1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2019 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 #ifdef CONFIG_X86 39 #include <asm/set_memory.h> 40 #endif 41 42 #include <linux/nvme-fc-driver.h> 43 44 #include "lpfc_hw4.h" 45 #include "lpfc_hw.h" 46 #include "lpfc_sli.h" 47 #include "lpfc_sli4.h" 48 #include "lpfc_nl.h" 49 #include "lpfc_disc.h" 50 #include "lpfc.h" 51 #include "lpfc_scsi.h" 52 #include "lpfc_nvme.h" 53 #include "lpfc_nvmet.h" 54 #include "lpfc_crtn.h" 55 #include "lpfc_logmsg.h" 56 #include "lpfc_compat.h" 57 #include "lpfc_debugfs.h" 58 #include "lpfc_vport.h" 59 #include "lpfc_version.h" 60 61 /* There are only four IOCB completion types. */ 62 typedef enum _lpfc_iocb_type { 63 LPFC_UNKNOWN_IOCB, 64 LPFC_UNSOL_IOCB, 65 LPFC_SOL_IOCB, 66 LPFC_ABORT_IOCB 67 } lpfc_iocb_type; 68 69 70 /* Provide function prototypes local to this module. */ 71 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint32_t); 73 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 74 uint8_t *, uint32_t *); 75 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 76 struct lpfc_iocbq *); 77 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 78 struct hbq_dmabuf *); 79 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 80 struct hbq_dmabuf *dmabuf); 81 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 82 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 83 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 84 int); 85 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 86 struct lpfc_queue *eq, 87 struct lpfc_eqe *eqe); 88 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 89 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 90 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 91 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 92 struct lpfc_queue *cq, 93 struct lpfc_cqe *cqe); 94 95 static IOCB_t * 96 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 97 { 98 return &iocbq->iocb; 99 } 100 101 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 102 /** 103 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 104 * @srcp: Source memory pointer. 105 * @destp: Destination memory pointer. 106 * @cnt: Number of words required to be copied. 107 * Must be a multiple of sizeof(uint64_t) 108 * 109 * This function is used for copying data between driver memory 110 * and the SLI WQ. This function also changes the endianness 111 * of each word if native endianness is different from SLI 112 * endianness. This function can be called with or without 113 * lock. 114 **/ 115 static void 116 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 117 { 118 uint64_t *src = srcp; 119 uint64_t *dest = destp; 120 int i; 121 122 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 123 *dest++ = *src++; 124 } 125 #else 126 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 127 #endif 128 129 /** 130 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 131 * @q: The Work Queue to operate on. 132 * @wqe: The work Queue Entry to put on the Work queue. 133 * 134 * This routine will copy the contents of @wqe to the next available entry on 135 * the @q. This function will then ring the Work Queue Doorbell to signal the 136 * HBA to start processing the Work Queue Entry. This function returns 0 if 137 * successful. If no entries are available on @q then this function will return 138 * -ENOMEM. 139 * The caller is expected to hold the hbalock when calling this routine. 140 **/ 141 static int 142 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 143 { 144 union lpfc_wqe *temp_wqe; 145 struct lpfc_register doorbell; 146 uint32_t host_index; 147 uint32_t idx; 148 uint32_t i = 0; 149 uint8_t *tmp; 150 u32 if_type; 151 152 /* sanity check on queue memory */ 153 if (unlikely(!q)) 154 return -ENOMEM; 155 temp_wqe = lpfc_sli4_qe(q, q->host_index); 156 157 /* If the host has not yet processed the next entry then we are done */ 158 idx = ((q->host_index + 1) % q->entry_count); 159 if (idx == q->hba_index) { 160 q->WQ_overflow++; 161 return -EBUSY; 162 } 163 q->WQ_posted++; 164 /* set consumption flag every once in a while */ 165 if (!((q->host_index + 1) % q->notify_interval)) 166 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 167 else 168 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 169 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 170 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 171 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 172 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 173 /* write to DPP aperture taking advatage of Combined Writes */ 174 tmp = (uint8_t *)temp_wqe; 175 #ifdef __raw_writeq 176 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 177 __raw_writeq(*((uint64_t *)(tmp + i)), 178 q->dpp_regaddr + i); 179 #else 180 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 181 __raw_writel(*((uint32_t *)(tmp + i)), 182 q->dpp_regaddr + i); 183 #endif 184 } 185 /* ensure WQE bcopy and DPP flushed before doorbell write */ 186 wmb(); 187 188 /* Update the host index before invoking device */ 189 host_index = q->host_index; 190 191 q->host_index = idx; 192 193 /* Ring Doorbell */ 194 doorbell.word0 = 0; 195 if (q->db_format == LPFC_DB_LIST_FORMAT) { 196 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 197 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 198 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 199 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 200 q->dpp_id); 201 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 202 q->queue_id); 203 } else { 204 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 205 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 206 207 /* Leave bits <23:16> clear for if_type 6 dpp */ 208 if_type = bf_get(lpfc_sli_intf_if_type, 209 &q->phba->sli4_hba.sli_intf); 210 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 211 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 212 host_index); 213 } 214 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 215 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 216 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 217 } else { 218 return -EINVAL; 219 } 220 writel(doorbell.word0, q->db_regaddr); 221 222 return 0; 223 } 224 225 /** 226 * lpfc_sli4_wq_release - Updates internal hba index for WQ 227 * @q: The Work Queue to operate on. 228 * @index: The index to advance the hba index to. 229 * 230 * This routine will update the HBA index of a queue to reflect consumption of 231 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 232 * an entry the host calls this function to update the queue's internal 233 * pointers. This routine returns the number of entries that were consumed by 234 * the HBA. 235 **/ 236 static uint32_t 237 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 238 { 239 uint32_t released = 0; 240 241 /* sanity check on queue memory */ 242 if (unlikely(!q)) 243 return 0; 244 245 if (q->hba_index == index) 246 return 0; 247 do { 248 q->hba_index = ((q->hba_index + 1) % q->entry_count); 249 released++; 250 } while (q->hba_index != index); 251 return released; 252 } 253 254 /** 255 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 256 * @q: The Mailbox Queue to operate on. 257 * @wqe: The Mailbox Queue Entry to put on the Work queue. 258 * 259 * This routine will copy the contents of @mqe to the next available entry on 260 * the @q. This function will then ring the Work Queue Doorbell to signal the 261 * HBA to start processing the Work Queue Entry. This function returns 0 if 262 * successful. If no entries are available on @q then this function will return 263 * -ENOMEM. 264 * The caller is expected to hold the hbalock when calling this routine. 265 **/ 266 static uint32_t 267 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 268 { 269 struct lpfc_mqe *temp_mqe; 270 struct lpfc_register doorbell; 271 272 /* sanity check on queue memory */ 273 if (unlikely(!q)) 274 return -ENOMEM; 275 temp_mqe = lpfc_sli4_qe(q, q->host_index); 276 277 /* If the host has not yet processed the next entry then we are done */ 278 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 279 return -ENOMEM; 280 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 281 /* Save off the mailbox pointer for completion */ 282 q->phba->mbox = (MAILBOX_t *)temp_mqe; 283 284 /* Update the host index before invoking device */ 285 q->host_index = ((q->host_index + 1) % q->entry_count); 286 287 /* Ring Doorbell */ 288 doorbell.word0 = 0; 289 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 290 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 291 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 292 return 0; 293 } 294 295 /** 296 * lpfc_sli4_mq_release - Updates internal hba index for MQ 297 * @q: The Mailbox Queue to operate on. 298 * 299 * This routine will update the HBA index of a queue to reflect consumption of 300 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 301 * an entry the host calls this function to update the queue's internal 302 * pointers. This routine returns the number of entries that were consumed by 303 * the HBA. 304 **/ 305 static uint32_t 306 lpfc_sli4_mq_release(struct lpfc_queue *q) 307 { 308 /* sanity check on queue memory */ 309 if (unlikely(!q)) 310 return 0; 311 312 /* Clear the mailbox pointer for completion */ 313 q->phba->mbox = NULL; 314 q->hba_index = ((q->hba_index + 1) % q->entry_count); 315 return 1; 316 } 317 318 /** 319 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 320 * @q: The Event Queue to get the first valid EQE from 321 * 322 * This routine will get the first valid Event Queue Entry from @q, update 323 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 324 * the Queue (no more work to do), or the Queue is full of EQEs that have been 325 * processed, but not popped back to the HBA then this routine will return NULL. 326 **/ 327 static struct lpfc_eqe * 328 lpfc_sli4_eq_get(struct lpfc_queue *q) 329 { 330 struct lpfc_eqe *eqe; 331 332 /* sanity check on queue memory */ 333 if (unlikely(!q)) 334 return NULL; 335 eqe = lpfc_sli4_qe(q, q->host_index); 336 337 /* If the next EQE is not valid then we are done */ 338 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 339 return NULL; 340 341 /* 342 * insert barrier for instruction interlock : data from the hardware 343 * must have the valid bit checked before it can be copied and acted 344 * upon. Speculative instructions were allowing a bcopy at the start 345 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 346 * after our return, to copy data before the valid bit check above 347 * was done. As such, some of the copied data was stale. The barrier 348 * ensures the check is before any data is copied. 349 */ 350 mb(); 351 return eqe; 352 } 353 354 /** 355 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 356 * @q: The Event Queue to disable interrupts 357 * 358 **/ 359 void 360 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 361 { 362 struct lpfc_register doorbell; 363 364 doorbell.word0 = 0; 365 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 366 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 367 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 368 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 369 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 370 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 371 } 372 373 /** 374 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 375 * @q: The Event Queue to disable interrupts 376 * 377 **/ 378 void 379 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 380 { 381 struct lpfc_register doorbell; 382 383 doorbell.word0 = 0; 384 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 385 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 386 } 387 388 /** 389 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 390 * @phba: adapter with EQ 391 * @q: The Event Queue that the host has completed processing for. 392 * @count: Number of elements that have been consumed 393 * @arm: Indicates whether the host wants to arms this CQ. 394 * 395 * This routine will notify the HBA, by ringing the doorbell, that count 396 * number of EQEs have been processed. The @arm parameter indicates whether 397 * the queue should be rearmed when ringing the doorbell. 398 **/ 399 void 400 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 401 uint32_t count, bool arm) 402 { 403 struct lpfc_register doorbell; 404 405 /* sanity check on queue memory */ 406 if (unlikely(!q || (count == 0 && !arm))) 407 return; 408 409 /* ring doorbell for number popped */ 410 doorbell.word0 = 0; 411 if (arm) { 412 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 413 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 414 } 415 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 416 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 417 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 418 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 419 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 420 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 421 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 422 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 423 readl(q->phba->sli4_hba.EQDBregaddr); 424 } 425 426 /** 427 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 428 * @phba: adapter with EQ 429 * @q: The Event Queue that the host has completed processing for. 430 * @count: Number of elements that have been consumed 431 * @arm: Indicates whether the host wants to arms this CQ. 432 * 433 * This routine will notify the HBA, by ringing the doorbell, that count 434 * number of EQEs have been processed. The @arm parameter indicates whether 435 * the queue should be rearmed when ringing the doorbell. 436 **/ 437 void 438 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 439 uint32_t count, bool arm) 440 { 441 struct lpfc_register doorbell; 442 443 /* sanity check on queue memory */ 444 if (unlikely(!q || (count == 0 && !arm))) 445 return; 446 447 /* ring doorbell for number popped */ 448 doorbell.word0 = 0; 449 if (arm) 450 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 451 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 452 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 453 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 454 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 455 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 456 readl(q->phba->sli4_hba.EQDBregaddr); 457 } 458 459 static void 460 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 461 struct lpfc_eqe *eqe) 462 { 463 if (!phba->sli4_hba.pc_sli4_params.eqav) 464 bf_set_le32(lpfc_eqe_valid, eqe, 0); 465 466 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 467 468 /* if the index wrapped around, toggle the valid bit */ 469 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 470 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 471 } 472 473 static void 474 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 475 { 476 struct lpfc_eqe *eqe = NULL; 477 u32 eq_count = 0, cq_count = 0; 478 struct lpfc_cqe *cqe = NULL; 479 struct lpfc_queue *cq = NULL, *childq = NULL; 480 int cqid = 0; 481 482 /* walk all the EQ entries and drop on the floor */ 483 eqe = lpfc_sli4_eq_get(eq); 484 while (eqe) { 485 /* Get the reference to the corresponding CQ */ 486 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 487 cq = NULL; 488 489 list_for_each_entry(childq, &eq->child_list, list) { 490 if (childq->queue_id == cqid) { 491 cq = childq; 492 break; 493 } 494 } 495 /* If CQ is valid, iterate through it and drop all the CQEs */ 496 if (cq) { 497 cqe = lpfc_sli4_cq_get(cq); 498 while (cqe) { 499 __lpfc_sli4_consume_cqe(phba, cq, cqe); 500 cq_count++; 501 cqe = lpfc_sli4_cq_get(cq); 502 } 503 /* Clear and re-arm the CQ */ 504 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 505 LPFC_QUEUE_REARM); 506 cq_count = 0; 507 } 508 __lpfc_sli4_consume_eqe(phba, eq, eqe); 509 eq_count++; 510 eqe = lpfc_sli4_eq_get(eq); 511 } 512 513 /* Clear and re-arm the EQ */ 514 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 515 } 516 517 static int 518 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 519 uint8_t rearm) 520 { 521 struct lpfc_eqe *eqe; 522 int count = 0, consumed = 0; 523 524 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 525 goto rearm_and_exit; 526 527 eqe = lpfc_sli4_eq_get(eq); 528 while (eqe) { 529 lpfc_sli4_hba_handle_eqe(phba, eq, eqe); 530 __lpfc_sli4_consume_eqe(phba, eq, eqe); 531 532 consumed++; 533 if (!(++count % eq->max_proc_limit)) 534 break; 535 536 if (!(count % eq->notify_interval)) { 537 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 538 LPFC_QUEUE_NOARM); 539 consumed = 0; 540 } 541 542 eqe = lpfc_sli4_eq_get(eq); 543 } 544 eq->EQ_processed += count; 545 546 /* Track the max number of EQEs processed in 1 intr */ 547 if (count > eq->EQ_max_eqe) 548 eq->EQ_max_eqe = count; 549 550 eq->queue_claimed = 0; 551 552 rearm_and_exit: 553 /* Always clear the EQ. */ 554 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 555 556 return count; 557 } 558 559 /** 560 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 561 * @q: The Completion Queue to get the first valid CQE from 562 * 563 * This routine will get the first valid Completion Queue Entry from @q, update 564 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 565 * the Queue (no more work to do), or the Queue is full of CQEs that have been 566 * processed, but not popped back to the HBA then this routine will return NULL. 567 **/ 568 static struct lpfc_cqe * 569 lpfc_sli4_cq_get(struct lpfc_queue *q) 570 { 571 struct lpfc_cqe *cqe; 572 573 /* sanity check on queue memory */ 574 if (unlikely(!q)) 575 return NULL; 576 cqe = lpfc_sli4_qe(q, q->host_index); 577 578 /* If the next CQE is not valid then we are done */ 579 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 580 return NULL; 581 582 /* 583 * insert barrier for instruction interlock : data from the hardware 584 * must have the valid bit checked before it can be copied and acted 585 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 586 * instructions allowing action on content before valid bit checked, 587 * add barrier here as well. May not be needed as "content" is a 588 * single 32-bit entity here (vs multi word structure for cq's). 589 */ 590 mb(); 591 return cqe; 592 } 593 594 static void 595 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 596 struct lpfc_cqe *cqe) 597 { 598 if (!phba->sli4_hba.pc_sli4_params.cqav) 599 bf_set_le32(lpfc_cqe_valid, cqe, 0); 600 601 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 602 603 /* if the index wrapped around, toggle the valid bit */ 604 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 605 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 606 } 607 608 /** 609 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 610 * @phba: the adapter with the CQ 611 * @q: The Completion Queue that the host has completed processing for. 612 * @count: the number of elements that were consumed 613 * @arm: Indicates whether the host wants to arms this CQ. 614 * 615 * This routine will notify the HBA, by ringing the doorbell, that the 616 * CQEs have been processed. The @arm parameter specifies whether the 617 * queue should be rearmed when ringing the doorbell. 618 **/ 619 void 620 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 621 uint32_t count, bool arm) 622 { 623 struct lpfc_register doorbell; 624 625 /* sanity check on queue memory */ 626 if (unlikely(!q || (count == 0 && !arm))) 627 return; 628 629 /* ring doorbell for number popped */ 630 doorbell.word0 = 0; 631 if (arm) 632 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 633 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 634 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 635 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 636 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 637 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 638 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 639 } 640 641 /** 642 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 643 * @phba: the adapter with the CQ 644 * @q: The Completion Queue that the host has completed processing for. 645 * @count: the number of elements that were consumed 646 * @arm: Indicates whether the host wants to arms this CQ. 647 * 648 * This routine will notify the HBA, by ringing the doorbell, that the 649 * CQEs have been processed. The @arm parameter specifies whether the 650 * queue should be rearmed when ringing the doorbell. 651 **/ 652 void 653 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 654 uint32_t count, bool arm) 655 { 656 struct lpfc_register doorbell; 657 658 /* sanity check on queue memory */ 659 if (unlikely(!q || (count == 0 && !arm))) 660 return; 661 662 /* ring doorbell for number popped */ 663 doorbell.word0 = 0; 664 if (arm) 665 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 666 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 667 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 668 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 669 } 670 671 /** 672 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 673 * @q: The Header Receive Queue to operate on. 674 * @wqe: The Receive Queue Entry to put on the Receive queue. 675 * 676 * This routine will copy the contents of @wqe to the next available entry on 677 * the @q. This function will then ring the Receive Queue Doorbell to signal the 678 * HBA to start processing the Receive Queue Entry. This function returns the 679 * index that the rqe was copied to if successful. If no entries are available 680 * on @q then this function will return -ENOMEM. 681 * The caller is expected to hold the hbalock when calling this routine. 682 **/ 683 int 684 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 685 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 686 { 687 struct lpfc_rqe *temp_hrqe; 688 struct lpfc_rqe *temp_drqe; 689 struct lpfc_register doorbell; 690 int hq_put_index; 691 int dq_put_index; 692 693 /* sanity check on queue memory */ 694 if (unlikely(!hq) || unlikely(!dq)) 695 return -ENOMEM; 696 hq_put_index = hq->host_index; 697 dq_put_index = dq->host_index; 698 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 699 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 700 701 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 702 return -EINVAL; 703 if (hq_put_index != dq_put_index) 704 return -EINVAL; 705 /* If the host has not yet processed the next entry then we are done */ 706 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 707 return -EBUSY; 708 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 709 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 710 711 /* Update the host index to point to the next slot */ 712 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 713 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 714 hq->RQ_buf_posted++; 715 716 /* Ring The Header Receive Queue Doorbell */ 717 if (!(hq->host_index % hq->notify_interval)) { 718 doorbell.word0 = 0; 719 if (hq->db_format == LPFC_DB_RING_FORMAT) { 720 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 721 hq->notify_interval); 722 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 723 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 724 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 725 hq->notify_interval); 726 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 727 hq->host_index); 728 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 729 } else { 730 return -EINVAL; 731 } 732 writel(doorbell.word0, hq->db_regaddr); 733 } 734 return hq_put_index; 735 } 736 737 /** 738 * lpfc_sli4_rq_release - Updates internal hba index for RQ 739 * @q: The Header Receive Queue to operate on. 740 * 741 * This routine will update the HBA index of a queue to reflect consumption of 742 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 743 * consumed an entry the host calls this function to update the queue's 744 * internal pointers. This routine returns the number of entries that were 745 * consumed by the HBA. 746 **/ 747 static uint32_t 748 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 749 { 750 /* sanity check on queue memory */ 751 if (unlikely(!hq) || unlikely(!dq)) 752 return 0; 753 754 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 755 return 0; 756 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 757 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 758 return 1; 759 } 760 761 /** 762 * lpfc_cmd_iocb - Get next command iocb entry in the ring 763 * @phba: Pointer to HBA context object. 764 * @pring: Pointer to driver SLI ring object. 765 * 766 * This function returns pointer to next command iocb entry 767 * in the command ring. The caller must hold hbalock to prevent 768 * other threads consume the next command iocb. 769 * SLI-2/SLI-3 provide different sized iocbs. 770 **/ 771 static inline IOCB_t * 772 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 773 { 774 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 775 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 776 } 777 778 /** 779 * lpfc_resp_iocb - Get next response iocb entry in the ring 780 * @phba: Pointer to HBA context object. 781 * @pring: Pointer to driver SLI ring object. 782 * 783 * This function returns pointer to next response iocb entry 784 * in the response ring. The caller must hold hbalock to make sure 785 * that no other thread consume the next response iocb. 786 * SLI-2/SLI-3 provide different sized iocbs. 787 **/ 788 static inline IOCB_t * 789 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 790 { 791 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 792 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 793 } 794 795 /** 796 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 797 * @phba: Pointer to HBA context object. 798 * 799 * This function is called with hbalock held. This function 800 * allocates a new driver iocb object from the iocb pool. If the 801 * allocation is successful, it returns pointer to the newly 802 * allocated iocb object else it returns NULL. 803 **/ 804 struct lpfc_iocbq * 805 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 806 { 807 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 808 struct lpfc_iocbq * iocbq = NULL; 809 810 lockdep_assert_held(&phba->hbalock); 811 812 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 813 if (iocbq) 814 phba->iocb_cnt++; 815 if (phba->iocb_cnt > phba->iocb_max) 816 phba->iocb_max = phba->iocb_cnt; 817 return iocbq; 818 } 819 820 /** 821 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 822 * @phba: Pointer to HBA context object. 823 * @xritag: XRI value. 824 * 825 * This function clears the sglq pointer from the array of acive 826 * sglq's. The xritag that is passed in is used to index into the 827 * array. Before the xritag can be used it needs to be adjusted 828 * by subtracting the xribase. 829 * 830 * Returns sglq ponter = success, NULL = Failure. 831 **/ 832 struct lpfc_sglq * 833 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 834 { 835 struct lpfc_sglq *sglq; 836 837 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 838 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 839 return sglq; 840 } 841 842 /** 843 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 844 * @phba: Pointer to HBA context object. 845 * @xritag: XRI value. 846 * 847 * This function returns the sglq pointer from the array of acive 848 * sglq's. The xritag that is passed in is used to index into the 849 * array. Before the xritag can be used it needs to be adjusted 850 * by subtracting the xribase. 851 * 852 * Returns sglq ponter = success, NULL = Failure. 853 **/ 854 struct lpfc_sglq * 855 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 856 { 857 struct lpfc_sglq *sglq; 858 859 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 860 return sglq; 861 } 862 863 /** 864 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 865 * @phba: Pointer to HBA context object. 866 * @xritag: xri used in this exchange. 867 * @rrq: The RRQ to be cleared. 868 * 869 **/ 870 void 871 lpfc_clr_rrq_active(struct lpfc_hba *phba, 872 uint16_t xritag, 873 struct lpfc_node_rrq *rrq) 874 { 875 struct lpfc_nodelist *ndlp = NULL; 876 877 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp)) 878 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 879 880 /* The target DID could have been swapped (cable swap) 881 * we should use the ndlp from the findnode if it is 882 * available. 883 */ 884 if ((!ndlp) && rrq->ndlp) 885 ndlp = rrq->ndlp; 886 887 if (!ndlp) 888 goto out; 889 890 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 891 rrq->send_rrq = 0; 892 rrq->xritag = 0; 893 rrq->rrq_stop_time = 0; 894 } 895 out: 896 mempool_free(rrq, phba->rrq_pool); 897 } 898 899 /** 900 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 901 * @phba: Pointer to HBA context object. 902 * 903 * This function is called with hbalock held. This function 904 * Checks if stop_time (ratov from setting rrq active) has 905 * been reached, if it has and the send_rrq flag is set then 906 * it will call lpfc_send_rrq. If the send_rrq flag is not set 907 * then it will just call the routine to clear the rrq and 908 * free the rrq resource. 909 * The timer is set to the next rrq that is going to expire before 910 * leaving the routine. 911 * 912 **/ 913 void 914 lpfc_handle_rrq_active(struct lpfc_hba *phba) 915 { 916 struct lpfc_node_rrq *rrq; 917 struct lpfc_node_rrq *nextrrq; 918 unsigned long next_time; 919 unsigned long iflags; 920 LIST_HEAD(send_rrq); 921 922 spin_lock_irqsave(&phba->hbalock, iflags); 923 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 924 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 925 list_for_each_entry_safe(rrq, nextrrq, 926 &phba->active_rrq_list, list) { 927 if (time_after(jiffies, rrq->rrq_stop_time)) 928 list_move(&rrq->list, &send_rrq); 929 else if (time_before(rrq->rrq_stop_time, next_time)) 930 next_time = rrq->rrq_stop_time; 931 } 932 spin_unlock_irqrestore(&phba->hbalock, iflags); 933 if ((!list_empty(&phba->active_rrq_list)) && 934 (!(phba->pport->load_flag & FC_UNLOADING))) 935 mod_timer(&phba->rrq_tmr, next_time); 936 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 937 list_del(&rrq->list); 938 if (!rrq->send_rrq) { 939 /* this call will free the rrq */ 940 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 941 } else if (lpfc_send_rrq(phba, rrq)) { 942 /* if we send the rrq then the completion handler 943 * will clear the bit in the xribitmap. 944 */ 945 lpfc_clr_rrq_active(phba, rrq->xritag, 946 rrq); 947 } 948 } 949 } 950 951 /** 952 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 953 * @vport: Pointer to vport context object. 954 * @xri: The xri used in the exchange. 955 * @did: The targets DID for this exchange. 956 * 957 * returns NULL = rrq not found in the phba->active_rrq_list. 958 * rrq = rrq for this xri and target. 959 **/ 960 struct lpfc_node_rrq * 961 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 962 { 963 struct lpfc_hba *phba = vport->phba; 964 struct lpfc_node_rrq *rrq; 965 struct lpfc_node_rrq *nextrrq; 966 unsigned long iflags; 967 968 if (phba->sli_rev != LPFC_SLI_REV4) 969 return NULL; 970 spin_lock_irqsave(&phba->hbalock, iflags); 971 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 972 if (rrq->vport == vport && rrq->xritag == xri && 973 rrq->nlp_DID == did){ 974 list_del(&rrq->list); 975 spin_unlock_irqrestore(&phba->hbalock, iflags); 976 return rrq; 977 } 978 } 979 spin_unlock_irqrestore(&phba->hbalock, iflags); 980 return NULL; 981 } 982 983 /** 984 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 985 * @vport: Pointer to vport context object. 986 * @ndlp: Pointer to the lpfc_node_list structure. 987 * If ndlp is NULL Remove all active RRQs for this vport from the 988 * phba->active_rrq_list and clear the rrq. 989 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 990 **/ 991 void 992 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 993 994 { 995 struct lpfc_hba *phba = vport->phba; 996 struct lpfc_node_rrq *rrq; 997 struct lpfc_node_rrq *nextrrq; 998 unsigned long iflags; 999 LIST_HEAD(rrq_list); 1000 1001 if (phba->sli_rev != LPFC_SLI_REV4) 1002 return; 1003 if (!ndlp) { 1004 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1005 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1006 } 1007 spin_lock_irqsave(&phba->hbalock, iflags); 1008 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) 1009 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp)) 1010 list_move(&rrq->list, &rrq_list); 1011 spin_unlock_irqrestore(&phba->hbalock, iflags); 1012 1013 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1014 list_del(&rrq->list); 1015 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1016 } 1017 } 1018 1019 /** 1020 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1021 * @phba: Pointer to HBA context object. 1022 * @ndlp: Targets nodelist pointer for this exchange. 1023 * @xritag the xri in the bitmap to test. 1024 * 1025 * This function returns: 1026 * 0 = rrq not active for this xri 1027 * 1 = rrq is valid for this xri. 1028 **/ 1029 int 1030 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1031 uint16_t xritag) 1032 { 1033 if (!ndlp) 1034 return 0; 1035 if (!ndlp->active_rrqs_xri_bitmap) 1036 return 0; 1037 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1038 return 1; 1039 else 1040 return 0; 1041 } 1042 1043 /** 1044 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1045 * @phba: Pointer to HBA context object. 1046 * @ndlp: nodelist pointer for this target. 1047 * @xritag: xri used in this exchange. 1048 * @rxid: Remote Exchange ID. 1049 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1050 * 1051 * This function takes the hbalock. 1052 * The active bit is always set in the active rrq xri_bitmap even 1053 * if there is no slot avaiable for the other rrq information. 1054 * 1055 * returns 0 rrq actived for this xri 1056 * < 0 No memory or invalid ndlp. 1057 **/ 1058 int 1059 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1060 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1061 { 1062 unsigned long iflags; 1063 struct lpfc_node_rrq *rrq; 1064 int empty; 1065 1066 if (!ndlp) 1067 return -EINVAL; 1068 1069 if (!phba->cfg_enable_rrq) 1070 return -EINVAL; 1071 1072 spin_lock_irqsave(&phba->hbalock, iflags); 1073 if (phba->pport->load_flag & FC_UNLOADING) { 1074 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1075 goto out; 1076 } 1077 1078 /* 1079 * set the active bit even if there is no mem available. 1080 */ 1081 if (NLP_CHK_FREE_REQ(ndlp)) 1082 goto out; 1083 1084 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1085 goto out; 1086 1087 if (!ndlp->active_rrqs_xri_bitmap) 1088 goto out; 1089 1090 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1091 goto out; 1092 1093 spin_unlock_irqrestore(&phba->hbalock, iflags); 1094 rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL); 1095 if (!rrq) { 1096 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1097 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1098 " DID:0x%x Send:%d\n", 1099 xritag, rxid, ndlp->nlp_DID, send_rrq); 1100 return -EINVAL; 1101 } 1102 if (phba->cfg_enable_rrq == 1) 1103 rrq->send_rrq = send_rrq; 1104 else 1105 rrq->send_rrq = 0; 1106 rrq->xritag = xritag; 1107 rrq->rrq_stop_time = jiffies + 1108 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1109 rrq->ndlp = ndlp; 1110 rrq->nlp_DID = ndlp->nlp_DID; 1111 rrq->vport = ndlp->vport; 1112 rrq->rxid = rxid; 1113 spin_lock_irqsave(&phba->hbalock, iflags); 1114 empty = list_empty(&phba->active_rrq_list); 1115 list_add_tail(&rrq->list, &phba->active_rrq_list); 1116 phba->hba_flag |= HBA_RRQ_ACTIVE; 1117 if (empty) 1118 lpfc_worker_wake_up(phba); 1119 spin_unlock_irqrestore(&phba->hbalock, iflags); 1120 return 0; 1121 out: 1122 spin_unlock_irqrestore(&phba->hbalock, iflags); 1123 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1124 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1125 " DID:0x%x Send:%d\n", 1126 xritag, rxid, ndlp->nlp_DID, send_rrq); 1127 return -EINVAL; 1128 } 1129 1130 /** 1131 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1132 * @phba: Pointer to HBA context object. 1133 * @piocb: Pointer to the iocbq. 1134 * 1135 * The driver calls this function with either the nvme ls ring lock 1136 * or the fc els ring lock held depending on the iocb usage. This function 1137 * gets a new driver sglq object from the sglq list. If the list is not empty 1138 * then it is successful, it returns pointer to the newly allocated sglq 1139 * object else it returns NULL. 1140 **/ 1141 static struct lpfc_sglq * 1142 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1143 { 1144 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1145 struct lpfc_sglq *sglq = NULL; 1146 struct lpfc_sglq *start_sglq = NULL; 1147 struct lpfc_io_buf *lpfc_cmd; 1148 struct lpfc_nodelist *ndlp; 1149 struct lpfc_sli_ring *pring = NULL; 1150 int found = 0; 1151 1152 if (piocbq->iocb_flag & LPFC_IO_NVME_LS) 1153 pring = phba->sli4_hba.nvmels_wq->pring; 1154 else 1155 pring = lpfc_phba_elsring(phba); 1156 1157 lockdep_assert_held(&pring->ring_lock); 1158 1159 if (piocbq->iocb_flag & LPFC_IO_FCP) { 1160 lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1; 1161 ndlp = lpfc_cmd->rdata->pnode; 1162 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 1163 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 1164 ndlp = piocbq->context_un.ndlp; 1165 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 1166 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 1167 ndlp = NULL; 1168 else 1169 ndlp = piocbq->context_un.ndlp; 1170 } else { 1171 ndlp = piocbq->context1; 1172 } 1173 1174 spin_lock(&phba->sli4_hba.sgl_list_lock); 1175 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1176 start_sglq = sglq; 1177 while (!found) { 1178 if (!sglq) 1179 break; 1180 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1181 test_bit(sglq->sli4_lxritag, 1182 ndlp->active_rrqs_xri_bitmap)) { 1183 /* This xri has an rrq outstanding for this DID. 1184 * put it back in the list and get another xri. 1185 */ 1186 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1187 sglq = NULL; 1188 list_remove_head(lpfc_els_sgl_list, sglq, 1189 struct lpfc_sglq, list); 1190 if (sglq == start_sglq) { 1191 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1192 sglq = NULL; 1193 break; 1194 } else 1195 continue; 1196 } 1197 sglq->ndlp = ndlp; 1198 found = 1; 1199 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1200 sglq->state = SGL_ALLOCATED; 1201 } 1202 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1203 return sglq; 1204 } 1205 1206 /** 1207 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1208 * @phba: Pointer to HBA context object. 1209 * @piocb: Pointer to the iocbq. 1210 * 1211 * This function is called with the sgl_list lock held. This function 1212 * gets a new driver sglq object from the sglq list. If the 1213 * list is not empty then it is successful, it returns pointer to the newly 1214 * allocated sglq object else it returns NULL. 1215 **/ 1216 struct lpfc_sglq * 1217 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1218 { 1219 struct list_head *lpfc_nvmet_sgl_list; 1220 struct lpfc_sglq *sglq = NULL; 1221 1222 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1223 1224 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1225 1226 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1227 if (!sglq) 1228 return NULL; 1229 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1230 sglq->state = SGL_ALLOCATED; 1231 return sglq; 1232 } 1233 1234 /** 1235 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1236 * @phba: Pointer to HBA context object. 1237 * 1238 * This function is called with no lock held. This function 1239 * allocates a new driver iocb object from the iocb pool. If the 1240 * allocation is successful, it returns pointer to the newly 1241 * allocated iocb object else it returns NULL. 1242 **/ 1243 struct lpfc_iocbq * 1244 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1245 { 1246 struct lpfc_iocbq * iocbq = NULL; 1247 unsigned long iflags; 1248 1249 spin_lock_irqsave(&phba->hbalock, iflags); 1250 iocbq = __lpfc_sli_get_iocbq(phba); 1251 spin_unlock_irqrestore(&phba->hbalock, iflags); 1252 return iocbq; 1253 } 1254 1255 /** 1256 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1257 * @phba: Pointer to HBA context object. 1258 * @iocbq: Pointer to driver iocb object. 1259 * 1260 * This function is called with hbalock held to release driver 1261 * iocb object to the iocb pool. The iotag in the iocb object 1262 * does not change for each use of the iocb object. This function 1263 * clears all other fields of the iocb object when it is freed. 1264 * The sqlq structure that holds the xritag and phys and virtual 1265 * mappings for the scatter gather list is retrieved from the 1266 * active array of sglq. The get of the sglq pointer also clears 1267 * the entry in the array. If the status of the IO indiactes that 1268 * this IO was aborted then the sglq entry it put on the 1269 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1270 * IO has good status or fails for any other reason then the sglq 1271 * entry is added to the free list (lpfc_els_sgl_list). 1272 **/ 1273 static void 1274 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1275 { 1276 struct lpfc_sglq *sglq; 1277 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1278 unsigned long iflag = 0; 1279 struct lpfc_sli_ring *pring; 1280 1281 lockdep_assert_held(&phba->hbalock); 1282 1283 if (iocbq->sli4_xritag == NO_XRI) 1284 sglq = NULL; 1285 else 1286 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1287 1288 1289 if (sglq) { 1290 if (iocbq->iocb_flag & LPFC_IO_NVMET) { 1291 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1292 iflag); 1293 sglq->state = SGL_FREED; 1294 sglq->ndlp = NULL; 1295 list_add_tail(&sglq->list, 1296 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1297 spin_unlock_irqrestore( 1298 &phba->sli4_hba.sgl_list_lock, iflag); 1299 goto out; 1300 } 1301 1302 pring = phba->sli4_hba.els_wq->pring; 1303 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1304 (sglq->state != SGL_XRI_ABORTED)) { 1305 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1306 iflag); 1307 list_add(&sglq->list, 1308 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1309 spin_unlock_irqrestore( 1310 &phba->sli4_hba.sgl_list_lock, iflag); 1311 } else { 1312 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1313 iflag); 1314 sglq->state = SGL_FREED; 1315 sglq->ndlp = NULL; 1316 list_add_tail(&sglq->list, 1317 &phba->sli4_hba.lpfc_els_sgl_list); 1318 spin_unlock_irqrestore( 1319 &phba->sli4_hba.sgl_list_lock, iflag); 1320 1321 /* Check if TXQ queue needs to be serviced */ 1322 if (!list_empty(&pring->txq)) 1323 lpfc_worker_wake_up(phba); 1324 } 1325 } 1326 1327 out: 1328 /* 1329 * Clean all volatile data fields, preserve iotag and node struct. 1330 */ 1331 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1332 iocbq->sli4_lxritag = NO_XRI; 1333 iocbq->sli4_xritag = NO_XRI; 1334 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | 1335 LPFC_IO_NVME_LS); 1336 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1337 } 1338 1339 1340 /** 1341 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1342 * @phba: Pointer to HBA context object. 1343 * @iocbq: Pointer to driver iocb object. 1344 * 1345 * This function is called with hbalock held to release driver 1346 * iocb object to the iocb pool. The iotag in the iocb object 1347 * does not change for each use of the iocb object. This function 1348 * clears all other fields of the iocb object when it is freed. 1349 **/ 1350 static void 1351 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1352 { 1353 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1354 1355 lockdep_assert_held(&phba->hbalock); 1356 1357 /* 1358 * Clean all volatile data fields, preserve iotag and node struct. 1359 */ 1360 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1361 iocbq->sli4_xritag = NO_XRI; 1362 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1363 } 1364 1365 /** 1366 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1367 * @phba: Pointer to HBA context object. 1368 * @iocbq: Pointer to driver iocb object. 1369 * 1370 * This function is called with hbalock held to release driver 1371 * iocb object to the iocb pool. The iotag in the iocb object 1372 * does not change for each use of the iocb object. This function 1373 * clears all other fields of the iocb object when it is freed. 1374 **/ 1375 static void 1376 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1377 { 1378 lockdep_assert_held(&phba->hbalock); 1379 1380 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1381 phba->iocb_cnt--; 1382 } 1383 1384 /** 1385 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1386 * @phba: Pointer to HBA context object. 1387 * @iocbq: Pointer to driver iocb object. 1388 * 1389 * This function is called with no lock held to release the iocb to 1390 * iocb pool. 1391 **/ 1392 void 1393 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1394 { 1395 unsigned long iflags; 1396 1397 /* 1398 * Clean all volatile data fields, preserve iotag and node struct. 1399 */ 1400 spin_lock_irqsave(&phba->hbalock, iflags); 1401 __lpfc_sli_release_iocbq(phba, iocbq); 1402 spin_unlock_irqrestore(&phba->hbalock, iflags); 1403 } 1404 1405 /** 1406 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1407 * @phba: Pointer to HBA context object. 1408 * @iocblist: List of IOCBs. 1409 * @ulpstatus: ULP status in IOCB command field. 1410 * @ulpWord4: ULP word-4 in IOCB command field. 1411 * 1412 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1413 * on the list by invoking the complete callback function associated with the 1414 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1415 * fields. 1416 **/ 1417 void 1418 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1419 uint32_t ulpstatus, uint32_t ulpWord4) 1420 { 1421 struct lpfc_iocbq *piocb; 1422 1423 while (!list_empty(iocblist)) { 1424 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1425 if (!piocb->iocb_cmpl) { 1426 if (piocb->iocb_flag & LPFC_IO_NVME) 1427 lpfc_nvme_cancel_iocb(phba, piocb); 1428 else 1429 lpfc_sli_release_iocbq(phba, piocb); 1430 } else { 1431 piocb->iocb.ulpStatus = ulpstatus; 1432 piocb->iocb.un.ulpWord[4] = ulpWord4; 1433 (piocb->iocb_cmpl) (phba, piocb, piocb); 1434 } 1435 } 1436 return; 1437 } 1438 1439 /** 1440 * lpfc_sli_iocb_cmd_type - Get the iocb type 1441 * @iocb_cmnd: iocb command code. 1442 * 1443 * This function is called by ring event handler function to get the iocb type. 1444 * This function translates the iocb command to an iocb command type used to 1445 * decide the final disposition of each completed IOCB. 1446 * The function returns 1447 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1448 * LPFC_SOL_IOCB if it is a solicited iocb completion 1449 * LPFC_ABORT_IOCB if it is an abort iocb 1450 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1451 * 1452 * The caller is not required to hold any lock. 1453 **/ 1454 static lpfc_iocb_type 1455 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1456 { 1457 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1458 1459 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1460 return 0; 1461 1462 switch (iocb_cmnd) { 1463 case CMD_XMIT_SEQUENCE_CR: 1464 case CMD_XMIT_SEQUENCE_CX: 1465 case CMD_XMIT_BCAST_CN: 1466 case CMD_XMIT_BCAST_CX: 1467 case CMD_ELS_REQUEST_CR: 1468 case CMD_ELS_REQUEST_CX: 1469 case CMD_CREATE_XRI_CR: 1470 case CMD_CREATE_XRI_CX: 1471 case CMD_GET_RPI_CN: 1472 case CMD_XMIT_ELS_RSP_CX: 1473 case CMD_GET_RPI_CR: 1474 case CMD_FCP_IWRITE_CR: 1475 case CMD_FCP_IWRITE_CX: 1476 case CMD_FCP_IREAD_CR: 1477 case CMD_FCP_IREAD_CX: 1478 case CMD_FCP_ICMND_CR: 1479 case CMD_FCP_ICMND_CX: 1480 case CMD_FCP_TSEND_CX: 1481 case CMD_FCP_TRSP_CX: 1482 case CMD_FCP_TRECEIVE_CX: 1483 case CMD_FCP_AUTO_TRSP_CX: 1484 case CMD_ADAPTER_MSG: 1485 case CMD_ADAPTER_DUMP: 1486 case CMD_XMIT_SEQUENCE64_CR: 1487 case CMD_XMIT_SEQUENCE64_CX: 1488 case CMD_XMIT_BCAST64_CN: 1489 case CMD_XMIT_BCAST64_CX: 1490 case CMD_ELS_REQUEST64_CR: 1491 case CMD_ELS_REQUEST64_CX: 1492 case CMD_FCP_IWRITE64_CR: 1493 case CMD_FCP_IWRITE64_CX: 1494 case CMD_FCP_IREAD64_CR: 1495 case CMD_FCP_IREAD64_CX: 1496 case CMD_FCP_ICMND64_CR: 1497 case CMD_FCP_ICMND64_CX: 1498 case CMD_FCP_TSEND64_CX: 1499 case CMD_FCP_TRSP64_CX: 1500 case CMD_FCP_TRECEIVE64_CX: 1501 case CMD_GEN_REQUEST64_CR: 1502 case CMD_GEN_REQUEST64_CX: 1503 case CMD_XMIT_ELS_RSP64_CX: 1504 case DSSCMD_IWRITE64_CR: 1505 case DSSCMD_IWRITE64_CX: 1506 case DSSCMD_IREAD64_CR: 1507 case DSSCMD_IREAD64_CX: 1508 type = LPFC_SOL_IOCB; 1509 break; 1510 case CMD_ABORT_XRI_CN: 1511 case CMD_ABORT_XRI_CX: 1512 case CMD_CLOSE_XRI_CN: 1513 case CMD_CLOSE_XRI_CX: 1514 case CMD_XRI_ABORTED_CX: 1515 case CMD_ABORT_MXRI64_CN: 1516 case CMD_XMIT_BLS_RSP64_CX: 1517 type = LPFC_ABORT_IOCB; 1518 break; 1519 case CMD_RCV_SEQUENCE_CX: 1520 case CMD_RCV_ELS_REQ_CX: 1521 case CMD_RCV_SEQUENCE64_CX: 1522 case CMD_RCV_ELS_REQ64_CX: 1523 case CMD_ASYNC_STATUS: 1524 case CMD_IOCB_RCV_SEQ64_CX: 1525 case CMD_IOCB_RCV_ELS64_CX: 1526 case CMD_IOCB_RCV_CONT64_CX: 1527 case CMD_IOCB_RET_XRI64_CX: 1528 type = LPFC_UNSOL_IOCB; 1529 break; 1530 case CMD_IOCB_XMIT_MSEQ64_CR: 1531 case CMD_IOCB_XMIT_MSEQ64_CX: 1532 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1533 case CMD_IOCB_RCV_ELS_LIST64_CX: 1534 case CMD_IOCB_CLOSE_EXTENDED_CN: 1535 case CMD_IOCB_ABORT_EXTENDED_CN: 1536 case CMD_IOCB_RET_HBQE64_CN: 1537 case CMD_IOCB_FCP_IBIDIR64_CR: 1538 case CMD_IOCB_FCP_IBIDIR64_CX: 1539 case CMD_IOCB_FCP_ITASKMGT64_CX: 1540 case CMD_IOCB_LOGENTRY_CN: 1541 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1542 printk("%s - Unhandled SLI-3 Command x%x\n", 1543 __func__, iocb_cmnd); 1544 type = LPFC_UNKNOWN_IOCB; 1545 break; 1546 default: 1547 type = LPFC_UNKNOWN_IOCB; 1548 break; 1549 } 1550 1551 return type; 1552 } 1553 1554 /** 1555 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1556 * @phba: Pointer to HBA context object. 1557 * 1558 * This function is called from SLI initialization code 1559 * to configure every ring of the HBA's SLI interface. The 1560 * caller is not required to hold any lock. This function issues 1561 * a config_ring mailbox command for each ring. 1562 * This function returns zero if successful else returns a negative 1563 * error code. 1564 **/ 1565 static int 1566 lpfc_sli_ring_map(struct lpfc_hba *phba) 1567 { 1568 struct lpfc_sli *psli = &phba->sli; 1569 LPFC_MBOXQ_t *pmb; 1570 MAILBOX_t *pmbox; 1571 int i, rc, ret = 0; 1572 1573 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1574 if (!pmb) 1575 return -ENOMEM; 1576 pmbox = &pmb->u.mb; 1577 phba->link_state = LPFC_INIT_MBX_CMDS; 1578 for (i = 0; i < psli->num_rings; i++) { 1579 lpfc_config_ring(phba, i, pmb); 1580 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1581 if (rc != MBX_SUCCESS) { 1582 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1583 "0446 Adapter failed to init (%d), " 1584 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1585 "ring %d\n", 1586 rc, pmbox->mbxCommand, 1587 pmbox->mbxStatus, i); 1588 phba->link_state = LPFC_HBA_ERROR; 1589 ret = -ENXIO; 1590 break; 1591 } 1592 } 1593 mempool_free(pmb, phba->mbox_mem_pool); 1594 return ret; 1595 } 1596 1597 /** 1598 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1599 * @phba: Pointer to HBA context object. 1600 * @pring: Pointer to driver SLI ring object. 1601 * @piocb: Pointer to the driver iocb object. 1602 * 1603 * The driver calls this function with the hbalock held for SLI3 ports or 1604 * the ring lock held for SLI4 ports. The function adds the 1605 * new iocb to txcmplq of the given ring. This function always returns 1606 * 0. If this function is called for ELS ring, this function checks if 1607 * there is a vport associated with the ELS command. This function also 1608 * starts els_tmofunc timer if this is an ELS command. 1609 **/ 1610 static int 1611 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1612 struct lpfc_iocbq *piocb) 1613 { 1614 if (phba->sli_rev == LPFC_SLI_REV4) 1615 lockdep_assert_held(&pring->ring_lock); 1616 else 1617 lockdep_assert_held(&phba->hbalock); 1618 1619 BUG_ON(!piocb); 1620 1621 list_add_tail(&piocb->list, &pring->txcmplq); 1622 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1623 pring->txcmplq_cnt++; 1624 1625 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1626 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1627 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1628 BUG_ON(!piocb->vport); 1629 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1630 mod_timer(&piocb->vport->els_tmofunc, 1631 jiffies + 1632 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1633 } 1634 1635 return 0; 1636 } 1637 1638 /** 1639 * lpfc_sli_ringtx_get - Get first element of the txq 1640 * @phba: Pointer to HBA context object. 