struct lpfc_hba *phba) 1679 { 1680 struct lpfc_sli *psli = &phba->sli; 1681 LPFC_MBOXQ_t *pmb; 1682 MAILBOX_t *pmbox; 1683 int i, rc, ret = 0; 1684 1685 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1686 if (!pmb) 1687 return -ENOMEM; 1688 pmbox = &pmb->u.mb; 1689 phba->link_state = LPFC_INIT_MBX_CMDS; 1690 for (i = 0; i < psli->num_rings; i++) { 1691 lpfc_config_ring(phba, i, pmb); 1692 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1693 if (rc != MBX_SUCCESS) { 1694 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1695 "0446 Adapter failed to init (%d), " 1696 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1697 "ring %d\n", 1698 rc, pmbox->mbxCommand, 1699 pmbox->mbxStatus, i); 1700 phba->link_state = LPFC_HBA_ERROR; 1701 ret = -ENXIO; 1702 break; 1703 } 1704 } 1705 mempool_free(pmb, phba->mbox_mem_pool); 1706 return ret; 1707 } 1708 1709 /** 1710 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1711 * @phba: Pointer to HBA context object. 1712 * @pring: Pointer to driver SLI ring object. 1713 * @piocb: Pointer to the driver iocb object. 1714 * 1715 * The driver calls this function with the hbalock held for SLI3 ports or 1716 * the ring lock held for SLI4 ports. The function adds the 1717 * new iocb to txcmplq of the given ring. This function always returns 1718 * 0. If this function is called for ELS ring, this function checks if 1719 * there is a vport associated with the ELS command. This function also 1720 * starts els_tmofunc timer if this is an ELS command. 1721 **/ 1722 static int 1723 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1724 struct lpfc_iocbq *piocb) 1725 { 1726 if (phba->sli_rev == LPFC_SLI_REV4) 1727 lockdep_assert_held(&pring->ring_lock); 1728 else 1729 lockdep_assert_held(&phba->hbalock); 1730 1731 BUG_ON(!piocb); 1732 1733 list_add_tail(&piocb->list, &pring->txcmplq); 1734 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1735 pring->txcmplq_cnt++; 1736 1737 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1738 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1739 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1740 BUG_ON(!piocb->vport); 1741 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1742 mod_timer(&piocb->vport->els_tmofunc, 1743 jiffies + 1744 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1745 } 1746 1747 return 0; 1748 } 1749 1750 /** 1751 * lpfc_sli_ringtx_get - Get first element of the txq 1752 * @phba: Pointer to HBA context object. 1753 * @pring: Pointer to driver SLI ring object. 1754 * 1755 * This function is called with hbalock held to get next 1756 * iocb in txq of the given ring. If there is any iocb in 1757 * the txq, the function returns first iocb in the list after 1758 * removing the iocb from the list, else it returns NULL. 1759 **/ 1760 struct lpfc_iocbq * 1761 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1762 { 1763 struct lpfc_iocbq *cmd_iocb; 1764 1765 lockdep_assert_held(&phba->hbalock); 1766 1767 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1768 return cmd_iocb; 1769 } 1770 1771 /** 1772 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1773 * @phba: Pointer to HBA context object. 1774 * @pring: Pointer to driver SLI ring object. 1775 * 1776 * This function is called with hbalock held and the caller must post the 1777 * iocb without releasing the lock. If the caller releases the lock, 1778 * iocb slot returned by the function is not guaranteed to be available. 1779 * The function returns pointer to the next available iocb slot if there 1780 * is available slot in the ring, else it returns NULL. 1781 * If the get index of the ring is ahead of the put index, the function 1782 * will post an error attention event to the worker thread to take the 1783 * HBA to offline state. 1784 **/ 1785 static IOCB_t * 1786 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1787 { 1788 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1789 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1790 1791 lockdep_assert_held(&phba->hbalock); 1792 1793 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1794 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1795 pring->sli.sli3.next_cmdidx = 0; 1796 1797 if (unlikely(pring->sli.sli3.local_getidx == 1798 pring->sli.sli3.next_cmdidx)) { 1799 1800 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1801 1802 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1803 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1804 "0315 Ring %d issue: portCmdGet %d " 1805 "is bigger than cmd ring %d\n", 1806 pring->ringno, 1807 pring->sli.sli3.local_getidx, 1808 max_cmd_idx); 1809 1810 phba->link_state = LPFC_HBA_ERROR; 1811 /* 1812 * All error attention handlers are posted to 1813 * worker thread 1814 */ 1815 phba->work_ha |= HA_ERATT; 1816 phba->work_hs = HS_FFER3; 1817 1818 lpfc_worker_wake_up(phba); 1819 1820 return NULL; 1821 } 1822 1823 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1824 return NULL; 1825 } 1826 1827 return lpfc_cmd_iocb(phba, pring); 1828 } 1829 1830 /** 1831 * lpfc_sli_next_iotag - Get an iotag for the iocb 1832 * @phba: Pointer to HBA context object. 1833 * @iocbq: Pointer to driver iocb object. 1834 * 1835 * This function gets an iotag for the iocb. If there is no unused iotag and 1836 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1837 * array and assigns a new iotag. 1838 * The function returns the allocated iotag if successful, else returns zero. 1839 * Zero is not a valid iotag. 1840 * The caller is not required to hold any lock. 1841 **/ 1842 uint16_t 1843 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1844 { 1845 struct lpfc_iocbq **new_arr; 1846 struct lpfc_iocbq **old_arr; 1847 size_t new_len; 1848 struct lpfc_sli *psli = &phba->sli; 1849 uint16_t iotag; 1850 1851 spin_lock_irq(&phba->hbalock); 1852 iotag = psli->last_iotag; 1853 if(++iotag < psli->iocbq_lookup_len) { 1854 psli->last_iotag = iotag; 1855 psli->iocbq_lookup[iotag] = iocbq; 1856 spin_unlock_irq(&phba->hbalock); 1857 iocbq->iotag = iotag; 1858 return iotag; 1859 } else if (psli->iocbq_lookup_len < (0xffff 1860 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1861 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1862 spin_unlock_irq(&phba->hbalock); 1863 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 1864 GFP_KERNEL); 1865 if (new_arr) { 1866 spin_lock_irq(&phba->hbalock); 1867 old_arr = psli->iocbq_lookup; 1868 if (new_len <= psli->iocbq_lookup_len) { 1869 /* highly unprobable case */ 1870 kfree(new_arr); 1871 iotag = psli->last_iotag; 1872 if(++iotag < psli->iocbq_lookup_len) { 1873 psli->last_iotag = iotag; 1874 psli->iocbq_lookup[iotag] = iocbq; 1875 spin_unlock_irq(&phba->hbalock); 1876 iocbq->iotag = iotag; 1877 return iotag; 1878 } 1879 spin_unlock_irq(&phba->hbalock); 1880 return 0; 1881 } 1882 if (psli->iocbq_lookup) 1883 memcpy(new_arr, old_arr, 1884 ((psli->last_iotag + 1) * 1885 sizeof (struct lpfc_iocbq *))); 1886 psli->iocbq_lookup = new_arr; 1887 psli->iocbq_lookup_len = new_len; 1888 psli->last_iotag = iotag; 1889 psli->iocbq_lookup[iotag] = iocbq; 1890 spin_unlock_irq(&phba->hbalock); 1891 iocbq->iotag = iotag; 1892 kfree(old_arr); 1893 return iotag; 1894 } 1895 } else 1896 spin_unlock_irq(&phba->hbalock); 1897 1898 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1899 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1900 psli->last_iotag); 1901 1902 return 0; 1903 } 1904 1905 /** 1906 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1907 * @phba: Pointer to HBA context object. 1908 * @pring: Pointer to driver SLI ring object. 1909 * @iocb: Pointer to iocb slot in the ring. 1910 * @nextiocb: Pointer to driver iocb object which need to be 1911 * posted to firmware. 1912 * 1913 * This function is called to post a new iocb to the firmware. This 1914 * function copies the new iocb to ring iocb slot and updates the 1915 * ring pointers. It adds the new iocb to txcmplq if there is 1916 * a completion call back for this iocb else the function will free the 1917 * iocb object. The hbalock is asserted held in the code path calling 1918 * this routine. 1919 **/ 1920 static void 1921 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1922 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1923 { 1924 /* 1925 * Set up an iotag 1926 */ 1927 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1928 1929 1930 if (pring->ringno == LPFC_ELS_RING) { 1931 lpfc_debugfs_slow_ring_trc(phba, 1932 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1933 *(((uint32_t *) &nextiocb->iocb) + 4), 1934 *(((uint32_t *) &nextiocb->iocb) + 6), 1935 *(((uint32_t *) &nextiocb->iocb) + 7)); 1936 } 1937 1938 /* 1939 * Issue iocb command to adapter 1940 */ 1941 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1942 wmb(); 1943 pring->stats.iocb_cmd++; 1944 1945 /* 1946 * If there is no completion routine to call, we can release the 1947 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1948 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1949 */ 1950 if (nextiocb->iocb_cmpl) 1951 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1952 else 1953 __lpfc_sli_release_iocbq(phba, nextiocb); 1954 1955 /* 1956 * Let the HBA know what IOCB slot will be the next one the 1957 * driver will put a command into. 1958 */ 1959 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1960 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1961 } 1962 1963 /** 1964 * lpfc_sli_update_full_ring - Update the chip attention register 1965 * @phba: Pointer to HBA context object. 1966 * @pring: Pointer to driver SLI ring object. 1967 * 1968 * The caller is not required to hold any lock for calling this function. 1969 * This function updates the chip attention bits for the ring to inform firmware 1970 * that there are pending work to be done for this ring and requests an 1971 * interrupt when there is space available in the ring. This function is 1972 * called when the driver is unable to post more iocbs to the ring due 1973 * to unavailability of space in the ring. 1974 **/ 1975 static void 1976 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1977 { 1978 int ringno = pring->ringno; 1979 1980 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1981 1982 wmb(); 1983 1984 /* 1985 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1986 * The HBA will tell us when an IOCB entry is available. 1987 */ 1988 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1989 readl(phba->CAregaddr); /* flush */ 1990 1991 pring->stats.iocb_cmd_full++; 1992 } 1993 1994 /** 1995 * lpfc_sli_update_ring - Update chip attention register 1996 * @phba: Pointer to HBA context object. 1997 * @pring: Pointer to driver SLI ring object. 1998 * 1999 * This function updates the chip attention register bit for the 2000 * given ring to inform HBA that there is more work to be done 2001 * in this ring. The caller is not required to hold any lock. 2002 **/ 2003 static void 2004 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2005 { 2006 int ringno = pring->ringno; 2007 2008 /* 2009 * Tell the HBA that there is work to do in this ring. 2010 */ 2011 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2012 wmb(); 2013 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2014 readl(phba->CAregaddr); /* flush */ 2015 } 2016 } 2017 2018 /** 2019 * lpfc_sli_resume_iocb - Process iocbs in the txq 2020 * @phba: Pointer to HBA context object. 2021 * @pring: Pointer to driver SLI ring object. 2022 * 2023 * This function is called with hbalock held to post pending iocbs 2024 * in the txq to the firmware. This function is called when driver 2025 * detects space available in the ring. 2026 **/ 2027 static void 2028 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2029 { 2030 IOCB_t *iocb; 2031 struct lpfc_iocbq *nextiocb; 2032 2033 lockdep_assert_held(&phba->hbalock); 2034 2035 /* 2036 * Check to see if: 2037 * (a) there is anything on the txq to send 2038 * (b) link is up 2039 * (c) link attention events can be processed (fcp ring only) 2040 * (d) IOCB processing is not blocked by the outstanding mbox command. 2041 */ 2042 2043 if (lpfc_is_link_up(phba) && 2044 (!list_empty(&pring->txq)) && 2045 (pring->ringno != LPFC_FCP_RING || 2046 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2047 2048 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2049 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2050 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2051 2052 if (iocb) 2053 lpfc_sli_update_ring(phba, pring); 2054 else 2055 lpfc_sli_update_full_ring(phba, pring); 2056 } 2057 2058 return; 2059 } 2060 2061 /** 2062 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2063 * @phba: Pointer to HBA context object. 2064 * @hbqno: HBQ number. 2065 * 2066 * This function is called with hbalock held to get the next 2067 * available slot for the given HBQ. If there is free slot 2068 * available for the HBQ it will return pointer to the next available 2069 * HBQ entry else it will return NULL. 2070 **/ 2071 static struct lpfc_hbq_entry * 2072 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2073 { 2074 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2075 2076 lockdep_assert_held(&phba->hbalock); 2077 2078 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2079 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2080 hbqp->next_hbqPutIdx = 0; 2081 2082 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2083 uint32_t raw_index = phba->hbq_get[hbqno]; 2084 uint32_t getidx = le32_to_cpu(raw_index); 2085 2086 hbqp->local_hbqGetIdx = getidx; 2087 2088 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2089 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2090 "1802 HBQ %d: local_hbqGetIdx " 2091 "%u is > than hbqp->entry_count %u\n", 2092 hbqno, hbqp->local_hbqGetIdx, 2093 hbqp->entry_count); 2094 2095 phba->link_state = LPFC_HBA_ERROR; 2096 return NULL; 2097 } 2098 2099 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2100 return NULL; 2101 } 2102 2103 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2104 hbqp->hbqPutIdx; 2105 } 2106 2107 /** 2108 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2109 * @phba: Pointer to HBA context object. 2110 * 2111 * This function is called with no lock held to free all the 2112 * hbq buffers while uninitializing the SLI interface. It also 2113 * frees the HBQ buffers returned by the firmware but not yet 2114 * processed by the upper layers. 2115 **/ 2116 void 2117 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2118 { 2119 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2120 struct hbq_dmabuf *hbq_buf; 2121 unsigned long flags; 2122 int i, hbq_count; 2123 2124 hbq_count = lpfc_sli_hbq_count(); 2125 /* Return all memory used by all HBQs */ 2126 spin_lock_irqsave(&phba->hbalock, flags); 2127 for (i = 0; i < hbq_count; ++i) { 2128 list_for_each_entry_safe(dmabuf, next_dmabuf, 2129 &phba->hbqs[i].hbq_buffer_list, list) { 2130 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2131 list_del(&hbq_buf->dbuf.list); 2132 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2133 } 2134 phba->hbqs[i].buffer_count = 0; 2135 } 2136 2137 /* Mark the HBQs not in use */ 2138 phba->hbq_in_use = 0; 2139 spin_unlock_irqrestore(&phba->hbalock, flags); 2140 } 2141 2142 /** 2143 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2144 * @phba: Pointer to HBA context object. 2145 * @hbqno: HBQ number. 2146 * @hbq_buf: Pointer to HBQ buffer. 2147 * 2148 * This function is called with the hbalock held to post a 2149 * hbq buffer to the firmware. If the function finds an empty 2150 * slot in the HBQ, it will post the buffer. The function will return 2151 * pointer to the hbq entry if it successfully post the buffer 2152 * else it will return NULL. 2153 **/ 2154 static int 2155 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2156 struct hbq_dmabuf *hbq_buf) 2157 { 2158 lockdep_assert_held(&phba->hbalock); 2159 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2160 } 2161 2162 /** 2163 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2164 * @phba: Pointer to HBA context object. 2165 * @hbqno: HBQ number. 2166 * @hbq_buf: Pointer to HBQ buffer. 2167 * 2168 * This function is called with the hbalock held to post a hbq buffer to the 2169 * firmware. If the function finds an empty slot in the HBQ, it will post the 2170 * buffer and place it on the hbq_buffer_list. The function will return zero if 2171 * it successfully post the buffer else it will return an error. 2172 **/ 2173 static int 2174 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2175 struct hbq_dmabuf *hbq_buf) 2176 { 2177 struct lpfc_hbq_entry *hbqe; 2178 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2179 2180 lockdep_assert_held(&phba->hbalock); 2181 /* Get next HBQ entry slot to use */ 2182 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2183 if (hbqe) { 2184 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2185 2186 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2187 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2188 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2189 hbqe->bde.tus.f.bdeFlags = 0; 2190 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2191 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2192 /* Sync SLIM */ 2193 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2194 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2195 /* flush */ 2196 readl(phba->hbq_put + hbqno); 2197 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2198 return 0; 2199 } else 2200 return -ENOMEM; 2201 } 2202 2203 /** 2204 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2205 * @phba: Pointer to HBA context object. 2206 * @hbqno: HBQ number. 2207 * @hbq_buf: Pointer to HBQ buffer. 2208 * 2209 * This function is called with the hbalock held to post an RQE to the SLI4 2210 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2211 * the hbq_buffer_list and return zero, otherwise it will return an error. 2212 **/ 2213 static int 2214 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2215 struct hbq_dmabuf *hbq_buf) 2216 { 2217 int rc; 2218 struct lpfc_rqe hrqe; 2219 struct lpfc_rqe drqe; 2220 struct lpfc_queue *hrq; 2221 struct lpfc_queue *drq; 2222 2223 if (hbqno != LPFC_ELS_HBQ) 2224 return 1; 2225 hrq = phba->sli4_hba.hdr_rq; 2226 drq = phba->sli4_hba.dat_rq; 2227 2228 lockdep_assert_held(&phba->hbalock); 2229 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2230 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2231 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2232 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2233 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2234 if (rc < 0) 2235 return rc; 2236 hbq_buf->tag = (rc | (hbqno << 16)); 2237 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2238 return 0; 2239 } 2240 2241 /* HBQ for ELS and CT traffic. */ 2242 static struct lpfc_hbq_init lpfc_els_hbq = { 2243 .rn = 1, 2244 .entry_count = 256, 2245 .mask_count = 0, 2246 .profile = 0, 2247 .ring_mask = (1 << LPFC_ELS_RING), 2248 .buffer_count = 0, 2249 .init_count = 40, 2250 .add_count = 40, 2251 }; 2252 2253 /* Array of HBQs */ 2254 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2255 &lpfc_els_hbq, 2256 }; 2257 2258 /** 2259 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2260 * @phba: Pointer to HBA context object. 2261 * @hbqno: HBQ number. 2262 * @count: Number of HBQ buffers to be posted. 2263 * 2264 * This function is called with no lock held to post more hbq buffers to the 2265 * given HBQ. The function returns the number of HBQ buffers successfully 2266 * posted. 2267 **/ 2268 static int 2269 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2270 { 2271 uint32_t i, posted = 0; 2272 unsigned long flags; 2273 struct hbq_dmabuf *hbq_buffer; 2274 LIST_HEAD(hbq_buf_list); 2275 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2276 return 0; 2277 2278 if ((phba->hbqs[hbqno].buffer_count + count) > 2279 lpfc_hbq_defs[hbqno]->entry_count) 2280 count = lpfc_hbq_defs[hbqno]->entry_count - 2281 phba->hbqs[hbqno].buffer_count; 2282 if (!count) 2283 return 0; 2284 /* Allocate HBQ entries */ 2285 for (i = 0; i < count; i++) { 2286 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2287 if (!hbq_buffer) 2288 break; 2289 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2290 } 2291 /* Check whether HBQ is still in use */ 2292 spin_lock_irqsave(&phba->hbalock, flags); 2293 if (!phba->hbq_in_use) 2294 goto err; 2295 while (!list_empty(&hbq_buf_list)) { 2296 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2297 dbuf.list); 2298 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2299 (hbqno << 16)); 2300 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2301 phba->hbqs[hbqno].buffer_count++; 2302 posted++; 2303 } else 2304 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2305 } 2306 spin_unlock_irqrestore(&phba->hbalock, flags); 2307 return posted; 2308 err: 2309 spin_unlock_irqrestore(&phba->hbalock, flags); 2310 while (!list_empty(&hbq_buf_list)) { 2311 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2312 dbuf.list); 2313 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2314 } 2315 return 0; 2316 } 2317 2318 /** 2319 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2320 * @phba: Pointer to HBA context object. 2321 * @qno: HBQ number. 2322 * 2323 * This function posts more buffers to the HBQ. This function 2324 * is called with no lock held. The function returns the number of HBQ entries 2325 * successfully allocated. 2326 **/ 2327 int 2328 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2329 { 2330 if (phba->sli_rev == LPFC_SLI_REV4) 2331 return 0; 2332 else 2333 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2334 lpfc_hbq_defs[qno]->add_count); 2335 } 2336 2337 /** 2338 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2339 * @phba: Pointer to HBA context object. 2340 * @qno: HBQ queue number. 2341 * 2342 * This function is called from SLI initialization code path with 2343 * no lock held to post initial HBQ buffers to firmware. The 2344 * function returns the number of HBQ entries successfully allocated. 2345 **/ 2346 static int 2347 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2348 { 2349 if (phba->sli_rev == LPFC_SLI_REV4) 2350 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2351 lpfc_hbq_defs[qno]->entry_count); 2352 else 2353 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2354 lpfc_hbq_defs[qno]->init_count); 2355 } 2356 2357 /* 2358 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2359 * 2360 * This function removes the first hbq buffer on an hbq list and returns a 2361 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2362 **/ 2363 static struct hbq_dmabuf * 2364 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2365 { 2366 struct lpfc_dmabuf *d_buf; 2367 2368 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2369 if (!d_buf) 2370 return NULL; 2371 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2372 } 2373 2374 /** 2375 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2376 * @phba: Pointer to HBA context object. 2377 * @hrq: HBQ number. 2378 * 2379 * This function removes the first RQ buffer on an RQ buffer list and returns a 2380 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2381 **/ 2382 static struct rqb_dmabuf * 2383 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2384 { 2385 struct lpfc_dmabuf *h_buf; 2386 struct lpfc_rqb *rqbp; 2387 2388 rqbp = hrq->rqbp; 2389 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2390 struct lpfc_dmabuf, list); 2391 if (!h_buf) 2392 return NULL; 2393 rqbp->buffer_count--; 2394 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2395 } 2396 2397 /** 2398 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2399 * @phba: Pointer to HBA context object. 2400 * @tag: Tag of the hbq buffer. 2401 * 2402 * This function searches for the hbq buffer associated with the given tag in 2403 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2404 * otherwise it returns NULL. 2405 **/ 2406 static struct hbq_dmabuf * 2407 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2408 { 2409 struct lpfc_dmabuf *d_buf; 2410 struct hbq_dmabuf *hbq_buf; 2411 uint32_t hbqno; 2412 2413 hbqno = tag >> 16; 2414 if (hbqno >= LPFC_MAX_HBQS) 2415 return NULL; 2416 2417 spin_lock_irq(&phba->hbalock); 2418 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2419 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2420 if (hbq_buf->tag == tag) { 2421 spin_unlock_irq(&phba->hbalock); 2422 return hbq_buf; 2423 } 2424 } 2425 spin_unlock_irq(&phba->hbalock); 2426 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2427 "1803 Bad hbq tag. Data: x%x x%x\n", 2428 tag, phba->hbqs[tag >> 16].buffer_count); 2429 return NULL; 2430 } 2431 2432 /** 2433 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2434 * @phba: Pointer to HBA context object. 2435 * @hbq_buffer: Pointer to HBQ buffer. 2436 * 2437 * This function is called with hbalock. This function gives back 2438 * the hbq buffer to firmware. If the HBQ does not have space to 2439 * post the buffer, it will free the buffer. 2440 **/ 2441 void 2442 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2443 { 2444 uint32_t hbqno; 2445 2446 if (hbq_buffer) { 2447 hbqno = hbq_buffer->tag >> 16; 2448 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2449 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2450 } 2451 } 2452 2453 /** 2454 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2455 * @mbxCommand: mailbox command code. 2456 * 2457 * This function is called by the mailbox event handler function to verify 2458 * that the completed mailbox command is a legitimate mailbox command. If the 2459 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2460 * and the mailbox event handler will take the HBA offline. 2461 **/ 2462 static int 2463 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2464 { 2465 uint8_t ret; 2466 2467 switch (mbxCommand) { 2468 case MBX_LOAD_SM: 2469 case MBX_READ_NV: 2470 case MBX_WRITE_NV: 2471 case MBX_WRITE_VPARMS: 2472 case MBX_RUN_BIU_DIAG: 2473 case MBX_INIT_LINK: 2474 case MBX_DOWN_LINK: 2475 case MBX_CONFIG_LINK: 2476 case MBX_CONFIG_RING: 2477 case MBX_RESET_RING: 2478 case MBX_READ_CONFIG: 2479 case MBX_READ_RCONFIG: 2480 case MBX_READ_SPARM: 2481 case MBX_READ_STATUS: 2482 case MBX_READ_RPI: 2483 case MBX_READ_XRI: 2484 case MBX_READ_REV: 2485 case MBX_READ_LNK_STAT: 2486 case MBX_REG_LOGIN: 2487 case MBX_UNREG_LOGIN: 2488 case MBX_CLEAR_LA: 2489 case MBX_DUMP_MEMORY: 2490 case MBX_DUMP_CONTEXT: 2491 case MBX_RUN_DIAGS: 2492 case MBX_RESTART: 2493 case MBX_UPDATE_CFG: 2494 case MBX_DOWN_LOAD: 2495 case MBX_DEL_LD_ENTRY: 2496 case MBX_RUN_PROGRAM: 2497 case MBX_SET_MASK: 2498 case MBX_SET_VARIABLE: 2499 case MBX_UNREG_D_ID: 2500 case MBX_KILL_BOARD: 2501 case MBX_CONFIG_FARP: 2502 case MBX_BEACON: 2503 case MBX_LOAD_AREA: 2504 case MBX_RUN_BIU_DIAG64: 2505 case MBX_CONFIG_PORT: 2506 case MBX_READ_SPARM64: 2507 case MBX_READ_RPI64: 2508 case MBX_REG_LOGIN64: 2509 case MBX_READ_TOPOLOGY: 2510 case MBX_WRITE_WWN: 2511 case MBX_SET_DEBUG: 2512 case MBX_LOAD_EXP_ROM: 2513 case MBX_ASYNCEVT_ENABLE: 2514 case MBX_REG_VPI: 2515 case MBX_UNREG_VPI: 2516 case MBX_HEARTBEAT: 2517 case MBX_PORT_CAPABILITIES: 2518 case MBX_PORT_IOV_CONTROL: 2519 case MBX_SLI4_CONFIG: 2520 case MBX_SLI4_REQ_FTRS: 2521 case MBX_REG_FCFI: 2522 case MBX_UNREG_FCFI: 2523 case MBX_REG_VFI: 2524 case MBX_UNREG_VFI: 2525 case MBX_INIT_VPI: 2526 case MBX_INIT_VFI: 2527 case MBX_RESUME_RPI: 2528 case MBX_READ_EVENT_LOG_STATUS: 2529 case MBX_READ_EVENT_LOG: 2530 case MBX_SECURITY_MGMT: 2531 case MBX_AUTH_PORT: 2532 case MBX_ACCESS_VDATA: 2533 ret = mbxCommand; 2534 break; 2535 default: 2536 ret = MBX_SHUTDOWN; 2537 break; 2538 } 2539 return ret; 2540 } 2541 2542 /** 2543 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2544 * @phba: Pointer to HBA context object. 2545 * @pmboxq: Pointer to mailbox command. 2546 * 2547 * This is completion handler function for mailbox commands issued from 2548 * lpfc_sli_issue_mbox_wait function. This function is called by the 2549 * mailbox event handler function with no lock held. This function 2550 * will wake up thread waiting on the wait queue pointed by context1 2551 * of the mailbox. 2552 **/ 2553 void 2554 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2555 { 2556 unsigned long drvr_flag; 2557 struct completion *pmbox_done; 2558 2559 /* 2560 * If pmbox_done is empty, the driver thread gave up waiting and 2561 * continued running. 2562 */ 2563 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2564 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2565 pmbox_done = (struct completion *)pmboxq->context3; 2566 if (pmbox_done) 2567 complete(pmbox_done); 2568 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2569 return; 2570 } 2571 2572 static void 2573 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2574 { 2575 unsigned long iflags; 2576 2577 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2578 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2579 spin_lock_irqsave(&ndlp->lock, iflags); 2580 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2581 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2582 spin_unlock_irqrestore(&ndlp->lock, iflags); 2583 } 2584 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2585 } 2586 2587 /** 2588 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2589 * @phba: Pointer to HBA context object. 2590 * @pmb: Pointer to mailbox object. 2591 * 2592 * This function is the default mailbox completion handler. It 2593 * frees the memory resources associated with the completed mailbox 2594 * command. If the completed command is a REG_LOGIN mailbox command, 2595 * this function will issue a UREG_LOGIN to re-claim the RPI. 2596 **/ 2597 void 2598 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2599 { 2600 struct lpfc_vport *vport = pmb->vport; 2601 struct lpfc_dmabuf *mp; 2602 struct lpfc_nodelist *ndlp; 2603 struct Scsi_Host *shost; 2604 uint16_t rpi, vpi; 2605 int rc; 2606 2607 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 2608 2609 if (mp) { 2610 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2611 kfree(mp); 2612 } 2613 2614 /* 2615 * If a REG_LOGIN succeeded after node is destroyed or node 2616 * is in re-discovery driver need to cleanup the RPI. 2617 */ 2618 if (!(phba->pport->load_flag & FC_UNLOADING) && 2619 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2620 !pmb->u.mb.mbxStatus) { 2621 rpi = pmb->u.mb.un.varWords[0]; 2622 vpi = pmb->u.mb.un.varRegLogin.vpi; 2623 if (phba->sli_rev == LPFC_SLI_REV4) 2624 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2625 lpfc_unreg_login(phba, vpi, rpi, pmb); 2626 pmb->vport = vport; 2627 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2628 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2629 if (rc != MBX_NOT_FINISHED) 2630 return; 2631 } 2632 2633 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2634 !(phba->pport->load_flag & FC_UNLOADING) && 2635 !pmb->u.mb.mbxStatus) { 2636 shost = lpfc_shost_from_vport(vport); 2637 spin_lock_irq(shost->host_lock); 2638 vport->vpi_state |= LPFC_VPI_REGISTERED; 2639 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2640 spin_unlock_irq(shost->host_lock); 2641 } 2642 2643 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2644 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2645 lpfc_nlp_put(ndlp); 2646 pmb->ctx_buf = NULL; 2647 pmb->ctx_ndlp = NULL; 2648 } 2649 2650 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2651 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2652 2653 /* Check to see if there are any deferred events to process */ 2654 if (ndlp) { 2655 lpfc_printf_vlog( 2656 vport, 2657 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2658 "1438 UNREG cmpl deferred mbox x%x " 2659 "on NPort x%x Data: x%x x%x x%px x%x x%x\n", 2660 ndlp->nlp_rpi, ndlp->nlp_DID, 2661 ndlp->nlp_flag, ndlp->nlp_defer_did, 2662 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2663 2664 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2665 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2666 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2667 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2668 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2669 } else { 2670 __lpfc_sli_rpi_release(vport, ndlp); 2671 } 2672 2673 /* The unreg_login mailbox is complete and had a 2674 * reference that has to be released. The PLOGI 2675 * got its own ref. 2676 */ 2677 lpfc_nlp_put(ndlp); 2678 pmb->ctx_ndlp = NULL; 2679 } 2680 } 2681 2682 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2683 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2684 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2685 lpfc_nlp_put(ndlp); 2686 } 2687 2688 /* Check security permission status on INIT_LINK mailbox command */ 2689 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2690 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2691 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2692 "2860 SLI authentication is required " 2693 "for INIT_LINK but has not done yet\n"); 2694 2695 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2696 lpfc_sli4_mbox_cmd_free(phba, pmb); 2697 else 2698 mempool_free(pmb, phba->mbox_mem_pool); 2699 } 2700 /** 2701 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2702 * @phba: Pointer to HBA context object. 2703 * @pmb: Pointer to mailbox object. 2704 * 2705 * This function is the unreg rpi mailbox completion handler. It 2706 * frees the memory resources associated with the completed mailbox 2707 * command. An additional reference is put on the ndlp to prevent 2708 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2709 * the unreg mailbox command completes, this routine puts the 2710 * reference back. 2711 * 2712 **/ 2713 void 2714 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2715 { 2716 struct lpfc_vport *vport = pmb->vport; 2717 struct lpfc_nodelist *ndlp; 2718 2719 ndlp = pmb->ctx_ndlp; 2720 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2721 if (phba->sli_rev == LPFC_SLI_REV4 && 2722 (bf_get(lpfc_sli_intf_if_type, 2723 &phba->sli4_hba.sli_intf) >= 2724 LPFC_SLI_INTF_IF_TYPE_2)) { 2725 if (ndlp) { 2726 lpfc_printf_vlog( 2727 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2728 "0010 UNREG_LOGIN vpi:%x " 2729 "rpi:%x DID:%x defer x%x flg x%x " 2730 "x%px\n", 2731 vport->vpi, ndlp->nlp_rpi, 2732 ndlp->nlp_DID, ndlp->nlp_defer_did, 2733 ndlp->nlp_flag, 2734 ndlp); 2735 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2736 2737 /* Check to see if there are any deferred 2738 * events to process 2739 */ 2740 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2741 (ndlp->nlp_defer_did != 2742 NLP_EVT_NOTHING_PENDING)) { 2743 lpfc_printf_vlog( 2744 vport, KERN_INFO, LOG_DISCOVERY, 2745 "4111 UNREG cmpl deferred " 2746 "clr x%x on " 2747 "NPort x%x Data: x%x x%px\n", 2748 ndlp->nlp_rpi, ndlp->nlp_DID, 2749 ndlp->nlp_defer_did, ndlp); 2750 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2751 ndlp->nlp_defer_did = 2752 NLP_EVT_NOTHING_PENDING; 2753 lpfc_issue_els_plogi( 2754 vport, ndlp->nlp_DID, 0); 2755 } else { 2756 __lpfc_sli_rpi_release(vport, ndlp); 2757 } 2758 lpfc_nlp_put(ndlp); 2759 } 2760 } 2761 } 2762 2763 mempool_free(pmb, phba->mbox_mem_pool); 2764 } 2765 2766 /** 2767 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2768 * @phba: Pointer to HBA context object. 2769 * 2770 * This function is called with no lock held. This function processes all 2771 * the completed mailbox commands and gives it to upper layers. The interrupt 2772 * service routine processes mailbox completion interrupt and adds completed 2773 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2774 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2775 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2776 * function returns the mailbox commands to the upper layer by calling the 2777 * completion handler function of each mailbox. 2778 **/ 2779 int 2780 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2781 { 2782 MAILBOX_t *pmbox; 2783 LPFC_MBOXQ_t *pmb; 2784 int rc; 2785 LIST_HEAD(cmplq); 2786 2787 phba->sli.slistat.mbox_event++; 2788 2789 /* Get all completed mailboxe buffers into the cmplq */ 2790 spin_lock_irq(&phba->hbalock); 2791 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2792 spin_unlock_irq(&phba->hbalock); 2793 2794 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2795 do { 2796 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2797 if (pmb == NULL) 2798 break; 2799 2800 pmbox = &pmb->u.mb; 2801 2802 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2803 if (pmb->vport) { 2804 lpfc_debugfs_disc_trc(pmb->vport, 2805 LPFC_DISC_TRC_MBOX_VPORT, 2806 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2807 (uint32_t)pmbox->mbxCommand, 2808 pmbox->un.varWords[0], 2809 pmbox->un.varWords[1]); 2810 } 2811 else { 2812 lpfc_debugfs_disc_trc(phba->pport, 2813 LPFC_DISC_TRC_MBOX, 2814 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2815 (uint32_t)pmbox->mbxCommand, 2816 pmbox->un.varWords[0], 2817 pmbox->un.varWords[1]); 2818 } 2819 } 2820 2821 /* 2822 * It is a fatal error if unknown mbox command completion. 2823 */ 2824 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2825 MBX_SHUTDOWN) { 2826 /* Unknown mailbox command compl */ 2827 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2828 "(%d):0323 Unknown Mailbox command " 2829 "x%x (x%x/x%x) Cmpl\n", 2830 pmb->vport ? pmb->vport->vpi : 2831 LPFC_VPORT_UNKNOWN, 2832 pmbox->mbxCommand, 2833 lpfc_sli_config_mbox_subsys_get(phba, 2834 pmb), 2835 lpfc_sli_config_mbox_opcode_get(phba, 2836 pmb)); 2837 phba->link_state = LPFC_HBA_ERROR; 2838 phba->work_hs = HS_FFER3; 2839 lpfc_handle_eratt(phba); 2840 continue; 2841 } 2842 2843 if (pmbox->mbxStatus) { 2844 phba->sli.slistat.mbox_stat_err++; 2845 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2846 /* Mbox cmd cmpl error - RETRYing */ 2847 lpfc_printf_log(phba, KERN_INFO, 2848 LOG_MBOX | LOG_SLI, 2849 "(%d):0305 Mbox cmd cmpl " 2850 "error - RETRYing Data: x%x " 2851 "(x%x/x%x) x%x x%x x%x\n", 2852 pmb->vport ? pmb->vport->vpi : 2853 LPFC_VPORT_UNKNOWN, 2854 pmbox->mbxCommand, 2855 lpfc_sli_config_mbox_subsys_get(phba, 2856 pmb), 2857 lpfc_sli_config_mbox_opcode_get(phba, 2858 pmb), 2859 pmbox->mbxStatus, 2860 pmbox->un.varWords[0], 2861 pmb->vport ? pmb->vport->port_state : 2862 LPFC_VPORT_UNKNOWN); 2863 pmbox->mbxStatus = 0; 2864 pmbox->mbxOwner = OWN_HOST; 2865 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2866 if (rc != MBX_NOT_FINISHED) 2867 continue; 2868 } 2869 } 2870 2871 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2872 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2873 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 2874 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2875 "x%x x%x x%x\n", 2876 pmb->vport ? pmb->vport->vpi : 0, 2877 pmbox->mbxCommand, 2878 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2879 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2880 pmb->mbox_cmpl, 2881 *((uint32_t *) pmbox), 2882 pmbox->un.varWords[0], 2883 pmbox->un.varWords[1], 2884 pmbox->un.varWords[2], 2885 pmbox->un.varWords[3], 2886 pmbox->un.varWords[4], 2887 pmbox->un.varWords[5], 2888 pmbox->un.varWords[6], 2889 pmbox->un.varWords[7], 2890 pmbox->un.varWords[8], 2891 pmbox->un.varWords[9], 2892 pmbox->un.varWords[10]); 2893 2894 if (pmb->mbox_cmpl) 2895 pmb->mbox_cmpl(phba,pmb); 2896 } while (1); 2897 return 0; 2898 } 2899 2900 /** 2901 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2902 * @phba: Pointer to HBA context object. 2903 * @pring: Pointer to driver SLI ring object. 2904 * @tag: buffer tag. 2905 * 2906 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2907 * is set in the tag the buffer is posted for a particular exchange, 2908 * the function will return the buffer without replacing the buffer. 2909 * If the buffer is for unsolicited ELS or CT traffic, this function 2910 * returns the buffer and also posts another buffer to the firmware. 2911 **/ 2912 static struct lpfc_dmabuf * 2913 lpfc_sli_get_buff(struct lpfc_hba *phba, 2914 struct lpfc_sli_ring *pring, 2915 uint32_t tag) 2916 { 2917 struct hbq_dmabuf *hbq_entry; 2918 2919 if (tag & QUE_BUFTAG_BIT) 2920 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2921 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2922 if (!hbq_entry) 2923 return NULL; 2924 return &hbq_entry->dbuf; 2925 } 2926 2927 /** 2928 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 2929 * containing a NVME LS request. 2930 * @phba: pointer to lpfc hba data structure. 2931 * @piocb: pointer to the iocbq struct representing the sequence starting 2932 * frame. 2933 * 2934 * This routine initially validates the NVME LS, validates there is a login 2935 * with the port that sent the LS, and then calls the appropriate nvme host 2936 * or target LS request handler. 2937 **/ 2938 static void 2939 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 2940 { 2941 struct lpfc_nodelist *ndlp; 2942 struct lpfc_dmabuf *d_buf; 2943 struct hbq_dmabuf *nvmebuf; 2944 struct fc_frame_header *fc_hdr; 2945 struct lpfc_async_xchg_ctx *axchg = NULL; 2946 char *failwhy = NULL; 2947 uint32_t oxid, sid, did, fctl, size; 2948 int ret = 1; 2949 2950 d_buf = piocb->context2; 2951 2952 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2953 fc_hdr = nvmebuf->hbuf.virt; 2954 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 2955 sid = sli4_sid_from_fc_hdr(fc_hdr); 2956 did = sli4_did_from_fc_hdr(fc_hdr); 2957 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 2958 fc_hdr->fh_f_ctl[1] << 8 | 2959 fc_hdr->fh_f_ctl[2]); 2960 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 2961 2962 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 2963 oxid, size, sid); 2964 2965 if (phba->pport->load_flag & FC_UNLOADING) { 2966 failwhy = "Driver Unloading"; 2967 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 2968 failwhy = "NVME FC4 Disabled"; 2969 } else if (!phba->nvmet_support && !phba->pport->localport) { 2970 failwhy = "No Localport"; 2971 } else if (phba->nvmet_support && !phba->targetport) { 2972 failwhy = "No Targetport"; 2973 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 2974 failwhy = "Bad NVME LS R_CTL"; 2975 } else if (unlikely((fctl & 0x00FF0000) != 2976 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 2977 failwhy = "Bad NVME LS F_CTL"; 2978 } else { 2979 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 2980 if (!axchg) 2981 failwhy = "No CTX memory"; 2982 } 2983 2984 if (unlikely(failwhy)) { 2985 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2986 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 2987 sid, oxid, failwhy); 2988 goto out_fail; 2989 } 2990 2991 /* validate the source of the LS is logged in */ 2992 ndlp = lpfc_findnode_did(phba->pport, sid); 2993 if (!ndlp || 2994 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2995 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2996 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 2997 "6216 NVME Unsol rcv: No ndlp: " 2998 "NPort_ID x%x oxid x%x\n", 2999 sid, oxid); 3000 goto out_fail; 3001 } 3002 3003 axchg->phba = phba; 3004 axchg->ndlp = ndlp; 3005 axchg->size = size; 3006 axchg->oxid = oxid; 3007 axchg->sid = sid; 3008 axchg->wqeq = NULL; 3009 axchg->state = LPFC_NVME_STE_LS_RCV; 3010 axchg->entry_cnt = 1; 3011 axchg->rqb_buffer = (void *)nvmebuf; 3012 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3013 axchg->payload = nvmebuf->dbuf.virt; 3014 INIT_LIST_HEAD(&axchg->list); 3015 3016 if (phba->nvmet_support) { 3017 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3018 spin_lock_irq(&ndlp->lock); 3019 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3020 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3021 spin_unlock_irq(&ndlp->lock); 3022 3023 /* This reference is a single occurrence to hold the 3024 * node valid until the nvmet transport calls 3025 * host_release. 3026 */ 3027 if (!lpfc_nlp_get(ndlp)) 3028 goto out_fail; 3029 3030 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3031 "6206 NVMET unsol ls_req ndlp x%px " 3032 "DID x%x xflags x%x refcnt %d\n", 3033 ndlp, ndlp->nlp_DID, 3034 ndlp->fc4_xpt_flags, 3035 kref_read(&ndlp->kref)); 3036 } else { 3037 spin_unlock_irq(&ndlp->lock); 3038 } 3039 } else { 3040 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3041 } 3042 3043 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3044 if (!ret) 3045 return; 3046 3047 out_fail: 3048 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3049 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3050 "NVMe%s handler failed %d\n", 3051 did, sid, oxid, 3052 (phba->nvmet_support) ? "T" : "I", ret); 3053 3054 /* recycle receive buffer */ 3055 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3056 3057 /* If start of new exchange, abort it */ 3058 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3059 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3060 3061 if (ret) 3062 kfree(axchg); 3063 } 3064 3065 /** 3066 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3067 * @phba: Pointer to HBA context object. 3068 * @pring: Pointer to driver SLI ring object. 3069 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3070 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3071 * @fch_type: the type for the first frame of the sequence. 3072 * 3073 * This function is called with no lock held. This function uses the r_ctl and 3074 * type of the received sequence to find the correct callback function to call 3075 * to process the sequence. 3076 **/ 3077 static int 3078 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3079 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3080 uint32_t fch_type) 3081 { 3082 int i; 3083 3084 switch (fch_type) { 3085 case FC_TYPE_NVME: 3086 lpfc_nvme_unsol_ls_handler(phba, saveq); 3087 return 1; 3088 default: 3089 break; 3090 } 3091 3092 /* unSolicited Responses */ 3093 if (pring->prt[0].profile) { 3094 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3095 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3096 saveq); 3097 return 1; 3098 } 3099 /* We must search, based on rctl / type 3100 for the right routine */ 3101 for (i = 0; i < pring->num_mask; i++) { 3102 if ((pring->prt[i].rctl == fch_r_ctl) && 3103 (pring->prt[i].type == fch_type)) { 3104 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3105 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3106 (phba, pring, saveq); 3107 return 1; 3108 } 3109 } 3110 return 0; 3111 } 3112 3113 /** 3114 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3115 * @phba: Pointer to HBA context object. 3116 * @pring: Pointer to driver SLI ring object. 3117 * @saveq: Pointer to the unsolicited iocb. 3118 * 3119 * This function is called with no lock held by the ring event handler 3120 * when there is an unsolicited iocb posted to the response ring by the 3121 * firmware. This function gets the buffer associated with the iocbs 3122 * and calls the event handler for the ring. This function handles both 3123 * qring buffers and hbq buffers. 3124 * When the function returns 1 the caller can free the iocb object otherwise 3125 * upper layer functions will free the iocb objects. 3126 **/ 3127 static int 3128 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3129 struct lpfc_iocbq *saveq) 3130 { 3131 IOCB_t * irsp; 3132 WORD5 * w5p; 3133 uint32_t Rctl, Type; 3134 struct lpfc_iocbq *iocbq; 3135 struct lpfc_dmabuf *dmzbuf; 3136 3137 irsp = &(saveq->iocb); 3138 3139 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3140 if (pring->lpfc_sli_rcv_async_status) 3141 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3142 else 3143 lpfc_printf_log(phba, 3144 KERN_WARNING, 3145 LOG_SLI, 3146 "0316 Ring %d handler: unexpected " 3147 "ASYNC_STATUS iocb received evt_code " 3148 "0x%x\n", 3149 pring->ringno, 3150 irsp->un.asyncstat.evt_code); 3151 return 1; 3152 } 3153 3154 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3155 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3156 if (irsp->ulpBdeCount > 0) { 3157 dmzbuf = lpfc_sli_get_buff(phba, pring, 3158 irsp->un.ulpWord[3]); 3159 lpfc_in_buf_free(phba, dmzbuf); 3160 } 3161 3162 if (irsp->ulpBdeCount > 1) { 3163 dmzbuf = lpfc_sli_get_buff(phba, pring, 3164 irsp->unsli3.sli3Words[3]); 3165 lpfc_in_buf_free(phba, dmzbuf); 3166 } 3167 3168 if (irsp->ulpBdeCount > 2) { 3169 dmzbuf = lpfc_sli_get_buff(phba, pring, 3170 irsp->unsli3.sli3Words[7]); 3171 lpfc_in_buf_free(phba, dmzbuf); 3172 } 3173 3174 return 1; 3175 } 3176 3177 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3178 if (irsp->ulpBdeCount != 0) { 3179 saveq->context2 = lpfc_sli_get_buff(phba, pring, 3180 irsp->un.ulpWord[3]); 3181 if (!saveq->context2) 3182 lpfc_printf_log(phba, 3183 KERN_ERR, 3184 LOG_SLI, 3185 "0341 Ring %d Cannot find buffer for " 3186 "an unsolicited iocb. tag 0x%x\n", 3187 pring->ringno, 3188 irsp->un.ulpWord[3]); 3189 } 3190 if (irsp->ulpBdeCount == 2) { 3191 saveq->context3 = lpfc_sli_get_buff(phba, pring, 3192 irsp->unsli3.sli3Words[7]); 3193 if (!saveq->context3) 3194 lpfc_printf_log(phba, 3195 KERN_ERR, 3196 LOG_SLI, 3197 "0342 Ring %d Cannot find buffer for an" 3198 " unsolicited iocb. tag 0x%x\n", 3199 pring->ringno, 3200 irsp->unsli3.sli3Words[7]); 3201 } 3202 list_for_each_entry(iocbq, &saveq->list, list) { 3203 irsp = &(iocbq->iocb); 3204 if (irsp->ulpBdeCount != 0) { 3205 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 3206 irsp->un.ulpWord[3]); 3207 if (!iocbq->context2) 3208 lpfc_printf_log(phba, 3209 KERN_ERR, 3210 LOG_SLI, 3211 "0343 Ring %d Cannot find " 3212 "buffer for an unsolicited iocb" 3213 ". tag 0x%x\n", pring->ringno, 3214 irsp->un.ulpWord[3]); 3215 } 3216 if (irsp->ulpBdeCount == 2) { 3217 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 3218 irsp->unsli3.sli3Words[7]); 3219 if (!iocbq->context3) 3220 lpfc_printf_log(phba, 3221 KERN_ERR, 3222 LOG_SLI, 3223 "0344 Ring %d Cannot find " 3224 "buffer for an unsolicited " 3225 "iocb. tag 0x%x\n", 3226 pring->ringno, 3227 irsp->unsli3.sli3Words[7]); 3228 } 3229 } 3230 } 3231 if (irsp->ulpBdeCount != 0 && 3232 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3233 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3234 int found = 0; 3235 3236 /* search continue save q for same XRI */ 3237 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3238 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3239 saveq->iocb.unsli3.rcvsli3.ox_id) { 3240 list_add_tail(&saveq->list, &iocbq->list); 3241 found = 1; 3242 break; 3243 } 3244 } 3245 if (!found) 3246 list_add_tail(&saveq->clist, 3247 &pring->iocb_continue_saveq); 3248 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3249 list_del_init(&iocbq->clist); 3250 saveq = iocbq; 3251 irsp = &(saveq->iocb); 3252 } else 3253 return 0; 3254 } 3255 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3256 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3257 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3258 Rctl = FC_RCTL_ELS_REQ; 3259 Type = FC_TYPE_ELS; 3260 } else { 3261 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3262 Rctl = w5p->hcsw.Rctl; 3263 Type = w5p->hcsw.Type; 3264 3265 /* Firmware Workaround */ 3266 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3267 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3268 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3269 Rctl = FC_RCTL_ELS_REQ; 3270 Type = FC_TYPE_ELS; 3271 w5p->hcsw.Rctl = Rctl; 3272 w5p->hcsw.Type = Type; 3273 } 3274 } 3275 3276 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3277 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3278 "0313 Ring %d handler: unexpected Rctl x%x " 3279 "Type x%x received\n", 3280 pring->ringno, Rctl, Type); 3281 3282 return 1; 3283 } 3284 3285 /** 3286 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3287 * @phba: Pointer to HBA context object. 3288 * @pring: Pointer to driver SLI ring object. 3289 * @prspiocb: Pointer to response iocb object. 3290 * 3291 * This function looks up the iocb_lookup table to get the command iocb 3292 * corresponding to the given response iocb using the iotag of the 3293 * response iocb. The driver calls this function with the hbalock held 3294 * for SLI3 ports or the ring lock held for SLI4 ports. 3295 * This function returns the command iocb object if it finds the command 3296 * iocb else returns NULL. 3297 **/ 3298 static struct lpfc_iocbq * 3299 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3300 struct lpfc_sli_ring *pring, 3301 struct lpfc_iocbq *prspiocb) 3302 { 3303 struct lpfc_iocbq *cmd_iocb = NULL; 3304 uint16_t iotag; 3305 spinlock_t *temp_lock = NULL; 3306 unsigned long iflag = 0; 3307 3308 if (phba->sli_rev == LPFC_SLI_REV4) 3309 temp_lock = &pring->ring_lock; 3310 else 3311 temp_lock = &phba->hbalock; 3312 3313 spin_lock_irqsave(temp_lock, iflag); 3314 iotag = prspiocb->iocb.ulpIoTag; 3315 3316 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3317 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3318 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3319 /* remove from txcmpl queue list */ 3320 list_del_init(&cmd_iocb->list); 3321 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3322 pring->txcmplq_cnt--; 3323 spin_unlock_irqrestore(temp_lock, iflag); 3324 return cmd_iocb; 3325 } 3326 } 3327 3328 spin_unlock_irqrestore(temp_lock, iflag); 3329 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3330 "0317 iotag x%x is out of " 3331 "range: max iotag x%x wd0 x%x\n", 3332 iotag, phba->sli.last_iotag, 3333 *(((uint32_t *) &prspiocb->iocb) + 7)); 3334 return NULL; 3335 } 3336 3337 /** 3338 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3339 * @phba: Pointer to HBA context object. 3340 * @pring: Pointer to driver SLI ring object. 3341 * @iotag: IOCB tag. 3342 * 3343 * This function looks up the iocb_lookup table to get the command iocb 3344 * corresponding to the given iotag. The driver calls this function with 3345 * the ring lock held because this function is an SLI4 port only helper. 3346 * This function returns the command iocb object if it finds the command 3347 * iocb else returns NULL. 3348 **/ 3349 static struct lpfc_iocbq * 3350 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3351 struct lpfc_sli_ring *pring, uint16_t iotag) 3352 { 3353 struct lpfc_iocbq *cmd_iocb = NULL; 3354 spinlock_t *temp_lock = NULL; 3355 unsigned long iflag = 0; 3356 3357 if (phba->sli_rev == LPFC_SLI_REV4) 3358 temp_lock = &pring->ring_lock; 3359 else 3360 temp_lock = &phba->hbalock; 3361 3362 spin_lock_irqsave(temp_lock, iflag); 3363 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3364 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3365 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3366 /* remove from txcmpl queue list */ 3367 list_del_init(&cmd_iocb->list); 3368 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3369 pring->txcmplq_cnt--; 3370 spin_unlock_irqrestore(temp_lock, iflag); 3371 return cmd_iocb; 3372 } 3373 } 3374 3375 spin_unlock_irqrestore(temp_lock, iflag); 3376 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3377 "0372 iotag x%x lookup error: max iotag (x%x) " 3378 "iocb_flag x%x\n", 3379 iotag, phba->sli.last_iotag, 3380 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); 3381 return NULL; 3382 } 3383 3384 /** 3385 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3386 * @phba: Pointer to HBA context object. 3387 * @pring: Pointer to driver SLI ring object. 3388 * @saveq: Pointer to the response iocb to be processed. 3389 * 3390 * This function is called by the ring event handler for non-fcp 3391 * rings when there is a new response iocb in the response ring. 3392 * The caller is not required to hold any locks. This function 3393 * gets the command iocb associated with the response iocb and 3394 * calls the completion handler for the command iocb. If there 3395 * is no completion handler, the function will free the resources 3396 * associated with command iocb. If the response iocb is for 3397 * an already aborted command iocb, the status of the completion 3398 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3399 * This function always returns 1. 3400 **/ 3401 static int 3402 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3403 struct lpfc_iocbq *saveq) 3404 { 3405 struct lpfc_iocbq *cmdiocbp; 3406 int rc = 1; 3407 unsigned long iflag; 3408 3409 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3410 if (cmdiocbp) { 3411 if (cmdiocbp->iocb_cmpl) { 3412 /* 3413 * If an ELS command failed send an event to mgmt 3414 * application. 3415 */ 3416 if (saveq->iocb.ulpStatus && 3417 (pring->ringno == LPFC_ELS_RING) && 3418 (cmdiocbp->iocb.ulpCommand == 3419 CMD_ELS_REQUEST64_CR)) 3420 lpfc_send_els_failure_event(phba, 3421 cmdiocbp, saveq); 3422 3423 /* 3424 * Post all ELS completions to the worker thread. 3425 * All other are passed to the completion callback. 3426 */ 3427 if (pring->ringno == LPFC_ELS_RING) { 3428 if ((phba->sli_rev < LPFC_SLI_REV4) && 3429 (cmdiocbp->iocb_flag & 3430 LPFC_DRIVER_ABORTED)) { 3431 spin_lock_irqsave(&phba->hbalock, 3432 iflag); 3433 cmdiocbp->iocb_flag &= 3434 ~LPFC_DRIVER_ABORTED; 3435 spin_unlock_irqrestore(&phba->hbalock, 3436 iflag); 3437 saveq->iocb.ulpStatus = 3438 IOSTAT_LOCAL_REJECT; 3439 saveq->iocb.un.ulpWord[4] = 3440 IOERR_SLI_ABORTED; 3441 3442 /* Firmware could still be in progress 3443 * of DMAing payload, so don't free data 3444 * buffer till after a hbeat. 3445 */ 3446 spin_lock_irqsave(&phba->hbalock, 3447 iflag); 3448 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 3449 spin_unlock_irqrestore(&phba->hbalock, 3450 iflag); 3451 } 3452 if (phba->sli_rev == LPFC_SLI_REV4) { 3453 if (saveq->iocb_flag & 3454 LPFC_EXCHANGE_BUSY) { 3455 /* Set cmdiocb flag for the 3456 * exchange busy so sgl (xri) 3457 * will not be released until 3458 * the abort xri is received 3459 * from hba. 3460 */ 3461 spin_lock_irqsave( 3462 &phba->hbalock, iflag); 3463 cmdiocbp->iocb_flag |= 3464 LPFC_EXCHANGE_BUSY; 3465 spin_unlock_irqrestore( 3466 &phba->hbalock, iflag); 3467 } 3468 if (cmdiocbp->iocb_flag & 3469 LPFC_DRIVER_ABORTED) { 3470 /* 3471 * Clear LPFC_DRIVER_ABORTED 3472 * bit in case it was driver 3473 * initiated abort. 3474 */ 3475 spin_lock_irqsave( 3476 &phba->hbalock, iflag); 3477 cmdiocbp->iocb_flag &= 3478 ~LPFC_DRIVER_ABORTED; 3479 spin_unlock_irqrestore( 3480 &phba->hbalock, iflag); 3481 cmdiocbp->iocb.ulpStatus = 3482 IOSTAT_LOCAL_REJECT; 3483 cmdiocbp->iocb.un.ulpWord[4] = 3484 IOERR_ABORT_REQUESTED; 3485 /* 3486 * For SLI4, irsiocb contains 3487 * NO_XRI in sli_xritag, it 3488 * shall not affect releasing 3489 * sgl (xri) process. 3490 */ 3491 saveq->iocb.ulpStatus = 3492 IOSTAT_LOCAL_REJECT; 3493 saveq->iocb.un.ulpWord[4] = 3494 IOERR_SLI_ABORTED; 3495 spin_lock_irqsave( 3496 &phba->hbalock, iflag); 3497 saveq->iocb_flag |= 3498 LPFC_DELAY_MEM_FREE; 3499 spin_unlock_irqrestore( 3500 &phba->hbalock, iflag); 3501 } 3502 } 3503 } 3504 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 3505 } else 3506 lpfc_sli_release_iocbq(phba, cmdiocbp); 3507 } else { 3508 /* 3509 * Unknown initiating command based on the response iotag. 3510 * This could be the case on the ELS ring because of 3511 * lpfc_els_abort(). 3512 */ 3513 if (pring->ringno != LPFC_ELS_RING) { 3514 /* 3515 * Ring <ringno> handler: unexpected completion IoTag 3516 * <IoTag> 3517 */ 3518 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3519 "0322 Ring %d handler: " 3520 "unexpected completion IoTag x%x " 3521 "Data: x%x x%x x%x x%x\n", 3522 pring->ringno, 3523 saveq->iocb.ulpIoTag, 3524 saveq->iocb.ulpStatus, 3525 saveq->iocb.un.ulpWord[4], 3526 saveq->iocb.ulpCommand, 3527 saveq->iocb.ulpContext); 3528 } 3529 } 3530 3531 return rc; 3532 } 3533 3534 /** 3535 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3536 * @phba: Pointer to HBA context object. 3537 * @pring: Pointer to driver SLI ring object. 3538 * 3539 * This function is called from the iocb ring event handlers when 3540 * put pointer is ahead of the get pointer for a ring. This function signal 3541 * an error attention condition to the worker thread and the worker 3542 * thread will transition the HBA to offline state. 3543 **/ 3544 static void 3545 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3546 { 3547 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3548 /* 3549 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3550 * rsp ring <portRspMax> 3551 */ 3552 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3553 "0312 Ring %d handler: portRspPut %d " 3554 "is bigger than rsp ring %d\n", 3555 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3556 pring->sli.sli3.numRiocb); 3557 3558 phba->link_state = LPFC_HBA_ERROR; 3559 3560 /* 3561 * All error attention handlers are posted to 3562 * worker thread 3563 */ 3564 phba->work_ha |= HA_ERATT; 3565 phba->work_hs = HS_FFER3; 3566 3567 lpfc_worker_wake_up(phba); 3568 3569 return; 3570 } 3571 3572 /** 3573 * lpfc_poll_eratt - Error attention polling timer timeout handler 3574 * @t: Context to fetch pointer to address of HBA context object from. 3575 * 3576 * This function is invoked by the Error Attention polling timer when the 3577 * timer times out. It will check the SLI Error Attention register for 3578 * possible attention events. If so, it will post an Error Attention event 3579 * and wake up worker thread to process it. Otherwise, it will set up the 3580 * Error Attention polling timer for the next poll. 3581 **/ 3582 void lpfc_poll_eratt(struct timer_list *t) 3583 { 3584 struct lpfc_hba *phba; 3585 uint32_t eratt = 0; 3586 uint64_t sli_intr, cnt; 3587 3588 phba = from_timer(phba, t, eratt_poll); 3589 3590 /* Here we will also keep track of interrupts per sec of the hba */ 3591 sli_intr = phba->sli.slistat.sli_intr; 3592 3593 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3594 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3595 sli_intr); 3596 else 3597 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3598 3599 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3600 do_div(cnt, phba->eratt_poll_interval); 3601 phba->sli.slistat.sli_ips = cnt; 3602 3603 phba->sli.slistat.sli_prev_intr = sli_intr; 3604 3605 /* Check chip HA register for error event */ 3606 eratt = lpfc_sli_check_eratt(phba); 3607 3608 if (eratt) 3609 /* Tell the worker thread there is work to do */ 3610 lpfc_worker_wake_up(phba); 3611 else 3612 /* Restart the timer for next eratt poll */ 3613 mod_timer(&phba->eratt_poll, 3614 jiffies + 3615 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3616 return; 3617 } 3618 3619 3620 /** 3621 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3622 * @phba: Pointer to HBA context object. 3623 * @pring: Pointer to driver SLI ring object. 3624 * @mask: Host attention register mask for this ring. 3625 * 3626 * This function is called from the interrupt context when there is a ring 3627 * event for the fcp ring. The caller does not hold any lock. 3628 * The function processes each response iocb in the response ring until it 3629 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3630 * LE bit set. The function will call the completion handler of the command iocb 3631 * if the response iocb indicates a completion for a command iocb or it is 3632 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3633 * function if this is an unsolicited iocb. 3634 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3635 * to check it explicitly. 3636 */ 3637 int 3638 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3639 struct lpfc_sli_ring *pring, uint32_t mask) 3640 { 3641 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3642 IOCB_t *irsp = NULL; 3643 IOCB_t *entry = NULL; 3644 struct lpfc_iocbq *cmdiocbq = NULL; 3645 struct lpfc_iocbq rspiocbq; 3646 uint32_t status; 3647 uint32_t portRspPut, portRspMax; 3648 int rc = 1; 3649 lpfc_iocb_type type; 3650 unsigned long iflag; 3651 uint32_t rsp_cmpl = 0; 3652 3653 spin_lock_irqsave(&phba->hbalock, iflag); 3654 pring->stats.iocb_event++; 3655 3656 /* 3657 * The next available response entry should never exceed the maximum 3658 * entries. If it does, treat it as an adapter hardware error. 3659 */ 3660 portRspMax = pring->sli.sli3.numRiocb; 3661 portRspPut = le32_to_cpu(pgp->rspPutInx); 3662 if (unlikely(portRspPut >= portRspMax)) { 3663 lpfc_sli_rsp_pointers_error(phba, pring); 3664 spin_unlock_irqrestore(&phba->hbalock, iflag); 3665 return 1; 3666 } 3667 if (phba->fcp_ring_in_use) { 3668 spin_unlock_irqrestore(&phba->hbalock, iflag); 3669 return 1; 3670 } else 3671 phba->fcp_ring_in_use = 1; 3672 3673 rmb(); 3674 while (pring->sli.sli3.rspidx != portRspPut) { 3675 /* 3676 * Fetch an entry off the ring and copy it into a local data 3677 * structure. The copy involves a byte-swap since the 3678 * network byte order and pci byte orders are different. 3679 */ 3680 entry = lpfc_resp_iocb(phba, pring); 3681 phba->last_completion_time = jiffies; 3682 3683 if (++pring->sli.sli3.rspidx >= portRspMax) 3684 pring->sli.sli3.rspidx = 0; 3685 3686 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3687 (uint32_t *) &rspiocbq.iocb, 3688 phba->iocb_rsp_size); 3689 INIT_LIST_HEAD(&(rspiocbq.list)); 3690 irsp = &rspiocbq.iocb; 3691 3692 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3693 pring->stats.iocb_rsp++; 3694 rsp_cmpl++; 3695 3696 if (unlikely(irsp->ulpStatus)) { 3697 /* 3698 * If resource errors reported from HBA, reduce 3699 * queuedepths of the SCSI device. 3700 */ 3701 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3702 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3703 IOERR_NO_RESOURCES)) { 3704 spin_unlock_irqrestore(&phba->hbalock, iflag); 3705 phba->lpfc_rampdown_queue_depth(phba); 3706 spin_lock_irqsave(&phba->hbalock, iflag); 3707 } 3708 3709 /* Rsp ring <ringno> error: IOCB */ 3710 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3711 "0336 Rsp Ring %d error: IOCB Data: " 3712 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3713 pring->ringno, 3714 irsp->un.ulpWord[0], 3715 irsp->un.ulpWord[1], 3716 irsp->un.ulpWord[2], 3717 irsp->un.ulpWord[3], 3718 irsp->un.ulpWord[4], 3719 irsp->un.ulpWord[5], 3720 *(uint32_t *)&irsp->un1, 3721 *((uint32_t *)&irsp->un1 + 1)); 3722 } 3723 3724 switch (type) { 3725 case LPFC_ABORT_IOCB: 3726 case LPFC_SOL_IOCB: 3727 /* 3728 * Idle exchange closed via ABTS from port. No iocb 3729 * resources need to be recovered. 3730 */ 3731 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3732 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3733 "0333 IOCB cmd 0x%x" 3734 " processed. Skipping" 3735 " completion\n", 3736 irsp->ulpCommand); 3737 break; 3738 } 3739 3740 spin_unlock_irqrestore(&phba->hbalock, iflag); 3741 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3742 &rspiocbq); 3743 spin_lock_irqsave(&phba->hbalock, iflag); 3744 if (unlikely(!cmdiocbq)) 3745 break; 3746 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3747 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3748 if (cmdiocbq->iocb_cmpl) { 3749 spin_unlock_irqrestore(&phba->hbalock, iflag); 3750 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3751 &rspiocbq); 3752 spin_lock_irqsave(&phba->hbalock, iflag); 3753 } 3754 break; 3755 case LPFC_UNSOL_IOCB: 3756 spin_unlock_irqrestore(&phba->hbalock, iflag); 3757 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3758 spin_lock_irqsave(&phba->hbalock, iflag); 3759 break; 3760 default: 3761 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3762 char adaptermsg[LPFC_MAX_ADPTMSG]; 3763 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3764 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3765 MAX_MSG_DATA); 3766 dev_warn(&((phba->pcidev)->dev), 3767 "lpfc%d: %s\n", 3768 phba->brd_no, adaptermsg); 3769 } else { 3770 /* Unknown IOCB command */ 3771 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3772 "0334 Unknown IOCB command " 3773 "Data: x%x, x%x x%x x%x x%x\n", 3774 type, irsp->ulpCommand, 3775 irsp->ulpStatus, 3776 irsp->ulpIoTag, 3777 irsp->ulpContext); 3778 } 3779 break; 3780 } 3781 3782 /* 3783 * The response IOCB has been processed. Update the ring 3784 * pointer in SLIM. If the port response put pointer has not 3785 * been updated, sync the pgp->rspPutInx and fetch the new port 3786 * response put pointer. 3787 */ 3788 writel(pring->sli.sli3.rspidx, 3789 &phba->host_gp[pring->ringno].rspGetInx); 3790 3791 if (pring->sli.sli3.rspidx == portRspPut) 3792 portRspPut = le32_to_cpu(pgp->rspPutInx); 3793 } 3794 3795 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3796 pring->stats.iocb_rsp_full++; 3797 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3798 writel(status, phba->CAregaddr); 3799 readl(phba->CAregaddr); 3800 } 3801 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3802 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3803 pring->stats.iocb_cmd_empty++; 3804 3805 /* Force update of the local copy of cmdGetInx */ 3806 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3807 lpfc_sli_resume_iocb(phba, pring); 3808 3809 if ((pring->lpfc_sli_cmd_available)) 3810 (pring->lpfc_sli_cmd_available) (phba, pring); 3811 3812 } 3813 3814 phba->fcp_ring_in_use = 0; 3815 spin_unlock_irqrestore(&phba->hbalock, iflag); 3816 return rc; 3817 } 3818 3819 /** 3820 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3821 * @phba: Pointer to HBA context object. 3822 * @pring: Pointer to driver SLI ring object. 3823 * @rspiocbp: Pointer to driver response IOCB object. 3824 * 3825 * This function is called from the worker thread when there is a slow-path 3826 * response IOCB to process. This function chains all the response iocbs until 3827 * seeing the iocb with the LE bit set. The function will call 3828 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3829 * completion of a command iocb. The function will call the 3830 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3831 * The function frees the resources or calls the completion handler if this 3832 * iocb is an abort completion. The function returns NULL when the response 3833 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3834 * this function shall chain the iocb on to the iocb_continueq and return the 3835 * response iocb passed in. 3836 **/ 3837 static struct lpfc_iocbq * 3838 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3839 struct lpfc_iocbq *rspiocbp) 3840 { 3841 struct lpfc_iocbq *saveq; 3842 struct lpfc_iocbq *cmdiocbp; 3843 struct lpfc_iocbq *next_iocb; 3844 IOCB_t *irsp = NULL; 3845 uint32_t free_saveq; 3846 uint8_t iocb_cmd_type; 3847 lpfc_iocb_type type; 3848 unsigned long iflag; 3849 int rc; 3850 3851 spin_lock_irqsave(&phba->hbalock, iflag); 3852 /* First add the response iocb to the countinueq list */ 3853 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3854 pring->iocb_continueq_cnt++; 3855 3856 /* Now, determine whether the list is completed for processing */ 3857 irsp = &rspiocbp->iocb; 3858 if (irsp->ulpLe) { 3859 /* 3860 * By default, the driver expects to free all resources 3861 * associated with this iocb completion. 3862 */ 3863 free_saveq = 1; 3864 saveq = list_get_first(&pring->iocb_continueq, 3865 struct lpfc_iocbq, list); 3866 irsp = &(saveq->iocb); 3867 list_del_init(&pring->iocb_continueq); 3868 pring->iocb_continueq_cnt = 0; 3869 3870 pring->stats.iocb_rsp++; 3871 3872 /* 3873 * If resource errors reported from HBA, reduce 3874 * queuedepths of the SCSI device. 3875 */ 3876 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3877 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3878 IOERR_NO_RESOURCES)) { 3879 spin_unlock_irqrestore(&phba->hbalock, iflag); 3880 phba->lpfc_rampdown_queue_depth(phba); 3881 spin_lock_irqsave(&phba->hbalock, iflag); 3882 } 3883 3884 if (irsp->ulpStatus) { 3885 /* Rsp ring <ringno> error: IOCB */ 3886 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3887 "0328 Rsp Ring %d error: " 3888 "IOCB Data: " 3889 "x%x x%x x%x x%x " 3890 "x%x x%x x%x x%x " 3891 "x%x x%x x%x x%x " 3892 "x%x x%x x%x x%x\n", 3893 pring->ringno, 3894 irsp->un.ulpWord[0], 3895 irsp->un.ulpWord[1], 3896 irsp->un.ulpWord[2], 3897 irsp->un.ulpWord[3], 3898 irsp->un.ulpWord[4], 3899 irsp->un.ulpWord[5], 3900 *(((uint32_t *) irsp) + 6), 3901 *(((uint32_t *) irsp) + 7), 3902 *(((uint32_t *) irsp) + 8), 3903 *(((uint32_t *) irsp) + 9), 3904 *(((uint32_t *) irsp) + 10), 3905 *(((uint32_t *) irsp) + 11), 3906 *(((uint32_t *) irsp) + 12), 3907 *(((uint32_t *) irsp) + 13), 3908 *(((uint32_t *) irsp) + 14), 3909 *(((uint32_t *) irsp) + 15)); 3910 } 3911 3912 /* 3913 * Fetch the IOCB command type and call the correct completion 3914 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3915 * get freed back to the lpfc_iocb_list by the discovery 3916 * kernel thread. 3917 */ 3918 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3919 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3920 switch (type) { 3921 case LPFC_SOL_IOCB: 3922 spin_unlock_irqrestore(&phba->hbalock, iflag); 3923 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3924 spin_lock_irqsave(&phba->hbalock, iflag); 3925 break; 3926 3927 case LPFC_UNSOL_IOCB: 3928 spin_unlock_irqrestore(&phba->hbalock, iflag); 3929 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3930 spin_lock_irqsave(&phba->hbalock, iflag); 3931 if (!rc) 3932 free_saveq = 0; 3933 break; 3934 3935 case LPFC_ABORT_IOCB: 3936 cmdiocbp = NULL; 3937 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) { 3938 spin_unlock_irqrestore(&phba->hbalock, iflag); 3939 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3940 saveq); 3941 spin_lock_irqsave(&phba->hbalock, iflag); 3942 } 3943 if (cmdiocbp) { 3944 /* Call the specified completion routine */ 3945 if (cmdiocbp->iocb_cmpl) { 3946 spin_unlock_irqrestore(&phba->hbalock, 3947 iflag); 3948 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3949 saveq); 3950 spin_lock_irqsave(&phba->hbalock, 3951 iflag); 3952 } else 3953 __lpfc_sli_release_iocbq(phba, 3954 cmdiocbp); 3955 } 3956 break; 3957 3958 case LPFC_UNKNOWN_IOCB: 3959 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3960 char adaptermsg[LPFC_MAX_ADPTMSG]; 3961 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3962 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3963 MAX_MSG_DATA); 3964 dev_warn(&((phba->pcidev)->dev), 3965 "lpfc%d: %s\n", 3966 phba->brd_no, adaptermsg); 3967 } else { 3968 /* Unknown IOCB command */ 3969 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3970 "0335 Unknown IOCB " 3971 "command Data: x%x " 3972 "x%x x%x x%x\n", 3973 irsp->ulpCommand, 3974 irsp->ulpStatus, 3975 irsp->ulpIoTag, 3976 irsp->ulpContext); 3977 } 3978 break; 3979 } 3980 3981 if (free_saveq) { 3982 list_for_each_entry_safe(rspiocbp, next_iocb, 3983 &saveq->list, list) { 3984 list_del_init(&rspiocbp->list); 3985 __lpfc_sli_release_iocbq(phba, rspiocbp); 3986 } 3987 __lpfc_sli_release_iocbq(phba, saveq); 3988 } 3989 rspiocbp = NULL; 3990 } 3991 spin_unlock_irqrestore(&phba->hbalock, iflag); 3992 return rspiocbp; 3993 } 3994 3995 /** 3996 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3997 * @phba: Pointer to HBA context object. 3998 * @pring: Pointer to driver SLI ring object. 3999 * @mask: Host attention register mask for this ring. 4000 * 4001 * This routine wraps the actual slow_ring event process routine from the 4002 * API jump table function pointer from the lpfc_hba struct. 4003 **/ 4004 void 4005 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4006 struct lpfc_sli_ring *pring, uint32_t mask) 4007 { 4008 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4009 } 4010 4011 /** 4012 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4013 * @phba: Pointer to HBA context object. 4014 * @pring: Pointer to driver SLI ring object. 4015 * @mask: Host attention register mask for this ring. 4016 * 4017 * This function is called from the worker thread when there is a ring event 4018 * for non-fcp rings. The caller does not hold any lock. The function will 4019 * remove each response iocb in the response ring and calls the handle 4020 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4021 **/ 4022 static void 4023 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4024 struct lpfc_sli_ring *pring, uint32_t mask) 4025 { 4026 struct lpfc_pgp *pgp; 4027 IOCB_t *entry; 4028 IOCB_t *irsp = NULL; 4029 struct lpfc_iocbq *rspiocbp = NULL; 4030 uint32_t portRspPut, portRspMax; 4031 unsigned long iflag; 4032 uint32_t status; 4033 4034 pgp = &phba->port_gp[pring->ringno]; 4035 spin_lock_irqsave(&phba->hbalock, iflag); 4036 pring->stats.iocb_event++; 4037 4038 /* 4039 * The next available response entry should never exceed the maximum 4040 * entries. If it does, treat it as an adapter hardware error. 4041 */ 4042 portRspMax = pring->sli.sli3.numRiocb; 4043 portRspPut = le32_to_cpu(pgp->rspPutInx); 4044 if (portRspPut >= portRspMax) { 4045 /* 4046 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4047 * rsp ring <portRspMax> 4048 */ 4049 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4050 "0303 Ring %d handler: portRspPut %d " 4051 "is bigger than rsp ring %d\n", 4052 pring->ringno, portRspPut, portRspMax); 4053 4054 phba->link_state = LPFC_HBA_ERROR; 4055 spin_unlock_irqrestore(&phba->hbalock, iflag); 4056 4057 phba->work_hs = HS_FFER3; 4058 lpfc_handle_eratt(phba); 4059 4060 return; 4061 } 4062 4063 rmb(); 4064 while (pring->sli.sli3.rspidx != portRspPut) { 4065 /* 4066 * Build a completion list and call the appropriate handler. 4067 * The process is to get the next available response iocb, get 4068 * a free iocb from the list, copy the response data into the 4069 * free iocb, insert to the continuation list, and update the 4070 * next response index to slim. This process makes response 4071 * iocb's in the ring available to DMA as fast as possible but 4072 * pays a penalty for a copy operation. Since the iocb is 4073 * only 32 bytes, this penalty is considered small relative to 4074 * the PCI reads for register values and a slim write. When 4075 * the ulpLe field is set, the entire Command has been 4076 * received. 4077 */ 4078 entry = lpfc_resp_iocb(phba, pring); 4079 4080 phba->last_completion_time = jiffies; 4081 rspiocbp = __lpfc_sli_get_iocbq(phba); 4082 if (rspiocbp == NULL) { 4083 printk(KERN_ERR "%s: out of buffers! Failing " 4084 "completion.\n", __func__); 4085 break; 4086 } 4087 4088 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4089 phba->iocb_rsp_size); 4090 irsp = &rspiocbp->iocb; 4091 4092 if (++pring->sli.sli3.rspidx >= portRspMax) 4093 pring->sli.sli3.rspidx = 0; 4094 4095 if (pring->ringno == LPFC_ELS_RING) { 4096 lpfc_debugfs_slow_ring_trc(phba, 4097 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4098 *(((uint32_t *) irsp) + 4), 4099 *(((uint32_t *) irsp) + 6), 4100 *(((uint32_t *) irsp) + 7)); 4101 } 4102 4103 writel(pring->sli.sli3.rspidx, 4104 &phba->host_gp[pring->ringno].rspGetInx); 4105 4106 spin_unlock_irqrestore(&phba->hbalock, iflag); 4107 /* Handle the response IOCB */ 4108 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4109 spin_lock_irqsave(&phba->hbalock, iflag); 4110 4111 /* 4112 * If the port response put pointer has not been updated, sync 4113 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4114 * response put pointer. 4115 */ 4116 if (pring->sli.sli3.rspidx == portRspPut) { 4117 portRspPut = le32_to_cpu(pgp->rspPutInx); 4118 } 4119 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4120 4121 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4122 /* At least one response entry has been freed */ 4123 pring->stats.iocb_rsp_full++; 4124 /* SET RxRE_RSP in Chip Att register */ 4125 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4126 writel(status, phba->CAregaddr); 4127 readl(phba->CAregaddr); /* flush */ 4128 } 4129 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4130 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4131 pring->stats.iocb_cmd_empty++; 4132 4133 /* Force update of the local copy of cmdGetInx */ 4134 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4135 lpfc_sli_resume_iocb(phba, pring); 4136 4137 if ((pring->lpfc_sli_cmd_available)) 4138 (pring->lpfc_sli_cmd_available) (phba, pring); 4139 4140 } 4141 4142 spin_unlock_irqrestore(&phba->hbalock, iflag); 4143 return; 4144 } 4145 4146 /** 4147 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4148 * @phba: Pointer to HBA context object. 4149 * @pring: Pointer to driver SLI ring object. 4150 * @mask: Host attention register mask for this ring. 4151 * 4152 * This function is called from the worker thread when there is a pending 4153 * ELS response iocb on the driver internal slow-path response iocb worker 4154 * queue. The caller does not hold any lock. The function will remove each 4155 * response iocb from the response worker queue and calls the handle 4156 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4157 **/ 4158 static void 4159 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4160 struct lpfc_sli_ring *pring, uint32_t mask) 4161 { 4162 struct lpfc_iocbq *irspiocbq; 4163 struct hbq_dmabuf *dmabuf; 4164 struct lpfc_cq_event *cq_event; 4165 unsigned long iflag; 4166 int count = 0; 4167 4168 spin_lock_irqsave(&phba->hbalock, iflag); 4169 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4170 spin_unlock_irqrestore(&phba->hbalock, iflag); 4171 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4172 /* Get the response iocb from the head of work queue */ 4173 spin_lock_irqsave(&phba->hbalock, iflag); 4174 list_remove_head(&phba->sli4_hba.sp_queue_event, 4175 cq_event, struct lpfc_cq_event, list); 4176 spin_unlock_irqrestore(&phba->hbalock, iflag); 4177 4178 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4179 case CQE_CODE_COMPL_WQE: 4180 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4181 cq_event); 4182 /* Translate ELS WCQE to response IOCBQ */ 4183 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 4184 irspiocbq); 4185 if (irspiocbq) 4186 lpfc_sli_sp_handle_rspiocb(phba, pring, 4187 irspiocbq); 4188 count++; 4189 break; 4190 case CQE_CODE_RECEIVE: 4191 case CQE_CODE_RECEIVE_V1: 4192 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4193 cq_event); 4194 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4195 count++; 4196 break; 4197 default: 4198 break; 4199 } 4200 4201 /* Limit the number of events to 64 to avoid soft lockups */ 4202 if (count == 64) 4203 break; 4204 } 4205 } 4206 4207 /** 4208 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4209 * @phba: Pointer to HBA context object. 4210 * @pring: Pointer to driver SLI ring object. 4211 * 4212 * This function aborts all iocbs in the given ring and frees all the iocb 4213 * objects in txq. This function issues an abort iocb for all the iocb commands 4214 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4215 * the return of this function. The caller is not required to hold any locks. 4216 **/ 4217 void 4218 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4219 { 4220 LIST_HEAD(completions); 4221 struct lpfc_iocbq *iocb, *next_iocb; 4222 4223 if (pring->ringno == LPFC_ELS_RING) { 4224 lpfc_fabric_abort_hba(phba); 4225 } 4226 4227 /* Error everything on txq and txcmplq 4228 * First do the txq. 4229 */ 4230 if (phba->sli_rev >= LPFC_SLI_REV4) { 4231 spin_lock_irq(&pring->ring_lock); 4232 list_splice_init(&pring->txq, &completions); 4233 pring->txq_cnt = 0; 4234 spin_unlock_irq(&pring->ring_lock); 4235 4236 spin_lock_irq(&phba->hbalock); 4237 /* Next issue ABTS for everything on the txcmplq */ 4238 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4239 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); 4240 spin_unlock_irq(&phba->hbalock); 4241 } else { 4242 spin_lock_irq(&phba->hbalock); 4243 list_splice_init(&pring->txq, &completions); 4244 pring->txq_cnt = 0; 4245 4246 /* Next issue ABTS for everything on the txcmplq */ 4247 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4248 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); 4249 spin_unlock_irq(&phba->hbalock); 4250 } 4251 /* Make sure HBA is alive */ 4252 lpfc_issue_hb_tmo(phba); 4253 4254 /* Cancel all the IOCBs from the completions list */ 4255 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 4256 IOERR_SLI_ABORTED); 4257 } 4258 4259 /** 4260 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4261 * @phba: Pointer to HBA context object. 4262 * 4263 * This function aborts all iocbs in FCP rings and frees all the iocb 4264 * objects in txq. This function issues an abort iocb for all the iocb commands 4265 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4266 * the return of this function. The caller is not required to hold any locks. 4267 **/ 4268 void 4269 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4270 { 4271 struct lpfc_sli *psli = &phba->sli; 4272 struct lpfc_sli_ring *pring; 4273 uint32_t i; 4274 4275 /* Look on all the FCP Rings for the iotag */ 4276 if (phba->sli_rev >= LPFC_SLI_REV4) { 4277 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4278 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4279 lpfc_sli_abort_iocb_ring(phba, pring); 4280 } 4281 } else { 4282 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4283 lpfc_sli_abort_iocb_ring(phba, pring); 4284 } 4285 } 4286 4287 /** 4288 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4289 * @phba: Pointer to HBA context object. 4290 * 4291 * This function flushes all iocbs in the IO ring and frees all the iocb 4292 * objects in txq and txcmplq. This function will not issue abort iocbs 4293 * for all the iocb commands in txcmplq, they will just be returned with 4294 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4295 * slot has been permanently disabled. 