1641 * @pring: Pointer to driver SLI ring object. 1642 * 1643 * This function is called with hbalock held to get next 1644 * iocb in txq of the given ring. If there is any iocb in 1645 * the txq, the function returns first iocb in the list after 1646 * removing the iocb from the list, else it returns NULL. 1647 **/ 1648 struct lpfc_iocbq * 1649 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1650 { 1651 struct lpfc_iocbq *cmd_iocb; 1652 1653 lockdep_assert_held(&phba->hbalock); 1654 1655 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1656 return cmd_iocb; 1657 } 1658 1659 /** 1660 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1661 * @phba: Pointer to HBA context object. 1662 * @pring: Pointer to driver SLI ring object. 1663 * 1664 * This function is called with hbalock held and the caller must post the 1665 * iocb without releasing the lock. If the caller releases the lock, 1666 * iocb slot returned by the function is not guaranteed to be available. 1667 * The function returns pointer to the next available iocb slot if there 1668 * is available slot in the ring, else it returns NULL. 1669 * If the get index of the ring is ahead of the put index, the function 1670 * will post an error attention event to the worker thread to take the 1671 * HBA to offline state. 1672 **/ 1673 static IOCB_t * 1674 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1675 { 1676 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1677 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1678 1679 lockdep_assert_held(&phba->hbalock); 1680 1681 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1682 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1683 pring->sli.sli3.next_cmdidx = 0; 1684 1685 if (unlikely(pring->sli.sli3.local_getidx == 1686 pring->sli.sli3.next_cmdidx)) { 1687 1688 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1689 1690 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1691 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 1692 "0315 Ring %d issue: portCmdGet %d " 1693 "is bigger than cmd ring %d\n", 1694 pring->ringno, 1695 pring->sli.sli3.local_getidx, 1696 max_cmd_idx); 1697 1698 phba->link_state = LPFC_HBA_ERROR; 1699 /* 1700 * All error attention handlers are posted to 1701 * worker thread 1702 */ 1703 phba->work_ha |= HA_ERATT; 1704 phba->work_hs = HS_FFER3; 1705 1706 lpfc_worker_wake_up(phba); 1707 1708 return NULL; 1709 } 1710 1711 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1712 return NULL; 1713 } 1714 1715 return lpfc_cmd_iocb(phba, pring); 1716 } 1717 1718 /** 1719 * lpfc_sli_next_iotag - Get an iotag for the iocb 1720 * @phba: Pointer to HBA context object. 1721 * @iocbq: Pointer to driver iocb object. 1722 * 1723 * This function gets an iotag for the iocb. If there is no unused iotag and 1724 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1725 * array and assigns a new iotag. 1726 * The function returns the allocated iotag if successful, else returns zero. 1727 * Zero is not a valid iotag. 1728 * The caller is not required to hold any lock. 1729 **/ 1730 uint16_t 1731 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1732 { 1733 struct lpfc_iocbq **new_arr; 1734 struct lpfc_iocbq **old_arr; 1735 size_t new_len; 1736 struct lpfc_sli *psli = &phba->sli; 1737 uint16_t iotag; 1738 1739 spin_lock_irq(&phba->hbalock); 1740 iotag = psli->last_iotag; 1741 if(++iotag < psli->iocbq_lookup_len) { 1742 psli->last_iotag = iotag; 1743 psli->iocbq_lookup[iotag] = iocbq; 1744 spin_unlock_irq(&phba->hbalock); 1745 iocbq->iotag = iotag; 1746 return iotag; 1747 } else if (psli->iocbq_lookup_len < (0xffff 1748 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1749 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1750 spin_unlock_irq(&phba->hbalock); 1751 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 1752 GFP_KERNEL); 1753 if (new_arr) { 1754 spin_lock_irq(&phba->hbalock); 1755 old_arr = psli->iocbq_lookup; 1756 if (new_len <= psli->iocbq_lookup_len) { 1757 /* highly unprobable case */ 1758 kfree(new_arr); 1759 iotag = psli->last_iotag; 1760 if(++iotag < psli->iocbq_lookup_len) { 1761 psli->last_iotag = iotag; 1762 psli->iocbq_lookup[iotag] = iocbq; 1763 spin_unlock_irq(&phba->hbalock); 1764 iocbq->iotag = iotag; 1765 return iotag; 1766 } 1767 spin_unlock_irq(&phba->hbalock); 1768 return 0; 1769 } 1770 if (psli->iocbq_lookup) 1771 memcpy(new_arr, old_arr, 1772 ((psli->last_iotag + 1) * 1773 sizeof (struct lpfc_iocbq *))); 1774 psli->iocbq_lookup = new_arr; 1775 psli->iocbq_lookup_len = new_len; 1776 psli->last_iotag = iotag; 1777 psli->iocbq_lookup[iotag] = iocbq; 1778 spin_unlock_irq(&phba->hbalock); 1779 iocbq->iotag = iotag; 1780 kfree(old_arr); 1781 return iotag; 1782 } 1783 } else 1784 spin_unlock_irq(&phba->hbalock); 1785 1786 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1787 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1788 psli->last_iotag); 1789 1790 return 0; 1791 } 1792 1793 /** 1794 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1795 * @phba: Pointer to HBA context object. 1796 * @pring: Pointer to driver SLI ring object. 1797 * @iocb: Pointer to iocb slot in the ring. 1798 * @nextiocb: Pointer to driver iocb object which need to be 1799 * posted to firmware. 1800 * 1801 * This function is called with hbalock held to post a new iocb to 1802 * the firmware. This function copies the new iocb to ring iocb slot and 1803 * updates the ring pointers. It adds the new iocb to txcmplq if there is 1804 * a completion call back for this iocb else the function will free the 1805 * iocb object. 1806 **/ 1807 static void 1808 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1809 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1810 { 1811 lockdep_assert_held(&phba->hbalock); 1812 /* 1813 * Set up an iotag 1814 */ 1815 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1816 1817 1818 if (pring->ringno == LPFC_ELS_RING) { 1819 lpfc_debugfs_slow_ring_trc(phba, 1820 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1821 *(((uint32_t *) &nextiocb->iocb) + 4), 1822 *(((uint32_t *) &nextiocb->iocb) + 6), 1823 *(((uint32_t *) &nextiocb->iocb) + 7)); 1824 } 1825 1826 /* 1827 * Issue iocb command to adapter 1828 */ 1829 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1830 wmb(); 1831 pring->stats.iocb_cmd++; 1832 1833 /* 1834 * If there is no completion routine to call, we can release the 1835 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1836 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1837 */ 1838 if (nextiocb->iocb_cmpl) 1839 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1840 else 1841 __lpfc_sli_release_iocbq(phba, nextiocb); 1842 1843 /* 1844 * Let the HBA know what IOCB slot will be the next one the 1845 * driver will put a command into. 1846 */ 1847 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1848 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1849 } 1850 1851 /** 1852 * lpfc_sli_update_full_ring - Update the chip attention register 1853 * @phba: Pointer to HBA context object. 1854 * @pring: Pointer to driver SLI ring object. 1855 * 1856 * The caller is not required to hold any lock for calling this function. 1857 * This function updates the chip attention bits for the ring to inform firmware 1858 * that there are pending work to be done for this ring and requests an 1859 * interrupt when there is space available in the ring. This function is 1860 * called when the driver is unable to post more iocbs to the ring due 1861 * to unavailability of space in the ring. 1862 **/ 1863 static void 1864 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1865 { 1866 int ringno = pring->ringno; 1867 1868 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1869 1870 wmb(); 1871 1872 /* 1873 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1874 * The HBA will tell us when an IOCB entry is available. 1875 */ 1876 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1877 readl(phba->CAregaddr); /* flush */ 1878 1879 pring->stats.iocb_cmd_full++; 1880 } 1881 1882 /** 1883 * lpfc_sli_update_ring - Update chip attention register 1884 * @phba: Pointer to HBA context object. 1885 * @pring: Pointer to driver SLI ring object. 1886 * 1887 * This function updates the chip attention register bit for the 1888 * given ring to inform HBA that there is more work to be done 1889 * in this ring. The caller is not required to hold any lock. 1890 **/ 1891 static void 1892 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1893 { 1894 int ringno = pring->ringno; 1895 1896 /* 1897 * Tell the HBA that there is work to do in this ring. 1898 */ 1899 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 1900 wmb(); 1901 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 1902 readl(phba->CAregaddr); /* flush */ 1903 } 1904 } 1905 1906 /** 1907 * lpfc_sli_resume_iocb - Process iocbs in the txq 1908 * @phba: Pointer to HBA context object. 1909 * @pring: Pointer to driver SLI ring object. 1910 * 1911 * This function is called with hbalock held to post pending iocbs 1912 * in the txq to the firmware. This function is called when driver 1913 * detects space available in the ring. 1914 **/ 1915 static void 1916 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1917 { 1918 IOCB_t *iocb; 1919 struct lpfc_iocbq *nextiocb; 1920 1921 lockdep_assert_held(&phba->hbalock); 1922 1923 /* 1924 * Check to see if: 1925 * (a) there is anything on the txq to send 1926 * (b) link is up 1927 * (c) link attention events can be processed (fcp ring only) 1928 * (d) IOCB processing is not blocked by the outstanding mbox command. 1929 */ 1930 1931 if (lpfc_is_link_up(phba) && 1932 (!list_empty(&pring->txq)) && 1933 (pring->ringno != LPFC_FCP_RING || 1934 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 1935 1936 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 1937 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 1938 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 1939 1940 if (iocb) 1941 lpfc_sli_update_ring(phba, pring); 1942 else 1943 lpfc_sli_update_full_ring(phba, pring); 1944 } 1945 1946 return; 1947 } 1948 1949 /** 1950 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 1951 * @phba: Pointer to HBA context object. 1952 * @hbqno: HBQ number. 1953 * 1954 * This function is called with hbalock held to get the next 1955 * available slot for the given HBQ. If there is free slot 1956 * available for the HBQ it will return pointer to the next available 1957 * HBQ entry else it will return NULL. 1958 **/ 1959 static struct lpfc_hbq_entry * 1960 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 1961 { 1962 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1963 1964 lockdep_assert_held(&phba->hbalock); 1965 1966 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 1967 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 1968 hbqp->next_hbqPutIdx = 0; 1969 1970 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 1971 uint32_t raw_index = phba->hbq_get[hbqno]; 1972 uint32_t getidx = le32_to_cpu(raw_index); 1973 1974 hbqp->local_hbqGetIdx = getidx; 1975 1976 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 1977 lpfc_printf_log(phba, KERN_ERR, 1978 LOG_SLI | LOG_VPORT, 1979 "1802 HBQ %d: local_hbqGetIdx " 1980 "%u is > than hbqp->entry_count %u\n", 1981 hbqno, hbqp->local_hbqGetIdx, 1982 hbqp->entry_count); 1983 1984 phba->link_state = LPFC_HBA_ERROR; 1985 return NULL; 1986 } 1987 1988 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 1989 return NULL; 1990 } 1991 1992 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 1993 hbqp->hbqPutIdx; 1994 } 1995 1996 /** 1997 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 1998 * @phba: Pointer to HBA context object. 1999 * 2000 * This function is called with no lock held to free all the 2001 * hbq buffers while uninitializing the SLI interface. It also 2002 * frees the HBQ buffers returned by the firmware but not yet 2003 * processed by the upper layers. 2004 **/ 2005 void 2006 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2007 { 2008 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2009 struct hbq_dmabuf *hbq_buf; 2010 unsigned long flags; 2011 int i, hbq_count; 2012 2013 hbq_count = lpfc_sli_hbq_count(); 2014 /* Return all memory used by all HBQs */ 2015 spin_lock_irqsave(&phba->hbalock, flags); 2016 for (i = 0; i < hbq_count; ++i) { 2017 list_for_each_entry_safe(dmabuf, next_dmabuf, 2018 &phba->hbqs[i].hbq_buffer_list, list) { 2019 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2020 list_del(&hbq_buf->dbuf.list); 2021 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2022 } 2023 phba->hbqs[i].buffer_count = 0; 2024 } 2025 2026 /* Mark the HBQs not in use */ 2027 phba->hbq_in_use = 0; 2028 spin_unlock_irqrestore(&phba->hbalock, flags); 2029 } 2030 2031 /** 2032 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2033 * @phba: Pointer to HBA context object. 2034 * @hbqno: HBQ number. 2035 * @hbq_buf: Pointer to HBQ buffer. 2036 * 2037 * This function is called with the hbalock held to post a 2038 * hbq buffer to the firmware. If the function finds an empty 2039 * slot in the HBQ, it will post the buffer. The function will return 2040 * pointer to the hbq entry if it successfully post the buffer 2041 * else it will return NULL. 2042 **/ 2043 static int 2044 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2045 struct hbq_dmabuf *hbq_buf) 2046 { 2047 lockdep_assert_held(&phba->hbalock); 2048 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2049 } 2050 2051 /** 2052 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2053 * @phba: Pointer to HBA context object. 2054 * @hbqno: HBQ number. 2055 * @hbq_buf: Pointer to HBQ buffer. 2056 * 2057 * This function is called with the hbalock held to post a hbq buffer to the 2058 * firmware. If the function finds an empty slot in the HBQ, it will post the 2059 * buffer and place it on the hbq_buffer_list. The function will return zero if 2060 * it successfully post the buffer else it will return an error. 2061 **/ 2062 static int 2063 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2064 struct hbq_dmabuf *hbq_buf) 2065 { 2066 struct lpfc_hbq_entry *hbqe; 2067 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2068 2069 lockdep_assert_held(&phba->hbalock); 2070 /* Get next HBQ entry slot to use */ 2071 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2072 if (hbqe) { 2073 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2074 2075 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2076 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2077 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2078 hbqe->bde.tus.f.bdeFlags = 0; 2079 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2080 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2081 /* Sync SLIM */ 2082 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2083 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2084 /* flush */ 2085 readl(phba->hbq_put + hbqno); 2086 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2087 return 0; 2088 } else 2089 return -ENOMEM; 2090 } 2091 2092 /** 2093 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2094 * @phba: Pointer to HBA context object. 2095 * @hbqno: HBQ number. 2096 * @hbq_buf: Pointer to HBQ buffer. 2097 * 2098 * This function is called with the hbalock held to post an RQE to the SLI4 2099 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2100 * the hbq_buffer_list and return zero, otherwise it will return an error. 2101 **/ 2102 static int 2103 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2104 struct hbq_dmabuf *hbq_buf) 2105 { 2106 int rc; 2107 struct lpfc_rqe hrqe; 2108 struct lpfc_rqe drqe; 2109 struct lpfc_queue *hrq; 2110 struct lpfc_queue *drq; 2111 2112 if (hbqno != LPFC_ELS_HBQ) 2113 return 1; 2114 hrq = phba->sli4_hba.hdr_rq; 2115 drq = phba->sli4_hba.dat_rq; 2116 2117 lockdep_assert_held(&phba->hbalock); 2118 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2119 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2120 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2121 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2122 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2123 if (rc < 0) 2124 return rc; 2125 hbq_buf->tag = (rc | (hbqno << 16)); 2126 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2127 return 0; 2128 } 2129 2130 /* HBQ for ELS and CT traffic. */ 2131 static struct lpfc_hbq_init lpfc_els_hbq = { 2132 .rn = 1, 2133 .entry_count = 256, 2134 .mask_count = 0, 2135 .profile = 0, 2136 .ring_mask = (1 << LPFC_ELS_RING), 2137 .buffer_count = 0, 2138 .init_count = 40, 2139 .add_count = 40, 2140 }; 2141 2142 /* Array of HBQs */ 2143 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2144 &lpfc_els_hbq, 2145 }; 2146 2147 /** 2148 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2149 * @phba: Pointer to HBA context object. 2150 * @hbqno: HBQ number. 2151 * @count: Number of HBQ buffers to be posted. 2152 * 2153 * This function is called with no lock held to post more hbq buffers to the 2154 * given HBQ. The function returns the number of HBQ buffers successfully 2155 * posted. 2156 **/ 2157 static int 2158 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2159 { 2160 uint32_t i, posted = 0; 2161 unsigned long flags; 2162 struct hbq_dmabuf *hbq_buffer; 2163 LIST_HEAD(hbq_buf_list); 2164 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2165 return 0; 2166 2167 if ((phba->hbqs[hbqno].buffer_count + count) > 2168 lpfc_hbq_defs[hbqno]->entry_count) 2169 count = lpfc_hbq_defs[hbqno]->entry_count - 2170 phba->hbqs[hbqno].buffer_count; 2171 if (!count) 2172 return 0; 2173 /* Allocate HBQ entries */ 2174 for (i = 0; i < count; i++) { 2175 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2176 if (!hbq_buffer) 2177 break; 2178 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2179 } 2180 /* Check whether HBQ is still in use */ 2181 spin_lock_irqsave(&phba->hbalock, flags); 2182 if (!phba->hbq_in_use) 2183 goto err; 2184 while (!list_empty(&hbq_buf_list)) { 2185 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2186 dbuf.list); 2187 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2188 (hbqno << 16)); 2189 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2190 phba->hbqs[hbqno].buffer_count++; 2191 posted++; 2192 } else 2193 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2194 } 2195 spin_unlock_irqrestore(&phba->hbalock, flags); 2196 return posted; 2197 err: 2198 spin_unlock_irqrestore(&phba->hbalock, flags); 2199 while (!list_empty(&hbq_buf_list)) { 2200 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2201 dbuf.list); 2202 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2203 } 2204 return 0; 2205 } 2206 2207 /** 2208 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2209 * @phba: Pointer to HBA context object. 2210 * @qno: HBQ number. 2211 * 2212 * This function posts more buffers to the HBQ. This function 2213 * is called with no lock held. The function returns the number of HBQ entries 2214 * successfully allocated. 2215 **/ 2216 int 2217 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2218 { 2219 if (phba->sli_rev == LPFC_SLI_REV4) 2220 return 0; 2221 else 2222 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2223 lpfc_hbq_defs[qno]->add_count); 2224 } 2225 2226 /** 2227 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2228 * @phba: Pointer to HBA context object. 2229 * @qno: HBQ queue number. 2230 * 2231 * This function is called from SLI initialization code path with 2232 * no lock held to post initial HBQ buffers to firmware. The 2233 * function returns the number of HBQ entries successfully allocated. 2234 **/ 2235 static int 2236 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2237 { 2238 if (phba->sli_rev == LPFC_SLI_REV4) 2239 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2240 lpfc_hbq_defs[qno]->entry_count); 2241 else 2242 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2243 lpfc_hbq_defs[qno]->init_count); 2244 } 2245 2246 /** 2247 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2248 * @phba: Pointer to HBA context object. 2249 * @hbqno: HBQ number. 2250 * 2251 * This function removes the first hbq buffer on an hbq list and returns a 2252 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2253 **/ 2254 static struct hbq_dmabuf * 2255 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2256 { 2257 struct lpfc_dmabuf *d_buf; 2258 2259 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2260 if (!d_buf) 2261 return NULL; 2262 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2263 } 2264 2265 /** 2266 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2267 * @phba: Pointer to HBA context object. 2268 * @hbqno: HBQ number. 2269 * 2270 * This function removes the first RQ buffer on an RQ buffer list and returns a 2271 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2272 **/ 2273 static struct rqb_dmabuf * 2274 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2275 { 2276 struct lpfc_dmabuf *h_buf; 2277 struct lpfc_rqb *rqbp; 2278 2279 rqbp = hrq->rqbp; 2280 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2281 struct lpfc_dmabuf, list); 2282 if (!h_buf) 2283 return NULL; 2284 rqbp->buffer_count--; 2285 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2286 } 2287 2288 /** 2289 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2290 * @phba: Pointer to HBA context object. 2291 * @tag: Tag of the hbq buffer. 2292 * 2293 * This function searches for the hbq buffer associated with the given tag in 2294 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2295 * otherwise it returns NULL. 2296 **/ 2297 static struct hbq_dmabuf * 2298 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2299 { 2300 struct lpfc_dmabuf *d_buf; 2301 struct hbq_dmabuf *hbq_buf; 2302 uint32_t hbqno; 2303 2304 hbqno = tag >> 16; 2305 if (hbqno >= LPFC_MAX_HBQS) 2306 return NULL; 2307 2308 spin_lock_irq(&phba->hbalock); 2309 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2310 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2311 if (hbq_buf->tag == tag) { 2312 spin_unlock_irq(&phba->hbalock); 2313 return hbq_buf; 2314 } 2315 } 2316 spin_unlock_irq(&phba->hbalock); 2317 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT, 2318 "1803 Bad hbq tag. Data: x%x x%x\n", 2319 tag, phba->hbqs[tag >> 16].buffer_count); 2320 return NULL; 2321 } 2322 2323 /** 2324 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2325 * @phba: Pointer to HBA context object. 2326 * @hbq_buffer: Pointer to HBQ buffer. 2327 * 2328 * This function is called with hbalock. This function gives back 2329 * the hbq buffer to firmware. If the HBQ does not have space to 2330 * post the buffer, it will free the buffer. 2331 **/ 2332 void 2333 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2334 { 2335 uint32_t hbqno; 2336 2337 if (hbq_buffer) { 2338 hbqno = hbq_buffer->tag >> 16; 2339 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2340 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2341 } 2342 } 2343 2344 /** 2345 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2346 * @mbxCommand: mailbox command code. 2347 * 2348 * This function is called by the mailbox event handler function to verify 2349 * that the completed mailbox command is a legitimate mailbox command. If the 2350 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2351 * and the mailbox event handler will take the HBA offline. 2352 **/ 2353 static int 2354 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2355 { 2356 uint8_t ret; 2357 2358 switch (mbxCommand) { 2359 case MBX_LOAD_SM: 2360 case MBX_READ_NV: 2361 case MBX_WRITE_NV: 2362 case MBX_WRITE_VPARMS: 2363 case MBX_RUN_BIU_DIAG: 2364 case MBX_INIT_LINK: 2365 case MBX_DOWN_LINK: 2366 case MBX_CONFIG_LINK: 2367 case MBX_CONFIG_RING: 2368 case MBX_RESET_RING: 2369 case MBX_READ_CONFIG: 2370 case MBX_READ_RCONFIG: 2371 case MBX_READ_SPARM: 2372 case MBX_READ_STATUS: 2373 case MBX_READ_RPI: 2374 case MBX_READ_XRI: 2375 case MBX_READ_REV: 2376 case MBX_READ_LNK_STAT: 2377 case MBX_REG_LOGIN: 2378 case MBX_UNREG_LOGIN: 2379 case MBX_CLEAR_LA: 2380 case MBX_DUMP_MEMORY: 2381 case MBX_DUMP_CONTEXT: 2382 case MBX_RUN_DIAGS: 2383 case MBX_RESTART: 2384 case MBX_UPDATE_CFG: 2385 case MBX_DOWN_LOAD: 2386 case MBX_DEL_LD_ENTRY: 2387 case MBX_RUN_PROGRAM: 2388 case MBX_SET_MASK: 2389 case MBX_SET_VARIABLE: 2390 case MBX_UNREG_D_ID: 2391 case MBX_KILL_BOARD: 2392 case MBX_CONFIG_FARP: 2393 case MBX_BEACON: 2394 case MBX_LOAD_AREA: 2395 case MBX_RUN_BIU_DIAG64: 2396 case MBX_CONFIG_PORT: 2397 case MBX_READ_SPARM64: 2398 case MBX_READ_RPI64: 2399 case MBX_REG_LOGIN64: 2400 case MBX_READ_TOPOLOGY: 2401 case MBX_WRITE_WWN: 2402 case MBX_SET_DEBUG: 2403 case MBX_LOAD_EXP_ROM: 2404 case MBX_ASYNCEVT_ENABLE: 2405 case MBX_REG_VPI: 2406 case MBX_UNREG_VPI: 2407 case MBX_HEARTBEAT: 2408 case MBX_PORT_CAPABILITIES: 2409 case MBX_PORT_IOV_CONTROL: 2410 case MBX_SLI4_CONFIG: 2411 case MBX_SLI4_REQ_FTRS: 2412 case MBX_REG_FCFI: 2413 case MBX_UNREG_FCFI: 2414 case MBX_REG_VFI: 2415 case MBX_UNREG_VFI: 2416 case MBX_INIT_VPI: 2417 case MBX_INIT_VFI: 2418 case MBX_RESUME_RPI: 2419 case MBX_READ_EVENT_LOG_STATUS: 2420 case MBX_READ_EVENT_LOG: 2421 case MBX_SECURITY_MGMT: 2422 case MBX_AUTH_PORT: 2423 case MBX_ACCESS_VDATA: 2424 ret = mbxCommand; 2425 break; 2426 default: 2427 ret = MBX_SHUTDOWN; 2428 break; 2429 } 2430 return ret; 2431 } 2432 2433 /** 2434 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2435 * @phba: Pointer to HBA context object. 2436 * @pmboxq: Pointer to mailbox command. 2437 * 2438 * This is completion handler function for mailbox commands issued from 2439 * lpfc_sli_issue_mbox_wait function. This function is called by the 2440 * mailbox event handler function with no lock held. This function 2441 * will wake up thread waiting on the wait queue pointed by context1 2442 * of the mailbox. 2443 **/ 2444 void 2445 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2446 { 2447 unsigned long drvr_flag; 2448 struct completion *pmbox_done; 2449 2450 /* 2451 * If pmbox_done is empty, the driver thread gave up waiting and 2452 * continued running. 2453 */ 2454 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2455 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2456 pmbox_done = (struct completion *)pmboxq->context3; 2457 if (pmbox_done) 2458 complete(pmbox_done); 2459 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2460 return; 2461 } 2462 2463 static void 2464 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2465 { 2466 unsigned long iflags; 2467 2468 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2469 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2470 spin_lock_irqsave(&vport->phba->ndlp_lock, iflags); 2471 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2472 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2473 spin_unlock_irqrestore(&vport->phba->ndlp_lock, iflags); 2474 } 2475 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2476 } 2477 2478 /** 2479 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2480 * @phba: Pointer to HBA context object. 2481 * @pmb: Pointer to mailbox object. 2482 * 2483 * This function is the default mailbox completion handler. It 2484 * frees the memory resources associated with the completed mailbox 2485 * command. If the completed command is a REG_LOGIN mailbox command, 2486 * this function will issue a UREG_LOGIN to re-claim the RPI. 2487 **/ 2488 void 2489 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2490 { 2491 struct lpfc_vport *vport = pmb->vport; 2492 struct lpfc_dmabuf *mp; 2493 struct lpfc_nodelist *ndlp; 2494 struct Scsi_Host *shost; 2495 uint16_t rpi, vpi; 2496 int rc; 2497 2498 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 2499 2500 if (mp) { 2501 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2502 kfree(mp); 2503 } 2504 2505 /* 2506 * If a REG_LOGIN succeeded after node is destroyed or node 2507 * is in re-discovery driver need to cleanup the RPI. 2508 */ 2509 if (!(phba->pport->load_flag & FC_UNLOADING) && 2510 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2511 !pmb->u.mb.mbxStatus) { 2512 rpi = pmb->u.mb.un.varWords[0]; 2513 vpi = pmb->u.mb.un.varRegLogin.vpi; 2514 lpfc_unreg_login(phba, vpi, rpi, pmb); 2515 pmb->vport = vport; 2516 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2517 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2518 if (rc != MBX_NOT_FINISHED) 2519 return; 2520 } 2521 2522 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2523 !(phba->pport->load_flag & FC_UNLOADING) && 2524 !pmb->u.mb.mbxStatus) { 2525 shost = lpfc_shost_from_vport(vport); 2526 spin_lock_irq(shost->host_lock); 2527 vport->vpi_state |= LPFC_VPI_REGISTERED; 2528 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2529 spin_unlock_irq(shost->host_lock); 2530 } 2531 2532 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2533 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2534 lpfc_nlp_put(ndlp); 2535 pmb->ctx_buf = NULL; 2536 pmb->ctx_ndlp = NULL; 2537 } 2538 2539 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2540 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2541 2542 /* Check to see if there are any deferred events to process */ 2543 if (ndlp) { 2544 lpfc_printf_vlog( 2545 vport, 2546 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2547 "1438 UNREG cmpl deferred mbox x%x " 2548 "on NPort x%x Data: x%x x%x %px\n", 2549 ndlp->nlp_rpi, ndlp->nlp_DID, 2550 ndlp->nlp_flag, ndlp->nlp_defer_did, ndlp); 2551 2552 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2553 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2554 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2555 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2556 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2557 } else { 2558 __lpfc_sli_rpi_release(vport, ndlp); 2559 } 2560 if (vport->load_flag & FC_UNLOADING) 2561 lpfc_nlp_put(ndlp); 2562 pmb->ctx_ndlp = NULL; 2563 } 2564 } 2565 2566 /* Check security permission status on INIT_LINK mailbox command */ 2567 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2568 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2569 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2570 "2860 SLI authentication is required " 2571 "for INIT_LINK but has not done yet\n"); 2572 2573 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2574 lpfc_sli4_mbox_cmd_free(phba, pmb); 2575 else 2576 mempool_free(pmb, phba->mbox_mem_pool); 2577 } 2578 /** 2579 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2580 * @phba: Pointer to HBA context object. 2581 * @pmb: Pointer to mailbox object. 2582 * 2583 * This function is the unreg rpi mailbox completion handler. It 2584 * frees the memory resources associated with the completed mailbox 2585 * command. An additional refrenece is put on the ndlp to prevent 2586 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2587 * the unreg mailbox command completes, this routine puts the 2588 * reference back. 2589 * 2590 **/ 2591 void 2592 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2593 { 2594 struct lpfc_vport *vport = pmb->vport; 2595 struct lpfc_nodelist *ndlp; 2596 2597 ndlp = pmb->ctx_ndlp; 2598 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2599 if (phba->sli_rev == LPFC_SLI_REV4 && 2600 (bf_get(lpfc_sli_intf_if_type, 2601 &phba->sli4_hba.sli_intf) >= 2602 LPFC_SLI_INTF_IF_TYPE_2)) { 2603 if (ndlp) { 2604 lpfc_printf_vlog( 2605 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2606 "0010 UNREG_LOGIN vpi:%x " 2607 "rpi:%x DID:%x defer x%x flg x%x " 2608 "map:%x %px\n", 2609 vport->vpi, ndlp->nlp_rpi, 2610 ndlp->nlp_DID, ndlp->nlp_defer_did, 2611 ndlp->nlp_flag, 2612 ndlp->nlp_usg_map, ndlp); 2613 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2614 lpfc_nlp_put(ndlp); 2615 2616 /* Check to see if there are any deferred 2617 * events to process 2618 */ 2619 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2620 (ndlp->nlp_defer_did != 2621 NLP_EVT_NOTHING_PENDING)) { 2622 lpfc_printf_vlog( 2623 vport, KERN_INFO, LOG_DISCOVERY, 2624 "4111 UNREG cmpl deferred " 2625 "clr x%x on " 2626 "NPort x%x Data: x%x x%px\n", 2627 ndlp->nlp_rpi, ndlp->nlp_DID, 2628 ndlp->nlp_defer_did, ndlp); 2629 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2630 ndlp->nlp_defer_did = 2631 NLP_EVT_NOTHING_PENDING; 2632 lpfc_issue_els_plogi( 2633 vport, ndlp->nlp_DID, 0); 2634 } else { 2635 __lpfc_sli_rpi_release(vport, ndlp); 2636 } 2637 } 2638 } 2639 } 2640 2641 mempool_free(pmb, phba->mbox_mem_pool); 2642 } 2643 2644 /** 2645 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2646 * @phba: Pointer to HBA context object. 2647 * 2648 * This function is called with no lock held. This function processes all 2649 * the completed mailbox commands and gives it to upper layers. The interrupt 2650 * service routine processes mailbox completion interrupt and adds completed 2651 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2652 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2653 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2654 * function returns the mailbox commands to the upper layer by calling the 2655 * completion handler function of each mailbox. 2656 **/ 2657 int 2658 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2659 { 2660 MAILBOX_t *pmbox; 2661 LPFC_MBOXQ_t *pmb; 2662 int rc; 2663 LIST_HEAD(cmplq); 2664 2665 phba->sli.slistat.mbox_event++; 2666 2667 /* Get all completed mailboxe buffers into the cmplq */ 2668 spin_lock_irq(&phba->hbalock); 2669 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2670 spin_unlock_irq(&phba->hbalock); 2671 2672 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2673 do { 2674 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2675 if (pmb == NULL) 2676 break; 2677 2678 pmbox = &pmb->u.mb; 2679 2680 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2681 if (pmb->vport) { 2682 lpfc_debugfs_disc_trc(pmb->vport, 2683 LPFC_DISC_TRC_MBOX_VPORT, 2684 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2685 (uint32_t)pmbox->mbxCommand, 2686 pmbox->un.varWords[0], 2687 pmbox->un.varWords[1]); 2688 } 2689 else { 2690 lpfc_debugfs_disc_trc(phba->pport, 2691 LPFC_DISC_TRC_MBOX, 2692 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2693 (uint32_t)pmbox->mbxCommand, 2694 pmbox->un.varWords[0], 2695 pmbox->un.varWords[1]); 2696 } 2697 } 2698 2699 /* 2700 * It is a fatal error if unknown mbox command completion. 2701 */ 2702 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2703 MBX_SHUTDOWN) { 2704 /* Unknown mailbox command compl */ 2705 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2706 "(%d):0323 Unknown Mailbox command " 2707 "x%x (x%x/x%x) Cmpl\n", 2708 pmb->vport ? pmb->vport->vpi : 2709 LPFC_VPORT_UNKNOWN, 2710 pmbox->mbxCommand, 2711 lpfc_sli_config_mbox_subsys_get(phba, 2712 pmb), 2713 lpfc_sli_config_mbox_opcode_get(phba, 2714 pmb)); 2715 phba->link_state = LPFC_HBA_ERROR; 2716 phba->work_hs = HS_FFER3; 2717 lpfc_handle_eratt(phba); 2718 continue; 2719 } 2720 2721 if (pmbox->mbxStatus) { 2722 phba->sli.slistat.mbox_stat_err++; 2723 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2724 /* Mbox cmd cmpl error - RETRYing */ 2725 lpfc_printf_log(phba, KERN_INFO, 2726 LOG_MBOX | LOG_SLI, 2727 "(%d):0305 Mbox cmd cmpl " 2728 "error - RETRYing Data: x%x " 2729 "(x%x/x%x) x%x x%x x%x\n", 2730 pmb->vport ? pmb->vport->vpi : 2731 LPFC_VPORT_UNKNOWN, 2732 pmbox->mbxCommand, 2733 lpfc_sli_config_mbox_subsys_get(phba, 2734 pmb), 2735 lpfc_sli_config_mbox_opcode_get(phba, 2736 pmb), 2737 pmbox->mbxStatus, 2738 pmbox->un.varWords[0], 2739 pmb->vport ? pmb->vport->port_state : 2740 LPFC_VPORT_UNKNOWN); 2741 pmbox->mbxStatus = 0; 2742 pmbox->mbxOwner = OWN_HOST; 2743 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2744 if (rc != MBX_NOT_FINISHED) 2745 continue; 2746 } 2747 } 2748 2749 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2750 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2751 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 2752 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2753 "x%x x%x x%x\n", 2754 pmb->vport ? pmb->vport->vpi : 0, 2755 pmbox->mbxCommand, 2756 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2757 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2758 pmb->mbox_cmpl, 2759 *((uint32_t *) pmbox), 2760 pmbox->un.varWords[0], 2761 pmbox->un.varWords[1], 2762 pmbox->un.varWords[2], 2763 pmbox->un.varWords[3], 2764 pmbox->un.varWords[4], 2765 pmbox->un.varWords[5], 2766 pmbox->un.varWords[6], 2767 pmbox->un.varWords[7], 2768 pmbox->un.varWords[8], 2769 pmbox->un.varWords[9], 2770 pmbox->un.varWords[10]); 2771 2772 if (pmb->mbox_cmpl) 2773 pmb->mbox_cmpl(phba,pmb); 2774 } while (1); 2775 return 0; 2776 } 2777 2778 /** 2779 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2780 * @phba: Pointer to HBA context object. 2781 * @pring: Pointer to driver SLI ring object. 2782 * @tag: buffer tag. 2783 * 2784 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2785 * is set in the tag the buffer is posted for a particular exchange, 2786 * the function will return the buffer without replacing the buffer. 2787 * If the buffer is for unsolicited ELS or CT traffic, this function 2788 * returns the buffer and also posts another buffer to the firmware. 2789 **/ 2790 static struct lpfc_dmabuf * 2791 lpfc_sli_get_buff(struct lpfc_hba *phba, 2792 struct lpfc_sli_ring *pring, 2793 uint32_t tag) 2794 { 2795 struct hbq_dmabuf *hbq_entry; 2796 2797 if (tag & QUE_BUFTAG_BIT) 2798 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2799 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2800 if (!hbq_entry) 2801 return NULL; 2802 return &hbq_entry->dbuf; 2803 } 2804 2805 /** 2806 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 2807 * @phba: Pointer to HBA context object. 2808 * @pring: Pointer to driver SLI ring object. 2809 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 2810 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 2811 * @fch_type: the type for the first frame of the sequence. 2812 * 2813 * This function is called with no lock held. This function uses the r_ctl and 2814 * type of the received sequence to find the correct callback function to call 2815 * to process the sequence. 2816 **/ 2817 static int 2818 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2819 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 2820 uint32_t fch_type) 2821 { 2822 int i; 2823 2824 switch (fch_type) { 2825 case FC_TYPE_NVME: 2826 lpfc_nvmet_unsol_ls_event(phba, pring, saveq); 2827 return 1; 2828 default: 2829 break; 2830 } 2831 2832 /* unSolicited Responses */ 2833 if (pring->prt[0].profile) { 2834 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 2835 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 2836 saveq); 2837 return 1; 2838 } 2839 /* We must search, based on rctl / type 2840 for the right routine */ 2841 for (i = 0; i < pring->num_mask; i++) { 2842 if ((pring->prt[i].rctl == fch_r_ctl) && 2843 (pring->prt[i].type == fch_type)) { 2844 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 2845 (pring->prt[i].lpfc_sli_rcv_unsol_event) 2846 (phba, pring, saveq); 2847 return 1; 2848 } 2849 } 2850 return 0; 2851 } 2852 2853 /** 2854 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 2855 * @phba: Pointer to HBA context object. 2856 * @pring: Pointer to driver SLI ring object. 2857 * @saveq: Pointer to the unsolicited iocb. 2858 * 2859 * This function is called with no lock held by the ring event handler 2860 * when there is an unsolicited iocb posted to the response ring by the 2861 * firmware. This function gets the buffer associated with the iocbs 2862 * and calls the event handler for the ring. This function handles both 2863 * qring buffers and hbq buffers. 2864 * When the function returns 1 the caller can free the iocb object otherwise 2865 * upper layer functions will free the iocb objects. 2866 **/ 2867 static int 2868 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2869 struct lpfc_iocbq *saveq) 2870 { 2871 IOCB_t * irsp; 2872 WORD5 * w5p; 2873 uint32_t Rctl, Type; 2874 struct lpfc_iocbq *iocbq; 2875 struct lpfc_dmabuf *dmzbuf; 2876 2877 irsp = &(saveq->iocb); 2878 2879 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 2880 if (pring->lpfc_sli_rcv_async_status) 2881 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 2882 else 2883 lpfc_printf_log(phba, 2884 KERN_WARNING, 2885 LOG_SLI, 2886 "0316 Ring %d handler: unexpected " 2887 "ASYNC_STATUS iocb received evt_code " 2888 "0x%x\n", 2889 pring->ringno, 2890 irsp->un.asyncstat.evt_code); 2891 return 1; 2892 } 2893 2894 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 2895 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 2896 if (irsp->ulpBdeCount > 0) { 2897 dmzbuf = lpfc_sli_get_buff(phba, pring, 2898 irsp->un.ulpWord[3]); 2899 lpfc_in_buf_free(phba, dmzbuf); 2900 } 2901 2902 if (irsp->ulpBdeCount > 1) { 2903 dmzbuf = lpfc_sli_get_buff(phba, pring, 2904 irsp->unsli3.sli3Words[3]); 2905 lpfc_in_buf_free(phba, dmzbuf); 2906 } 2907 2908 if (irsp->ulpBdeCount > 2) { 2909 dmzbuf = lpfc_sli_get_buff(phba, pring, 2910 irsp->unsli3.sli3Words[7]); 2911 lpfc_in_buf_free(phba, dmzbuf); 2912 } 2913 2914 return 1; 2915 } 2916 2917 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 2918 if (irsp->ulpBdeCount != 0) { 2919 saveq->context2 = lpfc_sli_get_buff(phba, pring, 2920 irsp->un.ulpWord[3]); 2921 if (!saveq->context2) 2922 lpfc_printf_log(phba, 2923 KERN_ERR, 2924 LOG_SLI, 2925 "0341 Ring %d Cannot find buffer for " 2926 "an unsolicited iocb. tag 0x%x\n", 2927 pring->ringno, 2928 irsp->un.ulpWord[3]); 2929 } 2930 if (irsp->ulpBdeCount == 2) { 2931 saveq->context3 = lpfc_sli_get_buff(phba, pring, 2932 irsp->unsli3.sli3Words[7]); 2933 if (!saveq->context3) 2934 lpfc_printf_log(phba, 2935 KERN_ERR, 2936 LOG_SLI, 2937 "0342 Ring %d Cannot find buffer for an" 2938 " unsolicited iocb. tag 0x%x\n", 2939 pring->ringno, 2940 irsp->unsli3.sli3Words[7]); 2941 } 2942 list_for_each_entry(iocbq, &saveq->list, list) { 2943 irsp = &(iocbq->iocb); 2944 if (irsp->ulpBdeCount != 0) { 2945 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 2946 irsp->un.ulpWord[3]); 2947 if (!iocbq->context2) 2948 lpfc_printf_log(phba, 2949 KERN_ERR, 2950 LOG_SLI, 2951 "0343 Ring %d Cannot find " 2952 "buffer for an unsolicited iocb" 2953 ". tag 0x%x\n", pring->ringno, 2954 irsp->un.ulpWord[3]); 2955 } 2956 if (irsp->ulpBdeCount == 2) { 2957 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 2958 irsp->unsli3.sli3Words[7]); 2959 if (!iocbq->context3) 2960 lpfc_printf_log(phba, 2961 KERN_ERR, 2962 LOG_SLI, 2963 "0344 Ring %d Cannot find " 2964 "buffer for an unsolicited " 2965 "iocb. tag 0x%x\n", 2966 pring->ringno, 2967 irsp->unsli3.sli3Words[7]); 2968 } 2969 } 2970 } 2971 if (irsp->ulpBdeCount != 0 && 2972 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 2973 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 2974 int found = 0; 2975 2976 /* search continue save q for same XRI */ 2977 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 2978 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 2979 saveq->iocb.unsli3.rcvsli3.ox_id) { 2980 list_add_tail(&saveq->list, &iocbq->list); 2981 found = 1; 2982 break; 2983 } 2984 } 2985 if (!found) 2986 list_add_tail(&saveq->clist, 2987 &pring->iocb_continue_saveq); 2988 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 2989 list_del_init(&iocbq->clist); 2990 saveq = iocbq; 2991 irsp = &(saveq->iocb); 2992 } else 2993 return 0; 2994 } 2995 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 2996 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 2997 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 2998 Rctl = FC_RCTL_ELS_REQ; 2999 Type = FC_TYPE_ELS; 3000 } else { 3001 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3002 Rctl = w5p->hcsw.Rctl; 3003 Type = w5p->hcsw.Type; 3004 3005 /* Firmware Workaround */ 3006 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3007 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3008 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3009 Rctl = FC_RCTL_ELS_REQ; 3010 Type = FC_TYPE_ELS; 3011 w5p->hcsw.Rctl = Rctl; 3012 w5p->hcsw.Type = Type; 3013 } 3014 } 3015 3016 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3017 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3018 "0313 Ring %d handler: unexpected Rctl x%x " 3019 "Type x%x received\n", 3020 pring->ringno, Rctl, Type); 3021 3022 return 1; 3023 } 3024 3025 /** 3026 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3027 * @phba: Pointer to HBA context object. 3028 * @pring: Pointer to driver SLI ring object. 3029 * @prspiocb: Pointer to response iocb object. 3030 * 3031 * This function looks up the iocb_lookup table to get the command iocb 3032 * corresponding to the given response iocb using the iotag of the 3033 * response iocb. The driver calls this function with the hbalock held 3034 * for SLI3 ports or the ring lock held for SLI4 ports. 3035 * This function returns the command iocb object if it finds the command 3036 * iocb else returns NULL. 3037 **/ 3038 static struct lpfc_iocbq * 3039 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3040 struct lpfc_sli_ring *pring, 3041 struct lpfc_iocbq *prspiocb) 3042 { 3043 struct lpfc_iocbq *cmd_iocb = NULL; 3044 uint16_t iotag; 3045 spinlock_t *temp_lock = NULL; 3046 unsigned long iflag = 0; 3047 3048 if (phba->sli_rev == LPFC_SLI_REV4) 3049 temp_lock = &pring->ring_lock; 3050 else 3051 temp_lock = &phba->hbalock; 3052 3053 spin_lock_irqsave(temp_lock, iflag); 3054 iotag = prspiocb->iocb.ulpIoTag; 3055 3056 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3057 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3058 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3059 /* remove from txcmpl queue list */ 3060 list_del_init(&cmd_iocb->list); 3061 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3062 pring->txcmplq_cnt--; 3063 spin_unlock_irqrestore(temp_lock, iflag); 3064 return cmd_iocb; 3065 } 3066 } 3067 3068 spin_unlock_irqrestore(temp_lock, iflag); 3069 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3070 "0317 iotag x%x is out of " 3071 "range: max iotag x%x wd0 x%x\n", 3072 iotag, phba->sli.last_iotag, 3073 *(((uint32_t *) &prspiocb->iocb) + 7)); 3074 return NULL; 3075 } 3076 3077 /** 3078 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3079 * @phba: Pointer to HBA context object. 3080 * @pring: Pointer to driver SLI ring object. 3081 * @iotag: IOCB tag. 3082 * 3083 * This function looks up the iocb_lookup table to get the command iocb 3084 * corresponding to the given iotag. The driver calls this function with 3085 * the ring lock held because this function is an SLI4 port only helper. 3086 * This function returns the command iocb object if it finds the command 3087 * iocb else returns NULL. 3088 **/ 3089 static struct lpfc_iocbq * 3090 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3091 struct lpfc_sli_ring *pring, uint16_t iotag) 3092 { 3093 struct lpfc_iocbq *cmd_iocb = NULL; 3094 spinlock_t *temp_lock = NULL; 3095 unsigned long iflag = 0; 3096 3097 if (phba->sli_rev == LPFC_SLI_REV4) 3098 temp_lock = &pring->ring_lock; 3099 else 3100 temp_lock = &phba->hbalock; 3101 3102 spin_lock_irqsave(temp_lock, iflag); 3103 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3104 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3105 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3106 /* remove from txcmpl queue list */ 3107 list_del_init(&cmd_iocb->list); 3108 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3109 pring->txcmplq_cnt--; 3110 spin_unlock_irqrestore(temp_lock, iflag); 3111 return cmd_iocb; 3112 } 3113 } 3114 3115 spin_unlock_irqrestore(temp_lock, iflag); 3116 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3117 "0372 iotag x%x lookup error: max iotag (x%x) " 3118 "iocb_flag x%x\n", 3119 iotag, phba->sli.last_iotag, 3120 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); 3121 return NULL; 3122 } 3123 3124 /** 3125 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3126 * @phba: Pointer to HBA context object. 3127 * @pring: Pointer to driver SLI ring object. 3128 * @saveq: Pointer to the response iocb to be processed. 3129 * 3130 * This function is called by the ring event handler for non-fcp 3131 * rings when there is a new response iocb in the response ring. 3132 * The caller is not required to hold any locks. This function 3133 * gets the command iocb associated with the response iocb and 3134 * calls the completion handler for the command iocb. If there 3135 * is no completion handler, the function will free the resources 3136 * associated with command iocb. If the response iocb is for 3137 * an already aborted command iocb, the status of the completion 3138 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3139 * This function always returns 1. 3140 **/ 3141 static int 3142 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3143 struct lpfc_iocbq *saveq) 3144 { 3145 struct lpfc_iocbq *cmdiocbp; 3146 int rc = 1; 3147 unsigned long iflag; 3148 3149 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3150 if (cmdiocbp) { 3151 if (cmdiocbp->iocb_cmpl) { 3152 /* 3153 * If an ELS command failed send an event to mgmt 3154 * application. 3155 */ 3156 if (saveq->iocb.ulpStatus && 3157 (pring->ringno == LPFC_ELS_RING) && 3158 (cmdiocbp->iocb.ulpCommand == 3159 CMD_ELS_REQUEST64_CR)) 3160 lpfc_send_els_failure_event(phba, 3161 cmdiocbp, saveq); 3162 3163 /* 3164 * Post all ELS completions to the worker thread. 3165 * All other are passed to the completion callback. 3166 */ 3167 if (pring->ringno == LPFC_ELS_RING) { 3168 if ((phba->sli_rev < LPFC_SLI_REV4) && 3169 (cmdiocbp->iocb_flag & 3170 LPFC_DRIVER_ABORTED)) { 3171 spin_lock_irqsave(&phba->hbalock, 3172 iflag); 3173 cmdiocbp->iocb_flag &= 3174 ~LPFC_DRIVER_ABORTED; 3175 spin_unlock_irqrestore(&phba->hbalock, 3176 iflag); 3177 saveq->iocb.ulpStatus = 3178 IOSTAT_LOCAL_REJECT; 3179 saveq->iocb.un.ulpWord[4] = 3180 IOERR_SLI_ABORTED; 3181 3182 /* Firmware could still be in progress 3183 * of DMAing payload, so don't free data 3184 * buffer till after a hbeat. 3185 */ 3186 spin_lock_irqsave(&phba->hbalock, 3187 iflag); 3188 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 3189 spin_unlock_irqrestore(&phba->hbalock, 3190 iflag); 3191 } 3192 if (phba->sli_rev == LPFC_SLI_REV4) { 3193 if (saveq->iocb_flag & 3194 LPFC_EXCHANGE_BUSY) { 3195 /* Set cmdiocb flag for the 3196 * exchange busy so sgl (xri) 3197 * will not be released until 3198 * the abort xri is received 3199 * from hba. 3200 */ 3201 spin_lock_irqsave( 3202 &phba->hbalock, iflag); 3203 cmdiocbp->iocb_flag |= 3204 LPFC_EXCHANGE_BUSY; 3205 spin_unlock_irqrestore( 3206 &phba->hbalock, iflag); 3207 } 3208 if (cmdiocbp->iocb_flag & 3209 LPFC_DRIVER_ABORTED) { 3210 /* 3211 * Clear LPFC_DRIVER_ABORTED 3212 * bit in case it was driver 3213 * initiated abort. 3214 */ 3215 spin_lock_irqsave( 3216 &phba->hbalock, iflag); 3217 cmdiocbp->iocb_flag &= 3218 ~LPFC_DRIVER_ABORTED; 3219 spin_unlock_irqrestore( 3220 &phba->hbalock, iflag); 3221 cmdiocbp->iocb.ulpStatus = 3222 IOSTAT_LOCAL_REJECT; 3223 cmdiocbp->iocb.un.ulpWord[4] = 3224 IOERR_ABORT_REQUESTED; 3225 /* 3226 * For SLI4, irsiocb contains 3227 * NO_XRI in sli_xritag, it 3228 * shall not affect releasing 3229 * sgl (xri) process. 3230 */ 3231 saveq->iocb.ulpStatus = 3232 IOSTAT_LOCAL_REJECT; 3233 saveq->iocb.un.ulpWord[4] = 3234 IOERR_SLI_ABORTED; 3235 spin_lock_irqsave( 3236 &phba->hbalock, iflag); 3237 saveq->iocb_flag |= 3238 LPFC_DELAY_MEM_FREE; 3239 spin_unlock_irqrestore( 3240 &phba->hbalock, iflag); 3241 } 3242 } 3243 } 3244 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 3245 } else 3246 lpfc_sli_release_iocbq(phba, cmdiocbp); 3247 } else { 3248 /* 3249 * Unknown initiating command based on the response iotag. 3250 * This could be the case on the ELS ring because of 3251 * lpfc_els_abort(). 3252 */ 3253 if (pring->ringno != LPFC_ELS_RING) { 3254 /* 3255 * Ring <ringno> handler: unexpected completion IoTag 3256 * <IoTag> 3257 */ 3258 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3259 "0322 Ring %d handler: " 3260 "unexpected completion IoTag x%x " 3261 "Data: x%x x%x x%x x%x\n", 3262 pring->ringno, 3263 saveq->iocb.ulpIoTag, 3264 saveq->iocb.ulpStatus, 3265 saveq->iocb.un.ulpWord[4], 3266 saveq->iocb.ulpCommand, 3267 saveq->iocb.ulpContext); 3268 } 3269 } 3270 3271 return rc; 3272 } 3273 3274 /** 3275 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3276 * @phba: Pointer to HBA context object. 