4296 **/ 4297 void 4298 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4299 { 4300 LIST_HEAD(txq); 4301 LIST_HEAD(txcmplq); 4302 struct lpfc_sli *psli = &phba->sli; 4303 struct lpfc_sli_ring *pring; 4304 uint32_t i; 4305 struct lpfc_iocbq *piocb, *next_iocb; 4306 4307 spin_lock_irq(&phba->hbalock); 4308 if (phba->hba_flag & HBA_IOQ_FLUSH || 4309 !phba->sli4_hba.hdwq) { 4310 spin_unlock_irq(&phba->hbalock); 4311 return; 4312 } 4313 /* Indicate the I/O queues are flushed */ 4314 phba->hba_flag |= HBA_IOQ_FLUSH; 4315 spin_unlock_irq(&phba->hbalock); 4316 4317 /* Look on all the FCP Rings for the iotag */ 4318 if (phba->sli_rev >= LPFC_SLI_REV4) { 4319 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4320 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4321 4322 spin_lock_irq(&pring->ring_lock); 4323 /* Retrieve everything on txq */ 4324 list_splice_init(&pring->txq, &txq); 4325 list_for_each_entry_safe(piocb, next_iocb, 4326 &pring->txcmplq, list) 4327 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4328 /* Retrieve everything on the txcmplq */ 4329 list_splice_init(&pring->txcmplq, &txcmplq); 4330 pring->txq_cnt = 0; 4331 pring->txcmplq_cnt = 0; 4332 spin_unlock_irq(&pring->ring_lock); 4333 4334 /* Flush the txq */ 4335 lpfc_sli_cancel_iocbs(phba, &txq, 4336 IOSTAT_LOCAL_REJECT, 4337 IOERR_SLI_DOWN); 4338 /* Flush the txcmpq */ 4339 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4340 IOSTAT_LOCAL_REJECT, 4341 IOERR_SLI_DOWN); 4342 } 4343 } else { 4344 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4345 4346 spin_lock_irq(&phba->hbalock); 4347 /* Retrieve everything on txq */ 4348 list_splice_init(&pring->txq, &txq); 4349 list_for_each_entry_safe(piocb, next_iocb, 4350 &pring->txcmplq, list) 4351 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4352 /* Retrieve everything on the txcmplq */ 4353 list_splice_init(&pring->txcmplq, &txcmplq); 4354 pring->txq_cnt = 0; 4355 pring->txcmplq_cnt = 0; 4356 spin_unlock_irq(&phba->hbalock); 4357 4358 /* Flush the txq */ 4359 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4360 IOERR_SLI_DOWN); 4361 /* Flush the txcmpq */ 4362 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4363 IOERR_SLI_DOWN); 4364 } 4365 } 4366 4367 /** 4368 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4369 * @phba: Pointer to HBA context object. 4370 * @mask: Bit mask to be checked. 4371 * 4372 * This function reads the host status register and compares 4373 * with the provided bit mask to check if HBA completed 4374 * the restart. This function will wait in a loop for the 4375 * HBA to complete restart. If the HBA does not restart within 4376 * 15 iterations, the function will reset the HBA again. The 4377 * function returns 1 when HBA fail to restart otherwise returns 4378 * zero. 4379 **/ 4380 static int 4381 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4382 { 4383 uint32_t status; 4384 int i = 0; 4385 int retval = 0; 4386 4387 /* Read the HBA Host Status Register */ 4388 if (lpfc_readl(phba->HSregaddr, &status)) 4389 return 1; 4390 4391 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4392 4393 /* 4394 * Check status register every 100ms for 5 retries, then every 4395 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4396 * every 2.5 sec for 4. 4397 * Break our of the loop if errors occurred during init. 4398 */ 4399 while (((status & mask) != mask) && 4400 !(status & HS_FFERM) && 4401 i++ < 20) { 4402 4403 if (i <= 5) 4404 msleep(10); 4405 else if (i <= 10) 4406 msleep(500); 4407 else 4408 msleep(2500); 4409 4410 if (i == 15) { 4411 /* Do post */ 4412 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4413 lpfc_sli_brdrestart(phba); 4414 } 4415 /* Read the HBA Host Status Register */ 4416 if (lpfc_readl(phba->HSregaddr, &status)) { 4417 retval = 1; 4418 break; 4419 } 4420 } 4421 4422 /* Check to see if any errors occurred during init */ 4423 if ((status & HS_FFERM) || (i >= 20)) { 4424 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4425 "2751 Adapter failed to restart, " 4426 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4427 status, 4428 readl(phba->MBslimaddr + 0xa8), 4429 readl(phba->MBslimaddr + 0xac)); 4430 phba->link_state = LPFC_HBA_ERROR; 4431 retval = 1; 4432 } 4433 4434 return retval; 4435 } 4436 4437 /** 4438 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4439 * @phba: Pointer to HBA context object. 4440 * @mask: Bit mask to be checked. 4441 * 4442 * This function checks the host status register to check if HBA is 4443 * ready. This function will wait in a loop for the HBA to be ready 4444 * If the HBA is not ready , the function will will reset the HBA PCI 4445 * function again. The function returns 1 when HBA fail to be ready 4446 * otherwise returns zero. 4447 **/ 4448 static int 4449 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4450 { 4451 uint32_t status; 4452 int retval = 0; 4453 4454 /* Read the HBA Host Status Register */ 4455 status = lpfc_sli4_post_status_check(phba); 4456 4457 if (status) { 4458 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4459 lpfc_sli_brdrestart(phba); 4460 status = lpfc_sli4_post_status_check(phba); 4461 } 4462 4463 /* Check to see if any errors occurred during init */ 4464 if (status) { 4465 phba->link_state = LPFC_HBA_ERROR; 4466 retval = 1; 4467 } else 4468 phba->sli4_hba.intr_enable = 0; 4469 4470 return retval; 4471 } 4472 4473 /** 4474 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4475 * @phba: Pointer to HBA context object. 4476 * @mask: Bit mask to be checked. 4477 * 4478 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4479 * from the API jump table function pointer from the lpfc_hba struct. 4480 **/ 4481 int 4482 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4483 { 4484 return phba->lpfc_sli_brdready(phba, mask); 4485 } 4486 4487 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4488 4489 /** 4490 * lpfc_reset_barrier - Make HBA ready for HBA reset 4491 * @phba: Pointer to HBA context object. 4492 * 4493 * This function is called before resetting an HBA. This function is called 4494 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4495 **/ 4496 void lpfc_reset_barrier(struct lpfc_hba *phba) 4497 { 4498 uint32_t __iomem *resp_buf; 4499 uint32_t __iomem *mbox_buf; 4500 volatile uint32_t mbox; 4501 uint32_t hc_copy, ha_copy, resp_data; 4502 int i; 4503 uint8_t hdrtype; 4504 4505 lockdep_assert_held(&phba->hbalock); 4506 4507 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4508 if (hdrtype != 0x80 || 4509 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4510 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4511 return; 4512 4513 /* 4514 * Tell the other part of the chip to suspend temporarily all 4515 * its DMA activity. 4516 */ 4517 resp_buf = phba->MBslimaddr; 4518 4519 /* Disable the error attention */ 4520 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4521 return; 4522 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4523 readl(phba->HCregaddr); /* flush */ 4524 phba->link_flag |= LS_IGNORE_ERATT; 4525 4526 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4527 return; 4528 if (ha_copy & HA_ERATT) { 4529 /* Clear Chip error bit */ 4530 writel(HA_ERATT, phba->HAregaddr); 4531 phba->pport->stopped = 1; 4532 } 4533 4534 mbox = 0; 4535 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 4536 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 4537 4538 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4539 mbox_buf = phba->MBslimaddr; 4540 writel(mbox, mbox_buf); 4541 4542 for (i = 0; i < 50; i++) { 4543 if (lpfc_readl((resp_buf + 1), &resp_data)) 4544 return; 4545 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4546 mdelay(1); 4547 else 4548 break; 4549 } 4550 resp_data = 0; 4551 if (lpfc_readl((resp_buf + 1), &resp_data)) 4552 return; 4553 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4554 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4555 phba->pport->stopped) 4556 goto restore_hc; 4557 else 4558 goto clear_errat; 4559 } 4560 4561 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 4562 resp_data = 0; 4563 for (i = 0; i < 500; i++) { 4564 if (lpfc_readl(resp_buf, &resp_data)) 4565 return; 4566 if (resp_data != mbox) 4567 mdelay(1); 4568 else 4569 break; 4570 } 4571 4572 clear_errat: 4573 4574 while (++i < 500) { 4575 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4576 return; 4577 if (!(ha_copy & HA_ERATT)) 4578 mdelay(1); 4579 else 4580 break; 4581 } 4582 4583 if (readl(phba->HAregaddr) & HA_ERATT) { 4584 writel(HA_ERATT, phba->HAregaddr); 4585 phba->pport->stopped = 1; 4586 } 4587 4588 restore_hc: 4589 phba->link_flag &= ~LS_IGNORE_ERATT; 4590 writel(hc_copy, phba->HCregaddr); 4591 readl(phba->HCregaddr); /* flush */ 4592 } 4593 4594 /** 4595 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4596 * @phba: Pointer to HBA context object. 4597 * 4598 * This function issues a kill_board mailbox command and waits for 4599 * the error attention interrupt. This function is called for stopping 4600 * the firmware processing. The caller is not required to hold any 4601 * locks. This function calls lpfc_hba_down_post function to free 4602 * any pending commands after the kill. The function will return 1 when it 4603 * fails to kill the board else will return 0. 4604 **/ 4605 int 4606 lpfc_sli_brdkill(struct lpfc_hba *phba) 4607 { 4608 struct lpfc_sli *psli; 4609 LPFC_MBOXQ_t *pmb; 4610 uint32_t status; 4611 uint32_t ha_copy; 4612 int retval; 4613 int i = 0; 4614 4615 psli = &phba->sli; 4616 4617 /* Kill HBA */ 4618 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4619 "0329 Kill HBA Data: x%x x%x\n", 4620 phba->pport->port_state, psli->sli_flag); 4621 4622 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4623 if (!pmb) 4624 return 1; 4625 4626 /* Disable the error attention */ 4627 spin_lock_irq(&phba->hbalock); 4628 if (lpfc_readl(phba->HCregaddr, &status)) { 4629 spin_unlock_irq(&phba->hbalock); 4630 mempool_free(pmb, phba->mbox_mem_pool); 4631 return 1; 4632 } 4633 status &= ~HC_ERINT_ENA; 4634 writel(status, phba->HCregaddr); 4635 readl(phba->HCregaddr); /* flush */ 4636 phba->link_flag |= LS_IGNORE_ERATT; 4637 spin_unlock_irq(&phba->hbalock); 4638 4639 lpfc_kill_board(phba, pmb); 4640 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4641 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4642 4643 if (retval != MBX_SUCCESS) { 4644 if (retval != MBX_BUSY) 4645 mempool_free(pmb, phba->mbox_mem_pool); 4646 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4647 "2752 KILL_BOARD command failed retval %d\n", 4648 retval); 4649 spin_lock_irq(&phba->hbalock); 4650 phba->link_flag &= ~LS_IGNORE_ERATT; 4651 spin_unlock_irq(&phba->hbalock); 4652 return 1; 4653 } 4654 4655 spin_lock_irq(&phba->hbalock); 4656 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4657 spin_unlock_irq(&phba->hbalock); 4658 4659 mempool_free(pmb, phba->mbox_mem_pool); 4660 4661 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4662 * attention every 100ms for 3 seconds. If we don't get ERATT after 4663 * 3 seconds we still set HBA_ERROR state because the status of the 4664 * board is now undefined. 4665 */ 4666 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4667 return 1; 4668 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4669 mdelay(100); 4670 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4671 return 1; 4672 } 4673 4674 del_timer_sync(&psli->mbox_tmo); 4675 if (ha_copy & HA_ERATT) { 4676 writel(HA_ERATT, phba->HAregaddr); 4677 phba->pport->stopped = 1; 4678 } 4679 spin_lock_irq(&phba->hbalock); 4680 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4681 psli->mbox_active = NULL; 4682 phba->link_flag &= ~LS_IGNORE_ERATT; 4683 spin_unlock_irq(&phba->hbalock); 4684 4685 lpfc_hba_down_post(phba); 4686 phba->link_state = LPFC_HBA_ERROR; 4687 4688 return ha_copy & HA_ERATT ? 0 : 1; 4689 } 4690 4691 /** 4692 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4693 * @phba: Pointer to HBA context object. 4694 * 4695 * This function resets the HBA by writing HC_INITFF to the control 4696 * register. After the HBA resets, this function resets all the iocb ring 4697 * indices. This function disables PCI layer parity checking during 4698 * the reset. 4699 * This function returns 0 always. 4700 * The caller is not required to hold any locks. 4701 **/ 4702 int 4703 lpfc_sli_brdreset(struct lpfc_hba *phba) 4704 { 4705 struct lpfc_sli *psli; 4706 struct lpfc_sli_ring *pring; 4707 uint16_t cfg_value; 4708 int i; 4709 4710 psli = &phba->sli; 4711 4712 /* Reset HBA */ 4713 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4714 "0325 Reset HBA Data: x%x x%x\n", 4715 (phba->pport) ? phba->pport->port_state : 0, 4716 psli->sli_flag); 4717 4718 /* perform board reset */ 4719 phba->fc_eventTag = 0; 4720 phba->link_events = 0; 4721 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4722 if (phba->pport) { 4723 phba->pport->fc_myDID = 0; 4724 phba->pport->fc_prevDID = 0; 4725 } 4726 4727 /* Turn off parity checking and serr during the physical reset */ 4728 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 4729 return -EIO; 4730 4731 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4732 (cfg_value & 4733 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4734 4735 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4736 4737 /* Now toggle INITFF bit in the Host Control Register */ 4738 writel(HC_INITFF, phba->HCregaddr); 4739 mdelay(1); 4740 readl(phba->HCregaddr); /* flush */ 4741 writel(0, phba->HCregaddr); 4742 readl(phba->HCregaddr); /* flush */ 4743 4744 /* Restore PCI cmd register */ 4745 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4746 4747 /* Initialize relevant SLI info */ 4748 for (i = 0; i < psli->num_rings; i++) { 4749 pring = &psli->sli3_ring[i]; 4750 pring->flag = 0; 4751 pring->sli.sli3.rspidx = 0; 4752 pring->sli.sli3.next_cmdidx = 0; 4753 pring->sli.sli3.local_getidx = 0; 4754 pring->sli.sli3.cmdidx = 0; 4755 pring->missbufcnt = 0; 4756 } 4757 4758 phba->link_state = LPFC_WARM_START; 4759 return 0; 4760 } 4761 4762 /** 4763 * lpfc_sli4_brdreset - Reset a sli-4 HBA 4764 * @phba: Pointer to HBA context object. 4765 * 4766 * This function resets a SLI4 HBA. This function disables PCI layer parity 4767 * checking during resets the device. The caller is not required to hold 4768 * any locks. 4769 * 4770 * This function returns 0 on success else returns negative error code. 4771 **/ 4772 int 4773 lpfc_sli4_brdreset(struct lpfc_hba *phba) 4774 { 4775 struct lpfc_sli *psli = &phba->sli; 4776 uint16_t cfg_value; 4777 int rc = 0; 4778 4779 /* Reset HBA */ 4780 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4781 "0295 Reset HBA Data: x%x x%x x%x\n", 4782 phba->pport->port_state, psli->sli_flag, 4783 phba->hba_flag); 4784 4785 /* perform board reset */ 4786 phba->fc_eventTag = 0; 4787 phba->link_events = 0; 4788 phba->pport->fc_myDID = 0; 4789 phba->pport->fc_prevDID = 0; 4790 4791 spin_lock_irq(&phba->hbalock); 4792 psli->sli_flag &= ~(LPFC_PROCESS_LA); 4793 phba->fcf.fcf_flag = 0; 4794 spin_unlock_irq(&phba->hbalock); 4795 4796 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 4797 if (phba->hba_flag & HBA_FW_DUMP_OP) { 4798 phba->hba_flag &= ~HBA_FW_DUMP_OP; 4799 return rc; 4800 } 4801 4802 /* Now physically reset the device */ 4803 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4804 "0389 Performing PCI function reset!\n"); 4805 4806 /* Turn off parity checking and serr during the physical reset */ 4807 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 4808 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4809 "3205 PCI read Config failed\n"); 4810 return -EIO; 4811 } 4812 4813 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4814 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4815 4816 /* Perform FCoE PCI function reset before freeing queue memory */ 4817 rc = lpfc_pci_function_reset(phba); 4818 4819 /* Restore PCI cmd register */ 4820 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4821 4822 return rc; 4823 } 4824 4825 /** 4826 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4827 * @phba: Pointer to HBA context object. 4828 * 4829 * This function is called in the SLI initialization code path to 4830 * restart the HBA. The caller is not required to hold any lock. 4831 * This function writes MBX_RESTART mailbox command to the SLIM and 4832 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4833 * function to free any pending commands. The function enables 4834 * POST only during the first initialization. The function returns zero. 4835 * The function does not guarantee completion of MBX_RESTART mailbox 4836 * command before the return of this function. 4837 **/ 4838 static int 4839 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4840 { 4841 MAILBOX_t *mb; 4842 struct lpfc_sli *psli; 4843 volatile uint32_t word0; 4844 void __iomem *to_slim; 4845 uint32_t hba_aer_enabled; 4846 4847 spin_lock_irq(&phba->hbalock); 4848 4849 /* Take PCIe device Advanced Error Reporting (AER) state */ 4850 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4851 4852 psli = &phba->sli; 4853 4854 /* Restart HBA */ 4855 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4856 "0337 Restart HBA Data: x%x x%x\n", 4857 (phba->pport) ? phba->pport->port_state : 0, 4858 psli->sli_flag); 4859 4860 word0 = 0; 4861 mb = (MAILBOX_t *) &word0; 4862 mb->mbxCommand = MBX_RESTART; 4863 mb->mbxHc = 1; 4864 4865 lpfc_reset_barrier(phba); 4866 4867 to_slim = phba->MBslimaddr; 4868 writel(*(uint32_t *) mb, to_slim); 4869 readl(to_slim); /* flush */ 4870 4871 /* Only skip post after fc_ffinit is completed */ 4872 if (phba->pport && phba->pport->port_state) 4873 word0 = 1; /* This is really setting up word1 */ 4874 else 4875 word0 = 0; /* This is really setting up word1 */ 4876 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4877 writel(*(uint32_t *) mb, to_slim); 4878 readl(to_slim); /* flush */ 4879 4880 lpfc_sli_brdreset(phba); 4881 if (phba->pport) 4882 phba->pport->stopped = 0; 4883 phba->link_state = LPFC_INIT_START; 4884 phba->hba_flag = 0; 4885 spin_unlock_irq(&phba->hbalock); 4886 4887 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4888 psli->stats_start = ktime_get_seconds(); 4889 4890 /* Give the INITFF and Post time to settle. */ 4891 mdelay(100); 4892 4893 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4894 if (hba_aer_enabled) 4895 pci_disable_pcie_error_reporting(phba->pcidev); 4896 4897 lpfc_hba_down_post(phba); 4898 4899 return 0; 4900 } 4901 4902 /** 4903 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4904 * @phba: Pointer to HBA context object. 4905 * 4906 * This function is called in the SLI initialization code path to restart 4907 * a SLI4 HBA. The caller is not required to hold any lock. 4908 * At the end of the function, it calls lpfc_hba_down_post function to 4909 * free any pending commands. 4910 **/ 4911 static int 4912 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4913 { 4914 struct lpfc_sli *psli = &phba->sli; 4915 uint32_t hba_aer_enabled; 4916 int rc; 4917 4918 /* Restart HBA */ 4919 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4920 "0296 Restart HBA Data: x%x x%x\n", 4921 phba->pport->port_state, psli->sli_flag); 4922 4923 /* Take PCIe device Advanced Error Reporting (AER) state */ 4924 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4925 4926 rc = lpfc_sli4_brdreset(phba); 4927 if (rc) { 4928 phba->link_state = LPFC_HBA_ERROR; 4929 goto hba_down_queue; 4930 } 4931 4932 spin_lock_irq(&phba->hbalock); 4933 phba->pport->stopped = 0; 4934 phba->link_state = LPFC_INIT_START; 4935 phba->hba_flag = 0; 4936 spin_unlock_irq(&phba->hbalock); 4937 4938 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4939 psli->stats_start = ktime_get_seconds(); 4940 4941 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4942 if (hba_aer_enabled) 4943 pci_disable_pcie_error_reporting(phba->pcidev); 4944 4945 hba_down_queue: 4946 lpfc_hba_down_post(phba); 4947 lpfc_sli4_queue_destroy(phba); 4948 4949 return rc; 4950 } 4951 4952 /** 4953 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4954 * @phba: Pointer to HBA context object. 4955 * 4956 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4957 * API jump table function pointer from the lpfc_hba struct. 4958 **/ 4959 int 4960 lpfc_sli_brdrestart(struct lpfc_hba *phba) 4961 { 4962 return phba->lpfc_sli_brdrestart(phba); 4963 } 4964 4965 /** 4966 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4967 * @phba: Pointer to HBA context object. 4968 * 4969 * This function is called after a HBA restart to wait for successful 4970 * restart of the HBA. Successful restart of the HBA is indicated by 4971 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4972 * iteration, the function will restart the HBA again. The function returns 4973 * zero if HBA successfully restarted else returns negative error code. 4974 **/ 4975 int 4976 lpfc_sli_chipset_init(struct lpfc_hba *phba) 4977 { 4978 uint32_t status, i = 0; 4979 4980 /* Read the HBA Host Status Register */ 4981 if (lpfc_readl(phba->HSregaddr, &status)) 4982 return -EIO; 4983 4984 /* Check status register to see what current state is */ 4985 i = 0; 4986 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4987 4988 /* Check every 10ms for 10 retries, then every 100ms for 90 4989 * retries, then every 1 sec for 50 retires for a total of 4990 * ~60 seconds before reset the board again and check every 4991 * 1 sec for 50 retries. The up to 60 seconds before the 4992 * board ready is required by the Falcon FIPS zeroization 4993 * complete, and any reset the board in between shall cause 4994 * restart of zeroization, further delay the board ready. 4995 */ 4996 if (i++ >= 200) { 4997 /* Adapter failed to init, timeout, status reg 4998 <status> */ 4999 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5000 "0436 Adapter failed to init, " 5001 "timeout, status reg x%x, " 5002 "FW Data: A8 x%x AC x%x\n", status, 5003 readl(phba->MBslimaddr + 0xa8), 5004 readl(phba->MBslimaddr + 0xac)); 5005 phba->link_state = LPFC_HBA_ERROR; 5006 return -ETIMEDOUT; 5007 } 5008 5009 /* Check to see if any errors occurred during init */ 5010 if (status & HS_FFERM) { 5011 /* ERROR: During chipset initialization */ 5012 /* Adapter failed to init, chipset, status reg 5013 <status> */ 5014 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5015 "0437 Adapter failed to init, " 5016 "chipset, status reg x%x, " 5017 "FW Data: A8 x%x AC x%x\n", status, 5018 readl(phba->MBslimaddr + 0xa8), 5019 readl(phba->MBslimaddr + 0xac)); 5020 phba->link_state = LPFC_HBA_ERROR; 5021 return -EIO; 5022 } 5023 5024 if (i <= 10) 5025 msleep(10); 5026 else if (i <= 100) 5027 msleep(100); 5028 else 5029 msleep(1000); 5030 5031 if (i == 150) { 5032 /* Do post */ 5033 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5034 lpfc_sli_brdrestart(phba); 5035 } 5036 /* Read the HBA Host Status Register */ 5037 if (lpfc_readl(phba->HSregaddr, &status)) 5038 return -EIO; 5039 } 5040 5041 /* Check to see if any errors occurred during init */ 5042 if (status & HS_FFERM) { 5043 /* ERROR: During chipset initialization */ 5044 /* Adapter failed to init, chipset, status reg <status> */ 5045 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5046 "0438 Adapter failed to init, chipset, " 5047 "status reg x%x, " 5048 "FW Data: A8 x%x AC x%x\n", status, 5049 readl(phba->MBslimaddr + 0xa8), 5050 readl(phba->MBslimaddr + 0xac)); 5051 phba->link_state = LPFC_HBA_ERROR; 5052 return -EIO; 5053 } 5054 5055 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5056 5057 /* Clear all interrupt enable conditions */ 5058 writel(0, phba->HCregaddr); 5059 readl(phba->HCregaddr); /* flush */ 5060 5061 /* setup host attn register */ 5062 writel(0xffffffff, phba->HAregaddr); 5063 readl(phba->HAregaddr); /* flush */ 5064 return 0; 5065 } 5066 5067 /** 5068 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5069 * 5070 * This function calculates and returns the number of HBQs required to be 5071 * configured. 5072 **/ 5073 int 5074 lpfc_sli_hbq_count(void) 5075 { 5076 return ARRAY_SIZE(lpfc_hbq_defs); 5077 } 5078 5079 /** 5080 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5081 * 5082 * This function adds the number of hbq entries in every HBQ to get 5083 * the total number of hbq entries required for the HBA and returns 5084 * the total count. 5085 **/ 5086 static int 5087 lpfc_sli_hbq_entry_count(void) 5088 { 5089 int hbq_count = lpfc_sli_hbq_count(); 5090 int count = 0; 5091 int i; 5092 5093 for (i = 0; i < hbq_count; ++i) 5094 count += lpfc_hbq_defs[i]->entry_count; 5095 return count; 5096 } 5097 5098 /** 5099 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5100 * 5101 * This function calculates amount of memory required for all hbq entries 5102 * to be configured and returns the total memory required. 5103 **/ 5104 int 5105 lpfc_sli_hbq_size(void) 5106 { 5107 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5108 } 5109 5110 /** 5111 * lpfc_sli_hbq_setup - configure and initialize HBQs 5112 * @phba: Pointer to HBA context object. 5113 * 5114 * This function is called during the SLI initialization to configure 5115 * all the HBQs and post buffers to the HBQ. The caller is not 5116 * required to hold any locks. This function will return zero if successful 5117 * else it will return negative error code. 5118 **/ 5119 static int 5120 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5121 { 5122 int hbq_count = lpfc_sli_hbq_count(); 5123 LPFC_MBOXQ_t *pmb; 5124 MAILBOX_t *pmbox; 5125 uint32_t hbqno; 5126 uint32_t hbq_entry_index; 5127 5128 /* Get a Mailbox buffer to setup mailbox 5129 * commands for HBA initialization 5130 */ 5131 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5132 5133 if (!pmb) 5134 return -ENOMEM; 5135 5136 pmbox = &pmb->u.mb; 5137 5138 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5139 phba->link_state = LPFC_INIT_MBX_CMDS; 5140 phba->hbq_in_use = 1; 5141 5142 hbq_entry_index = 0; 5143 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5144 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5145 phba->hbqs[hbqno].hbqPutIdx = 0; 5146 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5147 phba->hbqs[hbqno].entry_count = 5148 lpfc_hbq_defs[hbqno]->entry_count; 5149 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5150 hbq_entry_index, pmb); 5151 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5152 5153 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5154 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5155 mbxStatus <status>, ring <num> */ 5156 5157 lpfc_printf_log(phba, KERN_ERR, 5158 LOG_SLI | LOG_VPORT, 5159 "1805 Adapter failed to init. " 5160 "Data: x%x x%x x%x\n", 5161 pmbox->mbxCommand, 5162 pmbox->mbxStatus, hbqno); 5163 5164 phba->link_state = LPFC_HBA_ERROR; 5165 mempool_free(pmb, phba->mbox_mem_pool); 5166 return -ENXIO; 5167 } 5168 } 5169 phba->hbq_count = hbq_count; 5170 5171 mempool_free(pmb, phba->mbox_mem_pool); 5172 5173 /* Initially populate or replenish the HBQs */ 5174 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5175 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5176 return 0; 5177 } 5178 5179 /** 5180 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5181 * @phba: Pointer to HBA context object. 5182 * 5183 * This function is called during the SLI initialization to configure 5184 * all the HBQs and post buffers to the HBQ. The caller is not 5185 * required to hold any locks. This function will return zero if successful 5186 * else it will return negative error code. 5187 **/ 5188 static int 5189 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5190 { 5191 phba->hbq_in_use = 1; 5192 /** 5193 * Specific case when the MDS diagnostics is enabled and supported. 5194 * The receive buffer count is truncated to manage the incoming 5195 * traffic. 5196 **/ 5197 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5198 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5199 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5200 else 5201 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5202 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5203 phba->hbq_count = 1; 5204 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5205 /* Initially populate or replenish the HBQs */ 5206 return 0; 5207 } 5208 5209 /** 5210 * lpfc_sli_config_port - Issue config port mailbox command 5211 * @phba: Pointer to HBA context object. 5212 * @sli_mode: sli mode - 2/3 5213 * 5214 * This function is called by the sli initialization code path 5215 * to issue config_port mailbox command. This function restarts the 5216 * HBA firmware and issues a config_port mailbox command to configure 5217 * the SLI interface in the sli mode specified by sli_mode 5218 * variable. The caller is not required to hold any locks. 5219 * The function returns 0 if successful, else returns negative error 5220 * code. 5221 **/ 5222 int 5223 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5224 { 5225 LPFC_MBOXQ_t *pmb; 5226 uint32_t resetcount = 0, rc = 0, done = 0; 5227 5228 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5229 if (!pmb) { 5230 phba->link_state = LPFC_HBA_ERROR; 5231 return -ENOMEM; 5232 } 5233 5234 phba->sli_rev = sli_mode; 5235 while (resetcount < 2 && !done) { 5236 spin_lock_irq(&phba->hbalock); 5237 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5238 spin_unlock_irq(&phba->hbalock); 5239 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5240 lpfc_sli_brdrestart(phba); 5241 rc = lpfc_sli_chipset_init(phba); 5242 if (rc) 5243 break; 5244 5245 spin_lock_irq(&phba->hbalock); 5246 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5247 spin_unlock_irq(&phba->hbalock); 5248 resetcount++; 5249 5250 /* Call pre CONFIG_PORT mailbox command initialization. A 5251 * value of 0 means the call was successful. Any other 5252 * nonzero value is a failure, but if ERESTART is returned, 5253 * the driver may reset the HBA and try again. 5254 */ 5255 rc = lpfc_config_port_prep(phba); 5256 if (rc == -ERESTART) { 5257 phba->link_state = LPFC_LINK_UNKNOWN; 5258 continue; 5259 } else if (rc) 5260 break; 5261 5262 phba->link_state = LPFC_INIT_MBX_CMDS; 5263 lpfc_config_port(phba, pmb); 5264 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5265 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5266 LPFC_SLI3_HBQ_ENABLED | 5267 LPFC_SLI3_CRP_ENABLED | 5268 LPFC_SLI3_DSS_ENABLED); 5269 if (rc != MBX_SUCCESS) { 5270 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5271 "0442 Adapter failed to init, mbxCmd x%x " 5272 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5273 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5274 spin_lock_irq(&phba->hbalock); 5275 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5276 spin_unlock_irq(&phba->hbalock); 5277 rc = -ENXIO; 5278 } else { 5279 /* Allow asynchronous mailbox command to go through */ 5280 spin_lock_irq(&phba->hbalock); 5281 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5282 spin_unlock_irq(&phba->hbalock); 5283 done = 1; 5284 5285 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5286 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5287 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5288 "3110 Port did not grant ASABT\n"); 5289 } 5290 } 5291 if (!done) { 5292 rc = -EINVAL; 5293 goto do_prep_failed; 5294 } 5295 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5296 if (!pmb->u.mb.un.varCfgPort.cMA) { 5297 rc = -ENXIO; 5298 goto do_prep_failed; 5299 } 5300 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5301 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5302 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5303 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5304 phba->max_vpi : phba->max_vports; 5305 5306 } else 5307 phba->max_vpi = 0; 5308 if (pmb->u.mb.un.varCfgPort.gerbm) 5309 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5310 if (pmb->u.mb.un.varCfgPort.gcrp) 5311 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5312 5313 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5314 phba->port_gp = phba->mbox->us.s3_pgp.port; 5315 5316 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5317 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5318 phba->cfg_enable_bg = 0; 5319 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5320 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5321 "0443 Adapter did not grant " 5322 "BlockGuard\n"); 5323 } 5324 } 5325 } else { 5326 phba->hbq_get = NULL; 5327 phba->port_gp = phba->mbox->us.s2.port; 5328 phba->max_vpi = 0; 5329 } 5330 do_prep_failed: 5331 mempool_free(pmb, phba->mbox_mem_pool); 5332 return rc; 5333 } 5334 5335 5336 /** 5337 * lpfc_sli_hba_setup - SLI initialization function 5338 * @phba: Pointer to HBA context object. 5339 * 5340 * This function is the main SLI initialization function. This function 5341 * is called by the HBA initialization code, HBA reset code and HBA 5342 * error attention handler code. Caller is not required to hold any 5343 * locks. This function issues config_port mailbox command to configure 5344 * the SLI, setup iocb rings and HBQ rings. In the end the function 5345 * calls the config_port_post function to issue init_link mailbox 5346 * command and to start the discovery. The function will return zero 5347 * if successful, else it will return negative error code. 5348 **/ 5349 int 5350 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5351 { 5352 uint32_t rc; 5353 int i; 5354 int longs; 5355 5356 /* Enable ISR already does config_port because of config_msi mbx */ 5357 if (phba->hba_flag & HBA_NEEDS_CFG_PORT) { 5358 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5359 if (rc) 5360 return -EIO; 5361 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 5362 } 5363 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5364 5365 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5366 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5367 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5368 if (!rc) { 5369 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5370 "2709 This device supports " 5371 "Advanced Error Reporting (AER)\n"); 5372 spin_lock_irq(&phba->hbalock); 5373 phba->hba_flag |= HBA_AER_ENABLED; 5374 spin_unlock_irq(&phba->hbalock); 5375 } else { 5376 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5377 "2708 This device does not support " 5378 "Advanced Error Reporting (AER): %d\n", 5379 rc); 5380 phba->cfg_aer_support = 0; 5381 } 5382 } 5383 5384 if (phba->sli_rev == 3) { 5385 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5386 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5387 } else { 5388 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5389 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5390 phba->sli3_options = 0; 5391 } 5392 5393 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5394 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5395 phba->sli_rev, phba->max_vpi); 5396 rc = lpfc_sli_ring_map(phba); 5397 5398 if (rc) 5399 goto lpfc_sli_hba_setup_error; 5400 5401 /* Initialize VPIs. */ 5402 if (phba->sli_rev == LPFC_SLI_REV3) { 5403 /* 5404 * The VPI bitmask and physical ID array are allocated 5405 * and initialized once only - at driver load. A port 5406 * reset doesn't need to reinitialize this memory. 5407 */ 5408 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5409 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5410 phba->vpi_bmask = kcalloc(longs, 5411 sizeof(unsigned long), 5412 GFP_KERNEL); 5413 if (!phba->vpi_bmask) { 5414 rc = -ENOMEM; 5415 goto lpfc_sli_hba_setup_error; 5416 } 5417 5418 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5419 sizeof(uint16_t), 5420 GFP_KERNEL); 5421 if (!phba->vpi_ids) { 5422 kfree(phba->vpi_bmask); 5423 rc = -ENOMEM; 5424 goto lpfc_sli_hba_setup_error; 5425 } 5426 for (i = 0; i < phba->max_vpi; i++) 5427 phba->vpi_ids[i] = i; 5428 } 5429 } 5430 5431 /* Init HBQs */ 5432 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5433 rc = lpfc_sli_hbq_setup(phba); 5434 if (rc) 5435 goto lpfc_sli_hba_setup_error; 5436 } 5437 spin_lock_irq(&phba->hbalock); 5438 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5439 spin_unlock_irq(&phba->hbalock); 5440 5441 rc = lpfc_config_port_post(phba); 5442 if (rc) 5443 goto lpfc_sli_hba_setup_error; 5444 5445 return rc; 5446 5447 lpfc_sli_hba_setup_error: 5448 phba->link_state = LPFC_HBA_ERROR; 5449 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5450 "0445 Firmware initialization failed\n"); 5451 return rc; 5452 } 5453 5454 /** 5455 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5456 * @phba: Pointer to HBA context object. 5457 * 5458 * This function issue a dump mailbox command to read config region 5459 * 23 and parse the records in the region and populate driver 5460 * data structure. 5461 **/ 5462 static int 5463 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5464 { 5465 LPFC_MBOXQ_t *mboxq; 5466 struct lpfc_dmabuf *mp; 5467 struct lpfc_mqe *mqe; 5468 uint32_t data_length; 5469 int rc; 5470 5471 /* Program the default value of vlan_id and fc_map */ 5472 phba->valid_vlan = 0; 5473 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5474 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5475 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5476 5477 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5478 if (!mboxq) 5479 return -ENOMEM; 5480 5481 mqe = &mboxq->u.mqe; 5482 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5483 rc = -ENOMEM; 5484 goto out_free_mboxq; 5485 } 5486 5487 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5488 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5489 5490 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5491 "(%d):2571 Mailbox cmd x%x Status x%x " 5492 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5493 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5494 "CQ: x%x x%x x%x x%x\n", 5495 mboxq->vport ? mboxq->vport->vpi : 0, 5496 bf_get(lpfc_mqe_command, mqe), 5497 bf_get(lpfc_mqe_status, mqe), 5498 mqe->un.mb_words[0], mqe->un.mb_words[1], 5499 mqe->un.mb_words[2], mqe->un.mb_words[3], 5500 mqe->un.mb_words[4], mqe->un.mb_words[5], 5501 mqe->un.mb_words[6], mqe->un.mb_words[7], 5502 mqe->un.mb_words[8], mqe->un.mb_words[9], 5503 mqe->un.mb_words[10], mqe->un.mb_words[11], 5504 mqe->un.mb_words[12], mqe->un.mb_words[13], 5505 mqe->un.mb_words[14], mqe->un.mb_words[15], 5506 mqe->un.mb_words[16], mqe->un.mb_words[50], 5507 mboxq->mcqe.word0, 5508 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5509 mboxq->mcqe.trailer); 5510 5511 if (rc) { 5512 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5513 kfree(mp); 5514 rc = -EIO; 5515 goto out_free_mboxq; 5516 } 5517 data_length = mqe->un.mb_words[5]; 5518 if (data_length > DMP_RGN23_SIZE) { 5519 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5520 kfree(mp); 5521 rc = -EIO; 5522 goto out_free_mboxq; 5523 } 5524 5525 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5526 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5527 kfree(mp); 5528 rc = 0; 5529 5530 out_free_mboxq: 5531 mempool_free(mboxq, phba->mbox_mem_pool); 5532 return rc; 5533 } 5534 5535 /** 5536 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5537 * @phba: pointer to lpfc hba data structure. 5538 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5539 * @vpd: pointer to the memory to hold resulting port vpd data. 5540 * @vpd_size: On input, the number of bytes allocated to @vpd. 5541 * On output, the number of data bytes in @vpd. 5542 * 5543 * This routine executes a READ_REV SLI4 mailbox command. In 5544 * addition, this routine gets the port vpd data. 5545 * 5546 * Return codes 5547 * 0 - successful 5548 * -ENOMEM - could not allocated memory. 5549 **/ 5550 static int 5551 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5552 uint8_t *vpd, uint32_t *vpd_size) 5553 { 5554 int rc = 0; 5555 uint32_t dma_size; 5556 struct lpfc_dmabuf *dmabuf; 5557 struct lpfc_mqe *mqe; 5558 5559 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5560 if (!dmabuf) 5561 return -ENOMEM; 5562 5563 /* 5564 * Get a DMA buffer for the vpd data resulting from the READ_REV 5565 * mailbox command. 5566 */ 5567 dma_size = *vpd_size; 5568 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5569 &dmabuf->phys, GFP_KERNEL); 5570 if (!dmabuf->virt) { 5571 kfree(dmabuf); 5572 return -ENOMEM; 5573 } 5574 5575 /* 5576 * The SLI4 implementation of READ_REV conflicts at word1, 5577 * bits 31:16 and SLI4 adds vpd functionality not present 5578 * in SLI3. This code corrects the conflicts. 5579 */ 5580 lpfc_read_rev(phba, mboxq); 5581 mqe = &mboxq->u.mqe; 5582 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5583 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5584 mqe->un.read_rev.word1 &= 0x0000FFFF; 5585 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5586 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5587 5588 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5589 if (rc) { 5590 dma_free_coherent(&phba->pcidev->dev, dma_size, 5591 dmabuf->virt, dmabuf->phys); 5592 kfree(dmabuf); 5593 return -EIO; 5594 } 5595 5596 /* 5597 * The available vpd length cannot be bigger than the 5598 * DMA buffer passed to the port. Catch the less than 5599 * case and update the caller's size. 5600 */ 5601 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5602 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5603 5604 memcpy(vpd, dmabuf->virt, *vpd_size); 5605 5606 dma_free_coherent(&phba->pcidev->dev, dma_size, 5607 dmabuf->virt, dmabuf->phys); 5608 kfree(dmabuf); 5609 return 0; 5610 } 5611 5612 /** 5613 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5614 * @phba: pointer to lpfc hba data structure. 5615 * 5616 * This routine retrieves SLI4 device physical port name this PCI function 5617 * is attached to. 5618 * 5619 * Return codes 5620 * 0 - successful 5621 * otherwise - failed to retrieve controller attributes 5622 **/ 5623 static int 5624 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5625 { 5626 LPFC_MBOXQ_t *mboxq; 5627 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5628 struct lpfc_controller_attribute *cntl_attr; 5629 void *virtaddr = NULL; 5630 uint32_t alloclen, reqlen; 5631 uint32_t shdr_status, shdr_add_status; 5632 union lpfc_sli4_cfg_shdr *shdr; 5633 int rc; 5634 5635 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5636 if (!mboxq) 5637 return -ENOMEM; 5638 5639 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5640 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5641 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5642 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5643 LPFC_SLI4_MBX_NEMBED); 5644 5645 if (alloclen < reqlen) { 5646 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5647 "3084 Allocated DMA memory size (%d) is " 5648 "less than the requested DMA memory size " 5649 "(%d)\n", alloclen, reqlen); 5650 rc = -ENOMEM; 5651 goto out_free_mboxq; 5652 } 5653 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5654 virtaddr = mboxq->sge_array->addr[0]; 5655 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5656 shdr = &mbx_cntl_attr->cfg_shdr; 5657 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5658 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5659 if (shdr_status || shdr_add_status || rc) { 5660 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5661 "3085 Mailbox x%x (x%x/x%x) failed, " 5662 "rc:x%x, status:x%x, add_status:x%x\n", 5663 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5664 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5665 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5666 rc, shdr_status, shdr_add_status); 5667 rc = -ENXIO; 5668 goto out_free_mboxq; 5669 } 5670 5671 cntl_attr = &mbx_cntl_attr->cntl_attr; 5672 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5673 phba->sli4_hba.lnk_info.lnk_tp = 5674 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5675 phba->sli4_hba.lnk_info.lnk_no = 5676 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5677 5678 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 5679 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 5680 sizeof(phba->BIOSVersion)); 5681 5682 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5683 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s\n", 5684 phba->sli4_hba.lnk_info.lnk_tp, 5685 phba->sli4_hba.lnk_info.lnk_no, 5686 phba->BIOSVersion); 5687 out_free_mboxq: 5688 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5689 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5690 else 5691 mempool_free(mboxq, phba->mbox_mem_pool); 5692 return rc; 5693 } 5694 5695 /** 5696 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 5697 * @phba: pointer to lpfc hba data structure. 5698 * 5699 * This routine retrieves SLI4 device physical port name this PCI function 5700 * is attached to. 5701 * 5702 * Return codes 5703 * 0 - successful 5704 * otherwise - failed to retrieve physical port name 5705 **/ 5706 static int 5707 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 5708 { 5709 LPFC_MBOXQ_t *mboxq; 5710 struct lpfc_mbx_get_port_name *get_port_name; 5711 uint32_t shdr_status, shdr_add_status; 5712 union lpfc_sli4_cfg_shdr *shdr; 5713 char cport_name = 0; 5714 int rc; 5715 5716 /* We assume nothing at this point */ 5717 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5718 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 5719 5720 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5721 if (!mboxq) 5722 return -ENOMEM; 5723 /* obtain link type and link number via READ_CONFIG */ 5724 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5725 lpfc_sli4_read_config(phba); 5726 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 5727 goto retrieve_ppname; 5728 5729 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 5730 rc = lpfc_sli4_get_ctl_attr(phba); 5731 if (rc) 5732 goto out_free_mboxq; 5733 5734 retrieve_ppname: 5735 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5736 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5737 sizeof(struct lpfc_mbx_get_port_name) - 5738 sizeof(struct lpfc_sli4_cfg_mhdr), 5739 LPFC_SLI4_MBX_EMBED); 5740 get_port_name = &mboxq->u.mqe.un.get_port_name; 5741 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5742 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5743 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5744 phba->sli4_hba.lnk_info.lnk_tp); 5745 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5746 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5747 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5748 if (shdr_status || shdr_add_status || rc) { 5749 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5750 "3087 Mailbox x%x (x%x/x%x) failed: " 5751 "rc:x%x, status:x%x, add_status:x%x\n", 5752 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5753 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5754 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5755 rc, shdr_status, shdr_add_status); 5756 rc = -ENXIO; 5757 goto out_free_mboxq; 5758 } 5759 switch (phba->sli4_hba.lnk_info.lnk_no) { 5760 case LPFC_LINK_NUMBER_0: 5761 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 5762 &get_port_name->u.response); 5763 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5764 break; 5765 case LPFC_LINK_NUMBER_1: 5766 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 5767 &get_port_name->u.response); 5768 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5769 break; 5770 case LPFC_LINK_NUMBER_2: 5771 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 5772 &get_port_name->u.response); 5773 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5774 break; 5775 case LPFC_LINK_NUMBER_3: 5776 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 5777 &get_port_name->u.response); 5778 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5779 break; 5780 default: 5781 break; 5782 } 5783 5784 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 5785 phba->Port[0] = cport_name; 5786 phba->Port[1] = '\0'; 5787 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5788 "3091 SLI get port name: %s\n", phba->Port); 5789 } 5790 5791 out_free_mboxq: 5792 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5793 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5794 else 5795 mempool_free(mboxq, phba->mbox_mem_pool); 5796 return rc; 5797 } 5798 5799 /** 5800 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 5801 * @phba: pointer to lpfc hba data structure. 5802 * 5803 * This routine is called to explicitly arm the SLI4 device's completion and 5804 * event queues 5805 **/ 5806 static void 5807 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 5808 { 5809 int qidx; 5810 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 5811 struct lpfc_sli4_hdw_queue *qp; 5812 struct lpfc_queue *eq; 5813 5814 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 5815 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 5816 if (sli4_hba->nvmels_cq) 5817 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 5818 LPFC_QUEUE_REARM); 5819 5820 if (sli4_hba->hdwq) { 5821 /* Loop thru all Hardware Queues */ 5822 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 5823 qp = &sli4_hba->hdwq[qidx]; 5824 /* ARM the corresponding CQ */ 5825 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 5826 LPFC_QUEUE_REARM); 5827 } 5828 5829 /* Loop thru all IRQ vectors */ 5830 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 5831 eq = sli4_hba->hba_eq_hdl[qidx].eq; 5832 /* ARM the corresponding EQ */ 5833 sli4_hba->sli4_write_eq_db(phba, eq, 5834 0, LPFC_QUEUE_REARM); 5835 } 5836 } 5837 5838 if (phba->nvmet_support) { 5839 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 5840 sli4_hba->sli4_write_cq_db(phba, 5841 sli4_hba->nvmet_cqset[qidx], 0, 5842 LPFC_QUEUE_REARM); 5843 } 5844 } 5845 } 5846 5847 /** 5848 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 5849 * @phba: Pointer to HBA context object. 5850 * @type: The resource extent type. 5851 * @extnt_count: buffer to hold port available extent count. 5852 * @extnt_size: buffer to hold element count per extent. 5853 * 5854 * This function calls the port and retrievs the number of available 5855 * extents and their size for a particular extent type. 5856 * 5857 * Returns: 0 if successful. Nonzero otherwise. 5858 **/ 5859 int 5860 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5861 uint16_t *extnt_count, uint16_t *extnt_size) 5862 { 5863 int rc = 0; 5864 uint32_t length; 5865 uint32_t mbox_tmo; 5866 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5867 LPFC_MBOXQ_t *mbox; 5868 5869 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5870 if (!mbox) 5871 return -ENOMEM; 5872 5873 /* Find out how many extents are available for this resource type */ 5874 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5875 sizeof(struct lpfc_sli4_cfg_mhdr)); 5876 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5877 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5878 length, LPFC_SLI4_MBX_EMBED); 5879 5880 /* Send an extents count of 0 - the GET doesn't use it. */ 5881 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5882 LPFC_SLI4_MBX_EMBED); 5883 if (unlikely(rc)) { 5884 rc = -EIO; 5885 goto err_exit; 5886 } 5887 5888 if (!phba->sli4_hba.intr_enable) 5889 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5890 else { 5891 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5892 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5893 } 5894 if (unlikely(rc)) { 5895 rc = -EIO; 5896 goto err_exit; 5897 } 5898 5899 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5900 if (bf_get(lpfc_mbox_hdr_status, 5901 &rsrc_info->header.cfg_shdr.response)) { 5902 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5903 "2930 Failed to get resource extents " 5904 "Status 0x%x Add'l Status 0x%x\n", 5905 bf_get(lpfc_mbox_hdr_status, 5906 &rsrc_info->header.cfg_shdr.response), 5907 bf_get(lpfc_mbox_hdr_add_status, 5908 &rsrc_info->header.cfg_shdr.response)); 5909 rc = -EIO; 5910 goto err_exit; 5911 } 5912 5913 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5914 &rsrc_info->u.rsp); 5915 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5916 &rsrc_info->u.rsp); 5917 5918 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5919 "3162 Retrieved extents type-%d from port: count:%d, " 5920 "size:%d\n", type, *extnt_count, *extnt_size); 5921 5922 err_exit: 5923 mempool_free(mbox, phba->mbox_mem_pool); 5924 return rc; 5925 } 5926 5927 /** 5928 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5929 * @phba: Pointer to HBA context object. 5930 * @type: The extent type to check. 5931 * 5932 * This function reads the current available extents from the port and checks 5933 * if the extent count or extent size has changed since the last access. 5934 * Callers use this routine post port reset to understand if there is a 5935 * extent reprovisioning requirement. 5936 * 5937 * Returns: 5938 * -Error: error indicates problem. 5939 * 1: Extent count or size has changed. 5940 * 0: No changes. 5941 **/ 5942 static int 5943 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5944 { 5945 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5946 uint16_t size_diff, rsrc_ext_size; 5947 int rc = 0; 5948 struct lpfc_rsrc_blks *rsrc_entry; 5949 struct list_head *rsrc_blk_list = NULL; 5950 5951 size_diff = 0; 5952 curr_ext_cnt = 0; 5953 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5954 &rsrc_ext_cnt, 5955 &rsrc_ext_size); 5956 if (unlikely(rc)) 5957 return -EIO; 5958 5959 switch (type) { 5960 case LPFC_RSC_TYPE_FCOE_RPI: 5961 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5962 break; 5963 case LPFC_RSC_TYPE_FCOE_VPI: 5964 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5965 break; 5966 case LPFC_RSC_TYPE_FCOE_XRI: 5967 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5968 break; 5969 case LPFC_RSC_TYPE_FCOE_VFI: 5970 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5971 break; 5972 default: 5973 break; 5974 } 5975 5976 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5977 curr_ext_cnt++; 5978 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5979 size_diff++; 5980 } 5981 5982 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5983 rc = 1; 5984 5985 return rc; 5986 } 5987 5988 /** 5989 * lpfc_sli4_cfg_post_extnts - 5990 * @phba: Pointer to HBA context object. 5991 * @extnt_cnt: number of available extents. 5992 * @type: the extent type (rpi, xri, vfi, vpi). 5993 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5994 * @mbox: pointer to the caller's allocated mailbox structure. 5995 * 5996 * This function executes the extents allocation request. It also 5997 * takes care of the amount of memory needed to allocate or get the 5998 * allocated extents. It is the caller's responsibility to evaluate 5999 * the response. 6000 * 6001 * Returns: 6002 * -Error: Error value describes the condition found. 6003 * 0: if successful 6004 **/ 6005 static int 6006 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6007 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6008 { 6009 int rc = 0; 6010 uint32_t req_len; 6011 uint32_t emb_len; 6012 uint32_t alloc_len, mbox_tmo; 6013 6014 /* Calculate the total requested length of the dma memory */ 6015 req_len = extnt_cnt * sizeof(uint16_t); 6016 6017 /* 6018 * Calculate the size of an embedded mailbox. The uint32_t 6019 * accounts for extents-specific word. 6020 */ 6021 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6022 sizeof(uint32_t); 6023 6024 /* 6025 * Presume the allocation and response will fit into an embedded 6026 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6027 */ 6028 *emb = LPFC_SLI4_MBX_EMBED; 6029 if (req_len > emb_len) { 6030 req_len = extnt_cnt * sizeof(uint16_t) + 6031 sizeof(union lpfc_sli4_cfg_shdr) + 6032 sizeof(uint32_t); 6033 *emb = LPFC_SLI4_MBX_NEMBED; 6034 } 6035 6036 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6037 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6038 req_len, *emb); 6039 if (alloc_len < req_len) { 6040 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6041 "2982 Allocated DMA memory size (x%x) is " 6042 "less than the requested DMA memory " 6043 "size (x%x)\n", alloc_len, req_len); 6044 return -ENOMEM; 6045 } 6046 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6047 if (unlikely(rc)) 6048 return -EIO; 6049 6050 if (!phba->sli4_hba.intr_enable) 6051 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6052 else { 6053 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6054 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6055 } 6056 6057 if (unlikely(rc)) 6058 rc = -EIO; 6059 return rc; 6060 } 6061 6062 /** 6063 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6064 * @phba: Pointer to HBA context object. 6065 * @type: The resource extent type to allocate. 6066 * 6067 * This function allocates the number of elements for the specified 6068 * resource type. 6069 **/ 6070 static int 6071 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6072 { 6073 bool emb = false; 6074 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6075 uint16_t rsrc_id, rsrc_start, j, k; 6076 uint16_t *ids; 6077 int i, rc; 6078 unsigned long longs; 6079 unsigned long *bmask; 6080 struct lpfc_rsrc_blks *rsrc_blks; 6081 LPFC_MBOXQ_t *mbox; 6082 uint32_t length; 6083 struct lpfc_id_range *id_array = NULL; 6084 void *virtaddr = NULL; 6085 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6086 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6087 struct list_head *ext_blk_list; 6088 6089 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6090 &rsrc_cnt, 6091 &rsrc_size); 6092 if (unlikely(rc)) 6093 return -EIO; 6094 6095 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6096 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6097 "3009 No available Resource Extents " 6098 "for resource type 0x%x: Count: 0x%x, " 6099 "Size 0x%x\n", type, rsrc_cnt, 6100 rsrc_size); 6101 return -ENOMEM; 6102 } 6103 6104 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6105 "2903 Post resource extents type-0x%x: " 6106 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6107 6108 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6109 if (!mbox) 6110 return -ENOMEM; 6111 6112 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6113 if (unlikely(rc)) { 6114 rc = -EIO; 6115 goto err_exit; 6116 } 6117 6118 /* 6119 * Figure out where the response is located. Then get local pointers 6120 * to the response data. The port does not guarantee to respond to 6121 * all extents counts request so update the local variable with the 6122 * allocated count from the port. 6123 */ 6124 if (emb == LPFC_SLI4_MBX_EMBED) { 6125 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6126 id_array = &rsrc_ext->u.rsp.id[0]; 6127 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6128 } else { 6129 virtaddr = mbox->sge_array->addr[0]; 6130 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6131 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6132 id_array = &n_rsrc->id; 6133 } 6134 6135 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6136 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6137 6138 /* 6139 * Based on the resource size and count, correct the base and max 6140 * resource values. 6141 */ 6142 length = sizeof(struct lpfc_rsrc_blks); 6143 switch (type) { 6144 case LPFC_RSC_TYPE_FCOE_RPI: 6145 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6146 sizeof(unsigned long), 6147 GFP_KERNEL); 6148 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6149 rc = -ENOMEM; 6150 goto err_exit; 6151 } 6152 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6153 sizeof(uint16_t), 6154 GFP_KERNEL); 6155 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6156 kfree(phba->sli4_hba.rpi_bmask); 6157 rc = -ENOMEM; 6158 goto err_exit; 6159 } 6160 6161 /* 6162 * The next_rpi was initialized with the maximum available 6163 * count but the port may allocate a smaller number. Catch 6164 * that case and update the next_rpi. 6165 */ 6166 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6167 6168 /* Initialize local ptrs for common extent processing later. */ 6169 bmask = phba->sli4_hba.rpi_bmask; 6170 ids = phba->sli4_hba.rpi_ids; 6171 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6172 break; 6173 case LPFC_RSC_TYPE_FCOE_VPI: 6174 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6175 GFP_KERNEL); 6176 if (unlikely(!phba->vpi_bmask)) { 6177 rc = -ENOMEM; 6178 goto err_exit; 6179 } 6180 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6181 GFP_KERNEL); 6182 if (unlikely(!phba->vpi_ids)) { 6183 kfree(phba->vpi_bmask); 6184 rc = -ENOMEM; 6185 goto err_exit; 6186 } 6187 6188 /* Initialize local ptrs for common extent processing later. */ 6189 bmask = phba->vpi_bmask; 6190 ids = phba->vpi_ids; 6191 ext_blk_list = &phba->lpfc_vpi_blk_list; 6192 break; 6193 case LPFC_RSC_TYPE_FCOE_XRI: 6194 phba->sli4_hba.xri_bmask = kcalloc(longs, 6195 sizeof(unsigned long), 6196 GFP_KERNEL); 6197 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6198 rc = -ENOMEM; 6199 goto err_exit; 6200 } 6201 phba->sli4_hba.max_cfg_param.xri_used = 0; 6202 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6203 sizeof(uint16_t), 6204 GFP_KERNEL); 6205 if (unlikely(!phba->sli4_hba.xri_ids)) { 6206 kfree(phba->sli4_hba.xri_bmask); 6207 rc = -ENOMEM; 6208 goto err_exit; 6209 } 6210 6211 /* Initialize local ptrs for common extent processing later. */ 6212 bmask = phba->sli4_hba.xri_bmask; 6213 ids = phba->sli4_hba.xri_ids; 6214 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6215 break; 6216 case LPFC_RSC_TYPE_FCOE_VFI: 6217 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6218 sizeof(unsigned long), 6219 GFP_KERNEL); 6220 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6221 rc = -ENOMEM; 6222 goto err_exit; 6223 } 6224 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6225 sizeof(uint16_t), 6226 GFP_KERNEL); 6227 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6228 kfree(phba->sli4_hba.vfi_bmask); 6229 rc = -ENOMEM; 6230 goto err_exit; 6231 } 6232 6233 /* Initialize local ptrs for common extent processing later. */ 6234 bmask = phba->sli4_hba.vfi_bmask; 6235 ids = phba->sli4_hba.vfi_ids; 6236 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6237 break; 6238 default: 6239 /* Unsupported Opcode. Fail call. */ 6240 id_array = NULL; 6241 bmask = NULL; 6242 ids = NULL; 6243 ext_blk_list = NULL; 6244 goto err_exit; 6245 } 6246 6247 /* 6248 * Complete initializing the extent configuration with the 6249 * allocated ids assigned to this function. The bitmask serves 6250 * as an index into the array and manages the available ids. The 6251 * array just stores the ids communicated to the port via the wqes. 6252 */ 6253 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6254 if ((i % 2) == 0) 6255 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6256 &id_array[k]); 6257 else 6258 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6259 &id_array[k]); 6260 6261 rsrc_blks = kzalloc(length, GFP_KERNEL); 6262 if (unlikely(!rsrc_blks)) { 6263 rc = -ENOMEM; 6264 kfree(bmask); 6265 kfree(ids); 6266 goto err_exit; 6267 } 6268 rsrc_blks->rsrc_start = rsrc_id; 6269 rsrc_blks->rsrc_size = rsrc_size; 6270 list_add_tail(&rsrc_blks->list, ext_blk_list); 6271 rsrc_start = rsrc_id; 6272 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6273 phba->sli4_hba.io_xri_start = rsrc_start + 6274 lpfc_sli4_get_iocb_cnt(phba); 6275 } 6276 6277 while (rsrc_id < (rsrc_start + rsrc_size)) { 6278 ids[j] = rsrc_id; 6279 rsrc_id++; 6280 j++; 6281 } 6282 /* Entire word processed. Get next word.*/ 6283 if ((i % 2) == 1) 6284 k++; 6285 } 6286 err_exit: 6287 lpfc_sli4_mbox_cmd_free(phba, mbox); 6288 return rc; 6289 } 6290 6291 6292 6293 /** 6294 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6295 * @phba: Pointer to HBA context object. 6296 * @type: the extent's type. 6297 * 6298 * This function deallocates all extents of a particular resource type. 6299 * SLI4 does not allow for deallocating a particular extent range. It 6300 * is the caller's responsibility to release all kernel memory resources. 6301 **/ 6302 static int 6303 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6304 { 6305 int rc; 6306 uint32_t length, mbox_tmo = 0; 6307 LPFC_MBOXQ_t *mbox; 6308 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6309 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6310 6311 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6312 if (!mbox) 6313 return -ENOMEM; 6314 6315 /* 6316 * This function sends an embedded mailbox because it only sends the 6317 * the resource type. All extents of this type are released by the 6318 * port. 6319 */ 6320 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6321 sizeof(struct lpfc_sli4_cfg_mhdr)); 6322 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6323 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6324 length, LPFC_SLI4_MBX_EMBED); 6325 6326 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6327 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6328 LPFC_SLI4_MBX_EMBED); 6329 if (unlikely(rc)) { 6330 rc = -EIO; 6331 goto out_free_mbox; 6332 } 6333 if (!phba->sli4_hba.intr_enable) 6334 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6335 else { 6336 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6337 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6338 } 6339 if (unlikely(rc)) { 6340 rc = -EIO; 6341 goto out_free_mbox; 6342 } 6343 6344 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6345 if (bf_get(lpfc_mbox_hdr_status, 6346 &dealloc_rsrc->header.cfg_shdr.response)) { 6347 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6348 "2919 Failed to release resource extents " 6349 "for type %d - Status 0x%x Add'l Status 0x%x. " 6350 "Resource memory not released.\n", 6351 type, 6352 bf_get(lpfc_mbox_hdr_status, 6353 &dealloc_rsrc->header.cfg_shdr.response), 6354 bf_get(lpfc_mbox_hdr_add_status, 6355 &dealloc_rsrc->header.cfg_shdr.response)); 6356 rc = -EIO; 6357 goto out_free_mbox; 6358 } 6359 6360 /* Release kernel memory resources for the specific type. */ 6361 switch (type) { 6362 case LPFC_RSC_TYPE_FCOE_VPI: 6363 kfree(phba->vpi_bmask); 6364 kfree(phba->vpi_ids); 6365 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6366 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6367 &phba->lpfc_vpi_blk_list, list) { 6368 list_del_init(&rsrc_blk->list); 6369 kfree(rsrc_blk); 6370 } 6371 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6372 break; 6373 case LPFC_RSC_TYPE_FCOE_XRI: 6374 kfree(phba->sli4_hba.xri_bmask); 6375 kfree(phba->sli4_hba.xri_ids); 6376 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6377 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6378 list_del_init(&rsrc_blk->list); 6379 kfree(rsrc_blk); 6380 } 6381 break; 6382 case LPFC_RSC_TYPE_FCOE_VFI: 6383 kfree(phba->sli4_hba.vfi_bmask); 6384 kfree(phba->sli4_hba.vfi_ids); 6385 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6386 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6387 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6388 list_del_init(&rsrc_blk->list); 6389 kfree(rsrc_blk); 6390 } 6391 break; 6392 case LPFC_RSC_TYPE_FCOE_RPI: 6393 /* RPI bitmask and physical id array are cleaned up earlier. */ 6394 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6395 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6396 list_del_init(&rsrc_blk->list); 6397 kfree(rsrc_blk); 6398 } 6399 break; 6400 default: 6401 break; 6402 } 6403 6404 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6405 6406 out_free_mbox: 6407 mempool_free(mbox, phba->mbox_mem_pool); 6408 return rc; 6409 } 6410 6411 static void 6412 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6413 uint32_t feature) 6414 { 6415 uint32_t len; 6416 6417 len = sizeof(struct lpfc_mbx_set_feature) - 6418 sizeof(struct lpfc_sli4_cfg_mhdr); 6419 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6420 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6421 LPFC_SLI4_MBX_EMBED); 6422 6423 switch (feature) { 6424 case LPFC_SET_UE_RECOVERY: 6425 bf_set(lpfc_mbx_set_feature_UER, 6426 &mbox->u.mqe.un.set_feature, 1); 6427 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6428 mbox->u.mqe.un.set_feature.param_len = 8; 6429 break; 6430 case LPFC_SET_MDS_DIAGS: 6431 bf_set(lpfc_mbx_set_feature_mds, 6432 &mbox->u.mqe.un.set_feature, 1); 6433 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6434 &mbox->u.mqe.un.set_feature, 1); 6435 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6436 mbox->u.mqe.un.set_feature.param_len = 8; 6437 break; 6438 case LPFC_SET_DUAL_DUMP: 6439 bf_set(lpfc_mbx_set_feature_dd, 6440 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6441 bf_set(lpfc_mbx_set_feature_ddquery, 6442 &mbox->u.mqe.un.set_feature, 0); 6443 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6444 mbox->u.mqe.un.set_feature.param_len = 4; 6445 break; 6446 } 6447 6448 return; 6449 } 6450 6451 /** 6452 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6453 * @phba: Pointer to HBA context object. 6454 * 6455 * Disable FW logging into host memory on the adapter. To 6456 * be done before reading logs from the host memory. 6457 **/ 6458 void 6459 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6460 { 6461 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6462 6463 spin_lock_irq(&phba->hbalock); 6464 ras_fwlog->state = INACTIVE; 6465 spin_unlock_irq(&phba->hbalock); 6466 6467 /* Disable FW logging to host memory */ 6468 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6469 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6470 6471 /* Wait 10ms for firmware to stop using DMA buffer */ 6472 usleep_range(10 * 1000, 20 * 1000); 6473 } 6474 6475 /** 6476 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6477 * @phba: Pointer to HBA context object. 6478 * 6479 * This function is called to free memory allocated for RAS FW logging 6480 * support in the driver. 6481 **/ 6482 void 6483 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6484 { 6485 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6486 struct lpfc_dmabuf *dmabuf, *next; 6487 6488 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6489 list_for_each_entry_safe(dmabuf, next, 6490 &ras_fwlog->fwlog_buff_list, 6491 list) { 6492 list_del(&dmabuf->list); 6493 dma_free_coherent(&phba->pcidev->dev, 6494 LPFC_RAS_MAX_ENTRY_SIZE, 6495 dmabuf->virt, dmabuf->phys); 6496 kfree(dmabuf); 6497 } 6498 } 6499 6500 if (ras_fwlog->lwpd.virt) { 6501 dma_free_coherent(&phba->pcidev->dev, 6502 sizeof(uint32_t) * 2, 6503 ras_fwlog->lwpd.virt, 6504 ras_fwlog->lwpd.phys); 6505 ras_fwlog->lwpd.virt = NULL; 6506 } 6507 6508 spin_lock_irq(&phba->hbalock); 6509 ras_fwlog->state = INACTIVE; 6510 spin_unlock_irq(&phba->hbalock); 6511 } 6512 6513 /** 6514 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6515 * @phba: Pointer to HBA context object. 6516 * @fwlog_buff_count: Count of buffers to be created. 6517 * 6518 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6519 * to update FW log is posted to the adapter. 6520 * Buffer count is calculated based on module param ras_fwlog_buffsize 6521 * Size of each buffer posted to FW is 64K. 6522 **/ 6523 6524 static int 6525 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6526 uint32_t fwlog_buff_count) 6527 { 6528 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6529 struct lpfc_dmabuf *dmabuf; 6530 int rc = 0, i = 0; 6531 6532 /* Initialize List */ 6533 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6534 6535 /* Allocate memory for the LWPD */ 6536 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6537 sizeof(uint32_t) * 2, 6538 &ras_fwlog->lwpd.phys, 6539 GFP_KERNEL); 6540 if (!ras_fwlog->lwpd.virt) { 6541 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6542 "6185 LWPD Memory Alloc Failed\n"); 6543 6544 return -ENOMEM; 6545 } 6546 6547 ras_fwlog->fw_buffcount = fwlog_buff_count; 6548 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6549 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6550 GFP_KERNEL); 6551 if (!dmabuf) { 6552 rc = -ENOMEM; 6553 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6554 "6186 Memory Alloc failed FW logging"); 6555 goto free_mem; 6556 } 6557 6558 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6559 LPFC_RAS_MAX_ENTRY_SIZE, 6560 &dmabuf->phys, GFP_KERNEL); 6561 if (!dmabuf->virt) { 6562 kfree(dmabuf); 6563 rc = -ENOMEM; 6564 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6565 "6187 DMA Alloc Failed FW logging"); 6566 goto free_mem; 6567 } 6568 dmabuf->buffer_tag = i; 6569 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6570 } 6571 6572 free_mem: 6573 if (rc) 6574 lpfc_sli4_ras_dma_free(phba); 6575 6576 return rc; 6577 } 6578 6579 /** 6580 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6581 * @phba: pointer to lpfc hba data structure. 6582 * @pmb: pointer to the driver internal queue element for mailbox command. 6583 * 6584 * Completion handler for driver's RAS MBX command to the device. 6585 **/ 6586 static void 6587 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6588 { 6589 MAILBOX_t *mb; 6590 union lpfc_sli4_cfg_shdr *shdr; 6591 uint32_t shdr_status, shdr_add_status; 6592 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6593 6594 mb = &pmb->u.mb; 6595 6596 shdr = (union lpfc_sli4_cfg_shdr *) 6597 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6598 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6599 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6600 6601 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6602 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6603 "6188 FW LOG mailbox " 6604 "completed with status x%x add_status x%x," 6605 " mbx status x%x\n", 6606 shdr_status, shdr_add_status, mb->mbxStatus); 6607 6608 ras_fwlog->ras_hwsupport = false; 6609 goto disable_ras; 6610 } 6611 6612 spin_lock_irq(&phba->hbalock); 6613 ras_fwlog->state = ACTIVE; 6614 spin_unlock_irq(&phba->hbalock); 6615 mempool_free(pmb, phba->mbox_mem_pool); 6616 6617 return; 6618 6619 disable_ras: 6620 /* Free RAS DMA memory */ 6621 lpfc_sli4_ras_dma_free(phba); 6622 mempool_free(pmb, phba->mbox_mem_pool); 6623 } 6624 6625 /** 6626 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 6627 * @phba: pointer to lpfc hba data structure. 6628 * @fwlog_level: Logging verbosity level. 6629 * @fwlog_enable: Enable/Disable logging. 6630 * 6631 * Initialize memory and post mailbox command to enable FW logging in host 6632 * memory. 6633 **/ 6634 int 6635 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 6636 uint32_t fwlog_level, 6637 uint32_t fwlog_enable) 6638 { 6639 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6640 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 6641 struct lpfc_dmabuf *dmabuf; 6642 LPFC_MBOXQ_t *mbox; 6643 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 6644 int rc = 0; 6645 6646 spin_lock_irq(&phba->hbalock); 6647 ras_fwlog->state = INACTIVE; 6648 spin_unlock_irq(&phba->hbalock); 6649 6650 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 6651 phba->cfg_ras_fwlog_buffsize); 6652 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 6653 6654 /* 6655 * If re-enabling FW logging support use earlier allocated 6656 * DMA buffers while posting MBX command. 6657 **/ 6658 if (!ras_fwlog->lwpd.virt) { 6659 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 6660 if (rc) { 6661 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6662 "6189 FW Log Memory Allocation Failed"); 6663 return rc; 6664 } 6665 } 6666 6667 /* Setup Mailbox command */ 6668 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6669 if (!mbox) { 6670 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6671 "6190 RAS MBX Alloc Failed"); 6672 rc = -ENOMEM; 6673 goto mem_free; 6674 } 6675 6676 ras_fwlog->fw_loglevel = fwlog_level; 6677 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 6678 sizeof(struct lpfc_sli4_cfg_mhdr)); 6679 6680 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 6681 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 6682 len, LPFC_SLI4_MBX_EMBED); 6683 6684 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 6685 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 6686 fwlog_enable); 6687 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 6688 ras_fwlog->fw_loglevel); 6689 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 6690 ras_fwlog->fw_buffcount); 6691 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 6692 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 6693 6694 /* Update DMA buffer address */ 6695 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 6696 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 6697 6698 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 6699 putPaddrLow(dmabuf->phys); 6700 6701 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 6702 putPaddrHigh(dmabuf->phys); 6703 } 6704 6705 /* Update LPWD address */ 6706 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 6707 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 6708 6709 spin_lock_irq(&phba->hbalock); 6710 ras_fwlog->state = REG_INPROGRESS; 6711 spin_unlock_irq(&phba->hbalock); 6712 mbox->vport = phba->pport; 6713 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 6714 6715 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 6716 6717 if (rc == MBX_NOT_FINISHED) { 6718 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6719 "6191 FW-Log Mailbox failed. " 6720 "status %d mbxStatus : x%x", rc, 6721 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 6722 mempool_free(mbox, phba->mbox_mem_pool); 6723 rc = -EIO; 6724 goto mem_free; 6725 } else 6726 rc = 0; 6727 mem_free: 6728 if (rc) 6729 lpfc_sli4_ras_dma_free(phba); 6730 6731 return rc; 6732 } 6733 6734 /** 6735 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 6736 * @phba: Pointer to HBA context object. 6737 * 6738 * Check if RAS is supported on the adapter and initialize it. 6739 **/ 6740 void 6741 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 6742 { 6743 /* Check RAS FW Log needs to be enabled or not */ 6744 if (lpfc_check_fwlog_support(phba)) 6745 return; 6746 6747 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 6748 LPFC_RAS_ENABLE_LOGGING); 6749 } 6750 6751 /** 6752 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 6753 * @phba: Pointer to HBA context object. 6754 * 6755 * This function allocates all SLI4 resource identifiers. 6756 **/ 6757 int 6758 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 6759 { 6760 int i, rc, error = 0; 6761 uint16_t count, base; 6762 unsigned long longs; 6763 6764 if (!phba->sli4_hba.rpi_hdrs_in_use) 6765 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 6766 if (phba->sli4_hba.extents_in_use) { 6767 /* 6768 * The port supports resource extents. The XRI, VPI, VFI, RPI 6769 * resource extent count must be read and allocated before 6770 * provisioning the resource id arrays. 6771 */ 6772 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6773 LPFC_IDX_RSRC_RDY) { 6774 /* 6775 * Extent-based resources are set - the driver could 6776 * be in a port reset. Figure out if any corrective 6777 * actions need to be taken. 6778 */ 6779 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6780 LPFC_RSC_TYPE_FCOE_VFI); 6781 if (rc != 0) 6782 error++; 6783 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6784 LPFC_RSC_TYPE_FCOE_VPI); 6785 if (rc != 0) 6786 error++; 6787 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6788 LPFC_RSC_TYPE_FCOE_XRI); 6789 if (rc != 0) 6790 error++; 6791 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6792 LPFC_RSC_TYPE_FCOE_RPI); 6793 if (rc != 0) 6794 error++; 6795 6796 /* 6797 * It's possible that the number of resources 6798 * provided to this port instance changed between 6799 * resets. Detect this condition and reallocate 6800 * resources. Otherwise, there is no action. 6801 */ 6802 if (error) { 6803 lpfc_printf_log(phba, KERN_INFO, 6804 LOG_MBOX | LOG_INIT, 6805 "2931 Detected extent resource " 6806 "change. Reallocating all " 6807 "extents.\n"); 6808 rc = lpfc_sli4_dealloc_extent(phba, 6809 LPFC_RSC_TYPE_FCOE_VFI); 6810 rc = lpfc_sli4_dealloc_extent(phba, 6811 LPFC_RSC_TYPE_FCOE_VPI); 6812 rc = lpfc_sli4_dealloc_extent(phba, 6813 LPFC_RSC_TYPE_FCOE_XRI); 6814 rc = lpfc_sli4_dealloc_extent(phba, 6815 LPFC_RSC_TYPE_FCOE_RPI); 6816 } else 6817 return 0; 6818 } 6819 6820 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6821 if (unlikely(rc)) 6822 goto err_exit; 6823 6824 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6825 if (unlikely(rc)) 6826 goto err_exit; 6827 6828 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6829 if (unlikely(rc)) 6830 goto err_exit; 6831 6832 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6833 if (unlikely(rc)) 6834 goto err_exit; 6835 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6836 LPFC_IDX_RSRC_RDY); 6837 return rc; 6838 } else { 6839 /* 6840 * The port does not support resource extents. The XRI, VPI, 6841 * VFI, RPI resource ids were determined from READ_CONFIG. 6842 * Just allocate the bitmasks and provision the resource id 6843 * arrays. If a port reset is active, the resources don't 6844 * need any action - just exit. 6845 */ 6846 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6847 LPFC_IDX_RSRC_RDY) { 6848 lpfc_sli4_dealloc_resource_identifiers(phba); 6849 lpfc_sli4_remove_rpis(phba); 6850 } 6851 /* RPIs. */ 6852 count = phba->sli4_hba.max_cfg_param.max_rpi; 6853 if (count <= 0) { 6854 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6855 "3279 Invalid provisioning of " 6856 "rpi:%d\n", count); 6857 rc = -EINVAL; 6858 goto err_exit; 6859 } 6860 base = phba->sli4_hba.max_cfg_param.rpi_base; 6861 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6862 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6863 sizeof(unsigned long), 6864 GFP_KERNEL); 6865 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6866 rc = -ENOMEM; 6867 goto err_exit; 6868 } 6869 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 6870 GFP_KERNEL); 6871 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6872 rc = -ENOMEM; 6873 goto free_rpi_bmask; 6874 } 6875 6876 for (i = 0; i < count; i++) 6877 phba->sli4_hba.rpi_ids[i] = base + i; 6878 6879 /* VPIs. */ 6880 count = phba->sli4_hba.max_cfg_param.max_vpi; 6881 if (count <= 0) { 6882 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6883 "3280 Invalid provisioning of " 6884 "vpi:%d\n", count); 6885 rc = -EINVAL; 6886 goto free_rpi_ids; 6887 } 6888 base = phba->sli4_hba.max_cfg_param.vpi_base; 6889 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6890 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6891 GFP_KERNEL); 6892 if (unlikely(!phba->vpi_bmask)) { 6893 rc = -ENOMEM; 6894 goto free_rpi_ids; 6895 } 6896 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 6897 GFP_KERNEL); 6898 if (unlikely(!phba->vpi_ids)) { 6899 rc = -ENOMEM; 6900 goto free_vpi_bmask; 6901 } 6902 6903 for (i = 0; i < count; i++) 6904 phba->vpi_ids[i] = base + i; 6905 6906 /* XRIs. */ 6907 count = phba->sli4_hba.max_cfg_param.max_xri; 6908 if (count <= 0) { 6909 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6910 "3281 Invalid provisioning of " 6911 "xri:%d\n", count); 6912 rc = -EINVAL; 6913 goto free_vpi_ids; 6914 } 6915 base = phba->sli4_hba.max_cfg_param.xri_base; 6916 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6917 phba->sli4_hba.xri_bmask = kcalloc(longs, 6918 sizeof(unsigned long), 6919 GFP_KERNEL); 6920 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6921 rc = -ENOMEM; 6922 goto free_vpi_ids; 6923 } 6924 phba->sli4_hba.max_cfg_param.xri_used = 0; 6925 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 6926 GFP_KERNEL); 6927 if (unlikely(!phba->sli4_hba.xri_ids)) { 6928 rc = -ENOMEM; 6929 goto free_xri_bmask; 6930 } 6931 6932 for (i = 0; i < count; i++) 6933 phba->sli4_hba.xri_ids[i] = base + i; 6934 6935 /* VFIs. */ 6936 count = phba->sli4_hba.max_cfg_param.max_vfi; 6937 if (count <= 0) { 6938 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6939 "3282 Invalid provisioning of " 6940 "vfi:%d\n", count); 6941 rc = -EINVAL; 6942 goto free_xri_ids; 6943 } 6944 base = phba->sli4_hba.max_cfg_param.vfi_base; 6945 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6946 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6947 sizeof(unsigned long), 6948 GFP_KERNEL); 6949 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6950 rc = -ENOMEM; 6951 goto free_xri_ids; 6952 } 6953 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 6954 GFP_KERNEL); 6955 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6956 rc = -ENOMEM; 6957 goto free_vfi_bmask; 6958 } 6959 6960 for (i = 0; i < count; i++) 6961 phba->sli4_hba.vfi_ids[i] = base + i; 6962 6963 /* 6964 * Mark all resources ready. An HBA reset doesn't need 6965 * to reset the initialization. 6966 */ 6967 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6968 LPFC_IDX_RSRC_RDY); 6969 return 0; 6970 } 6971 6972 free_vfi_bmask: 6973 kfree(phba->sli4_hba.vfi_bmask); 6974 phba->sli4_hba.vfi_bmask = NULL; 6975 free_xri_ids: 6976 kfree(phba->sli4_hba.xri_ids); 6977 phba->sli4_hba.xri_ids = NULL; 6978 free_xri_bmask: 6979 kfree(phba->sli4_hba.xri_bmask); 6980 phba->sli4_hba.xri_bmask = NULL; 6981 free_vpi_ids: 6982 kfree(phba->vpi_ids); 6983 phba->vpi_ids = NULL; 6984 free_vpi_bmask: 6985 kfree(phba->vpi_bmask); 6986 phba->vpi_bmask = NULL; 6987 free_rpi_ids: 6988 kfree(phba->sli4_hba.rpi_ids); 6989 phba->sli4_hba.rpi_ids = NULL; 6990 free_rpi_bmask: 6991 kfree(phba->sli4_hba.rpi_bmask); 6992 phba->sli4_hba.rpi_bmask = NULL; 6993 err_exit: 6994 return rc; 6995 } 6996 6997 /** 6998 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 6999 * @phba: Pointer to HBA context object. 7000 * 7001 * This function allocates the number of elements for the specified 7002 * resource type. 7003 **/ 7004 int 7005 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7006 { 7007 if (phba->sli4_hba.extents_in_use) { 7008 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7009 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7010 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7011 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7012 } else { 7013 kfree(phba->vpi_bmask); 7014 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7015 kfree(phba->vpi_ids); 7016 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7017 kfree(phba->sli4_hba.xri_bmask); 7018 kfree(phba->sli4_hba.xri_ids); 7019 kfree(phba->sli4_hba.vfi_bmask); 7020 kfree(phba->sli4_hba.vfi_ids); 7021 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7022 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7023 } 7024 7025 return 0; 7026 } 7027 7028 /** 7029 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7030 * @phba: Pointer to HBA context object. 7031 * @type: The resource extent type. 7032 * @extnt_cnt: buffer to hold port extent count response 7033 * @extnt_size: buffer to hold port extent size response. 7034 * 7035 * This function calls the port to read the host allocated extents 7036 * for a particular type. 7037 **/ 7038 int 7039 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7040 uint16_t *extnt_cnt, uint16_t *extnt_size) 7041 { 7042 bool emb; 7043 int rc = 0; 7044 uint16_t curr_blks = 0; 7045 uint32_t req_len, emb_len; 7046 uint32_t alloc_len, mbox_tmo; 7047 struct list_head *blk_list_head; 7048 struct lpfc_rsrc_blks *rsrc_blk; 7049 LPFC_MBOXQ_t *mbox; 7050 void *virtaddr = NULL; 7051 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7052 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7053 union lpfc_sli4_cfg_shdr *shdr; 7054 7055 switch (type) { 7056 case LPFC_RSC_TYPE_FCOE_VPI: 7057 blk_list_head = &phba->lpfc_vpi_blk_list; 7058 break; 7059 case LPFC_RSC_TYPE_FCOE_XRI: 7060 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7061 break; 7062 case LPFC_RSC_TYPE_FCOE_VFI: 7063 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7064 break; 7065 case LPFC_RSC_TYPE_FCOE_RPI: 7066 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7067 break; 7068 default: 7069 return -EIO; 7070 } 7071 7072 /* Count the number of extents currently allocatd for this type. */ 7073 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7074 if (curr_blks == 0) { 7075 /* 7076 * The GET_ALLOCATED mailbox does not return the size, 7077 * just the count. The size should be just the size 7078 * stored in the current allocated block and all sizes 7079 * for an extent type are the same so set the return 7080 * value now. 7081 */ 7082 *extnt_size = rsrc_blk->rsrc_size; 7083 } 7084 curr_blks++; 7085 } 7086 7087 /* 7088 * Calculate the size of an embedded mailbox. The uint32_t 7089 * accounts for extents-specific word. 7090 */ 7091 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7092 sizeof(uint32_t); 7093 7094 /* 7095 * Presume the allocation and response will fit into an embedded 7096 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7097 */ 7098 emb = LPFC_SLI4_MBX_EMBED; 7099 req_len = emb_len; 7100 if (req_len > emb_len) { 7101 req_len = curr_blks * sizeof(uint16_t) + 7102 sizeof(union lpfc_sli4_cfg_shdr) + 7103 sizeof(uint32_t); 7104 emb = LPFC_SLI4_MBX_NEMBED; 7105 } 7106 7107 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7108 if (!mbox) 7109 return -ENOMEM; 7110 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7111 7112 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7113 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7114 req_len, emb); 7115 if (alloc_len < req_len) { 7116 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7117 "2983 Allocated DMA memory size (x%x) is " 7118 "less than the requested DMA memory " 7119 "size (x%x)\n", alloc_len, req_len); 7120 rc = -ENOMEM; 7121 goto err_exit; 7122 } 7123 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7124 if (unlikely(rc)) { 7125 rc = -EIO; 7126 goto err_exit; 7127 } 7128 7129 if (!phba->sli4_hba.intr_enable) 7130 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7131 else { 7132 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7133 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7134 } 7135 7136 if (unlikely(rc)) { 7137 rc = -EIO; 7138 goto err_exit; 7139 } 7140 7141 /* 7142 * Figure out where the response is located. Then get local pointers 7143 * to the response data. The port does not guarantee to respond to 7144 * all extents counts request so update the local variable with the 7145 * allocated count from the port. 7146 */ 7147 if (emb == LPFC_SLI4_MBX_EMBED) { 7148 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7149 shdr = &rsrc_ext->header.cfg_shdr; 7150 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7151 } else { 7152 virtaddr = mbox->sge_array->addr[0]; 7153 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7154 shdr = &n_rsrc->cfg_shdr; 7155 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7156 } 7157 7158 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7159 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7160 "2984 Failed to read allocated resources " 7161 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7162 type, 7163 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7164 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7165 rc = -EIO; 7166 goto err_exit; 7167 } 7168 err_exit: 7169 lpfc_sli4_mbox_cmd_free(phba, mbox); 7170 return rc; 7171 } 7172 7173 /** 7174 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7175 * @phba: pointer to lpfc hba data structure. 7176 * @sgl_list: linked link of sgl buffers to post 7177 * @cnt: number of linked list buffers 7178 * 7179 * This routine walks the list of buffers that have been allocated and 7180 * repost them to the port by using SGL block post. This is needed after a 7181 * pci_function_reset/warm_start or start. It attempts to construct blocks 7182 * of buffer sgls which contains contiguous xris and uses the non-embedded 7183 * SGL block post mailbox commands to post them to the port. For single 7184 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7185 * mailbox command for posting. 7186 * 7187 * Returns: 0 = success, non-zero failure. 7188 **/ 7189 static int 7190 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7191 struct list_head *sgl_list, int cnt) 7192 { 7193 struct lpfc_sglq *sglq_entry = NULL; 7194 struct lpfc_sglq *sglq_entry_next = NULL; 7195 struct lpfc_sglq *sglq_entry_first = NULL; 7196 int status, total_cnt; 7197 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7198 int last_xritag = NO_XRI; 7199 LIST_HEAD(prep_sgl_list); 7200 LIST_HEAD(blck_sgl_list); 7201 LIST_HEAD(allc_sgl_list); 7202 LIST_HEAD(post_sgl_list); 7203 LIST_HEAD(free_sgl_list); 7204 7205 spin_lock_irq(&phba->hbalock); 7206 spin_lock(&phba->sli4_hba.sgl_list_lock); 7207 list_splice_init(sgl_list, &allc_sgl_list); 7208 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7209 spin_unlock_irq(&phba->hbalock); 7210 7211 total_cnt = cnt; 7212 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7213 &allc_sgl_list, list) { 7214 list_del_init(&sglq_entry->list); 7215 block_cnt++; 7216 if ((last_xritag != NO_XRI) && 7217 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7218 /* a hole in xri block, form a sgl posting block */ 7219 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7220 post_cnt = block_cnt - 1; 7221 /* prepare list for next posting block */ 7222 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7223 block_cnt = 1; 7224 } else { 7225 /* prepare list for next posting block */ 7226 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7227 /* enough sgls for non-embed sgl mbox command */ 7228 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7229 list_splice_init(&prep_sgl_list, 7230 &blck_sgl_list); 7231 post_cnt = block_cnt; 7232 block_cnt = 0; 7233 } 7234 } 7235 num_posted++; 7236 7237 /* keep track of last sgl's xritag */ 7238 last_xritag = sglq_entry->sli4_xritag; 7239 7240 /* end of repost sgl list condition for buffers */ 7241 if (num_posted == total_cnt) { 7242 if (post_cnt == 0) { 7243 list_splice_init(&prep_sgl_list, 7244 &blck_sgl_list); 7245 post_cnt = block_cnt; 7246 } else if (block_cnt == 1) { 7247 status = lpfc_sli4_post_sgl(phba, 7248 sglq_entry->phys, 0, 7249 sglq_entry->sli4_xritag); 7250 if (!status) { 7251 /* successful, put sgl to posted list */ 7252 list_add_tail(&sglq_entry->list, 7253 &post_sgl_list); 7254 } else { 7255 /* Failure, put sgl to free list */ 7256 lpfc_printf_log(phba, KERN_WARNING, 7257 LOG_SLI, 7258 "3159 Failed to post " 7259 "sgl, xritag:x%x\n", 7260 sglq_entry->sli4_xritag); 7261 list_add_tail(&sglq_entry->list, 7262 &free_sgl_list); 7263 total_cnt--; 7264 } 7265 } 7266 } 7267 7268 /* continue until a nembed page worth of sgls */ 7269 if (post_cnt == 0) 7270 continue; 7271 7272 /* post the buffer list sgls as a block */ 7273 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7274 post_cnt); 7275 7276 if (!status) { 7277 /* success, put sgl list to posted sgl list */ 7278 list_splice_init(&blck_sgl_list, &post_sgl_list); 7279 } else { 7280 /* Failure, put sgl list to free sgl list */ 7281 sglq_entry_first = list_first_entry(&blck_sgl_list, 7282 struct lpfc_sglq, 7283 list); 7284 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7285 "3160 Failed to post sgl-list, " 7286 "xritag:x%x-x%x\n", 7287 sglq_entry_first->sli4_xritag, 7288 (sglq_entry_first->sli4_xritag + 7289 post_cnt - 1)); 7290 list_splice_init(&blck_sgl_list, &free_sgl_list); 7291 total_cnt -= post_cnt; 7292 } 7293 7294 /* don't reset xirtag due to hole in xri block */ 7295 if (block_cnt == 0) 7296 last_xritag = NO_XRI; 7297 7298 /* reset sgl post count for next round of posting */ 7299 post_cnt = 0; 7300 } 7301 7302 /* free the sgls failed to post */ 7303 lpfc_free_sgl_list(phba, &free_sgl_list); 7304 7305 /* push sgls posted to the available list */ 7306 if (!list_empty(&post_sgl_list)) { 7307 spin_lock_irq(&phba->hbalock); 7308 spin_lock(&phba->sli4_hba.sgl_list_lock); 7309 list_splice_init(&post_sgl_list, sgl_list); 7310 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7311 spin_unlock_irq(&phba->hbalock); 7312 } else { 7313 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7314 "3161 Failure to post sgl to port.\n"); 7315 return -EIO; 7316 } 7317 7318 /* return the number of XRIs actually posted */ 7319 return total_cnt; 7320 } 7321 7322 /** 7323 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7324 * @phba: pointer to lpfc hba data structure. 7325 * 7326 * This routine walks the list of nvme buffers that have been allocated and 7327 * repost them to the port by using SGL block post. This is needed after a 7328 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7329 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7330 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7331 * 7332 * Returns: 0 = success, non-zero failure. 7333 **/ 7334 static int 7335 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7336 { 7337 LIST_HEAD(post_nblist); 7338 int num_posted, rc = 0; 7339 7340 /* get all NVME buffers need to repost to a local list */ 7341 lpfc_io_buf_flush(phba, &post_nblist); 7342 7343 /* post the list of nvme buffer sgls to port if available */ 7344 if (!list_empty(&post_nblist)) { 7345 num_posted = lpfc_sli4_post_io_sgl_list( 7346 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7347 /* failed to post any nvme buffer, return error */ 7348 if (num_posted == 0) 7349 rc = -EIO; 7350 } 7351 return rc; 7352 } 7353 7354 static void 7355 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7356 { 7357 uint32_t len; 7358 7359 len = sizeof(struct lpfc_mbx_set_host_data) - 7360 sizeof(struct lpfc_sli4_cfg_mhdr); 7361 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7362 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7363 LPFC_SLI4_MBX_EMBED); 7364 7365 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7366 mbox->u.mqe.un.set_host_data.param_len = 7367 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7368 snprintf(mbox->u.mqe.un.set_host_data.data, 7369 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7370 "Linux %s v"LPFC_DRIVER_VERSION, 7371 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7372 } 7373 7374 int 7375 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7376 struct lpfc_queue *drq, int count, int idx) 7377 { 7378 int rc, i; 7379 struct lpfc_rqe hrqe; 7380 struct lpfc_rqe drqe; 7381 struct lpfc_rqb *rqbp; 7382 unsigned long flags; 7383 struct rqb_dmabuf *rqb_buffer; 7384 LIST_HEAD(rqb_buf_list); 7385 7386 rqbp = hrq->rqbp; 7387 for (i = 0; i < count; i++) { 7388 spin_lock_irqsave(&phba->hbalock, flags); 7389 /* IF RQ is already full, don't bother */ 7390 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7391 spin_unlock_irqrestore(&phba->hbalock, flags); 7392 break; 7393 } 7394 spin_unlock_irqrestore(&phba->hbalock, flags); 7395 7396 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7397 if (!rqb_buffer) 7398 break; 7399 rqb_buffer->hrq = hrq; 7400 rqb_buffer->drq = drq; 7401 rqb_buffer->idx = idx; 7402 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7403 } 7404 7405 spin_lock_irqsave(&phba->hbalock, flags); 7406 while (!list_empty(&rqb_buf_list)) { 7407 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7408 hbuf.list); 7409 7410 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7411 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7412 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7413 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7414 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7415 if (rc < 0) { 7416 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7417 "6421 Cannot post to HRQ %d: %x %x %x " 7418 "DRQ %x %x\n", 7419 hrq->queue_id, 7420 hrq->host_index, 7421 hrq->hba_index, 7422 hrq->entry_count, 7423 drq->host_index, 7424 drq->hba_index); 7425 rqbp->rqb_free_buffer(phba, rqb_buffer); 7426 } else { 7427 list_add_tail(&rqb_buffer->hbuf.list, 7428 &rqbp->rqb_buffer_list); 7429 rqbp->buffer_count++; 7430 } 7431 } 7432 spin_unlock_irqrestore(&phba->hbalock, flags); 7433 return 1; 7434 } 7435 7436 /** 7437 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7438 * @phba: pointer to lpfc hba data structure. 7439 * 7440 * This routine initializes the per-cq idle_stat to dynamically dictate 7441 * polling decisions. 7442 * 7443 * Return codes: 7444 * None 7445 **/ 7446 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7447 { 7448 int i; 7449 struct lpfc_sli4_hdw_queue *hdwq; 7450 struct lpfc_queue *cq; 7451 struct lpfc_idle_stat *idle_stat; 7452 u64 wall; 7453 7454 for_each_present_cpu(i) { 7455 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7456 cq = hdwq->io_cq; 7457 7458 /* Skip if we've already handled this cq's primary CPU */ 7459 if (cq->chann != i) 7460 continue; 7461 7462 idle_stat = &phba->sli4_hba.idle_stat[i]; 7463 7464 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 7465 idle_stat->prev_wall = wall; 7466 7467 if (phba->nvmet_support) 7468 cq->poll_mode = LPFC_QUEUE_WORK; 7469 else 7470 cq->poll_mode = LPFC_IRQ_POLL; 7471 } 7472 7473 if (!phba->nvmet_support) 7474 schedule_delayed_work(&phba->idle_stat_delay_work, 7475 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 7476 } 7477 7478 static void lpfc_sli4_dip(struct lpfc_hba *phba) 7479 { 7480 uint32_t if_type; 7481 7482 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 7483 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 7484 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 7485 struct lpfc_register reg_data; 7486 7487 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 7488 ®_data.word0)) 7489 return; 7490 7491 if (bf_get(lpfc_sliport_status_dip, ®_data)) 7492 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7493 "2904 Firmware Dump Image Present" 7494 " on Adapter"); 7495 } 7496 } 7497 7498 /** 7499 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 7500 * @phba: Pointer to HBA context object. 7501 * 7502 * This function is the main SLI4 device initialization PCI function. This 7503 * function is called by the HBA initialization code, HBA reset code and 7504 * HBA error attention handler code. Caller is not required to hold any 7505 * locks. 7506 **/ 7507 int 7508 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 7509 { 7510 int rc, i, cnt, len, dd; 7511 LPFC_MBOXQ_t *mboxq; 7512 struct lpfc_mqe *mqe; 7513 uint8_t *vpd; 7514 uint32_t vpd_size; 7515 uint32_t ftr_rsp = 0; 7516 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 7517 struct lpfc_vport *vport = phba->pport; 7518 struct lpfc_dmabuf *mp; 7519 struct lpfc_rqb *rqbp; 7520 7521 /* Perform a PCI function reset to start from clean */ 7522 rc = lpfc_pci_function_reset(phba); 7523 if (unlikely(rc)) 7524 return -ENODEV; 7525 7526 /* Check the HBA Host Status Register for readyness */ 7527 rc = lpfc_sli4_post_status_check(phba); 7528 if (unlikely(rc)) 7529 return -ENODEV; 7530 else { 7531 spin_lock_irq(&phba->hbalock); 7532 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 7533 spin_unlock_irq(&phba->hbalock); 7534 } 7535 7536 lpfc_sli4_dip(phba); 7537 7538 /* 7539 * Allocate a single mailbox container for initializing the 7540 * port. 7541 */ 7542 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7543 if (!mboxq) 7544 return -ENOMEM; 7545 7546 /* Issue READ_REV to collect vpd and FW information. */ 7547 vpd_size = SLI4_PAGE_SIZE; 7548 vpd = kzalloc(vpd_size, GFP_KERNEL); 7549 if (!vpd) { 7550 rc = -ENOMEM; 7551 goto out_free_mbox; 7552 } 7553 7554 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 7555 if (unlikely(rc)) { 7556 kfree(vpd); 7557 goto out_free_mbox; 7558 } 7559 7560 mqe = &mboxq->u.mqe; 7561 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 7562 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 7563 phba->hba_flag |= HBA_FCOE_MODE; 7564 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 7565 } else { 7566 phba->hba_flag &= ~HBA_FCOE_MODE; 7567 } 7568 7569 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 7570 LPFC_DCBX_CEE_MODE) 7571 phba->hba_flag |= HBA_FIP_SUPPORT; 7572 else 7573 phba->hba_flag &= ~HBA_FIP_SUPPORT; 7574 7575 phba->hba_flag &= ~HBA_IOQ_FLUSH; 7576 7577 if (phba->sli_rev != LPFC_SLI_REV4) { 7578 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7579 "0376 READ_REV Error. SLI Level %d " 7580 "FCoE enabled %d\n", 7581 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 7582 rc = -EIO; 7583 kfree(vpd); 7584 goto out_free_mbox; 7585 } 7586 7587 /* 7588 * Continue initialization with default values even if driver failed 7589 * to read FCoE param config regions, only read parameters if the 7590 * board is FCoE 7591 */ 7592 if (phba->hba_flag & HBA_FCOE_MODE && 7593 lpfc_sli4_read_fcoe_params(phba)) 7594 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 7595 "2570 Failed to read FCoE parameters\n"); 7596 7597 /* 7598 * Retrieve sli4 device physical port name, failure of doing it 7599 * is considered as non-fatal. 7600 */ 7601 rc = lpfc_sli4_retrieve_pport_name(phba); 7602 if (!rc) 7603 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7604 "3080 Successful retrieving SLI4 device " 7605 "physical port name: %s.\n", phba->Port); 7606 7607 rc = lpfc_sli4_get_ctl_attr(phba); 7608 if (!rc) 7609 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7610 "8351 Successful retrieving SLI4 device " 7611 "CTL ATTR\n"); 7612 7613 /* 7614 * Evaluate the read rev and vpd data. Populate the driver 7615 * state with the results. If this routine fails, the failure 7616 * is not fatal as the driver will use generic values. 7617 */ 7618 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 7619 if (unlikely(!rc)) { 7620 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7621 "0377 Error %d parsing vpd. " 7622 "Using defaults.\n", rc); 7623 rc = 0; 7624 } 7625 kfree(vpd); 7626 7627 /* Save information as VPD data */ 7628 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 7629 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 7630 7631 /* 7632 * This is because first G7 ASIC doesn't support the standard 7633 * 0x5a NVME cmd descriptor type/subtype 7634 */ 7635 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7636 LPFC_SLI_INTF_IF_TYPE_6) && 7637 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 7638 (phba->vpd.rev.smRev == 0) && 7639 (phba->cfg_nvme_embed_cmd == 1)) 7640 phba->cfg_nvme_embed_cmd = 0; 7641 7642 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 7643 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 7644 &mqe->un.read_rev); 7645 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 7646 &mqe->un.read_rev); 7647 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 7648 &mqe->un.read_rev); 7649 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 7650 &mqe->un.read_rev); 7651 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 7652 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 7653 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 7654 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 7655 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 7656 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 7657 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7658 "(%d):0380 READ_REV Status x%x " 7659 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 7660 mboxq->vport ? mboxq->vport->vpi : 0, 7661 bf_get(lpfc_mqe_status, mqe), 7662 phba->vpd.rev.opFwName, 7663 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 7664 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 7665 7666 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7667 LPFC_SLI_INTF_IF_TYPE_0) { 7668 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 7669 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7670 if (rc == MBX_SUCCESS) { 7671 phba->hba_flag |= HBA_RECOVERABLE_UE; 7672 /* Set 1Sec interval to detect UE */ 7673 phba->eratt_poll_interval = 1; 7674 phba->sli4_hba.ue_to_sr = bf_get( 7675 lpfc_mbx_set_feature_UESR, 7676 &mboxq->u.mqe.un.set_feature); 7677 phba->sli4_hba.ue_to_rp = bf_get( 7678 lpfc_mbx_set_feature_UERP, 7679 &mboxq->u.mqe.un.set_feature); 7680 } 7681 } 7682 7683 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 7684 /* Enable MDS Diagnostics only if the SLI Port supports it */ 7685 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 7686 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7687 if (rc != MBX_SUCCESS) 7688 phba->mds_diags_support = 0; 7689 } 7690 7691 /* 7692 * Discover the port's supported feature set and match it against the 7693 * hosts requests. 7694 */ 7695 lpfc_request_features(phba, mboxq); 7696 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7697 if (unlikely(rc)) { 7698 rc = -EIO; 7699 goto out_free_mbox; 7700 } 7701 7702 /* Disable VMID if app header is not supported */ 7703 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, 7704 &mqe->un.req_ftrs))) { 7705 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); 7706 phba->cfg_vmid_app_header = 0; 7707 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, 7708 "1242 vmid feature not supported\n"); 7709 } 7710 7711 /* 7712 * The port must support FCP initiator mode as this is the 7713 * only mode running in the host. 7714 */ 7715 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 7716 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7717 "0378 No support for fcpi mode.\n"); 7718 ftr_rsp++; 7719 } 7720 7721 /* Performance Hints are ONLY for FCoE */ 7722 if (phba->hba_flag & HBA_FCOE_MODE) { 7723 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 7724 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 7725 else 7726 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 7727 } 7728 7729 /* 7730 * If the port cannot support the host's requested features 7731 * then turn off the global config parameters to disable the 7732 * feature in the driver. This is not a fatal error. 7733 */ 7734 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 7735 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 7736 phba->cfg_enable_bg = 0; 7737 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 7738 ftr_rsp++; 7739 } 7740 } 7741 7742 if (phba->max_vpi && phba->cfg_enable_npiv && 7743 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7744 ftr_rsp++; 7745 7746 if (ftr_rsp) { 7747 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7748 "0379 Feature Mismatch Data: x%08x %08x " 7749 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 7750 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 7751 phba->cfg_enable_npiv, phba->max_vpi); 7752 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 7753 phba->cfg_enable_bg = 0; 7754 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7755 phba->cfg_enable_npiv = 0; 7756 } 7757 7758 /* These SLI3 features are assumed in SLI4 */ 7759 spin_lock_irq(&phba->hbalock); 7760 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 7761 spin_unlock_irq(&phba->hbalock); 7762 7763 /* Always try to enable dual dump feature if we can */ 7764 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 7765 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7766 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 7767 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 7768 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7769 "6448 Dual Dump is enabled\n"); 7770 else 7771 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 7772 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 7773 "rc:x%x dd:x%x\n", 7774 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7775 lpfc_sli_config_mbox_subsys_get( 7776 phba, mboxq), 7777 lpfc_sli_config_mbox_opcode_get( 7778 phba, mboxq), 7779 rc, dd); 7780 /* 7781 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 7782 * calls depends on these resources to complete port setup. 7783 */ 7784 rc = lpfc_sli4_alloc_resource_identifiers(phba); 7785 if (rc) { 7786 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7787 "2920 Failed to alloc Resource IDs " 7788 "rc = x%x\n", rc); 7789 goto out_free_mbox; 7790 } 7791 7792 lpfc_set_host_data(phba, mboxq); 7793 7794 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7795 if (rc) { 7796 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7797 "2134 Failed to set host os driver version %x", 7798 rc); 7799 } 7800 7801 /* Read the port's service parameters. */ 7802 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 7803 if (rc) { 7804 phba->link_state = LPFC_HBA_ERROR; 7805 rc = -ENOMEM; 7806 goto out_free_mbox; 7807 } 7808 7809 mboxq->vport = vport; 7810 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7811 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 7812 if (rc == MBX_SUCCESS) { 7813 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 7814 rc = 0; 7815 } 7816 7817 /* 7818 * This memory was allocated by the lpfc_read_sparam routine. Release 7819 * it to the mbuf pool. 7820 */ 7821 lpfc_mbuf_free(phba, mp->virt, mp->phys); 7822 kfree(mp); 7823 mboxq->ctx_buf = NULL; 7824 if (unlikely(rc)) { 7825 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7826 "0382 READ_SPARAM command failed " 7827 "status %d, mbxStatus x%x\n", 7828 rc, bf_get(lpfc_mqe_status, mqe)); 7829 phba->link_state = LPFC_HBA_ERROR; 7830 rc = -EIO; 7831 goto out_free_mbox; 7832 } 7833 7834 lpfc_update_vport_wwn(vport); 7835 7836 /* Update the fc_host data structures with new wwn. */ 7837 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 7838 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 7839 7840 /* Create all the SLI4 queues */ 7841 rc = lpfc_sli4_queue_create(phba); 7842 if (rc) { 7843 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7844 "3089 Failed to allocate queues\n"); 7845 rc = -ENODEV; 7846 goto out_free_mbox; 7847 } 7848 /* Set up all the queues to the device */ 7849 rc = lpfc_sli4_queue_setup(phba); 7850 if (unlikely(rc)) { 7851 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7852 "0381 Error %d during queue setup.\n ", rc); 7853 goto out_stop_timers; 7854 } 7855 /* Initialize the driver internal SLI layer lists. */ 7856 lpfc_sli4_setup(phba); 7857 lpfc_sli4_queue_init(phba); 7858 7859 /* update host els xri-sgl sizes and mappings */ 7860 rc = lpfc_sli4_els_sgl_update(phba); 7861 if (unlikely(rc)) { 7862 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7863 "1400 Failed to update xri-sgl size and " 7864 "mapping: %d\n", rc); 7865 goto out_destroy_queue; 7866 } 7867 7868 /* register the els sgl pool to the port */ 7869 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 7870 phba->sli4_hba.els_xri_cnt); 7871 if (unlikely(rc < 0)) { 7872 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7873 "0582 Error %d during els sgl post " 7874 "operation\n", rc); 7875 rc = -ENODEV; 7876 goto out_destroy_queue; 7877 } 7878 phba->sli4_hba.els_xri_cnt = rc; 7879 7880 if (phba->nvmet_support) { 7881 /* update host nvmet xri-sgl sizes and mappings */ 7882 rc = lpfc_sli4_nvmet_sgl_update(phba); 7883 if (unlikely(rc)) { 7884 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7885 "6308 Failed to update nvmet-sgl size " 7886 "and mapping: %d\n", rc); 7887 goto out_destroy_queue; 7888 } 7889 7890 /* register the nvmet sgl pool to the port */ 7891 rc = lpfc_sli4_repost_sgl_list( 7892 phba, 7893 &phba->sli4_hba.lpfc_nvmet_sgl_list, 7894 phba->sli4_hba.nvmet_xri_cnt); 7895 if (unlikely(rc < 0)) { 7896 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7897 "3117 Error %d during nvmet " 7898 "sgl post\n", rc); 7899 rc = -ENODEV; 7900 goto out_destroy_queue; 7901 } 7902 phba->sli4_hba.nvmet_xri_cnt = rc; 7903 7904 /* We allocate an iocbq for every receive context SGL. 7905 * The additional allocation is for abort and ls handling. 7906 */ 7907 cnt = phba->sli4_hba.nvmet_xri_cnt + 7908 phba->sli4_hba.max_cfg_param.max_xri; 7909 } else { 7910 /* update host common xri-sgl sizes and mappings */ 7911 rc = lpfc_sli4_io_sgl_update(phba); 7912 if (unlikely(rc)) { 7913 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7914 "6082 Failed to update nvme-sgl size " 7915 "and mapping: %d\n", rc); 7916 goto out_destroy_queue; 7917 } 7918 7919 /* register the allocated common sgl pool to the port */ 7920 rc = lpfc_sli4_repost_io_sgl_list(phba); 7921 if (unlikely(rc)) { 7922 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7923 "6116 Error %d during nvme sgl post " 7924 "operation\n", rc); 7925 /* Some NVME buffers were moved to abort nvme list */ 7926 /* A pci function reset will repost them */ 7927 rc = -ENODEV; 7928 goto out_destroy_queue; 7929 } 7930 /* Each lpfc_io_buf job structure has an iocbq element. 7931 * This cnt provides for abort, els, ct and ls requests. 7932 */ 7933 cnt = phba->sli4_hba.max_cfg_param.max_xri; 7934 } 7935 7936 if (!phba->sli.iocbq_lookup) { 7937 /* Initialize and populate the iocb list per host */ 7938 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7939 "2821 initialize iocb list with %d entries\n", 7940 cnt); 7941 rc = lpfc_init_iocb_list(phba, cnt); 7942 if (rc) { 7943 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7944 "1413 Failed to init iocb list.\n"); 7945 goto out_destroy_queue; 7946 } 7947 } 7948 7949 if (phba->nvmet_support) 7950 lpfc_nvmet_create_targetport(phba); 7951 7952 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 7953 /* Post initial buffers to all RQs created */ 7954 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 7955 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 7956 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 7957 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 7958 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 7959 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 7960 rqbp->buffer_count = 0; 7961 7962 lpfc_post_rq_buffer( 7963 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 7964 phba->sli4_hba.nvmet_mrq_data[i], 7965 phba->cfg_nvmet_mrq_post, i); 7966 } 7967 } 7968 7969 /* Post the rpi header region to the device. */ 7970 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 7971 if (unlikely(rc)) { 7972 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7973 "0393 Error %d during rpi post operation\n", 7974 rc); 7975 rc = -ENODEV; 7976 goto out_free_iocblist; 7977 } 7978 lpfc_sli4_node_prep(phba); 7979 7980 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 7981 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 7982 /* 7983 * The FC Port needs to register FCFI (index 0) 7984 */ 7985 lpfc_reg_fcfi(phba, mboxq); 7986 mboxq->vport = phba->pport; 7987 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7988 if (rc != MBX_SUCCESS) 7989 goto out_unset_queue; 7990 rc = 0; 7991 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 7992 &mboxq->u.mqe.un.reg_fcfi); 7993 } else { 7994 /* We are a NVME Target mode with MRQ > 1 */ 7995 7996 /* First register the FCFI */ 7997 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 7998 mboxq->vport = phba->pport; 7999 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8000 if (rc != MBX_SUCCESS) 8001 goto out_unset_queue; 8002 rc = 0; 8003 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 8004 &mboxq->u.mqe.un.reg_fcfi_mrq); 8005 8006 /* Next register the MRQs */ 8007 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 8008 mboxq->vport = phba->pport; 8009 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8010 if (rc != MBX_SUCCESS) 8011 goto out_unset_queue; 8012 rc = 0; 8013 } 8014 /* Check if the port is configured to be disabled */ 8015 lpfc_sli_read_link_ste(phba); 8016 } 8017 8018 /* Don't post more new bufs if repost already recovered 8019 * the nvme sgls. 8020 */ 8021 if (phba->nvmet_support == 0) { 8022 if (phba->sli4_hba.io_xri_cnt == 0) { 8023 len = lpfc_new_io_buf( 8024 phba, phba->sli4_hba.io_xri_max); 8025 if (len == 0) { 8026 rc = -ENOMEM; 8027 goto out_unset_queue; 8028 } 8029 8030 if (phba->cfg_xri_rebalancing) 8031 lpfc_create_multixri_pools(phba); 8032 } 8033 } else { 8034 phba->cfg_xri_rebalancing = 0; 8035 } 8036 8037 /* Allow asynchronous mailbox command to go through */ 8038 spin_lock_irq(&phba->hbalock); 8039 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8040 spin_unlock_irq(&phba->hbalock); 8041 8042 /* Post receive buffers to the device */ 8043 lpfc_sli4_rb_setup(phba); 8044 8045 /* Reset HBA FCF states after HBA reset */ 8046 phba->fcf.fcf_flag = 0; 8047 phba->fcf.current_rec.flag = 0; 8048 8049 /* Start the ELS watchdog timer */ 8050 mod_timer(&vport->els_tmofunc, 8051 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 8052 8053 /* Start heart beat timer */ 8054 mod_timer(&phba->hb_tmofunc, 8055 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 8056 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 8057 phba->last_completion_time = jiffies; 8058 8059 /* start eq_delay heartbeat */ 8060 if (phba->cfg_auto_imax) 8061 queue_delayed_work(phba->wq, &phba->eq_delay_work, 8062 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 8063 8064 /* start per phba idle_stat_delay heartbeat */ 8065 lpfc_init_idle_stat_hb(phba); 8066 8067 /* Start error attention (ERATT) polling timer */ 8068 mod_timer(&phba->eratt_poll, 8069 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 8070 8071 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 8072 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 8073 rc = pci_enable_pcie_error_reporting(phba->pcidev); 8074 if (!rc) { 8075 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8076 "2829 This device supports " 8077 "Advanced Error Reporting (AER)\n"); 8078 spin_lock_irq(&phba->hbalock); 8079 phba->hba_flag |= HBA_AER_ENABLED; 8080 spin_unlock_irq(&phba->hbalock); 8081 } else { 8082 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8083 "2830 This device does not support " 8084 "Advanced Error Reporting (AER)\n"); 8085 phba->cfg_aer_support = 0; 8086 } 8087 rc = 0; 8088 } 8089 8090 /* 8091 * The port is ready, set the host's link state to LINK_DOWN 8092 * in preparation for link interrupts. 8093 */ 8094 spin_lock_irq(&phba->hbalock); 8095 phba->link_state = LPFC_LINK_DOWN; 8096 8097 /* Check if physical ports are trunked */ 8098 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 8099 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 8100 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 8101 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 8102 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 8103 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 8104 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 8105 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 8106 spin_unlock_irq(&phba->hbalock); 8107 8108 /* Arm the CQs and then EQs on device */ 8109 lpfc_sli4_arm_cqeq_intr(phba); 8110 8111 /* Indicate device interrupt mode */ 8112 phba->sli4_hba.intr_enable = 1; 8113 8114 if (!(phba->hba_flag & HBA_FCOE_MODE) && 8115 (phba->hba_flag & LINK_DISABLED)) { 8116 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8117 "3103 Adapter Link is disabled.\n"); 8118 lpfc_down_link(phba, mboxq); 8119 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8120 if (rc != MBX_SUCCESS) { 8121 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8122 "3104 Adapter failed to issue " 8123 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 8124 goto out_io_buff_free; 8125 } 8126 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 8127 /* don't perform init_link on SLI4 FC port loopback test */ 8128 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 8129 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 8130 if (rc) 8131 goto out_io_buff_free; 8132 } 8133 } 8134 mempool_free(mboxq, phba->mbox_mem_pool); 8135 return rc; 8136 out_io_buff_free: 8137 /* Free allocated IO Buffers */ 8138 lpfc_io_free(phba); 8139 out_unset_queue: 8140 /* Unset all the queues set up in this routine when error out */ 8141 lpfc_sli4_queue_unset(phba); 8142 out_free_iocblist: 8143 lpfc_free_iocb_list(phba); 8144 out_destroy_queue: 8145 lpfc_sli4_queue_destroy(phba); 8146 out_stop_timers: 8147 lpfc_stop_hba_timers(phba); 8148 out_free_mbox: 8149 mempool_free(mboxq, phba->mbox_mem_pool); 8150 return rc; 8151 } 8152 8153 /** 8154 * lpfc_mbox_timeout - Timeout call back function for mbox timer 8155 * @t: Context to fetch pointer to hba structure from. 8156 * 8157 * This is the callback function for mailbox timer. The mailbox 8158 * timer is armed when a new mailbox command is issued and the timer 8159 * is deleted when the mailbox complete. The function is called by 8160 * the kernel timer code when a mailbox does not complete within 8161 * expected time. This function wakes up the worker thread to 8162 * process the mailbox timeout and returns. All the processing is 8163 * done by the worker thread function lpfc_mbox_timeout_handler. 8164 **/ 8165 void 8166 lpfc_mbox_timeout(struct timer_list *t) 8167 { 8168 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 8169 unsigned long iflag; 8170 uint32_t tmo_posted; 8171 8172 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 8173 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 8174 if (!tmo_posted) 8175 phba->pport->work_port_events |= WORKER_MBOX_TMO; 8176 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 8177 8178 if (!tmo_posted) 8179 lpfc_worker_wake_up(phba); 8180 return; 8181 } 8182 8183 /** 8184 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 8185 * are pending 8186 * @phba: Pointer to HBA context object. 8187 * 8188 * This function checks if any mailbox completions are present on the mailbox 8189 * completion queue. 8190 **/ 8191 static bool 8192 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 8193 { 8194 8195 uint32_t idx; 8196 struct lpfc_queue *mcq; 8197 struct lpfc_mcqe *mcqe; 8198 bool pending_completions = false; 8199 uint8_t qe_valid; 8200 8201 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8202 return false; 8203 8204 /* Check for completions on mailbox completion queue */ 8205 8206 mcq = phba->sli4_hba.mbx_cq; 8207 idx = mcq->hba_index; 8208 qe_valid = mcq->qe_valid; 8209 while (bf_get_le32(lpfc_cqe_valid, 8210 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 8211 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 8212 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 8213 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 8214 pending_completions = true; 8215 break; 8216 } 8217 idx = (idx + 1) % mcq->entry_count; 8218 if (mcq->hba_index == idx) 8219 break; 8220 8221 /* if the index wrapped around, toggle the valid bit */ 8222 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 8223 qe_valid = (qe_valid) ? 0 : 1; 8224 } 8225 return pending_completions; 8226 8227 } 8228 8229 /** 8230 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 8231 * that were missed. 8232 * @phba: Pointer to HBA context object. 8233 * 8234 * For sli4, it is possible to miss an interrupt. As such mbox completions 8235 * maybe missed causing erroneous mailbox timeouts to occur. This function 8236 * checks to see if mbox completions are on the mailbox completion queue 8237 * and will process all the completions associated with the eq for the 8238 * mailbox completion queue. 8239 **/ 8240 static bool 8241 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 8242 { 8243 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 8244 uint32_t eqidx; 8245 struct lpfc_queue *fpeq = NULL; 8246 struct lpfc_queue *eq; 8247 bool mbox_pending; 8248 8249 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8250 return false; 8251 8252 /* Find the EQ associated with the mbox CQ */ 8253 if (sli4_hba->hdwq) { 8254 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 8255 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 8256 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 8257 fpeq = eq; 8258 break; 8259 } 8260 } 8261 } 8262 if (!fpeq) 8263 return false; 8264 8265 /* Turn off interrupts from this EQ */ 8266 8267 sli4_hba->sli4_eq_clr_intr(fpeq); 8268 8269 /* Check to see if a mbox completion is pending */ 8270 8271 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 8272 8273 /* 8274 * If a mbox completion is pending, process all the events on EQ 8275 * associated with the mbox completion queue (this could include 8276 * mailbox commands, async events, els commands, receive queue data 8277 * and fcp commands) 8278 */ 8279 8280 if (mbox_pending) 8281 /* process and rearm the EQ */ 8282 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 8283 else 8284 /* Always clear and re-arm the EQ */ 8285 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 8286 8287 return mbox_pending; 8288 8289 } 8290 8291 /** 8292 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 8293 * @phba: Pointer to HBA context object. 8294 * 8295 * This function is called from worker thread when a mailbox command times out. 8296 * The caller is not required to hold any locks. This function will reset the 8297 * HBA and recover all the pending commands. 8298 **/ 8299 void 8300 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 8301 { 8302 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 8303 MAILBOX_t *mb = NULL; 8304 8305 struct lpfc_sli *psli = &phba->sli; 8306 8307 /* If the mailbox completed, process the completion */ 8308 lpfc_sli4_process_missed_mbox_completions(phba); 8309 8310 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 8311 return; 8312 8313 if (pmbox != NULL) 8314 mb = &pmbox->u.mb; 8315 /* Check the pmbox pointer first. There is a race condition 8316 * between the mbox timeout handler getting executed in the 8317 * worklist and the mailbox actually completing. When this 8318 * race condition occurs, the mbox_active will be NULL. 8319 */ 8320 spin_lock_irq(&phba->hbalock); 8321 if (pmbox == NULL) { 8322 lpfc_printf_log(phba, KERN_WARNING, 8323 LOG_MBOX | LOG_SLI, 8324 "0353 Active Mailbox cleared - mailbox timeout " 8325 "exiting\n"); 8326 spin_unlock_irq(&phba->hbalock); 8327 return; 8328 } 8329 8330 /* Mbox cmd <mbxCommand> timeout */ 8331 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8332 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 8333 mb->mbxCommand, 8334 phba->pport->port_state, 8335 phba->sli.sli_flag, 8336 phba->sli.mbox_active); 8337 spin_unlock_irq(&phba->hbalock); 8338 8339 /* Setting state unknown so lpfc_sli_abort_iocb_ring 8340 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 8341 * it to fail all outstanding SCSI IO. 8342 */ 8343 spin_lock_irq(&phba->pport->work_port_lock); 8344 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 8345 spin_unlock_irq(&phba->pport->work_port_lock); 8346 spin_lock_irq(&phba->hbalock); 8347 phba->link_state = LPFC_LINK_UNKNOWN; 8348 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 8349 spin_unlock_irq(&phba->hbalock); 8350 8351 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8352 "0345 Resetting board due to mailbox timeout\n"); 8353 8354 /* Reset the HBA device */ 8355 lpfc_reset_hba(phba); 8356 } 8357 8358 /** 8359 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 8360 * @phba: Pointer to HBA context object. 8361 * @pmbox: Pointer to mailbox object. 8362 * @flag: Flag indicating how the mailbox need to be processed. 8363 * 8364 * This function is called by discovery code and HBA management code 8365 * to submit a mailbox command to firmware with SLI-3 interface spec. This 8366 * function gets the hbalock to protect the data structures. 8367 * The mailbox command can be submitted in polling mode, in which case 8368 * this function will wait in a polling loop for the completion of the 8369 * mailbox. 8370 * If the mailbox is submitted in no_wait mode (not polling) the 8371 * function will submit the command and returns immediately without waiting 8372 * for the mailbox completion. The no_wait is supported only when HBA 8373 * is in SLI2/SLI3 mode - interrupts are enabled. 8374 * The SLI interface allows only one mailbox pending at a time. If the 8375 * mailbox is issued in polling mode and there is already a mailbox 8376 * pending, then the function will return an error. If the mailbox is issued 8377 * in NO_WAIT mode and there is a mailbox pending already, the function 8378 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 8379 * The sli layer owns the mailbox object until the completion of mailbox 8380 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 8381 * return codes the caller owns the mailbox command after the return of 8382 * the function. 8383 **/ 8384 static int 8385 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 8386 uint32_t flag) 8387 { 8388 MAILBOX_t *mbx; 8389 struct lpfc_sli *psli = &phba->sli; 8390 uint32_t status, evtctr; 8391 uint32_t ha_copy, hc_copy; 8392 int i; 8393 unsigned long timeout; 8394 unsigned long drvr_flag = 0; 8395 uint32_t word0, ldata; 8396 void __iomem *to_slim; 8397 int processing_queue = 0; 8398 8399 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8400 if (!pmbox) { 8401 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8402 /* processing mbox queue from intr_handler */ 8403 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8404 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8405 return MBX_SUCCESS; 8406 } 8407 processing_queue = 1; 8408 pmbox = lpfc_mbox_get(phba); 8409 if (!pmbox) { 8410 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8411 return MBX_SUCCESS; 8412 } 8413 } 8414 8415 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 8416 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 8417 if(!pmbox->vport) { 8418 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8419 lpfc_printf_log(phba, KERN_ERR, 8420 LOG_MBOX | LOG_VPORT, 8421 "1806 Mbox x%x failed. No vport\n", 8422 pmbox->u.mb.mbxCommand); 8423 dump_stack(); 8424 goto out_not_finished; 8425 } 8426 } 8427 8428 /* If the PCI channel is in offline state, do not post mbox. */ 8429 if (unlikely(pci_channel_offline(phba->pcidev))) { 8430 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8431 goto out_not_finished; 8432 } 8433 8434 /* If HBA has a deferred error attention, fail the iocb. */ 8435 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 8436 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8437 goto out_not_finished; 8438 } 8439 8440 psli = &phba->sli; 8441 8442 mbx = &pmbox->u.mb; 8443 status = MBX_SUCCESS; 8444 8445 if (phba->link_state == LPFC_HBA_ERROR) { 8446 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8447 8448 /* Mbox command <mbxCommand> cannot issue */ 8449 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8450 "(%d):0311 Mailbox command x%x cannot " 8451 "issue Data: x%x x%x\n", 8452 pmbox->vport ? pmbox->vport->vpi : 0, 8453 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8454 goto out_not_finished; 8455 } 8456 8457 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 8458 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 8459 !(hc_copy & HC_MBINT_ENA)) { 8460 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8461 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8462 "(%d):2528 Mailbox command x%x cannot " 8463 "issue Data: x%x x%x\n", 8464 pmbox->vport ? pmbox->vport->vpi : 0, 8465 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8466 goto out_not_finished; 8467 } 8468 } 8469 8470 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8471 /* Polling for a mbox command when another one is already active 8472 * is not allowed in SLI. Also, the driver must have established 8473 * SLI2 mode to queue and process multiple mbox commands. 8474 */ 8475 8476 if (flag & MBX_POLL) { 8477 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8478 8479 /* Mbox command <mbxCommand> cannot issue */ 8480 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8481 "(%d):2529 Mailbox command x%x " 8482 "cannot issue Data: x%x x%x\n", 8483 pmbox->vport ? pmbox->vport->vpi : 0, 8484 pmbox->u.mb.mbxCommand, 8485 psli->sli_flag, flag); 8486 goto out_not_finished; 8487 } 8488 8489 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 8490 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8491 /* Mbox command <mbxCommand> cannot issue */ 8492 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8493 "(%d):2530 Mailbox command x%x " 8494 "cannot issue Data: x%x x%x\n", 8495 pmbox->vport ? pmbox->vport->vpi : 0, 8496 pmbox->u.mb.mbxCommand, 8497 psli->sli_flag, flag); 8498 goto out_not_finished; 8499 } 8500 8501 /* Another mailbox command is still being processed, queue this 8502 * command to be processed later. 8503 */ 8504 lpfc_mbox_put(phba, pmbox); 8505 8506 /* Mbox cmd issue - BUSY */ 8507 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8508 "(%d):0308 Mbox cmd issue - BUSY Data: " 8509 "x%x x%x x%x x%x\n", 8510 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 8511 mbx->mbxCommand, 8512 phba->pport ? phba->pport->port_state : 0xff, 8513 psli->sli_flag, flag); 8514 8515 psli->slistat.mbox_busy++; 8516 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8517 8518 if (pmbox->vport) { 8519 lpfc_debugfs_disc_trc(pmbox->vport, 8520 LPFC_DISC_TRC_MBOX_VPORT, 8521 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 8522 (uint32_t)mbx->mbxCommand, 8523 mbx->un.varWords[0], mbx->un.varWords[1]); 8524 } 8525 else { 8526 lpfc_debugfs_disc_trc(phba->pport, 8527 LPFC_DISC_TRC_MBOX, 8528 "MBOX Bsy: cmd:x%x mb:x%x x%x", 8529 (uint32_t)mbx->mbxCommand, 8530 mbx->un.varWords[0], mbx->un.varWords[1]); 8531 } 8532 8533 return MBX_BUSY; 8534 } 8535 8536 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8537 8538 /* If we are not polling, we MUST be in SLI2 mode */ 8539 if (flag != MBX_POLL) { 8540 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 8541 (mbx->mbxCommand != MBX_KILL_BOARD)) { 8542 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8543 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8544 /* Mbox command <mbxCommand> cannot issue */ 8545 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8546 "(%d):2531 Mailbox command x%x " 8547 "cannot issue Data: x%x x%x\n", 8548 pmbox->vport ? pmbox->vport->vpi : 0, 8549 pmbox->u.mb.mbxCommand, 8550 psli->sli_flag, flag); 8551 goto out_not_finished; 8552 } 8553 /* timeout active mbox command */ 8554 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8555 1000); 8556 mod_timer(&psli->mbox_tmo, jiffies + timeout); 8557 } 8558 8559 /* Mailbox cmd <cmd> issue */ 8560 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8561 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 8562 "x%x\n", 8563 pmbox->vport ? pmbox->vport->vpi : 0, 8564 mbx->mbxCommand, 8565 phba->pport ? phba->pport->port_state : 0xff, 8566 psli->sli_flag, flag); 8567 8568 if (mbx->mbxCommand != MBX_HEARTBEAT) { 8569 if (pmbox->vport) { 8570 lpfc_debugfs_disc_trc(pmbox->vport, 8571 LPFC_DISC_TRC_MBOX_VPORT, 8572 "MBOX Send vport: cmd:x%x mb:x%x x%x", 8573 (uint32_t)mbx->mbxCommand, 8574 mbx->un.varWords[0], mbx->un.varWords[1]); 8575 } 8576 else { 8577 lpfc_debugfs_disc_trc(phba->pport, 8578 LPFC_DISC_TRC_MBOX, 8579 "MBOX Send: cmd:x%x mb:x%x x%x", 8580 (uint32_t)mbx->mbxCommand, 8581 mbx->un.varWords[0], mbx->un.varWords[1]); 8582 } 8583 } 8584 8585 psli->slistat.mbox_cmd++; 8586 evtctr = psli->slistat.mbox_event; 8587 8588 /* next set own bit for the adapter and copy over command word */ 8589 mbx->mbxOwner = OWN_CHIP; 8590 8591 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8592 /* Populate mbox extension offset word. */ 8593 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 8594 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8595 = (uint8_t *)phba->mbox_ext 8596 - (uint8_t *)phba->mbox; 8597 } 8598 8599 /* Copy the mailbox extension data */ 8600 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 8601 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 8602 (uint8_t *)phba->mbox_ext, 8603 pmbox->in_ext_byte_len); 8604 } 8605 /* Copy command data to host SLIM area */ 8606 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 8607 } else { 8608 /* Populate mbox extension offset word. */ 8609 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 8610 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8611 = MAILBOX_HBA_EXT_OFFSET; 8612 8613 /* Copy the mailbox extension data */ 8614 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 8615 lpfc_memcpy_to_slim(phba->MBslimaddr + 8616 MAILBOX_HBA_EXT_OFFSET, 8617 pmbox->ctx_buf, pmbox->in_ext_byte_len); 8618 8619 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8620 /* copy command data into host mbox for cmpl */ 8621 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 8622 MAILBOX_CMD_SIZE); 8623 8624 /* First copy mbox command data to HBA SLIM, skip past first 8625 word */ 8626 to_slim = phba->MBslimaddr + sizeof (uint32_t); 8627 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 8628 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 8629 8630 /* Next copy over first word, with mbxOwner set */ 8631 ldata = *((uint32_t *)mbx); 8632 to_slim = phba->MBslimaddr; 8633 writel(ldata, to_slim); 8634 readl(to_slim); /* flush */ 8635 8636 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8637 /* switch over to host mailbox */ 8638 psli->sli_flag |= LPFC_SLI_ACTIVE; 8639 } 8640 8641 wmb(); 8642 8643 switch (flag) { 8644 case MBX_NOWAIT: 8645 /* Set up reference to mailbox command */ 8646 psli->mbox_active = pmbox; 8647 /* Interrupt board to do it */ 8648 writel(CA_MBATT, phba->CAregaddr); 8649 readl(phba->CAregaddr); /* flush */ 8650 /* Don't wait for it to finish, just return */ 8651 break; 8652 8653 case MBX_POLL: 8654 /* Set up null reference to mailbox command */ 8655 psli->mbox_active = NULL; 8656 /* Interrupt board to do it */ 8657 writel(CA_MBATT, phba->CAregaddr); 8658 readl(phba->CAregaddr); /* flush */ 8659 8660 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8661 /* First read mbox status word */ 8662 word0 = *((uint32_t *)phba->mbox); 8663 word0 = le32_to_cpu(word0); 8664 } else { 8665 /* First read mbox status word */ 8666 if (lpfc_readl(phba->MBslimaddr, &word0)) { 8667 spin_unlock_irqrestore(&phba->hbalock, 8668 drvr_flag); 8669 goto out_not_finished; 8670 } 8671 } 8672 8673 /* Read the HBA Host Attention Register */ 8674 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8675 spin_unlock_irqrestore(&phba->hbalock, 8676 drvr_flag); 8677 goto out_not_finished; 8678 } 8679 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8680 1000) + jiffies; 8681 i = 0; 8682 /* Wait for command to complete */ 8683 while (((word0 & OWN_CHIP) == OWN_CHIP) || 8684 (!(ha_copy & HA_MBATT) && 8685 (phba->link_state > LPFC_WARM_START))) { 8686 if (time_after(jiffies, timeout)) { 8687 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8688 spin_unlock_irqrestore(&phba->hbalock, 8689 drvr_flag); 8690 goto out_not_finished; 8691 } 8692 8693 /* Check if we took a mbox interrupt while we were 8694 polling */ 8695 if (((word0 & OWN_CHIP) != OWN_CHIP) 8696 && (evtctr != psli->slistat.mbox_event)) 8697 break; 8698 8699 if (i++ > 10) { 8700 spin_unlock_irqrestore(&phba->hbalock, 8701 drvr_flag); 8702 msleep(1); 8703 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8704 } 8705 8706 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8707 /* First copy command data */ 8708 word0 = *((uint32_t *)phba->mbox); 8709 word0 = le32_to_cpu(word0); 8710 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 8711 MAILBOX_t *slimmb; 8712 uint32_t slimword0; 8713 /* Check real SLIM for any errors */ 8714 slimword0 = readl(phba->MBslimaddr); 8715 slimmb = (MAILBOX_t *) & slimword0; 8716 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 8717 && slimmb->mbxStatus) { 8718 psli->sli_flag &= 8719 ~LPFC_SLI_ACTIVE; 8720 word0 = slimword0; 8721 } 8722 } 8723 } else { 8724 /* First copy command data */ 8725 word0 = readl(phba->MBslimaddr); 8726 } 8727 /* Read the HBA Host Attention Register */ 8728 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8729 spin_unlock_irqrestore(&phba->hbalock, 8730 drvr_flag); 8731 goto out_not_finished; 8732 } 8733 } 8734 8735 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8736 /* copy results back to user */ 8737 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 8738 MAILBOX_CMD_SIZE); 8739 /* Copy the mailbox extension data */ 8740 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8741 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 8742 pmbox->ctx_buf, 8743 pmbox->out_ext_byte_len); 8744 } 8745 } else { 8746 /* First copy command data */ 8747 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 8748 MAILBOX_CMD_SIZE); 8749 /* Copy the mailbox extension data */ 8750 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8751 lpfc_memcpy_from_slim( 8752 pmbox->ctx_buf, 8753 phba->MBslimaddr + 8754 MAILBOX_HBA_EXT_OFFSET, 8755 pmbox->out_ext_byte_len); 8756 } 8757 } 8758 8759 writel(HA_MBATT, phba->HAregaddr); 8760 readl(phba->HAregaddr); /* flush */ 8761 8762 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8763 status = mbx->mbxStatus; 8764 } 8765 8766 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8767 return status; 8768 8769 out_not_finished: 8770 if (processing_queue) { 8771 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 8772 lpfc_mbox_cmpl_put(phba, pmbox); 8773 } 8774 return MBX_NOT_FINISHED; 8775 } 8776 8777 /** 8778 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 8779 * @phba: Pointer to HBA context object. 8780 * 8781 * The function blocks the posting of SLI4 asynchronous mailbox commands from 8782 * the driver internal pending mailbox queue. It will then try to wait out the 8783 * possible outstanding mailbox command before return. 8784 * 8785 * Returns: 8786 * 0 - the outstanding mailbox command completed; otherwise, the wait for 8787 * the outstanding mailbox command timed out. 8788 **/ 8789 static int 8790 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 8791 { 8792 struct lpfc_sli *psli = &phba->sli; 8793 int rc = 0; 8794 unsigned long timeout = 0; 8795 8796 /* Mark the asynchronous mailbox command posting as blocked */ 8797 spin_lock_irq(&phba->hbalock); 8798 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 8799 /* Determine how long we might wait for the active mailbox 8800 * command to be gracefully completed by firmware. 8801 */ 8802 if (phba->sli.mbox_active) 8803 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 8804 phba->sli.mbox_active) * 8805 1000) + jiffies; 8806 spin_unlock_irq(&phba->hbalock); 8807 8808 /* Make sure the mailbox is really active */ 8809 if (timeout) 8810 lpfc_sli4_process_missed_mbox_completions(phba); 8811 8812 /* Wait for the outstnading mailbox command to complete */ 8813 while (phba->sli.mbox_active) { 8814 /* Check active mailbox complete status every 2ms */ 8815 msleep(2); 8816 if (time_after(jiffies, timeout)) { 8817 /* Timeout, marked the outstanding cmd not complete */ 8818 rc = 1; 8819 break; 8820 } 8821 } 8822 8823 /* Can not cleanly block async mailbox command, fails it */ 8824 if (rc) { 8825 spin_lock_irq(&phba->hbalock); 8826 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8827 spin_unlock_irq(&phba->hbalock); 8828 } 8829 return rc; 8830 } 8831 8832 /** 8833 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 8834 * @phba: Pointer to HBA context object. 8835 * 8836 * The function unblocks and resume posting of SLI4 asynchronous mailbox 8837 * commands from the driver internal pending mailbox queue. It makes sure 8838 * that there is no outstanding mailbox command before resuming posting 8839 * asynchronous mailbox commands. If, for any reason, there is outstanding 8840 * mailbox command, it will try to wait it out before resuming asynchronous 8841 * mailbox command posting. 8842 **/ 8843 static void 8844 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 8845 { 8846 struct lpfc_sli *psli = &phba->sli; 8847 8848 spin_lock_irq(&phba->hbalock); 8849 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8850 /* Asynchronous mailbox posting is not blocked, do nothing */ 8851 spin_unlock_irq(&phba->hbalock); 8852 return; 8853 } 8854 8855 /* Outstanding synchronous mailbox command is guaranteed to be done, 8856 * successful or timeout, after timing-out the outstanding mailbox 8857 * command shall always be removed, so just unblock posting async 8858 * mailbox command and resume 8859 */ 8860 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8861 spin_unlock_irq(&phba->hbalock); 8862 8863 /* wake up worker thread to post asynchronous mailbox command */ 8864 lpfc_worker_wake_up(phba); 8865 } 8866 8867 /** 8868 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 8869 * @phba: Pointer to HBA context object. 8870 * @mboxq: Pointer to mailbox object. 8871 * 8872 * The function waits for the bootstrap mailbox register ready bit from 8873 * port for twice the regular mailbox command timeout value. 8874 * 8875 * 0 - no timeout on waiting for bootstrap mailbox register ready. 8876 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 8877 **/ 8878 static int 8879 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8880 { 8881 uint32_t db_ready; 8882 unsigned long timeout; 8883 struct lpfc_register bmbx_reg; 8884 8885 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 8886 * 1000) + jiffies; 8887 8888 do { 8889 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 8890 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 8891 if (!db_ready) 8892 mdelay(2); 8893 8894 if (time_after(jiffies, timeout)) 8895 return MBXERR_ERROR; 8896 } while (!db_ready); 8897 8898 return 0; 8899 } 8900 8901 /** 8902 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 8903 * @phba: Pointer to HBA context object. 8904 * @mboxq: Pointer to mailbox object. 8905 * 8906 * The function posts a mailbox to the port. The mailbox is expected 8907 * to be comletely filled in and ready for the port to operate on it. 8908 * This routine executes a synchronous completion operation on the 8909 * mailbox by polling for its completion. 8910 * 8911 * The caller must not be holding any locks when calling this routine. 8912 * 8913 * Returns: 8914 * MBX_SUCCESS - mailbox posted successfully 8915 * Any of the MBX error values. 8916 **/ 8917 static int 8918 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8919 { 8920 int rc = MBX_SUCCESS; 8921 unsigned long iflag; 8922 uint32_t mcqe_status; 8923 uint32_t mbx_cmnd; 8924 struct lpfc_sli *psli = &phba->sli; 8925 struct lpfc_mqe *mb = &mboxq->u.mqe; 8926 struct lpfc_bmbx_create *mbox_rgn; 8927 struct dma_address *dma_address; 8928 8929 /* 8930 * Only one mailbox can be active to the bootstrap mailbox region 8931 * at a time and there is no queueing provided. 8932 */ 8933 spin_lock_irqsave(&phba->hbalock, iflag); 8934 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8935 spin_unlock_irqrestore(&phba->hbalock, iflag); 8936 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8937 "(%d):2532 Mailbox command x%x (x%x/x%x) " 8938 "cannot issue Data: x%x x%x\n", 8939 mboxq->vport ? mboxq->vport->vpi : 0, 8940 mboxq->u.mb.mbxCommand, 8941 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8942 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8943 psli->sli_flag, MBX_POLL); 8944 return MBXERR_ERROR; 8945 } 8946 /* The server grabs the token and owns it until release */ 8947 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8948 phba->sli.mbox_active = mboxq; 8949 spin_unlock_irqrestore(&phba->hbalock, iflag); 8950 8951 /* wait for bootstrap mbox register for readyness */ 8952 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8953 if (rc) 8954 goto exit; 8955 /* 8956 * Initialize the bootstrap memory region to avoid stale data areas 8957 * in the mailbox post. Then copy the caller's mailbox contents to 8958 * the bmbx mailbox region. 8959 */ 8960 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 8961 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 8962 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 8963 sizeof(struct lpfc_mqe)); 8964 8965 /* Post the high mailbox dma address to the port and wait for ready. */ 8966 dma_address = &phba->sli4_hba.bmbx.dma_address; 8967 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 8968 8969 /* wait for bootstrap mbox register for hi-address write done */ 8970 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8971 if (rc) 8972 goto exit; 8973 8974 /* Post the low mailbox dma address to the port. */ 8975 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 8976 8977 /* wait for bootstrap mbox register for low address write done */ 8978 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8979 if (rc) 8980 goto exit; 8981 8982 /* 8983 * Read the CQ to ensure the mailbox has completed. 8984 * If so, update the mailbox status so that the upper layers 8985 * can complete the request normally. 8986 */ 8987 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 8988 sizeof(struct lpfc_mqe)); 8989 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 8990 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 8991 sizeof(struct lpfc_mcqe)); 8992 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 8993 /* 8994 * When the CQE status indicates a failure and the mailbox status 8995 * indicates success then copy the CQE status into the mailbox status 8996 * (and prefix it with x4000). 8997 */ 8998 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 8999 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 9000 bf_set(lpfc_mqe_status, mb, 9001 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 9002 rc = MBXERR_ERROR; 9003 } else 9004 lpfc_sli4_swap_str(phba, mboxq); 9005 9006 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9007 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 9008 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 9009 " x%x x%x CQ: x%x x%x x%x x%x\n", 9010 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9011 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9012 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9013 bf_get(lpfc_mqe_status, mb), 9014 mb->un.mb_words[0], mb->un.mb_words[1], 9015 mb->un.mb_words[2], mb->un.mb_words[3], 9016 mb->un.mb_words[4], mb->un.mb_words[5], 9017 mb->un.mb_words[6], mb->un.mb_words[7], 9018 mb->un.mb_words[8], mb->un.mb_words[9], 9019 mb->un.mb_words[10], mb->un.mb_words[11], 9020 mb->un.mb_words[12], mboxq->mcqe.word0, 9021 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 9022 mboxq->mcqe.trailer); 9023 exit: 9024 /* We are holding the token, no needed for lock when release */ 9025 spin_lock_irqsave(&phba->hbalock, iflag); 9026 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9027 phba->sli.mbox_active = NULL; 9028 spin_unlock_irqrestore(&phba->hbalock, iflag); 9029 return rc; 9030 } 9031 9032 /** 9033 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 9034 * @phba: Pointer to HBA context object. 9035 * @mboxq: Pointer to mailbox object. 9036 * @flag: Flag indicating how the mailbox need to be processed. 9037 * 9038 * This function is called by discovery code and HBA management code to submit 9039 * a mailbox command to firmware with SLI-4 interface spec. 9040 * 9041 * Return codes the caller owns the mailbox command after the return of the 9042 * function. 9043 **/ 9044 static int 9045 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 9046 uint32_t flag) 9047 { 9048 struct lpfc_sli *psli = &phba->sli; 9049 unsigned long iflags; 9050 int rc; 9051 9052 /* dump from issue mailbox command if setup */ 9053 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 9054 9055 rc = lpfc_mbox_dev_check(phba); 9056 if (unlikely(rc)) { 9057 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9058 "(%d):2544 Mailbox command x%x (x%x/x%x) " 9059 "cannot issue Data: x%x x%x\n", 9060 mboxq->vport ? mboxq->vport->vpi : 0, 9061 mboxq->u.mb.mbxCommand, 9062 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9063 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9064 psli->sli_flag, flag); 9065 goto out_not_finished; 9066 } 9067 9068 /* Detect polling mode and jump to a handler */ 9069 if (!phba->sli4_hba.intr_enable) { 9070 if (flag == MBX_POLL) 9071 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9072 else 9073 rc = -EIO; 9074 if (rc != MBX_SUCCESS) 9075 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9076 "(%d):2541 Mailbox command x%x " 9077 "(x%x/x%x) failure: " 9078 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9079 "Data: x%x x%x\n,", 9080 mboxq->vport ? mboxq->vport->vpi : 0, 9081 mboxq->u.mb.mbxCommand, 9082 lpfc_sli_config_mbox_subsys_get(phba, 9083 mboxq), 9084 lpfc_sli_config_mbox_opcode_get(phba, 9085 mboxq), 9086 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9087 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9088 bf_get(lpfc_mcqe_ext_status, 9089 &mboxq->mcqe), 9090 psli->sli_flag, flag); 9091 return rc; 9092 } else if (flag == MBX_POLL) { 9093 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9094 "(%d):2542 Try to issue mailbox command " 9095 "x%x (x%x/x%x) synchronously ahead of async " 9096 "mailbox command queue: x%x x%x\n", 9097 mboxq->vport ? mboxq->vport->vpi : 0, 9098 mboxq->u.mb.mbxCommand, 9099 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9100 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9101 psli->sli_flag, flag); 9102 /* Try to block the asynchronous mailbox posting */ 9103 rc = lpfc_sli4_async_mbox_block(phba); 9104 if (!rc) { 9105 /* Successfully blocked, now issue sync mbox cmd */ 9106 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9107 if (rc != MBX_SUCCESS) 9108 lpfc_printf_log(phba, KERN_WARNING, 9109 LOG_MBOX | LOG_SLI, 9110 "(%d):2597 Sync Mailbox command " 9111 "x%x (x%x/x%x) failure: " 9112 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9113 "Data: x%x x%x\n,", 9114 mboxq->vport ? mboxq->vport->vpi : 0, 9115 mboxq->u.mb.mbxCommand, 9116 lpfc_sli_config_mbox_subsys_get(phba, 9117 mboxq), 9118 lpfc_sli_config_mbox_opcode_get(phba, 9119 mboxq), 9120 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9121 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9122 bf_get(lpfc_mcqe_ext_status, 9123 &mboxq->mcqe), 9124 psli->sli_flag, flag); 9125 /* Unblock the async mailbox posting afterward */ 9126 lpfc_sli4_async_mbox_unblock(phba); 9127 } 9128 return rc; 9129 } 9130 9131 /* Now, interrupt mode asynchronous mailbox command */ 9132 rc = lpfc_mbox_cmd_check(phba, mboxq); 9133 if (rc) { 9134 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9135 "(%d):2543 Mailbox command x%x (x%x/x%x) " 9136 "cannot issue Data: x%x x%x\n", 9137 mboxq->vport ? mboxq->vport->vpi : 0, 9138 mboxq->u.mb.mbxCommand, 9139 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9140 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9141 psli->sli_flag, flag); 9142 goto out_not_finished; 9143 } 9144 9145 /* Put the mailbox command to the driver internal FIFO */ 9146 psli->slistat.mbox_busy++; 9147 spin_lock_irqsave(&phba->hbalock, iflags); 9148 lpfc_mbox_put(phba, mboxq); 9149 spin_unlock_irqrestore(&phba->hbalock, iflags); 9150 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9151 "(%d):0354 Mbox cmd issue - Enqueue Data: " 9152 "x%x (x%x/x%x) x%x x%x x%x\n", 9153 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 9154 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 9155 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9156 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9157 phba->pport->port_state, 9158 psli->sli_flag, MBX_NOWAIT); 9159 /* Wake up worker thread to transport mailbox command from head */ 9160 lpfc_worker_wake_up(phba); 9161 9162 return MBX_BUSY; 9163 9164 out_not_finished: 9165 return MBX_NOT_FINISHED; 9166 } 9167 9168 /** 9169 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 9170 * @phba: Pointer to HBA context object. 9171 * 9172 * This function is called by worker thread to send a mailbox command to 9173 * SLI4 HBA firmware. 9174 * 9175 **/ 9176 int 9177 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 9178 { 9179 struct lpfc_sli *psli = &phba->sli; 9180 LPFC_MBOXQ_t *mboxq; 9181 int rc = MBX_SUCCESS; 9182 unsigned long iflags; 9183 struct lpfc_mqe *mqe; 9184 uint32_t mbx_cmnd; 9185 9186 /* Check interrupt mode before post async mailbox command */ 9187 if (unlikely(!phba->sli4_hba.intr_enable)) 9188 return MBX_NOT_FINISHED; 9189 9190 /* Check for mailbox command service token */ 9191 spin_lock_irqsave(&phba->hbalock, iflags); 9192 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9193 spin_unlock_irqrestore(&phba->hbalock, iflags); 9194 return MBX_NOT_FINISHED; 9195 } 9196 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9197 spin_unlock_irqrestore(&phba->hbalock, iflags); 9198 return MBX_NOT_FINISHED; 9199 } 9200 if (unlikely(phba->sli.mbox_active)) { 9201 spin_unlock_irqrestore(&phba->hbalock, iflags); 9202 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9203 "0384 There is pending active mailbox cmd\n"); 9204 return MBX_NOT_FINISHED; 9205 } 9206 /* Take the mailbox command service token */ 9207 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9208 9209 /* Get the next mailbox command from head of queue */ 9210 mboxq = lpfc_mbox_get(phba); 9211 9212 /* If no more mailbox command waiting for post, we're done */ 9213 if (!mboxq) { 9214 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9215 spin_unlock_irqrestore(&phba->hbalock, iflags); 9216 return MBX_SUCCESS; 9217 } 9218 phba->sli.mbox_active = mboxq; 9219 spin_unlock_irqrestore(&phba->hbalock, iflags); 9220 9221 /* Check device readiness for posting mailbox command */ 9222 rc = lpfc_mbox_dev_check(phba); 9223 if (unlikely(rc)) 9224 /* Driver clean routine will clean up pending mailbox */ 9225 goto out_not_finished; 9226 9227 /* Prepare the mbox command to be posted */ 9228 mqe = &mboxq->u.mqe; 9229 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 9230 9231 /* Start timer for the mbox_tmo and log some mailbox post messages */ 9232 mod_timer(&psli->mbox_tmo, (jiffies + 9233 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 9234 9235 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9236 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 9237 "x%x x%x\n", 9238 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9239 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9240 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9241 phba->pport->port_state, psli->sli_flag); 9242 9243 if (mbx_cmnd != MBX_HEARTBEAT) { 9244 if (mboxq->vport) { 9245 lpfc_debugfs_disc_trc(mboxq->vport, 9246 LPFC_DISC_TRC_MBOX_VPORT, 9247 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9248 mbx_cmnd, mqe->un.mb_words[0], 9249 mqe->un.mb_words[1]); 9250 } else { 9251 lpfc_debugfs_disc_trc(phba->pport, 9252 LPFC_DISC_TRC_MBOX, 9253 "MBOX Send: cmd:x%x mb:x%x x%x", 9254 mbx_cmnd, mqe->un.mb_words[0], 9255 mqe->un.mb_words[1]); 9256 } 9257 } 9258 psli->slistat.mbox_cmd++; 9259 9260 /* Post the mailbox command to the port */ 9261 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 9262 if (rc != MBX_SUCCESS) { 9263 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9264 "(%d):2533 Mailbox command x%x (x%x/x%x) " 9265 "cannot issue Data: x%x x%x\n", 9266 mboxq->vport ? mboxq->vport->vpi : 0, 9267 mboxq->u.mb.mbxCommand, 9268 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9269 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9270 psli->sli_flag, MBX_NOWAIT); 9271 goto out_not_finished; 9272 } 9273 9274 return rc; 9275 9276 out_not_finished: 9277 spin_lock_irqsave(&phba->hbalock, iflags); 9278 if (phba->sli.mbox_active) { 9279 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 9280 __lpfc_mbox_cmpl_put(phba, mboxq); 9281 /* Release the token */ 9282 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9283 phba->sli.mbox_active = NULL; 9284 } 9285 spin_unlock_irqrestore(&phba->hbalock, iflags); 9286 9287 return MBX_NOT_FINISHED; 9288 } 9289 9290 /** 9291 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 9292 * @phba: Pointer to HBA context object. 9293 * @pmbox: Pointer to mailbox object. 9294 * @flag: Flag indicating how the mailbox need to be processed. 9295 * 9296 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 9297 * the API jump table function pointer from the lpfc_hba struct. 9298 * 9299 * Return codes the caller owns the mailbox command after the return of the 9300 * function. 9301 **/ 9302 int 9303 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 9304 { 9305 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 9306 } 9307 9308 /** 9309 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 9310 * @phba: The hba struct for which this call is being executed. 9311 * @dev_grp: The HBA PCI-Device group number. 9312 * 9313 * This routine sets up the mbox interface API function jump table in @phba 9314 * struct. 9315 * Returns: 0 - success, -ENODEV - failure. 9316 **/ 9317 int 9318 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 9319 { 9320 9321 switch (dev_grp) { 9322 case LPFC_PCI_DEV_LP: 9323 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 9324 phba->lpfc_sli_handle_slow_ring_event = 9325 lpfc_sli_handle_slow_ring_event_s3; 9326 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 9327 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 9328 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 9329 break; 9330 case LPFC_PCI_DEV_OC: 9331 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 9332 phba->lpfc_sli_handle_slow_ring_event = 9333 lpfc_sli_handle_slow_ring_event_s4; 9334 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 9335 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 9336 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 9337 break; 9338 default: 9339 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9340 "1420 Invalid HBA PCI-device group: 0x%x\n", 9341 dev_grp); 9342 return -ENODEV; 9343 } 9344 return 0; 9345 } 9346 9347 /** 9348 * __lpfc_sli_ringtx_put - Add an iocb to the txq 9349 * @phba: Pointer to HBA context object. 9350 * @pring: Pointer to driver SLI ring object. 9351 * @piocb: Pointer to address of newly added command iocb. 9352 * 9353 * This function is called with hbalock held for SLI3 ports or 9354 * the ring lock held for SLI4 ports to add a command 9355 * iocb to the txq when SLI layer cannot submit the command iocb 9356 * to the ring. 9357 **/ 9358 void 9359 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9360 struct lpfc_iocbq *piocb) 9361 { 9362 if (phba->sli_rev == LPFC_SLI_REV4) 9363 lockdep_assert_held(&pring->ring_lock); 9364 else 9365 lockdep_assert_held(&phba->hbalock); 9366 /* Insert the caller's iocb in the txq tail for later processing. */ 9367 list_add_tail(&piocb->list, &pring->txq); 9368 } 9369 9370 /** 9371 * lpfc_sli_next_iocb - Get the next iocb in the txq 9372 * @phba: Pointer to HBA context object. 9373 * @pring: Pointer to driver SLI ring object. 9374 * @piocb: Pointer to address of newly added command iocb. 9375 * 9376 * This function is called with hbalock held before a new 9377 * iocb is submitted to the firmware. This function checks 9378 * txq to flush the iocbs in txq to Firmware before 9379 * submitting new iocbs to the Firmware. 9380 * If there are iocbs in the txq which need to be submitted 9381 * to firmware, lpfc_sli_next_iocb returns the first element 9382 * of the txq after dequeuing it from txq. 9383 * If there is no iocb in the txq then the function will return 9384 * *piocb and *piocb is set to NULL. Caller needs to check 9385 * *piocb to find if there are more commands in the txq. 9386 **/ 9387 static struct lpfc_iocbq * 9388 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9389 struct lpfc_iocbq **piocb) 9390 { 9391 struct lpfc_iocbq * nextiocb; 9392 9393 lockdep_assert_held(&phba->hbalock); 9394 9395 nextiocb = lpfc_sli_ringtx_get(phba, pring); 9396 if (!nextiocb) { 9397 nextiocb = *piocb; 9398 *piocb = NULL; 9399 } 9400 9401 return nextiocb; 9402 } 9403 9404 /** 9405 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 9406 * @phba: Pointer to HBA context object. 9407 * @ring_number: SLI ring number to issue iocb on. 9408 * @piocb: Pointer to command iocb. 9409 * @flag: Flag indicating if this command can be put into txq. 9410 * 9411 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 9412 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 9413 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 9414 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 9415 * this function allows only iocbs for posting buffers. This function finds 9416 * next available slot in the command ring and posts the command to the 9417 * available slot and writes the port attention register to request HBA start 9418 * processing new iocb. If there is no slot available in the ring and 9419 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 9420 * the function returns IOCB_BUSY. 9421 * 9422 * This function is called with hbalock held. The function will return success 9423 * after it successfully submit the iocb to firmware or after adding to the 9424 * txq. 9425 **/ 9426 static int 9427 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 9428 struct lpfc_iocbq *piocb, uint32_t flag) 9429 { 9430 struct lpfc_iocbq *nextiocb; 9431 IOCB_t *iocb; 9432 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 9433 9434 lockdep_assert_held(&phba->hbalock); 9435 9436 if (piocb->iocb_cmpl && (!piocb->vport) && 9437 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 9438 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 9439 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9440 "1807 IOCB x%x failed. No vport\n", 9441 piocb->iocb.ulpCommand); 9442 dump_stack(); 9443 return IOCB_ERROR; 9444 } 9445 9446 9447 /* If the PCI channel is in offline state, do not post iocbs. */ 9448 if (unlikely(pci_channel_offline(phba->pcidev))) 9449 return IOCB_ERROR; 9450 9451 /* If HBA has a deferred error attention, fail the iocb. */ 9452 if (unlikely(phba->hba_flag & DEFER_ERATT)) 9453 return IOCB_ERROR; 9454 9455 /* 9456 * We should never get an IOCB if we are in a < LINK_DOWN state 9457 */ 9458 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 9459 return IOCB_ERROR; 9460 9461 /* 9462 * Check to see if we are blocking IOCB processing because of a 9463 * outstanding event. 9464 */ 9465 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 9466 goto iocb_busy; 9467 9468 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 9469 /* 9470 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 9471 * can be issued if the link is not up. 9472 */ 9473 switch (piocb->iocb.ulpCommand) { 9474 case CMD_GEN_REQUEST64_CR: 9475 case CMD_GEN_REQUEST64_CX: 9476 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 9477 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 9478 FC_RCTL_DD_UNSOL_CMD) || 9479 (piocb->iocb.un.genreq64.w5.hcsw.Type != 9480 MENLO_TRANSPORT_TYPE)) 9481 9482 goto iocb_busy; 9483 break; 9484 case CMD_QUE_RING_BUF_CN: 9485 case CMD_QUE_RING_BUF64_CN: 9486 /* 9487 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 9488 * completion, iocb_cmpl MUST be 0. 9489 */ 9490 if (piocb->iocb_cmpl) 9491 piocb->iocb_cmpl = NULL; 9492 fallthrough; 9493 case CMD_CREATE_XRI_CR: 9494 case CMD_CLOSE_XRI_CN: 9495 case CMD_CLOSE_XRI_CX: 9496 break; 9497 default: 9498 goto iocb_busy; 9499 } 9500 9501 /* 9502 * For FCP commands, we must be in a state where we can process link 9503 * attention events. 9504 */ 9505 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 9506 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 9507 goto iocb_busy; 9508 } 9509 9510 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 9511 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 9512 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 9513 9514 if (iocb) 9515 lpfc_sli_update_ring(phba, pring); 9516 else 9517 lpfc_sli_update_full_ring(phba, pring); 9518 9519 if (!piocb) 9520 return IOCB_SUCCESS; 9521 9522 goto out_busy; 9523 9524 iocb_busy: 9525 pring->stats.iocb_cmd_delay++; 9526 9527 out_busy: 9528 9529 if (!(flag & SLI_IOCB_RET_IOCB)) { 9530 __lpfc_sli_ringtx_put(phba, pring, piocb); 9531 return IOCB_SUCCESS; 9532 } 9533 9534 return IOCB_BUSY; 9535 } 9536 9537 /** 9538 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 9539 * @phba: Pointer to HBA context object. 9540 * @piocbq: Pointer to command iocb. 9541 * @sglq: Pointer to the scatter gather queue object. 9542 * 9543 * This routine converts the bpl or bde that is in the IOCB 9544 * to a sgl list for the sli4 hardware. The physical address 9545 * of the bpl/bde is converted back to a virtual address. 9546 * If the IOCB contains a BPL then the list of BDE's is 9547 * converted to sli4_sge's. If the IOCB contains a single 9548 * BDE then it is converted to a single sli_sge. 9549 * The IOCB is still in cpu endianess so the contents of 9550 * the bpl can be used without byte swapping. 9551 * 9552 * Returns valid XRI = Success, NO_XRI = Failure. 