3277 * @pring: Pointer to driver SLI ring object. 3278 * 3279 * This function is called from the iocb ring event handlers when 3280 * put pointer is ahead of the get pointer for a ring. This function signal 3281 * an error attention condition to the worker thread and the worker 3282 * thread will transition the HBA to offline state. 3283 **/ 3284 static void 3285 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3286 { 3287 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3288 /* 3289 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3290 * rsp ring <portRspMax> 3291 */ 3292 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3293 "0312 Ring %d handler: portRspPut %d " 3294 "is bigger than rsp ring %d\n", 3295 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3296 pring->sli.sli3.numRiocb); 3297 3298 phba->link_state = LPFC_HBA_ERROR; 3299 3300 /* 3301 * All error attention handlers are posted to 3302 * worker thread 3303 */ 3304 phba->work_ha |= HA_ERATT; 3305 phba->work_hs = HS_FFER3; 3306 3307 lpfc_worker_wake_up(phba); 3308 3309 return; 3310 } 3311 3312 /** 3313 * lpfc_poll_eratt - Error attention polling timer timeout handler 3314 * @ptr: Pointer to address of HBA context object. 3315 * 3316 * This function is invoked by the Error Attention polling timer when the 3317 * timer times out. It will check the SLI Error Attention register for 3318 * possible attention events. If so, it will post an Error Attention event 3319 * and wake up worker thread to process it. Otherwise, it will set up the 3320 * Error Attention polling timer for the next poll. 3321 **/ 3322 void lpfc_poll_eratt(struct timer_list *t) 3323 { 3324 struct lpfc_hba *phba; 3325 uint32_t eratt = 0; 3326 uint64_t sli_intr, cnt; 3327 3328 phba = from_timer(phba, t, eratt_poll); 3329 3330 /* Here we will also keep track of interrupts per sec of the hba */ 3331 sli_intr = phba->sli.slistat.sli_intr; 3332 3333 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3334 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3335 sli_intr); 3336 else 3337 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3338 3339 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3340 do_div(cnt, phba->eratt_poll_interval); 3341 phba->sli.slistat.sli_ips = cnt; 3342 3343 phba->sli.slistat.sli_prev_intr = sli_intr; 3344 3345 /* Check chip HA register for error event */ 3346 eratt = lpfc_sli_check_eratt(phba); 3347 3348 if (eratt) 3349 /* Tell the worker thread there is work to do */ 3350 lpfc_worker_wake_up(phba); 3351 else 3352 /* Restart the timer for next eratt poll */ 3353 mod_timer(&phba->eratt_poll, 3354 jiffies + 3355 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3356 return; 3357 } 3358 3359 3360 /** 3361 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3362 * @phba: Pointer to HBA context object. 3363 * @pring: Pointer to driver SLI ring object. 3364 * @mask: Host attention register mask for this ring. 3365 * 3366 * This function is called from the interrupt context when there is a ring 3367 * event for the fcp ring. The caller does not hold any lock. 3368 * The function processes each response iocb in the response ring until it 3369 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3370 * LE bit set. The function will call the completion handler of the command iocb 3371 * if the response iocb indicates a completion for a command iocb or it is 3372 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3373 * function if this is an unsolicited iocb. 3374 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3375 * to check it explicitly. 3376 */ 3377 int 3378 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3379 struct lpfc_sli_ring *pring, uint32_t mask) 3380 { 3381 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3382 IOCB_t *irsp = NULL; 3383 IOCB_t *entry = NULL; 3384 struct lpfc_iocbq *cmdiocbq = NULL; 3385 struct lpfc_iocbq rspiocbq; 3386 uint32_t status; 3387 uint32_t portRspPut, portRspMax; 3388 int rc = 1; 3389 lpfc_iocb_type type; 3390 unsigned long iflag; 3391 uint32_t rsp_cmpl = 0; 3392 3393 spin_lock_irqsave(&phba->hbalock, iflag); 3394 pring->stats.iocb_event++; 3395 3396 /* 3397 * The next available response entry should never exceed the maximum 3398 * entries. If it does, treat it as an adapter hardware error. 3399 */ 3400 portRspMax = pring->sli.sli3.numRiocb; 3401 portRspPut = le32_to_cpu(pgp->rspPutInx); 3402 if (unlikely(portRspPut >= portRspMax)) { 3403 lpfc_sli_rsp_pointers_error(phba, pring); 3404 spin_unlock_irqrestore(&phba->hbalock, iflag); 3405 return 1; 3406 } 3407 if (phba->fcp_ring_in_use) { 3408 spin_unlock_irqrestore(&phba->hbalock, iflag); 3409 return 1; 3410 } else 3411 phba->fcp_ring_in_use = 1; 3412 3413 rmb(); 3414 while (pring->sli.sli3.rspidx != portRspPut) { 3415 /* 3416 * Fetch an entry off the ring and copy it into a local data 3417 * structure. The copy involves a byte-swap since the 3418 * network byte order and pci byte orders are different. 3419 */ 3420 entry = lpfc_resp_iocb(phba, pring); 3421 phba->last_completion_time = jiffies; 3422 3423 if (++pring->sli.sli3.rspidx >= portRspMax) 3424 pring->sli.sli3.rspidx = 0; 3425 3426 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3427 (uint32_t *) &rspiocbq.iocb, 3428 phba->iocb_rsp_size); 3429 INIT_LIST_HEAD(&(rspiocbq.list)); 3430 irsp = &rspiocbq.iocb; 3431 3432 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3433 pring->stats.iocb_rsp++; 3434 rsp_cmpl++; 3435 3436 if (unlikely(irsp->ulpStatus)) { 3437 /* 3438 * If resource errors reported from HBA, reduce 3439 * queuedepths of the SCSI device. 3440 */ 3441 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3442 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3443 IOERR_NO_RESOURCES)) { 3444 spin_unlock_irqrestore(&phba->hbalock, iflag); 3445 phba->lpfc_rampdown_queue_depth(phba); 3446 spin_lock_irqsave(&phba->hbalock, iflag); 3447 } 3448 3449 /* Rsp ring <ringno> error: IOCB */ 3450 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3451 "0336 Rsp Ring %d error: IOCB Data: " 3452 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3453 pring->ringno, 3454 irsp->un.ulpWord[0], 3455 irsp->un.ulpWord[1], 3456 irsp->un.ulpWord[2], 3457 irsp->un.ulpWord[3], 3458 irsp->un.ulpWord[4], 3459 irsp->un.ulpWord[5], 3460 *(uint32_t *)&irsp->un1, 3461 *((uint32_t *)&irsp->un1 + 1)); 3462 } 3463 3464 switch (type) { 3465 case LPFC_ABORT_IOCB: 3466 case LPFC_SOL_IOCB: 3467 /* 3468 * Idle exchange closed via ABTS from port. No iocb 3469 * resources need to be recovered. 3470 */ 3471 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3472 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3473 "0333 IOCB cmd 0x%x" 3474 " processed. Skipping" 3475 " completion\n", 3476 irsp->ulpCommand); 3477 break; 3478 } 3479 3480 spin_unlock_irqrestore(&phba->hbalock, iflag); 3481 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3482 &rspiocbq); 3483 spin_lock_irqsave(&phba->hbalock, iflag); 3484 if (unlikely(!cmdiocbq)) 3485 break; 3486 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3487 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3488 if (cmdiocbq->iocb_cmpl) { 3489 spin_unlock_irqrestore(&phba->hbalock, iflag); 3490 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3491 &rspiocbq); 3492 spin_lock_irqsave(&phba->hbalock, iflag); 3493 } 3494 break; 3495 case LPFC_UNSOL_IOCB: 3496 spin_unlock_irqrestore(&phba->hbalock, iflag); 3497 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3498 spin_lock_irqsave(&phba->hbalock, iflag); 3499 break; 3500 default: 3501 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3502 char adaptermsg[LPFC_MAX_ADPTMSG]; 3503 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3504 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3505 MAX_MSG_DATA); 3506 dev_warn(&((phba->pcidev)->dev), 3507 "lpfc%d: %s\n", 3508 phba->brd_no, adaptermsg); 3509 } else { 3510 /* Unknown IOCB command */ 3511 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3512 "0334 Unknown IOCB command " 3513 "Data: x%x, x%x x%x x%x x%x\n", 3514 type, irsp->ulpCommand, 3515 irsp->ulpStatus, 3516 irsp->ulpIoTag, 3517 irsp->ulpContext); 3518 } 3519 break; 3520 } 3521 3522 /* 3523 * The response IOCB has been processed. Update the ring 3524 * pointer in SLIM. If the port response put pointer has not 3525 * been updated, sync the pgp->rspPutInx and fetch the new port 3526 * response put pointer. 3527 */ 3528 writel(pring->sli.sli3.rspidx, 3529 &phba->host_gp[pring->ringno].rspGetInx); 3530 3531 if (pring->sli.sli3.rspidx == portRspPut) 3532 portRspPut = le32_to_cpu(pgp->rspPutInx); 3533 } 3534 3535 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3536 pring->stats.iocb_rsp_full++; 3537 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3538 writel(status, phba->CAregaddr); 3539 readl(phba->CAregaddr); 3540 } 3541 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3542 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3543 pring->stats.iocb_cmd_empty++; 3544 3545 /* Force update of the local copy of cmdGetInx */ 3546 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3547 lpfc_sli_resume_iocb(phba, pring); 3548 3549 if ((pring->lpfc_sli_cmd_available)) 3550 (pring->lpfc_sli_cmd_available) (phba, pring); 3551 3552 } 3553 3554 phba->fcp_ring_in_use = 0; 3555 spin_unlock_irqrestore(&phba->hbalock, iflag); 3556 return rc; 3557 } 3558 3559 /** 3560 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3561 * @phba: Pointer to HBA context object. 3562 * @pring: Pointer to driver SLI ring object. 3563 * @rspiocbp: Pointer to driver response IOCB object. 3564 * 3565 * This function is called from the worker thread when there is a slow-path 3566 * response IOCB to process. This function chains all the response iocbs until 3567 * seeing the iocb with the LE bit set. The function will call 3568 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3569 * completion of a command iocb. The function will call the 3570 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3571 * The function frees the resources or calls the completion handler if this 3572 * iocb is an abort completion. The function returns NULL when the response 3573 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3574 * this function shall chain the iocb on to the iocb_continueq and return the 3575 * response iocb passed in. 3576 **/ 3577 static struct lpfc_iocbq * 3578 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3579 struct lpfc_iocbq *rspiocbp) 3580 { 3581 struct lpfc_iocbq *saveq; 3582 struct lpfc_iocbq *cmdiocbp; 3583 struct lpfc_iocbq *next_iocb; 3584 IOCB_t *irsp = NULL; 3585 uint32_t free_saveq; 3586 uint8_t iocb_cmd_type; 3587 lpfc_iocb_type type; 3588 unsigned long iflag; 3589 int rc; 3590 3591 spin_lock_irqsave(&phba->hbalock, iflag); 3592 /* First add the response iocb to the countinueq list */ 3593 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3594 pring->iocb_continueq_cnt++; 3595 3596 /* Now, determine whether the list is completed for processing */ 3597 irsp = &rspiocbp->iocb; 3598 if (irsp->ulpLe) { 3599 /* 3600 * By default, the driver expects to free all resources 3601 * associated with this iocb completion. 3602 */ 3603 free_saveq = 1; 3604 saveq = list_get_first(&pring->iocb_continueq, 3605 struct lpfc_iocbq, list); 3606 irsp = &(saveq->iocb); 3607 list_del_init(&pring->iocb_continueq); 3608 pring->iocb_continueq_cnt = 0; 3609 3610 pring->stats.iocb_rsp++; 3611 3612 /* 3613 * If resource errors reported from HBA, reduce 3614 * queuedepths of the SCSI device. 3615 */ 3616 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3617 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3618 IOERR_NO_RESOURCES)) { 3619 spin_unlock_irqrestore(&phba->hbalock, iflag); 3620 phba->lpfc_rampdown_queue_depth(phba); 3621 spin_lock_irqsave(&phba->hbalock, iflag); 3622 } 3623 3624 if (irsp->ulpStatus) { 3625 /* Rsp ring <ringno> error: IOCB */ 3626 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3627 "0328 Rsp Ring %d error: " 3628 "IOCB Data: " 3629 "x%x x%x x%x x%x " 3630 "x%x x%x x%x x%x " 3631 "x%x x%x x%x x%x " 3632 "x%x x%x x%x x%x\n", 3633 pring->ringno, 3634 irsp->un.ulpWord[0], 3635 irsp->un.ulpWord[1], 3636 irsp->un.ulpWord[2], 3637 irsp->un.ulpWord[3], 3638 irsp->un.ulpWord[4], 3639 irsp->un.ulpWord[5], 3640 *(((uint32_t *) irsp) + 6), 3641 *(((uint32_t *) irsp) + 7), 3642 *(((uint32_t *) irsp) + 8), 3643 *(((uint32_t *) irsp) + 9), 3644 *(((uint32_t *) irsp) + 10), 3645 *(((uint32_t *) irsp) + 11), 3646 *(((uint32_t *) irsp) + 12), 3647 *(((uint32_t *) irsp) + 13), 3648 *(((uint32_t *) irsp) + 14), 3649 *(((uint32_t *) irsp) + 15)); 3650 } 3651 3652 /* 3653 * Fetch the IOCB command type and call the correct completion 3654 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3655 * get freed back to the lpfc_iocb_list by the discovery 3656 * kernel thread. 3657 */ 3658 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3659 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3660 switch (type) { 3661 case LPFC_SOL_IOCB: 3662 spin_unlock_irqrestore(&phba->hbalock, iflag); 3663 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3664 spin_lock_irqsave(&phba->hbalock, iflag); 3665 break; 3666 3667 case LPFC_UNSOL_IOCB: 3668 spin_unlock_irqrestore(&phba->hbalock, iflag); 3669 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3670 spin_lock_irqsave(&phba->hbalock, iflag); 3671 if (!rc) 3672 free_saveq = 0; 3673 break; 3674 3675 case LPFC_ABORT_IOCB: 3676 cmdiocbp = NULL; 3677 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) { 3678 spin_unlock_irqrestore(&phba->hbalock, iflag); 3679 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3680 saveq); 3681 spin_lock_irqsave(&phba->hbalock, iflag); 3682 } 3683 if (cmdiocbp) { 3684 /* Call the specified completion routine */ 3685 if (cmdiocbp->iocb_cmpl) { 3686 spin_unlock_irqrestore(&phba->hbalock, 3687 iflag); 3688 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3689 saveq); 3690 spin_lock_irqsave(&phba->hbalock, 3691 iflag); 3692 } else 3693 __lpfc_sli_release_iocbq(phba, 3694 cmdiocbp); 3695 } 3696 break; 3697 3698 case LPFC_UNKNOWN_IOCB: 3699 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3700 char adaptermsg[LPFC_MAX_ADPTMSG]; 3701 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3702 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3703 MAX_MSG_DATA); 3704 dev_warn(&((phba->pcidev)->dev), 3705 "lpfc%d: %s\n", 3706 phba->brd_no, adaptermsg); 3707 } else { 3708 /* Unknown IOCB command */ 3709 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3710 "0335 Unknown IOCB " 3711 "command Data: x%x " 3712 "x%x x%x x%x\n", 3713 irsp->ulpCommand, 3714 irsp->ulpStatus, 3715 irsp->ulpIoTag, 3716 irsp->ulpContext); 3717 } 3718 break; 3719 } 3720 3721 if (free_saveq) { 3722 list_for_each_entry_safe(rspiocbp, next_iocb, 3723 &saveq->list, list) { 3724 list_del_init(&rspiocbp->list); 3725 __lpfc_sli_release_iocbq(phba, rspiocbp); 3726 } 3727 __lpfc_sli_release_iocbq(phba, saveq); 3728 } 3729 rspiocbp = NULL; 3730 } 3731 spin_unlock_irqrestore(&phba->hbalock, iflag); 3732 return rspiocbp; 3733 } 3734 3735 /** 3736 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3737 * @phba: Pointer to HBA context object. 3738 * @pring: Pointer to driver SLI ring object. 3739 * @mask: Host attention register mask for this ring. 3740 * 3741 * This routine wraps the actual slow_ring event process routine from the 3742 * API jump table function pointer from the lpfc_hba struct. 3743 **/ 3744 void 3745 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 3746 struct lpfc_sli_ring *pring, uint32_t mask) 3747 { 3748 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 3749 } 3750 3751 /** 3752 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 3753 * @phba: Pointer to HBA context object. 3754 * @pring: Pointer to driver SLI ring object. 3755 * @mask: Host attention register mask for this ring. 3756 * 3757 * This function is called from the worker thread when there is a ring event 3758 * for non-fcp rings. The caller does not hold any lock. The function will 3759 * remove each response iocb in the response ring and calls the handle 3760 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3761 **/ 3762 static void 3763 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 3764 struct lpfc_sli_ring *pring, uint32_t mask) 3765 { 3766 struct lpfc_pgp *pgp; 3767 IOCB_t *entry; 3768 IOCB_t *irsp = NULL; 3769 struct lpfc_iocbq *rspiocbp = NULL; 3770 uint32_t portRspPut, portRspMax; 3771 unsigned long iflag; 3772 uint32_t status; 3773 3774 pgp = &phba->port_gp[pring->ringno]; 3775 spin_lock_irqsave(&phba->hbalock, iflag); 3776 pring->stats.iocb_event++; 3777 3778 /* 3779 * The next available response entry should never exceed the maximum 3780 * entries. If it does, treat it as an adapter hardware error. 3781 */ 3782 portRspMax = pring->sli.sli3.numRiocb; 3783 portRspPut = le32_to_cpu(pgp->rspPutInx); 3784 if (portRspPut >= portRspMax) { 3785 /* 3786 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3787 * rsp ring <portRspMax> 3788 */ 3789 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3790 "0303 Ring %d handler: portRspPut %d " 3791 "is bigger than rsp ring %d\n", 3792 pring->ringno, portRspPut, portRspMax); 3793 3794 phba->link_state = LPFC_HBA_ERROR; 3795 spin_unlock_irqrestore(&phba->hbalock, iflag); 3796 3797 phba->work_hs = HS_FFER3; 3798 lpfc_handle_eratt(phba); 3799 3800 return; 3801 } 3802 3803 rmb(); 3804 while (pring->sli.sli3.rspidx != portRspPut) { 3805 /* 3806 * Build a completion list and call the appropriate handler. 3807 * The process is to get the next available response iocb, get 3808 * a free iocb from the list, copy the response data into the 3809 * free iocb, insert to the continuation list, and update the 3810 * next response index to slim. This process makes response 3811 * iocb's in the ring available to DMA as fast as possible but 3812 * pays a penalty for a copy operation. Since the iocb is 3813 * only 32 bytes, this penalty is considered small relative to 3814 * the PCI reads for register values and a slim write. When 3815 * the ulpLe field is set, the entire Command has been 3816 * received. 3817 */ 3818 entry = lpfc_resp_iocb(phba, pring); 3819 3820 phba->last_completion_time = jiffies; 3821 rspiocbp = __lpfc_sli_get_iocbq(phba); 3822 if (rspiocbp == NULL) { 3823 printk(KERN_ERR "%s: out of buffers! Failing " 3824 "completion.\n", __func__); 3825 break; 3826 } 3827 3828 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 3829 phba->iocb_rsp_size); 3830 irsp = &rspiocbp->iocb; 3831 3832 if (++pring->sli.sli3.rspidx >= portRspMax) 3833 pring->sli.sli3.rspidx = 0; 3834 3835 if (pring->ringno == LPFC_ELS_RING) { 3836 lpfc_debugfs_slow_ring_trc(phba, 3837 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 3838 *(((uint32_t *) irsp) + 4), 3839 *(((uint32_t *) irsp) + 6), 3840 *(((uint32_t *) irsp) + 7)); 3841 } 3842 3843 writel(pring->sli.sli3.rspidx, 3844 &phba->host_gp[pring->ringno].rspGetInx); 3845 3846 spin_unlock_irqrestore(&phba->hbalock, iflag); 3847 /* Handle the response IOCB */ 3848 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 3849 spin_lock_irqsave(&phba->hbalock, iflag); 3850 3851 /* 3852 * If the port response put pointer has not been updated, sync 3853 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 3854 * response put pointer. 3855 */ 3856 if (pring->sli.sli3.rspidx == portRspPut) { 3857 portRspPut = le32_to_cpu(pgp->rspPutInx); 3858 } 3859 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 3860 3861 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 3862 /* At least one response entry has been freed */ 3863 pring->stats.iocb_rsp_full++; 3864 /* SET RxRE_RSP in Chip Att register */ 3865 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3866 writel(status, phba->CAregaddr); 3867 readl(phba->CAregaddr); /* flush */ 3868 } 3869 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3870 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3871 pring->stats.iocb_cmd_empty++; 3872 3873 /* Force update of the local copy of cmdGetInx */ 3874 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3875 lpfc_sli_resume_iocb(phba, pring); 3876 3877 if ((pring->lpfc_sli_cmd_available)) 3878 (pring->lpfc_sli_cmd_available) (phba, pring); 3879 3880 } 3881 3882 spin_unlock_irqrestore(&phba->hbalock, iflag); 3883 return; 3884 } 3885 3886 /** 3887 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 3888 * @phba: Pointer to HBA context object. 3889 * @pring: Pointer to driver SLI ring object. 3890 * @mask: Host attention register mask for this ring. 3891 * 3892 * This function is called from the worker thread when there is a pending 3893 * ELS response iocb on the driver internal slow-path response iocb worker 3894 * queue. The caller does not hold any lock. The function will remove each 3895 * response iocb from the response worker queue and calls the handle 3896 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3897 **/ 3898 static void 3899 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 3900 struct lpfc_sli_ring *pring, uint32_t mask) 3901 { 3902 struct lpfc_iocbq *irspiocbq; 3903 struct hbq_dmabuf *dmabuf; 3904 struct lpfc_cq_event *cq_event; 3905 unsigned long iflag; 3906 int count = 0; 3907 3908 spin_lock_irqsave(&phba->hbalock, iflag); 3909 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 3910 spin_unlock_irqrestore(&phba->hbalock, iflag); 3911 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 3912 /* Get the response iocb from the head of work queue */ 3913 spin_lock_irqsave(&phba->hbalock, iflag); 3914 list_remove_head(&phba->sli4_hba.sp_queue_event, 3915 cq_event, struct lpfc_cq_event, list); 3916 spin_unlock_irqrestore(&phba->hbalock, iflag); 3917 3918 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 3919 case CQE_CODE_COMPL_WQE: 3920 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 3921 cq_event); 3922 /* Translate ELS WCQE to response IOCBQ */ 3923 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 3924 irspiocbq); 3925 if (irspiocbq) 3926 lpfc_sli_sp_handle_rspiocb(phba, pring, 3927 irspiocbq); 3928 count++; 3929 break; 3930 case CQE_CODE_RECEIVE: 3931 case CQE_CODE_RECEIVE_V1: 3932 dmabuf = container_of(cq_event, struct hbq_dmabuf, 3933 cq_event); 3934 lpfc_sli4_handle_received_buffer(phba, dmabuf); 3935 count++; 3936 break; 3937 default: 3938 break; 3939 } 3940 3941 /* Limit the number of events to 64 to avoid soft lockups */ 3942 if (count == 64) 3943 break; 3944 } 3945 } 3946 3947 /** 3948 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 3949 * @phba: Pointer to HBA context object. 3950 * @pring: Pointer to driver SLI ring object. 3951 * 3952 * This function aborts all iocbs in the given ring and frees all the iocb 3953 * objects in txq. This function issues an abort iocb for all the iocb commands 3954 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3955 * the return of this function. The caller is not required to hold any locks. 3956 **/ 3957 void 3958 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3959 { 3960 LIST_HEAD(completions); 3961 struct lpfc_iocbq *iocb, *next_iocb; 3962 3963 if (pring->ringno == LPFC_ELS_RING) { 3964 lpfc_fabric_abort_hba(phba); 3965 } 3966 3967 /* Error everything on txq and txcmplq 3968 * First do the txq. 3969 */ 3970 if (phba->sli_rev >= LPFC_SLI_REV4) { 3971 spin_lock_irq(&pring->ring_lock); 3972 list_splice_init(&pring->txq, &completions); 3973 pring->txq_cnt = 0; 3974 spin_unlock_irq(&pring->ring_lock); 3975 3976 spin_lock_irq(&phba->hbalock); 3977 /* Next issue ABTS for everything on the txcmplq */ 3978 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3979 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3980 spin_unlock_irq(&phba->hbalock); 3981 } else { 3982 spin_lock_irq(&phba->hbalock); 3983 list_splice_init(&pring->txq, &completions); 3984 pring->txq_cnt = 0; 3985 3986 /* Next issue ABTS for everything on the txcmplq */ 3987 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3988 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3989 spin_unlock_irq(&phba->hbalock); 3990 } 3991 3992 /* Cancel all the IOCBs from the completions list */ 3993 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 3994 IOERR_SLI_ABORTED); 3995 } 3996 3997 /** 3998 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 3999 * @phba: Pointer to HBA context object. 4000 * @pring: Pointer to driver SLI ring object. 4001 * 4002 * This function aborts all iocbs in FCP rings and frees all the iocb 4003 * objects in txq. This function issues an abort iocb for all the iocb commands 4004 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4005 * the return of this function. The caller is not required to hold any locks. 4006 **/ 4007 void 4008 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4009 { 4010 struct lpfc_sli *psli = &phba->sli; 4011 struct lpfc_sli_ring *pring; 4012 uint32_t i; 4013 4014 /* Look on all the FCP Rings for the iotag */ 4015 if (phba->sli_rev >= LPFC_SLI_REV4) { 4016 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4017 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4018 lpfc_sli_abort_iocb_ring(phba, pring); 4019 } 4020 } else { 4021 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4022 lpfc_sli_abort_iocb_ring(phba, pring); 4023 } 4024 } 4025 4026 /** 4027 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4028 * @phba: Pointer to HBA context object. 4029 * 4030 * This function flushes all iocbs in the IO ring and frees all the iocb 4031 * objects in txq and txcmplq. This function will not issue abort iocbs 4032 * for all the iocb commands in txcmplq, they will just be returned with 4033 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4034 * slot has been permanently disabled. 4035 **/ 4036 void 4037 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4038 { 4039 LIST_HEAD(txq); 4040 LIST_HEAD(txcmplq); 4041 struct lpfc_sli *psli = &phba->sli; 4042 struct lpfc_sli_ring *pring; 4043 uint32_t i; 4044 struct lpfc_iocbq *piocb, *next_iocb; 4045 4046 spin_lock_irq(&phba->hbalock); 4047 /* Indicate the I/O queues are flushed */ 4048 phba->hba_flag |= HBA_IOQ_FLUSH; 4049 spin_unlock_irq(&phba->hbalock); 4050 4051 /* Look on all the FCP Rings for the iotag */ 4052 if (phba->sli_rev >= LPFC_SLI_REV4) { 4053 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4054 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4055 4056 spin_lock_irq(&pring->ring_lock); 4057 /* Retrieve everything on txq */ 4058 list_splice_init(&pring->txq, &txq); 4059 list_for_each_entry_safe(piocb, next_iocb, 4060 &pring->txcmplq, list) 4061 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4062 /* Retrieve everything on the txcmplq */ 4063 list_splice_init(&pring->txcmplq, &txcmplq); 4064 pring->txq_cnt = 0; 4065 pring->txcmplq_cnt = 0; 4066 spin_unlock_irq(&pring->ring_lock); 4067 4068 /* Flush the txq */ 4069 lpfc_sli_cancel_iocbs(phba, &txq, 4070 IOSTAT_LOCAL_REJECT, 4071 IOERR_SLI_DOWN); 4072 /* Flush the txcmpq */ 4073 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4074 IOSTAT_LOCAL_REJECT, 4075 IOERR_SLI_DOWN); 4076 } 4077 } else { 4078 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4079 4080 spin_lock_irq(&phba->hbalock); 4081 /* Retrieve everything on txq */ 4082 list_splice_init(&pring->txq, &txq); 4083 list_for_each_entry_safe(piocb, next_iocb, 4084 &pring->txcmplq, list) 4085 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4086 /* Retrieve everything on the txcmplq */ 4087 list_splice_init(&pring->txcmplq, &txcmplq); 4088 pring->txq_cnt = 0; 4089 pring->txcmplq_cnt = 0; 4090 spin_unlock_irq(&phba->hbalock); 4091 4092 /* Flush the txq */ 4093 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4094 IOERR_SLI_DOWN); 4095 /* Flush the txcmpq */ 4096 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4097 IOERR_SLI_DOWN); 4098 } 4099 } 4100 4101 /** 4102 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4103 * @phba: Pointer to HBA context object. 4104 * @mask: Bit mask to be checked. 4105 * 4106 * This function reads the host status register and compares 4107 * with the provided bit mask to check if HBA completed 4108 * the restart. This function will wait in a loop for the 4109 * HBA to complete restart. If the HBA does not restart within 4110 * 15 iterations, the function will reset the HBA again. The 4111 * function returns 1 when HBA fail to restart otherwise returns 4112 * zero. 4113 **/ 4114 static int 4115 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4116 { 4117 uint32_t status; 4118 int i = 0; 4119 int retval = 0; 4120 4121 /* Read the HBA Host Status Register */ 4122 if (lpfc_readl(phba->HSregaddr, &status)) 4123 return 1; 4124 4125 /* 4126 * Check status register every 100ms for 5 retries, then every 4127 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4128 * every 2.5 sec for 4. 4129 * Break our of the loop if errors occurred during init. 4130 */ 4131 while (((status & mask) != mask) && 4132 !(status & HS_FFERM) && 4133 i++ < 20) { 4134 4135 if (i <= 5) 4136 msleep(10); 4137 else if (i <= 10) 4138 msleep(500); 4139 else 4140 msleep(2500); 4141 4142 if (i == 15) { 4143 /* Do post */ 4144 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4145 lpfc_sli_brdrestart(phba); 4146 } 4147 /* Read the HBA Host Status Register */ 4148 if (lpfc_readl(phba->HSregaddr, &status)) { 4149 retval = 1; 4150 break; 4151 } 4152 } 4153 4154 /* Check to see if any errors occurred during init */ 4155 if ((status & HS_FFERM) || (i >= 20)) { 4156 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4157 "2751 Adapter failed to restart, " 4158 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4159 status, 4160 readl(phba->MBslimaddr + 0xa8), 4161 readl(phba->MBslimaddr + 0xac)); 4162 phba->link_state = LPFC_HBA_ERROR; 4163 retval = 1; 4164 } 4165 4166 return retval; 4167 } 4168 4169 /** 4170 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4171 * @phba: Pointer to HBA context object. 4172 * @mask: Bit mask to be checked. 4173 * 4174 * This function checks the host status register to check if HBA is 4175 * ready. This function will wait in a loop for the HBA to be ready 4176 * If the HBA is not ready , the function will will reset the HBA PCI 4177 * function again. The function returns 1 when HBA fail to be ready 4178 * otherwise returns zero. 4179 **/ 4180 static int 4181 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4182 { 4183 uint32_t status; 4184 int retval = 0; 4185 4186 /* Read the HBA Host Status Register */ 4187 status = lpfc_sli4_post_status_check(phba); 4188 4189 if (status) { 4190 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4191 lpfc_sli_brdrestart(phba); 4192 status = lpfc_sli4_post_status_check(phba); 4193 } 4194 4195 /* Check to see if any errors occurred during init */ 4196 if (status) { 4197 phba->link_state = LPFC_HBA_ERROR; 4198 retval = 1; 4199 } else 4200 phba->sli4_hba.intr_enable = 0; 4201 4202 return retval; 4203 } 4204 4205 /** 4206 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4207 * @phba: Pointer to HBA context object. 4208 * @mask: Bit mask to be checked. 4209 * 4210 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4211 * from the API jump table function pointer from the lpfc_hba struct. 4212 **/ 4213 int 4214 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4215 { 4216 return phba->lpfc_sli_brdready(phba, mask); 4217 } 4218 4219 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4220 4221 /** 4222 * lpfc_reset_barrier - Make HBA ready for HBA reset 4223 * @phba: Pointer to HBA context object. 4224 * 4225 * This function is called before resetting an HBA. This function is called 4226 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4227 **/ 4228 void lpfc_reset_barrier(struct lpfc_hba *phba) 4229 { 4230 uint32_t __iomem *resp_buf; 4231 uint32_t __iomem *mbox_buf; 4232 volatile uint32_t mbox; 4233 uint32_t hc_copy, ha_copy, resp_data; 4234 int i; 4235 uint8_t hdrtype; 4236 4237 lockdep_assert_held(&phba->hbalock); 4238 4239 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4240 if (hdrtype != 0x80 || 4241 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4242 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4243 return; 4244 4245 /* 4246 * Tell the other part of the chip to suspend temporarily all 4247 * its DMA activity. 4248 */ 4249 resp_buf = phba->MBslimaddr; 4250 4251 /* Disable the error attention */ 4252 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4253 return; 4254 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4255 readl(phba->HCregaddr); /* flush */ 4256 phba->link_flag |= LS_IGNORE_ERATT; 4257 4258 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4259 return; 4260 if (ha_copy & HA_ERATT) { 4261 /* Clear Chip error bit */ 4262 writel(HA_ERATT, phba->HAregaddr); 4263 phba->pport->stopped = 1; 4264 } 4265 4266 mbox = 0; 4267 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 4268 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 4269 4270 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4271 mbox_buf = phba->MBslimaddr; 4272 writel(mbox, mbox_buf); 4273 4274 for (i = 0; i < 50; i++) { 4275 if (lpfc_readl((resp_buf + 1), &resp_data)) 4276 return; 4277 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4278 mdelay(1); 4279 else 4280 break; 4281 } 4282 resp_data = 0; 4283 if (lpfc_readl((resp_buf + 1), &resp_data)) 4284 return; 4285 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4286 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4287 phba->pport->stopped) 4288 goto restore_hc; 4289 else 4290 goto clear_errat; 4291 } 4292 4293 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 4294 resp_data = 0; 4295 for (i = 0; i < 500; i++) { 4296 if (lpfc_readl(resp_buf, &resp_data)) 4297 return; 4298 if (resp_data != mbox) 4299 mdelay(1); 4300 else 4301 break; 4302 } 4303 4304 clear_errat: 4305 4306 while (++i < 500) { 4307 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4308 return; 4309 if (!(ha_copy & HA_ERATT)) 4310 mdelay(1); 4311 else 4312 break; 4313 } 4314 4315 if (readl(phba->HAregaddr) & HA_ERATT) { 4316 writel(HA_ERATT, phba->HAregaddr); 4317 phba->pport->stopped = 1; 4318 } 4319 4320 restore_hc: 4321 phba->link_flag &= ~LS_IGNORE_ERATT; 4322 writel(hc_copy, phba->HCregaddr); 4323 readl(phba->HCregaddr); /* flush */ 4324 } 4325 4326 /** 4327 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4328 * @phba: Pointer to HBA context object. 4329 * 4330 * This function issues a kill_board mailbox command and waits for 4331 * the error attention interrupt. This function is called for stopping 4332 * the firmware processing. The caller is not required to hold any 4333 * locks. This function calls lpfc_hba_down_post function to free 4334 * any pending commands after the kill. The function will return 1 when it 4335 * fails to kill the board else will return 0. 4336 **/ 4337 int 4338 lpfc_sli_brdkill(struct lpfc_hba *phba) 4339 { 4340 struct lpfc_sli *psli; 4341 LPFC_MBOXQ_t *pmb; 4342 uint32_t status; 4343 uint32_t ha_copy; 4344 int retval; 4345 int i = 0; 4346 4347 psli = &phba->sli; 4348 4349 /* Kill HBA */ 4350 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4351 "0329 Kill HBA Data: x%x x%x\n", 4352 phba->pport->port_state, psli->sli_flag); 4353 4354 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4355 if (!pmb) 4356 return 1; 4357 4358 /* Disable the error attention */ 4359 spin_lock_irq(&phba->hbalock); 4360 if (lpfc_readl(phba->HCregaddr, &status)) { 4361 spin_unlock_irq(&phba->hbalock); 4362 mempool_free(pmb, phba->mbox_mem_pool); 4363 return 1; 4364 } 4365 status &= ~HC_ERINT_ENA; 4366 writel(status, phba->HCregaddr); 4367 readl(phba->HCregaddr); /* flush */ 4368 phba->link_flag |= LS_IGNORE_ERATT; 4369 spin_unlock_irq(&phba->hbalock); 4370 4371 lpfc_kill_board(phba, pmb); 4372 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4373 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4374 4375 if (retval != MBX_SUCCESS) { 4376 if (retval != MBX_BUSY) 4377 mempool_free(pmb, phba->mbox_mem_pool); 4378 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4379 "2752 KILL_BOARD command failed retval %d\n", 4380 retval); 4381 spin_lock_irq(&phba->hbalock); 4382 phba->link_flag &= ~LS_IGNORE_ERATT; 4383 spin_unlock_irq(&phba->hbalock); 4384 return 1; 4385 } 4386 4387 spin_lock_irq(&phba->hbalock); 4388 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4389 spin_unlock_irq(&phba->hbalock); 4390 4391 mempool_free(pmb, phba->mbox_mem_pool); 4392 4393 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4394 * attention every 100ms for 3 seconds. If we don't get ERATT after 4395 * 3 seconds we still set HBA_ERROR state because the status of the 4396 * board is now undefined. 4397 */ 4398 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4399 return 1; 4400 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4401 mdelay(100); 4402 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4403 return 1; 4404 } 4405 4406 del_timer_sync(&psli->mbox_tmo); 4407 if (ha_copy & HA_ERATT) { 4408 writel(HA_ERATT, phba->HAregaddr); 4409 phba->pport->stopped = 1; 4410 } 4411 spin_lock_irq(&phba->hbalock); 4412 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4413 psli->mbox_active = NULL; 4414 phba->link_flag &= ~LS_IGNORE_ERATT; 4415 spin_unlock_irq(&phba->hbalock); 4416 4417 lpfc_hba_down_post(phba); 4418 phba->link_state = LPFC_HBA_ERROR; 4419 4420 return ha_copy & HA_ERATT ? 0 : 1; 4421 } 4422 4423 /** 4424 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4425 * @phba: Pointer to HBA context object. 4426 * 4427 * This function resets the HBA by writing HC_INITFF to the control 4428 * register. After the HBA resets, this function resets all the iocb ring 4429 * indices. This function disables PCI layer parity checking during 4430 * the reset. 4431 * This function returns 0 always. 4432 * The caller is not required to hold any locks. 4433 **/ 4434 int 4435 lpfc_sli_brdreset(struct lpfc_hba *phba) 4436 { 4437 struct lpfc_sli *psli; 4438 struct lpfc_sli_ring *pring; 4439 uint16_t cfg_value; 4440 int i; 4441 4442 psli = &phba->sli; 4443 4444 /* Reset HBA */ 4445 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4446 "0325 Reset HBA Data: x%x x%x\n", 4447 (phba->pport) ? phba->pport->port_state : 0, 4448 psli->sli_flag); 4449 4450 /* perform board reset */ 4451 phba->fc_eventTag = 0; 4452 phba->link_events = 0; 4453 if (phba->pport) { 4454 phba->pport->fc_myDID = 0; 4455 phba->pport->fc_prevDID = 0; 4456 } 4457 4458 /* Turn off parity checking and serr during the physical reset */ 4459 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 4460 return -EIO; 4461 4462 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4463 (cfg_value & 4464 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4465 4466 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4467 4468 /* Now toggle INITFF bit in the Host Control Register */ 4469 writel(HC_INITFF, phba->HCregaddr); 4470 mdelay(1); 4471 readl(phba->HCregaddr); /* flush */ 4472 writel(0, phba->HCregaddr); 4473 readl(phba->HCregaddr); /* flush */ 4474 4475 /* Restore PCI cmd register */ 4476 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4477 4478 /* Initialize relevant SLI info */ 4479 for (i = 0; i < psli->num_rings; i++) { 4480 pring = &psli->sli3_ring[i]; 4481 pring->flag = 0; 4482 pring->sli.sli3.rspidx = 0; 4483 pring->sli.sli3.next_cmdidx = 0; 4484 pring->sli.sli3.local_getidx = 0; 4485 pring->sli.sli3.cmdidx = 0; 4486 pring->missbufcnt = 0; 4487 } 4488 4489 phba->link_state = LPFC_WARM_START; 4490 return 0; 4491 } 4492 4493 /** 4494 * lpfc_sli4_brdreset - Reset a sli-4 HBA 4495 * @phba: Pointer to HBA context object. 4496 * 4497 * This function resets a SLI4 HBA. This function disables PCI layer parity 4498 * checking during resets the device. The caller is not required to hold 4499 * any locks. 4500 * 4501 * This function returns 0 on success else returns negative error code. 4502 **/ 4503 int 4504 lpfc_sli4_brdreset(struct lpfc_hba *phba) 4505 { 4506 struct lpfc_sli *psli = &phba->sli; 4507 uint16_t cfg_value; 4508 int rc = 0; 4509 4510 /* Reset HBA */ 4511 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4512 "0295 Reset HBA Data: x%x x%x x%x\n", 4513 phba->pport->port_state, psli->sli_flag, 4514 phba->hba_flag); 4515 4516 /* perform board reset */ 4517 phba->fc_eventTag = 0; 4518 phba->link_events = 0; 4519 phba->pport->fc_myDID = 0; 4520 phba->pport->fc_prevDID = 0; 4521 4522 spin_lock_irq(&phba->hbalock); 4523 psli->sli_flag &= ~(LPFC_PROCESS_LA); 4524 phba->fcf.fcf_flag = 0; 4525 spin_unlock_irq(&phba->hbalock); 4526 4527 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 4528 if (phba->hba_flag & HBA_FW_DUMP_OP) { 4529 phba->hba_flag &= ~HBA_FW_DUMP_OP; 4530 return rc; 4531 } 4532 4533 /* Now physically reset the device */ 4534 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4535 "0389 Performing PCI function reset!\n"); 4536 4537 /* Turn off parity checking and serr during the physical reset */ 4538 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 4539 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4540 "3205 PCI read Config failed\n"); 4541 return -EIO; 4542 } 4543 4544 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4545 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4546 4547 /* Perform FCoE PCI function reset before freeing queue memory */ 4548 rc = lpfc_pci_function_reset(phba); 4549 4550 /* Restore PCI cmd register */ 4551 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4552 4553 return rc; 4554 } 4555 4556 /** 4557 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4558 * @phba: Pointer to HBA context object. 4559 * 4560 * This function is called in the SLI initialization code path to 4561 * restart the HBA. The caller is not required to hold any lock. 4562 * This function writes MBX_RESTART mailbox command to the SLIM and 4563 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4564 * function to free any pending commands. The function enables 4565 * POST only during the first initialization. The function returns zero. 4566 * The function does not guarantee completion of MBX_RESTART mailbox 4567 * command before the return of this function. 4568 **/ 4569 static int 4570 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4571 { 4572 MAILBOX_t *mb; 4573 struct lpfc_sli *psli; 4574 volatile uint32_t word0; 4575 void __iomem *to_slim; 4576 uint32_t hba_aer_enabled; 4577 4578 spin_lock_irq(&phba->hbalock); 4579 4580 /* Take PCIe device Advanced Error Reporting (AER) state */ 4581 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4582 4583 psli = &phba->sli; 4584 4585 /* Restart HBA */ 4586 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4587 "0337 Restart HBA Data: x%x x%x\n", 4588 (phba->pport) ? phba->pport->port_state : 0, 4589 psli->sli_flag); 4590 4591 word0 = 0; 4592 mb = (MAILBOX_t *) &word0; 4593 mb->mbxCommand = MBX_RESTART; 4594 mb->mbxHc = 1; 4595 4596 lpfc_reset_barrier(phba); 4597 4598 to_slim = phba->MBslimaddr; 4599 writel(*(uint32_t *) mb, to_slim); 4600 readl(to_slim); /* flush */ 4601 4602 /* Only skip post after fc_ffinit is completed */ 4603 if (phba->pport && phba->pport->port_state) 4604 word0 = 1; /* This is really setting up word1 */ 4605 else 4606 word0 = 0; /* This is really setting up word1 */ 4607 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4608 writel(*(uint32_t *) mb, to_slim); 4609 readl(to_slim); /* flush */ 4610 4611 lpfc_sli_brdreset(phba); 4612 if (phba->pport) 4613 phba->pport->stopped = 0; 4614 phba->link_state = LPFC_INIT_START; 4615 phba->hba_flag = 0; 4616 spin_unlock_irq(&phba->hbalock); 4617 4618 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4619 psli->stats_start = ktime_get_seconds(); 4620 4621 /* Give the INITFF and Post time to settle. */ 4622 mdelay(100); 4623 4624 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4625 if (hba_aer_enabled) 4626 pci_disable_pcie_error_reporting(phba->pcidev); 4627 4628 lpfc_hba_down_post(phba); 4629 4630 return 0; 4631 } 4632 4633 /** 4634 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4635 * @phba: Pointer to HBA context object. 4636 * 4637 * This function is called in the SLI initialization code path to restart 4638 * a SLI4 HBA. The caller is not required to hold any lock. 4639 * At the end of the function, it calls lpfc_hba_down_post function to 4640 * free any pending commands. 4641 **/ 4642 static int 4643 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4644 { 4645 struct lpfc_sli *psli = &phba->sli; 4646 uint32_t hba_aer_enabled; 4647 int rc; 4648 4649 /* Restart HBA */ 4650 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4651 "0296 Restart HBA Data: x%x x%x\n", 4652 phba->pport->port_state, psli->sli_flag); 4653 4654 /* Take PCIe device Advanced Error Reporting (AER) state */ 4655 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4656 4657 rc = lpfc_sli4_brdreset(phba); 4658 if (rc) { 4659 phba->link_state = LPFC_HBA_ERROR; 4660 goto hba_down_queue; 4661 } 4662 4663 spin_lock_irq(&phba->hbalock); 4664 phba->pport->stopped = 0; 4665 phba->link_state = LPFC_INIT_START; 4666 phba->hba_flag = 0; 4667 spin_unlock_irq(&phba->hbalock); 4668 4669 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4670 psli->stats_start = ktime_get_seconds(); 4671 4672 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4673 if (hba_aer_enabled) 4674 pci_disable_pcie_error_reporting(phba->pcidev); 4675 4676 hba_down_queue: 4677 lpfc_hba_down_post(phba); 4678 lpfc_sli4_queue_destroy(phba); 4679 4680 return rc; 4681 } 4682 4683 /** 4684 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4685 * @phba: Pointer to HBA context object. 4686 * 4687 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4688 * API jump table function pointer from the lpfc_hba struct. 4689 **/ 4690 int 4691 lpfc_sli_brdrestart(struct lpfc_hba *phba) 4692 { 4693 return phba->lpfc_sli_brdrestart(phba); 4694 } 4695 4696 /** 4697 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4698 * @phba: Pointer to HBA context object. 4699 * 4700 * This function is called after a HBA restart to wait for successful 4701 * restart of the HBA. Successful restart of the HBA is indicated by 4702 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4703 * iteration, the function will restart the HBA again. The function returns 4704 * zero if HBA successfully restarted else returns negative error code. 4705 **/ 4706 int 4707 lpfc_sli_chipset_init(struct lpfc_hba *phba) 4708 { 4709 uint32_t status, i = 0; 4710 4711 /* Read the HBA Host Status Register */ 4712 if (lpfc_readl(phba->HSregaddr, &status)) 4713 return -EIO; 4714 4715 /* Check status register to see what current state is */ 4716 i = 0; 4717 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4718 4719 /* Check every 10ms for 10 retries, then every 100ms for 90 4720 * retries, then every 1 sec for 50 retires for a total of 4721 * ~60 seconds before reset the board again and check every 4722 * 1 sec for 50 retries. The up to 60 seconds before the 4723 * board ready is required by the Falcon FIPS zeroization 4724 * complete, and any reset the board in between shall cause 4725 * restart of zeroization, further delay the board ready. 4726 */ 4727 if (i++ >= 200) { 4728 /* Adapter failed to init, timeout, status reg 4729 <status> */ 4730 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4731 "0436 Adapter failed to init, " 4732 "timeout, status reg x%x, " 4733 "FW Data: A8 x%x AC x%x\n", status, 4734 readl(phba->MBslimaddr + 0xa8), 4735 readl(phba->MBslimaddr + 0xac)); 4736 phba->link_state = LPFC_HBA_ERROR; 4737 return -ETIMEDOUT; 4738 } 4739 4740 /* Check to see if any errors occurred during init */ 4741 if (status & HS_FFERM) { 4742 /* ERROR: During chipset initialization */ 4743 /* Adapter failed to init, chipset, status reg 4744 <status> */ 4745 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4746 "0437 Adapter failed to init, " 4747 "chipset, status reg x%x, " 4748 "FW Data: A8 x%x AC x%x\n", status, 4749 readl(phba->MBslimaddr + 0xa8), 4750 readl(phba->MBslimaddr + 0xac)); 4751 phba->link_state = LPFC_HBA_ERROR; 4752 return -EIO; 4753 } 4754 4755 if (i <= 10) 4756 msleep(10); 4757 else if (i <= 100) 4758 msleep(100); 4759 else 4760 msleep(1000); 4761 4762 if (i == 150) { 4763 /* Do post */ 4764 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4765 lpfc_sli_brdrestart(phba); 4766 } 4767 /* Read the HBA Host Status Register */ 4768 if (lpfc_readl(phba->HSregaddr, &status)) 4769 return -EIO; 4770 } 4771 4772 /* Check to see if any errors occurred during init */ 4773 if (status & HS_FFERM) { 4774 /* ERROR: During chipset initialization */ 4775 /* Adapter failed to init, chipset, status reg <status> */ 4776 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4777 "0438 Adapter failed to init, chipset, " 4778 "status reg x%x, " 4779 "FW Data: A8 x%x AC x%x\n", status, 4780 readl(phba->MBslimaddr + 0xa8), 4781 readl(phba->MBslimaddr + 0xac)); 4782 phba->link_state = LPFC_HBA_ERROR; 4783 return -EIO; 4784 } 4785 4786 /* Clear all interrupt enable conditions */ 4787 writel(0, phba->HCregaddr); 4788 readl(phba->HCregaddr); /* flush */ 4789 4790 /* setup host attn register */ 4791 writel(0xffffffff, phba->HAregaddr); 4792 readl(phba->HAregaddr); /* flush */ 4793 return 0; 4794 } 4795 4796 /** 4797 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 4798 * 4799 * This function calculates and returns the number of HBQs required to be 4800 * configured. 4801 **/ 4802 int 4803 lpfc_sli_hbq_count(void) 4804 { 4805 return ARRAY_SIZE(lpfc_hbq_defs); 4806 } 4807 4808 /** 4809 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 4810 * 4811 * This function adds the number of hbq entries in every HBQ to get 4812 * the total number of hbq entries required for the HBA and returns 4813 * the total count. 4814 **/ 4815 static int 4816 lpfc_sli_hbq_entry_count(void) 4817 { 4818 int hbq_count = lpfc_sli_hbq_count(); 4819 int count = 0; 4820 int i; 4821 4822 for (i = 0; i < hbq_count; ++i) 4823 count += lpfc_hbq_defs[i]->entry_count; 4824 return count; 4825 } 4826 4827 /** 4828 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 4829 * 4830 * This function calculates amount of memory required for all hbq entries 4831 * to be configured and returns the total memory required. 4832 **/ 4833 int 4834 lpfc_sli_hbq_size(void) 4835 { 4836 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 4837 } 4838 4839 /** 4840 * lpfc_sli_hbq_setup - configure and initialize HBQs 4841 * @phba: Pointer to HBA context object. 4842 * 4843 * This function is called during the SLI initialization to configure 4844 * all the HBQs and post buffers to the HBQ. The caller is not 4845 * required to hold any locks. This function will return zero if successful 4846 * else it will return negative error code. 4847 **/ 4848 static int 4849 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 4850 { 4851 int hbq_count = lpfc_sli_hbq_count(); 4852 LPFC_MBOXQ_t *pmb; 4853 MAILBOX_t *pmbox; 4854 uint32_t hbqno; 4855 uint32_t hbq_entry_index; 4856 4857 /* Get a Mailbox buffer to setup mailbox 4858 * commands for HBA initialization 4859 */ 4860 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4861 4862 if (!pmb) 4863 return -ENOMEM; 4864 4865 pmbox = &pmb->u.mb; 4866 4867 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 4868 phba->link_state = LPFC_INIT_MBX_CMDS; 4869 phba->hbq_in_use = 1; 4870 4871 hbq_entry_index = 0; 4872 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 4873 phba->hbqs[hbqno].next_hbqPutIdx = 0; 4874 phba->hbqs[hbqno].hbqPutIdx = 0; 4875 phba->hbqs[hbqno].local_hbqGetIdx = 0; 4876 phba->hbqs[hbqno].entry_count = 4877 lpfc_hbq_defs[hbqno]->entry_count; 4878 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 4879 hbq_entry_index, pmb); 4880 hbq_entry_index += phba->hbqs[hbqno].entry_count; 4881 4882 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 4883 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 4884 mbxStatus <status>, ring <num> */ 4885 4886 lpfc_printf_log(phba, KERN_ERR, 4887 LOG_SLI | LOG_VPORT, 4888 "1805 Adapter failed to init. " 4889 "Data: x%x x%x x%x\n", 4890 pmbox->mbxCommand, 4891 pmbox->mbxStatus, hbqno); 4892 4893 phba->link_state = LPFC_HBA_ERROR; 4894 mempool_free(pmb, phba->mbox_mem_pool); 4895 return -ENXIO; 4896 } 4897 } 4898 phba->hbq_count = hbq_count; 4899 4900 mempool_free(pmb, phba->mbox_mem_pool); 4901 4902 /* Initially populate or replenish the HBQs */ 4903 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 4904 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 4905 return 0; 4906 } 4907 4908 /** 4909 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 4910 * @phba: Pointer to HBA context object. 