9553 **/ 9554 static uint16_t 9555 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 9556 struct lpfc_sglq *sglq) 9557 { 9558 uint16_t xritag = NO_XRI; 9559 struct ulp_bde64 *bpl = NULL; 9560 struct ulp_bde64 bde; 9561 struct sli4_sge *sgl = NULL; 9562 struct lpfc_dmabuf *dmabuf; 9563 IOCB_t *icmd; 9564 int numBdes = 0; 9565 int i = 0; 9566 uint32_t offset = 0; /* accumulated offset in the sg request list */ 9567 int inbound = 0; /* number of sg reply entries inbound from firmware */ 9568 9569 if (!piocbq || !sglq) 9570 return xritag; 9571 9572 sgl = (struct sli4_sge *)sglq->sgl; 9573 icmd = &piocbq->iocb; 9574 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 9575 return sglq->sli4_xritag; 9576 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9577 numBdes = icmd->un.genreq64.bdl.bdeSize / 9578 sizeof(struct ulp_bde64); 9579 /* The addrHigh and addrLow fields within the IOCB 9580 * have not been byteswapped yet so there is no 9581 * need to swap them back. 9582 */ 9583 if (piocbq->context3) 9584 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 9585 else 9586 return xritag; 9587 9588 bpl = (struct ulp_bde64 *)dmabuf->virt; 9589 if (!bpl) 9590 return xritag; 9591 9592 for (i = 0; i < numBdes; i++) { 9593 /* Should already be byte swapped. */ 9594 sgl->addr_hi = bpl->addrHigh; 9595 sgl->addr_lo = bpl->addrLow; 9596 9597 sgl->word2 = le32_to_cpu(sgl->word2); 9598 if ((i+1) == numBdes) 9599 bf_set(lpfc_sli4_sge_last, sgl, 1); 9600 else 9601 bf_set(lpfc_sli4_sge_last, sgl, 0); 9602 /* swap the size field back to the cpu so we 9603 * can assign it to the sgl. 9604 */ 9605 bde.tus.w = le32_to_cpu(bpl->tus.w); 9606 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 9607 /* The offsets in the sgl need to be accumulated 9608 * separately for the request and reply lists. 9609 * The request is always first, the reply follows. 9610 */ 9611 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 9612 /* add up the reply sg entries */ 9613 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 9614 inbound++; 9615 /* first inbound? reset the offset */ 9616 if (inbound == 1) 9617 offset = 0; 9618 bf_set(lpfc_sli4_sge_offset, sgl, offset); 9619 bf_set(lpfc_sli4_sge_type, sgl, 9620 LPFC_SGE_TYPE_DATA); 9621 offset += bde.tus.f.bdeSize; 9622 } 9623 sgl->word2 = cpu_to_le32(sgl->word2); 9624 bpl++; 9625 sgl++; 9626 } 9627 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 9628 /* The addrHigh and addrLow fields of the BDE have not 9629 * been byteswapped yet so they need to be swapped 9630 * before putting them in the sgl. 9631 */ 9632 sgl->addr_hi = 9633 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 9634 sgl->addr_lo = 9635 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 9636 sgl->word2 = le32_to_cpu(sgl->word2); 9637 bf_set(lpfc_sli4_sge_last, sgl, 1); 9638 sgl->word2 = cpu_to_le32(sgl->word2); 9639 sgl->sge_len = 9640 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 9641 } 9642 return sglq->sli4_xritag; 9643 } 9644 9645 /** 9646 * lpfc_sli4_iocb2wqe - Convert the IOCB to a work queue entry. 9647 * @phba: Pointer to HBA context object. 9648 * @iocbq: Pointer to command iocb. 9649 * @wqe: Pointer to the work queue entry. 9650 * 9651 * This routine converts the iocb command to its Work Queue Entry 9652 * equivalent. The wqe pointer should not have any fields set when 9653 * this routine is called because it will memcpy over them. 9654 * This routine does not set the CQ_ID or the WQEC bits in the 9655 * wqe. 9656 * 9657 * Returns: 0 = Success, IOCB_ERROR = Failure. 9658 **/ 9659 static int 9660 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 9661 union lpfc_wqe128 *wqe) 9662 { 9663 uint32_t xmit_len = 0, total_len = 0; 9664 uint8_t ct = 0; 9665 uint32_t fip; 9666 uint32_t abort_tag; 9667 uint8_t command_type = ELS_COMMAND_NON_FIP; 9668 uint8_t cmnd; 9669 uint16_t xritag; 9670 uint16_t abrt_iotag; 9671 struct lpfc_iocbq *abrtiocbq; 9672 struct ulp_bde64 *bpl = NULL; 9673 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 9674 int numBdes, i; 9675 struct ulp_bde64 bde; 9676 struct lpfc_nodelist *ndlp; 9677 uint32_t *pcmd; 9678 uint32_t if_type; 9679 9680 fip = phba->hba_flag & HBA_FIP_SUPPORT; 9681 /* The fcp commands will set command type */ 9682 if (iocbq->iocb_flag & LPFC_IO_FCP) 9683 command_type = FCP_COMMAND; 9684 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 9685 command_type = ELS_COMMAND_FIP; 9686 else 9687 command_type = ELS_COMMAND_NON_FIP; 9688 9689 if (phba->fcp_embed_io) 9690 memset(wqe, 0, sizeof(union lpfc_wqe128)); 9691 /* Some of the fields are in the right position already */ 9692 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 9693 /* The ct field has moved so reset */ 9694 wqe->generic.wqe_com.word7 = 0; 9695 wqe->generic.wqe_com.word10 = 0; 9696 9697 abort_tag = (uint32_t) iocbq->iotag; 9698 xritag = iocbq->sli4_xritag; 9699 /* words0-2 bpl convert bde */ 9700 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9701 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 9702 sizeof(struct ulp_bde64); 9703 bpl = (struct ulp_bde64 *) 9704 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 9705 if (!bpl) 9706 return IOCB_ERROR; 9707 9708 /* Should already be byte swapped. */ 9709 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 9710 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 9711 /* swap the size field back to the cpu so we 9712 * can assign it to the sgl. 9713 */ 9714 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 9715 xmit_len = wqe->generic.bde.tus.f.bdeSize; 9716 total_len = 0; 9717 for (i = 0; i < numBdes; i++) { 9718 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 9719 total_len += bde.tus.f.bdeSize; 9720 } 9721 } else 9722 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 9723 9724 iocbq->iocb.ulpIoTag = iocbq->iotag; 9725 cmnd = iocbq->iocb.ulpCommand; 9726 9727 switch (iocbq->iocb.ulpCommand) { 9728 case CMD_ELS_REQUEST64_CR: 9729 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 9730 ndlp = iocbq->context_un.ndlp; 9731 else 9732 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9733 if (!iocbq->iocb.ulpLe) { 9734 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9735 "2007 Only Limited Edition cmd Format" 9736 " supported 0x%x\n", 9737 iocbq->iocb.ulpCommand); 9738 return IOCB_ERROR; 9739 } 9740 9741 wqe->els_req.payload_len = xmit_len; 9742 /* Els_reguest64 has a TMO */ 9743 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 9744 iocbq->iocb.ulpTimeout); 9745 /* Need a VF for word 4 set the vf bit*/ 9746 bf_set(els_req64_vf, &wqe->els_req, 0); 9747 /* And a VFID for word 12 */ 9748 bf_set(els_req64_vfid, &wqe->els_req, 0); 9749 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9750 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9751 iocbq->iocb.ulpContext); 9752 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 9753 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 9754 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 9755 if (command_type == ELS_COMMAND_FIP) 9756 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 9757 >> LPFC_FIP_ELS_ID_SHIFT); 9758 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9759 iocbq->context2)->virt); 9760 if_type = bf_get(lpfc_sli_intf_if_type, 9761 &phba->sli4_hba.sli_intf); 9762 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 9763 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 9764 *pcmd == ELS_CMD_SCR || 9765 *pcmd == ELS_CMD_RDF || 9766 *pcmd == ELS_CMD_RSCN_XMT || 9767 *pcmd == ELS_CMD_FDISC || 9768 *pcmd == ELS_CMD_LOGO || 9769 *pcmd == ELS_CMD_QFPA || 9770 *pcmd == ELS_CMD_UVEM || 9771 *pcmd == ELS_CMD_PLOGI)) { 9772 bf_set(els_req64_sp, &wqe->els_req, 1); 9773 bf_set(els_req64_sid, &wqe->els_req, 9774 iocbq->vport->fc_myDID); 9775 if ((*pcmd == ELS_CMD_FLOGI) && 9776 !(phba->fc_topology == 9777 LPFC_TOPOLOGY_LOOP)) 9778 bf_set(els_req64_sid, &wqe->els_req, 0); 9779 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 9780 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9781 phba->vpi_ids[iocbq->vport->vpi]); 9782 } else if (pcmd && iocbq->context1) { 9783 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 9784 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9785 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9786 } 9787 } 9788 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 9789 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9790 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 9791 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 9792 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 9793 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 9794 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9795 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 9796 wqe->els_req.max_response_payload_len = total_len - xmit_len; 9797 break; 9798 case CMD_XMIT_SEQUENCE64_CX: 9799 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 9800 iocbq->iocb.un.ulpWord[3]); 9801 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 9802 iocbq->iocb.unsli3.rcvsli3.ox_id); 9803 /* The entire sequence is transmitted for this IOCB */ 9804 xmit_len = total_len; 9805 cmnd = CMD_XMIT_SEQUENCE64_CR; 9806 if (phba->link_flag & LS_LOOPBACK_MODE) 9807 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 9808 fallthrough; 9809 case CMD_XMIT_SEQUENCE64_CR: 9810 /* word3 iocb=io_tag32 wqe=reserved */ 9811 wqe->xmit_sequence.rsvd3 = 0; 9812 /* word4 relative_offset memcpy */ 9813 /* word5 r_ctl/df_ctl memcpy */ 9814 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 9815 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 9816 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 9817 LPFC_WQE_IOD_WRITE); 9818 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 9819 LPFC_WQE_LENLOC_WORD12); 9820 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 9821 wqe->xmit_sequence.xmit_len = xmit_len; 9822 command_type = OTHER_COMMAND; 9823 break; 9824 case CMD_XMIT_BCAST64_CN: 9825 /* word3 iocb=iotag32 wqe=seq_payload_len */ 9826 wqe->xmit_bcast64.seq_payload_len = xmit_len; 9827 /* word4 iocb=rsvd wqe=rsvd */ 9828 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 9829 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 9830 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 9831 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9832 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 9833 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 9834 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 9835 LPFC_WQE_LENLOC_WORD3); 9836 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 9837 break; 9838 case CMD_FCP_IWRITE64_CR: 9839 command_type = FCP_COMMAND_DATA_OUT; 9840 /* word3 iocb=iotag wqe=payload_offset_len */ 9841 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9842 bf_set(payload_offset_len, &wqe->fcp_iwrite, 9843 xmit_len + sizeof(struct fcp_rsp)); 9844 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 9845 0); 9846 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9847 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9848 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 9849 iocbq->iocb.ulpFCP2Rcvy); 9850 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 9851 /* Always open the exchange */ 9852 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 9853 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 9854 LPFC_WQE_LENLOC_WORD4); 9855 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 9856 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 9857 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9858 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 9859 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 9860 if (iocbq->priority) { 9861 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9862 (iocbq->priority << 1)); 9863 } else { 9864 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9865 (phba->cfg_XLanePriority << 1)); 9866 } 9867 } 9868 /* Note, word 10 is already initialized to 0 */ 9869 9870 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9871 if (phba->cfg_enable_pbde) 9872 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1); 9873 else 9874 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 9875 9876 if (phba->fcp_embed_io) { 9877 struct lpfc_io_buf *lpfc_cmd; 9878 struct sli4_sge *sgl; 9879 struct fcp_cmnd *fcp_cmnd; 9880 uint32_t *ptr; 9881 9882 /* 128 byte wqe support here */ 9883 9884 lpfc_cmd = iocbq->context1; 9885 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9886 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9887 9888 /* Word 0-2 - FCP_CMND */ 9889 wqe->generic.bde.tus.f.bdeFlags = 9890 BUFF_TYPE_BDE_IMMED; 9891 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9892 wqe->generic.bde.addrHigh = 0; 9893 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9894 9895 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 9896 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 9897 9898 /* Word 22-29 FCP CMND Payload */ 9899 ptr = &wqe->words[22]; 9900 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9901 } 9902 break; 9903 case CMD_FCP_IREAD64_CR: 9904 /* word3 iocb=iotag wqe=payload_offset_len */ 9905 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9906 bf_set(payload_offset_len, &wqe->fcp_iread, 9907 xmit_len + sizeof(struct fcp_rsp)); 9908 bf_set(cmd_buff_len, &wqe->fcp_iread, 9909 0); 9910 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9911 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9912 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 9913 iocbq->iocb.ulpFCP2Rcvy); 9914 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 9915 /* Always open the exchange */ 9916 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 9917 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 9918 LPFC_WQE_LENLOC_WORD4); 9919 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 9920 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 9921 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9922 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 9923 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 9924 if (iocbq->priority) { 9925 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9926 (iocbq->priority << 1)); 9927 } else { 9928 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9929 (phba->cfg_XLanePriority << 1)); 9930 } 9931 } 9932 /* Note, word 10 is already initialized to 0 */ 9933 9934 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9935 if (phba->cfg_enable_pbde) 9936 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1); 9937 else 9938 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 9939 9940 if (phba->fcp_embed_io) { 9941 struct lpfc_io_buf *lpfc_cmd; 9942 struct sli4_sge *sgl; 9943 struct fcp_cmnd *fcp_cmnd; 9944 uint32_t *ptr; 9945 9946 /* 128 byte wqe support here */ 9947 9948 lpfc_cmd = iocbq->context1; 9949 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9950 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9951 9952 /* Word 0-2 - FCP_CMND */ 9953 wqe->generic.bde.tus.f.bdeFlags = 9954 BUFF_TYPE_BDE_IMMED; 9955 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9956 wqe->generic.bde.addrHigh = 0; 9957 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9958 9959 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 9960 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 9961 9962 /* Word 22-29 FCP CMND Payload */ 9963 ptr = &wqe->words[22]; 9964 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9965 } 9966 break; 9967 case CMD_FCP_ICMND64_CR: 9968 /* word3 iocb=iotag wqe=payload_offset_len */ 9969 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9970 bf_set(payload_offset_len, &wqe->fcp_icmd, 9971 xmit_len + sizeof(struct fcp_rsp)); 9972 bf_set(cmd_buff_len, &wqe->fcp_icmd, 9973 0); 9974 /* word3 iocb=IO_TAG wqe=reserved */ 9975 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 9976 /* Always open the exchange */ 9977 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 9978 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 9979 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 9980 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 9981 LPFC_WQE_LENLOC_NONE); 9982 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 9983 iocbq->iocb.ulpFCP2Rcvy); 9984 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9985 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 9986 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 9987 if (iocbq->priority) { 9988 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9989 (iocbq->priority << 1)); 9990 } else { 9991 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9992 (phba->cfg_XLanePriority << 1)); 9993 } 9994 } 9995 /* Note, word 10 is already initialized to 0 */ 9996 9997 if (phba->fcp_embed_io) { 9998 struct lpfc_io_buf *lpfc_cmd; 9999 struct sli4_sge *sgl; 10000 struct fcp_cmnd *fcp_cmnd; 10001 uint32_t *ptr; 10002 10003 /* 128 byte wqe support here */ 10004 10005 lpfc_cmd = iocbq->context1; 10006 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10007 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10008 10009 /* Word 0-2 - FCP_CMND */ 10010 wqe->generic.bde.tus.f.bdeFlags = 10011 BUFF_TYPE_BDE_IMMED; 10012 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10013 wqe->generic.bde.addrHigh = 0; 10014 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10015 10016 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 10017 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 10018 10019 /* Word 22-29 FCP CMND Payload */ 10020 ptr = &wqe->words[22]; 10021 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10022 } 10023 break; 10024 case CMD_GEN_REQUEST64_CR: 10025 /* For this command calculate the xmit length of the 10026 * request bde. 10027 */ 10028 xmit_len = 0; 10029 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 10030 sizeof(struct ulp_bde64); 10031 for (i = 0; i < numBdes; i++) { 10032 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 10033 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 10034 break; 10035 xmit_len += bde.tus.f.bdeSize; 10036 } 10037 /* word3 iocb=IO_TAG wqe=request_payload_len */ 10038 wqe->gen_req.request_payload_len = xmit_len; 10039 /* word4 iocb=parameter wqe=relative_offset memcpy */ 10040 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 10041 /* word6 context tag copied in memcpy */ 10042 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 10043 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 10044 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10045 "2015 Invalid CT %x command 0x%x\n", 10046 ct, iocbq->iocb.ulpCommand); 10047 return IOCB_ERROR; 10048 } 10049 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 10050 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 10051 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 10052 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 10053 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 10054 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 10055 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 10056 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 10057 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 10058 command_type = OTHER_COMMAND; 10059 break; 10060 case CMD_XMIT_ELS_RSP64_CX: 10061 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10062 /* words0-2 BDE memcpy */ 10063 /* word3 iocb=iotag32 wqe=response_payload_len */ 10064 wqe->xmit_els_rsp.response_payload_len = xmit_len; 10065 /* word4 */ 10066 wqe->xmit_els_rsp.word4 = 0; 10067 /* word5 iocb=rsvd wge=did */ 10068 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 10069 iocbq->iocb.un.xseq64.xmit_els_remoteID); 10070 10071 if_type = bf_get(lpfc_sli_intf_if_type, 10072 &phba->sli4_hba.sli_intf); 10073 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 10074 if (iocbq->vport->fc_flag & FC_PT2PT) { 10075 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 10076 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 10077 iocbq->vport->fc_myDID); 10078 if (iocbq->vport->fc_myDID == Fabric_DID) { 10079 bf_set(wqe_els_did, 10080 &wqe->xmit_els_rsp.wqe_dest, 0); 10081 } 10082 } 10083 } 10084 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 10085 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10086 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 10087 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 10088 iocbq->iocb.unsli3.rcvsli3.ox_id); 10089 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 10090 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 10091 phba->vpi_ids[iocbq->vport->vpi]); 10092 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 10093 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 10094 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 10095 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 10096 LPFC_WQE_LENLOC_WORD3); 10097 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 10098 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 10099 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 10100 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 10101 iocbq->context2)->virt); 10102 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 10103 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 10104 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 10105 iocbq->vport->fc_myDID); 10106 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 10107 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 10108 phba->vpi_ids[phba->pport->vpi]); 10109 } 10110 command_type = OTHER_COMMAND; 10111 break; 10112 case CMD_CLOSE_XRI_CN: 10113 case CMD_ABORT_XRI_CN: 10114 case CMD_ABORT_XRI_CX: 10115 /* words 0-2 memcpy should be 0 rserved */ 10116 /* port will send abts */ 10117 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 10118 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 10119 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 10120 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 10121 } else 10122 fip = 0; 10123 10124 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 10125 /* 10126 * The link is down, or the command was ELS_FIP 10127 * so the fw does not need to send abts 10128 * on the wire. 10129 */ 10130 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 10131 else 10132 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 10133 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 10134 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 10135 wqe->abort_cmd.rsrvd5 = 0; 10136 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 10137 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10138 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 10139 /* 10140 * The abort handler will send us CMD_ABORT_XRI_CN or 10141 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 10142 */ 10143 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 10144 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 10145 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 10146 LPFC_WQE_LENLOC_NONE); 10147 cmnd = CMD_ABORT_XRI_CX; 10148 command_type = OTHER_COMMAND; 10149 xritag = 0; 10150 break; 10151 case CMD_XMIT_BLS_RSP64_CX: 10152 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10153 /* As BLS ABTS RSP WQE is very different from other WQEs, 10154 * we re-construct this WQE here based on information in 10155 * iocbq from scratch. 10156 */ 10157 memset(wqe, 0, sizeof(*wqe)); 10158 /* OX_ID is invariable to who sent ABTS to CT exchange */ 10159 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 10160 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 10161 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 10162 LPFC_ABTS_UNSOL_INT) { 10163 /* ABTS sent by initiator to CT exchange, the 10164 * RX_ID field will be filled with the newly 10165 * allocated responder XRI. 10166 */ 10167 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10168 iocbq->sli4_xritag); 10169 } else { 10170 /* ABTS sent by responder to CT exchange, the 10171 * RX_ID field will be filled with the responder 10172 * RX_ID from ABTS. 10173 */ 10174 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10175 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 10176 } 10177 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 10178 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 10179 10180 /* Use CT=VPI */ 10181 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 10182 ndlp->nlp_DID); 10183 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 10184 iocbq->iocb.ulpContext); 10185 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 10186 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 10187 phba->vpi_ids[phba->pport->vpi]); 10188 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 10189 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 10190 LPFC_WQE_LENLOC_NONE); 10191 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 10192 command_type = OTHER_COMMAND; 10193 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 10194 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 10195 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 10196 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 10197 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 10198 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 10199 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 10200 } 10201 10202 break; 10203 case CMD_SEND_FRAME: 10204 bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME); 10205 bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */ 10206 bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */ 10207 bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1); 10208 bf_set(wqe_xbl, &wqe->generic.wqe_com, 1); 10209 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10210 bf_set(wqe_xc, &wqe->generic.wqe_com, 1); 10211 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA); 10212 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10213 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10214 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10215 return 0; 10216 case CMD_XRI_ABORTED_CX: 10217 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 10218 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 10219 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 10220 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 10221 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 10222 default: 10223 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10224 "2014 Invalid command 0x%x\n", 10225 iocbq->iocb.ulpCommand); 10226 return IOCB_ERROR; 10227 } 10228 10229 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 10230 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 10231 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 10232 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 10233 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 10234 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 10235 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 10236 LPFC_IO_DIF_INSERT); 10237 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10238 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10239 wqe->generic.wqe_com.abort_tag = abort_tag; 10240 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 10241 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 10242 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 10243 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10244 return 0; 10245 } 10246 10247 /** 10248 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10249 * @phba: Pointer to HBA context object. 10250 * @ring_number: SLI ring number to issue wqe on. 10251 * @piocb: Pointer to command iocb. 10252 * @flag: Flag indicating if this command can be put into txq. 10253 * 10254 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10255 * send an iocb command to an HBA with SLI-4 interface spec. 10256 * 10257 * This function takes the hbalock before invoking the lockless version. 10258 * The function will return success after it successfully submit the wqe to 10259 * firmware or after adding to the txq. 10260 **/ 10261 static int 10262 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10263 struct lpfc_iocbq *piocb, uint32_t flag) 10264 { 10265 unsigned long iflags; 10266 int rc; 10267 10268 spin_lock_irqsave(&phba->hbalock, iflags); 10269 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10270 spin_unlock_irqrestore(&phba->hbalock, iflags); 10271 10272 return rc; 10273 } 10274 10275 /** 10276 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10277 * @phba: Pointer to HBA context object. 10278 * @ring_number: SLI ring number to issue wqe on. 10279 * @piocb: Pointer to command iocb. 10280 * @flag: Flag indicating if this command can be put into txq. 10281 * 10282 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10283 * an wqe command to an HBA with SLI-4 interface spec. 10284 * 10285 * This function is a lockless version. The function will return success 10286 * after it successfully submit the wqe to firmware or after adding to the 10287 * txq. 10288 **/ 10289 static int 10290 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10291 struct lpfc_iocbq *piocb, uint32_t flag) 10292 { 10293 int rc; 10294 struct lpfc_io_buf *lpfc_cmd = 10295 (struct lpfc_io_buf *)piocb->context1; 10296 union lpfc_wqe128 *wqe = &piocb->wqe; 10297 struct sli4_sge *sgl; 10298 10299 /* 128 byte wqe support here */ 10300 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10301 10302 if (phba->fcp_embed_io) { 10303 struct fcp_cmnd *fcp_cmnd; 10304 u32 *ptr; 10305 10306 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10307 10308 /* Word 0-2 - FCP_CMND */ 10309 wqe->generic.bde.tus.f.bdeFlags = 10310 BUFF_TYPE_BDE_IMMED; 10311 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10312 wqe->generic.bde.addrHigh = 0; 10313 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10314 10315 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10316 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10317 10318 /* Word 22-29 FCP CMND Payload */ 10319 ptr = &wqe->words[22]; 10320 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10321 } else { 10322 /* Word 0-2 - Inline BDE */ 10323 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10324 wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd); 10325 wqe->generic.bde.addrHigh = sgl->addr_hi; 10326 wqe->generic.bde.addrLow = sgl->addr_lo; 10327 10328 /* Word 10 */ 10329 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10330 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10331 } 10332 10333 /* add the VMID tags as per switch response */ 10334 if (unlikely(piocb->iocb_flag & LPFC_IO_VMID)) { 10335 if (phba->pport->vmid_priority_tagging) { 10336 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 10337 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10338 (piocb->vmid_tag.cs_ctl_vmid)); 10339 } else { 10340 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); 10341 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10342 wqe->words[31] = piocb->vmid_tag.app_id; 10343 } 10344 } 10345 rc = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 10346 return rc; 10347 } 10348 10349 /** 10350 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10351 * @phba: Pointer to HBA context object. 10352 * @ring_number: SLI ring number to issue iocb on. 10353 * @piocb: Pointer to command iocb. 10354 * @flag: Flag indicating if this command can be put into txq. 10355 * 10356 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10357 * an iocb command to an HBA with SLI-4 interface spec. 10358 * 10359 * This function is called with ringlock held. The function will return success 10360 * after it successfully submit the iocb to firmware or after adding to the 10361 * txq. 10362 **/ 10363 static int 10364 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10365 struct lpfc_iocbq *piocb, uint32_t flag) 10366 { 10367 struct lpfc_sglq *sglq; 10368 union lpfc_wqe128 wqe; 10369 struct lpfc_queue *wq; 10370 struct lpfc_sli_ring *pring; 10371 10372 /* Get the WQ */ 10373 if ((piocb->iocb_flag & LPFC_IO_FCP) || 10374 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 10375 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10376 } else { 10377 wq = phba->sli4_hba.els_wq; 10378 } 10379 10380 /* Get corresponding ring */ 10381 pring = wq->pring; 10382 10383 /* 10384 * The WQE can be either 64 or 128 bytes, 10385 */ 10386 10387 lockdep_assert_held(&pring->ring_lock); 10388 10389 if (piocb->sli4_xritag == NO_XRI) { 10390 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 10391 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 10392 sglq = NULL; 10393 else { 10394 if (!list_empty(&pring->txq)) { 10395 if (!(flag & SLI_IOCB_RET_IOCB)) { 10396 __lpfc_sli_ringtx_put(phba, 10397 pring, piocb); 10398 return IOCB_SUCCESS; 10399 } else { 10400 return IOCB_BUSY; 10401 } 10402 } else { 10403 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10404 if (!sglq) { 10405 if (!(flag & SLI_IOCB_RET_IOCB)) { 10406 __lpfc_sli_ringtx_put(phba, 10407 pring, 10408 piocb); 10409 return IOCB_SUCCESS; 10410 } else 10411 return IOCB_BUSY; 10412 } 10413 } 10414 } 10415 } else if (piocb->iocb_flag & LPFC_IO_FCP) { 10416 /* These IO's already have an XRI and a mapped sgl. */ 10417 sglq = NULL; 10418 } 10419 else { 10420 /* 10421 * This is a continuation of a commandi,(CX) so this 10422 * sglq is on the active list 10423 */ 10424 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10425 if (!sglq) 10426 return IOCB_ERROR; 10427 } 10428 10429 if (sglq) { 10430 piocb->sli4_lxritag = sglq->sli4_lxritag; 10431 piocb->sli4_xritag = sglq->sli4_xritag; 10432 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 10433 return IOCB_ERROR; 10434 } 10435 10436 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe)) 10437 return IOCB_ERROR; 10438 10439 if (lpfc_sli4_wq_put(wq, &wqe)) 10440 return IOCB_ERROR; 10441 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10442 10443 return 0; 10444 } 10445 10446 /* 10447 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 10448 * 10449 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 10450 * or IOCB for sli-3 function. 10451 * pointer from the lpfc_hba struct. 10452 * 10453 * Return codes: 10454 * IOCB_ERROR - Error 10455 * IOCB_SUCCESS - Success 10456 * IOCB_BUSY - Busy 10457 **/ 10458 int 10459 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 10460 struct lpfc_iocbq *piocb, uint32_t flag) 10461 { 10462 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 10463 } 10464 10465 /* 10466 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10467 * 10468 * This routine wraps the actual lockless version for issusing IOCB function 10469 * pointer from the lpfc_hba struct. 10470 * 10471 * Return codes: 10472 * IOCB_ERROR - Error 10473 * IOCB_SUCCESS - Success 10474 * IOCB_BUSY - Busy 10475 **/ 10476 int 10477 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10478 struct lpfc_iocbq *piocb, uint32_t flag) 10479 { 10480 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10481 } 10482 10483 /** 10484 * lpfc_sli_api_table_setup - Set up sli api function jump table 10485 * @phba: The hba struct for which this call is being executed. 10486 * @dev_grp: The HBA PCI-Device group number. 10487 * 10488 * This routine sets up the SLI interface API function jump table in @phba 10489 * struct. 10490 * Returns: 0 - success, -ENODEV - failure. 10491 **/ 10492 int 10493 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10494 { 10495 10496 switch (dev_grp) { 10497 case LPFC_PCI_DEV_LP: 10498 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 10499 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 10500 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 10501 break; 10502 case LPFC_PCI_DEV_OC: 10503 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 10504 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 10505 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 10506 break; 10507 default: 10508 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10509 "1419 Invalid HBA PCI-device group: 0x%x\n", 10510 dev_grp); 10511 return -ENODEV; 10512 } 10513 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 10514 return 0; 10515 } 10516 10517 /** 10518 * lpfc_sli4_calc_ring - Calculates which ring to use 10519 * @phba: Pointer to HBA context object. 10520 * @piocb: Pointer to command iocb. 10521 * 10522 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 10523 * hba_wqidx, thus we need to calculate the corresponding ring. 10524 * Since ABORTS must go on the same WQ of the command they are 10525 * aborting, we use command's hba_wqidx. 10526 */ 10527 struct lpfc_sli_ring * 10528 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 10529 { 10530 struct lpfc_io_buf *lpfc_cmd; 10531 10532 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 10533 if (unlikely(!phba->sli4_hba.hdwq)) 10534 return NULL; 10535 /* 10536 * for abort iocb hba_wqidx should already 10537 * be setup based on what work queue we used. 10538 */ 10539 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 10540 lpfc_cmd = (struct lpfc_io_buf *)piocb->context1; 10541 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 10542 } 10543 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 10544 } else { 10545 if (unlikely(!phba->sli4_hba.els_wq)) 10546 return NULL; 10547 piocb->hba_wqidx = 0; 10548 return phba->sli4_hba.els_wq->pring; 10549 } 10550 } 10551 10552 /** 10553 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 10554 * @phba: Pointer to HBA context object. 10555 * @ring_number: Ring number 10556 * @piocb: Pointer to command iocb. 10557 * @flag: Flag indicating if this command can be put into txq. 10558 * 10559 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 10560 * function. This function gets the hbalock and calls 10561 * __lpfc_sli_issue_iocb function and will return the error returned 10562 * by __lpfc_sli_issue_iocb function. This wrapper is used by 10563 * functions which do not hold hbalock. 10564 **/ 10565 int 10566 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10567 struct lpfc_iocbq *piocb, uint32_t flag) 10568 { 10569 struct lpfc_sli_ring *pring; 10570 struct lpfc_queue *eq; 10571 unsigned long iflags; 10572 int rc; 10573 10574 if (phba->sli_rev == LPFC_SLI_REV4) { 10575 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 10576 10577 pring = lpfc_sli4_calc_ring(phba, piocb); 10578 if (unlikely(pring == NULL)) 10579 return IOCB_ERROR; 10580 10581 spin_lock_irqsave(&pring->ring_lock, iflags); 10582 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10583 spin_unlock_irqrestore(&pring->ring_lock, iflags); 10584 10585 lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH); 10586 } else { 10587 /* For now, SLI2/3 will still use hbalock */ 10588 spin_lock_irqsave(&phba->hbalock, iflags); 10589 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10590 spin_unlock_irqrestore(&phba->hbalock, iflags); 10591 } 10592 return rc; 10593 } 10594 10595 /** 10596 * lpfc_extra_ring_setup - Extra ring setup function 10597 * @phba: Pointer to HBA context object. 10598 * 10599 * This function is called while driver attaches with the 10600 * HBA to setup the extra ring. The extra ring is used 10601 * only when driver needs to support target mode functionality 10602 * or IP over FC functionalities. 10603 * 10604 * This function is called with no lock held. SLI3 only. 10605 **/ 10606 static int 10607 lpfc_extra_ring_setup( struct lpfc_hba *phba) 10608 { 10609 struct lpfc_sli *psli; 10610 struct lpfc_sli_ring *pring; 10611 10612 psli = &phba->sli; 10613 10614 /* Adjust cmd/rsp ring iocb entries more evenly */ 10615 10616 /* Take some away from the FCP ring */ 10617 pring = &psli->sli3_ring[LPFC_FCP_RING]; 10618 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10619 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10620 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10621 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10622 10623 /* and give them to the extra ring */ 10624 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 10625 10626 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10627 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10628 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10629 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10630 10631 /* Setup default profile for this ring */ 10632 pring->iotag_max = 4096; 10633 pring->num_mask = 1; 10634 pring->prt[0].profile = 0; /* Mask 0 */ 10635 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 10636 pring->prt[0].type = phba->cfg_multi_ring_type; 10637 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 10638 return 0; 10639 } 10640 10641 static void 10642 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 10643 struct lpfc_nodelist *ndlp) 10644 { 10645 unsigned long iflags; 10646 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 10647 10648 spin_lock_irqsave(&phba->hbalock, iflags); 10649 if (!list_empty(&evtp->evt_listp)) { 10650 spin_unlock_irqrestore(&phba->hbalock, iflags); 10651 return; 10652 } 10653 10654 /* Incrementing the reference count until the queued work is done. */ 10655 evtp->evt_arg1 = lpfc_nlp_get(ndlp); 10656 if (!evtp->evt_arg1) { 10657 spin_unlock_irqrestore(&phba->hbalock, iflags); 10658 return; 10659 } 10660 evtp->evt = LPFC_EVT_RECOVER_PORT; 10661 list_add_tail(&evtp->evt_listp, &phba->work_list); 10662 spin_unlock_irqrestore(&phba->hbalock, iflags); 10663 10664 lpfc_worker_wake_up(phba); 10665 } 10666 10667 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 10668 * @phba: Pointer to HBA context object. 10669 * @iocbq: Pointer to iocb object. 10670 * 10671 * The async_event handler calls this routine when it receives 10672 * an ASYNC_STATUS_CN event from the port. The port generates 10673 * this event when an Abort Sequence request to an rport fails 10674 * twice in succession. The abort could be originated by the 10675 * driver or by the port. The ABTS could have been for an ELS 10676 * or FCP IO. The port only generates this event when an ABTS 10677 * fails to complete after one retry. 10678 */ 10679 static void 10680 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 10681 struct lpfc_iocbq *iocbq) 10682 { 10683 struct lpfc_nodelist *ndlp = NULL; 10684 uint16_t rpi = 0, vpi = 0; 10685 struct lpfc_vport *vport = NULL; 10686 10687 /* The rpi in the ulpContext is vport-sensitive. */ 10688 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 10689 rpi = iocbq->iocb.ulpContext; 10690 10691 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10692 "3092 Port generated ABTS async event " 10693 "on vpi %d rpi %d status 0x%x\n", 10694 vpi, rpi, iocbq->iocb.ulpStatus); 10695 10696 vport = lpfc_find_vport_by_vpid(phba, vpi); 10697 if (!vport) 10698 goto err_exit; 10699 ndlp = lpfc_findnode_rpi(vport, rpi); 10700 if (!ndlp) 10701 goto err_exit; 10702 10703 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 10704 lpfc_sli_abts_recover_port(vport, ndlp); 10705 return; 10706 10707 err_exit: 10708 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10709 "3095 Event Context not found, no " 10710 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 10711 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 10712 vpi, rpi); 10713 } 10714 10715 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 10716 * @phba: pointer to HBA context object. 10717 * @ndlp: nodelist pointer for the impacted rport. 10718 * @axri: pointer to the wcqe containing the failed exchange. 10719 * 10720 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 10721 * port. The port generates this event when an abort exchange request to an 10722 * rport fails twice in succession with no reply. The abort could be originated 10723 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 10724 */ 10725 void 10726 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 10727 struct lpfc_nodelist *ndlp, 10728 struct sli4_wcqe_xri_aborted *axri) 10729 { 10730 uint32_t ext_status = 0; 10731 10732 if (!ndlp) { 10733 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10734 "3115 Node Context not found, driver " 10735 "ignoring abts err event\n"); 10736 return; 10737 } 10738 10739 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10740 "3116 Port generated FCP XRI ABORT event on " 10741 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 10742 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 10743 bf_get(lpfc_wcqe_xa_xri, axri), 10744 bf_get(lpfc_wcqe_xa_status, axri), 10745 axri->parameter); 10746 10747 /* 10748 * Catch the ABTS protocol failure case. Older OCe FW releases returned 10749 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 10750 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 10751 */ 10752 ext_status = axri->parameter & IOERR_PARAM_MASK; 10753 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 10754 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 10755 lpfc_sli_post_recovery_event(phba, ndlp); 10756 } 10757 10758 /** 10759 * lpfc_sli_async_event_handler - ASYNC iocb handler function 10760 * @phba: Pointer to HBA context object. 10761 * @pring: Pointer to driver SLI ring object. 10762 * @iocbq: Pointer to iocb object. 10763 * 10764 * This function is called by the slow ring event handler 10765 * function when there is an ASYNC event iocb in the ring. 10766 * This function is called with no lock held. 10767 * Currently this function handles only temperature related 10768 * ASYNC events. The function decodes the temperature sensor 10769 * event message and posts events for the management applications. 10770 **/ 10771 static void 10772 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 10773 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 10774 { 10775 IOCB_t *icmd; 10776 uint16_t evt_code; 10777 struct temp_event temp_event_data; 10778 struct Scsi_Host *shost; 10779 uint32_t *iocb_w; 10780 10781 icmd = &iocbq->iocb; 10782 evt_code = icmd->un.asyncstat.evt_code; 10783 10784 switch (evt_code) { 10785 case ASYNC_TEMP_WARN: 10786 case ASYNC_TEMP_SAFE: 10787 temp_event_data.data = (uint32_t) icmd->ulpContext; 10788 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 10789 if (evt_code == ASYNC_TEMP_WARN) { 10790 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 10791 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10792 "0347 Adapter is very hot, please take " 10793 "corrective action. temperature : %d Celsius\n", 10794 (uint32_t) icmd->ulpContext); 10795 } else { 10796 temp_event_data.event_code = LPFC_NORMAL_TEMP; 10797 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10798 "0340 Adapter temperature is OK now. " 10799 "temperature : %d Celsius\n", 10800 (uint32_t) icmd->ulpContext); 10801 } 10802 10803 /* Send temperature change event to applications */ 10804 shost = lpfc_shost_from_vport(phba->pport); 10805 fc_host_post_vendor_event(shost, fc_get_event_number(), 10806 sizeof(temp_event_data), (char *) &temp_event_data, 10807 LPFC_NL_VENDOR_ID); 10808 break; 10809 case ASYNC_STATUS_CN: 10810 lpfc_sli_abts_err_handler(phba, iocbq); 10811 break; 10812 default: 10813 iocb_w = (uint32_t *) icmd; 10814 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10815 "0346 Ring %d handler: unexpected ASYNC_STATUS" 10816 " evt_code 0x%x\n" 10817 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 10818 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 10819 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 10820 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 10821 pring->ringno, icmd->un.asyncstat.evt_code, 10822 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 10823 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 10824 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 10825 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 10826 10827 break; 10828 } 10829 } 10830 10831 10832 /** 10833 * lpfc_sli4_setup - SLI ring setup function 10834 * @phba: Pointer to HBA context object. 10835 * 10836 * lpfc_sli_setup sets up rings of the SLI interface with 10837 * number of iocbs per ring and iotags. This function is 10838 * called while driver attach to the HBA and before the 10839 * interrupts are enabled. So there is no need for locking. 10840 * 10841 * This function always returns 0. 10842 **/ 10843 int 10844 lpfc_sli4_setup(struct lpfc_hba *phba) 10845 { 10846 struct lpfc_sli_ring *pring; 10847 10848 pring = phba->sli4_hba.els_wq->pring; 10849 pring->num_mask = LPFC_MAX_RING_MASK; 10850 pring->prt[0].profile = 0; /* Mask 0 */ 10851 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10852 pring->prt[0].type = FC_TYPE_ELS; 10853 pring->prt[0].lpfc_sli_rcv_unsol_event = 10854 lpfc_els_unsol_event; 10855 pring->prt[1].profile = 0; /* Mask 1 */ 10856 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10857 pring->prt[1].type = FC_TYPE_ELS; 10858 pring->prt[1].lpfc_sli_rcv_unsol_event = 10859 lpfc_els_unsol_event; 10860 pring->prt[2].profile = 0; /* Mask 2 */ 10861 /* NameServer Inquiry */ 10862 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10863 /* NameServer */ 10864 pring->prt[2].type = FC_TYPE_CT; 10865 pring->prt[2].lpfc_sli_rcv_unsol_event = 10866 lpfc_ct_unsol_event; 10867 pring->prt[3].profile = 0; /* Mask 3 */ 10868 /* NameServer response */ 10869 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10870 /* NameServer */ 10871 pring->prt[3].type = FC_TYPE_CT; 10872 pring->prt[3].lpfc_sli_rcv_unsol_event = 10873 lpfc_ct_unsol_event; 10874 return 0; 10875 } 10876 10877 /** 10878 * lpfc_sli_setup - SLI ring setup function 10879 * @phba: Pointer to HBA context object. 10880 * 10881 * lpfc_sli_setup sets up rings of the SLI interface with 10882 * number of iocbs per ring and iotags. This function is 10883 * called while driver attach to the HBA and before the 10884 * interrupts are enabled. So there is no need for locking. 10885 * 10886 * This function always returns 0. SLI3 only. 10887 **/ 10888 int 10889 lpfc_sli_setup(struct lpfc_hba *phba) 10890 { 10891 int i, totiocbsize = 0; 10892 struct lpfc_sli *psli = &phba->sli; 10893 struct lpfc_sli_ring *pring; 10894 10895 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 10896 psli->sli_flag = 0; 10897 10898 psli->iocbq_lookup = NULL; 10899 psli->iocbq_lookup_len = 0; 10900 psli->last_iotag = 0; 10901 10902 for (i = 0; i < psli->num_rings; i++) { 10903 pring = &psli->sli3_ring[i]; 10904 switch (i) { 10905 case LPFC_FCP_RING: /* ring 0 - FCP */ 10906 /* numCiocb and numRiocb are used in config_port */ 10907 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 10908 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 10909 pring->sli.sli3.numCiocb += 10910 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10911 pring->sli.sli3.numRiocb += 10912 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10913 pring->sli.sli3.numCiocb += 10914 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10915 pring->sli.sli3.numRiocb += 10916 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10917 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10918 SLI3_IOCB_CMD_SIZE : 10919 SLI2_IOCB_CMD_SIZE; 10920 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10921 SLI3_IOCB_RSP_SIZE : 10922 SLI2_IOCB_RSP_SIZE; 10923 pring->iotag_ctr = 0; 10924 pring->iotag_max = 10925 (phba->cfg_hba_queue_depth * 2); 10926 pring->fast_iotag = pring->iotag_max; 10927 pring->num_mask = 0; 10928 break; 10929 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 10930 /* numCiocb and numRiocb are used in config_port */ 10931 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 10932 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 10933 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10934 SLI3_IOCB_CMD_SIZE : 10935 SLI2_IOCB_CMD_SIZE; 10936 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10937 SLI3_IOCB_RSP_SIZE : 10938 SLI2_IOCB_RSP_SIZE; 10939 pring->iotag_max = phba->cfg_hba_queue_depth; 10940 pring->num_mask = 0; 10941 break; 10942 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 10943 /* numCiocb and numRiocb are used in config_port */ 10944 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 10945 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 10946 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10947 SLI3_IOCB_CMD_SIZE : 10948 SLI2_IOCB_CMD_SIZE; 10949 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10950 SLI3_IOCB_RSP_SIZE : 10951 SLI2_IOCB_RSP_SIZE; 10952 pring->fast_iotag = 0; 10953 pring->iotag_ctr = 0; 10954 pring->iotag_max = 4096; 10955 pring->lpfc_sli_rcv_async_status = 10956 lpfc_sli_async_event_handler; 10957 pring->num_mask = LPFC_MAX_RING_MASK; 10958 pring->prt[0].profile = 0; /* Mask 0 */ 10959 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10960 pring->prt[0].type = FC_TYPE_ELS; 10961 pring->prt[0].lpfc_sli_rcv_unsol_event = 10962 lpfc_els_unsol_event; 10963 pring->prt[1].profile = 0; /* Mask 1 */ 10964 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10965 pring->prt[1].type = FC_TYPE_ELS; 10966 pring->prt[1].lpfc_sli_rcv_unsol_event = 10967 lpfc_els_unsol_event; 10968 pring->prt[2].profile = 0; /* Mask 2 */ 10969 /* NameServer Inquiry */ 10970 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10971 /* NameServer */ 10972 pring->prt[2].type = FC_TYPE_CT; 10973 pring->prt[2].lpfc_sli_rcv_unsol_event = 10974 lpfc_ct_unsol_event; 10975 pring->prt[3].profile = 0; /* Mask 3 */ 10976 /* NameServer response */ 10977 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10978 /* NameServer */ 10979 pring->prt[3].type = FC_TYPE_CT; 10980 pring->prt[3].lpfc_sli_rcv_unsol_event = 10981 lpfc_ct_unsol_event; 10982 break; 10983 } 10984 totiocbsize += (pring->sli.sli3.numCiocb * 10985 pring->sli.sli3.sizeCiocb) + 10986 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 10987 } 10988 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 10989 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 10990 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 10991 "SLI2 SLIM Data: x%x x%lx\n", 10992 phba->brd_no, totiocbsize, 10993 (unsigned long) MAX_SLIM_IOCB_SIZE); 10994 } 10995 if (phba->cfg_multi_ring_support == 2) 10996 lpfc_extra_ring_setup(phba); 10997 10998 return 0; 10999 } 11000 11001 /** 11002 * lpfc_sli4_queue_init - Queue initialization function 11003 * @phba: Pointer to HBA context object. 11004 * 11005 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 11006 * ring. This function also initializes ring indices of each ring. 11007 * This function is called during the initialization of the SLI 11008 * interface of an HBA. 11009 * This function is called with no lock held and always returns 11010 * 1. 11011 **/ 11012 void 11013 lpfc_sli4_queue_init(struct lpfc_hba *phba) 11014 { 11015 struct lpfc_sli *psli; 11016 struct lpfc_sli_ring *pring; 11017 int i; 11018 11019 psli = &phba->sli; 11020 spin_lock_irq(&phba->hbalock); 11021 INIT_LIST_HEAD(&psli->mboxq); 11022 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11023 /* Initialize list headers for txq and txcmplq as double linked lists */ 11024 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11025 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11026 pring->flag = 0; 11027 pring->ringno = LPFC_FCP_RING; 11028 pring->txcmplq_cnt = 0; 11029 INIT_LIST_HEAD(&pring->txq); 11030 INIT_LIST_HEAD(&pring->txcmplq); 11031 INIT_LIST_HEAD(&pring->iocb_continueq); 11032 spin_lock_init(&pring->ring_lock); 11033 } 11034 pring = phba->sli4_hba.els_wq->pring; 11035 pring->flag = 0; 11036 pring->ringno = LPFC_ELS_RING; 11037 pring->txcmplq_cnt = 0; 11038 INIT_LIST_HEAD(&pring->txq); 11039 INIT_LIST_HEAD(&pring->txcmplq); 11040 INIT_LIST_HEAD(&pring->iocb_continueq); 11041 spin_lock_init(&pring->ring_lock); 11042 11043 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11044 pring = phba->sli4_hba.nvmels_wq->pring; 11045 pring->flag = 0; 11046 pring->ringno = LPFC_ELS_RING; 11047 pring->txcmplq_cnt = 0; 11048 INIT_LIST_HEAD(&pring->txq); 11049 INIT_LIST_HEAD(&pring->txcmplq); 11050 INIT_LIST_HEAD(&pring->iocb_continueq); 11051 spin_lock_init(&pring->ring_lock); 11052 } 11053 11054 spin_unlock_irq(&phba->hbalock); 11055 } 11056 11057 /** 11058 * lpfc_sli_queue_init - Queue initialization function 11059 * @phba: Pointer to HBA context object. 11060 * 11061 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11062 * ring. This function also initializes ring indices of each ring. 11063 * This function is called during the initialization of the SLI 11064 * interface of an HBA. 11065 * This function is called with no lock held and always returns 11066 * 1. 11067 **/ 11068 void 11069 lpfc_sli_queue_init(struct lpfc_hba *phba) 11070 { 11071 struct lpfc_sli *psli; 11072 struct lpfc_sli_ring *pring; 11073 int i; 11074 11075 psli = &phba->sli; 11076 spin_lock_irq(&phba->hbalock); 11077 INIT_LIST_HEAD(&psli->mboxq); 11078 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11079 /* Initialize list headers for txq and txcmplq as double linked lists */ 11080 for (i = 0; i < psli->num_rings; i++) { 11081 pring = &psli->sli3_ring[i]; 11082 pring->ringno = i; 11083 pring->sli.sli3.next_cmdidx = 0; 11084 pring->sli.sli3.local_getidx = 0; 11085 pring->sli.sli3.cmdidx = 0; 11086 INIT_LIST_HEAD(&pring->iocb_continueq); 11087 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11088 INIT_LIST_HEAD(&pring->postbufq); 11089 pring->flag = 0; 11090 INIT_LIST_HEAD(&pring->txq); 11091 INIT_LIST_HEAD(&pring->txcmplq); 11092 spin_lock_init(&pring->ring_lock); 11093 } 11094 spin_unlock_irq(&phba->hbalock); 11095 } 11096 11097 /** 11098 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11099 * @phba: Pointer to HBA context object. 11100 * 11101 * This routine flushes the mailbox command subsystem. It will unconditionally 11102 * flush all the mailbox commands in the three possible stages in the mailbox 11103 * command sub-system: pending mailbox command queue; the outstanding mailbox 11104 * command; and completed mailbox command queue. It is caller's responsibility 11105 * to make sure that the driver is in the proper state to flush the mailbox 11106 * command sub-system. Namely, the posting of mailbox commands into the 11107 * pending mailbox command queue from the various clients must be stopped; 11108 * either the HBA is in a state that it will never works on the outstanding 11109 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11110 * mailbox command has been completed. 11111 **/ 11112 static void 11113 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11114 { 11115 LIST_HEAD(completions); 11116 struct lpfc_sli *psli = &phba->sli; 11117 LPFC_MBOXQ_t *pmb; 11118 unsigned long iflag; 11119 11120 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11121 local_bh_disable(); 11122 11123 /* Flush all the mailbox commands in the mbox system */ 11124 spin_lock_irqsave(&phba->hbalock, iflag); 11125 11126 /* The pending mailbox command queue */ 11127 list_splice_init(&phba->sli.mboxq, &completions); 11128 /* The outstanding active mailbox command */ 11129 if (psli->mbox_active) { 11130 list_add_tail(&psli->mbox_active->list, &completions); 11131 psli->mbox_active = NULL; 11132 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11133 } 11134 /* The completed mailbox command queue */ 11135 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11136 spin_unlock_irqrestore(&phba->hbalock, iflag); 11137 11138 /* Enable softirqs again, done with phba->hbalock */ 11139 local_bh_enable(); 11140 11141 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11142 while (!list_empty(&completions)) { 11143 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11144 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11145 if (pmb->mbox_cmpl) 11146 pmb->mbox_cmpl(phba, pmb); 11147 } 11148 } 11149 11150 /** 11151 * lpfc_sli_host_down - Vport cleanup function 11152 * @vport: Pointer to virtual port object. 11153 * 11154 * lpfc_sli_host_down is called to clean up the resources 11155 * associated with a vport before destroying virtual 11156 * port data structures. 11157 * This function does following operations: 11158 * - Free discovery resources associated with this virtual 11159 * port. 11160 * - Free iocbs associated with this virtual port in 11161 * the txq. 11162 * - Send abort for all iocb commands associated with this 11163 * vport in txcmplq. 11164 * 11165 * This function is called with no lock held and always returns 1. 11166 **/ 11167 int 11168 lpfc_sli_host_down(struct lpfc_vport *vport) 11169 { 11170 LIST_HEAD(completions); 11171 struct lpfc_hba *phba = vport->phba; 11172 struct lpfc_sli *psli = &phba->sli; 11173 struct lpfc_queue *qp = NULL; 11174 struct lpfc_sli_ring *pring; 11175 struct lpfc_iocbq *iocb, *next_iocb; 11176 int i; 11177 unsigned long flags = 0; 11178 uint16_t prev_pring_flag; 11179 11180 lpfc_cleanup_discovery_resources(vport); 11181 11182 spin_lock_irqsave(&phba->hbalock, flags); 11183 11184 /* 11185 * Error everything on the txq since these iocbs 11186 * have not been given to the FW yet. 11187 * Also issue ABTS for everything on the txcmplq 11188 */ 11189 if (phba->sli_rev != LPFC_SLI_REV4) { 11190 for (i = 0; i < psli->num_rings; i++) { 11191 pring = &psli->sli3_ring[i]; 11192 prev_pring_flag = pring->flag; 11193 /* Only slow rings */ 11194 if (pring->ringno == LPFC_ELS_RING) { 11195 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11196 /* Set the lpfc data pending flag */ 11197 set_bit(LPFC_DATA_READY, &phba->data_flags); 11198 } 11199 list_for_each_entry_safe(iocb, next_iocb, 11200 &pring->txq, list) { 11201 if (iocb->vport != vport) 11202 continue; 11203 list_move_tail(&iocb->list, &completions); 11204 } 11205 list_for_each_entry_safe(iocb, next_iocb, 11206 &pring->txcmplq, list) { 11207 if (iocb->vport != vport) 11208 continue; 11209 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11210 NULL); 11211 } 11212 pring->flag = prev_pring_flag; 11213 } 11214 } else { 11215 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11216 pring = qp->pring; 11217 if (!pring) 11218 continue; 11219 if (pring == phba->sli4_hba.els_wq->pring) { 11220 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11221 /* Set the lpfc data pending flag */ 11222 set_bit(LPFC_DATA_READY, &phba->data_flags); 11223 } 11224 prev_pring_flag = pring->flag; 11225 spin_lock(&pring->ring_lock); 11226 list_for_each_entry_safe(iocb, next_iocb, 11227 &pring->txq, list) { 11228 if (iocb->vport != vport) 11229 continue; 11230 list_move_tail(&iocb->list, &completions); 11231 } 11232 spin_unlock(&pring->ring_lock); 11233 list_for_each_entry_safe(iocb, next_iocb, 11234 &pring->txcmplq, list) { 11235 if (iocb->vport != vport) 11236 continue; 11237 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11238 NULL); 11239 } 11240 pring->flag = prev_pring_flag; 11241 } 11242 } 11243 spin_unlock_irqrestore(&phba->hbalock, flags); 11244 11245 /* Make sure HBA is alive */ 11246 lpfc_issue_hb_tmo(phba); 11247 11248 /* Cancel all the IOCBs from the completions list */ 11249 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11250 IOERR_SLI_DOWN); 11251 return 1; 11252 } 11253 11254 /** 11255 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11256 * @phba: Pointer to HBA context object. 11257 * 11258 * This function cleans up all iocb, buffers, mailbox commands 11259 * while shutting down the HBA. This function is called with no 11260 * lock held and always returns 1. 11261 * This function does the following to cleanup driver resources: 11262 * - Free discovery resources for each virtual port 11263 * - Cleanup any pending fabric iocbs 11264 * - Iterate through the iocb txq and free each entry 11265 * in the list. 11266 * - Free up any buffer posted to the HBA 11267 * - Free mailbox commands in the mailbox queue. 11268 **/ 11269 int 11270 lpfc_sli_hba_down(struct lpfc_hba *phba) 11271 { 11272 LIST_HEAD(completions); 11273 struct lpfc_sli *psli = &phba->sli; 11274 struct lpfc_queue *qp = NULL; 11275 struct lpfc_sli_ring *pring; 11276 struct lpfc_dmabuf *buf_ptr; 11277 unsigned long flags = 0; 11278 int i; 11279 11280 /* Shutdown the mailbox command sub-system */ 11281 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 11282 11283 lpfc_hba_down_prep(phba); 11284 11285 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11286 local_bh_disable(); 11287 11288 lpfc_fabric_abort_hba(phba); 11289 11290 spin_lock_irqsave(&phba->hbalock, flags); 11291 11292 /* 11293 * Error everything on the txq since these iocbs 11294 * have not been given to the FW yet. 11295 */ 11296 if (phba->sli_rev != LPFC_SLI_REV4) { 11297 for (i = 0; i < psli->num_rings; i++) { 11298 pring = &psli->sli3_ring[i]; 11299 /* Only slow rings */ 11300 if (pring->ringno == LPFC_ELS_RING) { 11301 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11302 /* Set the lpfc data pending flag */ 11303 set_bit(LPFC_DATA_READY, &phba->data_flags); 11304 } 11305 list_splice_init(&pring->txq, &completions); 11306 } 11307 } else { 11308 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11309 pring = qp->pring; 11310 if (!pring) 11311 continue; 11312 spin_lock(&pring->ring_lock); 11313 list_splice_init(&pring->txq, &completions); 11314 spin_unlock(&pring->ring_lock); 11315 if (pring == phba->sli4_hba.els_wq->pring) { 11316 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11317 /* Set the lpfc data pending flag */ 11318 set_bit(LPFC_DATA_READY, &phba->data_flags); 11319 } 11320 } 11321 } 11322 spin_unlock_irqrestore(&phba->hbalock, flags); 11323 11324 /* Cancel all the IOCBs from the completions list */ 11325 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11326 IOERR_SLI_DOWN); 11327 11328 spin_lock_irqsave(&phba->hbalock, flags); 11329 list_splice_init(&phba->elsbuf, &completions); 11330 phba->elsbuf_cnt = 0; 11331 phba->elsbuf_prev_cnt = 0; 11332 spin_unlock_irqrestore(&phba->hbalock, flags); 11333 11334 while (!list_empty(&completions)) { 11335 list_remove_head(&completions, buf_ptr, 11336 struct lpfc_dmabuf, list); 11337 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 11338 kfree(buf_ptr); 11339 } 11340 11341 /* Enable softirqs again, done with phba->hbalock */ 11342 local_bh_enable(); 11343 11344 /* Return any active mbox cmds */ 11345 del_timer_sync(&psli->mbox_tmo); 11346 11347 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 11348 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 11349 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 11350 11351 return 1; 11352 } 11353 11354 /** 11355 * lpfc_sli_pcimem_bcopy - SLI memory copy function 11356 * @srcp: Source memory pointer. 11357 * @destp: Destination memory pointer. 11358 * @cnt: Number of words required to be copied. 11359 * 11360 * This function is used for copying data between driver memory 11361 * and the SLI memory. This function also changes the endianness 11362 * of each word if native endianness is different from SLI 11363 * endianness. This function can be called with or without 11364 * lock. 11365 **/ 11366 void 11367 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 11368 { 11369 uint32_t *src = srcp; 11370 uint32_t *dest = destp; 11371 uint32_t ldata; 11372 int i; 11373 11374 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 11375 ldata = *src; 11376 ldata = le32_to_cpu(ldata); 11377 *dest = ldata; 11378 src++; 11379 dest++; 11380 } 11381 } 11382 11383 11384 /** 11385 * lpfc_sli_bemem_bcopy - SLI memory copy function 11386 * @srcp: Source memory pointer. 11387 * @destp: Destination memory pointer. 11388 * @cnt: Number of words required to be copied. 11389 * 11390 * This function is used for copying data between a data structure 11391 * with big endian representation to local endianness. 11392 * This function can be called with or without lock. 11393 **/ 11394 void 11395 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 11396 { 11397 uint32_t *src = srcp; 11398 uint32_t *dest = destp; 11399 uint32_t ldata; 11400 int i; 11401 11402 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 11403 ldata = *src; 11404 ldata = be32_to_cpu(ldata); 11405 *dest = ldata; 11406 src++; 11407 dest++; 11408 } 11409 } 11410 11411 /** 11412 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 11413 * @phba: Pointer to HBA context object. 11414 * @pring: Pointer to driver SLI ring object. 11415 * @mp: Pointer to driver buffer object. 11416 * 11417 * This function is called with no lock held. 11418 * It always return zero after adding the buffer to the postbufq 11419 * buffer list. 11420 **/ 11421 int 11422 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11423 struct lpfc_dmabuf *mp) 11424 { 11425 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 11426 later */ 11427 spin_lock_irq(&phba->hbalock); 11428 list_add_tail(&mp->list, &pring->postbufq); 11429 pring->postbufq_cnt++; 11430 spin_unlock_irq(&phba->hbalock); 11431 return 0; 11432 } 11433 11434 /** 11435 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 11436 * @phba: Pointer to HBA context object. 11437 * 11438 * When HBQ is enabled, buffers are searched based on tags. This function 11439 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 11440 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 11441 * does not conflict with tags of buffer posted for unsolicited events. 11442 * The function returns the allocated tag. The function is called with 11443 * no locks held. 11444 **/ 11445 uint32_t 11446 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 11447 { 11448 spin_lock_irq(&phba->hbalock); 11449 phba->buffer_tag_count++; 11450 /* 11451 * Always set the QUE_BUFTAG_BIT to distiguish between 11452 * a tag assigned by HBQ. 11453 */ 11454 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 11455 spin_unlock_irq(&phba->hbalock); 11456 return phba->buffer_tag_count; 11457 } 11458 11459 /** 11460 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 11461 * @phba: Pointer to HBA context object. 11462 * @pring: Pointer to driver SLI ring object. 11463 * @tag: Buffer tag. 11464 * 11465 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 11466 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 11467 * iocb is posted to the response ring with the tag of the buffer. 11468 * This function searches the pring->postbufq list using the tag 11469 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 11470 * iocb. If the buffer is found then lpfc_dmabuf object of the 11471 * buffer is returned to the caller else NULL is returned. 11472 * This function is called with no lock held. 11473 **/ 11474 struct lpfc_dmabuf * 11475 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11476 uint32_t tag) 11477 { 11478 struct lpfc_dmabuf *mp, *next_mp; 11479 struct list_head *slp = &pring->postbufq; 11480 11481 /* Search postbufq, from the beginning, looking for a match on tag */ 11482 spin_lock_irq(&phba->hbalock); 11483 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11484 if (mp->buffer_tag == tag) { 11485 list_del_init(&mp->list); 11486 pring->postbufq_cnt--; 11487 spin_unlock_irq(&phba->hbalock); 11488 return mp; 11489 } 11490 } 11491 11492 spin_unlock_irq(&phba->hbalock); 11493 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11494 "0402 Cannot find virtual addr for buffer tag on " 11495 "ring %d Data x%lx x%px x%px x%x\n", 11496 pring->ringno, (unsigned long) tag, 11497 slp->next, slp->prev, pring->postbufq_cnt); 11498 11499 return NULL; 11500 } 11501 11502 /** 11503 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 11504 * @phba: Pointer to HBA context object. 11505 * @pring: Pointer to driver SLI ring object. 11506 * @phys: DMA address of the buffer. 11507 * 11508 * This function searches the buffer list using the dma_address 11509 * of unsolicited event to find the driver's lpfc_dmabuf object 11510 * corresponding to the dma_address. The function returns the 11511 * lpfc_dmabuf object if a buffer is found else it returns NULL. 11512 * This function is called by the ct and els unsolicited event 11513 * handlers to get the buffer associated with the unsolicited 11514 * event. 11515 * 11516 * This function is called with no lock held. 11517 **/ 11518 struct lpfc_dmabuf * 11519 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11520 dma_addr_t phys) 11521 { 11522 struct lpfc_dmabuf *mp, *next_mp; 11523 struct list_head *slp = &pring->postbufq; 11524 11525 /* Search postbufq, from the beginning, looking for a match on phys */ 11526 spin_lock_irq(&phba->hbalock); 11527 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11528 if (mp->phys == phys) { 11529 list_del_init(&mp->list); 11530 pring->postbufq_cnt--; 11531 spin_unlock_irq(&phba->hbalock); 11532 return mp; 11533 } 11534 } 11535 11536 spin_unlock_irq(&phba->hbalock); 11537 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11538 "0410 Cannot find virtual addr for mapped buf on " 11539 "ring %d Data x%llx x%px x%px x%x\n", 11540 pring->ringno, (unsigned long long)phys, 11541 slp->next, slp->prev, pring->postbufq_cnt); 11542 return NULL; 11543 } 11544 11545 /** 11546 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 11547 * @phba: Pointer to HBA context object. 11548 * @cmdiocb: Pointer to driver command iocb object. 11549 * @rspiocb: Pointer to driver response iocb object. 11550 * 11551 * This function is the completion handler for the abort iocbs for 11552 * ELS commands. This function is called from the ELS ring event 11553 * handler with no lock held. This function frees memory resources 11554 * associated with the abort iocb. 11555 **/ 11556 static void 11557 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11558 struct lpfc_iocbq *rspiocb) 11559 { 11560 IOCB_t *irsp = &rspiocb->iocb; 11561 uint16_t abort_iotag, abort_context; 11562 struct lpfc_iocbq *abort_iocb = NULL; 11563 11564 if (irsp->ulpStatus) { 11565 11566 /* 11567 * Assume that the port already completed and returned, or 11568 * will return the iocb. Just Log the message. 11569 */ 11570 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 11571 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 11572 11573 spin_lock_irq(&phba->hbalock); 11574 if (phba->sli_rev < LPFC_SLI_REV4) { 11575 if (irsp->ulpCommand == CMD_ABORT_XRI_CX && 11576 irsp->ulpStatus == IOSTAT_LOCAL_REJECT && 11577 irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) { 11578 spin_unlock_irq(&phba->hbalock); 11579 goto release_iocb; 11580 } 11581 if (abort_iotag != 0 && 11582 abort_iotag <= phba->sli.last_iotag) 11583 abort_iocb = 11584 phba->sli.iocbq_lookup[abort_iotag]; 11585 } else 11586 /* For sli4 the abort_tag is the XRI, 11587 * so the abort routine puts the iotag of the iocb 11588 * being aborted in the context field of the abort 11589 * IOCB. 11590 */ 11591 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 11592 11593 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 11594 "0327 Cannot abort els iocb x%px " 11595 "with tag %x context %x, abort status %x, " 11596 "abort code %x\n", 11597 abort_iocb, abort_iotag, abort_context, 11598 irsp->ulpStatus, irsp->un.ulpWord[4]); 11599 11600 spin_unlock_irq(&phba->hbalock); 11601 } 11602 release_iocb: 11603 lpfc_sli_release_iocbq(phba, cmdiocb); 11604 return; 11605 } 11606 11607 /** 11608 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 11609 * @phba: Pointer to HBA context object. 11610 * @cmdiocb: Pointer to driver command iocb object. 11611 * @rspiocb: Pointer to driver response iocb object. 11612 * 11613 * The function is called from SLI ring event handler with no 11614 * lock held. This function is the completion handler for ELS commands 11615 * which are aborted. The function frees memory resources used for 11616 * the aborted ELS commands. 11617 **/ 11618 void 11619 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11620 struct lpfc_iocbq *rspiocb) 11621 { 11622 IOCB_t *irsp = &rspiocb->iocb; 11623 11624 /* ELS cmd tag <ulpIoTag> completes */ 11625 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 11626 "0139 Ignoring ELS cmd tag x%x completion Data: " 11627 "x%x x%x x%x\n", 11628 irsp->ulpIoTag, irsp->ulpStatus, 11629 irsp->un.ulpWord[4], irsp->ulpTimeout); 11630 lpfc_nlp_put((struct lpfc_nodelist *)cmdiocb->context1); 11631 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 11632 lpfc_ct_free_iocb(phba, cmdiocb); 11633 else 11634 lpfc_els_free_iocb(phba, cmdiocb); 11635 } 11636 11637 /** 11638 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 11639 * @phba: Pointer to HBA context object. 11640 * @pring: Pointer to driver SLI ring object. 11641 * @cmdiocb: Pointer to driver command iocb object. 11642 * @cmpl: completion function. 11643 * 11644 * This function issues an abort iocb for the provided command iocb. In case 11645 * of unloading, the abort iocb will not be issued to commands on the ELS 11646 * ring. Instead, the callback function shall be changed to those commands 11647 * so that nothing happens when them finishes. This function is called with 11648 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 11649 * when the command iocb is an abort request. 11650 * 11651 **/ 11652 int 11653 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11654 struct lpfc_iocbq *cmdiocb, void *cmpl) 11655 { 11656 struct lpfc_vport *vport = cmdiocb->vport; 11657 struct lpfc_iocbq *abtsiocbp; 11658 IOCB_t *icmd = NULL; 11659 IOCB_t *iabt = NULL; 11660 int retval = IOCB_ERROR; 11661 unsigned long iflags; 11662 struct lpfc_nodelist *ndlp; 11663 11664 /* 11665 * There are certain command types we don't want to abort. And we 11666 * don't want to abort commands that are already in the process of 11667 * being aborted. 11668 */ 11669 icmd = &cmdiocb->iocb; 11670 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11671 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 11672 cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) 11673 return IOCB_ABORTING; 11674 11675 if (!pring) { 11676 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11677 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11678 else 11679 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11680 return retval; 11681 } 11682 11683 /* 11684 * If we're unloading, don't abort iocb on the ELS ring, but change 11685 * the callback so that nothing happens when it finishes. 11686 */ 11687 if ((vport->load_flag & FC_UNLOADING) && 11688 pring->ringno == LPFC_ELS_RING) { 11689 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11690 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11691 else 11692 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11693 return retval; 11694 } 11695 11696 /* issue ABTS for this IOCB based on iotag */ 11697 abtsiocbp = __lpfc_sli_get_iocbq(phba); 11698 if (abtsiocbp == NULL) 11699 return IOCB_NORESOURCE; 11700 11701 /* This signals the response to set the correct status 11702 * before calling the completion handler 11703 */ 11704 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 11705 11706 iabt = &abtsiocbp->iocb; 11707 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 11708 iabt->un.acxri.abortContextTag = icmd->ulpContext; 11709 if (phba->sli_rev == LPFC_SLI_REV4) { 11710 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 11711 if (pring->ringno == LPFC_ELS_RING) 11712 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 11713 } else { 11714 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 11715 if (pring->ringno == LPFC_ELS_RING) { 11716 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1); 11717 iabt->un.acxri.abortContextTag = ndlp->nlp_rpi; 11718 } 11719 } 11720 iabt->ulpLe = 1; 11721 iabt->ulpClass = icmd->ulpClass; 11722 11723 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11724 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 11725 if (cmdiocb->iocb_flag & LPFC_IO_FCP) { 11726 abtsiocbp->iocb_flag |= LPFC_IO_FCP; 11727 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 11728 } 11729 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 11730 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 11731 11732 if (phba->link_state >= LPFC_LINK_UP) 11733 iabt->ulpCommand = CMD_ABORT_XRI_CN; 11734 else 11735 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 11736 11737 if (cmpl) 11738 abtsiocbp->iocb_cmpl = cmpl; 11739 else 11740 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 11741 abtsiocbp->vport = vport; 11742 11743 if (phba->sli_rev == LPFC_SLI_REV4) { 11744 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 11745 if (unlikely(pring == NULL)) 11746 goto abort_iotag_exit; 11747 /* Note: both hbalock and ring_lock need to be set here */ 11748 spin_lock_irqsave(&pring->ring_lock, iflags); 11749 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11750 abtsiocbp, 0); 11751 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11752 } else { 11753 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11754 abtsiocbp, 0); 11755 } 11756 11757 abort_iotag_exit: 11758 11759 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 11760 "0339 Abort xri x%x, original iotag x%x, " 11761 "abort cmd iotag x%x retval x%x\n", 11762 iabt->un.acxri.abortIoTag, 11763 iabt->un.acxri.abortContextTag, 11764 abtsiocbp->iotag, retval); 11765 11766 if (retval) { 11767 cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED; 11768 __lpfc_sli_release_iocbq(phba, abtsiocbp); 11769 } 11770 11771 /* 11772 * Caller to this routine should check for IOCB_ERROR 11773 * and handle it properly. This routine no longer removes 11774 * iocb off txcmplq and call compl in case of IOCB_ERROR. 11775 */ 11776 return retval; 11777 } 11778 11779 /** 11780 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 11781 * @phba: pointer to lpfc HBA data structure. 11782 * 11783 * This routine will abort all pending and outstanding iocbs to an HBA. 11784 **/ 11785 void 11786 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 11787 { 11788 struct lpfc_sli *psli = &phba->sli; 11789 struct lpfc_sli_ring *pring; 11790 struct lpfc_queue *qp = NULL; 11791 int i; 11792 11793 if (phba->sli_rev != LPFC_SLI_REV4) { 11794 for (i = 0; i < psli->num_rings; i++) { 11795 pring = &psli->sli3_ring[i]; 11796 lpfc_sli_abort_iocb_ring(phba, pring); 11797 } 11798 return; 11799 } 11800 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11801 pring = qp->pring; 11802 if (!pring) 11803 continue; 11804 lpfc_sli_abort_iocb_ring(phba, pring); 11805 } 11806 } 11807 11808 /** 11809 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 11810 * @iocbq: Pointer to driver iocb object. 11811 * @vport: Pointer to driver virtual port object. 11812 * @tgt_id: SCSI ID of the target. 11813 * @lun_id: LUN ID of the scsi device. 11814 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 11815 * 11816 * This function acts as an iocb filter for functions which abort or count 11817 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 11818 * 0 if the filtering criteria is met for the given iocb and will return 11819 * 1 if the filtering criteria is not met. 11820 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 11821 * given iocb is for the SCSI device specified by vport, tgt_id and 11822 * lun_id parameter. 11823 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 11824 * given iocb is for the SCSI target specified by vport and tgt_id 11825 * parameters. 11826 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 11827 * given iocb is for the SCSI host associated with the given vport. 11828 * This function is called with no locks held. 11829 **/ 11830 static int 11831 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 11832 uint16_t tgt_id, uint64_t lun_id, 11833 lpfc_ctx_cmd ctx_cmd) 11834 { 11835 struct lpfc_io_buf *lpfc_cmd; 11836 IOCB_t *icmd = NULL; 11837 int rc = 1; 11838 11839 if (!iocbq || iocbq->vport != vport) 11840 return rc; 11841 11842 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 11843 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ) || 11844 iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 11845 return rc; 11846 11847 icmd = &iocbq->iocb; 11848 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11849 icmd->ulpCommand == CMD_CLOSE_XRI_CN) 11850 return rc; 11851 11852 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 11853 11854 if (lpfc_cmd->pCmd == NULL) 11855 return rc; 11856 11857 switch (ctx_cmd) { 11858 case LPFC_CTX_LUN: 11859 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11860 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 11861 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 11862 rc = 0; 11863 break; 11864 case LPFC_CTX_TGT: 11865 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11866 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 11867 rc = 0; 11868 break; 11869 case LPFC_CTX_HOST: 11870 rc = 0; 11871 break; 11872 default: 11873 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 11874 __func__, ctx_cmd); 11875 break; 11876 } 11877 11878 return rc; 11879 } 11880 11881 /** 11882 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 11883 * @vport: Pointer to virtual port. 11884 * @tgt_id: SCSI ID of the target. 11885 * @lun_id: LUN ID of the scsi device. 11886 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11887 * 11888 * This function returns number of FCP commands pending for the vport. 11889 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 11890 * commands pending on the vport associated with SCSI device specified 11891 * by tgt_id and lun_id parameters. 11892 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 11893 * commands pending on the vport associated with SCSI target specified 11894 * by tgt_id parameter. 11895 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 11896 * commands pending on the vport. 11897 * This function returns the number of iocbs which satisfy the filter. 11898 * This function is called without any lock held. 11899 **/ 11900 int 11901 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 11902 lpfc_ctx_cmd ctx_cmd) 11903 { 11904 struct lpfc_hba *phba = vport->phba; 11905 struct lpfc_iocbq *iocbq; 11906 int sum, i; 11907 11908 spin_lock_irq(&phba->hbalock); 11909 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 11910 iocbq = phba->sli.iocbq_lookup[i]; 11911 11912 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 11913 ctx_cmd) == 0) 11914 sum++; 11915 } 11916 spin_unlock_irq(&phba->hbalock); 11917 11918 return sum; 11919 } 11920 11921 /** 11922 * lpfc_sli4_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 11923 * @phba: Pointer to HBA context object 11924 * @cmdiocb: Pointer to command iocb object. 11925 * @wcqe: pointer to the complete wcqe 11926 * 11927 * This function is called when an aborted FCP iocb completes. This 11928 * function is called by the ring event handler with no lock held. 11929 * This function frees the iocb. It is called for sli-4 adapters. 11930 **/ 11931 void 11932 lpfc_sli4_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11933 struct lpfc_wcqe_complete *wcqe) 11934 { 11935 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11936 "3017 ABORT_XRI_CN completing on rpi x%x " 11937 "original iotag x%x, abort cmd iotag x%x " 11938 "status 0x%x, reason 0x%x\n", 11939 cmdiocb->iocb.un.acxri.abortContextTag, 11940 cmdiocb->iocb.un.acxri.abortIoTag, 11941 cmdiocb->iotag, 11942 (bf_get(lpfc_wcqe_c_status, wcqe) 11943 & LPFC_IOCB_STATUS_MASK), 11944 wcqe->parameter); 11945 lpfc_sli_release_iocbq(phba, cmdiocb); 11946 } 11947 11948 /** 11949 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 11950 * @phba: Pointer to HBA context object 11951 * @cmdiocb: Pointer to command iocb object. 11952 * @rspiocb: Pointer to response iocb object. 11953 * 11954 * This function is called when an aborted FCP iocb completes. This 11955 * function is called by the ring event handler with no lock held. 11956 * This function frees the iocb. 11957 **/ 11958 void 11959 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11960 struct lpfc_iocbq *rspiocb) 11961 { 11962 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11963 "3096 ABORT_XRI_CN completing on rpi x%x " 11964 "original iotag x%x, abort cmd iotag x%x " 11965 "status 0x%x, reason 0x%x\n", 11966 cmdiocb->iocb.un.acxri.abortContextTag, 11967 cmdiocb->iocb.un.acxri.abortIoTag, 11968 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 11969 rspiocb->iocb.un.ulpWord[4]); 11970 lpfc_sli_release_iocbq(phba, cmdiocb); 11971 return; 11972 } 11973 11974 /** 11975 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 11976 * @vport: Pointer to virtual port. 11977 * @tgt_id: SCSI ID of the target. 11978 * @lun_id: LUN ID of the scsi device. 11979 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11980 * 11981 * This function sends an abort command for every SCSI command 11982 * associated with the given virtual port pending on the ring 11983 * filtered by lpfc_sli_validate_fcp_iocb function. 11984 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 11985 * FCP iocbs associated with lun specified by tgt_id and lun_id 11986 * parameters 11987 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 11988 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11989 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 11990 * FCP iocbs associated with virtual port. 11991 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 11992 * lpfc_sli4_calc_ring is used. 11993 * This function returns number of iocbs it failed to abort. 11994 * This function is called with no locks held. 11995 **/ 11996 int 11997 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 11998 lpfc_ctx_cmd abort_cmd) 11999 { 12000 struct lpfc_hba *phba = vport->phba; 12001 struct lpfc_sli_ring *pring = NULL; 12002 struct lpfc_iocbq *iocbq; 12003 int errcnt = 0, ret_val = 0; 12004 unsigned long iflags; 12005 int i; 12006 void *fcp_cmpl = NULL; 12007 12008 /* all I/Os are in process of being flushed */ 12009 if (phba->hba_flag & HBA_IOQ_FLUSH) 12010 return errcnt; 12011 12012 for (i = 1; i <= phba->sli.last_iotag; i++) { 12013 iocbq = phba->sli.iocbq_lookup[i]; 12014 12015 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12016 abort_cmd) != 0) 12017 continue; 12018 12019 spin_lock_irqsave(&phba->hbalock, iflags); 12020 if (phba->sli_rev == LPFC_SLI_REV3) { 12021 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12022 fcp_cmpl = lpfc_sli_abort_fcp_cmpl; 12023 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12024 pring = lpfc_sli4_calc_ring(phba, iocbq); 12025 fcp_cmpl = lpfc_sli4_abort_fcp_cmpl; 12026 } 12027 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12028 fcp_cmpl); 12029 spin_unlock_irqrestore(&phba->hbalock, iflags); 12030 if (ret_val != IOCB_SUCCESS) 12031 errcnt++; 12032 } 12033 12034 return errcnt; 12035 } 12036 12037 /** 12038 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12039 * @vport: Pointer to virtual port. 12040 * @pring: Pointer to driver SLI ring object. 12041 * @tgt_id: SCSI ID of the target. 12042 * @lun_id: LUN ID of the scsi device. 12043 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12044 * 12045 * This function sends an abort command for every SCSI command 12046 * associated with the given virtual port pending on the ring 12047 * filtered by lpfc_sli_validate_fcp_iocb function. 12048 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12049 * FCP iocbs associated with lun specified by tgt_id and lun_id 12050 * parameters 12051 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12052 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12053 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12054 * FCP iocbs associated with virtual port. 12055 * This function returns number of iocbs it aborted . 12056 * This function is called with no locks held right after a taskmgmt 12057 * command is sent. 12058 **/ 12059 int 12060 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12061 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12062 { 12063 struct lpfc_hba *phba = vport->phba; 12064 struct lpfc_io_buf *lpfc_cmd; 12065 struct lpfc_iocbq *abtsiocbq; 12066 struct lpfc_nodelist *ndlp; 12067 struct lpfc_iocbq *iocbq; 12068 IOCB_t *icmd; 12069 int sum, i, ret_val; 12070 unsigned long iflags; 12071 struct lpfc_sli_ring *pring_s4 = NULL; 12072 12073 spin_lock_irqsave(&phba->hbalock, iflags); 12074 12075 /* all I/Os are in process of being flushed */ 12076 if (phba->hba_flag & HBA_IOQ_FLUSH) { 12077 spin_unlock_irqrestore(&phba->hbalock, iflags); 12078 return 0; 12079 } 12080 sum = 0; 12081 12082 for (i = 1; i <= phba->sli.last_iotag; i++) { 12083 iocbq = phba->sli.iocbq_lookup[i]; 12084 12085 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12086 cmd) != 0) 12087 continue; 12088 12089 /* Guard against IO completion being called at same time */ 12090 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12091 spin_lock(&lpfc_cmd->buf_lock); 12092 12093 if (!lpfc_cmd->pCmd) { 12094 spin_unlock(&lpfc_cmd->buf_lock); 12095 continue; 12096 } 12097 12098 if (phba->sli_rev == LPFC_SLI_REV4) { 12099 pring_s4 = 12100 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12101 if (!pring_s4) { 12102 spin_unlock(&lpfc_cmd->buf_lock); 12103 continue; 12104 } 12105 /* Note: both hbalock and ring_lock must be set here */ 12106 spin_lock(&pring_s4->ring_lock); 12107 } 12108 12109 /* 12110 * If the iocbq is already being aborted, don't take a second 12111 * action, but do count it. 12112 */ 12113 if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) || 12114 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) { 12115 if (phba->sli_rev == LPFC_SLI_REV4) 12116 spin_unlock(&pring_s4->ring_lock); 12117 spin_unlock(&lpfc_cmd->buf_lock); 12118 continue; 12119 } 12120 12121 /* issue ABTS for this IOCB based on iotag */ 12122 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12123 if (!abtsiocbq) { 12124 if (phba->sli_rev == LPFC_SLI_REV4) 12125 spin_unlock(&pring_s4->ring_lock); 12126 spin_unlock(&lpfc_cmd->buf_lock); 12127 continue; 12128 } 12129 12130 icmd = &iocbq->iocb; 12131 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 12132 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 12133 if (phba->sli_rev == LPFC_SLI_REV4) 12134 abtsiocbq->iocb.un.acxri.abortIoTag = 12135 iocbq->sli4_xritag; 12136 else 12137 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 12138 abtsiocbq->iocb.ulpLe = 1; 12139 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 12140 abtsiocbq->vport = vport; 12141 12142 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12143 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12144 if (iocbq->iocb_flag & LPFC_IO_FCP) 12145 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 12146 if (iocbq->iocb_flag & LPFC_IO_FOF) 12147 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 12148 12149 ndlp = lpfc_cmd->rdata->pnode; 12150 12151 if (lpfc_is_link_up(phba) && 12152 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 12153 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 12154 else 12155 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 12156 12157 /* Setup callback routine and issue the command. */ 12158 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 12159 12160 /* 12161 * Indicate the IO is being aborted by the driver and set 12162 * the caller's flag into the aborted IO. 12163 */ 12164 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 12165 12166 if (phba->sli_rev == LPFC_SLI_REV4) { 12167 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12168 abtsiocbq, 0); 12169 spin_unlock(&pring_s4->ring_lock); 12170 } else { 12171 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12172 abtsiocbq, 0); 12173 } 12174 12175 spin_unlock(&lpfc_cmd->buf_lock); 12176 12177 if (ret_val == IOCB_ERROR) 12178 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12179 else 12180 sum++; 12181 } 12182 spin_unlock_irqrestore(&phba->hbalock, iflags); 12183 return sum; 12184 } 12185 12186 /** 12187 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12188 * @phba: Pointer to HBA context object. 12189 * @cmdiocbq: Pointer to command iocb. 12190 * @rspiocbq: Pointer to response iocb. 12191 * 12192 * This function is the completion handler for iocbs issued using 12193 * lpfc_sli_issue_iocb_wait function. This function is called by the 12194 * ring event handler function without any lock held. This function 12195 * can be called from both worker thread context and interrupt 12196 * context. This function also can be called from other thread which 12197 * cleans up the SLI layer objects. 12198 * This function copy the contents of the response iocb to the 12199 * response iocb memory object provided by the caller of 12200 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12201 * sleeps for the iocb completion. 12202 **/ 12203 static void 12204 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12205 struct lpfc_iocbq *cmdiocbq, 12206 struct lpfc_iocbq *rspiocbq) 12207 { 12208 wait_queue_head_t *pdone_q; 12209 unsigned long iflags; 12210 struct lpfc_io_buf *lpfc_cmd; 12211 12212 spin_lock_irqsave(&phba->hbalock, iflags); 12213 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 12214 12215 /* 12216 * A time out has occurred for the iocb. If a time out 12217 * completion handler has been supplied, call it. Otherwise, 12218 * just free the iocbq. 12219 */ 12220 12221 spin_unlock_irqrestore(&phba->hbalock, iflags); 12222 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 12223 cmdiocbq->wait_iocb_cmpl = NULL; 12224 if (cmdiocbq->iocb_cmpl) 12225 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 12226 else 12227 lpfc_sli_release_iocbq(phba, cmdiocbq); 12228 return; 12229 } 12230 12231 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 12232 if (cmdiocbq->context2 && rspiocbq) 12233 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 12234 &rspiocbq->iocb, sizeof(IOCB_t)); 12235 12236 /* Set the exchange busy flag for task management commands */ 12237 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 12238 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 12239 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 12240 cur_iocbq); 12241 if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY)) 12242 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 12243 else 12244 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 12245 } 12246 12247 pdone_q = cmdiocbq->context_un.wait_queue; 12248 if (pdone_q) 12249 wake_up(pdone_q); 12250 spin_unlock_irqrestore(&phba->hbalock, iflags); 12251 return; 12252 } 12253 12254 /** 12255 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 12256 * @phba: Pointer to HBA context object.. 12257 * @piocbq: Pointer to command iocb. 12258 * @flag: Flag to test. 12259 * 12260 * This routine grabs the hbalock and then test the iocb_flag to 12261 * see if the passed in flag is set. 12262 * Returns: 12263 * 1 if flag is set. 12264 * 0 if flag is not set. 12265 **/ 12266 static int 12267 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 12268 struct lpfc_iocbq *piocbq, uint32_t flag) 12269 { 12270 unsigned long iflags; 12271 int ret; 12272 12273 spin_lock_irqsave(&phba->hbalock, iflags); 12274 ret = piocbq->iocb_flag & flag; 12275 spin_unlock_irqrestore(&phba->hbalock, iflags); 12276 return ret; 12277 12278 } 12279 12280 /** 12281 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 12282 * @phba: Pointer to HBA context object.. 12283 * @ring_number: Ring number 12284 * @piocb: Pointer to command iocb. 12285 * @prspiocbq: Pointer to response iocb. 12286 * @timeout: Timeout in number of seconds. 12287 * 12288 * This function issues the iocb to firmware and waits for the 12289 * iocb to complete. The iocb_cmpl field of the shall be used 12290 * to handle iocbs which time out. If the field is NULL, the 12291 * function shall free the iocbq structure. If more clean up is 12292 * needed, the caller is expected to provide a completion function 12293 * that will provide the needed clean up. If the iocb command is 12294 * not completed within timeout seconds, the function will either 12295 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 12296 * completion function set in the iocb_cmpl field and then return 12297 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 12298 * resources if this function returns IOCB_TIMEDOUT. 12299 * The function waits for the iocb completion using an 12300 * non-interruptible wait. 12301 * This function will sleep while waiting for iocb completion. 12302 * So, this function should not be called from any context which 12303 * does not allow sleeping. Due to the same reason, this function 12304 * cannot be called with interrupt disabled. 12305 * This function assumes that the iocb completions occur while 12306 * this function sleep. So, this function cannot be called from 12307 * the thread which process iocb completion for this ring. 12308 * This function clears the iocb_flag of the iocb object before 12309 * issuing the iocb and the iocb completion handler sets this 12310 * flag and wakes this thread when the iocb completes. 12311 * The contents of the response iocb will be copied to prspiocbq 12312 * by the completion handler when the command completes. 12313 * This function returns IOCB_SUCCESS when success. 12314 * This function is called with no lock held. 12315 **/ 12316 int 12317 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 12318 uint32_t ring_number, 12319 struct lpfc_iocbq *piocb, 12320 struct lpfc_iocbq *prspiocbq, 12321 uint32_t timeout) 12322 { 12323 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 12324 long timeleft, timeout_req = 0; 12325 int retval = IOCB_SUCCESS; 12326 uint32_t creg_val; 12327 struct lpfc_iocbq *iocb; 12328 int txq_cnt = 0; 12329 int txcmplq_cnt = 0; 12330 struct lpfc_sli_ring *pring; 12331 unsigned long iflags; 12332 bool iocb_completed = true; 12333 12334 if (phba->sli_rev >= LPFC_SLI_REV4) 12335 pring = lpfc_sli4_calc_ring(phba, piocb); 12336 else 12337 pring = &phba->sli.sli3_ring[ring_number]; 12338 /* 12339 * If the caller has provided a response iocbq buffer, then context2 12340 * is NULL or its an error. 12341 */ 12342 if (prspiocbq) { 12343 if (piocb->context2) 12344 return IOCB_ERROR; 12345 piocb->context2 = prspiocbq; 12346 } 12347 12348 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 12349 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 12350 piocb->context_un.wait_queue = &done_q; 12351 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 12352 12353 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12354 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12355 return IOCB_ERROR; 12356 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 12357 writel(creg_val, phba->HCregaddr); 12358 readl(phba->HCregaddr); /* flush */ 12359 } 12360 12361 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 12362 SLI_IOCB_RET_IOCB); 12363 if (retval == IOCB_SUCCESS) { 12364 timeout_req = msecs_to_jiffies(timeout * 1000); 12365 timeleft = wait_event_timeout(done_q, 12366 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 12367 timeout_req); 12368 spin_lock_irqsave(&phba->hbalock, iflags); 12369 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 12370 12371 /* 12372 * IOCB timed out. Inform the wake iocb wait 12373 * completion function and set local status 12374 */ 12375 12376 iocb_completed = false; 12377 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 12378 } 12379 spin_unlock_irqrestore(&phba->hbalock, iflags); 12380 if (iocb_completed) { 12381 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12382 "0331 IOCB wake signaled\n"); 12383 /* Note: we are not indicating if the IOCB has a success 12384 * status or not - that's for the caller to check. 12385 * IOCB_SUCCESS means just that the command was sent and 12386 * completed. Not that it completed successfully. 12387 * */ 12388 } else if (timeleft == 0) { 12389 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12390 "0338 IOCB wait timeout error - no " 12391 "wake response Data x%x\n", timeout); 12392 retval = IOCB_TIMEDOUT; 12393 } else { 12394 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12395 "0330 IOCB wake NOT set, " 12396 "Data x%x x%lx\n", 12397 timeout, (timeleft / jiffies)); 12398 retval = IOCB_TIMEDOUT; 12399 } 12400 } else if (retval == IOCB_BUSY) { 12401 if (phba->cfg_log_verbose & LOG_SLI) { 12402 list_for_each_entry(iocb, &pring->txq, list) { 12403 txq_cnt++; 12404 } 12405 list_for_each_entry(iocb, &pring->txcmplq, list) { 12406 txcmplq_cnt++; 12407 } 12408 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12409 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 12410 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 12411 } 12412 return retval; 12413 } else { 12414 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12415 "0332 IOCB wait issue failed, Data x%x\n", 12416 retval); 12417 retval = IOCB_ERROR; 12418 } 12419 12420 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12421 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12422 return IOCB_ERROR; 12423 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 12424 writel(creg_val, phba->HCregaddr); 12425 readl(phba->HCregaddr); /* flush */ 12426 } 12427 12428 if (prspiocbq) 12429 piocb->context2 = NULL; 12430 12431 piocb->context_un.wait_queue = NULL; 12432 piocb->iocb_cmpl = NULL; 12433 return retval; 12434 } 12435 12436 /** 12437 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 12438 * @phba: Pointer to HBA context object. 12439 * @pmboxq: Pointer to driver mailbox object. 12440 * @timeout: Timeout in number of seconds. 12441 * 12442 * This function issues the mailbox to firmware and waits for the 12443 * mailbox command to complete. If the mailbox command is not 12444 * completed within timeout seconds, it returns MBX_TIMEOUT. 12445 * The function waits for the mailbox completion using an 12446 * interruptible wait. If the thread is woken up due to a 12447 * signal, MBX_TIMEOUT error is returned to the caller. Caller 12448 * should not free the mailbox resources, if this function returns 12449 * MBX_TIMEOUT. 12450 * This function will sleep while waiting for mailbox completion. 12451 * So, this function should not be called from any context which 12452 * does not allow sleeping. Due to the same reason, this function 12453 * cannot be called with interrupt disabled. 12454 * This function assumes that the mailbox completion occurs while 12455 * this function sleep. So, this function cannot be called from 12456 * the worker thread which processes mailbox completion. 12457 * This function is called in the context of HBA management 12458 * applications. 12459 * This function returns MBX_SUCCESS when successful. 12460 * This function is called with no lock held. 12461 **/ 12462 int 12463 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 12464 uint32_t timeout) 12465 { 12466 struct completion mbox_done; 12467 int retval; 12468 unsigned long flag; 12469 12470 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 12471 /* setup wake call as IOCB callback */ 12472 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 12473 12474 /* setup context3 field to pass wait_queue pointer to wake function */ 12475 init_completion(&mbox_done); 12476 pmboxq->context3 = &mbox_done; 12477 /* now issue the command */ 12478 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 12479 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 12480 wait_for_completion_timeout(&mbox_done, 12481 msecs_to_jiffies(timeout * 1000)); 12482 12483 spin_lock_irqsave(&phba->hbalock, flag); 12484 pmboxq->context3 = NULL; 12485 /* 12486 * if LPFC_MBX_WAKE flag is set the mailbox is completed 12487 * else do not free the resources. 12488 */ 12489 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 12490 retval = MBX_SUCCESS; 12491 } else { 12492 retval = MBX_TIMEOUT; 12493 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 12494 } 12495 spin_unlock_irqrestore(&phba->hbalock, flag); 12496 } 12497 return retval; 12498 } 12499 12500 /** 12501 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 12502 * @phba: Pointer to HBA context. 12503 * @mbx_action: Mailbox shutdown options. 12504 * 12505 * This function is called to shutdown the driver's mailbox sub-system. 12506 * It first marks the mailbox sub-system is in a block state to prevent 12507 * the asynchronous mailbox command from issued off the pending mailbox 12508 * command queue. If the mailbox command sub-system shutdown is due to 12509 * HBA error conditions such as EEH or ERATT, this routine shall invoke 12510 * the mailbox sub-system flush routine to forcefully bring down the 12511 * mailbox sub-system. Otherwise, if it is due to normal condition (such 12512 * as with offline or HBA function reset), this routine will wait for the 12513 * outstanding mailbox command to complete before invoking the mailbox 12514 * sub-system flush routine to gracefully bring down mailbox sub-system. 12515 **/ 12516 void 12517 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 12518 { 12519 struct lpfc_sli *psli = &phba->sli; 12520 unsigned long timeout; 12521 12522 if (mbx_action == LPFC_MBX_NO_WAIT) { 12523 /* delay 100ms for port state */ 12524 msleep(100); 12525 lpfc_sli_mbox_sys_flush(phba); 12526 return; 12527 } 12528 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 12529 12530 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12531 local_bh_disable(); 12532 12533 spin_lock_irq(&phba->hbalock); 12534 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 12535 12536 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 12537 /* Determine how long we might wait for the active mailbox 12538 * command to be gracefully completed by firmware. 12539 */ 12540 if (phba->sli.mbox_active) 12541 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 12542 phba->sli.mbox_active) * 12543 1000) + jiffies; 12544 spin_unlock_irq(&phba->hbalock); 12545 12546 /* Enable softirqs again, done with phba->hbalock */ 12547 local_bh_enable(); 12548 12549 while (phba->sli.mbox_active) { 12550 /* Check active mailbox complete status every 2ms */ 12551 msleep(2); 12552 if (time_after(jiffies, timeout)) 12553 /* Timeout, let the mailbox flush routine to 12554 * forcefully release active mailbox command 12555 */ 12556 break; 12557 } 12558 } else { 12559 spin_unlock_irq(&phba->hbalock); 12560 12561 /* Enable softirqs again, done with phba->hbalock */ 12562 local_bh_enable(); 12563 } 12564 12565 lpfc_sli_mbox_sys_flush(phba); 12566 } 12567 12568 /** 12569 * lpfc_sli_eratt_read - read sli-3 error attention events 12570 * @phba: Pointer to HBA context. 12571 * 12572 * This function is called to read the SLI3 device error attention registers 12573 * for possible error attention events. The caller must hold the hostlock 12574 * with spin_lock_irq(). 12575 * 12576 * This function returns 1 when there is Error Attention in the Host Attention 12577 * Register and returns 0 otherwise. 12578 **/ 12579 static int 12580 lpfc_sli_eratt_read(struct lpfc_hba *phba) 12581 { 12582 uint32_t ha_copy; 12583 12584 /* Read chip Host Attention (HA) register */ 12585 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12586 goto unplug_err; 12587 12588 if (ha_copy & HA_ERATT) { 12589 /* Read host status register to retrieve error event */ 12590 if (lpfc_sli_read_hs(phba)) 12591 goto unplug_err; 12592 12593 /* Check if there is a deferred error condition is active */ 12594 if ((HS_FFER1 & phba->work_hs) && 12595 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12596 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 12597 phba->hba_flag |= DEFER_ERATT; 12598 /* Clear all interrupt enable conditions */ 12599 writel(0, phba->HCregaddr); 12600 readl(phba->HCregaddr); 12601 } 12602 12603 /* Set the driver HA work bitmap */ 12604 phba->work_ha |= HA_ERATT; 12605 /* Indicate polling handles this ERATT */ 12606 phba->hba_flag |= HBA_ERATT_HANDLED; 12607 return 1; 12608 } 12609 return 0; 12610 12611 unplug_err: 12612 /* Set the driver HS work bitmap */ 12613 phba->work_hs |= UNPLUG_ERR; 12614 /* Set the driver HA work bitmap */ 12615 phba->work_ha |= HA_ERATT; 12616 /* Indicate polling handles this ERATT */ 12617 phba->hba_flag |= HBA_ERATT_HANDLED; 12618 return 1; 12619 } 12620 12621 /** 12622 * lpfc_sli4_eratt_read - read sli-4 error attention events 12623 * @phba: Pointer to HBA context. 12624 * 12625 * This function is called to read the SLI4 device error attention registers 12626 * for possible error attention events. The caller must hold the hostlock 12627 * with spin_lock_irq(). 12628 * 12629 * This function returns 1 when there is Error Attention in the Host Attention 12630 * Register and returns 0 otherwise. 12631 **/ 12632 static int 12633 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 12634 { 12635 uint32_t uerr_sta_hi, uerr_sta_lo; 12636 uint32_t if_type, portsmphr; 12637 struct lpfc_register portstat_reg; 12638 12639 /* 12640 * For now, use the SLI4 device internal unrecoverable error 12641 * registers for error attention. This can be changed later. 12642 */ 12643 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 12644 switch (if_type) { 12645 case LPFC_SLI_INTF_IF_TYPE_0: 12646 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 12647 &uerr_sta_lo) || 12648 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 12649 &uerr_sta_hi)) { 12650 phba->work_hs |= UNPLUG_ERR; 12651 phba->work_ha |= HA_ERATT; 12652 phba->hba_flag |= HBA_ERATT_HANDLED; 12653 return 1; 12654 } 12655 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 12656 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 12657 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12658 "1423 HBA Unrecoverable error: " 12659 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 12660 "ue_mask_lo_reg=0x%x, " 12661 "ue_mask_hi_reg=0x%x\n", 12662 uerr_sta_lo, uerr_sta_hi, 12663 phba->sli4_hba.ue_mask_lo, 12664 phba->sli4_hba.ue_mask_hi); 12665 phba->work_status[0] = uerr_sta_lo; 12666 phba->work_status[1] = uerr_sta_hi; 12667 phba->work_ha |= HA_ERATT; 12668 phba->hba_flag |= HBA_ERATT_HANDLED; 12669 return 1; 12670 } 12671 break; 12672 case LPFC_SLI_INTF_IF_TYPE_2: 12673 case LPFC_SLI_INTF_IF_TYPE_6: 12674 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 12675 &portstat_reg.word0) || 12676 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 12677 &portsmphr)){ 12678 phba->work_hs |= UNPLUG_ERR; 12679 phba->work_ha |= HA_ERATT; 12680 phba->hba_flag |= HBA_ERATT_HANDLED; 12681 return 1; 12682 } 12683 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 12684 phba->work_status[0] = 12685 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 12686 phba->work_status[1] = 12687 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 12688 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12689 "2885 Port Status Event: " 12690 "port status reg 0x%x, " 12691 "port smphr reg 0x%x, " 12692 "error 1=0x%x, error 2=0x%x\n", 12693 portstat_reg.word0, 12694 portsmphr, 12695 phba->work_status[0], 12696 phba->work_status[1]); 12697 phba->work_ha |= HA_ERATT; 12698 phba->hba_flag |= HBA_ERATT_HANDLED; 12699 return 1; 12700 } 12701 break; 12702 case LPFC_SLI_INTF_IF_TYPE_1: 12703 default: 12704 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12705 "2886 HBA Error Attention on unsupported " 12706 "if type %d.", if_type); 12707 return 1; 12708 } 12709 12710 return 0; 12711 } 12712 12713 /** 12714 * lpfc_sli_check_eratt - check error attention events 12715 * @phba: Pointer to HBA context. 12716 * 12717 * This function is called from timer soft interrupt context to check HBA's 12718 * error attention register bit for error attention events. 12719 * 12720 * This function returns 1 when there is Error Attention in the Host Attention 12721 * Register and returns 0 otherwise. 12722 **/ 12723 int 12724 lpfc_sli_check_eratt(struct lpfc_hba *phba) 12725 { 12726 uint32_t ha_copy; 12727 12728 /* If somebody is waiting to handle an eratt, don't process it 12729 * here. The brdkill function will do this. 12730 */ 12731 if (phba->link_flag & LS_IGNORE_ERATT) 12732 return 0; 12733 12734 /* Check if interrupt handler handles this ERATT */ 12735 spin_lock_irq(&phba->hbalock); 12736 if (phba->hba_flag & HBA_ERATT_HANDLED) { 12737 /* Interrupt handler has handled ERATT */ 12738 spin_unlock_irq(&phba->hbalock); 12739 return 0; 12740 } 12741 12742 /* 12743 * If there is deferred error attention, do not check for error 12744 * attention 12745 */ 12746 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12747 spin_unlock_irq(&phba->hbalock); 12748 return 0; 12749 } 12750 12751 /* If PCI channel is offline, don't process it */ 12752 if (unlikely(pci_channel_offline(phba->pcidev))) { 12753 spin_unlock_irq(&phba->hbalock); 12754 return 0; 12755 } 12756 12757 switch (phba->sli_rev) { 12758 case LPFC_SLI_REV2: 12759 case LPFC_SLI_REV3: 12760 /* Read chip Host Attention (HA) register */ 12761 ha_copy = lpfc_sli_eratt_read(phba); 12762 break; 12763 case LPFC_SLI_REV4: 12764 /* Read device Uncoverable Error (UERR) registers */ 12765 ha_copy = lpfc_sli4_eratt_read(phba); 12766 break; 12767 default: 12768 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12769 "0299 Invalid SLI revision (%d)\n", 12770 phba->sli_rev); 12771 ha_copy = 0; 12772 break; 12773 } 12774 spin_unlock_irq(&phba->hbalock); 12775 12776 return ha_copy; 12777 } 12778 12779 /** 12780 * lpfc_intr_state_check - Check device state for interrupt handling 12781 * @phba: Pointer to HBA context. 12782 * 12783 * This inline routine checks whether a device or its PCI slot is in a state 12784 * that the interrupt should be handled. 12785 * 12786 * This function returns 0 if the device or the PCI slot is in a state that 12787 * interrupt should be handled, otherwise -EIO. 12788 */ 12789 static inline int 12790 lpfc_intr_state_check(struct lpfc_hba *phba) 12791 { 12792 /* If the pci channel is offline, ignore all the interrupts */ 12793 if (unlikely(pci_channel_offline(phba->pcidev))) 12794 return -EIO; 12795 12796 /* Update device level interrupt statistics */ 12797 phba->sli.slistat.sli_intr++; 12798 12799 /* Ignore all interrupts during initialization. */ 12800 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 12801 return -EIO; 12802 12803 return 0; 12804 } 12805 12806 /** 12807 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 12808 * @irq: Interrupt number. 12809 * @dev_id: The device context pointer. 12810 * 12811 * This function is directly called from the PCI layer as an interrupt 12812 * service routine when device with SLI-3 interface spec is enabled with 12813 * MSI-X multi-message interrupt mode and there are slow-path events in 12814 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 12815 * interrupt mode, this function is called as part of the device-level 12816 * interrupt handler. When the PCI slot is in error recovery or the HBA 12817 * is undergoing initialization, the interrupt handler will not process 12818 * the interrupt. The link attention and ELS ring attention events are 12819 * handled by the worker thread. The interrupt handler signals the worker 12820 * thread and returns for these events. This function is called without 12821 * any lock held. It gets the hbalock to access and update SLI data 12822 * structures. 12823 * 12824 * This function returns IRQ_HANDLED when interrupt is handled else it 12825 * returns IRQ_NONE. 12826 **/ 12827 irqreturn_t 12828 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 12829 { 12830 struct lpfc_hba *phba; 12831 uint32_t ha_copy, hc_copy; 12832 uint32_t work_ha_copy; 12833 unsigned long status; 12834 unsigned long iflag; 12835 uint32_t control; 12836 12837 MAILBOX_t *mbox, *pmbox; 12838 struct lpfc_vport *vport; 12839 struct lpfc_nodelist *ndlp; 12840 struct lpfc_dmabuf *mp; 12841 LPFC_MBOXQ_t *pmb; 12842 int rc; 12843 12844 /* 12845 * Get the driver's phba structure from the dev_id and 12846 * assume the HBA is not interrupting. 12847 */ 12848 phba = (struct lpfc_hba *)dev_id; 12849 12850 if (unlikely(!phba)) 12851 return IRQ_NONE; 12852 12853 /* 12854 * Stuff needs to be attented to when this function is invoked as an 12855 * individual interrupt handler in MSI-X multi-message interrupt mode 12856 */ 12857 if (phba->intr_type == MSIX) { 12858 /* Check device state for handling interrupt */ 12859 if (lpfc_intr_state_check(phba)) 12860 return IRQ_NONE; 12861 /* Need to read HA REG for slow-path events */ 12862 spin_lock_irqsave(&phba->hbalock, iflag); 12863 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12864 goto unplug_error; 12865 /* If somebody is waiting to handle an eratt don't process it 12866 * here. The brdkill function will do this. 12867 */ 12868 if (phba->link_flag & LS_IGNORE_ERATT) 12869 ha_copy &= ~HA_ERATT; 12870 /* Check the need for handling ERATT in interrupt handler */ 12871 if (ha_copy & HA_ERATT) { 12872 if (phba->hba_flag & HBA_ERATT_HANDLED) 12873 /* ERATT polling has handled ERATT */ 12874 ha_copy &= ~HA_ERATT; 12875 else 12876 /* Indicate interrupt handler handles ERATT */ 12877 phba->hba_flag |= HBA_ERATT_HANDLED; 12878 } 12879 12880 /* 12881 * If there is deferred error attention, do not check for any 12882 * interrupt. 12883 */ 12884 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12885 spin_unlock_irqrestore(&phba->hbalock, iflag); 12886 return IRQ_NONE; 12887 } 12888 12889 /* Clear up only attention source related to slow-path */ 12890 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 12891 goto unplug_error; 12892 12893 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 12894 HC_LAINT_ENA | HC_ERINT_ENA), 12895 phba->HCregaddr); 12896 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 12897 phba->HAregaddr); 12898 writel(hc_copy, phba->HCregaddr); 12899 readl(phba->HAregaddr); /* flush */ 12900 spin_unlock_irqrestore(&phba->hbalock, iflag); 12901 } else 12902 ha_copy = phba->ha_copy; 12903 12904 work_ha_copy = ha_copy & phba->work_ha_mask; 12905 12906 if (work_ha_copy) { 12907 if (work_ha_copy & HA_LATT) { 12908 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 12909 /* 12910 * Turn off Link Attention interrupts 12911 * until CLEAR_LA done 12912 */ 12913 spin_lock_irqsave(&phba->hbalock, iflag); 12914 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 12915 if (lpfc_readl(phba->HCregaddr, &control)) 12916 goto unplug_error; 12917 control &= ~HC_LAINT_ENA; 12918 writel(control, phba->HCregaddr); 12919 readl(phba->HCregaddr); /* flush */ 12920 spin_unlock_irqrestore(&phba->hbalock, iflag); 12921 } 12922 else 12923 work_ha_copy &= ~HA_LATT; 12924 } 12925 12926 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 12927 /* 12928 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 12929 * the only slow ring. 12930 */ 12931 status = (work_ha_copy & 12932 (HA_RXMASK << (4*LPFC_ELS_RING))); 12933 status >>= (4*LPFC_ELS_RING); 12934 if (status & HA_RXMASK) { 12935 spin_lock_irqsave(&phba->hbalock, iflag); 12936 if (lpfc_readl(phba->HCregaddr, &control)) 12937 goto unplug_error; 12938 12939 lpfc_debugfs_slow_ring_trc(phba, 12940 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 12941 control, status, 12942 (uint32_t)phba->sli.slistat.sli_intr); 12943 12944 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 12945 lpfc_debugfs_slow_ring_trc(phba, 12946 "ISR Disable ring:" 12947 "pwork:x%x hawork:x%x wait:x%x", 12948 phba->work_ha, work_ha_copy, 12949 (uint32_t)((unsigned long) 12950 &phba->work_waitq)); 12951 12952 control &= 12953 ~(HC_R0INT_ENA << LPFC_ELS_RING); 12954 writel(control, phba->HCregaddr); 12955 readl(phba->HCregaddr); /* flush */ 12956 } 12957 else { 12958 lpfc_debugfs_slow_ring_trc(phba, 12959 "ISR slow ring: pwork:" 12960 "x%x hawork:x%x wait:x%x", 12961 phba->work_ha, work_ha_copy, 12962 (uint32_t)((unsigned long) 12963 &phba->work_waitq)); 12964 } 12965 spin_unlock_irqrestore(&phba->hbalock, iflag); 12966 } 12967 } 12968 spin_lock_irqsave(&phba->hbalock, iflag); 12969 if (work_ha_copy & HA_ERATT) { 12970 if (lpfc_sli_read_hs(phba)) 12971 goto unplug_error; 12972 /* 12973 * Check if there is a deferred error condition 12974 * is active 12975 */ 12976 if ((HS_FFER1 & phba->work_hs) && 12977 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12978 HS_FFER6 | HS_FFER7 | HS_FFER8) & 12979 phba->work_hs)) { 12980 phba->hba_flag |= DEFER_ERATT; 12981 /* Clear all interrupt enable conditions */ 12982 writel(0, phba->HCregaddr); 12983 readl(phba->HCregaddr); 12984 } 12985 } 12986 12987 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 12988 pmb = phba->sli.mbox_active; 12989 pmbox = &pmb->u.mb; 12990 mbox = phba->mbox; 12991 vport = pmb->vport; 12992 12993 /* First check out the status word */ 12994 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 12995 if (pmbox->mbxOwner != OWN_HOST) { 12996 spin_unlock_irqrestore(&phba->hbalock, iflag); 12997 /* 12998 * Stray Mailbox Interrupt, mbxCommand <cmd> 12999 * mbxStatus <status> 13000 */ 13001 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13002 "(%d):0304 Stray Mailbox " 13003 "Interrupt mbxCommand x%x " 13004 "mbxStatus x%x\n", 13005 (vport ? vport->vpi : 0), 13006 pmbox->mbxCommand, 13007 pmbox->mbxStatus); 13008 /* clear mailbox attention bit */ 13009 work_ha_copy &= ~HA_MBATT; 13010 } else { 13011 phba->sli.mbox_active = NULL; 13012 spin_unlock_irqrestore(&phba->hbalock, iflag); 13013 phba->last_completion_time = jiffies; 13014 del_timer(&phba->sli.mbox_tmo); 13015 if (pmb->mbox_cmpl) { 13016 lpfc_sli_pcimem_bcopy(mbox, pmbox, 13017 MAILBOX_CMD_SIZE); 13018 if (pmb->out_ext_byte_len && 13019 pmb->ctx_buf) 13020 lpfc_sli_pcimem_bcopy( 13021 phba->mbox_ext, 13022 pmb->ctx_buf, 13023 pmb->out_ext_byte_len); 13024 } 13025 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13026 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13027 13028 lpfc_debugfs_disc_trc(vport, 13029 LPFC_DISC_TRC_MBOX_VPORT, 13030 "MBOX dflt rpi: : " 13031 "status:x%x rpi:x%x", 13032 (uint32_t)pmbox->mbxStatus, 13033 pmbox->un.varWords[0], 0); 13034 13035 if (!pmbox->mbxStatus) { 13036 mp = (struct lpfc_dmabuf *) 13037 (pmb->ctx_buf); 13038 ndlp = (struct lpfc_nodelist *) 13039 pmb->ctx_ndlp; 13040 13041 /* Reg_LOGIN of dflt RPI was 13042 * successful. new lets get 13043 * rid of the RPI using the 13044 * same mbox buffer. 13045 */ 13046 lpfc_unreg_login(phba, 13047 vport->vpi, 13048 pmbox->un.varWords[0], 13049 pmb); 13050 pmb->mbox_cmpl = 13051 lpfc_mbx_cmpl_dflt_rpi; 13052 pmb->ctx_buf = mp; 13053 pmb->ctx_ndlp = ndlp; 13054 pmb->vport = vport; 13055 rc = lpfc_sli_issue_mbox(phba, 13056 pmb, 13057 MBX_NOWAIT); 13058 if (rc != MBX_BUSY) 13059 lpfc_printf_log(phba, 13060 KERN_ERR, 13061 LOG_TRACE_EVENT, 13062 "0350 rc should have" 13063 "been MBX_BUSY\n"); 13064 if (rc != MBX_NOT_FINISHED) 13065 goto send_current_mbox; 13066 } 13067 } 13068 spin_lock_irqsave( 13069 &phba->pport->work_port_lock, 13070 iflag); 13071 phba->pport->work_port_events &= 13072 ~WORKER_MBOX_TMO; 13073 spin_unlock_irqrestore( 13074 &phba->pport->work_port_lock, 13075 iflag); 13076 13077 /* Do NOT queue MBX_HEARTBEAT to the worker 13078 * thread for processing. 13079 */ 13080 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13081 /* Process mbox now */ 13082 phba->sli.mbox_active = NULL; 13083 phba->sli.sli_flag &= 13084 ~LPFC_SLI_MBOX_ACTIVE; 13085 if (pmb->mbox_cmpl) 13086 pmb->mbox_cmpl(phba, pmb); 13087 } else { 13088 /* Queue to worker thread to process */ 13089 lpfc_mbox_cmpl_put(phba, pmb); 13090 } 13091 } 13092 } else 13093 spin_unlock_irqrestore(&phba->hbalock, iflag); 13094 13095 if ((work_ha_copy & HA_MBATT) && 13096 (phba->sli.mbox_active == NULL)) { 13097 send_current_mbox: 13098 /* Process next mailbox command if there is one */ 13099 do { 13100 rc = lpfc_sli_issue_mbox(phba, NULL, 13101 MBX_NOWAIT); 13102 } while (rc == MBX_NOT_FINISHED); 13103 if (rc != MBX_SUCCESS) 13104 lpfc_printf_log(phba, KERN_ERR, 13105 LOG_TRACE_EVENT, 13106 "0349 rc should be " 13107 "MBX_SUCCESS\n"); 13108 } 13109 13110 spin_lock_irqsave(&phba->hbalock, iflag); 13111 phba->work_ha |= work_ha_copy; 13112 spin_unlock_irqrestore(&phba->hbalock, iflag); 13113 lpfc_worker_wake_up(phba); 13114 } 13115 return IRQ_HANDLED; 13116 unplug_error: 13117 spin_unlock_irqrestore(&phba->hbalock, iflag); 13118 return IRQ_HANDLED; 13119 13120 } /* lpfc_sli_sp_intr_handler */ 13121 13122 /** 13123 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13124 * @irq: Interrupt number. 13125 * @dev_id: The device context pointer. 13126 * 13127 * This function is directly called from the PCI layer as an interrupt 13128 * service routine when device with SLI-3 interface spec is enabled with 13129 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13130 * ring event in the HBA. However, when the device is enabled with either 13131 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13132 * device-level interrupt handler. When the PCI slot is in error recovery 13133 * or the HBA is undergoing initialization, the interrupt handler will not 13134 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13135 * the intrrupt context. This function is called without any lock held. 13136 * It gets the hbalock to access and update SLI data structures. 13137 * 13138 * This function returns IRQ_HANDLED when interrupt is handled else it 13139 * returns IRQ_NONE. 13140 **/ 13141 irqreturn_t 13142 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13143 { 13144 struct lpfc_hba *phba; 13145 uint32_t ha_copy; 13146 unsigned long status; 13147 unsigned long iflag; 13148 struct lpfc_sli_ring *pring; 13149 13150 /* Get the driver's phba structure from the dev_id and 13151 * assume the HBA is not interrupting. 13152 */ 13153 phba = (struct lpfc_hba *) dev_id; 13154 13155 if (unlikely(!phba)) 13156 return IRQ_NONE; 13157 13158 /* 13159 * Stuff needs to be attented to when this function is invoked as an 13160 * individual interrupt handler in MSI-X multi-message interrupt mode 13161 */ 13162 if (phba->intr_type == MSIX) { 13163 /* Check device state for handling interrupt */ 13164 if (lpfc_intr_state_check(phba)) 13165 return IRQ_NONE; 13166 /* Need to read HA REG for FCP ring and other ring events */ 13167 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13168 return IRQ_HANDLED; 13169 /* Clear up only attention source related to fast-path */ 13170 spin_lock_irqsave(&phba->hbalock, iflag); 13171 /* 13172 * If there is deferred error attention, do not check for 13173 * any interrupt. 13174 */ 13175 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13176 spin_unlock_irqrestore(&phba->hbalock, iflag); 13177 return IRQ_NONE; 13178 } 13179 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13180 phba->HAregaddr); 13181 readl(phba->HAregaddr); /* flush */ 13182 spin_unlock_irqrestore(&phba->hbalock, iflag); 13183 } else 13184 ha_copy = phba->ha_copy; 13185 13186 /* 13187 * Process all events on FCP ring. Take the optimized path for FCP IO. 13188 */ 13189 ha_copy &= ~(phba->work_ha_mask); 13190 13191 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13192 status >>= (4*LPFC_FCP_RING); 13193 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13194 if (status & HA_RXMASK) 13195 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13196 13197 if (phba->cfg_multi_ring_support == 2) { 13198 /* 13199 * Process all events on extra ring. Take the optimized path 13200 * for extra ring IO. 13201 */ 13202 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13203 status >>= (4*LPFC_EXTRA_RING); 13204 if (status & HA_RXMASK) { 13205 lpfc_sli_handle_fast_ring_event(phba, 13206 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 13207 status); 13208 } 13209 } 13210 return IRQ_HANDLED; 13211 } /* lpfc_sli_fp_intr_handler */ 13212 13213 /** 13214 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 13215 * @irq: Interrupt number. 13216 * @dev_id: The device context pointer. 13217 * 13218 * This function is the HBA device-level interrupt handler to device with 13219 * SLI-3 interface spec, called from the PCI layer when either MSI or 13220 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 13221 * requires driver attention. This function invokes the slow-path interrupt 13222 * attention handling function and fast-path interrupt attention handling 13223 * function in turn to process the relevant HBA attention events. This 13224 * function is called without any lock held. It gets the hbalock to access 13225 * and update SLI data structures. 13226 * 13227 * This function returns IRQ_HANDLED when interrupt is handled, else it 13228 * returns IRQ_NONE. 13229 **/ 13230 irqreturn_t 13231 lpfc_sli_intr_handler(int irq, void *dev_id) 13232 { 13233 struct lpfc_hba *phba; 13234 irqreturn_t sp_irq_rc, fp_irq_rc; 13235 unsigned long status1, status2; 13236 uint32_t hc_copy; 13237 13238 /* 13239 * Get the driver's phba structure from the dev_id and 13240 * assume the HBA is not interrupting. 13241 */ 13242 phba = (struct lpfc_hba *) dev_id; 13243 13244 if (unlikely(!phba)) 13245 return IRQ_NONE; 13246 13247 /* Check device state for handling interrupt */ 13248 if (lpfc_intr_state_check(phba)) 13249 return IRQ_NONE; 13250 13251 spin_lock(&phba->hbalock); 13252 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 13253 spin_unlock(&phba->hbalock); 13254 return IRQ_HANDLED; 13255 } 13256 13257 if (unlikely(!phba->ha_copy)) { 13258 spin_unlock(&phba->hbalock); 13259 return IRQ_NONE; 13260 } else if (phba->ha_copy & HA_ERATT) { 13261 if (phba->hba_flag & HBA_ERATT_HANDLED) 13262 /* ERATT polling has handled ERATT */ 13263 phba->ha_copy &= ~HA_ERATT; 13264 else 13265 /* Indicate interrupt handler handles ERATT */ 13266 phba->hba_flag |= HBA_ERATT_HANDLED; 13267 } 13268 13269 /* 13270 * If there is deferred error attention, do not check for any interrupt. 13271 */ 13272 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13273 spin_unlock(&phba->hbalock); 13274 return IRQ_NONE; 13275 } 13276 13277 /* Clear attention sources except link and error attentions */ 13278 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 13279 spin_unlock(&phba->hbalock); 13280 return IRQ_HANDLED; 13281 } 13282 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 13283 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 13284 phba->HCregaddr); 13285 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 13286 writel(hc_copy, phba->HCregaddr); 13287 readl(phba->HAregaddr); /* flush */ 13288 spin_unlock(&phba->hbalock); 13289 13290 /* 13291 * Invokes slow-path host attention interrupt handling as appropriate. 13292 */ 13293 13294 /* status of events with mailbox and link attention */ 13295 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 13296 13297 /* status of events with ELS ring */ 13298 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 13299 status2 >>= (4*LPFC_ELS_RING); 13300 13301 if (status1 || (status2 & HA_RXMASK)) 13302 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 13303 else 13304 sp_irq_rc = IRQ_NONE; 13305 13306 /* 13307 * Invoke fast-path host attention interrupt handling as appropriate. 13308 */ 13309 13310 /* status of events with FCP ring */ 13311 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13312 status1 >>= (4*LPFC_FCP_RING); 13313 13314 /* status of events with extra ring */ 13315 if (phba->cfg_multi_ring_support == 2) { 13316 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13317 status2 >>= (4*LPFC_EXTRA_RING); 13318 } else 13319 status2 = 0; 13320 13321 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 13322 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 13323 else 13324 fp_irq_rc = IRQ_NONE; 13325 13326 /* Return device-level interrupt handling status */ 13327 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 13328 } /* lpfc_sli_intr_handler */ 13329 13330 /** 13331 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 13332 * @phba: pointer to lpfc hba data structure. 13333 * 13334 * This routine is invoked by the worker thread to process all the pending 13335 * SLI4 els abort xri events. 13336 **/ 13337 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 13338 { 13339 struct lpfc_cq_event *cq_event; 13340 unsigned long iflags; 13341 13342 /* First, declare the els xri abort event has been handled */ 13343 spin_lock_irqsave(&phba->hbalock, iflags); 13344 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 13345 spin_unlock_irqrestore(&phba->hbalock, iflags); 13346 13347 /* Now, handle all the els xri abort events */ 13348 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 13349 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 13350 /* Get the first event from the head of the event queue */ 13351 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 13352 cq_event, struct lpfc_cq_event, list); 13353 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 13354 iflags); 13355 /* Notify aborted XRI for ELS work queue */ 13356 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 13357 13358 /* Free the event processed back to the free pool */ 13359 lpfc_sli4_cq_event_release(phba, cq_event); 13360 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 13361 iflags); 13362 } 13363 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 13364 } 13365 13366 /** 13367 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 13368 * @phba: pointer to lpfc hba data structure 13369 * @pIocbIn: pointer to the rspiocbq 13370 * @pIocbOut: pointer to the cmdiocbq 13371 * @wcqe: pointer to the complete wcqe 13372 * 13373 * This routine transfers the fields of a command iocbq to a response iocbq 13374 * by copying all the IOCB fields from command iocbq and transferring the 13375 * completion status information from the complete wcqe. 13376 **/ 13377 static void 13378 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 13379 struct lpfc_iocbq *pIocbIn, 13380 struct lpfc_iocbq *pIocbOut, 13381 struct lpfc_wcqe_complete *wcqe) 13382 { 13383 int numBdes, i; 13384 unsigned long iflags; 13385 uint32_t status, max_response; 13386 struct lpfc_dmabuf *dmabuf; 13387 struct ulp_bde64 *bpl, bde; 13388 size_t offset = offsetof(struct lpfc_iocbq, iocb); 13389 13390 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 13391 sizeof(struct lpfc_iocbq) - offset); 13392 /* Map WCQE parameters into irspiocb parameters */ 13393 status = bf_get(lpfc_wcqe_c_status, wcqe); 13394 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 13395 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 13396 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 13397 pIocbIn->iocb.un.fcpi.fcpi_parm = 13398 pIocbOut->iocb.un.fcpi.fcpi_parm - 13399 wcqe->total_data_placed; 13400 else 13401 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 13402 else { 13403 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 13404 switch (pIocbOut->iocb.ulpCommand) { 13405 case CMD_ELS_REQUEST64_CR: 13406 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 13407 bpl = (struct ulp_bde64 *)dmabuf->virt; 13408 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 13409 max_response = bde.tus.f.bdeSize; 13410 break; 13411 case CMD_GEN_REQUEST64_CR: 13412 max_response = 0; 13413 if (!pIocbOut->context3) 13414 break; 13415 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 13416 sizeof(struct ulp_bde64); 13417 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 13418 bpl = (struct ulp_bde64 *)dmabuf->virt; 13419 for (i = 0; i < numBdes; i++) { 13420 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 13421 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 13422 max_response += bde.tus.f.bdeSize; 13423 } 13424 break; 13425 default: 13426 max_response = wcqe->total_data_placed; 13427 break; 13428 } 13429 if (max_response < wcqe->total_data_placed) 13430 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 13431 else 13432 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 13433 wcqe->total_data_placed; 13434 } 13435 13436 /* Convert BG errors for completion status */ 13437 if (status == CQE_STATUS_DI_ERROR) { 13438 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 13439 13440 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 13441 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 13442 else 13443 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 13444 13445 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 13446 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 13447 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13448 BGS_GUARD_ERR_MASK; 13449 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 13450 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13451 BGS_APPTAG_ERR_MASK; 13452 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 13453 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13454 BGS_REFTAG_ERR_MASK; 13455 13456 /* Check to see if there was any good data before the error */ 13457 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 13458 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13459 BGS_HI_WATER_MARK_PRESENT_MASK; 13460 pIocbIn->iocb.unsli3.sli3_bg.bghm = 13461 wcqe->total_data_placed; 13462 } 13463 13464 /* 13465 * Set ALL the error bits to indicate we don't know what 13466 * type of error it is. 13467 */ 13468 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 13469 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13470 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 13471 BGS_GUARD_ERR_MASK); 13472 } 13473 13474 /* Pick up HBA exchange busy condition */ 13475 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 13476 spin_lock_irqsave(&phba->hbalock, iflags); 13477 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 13478 spin_unlock_irqrestore(&phba->hbalock, iflags); 13479 } 13480 } 13481 13482 /** 13483 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 13484 * @phba: Pointer to HBA context object. 13485 * @irspiocbq: Pointer to work-queue completion queue entry. 13486 * 13487 * This routine handles an ELS work-queue completion event and construct 13488 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 13489 * discovery engine to handle. 13490 * 13491 * Return: Pointer to the receive IOCBQ, NULL otherwise. 13492 **/ 13493 static struct lpfc_iocbq * 13494 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 13495 struct lpfc_iocbq *irspiocbq) 13496 { 13497 struct lpfc_sli_ring *pring; 13498 struct lpfc_iocbq *cmdiocbq; 13499 struct lpfc_wcqe_complete *wcqe; 13500 unsigned long iflags; 13501 13502 pring = lpfc_phba_elsring(phba); 13503 if (unlikely(!pring)) 13504 return NULL; 13505 13506 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 13507 pring->stats.iocb_event++; 13508 /* Look up the ELS command IOCB and create pseudo response IOCB */ 13509 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13510 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13511 if (unlikely(!cmdiocbq)) { 13512 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13513 "0386 ELS complete with no corresponding " 13514 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 13515 wcqe->word0, wcqe->total_data_placed, 13516 wcqe->parameter, wcqe->word3); 13517 lpfc_sli_release_iocbq(phba, irspiocbq); 13518 return NULL; 13519 } 13520 13521 spin_lock_irqsave(&pring->ring_lock, iflags); 13522 /* Put the iocb back on the txcmplq */ 13523 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 13524 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13525 13526 /* Fake the irspiocbq and copy necessary response information */ 13527 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 13528 13529 return irspiocbq; 13530 } 13531 13532 inline struct lpfc_cq_event * 13533 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 13534 { 13535 struct lpfc_cq_event *cq_event; 13536 13537 /* Allocate a new internal CQ_EVENT entry */ 13538 cq_event = lpfc_sli4_cq_event_alloc(phba); 13539 if (!cq_event) { 13540 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13541 "0602 Failed to alloc CQ_EVENT entry\n"); 13542 return NULL; 13543 } 13544 13545 /* Move the CQE into the event */ 13546 memcpy(&cq_event->cqe, entry, size); 13547 return cq_event; 13548 } 13549 13550 /** 13551 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 13552 * @phba: Pointer to HBA context object. 13553 * @mcqe: Pointer to mailbox completion queue entry. 13554 * 13555 * This routine process a mailbox completion queue entry with asynchronous 13556 * event. 13557 * 13558 * Return: true if work posted to worker thread, otherwise false. 13559 **/ 13560 static bool 13561 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13562 { 13563 struct lpfc_cq_event *cq_event; 13564 unsigned long iflags; 13565 13566 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13567 "0392 Async Event: word0:x%x, word1:x%x, " 13568 "word2:x%x, word3:x%x\n", mcqe->word0, 13569 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 13570 13571 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 13572 if (!cq_event) 13573 return false; 13574 13575 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 13576 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 13577 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 13578 13579 /* Set the async event flag */ 13580 spin_lock_irqsave(&phba->hbalock, iflags); 13581 phba->hba_flag |= ASYNC_EVENT; 13582 spin_unlock_irqrestore(&phba->hbalock, iflags); 13583 13584 return true; 13585 } 13586 13587 /** 13588 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 13589 * @phba: Pointer to HBA context object. 13590 * @mcqe: Pointer to mailbox completion queue entry. 13591 * 13592 * This routine process a mailbox completion queue entry with mailbox 13593 * completion event. 13594 * 13595 * Return: true if work posted to worker thread, otherwise false. 13596 **/ 13597 static bool 13598 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13599 { 13600 uint32_t mcqe_status; 13601 MAILBOX_t *mbox, *pmbox; 13602 struct lpfc_mqe *mqe; 13603 struct lpfc_vport *vport; 13604 struct lpfc_nodelist *ndlp; 13605 struct lpfc_dmabuf *mp; 13606 unsigned long iflags; 13607 LPFC_MBOXQ_t *pmb; 13608 bool workposted = false; 13609 int rc; 13610 13611 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 13612 if (!bf_get(lpfc_trailer_completed, mcqe)) 13613 goto out_no_mqe_complete; 13614 13615 /* Get the reference to the active mbox command */ 13616 spin_lock_irqsave(&phba->hbalock, iflags); 13617 pmb = phba->sli.mbox_active; 13618 if (unlikely(!pmb)) { 13619 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13620 "1832 No pending MBOX command to handle\n"); 13621 spin_unlock_irqrestore(&phba->hbalock, iflags); 13622 goto out_no_mqe_complete; 13623 } 13624 spin_unlock_irqrestore(&phba->hbalock, iflags); 13625 mqe = &pmb->u.mqe; 13626 pmbox = (MAILBOX_t *)&pmb->u.mqe; 13627 mbox = phba->mbox; 13628 vport = pmb->vport; 13629 13630 /* Reset heartbeat timer */ 13631 phba->last_completion_time = jiffies; 13632 del_timer(&phba->sli.mbox_tmo); 13633 13634 /* Move mbox data to caller's mailbox region, do endian swapping */ 13635 if (pmb->mbox_cmpl && mbox) 13636 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 13637 13638 /* 13639 * For mcqe errors, conditionally move a modified error code to 13640 * the mbox so that the error will not be missed. 13641 */ 13642 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 13643 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 13644 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 13645 bf_set(lpfc_mqe_status, mqe, 13646 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 13647 } 13648 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13649 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13650 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 13651 "MBOX dflt rpi: status:x%x rpi:x%x", 13652 mcqe_status, 13653 pmbox->un.varWords[0], 0); 13654 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 13655 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 13656 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 13657 13658 /* Reg_LOGIN of dflt RPI was successful. Mark the 13659 * node as having an UNREG_LOGIN in progress to stop 13660 * an unsolicited PLOGI from the same NPortId from 13661 * starting another mailbox transaction. 13662 */ 13663 spin_lock_irqsave(&ndlp->lock, iflags); 13664 ndlp->nlp_flag |= NLP_UNREG_INP; 13665 spin_unlock_irqrestore(&ndlp->lock, iflags); 13666 lpfc_unreg_login(phba, vport->vpi, 13667 pmbox->un.varWords[0], pmb); 13668 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 13669 pmb->ctx_buf = mp; 13670 13671 /* No reference taken here. This is a default 13672 * RPI reg/immediate unreg cycle. The reference was 13673 * taken in the reg rpi path and is released when 13674 * this mailbox completes. 13675 */ 13676 pmb->ctx_ndlp = ndlp; 13677 pmb->vport = vport; 13678 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 13679 if (rc != MBX_BUSY) 13680 lpfc_printf_log(phba, KERN_ERR, 13681 LOG_TRACE_EVENT, 13682 "0385 rc should " 13683 "have been MBX_BUSY\n"); 13684 if (rc != MBX_NOT_FINISHED) 13685 goto send_current_mbox; 13686 } 13687 } 13688 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 13689 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 13690 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 13691 13692 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 13693 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13694 spin_lock_irqsave(&phba->hbalock, iflags); 13695 /* Release the mailbox command posting token */ 13696 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 13697 phba->sli.mbox_active = NULL; 13698 if (bf_get(lpfc_trailer_consumed, mcqe)) 13699 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13700 spin_unlock_irqrestore(&phba->hbalock, iflags); 13701 13702 /* Post the next mbox command, if there is one */ 13703 lpfc_sli4_post_async_mbox(phba); 13704 13705 /* Process cmpl now */ 13706 if (pmb->mbox_cmpl) 13707 pmb->mbox_cmpl(phba, pmb); 13708 return false; 13709 } 13710 13711 /* There is mailbox completion work to queue to the worker thread */ 13712 spin_lock_irqsave(&phba->hbalock, iflags); 13713 __lpfc_mbox_cmpl_put(phba, pmb); 13714 phba->work_ha |= HA_MBATT; 13715 spin_unlock_irqrestore(&phba->hbalock, iflags); 13716 workposted = true; 13717 13718 send_current_mbox: 13719 spin_lock_irqsave(&phba->hbalock, iflags); 13720 /* Release the mailbox command posting token */ 13721 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 13722 /* Setting active mailbox pointer need to be in sync to flag clear */ 13723 phba->sli.mbox_active = NULL; 13724 if (bf_get(lpfc_trailer_consumed, mcqe)) 13725 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13726 spin_unlock_irqrestore(&phba->hbalock, iflags); 13727 /* Wake up worker thread to post the next pending mailbox command */ 13728 lpfc_worker_wake_up(phba); 13729 return workposted; 13730 13731 out_no_mqe_complete: 13732 spin_lock_irqsave(&phba->hbalock, iflags); 13733 if (bf_get(lpfc_trailer_consumed, mcqe)) 13734 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13735 spin_unlock_irqrestore(&phba->hbalock, iflags); 13736 return false; 13737 } 13738 13739 /** 13740 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 13741 * @phba: Pointer to HBA context object. 13742 * @cq: Pointer to associated CQ 13743 * @cqe: Pointer to mailbox completion queue entry. 13744 * 13745 * This routine process a mailbox completion queue entry, it invokes the 13746 * proper mailbox complete handling or asynchronous event handling routine 13747 * according to the MCQE's async bit. 13748 * 13749 * Return: true if work posted to worker thread, otherwise false. 13750 **/ 13751 static bool 13752 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13753 struct lpfc_cqe *cqe) 13754 { 13755 struct lpfc_mcqe mcqe; 13756 bool workposted; 13757 13758 cq->CQ_mbox++; 13759 13760 /* Copy the mailbox MCQE and convert endian order as needed */ 13761 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 13762 13763 /* Invoke the proper event handling routine */ 13764 if (!bf_get(lpfc_trailer_async, &mcqe)) 13765 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 13766 else 13767 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 13768 return workposted; 13769 } 13770 13771 /** 13772 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 13773 * @phba: Pointer to HBA context object. 13774 * @cq: Pointer to associated CQ 13775 * @wcqe: Pointer to work-queue completion queue entry. 13776 * 13777 * This routine handles an ELS work-queue completion event. 13778 * 13779 * Return: true if work posted to worker thread, otherwise false. 13780 **/ 13781 static bool 13782 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13783 struct lpfc_wcqe_complete *wcqe) 13784 { 13785 struct lpfc_iocbq *irspiocbq; 13786 unsigned long iflags; 13787 struct lpfc_sli_ring *pring = cq->pring; 13788 int txq_cnt = 0; 13789 int txcmplq_cnt = 0; 13790 13791 /* Check for response status */ 13792 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 13793 /* Log the error status */ 13794 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13795 "0357 ELS CQE error: status=x%x: " 13796 "CQE: %08x %08x %08x %08x\n", 13797 bf_get(lpfc_wcqe_c_status, wcqe), 13798 wcqe->word0, wcqe->total_data_placed, 13799 wcqe->parameter, wcqe->word3); 13800 } 13801 13802 /* Get an irspiocbq for later ELS response processing use */ 13803 irspiocbq = lpfc_sli_get_iocbq(phba); 13804 if (!irspiocbq) { 13805 if (!list_empty(&pring->txq)) 13806 txq_cnt++; 13807 if (!list_empty(&pring->txcmplq)) 13808 txcmplq_cnt++; 13809 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13810 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 13811 "els_txcmplq_cnt=%d\n", 13812 txq_cnt, phba->iocb_cnt, 13813 txcmplq_cnt); 13814 return false; 13815 } 13816 13817 /* Save off the slow-path queue event for work thread to process */ 13818 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 13819 spin_lock_irqsave(&phba->hbalock, iflags); 13820 list_add_tail(&irspiocbq->cq_event.list, 13821 &phba->sli4_hba.sp_queue_event); 13822 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13823 spin_unlock_irqrestore(&phba->hbalock, iflags); 13824 13825 return true; 13826 } 13827 13828 /** 13829 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 13830 * @phba: Pointer to HBA context object. 13831 * @wcqe: Pointer to work-queue completion queue entry. 13832 * 13833 * This routine handles slow-path WQ entry consumed event by invoking the 13834 * proper WQ release routine to the slow-path WQ. 13835 **/ 13836 static void 13837 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 13838 struct lpfc_wcqe_release *wcqe) 13839 { 13840 /* sanity check on queue memory */ 13841 if (unlikely(!phba->sli4_hba.els_wq)) 13842 return; 13843 /* Check for the slow-path ELS work queue */ 13844 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 13845 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 13846 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 13847 else 13848 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13849 "2579 Slow-path wqe consume event carries " 13850 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 13851 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 13852 phba->sli4_hba.els_wq->queue_id); 13853 } 13854 13855 /** 13856 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 13857 * @phba: Pointer to HBA context object. 13858 * @cq: Pointer to a WQ completion queue. 13859 * @wcqe: Pointer to work-queue completion queue entry. 13860 * 13861 * This routine handles an XRI abort event. 13862 * 13863 * Return: true if work posted to worker thread, otherwise false. 13864 **/ 13865 static bool 13866 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 13867 struct lpfc_queue *cq, 13868 struct sli4_wcqe_xri_aborted *wcqe) 13869 { 13870 bool workposted = false; 13871 struct lpfc_cq_event *cq_event; 13872 unsigned long iflags; 13873 13874 switch (cq->subtype) { 13875 case LPFC_IO: 13876 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 13877 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13878 /* Notify aborted XRI for NVME work queue */ 13879 if (phba->nvmet_support) 13880 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 13881 } 13882 workposted = false; 13883 break; 13884 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 13885 case LPFC_ELS: 13886 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 13887 if (!cq_event) { 13888 workposted = false; 13889 break; 13890 } 13891 cq_event->hdwq = cq->hdwq; 13892 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 13893 iflags); 13894 list_add_tail(&cq_event->list, 13895 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 13896 /* Set the els xri abort event flag */ 13897 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 13898 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 13899 iflags); 13900 workposted = true; 13901 break; 13902 default: 13903 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13904 "0603 Invalid CQ subtype %d: " 13905 "%08x %08x %08x %08x\n", 13906 cq->subtype, wcqe->word0, wcqe->parameter, 13907 wcqe->word2, wcqe->word3); 13908 workposted = false; 13909 break; 13910 } 13911 return workposted; 13912 } 13913 13914 #define FC_RCTL_MDS_DIAGS 0xF4 13915 13916 /** 13917 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 13918 * @phba: Pointer to HBA context object. 13919 * @rcqe: Pointer to receive-queue completion queue entry. 13920 * 13921 * This routine process a receive-queue completion queue entry. 13922 * 13923 * Return: true if work posted to worker thread, otherwise false. 13924 **/ 13925 static bool 13926 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 13927 { 13928 bool workposted = false; 13929 struct fc_frame_header *fc_hdr; 13930 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 13931 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 13932 struct lpfc_nvmet_tgtport *tgtp; 13933 struct hbq_dmabuf *dma_buf; 13934 uint32_t status, rq_id; 13935 unsigned long iflags; 13936 13937 /* sanity check on queue memory */ 13938 if (unlikely(!hrq) || unlikely(!drq)) 13939 return workposted; 13940 13941 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13942 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13943 else 13944 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13945 if (rq_id != hrq->queue_id) 13946 goto out; 13947 13948 status = bf_get(lpfc_rcqe_status, rcqe); 13949 switch (status) { 13950 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13951 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13952 "2537 Receive Frame Truncated!!\n"); 13953 fallthrough; 13954 case FC_STATUS_RQ_SUCCESS: 13955 spin_lock_irqsave(&phba->hbalock, iflags); 13956 lpfc_sli4_rq_release(hrq, drq); 13957 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 13958 if (!dma_buf) { 13959 hrq->RQ_no_buf_found++; 13960 spin_unlock_irqrestore(&phba->hbalock, iflags); 13961 goto out; 13962 } 13963 hrq->RQ_rcv_buf++; 13964 hrq->RQ_buf_posted--; 13965 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 13966 13967 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 13968 13969 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 13970 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 13971 spin_unlock_irqrestore(&phba->hbalock, iflags); 13972 /* Handle MDS Loopback frames */ 13973 if (!(phba->pport->load_flag & FC_UNLOADING)) 13974 lpfc_sli4_handle_mds_loopback(phba->pport, 13975 dma_buf); 13976 else 13977 lpfc_in_buf_free(phba, &dma_buf->dbuf); 13978 break; 13979 } 13980 13981 /* save off the frame for the work thread to process */ 13982 list_add_tail(&dma_buf->cq_event.list, 13983 &phba->sli4_hba.sp_queue_event); 13984 /* Frame received */ 13985 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13986 spin_unlock_irqrestore(&phba->hbalock, iflags); 13987 workposted = true; 13988 break; 13989 case FC_STATUS_INSUFF_BUF_FRM_DISC: 13990 if (phba->nvmet_support) { 13991 tgtp = phba->targetport->private; 13992 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13993 "6402 RQE Error x%x, posted %d err_cnt " 13994 "%d: %x %x %x\n", 13995 status, hrq->RQ_buf_posted, 13996 hrq->RQ_no_posted_buf, 13997 atomic_read(&tgtp->rcv_fcp_cmd_in), 13998 atomic_read(&tgtp->rcv_fcp_cmd_out), 13999 atomic_read(&tgtp->xmt_fcp_release)); 14000 } 14001 fallthrough; 14002 14003 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14004 hrq->RQ_no_posted_buf++; 14005 /* Post more buffers if possible */ 14006 spin_lock_irqsave(&phba->hbalock, iflags); 14007 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 14008 spin_unlock_irqrestore(&phba->hbalock, iflags); 14009 workposted = true; 14010 break; 14011 } 14012 out: 14013 return workposted; 14014 } 14015 14016 /** 14017 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 14018 * @phba: Pointer to HBA context object. 14019 * @cq: Pointer to the completion queue. 14020 * @cqe: Pointer to a completion queue entry. 14021 * 14022 * This routine process a slow-path work-queue or receive queue completion queue 14023 * entry. 14024 * 14025 * Return: true if work posted to worker thread, otherwise false. 14026 **/ 14027 static bool 14028 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14029 struct lpfc_cqe *cqe) 14030 { 14031 struct lpfc_cqe cqevt; 14032 bool workposted = false; 14033 14034 /* Copy the work queue CQE and convert endian order if needed */ 14035 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14036 14037 /* Check and process for different type of WCQE and dispatch */ 14038 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14039 case CQE_CODE_COMPL_WQE: 14040 /* Process the WQ/RQ complete event */ 14041 phba->last_completion_time = jiffies; 14042 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14043 (struct lpfc_wcqe_complete *)&cqevt); 14044 break; 14045 case CQE_CODE_RELEASE_WQE: 14046 /* Process the WQ release event */ 14047 lpfc_sli4_sp_handle_rel_wcqe(phba, 14048 (struct lpfc_wcqe_release *)&cqevt); 14049 break; 14050 case CQE_CODE_XRI_ABORTED: 14051 /* Process the WQ XRI abort event */ 14052 phba->last_completion_time = jiffies; 14053 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14054 (struct sli4_wcqe_xri_aborted *)&cqevt); 14055 break; 14056 case CQE_CODE_RECEIVE: 14057 case CQE_CODE_RECEIVE_V1: 14058 /* Process the RQ event */ 14059 phba->last_completion_time = jiffies; 14060 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14061 (struct lpfc_rcqe *)&cqevt); 14062 break; 14063 default: 14064 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14065 "0388 Not a valid WCQE code: x%x\n", 14066 bf_get(lpfc_cqe_code, &cqevt)); 14067 break; 14068 } 14069 return workposted; 14070 } 14071 14072 /** 14073 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14074 * @phba: Pointer to HBA context object. 14075 * @eqe: Pointer to fast-path event queue entry. 14076 * @speq: Pointer to slow-path event queue. 14077 * 14078 * This routine process a event queue entry from the slow-path event queue. 14079 * It will check the MajorCode and MinorCode to determine this is for a 14080 * completion event on a completion queue, if not, an error shall be logged 14081 * and just return. Otherwise, it will get to the corresponding completion 14082 * queue and process all the entries on that completion queue, rearm the 14083 * completion queue, and then return. 14084 * 14085 **/ 14086 static void 14087 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14088 struct lpfc_queue *speq) 14089 { 14090 struct lpfc_queue *cq = NULL, *childq; 14091 uint16_t cqid; 14092 int ret = 0; 14093 14094 /* Get the reference to the corresponding CQ */ 14095 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14096 14097 list_for_each_entry(childq, &speq->child_list, list) { 14098 if (childq->queue_id == cqid) { 14099 cq = childq; 14100 break; 14101 } 14102 } 14103 if (unlikely(!cq)) { 14104 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14105 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14106 "0365 Slow-path CQ identifier " 14107 "(%d) does not exist\n", cqid); 14108 return; 14109 } 14110 14111 /* Save EQ associated with this CQ */ 14112 cq->assoc_qp = speq; 14113 14114 if (is_kdump_kernel()) 14115 ret = queue_work(phba->wq, &cq->spwork); 14116 else 14117 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14118 14119 if (!ret) 14120 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14121 "0390 Cannot schedule queue work " 14122 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14123 cqid, cq->queue_id, raw_smp_processor_id()); 14124 } 14125 14126 /** 14127 * __lpfc_sli4_process_cq - Process elements of a CQ 14128 * @phba: Pointer to HBA context object. 14129 * @cq: Pointer to CQ to be processed 14130 * @handler: Routine to process each cqe 14131 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14132 * @poll_mode: Polling mode we were called from 14133 * 14134 * This routine processes completion queue entries in a CQ. While a valid 14135 * queue element is found, the handler is called. During processing checks 14136 * are made for periodic doorbell writes to let the hardware know of 14137 * element consumption. 14138 * 14139 * If the max limit on cqes to process is hit, or there are no more valid 14140 * entries, the loop stops. If we processed a sufficient number of elements, 14141 * meaning there is sufficient load, rather than rearming and generating 14142 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14143 * indicates no rescheduling. 14144 * 14145 * Returns True if work scheduled, False otherwise. 14146 **/ 14147 static bool 14148 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14149 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14150 struct lpfc_cqe *), unsigned long *delay, 14151 enum lpfc_poll_mode poll_mode) 14152 { 14153 struct lpfc_cqe *cqe; 14154 bool workposted = false; 14155 int count = 0, consumed = 0; 14156 bool arm = true; 14157 14158 /* default - no reschedule */ 14159 *delay = 0; 14160 14161 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14162 goto rearm_and_exit; 14163 14164 /* Process all the entries to the CQ */ 14165 cq->q_flag = 0; 14166 cqe = lpfc_sli4_cq_get(cq); 14167 while (cqe) { 14168 workposted |= handler(phba, cq, cqe); 14169 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14170 14171 consumed++; 14172 if (!(++count % cq->max_proc_limit)) 14173 break; 14174 14175 if (!(count % cq->notify_interval)) { 14176 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14177 LPFC_QUEUE_NOARM); 14178 consumed = 0; 14179 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14180 } 14181 14182 if (count == LPFC_NVMET_CQ_NOTIFY) 14183 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14184 14185 cqe = lpfc_sli4_cq_get(cq); 14186 } 14187 if (count >= phba->cfg_cq_poll_threshold) { 14188 *delay = 1; 14189 arm = false; 14190 } 14191 14192 /* Note: complete the irq_poll softirq before rearming CQ */ 14193 if (poll_mode == LPFC_IRQ_POLL) 14194 irq_poll_complete(&cq->iop); 14195 14196 /* Track the max number of CQEs processed in 1 EQ */ 14197 if (count > cq->CQ_max_cqe) 14198 cq->CQ_max_cqe = count; 14199 14200 cq->assoc_qp->EQ_cqe_cnt += count; 14201 14202 /* Catch the no cq entry condition */ 14203 if (unlikely(count == 0)) 14204 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14205 "0369 No entry from completion queue " 14206 "qid=%d\n", cq->queue_id); 14207 14208 xchg(&cq->queue_claimed, 0); 14209 14210 rearm_and_exit: 14211 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14212 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14213 14214 return workposted; 14215 } 14216 14217 /** 14218 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14219 * @cq: pointer to CQ to process 14220 * 14221 * This routine calls the cq processing routine with a handler specific 14222 * to the type of queue bound to it. 14223 * 14224 * The CQ routine returns two values: the first is the calling status, 14225 * which indicates whether work was queued to the background discovery 14226 * thread. If true, the routine should wakeup the discovery thread; 14227 * the second is the delay parameter. If non-zero, rather than rearming 14228 * the CQ and yet another interrupt, the CQ handler should be queued so 14229 * that it is processed in a subsequent polling action. The value of 14230 * the delay indicates when to reschedule it. 14231 **/ 14232 static void 14233 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14234 { 14235 struct lpfc_hba *phba = cq->phba; 14236 unsigned long delay; 14237 bool workposted = false; 14238 int ret = 0; 14239 14240 /* Process and rearm the CQ */ 14241 switch (cq->type) { 14242 case LPFC_MCQ: 14243 workposted |= __lpfc_sli4_process_cq(phba, cq, 14244 lpfc_sli4_sp_handle_mcqe, 14245 &delay, LPFC_QUEUE_WORK); 14246 break; 14247 case LPFC_WCQ: 14248 if (cq->subtype == LPFC_IO) 14249 workposted |= __lpfc_sli4_process_cq(phba, cq, 14250 lpfc_sli4_fp_handle_cqe, 14251 &delay, LPFC_QUEUE_WORK); 14252 else 14253 workposted |= __lpfc_sli4_process_cq(phba, cq, 14254 lpfc_sli4_sp_handle_cqe, 14255 &delay, LPFC_QUEUE_WORK); 14256 break; 14257 default: 14258 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14259 "0370 Invalid completion queue type (%d)\n", 14260 cq->type); 14261 return; 14262 } 14263 14264 if (delay) { 14265 if (is_kdump_kernel()) 14266 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14267 delay); 14268 else 14269 ret = queue_delayed_work_on(cq->chann, phba->wq, 14270 &cq->sched_spwork, delay); 14271 if (!ret) 14272 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14273 "0394 Cannot schedule queue work " 14274 "for cqid=%d on CPU %d\n", 14275 cq->queue_id, cq->chann); 14276 } 14277 14278 /* wake up worker thread if there are works to be done */ 14279 if (workposted) 14280 lpfc_worker_wake_up(phba); 14281 } 14282 14283 /** 14284 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 14285 * interrupt 14286 * @work: pointer to work element 14287 * 14288 * translates from the work handler and calls the slow-path handler. 14289 **/ 14290 static void 14291 lpfc_sli4_sp_process_cq(struct work_struct *work) 14292 { 14293 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 14294 14295 __lpfc_sli4_sp_process_cq(cq); 14296 } 14297 14298 /** 14299 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 14300 * @work: pointer to work element 14301 * 14302 * translates from the work handler and calls the slow-path handler. 14303 **/ 14304 static void 14305 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 14306 { 14307 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14308 struct lpfc_queue, sched_spwork); 14309 14310 __lpfc_sli4_sp_process_cq(cq); 14311 } 14312 14313 /** 14314 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 14315 * @phba: Pointer to HBA context object. 14316 * @cq: Pointer to associated CQ 14317 * @wcqe: Pointer to work-queue completion queue entry. 14318 * 14319 * This routine process a fast-path work queue completion entry from fast-path 14320 * event queue for FCP command response completion. 14321 **/ 14322 static void 14323 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14324 struct lpfc_wcqe_complete *wcqe) 14325 { 14326 struct lpfc_sli_ring *pring = cq->pring; 14327 struct lpfc_iocbq *cmdiocbq; 14328 struct lpfc_iocbq irspiocbq; 14329 unsigned long iflags; 14330 14331 /* Check for response status */ 14332 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14333 /* If resource errors reported from HBA, reduce queue 14334 * depth of the SCSI device. 14335 */ 14336 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 14337 IOSTAT_LOCAL_REJECT)) && 14338 ((wcqe->parameter & IOERR_PARAM_MASK) == 14339 IOERR_NO_RESOURCES)) 14340 phba->lpfc_rampdown_queue_depth(phba); 14341 14342 /* Log the cmpl status */ 14343 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14344 "0373 FCP CQE cmpl: status=x%x: " 14345 "CQE: %08x %08x %08x %08x\n", 14346 bf_get(lpfc_wcqe_c_status, wcqe), 14347 wcqe->word0, wcqe->total_data_placed, 14348 wcqe->parameter, wcqe->word3); 14349 } 14350 14351 /* Look up the FCP command IOCB and create pseudo response IOCB */ 14352 spin_lock_irqsave(&pring->ring_lock, iflags); 14353 pring->stats.iocb_event++; 14354 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14355 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14356 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14357 if (unlikely(!cmdiocbq)) { 14358 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14359 "0374 FCP complete with no corresponding " 14360 "cmdiocb: iotag (%d)\n", 14361 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14362 return; 14363 } 14364 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 14365 cmdiocbq->isr_timestamp = cq->isr_timestamp; 14366 #endif 14367 if (cmdiocbq->iocb_cmpl == NULL) { 14368 if (cmdiocbq->wqe_cmpl) { 14369 /* For FCP the flag is cleared in wqe_cmpl */ 14370 if (!