4911 * 4912 * This function is called during the SLI initialization to configure 4913 * all the HBQs and post buffers to the HBQ. The caller is not 4914 * required to hold any locks. This function will return zero if successful 4915 * else it will return negative error code. 4916 **/ 4917 static int 4918 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 4919 { 4920 phba->hbq_in_use = 1; 4921 phba->hbqs[LPFC_ELS_HBQ].entry_count = 4922 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 4923 phba->hbq_count = 1; 4924 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 4925 /* Initially populate or replenish the HBQs */ 4926 return 0; 4927 } 4928 4929 /** 4930 * lpfc_sli_config_port - Issue config port mailbox command 4931 * @phba: Pointer to HBA context object. 4932 * @sli_mode: sli mode - 2/3 4933 * 4934 * This function is called by the sli initialization code path 4935 * to issue config_port mailbox command. This function restarts the 4936 * HBA firmware and issues a config_port mailbox command to configure 4937 * the SLI interface in the sli mode specified by sli_mode 4938 * variable. The caller is not required to hold any locks. 4939 * The function returns 0 if successful, else returns negative error 4940 * code. 4941 **/ 4942 int 4943 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 4944 { 4945 LPFC_MBOXQ_t *pmb; 4946 uint32_t resetcount = 0, rc = 0, done = 0; 4947 4948 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4949 if (!pmb) { 4950 phba->link_state = LPFC_HBA_ERROR; 4951 return -ENOMEM; 4952 } 4953 4954 phba->sli_rev = sli_mode; 4955 while (resetcount < 2 && !done) { 4956 spin_lock_irq(&phba->hbalock); 4957 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 4958 spin_unlock_irq(&phba->hbalock); 4959 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4960 lpfc_sli_brdrestart(phba); 4961 rc = lpfc_sli_chipset_init(phba); 4962 if (rc) 4963 break; 4964 4965 spin_lock_irq(&phba->hbalock); 4966 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4967 spin_unlock_irq(&phba->hbalock); 4968 resetcount++; 4969 4970 /* Call pre CONFIG_PORT mailbox command initialization. A 4971 * value of 0 means the call was successful. Any other 4972 * nonzero value is a failure, but if ERESTART is returned, 4973 * the driver may reset the HBA and try again. 4974 */ 4975 rc = lpfc_config_port_prep(phba); 4976 if (rc == -ERESTART) { 4977 phba->link_state = LPFC_LINK_UNKNOWN; 4978 continue; 4979 } else if (rc) 4980 break; 4981 4982 phba->link_state = LPFC_INIT_MBX_CMDS; 4983 lpfc_config_port(phba, pmb); 4984 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 4985 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 4986 LPFC_SLI3_HBQ_ENABLED | 4987 LPFC_SLI3_CRP_ENABLED | 4988 LPFC_SLI3_DSS_ENABLED); 4989 if (rc != MBX_SUCCESS) { 4990 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4991 "0442 Adapter failed to init, mbxCmd x%x " 4992 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 4993 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 4994 spin_lock_irq(&phba->hbalock); 4995 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 4996 spin_unlock_irq(&phba->hbalock); 4997 rc = -ENXIO; 4998 } else { 4999 /* Allow asynchronous mailbox command to go through */ 5000 spin_lock_irq(&phba->hbalock); 5001 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5002 spin_unlock_irq(&phba->hbalock); 5003 done = 1; 5004 5005 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5006 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5007 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5008 "3110 Port did not grant ASABT\n"); 5009 } 5010 } 5011 if (!done) { 5012 rc = -EINVAL; 5013 goto do_prep_failed; 5014 } 5015 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5016 if (!pmb->u.mb.un.varCfgPort.cMA) { 5017 rc = -ENXIO; 5018 goto do_prep_failed; 5019 } 5020 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5021 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5022 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5023 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5024 phba->max_vpi : phba->max_vports; 5025 5026 } else 5027 phba->max_vpi = 0; 5028 phba->fips_level = 0; 5029 phba->fips_spec_rev = 0; 5030 if (pmb->u.mb.un.varCfgPort.gdss) { 5031 phba->sli3_options |= LPFC_SLI3_DSS_ENABLED; 5032 phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level; 5033 phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev; 5034 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5035 "2850 Security Crypto Active. FIPS x%d " 5036 "(Spec Rev: x%d)", 5037 phba->fips_level, phba->fips_spec_rev); 5038 } 5039 if (pmb->u.mb.un.varCfgPort.sec_err) { 5040 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5041 "2856 Config Port Security Crypto " 5042 "Error: x%x ", 5043 pmb->u.mb.un.varCfgPort.sec_err); 5044 } 5045 if (pmb->u.mb.un.varCfgPort.gerbm) 5046 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5047 if (pmb->u.mb.un.varCfgPort.gcrp) 5048 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5049 5050 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5051 phba->port_gp = phba->mbox->us.s3_pgp.port; 5052 5053 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5054 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5055 phba->cfg_enable_bg = 0; 5056 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5057 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5058 "0443 Adapter did not grant " 5059 "BlockGuard\n"); 5060 } 5061 } 5062 } else { 5063 phba->hbq_get = NULL; 5064 phba->port_gp = phba->mbox->us.s2.port; 5065 phba->max_vpi = 0; 5066 } 5067 do_prep_failed: 5068 mempool_free(pmb, phba->mbox_mem_pool); 5069 return rc; 5070 } 5071 5072 5073 /** 5074 * lpfc_sli_hba_setup - SLI initialization function 5075 * @phba: Pointer to HBA context object. 5076 * 5077 * This function is the main SLI initialization function. This function 5078 * is called by the HBA initialization code, HBA reset code and HBA 5079 * error attention handler code. Caller is not required to hold any 5080 * locks. This function issues config_port mailbox command to configure 5081 * the SLI, setup iocb rings and HBQ rings. In the end the function 5082 * calls the config_port_post function to issue init_link mailbox 5083 * command and to start the discovery. The function will return zero 5084 * if successful, else it will return negative error code. 5085 **/ 5086 int 5087 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5088 { 5089 uint32_t rc; 5090 int mode = 3, i; 5091 int longs; 5092 5093 switch (phba->cfg_sli_mode) { 5094 case 2: 5095 if (phba->cfg_enable_npiv) { 5096 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 5097 "1824 NPIV enabled: Override sli_mode " 5098 "parameter (%d) to auto (0).\n", 5099 phba->cfg_sli_mode); 5100 break; 5101 } 5102 mode = 2; 5103 break; 5104 case 0: 5105 case 3: 5106 break; 5107 default: 5108 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 5109 "1819 Unrecognized sli_mode parameter: %d.\n", 5110 phba->cfg_sli_mode); 5111 5112 break; 5113 } 5114 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5115 5116 rc = lpfc_sli_config_port(phba, mode); 5117 5118 if (rc && phba->cfg_sli_mode == 3) 5119 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 5120 "1820 Unable to select SLI-3. " 5121 "Not supported by adapter.\n"); 5122 if (rc && mode != 2) 5123 rc = lpfc_sli_config_port(phba, 2); 5124 else if (rc && mode == 2) 5125 rc = lpfc_sli_config_port(phba, 3); 5126 if (rc) 5127 goto lpfc_sli_hba_setup_error; 5128 5129 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5130 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5131 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5132 if (!rc) { 5133 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5134 "2709 This device supports " 5135 "Advanced Error Reporting (AER)\n"); 5136 spin_lock_irq(&phba->hbalock); 5137 phba->hba_flag |= HBA_AER_ENABLED; 5138 spin_unlock_irq(&phba->hbalock); 5139 } else { 5140 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5141 "2708 This device does not support " 5142 "Advanced Error Reporting (AER): %d\n", 5143 rc); 5144 phba->cfg_aer_support = 0; 5145 } 5146 } 5147 5148 if (phba->sli_rev == 3) { 5149 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5150 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5151 } else { 5152 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5153 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5154 phba->sli3_options = 0; 5155 } 5156 5157 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5158 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5159 phba->sli_rev, phba->max_vpi); 5160 rc = lpfc_sli_ring_map(phba); 5161 5162 if (rc) 5163 goto lpfc_sli_hba_setup_error; 5164 5165 /* Initialize VPIs. */ 5166 if (phba->sli_rev == LPFC_SLI_REV3) { 5167 /* 5168 * The VPI bitmask and physical ID array are allocated 5169 * and initialized once only - at driver load. A port 5170 * reset doesn't need to reinitialize this memory. 5171 */ 5172 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5173 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5174 phba->vpi_bmask = kcalloc(longs, 5175 sizeof(unsigned long), 5176 GFP_KERNEL); 5177 if (!phba->vpi_bmask) { 5178 rc = -ENOMEM; 5179 goto lpfc_sli_hba_setup_error; 5180 } 5181 5182 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5183 sizeof(uint16_t), 5184 GFP_KERNEL); 5185 if (!phba->vpi_ids) { 5186 kfree(phba->vpi_bmask); 5187 rc = -ENOMEM; 5188 goto lpfc_sli_hba_setup_error; 5189 } 5190 for (i = 0; i < phba->max_vpi; i++) 5191 phba->vpi_ids[i] = i; 5192 } 5193 } 5194 5195 /* Init HBQs */ 5196 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5197 rc = lpfc_sli_hbq_setup(phba); 5198 if (rc) 5199 goto lpfc_sli_hba_setup_error; 5200 } 5201 spin_lock_irq(&phba->hbalock); 5202 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5203 spin_unlock_irq(&phba->hbalock); 5204 5205 rc = lpfc_config_port_post(phba); 5206 if (rc) 5207 goto lpfc_sli_hba_setup_error; 5208 5209 return rc; 5210 5211 lpfc_sli_hba_setup_error: 5212 phba->link_state = LPFC_HBA_ERROR; 5213 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5214 "0445 Firmware initialization failed\n"); 5215 return rc; 5216 } 5217 5218 /** 5219 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5220 * @phba: Pointer to HBA context object. 5221 * @mboxq: mailbox pointer. 5222 * This function issue a dump mailbox command to read config region 5223 * 23 and parse the records in the region and populate driver 5224 * data structure. 5225 **/ 5226 static int 5227 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5228 { 5229 LPFC_MBOXQ_t *mboxq; 5230 struct lpfc_dmabuf *mp; 5231 struct lpfc_mqe *mqe; 5232 uint32_t data_length; 5233 int rc; 5234 5235 /* Program the default value of vlan_id and fc_map */ 5236 phba->valid_vlan = 0; 5237 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5238 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5239 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5240 5241 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5242 if (!mboxq) 5243 return -ENOMEM; 5244 5245 mqe = &mboxq->u.mqe; 5246 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5247 rc = -ENOMEM; 5248 goto out_free_mboxq; 5249 } 5250 5251 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5252 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5253 5254 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5255 "(%d):2571 Mailbox cmd x%x Status x%x " 5256 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5257 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5258 "CQ: x%x x%x x%x x%x\n", 5259 mboxq->vport ? mboxq->vport->vpi : 0, 5260 bf_get(lpfc_mqe_command, mqe), 5261 bf_get(lpfc_mqe_status, mqe), 5262 mqe->un.mb_words[0], mqe->un.mb_words[1], 5263 mqe->un.mb_words[2], mqe->un.mb_words[3], 5264 mqe->un.mb_words[4], mqe->un.mb_words[5], 5265 mqe->un.mb_words[6], mqe->un.mb_words[7], 5266 mqe->un.mb_words[8], mqe->un.mb_words[9], 5267 mqe->un.mb_words[10], mqe->un.mb_words[11], 5268 mqe->un.mb_words[12], mqe->un.mb_words[13], 5269 mqe->un.mb_words[14], mqe->un.mb_words[15], 5270 mqe->un.mb_words[16], mqe->un.mb_words[50], 5271 mboxq->mcqe.word0, 5272 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5273 mboxq->mcqe.trailer); 5274 5275 if (rc) { 5276 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5277 kfree(mp); 5278 rc = -EIO; 5279 goto out_free_mboxq; 5280 } 5281 data_length = mqe->un.mb_words[5]; 5282 if (data_length > DMP_RGN23_SIZE) { 5283 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5284 kfree(mp); 5285 rc = -EIO; 5286 goto out_free_mboxq; 5287 } 5288 5289 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5290 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5291 kfree(mp); 5292 rc = 0; 5293 5294 out_free_mboxq: 5295 mempool_free(mboxq, phba->mbox_mem_pool); 5296 return rc; 5297 } 5298 5299 /** 5300 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5301 * @phba: pointer to lpfc hba data structure. 5302 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5303 * @vpd: pointer to the memory to hold resulting port vpd data. 5304 * @vpd_size: On input, the number of bytes allocated to @vpd. 5305 * On output, the number of data bytes in @vpd. 5306 * 5307 * This routine executes a READ_REV SLI4 mailbox command. In 5308 * addition, this routine gets the port vpd data. 5309 * 5310 * Return codes 5311 * 0 - successful 5312 * -ENOMEM - could not allocated memory. 5313 **/ 5314 static int 5315 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5316 uint8_t *vpd, uint32_t *vpd_size) 5317 { 5318 int rc = 0; 5319 uint32_t dma_size; 5320 struct lpfc_dmabuf *dmabuf; 5321 struct lpfc_mqe *mqe; 5322 5323 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5324 if (!dmabuf) 5325 return -ENOMEM; 5326 5327 /* 5328 * Get a DMA buffer for the vpd data resulting from the READ_REV 5329 * mailbox command. 5330 */ 5331 dma_size = *vpd_size; 5332 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5333 &dmabuf->phys, GFP_KERNEL); 5334 if (!dmabuf->virt) { 5335 kfree(dmabuf); 5336 return -ENOMEM; 5337 } 5338 5339 /* 5340 * The SLI4 implementation of READ_REV conflicts at word1, 5341 * bits 31:16 and SLI4 adds vpd functionality not present 5342 * in SLI3. This code corrects the conflicts. 5343 */ 5344 lpfc_read_rev(phba, mboxq); 5345 mqe = &mboxq->u.mqe; 5346 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5347 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5348 mqe->un.read_rev.word1 &= 0x0000FFFF; 5349 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5350 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5351 5352 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5353 if (rc) { 5354 dma_free_coherent(&phba->pcidev->dev, dma_size, 5355 dmabuf->virt, dmabuf->phys); 5356 kfree(dmabuf); 5357 return -EIO; 5358 } 5359 5360 /* 5361 * The available vpd length cannot be bigger than the 5362 * DMA buffer passed to the port. Catch the less than 5363 * case and update the caller's size. 5364 */ 5365 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5366 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5367 5368 memcpy(vpd, dmabuf->virt, *vpd_size); 5369 5370 dma_free_coherent(&phba->pcidev->dev, dma_size, 5371 dmabuf->virt, dmabuf->phys); 5372 kfree(dmabuf); 5373 return 0; 5374 } 5375 5376 /** 5377 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5378 * @phba: pointer to lpfc hba data structure. 5379 * 5380 * This routine retrieves SLI4 device physical port name this PCI function 5381 * is attached to. 5382 * 5383 * Return codes 5384 * 0 - successful 5385 * otherwise - failed to retrieve controller attributes 5386 **/ 5387 static int 5388 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5389 { 5390 LPFC_MBOXQ_t *mboxq; 5391 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5392 struct lpfc_controller_attribute *cntl_attr; 5393 void *virtaddr = NULL; 5394 uint32_t alloclen, reqlen; 5395 uint32_t shdr_status, shdr_add_status; 5396 union lpfc_sli4_cfg_shdr *shdr; 5397 int rc; 5398 5399 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5400 if (!mboxq) 5401 return -ENOMEM; 5402 5403 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5404 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5405 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5406 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5407 LPFC_SLI4_MBX_NEMBED); 5408 5409 if (alloclen < reqlen) { 5410 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5411 "3084 Allocated DMA memory size (%d) is " 5412 "less than the requested DMA memory size " 5413 "(%d)\n", alloclen, reqlen); 5414 rc = -ENOMEM; 5415 goto out_free_mboxq; 5416 } 5417 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5418 virtaddr = mboxq->sge_array->addr[0]; 5419 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5420 shdr = &mbx_cntl_attr->cfg_shdr; 5421 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5422 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5423 if (shdr_status || shdr_add_status || rc) { 5424 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5425 "3085 Mailbox x%x (x%x/x%x) failed, " 5426 "rc:x%x, status:x%x, add_status:x%x\n", 5427 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5428 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5429 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5430 rc, shdr_status, shdr_add_status); 5431 rc = -ENXIO; 5432 goto out_free_mboxq; 5433 } 5434 5435 cntl_attr = &mbx_cntl_attr->cntl_attr; 5436 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5437 phba->sli4_hba.lnk_info.lnk_tp = 5438 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5439 phba->sli4_hba.lnk_info.lnk_no = 5440 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5441 5442 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 5443 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 5444 sizeof(phba->BIOSVersion)); 5445 5446 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5447 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s\n", 5448 phba->sli4_hba.lnk_info.lnk_tp, 5449 phba->sli4_hba.lnk_info.lnk_no, 5450 phba->BIOSVersion); 5451 out_free_mboxq: 5452 if (rc != MBX_TIMEOUT) { 5453 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5454 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5455 else 5456 mempool_free(mboxq, phba->mbox_mem_pool); 5457 } 5458 return rc; 5459 } 5460 5461 /** 5462 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 5463 * @phba: pointer to lpfc hba data structure. 5464 * 5465 * This routine retrieves SLI4 device physical port name this PCI function 5466 * is attached to. 5467 * 5468 * Return codes 5469 * 0 - successful 5470 * otherwise - failed to retrieve physical port name 5471 **/ 5472 static int 5473 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 5474 { 5475 LPFC_MBOXQ_t *mboxq; 5476 struct lpfc_mbx_get_port_name *get_port_name; 5477 uint32_t shdr_status, shdr_add_status; 5478 union lpfc_sli4_cfg_shdr *shdr; 5479 char cport_name = 0; 5480 int rc; 5481 5482 /* We assume nothing at this point */ 5483 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5484 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 5485 5486 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5487 if (!mboxq) 5488 return -ENOMEM; 5489 /* obtain link type and link number via READ_CONFIG */ 5490 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5491 lpfc_sli4_read_config(phba); 5492 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 5493 goto retrieve_ppname; 5494 5495 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 5496 rc = lpfc_sli4_get_ctl_attr(phba); 5497 if (rc) 5498 goto out_free_mboxq; 5499 5500 retrieve_ppname: 5501 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5502 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5503 sizeof(struct lpfc_mbx_get_port_name) - 5504 sizeof(struct lpfc_sli4_cfg_mhdr), 5505 LPFC_SLI4_MBX_EMBED); 5506 get_port_name = &mboxq->u.mqe.un.get_port_name; 5507 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5508 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5509 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5510 phba->sli4_hba.lnk_info.lnk_tp); 5511 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5512 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5513 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5514 if (shdr_status || shdr_add_status || rc) { 5515 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5516 "3087 Mailbox x%x (x%x/x%x) failed: " 5517 "rc:x%x, status:x%x, add_status:x%x\n", 5518 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5519 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5520 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5521 rc, shdr_status, shdr_add_status); 5522 rc = -ENXIO; 5523 goto out_free_mboxq; 5524 } 5525 switch (phba->sli4_hba.lnk_info.lnk_no) { 5526 case LPFC_LINK_NUMBER_0: 5527 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 5528 &get_port_name->u.response); 5529 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5530 break; 5531 case LPFC_LINK_NUMBER_1: 5532 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 5533 &get_port_name->u.response); 5534 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5535 break; 5536 case LPFC_LINK_NUMBER_2: 5537 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 5538 &get_port_name->u.response); 5539 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5540 break; 5541 case LPFC_LINK_NUMBER_3: 5542 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 5543 &get_port_name->u.response); 5544 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5545 break; 5546 default: 5547 break; 5548 } 5549 5550 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 5551 phba->Port[0] = cport_name; 5552 phba->Port[1] = '\0'; 5553 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5554 "3091 SLI get port name: %s\n", phba->Port); 5555 } 5556 5557 out_free_mboxq: 5558 if (rc != MBX_TIMEOUT) { 5559 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5560 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5561 else 5562 mempool_free(mboxq, phba->mbox_mem_pool); 5563 } 5564 return rc; 5565 } 5566 5567 /** 5568 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 5569 * @phba: pointer to lpfc hba data structure. 5570 * 5571 * This routine is called to explicitly arm the SLI4 device's completion and 5572 * event queues 5573 **/ 5574 static void 5575 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 5576 { 5577 int qidx; 5578 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 5579 struct lpfc_sli4_hdw_queue *qp; 5580 struct lpfc_queue *eq; 5581 5582 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 5583 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 5584 if (sli4_hba->nvmels_cq) 5585 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 5586 LPFC_QUEUE_REARM); 5587 5588 if (sli4_hba->hdwq) { 5589 /* Loop thru all Hardware Queues */ 5590 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 5591 qp = &sli4_hba->hdwq[qidx]; 5592 /* ARM the corresponding CQ */ 5593 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 5594 LPFC_QUEUE_REARM); 5595 } 5596 5597 /* Loop thru all IRQ vectors */ 5598 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 5599 eq = sli4_hba->hba_eq_hdl[qidx].eq; 5600 /* ARM the corresponding EQ */ 5601 sli4_hba->sli4_write_eq_db(phba, eq, 5602 0, LPFC_QUEUE_REARM); 5603 } 5604 } 5605 5606 if (phba->nvmet_support) { 5607 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 5608 sli4_hba->sli4_write_cq_db(phba, 5609 sli4_hba->nvmet_cqset[qidx], 0, 5610 LPFC_QUEUE_REARM); 5611 } 5612 } 5613 } 5614 5615 /** 5616 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 5617 * @phba: Pointer to HBA context object. 5618 * @type: The resource extent type. 5619 * @extnt_count: buffer to hold port available extent count. 5620 * @extnt_size: buffer to hold element count per extent. 5621 * 5622 * This function calls the port and retrievs the number of available 5623 * extents and their size for a particular extent type. 5624 * 5625 * Returns: 0 if successful. Nonzero otherwise. 5626 **/ 5627 int 5628 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5629 uint16_t *extnt_count, uint16_t *extnt_size) 5630 { 5631 int rc = 0; 5632 uint32_t length; 5633 uint32_t mbox_tmo; 5634 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5635 LPFC_MBOXQ_t *mbox; 5636 5637 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5638 if (!mbox) 5639 return -ENOMEM; 5640 5641 /* Find out how many extents are available for this resource type */ 5642 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5643 sizeof(struct lpfc_sli4_cfg_mhdr)); 5644 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5645 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5646 length, LPFC_SLI4_MBX_EMBED); 5647 5648 /* Send an extents count of 0 - the GET doesn't use it. */ 5649 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5650 LPFC_SLI4_MBX_EMBED); 5651 if (unlikely(rc)) { 5652 rc = -EIO; 5653 goto err_exit; 5654 } 5655 5656 if (!phba->sli4_hba.intr_enable) 5657 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5658 else { 5659 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5660 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5661 } 5662 if (unlikely(rc)) { 5663 rc = -EIO; 5664 goto err_exit; 5665 } 5666 5667 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5668 if (bf_get(lpfc_mbox_hdr_status, 5669 &rsrc_info->header.cfg_shdr.response)) { 5670 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5671 "2930 Failed to get resource extents " 5672 "Status 0x%x Add'l Status 0x%x\n", 5673 bf_get(lpfc_mbox_hdr_status, 5674 &rsrc_info->header.cfg_shdr.response), 5675 bf_get(lpfc_mbox_hdr_add_status, 5676 &rsrc_info->header.cfg_shdr.response)); 5677 rc = -EIO; 5678 goto err_exit; 5679 } 5680 5681 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5682 &rsrc_info->u.rsp); 5683 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5684 &rsrc_info->u.rsp); 5685 5686 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5687 "3162 Retrieved extents type-%d from port: count:%d, " 5688 "size:%d\n", type, *extnt_count, *extnt_size); 5689 5690 err_exit: 5691 mempool_free(mbox, phba->mbox_mem_pool); 5692 return rc; 5693 } 5694 5695 /** 5696 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5697 * @phba: Pointer to HBA context object. 5698 * @type: The extent type to check. 5699 * 5700 * This function reads the current available extents from the port and checks 5701 * if the extent count or extent size has changed since the last access. 5702 * Callers use this routine post port reset to understand if there is a 5703 * extent reprovisioning requirement. 5704 * 5705 * Returns: 5706 * -Error: error indicates problem. 5707 * 1: Extent count or size has changed. 5708 * 0: No changes. 5709 **/ 5710 static int 5711 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5712 { 5713 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5714 uint16_t size_diff, rsrc_ext_size; 5715 int rc = 0; 5716 struct lpfc_rsrc_blks *rsrc_entry; 5717 struct list_head *rsrc_blk_list = NULL; 5718 5719 size_diff = 0; 5720 curr_ext_cnt = 0; 5721 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5722 &rsrc_ext_cnt, 5723 &rsrc_ext_size); 5724 if (unlikely(rc)) 5725 return -EIO; 5726 5727 switch (type) { 5728 case LPFC_RSC_TYPE_FCOE_RPI: 5729 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5730 break; 5731 case LPFC_RSC_TYPE_FCOE_VPI: 5732 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5733 break; 5734 case LPFC_RSC_TYPE_FCOE_XRI: 5735 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5736 break; 5737 case LPFC_RSC_TYPE_FCOE_VFI: 5738 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5739 break; 5740 default: 5741 break; 5742 } 5743 5744 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5745 curr_ext_cnt++; 5746 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5747 size_diff++; 5748 } 5749 5750 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5751 rc = 1; 5752 5753 return rc; 5754 } 5755 5756 /** 5757 * lpfc_sli4_cfg_post_extnts - 5758 * @phba: Pointer to HBA context object. 5759 * @extnt_cnt - number of available extents. 5760 * @type - the extent type (rpi, xri, vfi, vpi). 5761 * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5762 * @mbox - pointer to the caller's allocated mailbox structure. 5763 * 5764 * This function executes the extents allocation request. It also 5765 * takes care of the amount of memory needed to allocate or get the 5766 * allocated extents. It is the caller's responsibility to evaluate 5767 * the response. 5768 * 5769 * Returns: 5770 * -Error: Error value describes the condition found. 5771 * 0: if successful 5772 **/ 5773 static int 5774 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 5775 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 5776 { 5777 int rc = 0; 5778 uint32_t req_len; 5779 uint32_t emb_len; 5780 uint32_t alloc_len, mbox_tmo; 5781 5782 /* Calculate the total requested length of the dma memory */ 5783 req_len = extnt_cnt * sizeof(uint16_t); 5784 5785 /* 5786 * Calculate the size of an embedded mailbox. The uint32_t 5787 * accounts for extents-specific word. 5788 */ 5789 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 5790 sizeof(uint32_t); 5791 5792 /* 5793 * Presume the allocation and response will fit into an embedded 5794 * mailbox. If not true, reconfigure to a non-embedded mailbox. 5795 */ 5796 *emb = LPFC_SLI4_MBX_EMBED; 5797 if (req_len > emb_len) { 5798 req_len = extnt_cnt * sizeof(uint16_t) + 5799 sizeof(union lpfc_sli4_cfg_shdr) + 5800 sizeof(uint32_t); 5801 *emb = LPFC_SLI4_MBX_NEMBED; 5802 } 5803 5804 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5805 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 5806 req_len, *emb); 5807 if (alloc_len < req_len) { 5808 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5809 "2982 Allocated DMA memory size (x%x) is " 5810 "less than the requested DMA memory " 5811 "size (x%x)\n", alloc_len, req_len); 5812 return -ENOMEM; 5813 } 5814 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 5815 if (unlikely(rc)) 5816 return -EIO; 5817 5818 if (!phba->sli4_hba.intr_enable) 5819 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5820 else { 5821 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5822 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5823 } 5824 5825 if (unlikely(rc)) 5826 rc = -EIO; 5827 return rc; 5828 } 5829 5830 /** 5831 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 5832 * @phba: Pointer to HBA context object. 5833 * @type: The resource extent type to allocate. 5834 * 5835 * This function allocates the number of elements for the specified 5836 * resource type. 5837 **/ 5838 static int 5839 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 5840 { 5841 bool emb = false; 5842 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 5843 uint16_t rsrc_id, rsrc_start, j, k; 5844 uint16_t *ids; 5845 int i, rc; 5846 unsigned long longs; 5847 unsigned long *bmask; 5848 struct lpfc_rsrc_blks *rsrc_blks; 5849 LPFC_MBOXQ_t *mbox; 5850 uint32_t length; 5851 struct lpfc_id_range *id_array = NULL; 5852 void *virtaddr = NULL; 5853 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 5854 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 5855 struct list_head *ext_blk_list; 5856 5857 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5858 &rsrc_cnt, 5859 &rsrc_size); 5860 if (unlikely(rc)) 5861 return -EIO; 5862 5863 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 5864 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5865 "3009 No available Resource Extents " 5866 "for resource type 0x%x: Count: 0x%x, " 5867 "Size 0x%x\n", type, rsrc_cnt, 5868 rsrc_size); 5869 return -ENOMEM; 5870 } 5871 5872 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 5873 "2903 Post resource extents type-0x%x: " 5874 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 5875 5876 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5877 if (!mbox) 5878 return -ENOMEM; 5879 5880 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 5881 if (unlikely(rc)) { 5882 rc = -EIO; 5883 goto err_exit; 5884 } 5885 5886 /* 5887 * Figure out where the response is located. Then get local pointers 5888 * to the response data. The port does not guarantee to respond to 5889 * all extents counts request so update the local variable with the 5890 * allocated count from the port. 5891 */ 5892 if (emb == LPFC_SLI4_MBX_EMBED) { 5893 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 5894 id_array = &rsrc_ext->u.rsp.id[0]; 5895 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 5896 } else { 5897 virtaddr = mbox->sge_array->addr[0]; 5898 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 5899 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 5900 id_array = &n_rsrc->id; 5901 } 5902 5903 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 5904 rsrc_id_cnt = rsrc_cnt * rsrc_size; 5905 5906 /* 5907 * Based on the resource size and count, correct the base and max 5908 * resource values. 5909 */ 5910 length = sizeof(struct lpfc_rsrc_blks); 5911 switch (type) { 5912 case LPFC_RSC_TYPE_FCOE_RPI: 5913 phba->sli4_hba.rpi_bmask = kcalloc(longs, 5914 sizeof(unsigned long), 5915 GFP_KERNEL); 5916 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 5917 rc = -ENOMEM; 5918 goto err_exit; 5919 } 5920 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 5921 sizeof(uint16_t), 5922 GFP_KERNEL); 5923 if (unlikely(!phba->sli4_hba.rpi_ids)) { 5924 kfree(phba->sli4_hba.rpi_bmask); 5925 rc = -ENOMEM; 5926 goto err_exit; 5927 } 5928 5929 /* 5930 * The next_rpi was initialized with the maximum available 5931 * count but the port may allocate a smaller number. Catch 5932 * that case and update the next_rpi. 5933 */ 5934 phba->sli4_hba.next_rpi = rsrc_id_cnt; 5935 5936 /* Initialize local ptrs for common extent processing later. */ 5937 bmask = phba->sli4_hba.rpi_bmask; 5938 ids = phba->sli4_hba.rpi_ids; 5939 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5940 break; 5941 case LPFC_RSC_TYPE_FCOE_VPI: 5942 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 5943 GFP_KERNEL); 5944 if (unlikely(!phba->vpi_bmask)) { 5945 rc = -ENOMEM; 5946 goto err_exit; 5947 } 5948 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 5949 GFP_KERNEL); 5950 if (unlikely(!phba->vpi_ids)) { 5951 kfree(phba->vpi_bmask); 5952 rc = -ENOMEM; 5953 goto err_exit; 5954 } 5955 5956 /* Initialize local ptrs for common extent processing later. */ 5957 bmask = phba->vpi_bmask; 5958 ids = phba->vpi_ids; 5959 ext_blk_list = &phba->lpfc_vpi_blk_list; 5960 break; 5961 case LPFC_RSC_TYPE_FCOE_XRI: 5962 phba->sli4_hba.xri_bmask = kcalloc(longs, 5963 sizeof(unsigned long), 5964 GFP_KERNEL); 5965 if (unlikely(!phba->sli4_hba.xri_bmask)) { 5966 rc = -ENOMEM; 5967 goto err_exit; 5968 } 5969 phba->sli4_hba.max_cfg_param.xri_used = 0; 5970 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 5971 sizeof(uint16_t), 5972 GFP_KERNEL); 5973 if (unlikely(!phba->sli4_hba.xri_ids)) { 5974 kfree(phba->sli4_hba.xri_bmask); 5975 rc = -ENOMEM; 5976 goto err_exit; 5977 } 5978 5979 /* Initialize local ptrs for common extent processing later. */ 5980 bmask = phba->sli4_hba.xri_bmask; 5981 ids = phba->sli4_hba.xri_ids; 5982 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5983 break; 5984 case LPFC_RSC_TYPE_FCOE_VFI: 5985 phba->sli4_hba.vfi_bmask = kcalloc(longs, 5986 sizeof(unsigned long), 5987 GFP_KERNEL); 5988 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 5989 rc = -ENOMEM; 5990 goto err_exit; 5991 } 5992 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 5993 sizeof(uint16_t), 5994 GFP_KERNEL); 5995 if (unlikely(!phba->sli4_hba.vfi_ids)) { 5996 kfree(phba->sli4_hba.vfi_bmask); 5997 rc = -ENOMEM; 5998 goto err_exit; 5999 } 6000 6001 /* Initialize local ptrs for common extent processing later. */ 6002 bmask = phba->sli4_hba.vfi_bmask; 6003 ids = phba->sli4_hba.vfi_ids; 6004 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6005 break; 6006 default: 6007 /* Unsupported Opcode. Fail call. */ 6008 id_array = NULL; 6009 bmask = NULL; 6010 ids = NULL; 6011 ext_blk_list = NULL; 6012 goto err_exit; 6013 } 6014 6015 /* 6016 * Complete initializing the extent configuration with the 6017 * allocated ids assigned to this function. The bitmask serves 6018 * as an index into the array and manages the available ids. The 6019 * array just stores the ids communicated to the port via the wqes. 6020 */ 6021 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6022 if ((i % 2) == 0) 6023 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6024 &id_array[k]); 6025 else 6026 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6027 &id_array[k]); 6028 6029 rsrc_blks = kzalloc(length, GFP_KERNEL); 6030 if (unlikely(!rsrc_blks)) { 6031 rc = -ENOMEM; 6032 kfree(bmask); 6033 kfree(ids); 6034 goto err_exit; 6035 } 6036 rsrc_blks->rsrc_start = rsrc_id; 6037 rsrc_blks->rsrc_size = rsrc_size; 6038 list_add_tail(&rsrc_blks->list, ext_blk_list); 6039 rsrc_start = rsrc_id; 6040 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6041 phba->sli4_hba.io_xri_start = rsrc_start + 6042 lpfc_sli4_get_iocb_cnt(phba); 6043 } 6044 6045 while (rsrc_id < (rsrc_start + rsrc_size)) { 6046 ids[j] = rsrc_id; 6047 rsrc_id++; 6048 j++; 6049 } 6050 /* Entire word processed. Get next word.*/ 6051 if ((i % 2) == 1) 6052 k++; 6053 } 6054 err_exit: 6055 lpfc_sli4_mbox_cmd_free(phba, mbox); 6056 return rc; 6057 } 6058 6059 6060 6061 /** 6062 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6063 * @phba: Pointer to HBA context object. 6064 * @type: the extent's type. 6065 * 6066 * This function deallocates all extents of a particular resource type. 6067 * SLI4 does not allow for deallocating a particular extent range. It 6068 * is the caller's responsibility to release all kernel memory resources. 6069 **/ 6070 static int 6071 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6072 { 6073 int rc; 6074 uint32_t length, mbox_tmo = 0; 6075 LPFC_MBOXQ_t *mbox; 6076 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6077 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6078 6079 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6080 if (!mbox) 6081 return -ENOMEM; 6082 6083 /* 6084 * This function sends an embedded mailbox because it only sends the 6085 * the resource type. All extents of this type are released by the 6086 * port. 6087 */ 6088 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6089 sizeof(struct lpfc_sli4_cfg_mhdr)); 6090 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6091 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6092 length, LPFC_SLI4_MBX_EMBED); 6093 6094 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6095 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6096 LPFC_SLI4_MBX_EMBED); 6097 if (unlikely(rc)) { 6098 rc = -EIO; 6099 goto out_free_mbox; 6100 } 6101 if (!phba->sli4_hba.intr_enable) 6102 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6103 else { 6104 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6105 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6106 } 6107 if (unlikely(rc)) { 6108 rc = -EIO; 6109 goto out_free_mbox; 6110 } 6111 6112 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6113 if (bf_get(lpfc_mbox_hdr_status, 6114 &dealloc_rsrc->header.cfg_shdr.response)) { 6115 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 6116 "2919 Failed to release resource extents " 6117 "for type %d - Status 0x%x Add'l Status 0x%x. " 6118 "Resource memory not released.\n", 6119 type, 6120 bf_get(lpfc_mbox_hdr_status, 6121 &dealloc_rsrc->header.cfg_shdr.response), 6122 bf_get(lpfc_mbox_hdr_add_status, 6123 &dealloc_rsrc->header.cfg_shdr.response)); 6124 rc = -EIO; 6125 goto out_free_mbox; 6126 } 6127 6128 /* Release kernel memory resources for the specific type. */ 6129 switch (type) { 6130 case LPFC_RSC_TYPE_FCOE_VPI: 6131 kfree(phba->vpi_bmask); 6132 kfree(phba->vpi_ids); 6133 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6134 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6135 &phba->lpfc_vpi_blk_list, list) { 6136 list_del_init(&rsrc_blk->list); 6137 kfree(rsrc_blk); 6138 } 6139 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6140 break; 6141 case LPFC_RSC_TYPE_FCOE_XRI: 6142 kfree(phba->sli4_hba.xri_bmask); 6143 kfree(phba->sli4_hba.xri_ids); 6144 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6145 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6146 list_del_init(&rsrc_blk->list); 6147 kfree(rsrc_blk); 6148 } 6149 break; 6150 case LPFC_RSC_TYPE_FCOE_VFI: 6151 kfree(phba->sli4_hba.vfi_bmask); 6152 kfree(phba->sli4_hba.vfi_ids); 6153 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6154 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6155 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6156 list_del_init(&rsrc_blk->list); 6157 kfree(rsrc_blk); 6158 } 6159 break; 6160 case LPFC_RSC_TYPE_FCOE_RPI: 6161 /* RPI bitmask and physical id array are cleaned up earlier. */ 6162 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6163 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6164 list_del_init(&rsrc_blk->list); 6165 kfree(rsrc_blk); 6166 } 6167 break; 6168 default: 6169 break; 6170 } 6171 6172 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6173 6174 out_free_mbox: 6175 mempool_free(mbox, phba->mbox_mem_pool); 6176 return rc; 6177 } 6178 6179 static void 6180 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6181 uint32_t feature) 6182 { 6183 uint32_t len; 6184 6185 len = sizeof(struct lpfc_mbx_set_feature) - 6186 sizeof(struct lpfc_sli4_cfg_mhdr); 6187 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6188 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6189 LPFC_SLI4_MBX_EMBED); 6190 6191 switch (feature) { 6192 case LPFC_SET_UE_RECOVERY: 6193 bf_set(lpfc_mbx_set_feature_UER, 6194 &mbox->u.mqe.un.set_feature, 1); 6195 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6196 mbox->u.mqe.un.set_feature.param_len = 8; 6197 break; 6198 case LPFC_SET_MDS_DIAGS: 6199 bf_set(lpfc_mbx_set_feature_mds, 6200 &mbox->u.mqe.un.set_feature, 1); 6201 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6202 &mbox->u.mqe.un.set_feature, 1); 6203 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6204 mbox->u.mqe.un.set_feature.param_len = 8; 6205 break; 6206 case LPFC_SET_DUAL_DUMP: 6207 bf_set(lpfc_mbx_set_feature_dd, 6208 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6209 bf_set(lpfc_mbx_set_feature_ddquery, 6210 &mbox->u.mqe.un.set_feature, 0); 6211 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6212 mbox->u.mqe.un.set_feature.param_len = 4; 6213 break; 6214 } 6215 6216 return; 6217 } 6218 6219 /** 6220 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6221 * @phba: Pointer to HBA context object. 6222 * 6223 * Disable FW logging into host memory on the adapter. To 6224 * be done before reading logs from the host memory. 6225 **/ 6226 void 6227 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6228 { 6229 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6230 6231 spin_lock_irq(&phba->hbalock); 6232 ras_fwlog->state = INACTIVE; 6233 spin_unlock_irq(&phba->hbalock); 6234 6235 /* Disable FW logging to host memory */ 6236 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6237 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6238 6239 /* Wait 10ms for firmware to stop using DMA buffer */ 6240 usleep_range(10 * 1000, 20 * 1000); 6241 } 6242 6243 /** 6244 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6245 * @phba: Pointer to HBA context object. 6246 * 6247 * This function is called to free memory allocated for RAS FW logging 6248 * support in the driver. 6249 **/ 6250 void 6251 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6252 { 6253 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6254 struct lpfc_dmabuf *dmabuf, *next; 6255 6256 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6257 list_for_each_entry_safe(dmabuf, next, 6258 &ras_fwlog->fwlog_buff_list, 6259 list) { 6260 list_del(&dmabuf->list); 6261 dma_free_coherent(&phba->pcidev->dev, 6262 LPFC_RAS_MAX_ENTRY_SIZE, 6263 dmabuf->virt, dmabuf->phys); 6264 kfree(dmabuf); 6265 } 6266 } 6267 6268 if (ras_fwlog->lwpd.virt) { 6269 dma_free_coherent(&phba->pcidev->dev, 6270 sizeof(uint32_t) * 2, 6271 ras_fwlog->lwpd.virt, 6272 ras_fwlog->lwpd.phys); 6273 ras_fwlog->lwpd.virt = NULL; 6274 } 6275 6276 spin_lock_irq(&phba->hbalock); 6277 ras_fwlog->state = INACTIVE; 6278 spin_unlock_irq(&phba->hbalock); 6279 } 6280 6281 /** 6282 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6283 * @phba: Pointer to HBA context object. 6284 * @fwlog_buff_count: Count of buffers to be created. 6285 * 6286 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6287 * to update FW log is posted to the adapter. 6288 * Buffer count is calculated based on module param ras_fwlog_buffsize 6289 * Size of each buffer posted to FW is 64K. 6290 **/ 6291 6292 static int 6293 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6294 uint32_t fwlog_buff_count) 6295 { 6296 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6297 struct lpfc_dmabuf *dmabuf; 6298 int rc = 0, i = 0; 6299 6300 /* Initialize List */ 6301 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6302 6303 /* Allocate memory for the LWPD */ 6304 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6305 sizeof(uint32_t) * 2, 6306 &ras_fwlog->lwpd.phys, 6307 GFP_KERNEL); 6308 if (!ras_fwlog->lwpd.virt) { 6309 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6310 "6185 LWPD Memory Alloc Failed\n"); 6311 6312 return -ENOMEM; 6313 } 6314 6315 ras_fwlog->fw_buffcount = fwlog_buff_count; 6316 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6317 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6318 GFP_KERNEL); 6319 if (!dmabuf) { 6320 rc = -ENOMEM; 6321 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6322 "6186 Memory Alloc failed FW logging"); 6323 goto free_mem; 6324 } 6325 6326 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6327 LPFC_RAS_MAX_ENTRY_SIZE, 6328 &dmabuf->phys, GFP_KERNEL); 6329 if (!dmabuf->virt) { 6330 kfree(dmabuf); 6331 rc = -ENOMEM; 6332 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6333 "6187 DMA Alloc Failed FW logging"); 6334 goto free_mem; 6335 } 6336 dmabuf->buffer_tag = i; 6337 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6338 } 6339 6340 free_mem: 6341 if (rc) 6342 lpfc_sli4_ras_dma_free(phba); 6343 6344 return rc; 6345 } 6346 6347 /** 6348 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6349 * @phba: pointer to lpfc hba data structure. 6350 * @pmboxq: pointer to the driver internal queue element for mailbox command. 6351 * 6352 * Completion handler for driver's RAS MBX command to the device. 6353 **/ 6354 static void 6355 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6356 { 6357 MAILBOX_t *mb; 6358 union lpfc_sli4_cfg_shdr *shdr; 6359 uint32_t shdr_status, shdr_add_status; 6360 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6361 6362 mb = &pmb->u.mb; 6363 6364 shdr = (union lpfc_sli4_cfg_shdr *) 6365 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6366 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6367 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6368 6369 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6370 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 6371 "6188 FW LOG mailbox " 6372 "completed with status x%x add_status x%x," 6373 " mbx status x%x\n", 6374 shdr_status, shdr_add_status, mb->mbxStatus); 6375 6376 ras_fwlog->ras_hwsupport = false; 6377 goto disable_ras; 6378 } 6379 6380 spin_lock_irq(&phba->hbalock); 6381 ras_fwlog->state = ACTIVE; 6382 spin_unlock_irq(&phba->hbalock); 6383 mempool_free(pmb, phba->mbox_mem_pool); 6384 6385 return; 6386 6387 disable_ras: 6388 /* Free RAS DMA memory */ 6389 lpfc_sli4_ras_dma_free(phba); 6390 mempool_free(pmb, phba->mbox_mem_pool); 6391 } 6392 6393 /** 6394 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 6395 * @phba: pointer to lpfc hba data structure. 6396 * @fwlog_level: Logging verbosity level. 6397 * @fwlog_enable: Enable/Disable logging. 6398 * 6399 * Initialize memory and post mailbox command to enable FW logging in host 6400 * memory. 6401 **/ 6402 int 6403 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 6404 uint32_t fwlog_level, 6405 uint32_t fwlog_enable) 6406 { 6407 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6408 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 6409 struct lpfc_dmabuf *dmabuf; 6410 LPFC_MBOXQ_t *mbox; 6411 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 6412 int rc = 0; 6413 6414 spin_lock_irq(&phba->hbalock); 6415 ras_fwlog->state = INACTIVE; 6416 spin_unlock_irq(&phba->hbalock); 6417 6418 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 6419 phba->cfg_ras_fwlog_buffsize); 6420 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 6421 6422 /* 6423 * If re-enabling FW logging support use earlier allocated 6424 * DMA buffers while posting MBX command. 6425 **/ 6426 if (!ras_fwlog->lwpd.virt) { 6427 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 6428 if (rc) { 6429 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6430 "6189 FW Log Memory Allocation Failed"); 6431 return rc; 6432 } 6433 } 6434 6435 /* Setup Mailbox command */ 6436 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6437 if (!mbox) { 6438 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6439 "6190 RAS MBX Alloc Failed"); 6440 rc = -ENOMEM; 6441 goto mem_free; 6442 } 6443 6444 ras_fwlog->fw_loglevel = fwlog_level; 6445 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 6446 sizeof(struct lpfc_sli4_cfg_mhdr)); 6447 6448 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 6449 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 6450 len, LPFC_SLI4_MBX_EMBED); 6451 6452 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 6453 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 6454 fwlog_enable); 6455 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 6456 ras_fwlog->fw_loglevel); 6457 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 6458 ras_fwlog->fw_buffcount); 6459 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 6460 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 6461 6462 /* Update DMA buffer address */ 6463 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 6464 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 6465 6466 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 6467 putPaddrLow(dmabuf->phys); 6468 6469 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 6470 putPaddrHigh(dmabuf->phys); 6471 } 6472 6473 /* Update LPWD address */ 6474 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 6475 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 6476 6477 spin_lock_irq(&phba->hbalock); 6478 ras_fwlog->state = REG_INPROGRESS; 6479 spin_unlock_irq(&phba->hbalock); 6480 mbox->vport = phba->pport; 6481 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 6482 6483 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 6484 6485 if (rc == MBX_NOT_FINISHED) { 6486 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6487 "6191 FW-Log Mailbox failed. " 6488 "status %d mbxStatus : x%x", rc, 6489 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 6490 mempool_free(mbox, phba->mbox_mem_pool); 6491 rc = -EIO; 6492 goto mem_free; 6493 } else 6494 rc = 0; 6495 mem_free: 6496 if (rc) 6497 lpfc_sli4_ras_dma_free(phba); 6498 6499 return rc; 6500 } 6501 6502 /** 6503 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 6504 * @phba: Pointer to HBA context object. 6505 * 6506 * Check if RAS is supported on the adapter and initialize it. 6507 **/ 6508 void 6509 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 6510 { 6511 /* Check RAS FW Log needs to be enabled or not */ 6512 if (lpfc_check_fwlog_support(phba)) 6513 return; 6514 6515 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 6516 LPFC_RAS_ENABLE_LOGGING); 6517 } 6518 6519 /** 6520 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 6521 * @phba: Pointer to HBA context object. 6522 * 6523 * This function allocates all SLI4 resource identifiers. 6524 **/ 6525 int 6526 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 6527 { 6528 int i, rc, error = 0; 6529 uint16_t count, base; 6530 unsigned long longs; 6531 6532 if (!phba->sli4_hba.rpi_hdrs_in_use) 6533 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 6534 if (phba->sli4_hba.extents_in_use) { 6535 /* 6536 * The port supports resource extents. The XRI, VPI, VFI, RPI 6537 * resource extent count must be read and allocated before 6538 * provisioning the resource id arrays. 