(cmdiocbq->iocb_flag & LPFC_IO_FCP) && 14371 cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 14372 spin_lock_irqsave(&phba->hbalock, iflags); 14373 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 14374 spin_unlock_irqrestore(&phba->hbalock, iflags); 14375 } 14376 14377 /* Pass the cmd_iocb and the wcqe to the upper layer */ 14378 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); 14379 return; 14380 } 14381 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14382 "0375 FCP cmdiocb not callback function " 14383 "iotag: (%d)\n", 14384 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14385 return; 14386 } 14387 14388 /* Only SLI4 non-IO commands stil use IOCB */ 14389 /* Fake the irspiocb and copy necessary response information */ 14390 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 14391 14392 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 14393 spin_lock_irqsave(&phba->hbalock, iflags); 14394 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 14395 spin_unlock_irqrestore(&phba->hbalock, iflags); 14396 } 14397 14398 /* Pass the cmd_iocb and the rsp state to the upper layer */ 14399 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 14400 } 14401 14402 /** 14403 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 14404 * @phba: Pointer to HBA context object. 14405 * @cq: Pointer to completion queue. 14406 * @wcqe: Pointer to work-queue completion queue entry. 14407 * 14408 * This routine handles an fast-path WQ entry consumed event by invoking the 14409 * proper WQ release routine to the slow-path WQ. 14410 **/ 14411 static void 14412 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14413 struct lpfc_wcqe_release *wcqe) 14414 { 14415 struct lpfc_queue *childwq; 14416 bool wqid_matched = false; 14417 uint16_t hba_wqid; 14418 14419 /* Check for fast-path FCP work queue release */ 14420 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 14421 list_for_each_entry(childwq, &cq->child_list, list) { 14422 if (childwq->queue_id == hba_wqid) { 14423 lpfc_sli4_wq_release(childwq, 14424 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14425 if (childwq->q_flag & HBA_NVMET_WQFULL) 14426 lpfc_nvmet_wqfull_process(phba, childwq); 14427 wqid_matched = true; 14428 break; 14429 } 14430 } 14431 /* Report warning log message if no match found */ 14432 if (wqid_matched != true) 14433 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14434 "2580 Fast-path wqe consume event carries " 14435 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 14436 } 14437 14438 /** 14439 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 14440 * @phba: Pointer to HBA context object. 14441 * @cq: Pointer to completion queue. 14442 * @rcqe: Pointer to receive-queue completion queue entry. 14443 * 14444 * This routine process a receive-queue completion queue entry. 14445 * 14446 * Return: true if work posted to worker thread, otherwise false. 14447 **/ 14448 static bool 14449 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14450 struct lpfc_rcqe *rcqe) 14451 { 14452 bool workposted = false; 14453 struct lpfc_queue *hrq; 14454 struct lpfc_queue *drq; 14455 struct rqb_dmabuf *dma_buf; 14456 struct fc_frame_header *fc_hdr; 14457 struct lpfc_nvmet_tgtport *tgtp; 14458 uint32_t status, rq_id; 14459 unsigned long iflags; 14460 uint32_t fctl, idx; 14461 14462 if ((phba->nvmet_support == 0) || 14463 (phba->sli4_hba.nvmet_cqset == NULL)) 14464 return workposted; 14465 14466 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 14467 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 14468 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 14469 14470 /* sanity check on queue memory */ 14471 if (unlikely(!hrq) || unlikely(!drq)) 14472 return workposted; 14473 14474 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14475 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14476 else 14477 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14478 14479 if ((phba->nvmet_support == 0) || 14480 (rq_id != hrq->queue_id)) 14481 return workposted; 14482 14483 status = bf_get(lpfc_rcqe_status, rcqe); 14484 switch (status) { 14485 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14486 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14487 "6126 Receive Frame Truncated!!\n"); 14488 fallthrough; 14489 case FC_STATUS_RQ_SUCCESS: 14490 spin_lock_irqsave(&phba->hbalock, iflags); 14491 lpfc_sli4_rq_release(hrq, drq); 14492 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 14493 if (!dma_buf) { 14494 hrq->RQ_no_buf_found++; 14495 spin_unlock_irqrestore(&phba->hbalock, iflags); 14496 goto out; 14497 } 14498 spin_unlock_irqrestore(&phba->hbalock, iflags); 14499 hrq->RQ_rcv_buf++; 14500 hrq->RQ_buf_posted--; 14501 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14502 14503 /* Just some basic sanity checks on FCP Command frame */ 14504 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 14505 fc_hdr->fh_f_ctl[1] << 8 | 14506 fc_hdr->fh_f_ctl[2]); 14507 if (((fctl & 14508 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 14509 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 14510 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 14511 goto drop; 14512 14513 if (fc_hdr->fh_type == FC_TYPE_FCP) { 14514 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 14515 lpfc_nvmet_unsol_fcp_event( 14516 phba, idx, dma_buf, cq->isr_timestamp, 14517 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 14518 return false; 14519 } 14520 drop: 14521 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 14522 break; 14523 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14524 if (phba->nvmet_support) { 14525 tgtp = phba->targetport->private; 14526 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14527 "6401 RQE Error x%x, posted %d err_cnt " 14528 "%d: %x %x %x\n", 14529 status, hrq->RQ_buf_posted, 14530 hrq->RQ_no_posted_buf, 14531 atomic_read(&tgtp->rcv_fcp_cmd_in), 14532 atomic_read(&tgtp->rcv_fcp_cmd_out), 14533 atomic_read(&tgtp->xmt_fcp_release)); 14534 } 14535 fallthrough; 14536 14537 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14538 hrq->RQ_no_posted_buf++; 14539 /* Post more buffers if possible */ 14540 break; 14541 } 14542 out: 14543 return workposted; 14544 } 14545 14546 /** 14547 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 14548 * @phba: adapter with cq 14549 * @cq: Pointer to the completion queue. 14550 * @cqe: Pointer to fast-path completion queue entry. 14551 * 14552 * This routine process a fast-path work queue completion entry from fast-path 14553 * event queue for FCP command response completion. 14554 * 14555 * Return: true if work posted to worker thread, otherwise false. 14556 **/ 14557 static bool 14558 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14559 struct lpfc_cqe *cqe) 14560 { 14561 struct lpfc_wcqe_release wcqe; 14562 bool workposted = false; 14563 14564 /* Copy the work queue CQE and convert endian order if needed */ 14565 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 14566 14567 /* Check and process for different type of WCQE and dispatch */ 14568 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 14569 case CQE_CODE_COMPL_WQE: 14570 case CQE_CODE_NVME_ERSP: 14571 cq->CQ_wq++; 14572 /* Process the WQ complete event */ 14573 phba->last_completion_time = jiffies; 14574 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 14575 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 14576 (struct lpfc_wcqe_complete *)&wcqe); 14577 break; 14578 case CQE_CODE_RELEASE_WQE: 14579 cq->CQ_release_wqe++; 14580 /* Process the WQ release event */ 14581 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 14582 (struct lpfc_wcqe_release *)&wcqe); 14583 break; 14584 case CQE_CODE_XRI_ABORTED: 14585 cq->CQ_xri_aborted++; 14586 /* Process the WQ XRI abort event */ 14587 phba->last_completion_time = jiffies; 14588 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14589 (struct sli4_wcqe_xri_aborted *)&wcqe); 14590 break; 14591 case CQE_CODE_RECEIVE_V1: 14592 case CQE_CODE_RECEIVE: 14593 phba->last_completion_time = jiffies; 14594 if (cq->subtype == LPFC_NVMET) { 14595 workposted = lpfc_sli4_nvmet_handle_rcqe( 14596 phba, cq, (struct lpfc_rcqe *)&wcqe); 14597 } 14598 break; 14599 default: 14600 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14601 "0144 Not a valid CQE code: x%x\n", 14602 bf_get(lpfc_wcqe_c_code, &wcqe)); 14603 break; 14604 } 14605 return workposted; 14606 } 14607 14608 /** 14609 * lpfc_sli4_sched_cq_work - Schedules cq work 14610 * @phba: Pointer to HBA context object. 14611 * @cq: Pointer to CQ 14612 * @cqid: CQ ID 14613 * 14614 * This routine checks the poll mode of the CQ corresponding to 14615 * cq->chann, then either schedules a softirq or queue_work to complete 14616 * cq work. 14617 * 14618 * queue_work path is taken if in NVMET mode, or if poll_mode is in 14619 * LPFC_QUEUE_WORK mode. Otherwise, softirq path is taken. 14620 * 14621 **/ 14622 static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba, 14623 struct lpfc_queue *cq, uint16_t cqid) 14624 { 14625 int ret = 0; 14626 14627 switch (cq->poll_mode) { 14628 case LPFC_IRQ_POLL: 14629 irq_poll_sched(&cq->iop); 14630 break; 14631 case LPFC_QUEUE_WORK: 14632 default: 14633 if (is_kdump_kernel()) 14634 ret = queue_work(phba->wq, &cq->irqwork); 14635 else 14636 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 14637 if (!ret) 14638 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14639 "0383 Cannot schedule queue work " 14640 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14641 cqid, cq->queue_id, 14642 raw_smp_processor_id()); 14643 } 14644 } 14645 14646 /** 14647 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 14648 * @phba: Pointer to HBA context object. 14649 * @eq: Pointer to the queue structure. 14650 * @eqe: Pointer to fast-path event queue entry. 14651 * 14652 * This routine process a event queue entry from the fast-path event queue. 14653 * It will check the MajorCode and MinorCode to determine this is for a 14654 * completion event on a completion queue, if not, an error shall be logged 14655 * and just return. Otherwise, it will get to the corresponding completion 14656 * queue and process all the entries on the completion queue, rearm the 14657 * completion queue, and then return. 14658 **/ 14659 static void 14660 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 14661 struct lpfc_eqe *eqe) 14662 { 14663 struct lpfc_queue *cq = NULL; 14664 uint32_t qidx = eq->hdwq; 14665 uint16_t cqid, id; 14666 14667 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 14668 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14669 "0366 Not a valid completion " 14670 "event: majorcode=x%x, minorcode=x%x\n", 14671 bf_get_le32(lpfc_eqe_major_code, eqe), 14672 bf_get_le32(lpfc_eqe_minor_code, eqe)); 14673 return; 14674 } 14675 14676 /* Get the reference to the corresponding CQ */ 14677 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14678 14679 /* Use the fast lookup method first */ 14680 if (cqid <= phba->sli4_hba.cq_max) { 14681 cq = phba->sli4_hba.cq_lookup[cqid]; 14682 if (cq) 14683 goto work_cq; 14684 } 14685 14686 /* Next check for NVMET completion */ 14687 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 14688 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 14689 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 14690 /* Process NVMET unsol rcv */ 14691 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 14692 goto process_cq; 14693 } 14694 } 14695 14696 if (phba->sli4_hba.nvmels_cq && 14697 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 14698 /* Process NVME unsol rcv */ 14699 cq = phba->sli4_hba.nvmels_cq; 14700 } 14701 14702 /* Otherwise this is a Slow path event */ 14703 if (cq == NULL) { 14704 lpfc_sli4_sp_handle_eqe(phba, eqe, 14705 phba->sli4_hba.hdwq[qidx].hba_eq); 14706 return; 14707 } 14708 14709 process_cq: 14710 if (unlikely(cqid != cq->queue_id)) { 14711 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14712 "0368 Miss-matched fast-path completion " 14713 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 14714 cqid, cq->queue_id); 14715 return; 14716 } 14717 14718 work_cq: 14719 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 14720 if (phba->ktime_on) 14721 cq->isr_timestamp = ktime_get_ns(); 14722 else 14723 cq->isr_timestamp = 0; 14724 #endif 14725 lpfc_sli4_sched_cq_work(phba, cq, cqid); 14726 } 14727 14728 /** 14729 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 14730 * @cq: Pointer to CQ to be processed 14731 * @poll_mode: Enum lpfc_poll_state to determine poll mode 14732 * 14733 * This routine calls the cq processing routine with the handler for 14734 * fast path CQEs. 14735 * 14736 * The CQ routine returns two values: the first is the calling status, 14737 * which indicates whether work was queued to the background discovery 14738 * thread. If true, the routine should wakeup the discovery thread; 14739 * the second is the delay parameter. If non-zero, rather than rearming 14740 * the CQ and yet another interrupt, the CQ handler should be queued so 14741 * that it is processed in a subsequent polling action. The value of 14742 * the delay indicates when to reschedule it. 14743 **/ 14744 static void 14745 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq, 14746 enum lpfc_poll_mode poll_mode) 14747 { 14748 struct lpfc_hba *phba = cq->phba; 14749 unsigned long delay; 14750 bool workposted = false; 14751 int ret = 0; 14752 14753 /* process and rearm the CQ */ 14754 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 14755 &delay, poll_mode); 14756 14757 if (delay) { 14758 if (is_kdump_kernel()) 14759 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 14760 delay); 14761 else 14762 ret = queue_delayed_work_on(cq->chann, phba->wq, 14763 &cq->sched_irqwork, delay); 14764 if (!ret) 14765 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14766 "0367 Cannot schedule queue work " 14767 "for cqid=%d on CPU %d\n", 14768 cq->queue_id, cq->chann); 14769 } 14770 14771 /* wake up worker thread if there are works to be done */ 14772 if (workposted) 14773 lpfc_worker_wake_up(phba); 14774 } 14775 14776 /** 14777 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 14778 * interrupt 14779 * @work: pointer to work element 14780 * 14781 * translates from the work handler and calls the fast-path handler. 14782 **/ 14783 static void 14784 lpfc_sli4_hba_process_cq(struct work_struct *work) 14785 { 14786 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 14787 14788 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 14789 } 14790 14791 /** 14792 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 14793 * @work: pointer to work element 14794 * 14795 * translates from the work handler and calls the fast-path handler. 14796 **/ 14797 static void 14798 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 14799 { 14800 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14801 struct lpfc_queue, sched_irqwork); 14802 14803 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 14804 } 14805 14806 /** 14807 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 14808 * @irq: Interrupt number. 14809 * @dev_id: The device context pointer. 14810 * 14811 * This function is directly called from the PCI layer as an interrupt 14812 * service routine when device with SLI-4 interface spec is enabled with 14813 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 14814 * ring event in the HBA. However, when the device is enabled with either 14815 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 14816 * device-level interrupt handler. When the PCI slot is in error recovery 14817 * or the HBA is undergoing initialization, the interrupt handler will not 14818 * process the interrupt. The SCSI FCP fast-path ring event are handled in 14819 * the intrrupt context. This function is called without any lock held. 14820 * It gets the hbalock to access and update SLI data structures. Note that, 14821 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 14822 * equal to that of FCP CQ index. 14823 * 14824 * The link attention and ELS ring attention events are handled 14825 * by the worker thread. The interrupt handler signals the worker thread 14826 * and returns for these events. This function is called without any lock 14827 * held. It gets the hbalock to access and update SLI data structures. 14828 * 14829 * This function returns IRQ_HANDLED when interrupt is handled else it 14830 * returns IRQ_NONE. 14831 **/ 14832 irqreturn_t 14833 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 14834 { 14835 struct lpfc_hba *phba; 14836 struct lpfc_hba_eq_hdl *hba_eq_hdl; 14837 struct lpfc_queue *fpeq; 14838 unsigned long iflag; 14839 int ecount = 0; 14840 int hba_eqidx; 14841 struct lpfc_eq_intr_info *eqi; 14842 14843 /* Get the driver's phba structure from the dev_id */ 14844 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 14845 phba = hba_eq_hdl->phba; 14846 hba_eqidx = hba_eq_hdl->idx; 14847 14848 if (unlikely(!phba)) 14849 return IRQ_NONE; 14850 if (unlikely(!phba->sli4_hba.hdwq)) 14851 return IRQ_NONE; 14852 14853 /* Get to the EQ struct associated with this vector */ 14854 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 14855 if (unlikely(!fpeq)) 14856 return IRQ_NONE; 14857 14858 /* Check device state for handling interrupt */ 14859 if (unlikely(lpfc_intr_state_check(phba))) { 14860 /* Check again for link_state with lock held */ 14861 spin_lock_irqsave(&phba->hbalock, iflag); 14862 if (phba->link_state < LPFC_LINK_DOWN) 14863 /* Flush, clear interrupt, and rearm the EQ */ 14864 lpfc_sli4_eqcq_flush(phba, fpeq); 14865 spin_unlock_irqrestore(&phba->hbalock, iflag); 14866 return IRQ_NONE; 14867 } 14868 14869 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 14870 eqi->icnt++; 14871 14872 fpeq->last_cpu = raw_smp_processor_id(); 14873 14874 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 14875 fpeq->q_flag & HBA_EQ_DELAY_CHK && 14876 phba->cfg_auto_imax && 14877 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 14878 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 14879 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 14880 14881 /* process and rearm the EQ */ 14882 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 14883 14884 if (unlikely(ecount == 0)) { 14885 fpeq->EQ_no_entry++; 14886 if (phba->intr_type == MSIX) 14887 /* MSI-X treated interrupt served as no EQ share INT */ 14888 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14889 "0358 MSI-X interrupt with no EQE\n"); 14890 else 14891 /* Non MSI-X treated on interrupt as EQ share INT */ 14892 return IRQ_NONE; 14893 } 14894 14895 return IRQ_HANDLED; 14896 } /* lpfc_sli4_hba_intr_handler */ 14897 14898 /** 14899 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 14900 * @irq: Interrupt number. 14901 * @dev_id: The device context pointer. 14902 * 14903 * This function is the device-level interrupt handler to device with SLI-4 14904 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 14905 * interrupt mode is enabled and there is an event in the HBA which requires 14906 * driver attention. This function invokes the slow-path interrupt attention 14907 * handling function and fast-path interrupt attention handling function in 14908 * turn to process the relevant HBA attention events. This function is called 14909 * without any lock held. It gets the hbalock to access and update SLI data 14910 * structures. 14911 * 14912 * This function returns IRQ_HANDLED when interrupt is handled, else it 14913 * returns IRQ_NONE. 14914 **/ 14915 irqreturn_t 14916 lpfc_sli4_intr_handler(int irq, void *dev_id) 14917 { 14918 struct lpfc_hba *phba; 14919 irqreturn_t hba_irq_rc; 14920 bool hba_handled = false; 14921 int qidx; 14922 14923 /* Get the driver's phba structure from the dev_id */ 14924 phba = (struct lpfc_hba *)dev_id; 14925 14926 if (unlikely(!phba)) 14927 return IRQ_NONE; 14928 14929 /* 14930 * Invoke fast-path host attention interrupt handling as appropriate. 14931 */ 14932 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 14933 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 14934 &phba->sli4_hba.hba_eq_hdl[qidx]); 14935 if (hba_irq_rc == IRQ_HANDLED) 14936 hba_handled |= true; 14937 } 14938 14939 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 14940 } /* lpfc_sli4_intr_handler */ 14941 14942 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 14943 { 14944 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 14945 struct lpfc_queue *eq; 14946 int i = 0; 14947 14948 rcu_read_lock(); 14949 14950 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 14951 i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH); 14952 if (!list_empty(&phba->poll_list)) 14953 mod_timer(&phba->cpuhp_poll_timer, 14954 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 14955 14956 rcu_read_unlock(); 14957 } 14958 14959 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path) 14960 { 14961 struct lpfc_hba *phba = eq->phba; 14962 int i = 0; 14963 14964 /* 14965 * Unlocking an irq is one of the entry point to check 14966 * for re-schedule, but we are good for io submission 14967 * path as midlayer does a get_cpu to glue us in. Flush 14968 * out the invalidate queue so we can see the updated 14969 * value for flag. 14970 */ 14971 smp_rmb(); 14972 14973 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 14974 /* We will not likely get the completion for the caller 14975 * during this iteration but i guess that's fine. 14976 * Future io's coming on this eq should be able to 14977 * pick it up. As for the case of single io's, they 14978 * will be handled through a sched from polling timer 14979 * function which is currently triggered every 1msec. 14980 */ 14981 i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM); 14982 14983 return i; 14984 } 14985 14986 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 14987 { 14988 struct lpfc_hba *phba = eq->phba; 14989 14990 /* kickstart slowpath processing if needed */ 14991 if (list_empty(&phba->poll_list)) 14992 mod_timer(&phba->cpuhp_poll_timer, 14993 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 14994 14995 list_add_rcu(&eq->_poll_list, &phba->poll_list); 14996 synchronize_rcu(); 14997 } 14998 14999 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 15000 { 15001 struct lpfc_hba *phba = eq->phba; 15002 15003 /* Disable slowpath processing for this eq. Kick start the eq 15004 * by RE-ARMING the eq's ASAP 15005 */ 15006 list_del_rcu(&eq->_poll_list); 15007 synchronize_rcu(); 15008 15009 if (list_empty(&phba->poll_list)) 15010 del_timer_sync(&phba->cpuhp_poll_timer); 15011 } 15012 15013 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 15014 { 15015 struct lpfc_queue *eq, *next; 15016 15017 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 15018 list_del(&eq->_poll_list); 15019 15020 INIT_LIST_HEAD(&phba->poll_list); 15021 synchronize_rcu(); 15022 } 15023 15024 static inline void 15025 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15026 { 15027 if (mode == eq->mode) 15028 return; 15029 /* 15030 * currently this function is only called during a hotplug 15031 * event and the cpu on which this function is executing 15032 * is going offline. By now the hotplug has instructed 15033 * the scheduler to remove this cpu from cpu active mask. 15034 * So we don't need to work about being put aside by the 15035 * scheduler for a high priority process. Yes, the inte- 15036 * rrupts could come but they are known to retire ASAP. 15037 */ 15038 15039 /* Disable polling in the fastpath */ 15040 WRITE_ONCE(eq->mode, mode); 15041 /* flush out the store buffer */ 15042 smp_wmb(); 15043 15044 /* 15045 * Add this eq to the polling list and start polling. For 15046 * a grace period both interrupt handler and poller will 15047 * try to process the eq _but_ that's fine. We have a 15048 * synchronization mechanism in place (queue_claimed) to 15049 * deal with it. This is just a draining phase for int- 15050 * errupt handler (not eq's) as we have guranteed through 15051 * barrier that all the CPUs have seen the new CQ_POLLED 15052 * state. which will effectively disable the REARMING of 15053 * the EQ. The whole idea is eq's die off eventually as 15054 * we are not rearming EQ's anymore. 15055 */ 15056 mode ? lpfc_sli4_add_to_poll_list(eq) : 15057 lpfc_sli4_remove_from_poll_list(eq); 15058 } 15059 15060 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15061 { 15062 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15063 } 15064 15065 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15066 { 15067 struct lpfc_hba *phba = eq->phba; 15068 15069 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15070 15071 /* Kick start for the pending io's in h/w. 15072 * Once we switch back to interrupt processing on a eq 15073 * the io path completion will only arm eq's when it 15074 * receives a completion. But since eq's are in disa- 15075 * rmed state it doesn't receive a completion. This 15076 * creates a deadlock scenaro. 15077 */ 15078 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15079 } 15080 15081 /** 15082 * lpfc_sli4_queue_free - free a queue structure and associated memory 15083 * @queue: The queue structure to free. 15084 * 15085 * This function frees a queue structure and the DMAable memory used for 15086 * the host resident queue. This function must be called after destroying the 15087 * queue on the HBA. 15088 **/ 15089 void 15090 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15091 { 15092 struct lpfc_dmabuf *dmabuf; 15093 15094 if (!queue) 15095 return; 15096 15097 if (!list_empty(&queue->wq_list)) 15098 list_del(&queue->wq_list); 15099 15100 while (!list_empty(&queue->page_list)) { 15101 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15102 list); 15103 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15104 dmabuf->virt, dmabuf->phys); 15105 kfree(dmabuf); 15106 } 15107 if (queue->rqbp) { 15108 lpfc_free_rq_buffer(queue->phba, queue); 15109 kfree(queue->rqbp); 15110 } 15111 15112 if (!list_empty(&queue->cpu_list)) 15113 list_del(&queue->cpu_list); 15114 15115 kfree(queue); 15116 return; 15117 } 15118 15119 /** 15120 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15121 * @phba: The HBA that this queue is being created on. 15122 * @page_size: The size of a queue page 15123 * @entry_size: The size of each queue entry for this queue. 15124 * @entry_count: The number of entries that this queue will handle. 15125 * @cpu: The cpu that will primarily utilize this queue. 15126 * 15127 * This function allocates a queue structure and the DMAable memory used for 15128 * the host resident queue. This function must be called before creating the 15129 * queue on the HBA. 15130 **/ 15131 struct lpfc_queue * 15132 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15133 uint32_t entry_size, uint32_t entry_count, int cpu) 15134 { 15135 struct lpfc_queue *queue; 15136 struct lpfc_dmabuf *dmabuf; 15137 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15138 uint16_t x, pgcnt; 15139 15140 if (!phba->sli4_hba.pc_sli4_params.supported) 15141 hw_page_size = page_size; 15142 15143 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15144 15145 /* If needed, Adjust page count to match the max the adapter supports */ 15146 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15147 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15148 15149 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15150 GFP_KERNEL, cpu_to_node(cpu)); 15151 if (!queue) 15152 return NULL; 15153 15154 INIT_LIST_HEAD(&queue->list); 15155 INIT_LIST_HEAD(&queue->_poll_list); 15156 INIT_LIST_HEAD(&queue->wq_list); 15157 INIT_LIST_HEAD(&queue->wqfull_list); 15158 INIT_LIST_HEAD(&queue->page_list); 15159 INIT_LIST_HEAD(&queue->child_list); 15160 INIT_LIST_HEAD(&queue->cpu_list); 15161 15162 /* Set queue parameters now. If the system cannot provide memory 15163 * resources, the free routine needs to know what was allocated. 15164 */ 15165 queue->page_count = pgcnt; 15166 queue->q_pgs = (void **)&queue[1]; 15167 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15168 queue->entry_size = entry_size; 15169 queue->entry_count = entry_count; 15170 queue->page_size = hw_page_size; 15171 queue->phba = phba; 15172 15173 for (x = 0; x < queue->page_count; x++) { 15174 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15175 dev_to_node(&phba->pcidev->dev)); 15176 if (!dmabuf) 15177 goto out_fail; 15178 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15179 hw_page_size, &dmabuf->phys, 15180 GFP_KERNEL); 15181 if (!dmabuf->virt) { 15182 kfree(dmabuf); 15183 goto out_fail; 15184 } 15185 dmabuf->buffer_tag = x; 15186 list_add_tail(&dmabuf->list, &queue->page_list); 15187 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15188 queue->q_pgs[x] = dmabuf->virt; 15189 } 15190 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15191 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15192 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15193 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15194 15195 /* notify_interval will be set during q creation */ 15196 15197 return queue; 15198 out_fail: 15199 lpfc_sli4_queue_free(queue); 15200 return NULL; 15201 } 15202 15203 /** 15204 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15205 * @phba: HBA structure that indicates port to create a queue on. 15206 * @pci_barset: PCI BAR set flag. 15207 * 15208 * This function shall perform iomap of the specified PCI BAR address to host 15209 * memory address if not already done so and return it. The returned host 15210 * memory address can be NULL. 15211 */ 15212 static void __iomem * 15213 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15214 { 15215 if (!phba->pcidev) 15216 return NULL; 15217 15218 switch (pci_barset) { 15219 case WQ_PCI_BAR_0_AND_1: 15220 return phba->pci_bar0_memmap_p; 15221 case WQ_PCI_BAR_2_AND_3: 15222 return phba->pci_bar2_memmap_p; 15223 case WQ_PCI_BAR_4_AND_5: 15224 return phba->pci_bar4_memmap_p; 15225 default: 15226 break; 15227 } 15228 return NULL; 15229 } 15230 15231 /** 15232 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15233 * @phba: HBA structure that EQs are on. 15234 * @startq: The starting EQ index to modify 15235 * @numq: The number of EQs (consecutive indexes) to modify 15236 * @usdelay: amount of delay 15237 * 15238 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15239 * is set either by writing to a register (if supported by the SLI Port) 15240 * or by mailbox command. The mailbox command allows several EQs to be 15241 * updated at once. 15242 * 15243 * The @phba struct is used to send a mailbox command to HBA. The @startq 15244 * is used to get the starting EQ index to change. The @numq value is 15245 * used to specify how many consecutive EQ indexes, starting at EQ index, 15246 * are to be changed. This function is asynchronous and will wait for any 15247 * mailbox commands to finish before returning. 15248 * 15249 * On success this function will return a zero. If unable to allocate 15250 * enough memory this function will return -ENOMEM. If a mailbox command 15251 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15252 * have had their delay multipler changed. 15253 **/ 15254 void 15255 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15256 uint32_t numq, uint32_t usdelay) 15257 { 15258 struct lpfc_mbx_modify_eq_delay *eq_delay; 15259 LPFC_MBOXQ_t *mbox; 15260 struct lpfc_queue *eq; 15261 int cnt = 0, rc, length; 15262 uint32_t shdr_status, shdr_add_status; 15263 uint32_t dmult; 15264 int qidx; 15265 union lpfc_sli4_cfg_shdr *shdr; 15266 15267 if (startq >= phba->cfg_irq_chann) 15268 return; 15269 15270 if (usdelay > 0xFFFF) { 15271 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15272 "6429 usdelay %d too large. Scaled down to " 15273 "0xFFFF.\n", usdelay); 15274 usdelay = 0xFFFF; 15275 } 15276 15277 /* set values by EQ_DELAY register if supported */ 15278 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15279 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15280 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15281 if (!eq) 15282 continue; 15283 15284 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15285 15286 if (++cnt >= numq) 15287 break; 15288 } 15289 return; 15290 } 15291 15292 /* Otherwise, set values by mailbox cmd */ 15293 15294 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15295 if (!mbox) { 15296 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15297 "6428 Failed allocating mailbox cmd buffer." 15298 " EQ delay was not set.\n"); 15299 return; 15300 } 15301 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 15302 sizeof(struct lpfc_sli4_cfg_mhdr)); 15303 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15304 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 15305 length, LPFC_SLI4_MBX_EMBED); 15306 eq_delay = &mbox->u.mqe.un.eq_delay; 15307 15308 /* Calculate delay multiper from maximum interrupt per second */ 15309 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 15310 if (dmult) 15311 dmult--; 15312 if (dmult > LPFC_DMULT_MAX) 15313 dmult = LPFC_DMULT_MAX; 15314 15315 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15316 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15317 if (!eq) 15318 continue; 15319 eq->q_mode = usdelay; 15320 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 15321 eq_delay->u.request.eq[cnt].phase = 0; 15322 eq_delay->u.request.eq[cnt].delay_multi = dmult; 15323 15324 if (++cnt >= numq) 15325 break; 15326 } 15327 eq_delay->u.request.num_eq = cnt; 15328 15329 mbox->vport = phba->pport; 15330 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15331 mbox->ctx_buf = NULL; 15332 mbox->ctx_ndlp = NULL; 15333 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15334 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 15335 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15336 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15337 if (shdr_status || shdr_add_status || rc) { 15338 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15339 "2512 MODIFY_EQ_DELAY mailbox failed with " 15340 "status x%x add_status x%x, mbx status x%x\n", 15341 shdr_status, shdr_add_status, rc); 15342 } 15343 mempool_free(mbox, phba->mbox_mem_pool); 15344 return; 15345 } 15346 15347 /** 15348 * lpfc_eq_create - Create an Event Queue on the HBA 15349 * @phba: HBA structure that indicates port to create a queue on. 15350 * @eq: The queue structure to use to create the event queue. 15351 * @imax: The maximum interrupt per second limit. 15352 * 15353 * This function creates an event queue, as detailed in @eq, on a port, 15354 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 15355 * 15356 * The @phba struct is used to send mailbox command to HBA. The @eq struct 15357 * is used to get the entry count and entry size that are necessary to 15358 * determine the number of pages to allocate and use for this queue. This 15359 * function will send the EQ_CREATE mailbox command to the HBA to setup the 15360 * event queue. This function is asynchronous and will wait for the mailbox 15361 * command to finish before continuing. 15362 * 15363 * On success this function will return a zero. If unable to allocate enough 15364 * memory this function will return -ENOMEM. If the queue create mailbox command 15365 * fails this function will return -ENXIO. 15366 **/ 15367 int 15368 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 15369 { 15370 struct lpfc_mbx_eq_create *eq_create; 15371 LPFC_MBOXQ_t *mbox; 15372 int rc, length, status = 0; 15373 struct lpfc_dmabuf *dmabuf; 15374 uint32_t shdr_status, shdr_add_status; 15375 union lpfc_sli4_cfg_shdr *shdr; 15376 uint16_t dmult; 15377 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15378 15379 /* sanity check on queue memory */ 15380 if (!eq) 15381 return -ENODEV; 15382 if (!phba->sli4_hba.pc_sli4_params.supported) 15383 hw_page_size = SLI4_PAGE_SIZE; 15384 15385 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15386 if (!mbox) 15387 return -ENOMEM; 15388 length = (sizeof(struct lpfc_mbx_eq_create) - 15389 sizeof(struct lpfc_sli4_cfg_mhdr)); 15390 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15391 LPFC_MBOX_OPCODE_EQ_CREATE, 15392 length, LPFC_SLI4_MBX_EMBED); 15393 eq_create = &mbox->u.mqe.un.eq_create; 15394 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 15395 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 15396 eq->page_count); 15397 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 15398 LPFC_EQE_SIZE); 15399 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 15400 15401 /* Use version 2 of CREATE_EQ if eqav is set */ 15402 if (phba->sli4_hba.pc_sli4_params.eqav) { 15403 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15404 LPFC_Q_CREATE_VERSION_2); 15405 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 15406 phba->sli4_hba.pc_sli4_params.eqav); 15407 } 15408 15409 /* don't setup delay multiplier using EQ_CREATE */ 15410 dmult = 0; 15411 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 15412 dmult); 15413 switch (eq->entry_count) { 15414 default: 15415 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15416 "0360 Unsupported EQ count. (%d)\n", 15417 eq->entry_count); 15418 if (eq->entry_count < 256) { 15419 status = -EINVAL; 15420 goto out; 15421 } 15422 fallthrough; /* otherwise default to smallest count */ 15423 case 256: 15424 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15425 LPFC_EQ_CNT_256); 15426 break; 15427 case 512: 15428 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15429 LPFC_EQ_CNT_512); 15430 break; 15431 case 1024: 15432 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15433 LPFC_EQ_CNT_1024); 15434 break; 15435 case 2048: 15436 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15437 LPFC_EQ_CNT_2048); 15438 break; 15439 case 4096: 15440 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15441 LPFC_EQ_CNT_4096); 15442 break; 15443 } 15444 list_for_each_entry(dmabuf, &eq->page_list, list) { 15445 memset(dmabuf->virt, 0, hw_page_size); 15446 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15447 putPaddrLow(dmabuf->phys); 15448 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15449 putPaddrHigh(dmabuf->phys); 15450 } 15451 mbox->vport = phba->pport; 15452 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15453 mbox->ctx_buf = NULL; 15454 mbox->ctx_ndlp = NULL; 15455 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15456 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15457 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15458 if (shdr_status || shdr_add_status || rc) { 15459 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15460 "2500 EQ_CREATE mailbox failed with " 15461 "status x%x add_status x%x, mbx status x%x\n", 15462 shdr_status, shdr_add_status, rc); 15463 status = -ENXIO; 15464 } 15465 eq->type = LPFC_EQ; 15466 eq->subtype = LPFC_NONE; 15467 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 15468 if (eq->queue_id == 0xFFFF) 15469 status = -ENXIO; 15470 eq->host_index = 0; 15471 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 15472 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 15473 out: 15474 mempool_free(mbox, phba->mbox_mem_pool); 15475 return status; 15476 } 15477 15478 static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget) 15479 { 15480 struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop); 15481 15482 __lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL); 15483 15484 return 1; 15485 } 15486 15487 /** 15488 * lpfc_cq_create - Create a Completion Queue on the HBA 15489 * @phba: HBA structure that indicates port to create a queue on. 15490 * @cq: The queue structure to use to create the completion queue. 15491 * @eq: The event queue to bind this completion queue to. 15492 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 15493 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 15494 * 15495 * This function creates a completion queue, as detailed in @wq, on a port, 15496 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 15497 * 15498 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15499 * is used to get the entry count and entry size that are necessary to 15500 * determine the number of pages to allocate and use for this queue. The @eq 15501 * is used to indicate which event queue to bind this completion queue to. This 15502 * function will send the CQ_CREATE mailbox command to the HBA to setup the 15503 * completion queue. This function is asynchronous and will wait for the mailbox 15504 * command to finish before continuing. 15505 * 15506 * On success this function will return a zero. If unable to allocate enough 15507 * memory this function will return -ENOMEM. If the queue create mailbox command 15508 * fails this function will return -ENXIO. 15509 **/ 15510 int 15511 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 15512 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 15513 { 15514 struct lpfc_mbx_cq_create *cq_create; 15515 struct lpfc_dmabuf *dmabuf; 15516 LPFC_MBOXQ_t *mbox; 15517 int rc, length, status = 0; 15518 uint32_t shdr_status, shdr_add_status; 15519 union lpfc_sli4_cfg_shdr *shdr; 15520 15521 /* sanity check on queue memory */ 15522 if (!cq || !eq) 15523 return -ENODEV; 15524 15525 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15526 if (!mbox) 15527 return -ENOMEM; 15528 length = (sizeof(struct lpfc_mbx_cq_create) - 15529 sizeof(struct lpfc_sli4_cfg_mhdr)); 15530 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15531 LPFC_MBOX_OPCODE_CQ_CREATE, 15532 length, LPFC_SLI4_MBX_EMBED); 15533 cq_create = &mbox->u.mqe.un.cq_create; 15534 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 15535 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 15536 cq->page_count); 15537 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 15538 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 15539 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15540 phba->sli4_hba.pc_sli4_params.cqv); 15541 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 15542 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 15543 (cq->page_size / SLI4_PAGE_SIZE)); 15544 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 15545 eq->queue_id); 15546 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 15547 phba->sli4_hba.pc_sli4_params.cqav); 15548 } else { 15549 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 15550 eq->queue_id); 15551 } 15552 switch (cq->entry_count) { 15553 case 2048: 15554 case 4096: 15555 if (phba->sli4_hba.pc_sli4_params.cqv == 15556 LPFC_Q_CREATE_VERSION_2) { 15557 cq_create->u.request.context.lpfc_cq_context_count = 15558 cq->entry_count; 15559 bf_set(lpfc_cq_context_count, 15560 &cq_create->u.request.context, 15561 LPFC_CQ_CNT_WORD7); 15562 break; 15563 } 15564 fallthrough; 15565 default: 15566 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15567 "0361 Unsupported CQ count: " 15568 "entry cnt %d sz %d pg cnt %d\n", 15569 cq->entry_count, cq->entry_size, 15570 cq->page_count); 15571 if (cq->entry_count < 256) { 15572 status = -EINVAL; 15573 goto out; 15574 } 15575 fallthrough; /* otherwise default to smallest count */ 15576 case 256: 15577 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15578 LPFC_CQ_CNT_256); 15579 break; 15580 case 512: 15581 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15582 LPFC_CQ_CNT_512); 15583 break; 15584 case 1024: 15585 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15586 LPFC_CQ_CNT_1024); 15587 break; 15588 } 15589 list_for_each_entry(dmabuf, &cq->page_list, list) { 15590 memset(dmabuf->virt, 0, cq->page_size); 15591 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15592 putPaddrLow(dmabuf->phys); 15593 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15594 putPaddrHigh(dmabuf->phys); 15595 } 15596 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15597 15598 /* The IOCTL status is embedded in the mailbox subheader. */ 15599 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15600 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15601 if (shdr_status || shdr_add_status || rc) { 15602 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15603 "2501 CQ_CREATE mailbox failed with " 15604 "status x%x add_status x%x, mbx status x%x\n", 15605 shdr_status, shdr_add_status, rc); 15606 status = -ENXIO; 15607 goto out; 15608 } 15609 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15610 if (cq->queue_id == 0xFFFF) { 15611 status = -ENXIO; 15612 goto out; 15613 } 15614 /* link the cq onto the parent eq child list */ 15615 list_add_tail(&cq->list, &eq->child_list); 15616 /* Set up completion queue's type and subtype */ 15617 cq->type = type; 15618 cq->subtype = subtype; 15619 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15620 cq->assoc_qid = eq->queue_id; 15621 cq->assoc_qp = eq; 15622 cq->host_index = 0; 15623 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 15624 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 15625 15626 if (cq->queue_id > phba->sli4_hba.cq_max) 15627 phba->sli4_hba.cq_max = cq->queue_id; 15628 15629 irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler); 15630 out: 15631 mempool_free(mbox, phba->mbox_mem_pool); 15632 return status; 15633 } 15634 15635 /** 15636 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 15637 * @phba: HBA structure that indicates port to create a queue on. 15638 * @cqp: The queue structure array to use to create the completion queues. 15639 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 15640 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 15641 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 15642 * 15643 * This function creates a set of completion queue, s to support MRQ 15644 * as detailed in @cqp, on a port, 15645 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 15646 * 15647 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15648 * is used to get the entry count and entry size that are necessary to 15649 * determine the number of pages to allocate and use for this queue. The @eq 15650 * is used to indicate which event queue to bind this completion queue to. This 15651 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 15652 * completion queue. This function is asynchronous and will wait for the mailbox 15653 * command to finish before continuing. 15654 * 15655 * On success this function will return a zero. If unable to allocate enough 15656 * memory this function will return -ENOMEM. If the queue create mailbox command 15657 * fails this function will return -ENXIO. 15658 **/ 15659 int 15660 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 15661 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 15662 uint32_t subtype) 15663 { 15664 struct lpfc_queue *cq; 15665 struct lpfc_queue *eq; 15666 struct lpfc_mbx_cq_create_set *cq_set; 15667 struct lpfc_dmabuf *dmabuf; 15668 LPFC_MBOXQ_t *mbox; 15669 int rc, length, alloclen, status = 0; 15670 int cnt, idx, numcq, page_idx = 0; 15671 uint32_t shdr_status, shdr_add_status; 15672 union lpfc_sli4_cfg_shdr *shdr; 15673 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15674 15675 /* sanity check on queue memory */ 15676 numcq = phba->cfg_nvmet_mrq; 15677 if (!cqp || !hdwq || !numcq) 15678 return -ENODEV; 15679 15680 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15681 if (!mbox) 15682 return -ENOMEM; 15683 15684 length = sizeof(struct lpfc_mbx_cq_create_set); 15685 length += ((numcq * cqp[0]->page_count) * 15686 sizeof(struct dma_address)); 15687 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15688 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 15689 LPFC_SLI4_MBX_NEMBED); 15690 if (alloclen < length) { 15691 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15692 "3098 Allocated DMA memory size (%d) is " 15693 "less than the requested DMA memory size " 15694 "(%d)\n", alloclen, length); 15695 status = -ENOMEM; 15696 goto out; 15697 } 15698 cq_set = mbox->sge_array->addr[0]; 15699 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 15700 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 15701 15702 for (idx = 0; idx < numcq; idx++) { 15703 cq = cqp[idx]; 15704 eq = hdwq[idx].hba_eq; 15705 if (!cq || !eq) { 15706 status = -ENOMEM; 15707 goto out; 15708 } 15709 if (!phba->sli4_hba.pc_sli4_params.supported) 15710 hw_page_size = cq->page_size; 15711 15712 switch (idx) { 15713 case 0: 15714 bf_set(lpfc_mbx_cq_create_set_page_size, 15715 &cq_set->u.request, 15716 (hw_page_size / SLI4_PAGE_SIZE)); 15717 bf_set(lpfc_mbx_cq_create_set_num_pages, 15718 &cq_set->u.request, cq->page_count); 15719 bf_set(lpfc_mbx_cq_create_set_evt, 15720 &cq_set->u.request, 1); 15721 bf_set(lpfc_mbx_cq_create_set_valid, 15722 &cq_set->u.request, 1); 15723 bf_set(lpfc_mbx_cq_create_set_cqe_size, 15724 &cq_set->u.request, 0); 15725 bf_set(lpfc_mbx_cq_create_set_num_cq, 15726 &cq_set->u.request, numcq); 15727 bf_set(lpfc_mbx_cq_create_set_autovalid, 15728 &cq_set->u.request, 15729 phba->sli4_hba.pc_sli4_params.cqav); 15730 switch (cq->entry_count) { 15731 case 2048: 15732 case 4096: 15733 if (phba->sli4_hba.pc_sli4_params.cqv == 15734 LPFC_Q_CREATE_VERSION_2) { 15735 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15736 &cq_set->u.request, 15737 cq->entry_count); 15738 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15739 &cq_set->u.request, 15740 LPFC_CQ_CNT_WORD7); 15741 break; 15742 } 15743 fallthrough; 15744 default: 15745 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15746 "3118 Bad CQ count. (%d)\n", 15747 cq->entry_count); 15748 if (cq->entry_count < 256) { 15749 status = -EINVAL; 15750 goto out; 15751 } 15752 fallthrough; /* otherwise default to smallest */ 15753 case 256: 15754 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15755 &cq_set->u.request, LPFC_CQ_CNT_256); 15756 break; 15757 case 512: 15758 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15759 &cq_set->u.request, LPFC_CQ_CNT_512); 15760 break; 15761 case 1024: 15762 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15763 &cq_set->u.request, LPFC_CQ_CNT_1024); 15764 break; 15765 } 15766 bf_set(lpfc_mbx_cq_create_set_eq_id0, 15767 &cq_set->u.request, eq->queue_id); 15768 break; 15769 case 1: 15770 bf_set(lpfc_mbx_cq_create_set_eq_id1, 15771 &cq_set->u.request, eq->queue_id); 15772 break; 15773 case 2: 15774 bf_set(lpfc_mbx_cq_create_set_eq_id2, 15775 &cq_set->u.request, eq->queue_id); 15776 break; 15777 case 3: 15778 bf_set(lpfc_mbx_cq_create_set_eq_id3, 15779 &cq_set->u.request, eq->queue_id); 15780 break; 15781 case 4: 15782 bf_set(lpfc_mbx_cq_create_set_eq_id4, 15783 &cq_set->u.request, eq->queue_id); 15784 break; 15785 case 5: 15786 bf_set(lpfc_mbx_cq_create_set_eq_id5, 15787 &cq_set->u.request, eq->queue_id); 15788 break; 15789 case 6: 15790 bf_set(lpfc_mbx_cq_create_set_eq_id6, 15791 &cq_set->u.request, eq->queue_id); 15792 break; 15793 case 7: 15794 bf_set(lpfc_mbx_cq_create_set_eq_id7, 15795 &cq_set->u.request, eq->queue_id); 15796 break; 15797 case 8: 15798 bf_set(lpfc_mbx_cq_create_set_eq_id8, 15799 &cq_set->u.request, eq->queue_id); 15800 break; 15801 case 9: 15802 bf_set(lpfc_mbx_cq_create_set_eq_id9, 15803 &cq_set->u.request, eq->queue_id); 15804 break; 15805 case 10: 15806 bf_set(lpfc_mbx_cq_create_set_eq_id10, 15807 &cq_set->u.request, eq->queue_id); 15808 break; 15809 case 11: 15810 bf_set(lpfc_mbx_cq_create_set_eq_id11, 15811 &cq_set->u.request, eq->queue_id); 15812 break; 15813 case 12: 15814 bf_set(lpfc_mbx_cq_create_set_eq_id12, 15815 &cq_set->u.request, eq->queue_id); 15816 break; 15817 case 13: 15818 bf_set(lpfc_mbx_cq_create_set_eq_id13, 15819 &cq_set->u.request, eq->queue_id); 15820 break; 15821 case 14: 15822 bf_set(lpfc_mbx_cq_create_set_eq_id14, 15823 &cq_set->u.request, eq->queue_id); 15824 break; 15825 case 15: 15826 bf_set(lpfc_mbx_cq_create_set_eq_id15, 15827 &cq_set->u.request, eq->queue_id); 15828 break; 15829 } 15830 15831 /* link the cq onto the parent eq child list */ 15832 list_add_tail(&cq->list, &eq->child_list); 15833 /* Set up completion queue's type and subtype */ 15834 cq->type = type; 15835 cq->subtype = subtype; 15836 cq->assoc_qid = eq->queue_id; 15837 cq->assoc_qp = eq; 15838 cq->host_index = 0; 15839 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 15840 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 15841 cq->entry_count); 15842 cq->chann = idx; 15843 15844 rc = 0; 15845 list_for_each_entry(dmabuf, &cq->page_list, list) { 15846 memset(dmabuf->virt, 0, hw_page_size); 15847 cnt = page_idx + dmabuf->buffer_tag; 15848 cq_set->u.request.page[cnt].addr_lo = 15849 putPaddrLow(dmabuf->phys); 15850 cq_set->u.request.page[cnt].addr_hi = 15851 putPaddrHigh(dmabuf->phys); 15852 rc++; 15853 } 15854 page_idx += rc; 15855 } 15856 15857 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15858 15859 /* The IOCTL status is embedded in the mailbox subheader. */ 15860 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15861 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15862 if (shdr_status || shdr_add_status || rc) { 15863 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15864 "3119 CQ_CREATE_SET mailbox failed with " 15865 "status x%x add_status x%x, mbx status x%x\n", 15866 shdr_status, shdr_add_status, rc); 15867 status = -ENXIO; 15868 goto out; 15869 } 15870 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 15871 if (rc == 0xFFFF) { 15872 status = -ENXIO; 15873 goto out; 15874 } 15875 15876 for (idx = 0; idx < numcq; idx++) { 15877 cq = cqp[idx]; 15878 cq->queue_id = rc + idx; 15879 if (cq->queue_id > phba->sli4_hba.cq_max) 15880 phba->sli4_hba.cq_max = cq->queue_id; 15881 } 15882 15883 out: 15884 lpfc_sli4_mbox_cmd_free(phba, mbox); 15885 return status; 15886 } 15887 15888 /** 15889 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 15890 * @phba: HBA structure that indicates port to create a queue on. 15891 * @mq: The queue structure to use to create the mailbox queue. 15892 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 15893 * @cq: The completion queue to associate with this cq. 15894 * 15895 * This function provides failback (fb) functionality when the 15896 * mq_create_ext fails on older FW generations. It's purpose is identical 15897 * to mq_create_ext otherwise. 15898 * 15899 * This routine cannot fail as all attributes were previously accessed and 15900 * initialized in mq_create_ext. 15901 **/ 15902 static void 15903 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 15904 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 15905 { 15906 struct lpfc_mbx_mq_create *mq_create; 15907 struct lpfc_dmabuf *dmabuf; 15908 int length; 15909 15910 length = (sizeof(struct lpfc_mbx_mq_create) - 15911 sizeof(struct lpfc_sli4_cfg_mhdr)); 15912 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15913 LPFC_MBOX_OPCODE_MQ_CREATE, 15914 length, LPFC_SLI4_MBX_EMBED); 15915 mq_create = &mbox->u.mqe.un.mq_create; 15916 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 15917 mq->page_count); 15918 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 15919 cq->queue_id); 15920 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 15921 switch (mq->entry_count) { 15922 case 16: 15923 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15924 LPFC_MQ_RING_SIZE_16); 15925 break; 15926 case 32: 15927 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15928 LPFC_MQ_RING_SIZE_32); 15929 break; 15930 case 64: 15931 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15932 LPFC_MQ_RING_SIZE_64); 15933 break; 15934 case 128: 15935 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15936 LPFC_MQ_RING_SIZE_128); 15937 break; 15938 } 15939 list_for_each_entry(dmabuf, &mq->page_list, list) { 15940 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15941 putPaddrLow(dmabuf->phys); 15942 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15943 putPaddrHigh(dmabuf->phys); 15944 } 15945 } 15946 15947 /** 15948 * lpfc_mq_create - Create a mailbox Queue on the HBA 15949 * @phba: HBA structure that indicates port to create a queue on. 15950 * @mq: The queue structure to use to create the mailbox queue. 15951 * @cq: The completion queue to associate with this cq. 15952 * @subtype: The queue's subtype. 15953 * 15954 * This function creates a mailbox queue, as detailed in @mq, on a port, 15955 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 15956 * 15957 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15958 * is used to get the entry count and entry size that are necessary to 15959 * determine the number of pages to allocate and use for this queue. This 15960 * function will send the MQ_CREATE mailbox command to the HBA to setup the 15961 * mailbox queue. This function is asynchronous and will wait for the mailbox 15962 * command to finish before continuing. 15963 * 15964 * On success this function will return a zero. If unable to allocate enough 15965 * memory this function will return -ENOMEM. If the queue create mailbox command 15966 * fails this function will return -ENXIO. 15967 **/ 15968 int32_t 15969 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 15970 struct lpfc_queue *cq, uint32_t subtype) 15971 { 15972 struct lpfc_mbx_mq_create *mq_create; 15973 struct lpfc_mbx_mq_create_ext *mq_create_ext; 15974 struct lpfc_dmabuf *dmabuf; 15975 LPFC_MBOXQ_t *mbox; 15976 int rc, length, status = 0; 15977 uint32_t shdr_status, shdr_add_status; 15978 union lpfc_sli4_cfg_shdr *shdr; 15979 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15980 15981 /* sanity check on queue memory */ 15982 if (!mq || !cq) 15983 return -ENODEV; 15984 if (!phba->sli4_hba.pc_sli4_params.supported) 15985 hw_page_size = SLI4_PAGE_SIZE; 15986 15987 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15988 if (!mbox) 15989 return -ENOMEM; 15990 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 15991 sizeof(struct lpfc_sli4_cfg_mhdr)); 15992 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15993 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 15994 length, LPFC_SLI4_MBX_EMBED); 15995 15996 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 15997 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 15998 bf_set(lpfc_mbx_mq_create_ext_num_pages, 15999 &mq_create_ext->u.request, mq->page_count); 16000 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 16001 &mq_create_ext->u.request, 1); 16002 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 16003 &mq_create_ext->u.request, 1); 16004 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 16005 &mq_create_ext->u.request, 1); 16006 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 16007 &mq_create_ext->u.request, 1); 16008 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 16009 &mq_create_ext->u.request, 1); 16010 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 16011 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16012 phba->sli4_hba.pc_sli4_params.mqv); 16013 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 16014 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 16015 cq->queue_id); 16016 else 16017 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 16018 cq->queue_id); 16019 switch (mq->entry_count) { 16020 default: 16021 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16022 "0362 Unsupported MQ count. (%d)\n", 16023 mq->entry_count); 16024 if (mq->entry_count < 16) { 16025 status = -EINVAL; 16026 goto out; 16027 } 16028 fallthrough; /* otherwise default to smallest count */ 16029 case 16: 16030 bf_set(lpfc_mq_context_ring_size, 16031 &mq_create_ext->u.request.context, 16032 LPFC_MQ_RING_SIZE_16); 16033 break; 16034 case 32: 16035 bf_set(lpfc_mq_context_ring_size, 16036 &mq_create_ext->u.request.context, 16037 LPFC_MQ_RING_SIZE_32); 16038 break; 16039 case 64: 16040 bf_set(lpfc_mq_context_ring_size, 16041 &mq_create_ext->u.request.context, 16042 LPFC_MQ_RING_SIZE_64); 16043 break; 16044 case 128: 16045 bf_set(lpfc_mq_context_ring_size, 16046 &mq_create_ext->u.request.context, 16047 LPFC_MQ_RING_SIZE_128); 16048 break; 16049 } 16050 list_for_each_entry(dmabuf, &mq->page_list, list) { 16051 memset(dmabuf->virt, 0, hw_page_size); 16052 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16053 putPaddrLow(dmabuf->phys); 16054 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16055 putPaddrHigh(dmabuf->phys); 16056 } 16057 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16058 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16059 &mq_create_ext->u.response); 16060 if (rc != MBX_SUCCESS) { 16061 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16062 "2795 MQ_CREATE_EXT failed with " 16063 "status x%x. Failback to MQ_CREATE.\n", 16064 rc); 16065 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16066 mq_create = &mbox->u.mqe.un.mq_create; 16067 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16068 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16069 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16070 &mq_create->u.response); 16071 } 16072 16073 /* The IOCTL status is embedded in the mailbox subheader. */ 16074 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16075 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16076 if (shdr_status || shdr_add_status || rc) { 16077 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16078 "2502 MQ_CREATE mailbox failed with " 16079 "status x%x add_status x%x, mbx status x%x\n", 16080 shdr_status, shdr_add_status, rc); 16081 status = -ENXIO; 16082 goto out; 16083 } 16084 if (mq->queue_id == 0xFFFF) { 16085 status = -ENXIO; 16086 goto out; 16087 } 16088 mq->type = LPFC_MQ; 16089 mq->assoc_qid = cq->queue_id; 16090 mq->subtype = subtype; 16091 mq->host_index = 0; 16092 mq->hba_index = 0; 16093 16094 /* link the mq onto the parent cq child list */ 16095 list_add_tail(&mq->list, &cq->child_list); 16096 out: 16097 mempool_free(mbox, phba->mbox_mem_pool); 16098 return status; 16099 } 16100 16101 /** 16102 * lpfc_wq_create - Create a Work Queue on the HBA 16103 * @phba: HBA structure that indicates port to create a queue on. 16104 * @wq: The queue structure to use to create the work queue. 16105 * @cq: The completion queue to bind this work queue to. 16106 * @subtype: The subtype of the work queue indicating its functionality. 16107 * 16108 * This function creates a work queue, as detailed in @wq, on a port, described 16109 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16110 * 16111 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16112 * is used to get the entry count and entry size that are necessary to 16113 * determine the number of pages to allocate and use for this queue. The @cq 16114 * is used to indicate which completion queue to bind this work queue to. This 16115 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16116 * work queue. This function is asynchronous and will wait for the mailbox 16117 * command to finish before continuing. 16118 * 16119 * On success this function will return a zero. If unable to allocate enough 16120 * memory this function will return -ENOMEM. If the queue create mailbox command 16121 * fails this function will return -ENXIO. 16122 **/ 16123 int 16124 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16125 struct lpfc_queue *cq, uint32_t subtype) 16126 { 16127 struct lpfc_mbx_wq_create *wq_create; 16128 struct lpfc_dmabuf *dmabuf; 16129 LPFC_MBOXQ_t *mbox; 16130 int rc, length, status = 0; 16131 uint32_t shdr_status, shdr_add_status; 16132 union lpfc_sli4_cfg_shdr *shdr; 16133 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16134 struct dma_address *page; 16135 void __iomem *bar_memmap_p; 16136 uint32_t db_offset; 16137 uint16_t pci_barset; 16138 uint8_t dpp_barset; 16139 uint32_t dpp_offset; 16140 uint8_t wq_create_version; 16141 #ifdef CONFIG_X86 16142 unsigned long pg_addr; 16143 #endif 16144 16145 /* sanity check on queue memory */ 16146 if (!wq || !cq) 16147 return -ENODEV; 16148 if (!phba->sli4_hba.pc_sli4_params.supported) 16149 hw_page_size = wq->page_size; 16150 16151 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16152 if (!mbox) 16153 return -ENOMEM; 16154 length = (sizeof(struct lpfc_mbx_wq_create) - 16155 sizeof(struct lpfc_sli4_cfg_mhdr)); 16156 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16157 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16158 length, LPFC_SLI4_MBX_EMBED); 16159 wq_create = &mbox->u.mqe.un.wq_create; 16160 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16161 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16162 wq->page_count); 16163 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16164 cq->queue_id); 16165 16166 /* wqv is the earliest version supported, NOT the latest */ 16167 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16168 phba->sli4_hba.pc_sli4_params.wqv); 16169 16170 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16171 (wq->page_size > SLI4_PAGE_SIZE)) 16172 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16173 else 16174 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16175 16176 switch (wq_create_version) { 16177 case LPFC_Q_CREATE_VERSION_1: 16178 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16179 wq->entry_count); 16180 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16181 LPFC_Q_CREATE_VERSION_1); 16182 16183 switch (wq->entry_size) { 16184 default: 16185 case 64: 16186 bf_set(lpfc_mbx_wq_create_wqe_size, 16187 &wq_create->u.request_1, 16188 LPFC_WQ_WQE_SIZE_64); 16189 break; 16190 case 128: 16191 bf_set(lpfc_mbx_wq_create_wqe_size, 16192 &wq_create->u.request_1, 16193 LPFC_WQ_WQE_SIZE_128); 16194 break; 16195 } 16196 /* Request DPP by default */ 16197 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16198 bf_set(lpfc_mbx_wq_create_page_size, 16199 &wq_create->u.request_1, 16200 (wq->page_size / SLI4_PAGE_SIZE)); 16201 page = wq_create->u.request_1.page; 16202 break; 16203 default: 16204 page = wq_create->u.request.page; 16205 break; 16206 } 16207 16208 list_for_each_entry(dmabuf, &wq->page_list, list) { 16209 memset(dmabuf->virt, 0, hw_page_size); 16210 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16211 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16212 } 16213 16214 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16215 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16216 16217 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16218 /* The IOCTL status is embedded in the mailbox subheader. */ 16219 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16220 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16221 if (shdr_status || shdr_add_status || rc) { 16222 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16223 "2503 WQ_CREATE mailbox failed with " 16224 "status x%x add_status x%x, mbx status x%x\n", 16225 shdr_status, shdr_add_status, rc); 16226 status = -ENXIO; 16227 goto out; 16228 } 16229 16230 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16231 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16232 &wq_create->u.response); 16233 else 16234 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16235 &wq_create->u.response_1); 16236 16237 if (wq->queue_id == 0xFFFF) { 16238 status = -ENXIO; 16239 goto out; 16240 } 16241 16242 wq->db_format = LPFC_DB_LIST_FORMAT; 16243 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 16244 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16245 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 16246 &wq_create->u.response); 16247 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 16248 (wq->db_format != LPFC_DB_RING_FORMAT)) { 16249 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16250 "3265 WQ[%d] doorbell format " 16251 "not supported: x%x\n", 16252 wq->queue_id, wq->db_format); 16253 status = -EINVAL; 16254 goto out; 16255 } 16256 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 16257 &wq_create->u.response); 16258 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16259 pci_barset); 16260 if (!bar_memmap_p) { 16261 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16262 "3263 WQ[%d] failed to memmap " 16263 "pci barset:x%x\n", 16264 wq->queue_id, pci_barset); 16265 status = -ENOMEM; 16266 goto out; 16267 } 16268 db_offset = wq_create->u.response.doorbell_offset; 16269 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 16270 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 16271 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16272 "3252 WQ[%d] doorbell offset " 16273 "not supported: x%x\n", 16274 wq->queue_id, db_offset); 16275 status = -EINVAL; 16276 goto out; 16277 } 16278 wq->db_regaddr = bar_memmap_p + db_offset; 16279 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16280 "3264 WQ[%d]: barset:x%x, offset:x%x, " 16281 "format:x%x\n", wq->queue_id, 16282 pci_barset, db_offset, wq->db_format); 16283 } else 16284 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16285 } else { 16286 /* Check if DPP was honored by the firmware */ 16287 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 16288 &wq_create->u.response_1); 16289 if (wq->dpp_enable) { 16290 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 16291 &wq_create->u.response_1); 16292 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16293 pci_barset); 16294 if (!bar_memmap_p) { 16295 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16296 "3267 WQ[%d] failed to memmap " 16297 "pci barset:x%x\n", 16298 wq->queue_id, pci_barset); 16299 status = -ENOMEM; 16300 goto out; 16301 } 16302 db_offset = wq_create->u.response_1.doorbell_offset; 16303 wq->db_regaddr = bar_memmap_p + db_offset; 16304 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 16305 &wq_create->u.response_1); 16306 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 16307 &wq_create->u.response_1); 16308 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16309 dpp_barset); 16310 if (!bar_memmap_p) { 16311 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16312 "3268 WQ[%d] failed to memmap " 16313 "pci barset:x%x\n", 16314 wq->queue_id, dpp_barset); 16315 status = -ENOMEM; 16316 goto out; 16317 } 16318 dpp_offset = wq_create->u.response_1.dpp_offset; 16319 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 16320 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16321 "3271 WQ[%d]: barset:x%x, offset:x%x, " 16322 "dpp_id:x%x dpp_barset:x%x " 16323 "dpp_offset:x%x\n", 16324 wq->queue_id, pci_barset, db_offset, 16325 wq->dpp_id, dpp_barset, dpp_offset); 16326 16327 #ifdef CONFIG_X86 16328 /* Enable combined writes for DPP aperture */ 16329 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 16330 rc = set_memory_wc(pg_addr, 1); 16331 if (rc) { 16332 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16333 "3272 Cannot setup Combined " 16334 "Write on WQ[%d] - disable DPP\n", 16335 wq->queue_id); 16336 phba->cfg_enable_dpp = 0; 16337 } 16338 #else 16339 phba->cfg_enable_dpp = 0; 16340 #endif 16341 } else 16342 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16343 } 16344 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 16345 if (wq->pring == NULL) { 16346 status = -ENOMEM; 16347 goto out; 16348 } 16349 wq->type = LPFC_WQ; 16350 wq->assoc_qid = cq->queue_id; 16351 wq->subtype = subtype; 16352 wq->host_index = 0; 16353 wq->hba_index = 0; 16354 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 16355 16356 /* link the wq onto the parent cq child list */ 16357 list_add_tail(&wq->list, &cq->child_list); 16358 out: 16359 mempool_free(mbox, phba->mbox_mem_pool); 16360 return status; 16361 } 16362 16363 /** 16364 * lpfc_rq_create - Create a Receive Queue on the HBA 16365 * @phba: HBA structure that indicates port to create a queue on. 16366 * @hrq: The queue structure to use to create the header receive queue. 16367 * @drq: The queue structure to use to create the data receive queue. 16368 * @cq: The completion queue to bind this work queue to. 16369 * @subtype: The subtype of the work queue indicating its functionality. 16370 * 16371 * This function creates a receive buffer queue pair , as detailed in @hrq and 16372 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 16373 * to the HBA. 16374 * 16375 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 16376 * struct is used to get the entry count that is necessary to determine the 16377 * number of pages to use for this queue. The @cq is used to indicate which 16378 * completion queue to bind received buffers that are posted to these queues to. 16379 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 16380 * receive queue pair. This function is asynchronous and will wait for the 16381 * mailbox command to finish before continuing. 16382 * 16383 * On success this function will return a zero. If unable to allocate enough 16384 * memory this function will return -ENOMEM. If the queue create mailbox command 16385 * fails this function will return -ENXIO. 16386 **/ 16387 int 16388 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 16389 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 16390 { 16391 struct lpfc_mbx_rq_create *rq_create; 16392 struct lpfc_dmabuf *dmabuf; 16393 LPFC_MBOXQ_t *mbox; 16394 int rc, length, status = 0; 16395 uint32_t shdr_status, shdr_add_status; 16396 union lpfc_sli4_cfg_shdr *shdr; 16397 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16398 void __iomem *bar_memmap_p; 16399 uint32_t db_offset; 16400 uint16_t pci_barset; 16401 16402 /* sanity check on queue memory */ 16403 if (!hrq || !drq || !cq) 16404 return -ENODEV; 16405 if (!phba->sli4_hba.pc_sli4_params.supported) 16406 hw_page_size = SLI4_PAGE_SIZE; 16407 16408 if (hrq->entry_count != drq->entry_count) 16409 return -EINVAL; 16410 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16411 if (!mbox) 16412 return -ENOMEM; 16413 length = (sizeof(struct lpfc_mbx_rq_create) - 16414 sizeof(struct lpfc_sli4_cfg_mhdr)); 16415 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16416 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 16417 length, LPFC_SLI4_MBX_EMBED); 16418 rq_create = &mbox->u.mqe.un.rq_create; 16419 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 16420 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16421 phba->sli4_hba.pc_sli4_params.rqv); 16422 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 16423 bf_set(lpfc_rq_context_rqe_count_1, 16424 &rq_create->u.request.context, 16425 hrq->entry_count); 16426 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 16427 bf_set(lpfc_rq_context_rqe_size, 16428 &rq_create->u.request.context, 16429 LPFC_RQE_SIZE_8); 16430 bf_set(lpfc_rq_context_page_size, 16431 &rq_create->u.request.context, 16432 LPFC_RQ_PAGE_SIZE_4096); 16433 } else { 16434 switch (hrq->entry_count) { 16435 default: 16436 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16437 "2535 Unsupported RQ count. (%d)\n", 16438 hrq->entry_count); 16439 if (hrq->entry_count < 512) { 16440 status = -EINVAL; 16441 goto out; 16442 } 16443 fallthrough; /* otherwise default to smallest count */ 16444 case 512: 16445 bf_set(lpfc_rq_context_rqe_count, 16446 &rq_create->u.request.context, 16447 LPFC_RQ_RING_SIZE_512); 16448 break; 16449 case 1024: 16450 bf_set(lpfc_rq_context_rqe_count, 16451 &rq_create->u.request.context, 16452 LPFC_RQ_RING_SIZE_1024); 16453 break; 16454 case 2048: 16455 bf_set(lpfc_rq_context_rqe_count, 16456 &rq_create->u.request.context, 16457 LPFC_RQ_RING_SIZE_2048); 16458 break; 16459 case 4096: 16460 bf_set(lpfc_rq_context_rqe_count, 16461 &rq_create->u.request.context, 16462 LPFC_RQ_RING_SIZE_4096); 16463 break; 16464 } 16465 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 16466 LPFC_HDR_BUF_SIZE); 16467 } 16468 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16469 cq->queue_id); 16470 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16471 hrq->page_count); 16472 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16473 memset(dmabuf->virt, 0, hw_page_size); 16474 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16475 putPaddrLow(dmabuf->phys); 16476 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16477 putPaddrHigh(dmabuf->phys); 16478 } 16479 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16480 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16481 16482 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16483 /* The IOCTL status is embedded in the mailbox subheader. */ 16484 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16485 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16486 if (shdr_status || shdr_add_status || rc) { 16487 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16488 "2504 RQ_CREATE mailbox failed with " 16489 "status x%x add_status x%x, mbx status x%x\n", 16490 shdr_status, shdr_add_status, rc); 16491 status = -ENXIO; 16492 goto out; 16493 } 16494 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16495 if (hrq->queue_id == 0xFFFF) { 16496 status = -ENXIO; 16497 goto out; 16498 } 16499 16500 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16501 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 16502 &rq_create->u.response); 16503 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 16504 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 16505 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16506 "3262 RQ [%d] doorbell format not " 16507 "supported: x%x\n", hrq->queue_id, 16508 hrq->db_format); 16509 status = -EINVAL; 16510 goto out; 16511 } 16512 16513 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 16514 &rq_create->u.response); 16515 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 16516 if (!bar_memmap_p) { 16517 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16518 "3269 RQ[%d] failed to memmap pci " 16519 "barset:x%x\n", hrq->queue_id, 16520 pci_barset); 16521 status = -ENOMEM; 16522 goto out; 16523 } 16524 16525 db_offset = rq_create->u.response.doorbell_offset; 16526 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 16527 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 16528 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16529 "3270 RQ[%d] doorbell offset not " 16530 "supported: x%x\n", hrq->queue_id, 16531 db_offset); 16532 status = -EINVAL; 16533 goto out; 16534 } 16535 hrq->db_regaddr = bar_memmap_p + db_offset; 16536 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16537 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 16538 "format:x%x\n", hrq->queue_id, pci_barset, 16539 db_offset, hrq->db_format); 16540 } else { 16541 hrq->db_format = LPFC_DB_RING_FORMAT; 16542 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16543 } 16544 hrq->type = LPFC_HRQ; 16545 hrq->assoc_qid = cq->queue_id; 16546 hrq->subtype = subtype; 16547 hrq->host_index = 0; 16548 hrq->hba_index = 0; 16549 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16550 16551 /* now create the data queue */ 16552 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16553 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 16554 length, LPFC_SLI4_MBX_EMBED); 16555 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16556 phba->sli4_hba.pc_sli4_params.rqv); 16557 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 16558 bf_set(lpfc_rq_context_rqe_count_1, 16559 &rq_create->u.request.context, hrq->entry_count); 16560 if (subtype == LPFC_NVMET) 16561 rq_create->u.request.context.buffer_size = 16562 LPFC_NVMET_DATA_BUF_SIZE; 16563 else 16564 rq_create->u.request.context.buffer_size = 16565 LPFC_DATA_BUF_SIZE; 16566 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 16567 LPFC_RQE_SIZE_8); 16568 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 16569 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16570 } else { 16571 switch (drq->entry_count) { 16572 default: 16573 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16574 "2536 Unsupported RQ count. (%d)\n", 16575 drq->entry_count); 16576 if (drq->entry_count < 512) { 16577 status = -EINVAL; 16578 goto out; 16579 } 16580 fallthrough; /* otherwise default to smallest count */ 16581 case 512: 16582 bf_set(lpfc_rq_context_rqe_count, 16583 &rq_create->u.request.context, 16584 LPFC_RQ_RING_SIZE_512); 16585 break; 16586 case 1024: 16587 bf_set(lpfc_rq_context_rqe_count, 16588 &rq_create->u.request.context, 16589 LPFC_RQ_RING_SIZE_1024); 16590 break; 16591 case 2048: 16592 bf_set(lpfc_rq_context_rqe_count, 16593 &rq_create->u.request.context, 16594 LPFC_RQ_RING_SIZE_2048); 16595 break; 16596 case 4096: 16597 bf_set(lpfc_rq_context_rqe_count, 16598 &rq_create->u.request.context, 16599 LPFC_RQ_RING_SIZE_4096); 16600 break; 16601 } 16602 if (subtype == LPFC_NVMET) 16603 bf_set(lpfc_rq_context_buf_size, 16604 &rq_create->u.request.context, 16605 LPFC_NVMET_DATA_BUF_SIZE); 16606 else 16607 bf_set(lpfc_rq_context_buf_size, 16608 &rq_create->u.request.context, 16609 LPFC_DATA_BUF_SIZE); 16610 } 16611 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16612 cq->queue_id); 16613 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16614 drq->page_count); 16615 list_for_each_entry(dmabuf, &drq->page_list, list) { 16616 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16617 putPaddrLow(dmabuf->phys); 16618 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16619 putPaddrHigh(dmabuf->phys); 16620 } 16621 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16622 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16623 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16624 /* The IOCTL status is embedded in the mailbox subheader. */ 16625 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 16626 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16627 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16628 if (shdr_status || shdr_add_status || rc) { 16629 status = -ENXIO; 16630 goto out; 16631 } 16632 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16633 if (drq->queue_id == 0xFFFF) { 16634 status = -ENXIO; 16635 goto out; 16636 } 16637 drq->type = LPFC_DRQ; 16638 drq->assoc_qid = cq->queue_id; 16639 drq->subtype = subtype; 16640 drq->host_index = 0; 16641 drq->hba_index = 0; 16642 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16643 16644 /* link the header and data RQs onto the parent cq child list */ 16645 list_add_tail(&hrq->list, &cq->child_list); 16646 list_add_tail(&drq->list, &cq->child_list); 16647 16648 out: 16649 mempool_free(mbox, phba->mbox_mem_pool); 16650 return status; 16651 } 16652 16653 /** 16654 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 16655 * @phba: HBA structure that indicates port to create a queue on. 16656 * @hrqp: The queue structure array to use to create the header receive queues. 16657 * @drqp: The queue structure array to use to create the data receive queues. 16658 * @cqp: The completion queue array to bind these receive queues to. 16659 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16660 * 16661 * This function creates a receive buffer queue pair , as detailed in @hrq and 16662 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 16663 * to the HBA. 16664 * 16665 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 16666 * struct is used to get the entry count that is necessary to determine the 16667 * number of pages to use for this queue. The @cq is used to indicate which 16668 * completion queue to bind received buffers that are posted to these queues to. 16669 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 16670 * receive queue pair. This function is asynchronous and will wait for the 16671 * mailbox command to finish before continuing. 16672 * 16673 * On success this function will return a zero. If unable to allocate enough 16674 * memory this function will return -ENOMEM. If the queue create mailbox command 16675 * fails this function will return -ENXIO. 