6539 */ 6540 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6541 LPFC_IDX_RSRC_RDY) { 6542 /* 6543 * Extent-based resources are set - the driver could 6544 * be in a port reset. Figure out if any corrective 6545 * actions need to be taken. 6546 */ 6547 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6548 LPFC_RSC_TYPE_FCOE_VFI); 6549 if (rc != 0) 6550 error++; 6551 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6552 LPFC_RSC_TYPE_FCOE_VPI); 6553 if (rc != 0) 6554 error++; 6555 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6556 LPFC_RSC_TYPE_FCOE_XRI); 6557 if (rc != 0) 6558 error++; 6559 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6560 LPFC_RSC_TYPE_FCOE_RPI); 6561 if (rc != 0) 6562 error++; 6563 6564 /* 6565 * It's possible that the number of resources 6566 * provided to this port instance changed between 6567 * resets. Detect this condition and reallocate 6568 * resources. Otherwise, there is no action. 6569 */ 6570 if (error) { 6571 lpfc_printf_log(phba, KERN_INFO, 6572 LOG_MBOX | LOG_INIT, 6573 "2931 Detected extent resource " 6574 "change. Reallocating all " 6575 "extents.\n"); 6576 rc = lpfc_sli4_dealloc_extent(phba, 6577 LPFC_RSC_TYPE_FCOE_VFI); 6578 rc = lpfc_sli4_dealloc_extent(phba, 6579 LPFC_RSC_TYPE_FCOE_VPI); 6580 rc = lpfc_sli4_dealloc_extent(phba, 6581 LPFC_RSC_TYPE_FCOE_XRI); 6582 rc = lpfc_sli4_dealloc_extent(phba, 6583 LPFC_RSC_TYPE_FCOE_RPI); 6584 } else 6585 return 0; 6586 } 6587 6588 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6589 if (unlikely(rc)) 6590 goto err_exit; 6591 6592 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6593 if (unlikely(rc)) 6594 goto err_exit; 6595 6596 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6597 if (unlikely(rc)) 6598 goto err_exit; 6599 6600 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6601 if (unlikely(rc)) 6602 goto err_exit; 6603 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6604 LPFC_IDX_RSRC_RDY); 6605 return rc; 6606 } else { 6607 /* 6608 * The port does not support resource extents. The XRI, VPI, 6609 * VFI, RPI resource ids were determined from READ_CONFIG. 6610 * Just allocate the bitmasks and provision the resource id 6611 * arrays. If a port reset is active, the resources don't 6612 * need any action - just exit. 6613 */ 6614 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6615 LPFC_IDX_RSRC_RDY) { 6616 lpfc_sli4_dealloc_resource_identifiers(phba); 6617 lpfc_sli4_remove_rpis(phba); 6618 } 6619 /* RPIs. */ 6620 count = phba->sli4_hba.max_cfg_param.max_rpi; 6621 if (count <= 0) { 6622 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6623 "3279 Invalid provisioning of " 6624 "rpi:%d\n", count); 6625 rc = -EINVAL; 6626 goto err_exit; 6627 } 6628 base = phba->sli4_hba.max_cfg_param.rpi_base; 6629 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6630 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6631 sizeof(unsigned long), 6632 GFP_KERNEL); 6633 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6634 rc = -ENOMEM; 6635 goto err_exit; 6636 } 6637 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 6638 GFP_KERNEL); 6639 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6640 rc = -ENOMEM; 6641 goto free_rpi_bmask; 6642 } 6643 6644 for (i = 0; i < count; i++) 6645 phba->sli4_hba.rpi_ids[i] = base + i; 6646 6647 /* VPIs. */ 6648 count = phba->sli4_hba.max_cfg_param.max_vpi; 6649 if (count <= 0) { 6650 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6651 "3280 Invalid provisioning of " 6652 "vpi:%d\n", count); 6653 rc = -EINVAL; 6654 goto free_rpi_ids; 6655 } 6656 base = phba->sli4_hba.max_cfg_param.vpi_base; 6657 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6658 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6659 GFP_KERNEL); 6660 if (unlikely(!phba->vpi_bmask)) { 6661 rc = -ENOMEM; 6662 goto free_rpi_ids; 6663 } 6664 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 6665 GFP_KERNEL); 6666 if (unlikely(!phba->vpi_ids)) { 6667 rc = -ENOMEM; 6668 goto free_vpi_bmask; 6669 } 6670 6671 for (i = 0; i < count; i++) 6672 phba->vpi_ids[i] = base + i; 6673 6674 /* XRIs. */ 6675 count = phba->sli4_hba.max_cfg_param.max_xri; 6676 if (count <= 0) { 6677 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6678 "3281 Invalid provisioning of " 6679 "xri:%d\n", count); 6680 rc = -EINVAL; 6681 goto free_vpi_ids; 6682 } 6683 base = phba->sli4_hba.max_cfg_param.xri_base; 6684 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6685 phba->sli4_hba.xri_bmask = kcalloc(longs, 6686 sizeof(unsigned long), 6687 GFP_KERNEL); 6688 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6689 rc = -ENOMEM; 6690 goto free_vpi_ids; 6691 } 6692 phba->sli4_hba.max_cfg_param.xri_used = 0; 6693 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 6694 GFP_KERNEL); 6695 if (unlikely(!phba->sli4_hba.xri_ids)) { 6696 rc = -ENOMEM; 6697 goto free_xri_bmask; 6698 } 6699 6700 for (i = 0; i < count; i++) 6701 phba->sli4_hba.xri_ids[i] = base + i; 6702 6703 /* VFIs. */ 6704 count = phba->sli4_hba.max_cfg_param.max_vfi; 6705 if (count <= 0) { 6706 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6707 "3282 Invalid provisioning of " 6708 "vfi:%d\n", count); 6709 rc = -EINVAL; 6710 goto free_xri_ids; 6711 } 6712 base = phba->sli4_hba.max_cfg_param.vfi_base; 6713 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6714 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6715 sizeof(unsigned long), 6716 GFP_KERNEL); 6717 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6718 rc = -ENOMEM; 6719 goto free_xri_ids; 6720 } 6721 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 6722 GFP_KERNEL); 6723 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6724 rc = -ENOMEM; 6725 goto free_vfi_bmask; 6726 } 6727 6728 for (i = 0; i < count; i++) 6729 phba->sli4_hba.vfi_ids[i] = base + i; 6730 6731 /* 6732 * Mark all resources ready. An HBA reset doesn't need 6733 * to reset the initialization. 6734 */ 6735 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6736 LPFC_IDX_RSRC_RDY); 6737 return 0; 6738 } 6739 6740 free_vfi_bmask: 6741 kfree(phba->sli4_hba.vfi_bmask); 6742 phba->sli4_hba.vfi_bmask = NULL; 6743 free_xri_ids: 6744 kfree(phba->sli4_hba.xri_ids); 6745 phba->sli4_hba.xri_ids = NULL; 6746 free_xri_bmask: 6747 kfree(phba->sli4_hba.xri_bmask); 6748 phba->sli4_hba.xri_bmask = NULL; 6749 free_vpi_ids: 6750 kfree(phba->vpi_ids); 6751 phba->vpi_ids = NULL; 6752 free_vpi_bmask: 6753 kfree(phba->vpi_bmask); 6754 phba->vpi_bmask = NULL; 6755 free_rpi_ids: 6756 kfree(phba->sli4_hba.rpi_ids); 6757 phba->sli4_hba.rpi_ids = NULL; 6758 free_rpi_bmask: 6759 kfree(phba->sli4_hba.rpi_bmask); 6760 phba->sli4_hba.rpi_bmask = NULL; 6761 err_exit: 6762 return rc; 6763 } 6764 6765 /** 6766 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 6767 * @phba: Pointer to HBA context object. 6768 * 6769 * This function allocates the number of elements for the specified 6770 * resource type. 6771 **/ 6772 int 6773 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 6774 { 6775 if (phba->sli4_hba.extents_in_use) { 6776 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6777 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6778 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6779 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6780 } else { 6781 kfree(phba->vpi_bmask); 6782 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6783 kfree(phba->vpi_ids); 6784 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6785 kfree(phba->sli4_hba.xri_bmask); 6786 kfree(phba->sli4_hba.xri_ids); 6787 kfree(phba->sli4_hba.vfi_bmask); 6788 kfree(phba->sli4_hba.vfi_ids); 6789 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6790 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6791 } 6792 6793 return 0; 6794 } 6795 6796 /** 6797 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 6798 * @phba: Pointer to HBA context object. 6799 * @type: The resource extent type. 6800 * @extnt_count: buffer to hold port extent count response 6801 * @extnt_size: buffer to hold port extent size response. 6802 * 6803 * This function calls the port to read the host allocated extents 6804 * for a particular type. 6805 **/ 6806 int 6807 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 6808 uint16_t *extnt_cnt, uint16_t *extnt_size) 6809 { 6810 bool emb; 6811 int rc = 0; 6812 uint16_t curr_blks = 0; 6813 uint32_t req_len, emb_len; 6814 uint32_t alloc_len, mbox_tmo; 6815 struct list_head *blk_list_head; 6816 struct lpfc_rsrc_blks *rsrc_blk; 6817 LPFC_MBOXQ_t *mbox; 6818 void *virtaddr = NULL; 6819 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6820 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6821 union lpfc_sli4_cfg_shdr *shdr; 6822 6823 switch (type) { 6824 case LPFC_RSC_TYPE_FCOE_VPI: 6825 blk_list_head = &phba->lpfc_vpi_blk_list; 6826 break; 6827 case LPFC_RSC_TYPE_FCOE_XRI: 6828 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 6829 break; 6830 case LPFC_RSC_TYPE_FCOE_VFI: 6831 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 6832 break; 6833 case LPFC_RSC_TYPE_FCOE_RPI: 6834 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 6835 break; 6836 default: 6837 return -EIO; 6838 } 6839 6840 /* Count the number of extents currently allocatd for this type. */ 6841 list_for_each_entry(rsrc_blk, blk_list_head, list) { 6842 if (curr_blks == 0) { 6843 /* 6844 * The GET_ALLOCATED mailbox does not return the size, 6845 * just the count. The size should be just the size 6846 * stored in the current allocated block and all sizes 6847 * for an extent type are the same so set the return 6848 * value now. 6849 */ 6850 *extnt_size = rsrc_blk->rsrc_size; 6851 } 6852 curr_blks++; 6853 } 6854 6855 /* 6856 * Calculate the size of an embedded mailbox. The uint32_t 6857 * accounts for extents-specific word. 6858 */ 6859 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6860 sizeof(uint32_t); 6861 6862 /* 6863 * Presume the allocation and response will fit into an embedded 6864 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6865 */ 6866 emb = LPFC_SLI4_MBX_EMBED; 6867 req_len = emb_len; 6868 if (req_len > emb_len) { 6869 req_len = curr_blks * sizeof(uint16_t) + 6870 sizeof(union lpfc_sli4_cfg_shdr) + 6871 sizeof(uint32_t); 6872 emb = LPFC_SLI4_MBX_NEMBED; 6873 } 6874 6875 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6876 if (!mbox) 6877 return -ENOMEM; 6878 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 6879 6880 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6881 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 6882 req_len, emb); 6883 if (alloc_len < req_len) { 6884 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6885 "2983 Allocated DMA memory size (x%x) is " 6886 "less than the requested DMA memory " 6887 "size (x%x)\n", alloc_len, req_len); 6888 rc = -ENOMEM; 6889 goto err_exit; 6890 } 6891 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 6892 if (unlikely(rc)) { 6893 rc = -EIO; 6894 goto err_exit; 6895 } 6896 6897 if (!phba->sli4_hba.intr_enable) 6898 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6899 else { 6900 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6901 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6902 } 6903 6904 if (unlikely(rc)) { 6905 rc = -EIO; 6906 goto err_exit; 6907 } 6908 6909 /* 6910 * Figure out where the response is located. Then get local pointers 6911 * to the response data. The port does not guarantee to respond to 6912 * all extents counts request so update the local variable with the 6913 * allocated count from the port. 6914 */ 6915 if (emb == LPFC_SLI4_MBX_EMBED) { 6916 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6917 shdr = &rsrc_ext->header.cfg_shdr; 6918 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6919 } else { 6920 virtaddr = mbox->sge_array->addr[0]; 6921 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6922 shdr = &n_rsrc->cfg_shdr; 6923 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6924 } 6925 6926 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 6927 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 6928 "2984 Failed to read allocated resources " 6929 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 6930 type, 6931 bf_get(lpfc_mbox_hdr_status, &shdr->response), 6932 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 6933 rc = -EIO; 6934 goto err_exit; 6935 } 6936 err_exit: 6937 lpfc_sli4_mbox_cmd_free(phba, mbox); 6938 return rc; 6939 } 6940 6941 /** 6942 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 6943 * @phba: pointer to lpfc hba data structure. 6944 * @pring: Pointer to driver SLI ring object. 6945 * @sgl_list: linked link of sgl buffers to post 6946 * @cnt: number of linked list buffers 6947 * 6948 * This routine walks the list of buffers that have been allocated and 6949 * repost them to the port by using SGL block post. This is needed after a 6950 * pci_function_reset/warm_start or start. It attempts to construct blocks 6951 * of buffer sgls which contains contiguous xris and uses the non-embedded 6952 * SGL block post mailbox commands to post them to the port. For single 6953 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 6954 * mailbox command for posting. 6955 * 6956 * Returns: 0 = success, non-zero failure. 6957 **/ 6958 static int 6959 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 6960 struct list_head *sgl_list, int cnt) 6961 { 6962 struct lpfc_sglq *sglq_entry = NULL; 6963 struct lpfc_sglq *sglq_entry_next = NULL; 6964 struct lpfc_sglq *sglq_entry_first = NULL; 6965 int status, total_cnt; 6966 int post_cnt = 0, num_posted = 0, block_cnt = 0; 6967 int last_xritag = NO_XRI; 6968 LIST_HEAD(prep_sgl_list); 6969 LIST_HEAD(blck_sgl_list); 6970 LIST_HEAD(allc_sgl_list); 6971 LIST_HEAD(post_sgl_list); 6972 LIST_HEAD(free_sgl_list); 6973 6974 spin_lock_irq(&phba->hbalock); 6975 spin_lock(&phba->sli4_hba.sgl_list_lock); 6976 list_splice_init(sgl_list, &allc_sgl_list); 6977 spin_unlock(&phba->sli4_hba.sgl_list_lock); 6978 spin_unlock_irq(&phba->hbalock); 6979 6980 total_cnt = cnt; 6981 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 6982 &allc_sgl_list, list) { 6983 list_del_init(&sglq_entry->list); 6984 block_cnt++; 6985 if ((last_xritag != NO_XRI) && 6986 (sglq_entry->sli4_xritag != last_xritag + 1)) { 6987 /* a hole in xri block, form a sgl posting block */ 6988 list_splice_init(&prep_sgl_list, &blck_sgl_list); 6989 post_cnt = block_cnt - 1; 6990 /* prepare list for next posting block */ 6991 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6992 block_cnt = 1; 6993 } else { 6994 /* prepare list for next posting block */ 6995 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6996 /* enough sgls for non-embed sgl mbox command */ 6997 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 6998 list_splice_init(&prep_sgl_list, 6999 &blck_sgl_list); 7000 post_cnt = block_cnt; 7001 block_cnt = 0; 7002 } 7003 } 7004 num_posted++; 7005 7006 /* keep track of last sgl's xritag */ 7007 last_xritag = sglq_entry->sli4_xritag; 7008 7009 /* end of repost sgl list condition for buffers */ 7010 if (num_posted == total_cnt) { 7011 if (post_cnt == 0) { 7012 list_splice_init(&prep_sgl_list, 7013 &blck_sgl_list); 7014 post_cnt = block_cnt; 7015 } else if (block_cnt == 1) { 7016 status = lpfc_sli4_post_sgl(phba, 7017 sglq_entry->phys, 0, 7018 sglq_entry->sli4_xritag); 7019 if (!status) { 7020 /* successful, put sgl to posted list */ 7021 list_add_tail(&sglq_entry->list, 7022 &post_sgl_list); 7023 } else { 7024 /* Failure, put sgl to free list */ 7025 lpfc_printf_log(phba, KERN_WARNING, 7026 LOG_SLI, 7027 "3159 Failed to post " 7028 "sgl, xritag:x%x\n", 7029 sglq_entry->sli4_xritag); 7030 list_add_tail(&sglq_entry->list, 7031 &free_sgl_list); 7032 total_cnt--; 7033 } 7034 } 7035 } 7036 7037 /* continue until a nembed page worth of sgls */ 7038 if (post_cnt == 0) 7039 continue; 7040 7041 /* post the buffer list sgls as a block */ 7042 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7043 post_cnt); 7044 7045 if (!status) { 7046 /* success, put sgl list to posted sgl list */ 7047 list_splice_init(&blck_sgl_list, &post_sgl_list); 7048 } else { 7049 /* Failure, put sgl list to free sgl list */ 7050 sglq_entry_first = list_first_entry(&blck_sgl_list, 7051 struct lpfc_sglq, 7052 list); 7053 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7054 "3160 Failed to post sgl-list, " 7055 "xritag:x%x-x%x\n", 7056 sglq_entry_first->sli4_xritag, 7057 (sglq_entry_first->sli4_xritag + 7058 post_cnt - 1)); 7059 list_splice_init(&blck_sgl_list, &free_sgl_list); 7060 total_cnt -= post_cnt; 7061 } 7062 7063 /* don't reset xirtag due to hole in xri block */ 7064 if (block_cnt == 0) 7065 last_xritag = NO_XRI; 7066 7067 /* reset sgl post count for next round of posting */ 7068 post_cnt = 0; 7069 } 7070 7071 /* free the sgls failed to post */ 7072 lpfc_free_sgl_list(phba, &free_sgl_list); 7073 7074 /* push sgls posted to the available list */ 7075 if (!list_empty(&post_sgl_list)) { 7076 spin_lock_irq(&phba->hbalock); 7077 spin_lock(&phba->sli4_hba.sgl_list_lock); 7078 list_splice_init(&post_sgl_list, sgl_list); 7079 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7080 spin_unlock_irq(&phba->hbalock); 7081 } else { 7082 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7083 "3161 Failure to post sgl to port.\n"); 7084 return -EIO; 7085 } 7086 7087 /* return the number of XRIs actually posted */ 7088 return total_cnt; 7089 } 7090 7091 /** 7092 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7093 * @phba: pointer to lpfc hba data structure. 7094 * 7095 * This routine walks the list of nvme buffers that have been allocated and 7096 * repost them to the port by using SGL block post. This is needed after a 7097 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7098 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7099 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7100 * 7101 * Returns: 0 = success, non-zero failure. 7102 **/ 7103 static int 7104 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7105 { 7106 LIST_HEAD(post_nblist); 7107 int num_posted, rc = 0; 7108 7109 /* get all NVME buffers need to repost to a local list */ 7110 lpfc_io_buf_flush(phba, &post_nblist); 7111 7112 /* post the list of nvme buffer sgls to port if available */ 7113 if (!list_empty(&post_nblist)) { 7114 num_posted = lpfc_sli4_post_io_sgl_list( 7115 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7116 /* failed to post any nvme buffer, return error */ 7117 if (num_posted == 0) 7118 rc = -EIO; 7119 } 7120 return rc; 7121 } 7122 7123 static void 7124 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7125 { 7126 uint32_t len; 7127 7128 len = sizeof(struct lpfc_mbx_set_host_data) - 7129 sizeof(struct lpfc_sli4_cfg_mhdr); 7130 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7131 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7132 LPFC_SLI4_MBX_EMBED); 7133 7134 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7135 mbox->u.mqe.un.set_host_data.param_len = 7136 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7137 snprintf(mbox->u.mqe.un.set_host_data.data, 7138 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7139 "Linux %s v"LPFC_DRIVER_VERSION, 7140 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7141 } 7142 7143 int 7144 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7145 struct lpfc_queue *drq, int count, int idx) 7146 { 7147 int rc, i; 7148 struct lpfc_rqe hrqe; 7149 struct lpfc_rqe drqe; 7150 struct lpfc_rqb *rqbp; 7151 unsigned long flags; 7152 struct rqb_dmabuf *rqb_buffer; 7153 LIST_HEAD(rqb_buf_list); 7154 7155 spin_lock_irqsave(&phba->hbalock, flags); 7156 rqbp = hrq->rqbp; 7157 for (i = 0; i < count; i++) { 7158 /* IF RQ is already full, don't bother */ 7159 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) 7160 break; 7161 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7162 if (!rqb_buffer) 7163 break; 7164 rqb_buffer->hrq = hrq; 7165 rqb_buffer->drq = drq; 7166 rqb_buffer->idx = idx; 7167 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7168 } 7169 while (!list_empty(&rqb_buf_list)) { 7170 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7171 hbuf.list); 7172 7173 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7174 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7175 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7176 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7177 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7178 if (rc < 0) { 7179 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7180 "6421 Cannot post to HRQ %d: %x %x %x " 7181 "DRQ %x %x\n", 7182 hrq->queue_id, 7183 hrq->host_index, 7184 hrq->hba_index, 7185 hrq->entry_count, 7186 drq->host_index, 7187 drq->hba_index); 7188 rqbp->rqb_free_buffer(phba, rqb_buffer); 7189 } else { 7190 list_add_tail(&rqb_buffer->hbuf.list, 7191 &rqbp->rqb_buffer_list); 7192 rqbp->buffer_count++; 7193 } 7194 } 7195 spin_unlock_irqrestore(&phba->hbalock, flags); 7196 return 1; 7197 } 7198 7199 /** 7200 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 7201 * @phba: Pointer to HBA context object. 7202 * 7203 * This function is the main SLI4 device initialization PCI function. This 7204 * function is called by the HBA initialization code, HBA reset code and 7205 * HBA error attention handler code. Caller is not required to hold any 7206 * locks. 7207 **/ 7208 int 7209 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 7210 { 7211 int rc, i, cnt, len, dd; 7212 LPFC_MBOXQ_t *mboxq; 7213 struct lpfc_mqe *mqe; 7214 uint8_t *vpd; 7215 uint32_t vpd_size; 7216 uint32_t ftr_rsp = 0; 7217 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 7218 struct lpfc_vport *vport = phba->pport; 7219 struct lpfc_dmabuf *mp; 7220 struct lpfc_rqb *rqbp; 7221 7222 /* Perform a PCI function reset to start from clean */ 7223 rc = lpfc_pci_function_reset(phba); 7224 if (unlikely(rc)) 7225 return -ENODEV; 7226 7227 /* Check the HBA Host Status Register for readyness */ 7228 rc = lpfc_sli4_post_status_check(phba); 7229 if (unlikely(rc)) 7230 return -ENODEV; 7231 else { 7232 spin_lock_irq(&phba->hbalock); 7233 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 7234 spin_unlock_irq(&phba->hbalock); 7235 } 7236 7237 /* 7238 * Allocate a single mailbox container for initializing the 7239 * port. 7240 */ 7241 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7242 if (!mboxq) 7243 return -ENOMEM; 7244 7245 /* Issue READ_REV to collect vpd and FW information. */ 7246 vpd_size = SLI4_PAGE_SIZE; 7247 vpd = kzalloc(vpd_size, GFP_KERNEL); 7248 if (!vpd) { 7249 rc = -ENOMEM; 7250 goto out_free_mbox; 7251 } 7252 7253 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 7254 if (unlikely(rc)) { 7255 kfree(vpd); 7256 goto out_free_mbox; 7257 } 7258 7259 mqe = &mboxq->u.mqe; 7260 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 7261 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 7262 phba->hba_flag |= HBA_FCOE_MODE; 7263 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 7264 } else { 7265 phba->hba_flag &= ~HBA_FCOE_MODE; 7266 } 7267 7268 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 7269 LPFC_DCBX_CEE_MODE) 7270 phba->hba_flag |= HBA_FIP_SUPPORT; 7271 else 7272 phba->hba_flag &= ~HBA_FIP_SUPPORT; 7273 7274 phba->hba_flag &= ~HBA_IOQ_FLUSH; 7275 7276 if (phba->sli_rev != LPFC_SLI_REV4) { 7277 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7278 "0376 READ_REV Error. SLI Level %d " 7279 "FCoE enabled %d\n", 7280 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 7281 rc = -EIO; 7282 kfree(vpd); 7283 goto out_free_mbox; 7284 } 7285 7286 /* 7287 * Continue initialization with default values even if driver failed 7288 * to read FCoE param config regions, only read parameters if the 7289 * board is FCoE 7290 */ 7291 if (phba->hba_flag & HBA_FCOE_MODE && 7292 lpfc_sli4_read_fcoe_params(phba)) 7293 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 7294 "2570 Failed to read FCoE parameters\n"); 7295 7296 /* 7297 * Retrieve sli4 device physical port name, failure of doing it 7298 * is considered as non-fatal. 7299 */ 7300 rc = lpfc_sli4_retrieve_pport_name(phba); 7301 if (!rc) 7302 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7303 "3080 Successful retrieving SLI4 device " 7304 "physical port name: %s.\n", phba->Port); 7305 7306 rc = lpfc_sli4_get_ctl_attr(phba); 7307 if (!rc) 7308 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7309 "8351 Successful retrieving SLI4 device " 7310 "CTL ATTR\n"); 7311 7312 /* 7313 * Evaluate the read rev and vpd data. Populate the driver 7314 * state with the results. If this routine fails, the failure 7315 * is not fatal as the driver will use generic values. 7316 */ 7317 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 7318 if (unlikely(!rc)) { 7319 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7320 "0377 Error %d parsing vpd. " 7321 "Using defaults.\n", rc); 7322 rc = 0; 7323 } 7324 kfree(vpd); 7325 7326 /* Save information as VPD data */ 7327 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 7328 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 7329 7330 /* 7331 * This is because first G7 ASIC doesn't support the standard 7332 * 0x5a NVME cmd descriptor type/subtype 7333 */ 7334 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7335 LPFC_SLI_INTF_IF_TYPE_6) && 7336 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 7337 (phba->vpd.rev.smRev == 0) && 7338 (phba->cfg_nvme_embed_cmd == 1)) 7339 phba->cfg_nvme_embed_cmd = 0; 7340 7341 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 7342 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 7343 &mqe->un.read_rev); 7344 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 7345 &mqe->un.read_rev); 7346 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 7347 &mqe->un.read_rev); 7348 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 7349 &mqe->un.read_rev); 7350 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 7351 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 7352 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 7353 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 7354 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 7355 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 7356 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7357 "(%d):0380 READ_REV Status x%x " 7358 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 7359 mboxq->vport ? mboxq->vport->vpi : 0, 7360 bf_get(lpfc_mqe_status, mqe), 7361 phba->vpd.rev.opFwName, 7362 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 7363 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 7364 7365 /* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3) */ 7366 rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3); 7367 if (phba->pport->cfg_lun_queue_depth > rc) { 7368 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7369 "3362 LUN queue depth changed from %d to %d\n", 7370 phba->pport->cfg_lun_queue_depth, rc); 7371 phba->pport->cfg_lun_queue_depth = rc; 7372 } 7373 7374 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7375 LPFC_SLI_INTF_IF_TYPE_0) { 7376 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 7377 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7378 if (rc == MBX_SUCCESS) { 7379 phba->hba_flag |= HBA_RECOVERABLE_UE; 7380 /* Set 1Sec interval to detect UE */ 7381 phba->eratt_poll_interval = 1; 7382 phba->sli4_hba.ue_to_sr = bf_get( 7383 lpfc_mbx_set_feature_UESR, 7384 &mboxq->u.mqe.un.set_feature); 7385 phba->sli4_hba.ue_to_rp = bf_get( 7386 lpfc_mbx_set_feature_UERP, 7387 &mboxq->u.mqe.un.set_feature); 7388 } 7389 } 7390 7391 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 7392 /* Enable MDS Diagnostics only if the SLI Port supports it */ 7393 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 7394 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7395 if (rc != MBX_SUCCESS) 7396 phba->mds_diags_support = 0; 7397 } 7398 7399 /* 7400 * Discover the port's supported feature set and match it against the 7401 * hosts requests. 7402 */ 7403 lpfc_request_features(phba, mboxq); 7404 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7405 if (unlikely(rc)) { 7406 rc = -EIO; 7407 goto out_free_mbox; 7408 } 7409 7410 /* 7411 * The port must support FCP initiator mode as this is the 7412 * only mode running in the host. 7413 */ 7414 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 7415 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7416 "0378 No support for fcpi mode.\n"); 7417 ftr_rsp++; 7418 } 7419 7420 /* Performance Hints are ONLY for FCoE */ 7421 if (phba->hba_flag & HBA_FCOE_MODE) { 7422 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 7423 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 7424 else 7425 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 7426 } 7427 7428 /* 7429 * If the port cannot support the host's requested features 7430 * then turn off the global config parameters to disable the 7431 * feature in the driver. This is not a fatal error. 7432 */ 7433 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 7434 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 7435 phba->cfg_enable_bg = 0; 7436 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 7437 ftr_rsp++; 7438 } 7439 } 7440 7441 if (phba->max_vpi && phba->cfg_enable_npiv && 7442 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7443 ftr_rsp++; 7444 7445 if (ftr_rsp) { 7446 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7447 "0379 Feature Mismatch Data: x%08x %08x " 7448 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 7449 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 7450 phba->cfg_enable_npiv, phba->max_vpi); 7451 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 7452 phba->cfg_enable_bg = 0; 7453 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7454 phba->cfg_enable_npiv = 0; 7455 } 7456 7457 /* These SLI3 features are assumed in SLI4 */ 7458 spin_lock_irq(&phba->hbalock); 7459 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 7460 spin_unlock_irq(&phba->hbalock); 7461 7462 /* Always try to enable dual dump feature if we can */ 7463 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 7464 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7465 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 7466 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 7467 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_INIT, 7468 "6448 Dual Dump is enabled\n"); 7469 else 7470 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 7471 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 7472 "rc:x%x dd:x%x\n", 7473 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7474 lpfc_sli_config_mbox_subsys_get( 7475 phba, mboxq), 7476 lpfc_sli_config_mbox_opcode_get( 7477 phba, mboxq), 7478 rc, dd); 7479 /* 7480 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 7481 * calls depends on these resources to complete port setup. 7482 */ 7483 rc = lpfc_sli4_alloc_resource_identifiers(phba); 7484 if (rc) { 7485 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7486 "2920 Failed to alloc Resource IDs " 7487 "rc = x%x\n", rc); 7488 goto out_free_mbox; 7489 } 7490 7491 lpfc_set_host_data(phba, mboxq); 7492 7493 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7494 if (rc) { 7495 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7496 "2134 Failed to set host os driver version %x", 7497 rc); 7498 } 7499 7500 /* Read the port's service parameters. */ 7501 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 7502 if (rc) { 7503 phba->link_state = LPFC_HBA_ERROR; 7504 rc = -ENOMEM; 7505 goto out_free_mbox; 7506 } 7507 7508 mboxq->vport = vport; 7509 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7510 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 7511 if (rc == MBX_SUCCESS) { 7512 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 7513 rc = 0; 7514 } 7515 7516 /* 7517 * This memory was allocated by the lpfc_read_sparam routine. Release 7518 * it to the mbuf pool. 7519 */ 7520 lpfc_mbuf_free(phba, mp->virt, mp->phys); 7521 kfree(mp); 7522 mboxq->ctx_buf = NULL; 7523 if (unlikely(rc)) { 7524 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7525 "0382 READ_SPARAM command failed " 7526 "status %d, mbxStatus x%x\n", 7527 rc, bf_get(lpfc_mqe_status, mqe)); 7528 phba->link_state = LPFC_HBA_ERROR; 7529 rc = -EIO; 7530 goto out_free_mbox; 7531 } 7532 7533 lpfc_update_vport_wwn(vport); 7534 7535 /* Update the fc_host data structures with new wwn. */ 7536 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 7537 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 7538 7539 /* Create all the SLI4 queues */ 7540 rc = lpfc_sli4_queue_create(phba); 7541 if (rc) { 7542 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7543 "3089 Failed to allocate queues\n"); 7544 rc = -ENODEV; 7545 goto out_free_mbox; 7546 } 7547 /* Set up all the queues to the device */ 7548 rc = lpfc_sli4_queue_setup(phba); 7549 if (unlikely(rc)) { 7550 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7551 "0381 Error %d during queue setup.\n ", rc); 7552 goto out_stop_timers; 7553 } 7554 /* Initialize the driver internal SLI layer lists. */ 7555 lpfc_sli4_setup(phba); 7556 lpfc_sli4_queue_init(phba); 7557 7558 /* update host els xri-sgl sizes and mappings */ 7559 rc = lpfc_sli4_els_sgl_update(phba); 7560 if (unlikely(rc)) { 7561 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7562 "1400 Failed to update xri-sgl size and " 7563 "mapping: %d\n", rc); 7564 goto out_destroy_queue; 7565 } 7566 7567 /* register the els sgl pool to the port */ 7568 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 7569 phba->sli4_hba.els_xri_cnt); 7570 if (unlikely(rc < 0)) { 7571 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7572 "0582 Error %d during els sgl post " 7573 "operation\n", rc); 7574 rc = -ENODEV; 7575 goto out_destroy_queue; 7576 } 7577 phba->sli4_hba.els_xri_cnt = rc; 7578 7579 if (phba->nvmet_support) { 7580 /* update host nvmet xri-sgl sizes and mappings */ 7581 rc = lpfc_sli4_nvmet_sgl_update(phba); 7582 if (unlikely(rc)) { 7583 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7584 "6308 Failed to update nvmet-sgl size " 7585 "and mapping: %d\n", rc); 7586 goto out_destroy_queue; 7587 } 7588 7589 /* register the nvmet sgl pool to the port */ 7590 rc = lpfc_sli4_repost_sgl_list( 7591 phba, 7592 &phba->sli4_hba.lpfc_nvmet_sgl_list, 7593 phba->sli4_hba.nvmet_xri_cnt); 7594 if (unlikely(rc < 0)) { 7595 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7596 "3117 Error %d during nvmet " 7597 "sgl post\n", rc); 7598 rc = -ENODEV; 7599 goto out_destroy_queue; 7600 } 7601 phba->sli4_hba.nvmet_xri_cnt = rc; 7602 7603 /* We allocate an iocbq for every receive context SGL. 7604 * The additional allocation is for abort and ls handling. 7605 */ 7606 cnt = phba->sli4_hba.nvmet_xri_cnt + 7607 phba->sli4_hba.max_cfg_param.max_xri; 7608 } else { 7609 /* update host common xri-sgl sizes and mappings */ 7610 rc = lpfc_sli4_io_sgl_update(phba); 7611 if (unlikely(rc)) { 7612 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7613 "6082 Failed to update nvme-sgl size " 7614 "and mapping: %d\n", rc); 7615 goto out_destroy_queue; 7616 } 7617 7618 /* register the allocated common sgl pool to the port */ 7619 rc = lpfc_sli4_repost_io_sgl_list(phba); 7620 if (unlikely(rc)) { 7621 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7622 "6116 Error %d during nvme sgl post " 7623 "operation\n", rc); 7624 /* Some NVME buffers were moved to abort nvme list */ 7625 /* A pci function reset will repost them */ 7626 rc = -ENODEV; 7627 goto out_destroy_queue; 7628 } 7629 /* Each lpfc_io_buf job structure has an iocbq element. 7630 * This cnt provides for abort, els, ct and ls requests. 7631 */ 7632 cnt = phba->sli4_hba.max_cfg_param.max_xri; 7633 } 7634 7635 if (!phba->sli.iocbq_lookup) { 7636 /* Initialize and populate the iocb list per host */ 7637 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7638 "2821 initialize iocb list with %d entries\n", 7639 cnt); 7640 rc = lpfc_init_iocb_list(phba, cnt); 7641 if (rc) { 7642 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7643 "1413 Failed to init iocb list.\n"); 7644 goto out_destroy_queue; 7645 } 7646 } 7647 7648 if (phba->nvmet_support) 7649 lpfc_nvmet_create_targetport(phba); 7650 7651 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 7652 /* Post initial buffers to all RQs created */ 7653 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 7654 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 7655 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 7656 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 7657 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 7658 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 7659 rqbp->buffer_count = 0; 7660 7661 lpfc_post_rq_buffer( 7662 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 7663 phba->sli4_hba.nvmet_mrq_data[i], 7664 phba->cfg_nvmet_mrq_post, i); 7665 } 7666 } 7667 7668 /* Post the rpi header region to the device. */ 7669 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 7670 if (unlikely(rc)) { 7671 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7672 "0393 Error %d during rpi post operation\n", 7673 rc); 7674 rc = -ENODEV; 7675 goto out_destroy_queue; 7676 } 7677 lpfc_sli4_node_prep(phba); 7678 7679 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 7680 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 7681 /* 7682 * The FC Port needs to register FCFI (index 0) 7683 */ 7684 lpfc_reg_fcfi(phba, mboxq); 7685 mboxq->vport = phba->pport; 7686 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7687 if (rc != MBX_SUCCESS) 7688 goto out_unset_queue; 7689 rc = 0; 7690 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 7691 &mboxq->u.mqe.un.reg_fcfi); 7692 } else { 7693 /* We are a NVME Target mode with MRQ > 1 */ 7694 7695 /* First register the FCFI */ 7696 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 7697 mboxq->vport = phba->pport; 7698 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7699 if (rc != MBX_SUCCESS) 7700 goto out_unset_queue; 7701 rc = 0; 7702 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 7703 &mboxq->u.mqe.un.reg_fcfi_mrq); 7704 7705 /* Next register the MRQs */ 7706 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 7707 mboxq->vport = phba->pport; 7708 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7709 if (rc != MBX_SUCCESS) 7710 goto out_unset_queue; 7711 rc = 0; 7712 } 7713 /* Check if the port is configured to be disabled */ 7714 lpfc_sli_read_link_ste(phba); 7715 } 7716 7717 /* Don't post more new bufs if repost already recovered 7718 * the nvme sgls. 7719 */ 7720 if (phba->nvmet_support == 0) { 7721 if (phba->sli4_hba.io_xri_cnt == 0) { 7722 len = lpfc_new_io_buf( 7723 phba, phba->sli4_hba.io_xri_max); 7724 if (len == 0) { 7725 rc = -ENOMEM; 7726 goto out_unset_queue; 7727 } 7728 7729 if (phba->cfg_xri_rebalancing) 7730 lpfc_create_multixri_pools(phba); 7731 } 7732 } else { 7733 phba->cfg_xri_rebalancing = 0; 7734 } 7735 7736 /* Allow asynchronous mailbox command to go through */ 7737 spin_lock_irq(&phba->hbalock); 7738 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7739 spin_unlock_irq(&phba->hbalock); 7740 7741 /* Post receive buffers to the device */ 7742 lpfc_sli4_rb_setup(phba); 7743 7744 /* Reset HBA FCF states after HBA reset */ 7745 phba->fcf.fcf_flag = 0; 7746 phba->fcf.current_rec.flag = 0; 7747 7748 /* Start the ELS watchdog timer */ 7749 mod_timer(&vport->els_tmofunc, 7750 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 7751 7752 /* Start heart beat timer */ 7753 mod_timer(&phba->hb_tmofunc, 7754 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 7755 phba->hb_outstanding = 0; 7756 phba->last_completion_time = jiffies; 7757 7758 /* start eq_delay heartbeat */ 7759 if (phba->cfg_auto_imax) 7760 queue_delayed_work(phba->wq, &phba->eq_delay_work, 7761 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 7762 7763 /* Start error attention (ERATT) polling timer */ 7764 mod_timer(&phba->eratt_poll, 7765 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 7766 7767 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 7768 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 7769 rc = pci_enable_pcie_error_reporting(phba->pcidev); 7770 if (!rc) { 7771 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7772 "2829 This device supports " 7773 "Advanced Error Reporting (AER)\n"); 7774 spin_lock_irq(&phba->hbalock); 7775 phba->hba_flag |= HBA_AER_ENABLED; 7776 spin_unlock_irq(&phba->hbalock); 7777 } else { 7778 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7779 "2830 This device does not support " 7780 "Advanced Error Reporting (AER)\n"); 7781 phba->cfg_aer_support = 0; 7782 } 7783 rc = 0; 7784 } 7785 7786 /* 7787 * The port is ready, set the host's link state to LINK_DOWN 7788 * in preparation for link interrupts. 7789 */ 7790 spin_lock_irq(&phba->hbalock); 7791 phba->link_state = LPFC_LINK_DOWN; 7792 7793 /* Check if physical ports are trunked */ 7794 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 7795 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 7796 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 7797 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 7798 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 7799 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 7800 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 7801 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 7802 spin_unlock_irq(&phba->hbalock); 7803 7804 /* Arm the CQs and then EQs on device */ 7805 lpfc_sli4_arm_cqeq_intr(phba); 7806 7807 /* Indicate device interrupt mode */ 7808 phba->sli4_hba.intr_enable = 1; 7809 7810 if (!(phba->hba_flag & HBA_FCOE_MODE) && 7811 (phba->hba_flag & LINK_DISABLED)) { 7812 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 7813 "3103 Adapter Link is disabled.\n"); 7814 lpfc_down_link(phba, mboxq); 7815 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7816 if (rc != MBX_SUCCESS) { 7817 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 7818 "3104 Adapter failed to issue " 7819 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 7820 goto out_io_buff_free; 7821 } 7822 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 7823 /* don't perform init_link on SLI4 FC port loopback test */ 7824 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 7825 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 7826 if (rc) 7827 goto out_io_buff_free; 7828 } 7829 } 7830 mempool_free(mboxq, phba->mbox_mem_pool); 7831 return rc; 7832 out_io_buff_free: 7833 /* Free allocated IO Buffers */ 7834 lpfc_io_free(phba); 7835 out_unset_queue: 7836 /* Unset all the queues set up in this routine when error out */ 7837 lpfc_sli4_queue_unset(phba); 7838 out_destroy_queue: 7839 lpfc_free_iocb_list(phba); 7840 lpfc_sli4_queue_destroy(phba); 7841 out_stop_timers: 7842 lpfc_stop_hba_timers(phba); 7843 out_free_mbox: 7844 mempool_free(mboxq, phba->mbox_mem_pool); 7845 return rc; 7846 } 7847 7848 /** 7849 * lpfc_mbox_timeout - Timeout call back function for mbox timer 7850 * @ptr: context object - pointer to hba structure. 7851 * 7852 * This is the callback function for mailbox timer. The mailbox 7853 * timer is armed when a new mailbox command is issued and the timer 7854 * is deleted when the mailbox complete. The function is called by 7855 * the kernel timer code when a mailbox does not complete within 7856 * expected time. This function wakes up the worker thread to 7857 * process the mailbox timeout and returns. All the processing is 7858 * done by the worker thread function lpfc_mbox_timeout_handler. 7859 **/ 7860 void 7861 lpfc_mbox_timeout(struct timer_list *t) 7862 { 7863 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 7864 unsigned long iflag; 7865 uint32_t tmo_posted; 7866 7867 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 7868 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 7869 if (!tmo_posted) 7870 phba->pport->work_port_events |= WORKER_MBOX_TMO; 7871 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 7872 7873 if (!tmo_posted) 7874 lpfc_worker_wake_up(phba); 7875 return; 7876 } 7877 7878 /** 7879 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 7880 * are pending 7881 * @phba: Pointer to HBA context object. 7882 * 7883 * This function checks if any mailbox completions are present on the mailbox 7884 * completion queue. 7885 **/ 7886 static bool 7887 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 7888 { 7889 7890 uint32_t idx; 7891 struct lpfc_queue *mcq; 7892 struct lpfc_mcqe *mcqe; 7893 bool pending_completions = false; 7894 uint8_t qe_valid; 7895 7896 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 7897 return false; 7898 7899 /* Check for completions on mailbox completion queue */ 7900 7901 mcq = phba->sli4_hba.mbx_cq; 7902 idx = mcq->hba_index; 7903 qe_valid = mcq->qe_valid; 7904 while (bf_get_le32(lpfc_cqe_valid, 7905 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 7906 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 7907 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 7908 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 7909 pending_completions = true; 7910 break; 7911 } 7912 idx = (idx + 1) % mcq->entry_count; 7913 if (mcq->hba_index == idx) 7914 break; 7915 7916 /* if the index wrapped around, toggle the valid bit */ 7917 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 7918 qe_valid = (qe_valid) ? 0 : 1; 7919 } 7920 return pending_completions; 7921 7922 } 7923 7924 /** 7925 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 7926 * that were missed. 7927 * @phba: Pointer to HBA context object. 7928 * 7929 * For sli4, it is possible to miss an interrupt. As such mbox completions 7930 * maybe missed causing erroneous mailbox timeouts to occur. This function 7931 * checks to see if mbox completions are on the mailbox completion queue 7932 * and will process all the completions associated with the eq for the 7933 * mailbox completion queue. 7934 **/ 7935 static bool 7936 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 7937 { 7938 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 7939 uint32_t eqidx; 7940 struct lpfc_queue *fpeq = NULL; 7941 struct lpfc_queue *eq; 7942 bool mbox_pending; 7943 7944 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 7945 return false; 7946 7947 /* Find the EQ associated with the mbox CQ */ 7948 if (sli4_hba->hdwq) { 7949 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 7950 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 7951 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 7952 fpeq = eq; 7953 break; 7954 } 7955 } 7956 } 7957 if (!fpeq) 7958 return false; 7959 7960 /* Turn off interrupts from this EQ */ 7961 7962 sli4_hba->sli4_eq_clr_intr(fpeq); 7963 7964 /* Check to see if a mbox completion is pending */ 7965 7966 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 7967 7968 /* 7969 * If a mbox completion is pending, process all the events on EQ 7970 * associated with the mbox completion queue (this could include 7971 * mailbox commands, async events, els commands, receive queue data 7972 * and fcp commands) 7973 */ 7974 7975 if (mbox_pending) 7976 /* process and rearm the EQ */ 7977 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 7978 else 7979 /* Always clear and re-arm the EQ */ 7980 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 7981 7982 return mbox_pending; 7983 7984 } 7985 7986 /** 7987 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 7988 * @phba: Pointer to HBA context object. 7989 * 7990 * This function is called from worker thread when a mailbox command times out. 7991 * The caller is not required to hold any locks. This function will reset the 7992 * HBA and recover all the pending commands. 7993 **/ 7994 void 7995 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 7996 { 7997 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 7998 MAILBOX_t *mb = NULL; 7999 8000 struct lpfc_sli *psli = &phba->sli; 8001 8002 /* If the mailbox completed, process the completion and return */ 8003 if (lpfc_sli4_process_missed_mbox_completions(phba)) 8004 return; 8005 8006 if (pmbox != NULL) 8007 mb = &pmbox->u.mb; 8008 /* Check the pmbox pointer first. There is a race condition 8009 * between the mbox timeout handler getting executed in the 8010 * worklist and the mailbox actually completing. When this 8011 * race condition occurs, the mbox_active will be NULL. 8012 */ 8013 spin_lock_irq(&phba->hbalock); 8014 if (pmbox == NULL) { 8015 lpfc_printf_log(phba, KERN_WARNING, 8016 LOG_MBOX | LOG_SLI, 8017 "0353 Active Mailbox cleared - mailbox timeout " 8018 "exiting\n"); 8019 spin_unlock_irq(&phba->hbalock); 8020 return; 8021 } 8022 8023 /* Mbox cmd <mbxCommand> timeout */ 8024 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8025 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 8026 mb->mbxCommand, 8027 phba->pport->port_state, 8028 phba->sli.sli_flag, 8029 phba->sli.mbox_active); 8030 spin_unlock_irq(&phba->hbalock); 8031 8032 /* Setting state unknown so lpfc_sli_abort_iocb_ring 8033 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 8034 * it to fail all outstanding SCSI IO. 8035 */ 8036 spin_lock_irq(&phba->pport->work_port_lock); 8037 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 8038 spin_unlock_irq(&phba->pport->work_port_lock); 8039 spin_lock_irq(&phba->hbalock); 8040 phba->link_state = LPFC_LINK_UNKNOWN; 8041 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 8042 spin_unlock_irq(&phba->hbalock); 8043 8044 lpfc_sli_abort_fcp_rings(phba); 8045 8046 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8047 "0345 Resetting board due to mailbox timeout\n"); 8048 8049 /* Reset the HBA device */ 8050 lpfc_reset_hba(phba); 8051 } 8052 8053 /** 8054 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 8055 * @phba: Pointer to HBA context object. 8056 * @pmbox: Pointer to mailbox object. 8057 * @flag: Flag indicating how the mailbox need to be processed. 8058 * 8059 * This function is called by discovery code and HBA management code 8060 * to submit a mailbox command to firmware with SLI-3 interface spec. This 8061 * function gets the hbalock to protect the data structures. 8062 * The mailbox command can be submitted in polling mode, in which case 8063 * this function will wait in a polling loop for the completion of the 8064 * mailbox. 8065 * If the mailbox is submitted in no_wait mode (not polling) the 8066 * function will submit the command and returns immediately without waiting 8067 * for the mailbox completion. The no_wait is supported only when HBA 8068 * is in SLI2/SLI3 mode - interrupts are enabled. 8069 * The SLI interface allows only one mailbox pending at a time. If the 8070 * mailbox is issued in polling mode and there is already a mailbox 8071 * pending, then the function will return an error. If the mailbox is issued 8072 * in NO_WAIT mode and there is a mailbox pending already, the function 8073 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 8074 * The sli layer owns the mailbox object until the completion of mailbox 8075 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 8076 * return codes the caller owns the mailbox command after the return of 8077 * the function. 8078 **/ 8079 static int 8080 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 8081 uint32_t flag) 8082 { 8083 MAILBOX_t *mbx; 8084 struct lpfc_sli *psli = &phba->sli; 8085 uint32_t status, evtctr; 8086 uint32_t ha_copy, hc_copy; 8087 int i; 8088 unsigned long timeout; 8089 unsigned long drvr_flag = 0; 8090 uint32_t word0, ldata; 8091 void __iomem *to_slim; 8092 int processing_queue = 0; 8093 8094 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8095 if (!pmbox) { 8096 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8097 /* processing mbox queue from intr_handler */ 8098 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8099 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8100 return MBX_SUCCESS; 8101 } 8102 processing_queue = 1; 8103 pmbox = lpfc_mbox_get(phba); 8104 if (!pmbox) { 8105 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8106 return MBX_SUCCESS; 8107 } 8108 } 8109 8110 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 8111 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 8112 if(!pmbox->vport) { 8113 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8114 lpfc_printf_log(phba, KERN_ERR, 8115 LOG_MBOX | LOG_VPORT, 8116 "1806 Mbox x%x failed. No vport\n", 8117 pmbox->u.mb.mbxCommand); 8118 dump_stack(); 8119 goto out_not_finished; 8120 } 8121 } 8122 8123 /* If the PCI channel is in offline state, do not post mbox. */ 8124 if (unlikely(pci_channel_offline(phba->pcidev))) { 8125 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8126 goto out_not_finished; 8127 } 8128 8129 /* If HBA has a deferred error attention, fail the iocb. */ 8130 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 8131 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8132 goto out_not_finished; 8133 } 8134 8135 psli = &phba->sli; 8136 8137 mbx = &pmbox->u.mb; 8138 status = MBX_SUCCESS; 8139 8140 if (phba->link_state == LPFC_HBA_ERROR) { 8141 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8142 8143 /* Mbox command <mbxCommand> cannot issue */ 8144 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8145 "(%d):0311 Mailbox command x%x cannot " 8146 "issue Data: x%x x%x\n", 8147 pmbox->vport ? pmbox->vport->vpi : 0, 8148 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8149 goto out_not_finished; 8150 } 8151 8152 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 8153 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 8154 !