16676 **/ 16677 int 16678 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 16679 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 16680 uint32_t subtype) 16681 { 16682 struct lpfc_queue *hrq, *drq, *cq; 16683 struct lpfc_mbx_rq_create_v2 *rq_create; 16684 struct lpfc_dmabuf *dmabuf; 16685 LPFC_MBOXQ_t *mbox; 16686 int rc, length, alloclen, status = 0; 16687 int cnt, idx, numrq, page_idx = 0; 16688 uint32_t shdr_status, shdr_add_status; 16689 union lpfc_sli4_cfg_shdr *shdr; 16690 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16691 16692 numrq = phba->cfg_nvmet_mrq; 16693 /* sanity check on array memory */ 16694 if (!hrqp || !drqp || !cqp || !numrq) 16695 return -ENODEV; 16696 if (!phba->sli4_hba.pc_sli4_params.supported) 16697 hw_page_size = SLI4_PAGE_SIZE; 16698 16699 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16700 if (!mbox) 16701 return -ENOMEM; 16702 16703 length = sizeof(struct lpfc_mbx_rq_create_v2); 16704 length += ((2 * numrq * hrqp[0]->page_count) * 16705 sizeof(struct dma_address)); 16706 16707 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16708 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 16709 LPFC_SLI4_MBX_NEMBED); 16710 if (alloclen < length) { 16711 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16712 "3099 Allocated DMA memory size (%d) is " 16713 "less than the requested DMA memory size " 16714 "(%d)\n", alloclen, length); 16715 status = -ENOMEM; 16716 goto out; 16717 } 16718 16719 16720 16721 rq_create = mbox->sge_array->addr[0]; 16722 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 16723 16724 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 16725 cnt = 0; 16726 16727 for (idx = 0; idx < numrq; idx++) { 16728 hrq = hrqp[idx]; 16729 drq = drqp[idx]; 16730 cq = cqp[idx]; 16731 16732 /* sanity check on queue memory */ 16733 if (!hrq || !drq || !cq) { 16734 status = -ENODEV; 16735 goto out; 16736 } 16737 16738 if (hrq->entry_count != drq->entry_count) { 16739 status = -EINVAL; 16740 goto out; 16741 } 16742 16743 if (idx == 0) { 16744 bf_set(lpfc_mbx_rq_create_num_pages, 16745 &rq_create->u.request, 16746 hrq->page_count); 16747 bf_set(lpfc_mbx_rq_create_rq_cnt, 16748 &rq_create->u.request, (numrq * 2)); 16749 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 16750 1); 16751 bf_set(lpfc_rq_context_base_cq, 16752 &rq_create->u.request.context, 16753 cq->queue_id); 16754 bf_set(lpfc_rq_context_data_size, 16755 &rq_create->u.request.context, 16756 LPFC_NVMET_DATA_BUF_SIZE); 16757 bf_set(lpfc_rq_context_hdr_size, 16758 &rq_create->u.request.context, 16759 LPFC_HDR_BUF_SIZE); 16760 bf_set(lpfc_rq_context_rqe_count_1, 16761 &rq_create->u.request.context, 16762 hrq->entry_count); 16763 bf_set(lpfc_rq_context_rqe_size, 16764 &rq_create->u.request.context, 16765 LPFC_RQE_SIZE_8); 16766 bf_set(lpfc_rq_context_page_size, 16767 &rq_create->u.request.context, 16768 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16769 } 16770 rc = 0; 16771 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16772 memset(dmabuf->virt, 0, hw_page_size); 16773 cnt = page_idx + dmabuf->buffer_tag; 16774 rq_create->u.request.page[cnt].addr_lo = 16775 putPaddrLow(dmabuf->phys); 16776 rq_create->u.request.page[cnt].addr_hi = 16777 putPaddrHigh(dmabuf->phys); 16778 rc++; 16779 } 16780 page_idx += rc; 16781 16782 rc = 0; 16783 list_for_each_entry(dmabuf, &drq->page_list, list) { 16784 memset(dmabuf->virt, 0, hw_page_size); 16785 cnt = page_idx + dmabuf->buffer_tag; 16786 rq_create->u.request.page[cnt].addr_lo = 16787 putPaddrLow(dmabuf->phys); 16788 rq_create->u.request.page[cnt].addr_hi = 16789 putPaddrHigh(dmabuf->phys); 16790 rc++; 16791 } 16792 page_idx += rc; 16793 16794 hrq->db_format = LPFC_DB_RING_FORMAT; 16795 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16796 hrq->type = LPFC_HRQ; 16797 hrq->assoc_qid = cq->queue_id; 16798 hrq->subtype = subtype; 16799 hrq->host_index = 0; 16800 hrq->hba_index = 0; 16801 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16802 16803 drq->db_format = LPFC_DB_RING_FORMAT; 16804 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16805 drq->type = LPFC_DRQ; 16806 drq->assoc_qid = cq->queue_id; 16807 drq->subtype = subtype; 16808 drq->host_index = 0; 16809 drq->hba_index = 0; 16810 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16811 16812 list_add_tail(&hrq->list, &cq->child_list); 16813 list_add_tail(&drq->list, &cq->child_list); 16814 } 16815 16816 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16817 /* The IOCTL status is embedded in the mailbox subheader. */ 16818 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16819 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16820 if (shdr_status || shdr_add_status || rc) { 16821 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16822 "3120 RQ_CREATE mailbox failed with " 16823 "status x%x add_status x%x, mbx status x%x\n", 16824 shdr_status, shdr_add_status, rc); 16825 status = -ENXIO; 16826 goto out; 16827 } 16828 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16829 if (rc == 0xFFFF) { 16830 status = -ENXIO; 16831 goto out; 16832 } 16833 16834 /* Initialize all RQs with associated queue id */ 16835 for (idx = 0; idx < numrq; idx++) { 16836 hrq = hrqp[idx]; 16837 hrq->queue_id = rc + (2 * idx); 16838 drq = drqp[idx]; 16839 drq->queue_id = rc + (2 * idx) + 1; 16840 } 16841 16842 out: 16843 lpfc_sli4_mbox_cmd_free(phba, mbox); 16844 return status; 16845 } 16846 16847 /** 16848 * lpfc_eq_destroy - Destroy an event Queue on the HBA 16849 * @phba: HBA structure that indicates port to destroy a queue on. 16850 * @eq: The queue structure associated with the queue to destroy. 16851 * 16852 * This function destroys a queue, as detailed in @eq by sending an mailbox 16853 * command, specific to the type of queue, to the HBA. 16854 * 16855 * The @eq struct is used to get the queue ID of the queue to destroy. 16856 * 16857 * On success this function will return a zero. If the queue destroy mailbox 16858 * command fails this function will return -ENXIO. 16859 **/ 16860 int 16861 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 16862 { 16863 LPFC_MBOXQ_t *mbox; 16864 int rc, length, status = 0; 16865 uint32_t shdr_status, shdr_add_status; 16866 union lpfc_sli4_cfg_shdr *shdr; 16867 16868 /* sanity check on queue memory */ 16869 if (!eq) 16870 return -ENODEV; 16871 16872 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 16873 if (!mbox) 16874 return -ENOMEM; 16875 length = (sizeof(struct lpfc_mbx_eq_destroy) - 16876 sizeof(struct lpfc_sli4_cfg_mhdr)); 16877 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16878 LPFC_MBOX_OPCODE_EQ_DESTROY, 16879 length, LPFC_SLI4_MBX_EMBED); 16880 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 16881 eq->queue_id); 16882 mbox->vport = eq->phba->pport; 16883 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16884 16885 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 16886 /* The IOCTL status is embedded in the mailbox subheader. */ 16887 shdr = (union lpfc_sli4_cfg_shdr *) 16888 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 16889 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16890 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16891 if (shdr_status || shdr_add_status || rc) { 16892 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16893 "2505 EQ_DESTROY mailbox failed with " 16894 "status x%x add_status x%x, mbx status x%x\n", 16895 shdr_status, shdr_add_status, rc); 16896 status = -ENXIO; 16897 } 16898 16899 /* Remove eq from any list */ 16900 list_del_init(&eq->list); 16901 mempool_free(mbox, eq->phba->mbox_mem_pool); 16902 return status; 16903 } 16904 16905 /** 16906 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 16907 * @phba: HBA structure that indicates port to destroy a queue on. 16908 * @cq: The queue structure associated with the queue to destroy. 16909 * 16910 * This function destroys a queue, as detailed in @cq by sending an mailbox 16911 * command, specific to the type of queue, to the HBA. 16912 * 16913 * The @cq struct is used to get the queue ID of the queue to destroy. 16914 * 16915 * On success this function will return a zero. If the queue destroy mailbox 16916 * command fails this function will return -ENXIO. 16917 **/ 16918 int 16919 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 16920 { 16921 LPFC_MBOXQ_t *mbox; 16922 int rc, length, status = 0; 16923 uint32_t shdr_status, shdr_add_status; 16924 union lpfc_sli4_cfg_shdr *shdr; 16925 16926 /* sanity check on queue memory */ 16927 if (!cq) 16928 return -ENODEV; 16929 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 16930 if (!mbox) 16931 return -ENOMEM; 16932 length = (sizeof(struct lpfc_mbx_cq_destroy) - 16933 sizeof(struct lpfc_sli4_cfg_mhdr)); 16934 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16935 LPFC_MBOX_OPCODE_CQ_DESTROY, 16936 length, LPFC_SLI4_MBX_EMBED); 16937 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 16938 cq->queue_id); 16939 mbox->vport = cq->phba->pport; 16940 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16941 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 16942 /* The IOCTL status is embedded in the mailbox subheader. */ 16943 shdr = (union lpfc_sli4_cfg_shdr *) 16944 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 16945 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16946 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16947 if (shdr_status || shdr_add_status || rc) { 16948 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16949 "2506 CQ_DESTROY mailbox failed with " 16950 "status x%x add_status x%x, mbx status x%x\n", 16951 shdr_status, shdr_add_status, rc); 16952 status = -ENXIO; 16953 } 16954 /* Remove cq from any list */ 16955 list_del_init(&cq->list); 16956 mempool_free(mbox, cq->phba->mbox_mem_pool); 16957 return status; 16958 } 16959 16960 /** 16961 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 16962 * @phba: HBA structure that indicates port to destroy a queue on. 16963 * @mq: The queue structure associated with the queue to destroy. 16964 * 16965 * This function destroys a queue, as detailed in @mq by sending an mailbox 16966 * command, specific to the type of queue, to the HBA. 16967 * 16968 * The @mq struct is used to get the queue ID of the queue to destroy. 16969 * 16970 * On success this function will return a zero. If the queue destroy mailbox 16971 * command fails this function will return -ENXIO. 16972 **/ 16973 int 16974 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 16975 { 16976 LPFC_MBOXQ_t *mbox; 16977 int rc, length, status = 0; 16978 uint32_t shdr_status, shdr_add_status; 16979 union lpfc_sli4_cfg_shdr *shdr; 16980 16981 /* sanity check on queue memory */ 16982 if (!mq) 16983 return -ENODEV; 16984 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 16985 if (!mbox) 16986 return -ENOMEM; 16987 length = (sizeof(struct lpfc_mbx_mq_destroy) - 16988 sizeof(struct lpfc_sli4_cfg_mhdr)); 16989 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16990 LPFC_MBOX_OPCODE_MQ_DESTROY, 16991 length, LPFC_SLI4_MBX_EMBED); 16992 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 16993 mq->queue_id); 16994 mbox->vport = mq->phba->pport; 16995 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16996 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 16997 /* The IOCTL status is embedded in the mailbox subheader. */ 16998 shdr = (union lpfc_sli4_cfg_shdr *) 16999 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 17000 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17001 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17002 if (shdr_status || shdr_add_status || rc) { 17003 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17004 "2507 MQ_DESTROY mailbox failed with " 17005 "status x%x add_status x%x, mbx status x%x\n", 17006 shdr_status, shdr_add_status, rc); 17007 status = -ENXIO; 17008 } 17009 /* Remove mq from any list */ 17010 list_del_init(&mq->list); 17011 mempool_free(mbox, mq->phba->mbox_mem_pool); 17012 return status; 17013 } 17014 17015 /** 17016 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 17017 * @phba: HBA structure that indicates port to destroy a queue on. 17018 * @wq: The queue structure associated with the queue to destroy. 17019 * 17020 * This function destroys a queue, as detailed in @wq by sending an mailbox 17021 * command, specific to the type of queue, to the HBA. 17022 * 17023 * The @wq struct is used to get the queue ID of the queue to destroy. 17024 * 17025 * On success this function will return a zero. If the queue destroy mailbox 17026 * command fails this function will return -ENXIO. 17027 **/ 17028 int 17029 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17030 { 17031 LPFC_MBOXQ_t *mbox; 17032 int rc, length, status = 0; 17033 uint32_t shdr_status, shdr_add_status; 17034 union lpfc_sli4_cfg_shdr *shdr; 17035 17036 /* sanity check on queue memory */ 17037 if (!wq) 17038 return -ENODEV; 17039 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17040 if (!mbox) 17041 return -ENOMEM; 17042 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17043 sizeof(struct lpfc_sli4_cfg_mhdr)); 17044 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17045 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17046 length, LPFC_SLI4_MBX_EMBED); 17047 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17048 wq->queue_id); 17049 mbox->vport = wq->phba->pport; 17050 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17051 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17052 shdr = (union lpfc_sli4_cfg_shdr *) 17053 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17054 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17055 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17056 if (shdr_status || shdr_add_status || rc) { 17057 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17058 "2508 WQ_DESTROY mailbox failed with " 17059 "status x%x add_status x%x, mbx status x%x\n", 17060 shdr_status, shdr_add_status, rc); 17061 status = -ENXIO; 17062 } 17063 /* Remove wq from any list */ 17064 list_del_init(&wq->list); 17065 kfree(wq->pring); 17066 wq->pring = NULL; 17067 mempool_free(mbox, wq->phba->mbox_mem_pool); 17068 return status; 17069 } 17070 17071 /** 17072 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17073 * @phba: HBA structure that indicates port to destroy a queue on. 17074 * @hrq: The queue structure associated with the queue to destroy. 17075 * @drq: The queue structure associated with the queue to destroy. 17076 * 17077 * This function destroys a queue, as detailed in @rq by sending an mailbox 17078 * command, specific to the type of queue, to the HBA. 17079 * 17080 * The @rq struct is used to get the queue ID of the queue to destroy. 17081 * 17082 * On success this function will return a zero. If the queue destroy mailbox 17083 * command fails this function will return -ENXIO. 17084 **/ 17085 int 17086 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17087 struct lpfc_queue *drq) 17088 { 17089 LPFC_MBOXQ_t *mbox; 17090 int rc, length, status = 0; 17091 uint32_t shdr_status, shdr_add_status; 17092 union lpfc_sli4_cfg_shdr *shdr; 17093 17094 /* sanity check on queue memory */ 17095 if (!hrq || !drq) 17096 return -ENODEV; 17097 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17098 if (!mbox) 17099 return -ENOMEM; 17100 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17101 sizeof(struct lpfc_sli4_cfg_mhdr)); 17102 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17103 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17104 length, LPFC_SLI4_MBX_EMBED); 17105 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17106 hrq->queue_id); 17107 mbox->vport = hrq->phba->pport; 17108 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17109 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17110 /* The IOCTL status is embedded in the mailbox subheader. */ 17111 shdr = (union lpfc_sli4_cfg_shdr *) 17112 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17113 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17114 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17115 if (shdr_status || shdr_add_status || rc) { 17116 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17117 "2509 RQ_DESTROY mailbox failed with " 17118 "status x%x add_status x%x, mbx status x%x\n", 17119 shdr_status, shdr_add_status, rc); 17120 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17121 return -ENXIO; 17122 } 17123 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17124 drq->queue_id); 17125 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17126 shdr = (union lpfc_sli4_cfg_shdr *) 17127 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17128 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17129 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17130 if (shdr_status || shdr_add_status || rc) { 17131 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17132 "2510 RQ_DESTROY mailbox failed with " 17133 "status x%x add_status x%x, mbx status x%x\n", 17134 shdr_status, shdr_add_status, rc); 17135 status = -ENXIO; 17136 } 17137 list_del_init(&hrq->list); 17138 list_del_init(&drq->list); 17139 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17140 return status; 17141 } 17142 17143 /** 17144 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17145 * @phba: The virtual port for which this call being executed. 17146 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17147 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17148 * @xritag: the xritag that ties this io to the SGL pages. 17149 * 17150 * This routine will post the sgl pages for the IO that has the xritag 17151 * that is in the iocbq structure. The xritag is assigned during iocbq 17152 * creation and persists for as long as the driver is loaded. 17153 * if the caller has fewer than 256 scatter gather segments to map then 17154 * pdma_phys_addr1 should be 0. 17155 * If the caller needs to map more than 256 scatter gather segment then 17156 * pdma_phys_addr1 should be a valid physical address. 17157 * physical address for SGLs must be 64 byte aligned. 17158 * If you are going to map 2 SGL's then the first one must have 256 entries 17159 * the second sgl can have between 1 and 256 entries. 17160 * 17161 * Return codes: 17162 * 0 - Success 17163 * -ENXIO, -ENOMEM - Failure 17164 **/ 17165 int 17166 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17167 dma_addr_t pdma_phys_addr0, 17168 dma_addr_t pdma_phys_addr1, 17169 uint16_t xritag) 17170 { 17171 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17172 LPFC_MBOXQ_t *mbox; 17173 int rc; 17174 uint32_t shdr_status, shdr_add_status; 17175 uint32_t mbox_tmo; 17176 union lpfc_sli4_cfg_shdr *shdr; 17177 17178 if (xritag == NO_XRI) { 17179 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17180 "0364 Invalid param:\n"); 17181 return -EINVAL; 17182 } 17183 17184 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17185 if (!mbox) 17186 return -ENOMEM; 17187 17188 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17189 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17190 sizeof(struct lpfc_mbx_post_sgl_pages) - 17191 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17192 17193 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17194 &mbox->u.mqe.un.post_sgl_pages; 17195 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17196 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17197 17198 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17199 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17200 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17201 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17202 17203 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17204 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17205 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17206 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17207 if (!phba->sli4_hba.intr_enable) 17208 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17209 else { 17210 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17211 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17212 } 17213 /* The IOCTL status is embedded in the mailbox subheader. */ 17214 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17215 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17216 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17217 if (!phba->sli4_hba.intr_enable) 17218 mempool_free(mbox, phba->mbox_mem_pool); 17219 else if (rc != MBX_TIMEOUT) 17220 mempool_free(mbox, phba->mbox_mem_pool); 17221 if (shdr_status || shdr_add_status || rc) { 17222 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17223 "2511 POST_SGL mailbox failed with " 17224 "status x%x add_status x%x, mbx status x%x\n", 17225 shdr_status, shdr_add_status, rc); 17226 } 17227 return 0; 17228 } 17229 17230 /** 17231 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17232 * @phba: pointer to lpfc hba data structure. 17233 * 17234 * This routine is invoked to post rpi header templates to the 17235 * HBA consistent with the SLI-4 interface spec. This routine 17236 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17237 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17238 * 17239 * Returns 17240 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17241 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17242 **/ 17243 static uint16_t 17244 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 17245 { 17246 unsigned long xri; 17247 17248 /* 17249 * Fetch the next logical xri. Because this index is logical, 17250 * the driver starts at 0 each time. 17251 */ 17252 spin_lock_irq(&phba->hbalock); 17253 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 17254 phba->sli4_hba.max_cfg_param.max_xri, 0); 17255 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 17256 spin_unlock_irq(&phba->hbalock); 17257 return NO_XRI; 17258 } else { 17259 set_bit(xri, phba->sli4_hba.xri_bmask); 17260 phba->sli4_hba.max_cfg_param.xri_used++; 17261 } 17262 spin_unlock_irq(&phba->hbalock); 17263 return xri; 17264 } 17265 17266 /** 17267 * __lpfc_sli4_free_xri - Release an xri for reuse. 17268 * @phba: pointer to lpfc hba data structure. 17269 * @xri: xri to release. 17270 * 17271 * This routine is invoked to release an xri to the pool of 17272 * available rpis maintained by the driver. 17273 **/ 17274 static void 17275 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17276 { 17277 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 17278 phba->sli4_hba.max_cfg_param.xri_used--; 17279 } 17280 } 17281 17282 /** 17283 * lpfc_sli4_free_xri - Release an xri for reuse. 17284 * @phba: pointer to lpfc hba data structure. 17285 * @xri: xri to release. 17286 * 17287 * This routine is invoked to release an xri to the pool of 17288 * available rpis maintained by the driver. 17289 **/ 17290 void 17291 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17292 { 17293 spin_lock_irq(&phba->hbalock); 17294 __lpfc_sli4_free_xri(phba, xri); 17295 spin_unlock_irq(&phba->hbalock); 17296 } 17297 17298 /** 17299 * lpfc_sli4_next_xritag - Get an xritag for the io 17300 * @phba: Pointer to HBA context object. 17301 * 17302 * This function gets an xritag for the iocb. If there is no unused xritag 17303 * it will return 0xffff. 17304 * The function returns the allocated xritag if successful, else returns zero. 17305 * Zero is not a valid xritag. 17306 * The caller is not required to hold any lock. 17307 **/ 17308 uint16_t 17309 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 17310 { 17311 uint16_t xri_index; 17312 17313 xri_index = lpfc_sli4_alloc_xri(phba); 17314 if (xri_index == NO_XRI) 17315 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 17316 "2004 Failed to allocate XRI.last XRITAG is %d" 17317 " Max XRI is %d, Used XRI is %d\n", 17318 xri_index, 17319 phba->sli4_hba.max_cfg_param.max_xri, 17320 phba->sli4_hba.max_cfg_param.xri_used); 17321 return xri_index; 17322 } 17323 17324 /** 17325 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 17326 * @phba: pointer to lpfc hba data structure. 17327 * @post_sgl_list: pointer to els sgl entry list. 17328 * @post_cnt: number of els sgl entries on the list. 17329 * 17330 * This routine is invoked to post a block of driver's sgl pages to the 17331 * HBA using non-embedded mailbox command. No Lock is held. This routine 17332 * is only called when the driver is loading and after all IO has been 17333 * stopped. 17334 **/ 17335 static int 17336 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 17337 struct list_head *post_sgl_list, 17338 int post_cnt) 17339 { 17340 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 17341 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 17342 struct sgl_page_pairs *sgl_pg_pairs; 17343 void *viraddr; 17344 LPFC_MBOXQ_t *mbox; 17345 uint32_t reqlen, alloclen, pg_pairs; 17346 uint32_t mbox_tmo; 17347 uint16_t xritag_start = 0; 17348 int rc = 0; 17349 uint32_t shdr_status, shdr_add_status; 17350 union lpfc_sli4_cfg_shdr *shdr; 17351 17352 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 17353 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 17354 if (reqlen > SLI4_PAGE_SIZE) { 17355 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17356 "2559 Block sgl registration required DMA " 17357 "size (%d) great than a page\n", reqlen); 17358 return -ENOMEM; 17359 } 17360 17361 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17362 if (!mbox) 17363 return -ENOMEM; 17364 17365 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17366 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17367 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 17368 LPFC_SLI4_MBX_NEMBED); 17369 17370 if (alloclen < reqlen) { 17371 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17372 "0285 Allocated DMA memory size (%d) is " 17373 "less than the requested DMA memory " 17374 "size (%d)\n", alloclen, reqlen); 17375 lpfc_sli4_mbox_cmd_free(phba, mbox); 17376 return -ENOMEM; 17377 } 17378 /* Set up the SGL pages in the non-embedded DMA pages */ 17379 viraddr = mbox->sge_array->addr[0]; 17380 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 17381 sgl_pg_pairs = &sgl->sgl_pg_pairs; 17382 17383 pg_pairs = 0; 17384 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 17385 /* Set up the sge entry */ 17386 sgl_pg_pairs->sgl_pg0_addr_lo = 17387 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 17388 sgl_pg_pairs->sgl_pg0_addr_hi = 17389 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 17390 sgl_pg_pairs->sgl_pg1_addr_lo = 17391 cpu_to_le32(putPaddrLow(0)); 17392 sgl_pg_pairs->sgl_pg1_addr_hi = 17393 cpu_to_le32(putPaddrHigh(0)); 17394 17395 /* Keep the first xritag on the list */ 17396 if (pg_pairs == 0) 17397 xritag_start = sglq_entry->sli4_xritag; 17398 sgl_pg_pairs++; 17399 pg_pairs++; 17400 } 17401 17402 /* Complete initialization and perform endian conversion. */ 17403 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 17404 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 17405 sgl->word0 = cpu_to_le32(sgl->word0); 17406 17407 if (!phba->sli4_hba.intr_enable) 17408 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17409 else { 17410 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17411 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17412 } 17413 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 17414 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17415 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17416 if (!phba->sli4_hba.intr_enable) 17417 lpfc_sli4_mbox_cmd_free(phba, mbox); 17418 else if (rc != MBX_TIMEOUT) 17419 lpfc_sli4_mbox_cmd_free(phba, mbox); 17420 if (shdr_status || shdr_add_status || rc) { 17421 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17422 "2513 POST_SGL_BLOCK mailbox command failed " 17423 "status x%x add_status x%x mbx status x%x\n", 17424 shdr_status, shdr_add_status, rc); 17425 rc = -ENXIO; 17426 } 17427 return rc; 17428 } 17429 17430 /** 17431 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 17432 * @phba: pointer to lpfc hba data structure. 17433 * @nblist: pointer to nvme buffer list. 17434 * @count: number of scsi buffers on the list. 17435 * 17436 * This routine is invoked to post a block of @count scsi sgl pages from a 17437 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 17438 * No Lock is held. 17439 * 17440 **/ 17441 static int 17442 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 17443 int count) 17444 { 17445 struct lpfc_io_buf *lpfc_ncmd; 17446 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 17447 struct sgl_page_pairs *sgl_pg_pairs; 17448 void *viraddr; 17449 LPFC_MBOXQ_t *mbox; 17450 uint32_t reqlen, alloclen, pg_pairs; 17451 uint32_t mbox_tmo; 17452 uint16_t xritag_start = 0; 17453 int rc = 0; 17454 uint32_t shdr_status, shdr_add_status; 17455 dma_addr_t pdma_phys_bpl1; 17456 union lpfc_sli4_cfg_shdr *shdr; 17457 17458 /* Calculate the requested length of the dma memory */ 17459 reqlen = count * sizeof(struct sgl_page_pairs) + 17460 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 17461 if (reqlen > SLI4_PAGE_SIZE) { 17462 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 17463 "6118 Block sgl registration required DMA " 17464 "size (%d) great than a page\n", reqlen); 17465 return -ENOMEM; 17466 } 17467 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17468 if (!mbox) { 17469 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17470 "6119 Failed to allocate mbox cmd memory\n"); 17471 return -ENOMEM; 17472 } 17473 17474 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17475 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17476 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17477 reqlen, LPFC_SLI4_MBX_NEMBED); 17478 17479 if (alloclen < reqlen) { 17480 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17481 "6120 Allocated DMA memory size (%d) is " 17482 "less than the requested DMA memory " 17483 "size (%d)\n", alloclen, reqlen); 17484 lpfc_sli4_mbox_cmd_free(phba, mbox); 17485 return -ENOMEM; 17486 } 17487 17488 /* Get the first SGE entry from the non-embedded DMA memory */ 17489 viraddr = mbox->sge_array->addr[0]; 17490 17491 /* Set up the SGL pages in the non-embedded DMA pages */ 17492 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 17493 sgl_pg_pairs = &sgl->sgl_pg_pairs; 17494 17495 pg_pairs = 0; 17496 list_for_each_entry(lpfc_ncmd, nblist, list) { 17497 /* Set up the sge entry */ 17498 sgl_pg_pairs->sgl_pg0_addr_lo = 17499 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 17500 sgl_pg_pairs->sgl_pg0_addr_hi = 17501 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 17502 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 17503 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 17504 SGL_PAGE_SIZE; 17505 else 17506 pdma_phys_bpl1 = 0; 17507 sgl_pg_pairs->sgl_pg1_addr_lo = 17508 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 17509 sgl_pg_pairs->sgl_pg1_addr_hi = 17510 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 17511 /* Keep the first xritag on the list */ 17512 if (pg_pairs == 0) 17513 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 17514 sgl_pg_pairs++; 17515 pg_pairs++; 17516 } 17517 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 17518 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 17519 /* Perform endian conversion if necessary */ 17520 sgl->word0 = cpu_to_le32(sgl->word0); 17521 17522 if (!phba->sli4_hba.intr_enable) { 17523 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17524 } else { 17525 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17526 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17527 } 17528 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 17529 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17530 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17531 if (!phba->sli4_hba.intr_enable) 17532 lpfc_sli4_mbox_cmd_free(phba, mbox); 17533 else if (rc != MBX_TIMEOUT) 17534 lpfc_sli4_mbox_cmd_free(phba, mbox); 17535 if (shdr_status || shdr_add_status || rc) { 17536 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17537 "6125 POST_SGL_BLOCK mailbox command failed " 17538 "status x%x add_status x%x mbx status x%x\n", 17539 shdr_status, shdr_add_status, rc); 17540 rc = -ENXIO; 17541 } 17542 return rc; 17543 } 17544 17545 /** 17546 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 17547 * @phba: pointer to lpfc hba data structure. 17548 * @post_nblist: pointer to the nvme buffer list. 17549 * @sb_count: number of nvme buffers. 17550 * 17551 * This routine walks a list of nvme buffers that was passed in. It attempts 17552 * to construct blocks of nvme buffer sgls which contains contiguous xris and 17553 * uses the non-embedded SGL block post mailbox commands to post to the port. 17554 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 17555 * embedded SGL post mailbox command for posting. The @post_nblist passed in 17556 * must be local list, thus no lock is needed when manipulate the list. 17557 * 17558 * Returns: 0 = failure, non-zero number of successfully posted buffers. 17559 **/ 17560 int 17561 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 17562 struct list_head *post_nblist, int sb_count) 17563 { 17564 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 17565 int status, sgl_size; 17566 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 17567 dma_addr_t pdma_phys_sgl1; 17568 int last_xritag = NO_XRI; 17569 int cur_xritag; 17570 LIST_HEAD(prep_nblist); 17571 LIST_HEAD(blck_nblist); 17572 LIST_HEAD(nvme_nblist); 17573 17574 /* sanity check */ 17575 if (sb_count <= 0) 17576 return -EINVAL; 17577 17578 sgl_size = phba->cfg_sg_dma_buf_size; 17579 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 17580 list_del_init(&lpfc_ncmd->list); 17581 block_cnt++; 17582 if ((last_xritag != NO_XRI) && 17583 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 17584 /* a hole in xri block, form a sgl posting block */ 17585 list_splice_init(&prep_nblist, &blck_nblist); 17586 post_cnt = block_cnt - 1; 17587 /* prepare list for next posting block */ 17588 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 17589 block_cnt = 1; 17590 } else { 17591 /* prepare list for next posting block */ 17592 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 17593 /* enough sgls for non-embed sgl mbox command */ 17594 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 17595 list_splice_init(&prep_nblist, &blck_nblist); 17596 post_cnt = block_cnt; 17597 block_cnt = 0; 17598 } 17599 } 17600 num_posting++; 17601 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 17602 17603 /* end of repost sgl list condition for NVME buffers */ 17604 if (num_posting == sb_count) { 17605 if (post_cnt == 0) { 17606 /* last sgl posting block */ 17607 list_splice_init(&prep_nblist, &blck_nblist); 17608 post_cnt = block_cnt; 17609 } else if (block_cnt == 1) { 17610 /* last single sgl with non-contiguous xri */ 17611 if (sgl_size > SGL_PAGE_SIZE) 17612 pdma_phys_sgl1 = 17613 lpfc_ncmd->dma_phys_sgl + 17614 SGL_PAGE_SIZE; 17615 else 17616 pdma_phys_sgl1 = 0; 17617 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 17618 status = lpfc_sli4_post_sgl( 17619 phba, lpfc_ncmd->dma_phys_sgl, 17620 pdma_phys_sgl1, cur_xritag); 17621 if (status) { 17622 /* Post error. Buffer unavailable. */ 17623 lpfc_ncmd->flags |= 17624 LPFC_SBUF_NOT_POSTED; 17625 } else { 17626 /* Post success. Bffer available. */ 17627 lpfc_ncmd->flags &= 17628 ~LPFC_SBUF_NOT_POSTED; 17629 lpfc_ncmd->status = IOSTAT_SUCCESS; 17630 num_posted++; 17631 } 17632 /* success, put on NVME buffer sgl list */ 17633 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 17634 } 17635 } 17636 17637 /* continue until a nembed page worth of sgls */ 17638 if (post_cnt == 0) 17639 continue; 17640 17641 /* post block of NVME buffer list sgls */ 17642 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 17643 post_cnt); 17644 17645 /* don't reset xirtag due to hole in xri block */ 17646 if (block_cnt == 0) 17647 last_xritag = NO_XRI; 17648 17649 /* reset NVME buffer post count for next round of posting */ 17650 post_cnt = 0; 17651 17652 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 17653 while (!list_empty(&blck_nblist)) { 17654 list_remove_head(&blck_nblist, lpfc_ncmd, 17655 struct lpfc_io_buf, list); 17656 if (status) { 17657 /* Post error. Mark buffer unavailable. */ 17658 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 17659 } else { 17660 /* Post success, Mark buffer available. */ 17661 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 17662 lpfc_ncmd->status = IOSTAT_SUCCESS; 17663 num_posted++; 17664 } 17665 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 17666 } 17667 } 17668 /* Push NVME buffers with sgl posted to the available list */ 17669 lpfc_io_buf_replenish(phba, &nvme_nblist); 17670 17671 return num_posted; 17672 } 17673 17674 /** 17675 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 17676 * @phba: pointer to lpfc_hba struct that the frame was received on 17677 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17678 * 17679 * This function checks the fields in the @fc_hdr to see if the FC frame is a 17680 * valid type of frame that the LPFC driver will handle. This function will 17681 * return a zero if the frame is a valid frame or a non zero value when the 17682 * frame does not pass the check. 17683 **/ 17684 static int 17685 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 17686 { 17687 /* make rctl_names static to save stack space */ 17688 struct fc_vft_header *fc_vft_hdr; 17689 uint32_t *header = (uint32_t *) fc_hdr; 17690 17691 #define FC_RCTL_MDS_DIAGS 0xF4 17692 17693 switch (fc_hdr->fh_r_ctl) { 17694 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 17695 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 17696 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 17697 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 17698 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 17699 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 17700 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 17701 case FC_RCTL_DD_CMD_STATUS: /* command status */ 17702 case FC_RCTL_ELS_REQ: /* extended link services request */ 17703 case FC_RCTL_ELS_REP: /* extended link services reply */ 17704 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 17705 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 17706 case FC_RCTL_BA_NOP: /* basic link service NOP */ 17707 case FC_RCTL_BA_ABTS: /* basic link service abort */ 17708 case FC_RCTL_BA_RMC: /* remove connection */ 17709 case FC_RCTL_BA_ACC: /* basic accept */ 17710 case FC_RCTL_BA_RJT: /* basic reject */ 17711 case FC_RCTL_BA_PRMT: 17712 case FC_RCTL_ACK_1: /* acknowledge_1 */ 17713 case FC_RCTL_ACK_0: /* acknowledge_0 */ 17714 case FC_RCTL_P_RJT: /* port reject */ 17715 case FC_RCTL_F_RJT: /* fabric reject */ 17716 case FC_RCTL_P_BSY: /* port busy */ 17717 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 17718 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 17719 case FC_RCTL_LCR: /* link credit reset */ 17720 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 17721 case FC_RCTL_END: /* end */ 17722 break; 17723 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 17724 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 17725 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 17726 return lpfc_fc_frame_check(phba, fc_hdr); 17727 default: 17728 goto drop; 17729 } 17730 17731 switch (fc_hdr->fh_type) { 17732 case FC_TYPE_BLS: 17733 case FC_TYPE_ELS: 17734 case FC_TYPE_FCP: 17735 case FC_TYPE_CT: 17736 case FC_TYPE_NVME: 17737 break; 17738 case FC_TYPE_IP: 17739 case FC_TYPE_ILS: 17740 default: 17741 goto drop; 17742 } 17743 17744 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 17745 "2538 Received frame rctl:x%x, type:x%x, " 17746 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 17747 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 17748 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 17749 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 17750 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 17751 be32_to_cpu(header[6])); 17752 return 0; 17753 drop: 17754 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 17755 "2539 Dropped frame rctl:x%x type:x%x\n", 17756 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17757 return 1; 17758 } 17759 17760 /** 17761 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 17762 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17763 * 17764 * This function processes the FC header to retrieve the VFI from the VF 17765 * header, if one exists. This function will return the VFI if one exists 17766 * or 0 if no VSAN Header exists. 17767 **/ 17768 static uint32_t 17769 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 17770 { 17771 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 17772 17773 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 17774 return 0; 17775 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 17776 } 17777 17778 /** 17779 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 17780 * @phba: Pointer to the HBA structure to search for the vport on 17781 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17782 * @fcfi: The FC Fabric ID that the frame came from 17783 * @did: Destination ID to match against 17784 * 17785 * This function searches the @phba for a vport that matches the content of the 17786 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 17787 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 17788 * returns the matching vport pointer or NULL if unable to match frame to a 17789 * vport. 17790 **/ 17791 static struct lpfc_vport * 17792 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 17793 uint16_t fcfi, uint32_t did) 17794 { 17795 struct lpfc_vport **vports; 17796 struct lpfc_vport *vport = NULL; 17797 int i; 17798 17799 if (did == Fabric_DID) 17800 return phba->pport; 17801 if ((phba->pport->fc_flag & FC_PT2PT) && 17802 !(phba->link_state == LPFC_HBA_READY)) 17803 return phba->pport; 17804 17805 vports = lpfc_create_vport_work_array(phba); 17806 if (vports != NULL) { 17807 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 17808 if (phba->fcf.fcfi == fcfi && 17809 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 17810 vports[i]->fc_myDID == did) { 17811 vport = vports[i]; 17812 break; 17813 } 17814 } 17815 } 17816 lpfc_destroy_vport_work_array(phba, vports); 17817 return vport; 17818 } 17819 17820 /** 17821 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 17822 * @vport: The vport to work on. 17823 * 17824 * This function updates the receive sequence time stamp for this vport. The 17825 * receive sequence time stamp indicates the time that the last frame of the 17826 * the sequence that has been idle for the longest amount of time was received. 17827 * the driver uses this time stamp to indicate if any received sequences have 17828 * timed out. 17829 **/ 17830 static void 17831 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 17832 { 17833 struct lpfc_dmabuf *h_buf; 17834 struct hbq_dmabuf *dmabuf = NULL; 17835 17836 /* get the oldest sequence on the rcv list */ 17837 h_buf = list_get_first(&vport->rcv_buffer_list, 17838 struct lpfc_dmabuf, list); 17839 if (!h_buf) 17840 return; 17841 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17842 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 17843 } 17844 17845 /** 17846 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 17847 * @vport: The vport that the received sequences were sent to. 17848 * 17849 * This function cleans up all outstanding received sequences. This is called 17850 * by the driver when a link event or user action invalidates all the received 17851 * sequences. 17852 **/ 17853 void 17854 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 17855 { 17856 struct lpfc_dmabuf *h_buf, *hnext; 17857 struct lpfc_dmabuf *d_buf, *dnext; 17858 struct hbq_dmabuf *dmabuf = NULL; 17859 17860 /* start with the oldest sequence on the rcv list */ 17861 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17862 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17863 list_del_init(&dmabuf->hbuf.list); 17864 list_for_each_entry_safe(d_buf, dnext, 17865 &dmabuf->dbuf.list, list) { 17866 list_del_init(&d_buf->list); 17867 lpfc_in_buf_free(vport->phba, d_buf); 17868 } 17869 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17870 } 17871 } 17872 17873 /** 17874 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 17875 * @vport: The vport that the received sequences were sent to. 17876 * 17877 * This function determines whether any received sequences have timed out by 17878 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 17879 * indicates that there is at least one timed out sequence this routine will 17880 * go through the received sequences one at a time from most inactive to most 17881 * active to determine which ones need to be cleaned up. Once it has determined 17882 * that a sequence needs to be cleaned up it will simply free up the resources 17883 * without sending an abort. 17884 **/ 17885 void 17886 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 17887 { 17888 struct lpfc_dmabuf *h_buf, *hnext; 17889 struct lpfc_dmabuf *d_buf, *dnext; 17890 struct hbq_dmabuf *dmabuf = NULL; 17891 unsigned long timeout; 17892 int abort_count = 0; 17893 17894 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17895 vport->rcv_buffer_time_stamp); 17896 if (list_empty(&vport->rcv_buffer_list) || 17897 time_before(jiffies, timeout)) 17898 return; 17899 /* start with the oldest sequence on the rcv list */ 17900 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17901 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17902 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17903 dmabuf->time_stamp); 17904 if (time_before(jiffies, timeout)) 17905 break; 17906 abort_count++; 17907 list_del_init(&dmabuf->hbuf.list); 17908 list_for_each_entry_safe(d_buf, dnext, 17909 &dmabuf->dbuf.list, list) { 17910 list_del_init(&d_buf->list); 17911 lpfc_in_buf_free(vport->phba, d_buf); 17912 } 17913 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17914 } 17915 if (abort_count) 17916 lpfc_update_rcv_time_stamp(vport); 17917 } 17918 17919 /** 17920 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 17921 * @vport: pointer to a vitural port 17922 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 17923 * 17924 * This function searches through the existing incomplete sequences that have 17925 * been sent to this @vport. If the frame matches one of the incomplete 17926 * sequences then the dbuf in the @dmabuf is added to the list of frames that 17927 * make up that sequence. If no sequence is found that matches this frame then 17928 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 17929 * This function returns a pointer to the first dmabuf in the sequence list that 17930 * the frame was linked to. 17931 **/ 17932 static struct hbq_dmabuf * 17933 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 17934 { 17935 struct fc_frame_header *new_hdr; 17936 struct fc_frame_header *temp_hdr; 17937 struct lpfc_dmabuf *d_buf; 17938 struct lpfc_dmabuf *h_buf; 17939 struct hbq_dmabuf *seq_dmabuf = NULL; 17940 struct hbq_dmabuf *temp_dmabuf = NULL; 17941 uint8_t found = 0; 17942 17943 INIT_LIST_HEAD(&dmabuf->dbuf.list); 17944 dmabuf->time_stamp = jiffies; 17945 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17946 17947 /* Use the hdr_buf to find the sequence that this frame belongs to */ 17948 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 17949 temp_hdr = (struct fc_frame_header *)h_buf->virt; 17950 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 17951 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 17952 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 17953 continue; 17954 /* found a pending sequence that matches this frame */ 17955 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17956 break; 17957 } 17958 if (!seq_dmabuf) { 17959 /* 17960 * This indicates first frame received for this sequence. 17961 * Queue the buffer on the vport's rcv_buffer_list. 17962 */ 17963 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17964 lpfc_update_rcv_time_stamp(vport); 17965 return dmabuf; 17966 } 17967 temp_hdr = seq_dmabuf->hbuf.virt; 17968 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 17969 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17970 list_del_init(&seq_dmabuf->hbuf.list); 17971 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17972 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17973 lpfc_update_rcv_time_stamp(vport); 17974 return dmabuf; 17975 } 17976 /* move this sequence to the tail to indicate a young sequence */ 17977 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 17978 seq_dmabuf->time_stamp = jiffies; 17979 lpfc_update_rcv_time_stamp(vport); 17980 if (list_empty(&seq_dmabuf->dbuf.list)) { 17981 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17982 return seq_dmabuf; 17983 } 17984 /* find the correct place in the sequence to insert this frame */ 17985 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 17986 while (!found) { 17987 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17988 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 17989 /* 17990 * If the frame's sequence count is greater than the frame on 17991 * the list then insert the frame right after this frame 17992 */ 17993 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 17994 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17995 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 17996 found = 1; 17997 break; 17998 } 17999 18000 if (&d_buf->list == &seq_dmabuf->dbuf.list) 18001 break; 18002 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 18003 } 18004 18005 if (found) 18006 return seq_dmabuf; 18007 return NULL; 18008 } 18009 18010 /** 18011 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 18012 * @vport: pointer to a vitural port 18013 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18014 * 18015 * This function tries to abort from the partially assembed sequence, described 18016 * by the information from basic abbort @dmabuf. It checks to see whether such 18017 * partially assembled sequence held by the driver. If so, it shall free up all 18018 * the frames from the partially assembled sequence. 18019 * 18020 * Return 18021 * true -- if there is matching partially assembled sequence present and all 18022 * the frames freed with the sequence; 18023 * false -- if there is no matching partially assembled sequence present so 18024 * nothing got aborted in the lower layer driver 18025 **/ 18026 static bool 18027 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18028 struct hbq_dmabuf *dmabuf) 18029 { 18030 struct fc_frame_header *new_hdr; 18031 struct fc_frame_header *temp_hdr; 18032 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18033 struct hbq_dmabuf *seq_dmabuf = NULL; 18034 18035 /* Use the hdr_buf to find the sequence that matches this frame */ 18036 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18037 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18038 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18039 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18040 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18041 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18042 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18043 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18044 continue; 18045 /* found a pending sequence that matches this frame */ 18046 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18047 break; 18048 } 18049 18050 /* Free up all the frames from the partially assembled sequence */ 18051 if (seq_dmabuf) { 18052 list_for_each_entry_safe(d_buf, n_buf, 18053 &seq_dmabuf->dbuf.list, list) { 18054 list_del_init(&d_buf->list); 18055 lpfc_in_buf_free(vport->phba, d_buf); 18056 } 18057 return true; 18058 } 18059 return false; 18060 } 18061 18062 /** 18063 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18064 * @vport: pointer to a vitural port 18065 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18066 * 18067 * This function tries to abort from the assembed sequence from upper level 18068 * protocol, described by the information from basic abbort @dmabuf. It 18069 * checks to see whether such pending context exists at upper level protocol. 18070 * If so, it shall clean up the pending context. 18071 * 18072 * Return 18073 * true -- if there is matching pending context of the sequence cleaned 18074 * at ulp; 18075 * false -- if there is no matching pending context of the sequence present 18076 * at ulp. 18077 **/ 18078 static bool 18079 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18080 { 18081 struct lpfc_hba *phba = vport->phba; 18082 int handled; 18083 18084 /* Accepting abort at ulp with SLI4 only */ 18085 if (phba->sli_rev < LPFC_SLI_REV4) 18086 return false; 18087 18088 /* Register all caring upper level protocols to attend abort */ 18089 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18090 if (handled) 18091 return true; 18092 18093 return false; 18094 } 18095 18096 /** 18097 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18098 * @phba: Pointer to HBA context object. 18099 * @cmd_iocbq: pointer to the command iocbq structure. 18100 * @rsp_iocbq: pointer to the response iocbq structure. 18101 * 18102 * This function handles the sequence abort response iocb command complete 18103 * event. It properly releases the memory allocated to the sequence abort 18104 * accept iocb. 18105 **/ 18106 static void 18107 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18108 struct lpfc_iocbq *cmd_iocbq, 18109 struct lpfc_iocbq *rsp_iocbq) 18110 { 18111 struct lpfc_nodelist *ndlp; 18112 18113 if (cmd_iocbq) { 18114 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 18115 lpfc_nlp_put(ndlp); 18116 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18117 } 18118 18119 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18120 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18121 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18122 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18123 rsp_iocbq->iocb.ulpStatus, 18124 rsp_iocbq->iocb.un.ulpWord[4]); 18125 } 18126 18127 /** 18128 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18129 * @phba: Pointer to HBA context object. 18130 * @xri: xri id in transaction. 18131 * 18132 * This function validates the xri maps to the known range of XRIs allocated an 18133 * used by the driver. 18134 **/ 18135 uint16_t 18136 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18137 uint16_t xri) 18138 { 18139 uint16_t i; 18140 18141 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18142 if (xri == phba->sli4_hba.xri_ids[i]) 18143 return i; 18144 } 18145 return NO_XRI; 18146 } 18147 18148 /** 18149 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18150 * @vport: pointer to a virtual port. 18151 * @fc_hdr: pointer to a FC frame header. 18152 * @aborted: was the partially assembled receive sequence successfully aborted 18153 * 18154 * This function sends a basic response to a previous unsol sequence abort 18155 * event after aborting the sequence handling. 18156 **/ 18157 void 18158 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18159 struct fc_frame_header *fc_hdr, bool aborted) 18160 { 18161 struct lpfc_hba *phba = vport->phba; 18162 struct lpfc_iocbq *ctiocb = NULL; 18163 struct lpfc_nodelist *ndlp; 18164 uint16_t oxid, rxid, xri, lxri; 18165 uint32_t sid, fctl; 18166 IOCB_t *icmd; 18167 int rc; 18168 18169 if (!lpfc_is_link_up(phba)) 18170 return; 18171 18172 sid = sli4_sid_from_fc_hdr(fc_hdr); 18173 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18174 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18175 18176 ndlp = lpfc_findnode_did(vport, sid); 18177 if (!ndlp) { 18178 ndlp = lpfc_nlp_init(vport, sid); 18179 if (!ndlp) { 18180 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18181 "1268 Failed to allocate ndlp for " 18182 "oxid:x%x SID:x%x\n", oxid, sid); 18183 return; 18184 } 18185 /* Put ndlp onto pport node list */ 18186 lpfc_enqueue_node(vport, ndlp); 18187 } 18188 18189 /* Allocate buffer for rsp iocb */ 18190 ctiocb = lpfc_sli_get_iocbq(phba); 18191 if (!ctiocb) 18192 return; 18193 18194 /* Extract the F_CTL field from FC_HDR */ 18195 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18196 18197 icmd = &ctiocb->iocb; 18198 icmd->un.xseq64.bdl.bdeSize = 0; 18199 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 18200 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 18201 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 18202 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 18203 18204 /* Fill in the rest of iocb fields */ 18205 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 18206 icmd->ulpBdeCount = 0; 18207 icmd->ulpLe = 1; 18208 icmd->ulpClass = CLASS3; 18209 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 18210 ctiocb->context1 = lpfc_nlp_get(ndlp); 18211 if (!ctiocb->context1) { 18212 lpfc_sli_release_iocbq(phba, ctiocb); 18213 return; 18214 } 18215 18216 ctiocb->vport = phba->pport; 18217 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18218 ctiocb->sli4_lxritag = NO_XRI; 18219 ctiocb->sli4_xritag = NO_XRI; 18220 18221 if (fctl & FC_FC_EX_CTX) 18222 /* Exchange responder sent the abort so we 18223 * own the oxid. 18224 */ 18225 xri = oxid; 18226 else 18227 xri = rxid; 18228 lxri = lpfc_sli4_xri_inrange(phba, xri); 18229 if (lxri != NO_XRI) 18230 lpfc_set_rrq_active(phba, ndlp, lxri, 18231 (xri == oxid) ? rxid : oxid, 0); 18232 /* For BA_ABTS from exchange responder, if the logical xri with 18233 * the oxid maps to the FCP XRI range, the port no longer has 18234 * that exchange context, send a BLS_RJT. Override the IOCB for 18235 * a BA_RJT. 18236 */ 18237 if ((fctl & FC_FC_EX_CTX) && 18238 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 18239 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 18240 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 18241 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 18242 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 18243 } 18244 18245 /* If BA_ABTS failed to abort a partially assembled receive sequence, 18246 * the driver no longer has that exchange, send a BLS_RJT. Override 18247 * the IOCB for a BA_RJT. 18248 */ 18249 if (aborted == false) { 18250 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 18251 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 18252 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 18253 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 18254 } 18255 18256 if (fctl & FC_FC_EX_CTX) { 18257 /* ABTS sent by responder to CT exchange, construction 18258 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 18259 * field and RX_ID from ABTS for RX_ID field. 18260 */ 18261 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 18262 } else { 18263 /* ABTS sent by initiator to CT exchange, construction 18264 * of BA_ACC will need to allocate a new XRI as for the 18265 * XRI_TAG field. 18266 */ 18267 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 18268 } 18269 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 18270 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 18271 18272 /* Xmit CT abts response on exchange <xid> */ 18273 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 18274 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 18275 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 18276 18277 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 18278 if (rc == IOCB_ERROR) { 18279 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 18280 "2925 Failed to issue CT ABTS RSP x%x on " 18281 "xri x%x, Data x%x\n", 18282 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 18283 phba->link_state); 18284 lpfc_nlp_put(ndlp); 18285 ctiocb->context1 = NULL; 18286 lpfc_sli_release_iocbq(phba, ctiocb); 18287 } 18288 } 18289 18290 /** 18291 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 18292 * @vport: Pointer to the vport on which this sequence was received 18293 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18294 * 18295 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 18296 * receive sequence is only partially assembed by the driver, it shall abort 18297 * the partially assembled frames for the sequence. Otherwise, if the 18298 * unsolicited receive sequence has been completely assembled and passed to 18299 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 18300 * unsolicited sequence has been aborted. After that, it will issue a basic 18301 * accept to accept the abort. 18302 **/ 18303 static void 18304 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 18305 struct hbq_dmabuf *dmabuf) 18306 { 18307 struct lpfc_hba *phba = vport->phba; 18308 struct fc_frame_header fc_hdr; 18309 uint32_t fctl; 18310 bool aborted; 18311 18312 /* Make a copy of fc_hdr before the dmabuf being released */ 18313 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 18314 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 18315 18316 if (fctl & FC_FC_EX_CTX) { 18317 /* ABTS by responder to exchange, no cleanup needed */ 18318 aborted = true; 18319 } else { 18320 /* ABTS by initiator to exchange, need to do cleanup */ 18321 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 18322 if (aborted == false) 18323 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 18324 } 18325 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18326 18327 if (phba->nvmet_support) { 18328 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 18329 return; 18330 } 18331 18332 /* Respond with BA_ACC or BA_RJT accordingly */ 18333 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 18334 } 18335 18336 /** 18337 * lpfc_seq_complete - Indicates if a sequence is complete 18338 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18339 * 18340 * This function checks the sequence, starting with the frame described by 18341 * @dmabuf, to see if all the frames associated with this sequence are present. 18342 * the frames associated with this sequence are linked to the @dmabuf using the 18343 * dbuf list. This function looks for two major things. 1) That the first frame 18344 * has a sequence count of zero. 2) There is a frame with last frame of sequence 18345 * set. 3) That there are no holes in the sequence count. The function will 18346 * return 1 when the sequence is complete, otherwise it will return 0. 18347 **/ 18348 static int 18349 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 18350 { 18351 struct fc_frame_header *hdr; 18352 struct lpfc_dmabuf *d_buf; 18353 struct hbq_dmabuf *seq_dmabuf; 18354 uint32_t fctl; 18355 int seq_count = 0; 18356 18357 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18358 /* make sure first fame of sequence has a sequence count of zero */ 18359 if (hdr->fh_seq_cnt != seq_count) 18360 return 0; 18361 fctl = (hdr->fh_f_ctl[0] << 16 | 18362 hdr->fh_f_ctl[1] << 8 | 18363 hdr->fh_f_ctl[2]); 18364 /* If last frame of sequence we can return success. */ 18365 if (fctl & FC_FC_END_SEQ) 18366 return 1; 18367 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 18368 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18369 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18370 /* If there is a hole in the sequence count then fail. */ 18371 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 18372 return 0; 18373 fctl = (hdr->fh_f_ctl[0] << 16 | 18374 hdr->fh_f_ctl[1] << 8 | 18375 hdr->fh_f_ctl[2]); 18376 /* If last frame of sequence we can return success. */ 18377 if (fctl & FC_FC_END_SEQ) 18378 return 1; 18379 } 18380 return 0; 18381 } 18382 18383 /** 18384 * lpfc_prep_seq - Prep sequence for ULP processing 18385 * @vport: Pointer to the vport on which this sequence was received 18386 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 18387 * 18388 * This function takes a sequence, described by a list of frames, and creates 18389 * a list of iocbq structures to describe the sequence. This iocbq list will be 18390 * used to issue to the generic unsolicited sequence handler. This routine 18391 * returns a pointer to the first iocbq in the list. If the function is unable 18392 * to allocate an iocbq then it throw out the received frames that were not 18393 * able to be described and return a pointer to the first iocbq. If unable to 18394 * allocate any iocbqs (including the first) this function will return NULL. 18395 **/ 18396 static struct lpfc_iocbq * 18397 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 18398 { 18399 struct hbq_dmabuf *hbq_buf; 18400 struct lpfc_dmabuf *d_buf, *n_buf; 18401 struct lpfc_iocbq *first_iocbq, *iocbq; 18402 struct fc_frame_header *fc_hdr; 18403 uint32_t sid; 18404 uint32_t len, tot_len; 18405 struct ulp_bde64 *pbde; 18406 18407 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18408 /* remove from receive buffer list */ 18409 list_del_init(&seq_dmabuf->hbuf.list); 18410 lpfc_update_rcv_time_stamp(vport); 18411 /* get the Remote Port's SID */ 18412 sid = sli4_sid_from_fc_hdr(fc_hdr); 18413 tot_len = 0; 18414 /* Get an iocbq struct to fill in. */ 18415 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 18416 if (first_iocbq) { 18417 /* Initialize the first IOCB. */ 18418 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 18419 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 18420 first_iocbq->vport = vport; 18421 18422 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 18423 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 18424 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 18425 first_iocbq->iocb.un.rcvels.parmRo = 18426 sli4_did_from_fc_hdr(fc_hdr); 18427 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 18428 } else 18429 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 18430 first_iocbq->iocb.ulpContext = NO_XRI; 18431 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 18432 be16_to_cpu(fc_hdr->fh_ox_id); 18433 /* iocbq is prepped for internal consumption. Physical vpi. */ 18434 first_iocbq->iocb.unsli3.rcvsli3.vpi = 18435 vport->phba->vpi_ids[vport->vpi]; 18436 /* put the first buffer into the first IOCBq */ 18437 tot_len = bf_get(lpfc_rcqe_length, 18438 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 18439 18440 first_iocbq->context2 = &seq_dmabuf->dbuf; 18441 first_iocbq->context3 = NULL; 18442 first_iocbq->iocb.ulpBdeCount = 1; 18443 if (tot_len > LPFC_DATA_BUF_SIZE) 18444 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 18445 LPFC_DATA_BUF_SIZE; 18446 else 18447 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 18448 18449 first_iocbq->iocb.un.rcvels.remoteID = sid; 18450 18451 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 18452 } 18453 iocbq = first_iocbq; 18454 /* 18455 * Each IOCBq can have two Buffers assigned, so go through the list 18456 * of buffers for this sequence and save two buffers in each IOCBq 18457 */ 18458 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 18459 if (!iocbq) { 18460 lpfc_in_buf_free(vport->phba, d_buf); 18461 continue; 18462 } 18463 if (!iocbq->context3) { 18464 iocbq->context3 = d_buf; 18465 iocbq->iocb.ulpBdeCount++; 18466 /* We need to get the size out of the right CQE */ 18467 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18468 len = bf_get(lpfc_rcqe_length, 18469 &hbq_buf->cq_event.cqe.rcqe_cmpl); 18470 pbde = (struct ulp_bde64 *) 18471 &iocbq->iocb.unsli3.sli3Words[4]; 18472 if (len > LPFC_DATA_BUF_SIZE) 18473 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 18474 else 18475 pbde->tus.f.bdeSize = len; 18476 18477 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 18478 tot_len += len; 18479 } else { 18480 iocbq = lpfc_sli_get_iocbq(vport->phba); 18481 if (!iocbq) { 18482 if (first_iocbq) { 18483 first_iocbq->iocb.ulpStatus = 18484 IOSTAT_FCP_RSP_ERROR; 18485 first_iocbq->iocb.un.ulpWord[4] = 18486 IOERR_NO_RESOURCES; 18487 } 18488 lpfc_in_buf_free(vport->phba, d_buf); 18489 continue; 18490 } 18491 /* We need to get the size out of the right CQE */ 18492 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18493 len = bf_get(lpfc_rcqe_length, 18494 &hbq_buf->cq_event.cqe.rcqe_cmpl); 18495 iocbq->context2 = d_buf; 18496 iocbq->context3 = NULL; 18497 iocbq->iocb.ulpBdeCount = 1; 18498 if (len > LPFC_DATA_BUF_SIZE) 18499 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 18500 LPFC_DATA_BUF_SIZE; 18501 else 18502 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 18503 18504 tot_len += len; 18505 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 18506 18507 iocbq->iocb.un.rcvels.remoteID = sid; 18508 list_add_tail(&iocbq->list, &first_iocbq->list); 18509 } 18510 } 18511 /* Free the sequence's header buffer */ 18512 if (!first_iocbq) 18513 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 18514 18515 return first_iocbq; 18516 } 18517 18518 static void 18519 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 18520 struct hbq_dmabuf *seq_dmabuf) 18521 { 18522 struct fc_frame_header *fc_hdr; 18523 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 18524 struct lpfc_hba *phba = vport->phba; 18525 18526 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18527 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 18528 if (!iocbq) { 18529 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18530 "2707 Ring %d handler: Failed to allocate " 18531 "iocb Rctl x%x Type x%x received\n", 18532 LPFC_ELS_RING, 18533 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18534 return; 18535 } 18536 if (!lpfc_complete_unsol_iocb(phba, 18537 phba->sli4_hba.els_wq->pring, 18538 iocbq, fc_hdr->fh_r_ctl, 18539 fc_hdr->fh_type)) 18540 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18541 "2540 Ring %d handler: unexpected Rctl " 18542 "x%x Type x%x received\n", 18543 LPFC_ELS_RING, 18544 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18545 18546 /* Free iocb created in lpfc_prep_seq */ 18547 list_for_each_entry_safe(curr_iocb, next_iocb, 18548 &iocbq->list, list) { 18549 list_del_init(&curr_iocb->list); 18550 lpfc_sli_release_iocbq(phba, curr_iocb); 18551 } 18552 lpfc_sli_release_iocbq(phba, iocbq); 18553 } 18554 18555 static void 18556 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 18557 struct lpfc_iocbq *rspiocb) 18558 { 18559 struct lpfc_dmabuf *pcmd = cmdiocb->context2; 18560 18561 if (pcmd && pcmd->virt) 18562 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 18563 kfree(pcmd); 18564 lpfc_sli_release_iocbq(phba, cmdiocb); 18565 lpfc_drain_txq(phba); 18566 } 18567 18568 static void 18569 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 18570 struct hbq_dmabuf *dmabuf) 18571 { 18572 struct fc_frame_header *fc_hdr; 18573 struct lpfc_hba *phba = vport->phba; 18574 struct lpfc_iocbq *iocbq = NULL; 18575 union lpfc_wqe *wqe; 18576 struct lpfc_dmabuf *pcmd = NULL; 18577 uint32_t frame_len; 18578 int rc; 18579 unsigned long iflags; 18580 18581 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18582 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 18583 18584 /* Send the received frame back */ 18585 iocbq = lpfc_sli_get_iocbq(phba); 18586 if (!iocbq) { 18587 /* Queue cq event and wakeup worker thread to process it */ 18588 spin_lock_irqsave(&phba->hbalock, iflags); 18589 list_add_tail(&dmabuf->cq_event.list, 18590 &phba->sli4_hba.sp_queue_event); 18591 phba->hba_flag |= HBA_SP_QUEUE_EVT; 18592 spin_unlock_irqrestore(&phba->hbalock, iflags); 18593 lpfc_worker_wake_up(phba); 18594 return; 18595 } 18596 18597 /* Allocate buffer for command payload */ 18598 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 18599 if (pcmd) 18600 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 18601 &pcmd->phys); 18602 if (!pcmd || !pcmd->virt) 18603 goto exit; 18604 18605 INIT_LIST_HEAD(&pcmd->list); 18606 18607 /* copyin the payload */ 18608 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 18609 18610 /* fill in BDE's for command */ 18611 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys); 18612 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys); 18613 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 18614 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len; 18615 18616 iocbq->context2 = pcmd; 18617 iocbq->vport = vport; 18618 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK; 18619 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 18620 18621 /* 18622 * Setup rest of the iocb as though it were a WQE 18623 * Build the SEND_FRAME WQE 18624 */ 18625 wqe = (union lpfc_wqe *)&iocbq->iocb; 18626 18627 wqe->send_frame.frame_len = frame_len; 18628 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr)); 18629 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1)); 18630 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2)); 18631 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3)); 18632 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4)); 18633 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5)); 18634 18635 iocbq->iocb.ulpCommand = CMD_SEND_FRAME; 18636 iocbq->iocb.ulpLe = 1; 18637 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl; 18638 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 18639 if (rc == IOCB_ERROR) 18640 goto exit; 18641 18642 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18643 return; 18644 18645 exit: 18646 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18647 "2023 Unable to process MDS loopback frame\n"); 18648 if (pcmd && pcmd->virt) 18649 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 18650 kfree(pcmd); 18651 if (iocbq) 18652 lpfc_sli_release_iocbq(phba, iocbq); 18653 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18654 } 18655 18656 /** 18657 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 18658 * @phba: Pointer to HBA context object. 18659 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 18660 * 18661 * This function is called with no lock held. This function processes all 18662 * the received buffers and gives it to upper layers when a received buffer 18663 * indicates that it is the final frame in the sequence. The interrupt 18664 * service routine processes received buffers at interrupt contexts. 18665 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 18666 * appropriate receive function when the final frame in a sequence is received. 18667 **/ 18668 void 18669 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 18670 struct hbq_dmabuf *dmabuf) 18671 { 18672 struct hbq_dmabuf *seq_dmabuf; 18673 struct fc_frame_header *fc_hdr; 18674 struct lpfc_vport *vport; 18675 uint32_t fcfi; 18676 uint32_t did; 18677 18678 /* Process each received buffer */ 18679 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18680 18681 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 18682 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 18683 vport = phba->pport; 18684 /* Handle MDS Loopback frames */ 18685 if (!(phba->pport->load_flag & FC_UNLOADING)) 18686 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 18687 else 18688 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18689 return; 18690 } 18691 18692 /* check to see if this a valid type of frame */ 18693 if (lpfc_fc_frame_check(phba, fc_hdr)) { 18694 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18695 return; 18696 } 18697 18698 if ((bf_get(lpfc_cqe_code, 18699 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 18700 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 18701 &dmabuf->cq_event.cqe.rcqe_cmpl); 18702 else 18703 fcfi = bf_get(lpfc_rcqe_fcf_id, 18704 &dmabuf->cq_event.cqe.rcqe_cmpl); 18705 18706 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 18707 vport = phba->pport; 18708 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 18709 "2023 MDS Loopback %d bytes\n", 18710 bf_get(lpfc_rcqe_length, 18711 &dmabuf->cq_event.cqe.rcqe_cmpl)); 18712 /* Handle MDS Loopback frames */ 18713 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 18714 return; 18715 } 18716 18717 /* d_id this frame is directed to */ 18718 did = sli4_did_from_fc_hdr(fc_hdr); 18719 18720 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 18721 if (!vport) { 18722 /* throw out the frame */ 18723 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18724 return; 18725 } 18726 18727 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 18728 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 18729 (did != Fabric_DID)) { 18730 /* 18731 * Throw out the frame if we are not pt2pt. 18732 * The pt2pt protocol allows for discovery frames 18733 * to be received without a registered VPI. 18734 */ 18735 if (!(vport->fc_flag & FC_PT2PT) || 18736 (phba->link_state == LPFC_HBA_READY)) { 18737 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18738 return; 18739 } 18740 } 18741 18742 /* Handle the basic abort sequence (BA_ABTS) event */ 18743 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 18744 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 18745 return; 18746 } 18747 18748 /* Link this frame */ 18749 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 18750 if (!seq_dmabuf) { 18751 /* unable to add frame to vport - throw it out */ 18752 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18753 return; 18754 } 18755 /* If not last frame in sequence continue processing frames. */ 18756 if (!lpfc_seq_complete(seq_dmabuf)) 18757 return; 18758 18759 /* Send the complete sequence to the upper layer protocol */ 18760 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 18761 } 18762 18763 /** 18764 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 18765 * @phba: pointer to lpfc hba data structure. 18766 * 18767 * This routine is invoked to post rpi header templates to the 18768 * HBA consistent with the SLI-4 interface spec. This routine 18769 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18770 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18771 * 18772 * This routine does not require any locks. It's usage is expected 18773 * to be driver load or reset recovery when the driver is 18774 * sequential. 18775 * 18776 * Return codes 18777 * 0 - successful 18778 * -EIO - The mailbox failed to complete successfully. 18779 * When this error occurs, the driver is not guaranteed 18780 * to have any rpi regions posted to the device and 18781 * must either attempt to repost the regions or take a 18782 * fatal error. 18783 **/ 18784 int 18785 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 18786 { 18787 struct lpfc_rpi_hdr *rpi_page; 18788 uint32_t rc = 0; 18789 uint16_t lrpi = 0; 18790 18791 /* SLI4 ports that support extents do not require RPI headers. */ 18792 if (!phba->sli4_hba.rpi_hdrs_in_use) 18793 goto exit; 18794 if (phba->sli4_hba.extents_in_use) 18795 return -EIO; 18796 18797 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 18798 /* 18799 * Assign the rpi headers a physical rpi only if the driver 18800 * has not initialized those resources. A port reset only 18801 * needs the headers posted. 18802 */ 18803 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 18804 LPFC_RPI_RSRC_RDY) 18805 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18806 18807 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 18808 if (rc != MBX_SUCCESS) { 18809 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18810 "2008 Error %d posting all rpi " 18811 "headers\n", rc); 18812 rc = -EIO; 18813 break; 18814 } 18815 } 18816 18817 exit: 18818 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 18819 LPFC_RPI_RSRC_RDY); 18820 return rc; 18821 } 18822 18823 /** 18824 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 18825 * @phba: pointer to lpfc hba data structure. 18826 * @rpi_page: pointer to the rpi memory region. 18827 * 18828 * This routine is invoked to post a single rpi header to the 18829 * HBA consistent with the SLI-4 interface spec. This memory region 18830 * maps up to 64 rpi context regions. 18831 * 18832 * Return codes 18833 * 0 - successful 18834 * -ENOMEM - No available memory 18835 * -EIO - The mailbox failed to complete successfully. 18836 **/ 18837 int 18838 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 18839 { 18840 LPFC_MBOXQ_t *mboxq; 18841 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 18842 uint32_t rc = 0; 18843 uint32_t shdr_status, shdr_add_status; 18844 union lpfc_sli4_cfg_shdr *shdr; 18845 18846 /* SLI4 ports that support extents do not require RPI headers. */ 18847 if (!phba->sli4_hba.rpi_hdrs_in_use) 18848 return rc; 18849 if (phba->sli4_hba.extents_in_use) 18850 return -EIO; 18851 18852 /* The port is notified of the header region via a mailbox command. */ 18853 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18854 if (!mboxq) { 18855 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18856 "2001 Unable to allocate memory for issuing " 18857 "SLI_CONFIG_SPECIAL mailbox command\n"); 18858 return -ENOMEM; 18859 } 18860 18861 /* Post all rpi memory regions to the port. */ 18862 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 18863 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 18864 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 18865 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 18866 sizeof(struct lpfc_sli4_cfg_mhdr), 18867 LPFC_SLI4_MBX_EMBED); 18868 18869 18870 /* Post the physical rpi to the port for this rpi header. */ 18871 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 18872 rpi_page->start_rpi); 18873 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 18874 hdr_tmpl, rpi_page->page_count); 18875 18876 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 18877 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 18878 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 18879 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 18880 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18881 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18882 mempool_free(mboxq, phba->mbox_mem_pool); 18883 if (shdr_status || shdr_add_status || rc) { 18884 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18885 "2514 POST_RPI_HDR mailbox failed with " 18886 "status x%x add_status x%x, mbx status x%x\n", 18887 shdr_status, shdr_add_status, rc); 18888 rc = -ENXIO; 18889 } else { 18890 /* 18891 * The next_rpi stores the next logical module-64 rpi value used 18892 * to post physical rpis in subsequent rpi postings. 18893 */ 18894 spin_lock_irq(&phba->hbalock); 18895 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 18896 spin_unlock_irq(&phba->hbalock); 18897 } 18898 return rc; 18899 } 18900 18901 /** 18902 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 18903 * @phba: pointer to lpfc hba data structure. 18904 * 18905 * This routine is invoked to post rpi header templates to the 18906 * HBA consistent with the SLI-4 interface spec. This routine 18907 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18908 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18909 * 18910 * Returns 18911 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 18912 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 18913 **/ 18914 int 18915 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 18916 { 18917 unsigned long rpi; 18918 uint16_t max_rpi, rpi_limit; 18919 uint16_t rpi_remaining, lrpi = 0; 18920 struct lpfc_rpi_hdr *rpi_hdr; 18921 unsigned long iflag; 18922 18923 /* 18924 * Fetch the next logical rpi. Because this index is logical, 18925 * the driver starts at 0 each time. 18926 */ 18927 spin_lock_irqsave(&phba->hbalock, iflag); 18928 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 18929 rpi_limit = phba->sli4_hba.next_rpi; 18930 18931 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 18932 if (rpi >= rpi_limit) 18933 rpi = LPFC_RPI_ALLOC_ERROR; 18934 else { 18935 set_bit(rpi, phba->sli4_hba.rpi_bmask); 18936 phba->sli4_hba.max_cfg_param.rpi_used++; 18937 phba->sli4_hba.rpi_count++; 18938 } 18939 lpfc_printf_log(phba, KERN_INFO, 18940 LOG_NODE | LOG_DISCOVERY, 18941 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 18942 (int) rpi, max_rpi, rpi_limit); 18943 18944 /* 18945 * Don't try to allocate more rpi header regions if the device limit 18946 * has been exhausted. 18947 */ 18948 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 18949 (phba->sli4_hba.rpi_count >= max_rpi)) { 18950 spin_unlock_irqrestore(&phba->hbalock, iflag); 18951 return rpi; 18952 } 18953 18954 /* 18955 * RPI header postings are not required for SLI4 ports capable of 18956 * extents. 18957 */ 18958 if (!phba->sli4_hba.rpi_hdrs_in_use) { 18959 spin_unlock_irqrestore(&phba->hbalock, iflag); 18960 return rpi; 18961 } 18962 18963 /* 18964 * If the driver is running low on rpi resources, allocate another 18965 * page now. Note that the next_rpi value is used because 18966 * it represents how many are actually in use whereas max_rpi notes 18967 * how many are supported max by the device. 18968 */ 18969 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 18970 spin_unlock_irqrestore(&phba->hbalock, iflag); 18971 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 18972 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 18973 if (!rpi_hdr) { 18974 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18975 "2002 Error Could not grow rpi " 18976 "count\n"); 18977 } else { 18978 lrpi = rpi_hdr->start_rpi; 18979 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18980 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 18981 } 18982 } 18983 18984 return rpi; 18985 } 18986 18987 /** 18988 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 18989 * @phba: pointer to lpfc hba data structure. 18990 * @rpi: rpi to free 18991 * 18992 * This routine is invoked to release an rpi to the pool of 18993 * available rpis maintained by the driver. 18994 **/ 18995 static void 18996 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 18997 { 18998 /* 18999 * if the rpi value indicates a prior unreg has already 19000 * been done, skip the unreg. 19001 */ 19002 if (rpi == LPFC_RPI_ALLOC_ERROR) 19003 return; 19004 19005 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 19006 phba->sli4_hba.rpi_count--; 19007 phba->sli4_hba.max_cfg_param.rpi_used--; 19008 } else { 19009 lpfc_printf_log(phba, KERN_INFO, 19010 LOG_NODE | LOG_DISCOVERY, 19011 "2016 rpi %x not inuse\n", 19012 rpi); 19013 } 19014 } 19015 19016 /** 19017 * lpfc_sli4_free_rpi - Release an rpi for reuse. 19018 * @phba: pointer to lpfc hba data structure. 19019 * @rpi: rpi to free 19020 * 19021 * This routine is invoked to release an rpi to the pool of 19022 * available rpis maintained by the driver. 19023 **/ 19024 void 19025 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19026 { 19027 spin_lock_irq(&phba->hbalock); 19028 __lpfc_sli4_free_rpi(phba, rpi); 19029 spin_unlock_irq(&phba->hbalock); 19030 } 19031 19032 /** 19033 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19034 * @phba: pointer to lpfc hba data structure. 19035 * 19036 * This routine is invoked to remove the memory region that 19037 * provided rpi via a bitmask. 19038 **/ 19039 void 19040 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19041 { 19042 kfree(phba->sli4_hba.rpi_bmask); 19043 kfree(phba->sli4_hba.rpi_ids); 19044 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19045 } 19046 19047 /** 19048 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19049 * @ndlp: pointer to lpfc nodelist data structure. 19050 * @cmpl: completion call-back. 19051 * @arg: data to load as MBox 'caller buffer information' 19052 * 19053 * This routine is invoked to remove the memory region that 19054 * provided rpi via a bitmask. 