(hc_copy & HC_MBINT_ENA)) { 8155 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8156 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8157 "(%d):2528 Mailbox command x%x cannot " 8158 "issue Data: x%x x%x\n", 8159 pmbox->vport ? pmbox->vport->vpi : 0, 8160 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8161 goto out_not_finished; 8162 } 8163 } 8164 8165 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8166 /* Polling for a mbox command when another one is already active 8167 * is not allowed in SLI. Also, the driver must have established 8168 * SLI2 mode to queue and process multiple mbox commands. 8169 */ 8170 8171 if (flag & MBX_POLL) { 8172 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8173 8174 /* Mbox command <mbxCommand> cannot issue */ 8175 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8176 "(%d):2529 Mailbox command x%x " 8177 "cannot issue Data: x%x x%x\n", 8178 pmbox->vport ? pmbox->vport->vpi : 0, 8179 pmbox->u.mb.mbxCommand, 8180 psli->sli_flag, flag); 8181 goto out_not_finished; 8182 } 8183 8184 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 8185 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8186 /* Mbox command <mbxCommand> cannot issue */ 8187 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8188 "(%d):2530 Mailbox command x%x " 8189 "cannot issue Data: x%x x%x\n", 8190 pmbox->vport ? pmbox->vport->vpi : 0, 8191 pmbox->u.mb.mbxCommand, 8192 psli->sli_flag, flag); 8193 goto out_not_finished; 8194 } 8195 8196 /* Another mailbox command is still being processed, queue this 8197 * command to be processed later. 8198 */ 8199 lpfc_mbox_put(phba, pmbox); 8200 8201 /* Mbox cmd issue - BUSY */ 8202 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8203 "(%d):0308 Mbox cmd issue - BUSY Data: " 8204 "x%x x%x x%x x%x\n", 8205 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 8206 mbx->mbxCommand, 8207 phba->pport ? phba->pport->port_state : 0xff, 8208 psli->sli_flag, flag); 8209 8210 psli->slistat.mbox_busy++; 8211 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8212 8213 if (pmbox->vport) { 8214 lpfc_debugfs_disc_trc(pmbox->vport, 8215 LPFC_DISC_TRC_MBOX_VPORT, 8216 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 8217 (uint32_t)mbx->mbxCommand, 8218 mbx->un.varWords[0], mbx->un.varWords[1]); 8219 } 8220 else { 8221 lpfc_debugfs_disc_trc(phba->pport, 8222 LPFC_DISC_TRC_MBOX, 8223 "MBOX Bsy: cmd:x%x mb:x%x x%x", 8224 (uint32_t)mbx->mbxCommand, 8225 mbx->un.varWords[0], mbx->un.varWords[1]); 8226 } 8227 8228 return MBX_BUSY; 8229 } 8230 8231 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8232 8233 /* If we are not polling, we MUST be in SLI2 mode */ 8234 if (flag != MBX_POLL) { 8235 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 8236 (mbx->mbxCommand != MBX_KILL_BOARD)) { 8237 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8238 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8239 /* Mbox command <mbxCommand> cannot issue */ 8240 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8241 "(%d):2531 Mailbox command x%x " 8242 "cannot issue Data: x%x x%x\n", 8243 pmbox->vport ? pmbox->vport->vpi : 0, 8244 pmbox->u.mb.mbxCommand, 8245 psli->sli_flag, flag); 8246 goto out_not_finished; 8247 } 8248 /* timeout active mbox command */ 8249 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8250 1000); 8251 mod_timer(&psli->mbox_tmo, jiffies + timeout); 8252 } 8253 8254 /* Mailbox cmd <cmd> issue */ 8255 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8256 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 8257 "x%x\n", 8258 pmbox->vport ? pmbox->vport->vpi : 0, 8259 mbx->mbxCommand, 8260 phba->pport ? phba->pport->port_state : 0xff, 8261 psli->sli_flag, flag); 8262 8263 if (mbx->mbxCommand != MBX_HEARTBEAT) { 8264 if (pmbox->vport) { 8265 lpfc_debugfs_disc_trc(pmbox->vport, 8266 LPFC_DISC_TRC_MBOX_VPORT, 8267 "MBOX Send vport: cmd:x%x mb:x%x x%x", 8268 (uint32_t)mbx->mbxCommand, 8269 mbx->un.varWords[0], mbx->un.varWords[1]); 8270 } 8271 else { 8272 lpfc_debugfs_disc_trc(phba->pport, 8273 LPFC_DISC_TRC_MBOX, 8274 "MBOX Send: cmd:x%x mb:x%x x%x", 8275 (uint32_t)mbx->mbxCommand, 8276 mbx->un.varWords[0], mbx->un.varWords[1]); 8277 } 8278 } 8279 8280 psli->slistat.mbox_cmd++; 8281 evtctr = psli->slistat.mbox_event; 8282 8283 /* next set own bit for the adapter and copy over command word */ 8284 mbx->mbxOwner = OWN_CHIP; 8285 8286 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8287 /* Populate mbox extension offset word. */ 8288 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 8289 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8290 = (uint8_t *)phba->mbox_ext 8291 - (uint8_t *)phba->mbox; 8292 } 8293 8294 /* Copy the mailbox extension data */ 8295 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 8296 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 8297 (uint8_t *)phba->mbox_ext, 8298 pmbox->in_ext_byte_len); 8299 } 8300 /* Copy command data to host SLIM area */ 8301 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 8302 } else { 8303 /* Populate mbox extension offset word. */ 8304 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 8305 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8306 = MAILBOX_HBA_EXT_OFFSET; 8307 8308 /* Copy the mailbox extension data */ 8309 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 8310 lpfc_memcpy_to_slim(phba->MBslimaddr + 8311 MAILBOX_HBA_EXT_OFFSET, 8312 pmbox->ctx_buf, pmbox->in_ext_byte_len); 8313 8314 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8315 /* copy command data into host mbox for cmpl */ 8316 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 8317 MAILBOX_CMD_SIZE); 8318 8319 /* First copy mbox command data to HBA SLIM, skip past first 8320 word */ 8321 to_slim = phba->MBslimaddr + sizeof (uint32_t); 8322 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 8323 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 8324 8325 /* Next copy over first word, with mbxOwner set */ 8326 ldata = *((uint32_t *)mbx); 8327 to_slim = phba->MBslimaddr; 8328 writel(ldata, to_slim); 8329 readl(to_slim); /* flush */ 8330 8331 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8332 /* switch over to host mailbox */ 8333 psli->sli_flag |= LPFC_SLI_ACTIVE; 8334 } 8335 8336 wmb(); 8337 8338 switch (flag) { 8339 case MBX_NOWAIT: 8340 /* Set up reference to mailbox command */ 8341 psli->mbox_active = pmbox; 8342 /* Interrupt board to do it */ 8343 writel(CA_MBATT, phba->CAregaddr); 8344 readl(phba->CAregaddr); /* flush */ 8345 /* Don't wait for it to finish, just return */ 8346 break; 8347 8348 case MBX_POLL: 8349 /* Set up null reference to mailbox command */ 8350 psli->mbox_active = NULL; 8351 /* Interrupt board to do it */ 8352 writel(CA_MBATT, phba->CAregaddr); 8353 readl(phba->CAregaddr); /* flush */ 8354 8355 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8356 /* First read mbox status word */ 8357 word0 = *((uint32_t *)phba->mbox); 8358 word0 = le32_to_cpu(word0); 8359 } else { 8360 /* First read mbox status word */ 8361 if (lpfc_readl(phba->MBslimaddr, &word0)) { 8362 spin_unlock_irqrestore(&phba->hbalock, 8363 drvr_flag); 8364 goto out_not_finished; 8365 } 8366 } 8367 8368 /* Read the HBA Host Attention Register */ 8369 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8370 spin_unlock_irqrestore(&phba->hbalock, 8371 drvr_flag); 8372 goto out_not_finished; 8373 } 8374 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8375 1000) + jiffies; 8376 i = 0; 8377 /* Wait for command to complete */ 8378 while (((word0 & OWN_CHIP) == OWN_CHIP) || 8379 (!(ha_copy & HA_MBATT) && 8380 (phba->link_state > LPFC_WARM_START))) { 8381 if (time_after(jiffies, timeout)) { 8382 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8383 spin_unlock_irqrestore(&phba->hbalock, 8384 drvr_flag); 8385 goto out_not_finished; 8386 } 8387 8388 /* Check if we took a mbox interrupt while we were 8389 polling */ 8390 if (((word0 & OWN_CHIP) != OWN_CHIP) 8391 && (evtctr != psli->slistat.mbox_event)) 8392 break; 8393 8394 if (i++ > 10) { 8395 spin_unlock_irqrestore(&phba->hbalock, 8396 drvr_flag); 8397 msleep(1); 8398 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8399 } 8400 8401 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8402 /* First copy command data */ 8403 word0 = *((uint32_t *)phba->mbox); 8404 word0 = le32_to_cpu(word0); 8405 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 8406 MAILBOX_t *slimmb; 8407 uint32_t slimword0; 8408 /* Check real SLIM for any errors */ 8409 slimword0 = readl(phba->MBslimaddr); 8410 slimmb = (MAILBOX_t *) & slimword0; 8411 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 8412 && slimmb->mbxStatus) { 8413 psli->sli_flag &= 8414 ~LPFC_SLI_ACTIVE; 8415 word0 = slimword0; 8416 } 8417 } 8418 } else { 8419 /* First copy command data */ 8420 word0 = readl(phba->MBslimaddr); 8421 } 8422 /* Read the HBA Host Attention Register */ 8423 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8424 spin_unlock_irqrestore(&phba->hbalock, 8425 drvr_flag); 8426 goto out_not_finished; 8427 } 8428 } 8429 8430 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8431 /* copy results back to user */ 8432 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 8433 MAILBOX_CMD_SIZE); 8434 /* Copy the mailbox extension data */ 8435 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8436 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 8437 pmbox->ctx_buf, 8438 pmbox->out_ext_byte_len); 8439 } 8440 } else { 8441 /* First copy command data */ 8442 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 8443 MAILBOX_CMD_SIZE); 8444 /* Copy the mailbox extension data */ 8445 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8446 lpfc_memcpy_from_slim( 8447 pmbox->ctx_buf, 8448 phba->MBslimaddr + 8449 MAILBOX_HBA_EXT_OFFSET, 8450 pmbox->out_ext_byte_len); 8451 } 8452 } 8453 8454 writel(HA_MBATT, phba->HAregaddr); 8455 readl(phba->HAregaddr); /* flush */ 8456 8457 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8458 status = mbx->mbxStatus; 8459 } 8460 8461 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8462 return status; 8463 8464 out_not_finished: 8465 if (processing_queue) { 8466 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 8467 lpfc_mbox_cmpl_put(phba, pmbox); 8468 } 8469 return MBX_NOT_FINISHED; 8470 } 8471 8472 /** 8473 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 8474 * @phba: Pointer to HBA context object. 8475 * 8476 * The function blocks the posting of SLI4 asynchronous mailbox commands from 8477 * the driver internal pending mailbox queue. It will then try to wait out the 8478 * possible outstanding mailbox command before return. 8479 * 8480 * Returns: 8481 * 0 - the outstanding mailbox command completed; otherwise, the wait for 8482 * the outstanding mailbox command timed out. 8483 **/ 8484 static int 8485 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 8486 { 8487 struct lpfc_sli *psli = &phba->sli; 8488 int rc = 0; 8489 unsigned long timeout = 0; 8490 8491 /* Mark the asynchronous mailbox command posting as blocked */ 8492 spin_lock_irq(&phba->hbalock); 8493 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 8494 /* Determine how long we might wait for the active mailbox 8495 * command to be gracefully completed by firmware. 8496 */ 8497 if (phba->sli.mbox_active) 8498 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 8499 phba->sli.mbox_active) * 8500 1000) + jiffies; 8501 spin_unlock_irq(&phba->hbalock); 8502 8503 /* Make sure the mailbox is really active */ 8504 if (timeout) 8505 lpfc_sli4_process_missed_mbox_completions(phba); 8506 8507 /* Wait for the outstnading mailbox command to complete */ 8508 while (phba->sli.mbox_active) { 8509 /* Check active mailbox complete status every 2ms */ 8510 msleep(2); 8511 if (time_after(jiffies, timeout)) { 8512 /* Timeout, marked the outstanding cmd not complete */ 8513 rc = 1; 8514 break; 8515 } 8516 } 8517 8518 /* Can not cleanly block async mailbox command, fails it */ 8519 if (rc) { 8520 spin_lock_irq(&phba->hbalock); 8521 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8522 spin_unlock_irq(&phba->hbalock); 8523 } 8524 return rc; 8525 } 8526 8527 /** 8528 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 8529 * @phba: Pointer to HBA context object. 8530 * 8531 * The function unblocks and resume posting of SLI4 asynchronous mailbox 8532 * commands from the driver internal pending mailbox queue. It makes sure 8533 * that there is no outstanding mailbox command before resuming posting 8534 * asynchronous mailbox commands. If, for any reason, there is outstanding 8535 * mailbox command, it will try to wait it out before resuming asynchronous 8536 * mailbox command posting. 8537 **/ 8538 static void 8539 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 8540 { 8541 struct lpfc_sli *psli = &phba->sli; 8542 8543 spin_lock_irq(&phba->hbalock); 8544 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8545 /* Asynchronous mailbox posting is not blocked, do nothing */ 8546 spin_unlock_irq(&phba->hbalock); 8547 return; 8548 } 8549 8550 /* Outstanding synchronous mailbox command is guaranteed to be done, 8551 * successful or timeout, after timing-out the outstanding mailbox 8552 * command shall always be removed, so just unblock posting async 8553 * mailbox command and resume 8554 */ 8555 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8556 spin_unlock_irq(&phba->hbalock); 8557 8558 /* wake up worker thread to post asynchronlous mailbox command */ 8559 lpfc_worker_wake_up(phba); 8560 } 8561 8562 /** 8563 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 8564 * @phba: Pointer to HBA context object. 8565 * @mboxq: Pointer to mailbox object. 8566 * 8567 * The function waits for the bootstrap mailbox register ready bit from 8568 * port for twice the regular mailbox command timeout value. 8569 * 8570 * 0 - no timeout on waiting for bootstrap mailbox register ready. 8571 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 8572 **/ 8573 static int 8574 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8575 { 8576 uint32_t db_ready; 8577 unsigned long timeout; 8578 struct lpfc_register bmbx_reg; 8579 8580 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 8581 * 1000) + jiffies; 8582 8583 do { 8584 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 8585 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 8586 if (!db_ready) 8587 mdelay(2); 8588 8589 if (time_after(jiffies, timeout)) 8590 return MBXERR_ERROR; 8591 } while (!db_ready); 8592 8593 return 0; 8594 } 8595 8596 /** 8597 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 8598 * @phba: Pointer to HBA context object. 8599 * @mboxq: Pointer to mailbox object. 8600 * 8601 * The function posts a mailbox to the port. The mailbox is expected 8602 * to be comletely filled in and ready for the port to operate on it. 8603 * This routine executes a synchronous completion operation on the 8604 * mailbox by polling for its completion. 8605 * 8606 * The caller must not be holding any locks when calling this routine. 8607 * 8608 * Returns: 8609 * MBX_SUCCESS - mailbox posted successfully 8610 * Any of the MBX error values. 8611 **/ 8612 static int 8613 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8614 { 8615 int rc = MBX_SUCCESS; 8616 unsigned long iflag; 8617 uint32_t mcqe_status; 8618 uint32_t mbx_cmnd; 8619 struct lpfc_sli *psli = &phba->sli; 8620 struct lpfc_mqe *mb = &mboxq->u.mqe; 8621 struct lpfc_bmbx_create *mbox_rgn; 8622 struct dma_address *dma_address; 8623 8624 /* 8625 * Only one mailbox can be active to the bootstrap mailbox region 8626 * at a time and there is no queueing provided. 8627 */ 8628 spin_lock_irqsave(&phba->hbalock, iflag); 8629 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8630 spin_unlock_irqrestore(&phba->hbalock, iflag); 8631 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8632 "(%d):2532 Mailbox command x%x (x%x/x%x) " 8633 "cannot issue Data: x%x x%x\n", 8634 mboxq->vport ? mboxq->vport->vpi : 0, 8635 mboxq->u.mb.mbxCommand, 8636 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8637 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8638 psli->sli_flag, MBX_POLL); 8639 return MBXERR_ERROR; 8640 } 8641 /* The server grabs the token and owns it until release */ 8642 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8643 phba->sli.mbox_active = mboxq; 8644 spin_unlock_irqrestore(&phba->hbalock, iflag); 8645 8646 /* wait for bootstrap mbox register for readyness */ 8647 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8648 if (rc) 8649 goto exit; 8650 /* 8651 * Initialize the bootstrap memory region to avoid stale data areas 8652 * in the mailbox post. Then copy the caller's mailbox contents to 8653 * the bmbx mailbox region. 8654 */ 8655 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 8656 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 8657 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 8658 sizeof(struct lpfc_mqe)); 8659 8660 /* Post the high mailbox dma address to the port and wait for ready. */ 8661 dma_address = &phba->sli4_hba.bmbx.dma_address; 8662 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 8663 8664 /* wait for bootstrap mbox register for hi-address write done */ 8665 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8666 if (rc) 8667 goto exit; 8668 8669 /* Post the low mailbox dma address to the port. */ 8670 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 8671 8672 /* wait for bootstrap mbox register for low address write done */ 8673 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8674 if (rc) 8675 goto exit; 8676 8677 /* 8678 * Read the CQ to ensure the mailbox has completed. 8679 * If so, update the mailbox status so that the upper layers 8680 * can complete the request normally. 8681 */ 8682 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 8683 sizeof(struct lpfc_mqe)); 8684 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 8685 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 8686 sizeof(struct lpfc_mcqe)); 8687 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 8688 /* 8689 * When the CQE status indicates a failure and the mailbox status 8690 * indicates success then copy the CQE status into the mailbox status 8691 * (and prefix it with x4000). 8692 */ 8693 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 8694 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 8695 bf_set(lpfc_mqe_status, mb, 8696 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 8697 rc = MBXERR_ERROR; 8698 } else 8699 lpfc_sli4_swap_str(phba, mboxq); 8700 8701 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8702 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 8703 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 8704 " x%x x%x CQ: x%x x%x x%x x%x\n", 8705 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 8706 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8707 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8708 bf_get(lpfc_mqe_status, mb), 8709 mb->un.mb_words[0], mb->un.mb_words[1], 8710 mb->un.mb_words[2], mb->un.mb_words[3], 8711 mb->un.mb_words[4], mb->un.mb_words[5], 8712 mb->un.mb_words[6], mb->un.mb_words[7], 8713 mb->un.mb_words[8], mb->un.mb_words[9], 8714 mb->un.mb_words[10], mb->un.mb_words[11], 8715 mb->un.mb_words[12], mboxq->mcqe.word0, 8716 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 8717 mboxq->mcqe.trailer); 8718 exit: 8719 /* We are holding the token, no needed for lock when release */ 8720 spin_lock_irqsave(&phba->hbalock, iflag); 8721 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8722 phba->sli.mbox_active = NULL; 8723 spin_unlock_irqrestore(&phba->hbalock, iflag); 8724 return rc; 8725 } 8726 8727 /** 8728 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 8729 * @phba: Pointer to HBA context object. 8730 * @pmbox: Pointer to mailbox object. 8731 * @flag: Flag indicating how the mailbox need to be processed. 8732 * 8733 * This function is called by discovery code and HBA management code to submit 8734 * a mailbox command to firmware with SLI-4 interface spec. 8735 * 8736 * Return codes the caller owns the mailbox command after the return of the 8737 * function. 8738 **/ 8739 static int 8740 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 8741 uint32_t flag) 8742 { 8743 struct lpfc_sli *psli = &phba->sli; 8744 unsigned long iflags; 8745 int rc; 8746 8747 /* dump from issue mailbox command if setup */ 8748 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 8749 8750 rc = lpfc_mbox_dev_check(phba); 8751 if (unlikely(rc)) { 8752 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8753 "(%d):2544 Mailbox command x%x (x%x/x%x) " 8754 "cannot issue Data: x%x x%x\n", 8755 mboxq->vport ? mboxq->vport->vpi : 0, 8756 mboxq->u.mb.mbxCommand, 8757 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8758 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8759 psli->sli_flag, flag); 8760 goto out_not_finished; 8761 } 8762 8763 /* Detect polling mode and jump to a handler */ 8764 if (!phba->sli4_hba.intr_enable) { 8765 if (flag == MBX_POLL) 8766 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8767 else 8768 rc = -EIO; 8769 if (rc != MBX_SUCCESS) 8770 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8771 "(%d):2541 Mailbox command x%x " 8772 "(x%x/x%x) failure: " 8773 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8774 "Data: x%x x%x\n,", 8775 mboxq->vport ? mboxq->vport->vpi : 0, 8776 mboxq->u.mb.mbxCommand, 8777 lpfc_sli_config_mbox_subsys_get(phba, 8778 mboxq), 8779 lpfc_sli_config_mbox_opcode_get(phba, 8780 mboxq), 8781 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8782 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8783 bf_get(lpfc_mcqe_ext_status, 8784 &mboxq->mcqe), 8785 psli->sli_flag, flag); 8786 return rc; 8787 } else if (flag == MBX_POLL) { 8788 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8789 "(%d):2542 Try to issue mailbox command " 8790 "x%x (x%x/x%x) synchronously ahead of async " 8791 "mailbox command queue: x%x x%x\n", 8792 mboxq->vport ? mboxq->vport->vpi : 0, 8793 mboxq->u.mb.mbxCommand, 8794 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8795 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8796 psli->sli_flag, flag); 8797 /* Try to block the asynchronous mailbox posting */ 8798 rc = lpfc_sli4_async_mbox_block(phba); 8799 if (!rc) { 8800 /* Successfully blocked, now issue sync mbox cmd */ 8801 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8802 if (rc != MBX_SUCCESS) 8803 lpfc_printf_log(phba, KERN_WARNING, 8804 LOG_MBOX | LOG_SLI, 8805 "(%d):2597 Sync Mailbox command " 8806 "x%x (x%x/x%x) failure: " 8807 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8808 "Data: x%x x%x\n,", 8809 mboxq->vport ? mboxq->vport->vpi : 0, 8810 mboxq->u.mb.mbxCommand, 8811 lpfc_sli_config_mbox_subsys_get(phba, 8812 mboxq), 8813 lpfc_sli_config_mbox_opcode_get(phba, 8814 mboxq), 8815 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8816 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8817 bf_get(lpfc_mcqe_ext_status, 8818 &mboxq->mcqe), 8819 psli->sli_flag, flag); 8820 /* Unblock the async mailbox posting afterward */ 8821 lpfc_sli4_async_mbox_unblock(phba); 8822 } 8823 return rc; 8824 } 8825 8826 /* Now, interrupt mode asynchrous mailbox command */ 8827 rc = lpfc_mbox_cmd_check(phba, mboxq); 8828 if (rc) { 8829 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8830 "(%d):2543 Mailbox command x%x (x%x/x%x) " 8831 "cannot issue Data: x%x x%x\n", 8832 mboxq->vport ? mboxq->vport->vpi : 0, 8833 mboxq->u.mb.mbxCommand, 8834 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8835 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8836 psli->sli_flag, flag); 8837 goto out_not_finished; 8838 } 8839 8840 /* Put the mailbox command to the driver internal FIFO */ 8841 psli->slistat.mbox_busy++; 8842 spin_lock_irqsave(&phba->hbalock, iflags); 8843 lpfc_mbox_put(phba, mboxq); 8844 spin_unlock_irqrestore(&phba->hbalock, iflags); 8845 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8846 "(%d):0354 Mbox cmd issue - Enqueue Data: " 8847 "x%x (x%x/x%x) x%x x%x x%x\n", 8848 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 8849 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8850 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8851 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8852 phba->pport->port_state, 8853 psli->sli_flag, MBX_NOWAIT); 8854 /* Wake up worker thread to transport mailbox command from head */ 8855 lpfc_worker_wake_up(phba); 8856 8857 return MBX_BUSY; 8858 8859 out_not_finished: 8860 return MBX_NOT_FINISHED; 8861 } 8862 8863 /** 8864 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 8865 * @phba: Pointer to HBA context object. 8866 * 8867 * This function is called by worker thread to send a mailbox command to 8868 * SLI4 HBA firmware. 8869 * 8870 **/ 8871 int 8872 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 8873 { 8874 struct lpfc_sli *psli = &phba->sli; 8875 LPFC_MBOXQ_t *mboxq; 8876 int rc = MBX_SUCCESS; 8877 unsigned long iflags; 8878 struct lpfc_mqe *mqe; 8879 uint32_t mbx_cmnd; 8880 8881 /* Check interrupt mode before post async mailbox command */ 8882 if (unlikely(!phba->sli4_hba.intr_enable)) 8883 return MBX_NOT_FINISHED; 8884 8885 /* Check for mailbox command service token */ 8886 spin_lock_irqsave(&phba->hbalock, iflags); 8887 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8888 spin_unlock_irqrestore(&phba->hbalock, iflags); 8889 return MBX_NOT_FINISHED; 8890 } 8891 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8892 spin_unlock_irqrestore(&phba->hbalock, iflags); 8893 return MBX_NOT_FINISHED; 8894 } 8895 if (unlikely(phba->sli.mbox_active)) { 8896 spin_unlock_irqrestore(&phba->hbalock, iflags); 8897 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8898 "0384 There is pending active mailbox cmd\n"); 8899 return MBX_NOT_FINISHED; 8900 } 8901 /* Take the mailbox command service token */ 8902 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8903 8904 /* Get the next mailbox command from head of queue */ 8905 mboxq = lpfc_mbox_get(phba); 8906 8907 /* If no more mailbox command waiting for post, we're done */ 8908 if (!mboxq) { 8909 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8910 spin_unlock_irqrestore(&phba->hbalock, iflags); 8911 return MBX_SUCCESS; 8912 } 8913 phba->sli.mbox_active = mboxq; 8914 spin_unlock_irqrestore(&phba->hbalock, iflags); 8915 8916 /* Check device readiness for posting mailbox command */ 8917 rc = lpfc_mbox_dev_check(phba); 8918 if (unlikely(rc)) 8919 /* Driver clean routine will clean up pending mailbox */ 8920 goto out_not_finished; 8921 8922 /* Prepare the mbox command to be posted */ 8923 mqe = &mboxq->u.mqe; 8924 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 8925 8926 /* Start timer for the mbox_tmo and log some mailbox post messages */ 8927 mod_timer(&psli->mbox_tmo, (jiffies + 8928 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 8929 8930 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8931 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 8932 "x%x x%x\n", 8933 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 8934 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8935 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8936 phba->pport->port_state, psli->sli_flag); 8937 8938 if (mbx_cmnd != MBX_HEARTBEAT) { 8939 if (mboxq->vport) { 8940 lpfc_debugfs_disc_trc(mboxq->vport, 8941 LPFC_DISC_TRC_MBOX_VPORT, 8942 "MBOX Send vport: cmd:x%x mb:x%x x%x", 8943 mbx_cmnd, mqe->un.mb_words[0], 8944 mqe->un.mb_words[1]); 8945 } else { 8946 lpfc_debugfs_disc_trc(phba->pport, 8947 LPFC_DISC_TRC_MBOX, 8948 "MBOX Send: cmd:x%x mb:x%x x%x", 8949 mbx_cmnd, mqe->un.mb_words[0], 8950 mqe->un.mb_words[1]); 8951 } 8952 } 8953 psli->slistat.mbox_cmd++; 8954 8955 /* Post the mailbox command to the port */ 8956 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 8957 if (rc != MBX_SUCCESS) { 8958 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8959 "(%d):2533 Mailbox command x%x (x%x/x%x) " 8960 "cannot issue Data: x%x x%x\n", 8961 mboxq->vport ? mboxq->vport->vpi : 0, 8962 mboxq->u.mb.mbxCommand, 8963 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8964 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8965 psli->sli_flag, MBX_NOWAIT); 8966 goto out_not_finished; 8967 } 8968 8969 return rc; 8970 8971 out_not_finished: 8972 spin_lock_irqsave(&phba->hbalock, iflags); 8973 if (phba->sli.mbox_active) { 8974 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 8975 __lpfc_mbox_cmpl_put(phba, mboxq); 8976 /* Release the token */ 8977 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8978 phba->sli.mbox_active = NULL; 8979 } 8980 spin_unlock_irqrestore(&phba->hbalock, iflags); 8981 8982 return MBX_NOT_FINISHED; 8983 } 8984 8985 /** 8986 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 8987 * @phba: Pointer to HBA context object. 8988 * @pmbox: Pointer to mailbox object. 8989 * @flag: Flag indicating how the mailbox need to be processed. 8990 * 8991 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 8992 * the API jump table function pointer from the lpfc_hba struct. 8993 * 8994 * Return codes the caller owns the mailbox command after the return of the 8995 * function. 8996 **/ 8997 int 8998 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 8999 { 9000 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 9001 } 9002 9003 /** 9004 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 9005 * @phba: The hba struct for which this call is being executed. 9006 * @dev_grp: The HBA PCI-Device group number. 9007 * 9008 * This routine sets up the mbox interface API function jump table in @phba 9009 * struct. 9010 * Returns: 0 - success, -ENODEV - failure. 9011 **/ 9012 int 9013 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 9014 { 9015 9016 switch (dev_grp) { 9017 case LPFC_PCI_DEV_LP: 9018 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 9019 phba->lpfc_sli_handle_slow_ring_event = 9020 lpfc_sli_handle_slow_ring_event_s3; 9021 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 9022 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 9023 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 9024 break; 9025 case LPFC_PCI_DEV_OC: 9026 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 9027 phba->lpfc_sli_handle_slow_ring_event = 9028 lpfc_sli_handle_slow_ring_event_s4; 9029 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 9030 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 9031 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 9032 break; 9033 default: 9034 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9035 "1420 Invalid HBA PCI-device group: 0x%x\n", 9036 dev_grp); 9037 return -ENODEV; 9038 break; 9039 } 9040 return 0; 9041 } 9042 9043 /** 9044 * __lpfc_sli_ringtx_put - Add an iocb to the txq 9045 * @phba: Pointer to HBA context object. 9046 * @pring: Pointer to driver SLI ring object. 9047 * @piocb: Pointer to address of newly added command iocb. 9048 * 9049 * This function is called with hbalock held for SLI3 ports or 9050 * the ring lock held for SLI4 ports to add a command 9051 * iocb to the txq when SLI layer cannot submit the command iocb 9052 * to the ring. 9053 **/ 9054 void 9055 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9056 struct lpfc_iocbq *piocb) 9057 { 9058 if (phba->sli_rev == LPFC_SLI_REV4) 9059 lockdep_assert_held(&pring->ring_lock); 9060 else 9061 lockdep_assert_held(&phba->hbalock); 9062 /* Insert the caller's iocb in the txq tail for later processing. */ 9063 list_add_tail(&piocb->list, &pring->txq); 9064 } 9065 9066 /** 9067 * lpfc_sli_next_iocb - Get the next iocb in the txq 9068 * @phba: Pointer to HBA context object. 9069 * @pring: Pointer to driver SLI ring object. 9070 * @piocb: Pointer to address of newly added command iocb. 9071 * 9072 * This function is called with hbalock held before a new 9073 * iocb is submitted to the firmware. This function checks 9074 * txq to flush the iocbs in txq to Firmware before 9075 * submitting new iocbs to the Firmware. 9076 * If there are iocbs in the txq which need to be submitted 9077 * to firmware, lpfc_sli_next_iocb returns the first element 9078 * of the txq after dequeuing it from txq. 9079 * If there is no iocb in the txq then the function will return 9080 * *piocb and *piocb is set to NULL. Caller needs to check 9081 * *piocb to find if there are more commands in the txq. 9082 **/ 9083 static struct lpfc_iocbq * 9084 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9085 struct lpfc_iocbq **piocb) 9086 { 9087 struct lpfc_iocbq * nextiocb; 9088 9089 lockdep_assert_held(&phba->hbalock); 9090 9091 nextiocb = lpfc_sli_ringtx_get(phba, pring); 9092 if (!nextiocb) { 9093 nextiocb = *piocb; 9094 *piocb = NULL; 9095 } 9096 9097 return nextiocb; 9098 } 9099 9100 /** 9101 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 9102 * @phba: Pointer to HBA context object. 9103 * @ring_number: SLI ring number to issue iocb on. 9104 * @piocb: Pointer to command iocb. 9105 * @flag: Flag indicating if this command can be put into txq. 9106 * 9107 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 9108 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 9109 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 9110 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 9111 * this function allows only iocbs for posting buffers. This function finds 9112 * next available slot in the command ring and posts the command to the 9113 * available slot and writes the port attention register to request HBA start 9114 * processing new iocb. If there is no slot available in the ring and 9115 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 9116 * the function returns IOCB_BUSY. 9117 * 9118 * This function is called with hbalock held. The function will return success 9119 * after it successfully submit the iocb to firmware or after adding to the 9120 * txq. 9121 **/ 9122 static int 9123 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 9124 struct lpfc_iocbq *piocb, uint32_t flag) 9125 { 9126 struct lpfc_iocbq *nextiocb; 9127 IOCB_t *iocb; 9128 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 9129 9130 lockdep_assert_held(&phba->hbalock); 9131 9132 if (piocb->iocb_cmpl && (!piocb->vport) && 9133 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 9134 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 9135 lpfc_printf_log(phba, KERN_ERR, 9136 LOG_SLI | LOG_VPORT, 9137 "1807 IOCB x%x failed. No vport\n", 9138 piocb->iocb.ulpCommand); 9139 dump_stack(); 9140 return IOCB_ERROR; 9141 } 9142 9143 9144 /* If the PCI channel is in offline state, do not post iocbs. */ 9145 if (unlikely(pci_channel_offline(phba->pcidev))) 9146 return IOCB_ERROR; 9147 9148 /* If HBA has a deferred error attention, fail the iocb. */ 9149 if (unlikely(phba->hba_flag & DEFER_ERATT)) 9150 return IOCB_ERROR; 9151 9152 /* 9153 * We should never get an IOCB if we are in a < LINK_DOWN state 9154 */ 9155 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 9156 return IOCB_ERROR; 9157 9158 /* 9159 * Check to see if we are blocking IOCB processing because of a 9160 * outstanding event. 9161 */ 9162 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 9163 goto iocb_busy; 9164 9165 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 9166 /* 9167 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 9168 * can be issued if the link is not up. 9169 */ 9170 switch (piocb->iocb.ulpCommand) { 9171 case CMD_GEN_REQUEST64_CR: 9172 case CMD_GEN_REQUEST64_CX: 9173 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 9174 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 9175 FC_RCTL_DD_UNSOL_CMD) || 9176 (piocb->iocb.un.genreq64.w5.hcsw.Type != 9177 MENLO_TRANSPORT_TYPE)) 9178 9179 goto iocb_busy; 9180 break; 9181 case CMD_QUE_RING_BUF_CN: 9182 case CMD_QUE_RING_BUF64_CN: 9183 /* 9184 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 9185 * completion, iocb_cmpl MUST be 0. 9186 */ 9187 if (piocb->iocb_cmpl) 9188 piocb->iocb_cmpl = NULL; 9189 /*FALLTHROUGH*/ 9190 case CMD_CREATE_XRI_CR: 9191 case CMD_CLOSE_XRI_CN: 9192 case CMD_CLOSE_XRI_CX: 9193 break; 9194 default: 9195 goto iocb_busy; 9196 } 9197 9198 /* 9199 * For FCP commands, we must be in a state where we can process link 9200 * attention events. 9201 */ 9202 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 9203 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 9204 goto iocb_busy; 9205 } 9206 9207 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 9208 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 9209 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 9210 9211 if (iocb) 9212 lpfc_sli_update_ring(phba, pring); 9213 else 9214 lpfc_sli_update_full_ring(phba, pring); 9215 9216 if (!piocb) 9217 return IOCB_SUCCESS; 9218 9219 goto out_busy; 9220 9221 iocb_busy: 9222 pring->stats.iocb_cmd_delay++; 9223 9224 out_busy: 9225 9226 if (!(flag & SLI_IOCB_RET_IOCB)) { 9227 __lpfc_sli_ringtx_put(phba, pring, piocb); 9228 return IOCB_SUCCESS; 9229 } 9230 9231 return IOCB_BUSY; 9232 } 9233 9234 /** 9235 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 9236 * @phba: Pointer to HBA context object. 9237 * @piocb: Pointer to command iocb. 9238 * @sglq: Pointer to the scatter gather queue object. 9239 * 9240 * This routine converts the bpl or bde that is in the IOCB 9241 * to a sgl list for the sli4 hardware. The physical address 9242 * of the bpl/bde is converted back to a virtual address. 9243 * If the IOCB contains a BPL then the list of BDE's is 9244 * converted to sli4_sge's. If the IOCB contains a single 9245 * BDE then it is converted to a single sli_sge. 9246 * The IOCB is still in cpu endianess so the contents of 9247 * the bpl can be used without byte swapping. 9248 * 9249 * Returns valid XRI = Success, NO_XRI = Failure. 9250 **/ 9251 static uint16_t 9252 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 9253 struct lpfc_sglq *sglq) 9254 { 9255 uint16_t xritag = NO_XRI; 9256 struct ulp_bde64 *bpl = NULL; 9257 struct ulp_bde64 bde; 9258 struct sli4_sge *sgl = NULL; 9259 struct lpfc_dmabuf *dmabuf; 9260 IOCB_t *icmd; 9261 int numBdes = 0; 9262 int i = 0; 9263 uint32_t offset = 0; /* accumulated offset in the sg request list */ 9264 int inbound = 0; /* number of sg reply entries inbound from firmware */ 9265 9266 if (!piocbq || !sglq) 9267 return xritag; 9268 9269 sgl = (struct sli4_sge *)sglq->sgl; 9270 icmd = &piocbq->iocb; 9271 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 9272 return sglq->sli4_xritag; 9273 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9274 numBdes = icmd->un.genreq64.bdl.bdeSize / 9275 sizeof(struct ulp_bde64); 9276 /* The addrHigh and addrLow fields within the IOCB 9277 * have not been byteswapped yet so there is no 9278 * need to swap them back. 9279 */ 9280 if (piocbq->context3) 9281 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 9282 else 9283 return xritag; 9284 9285 bpl = (struct ulp_bde64 *)dmabuf->virt; 9286 if (!bpl) 9287 return xritag; 9288 9289 for (i = 0; i < numBdes; i++) { 9290 /* Should already be byte swapped. */ 9291 sgl->addr_hi = bpl->addrHigh; 9292 sgl->addr_lo = bpl->addrLow; 9293 9294 sgl->word2 = le32_to_cpu(sgl->word2); 9295 if ((i+1) == numBdes) 9296 bf_set(lpfc_sli4_sge_last, sgl, 1); 9297 else 9298 bf_set(lpfc_sli4_sge_last, sgl, 0); 9299 /* swap the size field back to the cpu so we 9300 * can assign it to the sgl. 9301 */ 9302 bde.tus.w = le32_to_cpu(bpl->tus.w); 9303 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 9304 /* The offsets in the sgl need to be accumulated 9305 * separately for the request and reply lists. 9306 * The request is always first, the reply follows. 9307 */ 9308 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 9309 /* add up the reply sg entries */ 9310 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 9311 inbound++; 9312 /* first inbound? reset the offset */ 9313 if (inbound == 1) 9314 offset = 0; 9315 bf_set(lpfc_sli4_sge_offset, sgl, offset); 9316 bf_set(lpfc_sli4_sge_type, sgl, 9317 LPFC_SGE_TYPE_DATA); 9318 offset += bde.tus.f.bdeSize; 9319 } 9320 sgl->word2 = cpu_to_le32(sgl->word2); 9321 bpl++; 9322 sgl++; 9323 } 9324 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 9325 /* The addrHigh and addrLow fields of the BDE have not 9326 * been byteswapped yet so they need to be swapped 9327 * before putting them in the sgl. 9328 */ 9329 sgl->addr_hi = 9330 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 9331 sgl->addr_lo = 9332 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 9333 sgl->word2 = le32_to_cpu(sgl->word2); 9334 bf_set(lpfc_sli4_sge_last, sgl, 1); 9335 sgl->word2 = cpu_to_le32(sgl->word2); 9336 sgl->sge_len = 9337 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 9338 } 9339 return sglq->sli4_xritag; 9340 } 9341 9342 /** 9343 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry. 9344 * @phba: Pointer to HBA context object. 9345 * @piocb: Pointer to command iocb. 9346 * @wqe: Pointer to the work queue entry. 9347 * 9348 * This routine converts the iocb command to its Work Queue Entry 9349 * equivalent. The wqe pointer should not have any fields set when 9350 * this routine is called because it will memcpy over them. 9351 * This routine does not set the CQ_ID or the WQEC bits in the 9352 * wqe. 9353 * 9354 * Returns: 0 = Success, IOCB_ERROR = Failure. 9355 **/ 9356 static int 9357 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 9358 union lpfc_wqe128 *wqe) 9359 { 9360 uint32_t xmit_len = 0, total_len = 0; 9361 uint8_t ct = 0; 9362 uint32_t fip; 9363 uint32_t abort_tag; 9364 uint8_t command_type = ELS_COMMAND_NON_FIP; 9365 uint8_t cmnd; 9366 uint16_t xritag; 9367 uint16_t abrt_iotag; 9368 struct lpfc_iocbq *abrtiocbq; 9369 struct ulp_bde64 *bpl = NULL; 9370 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 9371 int numBdes, i; 9372 struct ulp_bde64 bde; 9373 struct lpfc_nodelist *ndlp; 9374 uint32_t *pcmd; 9375 uint32_t if_type; 9376 9377 fip = phba->hba_flag & HBA_FIP_SUPPORT; 9378 /* The fcp commands will set command type */ 9379 if (iocbq->iocb_flag & LPFC_IO_FCP) 9380 command_type = FCP_COMMAND; 9381 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 9382 command_type = ELS_COMMAND_FIP; 9383 else 9384 command_type = ELS_COMMAND_NON_FIP; 9385 9386 if (phba->fcp_embed_io) 9387 memset(wqe, 0, sizeof(union lpfc_wqe128)); 9388 /* Some of the fields are in the right position already */ 9389 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 9390 /* The ct field has moved so reset */ 9391 wqe->generic.wqe_com.word7 = 0; 9392 wqe->generic.wqe_com.word10 = 0; 9393 9394 abort_tag = (uint32_t) iocbq->iotag; 9395 xritag = iocbq->sli4_xritag; 9396 /* words0-2 bpl convert bde */ 9397 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9398 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 9399 sizeof(struct ulp_bde64); 9400 bpl = (struct ulp_bde64 *) 9401 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 9402 if (!bpl) 9403 return IOCB_ERROR; 9404 9405 /* Should already be byte swapped. */ 9406 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 9407 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 9408 /* swap the size field back to the cpu so we 9409 * can assign it to the sgl. 9410 */ 9411 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 9412 xmit_len = wqe->generic.bde.tus.f.bdeSize; 9413 total_len = 0; 9414 for (i = 0; i < numBdes; i++) { 9415 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 9416 total_len += bde.tus.f.bdeSize; 9417 } 9418 } else 9419 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 9420 9421 iocbq->iocb.ulpIoTag = iocbq->iotag; 9422 cmnd = iocbq->iocb.ulpCommand; 9423 9424 switch (iocbq->iocb.ulpCommand) { 9425 case CMD_ELS_REQUEST64_CR: 9426 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 9427 ndlp = iocbq->context_un.ndlp; 9428 else 9429 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9430 if (!iocbq->iocb.ulpLe) { 9431 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9432 "2007 Only Limited Edition cmd Format" 9433 " supported 0x%x\n", 9434 iocbq->iocb.ulpCommand); 9435 return IOCB_ERROR; 9436 } 9437 9438 wqe->els_req.payload_len = xmit_len; 9439 /* Els_reguest64 has a TMO */ 9440 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 9441 iocbq->iocb.ulpTimeout); 9442 /* Need a VF for word 4 set the vf bit*/ 9443 bf_set(els_req64_vf, &wqe->els_req, 0); 9444 /* And a VFID for word 12 */ 9445 bf_set(els_req64_vfid, &wqe->els_req, 0); 9446 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9447 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9448 iocbq->iocb.ulpContext); 9449 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 9450 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 9451 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 9452 if (command_type == ELS_COMMAND_FIP) 9453 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 9454 >> LPFC_FIP_ELS_ID_SHIFT); 9455 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9456 iocbq->context2)->virt); 9457 if_type = bf_get(lpfc_sli_intf_if_type, 9458 &phba->sli4_hba.sli_intf); 9459 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 9460 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 9461 *pcmd == ELS_CMD_SCR || 9462 *pcmd == ELS_CMD_RSCN_XMT || 9463 *pcmd == ELS_CMD_FDISC || 9464 *pcmd == ELS_CMD_LOGO || 9465 *pcmd == ELS_CMD_PLOGI)) { 9466 bf_set(els_req64_sp, &wqe->els_req, 1); 9467 bf_set(els_req64_sid, &wqe->els_req, 9468 iocbq->vport->fc_myDID); 9469 if ((*pcmd == ELS_CMD_FLOGI) && 9470 !(phba->fc_topology == 9471 LPFC_TOPOLOGY_LOOP)) 9472 bf_set(els_req64_sid, &wqe->els_req, 0); 9473 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 9474 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9475 phba->vpi_ids[iocbq->vport->vpi]); 9476 } else if (pcmd && iocbq->context1) { 9477 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 9478 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9479 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9480 } 9481 } 9482 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 9483 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9484 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 9485 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 9486 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 9487 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 9488 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9489 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 9490 wqe->els_req.max_response_payload_len = total_len - xmit_len; 9491 break; 9492 case CMD_XMIT_SEQUENCE64_CX: 9493 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 9494 iocbq->iocb.un.ulpWord[3]); 9495 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 9496 iocbq->iocb.unsli3.rcvsli3.ox_id); 9497 /* The entire sequence is transmitted for this IOCB */ 9498 xmit_len = total_len; 9499 cmnd = CMD_XMIT_SEQUENCE64_CR; 9500 if (phba->link_flag & LS_LOOPBACK_MODE) 9501 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 9502 /* fall through */ 9503 case CMD_XMIT_SEQUENCE64_CR: 9504 /* word3 iocb=io_tag32 wqe=reserved */ 9505 wqe->xmit_sequence.rsvd3 = 0; 9506 /* word4 relative_offset memcpy */ 9507 /* word5 r_ctl/df_ctl memcpy */ 9508 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 9509 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 9510 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 9511 LPFC_WQE_IOD_WRITE); 9512 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 9513 LPFC_WQE_LENLOC_WORD12); 9514 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 9515 wqe->xmit_sequence.xmit_len = xmit_len; 9516 command_type = OTHER_COMMAND; 9517 break; 9518 case CMD_XMIT_BCAST64_CN: 9519 /* word3 iocb=iotag32 wqe=seq_payload_len */ 9520 wqe->xmit_bcast64.seq_payload_len = xmit_len; 9521 /* word4 iocb=rsvd wqe=rsvd */ 9522 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 9523 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 9524 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 9525 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9526 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 9527 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 9528 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 9529 LPFC_WQE_LENLOC_WORD3); 9530 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 9531 break; 9532 case CMD_FCP_IWRITE64_CR: 9533 command_type = FCP_COMMAND_DATA_OUT; 9534 /* word3 iocb=iotag wqe=payload_offset_len */ 9535 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9536 bf_set(payload_offset_len, &wqe->fcp_iwrite, 9537 xmit_len + sizeof(struct fcp_rsp)); 9538 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 9539 0); 9540 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9541 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9542 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 9543 iocbq->iocb.ulpFCP2Rcvy); 9544 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 9545 /* Always open the exchange */ 9546 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 9547 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 9548 LPFC_WQE_LENLOC_WORD4); 9549 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 9550 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 9551 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9552 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 9553 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 9554 if (iocbq->priority) { 9555 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9556 (iocbq->priority << 1)); 9557 } else { 9558 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9559 (phba->cfg_XLanePriority << 1)); 9560 } 9561 } 9562 /* Note, word 10 is already initialized to 0 */ 9563 9564 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9565 if (phba->cfg_enable_pbde) 9566 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1); 9567 else 9568 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 9569 9570 if (phba->fcp_embed_io) { 9571 struct lpfc_io_buf *lpfc_cmd; 9572 struct sli4_sge *sgl; 9573 struct fcp_cmnd *fcp_cmnd; 9574 uint32_t *ptr; 9575 9576 /* 128 byte wqe support here */ 9577 9578 lpfc_cmd = iocbq->context1; 9579 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9580 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9581 9582 /* Word 0-2 - FCP_CMND */ 9583 wqe->generic.bde.tus.f.bdeFlags = 9584 BUFF_TYPE_BDE_IMMED; 9585 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9586 wqe->generic.bde.addrHigh = 0; 9587 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9588 9589 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 9590 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 9591 9592 /* Word 22-29 FCP CMND Payload */ 9593 ptr = &wqe->words[22]; 9594 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9595 } 9596 break; 9597 case CMD_FCP_IREAD64_CR: 9598 /* word3 iocb=iotag wqe=payload_offset_len */ 9599 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9600 bf_set(payload_offset_len, &wqe->fcp_iread, 9601 xmit_len + sizeof(struct fcp_rsp)); 9602 bf_set(cmd_buff_len, &wqe->fcp_iread, 9603 0); 9604 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9605 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9606 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 9607 iocbq->iocb.ulpFCP2Rcvy); 9608 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 9609 /* Always open the exchange */ 9610 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 9611 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 9612 LPFC_WQE_LENLOC_WORD4); 9613 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 9614 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 9615 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9616 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 9617 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 9618 if (iocbq->priority) { 9619 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9620 (iocbq->priority << 1)); 9621 } else { 9622 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9623 (phba->cfg_XLanePriority << 1)); 9624 } 9625 } 9626 /* Note, word 10 is already initialized to 0 */ 9627 9628 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9629 if (phba->cfg_enable_pbde) 9630 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1); 9631 else 9632 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 9633 9634 if (phba->fcp_embed_io) { 9635 struct lpfc_io_buf *lpfc_cmd; 9636 struct sli4_sge *sgl; 9637 struct fcp_cmnd *fcp_cmnd; 9638 uint32_t *ptr; 9639 9640 /* 128 byte wqe support here */ 9641 9642 lpfc_cmd = iocbq->context1; 9643 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9644 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9645 9646 /* Word 0-2 - FCP_CMND */ 9647 wqe->generic.bde.tus.f.bdeFlags = 9648 BUFF_TYPE_BDE_IMMED; 9649 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9650 wqe->generic.bde.addrHigh = 0; 9651 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9652 9653 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 9654 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 9655 9656 /* Word 22-29 FCP CMND Payload */ 9657 ptr = &wqe->words[22]; 9658 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9659 } 9660 break; 9661 case CMD_FCP_ICMND64_CR: 9662 /* word3 iocb=iotag wqe=payload_offset_len */ 9663 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9664 bf_set(payload_offset_len, &wqe->fcp_icmd, 9665 xmit_len + sizeof(struct fcp_rsp)); 9666 bf_set(cmd_buff_len, &wqe->fcp_icmd, 9667 0); 9668 /* word3 iocb=IO_TAG wqe=reserved */ 9669 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 9670 /* Always open the exchange */ 9671 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 9672 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 9673 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 9674 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 9675 LPFC_WQE_LENLOC_NONE); 9676 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 9677 iocbq->iocb.ulpFCP2Rcvy); 9678 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9679 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 9680 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 9681 if (iocbq->priority) { 9682 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9683 (iocbq->priority << 1)); 9684 } else { 9685 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9686 (phba->cfg_XLanePriority << 1)); 9687 } 9688 } 9689 /* Note, word 10 is already initialized to 0 */ 9690 9691 if (phba->fcp_embed_io) { 9692 struct lpfc_io_buf *lpfc_cmd; 9693 struct sli4_sge *sgl; 9694 struct fcp_cmnd *fcp_cmnd; 9695 uint32_t *ptr; 9696 9697 /* 128 byte wqe support here */ 9698 9699 lpfc_cmd = iocbq->context1; 9700 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9701 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9702 9703 /* Word 0-2 - FCP_CMND */ 9704 wqe->generic.bde.tus.f.bdeFlags = 9705 BUFF_TYPE_BDE_IMMED; 9706 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9707 wqe->generic.bde.addrHigh = 0; 9708 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9709 9710 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 9711 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 9712 9713 /* Word 22-29 FCP CMND Payload */ 9714 ptr = &wqe->words[22]; 9715 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9716 } 9717 break; 9718 case CMD_GEN_REQUEST64_CR: 9719 /* For this command calculate the xmit length of the 9720 * request bde. 9721 */ 9722 xmit_len = 0; 9723 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 9724 sizeof(struct ulp_bde64); 9725 for (i = 0; i < numBdes; i++) { 9726 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 9727 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 9728 break; 9729 xmit_len += bde.tus.f.bdeSize; 9730 } 9731 /* word3 iocb=IO_TAG wqe=request_payload_len */ 9732 wqe->gen_req.request_payload_len = xmit_len; 9733 /* word4 iocb=parameter wqe=relative_offset memcpy */ 9734 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 9735 /* word6 context tag copied in memcpy */ 9736 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 9737 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9738 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9739 "2015 Invalid CT %x command 0x%x\n", 9740 ct, iocbq->iocb.ulpCommand); 9741 return IOCB_ERROR; 9742 } 9743 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 9744 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 9745 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 9746 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 9747 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 9748 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 9749 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9750 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 9751 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 9752 command_type = OTHER_COMMAND; 9753 break; 9754 case CMD_XMIT_ELS_RSP64_CX: 9755 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9756 /* words0-2 BDE memcpy */ 9757 /* word3 iocb=iotag32 wqe=response_payload_len */ 9758 wqe->xmit_els_rsp.response_payload_len = xmit_len; 9759 /* word4 */ 9760 wqe->xmit_els_rsp.word4 = 0; 9761 /* word5 iocb=rsvd wge=did */ 9762 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 9763 iocbq->iocb.un.xseq64.xmit_els_remoteID); 9764 9765 if_type = bf_get(lpfc_sli_intf_if_type, 9766 &phba->sli4_hba.sli_intf); 9767 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 9768 if (iocbq->vport->fc_flag & FC_PT2PT) { 9769 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 9770 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 9771 iocbq->vport->fc_myDID); 9772 if (iocbq->vport->fc_myDID == Fabric_DID) { 9773 bf_set(wqe_els_did, 9774 &wqe->xmit_els_rsp.wqe_dest, 0); 9775 } 9776 } 9777 } 9778 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 9779 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9780 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 9781 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 9782 iocbq->iocb.unsli3.rcvsli3.ox_id); 9783 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 9784 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9785 phba->vpi_ids[iocbq->vport->vpi]); 9786 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 9787 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 9788 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 9789 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 9790 LPFC_WQE_LENLOC_WORD3); 9791 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 9792 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 9793 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9794 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9795 iocbq->context2)->virt); 9796 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 9797 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 9798 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 9799 iocbq->vport->fc_myDID); 9800 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 9801 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9802 phba->vpi_ids[phba->pport->vpi]); 9803 } 9804 command_type = OTHER_COMMAND; 9805 break; 9806 case CMD_CLOSE_XRI_CN: 9807 case CMD_ABORT_XRI_CN: 9808 case CMD_ABORT_XRI_CX: 9809 /* words 0-2 memcpy should be 0 rserved */ 9810 /* port will send abts */ 9811 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 9812 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 9813 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 9814 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 9815 } else 9816 fip = 0; 9817 9818 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 9819 /* 9820 * The link is down, or the command was ELS_FIP 9821 * so the fw does not need to send abts 9822 * on the wire. 9823 */ 9824 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 9825 else 9826 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 9827 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 9828 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 9829 wqe->abort_cmd.rsrvd5 = 0; 9830 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 9831 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9832 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 9833 /* 9834 * The abort handler will send us CMD_ABORT_XRI_CN or 9835 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 9836 */ 9837 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 9838 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 9839 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 9840 LPFC_WQE_LENLOC_NONE); 9841 cmnd = CMD_ABORT_XRI_CX; 9842 command_type = OTHER_COMMAND; 9843 xritag = 0; 9844 break; 9845 case CMD_XMIT_BLS_RSP64_CX: 9846 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9847 /* As BLS ABTS RSP WQE is very different from other WQEs, 9848 * we re-construct this WQE here based on information in 9849 * iocbq from scratch. 9850 */ 9851 memset(wqe, 0, sizeof(*wqe)); 9852 /* OX_ID is invariable to who sent ABTS to CT exchange */ 9853 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 9854 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 9855 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 9856 LPFC_ABTS_UNSOL_INT) { 9857 /* ABTS sent by initiator to CT exchange, the 9858 * RX_ID field will be filled with the newly 9859 * allocated responder XRI. 9860 */ 9861 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 9862 iocbq->sli4_xritag); 9863 } else { 9864 /* ABTS sent by responder to CT exchange, the 9865 * RX_ID field will be filled with the responder 9866 * RX_ID from ABTS. 9867 */ 9868 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 9869 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 9870 } 9871 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 9872 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 9873 9874 /* Use CT=VPI */ 9875 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 9876 ndlp->nlp_DID); 9877 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 9878 iocbq->iocb.ulpContext); 9879 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 9880 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 9881 phba->vpi_ids[phba->pport->vpi]); 9882 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 9883 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 9884 LPFC_WQE_LENLOC_NONE); 9885 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 9886 command_type = OTHER_COMMAND; 9887 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 9888 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 9889 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 9890 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 9891 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 9892 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 9893 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 9894 } 9895 9896 break; 9897 case CMD_SEND_FRAME: 9898 bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME); 9899 bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */ 9900 bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */ 9901 bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1); 9902 bf_set(wqe_xbl, &wqe->generic.wqe_com, 1); 9903 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 9904 bf_set(wqe_xc, &wqe->generic.wqe_com, 1); 9905 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA); 9906 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 9907 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 9908 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 9909 return 0; 9910 case CMD_XRI_ABORTED_CX: 9911 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 9912 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 9913 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 9914 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 9915 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 9916 default: 9917 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9918 "2014 Invalid command 0x%x\n", 9919 iocbq->iocb.ulpCommand); 9920 return IOCB_ERROR; 9921 break; 9922 } 9923 9924 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 9925 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 9926 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 9927 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 9928 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 9929 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 9930 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 9931 LPFC_IO_DIF_INSERT); 9932 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 9933 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 9934 wqe->generic.wqe_com.abort_tag = abort_tag; 9935 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 9936 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 9937 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 9938 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 9939 return 0; 9940 } 9941 9942 /** 9943 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 9944 * @phba: Pointer to HBA context object. 9945 * @ring_number: SLI ring number to issue iocb on. 9946 * @piocb: Pointer to command iocb. 9947 * @flag: Flag indicating if this command can be put into txq. 9948 * 9949 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 9950 * an iocb command to an HBA with SLI-4 interface spec. 9951 * 9952 * This function is called with ringlock held. The function will return success 9953 * after it successfully submit the iocb to firmware or after adding to the 9954 * txq. 9955 **/ 9956 static int 9957 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 9958 struct lpfc_iocbq *piocb, uint32_t flag) 9959 { 9960 struct lpfc_sglq *sglq; 9961 union lpfc_wqe128 wqe; 9962 struct lpfc_queue *wq; 9963 struct lpfc_sli_ring *pring; 9964 9965 /* Get the WQ */ 9966 if ((piocb->iocb_flag & LPFC_IO_FCP) || 9967 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 9968 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 9969 } else { 9970 wq = phba->sli4_hba.els_wq; 9971 } 9972 9973 /* Get corresponding ring */ 9974 pring = wq->pring; 9975 9976 /* 9977 * The WQE can be either 64 or 128 bytes, 9978 */ 9979 9980 lockdep_assert_held(&pring->ring_lock); 9981 9982 if (piocb->sli4_xritag == NO_XRI) { 9983 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 9984 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 9985 sglq = NULL; 9986 else { 9987 if (!list_empty(&pring->txq)) { 9988 if (!(flag & SLI_IOCB_RET_IOCB)) { 9989 __lpfc_sli_ringtx_put(phba, 9990 pring, piocb); 9991 return IOCB_SUCCESS; 9992 } else { 9993 return IOCB_BUSY; 9994 } 9995 } else { 9996 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 9997 if (!sglq) { 9998 if (!(flag & SLI_IOCB_RET_IOCB)) { 9999 __lpfc_sli_ringtx_put(phba, 10000 pring, 10001 piocb); 10002 return IOCB_SUCCESS; 10003 } else 10004 return IOCB_BUSY; 10005 } 10006 } 10007 } 10008 } else if (piocb->iocb_flag & LPFC_IO_FCP) 10009 /* These IO's already have an XRI and a mapped sgl. */ 10010 sglq = NULL; 10011 else { 10012 /* 10013 * This is a continuation of a commandi,(CX) so this 10014 * sglq is on the active list 10015 */ 10016 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10017 if (!sglq) 10018 return IOCB_ERROR; 10019 } 10020 10021 if (sglq) { 10022 piocb->sli4_lxritag = sglq->sli4_lxritag; 10023 piocb->sli4_xritag = sglq->sli4_xritag; 10024 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 10025 return IOCB_ERROR; 10026 } 10027 10028 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe)) 10029 return IOCB_ERROR; 10030 10031 if (lpfc_sli4_wq_put(wq, &wqe)) 10032 return IOCB_ERROR; 10033 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10034 10035 return 0; 10036 } 10037 10038 /** 10039 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10040 * 10041 * This routine wraps the actual lockless version for issusing IOCB function 10042 * pointer from the lpfc_hba struct. 10043 * 10044 * Return codes: 10045 * IOCB_ERROR - Error 10046 * IOCB_SUCCESS - Success 10047 * IOCB_BUSY - Busy 10048 **/ 10049 int 10050 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10051 struct lpfc_iocbq *piocb, uint32_t flag) 10052 { 10053 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10054 } 10055 10056 /** 10057 * lpfc_sli_api_table_setup - Set up sli api function jump table 10058 * @phba: The hba struct for which this call is being executed. 10059 * @dev_grp: The HBA PCI-Device group number. 10060 * 10061 * This routine sets up the SLI interface API function jump table in @phba 10062 * struct. 10063 * Returns: 0 - success, -ENODEV - failure. 10064 **/ 10065 int 10066 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10067 { 10068 10069 switch (dev_grp) { 10070 case LPFC_PCI_DEV_LP: 10071 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 10072 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 10073 break; 10074 case LPFC_PCI_DEV_OC: 10075 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 10076 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 10077 break; 10078 default: 10079 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10080 "1419 Invalid HBA PCI-device group: 0x%x\n", 10081 dev_grp); 10082 return -ENODEV; 10083 break; 10084 } 10085 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 10086 return 0; 10087 } 10088 10089 /** 10090 * lpfc_sli4_calc_ring - Calculates which ring to use 10091 * @phba: Pointer to HBA context object. 10092 * @piocb: Pointer to command iocb. 10093 * 10094 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 10095 * hba_wqidx, thus we need to calculate the corresponding ring. 10096 * Since ABORTS must go on the same WQ of the command they are 10097 * aborting, we use command's hba_wqidx. 10098 */ 10099 struct lpfc_sli_ring * 10100 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 10101 { 10102 struct lpfc_io_buf *lpfc_cmd; 10103 10104 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 10105 if (unlikely(!phba->sli4_hba.hdwq)) 10106 return NULL; 10107 /* 10108 * for abort iocb hba_wqidx should already 10109 * be setup based on what work queue we used. 10110 */ 10111 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 10112 lpfc_cmd = (struct lpfc_io_buf *)piocb->context1; 10113 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 10114 } 10115 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 10116 } else { 10117 if (unlikely(!phba->sli4_hba.els_wq)) 10118 return NULL; 10119 piocb->hba_wqidx = 0; 10120 return phba->sli4_hba.els_wq->pring; 10121 } 10122 } 10123 10124 /** 10125 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 10126 * @phba: Pointer to HBA context object. 10127 * @pring: Pointer to driver SLI ring object. 10128 * @piocb: Pointer to command iocb. 10129 * @flag: Flag indicating if this command can be put into txq. 10130 * 10131 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 10132 * function. This function gets the hbalock and calls 10133 * __lpfc_sli_issue_iocb function and will return the error returned 10134 * by __lpfc_sli_issue_iocb function. This wrapper is used by 10135 * functions which do not hold hbalock. 10136 **/ 10137 int 10138 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10139 struct lpfc_iocbq *piocb, uint32_t flag) 10140 { 10141 struct lpfc_sli_ring *pring; 10142 struct lpfc_queue *eq; 10143 unsigned long iflags; 10144 int rc; 10145 10146 if (phba->sli_rev == LPFC_SLI_REV4) { 10147 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 10148 10149 pring = lpfc_sli4_calc_ring(phba, piocb); 10150 if (unlikely(pring == NULL)) 10151 return IOCB_ERROR; 10152 10153 spin_lock_irqsave(&pring->ring_lock, iflags); 10154 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10155 spin_unlock_irqrestore(&pring->ring_lock, iflags); 10156 10157 lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH); 10158 } else { 10159 /* For now, SLI2/3 will still use hbalock */ 10160 spin_lock_irqsave(&phba->hbalock, iflags); 10161 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10162 spin_unlock_irqrestore(&phba->hbalock, iflags); 10163 } 10164 return rc; 10165 } 10166 10167 /** 10168 * lpfc_extra_ring_setup - Extra ring setup function 10169 * @phba: Pointer to HBA context object. 10170 * 10171 * This function is called while driver attaches with the 10172 * HBA to setup the extra ring. The extra ring is used 10173 * only when driver needs to support target mode functionality 10174 * or IP over FC functionalities. 10175 * 10176 * This function is called with no lock held. SLI3 only. 10177 **/ 10178 static int 10179 lpfc_extra_ring_setup( struct lpfc_hba *phba) 10180 { 10181 struct lpfc_sli *psli; 10182 struct lpfc_sli_ring *pring; 10183 10184 psli = &phba->sli; 10185 10186 /* Adjust cmd/rsp ring iocb entries more evenly */ 10187 10188 /* Take some away from the FCP ring */ 10189 pring = &psli->sli3_ring[LPFC_FCP_RING]; 10190 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10191 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10192 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10193 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10194 10195 /* and give them to the extra ring */ 10196 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 10197 10198 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10199 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10200 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10201 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10202 10203 /* Setup default profile for this ring */ 10204 pring->iotag_max = 4096; 10205 pring->num_mask = 1; 10206 pring->prt[0].profile = 0; /* Mask 0 */ 10207 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 10208 pring->prt[0].type = phba->cfg_multi_ring_type; 10209 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 10210 return 0; 10211 } 10212 10213 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 10214 * @phba: Pointer to HBA context object. 10215 * @iocbq: Pointer to iocb object. 10216 * 10217 * The async_event handler calls this routine when it receives 10218 * an ASYNC_STATUS_CN event from the port. The port generates 10219 * this event when an Abort Sequence request to an rport fails 10220 * twice in succession. The abort could be originated by the 10221 * driver or by the port. The ABTS could have been for an ELS 10222 * or FCP IO. The port only generates this event when an ABTS 10223 * fails to complete after one retry. 10224 */ 10225 static void 10226 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 10227 struct lpfc_iocbq *iocbq) 10228 { 10229 struct lpfc_nodelist *ndlp = NULL; 10230 uint16_t rpi = 0, vpi = 0; 10231 struct lpfc_vport *vport = NULL; 10232 10233 /* The rpi in the ulpContext is vport-sensitive. */ 10234 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 10235 rpi = iocbq->iocb.ulpContext; 10236 10237 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10238 "3092 Port generated ABTS async event " 10239 "on vpi %d rpi %d status 0x%x\n", 10240 vpi, rpi, iocbq->iocb.ulpStatus); 10241 10242 vport = lpfc_find_vport_by_vpid(phba, vpi); 10243 if (!vport) 10244 goto err_exit; 10245 ndlp = lpfc_findnode_rpi(vport, rpi); 10246 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) 10247 goto err_exit; 10248 10249 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 10250 lpfc_sli_abts_recover_port(vport, ndlp); 10251 return; 10252 10253 err_exit: 10254 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10255 "3095 Event Context not found, no " 10256 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 10257 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 10258 vpi, rpi); 10259 } 10260 10261 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 10262 * @phba: pointer to HBA context object. 10263 * @ndlp: nodelist pointer for the impacted rport. 10264 * @axri: pointer to the wcqe containing the failed exchange. 10265 * 10266 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 10267 * port. The port generates this event when an abort exchange request to an 10268 * rport fails twice in succession with no reply. The abort could be originated 10269 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 10270 */ 10271 void 10272 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 10273 struct lpfc_nodelist *ndlp, 10274 struct sli4_wcqe_xri_aborted *axri) 10275 { 10276 struct lpfc_vport *vport; 10277 uint32_t ext_status = 0; 10278 10279 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { 10280 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10281 "3115 Node Context not found, driver " 10282 "ignoring abts err event\n"); 10283 return; 10284 } 10285 10286 vport = ndlp->vport; 10287 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10288 "3116 Port generated FCP XRI ABORT event on " 10289 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 10290 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 10291 bf_get(lpfc_wcqe_xa_xri, axri), 10292 bf_get(lpfc_wcqe_xa_status, axri), 10293 axri->parameter); 10294 10295 /* 10296 * Catch the ABTS protocol failure case. Older OCe FW releases returned 10297 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 10298 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 10299 */ 10300 ext_status = axri->parameter & IOERR_PARAM_MASK; 10301 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 10302 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 10303 lpfc_sli_abts_recover_port(vport, ndlp); 10304 } 10305 10306 /** 10307 * lpfc_sli_async_event_handler - ASYNC iocb handler function 10308 * @phba: Pointer to HBA context object. 10309 * @pring: Pointer to driver SLI ring object. 10310 * @iocbq: Pointer to iocb object. 10311 * 10312 * This function is called by the slow ring event handler 10313 * function when there is an ASYNC event iocb in the ring. 10314 * This function is called with no lock held. 10315 * Currently this function handles only temperature related 10316 * ASYNC events. The function decodes the temperature sensor 10317 * event message and posts events for the management applications. 10318 **/ 10319 static void 10320 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 10321 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 10322 { 10323 IOCB_t *icmd; 10324 uint16_t evt_code; 10325 struct temp_event temp_event_data; 10326 struct Scsi_Host *shost; 10327 uint32_t *iocb_w; 10328 10329 icmd = &iocbq->iocb; 10330 evt_code = icmd->un.asyncstat.evt_code; 10331 10332 switch (evt_code) { 10333 case ASYNC_TEMP_WARN: 10334 case ASYNC_TEMP_SAFE: 10335 temp_event_data.data = (uint32_t) icmd->ulpContext; 10336 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 10337 if (evt_code == ASYNC_TEMP_WARN) { 10338 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 10339 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 10340 "0347 Adapter is very hot, please take " 10341 "corrective action. temperature : %d Celsius\n", 10342 (uint32_t) icmd->ulpContext); 10343 } else { 10344 temp_event_data.event_code = LPFC_NORMAL_TEMP; 10345 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 10346 "0340 Adapter temperature is OK now. " 10347 "temperature : %d Celsius\n", 10348 (uint32_t) icmd->ulpContext); 10349 } 10350 10351 /* Send temperature change event to applications */ 10352 shost = lpfc_shost_from_vport(phba->pport); 10353 fc_host_post_vendor_event(shost, fc_get_event_number(), 10354 sizeof(temp_event_data), (char *) &temp_event_data, 10355 LPFC_NL_VENDOR_ID); 10356 break; 10357 case ASYNC_STATUS_CN: 10358 lpfc_sli_abts_err_handler(phba, iocbq); 10359 break; 10360 default: 10361 iocb_w = (uint32_t *) icmd; 10362 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 10363 "0346 Ring %d handler: unexpected ASYNC_STATUS" 10364 " evt_code 0x%x\n" 10365 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 10366 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 10367 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 10368 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 10369 pring->ringno, icmd->un.asyncstat.evt_code, 10370 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 10371 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 10372 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 10373 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 10374 10375 break; 10376 } 10377 } 10378 10379 10380 /** 10381 * lpfc_sli4_setup - SLI ring setup function 10382 * @phba: Pointer to HBA context object. 10383 * 10384 * lpfc_sli_setup sets up rings of the SLI interface with 10385 * number of iocbs per ring and iotags. This function is 10386 * called while driver attach to the HBA and before the 10387 * interrupts are enabled. So there is no need for locking. 10388 * 10389 * This function always returns 0. 10390 **/ 10391 int 10392 lpfc_sli4_setup(struct lpfc_hba *phba) 10393 { 10394 struct lpfc_sli_ring *pring; 10395 10396 pring = phba->sli4_hba.els_wq->pring; 10397 pring->num_mask = LPFC_MAX_RING_MASK; 10398 pring->prt[0].profile = 0; /* Mask 0 */ 10399 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10400 pring->prt[0].type = FC_TYPE_ELS; 10401 pring->prt[0].lpfc_sli_rcv_unsol_event = 10402 lpfc_els_unsol_event; 10403 pring->prt[1].profile = 0; /* Mask 1 */ 10404 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10405 pring->prt[1].type = FC_TYPE_ELS; 10406 pring->prt[1].lpfc_sli_rcv_unsol_event = 10407 lpfc_els_unsol_event; 10408 pring->prt[2].profile = 0; /* Mask 2 */ 10409 /* NameServer Inquiry */ 10410 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10411 /* NameServer */ 10412 pring->prt[2].type = FC_TYPE_CT; 10413 pring->prt[2].lpfc_sli_rcv_unsol_event = 10414 lpfc_ct_unsol_event; 10415 pring->prt[3].profile = 0; /* Mask 3 */ 10416 /* NameServer response */ 10417 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10418 /* NameServer */ 10419 pring->prt[3].type = FC_TYPE_CT; 10420 pring->prt[3].lpfc_sli_rcv_unsol_event = 10421 lpfc_ct_unsol_event; 10422 return 0; 10423 } 10424 10425 /** 10426 * lpfc_sli_setup - SLI ring setup function 10427 * @phba: Pointer to HBA context object. 10428 * 10429 * lpfc_sli_setup sets up rings of the SLI interface with 10430 * number of iocbs per ring and iotags. This function is 10431 * called while driver attach to the HBA and before the 10432 * interrupts are enabled. So there is no need for locking. 10433 * 10434 * This function always returns 0. SLI3 only. 10435 **/ 10436 int 10437 lpfc_sli_setup(struct lpfc_hba *phba) 10438 { 10439 int i, totiocbsize = 0; 10440 struct lpfc_sli *psli = &phba->sli; 10441 struct lpfc_sli_ring *pring; 10442 10443 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 10444 psli->sli_flag = 0; 10445 10446 psli->iocbq_lookup = NULL; 10447 psli->iocbq_lookup_len = 0; 10448 psli->last_iotag = 0; 10449 10450 for (i = 0; i < psli->num_rings; i++) { 10451 pring = &psli->sli3_ring[i]; 10452 switch (i) { 10453 case LPFC_FCP_RING: /* ring 0 - FCP */ 10454 /* numCiocb and numRiocb are used in config_port */ 10455 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 10456 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 10457 pring->sli.sli3.numCiocb += 10458 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10459 pring->sli.sli3.numRiocb += 10460 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10461 pring->sli.sli3.numCiocb += 10462 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10463 pring->sli.sli3.numRiocb += 10464 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10465 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10466 SLI3_IOCB_CMD_SIZE : 10467 SLI2_IOCB_CMD_SIZE; 10468 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10469 SLI3_IOCB_RSP_SIZE : 10470 SLI2_IOCB_RSP_SIZE; 10471 pring->iotag_ctr = 0; 10472 pring->iotag_max = 10473 (phba->cfg_hba_queue_depth * 2); 10474 pring->fast_iotag = pring->iotag_max; 10475 pring->num_mask = 0; 10476 break; 10477 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 10478 /* numCiocb and numRiocb are used in config_port */ 10479 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 10480 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 10481 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10482 SLI3_IOCB_CMD_SIZE : 10483 SLI2_IOCB_CMD_SIZE; 10484 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10485 SLI3_IOCB_RSP_SIZE : 10486 SLI2_IOCB_RSP_SIZE; 10487 pring->iotag_max = phba->cfg_hba_queue_depth; 10488 pring->num_mask = 0; 10489 break; 10490 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 10491 /* numCiocb and numRiocb are used in config_port */ 10492 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 10493 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 10494 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10495 SLI3_IOCB_CMD_SIZE : 10496 SLI2_IOCB_CMD_SIZE; 10497 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10498 SLI3_IOCB_RSP_SIZE : 10499 SLI2_IOCB_RSP_SIZE; 10500 pring->fast_iotag = 0; 10501 pring->iotag_ctr = 0; 10502 pring->iotag_max = 4096; 10503 pring->lpfc_sli_rcv_async_status = 10504 lpfc_sli_async_event_handler; 10505 pring->num_mask = LPFC_MAX_RING_MASK; 10506 pring->prt[0].profile = 0; /* Mask 0 */ 10507 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10508 pring->prt[0].type = FC_TYPE_ELS; 10509 pring->prt[0].lpfc_sli_rcv_unsol_event = 10510 lpfc_els_unsol_event; 10511 pring->prt[1].profile = 0; /* Mask 1 */ 10512 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10513 pring->prt[1].type = FC_TYPE_ELS; 10514 pring->prt[1].lpfc_sli_rcv_unsol_event = 10515 lpfc_els_unsol_event; 10516 pring->prt[2].profile = 0; /* Mask 2 */ 10517 /* NameServer Inquiry */ 10518 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10519 /* NameServer */ 10520 pring->prt[2].type = FC_TYPE_CT; 10521 pring->prt[2].lpfc_sli_rcv_unsol_event = 10522 lpfc_ct_unsol_event; 10523 pring->prt[3].profile = 0; /* Mask 3 */ 10524 /* NameServer response */ 10525 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10526 /* NameServer */ 10527 pring->prt[3].type = FC_TYPE_CT; 10528 pring->prt[3].lpfc_sli_rcv_unsol_event = 10529 lpfc_ct_unsol_event; 10530 break; 10531 } 10532 totiocbsize += (pring->sli.sli3.numCiocb * 10533 pring->sli.sli3.sizeCiocb) + 10534 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 10535 } 10536 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 10537 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 10538 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 10539 "SLI2 SLIM Data: x%x x%lx\n", 10540 phba->brd_no, totiocbsize, 10541 (unsigned long) MAX_SLIM_IOCB_SIZE); 10542 } 10543 if (phba->cfg_multi_ring_support == 2) 10544 lpfc_extra_ring_setup(phba); 10545 10546 return 0; 10547 } 10548 10549 /** 10550 * lpfc_sli4_queue_init - Queue initialization function 10551 * @phba: Pointer to HBA context object. 10552 * 10553 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 10554 * ring. This function also initializes ring indices of each ring. 10555 * This function is called during the initialization of the SLI 10556 * interface of an HBA. 10557 * This function is called with no lock held and always returns 10558 * 1. 10559 **/ 10560 void 10561 lpfc_sli4_queue_init(struct lpfc_hba *phba) 10562 { 10563 struct lpfc_sli *psli; 10564 struct lpfc_sli_ring *pring; 10565 int i; 10566 10567 psli = &phba->sli; 10568 spin_lock_irq(&phba->hbalock); 10569 INIT_LIST_HEAD(&psli->mboxq); 10570 INIT_LIST_HEAD(&psli->mboxq_cmpl); 10571 /* Initialize list headers for txq and txcmplq as double linked lists */ 10572 for (i = 0; i < phba->cfg_hdw_queue; i++) { 10573 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 10574 pring->flag = 0; 10575 pring->ringno = LPFC_FCP_RING; 10576 pring->txcmplq_cnt = 0; 10577 INIT_LIST_HEAD(&pring->txq); 10578 INIT_LIST_HEAD(&pring->txcmplq); 10579 INIT_LIST_HEAD(&pring->iocb_continueq); 10580 spin_lock_init(&pring->ring_lock); 10581 } 10582 pring = phba->sli4_hba.els_wq->pring; 10583 pring->flag = 0; 10584 pring->ringno = LPFC_ELS_RING; 10585 pring->txcmplq_cnt = 0; 10586 INIT_LIST_HEAD(&pring->txq); 10587 INIT_LIST_HEAD(&pring->txcmplq); 10588 INIT_LIST_HEAD(&pring->iocb_continueq); 10589 spin_lock_init(&pring->ring_lock); 10590 10591 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 10592 pring = phba->sli4_hba.nvmels_wq->pring; 10593 pring->flag = 0; 10594 pring->ringno = LPFC_ELS_RING; 10595 pring->txcmplq_cnt = 0; 10596 INIT_LIST_HEAD(&pring->txq); 10597 INIT_LIST_HEAD(&pring->txcmplq); 10598 INIT_LIST_HEAD(&pring->iocb_continueq); 10599 spin_lock_init(&pring->ring_lock); 10600 } 10601 10602 spin_unlock_irq(&phba->hbalock); 10603 } 10604 10605 /** 10606 * lpfc_sli_queue_init - Queue initialization function 10607 * @phba: Pointer to HBA context object. 10608 * 10609 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 10610 * ring. This function also initializes ring indices of each ring. 10611 * This function is called during the initialization of the SLI 10612 * interface of an HBA. 10613 * This function is called with no lock held and always returns 10614 * 1. 10615 **/ 10616 void 10617 lpfc_sli_queue_init(struct lpfc_hba *phba) 10618 { 10619 struct lpfc_sli *psli; 10620 struct lpfc_sli_ring *pring; 10621 int i; 10622 10623 psli = &phba->sli; 10624 spin_lock_irq(&phba->hbalock); 10625 INIT_LIST_HEAD(&psli->mboxq); 10626 INIT_LIST_HEAD(&psli->mboxq_cmpl); 10627 /* Initialize list headers for txq and txcmplq as double linked lists */ 10628 for (i = 0; i < psli->num_rings; i++) { 10629 pring = &psli->sli3_ring[i]; 10630 pring->ringno = i; 10631 pring->sli.sli3.next_cmdidx = 0; 10632 pring->sli.sli3.local_getidx = 0; 10633 pring->sli.sli3.cmdidx = 0; 10634 INIT_LIST_HEAD(&pring->iocb_continueq); 10635 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 10636 INIT_LIST_HEAD(&pring->postbufq); 10637 pring->flag = 0; 10638 INIT_LIST_HEAD(&pring->txq); 10639 INIT_LIST_HEAD(&pring->txcmplq); 10640 spin_lock_init(&pring->ring_lock); 10641 } 10642 spin_unlock_irq(&phba->hbalock); 10643 } 10644 10645 /** 10646 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 10647 * @phba: Pointer to HBA context object. 10648 * 10649 * This routine flushes the mailbox command subsystem. It will unconditionally 10650 * flush all the mailbox commands in the three possible stages in the mailbox 10651 * command sub-system: pending mailbox command queue; the outstanding mailbox 10652 * command; and completed mailbox command queue. It is caller's responsibility 10653 * to make sure that the driver is in the proper state to flush the mailbox 10654 * command sub-system. Namely, the posting of mailbox commands into the 10655 * pending mailbox command queue from the various clients must be stopped; 10656 * either the HBA is in a state that it will never works on the outstanding 10657 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 10658 * mailbox command has been completed. 10659 **/ 10660 static void 10661 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 10662 { 10663 LIST_HEAD(completions); 10664 struct lpfc_sli *psli = &phba->sli; 10665 LPFC_MBOXQ_t *pmb; 10666 unsigned long iflag; 10667 10668 /* Disable softirqs, including timers from obtaining phba->hbalock */ 10669 local_bh_disable(); 10670 10671 /* Flush all the mailbox commands in the mbox system */ 10672 spin_lock_irqsave(&phba->hbalock, iflag); 10673 10674 /* The pending mailbox command queue */ 10675 list_splice_init(&phba->sli.mboxq, &completions); 10676 /* The outstanding active mailbox command */ 10677 if (psli->mbox_active) { 10678 list_add_tail(&psli->mbox_active->list, &completions); 10679 psli->mbox_active = NULL; 10680 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10681 } 10682 /* The completed mailbox command queue */ 10683 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 10684 spin_unlock_irqrestore(&phba->hbalock, iflag); 10685 10686 /* Enable softirqs again, done with phba->hbalock */ 10687 local_bh_enable(); 10688 10689 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 10690 while (!list_empty(&completions)) { 10691 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 10692 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 10693 if (pmb->mbox_cmpl) 10694 pmb->mbox_cmpl(phba, pmb); 10695 } 10696 } 10697 10698 /** 10699 * lpfc_sli_host_down - Vport cleanup function 10700 * @vport: Pointer to virtual port object. 10701 * 10702 * lpfc_sli_host_down is called to clean up the resources 10703 * associated with a vport before destroying virtual 10704 * port data structures. 10705 * This function does following operations: 10706 * - Free discovery resources associated with this virtual 10707 * port. 10708 * - Free iocbs associated with this virtual port in 10709 * the txq. 10710 * - Send abort for all iocb commands associated with this 10711 * vport in txcmplq. 10712 * 10713 * This function is called with no lock held and always returns 1. 10714 **/ 10715 int 10716 lpfc_sli_host_down(struct lpfc_vport *vport) 10717 { 10718 LIST_HEAD(completions); 10719 struct lpfc_hba *phba = vport->phba; 10720 struct lpfc_sli *psli = &phba->sli; 10721 struct lpfc_queue *qp = NULL; 10722 struct lpfc_sli_ring *pring; 10723 struct lpfc_iocbq *iocb, *next_iocb; 10724 int i; 10725 unsigned long flags = 0; 10726 uint16_t prev_pring_flag; 10727 10728 lpfc_cleanup_discovery_resources(vport); 10729 10730 spin_lock_irqsave(&phba->hbalock, flags); 10731 10732 /* 10733 * Error everything on the txq since these iocbs 10734 * have not been given to the FW yet. 10735 * Also issue ABTS for everything on the txcmplq 10736 */ 10737 if (phba->sli_rev != LPFC_SLI_REV4) { 10738 for (i = 0; i < psli->num_rings; i++) { 10739 pring = &psli->sli3_ring[i]; 10740 prev_pring_flag = pring->flag; 10741 /* Only slow rings */ 10742 if (pring->ringno == LPFC_ELS_RING) { 10743 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10744 /* Set the lpfc data pending flag */ 10745 set_bit(LPFC_DATA_READY, &phba->data_flags); 10746 } 10747 list_for_each_entry_safe(iocb, next_iocb, 10748 &pring->txq, list) { 10749 if (iocb->vport != vport) 10750 continue; 10751 list_move_tail(&iocb->list, &completions); 10752 } 10753 list_for_each_entry_safe(iocb, next_iocb, 10754 &pring->txcmplq, list) { 10755 if (iocb->vport != vport) 10756 continue; 10757 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10758 } 10759 pring->flag = prev_pring_flag; 10760 } 10761 } else { 10762 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10763 pring = qp->pring; 10764 if (!pring) 10765 continue; 10766 if (pring == phba->sli4_hba.els_wq->pring) { 10767 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10768 /* Set the lpfc data pending flag */ 10769 set_bit(LPFC_DATA_READY, &phba->data_flags); 10770 } 10771 prev_pring_flag = pring->flag; 10772 spin_lock(&pring->ring_lock); 10773 list_for_each_entry_safe(iocb, next_iocb, 10774 &pring->txq, list) { 10775 if (iocb->vport != vport) 10776 continue; 10777 list_move_tail(&iocb->list, &completions); 10778 } 10779 spin_unlock(&pring->ring_lock); 10780 list_for_each_entry_safe(iocb, next_iocb, 10781 &pring->txcmplq, list) { 10782 if (iocb->vport != vport) 10783 continue; 10784 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10785 } 10786 pring->flag = prev_pring_flag; 10787 } 10788 } 10789 spin_unlock_irqrestore(&phba->hbalock, flags); 10790 10791 /* Cancel all the IOCBs from the completions list */ 10792 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10793 IOERR_SLI_DOWN); 10794 return 1; 10795 } 10796 10797 /** 10798 * lpfc_sli_hba_down - Resource cleanup function for the HBA 10799 * @phba: Pointer to HBA context object. 10800 * 10801 * This function cleans up all iocb, buffers, mailbox commands 10802 * while shutting down the HBA. This function is called with no 10803 * lock held and always returns 1. 10804 * This function does the following to cleanup driver resources: 10805 * - Free discovery resources for each virtual port 10806 * - Cleanup any pending fabric iocbs 10807 * - Iterate through the iocb txq and free each entry 10808 * in the list. 10809 * - Free up any buffer posted to the HBA 10810 * - Free mailbox commands in the mailbox queue. 10811 **/ 10812 int 10813 lpfc_sli_hba_down(struct lpfc_hba *phba) 10814 { 10815 LIST_HEAD(completions); 10816 struct lpfc_sli *psli = &phba->sli; 10817 struct lpfc_queue *qp = NULL; 10818 struct lpfc_sli_ring *pring; 10819 struct lpfc_dmabuf *buf_ptr; 10820 unsigned long flags = 0; 10821 int i; 10822 10823 /* Shutdown the mailbox command sub-system */ 10824 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 10825 10826 lpfc_hba_down_prep(phba); 10827 10828 /* Disable softirqs, including timers from obtaining phba->hbalock */ 10829 local_bh_disable(); 10830 10831 lpfc_fabric_abort_hba(phba); 10832 10833 spin_lock_irqsave(&phba->hbalock, flags); 10834 10835 /* 10836 * Error everything on the txq since these iocbs 10837 * have not been given to the FW yet. 10838 */ 10839 if (phba->sli_rev != LPFC_SLI_REV4) { 10840 for (i = 0; i < psli->num_rings; i++) { 10841 pring = &psli->sli3_ring[i]; 10842 /* Only slow rings */ 10843 if (pring->ringno == LPFC_ELS_RING) { 10844 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10845 /* Set the lpfc data pending flag */ 10846 set_bit(LPFC_DATA_READY, &phba->data_flags); 10847 } 10848 list_splice_init(&pring->txq, &completions); 10849 } 10850 } else { 10851 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10852 pring = qp->pring; 10853 if (!pring) 10854 continue; 10855 spin_lock(&pring->ring_lock); 10856 list_splice_init(&pring->txq, &completions); 10857 spin_unlock(&pring->ring_lock); 10858 if (pring == phba->sli4_hba.els_wq->pring) { 10859 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10860 /* Set the lpfc data pending flag */ 10861 set_bit(LPFC_DATA_READY, &phba->data_flags); 10862 } 10863 } 10864 } 10865 spin_unlock_irqrestore(&phba->hbalock, flags); 10866 10867 /* Cancel all the IOCBs from the completions list */ 10868 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10869 IOERR_SLI_DOWN); 10870 10871 spin_lock_irqsave(&phba->hbalock, flags); 10872 list_splice_init(&phba->elsbuf, &completions); 10873 phba->elsbuf_cnt = 0; 10874 phba->elsbuf_prev_cnt = 0; 10875 spin_unlock_irqrestore(&phba->hbalock, flags); 10876 10877 while (!list_empty(&completions)) { 10878 list_remove_head(&completions, buf_ptr, 10879 struct lpfc_dmabuf, list); 10880 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 10881 kfree(buf_ptr); 10882 } 10883 10884 /* Enable softirqs again, done with phba->hbalock */ 10885 local_bh_enable(); 10886 10887 /* Return any active mbox cmds */ 10888 del_timer_sync(&psli->mbox_tmo); 10889 10890 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 10891 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 10892 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 10893 10894 return 1; 10895 } 10896 10897 /** 10898 * lpfc_sli_pcimem_bcopy - SLI memory copy function 10899 * @srcp: Source memory pointer. 10900 * @destp: Destination memory pointer. 10901 * @cnt: Number of words required to be copied. 10902 * 10903 * This function is used for copying data between driver memory 10904 * and the SLI memory. This function also changes the endianness 10905 * of each word if native endianness is different from SLI 10906 * endianness. This function can be called with or without 10907 * lock. 10908 **/ 10909 void 10910 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 10911 { 10912 uint32_t *src = srcp; 10913 uint32_t *dest = destp; 10914 uint32_t ldata; 10915 int i; 10916 10917 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 10918 ldata = *src; 10919 ldata = le32_to_cpu(ldata); 10920 *dest = ldata; 10921 src++; 10922 dest++; 10923 } 10924 } 10925 10926 10927 /** 10928 * lpfc_sli_bemem_bcopy - SLI memory copy function 10929 * @srcp: Source memory pointer. 10930 * @destp: Destination memory pointer. 10931 * @cnt: Number of words required to be copied. 10932 * 10933 * This function is used for copying data between a data structure 10934 * with big endian representation to local endianness. 10935 * This function can be called with or without lock. 10936 **/ 10937 void 10938 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 10939 { 10940 uint32_t *src = srcp; 10941 uint32_t *dest = destp; 10942 uint32_t ldata; 10943 int i; 10944 10945 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 10946 ldata = *src; 10947 ldata = be32_to_cpu(ldata); 10948 *dest = ldata; 10949 src++; 10950 dest++; 10951 } 10952 } 10953 10954 /** 10955 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 10956 * @phba: Pointer to HBA context object. 10957 * @pring: Pointer to driver SLI ring object. 10958 * @mp: Pointer to driver buffer object. 10959 * 10960 * This function is called with no lock held. 10961 * It always return zero after adding the buffer to the postbufq 10962 * buffer list. 10963 **/ 10964 int 10965 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10966 struct lpfc_dmabuf *mp) 10967 { 10968 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 10969 later */ 10970 spin_lock_irq(&phba->hbalock); 10971 list_add_tail(&mp->list, &pring->postbufq); 10972 pring->postbufq_cnt++; 10973 spin_unlock_irq(&phba->hbalock); 10974 return 0; 10975 } 10976 10977 /** 10978 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 10979 * @phba: Pointer to HBA context object. 10980 * 10981 * When HBQ is enabled, buffers are searched based on tags. This function 10982 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 10983 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 10984 * does not conflict with tags of buffer posted for unsolicited events. 10985 * The function returns the allocated tag. The function is called with 10986 * no locks held. 10987 **/ 10988 uint32_t 10989 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 10990 { 10991 spin_lock_irq(&phba->hbalock); 10992 phba->buffer_tag_count++; 10993 /* 10994 * Always set the QUE_BUFTAG_BIT to distiguish between 10995 * a tag assigned by HBQ. 10996 */ 10997 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 10998 spin_unlock_irq(&phba->hbalock); 10999 return phba->buffer_tag_count; 11000 } 11001 11002 /** 11003 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 11004 * @phba: Pointer to HBA context object. 11005 * @pring: Pointer to driver SLI ring object. 11006 * @tag: Buffer tag. 11007 * 11008 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 11009 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 11010 * iocb is posted to the response ring with the tag of the buffer. 11011 * This function searches the pring->postbufq list using the tag 11012 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 11013 * iocb. If the buffer is found then lpfc_dmabuf object of the 11014 * buffer is returned to the caller else NULL is returned. 11015 * This function is called with no lock held. 11016 **/ 11017 struct lpfc_dmabuf * 11018 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11019 uint32_t tag) 11020 { 11021 struct lpfc_dmabuf *mp, *next_mp; 11022 struct list_head *slp = &pring->postbufq; 11023 11024 /* Search postbufq, from the beginning, looking for a match on tag */ 11025 spin_lock_irq(&phba->hbalock); 11026 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11027 if (mp->buffer_tag == tag) { 11028 list_del_init(&mp->list); 11029 pring->postbufq_cnt--; 11030 spin_unlock_irq(&phba->hbalock); 11031 return mp; 11032 } 11033 } 11034 11035 spin_unlock_irq(&phba->hbalock); 11036 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11037 "0402 Cannot find virtual addr for buffer tag on " 11038 "ring %d Data x%lx x%px x%px x%x\n", 11039 pring->ringno, (unsigned long) tag, 11040 slp->next, slp->prev, pring->postbufq_cnt); 11041 11042 return NULL; 11043 } 11044 11045 /** 11046 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 11047 * @phba: Pointer to HBA context object. 11048 * @pring: Pointer to driver SLI ring object. 11049 * @phys: DMA address of the buffer. 11050 * 11051 * This function searches the buffer list using the dma_address 11052 * of unsolicited event to find the driver's lpfc_dmabuf object 11053 * corresponding to the dma_address. The function returns the 11054 * lpfc_dmabuf object if a buffer is found else it returns NULL. 11055 * This function is called by the ct and els unsolicited event 11056 * handlers to get the buffer associated with the unsolicited 11057 * event. 