19055 **/ 19056 int 19057 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19058 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 19059 { 19060 LPFC_MBOXQ_t *mboxq; 19061 struct lpfc_hba *phba = ndlp->phba; 19062 int rc; 19063 19064 /* The port is notified of the header region via a mailbox command. */ 19065 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19066 if (!mboxq) 19067 return -ENOMEM; 19068 19069 /* If cmpl assigned, then this nlp_get pairs with 19070 * lpfc_mbx_cmpl_resume_rpi. 19071 * 19072 * Else cmpl is NULL, then this nlp_get pairs with 19073 * lpfc_sli_def_mbox_cmpl. 19074 */ 19075 if (!lpfc_nlp_get(ndlp)) { 19076 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19077 "2122 %s: Failed to get nlp ref\n", 19078 __func__); 19079 mempool_free(mboxq, phba->mbox_mem_pool); 19080 return -EIO; 19081 } 19082 19083 /* Post all rpi memory regions to the port. */ 19084 lpfc_resume_rpi(mboxq, ndlp); 19085 if (cmpl) { 19086 mboxq->mbox_cmpl = cmpl; 19087 mboxq->ctx_buf = arg; 19088 } else 19089 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19090 mboxq->ctx_ndlp = ndlp; 19091 mboxq->vport = ndlp->vport; 19092 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19093 if (rc == MBX_NOT_FINISHED) { 19094 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19095 "2010 Resume RPI Mailbox failed " 19096 "status %d, mbxStatus x%x\n", rc, 19097 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19098 lpfc_nlp_put(ndlp); 19099 mempool_free(mboxq, phba->mbox_mem_pool); 19100 return -EIO; 19101 } 19102 return 0; 19103 } 19104 19105 /** 19106 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19107 * @vport: Pointer to the vport for which the vpi is being initialized 19108 * 19109 * This routine is invoked to activate a vpi with the port. 19110 * 19111 * Returns: 19112 * 0 success 19113 * -Evalue otherwise 19114 **/ 19115 int 19116 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19117 { 19118 LPFC_MBOXQ_t *mboxq; 19119 int rc = 0; 19120 int retval = MBX_SUCCESS; 19121 uint32_t mbox_tmo; 19122 struct lpfc_hba *phba = vport->phba; 19123 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19124 if (!mboxq) 19125 return -ENOMEM; 19126 lpfc_init_vpi(phba, mboxq, vport->vpi); 19127 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19128 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19129 if (rc != MBX_SUCCESS) { 19130 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19131 "2022 INIT VPI Mailbox failed " 19132 "status %d, mbxStatus x%x\n", rc, 19133 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19134 retval = -EIO; 19135 } 19136 if (rc != MBX_TIMEOUT) 19137 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19138 19139 return retval; 19140 } 19141 19142 /** 19143 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19144 * @phba: pointer to lpfc hba data structure. 19145 * @mboxq: Pointer to mailbox object. 19146 * 19147 * This routine is invoked to manually add a single FCF record. The caller 19148 * must pass a completely initialized FCF_Record. This routine takes 19149 * care of the nonembedded mailbox operations. 19150 **/ 19151 static void 19152 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19153 { 19154 void *virt_addr; 19155 union lpfc_sli4_cfg_shdr *shdr; 19156 uint32_t shdr_status, shdr_add_status; 19157 19158 virt_addr = mboxq->sge_array->addr[0]; 19159 /* The IOCTL status is embedded in the mailbox subheader. */ 19160 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19161 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19162 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19163 19164 if ((shdr_status || shdr_add_status) && 19165 (shdr_status != STATUS_FCF_IN_USE)) 19166 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19167 "2558 ADD_FCF_RECORD mailbox failed with " 19168 "status x%x add_status x%x\n", 19169 shdr_status, shdr_add_status); 19170 19171 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19172 } 19173 19174 /** 19175 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19176 * @phba: pointer to lpfc hba data structure. 19177 * @fcf_record: pointer to the initialized fcf record to add. 19178 * 19179 * This routine is invoked to manually add a single FCF record. The caller 19180 * must pass a completely initialized FCF_Record. This routine takes 19181 * care of the nonembedded mailbox operations. 19182 **/ 19183 int 19184 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19185 { 19186 int rc = 0; 19187 LPFC_MBOXQ_t *mboxq; 19188 uint8_t *bytep; 19189 void *virt_addr; 19190 struct lpfc_mbx_sge sge; 19191 uint32_t alloc_len, req_len; 19192 uint32_t fcfindex; 19193 19194 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19195 if (!mboxq) { 19196 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19197 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 19198 return -ENOMEM; 19199 } 19200 19201 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 19202 sizeof(uint32_t); 19203 19204 /* Allocate DMA memory and set up the non-embedded mailbox command */ 19205 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19206 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 19207 req_len, LPFC_SLI4_MBX_NEMBED); 19208 if (alloc_len < req_len) { 19209 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19210 "2523 Allocated DMA memory size (x%x) is " 19211 "less than the requested DMA memory " 19212 "size (x%x)\n", alloc_len, req_len); 19213 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19214 return -ENOMEM; 19215 } 19216 19217 /* 19218 * Get the first SGE entry from the non-embedded DMA memory. This 19219 * routine only uses a single SGE. 19220 */ 19221 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 19222 virt_addr = mboxq->sge_array->addr[0]; 19223 /* 19224 * Configure the FCF record for FCFI 0. This is the driver's 19225 * hardcoded default and gets used in nonFIP mode. 19226 */ 19227 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 19228 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 19229 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 19230 19231 /* 19232 * Copy the fcf_index and the FCF Record Data. The data starts after 19233 * the FCoE header plus word10. The data copy needs to be endian 19234 * correct. 19235 */ 19236 bytep += sizeof(uint32_t); 19237 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 19238 mboxq->vport = phba->pport; 19239 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 19240 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19241 if (rc == MBX_NOT_FINISHED) { 19242 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19243 "2515 ADD_FCF_RECORD mailbox failed with " 19244 "status 0x%x\n", rc); 19245 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19246 rc = -EIO; 19247 } else 19248 rc = 0; 19249 19250 return rc; 19251 } 19252 19253 /** 19254 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 19255 * @phba: pointer to lpfc hba data structure. 19256 * @fcf_record: pointer to the fcf record to write the default data. 19257 * @fcf_index: FCF table entry index. 19258 * 19259 * This routine is invoked to build the driver's default FCF record. The 19260 * values used are hardcoded. This routine handles memory initialization. 19261 * 19262 **/ 19263 void 19264 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 19265 struct fcf_record *fcf_record, 19266 uint16_t fcf_index) 19267 { 19268 memset(fcf_record, 0, sizeof(struct fcf_record)); 19269 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 19270 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 19271 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 19272 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 19273 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 19274 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 19275 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 19276 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 19277 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 19278 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 19279 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 19280 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 19281 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 19282 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 19283 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 19284 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 19285 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 19286 /* Set the VLAN bit map */ 19287 if (phba->valid_vlan) { 19288 fcf_record->vlan_bitmap[phba->vlan_id / 8] 19289 = 1 << (phba->vlan_id % 8); 19290 } 19291 } 19292 19293 /** 19294 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 19295 * @phba: pointer to lpfc hba data structure. 19296 * @fcf_index: FCF table entry offset. 19297 * 19298 * This routine is invoked to scan the entire FCF table by reading FCF 19299 * record and processing it one at a time starting from the @fcf_index 19300 * for initial FCF discovery or fast FCF failover rediscovery. 19301 * 19302 * Return 0 if the mailbox command is submitted successfully, none 0 19303 * otherwise. 19304 **/ 19305 int 19306 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19307 { 19308 int rc = 0, error; 19309 LPFC_MBOXQ_t *mboxq; 19310 19311 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 19312 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 19313 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19314 if (!mboxq) { 19315 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19316 "2000 Failed to allocate mbox for " 19317 "READ_FCF cmd\n"); 19318 error = -ENOMEM; 19319 goto fail_fcf_scan; 19320 } 19321 /* Construct the read FCF record mailbox command */ 19322 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19323 if (rc) { 19324 error = -EINVAL; 19325 goto fail_fcf_scan; 19326 } 19327 /* Issue the mailbox command asynchronously */ 19328 mboxq->vport = phba->pport; 19329 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 19330 19331 spin_lock_irq(&phba->hbalock); 19332 phba->hba_flag |= FCF_TS_INPROG; 19333 spin_unlock_irq(&phba->hbalock); 19334 19335 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19336 if (rc == MBX_NOT_FINISHED) 19337 error = -EIO; 19338 else { 19339 /* Reset eligible FCF count for new scan */ 19340 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 19341 phba->fcf.eligible_fcf_cnt = 0; 19342 error = 0; 19343 } 19344 fail_fcf_scan: 19345 if (error) { 19346 if (mboxq) 19347 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19348 /* FCF scan failed, clear FCF_TS_INPROG flag */ 19349 spin_lock_irq(&phba->hbalock); 19350 phba->hba_flag &= ~FCF_TS_INPROG; 19351 spin_unlock_irq(&phba->hbalock); 19352 } 19353 return error; 19354 } 19355 19356 /** 19357 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 19358 * @phba: pointer to lpfc hba data structure. 19359 * @fcf_index: FCF table entry offset. 19360 * 19361 * This routine is invoked to read an FCF record indicated by @fcf_index 19362 * and to use it for FLOGI roundrobin FCF failover. 19363 * 19364 * Return 0 if the mailbox command is submitted successfully, none 0 19365 * otherwise. 19366 **/ 19367 int 19368 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19369 { 19370 int rc = 0, error; 19371 LPFC_MBOXQ_t *mboxq; 19372 19373 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19374 if (!mboxq) { 19375 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 19376 "2763 Failed to allocate mbox for " 19377 "READ_FCF cmd\n"); 19378 error = -ENOMEM; 19379 goto fail_fcf_read; 19380 } 19381 /* Construct the read FCF record mailbox command */ 19382 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19383 if (rc) { 19384 error = -EINVAL; 19385 goto fail_fcf_read; 19386 } 19387 /* Issue the mailbox command asynchronously */ 19388 mboxq->vport = phba->pport; 19389 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 19390 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19391 if (rc == MBX_NOT_FINISHED) 19392 error = -EIO; 19393 else 19394 error = 0; 19395 19396 fail_fcf_read: 19397 if (error && mboxq) 19398 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19399 return error; 19400 } 19401 19402 /** 19403 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 19404 * @phba: pointer to lpfc hba data structure. 19405 * @fcf_index: FCF table entry offset. 19406 * 19407 * This routine is invoked to read an FCF record indicated by @fcf_index to 19408 * determine whether it's eligible for FLOGI roundrobin failover list. 19409 * 19410 * Return 0 if the mailbox command is submitted successfully, none 0 19411 * otherwise. 19412 **/ 19413 int 19414 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19415 { 19416 int rc = 0, error; 19417 LPFC_MBOXQ_t *mboxq; 19418 19419 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19420 if (!mboxq) { 19421 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 19422 "2758 Failed to allocate mbox for " 19423 "READ_FCF cmd\n"); 19424 error = -ENOMEM; 19425 goto fail_fcf_read; 19426 } 19427 /* Construct the read FCF record mailbox command */ 19428 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19429 if (rc) { 19430 error = -EINVAL; 19431 goto fail_fcf_read; 19432 } 19433 /* Issue the mailbox command asynchronously */ 19434 mboxq->vport = phba->pport; 19435 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 19436 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19437 if (rc == MBX_NOT_FINISHED) 19438 error = -EIO; 19439 else 19440 error = 0; 19441 19442 fail_fcf_read: 19443 if (error && mboxq) 19444 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19445 return error; 19446 } 19447 19448 /** 19449 * lpfc_check_next_fcf_pri_level 19450 * @phba: pointer to the lpfc_hba struct for this port. 19451 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 19452 * routine when the rr_bmask is empty. The FCF indecies are put into the 19453 * rr_bmask based on their priority level. Starting from the highest priority 19454 * to the lowest. The most likely FCF candidate will be in the highest 19455 * priority group. When this routine is called it searches the fcf_pri list for 19456 * next lowest priority group and repopulates the rr_bmask with only those 19457 * fcf_indexes. 19458 * returns: 19459 * 1=success 0=failure 19460 **/ 19461 static int 19462 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 19463 { 19464 uint16_t next_fcf_pri; 19465 uint16_t last_index; 19466 struct lpfc_fcf_pri *fcf_pri; 19467 int rc; 19468 int ret = 0; 19469 19470 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 19471 LPFC_SLI4_FCF_TBL_INDX_MAX); 19472 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19473 "3060 Last IDX %d\n", last_index); 19474 19475 /* Verify the priority list has 2 or more entries */ 19476 spin_lock_irq(&phba->hbalock); 19477 if (list_empty(&phba->fcf.fcf_pri_list) || 19478 list_is_singular(&phba->fcf.fcf_pri_list)) { 19479 spin_unlock_irq(&phba->hbalock); 19480 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19481 "3061 Last IDX %d\n", last_index); 19482 return 0; /* Empty rr list */ 19483 } 19484 spin_unlock_irq(&phba->hbalock); 19485 19486 next_fcf_pri = 0; 19487 /* 19488 * Clear the rr_bmask and set all of the bits that are at this 19489 * priority. 19490 */ 19491 memset(phba->fcf.fcf_rr_bmask, 0, 19492 sizeof(*phba->fcf.fcf_rr_bmask)); 19493 spin_lock_irq(&phba->hbalock); 19494 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 19495 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 19496 continue; 19497 /* 19498 * the 1st priority that has not FLOGI failed 19499 * will be the highest. 19500 */ 19501 if (!next_fcf_pri) 19502 next_fcf_pri = fcf_pri->fcf_rec.priority; 19503 spin_unlock_irq(&phba->hbalock); 19504 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19505 rc = lpfc_sli4_fcf_rr_index_set(phba, 19506 fcf_pri->fcf_rec.fcf_index); 19507 if (rc) 19508 return 0; 19509 } 19510 spin_lock_irq(&phba->hbalock); 19511 } 19512 /* 19513 * if next_fcf_pri was not set above and the list is not empty then 19514 * we have failed flogis on all of them. So reset flogi failed 19515 * and start at the beginning. 19516 */ 19517 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 19518 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 19519 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 19520 /* 19521 * the 1st priority that has not FLOGI failed 19522 * will be the highest. 19523 */ 19524 if (!next_fcf_pri) 19525 next_fcf_pri = fcf_pri->fcf_rec.priority; 19526 spin_unlock_irq(&phba->hbalock); 19527 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19528 rc = lpfc_sli4_fcf_rr_index_set(phba, 19529 fcf_pri->fcf_rec.fcf_index); 19530 if (rc) 19531 return 0; 19532 } 19533 spin_lock_irq(&phba->hbalock); 19534 } 19535 } else 19536 ret = 1; 19537 spin_unlock_irq(&phba->hbalock); 19538 19539 return ret; 19540 } 19541 /** 19542 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 19543 * @phba: pointer to lpfc hba data structure. 19544 * 19545 * This routine is to get the next eligible FCF record index in a round 19546 * robin fashion. If the next eligible FCF record index equals to the 19547 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 19548 * shall be returned, otherwise, the next eligible FCF record's index 19549 * shall be returned. 19550 **/ 19551 uint16_t 19552 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 19553 { 19554 uint16_t next_fcf_index; 19555 19556 initial_priority: 19557 /* Search start from next bit of currently registered FCF index */ 19558 next_fcf_index = phba->fcf.current_rec.fcf_indx; 19559 19560 next_priority: 19561 /* Determine the next fcf index to check */ 19562 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 19563 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 19564 LPFC_SLI4_FCF_TBL_INDX_MAX, 19565 next_fcf_index); 19566 19567 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 19568 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19569 /* 19570 * If we have wrapped then we need to clear the bits that 19571 * have been tested so that we can detect when we should 19572 * change the priority level. 19573 */ 19574 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 19575 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 19576 } 19577 19578 19579 /* Check roundrobin failover list empty condition */ 19580 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 19581 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 19582 /* 19583 * If next fcf index is not found check if there are lower 19584 * Priority level fcf's in the fcf_priority list. 19585 * Set up the rr_bmask with all of the avaiable fcf bits 19586 * at that level and continue the selection process. 19587 */ 19588 if (lpfc_check_next_fcf_pri_level(phba)) 19589 goto initial_priority; 19590 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 19591 "2844 No roundrobin failover FCF available\n"); 19592 19593 return LPFC_FCOE_FCF_NEXT_NONE; 19594 } 19595 19596 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 19597 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 19598 LPFC_FCF_FLOGI_FAILED) { 19599 if (list_is_singular(&phba->fcf.fcf_pri_list)) 19600 return LPFC_FCOE_FCF_NEXT_NONE; 19601 19602 goto next_priority; 19603 } 19604 19605 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19606 "2845 Get next roundrobin failover FCF (x%x)\n", 19607 next_fcf_index); 19608 19609 return next_fcf_index; 19610 } 19611 19612 /** 19613 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 19614 * @phba: pointer to lpfc hba data structure. 19615 * @fcf_index: index into the FCF table to 'set' 19616 * 19617 * This routine sets the FCF record index in to the eligible bmask for 19618 * roundrobin failover search. It checks to make sure that the index 19619 * does not go beyond the range of the driver allocated bmask dimension 19620 * before setting the bit. 19621 * 19622 * Returns 0 if the index bit successfully set, otherwise, it returns 19623 * -EINVAL. 19624 **/ 19625 int 19626 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 19627 { 19628 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19629 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19630 "2610 FCF (x%x) reached driver's book " 19631 "keeping dimension:x%x\n", 19632 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 19633 return -EINVAL; 19634 } 19635 /* Set the eligible FCF record index bmask */ 19636 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 19637 19638 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19639 "2790 Set FCF (x%x) to roundrobin FCF failover " 19640 "bmask\n", fcf_index); 19641 19642 return 0; 19643 } 19644 19645 /** 19646 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 19647 * @phba: pointer to lpfc hba data structure. 19648 * @fcf_index: index into the FCF table to 'clear' 19649 * 19650 * This routine clears the FCF record index from the eligible bmask for 19651 * roundrobin failover search. It checks to make sure that the index 19652 * does not go beyond the range of the driver allocated bmask dimension 19653 * before clearing the bit. 19654 **/ 19655 void 19656 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 19657 { 19658 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 19659 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19660 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19661 "2762 FCF (x%x) reached driver's book " 19662 "keeping dimension:x%x\n", 19663 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 19664 return; 19665 } 19666 /* Clear the eligible FCF record index bmask */ 19667 spin_lock_irq(&phba->hbalock); 19668 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 19669 list) { 19670 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 19671 list_del_init(&fcf_pri->list); 19672 break; 19673 } 19674 } 19675 spin_unlock_irq(&phba->hbalock); 19676 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 19677 19678 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19679 "2791 Clear FCF (x%x) from roundrobin failover " 19680 "bmask\n", fcf_index); 19681 } 19682 19683 /** 19684 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 19685 * @phba: pointer to lpfc hba data structure. 19686 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 19687 * 19688 * This routine is the completion routine for the rediscover FCF table mailbox 19689 * command. If the mailbox command returned failure, it will try to stop the 19690 * FCF rediscover wait timer. 19691 **/ 19692 static void 19693 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 19694 { 19695 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 19696 uint32_t shdr_status, shdr_add_status; 19697 19698 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 19699 19700 shdr_status = bf_get(lpfc_mbox_hdr_status, 19701 &redisc_fcf->header.cfg_shdr.response); 19702 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 19703 &redisc_fcf->header.cfg_shdr.response); 19704 if (shdr_status || shdr_add_status) { 19705 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19706 "2746 Requesting for FCF rediscovery failed " 19707 "status x%x add_status x%x\n", 19708 shdr_status, shdr_add_status); 19709 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 19710 spin_lock_irq(&phba->hbalock); 19711 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 19712 spin_unlock_irq(&phba->hbalock); 19713 /* 19714 * CVL event triggered FCF rediscover request failed, 19715 * last resort to re-try current registered FCF entry. 19716 */ 19717 lpfc_retry_pport_discovery(phba); 19718 } else { 19719 spin_lock_irq(&phba->hbalock); 19720 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 19721 spin_unlock_irq(&phba->hbalock); 19722 /* 19723 * DEAD FCF event triggered FCF rediscover request 19724 * failed, last resort to fail over as a link down 19725 * to FCF registration. 19726 */ 19727 lpfc_sli4_fcf_dead_failthrough(phba); 19728 } 19729 } else { 19730 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19731 "2775 Start FCF rediscover quiescent timer\n"); 19732 /* 19733 * Start FCF rediscovery wait timer for pending FCF 19734 * before rescan FCF record table. 19735 */ 19736 lpfc_fcf_redisc_wait_start_timer(phba); 19737 } 19738 19739 mempool_free(mbox, phba->mbox_mem_pool); 19740 } 19741 19742 /** 19743 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 19744 * @phba: pointer to lpfc hba data structure. 19745 * 19746 * This routine is invoked to request for rediscovery of the entire FCF table 19747 * by the port. 19748 **/ 19749 int 19750 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 19751 { 19752 LPFC_MBOXQ_t *mbox; 19753 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 19754 int rc, length; 19755 19756 /* Cancel retry delay timers to all vports before FCF rediscover */ 19757 lpfc_cancel_all_vport_retry_delay_timer(phba); 19758 19759 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19760 if (!mbox) { 19761 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19762 "2745 Failed to allocate mbox for " 19763 "requesting FCF rediscover.\n"); 19764 return -ENOMEM; 19765 } 19766 19767 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 19768 sizeof(struct lpfc_sli4_cfg_mhdr)); 19769 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 19770 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 19771 length, LPFC_SLI4_MBX_EMBED); 19772 19773 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 19774 /* Set count to 0 for invalidating the entire FCF database */ 19775 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 19776 19777 /* Issue the mailbox command asynchronously */ 19778 mbox->vport = phba->pport; 19779 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 19780 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 19781 19782 if (rc == MBX_NOT_FINISHED) { 19783 mempool_free(mbox, phba->mbox_mem_pool); 19784 return -EIO; 19785 } 19786 return 0; 19787 } 19788 19789 /** 19790 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 19791 * @phba: pointer to lpfc hba data structure. 19792 * 19793 * This function is the failover routine as a last resort to the FCF DEAD 19794 * event when driver failed to perform fast FCF failover. 19795 **/ 19796 void 19797 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 19798 { 19799 uint32_t link_state; 19800 19801 /* 19802 * Last resort as FCF DEAD event failover will treat this as 19803 * a link down, but save the link state because we don't want 19804 * it to be changed to Link Down unless it is already down. 19805 */ 19806 link_state = phba->link_state; 19807 lpfc_linkdown(phba); 19808 phba->link_state = link_state; 19809 19810 /* Unregister FCF if no devices connected to it */ 19811 lpfc_unregister_unused_fcf(phba); 19812 } 19813 19814 /** 19815 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 19816 * @phba: pointer to lpfc hba data structure. 19817 * @rgn23_data: pointer to configure region 23 data. 19818 * 19819 * This function gets SLI3 port configure region 23 data through memory dump 19820 * mailbox command. When it successfully retrieves data, the size of the data 19821 * will be returned, otherwise, 0 will be returned. 19822 **/ 19823 static uint32_t 19824 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19825 { 19826 LPFC_MBOXQ_t *pmb = NULL; 19827 MAILBOX_t *mb; 19828 uint32_t offset = 0; 19829 int rc; 19830 19831 if (!rgn23_data) 19832 return 0; 19833 19834 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19835 if (!pmb) { 19836 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19837 "2600 failed to allocate mailbox memory\n"); 19838 return 0; 19839 } 19840 mb = &pmb->u.mb; 19841 19842 do { 19843 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 19844 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 19845 19846 if (rc != MBX_SUCCESS) { 19847 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19848 "2601 failed to read config " 19849 "region 23, rc 0x%x Status 0x%x\n", 19850 rc, mb->mbxStatus); 19851 mb->un.varDmp.word_cnt = 0; 19852 } 19853 /* 19854 * dump mem may return a zero when finished or we got a 19855 * mailbox error, either way we are done. 19856 */ 19857 if (mb->un.varDmp.word_cnt == 0) 19858 break; 19859 19860 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 19861 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 19862 19863 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 19864 rgn23_data + offset, 19865 mb->un.varDmp.word_cnt); 19866 offset += mb->un.varDmp.word_cnt; 19867 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 19868 19869 mempool_free(pmb, phba->mbox_mem_pool); 19870 return offset; 19871 } 19872 19873 /** 19874 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 19875 * @phba: pointer to lpfc hba data structure. 19876 * @rgn23_data: pointer to configure region 23 data. 19877 * 19878 * This function gets SLI4 port configure region 23 data through memory dump 19879 * mailbox command. When it successfully retrieves data, the size of the data 19880 * will be returned, otherwise, 0 will be returned. 19881 **/ 19882 static uint32_t 19883 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19884 { 19885 LPFC_MBOXQ_t *mboxq = NULL; 19886 struct lpfc_dmabuf *mp = NULL; 19887 struct lpfc_mqe *mqe; 19888 uint32_t data_length = 0; 19889 int rc; 19890 19891 if (!rgn23_data) 19892 return 0; 19893 19894 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19895 if (!mboxq) { 19896 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19897 "3105 failed to allocate mailbox memory\n"); 19898 return 0; 19899 } 19900 19901 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 19902 goto out; 19903 mqe = &mboxq->u.mqe; 19904 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 19905 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19906 if (rc) 19907 goto out; 19908 data_length = mqe->un.mb_words[5]; 19909 if (data_length == 0) 19910 goto out; 19911 if (data_length > DMP_RGN23_SIZE) { 19912 data_length = 0; 19913 goto out; 19914 } 19915 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 19916 out: 19917 mempool_free(mboxq, phba->mbox_mem_pool); 19918 if (mp) { 19919 lpfc_mbuf_free(phba, mp->virt, mp->phys); 19920 kfree(mp); 19921 } 19922 return data_length; 19923 } 19924 19925 /** 19926 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 19927 * @phba: pointer to lpfc hba data structure. 19928 * 19929 * This function read region 23 and parse TLV for port status to 19930 * decide if the user disaled the port. If the TLV indicates the 19931 * port is disabled, the hba_flag is set accordingly. 19932 **/ 19933 void 19934 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 19935 { 19936 uint8_t *rgn23_data = NULL; 19937 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 19938 uint32_t offset = 0; 19939 19940 /* Get adapter Region 23 data */ 19941 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 19942 if (!rgn23_data) 19943 goto out; 19944 19945 if (phba->sli_rev < LPFC_SLI_REV4) 19946 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 19947 else { 19948 if_type = bf_get(lpfc_sli_intf_if_type, 19949 &phba->sli4_hba.sli_intf); 19950 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 19951 goto out; 19952 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 19953 } 19954 19955 if (!data_size) 19956 goto out; 19957 19958 /* Check the region signature first */ 19959 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 19960 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19961 "2619 Config region 23 has bad signature\n"); 19962 goto out; 19963 } 19964 offset += 4; 19965 19966 /* Check the data structure version */ 19967 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 19968 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19969 "2620 Config region 23 has bad version\n"); 19970 goto out; 19971 } 19972 offset += 4; 19973 19974 /* Parse TLV entries in the region */ 19975 while (offset < data_size) { 19976 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 19977 break; 19978 /* 19979 * If the TLV is not driver specific TLV or driver id is 19980 * not linux driver id, skip the record. 19981 */ 19982 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 19983 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 19984 (rgn23_data[offset + 3] != 0)) { 19985 offset += rgn23_data[offset + 1] * 4 + 4; 19986 continue; 19987 } 19988 19989 /* Driver found a driver specific TLV in the config region */ 19990 sub_tlv_len = rgn23_data[offset + 1] * 4; 19991 offset += 4; 19992 tlv_offset = 0; 19993 19994 /* 19995 * Search for configured port state sub-TLV. 19996 */ 19997 while ((offset < data_size) && 19998 (tlv_offset < sub_tlv_len)) { 19999 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 20000 offset += 4; 20001 tlv_offset += 4; 20002 break; 20003 } 20004 if (rgn23_data[offset] != PORT_STE_TYPE) { 20005 offset += rgn23_data[offset + 1] * 4 + 4; 20006 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 20007 continue; 20008 } 20009 20010 /* This HBA contains PORT_STE configured */ 20011 if (!rgn23_data[offset + 2]) 20012 phba->hba_flag |= LINK_DISABLED; 20013 20014 goto out; 20015 } 20016 } 20017 20018 out: 20019 kfree(rgn23_data); 20020 return; 20021 } 20022 20023 /** 20024 * lpfc_wr_object - write an object to the firmware 20025 * @phba: HBA structure that indicates port to create a queue on. 20026 * @dmabuf_list: list of dmabufs to write to the port. 20027 * @size: the total byte value of the objects to write to the port. 20028 * @offset: the current offset to be used to start the transfer. 20029 * 20030 * This routine will create a wr_object mailbox command to send to the port. 20031 * the mailbox command will be constructed using the dma buffers described in 20032 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20033 * BDEs that the imbedded mailbox can support. The @offset variable will be 20034 * used to indicate the starting offset of the transfer and will also return 20035 * the offset after the write object mailbox has completed. @size is used to 20036 * determine the end of the object and whether the eof bit should be set. 20037 * 20038 * Return 0 is successful and offset will contain the the new offset to use 20039 * for the next write. 20040 * Return negative value for error cases. 20041 **/ 20042 int 20043 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20044 uint32_t size, uint32_t *offset) 20045 { 20046 struct lpfc_mbx_wr_object *wr_object; 20047 LPFC_MBOXQ_t *mbox; 20048 int rc = 0, i = 0; 20049 uint32_t shdr_status, shdr_add_status, shdr_change_status, shdr_csf; 20050 uint32_t mbox_tmo; 20051 struct lpfc_dmabuf *dmabuf; 20052 uint32_t written = 0; 20053 bool check_change_status = false; 20054 20055 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20056 if (!mbox) 20057 return -ENOMEM; 20058 20059 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20060 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20061 sizeof(struct lpfc_mbx_wr_object) - 20062 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20063 20064 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20065 wr_object->u.request.write_offset = *offset; 20066 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20067 wr_object->u.request.object_name[0] = 20068 cpu_to_le32(wr_object->u.request.object_name[0]); 20069 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20070 list_for_each_entry(dmabuf, dmabuf_list, list) { 20071 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20072 break; 20073 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20074 wr_object->u.request.bde[i].addrHigh = 20075 putPaddrHigh(dmabuf->phys); 20076 if (written + SLI4_PAGE_SIZE >= size) { 20077 wr_object->u.request.bde[i].tus.f.bdeSize = 20078 (size - written); 20079 written += (size - written); 20080 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20081 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20082 check_change_status = true; 20083 } else { 20084 wr_object->u.request.bde[i].tus.f.bdeSize = 20085 SLI4_PAGE_SIZE; 20086 written += SLI4_PAGE_SIZE; 20087 } 20088 i++; 20089 } 20090 wr_object->u.request.bde_count = i; 20091 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20092 if (!phba->sli4_hba.intr_enable) 20093 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20094 else { 20095 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20096 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20097 } 20098 /* The IOCTL status is embedded in the mailbox subheader. */ 20099 shdr_status = bf_get(lpfc_mbox_hdr_status, 20100 &wr_object->header.cfg_shdr.response); 20101 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20102 &wr_object->header.cfg_shdr.response); 20103 if (check_change_status) { 20104 shdr_change_status = bf_get(lpfc_wr_object_change_status, 20105 &wr_object->u.response); 20106 20107 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20108 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20109 shdr_csf = bf_get(lpfc_wr_object_csf, 20110 &wr_object->u.response); 20111 if (shdr_csf) 20112 shdr_change_status = 20113 LPFC_CHANGE_STATUS_PCI_RESET; 20114 } 20115 20116 switch (shdr_change_status) { 20117 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20118 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20119 "3198 Firmware write complete: System " 20120 "reboot required to instantiate\n"); 20121 break; 20122 case (LPFC_CHANGE_STATUS_FW_RESET): 20123 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20124 "3199 Firmware write complete: Firmware" 20125 " reset required to instantiate\n"); 20126 break; 20127 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20128 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20129 "3200 Firmware write complete: Port " 20130 "Migration or PCI Reset required to " 20131 "instantiate\n"); 20132 break; 20133 case (LPFC_CHANGE_STATUS_PCI_RESET): 20134 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20135 "3201 Firmware write complete: PCI " 20136 "Reset required to instantiate\n"); 20137 break; 20138 default: 20139 break; 20140 } 20141 } 20142 if (!phba->sli4_hba.intr_enable) 20143 mempool_free(mbox, phba->mbox_mem_pool); 20144 else if (rc != MBX_TIMEOUT) 20145 mempool_free(mbox, phba->mbox_mem_pool); 20146 if (shdr_status || shdr_add_status || rc) { 20147 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20148 "3025 Write Object mailbox failed with " 20149 "status x%x add_status x%x, mbx status x%x\n", 20150 shdr_status, shdr_add_status, rc); 20151 rc = -ENXIO; 20152 *offset = shdr_add_status; 20153 } else 20154 *offset += wr_object->u.response.actual_write_length; 20155 return rc; 20156 } 20157 20158 /** 20159 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 20160 * @vport: pointer to vport data structure. 20161 * 20162 * This function iterate through the mailboxq and clean up all REG_LOGIN 20163 * and REG_VPI mailbox commands associated with the vport. This function 20164 * is called when driver want to restart discovery of the vport due to 20165 * a Clear Virtual Link event. 20166 **/ 20167 void 20168 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 20169 { 20170 struct lpfc_hba *phba = vport->phba; 20171 LPFC_MBOXQ_t *mb, *nextmb; 20172 struct lpfc_dmabuf *mp; 20173 struct lpfc_nodelist *ndlp; 20174 struct lpfc_nodelist *act_mbx_ndlp = NULL; 20175 LIST_HEAD(mbox_cmd_list); 20176 uint8_t restart_loop; 20177 20178 /* Clean up internally queued mailbox commands with the vport */ 20179 spin_lock_irq(&phba->hbalock); 20180 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 20181 if (mb->vport != vport) 20182 continue; 20183 20184 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20185 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20186 continue; 20187 20188 list_move_tail(&mb->list, &mbox_cmd_list); 20189 } 20190 /* Clean up active mailbox command with the vport */ 20191 mb = phba->sli.mbox_active; 20192 if (mb && (mb->vport == vport)) { 20193 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 20194 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 20195 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20196 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20197 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20198 /* Put reference count for delayed processing */ 20199 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 20200 /* Unregister the RPI when mailbox complete */ 20201 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20202 } 20203 } 20204 /* Cleanup any mailbox completions which are not yet processed */ 20205 do { 20206 restart_loop = 0; 20207 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 20208 /* 20209 * If this mailox is already processed or it is 20210 * for another vport ignore it. 20211 */ 20212 if ((mb->vport != vport) || 20213 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 20214 continue; 20215 20216 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20217 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20218 continue; 20219 20220 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20221 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20222 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20223 /* Unregister the RPI when mailbox complete */ 20224 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20225 restart_loop = 1; 20226 spin_unlock_irq(&phba->hbalock); 20227 spin_lock(&ndlp->lock); 20228 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20229 spin_unlock(&ndlp->lock); 20230 spin_lock_irq(&phba->hbalock); 20231 break; 20232 } 20233 } 20234 } while (restart_loop); 20235 20236 spin_unlock_irq(&phba->hbalock); 20237 20238 /* Release the cleaned-up mailbox commands */ 20239 while (!list_empty(&mbox_cmd_list)) { 20240 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 20241 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20242 mp = (struct lpfc_dmabuf *)(mb->ctx_buf); 20243 if (mp) { 20244 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 20245 kfree(mp); 20246 } 20247 mb->ctx_buf = NULL; 20248 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20249 mb->ctx_ndlp = NULL; 20250 if (ndlp) { 20251 spin_lock(&ndlp->lock); 20252 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20253 spin_unlock(&ndlp->lock); 20254 lpfc_nlp_put(ndlp); 20255 } 20256 } 20257 mempool_free(mb, phba->mbox_mem_pool); 20258 } 20259 20260 /* Release the ndlp with the cleaned-up active mailbox command */ 20261 if (act_mbx_ndlp) { 20262 spin_lock(&act_mbx_ndlp->lock); 20263 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20264 spin_unlock(&act_mbx_ndlp->lock); 20265 lpfc_nlp_put(act_mbx_ndlp); 20266 } 20267 } 20268 20269 /** 20270 * lpfc_drain_txq - Drain the txq 20271 * @phba: Pointer to HBA context object. 20272 * 20273 * This function attempt to submit IOCBs on the txq 20274 * to the adapter. For SLI4 adapters, the txq contains 20275 * ELS IOCBs that have been deferred because the there 20276 * are no SGLs. This congestion can occur with large 20277 * vport counts during node discovery. 20278 **/ 20279 20280 uint32_t 20281 lpfc_drain_txq(struct lpfc_hba *phba) 20282 { 20283 LIST_HEAD(completions); 20284 struct lpfc_sli_ring *pring; 20285 struct lpfc_iocbq *piocbq = NULL; 20286 unsigned long iflags = 0; 20287 char *fail_msg = NULL; 20288 struct lpfc_sglq *sglq; 20289 union lpfc_wqe128 wqe; 20290 uint32_t txq_cnt = 0; 20291 struct lpfc_queue *wq; 20292 20293 if (phba->link_flag & LS_MDS_LOOPBACK) { 20294 /* MDS WQE are posted only to first WQ*/ 20295 wq = phba->sli4_hba.hdwq[0].io_wq; 20296 if (unlikely(!wq)) 20297 return 0; 20298 pring = wq->pring; 20299 } else { 20300 wq = phba->sli4_hba.els_wq; 20301 if (unlikely(!wq)) 20302 return 0; 20303 pring = lpfc_phba_elsring(phba); 20304 } 20305 20306 if (unlikely(!pring) || list_empty(&pring->txq)) 20307 return 0; 20308 20309 spin_lock_irqsave(&pring->ring_lock, iflags); 20310 list_for_each_entry(piocbq, &pring->txq, list) { 20311 txq_cnt++; 20312 } 20313 20314 if (txq_cnt > pring->txq_max) 20315 pring->txq_max = txq_cnt; 20316 20317 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20318 20319 while (!list_empty(&pring->txq)) { 20320 spin_lock_irqsave(&pring->ring_lock, iflags); 20321 20322 piocbq = lpfc_sli_ringtx_get(phba, pring); 20323 if (!piocbq) { 20324 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20325 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20326 "2823 txq empty and txq_cnt is %d\n ", 20327 txq_cnt); 20328 break; 20329 } 20330 sglq = __lpfc_sli_get_els_sglq(phba, piocbq); 20331 if (!sglq) { 20332 __lpfc_sli_ringtx_put(phba, pring, piocbq); 20333 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20334 break; 20335 } 20336 txq_cnt--; 20337 20338 /* The xri and iocb resources secured, 20339 * attempt to issue request 20340 */ 20341 piocbq->sli4_lxritag = sglq->sli4_lxritag; 20342 piocbq->sli4_xritag = sglq->sli4_xritag; 20343 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 20344 fail_msg = "to convert bpl to sgl"; 20345 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 20346 fail_msg = "to convert iocb to wqe"; 20347 else if (lpfc_sli4_wq_put(wq, &wqe)) 20348 fail_msg = " - Wq is full"; 20349 else 20350 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 20351 20352 if (fail_msg) { 20353 /* Failed means we can't issue and need to cancel */ 20354 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20355 "2822 IOCB failed %s iotag 0x%x " 20356 "xri 0x%x\n", 20357 fail_msg, 20358 piocbq->iotag, piocbq->sli4_xritag); 20359 list_add_tail(&piocbq->list, &completions); 20360 } 20361 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20362 } 20363 20364 /* Cancel all the IOCBs that cannot be issued */ 20365 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 20366 IOERR_SLI_ABORTED); 20367 20368 return txq_cnt; 20369 } 20370 20371 /** 20372 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 20373 * @phba: Pointer to HBA context object. 20374 * @pwqeq: Pointer to command WQE. 20375 * @sglq: Pointer to the scatter gather queue object. 20376 * 20377 * This routine converts the bpl or bde that is in the WQE 20378 * to a sgl list for the sli4 hardware. The physical address 20379 * of the bpl/bde is converted back to a virtual address. 20380 * If the WQE contains a BPL then the list of BDE's is 20381 * converted to sli4_sge's. If the WQE contains a single 20382 * BDE then it is converted to a single sli_sge. 20383 * The WQE is still in cpu endianness so the contents of 20384 * the bpl can be used without byte swapping. 20385 * 20386 * Returns valid XRI = Success, NO_XRI = Failure. 20387 */ 20388 static uint16_t 20389 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 20390 struct lpfc_sglq *sglq) 20391 { 20392 uint16_t xritag = NO_XRI; 20393 struct ulp_bde64 *bpl = NULL; 20394 struct ulp_bde64 bde; 20395 struct sli4_sge *sgl = NULL; 20396 struct lpfc_dmabuf *dmabuf; 20397 union lpfc_wqe128 *wqe; 20398 int numBdes = 0; 20399 int i = 0; 20400 uint32_t offset = 0; /* accumulated offset in the sg request list */ 20401 int inbound = 0; /* number of sg reply entries inbound from firmware */ 20402 uint32_t cmd; 20403 20404 if (!pwqeq || !sglq) 20405 return xritag; 20406 20407 sgl = (struct sli4_sge *)sglq->sgl; 20408 wqe = &pwqeq->wqe; 20409 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 20410 20411 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 20412 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 20413 return sglq->sli4_xritag; 20414 numBdes = pwqeq->rsvd2; 20415 if (numBdes) { 20416 /* The addrHigh and addrLow fields within the WQE 20417 * have not been byteswapped yet so there is no 20418 * need to swap them back. 20419 */ 20420 if (pwqeq->context3) 20421 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 20422 else 20423 return xritag; 20424 20425 bpl = (struct ulp_bde64 *)dmabuf->virt; 20426 if (!bpl) 20427 return xritag; 20428 20429 for (i = 0; i < numBdes; i++) { 20430 /* Should already be byte swapped. */ 20431 sgl->addr_hi = bpl->addrHigh; 20432 sgl->addr_lo = bpl->addrLow; 20433 20434 sgl->word2 = le32_to_cpu(sgl->word2); 20435 if ((i+1) == numBdes) 20436 bf_set(lpfc_sli4_sge_last, sgl, 1); 20437 else 20438 bf_set(lpfc_sli4_sge_last, sgl, 0); 20439 /* swap the size field back to the cpu so we 20440 * can assign it to the sgl. 20441 */ 20442 bde.tus.w = le32_to_cpu(bpl->tus.w); 20443 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 20444 /* The offsets in the sgl need to be accumulated 20445 * separately for the request and reply lists. 20446 * The request is always first, the reply follows. 20447 */ 20448 switch (cmd) { 20449 case CMD_GEN_REQUEST64_WQE: 20450 /* add up the reply sg entries */ 20451 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 20452 inbound++; 20453 /* first inbound? reset the offset */ 20454 if (inbound == 1) 20455 offset = 0; 20456 bf_set(lpfc_sli4_sge_offset, sgl, offset); 20457 bf_set(lpfc_sli4_sge_type, sgl, 20458 LPFC_SGE_TYPE_DATA); 20459 offset += bde.tus.f.bdeSize; 20460 break; 20461 case CMD_FCP_TRSP64_WQE: 20462 bf_set(lpfc_sli4_sge_offset, sgl, 0); 20463 bf_set(lpfc_sli4_sge_type, sgl, 20464 LPFC_SGE_TYPE_DATA); 20465 break; 20466 case CMD_FCP_TSEND64_WQE: 20467 case CMD_FCP_TRECEIVE64_WQE: 20468 bf_set(lpfc_sli4_sge_type, sgl, 20469 bpl->tus.f.bdeFlags); 20470 if (i < 3) 20471 offset = 0; 20472 else 20473 offset += bde.tus.f.bdeSize; 20474 bf_set(lpfc_sli4_sge_offset, sgl, offset); 20475 break; 20476 } 20477 sgl->word2 = cpu_to_le32(sgl->word2); 20478 bpl++; 20479 sgl++; 20480 } 20481 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 20482 /* The addrHigh and addrLow fields of the BDE have not 20483 * been byteswapped yet so they need to be swapped 20484 * before putting them in the sgl. 20485 */ 20486 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 20487 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 20488 sgl->word2 = le32_to_cpu(sgl->word2); 20489 bf_set(lpfc_sli4_sge_last, sgl, 1); 20490 sgl->word2 = cpu_to_le32(sgl->word2); 20491 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 20492 } 20493 return sglq->sli4_xritag; 20494 } 20495 20496 /** 20497 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 20498 * @phba: Pointer to HBA context object. 20499 * @qp: Pointer to HDW queue. 20500 * @pwqe: Pointer to command WQE. 20501 **/ 20502 int 20503 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 20504 struct lpfc_iocbq *pwqe) 20505 { 20506 union lpfc_wqe128 *wqe = &pwqe->wqe; 20507 struct lpfc_async_xchg_ctx *ctxp; 20508 struct lpfc_queue *wq; 20509 struct lpfc_sglq *sglq; 20510 struct lpfc_sli_ring *pring; 20511 unsigned long iflags; 20512 uint32_t ret = 0; 20513 20514 /* NVME_LS and NVME_LS ABTS requests. */ 20515 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { 20516 pring = phba->sli4_hba.nvmels_wq->pring; 20517 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20518 qp, wq_access); 20519 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 20520 if (!sglq) { 20521 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20522 return WQE_BUSY; 20523 } 20524 pwqe->sli4_lxritag = sglq->sli4_lxritag; 20525 pwqe->sli4_xritag = sglq->sli4_xritag; 20526 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 20527 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20528 return WQE_ERROR; 20529 } 20530 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 20531 pwqe->sli4_xritag); 20532 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 20533 if (ret) { 20534 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20535 return ret; 20536 } 20537 20538 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20539 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20540 20541 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20542 return 0; 20543 } 20544 20545 /* NVME_FCREQ and NVME_ABTS requests */ 20546 if (pwqe->iocb_flag & LPFC_IO_NVME || 20547 pwqe->iocb_flag & LPFC_IO_FCP) { 20548 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 20549 wq = qp->io_wq; 20550 pring = wq->pring; 20551 20552 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 20553 20554 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20555 qp, wq_access); 20556 ret = lpfc_sli4_wq_put(wq, wqe); 20557 if (ret) { 20558 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20559 return ret; 20560 } 20561 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20562 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20563 20564 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20565 return 0; 20566 } 20567 20568 /* NVMET requests */ 20569 if (pwqe->iocb_flag & LPFC_IO_NVMET) { 20570 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 20571 wq = qp->io_wq; 20572 pring = wq->pring; 20573 20574 ctxp = pwqe->context2; 20575 sglq = ctxp->ctxbuf->sglq; 20576 if (pwqe->sli4_xritag == NO_XRI) { 20577 pwqe->sli4_lxritag = sglq->sli4_lxritag; 20578 pwqe->sli4_xritag = sglq->sli4_xritag; 20579 } 20580 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 20581 pwqe->sli4_xritag); 20582 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 20583 20584 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20585 qp, wq_access); 20586 ret = lpfc_sli4_wq_put(wq, wqe); 20587 if (ret) { 20588 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20589 return ret; 20590 } 20591 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20592 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20593 20594 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20595 return 0; 20596 } 20597 return WQE_ERROR; 20598 } 20599 20600 /** 20601 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 20602 * @phba: Pointer to HBA context object. 20603 * @cmdiocb: Pointer to driver command iocb object. 20604 * @cmpl: completion function. 20605 * 20606 * Fill the appropriate fields for the abort WQE and call 20607 * internal routine lpfc_sli4_issue_wqe to send the WQE 20608 * This function is called with hbalock held and no ring_lock held. 20609 * 20610 * RETURNS 0 - SUCCESS 20611 **/ 20612 20613 int 20614 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 20615 void *cmpl) 20616 { 20617 struct lpfc_vport *vport = cmdiocb->vport; 20618 struct lpfc_iocbq *abtsiocb = NULL; 20619 union lpfc_wqe128 *abtswqe; 20620 struct lpfc_io_buf *lpfc_cmd; 20621 int retval = IOCB_ERROR; 20622 u16 xritag = cmdiocb->sli4_xritag; 20623 20624 /* 20625 * The scsi command can not be in txq and it is in flight because the 20626 * pCmd is still pointing at the SCSI command we have to abort. There 20627 * is no need to search the txcmplq. Just send an abort to the FW. 20628 */ 20629 20630 abtsiocb = __lpfc_sli_get_iocbq(phba); 20631 if (!abtsiocb) 20632 return WQE_NORESOURCE; 20633 20634 /* Indicate the IO is being aborted by the driver. */ 20635 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 20636 20637 abtswqe = &abtsiocb->wqe; 20638 memset(abtswqe, 0, sizeof(*abtswqe)); 20639 20640 if (!lpfc_is_link_up(phba)) 20641 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 20642 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 20643 abtswqe->abort_cmd.rsrvd5 = 0; 20644 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 20645 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 20646 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 20647 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 20648 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 20649 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 20650 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 20651 20652 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 20653 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 20654 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 20655 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 20656 abtsiocb->iocb_flag |= LPFC_IO_FCP; 20657 if (cmdiocb->iocb_flag & LPFC_IO_NVME) 20658 abtsiocb->iocb_flag |= LPFC_IO_NVME; 20659 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 20660 abtsiocb->iocb_flag |= LPFC_IO_FOF; 20661 abtsiocb->vport = vport; 20662 abtsiocb->wqe_cmpl = cmpl; 20663 20664 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 20665 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 20666 20667 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 20668 "0359 Abort xri x%x, original iotag x%x, " 20669 "abort cmd iotag x%x retval x%x\n", 20670 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 20671 20672 if (retval) { 20673 cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED; 20674 __lpfc_sli_release_iocbq(phba, abtsiocb); 20675 } 20676 20677 return retval; 20678 } 20679 20680 #ifdef LPFC_MXP_STAT 20681 /** 20682 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 20683 * @phba: pointer to lpfc hba data structure. 20684 * @hwqid: belong to which HWQ. 20685 * 20686 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 20687 * 15 seconds after a test case is running. 20688 * 20689 * The user should call lpfc_debugfs_multixripools_write before running a test 20690 * case to clear stat_snapshot_taken. Then the user starts a test case. During 20691 * test case is running, stat_snapshot_taken is incremented by 1 every time when 20692 * this routine is called from heartbeat timer. When stat_snapshot_taken is 20693 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 20694 **/ 20695 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 20696 { 20697 struct lpfc_sli4_hdw_queue *qp; 20698 struct lpfc_multixri_pool *multixri_pool; 20699 struct lpfc_pvt_pool *pvt_pool; 20700 struct lpfc_pbl_pool *pbl_pool; 20701 u32 txcmplq_cnt; 20702 20703 qp = &phba->sli4_hba.hdwq[hwqid]; 20704 multixri_pool = qp->p_multixri_pool; 20705 if (!multixri_pool) 20706 return; 20707 20708 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 20709 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20710 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20711 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20712 20713 multixri_pool->stat_pbl_count = pbl_pool->count; 20714 multixri_pool->stat_pvt_count = pvt_pool->count; 20715 multixri_pool->stat_busy_count = txcmplq_cnt; 20716 } 20717 20718 multixri_pool->stat_snapshot_taken++; 20719 } 20720 #endif 20721 20722 /** 20723 * lpfc_adjust_pvt_pool_count - Adjust private pool count 20724 * @phba: pointer to lpfc hba data structure. 20725 * @hwqid: belong to which HWQ. 20726 * 20727 * This routine moves some XRIs from private to public pool when private pool 20728 * is not busy. 20729 **/ 20730 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 20731 { 20732 struct lpfc_multixri_pool *multixri_pool; 20733 u32 io_req_count; 20734 u32 prev_io_req_count; 20735 20736 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 20737 if (!multixri_pool) 20738 return; 20739 io_req_count = multixri_pool->io_req_count; 20740 prev_io_req_count = multixri_pool->prev_io_req_count; 20741 20742 if (prev_io_req_count != io_req_count) { 20743 /* Private pool is busy */ 20744 multixri_pool->prev_io_req_count = io_req_count; 20745 } else { 20746 /* Private pool is not busy. 20747 * Move XRIs from private to public pool. 20748 */ 20749 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 20750 } 20751 } 20752 20753 /** 20754 * lpfc_adjust_high_watermark - Adjust high watermark 20755 * @phba: pointer to lpfc hba data structure. 20756 * @hwqid: belong to which HWQ. 20757 * 20758 * This routine sets high watermark as number of outstanding XRIs, 20759 * but make sure the new value is between xri_limit/2 and xri_limit. 20760 **/ 20761 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 20762 { 20763 u32 new_watermark; 20764 u32 watermark_max; 20765 u32 watermark_min; 20766 u32 xri_limit; 20767 u32 txcmplq_cnt; 20768 u32 abts_io_bufs; 20769 struct lpfc_multixri_pool *multixri_pool; 20770 struct lpfc_sli4_hdw_queue *qp; 20771 20772 qp = &phba->sli4_hba.hdwq[hwqid]; 20773 multixri_pool = qp->p_multixri_pool; 20774 if (!multixri_pool) 20775 return; 20776 xri_limit = multixri_pool->xri_limit; 20777 20778 watermark_max = xri_limit; 20779 watermark_min = xri_limit / 2; 20780 20781 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20782 abts_io_bufs = qp->abts_scsi_io_bufs; 20783 abts_io_bufs += qp->abts_nvme_io_bufs; 20784 20785 new_watermark = txcmplq_cnt + abts_io_bufs; 20786 new_watermark = min(watermark_max, new_watermark); 20787 new_watermark = max(watermark_min, new_watermark); 20788 multixri_pool->pvt_pool.high_watermark = new_watermark; 20789 20790 #ifdef LPFC_MXP_STAT 20791 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 20792 new_watermark); 20793 #endif 20794 } 20795 20796 /** 20797 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 20798 * @phba: pointer to lpfc hba data structure. 20799 * @hwqid: belong to which HWQ. 20800 * 20801 * This routine is called from hearbeat timer when pvt_pool is idle. 20802 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 20803 * The first step moves (all - low_watermark) amount of XRIs. 20804 * The second step moves the rest of XRIs. 20805 **/ 20806 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 20807 { 20808 struct lpfc_pbl_pool *pbl_pool; 20809 struct lpfc_pvt_pool *pvt_pool; 20810 struct lpfc_sli4_hdw_queue *qp; 20811 struct lpfc_io_buf *lpfc_ncmd; 20812 struct lpfc_io_buf *lpfc_ncmd_next; 20813 unsigned long iflag; 20814 struct list_head tmp_list; 20815 u32 tmp_count; 20816 20817 qp = &phba->sli4_hba.hdwq[hwqid]; 20818 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20819 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20820 tmp_count = 0; 20821 20822 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 20823 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 20824 20825 if (pvt_pool->count > pvt_pool->low_watermark) { 20826 /* Step 1: move (all - low_watermark) from pvt_pool 20827 * to pbl_pool 20828 */ 20829 20830 /* Move low watermark of bufs from pvt_pool to tmp_list */ 20831 INIT_LIST_HEAD(&tmp_list); 20832 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 20833 &pvt_pool->list, list) { 20834 list_move_tail(&lpfc_ncmd->list, &tmp_list); 20835 tmp_count++; 20836 if (tmp_count >= pvt_pool->low_watermark) 20837 break; 20838 } 20839 20840 /* Move all bufs from pvt_pool to pbl_pool */ 20841 list_splice_init(&pvt_pool->list, &pbl_pool->list); 20842 20843 /* Move all bufs from tmp_list to pvt_pool */ 20844 list_splice(&tmp_list, &pvt_pool->list); 20845 20846 pbl_pool->count += (pvt_pool->count - tmp_count); 20847 pvt_pool->count = tmp_count; 20848 } else { 20849 /* Step 2: move the rest from pvt_pool to pbl_pool */ 20850 list_splice_init(&pvt_pool->list, &pbl_pool->list); 20851 pbl_pool->count += pvt_pool->count; 20852 pvt_pool->count = 0; 20853 } 20854 20855 spin_unlock(&pvt_pool->lock); 20856 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20857 } 20858 20859 /** 20860 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 20861 * @phba: pointer to lpfc hba data structure 20862 * @qp: pointer to HDW queue 20863 * @pbl_pool: specified public free XRI pool 20864 * @pvt_pool: specified private free XRI pool 20865 * @count: number of XRIs to move 20866 * 20867 * This routine tries to move some free common bufs from the specified pbl_pool 20868 * to the specified pvt_pool. It might move less than count XRIs if there's not 20869 * enough in public pool. 20870 * 20871 * Return: 20872 * true - if XRIs are successfully moved from the specified pbl_pool to the 20873 * specified pvt_pool 20874 * false - if the specified pbl_pool is empty or locked by someone else 20875 **/ 20876 static bool 20877 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 20878 struct lpfc_pbl_pool *pbl_pool, 20879 struct lpfc_pvt_pool *pvt_pool, u32 count) 20880 { 20881 struct lpfc_io_buf *lpfc_ncmd; 20882 struct lpfc_io_buf *lpfc_ncmd_next; 20883 unsigned long iflag; 20884 int ret; 20885 20886 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 20887 if (ret) { 20888 if (pbl_pool->count) { 20889 /* Move a batch of XRIs from public to private pool */ 20890 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 20891 list_for_each_entry_safe(lpfc_ncmd, 20892 lpfc_ncmd_next, 20893 &pbl_pool->list, 20894 list) { 20895 list_move_tail(&lpfc_ncmd->list, 20896 &pvt_pool->list); 20897 pvt_pool->count++; 20898 pbl_pool->count--; 20899 count--; 20900 if (count == 0) 20901 break; 20902 } 20903 20904 spin_unlock(&pvt_pool->lock); 20905 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20906 return true; 20907 } 20908 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20909 } 20910 20911 return false; 20912 } 20913 20914 /** 20915 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 20916 * @phba: pointer to lpfc hba data structure. 20917 * @hwqid: belong to which HWQ. 20918 * @count: number of XRIs to move 20919 * 20920 * This routine tries to find some free common bufs in one of public pools with 20921 * Round Robin method. The search always starts from local hwqid, then the next 20922 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 20923 * a batch of free common bufs are moved to private pool on hwqid. 20924 * It might move less than count XRIs if there's not enough in public pool. 20925 **/ 20926 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 20927 { 20928 struct lpfc_multixri_pool *multixri_pool; 20929 struct lpfc_multixri_pool *next_multixri_pool; 20930 struct lpfc_pvt_pool *pvt_pool; 20931 struct lpfc_pbl_pool *pbl_pool; 20932 struct lpfc_sli4_hdw_queue *qp; 20933 u32 next_hwqid; 20934 u32 hwq_count; 20935 int ret; 20936 20937 qp = &phba->sli4_hba.hdwq[hwqid]; 20938 multixri_pool = qp->p_multixri_pool; 20939 pvt_pool = &multixri_pool->pvt_pool; 20940 pbl_pool = &multixri_pool->pbl_pool; 20941 20942 /* Check if local pbl_pool is available */ 20943 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 20944 if (ret) { 20945 #ifdef LPFC_MXP_STAT 20946 multixri_pool->local_pbl_hit_count++; 20947 #endif 20948 return; 20949 } 20950 20951 hwq_count = phba->cfg_hdw_queue; 20952 20953 /* Get the next hwqid which was found last time */ 20954 next_hwqid = multixri_pool->rrb_next_hwqid; 20955 20956 do { 20957 /* Go to next hwq */ 20958 next_hwqid = (next_hwqid + 1) % hwq_count; 20959 20960 next_multixri_pool = 20961 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 20962 pbl_pool = &next_multixri_pool->pbl_pool; 20963 20964 /* Check if the public free xri pool is available */ 20965 ret = _lpfc_move_xri_pbl_to_pvt( 20966 phba, qp, pbl_pool, pvt_pool, count); 20967 20968 /* Exit while-loop if success or all hwqid are checked */ 20969 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 20970 20971 /* Starting point for the next time */ 20972 multixri_pool->rrb_next_hwqid = next_hwqid; 20973 20974 if (!ret) { 20975 /* stats: all public pools are empty*/ 20976 multixri_pool->pbl_empty_count++; 20977 } 20978 20979 #ifdef LPFC_MXP_STAT 20980 if (ret) { 20981 if (next_hwqid == hwqid) 20982 multixri_pool->local_pbl_hit_count++; 20983 else 20984 multixri_pool->other_pbl_hit_count++; 20985 } 20986 #endif 20987 } 20988 20989 /** 20990 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 20991 * @phba: pointer to lpfc hba data structure. 20992 * @hwqid: belong to which HWQ. 20993 * 20994 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 20995 * low watermark. 20996 **/ 20997 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 20998 { 20999 struct lpfc_multixri_pool *multixri_pool; 21000 struct lpfc_pvt_pool *pvt_pool; 21001 21002 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21003 pvt_pool = &multixri_pool->pvt_pool; 21004 21005 if (pvt_pool->count < pvt_pool->low_watermark) 21006 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21007 } 21008 21009 /** 21010 * lpfc_release_io_buf - Return one IO buf back to free pool 21011 * @phba: pointer to lpfc hba data structure. 21012 * @lpfc_ncmd: IO buf to be returned. 21013 * @qp: belong to which HWQ. 21014 * 21015 * This routine returns one IO buf back to free pool. If this is an urgent IO, 21016 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 21017 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 21018 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 21019 * lpfc_io_buf_list_put. 21020 **/ 21021 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21022 struct lpfc_sli4_hdw_queue *qp) 21023 { 21024 unsigned long iflag; 21025 struct lpfc_pbl_pool *pbl_pool; 21026 struct lpfc_pvt_pool *pvt_pool; 21027 struct lpfc_epd_pool *epd_pool; 21028 u32 txcmplq_cnt; 21029 u32 xri_owned; 21030 u32 xri_limit; 21031 u32 abts_io_bufs; 21032 21033 /* MUST zero fields if buffer is reused by another protocol */ 21034 lpfc_ncmd->nvmeCmd = NULL; 21035 lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL; 21036 lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL; 21037 21038 if (phba->cfg_xpsgl && !phba->nvmet_support && 21039 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21040 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21041 21042 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21043 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21044 21045 if (phba->cfg_xri_rebalancing) { 21046 if (lpfc_ncmd->expedite) { 21047 /* Return to expedite pool */ 21048 epd_pool = &phba->epd_pool; 21049 spin_lock_irqsave(&epd_pool->lock, iflag); 21050 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21051 epd_pool->count++; 21052 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21053 return; 21054 } 21055 21056 /* Avoid invalid access if an IO sneaks in and is being rejected 21057 * just _after_ xri pools are destroyed in lpfc_offline. 21058 * Nothing much can be done at this point. 21059 */ 21060 if (!qp->p_multixri_pool) 21061 return; 21062 21063 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21064 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21065 21066 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21067 abts_io_bufs = qp->abts_scsi_io_bufs; 21068 abts_io_bufs += qp->abts_nvme_io_bufs; 21069 21070 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21071 xri_limit = qp->p_multixri_pool->xri_limit; 21072 21073 #ifdef LPFC_MXP_STAT 21074 if (xri_owned <= xri_limit) 21075 qp->p_multixri_pool->below_limit_count++; 21076 else 21077 qp->p_multixri_pool->above_limit_count++; 21078 #endif 21079 21080 /* XRI goes to either public or private free xri pool 21081 * based on watermark and xri_limit 21082 */ 21083 if ((pvt_pool->count < pvt_pool->low_watermark) || 21084 (xri_owned < xri_limit && 21085 pvt_pool->count < pvt_pool->high_watermark)) { 21086 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21087 qp, free_pvt_pool); 21088 list_add_tail(&lpfc_ncmd->list, 21089 &pvt_pool->list); 21090 pvt_pool->count++; 21091 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21092 } else { 21093 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21094 qp, free_pub_pool); 21095 list_add_tail(&lpfc_ncmd->list, 21096 &pbl_pool->list); 21097 pbl_pool->count++; 21098 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21099 } 21100 } else { 21101 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21102 qp, free_xri); 21103 list_add_tail(&lpfc_ncmd->list, 21104 &qp->lpfc_io_buf_list_put); 21105 qp->put_io_bufs++; 21106 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21107 iflag); 21108 } 21109 } 21110 21111 /** 21112 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21113 * @phba: pointer to lpfc hba data structure. 21114 * @qp: pointer to HDW queue 21115 * @pvt_pool: pointer to private pool data structure. 21116 * @ndlp: pointer to lpfc nodelist data structure. 21117 * 21118 * This routine tries to get one free IO buf from private pool. 21119 * 21120 * Return: 21121 * pointer to one free IO buf - if private pool is not empty 21122 * NULL - if private pool is empty 21123 **/ 21124 static struct lpfc_io_buf * 21125 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21126 struct lpfc_sli4_hdw_queue *qp, 21127 struct lpfc_pvt_pool *pvt_pool, 21128 struct lpfc_nodelist *ndlp) 21129 { 21130 struct lpfc_io_buf *lpfc_ncmd; 21131 struct lpfc_io_buf *lpfc_ncmd_next; 21132 unsigned long iflag; 21133 21134 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21135 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21136 &pvt_pool->list, list) { 21137 if (lpfc_test_rrq_active( 21138 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21139 continue; 21140 list_del(&lpfc_ncmd->list); 21141 pvt_pool->count--; 21142 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21143 return lpfc_ncmd; 21144 } 21145 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21146 21147 return NULL; 21148 } 21149 21150 /** 21151 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 21152 * @phba: pointer to lpfc hba data structure. 21153 * 21154 * This routine tries to get one free IO buf from expedite pool. 21155 * 21156 * Return: 21157 * pointer to one free IO buf - if expedite pool is not empty 21158 * NULL - if expedite pool is empty 21159 **/ 21160 static struct lpfc_io_buf * 21161 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 21162 { 21163 struct lpfc_io_buf *lpfc_ncmd; 21164 struct lpfc_io_buf *lpfc_ncmd_next; 21165 unsigned long iflag; 21166 struct lpfc_epd_pool *epd_pool; 21167 21168 epd_pool = &phba->epd_pool; 21169 lpfc_ncmd = NULL; 21170 21171 spin_lock_irqsave(&epd_pool->lock, iflag); 21172 if (epd_pool->count > 0) { 21173 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21174 &epd_pool->list, list) { 21175 list_del(&lpfc_ncmd->list); 21176 epd_pool->count--; 21177 break; 21178 } 21179 } 21180 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21181 21182 return lpfc_ncmd; 21183 } 21184 21185 /** 21186 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 21187 * @phba: pointer to lpfc hba data structure. 21188 * @ndlp: pointer to lpfc nodelist data structure. 21189 * @hwqid: belong to which HWQ 21190 * @expedite: 1 means this request is urgent. 21191 * 21192 * This routine will do the following actions and then return a pointer to 21193 * one free IO buf. 21194 * 21195 * 1. If private free xri count is empty, move some XRIs from public to 21196 * private pool. 21197 * 2. Get one XRI from private free xri pool. 21198 * 3. If we fail to get one from pvt_pool and this is an expedite request, 21199 * get one free xri from expedite pool. 21200 * 21201 * Note: ndlp is only used on SCSI side for RRQ testing. 21202 * The caller should pass NULL for ndlp on NVME side. 21203 * 21204 * Return: 21205 * pointer to one free IO buf - if private pool is not empty 21206 * NULL - if private pool is empty 21207 **/ 21208 static struct lpfc_io_buf * 21209 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 21210 struct lpfc_nodelist *ndlp, 21211 int hwqid, int expedite) 21212 { 21213 struct lpfc_sli4_hdw_queue *qp; 21214 struct lpfc_multixri_pool *multixri_pool; 21215 struct lpfc_pvt_pool *pvt_pool; 21216 struct lpfc_io_buf *lpfc_ncmd; 21217 21218 qp = &phba->sli4_hba.hdwq[hwqid]; 21219 lpfc_ncmd = NULL; 21220 multixri_pool = qp->p_multixri_pool; 21221 pvt_pool = &multixri_pool->pvt_pool; 21222 multixri_pool->io_req_count++; 21223 21224 /* If pvt_pool is empty, move some XRIs from public to private pool */ 21225 if (pvt_pool->count == 0) 21226 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21227 21228 /* Get one XRI from private free xri pool */ 21229 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 21230 21231 if (lpfc_ncmd) { 21232 lpfc_ncmd->hdwq = qp; 21233 lpfc_ncmd->hdwq_no = hwqid; 21234 } else if (expedite) { 21235 /* If we fail to get one from pvt_pool and this is an expedite 21236 * request, get one free xri from expedite pool. 21237 */ 21238 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 21239 } 21240 21241 return lpfc_ncmd; 21242 } 21243 21244 static inline struct lpfc_io_buf * 21245 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 21246 { 21247 struct lpfc_sli4_hdw_queue *qp; 21248 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 21249 21250 qp = &phba->sli4_hba.hdwq[idx]; 21251 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 21252 &qp->lpfc_io_buf_list_get, list) { 21253 if (lpfc_test_rrq_active(phba, ndlp, 21254 lpfc_cmd->cur_iocbq.sli4_lxritag)) 21255 continue; 21256 21257 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 21258 continue; 21259 21260 list_del_init(&lpfc_cmd->list); 21261 qp->get_io_bufs--; 21262 lpfc_cmd->hdwq = qp; 21263 lpfc_cmd->hdwq_no = idx; 21264 return lpfc_cmd; 21265 } 21266 return NULL; 21267 } 21268 21269 /** 21270 * lpfc_get_io_buf - Get one IO buffer from free pool 21271 * @phba: The HBA for which this call is being executed. 21272 * @ndlp: pointer to lpfc nodelist data structure. 21273 * @hwqid: belong to which HWQ 21274 * @expedite: 1 means this request is urgent. 21275 * 21276 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 21277 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 21278 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 21279 * 21280 * Note: ndlp is only used on SCSI side for RRQ testing. 21281 * The caller should pass NULL for ndlp on NVME side. 21282 * 21283 * Return codes: 21284 * NULL - Error 21285 * Pointer to lpfc_io_buf - Success 21286 **/ 21287 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 21288 struct lpfc_nodelist *ndlp, 21289 u32 hwqid, int expedite) 21290 { 21291 struct lpfc_sli4_hdw_queue *qp; 21292 unsigned long iflag; 21293 struct lpfc_io_buf *lpfc_cmd; 21294 21295 qp = &phba->sli4_hba.hdwq[hwqid]; 21296 lpfc_cmd = NULL; 21297 21298 if (phba->cfg_xri_rebalancing) 21299 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 21300 phba, ndlp, hwqid, expedite); 21301 else { 21302 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 21303 qp, alloc_xri_get); 21304 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 21305 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 21306 if (!lpfc_cmd) { 21307 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 21308 qp, alloc_xri_put); 21309 list_splice(&qp->lpfc_io_buf_list_put, 21310 &qp->lpfc_io_buf_list_get); 21311 qp->get_io_bufs += qp->put_io_bufs; 21312 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 21313 qp->put_io_bufs = 0; 21314 spin_unlock(&qp->io_buf_list_put_lock); 21315 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 21316 expedite) 21317 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 21318 } 21319 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 21320 } 21321 21322 return lpfc_cmd; 21323 } 21324 21325 /** 21326 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 21327 * @phba: The HBA for which this call is being executed. 21328 * @lpfc_buf: IO buf structure to append the SGL chunk 21329 * 21330 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 21331 * and will allocate an SGL chunk if the pool is empty. 21332 * 21333 * Return codes: 21334 * NULL - Error 21335 * Pointer to sli4_hybrid_sgl - Success 21336 **/ 21337 struct sli4_hybrid_sgl * 21338 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 21339 { 21340 struct sli4_hybrid_sgl *list_entry = NULL; 21341 struct sli4_hybrid_sgl *tmp = NULL; 21342 struct sli4_hybrid_sgl *allocated_sgl = NULL; 21343 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21344 struct list_head *buf_list = &hdwq->sgl_list; 21345 unsigned long iflags; 21346 21347 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21348 21349 if (likely(!list_empty(buf_list))) { 21350 /* break off 1 chunk from the sgl_list */ 21351 list_for_each_entry_safe(list_entry, tmp, 21352 buf_list, list_node) { 21353 list_move_tail(&list_entry->list_node, 21354 &lpfc_buf->dma_sgl_xtra_list); 21355 break; 21356 } 21357 } else { 21358 /* allocate more */ 21359 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21360 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 21361 cpu_to_node(hdwq->io_wq->chann)); 21362 if (!tmp) { 21363 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21364 "8353 error kmalloc memory for HDWQ " 21365 "%d %s\n", 21366 lpfc_buf->hdwq_no, __func__); 21367 return NULL; 21368 } 21369 21370 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 21371 GFP_ATOMIC, &tmp->dma_phys_sgl); 21372 if (!tmp->dma_sgl) { 21373 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21374 "8354 error pool_alloc memory for HDWQ " 21375 "%d %s\n", 21376 lpfc_buf->hdwq_no, __func__); 21377 kfree(tmp); 21378 return NULL; 21379 } 21380 21381 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21382 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 21383 } 21384 21385 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 21386 struct sli4_hybrid_sgl, 21387 list_node); 21388 21389 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21390 21391 return allocated_sgl; 21392 } 21393 21394 /** 21395 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 21396 * @phba: The HBA for which this call is being executed. 21397 * @lpfc_buf: IO buf structure with the SGL chunk 21398 * 21399 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 21400 * 21401 * Return codes: 21402 * 0 - Success 21403 * -EINVAL - Error 21404 **/ 21405 int 21406 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 21407 { 21408 int rc = 0; 21409 struct sli4_hybrid_sgl *list_entry = NULL; 21410 struct sli4_hybrid_sgl *tmp = NULL; 21411 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21412 struct list_head *buf_list = &hdwq->sgl_list; 21413 unsigned long iflags; 21414 21415 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21416 21417 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 21418 list_for_each_entry_safe(list_entry, tmp, 21419 &lpfc_buf->dma_sgl_xtra_list, 21420 list_node) { 21421 list_move_tail(&list_entry->list_node, 21422 buf_list); 21423 } 21424 } else { 21425 rc = -EINVAL; 21426 } 21427 21428 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21429 return rc; 21430 } 21431 21432 /** 21433 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 21434 * @phba: phba object 21435 * @hdwq: hdwq to cleanup sgl buff resources on 21436 * 21437 * This routine frees all SGL chunks of hdwq SGL chunk pool. 21438 * 21439 * Return codes: 21440 * None 21441 **/ 21442 void 21443 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 21444 struct lpfc_sli4_hdw_queue *hdwq) 21445 { 21446 struct list_head *buf_list = &hdwq->sgl_list; 21447 struct sli4_hybrid_sgl *list_entry = NULL; 21448 struct sli4_hybrid_sgl *tmp = NULL; 21449 unsigned long iflags; 21450 21451 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21452 21453 /* Free sgl pool */ 21454 list_for_each_entry_safe(list_entry, tmp, 21455 buf_list, list_node) { 21456 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 21457 list_entry->dma_sgl, 21458 list_entry->dma_phys_sgl); 21459 list_del(&list_entry->list_node); 21460 kfree(list_entry); 21461 } 21462 21463 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21464 } 21465 21466 /** 21467 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 21468 * @phba: The HBA for which this call is being executed. 21469 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 21470 * 21471 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 21472 * and will allocate an CMD/RSP buffer if the pool is empty. 21473 * 21474 * Return codes: 21475 * NULL - Error 21476 * Pointer to fcp_cmd_rsp_buf - Success 21477 **/ 21478 struct fcp_cmd_rsp_buf * 21479 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 21480 struct lpfc_io_buf *lpfc_buf) 21481 { 21482 struct fcp_cmd_rsp_buf *list_entry = NULL; 21483 struct fcp_cmd_rsp_buf *tmp = NULL; 21484 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 21485 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21486 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 21487 unsigned long iflags; 21488 21489 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21490 21491 if (likely(!list_empty(buf_list))) { 21492 /* break off 1 chunk from the list */ 21493 list_for_each_entry_safe(list_entry, tmp, 21494 buf_list, 21495 list_node) { 21496 list_move_tail(&list_entry->list_node, 21497 &lpfc_buf->dma_cmd_rsp_list); 21498 break; 21499 } 21500 } else { 21501 /* allocate more */ 21502 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21503 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 21504 cpu_to_node(hdwq->io_wq->chann)); 21505 if (!tmp) { 21506 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21507 "8355 error kmalloc memory for HDWQ " 21508 "%d %s\n", 21509 lpfc_buf->hdwq_no, __func__); 21510 return NULL; 21511 } 21512 21513 tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool, 21514 GFP_ATOMIC, 21515 &tmp->fcp_cmd_rsp_dma_handle); 21516 21517 if (!tmp->fcp_cmnd) { 21518 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21519 "8356 error pool_alloc memory for HDWQ " 21520 "%d %s\n", 21521 lpfc_buf->hdwq_no, __func__); 21522 kfree(tmp); 21523 return NULL; 21524 } 21525 21526 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 21527 sizeof(struct fcp_cmnd)); 21528 21529 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21530 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 21531 } 21532 21533 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 21534 struct fcp_cmd_rsp_buf, 21535 list_node); 21536 21537 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21538 21539 return allocated_buf; 21540 } 21541 21542 /** 21543 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 21544 * @phba: The HBA for which this call is being executed. 21545 * @lpfc_buf: IO buf structure with the CMD/RSP buf 21546 * 21547 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 21548 * 21549 * Return codes: 21550 * 0 - Success 21551 * -EINVAL - Error 21552 **/ 21553 int 21554 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 21555 struct lpfc_io_buf *lpfc_buf) 21556 { 21557 int rc = 0; 21558 struct fcp_cmd_rsp_buf *list_entry = NULL; 21559 struct fcp_cmd_rsp_buf *tmp = NULL; 21560 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21561 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 21562 unsigned long iflags; 21563 21564 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21565 21566 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 21567 list_for_each_entry_safe(list_entry, tmp, 21568 &lpfc_buf->dma_cmd_rsp_list, 21569 list_node) { 21570 list_move_tail(&list_entry->list_node, 21571 buf_list); 21572 } 21573 } else { 21574 rc = -EINVAL; 21575 } 21576 21577 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21578 return rc; 21579 } 21580 21581 /** 21582 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 21583 * @phba: phba object 21584 * @hdwq: hdwq to cleanup cmd rsp buff resources on 21585 * 21586 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 21587 * 21588 * Return codes: 21589 * None 21590 **/ 21591 void 21592 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 21593 struct lpfc_sli4_hdw_queue *hdwq) 21594 { 21595 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 21596 struct fcp_cmd_rsp_buf *list_entry = NULL; 21597 struct fcp_cmd_rsp_buf *tmp = NULL; 21598 unsigned long iflags; 21599 21600 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21601 21602 /* Free cmd_rsp buf pool */ 21603 list_for_each_entry_safe(list_entry, tmp, 21604 buf_list, 21605 list_node) { 21606 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 21607 list_entry->fcp_cmnd, 21608 list_entry->fcp_cmd_rsp_dma_handle); 21609 list_del(&list_entry->list_node); 21610 kfree(list_entry); 21611 } 21612 21613 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21614 } 21615