11058 * 11059 * This function is called with no lock held. 11060 **/ 11061 struct lpfc_dmabuf * 11062 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11063 dma_addr_t phys) 11064 { 11065 struct lpfc_dmabuf *mp, *next_mp; 11066 struct list_head *slp = &pring->postbufq; 11067 11068 /* Search postbufq, from the beginning, looking for a match on phys */ 11069 spin_lock_irq(&phba->hbalock); 11070 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11071 if (mp->phys == phys) { 11072 list_del_init(&mp->list); 11073 pring->postbufq_cnt--; 11074 spin_unlock_irq(&phba->hbalock); 11075 return mp; 11076 } 11077 } 11078 11079 spin_unlock_irq(&phba->hbalock); 11080 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11081 "0410 Cannot find virtual addr for mapped buf on " 11082 "ring %d Data x%llx x%px x%px x%x\n", 11083 pring->ringno, (unsigned long long)phys, 11084 slp->next, slp->prev, pring->postbufq_cnt); 11085 return NULL; 11086 } 11087 11088 /** 11089 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 11090 * @phba: Pointer to HBA context object. 11091 * @cmdiocb: Pointer to driver command iocb object. 11092 * @rspiocb: Pointer to driver response iocb object. 11093 * 11094 * This function is the completion handler for the abort iocbs for 11095 * ELS commands. This function is called from the ELS ring event 11096 * handler with no lock held. This function frees memory resources 11097 * associated with the abort iocb. 11098 **/ 11099 static void 11100 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11101 struct lpfc_iocbq *rspiocb) 11102 { 11103 IOCB_t *irsp = &rspiocb->iocb; 11104 uint16_t abort_iotag, abort_context; 11105 struct lpfc_iocbq *abort_iocb = NULL; 11106 11107 if (irsp->ulpStatus) { 11108 11109 /* 11110 * Assume that the port already completed and returned, or 11111 * will return the iocb. Just Log the message. 11112 */ 11113 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 11114 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 11115 11116 spin_lock_irq(&phba->hbalock); 11117 if (phba->sli_rev < LPFC_SLI_REV4) { 11118 if (irsp->ulpCommand == CMD_ABORT_XRI_CX && 11119 irsp->ulpStatus == IOSTAT_LOCAL_REJECT && 11120 irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) { 11121 spin_unlock_irq(&phba->hbalock); 11122 goto release_iocb; 11123 } 11124 if (abort_iotag != 0 && 11125 abort_iotag <= phba->sli.last_iotag) 11126 abort_iocb = 11127 phba->sli.iocbq_lookup[abort_iotag]; 11128 } else 11129 /* For sli4 the abort_tag is the XRI, 11130 * so the abort routine puts the iotag of the iocb 11131 * being aborted in the context field of the abort 11132 * IOCB. 11133 */ 11134 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 11135 11136 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 11137 "0327 Cannot abort els iocb x%px " 11138 "with tag %x context %x, abort status %x, " 11139 "abort code %x\n", 11140 abort_iocb, abort_iotag, abort_context, 11141 irsp->ulpStatus, irsp->un.ulpWord[4]); 11142 11143 spin_unlock_irq(&phba->hbalock); 11144 } 11145 release_iocb: 11146 lpfc_sli_release_iocbq(phba, cmdiocb); 11147 return; 11148 } 11149 11150 /** 11151 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 11152 * @phba: Pointer to HBA context object. 11153 * @cmdiocb: Pointer to driver command iocb object. 11154 * @rspiocb: Pointer to driver response iocb object. 11155 * 11156 * The function is called from SLI ring event handler with no 11157 * lock held. This function is the completion handler for ELS commands 11158 * which are aborted. The function frees memory resources used for 11159 * the aborted ELS commands. 11160 **/ 11161 static void 11162 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11163 struct lpfc_iocbq *rspiocb) 11164 { 11165 IOCB_t *irsp = &rspiocb->iocb; 11166 11167 /* ELS cmd tag <ulpIoTag> completes */ 11168 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 11169 "0139 Ignoring ELS cmd tag x%x completion Data: " 11170 "x%x x%x x%x\n", 11171 irsp->ulpIoTag, irsp->ulpStatus, 11172 irsp->un.ulpWord[4], irsp->ulpTimeout); 11173 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 11174 lpfc_ct_free_iocb(phba, cmdiocb); 11175 else 11176 lpfc_els_free_iocb(phba, cmdiocb); 11177 return; 11178 } 11179 11180 /** 11181 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb 11182 * @phba: Pointer to HBA context object. 11183 * @pring: Pointer to driver SLI ring object. 11184 * @cmdiocb: Pointer to driver command iocb object. 11185 * 11186 * This function issues an abort iocb for the provided command iocb down to 11187 * the port. Other than the case the outstanding command iocb is an abort 11188 * request, this function issues abort out unconditionally. This function is 11189 * called with hbalock held. The function returns 0 when it fails due to 11190 * memory allocation failure or when the command iocb is an abort request. 11191 **/ 11192 static int 11193 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11194 struct lpfc_iocbq *cmdiocb) 11195 { 11196 struct lpfc_vport *vport = cmdiocb->vport; 11197 struct lpfc_iocbq *abtsiocbp; 11198 IOCB_t *icmd = NULL; 11199 IOCB_t *iabt = NULL; 11200 int retval; 11201 unsigned long iflags; 11202 struct lpfc_nodelist *ndlp; 11203 11204 lockdep_assert_held(&phba->hbalock); 11205 11206 /* 11207 * There are certain command types we don't want to abort. And we 11208 * don't want to abort commands that are already in the process of 11209 * being aborted. 11210 */ 11211 icmd = &cmdiocb->iocb; 11212 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11213 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 11214 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 11215 return 0; 11216 11217 /* issue ABTS for this IOCB based on iotag */ 11218 abtsiocbp = __lpfc_sli_get_iocbq(phba); 11219 if (abtsiocbp == NULL) 11220 return 0; 11221 11222 /* This signals the response to set the correct status 11223 * before calling the completion handler 11224 */ 11225 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 11226 11227 iabt = &abtsiocbp->iocb; 11228 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 11229 iabt->un.acxri.abortContextTag = icmd->ulpContext; 11230 if (phba->sli_rev == LPFC_SLI_REV4) { 11231 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 11232 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 11233 } else { 11234 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 11235 if (pring->ringno == LPFC_ELS_RING) { 11236 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1); 11237 iabt->un.acxri.abortContextTag = ndlp->nlp_rpi; 11238 } 11239 } 11240 iabt->ulpLe = 1; 11241 iabt->ulpClass = icmd->ulpClass; 11242 11243 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11244 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 11245 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 11246 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 11247 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 11248 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 11249 11250 if (phba->link_state >= LPFC_LINK_UP) 11251 iabt->ulpCommand = CMD_ABORT_XRI_CN; 11252 else 11253 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 11254 11255 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 11256 abtsiocbp->vport = vport; 11257 11258 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 11259 "0339 Abort xri x%x, original iotag x%x, " 11260 "abort cmd iotag x%x\n", 11261 iabt->un.acxri.abortIoTag, 11262 iabt->un.acxri.abortContextTag, 11263 abtsiocbp->iotag); 11264 11265 if (phba->sli_rev == LPFC_SLI_REV4) { 11266 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 11267 if (unlikely(pring == NULL)) 11268 return 0; 11269 /* Note: both hbalock and ring_lock need to be set here */ 11270 spin_lock_irqsave(&pring->ring_lock, iflags); 11271 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11272 abtsiocbp, 0); 11273 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11274 } else { 11275 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11276 abtsiocbp, 0); 11277 } 11278 11279 if (retval) 11280 __lpfc_sli_release_iocbq(phba, abtsiocbp); 11281 11282 /* 11283 * Caller to this routine should check for IOCB_ERROR 11284 * and handle it properly. This routine no longer removes 11285 * iocb off txcmplq and call compl in case of IOCB_ERROR. 11286 */ 11287 return retval; 11288 } 11289 11290 /** 11291 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 11292 * @phba: Pointer to HBA context object. 11293 * @pring: Pointer to driver SLI ring object. 11294 * @cmdiocb: Pointer to driver command iocb object. 11295 * 11296 * This function issues an abort iocb for the provided command iocb. In case 11297 * of unloading, the abort iocb will not be issued to commands on the ELS 11298 * ring. Instead, the callback function shall be changed to those commands 11299 * so that nothing happens when them finishes. This function is called with 11300 * hbalock held. The function returns 0 when the command iocb is an abort 11301 * request. 11302 **/ 11303 int 11304 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11305 struct lpfc_iocbq *cmdiocb) 11306 { 11307 struct lpfc_vport *vport = cmdiocb->vport; 11308 int retval = IOCB_ERROR; 11309 IOCB_t *icmd = NULL; 11310 11311 lockdep_assert_held(&phba->hbalock); 11312 11313 /* 11314 * There are certain command types we don't want to abort. And we 11315 * don't want to abort commands that are already in the process of 11316 * being aborted. 11317 */ 11318 icmd = &cmdiocb->iocb; 11319 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11320 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 11321 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 11322 return 0; 11323 11324 if (!pring) { 11325 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11326 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11327 else 11328 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11329 goto abort_iotag_exit; 11330 } 11331 11332 /* 11333 * If we're unloading, don't abort iocb on the ELS ring, but change 11334 * the callback so that nothing happens when it finishes. 11335 */ 11336 if ((vport->load_flag & FC_UNLOADING) && 11337 (pring->ringno == LPFC_ELS_RING)) { 11338 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11339 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11340 else 11341 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11342 goto abort_iotag_exit; 11343 } 11344 11345 /* Now, we try to issue the abort to the cmdiocb out */ 11346 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb); 11347 11348 abort_iotag_exit: 11349 /* 11350 * Caller to this routine should check for IOCB_ERROR 11351 * and handle it properly. This routine no longer removes 11352 * iocb off txcmplq and call compl in case of IOCB_ERROR. 11353 */ 11354 return retval; 11355 } 11356 11357 /** 11358 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 11359 * @phba: pointer to lpfc HBA data structure. 11360 * 11361 * This routine will abort all pending and outstanding iocbs to an HBA. 11362 **/ 11363 void 11364 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 11365 { 11366 struct lpfc_sli *psli = &phba->sli; 11367 struct lpfc_sli_ring *pring; 11368 struct lpfc_queue *qp = NULL; 11369 int i; 11370 11371 if (phba->sli_rev != LPFC_SLI_REV4) { 11372 for (i = 0; i < psli->num_rings; i++) { 11373 pring = &psli->sli3_ring[i]; 11374 lpfc_sli_abort_iocb_ring(phba, pring); 11375 } 11376 return; 11377 } 11378 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11379 pring = qp->pring; 11380 if (!pring) 11381 continue; 11382 lpfc_sli_abort_iocb_ring(phba, pring); 11383 } 11384 } 11385 11386 /** 11387 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 11388 * @iocbq: Pointer to driver iocb object. 11389 * @vport: Pointer to driver virtual port object. 11390 * @tgt_id: SCSI ID of the target. 11391 * @lun_id: LUN ID of the scsi device. 11392 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 11393 * 11394 * This function acts as an iocb filter for functions which abort or count 11395 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 11396 * 0 if the filtering criteria is met for the given iocb and will return 11397 * 1 if the filtering criteria is not met. 11398 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 11399 * given iocb is for the SCSI device specified by vport, tgt_id and 11400 * lun_id parameter. 11401 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 11402 * given iocb is for the SCSI target specified by vport and tgt_id 11403 * parameters. 11404 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 11405 * given iocb is for the SCSI host associated with the given vport. 11406 * This function is called with no locks held. 11407 **/ 11408 static int 11409 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 11410 uint16_t tgt_id, uint64_t lun_id, 11411 lpfc_ctx_cmd ctx_cmd) 11412 { 11413 struct lpfc_io_buf *lpfc_cmd; 11414 int rc = 1; 11415 11416 if (iocbq->vport != vport) 11417 return rc; 11418 11419 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 11420 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) 11421 return rc; 11422 11423 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 11424 11425 if (lpfc_cmd->pCmd == NULL) 11426 return rc; 11427 11428 switch (ctx_cmd) { 11429 case LPFC_CTX_LUN: 11430 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11431 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 11432 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 11433 rc = 0; 11434 break; 11435 case LPFC_CTX_TGT: 11436 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11437 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 11438 rc = 0; 11439 break; 11440 case LPFC_CTX_HOST: 11441 rc = 0; 11442 break; 11443 default: 11444 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 11445 __func__, ctx_cmd); 11446 break; 11447 } 11448 11449 return rc; 11450 } 11451 11452 /** 11453 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 11454 * @vport: Pointer to virtual port. 11455 * @tgt_id: SCSI ID of the target. 11456 * @lun_id: LUN ID of the scsi device. 11457 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11458 * 11459 * This function returns number of FCP commands pending for the vport. 11460 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 11461 * commands pending on the vport associated with SCSI device specified 11462 * by tgt_id and lun_id parameters. 11463 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 11464 * commands pending on the vport associated with SCSI target specified 11465 * by tgt_id parameter. 11466 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 11467 * commands pending on the vport. 11468 * This function returns the number of iocbs which satisfy the filter. 11469 * This function is called without any lock held. 11470 **/ 11471 int 11472 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 11473 lpfc_ctx_cmd ctx_cmd) 11474 { 11475 struct lpfc_hba *phba = vport->phba; 11476 struct lpfc_iocbq *iocbq; 11477 int sum, i; 11478 11479 spin_lock_irq(&phba->hbalock); 11480 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 11481 iocbq = phba->sli.iocbq_lookup[i]; 11482 11483 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 11484 ctx_cmd) == 0) 11485 sum++; 11486 } 11487 spin_unlock_irq(&phba->hbalock); 11488 11489 return sum; 11490 } 11491 11492 /** 11493 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 11494 * @phba: Pointer to HBA context object 11495 * @cmdiocb: Pointer to command iocb object. 11496 * @rspiocb: Pointer to response iocb object. 11497 * 11498 * This function is called when an aborted FCP iocb completes. This 11499 * function is called by the ring event handler with no lock held. 11500 * This function frees the iocb. 11501 **/ 11502 void 11503 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11504 struct lpfc_iocbq *rspiocb) 11505 { 11506 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11507 "3096 ABORT_XRI_CN completing on rpi x%x " 11508 "original iotag x%x, abort cmd iotag x%x " 11509 "status 0x%x, reason 0x%x\n", 11510 cmdiocb->iocb.un.acxri.abortContextTag, 11511 cmdiocb->iocb.un.acxri.abortIoTag, 11512 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 11513 rspiocb->iocb.un.ulpWord[4]); 11514 lpfc_sli_release_iocbq(phba, cmdiocb); 11515 return; 11516 } 11517 11518 /** 11519 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 11520 * @vport: Pointer to virtual port. 11521 * @pring: Pointer to driver SLI ring object. 11522 * @tgt_id: SCSI ID of the target. 11523 * @lun_id: LUN ID of the scsi device. 11524 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11525 * 11526 * This function sends an abort command for every SCSI command 11527 * associated with the given virtual port pending on the ring 11528 * filtered by lpfc_sli_validate_fcp_iocb function. 11529 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 11530 * FCP iocbs associated with lun specified by tgt_id and lun_id 11531 * parameters 11532 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 11533 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11534 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 11535 * FCP iocbs associated with virtual port. 11536 * This function returns number of iocbs it failed to abort. 11537 * This function is called with no locks held. 11538 **/ 11539 int 11540 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 11541 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd) 11542 { 11543 struct lpfc_hba *phba = vport->phba; 11544 struct lpfc_iocbq *iocbq; 11545 struct lpfc_iocbq *abtsiocb; 11546 struct lpfc_sli_ring *pring_s4; 11547 IOCB_t *cmd = NULL; 11548 int errcnt = 0, ret_val = 0; 11549 int i; 11550 11551 /* all I/Os are in process of being flushed */ 11552 if (phba->hba_flag & HBA_IOQ_FLUSH) 11553 return errcnt; 11554 11555 for (i = 1; i <= phba->sli.last_iotag; i++) { 11556 iocbq = phba->sli.iocbq_lookup[i]; 11557 11558 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 11559 abort_cmd) != 0) 11560 continue; 11561 11562 /* 11563 * If the iocbq is already being aborted, don't take a second 11564 * action, but do count it. 11565 */ 11566 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 11567 continue; 11568 11569 /* issue ABTS for this IOCB based on iotag */ 11570 abtsiocb = lpfc_sli_get_iocbq(phba); 11571 if (abtsiocb == NULL) { 11572 errcnt++; 11573 continue; 11574 } 11575 11576 /* indicate the IO is being aborted by the driver. */ 11577 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 11578 11579 cmd = &iocbq->iocb; 11580 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 11581 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext; 11582 if (phba->sli_rev == LPFC_SLI_REV4) 11583 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag; 11584 else 11585 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag; 11586 abtsiocb->iocb.ulpLe = 1; 11587 abtsiocb->iocb.ulpClass = cmd->ulpClass; 11588 abtsiocb->vport = vport; 11589 11590 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11591 abtsiocb->hba_wqidx = iocbq->hba_wqidx; 11592 if (iocbq->iocb_flag & LPFC_IO_FCP) 11593 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 11594 if (iocbq->iocb_flag & LPFC_IO_FOF) 11595 abtsiocb->iocb_flag |= LPFC_IO_FOF; 11596 11597 if (lpfc_is_link_up(phba)) 11598 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN; 11599 else 11600 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 11601 11602 /* Setup callback routine and issue the command. */ 11603 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 11604 if (phba->sli_rev == LPFC_SLI_REV4) { 11605 pring_s4 = lpfc_sli4_calc_ring(phba, iocbq); 11606 if (!pring_s4) 11607 continue; 11608 ret_val = lpfc_sli_issue_iocb(phba, pring_s4->ringno, 11609 abtsiocb, 0); 11610 } else 11611 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno, 11612 abtsiocb, 0); 11613 if (ret_val == IOCB_ERROR) { 11614 lpfc_sli_release_iocbq(phba, abtsiocb); 11615 errcnt++; 11616 continue; 11617 } 11618 } 11619 11620 return errcnt; 11621 } 11622 11623 /** 11624 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 11625 * @vport: Pointer to virtual port. 11626 * @pring: Pointer to driver SLI ring object. 11627 * @tgt_id: SCSI ID of the target. 11628 * @lun_id: LUN ID of the scsi device. 11629 * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11630 * 11631 * This function sends an abort command for every SCSI command 11632 * associated with the given virtual port pending on the ring 11633 * filtered by lpfc_sli_validate_fcp_iocb function. 11634 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 11635 * FCP iocbs associated with lun specified by tgt_id and lun_id 11636 * parameters 11637 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 11638 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11639 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 11640 * FCP iocbs associated with virtual port. 11641 * This function returns number of iocbs it aborted . 11642 * This function is called with no locks held right after a taskmgmt 11643 * command is sent. 11644 **/ 11645 int 11646 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 11647 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 11648 { 11649 struct lpfc_hba *phba = vport->phba; 11650 struct lpfc_io_buf *lpfc_cmd; 11651 struct lpfc_iocbq *abtsiocbq; 11652 struct lpfc_nodelist *ndlp; 11653 struct lpfc_iocbq *iocbq; 11654 IOCB_t *icmd; 11655 int sum, i, ret_val; 11656 unsigned long iflags; 11657 struct lpfc_sli_ring *pring_s4 = NULL; 11658 11659 spin_lock_irqsave(&phba->hbalock, iflags); 11660 11661 /* all I/Os are in process of being flushed */ 11662 if (phba->hba_flag & HBA_IOQ_FLUSH) { 11663 spin_unlock_irqrestore(&phba->hbalock, iflags); 11664 return 0; 11665 } 11666 sum = 0; 11667 11668 for (i = 1; i <= phba->sli.last_iotag; i++) { 11669 iocbq = phba->sli.iocbq_lookup[i]; 11670 11671 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 11672 cmd) != 0) 11673 continue; 11674 11675 /* Guard against IO completion being called at same time */ 11676 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 11677 spin_lock(&lpfc_cmd->buf_lock); 11678 11679 if (!lpfc_cmd->pCmd) { 11680 spin_unlock(&lpfc_cmd->buf_lock); 11681 continue; 11682 } 11683 11684 if (phba->sli_rev == LPFC_SLI_REV4) { 11685 pring_s4 = 11686 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 11687 if (!pring_s4) { 11688 spin_unlock(&lpfc_cmd->buf_lock); 11689 continue; 11690 } 11691 /* Note: both hbalock and ring_lock must be set here */ 11692 spin_lock(&pring_s4->ring_lock); 11693 } 11694 11695 /* 11696 * If the iocbq is already being aborted, don't take a second 11697 * action, but do count it. 11698 */ 11699 if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) || 11700 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) { 11701 if (phba->sli_rev == LPFC_SLI_REV4) 11702 spin_unlock(&pring_s4->ring_lock); 11703 spin_unlock(&lpfc_cmd->buf_lock); 11704 continue; 11705 } 11706 11707 /* issue ABTS for this IOCB based on iotag */ 11708 abtsiocbq = __lpfc_sli_get_iocbq(phba); 11709 if (!abtsiocbq) { 11710 if (phba->sli_rev == LPFC_SLI_REV4) 11711 spin_unlock(&pring_s4->ring_lock); 11712 spin_unlock(&lpfc_cmd->buf_lock); 11713 continue; 11714 } 11715 11716 icmd = &iocbq->iocb; 11717 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 11718 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 11719 if (phba->sli_rev == LPFC_SLI_REV4) 11720 abtsiocbq->iocb.un.acxri.abortIoTag = 11721 iocbq->sli4_xritag; 11722 else 11723 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 11724 abtsiocbq->iocb.ulpLe = 1; 11725 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 11726 abtsiocbq->vport = vport; 11727 11728 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11729 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 11730 if (iocbq->iocb_flag & LPFC_IO_FCP) 11731 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 11732 if (iocbq->iocb_flag & LPFC_IO_FOF) 11733 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 11734 11735 ndlp = lpfc_cmd->rdata->pnode; 11736 11737 if (lpfc_is_link_up(phba) && 11738 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 11739 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 11740 else 11741 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 11742 11743 /* Setup callback routine and issue the command. */ 11744 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 11745 11746 /* 11747 * Indicate the IO is being aborted by the driver and set 11748 * the caller's flag into the aborted IO. 11749 */ 11750 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 11751 11752 if (phba->sli_rev == LPFC_SLI_REV4) { 11753 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 11754 abtsiocbq, 0); 11755 spin_unlock(&pring_s4->ring_lock); 11756 } else { 11757 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 11758 abtsiocbq, 0); 11759 } 11760 11761 spin_unlock(&lpfc_cmd->buf_lock); 11762 11763 if (ret_val == IOCB_ERROR) 11764 __lpfc_sli_release_iocbq(phba, abtsiocbq); 11765 else 11766 sum++; 11767 } 11768 spin_unlock_irqrestore(&phba->hbalock, iflags); 11769 return sum; 11770 } 11771 11772 /** 11773 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 11774 * @phba: Pointer to HBA context object. 11775 * @cmdiocbq: Pointer to command iocb. 11776 * @rspiocbq: Pointer to response iocb. 11777 * 11778 * This function is the completion handler for iocbs issued using 11779 * lpfc_sli_issue_iocb_wait function. This function is called by the 11780 * ring event handler function without any lock held. This function 11781 * can be called from both worker thread context and interrupt 11782 * context. This function also can be called from other thread which 11783 * cleans up the SLI layer objects. 11784 * This function copy the contents of the response iocb to the 11785 * response iocb memory object provided by the caller of 11786 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 11787 * sleeps for the iocb completion. 11788 **/ 11789 static void 11790 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 11791 struct lpfc_iocbq *cmdiocbq, 11792 struct lpfc_iocbq *rspiocbq) 11793 { 11794 wait_queue_head_t *pdone_q; 11795 unsigned long iflags; 11796 struct lpfc_io_buf *lpfc_cmd; 11797 11798 spin_lock_irqsave(&phba->hbalock, iflags); 11799 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 11800 11801 /* 11802 * A time out has occurred for the iocb. If a time out 11803 * completion handler has been supplied, call it. Otherwise, 11804 * just free the iocbq. 11805 */ 11806 11807 spin_unlock_irqrestore(&phba->hbalock, iflags); 11808 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 11809 cmdiocbq->wait_iocb_cmpl = NULL; 11810 if (cmdiocbq->iocb_cmpl) 11811 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 11812 else 11813 lpfc_sli_release_iocbq(phba, cmdiocbq); 11814 return; 11815 } 11816 11817 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 11818 if (cmdiocbq->context2 && rspiocbq) 11819 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 11820 &rspiocbq->iocb, sizeof(IOCB_t)); 11821 11822 /* Set the exchange busy flag for task management commands */ 11823 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 11824 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 11825 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 11826 cur_iocbq); 11827 if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY)) 11828 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 11829 else 11830 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 11831 } 11832 11833 pdone_q = cmdiocbq->context_un.wait_queue; 11834 if (pdone_q) 11835 wake_up(pdone_q); 11836 spin_unlock_irqrestore(&phba->hbalock, iflags); 11837 return; 11838 } 11839 11840 /** 11841 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 11842 * @phba: Pointer to HBA context object.. 11843 * @piocbq: Pointer to command iocb. 11844 * @flag: Flag to test. 11845 * 11846 * This routine grabs the hbalock and then test the iocb_flag to 11847 * see if the passed in flag is set. 11848 * Returns: 11849 * 1 if flag is set. 11850 * 0 if flag is not set. 11851 **/ 11852 static int 11853 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 11854 struct lpfc_iocbq *piocbq, uint32_t flag) 11855 { 11856 unsigned long iflags; 11857 int ret; 11858 11859 spin_lock_irqsave(&phba->hbalock, iflags); 11860 ret = piocbq->iocb_flag & flag; 11861 spin_unlock_irqrestore(&phba->hbalock, iflags); 11862 return ret; 11863 11864 } 11865 11866 /** 11867 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 11868 * @phba: Pointer to HBA context object.. 11869 * @pring: Pointer to sli ring. 11870 * @piocb: Pointer to command iocb. 11871 * @prspiocbq: Pointer to response iocb. 11872 * @timeout: Timeout in number of seconds. 11873 * 11874 * This function issues the iocb to firmware and waits for the 11875 * iocb to complete. The iocb_cmpl field of the shall be used 11876 * to handle iocbs which time out. If the field is NULL, the 11877 * function shall free the iocbq structure. If more clean up is 11878 * needed, the caller is expected to provide a completion function 11879 * that will provide the needed clean up. If the iocb command is 11880 * not completed within timeout seconds, the function will either 11881 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 11882 * completion function set in the iocb_cmpl field and then return 11883 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 11884 * resources if this function returns IOCB_TIMEDOUT. 11885 * The function waits for the iocb completion using an 11886 * non-interruptible wait. 11887 * This function will sleep while waiting for iocb completion. 11888 * So, this function should not be called from any context which 11889 * does not allow sleeping. Due to the same reason, this function 11890 * cannot be called with interrupt disabled. 11891 * This function assumes that the iocb completions occur while 11892 * this function sleep. So, this function cannot be called from 11893 * the thread which process iocb completion for this ring. 11894 * This function clears the iocb_flag of the iocb object before 11895 * issuing the iocb and the iocb completion handler sets this 11896 * flag and wakes this thread when the iocb completes. 11897 * The contents of the response iocb will be copied to prspiocbq 11898 * by the completion handler when the command completes. 11899 * This function returns IOCB_SUCCESS when success. 11900 * This function is called with no lock held. 11901 **/ 11902 int 11903 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 11904 uint32_t ring_number, 11905 struct lpfc_iocbq *piocb, 11906 struct lpfc_iocbq *prspiocbq, 11907 uint32_t timeout) 11908 { 11909 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 11910 long timeleft, timeout_req = 0; 11911 int retval = IOCB_SUCCESS; 11912 uint32_t creg_val; 11913 struct lpfc_iocbq *iocb; 11914 int txq_cnt = 0; 11915 int txcmplq_cnt = 0; 11916 struct lpfc_sli_ring *pring; 11917 unsigned long iflags; 11918 bool iocb_completed = true; 11919 11920 if (phba->sli_rev >= LPFC_SLI_REV4) 11921 pring = lpfc_sli4_calc_ring(phba, piocb); 11922 else 11923 pring = &phba->sli.sli3_ring[ring_number]; 11924 /* 11925 * If the caller has provided a response iocbq buffer, then context2 11926 * is NULL or its an error. 11927 */ 11928 if (prspiocbq) { 11929 if (piocb->context2) 11930 return IOCB_ERROR; 11931 piocb->context2 = prspiocbq; 11932 } 11933 11934 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 11935 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 11936 piocb->context_un.wait_queue = &done_q; 11937 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 11938 11939 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 11940 if (lpfc_readl(phba->HCregaddr, &creg_val)) 11941 return IOCB_ERROR; 11942 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 11943 writel(creg_val, phba->HCregaddr); 11944 readl(phba->HCregaddr); /* flush */ 11945 } 11946 11947 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 11948 SLI_IOCB_RET_IOCB); 11949 if (retval == IOCB_SUCCESS) { 11950 timeout_req = msecs_to_jiffies(timeout * 1000); 11951 timeleft = wait_event_timeout(done_q, 11952 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 11953 timeout_req); 11954 spin_lock_irqsave(&phba->hbalock, iflags); 11955 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 11956 11957 /* 11958 * IOCB timed out. Inform the wake iocb wait 11959 * completion function and set local status 11960 */ 11961 11962 iocb_completed = false; 11963 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 11964 } 11965 spin_unlock_irqrestore(&phba->hbalock, iflags); 11966 if (iocb_completed) { 11967 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11968 "0331 IOCB wake signaled\n"); 11969 /* Note: we are not indicating if the IOCB has a success 11970 * status or not - that's for the caller to check. 11971 * IOCB_SUCCESS means just that the command was sent and 11972 * completed. Not that it completed successfully. 11973 * */ 11974 } else if (timeleft == 0) { 11975 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11976 "0338 IOCB wait timeout error - no " 11977 "wake response Data x%x\n", timeout); 11978 retval = IOCB_TIMEDOUT; 11979 } else { 11980 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11981 "0330 IOCB wake NOT set, " 11982 "Data x%x x%lx\n", 11983 timeout, (timeleft / jiffies)); 11984 retval = IOCB_TIMEDOUT; 11985 } 11986 } else if (retval == IOCB_BUSY) { 11987 if (phba->cfg_log_verbose & LOG_SLI) { 11988 list_for_each_entry(iocb, &pring->txq, list) { 11989 txq_cnt++; 11990 } 11991 list_for_each_entry(iocb, &pring->txcmplq, list) { 11992 txcmplq_cnt++; 11993 } 11994 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11995 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 11996 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 11997 } 11998 return retval; 11999 } else { 12000 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12001 "0332 IOCB wait issue failed, Data x%x\n", 12002 retval); 12003 retval = IOCB_ERROR; 12004 } 12005 12006 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12007 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12008 return IOCB_ERROR; 12009 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 12010 writel(creg_val, phba->HCregaddr); 12011 readl(phba->HCregaddr); /* flush */ 12012 } 12013 12014 if (prspiocbq) 12015 piocb->context2 = NULL; 12016 12017 piocb->context_un.wait_queue = NULL; 12018 piocb->iocb_cmpl = NULL; 12019 return retval; 12020 } 12021 12022 /** 12023 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 12024 * @phba: Pointer to HBA context object. 12025 * @pmboxq: Pointer to driver mailbox object. 12026 * @timeout: Timeout in number of seconds. 12027 * 12028 * This function issues the mailbox to firmware and waits for the 12029 * mailbox command to complete. If the mailbox command is not 12030 * completed within timeout seconds, it returns MBX_TIMEOUT. 12031 * The function waits for the mailbox completion using an 12032 * interruptible wait. If the thread is woken up due to a 12033 * signal, MBX_TIMEOUT error is returned to the caller. Caller 12034 * should not free the mailbox resources, if this function returns 12035 * MBX_TIMEOUT. 12036 * This function will sleep while waiting for mailbox completion. 12037 * So, this function should not be called from any context which 12038 * does not allow sleeping. Due to the same reason, this function 12039 * cannot be called with interrupt disabled. 12040 * This function assumes that the mailbox completion occurs while 12041 * this function sleep. So, this function cannot be called from 12042 * the worker thread which processes mailbox completion. 12043 * This function is called in the context of HBA management 12044 * applications. 12045 * This function returns MBX_SUCCESS when successful. 12046 * This function is called with no lock held. 12047 **/ 12048 int 12049 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 12050 uint32_t timeout) 12051 { 12052 struct completion mbox_done; 12053 int retval; 12054 unsigned long flag; 12055 12056 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 12057 /* setup wake call as IOCB callback */ 12058 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 12059 12060 /* setup context3 field to pass wait_queue pointer to wake function */ 12061 init_completion(&mbox_done); 12062 pmboxq->context3 = &mbox_done; 12063 /* now issue the command */ 12064 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 12065 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 12066 wait_for_completion_timeout(&mbox_done, 12067 msecs_to_jiffies(timeout * 1000)); 12068 12069 spin_lock_irqsave(&phba->hbalock, flag); 12070 pmboxq->context3 = NULL; 12071 /* 12072 * if LPFC_MBX_WAKE flag is set the mailbox is completed 12073 * else do not free the resources. 12074 */ 12075 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 12076 retval = MBX_SUCCESS; 12077 } else { 12078 retval = MBX_TIMEOUT; 12079 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 12080 } 12081 spin_unlock_irqrestore(&phba->hbalock, flag); 12082 } 12083 return retval; 12084 } 12085 12086 /** 12087 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 12088 * @phba: Pointer to HBA context. 12089 * 12090 * This function is called to shutdown the driver's mailbox sub-system. 12091 * It first marks the mailbox sub-system is in a block state to prevent 12092 * the asynchronous mailbox command from issued off the pending mailbox 12093 * command queue. If the mailbox command sub-system shutdown is due to 12094 * HBA error conditions such as EEH or ERATT, this routine shall invoke 12095 * the mailbox sub-system flush routine to forcefully bring down the 12096 * mailbox sub-system. Otherwise, if it is due to normal condition (such 12097 * as with offline or HBA function reset), this routine will wait for the 12098 * outstanding mailbox command to complete before invoking the mailbox 12099 * sub-system flush routine to gracefully bring down mailbox sub-system. 12100 **/ 12101 void 12102 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 12103 { 12104 struct lpfc_sli *psli = &phba->sli; 12105 unsigned long timeout; 12106 12107 if (mbx_action == LPFC_MBX_NO_WAIT) { 12108 /* delay 100ms for port state */ 12109 msleep(100); 12110 lpfc_sli_mbox_sys_flush(phba); 12111 return; 12112 } 12113 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 12114 12115 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12116 local_bh_disable(); 12117 12118 spin_lock_irq(&phba->hbalock); 12119 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 12120 12121 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 12122 /* Determine how long we might wait for the active mailbox 12123 * command to be gracefully completed by firmware. 12124 */ 12125 if (phba->sli.mbox_active) 12126 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 12127 phba->sli.mbox_active) * 12128 1000) + jiffies; 12129 spin_unlock_irq(&phba->hbalock); 12130 12131 /* Enable softirqs again, done with phba->hbalock */ 12132 local_bh_enable(); 12133 12134 while (phba->sli.mbox_active) { 12135 /* Check active mailbox complete status every 2ms */ 12136 msleep(2); 12137 if (time_after(jiffies, timeout)) 12138 /* Timeout, let the mailbox flush routine to 12139 * forcefully release active mailbox command 12140 */ 12141 break; 12142 } 12143 } else { 12144 spin_unlock_irq(&phba->hbalock); 12145 12146 /* Enable softirqs again, done with phba->hbalock */ 12147 local_bh_enable(); 12148 } 12149 12150 lpfc_sli_mbox_sys_flush(phba); 12151 } 12152 12153 /** 12154 * lpfc_sli_eratt_read - read sli-3 error attention events 12155 * @phba: Pointer to HBA context. 12156 * 12157 * This function is called to read the SLI3 device error attention registers 12158 * for possible error attention events. The caller must hold the hostlock 12159 * with spin_lock_irq(). 12160 * 12161 * This function returns 1 when there is Error Attention in the Host Attention 12162 * Register and returns 0 otherwise. 12163 **/ 12164 static int 12165 lpfc_sli_eratt_read(struct lpfc_hba *phba) 12166 { 12167 uint32_t ha_copy; 12168 12169 /* Read chip Host Attention (HA) register */ 12170 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12171 goto unplug_err; 12172 12173 if (ha_copy & HA_ERATT) { 12174 /* Read host status register to retrieve error event */ 12175 if (lpfc_sli_read_hs(phba)) 12176 goto unplug_err; 12177 12178 /* Check if there is a deferred error condition is active */ 12179 if ((HS_FFER1 & phba->work_hs) && 12180 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12181 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 12182 phba->hba_flag |= DEFER_ERATT; 12183 /* Clear all interrupt enable conditions */ 12184 writel(0, phba->HCregaddr); 12185 readl(phba->HCregaddr); 12186 } 12187 12188 /* Set the driver HA work bitmap */ 12189 phba->work_ha |= HA_ERATT; 12190 /* Indicate polling handles this ERATT */ 12191 phba->hba_flag |= HBA_ERATT_HANDLED; 12192 return 1; 12193 } 12194 return 0; 12195 12196 unplug_err: 12197 /* Set the driver HS work bitmap */ 12198 phba->work_hs |= UNPLUG_ERR; 12199 /* Set the driver HA work bitmap */ 12200 phba->work_ha |= HA_ERATT; 12201 /* Indicate polling handles this ERATT */ 12202 phba->hba_flag |= HBA_ERATT_HANDLED; 12203 return 1; 12204 } 12205 12206 /** 12207 * lpfc_sli4_eratt_read - read sli-4 error attention events 12208 * @phba: Pointer to HBA context. 12209 * 12210 * This function is called to read the SLI4 device error attention registers 12211 * for possible error attention events. The caller must hold the hostlock 12212 * with spin_lock_irq(). 12213 * 12214 * This function returns 1 when there is Error Attention in the Host Attention 12215 * Register and returns 0 otherwise. 12216 **/ 12217 static int 12218 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 12219 { 12220 uint32_t uerr_sta_hi, uerr_sta_lo; 12221 uint32_t if_type, portsmphr; 12222 struct lpfc_register portstat_reg; 12223 12224 /* 12225 * For now, use the SLI4 device internal unrecoverable error 12226 * registers for error attention. This can be changed later. 12227 */ 12228 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 12229 switch (if_type) { 12230 case LPFC_SLI_INTF_IF_TYPE_0: 12231 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 12232 &uerr_sta_lo) || 12233 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 12234 &uerr_sta_hi)) { 12235 phba->work_hs |= UNPLUG_ERR; 12236 phba->work_ha |= HA_ERATT; 12237 phba->hba_flag |= HBA_ERATT_HANDLED; 12238 return 1; 12239 } 12240 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 12241 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 12242 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12243 "1423 HBA Unrecoverable error: " 12244 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 12245 "ue_mask_lo_reg=0x%x, " 12246 "ue_mask_hi_reg=0x%x\n", 12247 uerr_sta_lo, uerr_sta_hi, 12248 phba->sli4_hba.ue_mask_lo, 12249 phba->sli4_hba.ue_mask_hi); 12250 phba->work_status[0] = uerr_sta_lo; 12251 phba->work_status[1] = uerr_sta_hi; 12252 phba->work_ha |= HA_ERATT; 12253 phba->hba_flag |= HBA_ERATT_HANDLED; 12254 return 1; 12255 } 12256 break; 12257 case LPFC_SLI_INTF_IF_TYPE_2: 12258 case LPFC_SLI_INTF_IF_TYPE_6: 12259 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 12260 &portstat_reg.word0) || 12261 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 12262 &portsmphr)){ 12263 phba->work_hs |= UNPLUG_ERR; 12264 phba->work_ha |= HA_ERATT; 12265 phba->hba_flag |= HBA_ERATT_HANDLED; 12266 return 1; 12267 } 12268 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 12269 phba->work_status[0] = 12270 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 12271 phba->work_status[1] = 12272 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 12273 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12274 "2885 Port Status Event: " 12275 "port status reg 0x%x, " 12276 "port smphr reg 0x%x, " 12277 "error 1=0x%x, error 2=0x%x\n", 12278 portstat_reg.word0, 12279 portsmphr, 12280 phba->work_status[0], 12281 phba->work_status[1]); 12282 phba->work_ha |= HA_ERATT; 12283 phba->hba_flag |= HBA_ERATT_HANDLED; 12284 return 1; 12285 } 12286 break; 12287 case LPFC_SLI_INTF_IF_TYPE_1: 12288 default: 12289 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12290 "2886 HBA Error Attention on unsupported " 12291 "if type %d.", if_type); 12292 return 1; 12293 } 12294 12295 return 0; 12296 } 12297 12298 /** 12299 * lpfc_sli_check_eratt - check error attention events 12300 * @phba: Pointer to HBA context. 12301 * 12302 * This function is called from timer soft interrupt context to check HBA's 12303 * error attention register bit for error attention events. 12304 * 12305 * This function returns 1 when there is Error Attention in the Host Attention 12306 * Register and returns 0 otherwise. 12307 **/ 12308 int 12309 lpfc_sli_check_eratt(struct lpfc_hba *phba) 12310 { 12311 uint32_t ha_copy; 12312 12313 /* If somebody is waiting to handle an eratt, don't process it 12314 * here. The brdkill function will do this. 12315 */ 12316 if (phba->link_flag & LS_IGNORE_ERATT) 12317 return 0; 12318 12319 /* Check if interrupt handler handles this ERATT */ 12320 spin_lock_irq(&phba->hbalock); 12321 if (phba->hba_flag & HBA_ERATT_HANDLED) { 12322 /* Interrupt handler has handled ERATT */ 12323 spin_unlock_irq(&phba->hbalock); 12324 return 0; 12325 } 12326 12327 /* 12328 * If there is deferred error attention, do not check for error 12329 * attention 12330 */ 12331 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12332 spin_unlock_irq(&phba->hbalock); 12333 return 0; 12334 } 12335 12336 /* If PCI channel is offline, don't process it */ 12337 if (unlikely(pci_channel_offline(phba->pcidev))) { 12338 spin_unlock_irq(&phba->hbalock); 12339 return 0; 12340 } 12341 12342 switch (phba->sli_rev) { 12343 case LPFC_SLI_REV2: 12344 case LPFC_SLI_REV3: 12345 /* Read chip Host Attention (HA) register */ 12346 ha_copy = lpfc_sli_eratt_read(phba); 12347 break; 12348 case LPFC_SLI_REV4: 12349 /* Read device Uncoverable Error (UERR) registers */ 12350 ha_copy = lpfc_sli4_eratt_read(phba); 12351 break; 12352 default: 12353 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12354 "0299 Invalid SLI revision (%d)\n", 12355 phba->sli_rev); 12356 ha_copy = 0; 12357 break; 12358 } 12359 spin_unlock_irq(&phba->hbalock); 12360 12361 return ha_copy; 12362 } 12363 12364 /** 12365 * lpfc_intr_state_check - Check device state for interrupt handling 12366 * @phba: Pointer to HBA context. 12367 * 12368 * This inline routine checks whether a device or its PCI slot is in a state 12369 * that the interrupt should be handled. 12370 * 12371 * This function returns 0 if the device or the PCI slot is in a state that 12372 * interrupt should be handled, otherwise -EIO. 12373 */ 12374 static inline int 12375 lpfc_intr_state_check(struct lpfc_hba *phba) 12376 { 12377 /* If the pci channel is offline, ignore all the interrupts */ 12378 if (unlikely(pci_channel_offline(phba->pcidev))) 12379 return -EIO; 12380 12381 /* Update device level interrupt statistics */ 12382 phba->sli.slistat.sli_intr++; 12383 12384 /* Ignore all interrupts during initialization. */ 12385 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 12386 return -EIO; 12387 12388 return 0; 12389 } 12390 12391 /** 12392 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 12393 * @irq: Interrupt number. 12394 * @dev_id: The device context pointer. 12395 * 12396 * This function is directly called from the PCI layer as an interrupt 12397 * service routine when device with SLI-3 interface spec is enabled with 12398 * MSI-X multi-message interrupt mode and there are slow-path events in 12399 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 12400 * interrupt mode, this function is called as part of the device-level 12401 * interrupt handler. When the PCI slot is in error recovery or the HBA 12402 * is undergoing initialization, the interrupt handler will not process 12403 * the interrupt. The link attention and ELS ring attention events are 12404 * handled by the worker thread. The interrupt handler signals the worker 12405 * thread and returns for these events. This function is called without 12406 * any lock held. It gets the hbalock to access and update SLI data 12407 * structures. 12408 * 12409 * This function returns IRQ_HANDLED when interrupt is handled else it 12410 * returns IRQ_NONE. 12411 **/ 12412 irqreturn_t 12413 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 12414 { 12415 struct lpfc_hba *phba; 12416 uint32_t ha_copy, hc_copy; 12417 uint32_t work_ha_copy; 12418 unsigned long status; 12419 unsigned long iflag; 12420 uint32_t control; 12421 12422 MAILBOX_t *mbox, *pmbox; 12423 struct lpfc_vport *vport; 12424 struct lpfc_nodelist *ndlp; 12425 struct lpfc_dmabuf *mp; 12426 LPFC_MBOXQ_t *pmb; 12427 int rc; 12428 12429 /* 12430 * Get the driver's phba structure from the dev_id and 12431 * assume the HBA is not interrupting. 12432 */ 12433 phba = (struct lpfc_hba *)dev_id; 12434 12435 if (unlikely(!phba)) 12436 return IRQ_NONE; 12437 12438 /* 12439 * Stuff needs to be attented to when this function is invoked as an 12440 * individual interrupt handler in MSI-X multi-message interrupt mode 12441 */ 12442 if (phba->intr_type == MSIX) { 12443 /* Check device state for handling interrupt */ 12444 if (lpfc_intr_state_check(phba)) 12445 return IRQ_NONE; 12446 /* Need to read HA REG for slow-path events */ 12447 spin_lock_irqsave(&phba->hbalock, iflag); 12448 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12449 goto unplug_error; 12450 /* If somebody is waiting to handle an eratt don't process it 12451 * here. The brdkill function will do this. 12452 */ 12453 if (phba->link_flag & LS_IGNORE_ERATT) 12454 ha_copy &= ~HA_ERATT; 12455 /* Check the need for handling ERATT in interrupt handler */ 12456 if (ha_copy & HA_ERATT) { 12457 if (phba->hba_flag & HBA_ERATT_HANDLED) 12458 /* ERATT polling has handled ERATT */ 12459 ha_copy &= ~HA_ERATT; 12460 else 12461 /* Indicate interrupt handler handles ERATT */ 12462 phba->hba_flag |= HBA_ERATT_HANDLED; 12463 } 12464 12465 /* 12466 * If there is deferred error attention, do not check for any 12467 * interrupt. 12468 */ 12469 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12470 spin_unlock_irqrestore(&phba->hbalock, iflag); 12471 return IRQ_NONE; 12472 } 12473 12474 /* Clear up only attention source related to slow-path */ 12475 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 12476 goto unplug_error; 12477 12478 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 12479 HC_LAINT_ENA | HC_ERINT_ENA), 12480 phba->HCregaddr); 12481 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 12482 phba->HAregaddr); 12483 writel(hc_copy, phba->HCregaddr); 12484 readl(phba->HAregaddr); /* flush */ 12485 spin_unlock_irqrestore(&phba->hbalock, iflag); 12486 } else 12487 ha_copy = phba->ha_copy; 12488 12489 work_ha_copy = ha_copy & phba->work_ha_mask; 12490 12491 if (work_ha_copy) { 12492 if (work_ha_copy & HA_LATT) { 12493 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 12494 /* 12495 * Turn off Link Attention interrupts 12496 * until CLEAR_LA done 12497 */ 12498 spin_lock_irqsave(&phba->hbalock, iflag); 12499 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 12500 if (lpfc_readl(phba->HCregaddr, &control)) 12501 goto unplug_error; 12502 control &= ~HC_LAINT_ENA; 12503 writel(control, phba->HCregaddr); 12504 readl(phba->HCregaddr); /* flush */ 12505 spin_unlock_irqrestore(&phba->hbalock, iflag); 12506 } 12507 else 12508 work_ha_copy &= ~HA_LATT; 12509 } 12510 12511 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 12512 /* 12513 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 12514 * the only slow ring. 12515 */ 12516 status = (work_ha_copy & 12517 (HA_RXMASK << (4*LPFC_ELS_RING))); 12518 status >>= (4*LPFC_ELS_RING); 12519 if (status & HA_RXMASK) { 12520 spin_lock_irqsave(&phba->hbalock, iflag); 12521 if (lpfc_readl(phba->HCregaddr, &control)) 12522 goto unplug_error; 12523 12524 lpfc_debugfs_slow_ring_trc(phba, 12525 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 12526 control, status, 12527 (uint32_t)phba->sli.slistat.sli_intr); 12528 12529 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 12530 lpfc_debugfs_slow_ring_trc(phba, 12531 "ISR Disable ring:" 12532 "pwork:x%x hawork:x%x wait:x%x", 12533 phba->work_ha, work_ha_copy, 12534 (uint32_t)((unsigned long) 12535 &phba->work_waitq)); 12536 12537 control &= 12538 ~(HC_R0INT_ENA << LPFC_ELS_RING); 12539 writel(control, phba->HCregaddr); 12540 readl(phba->HCregaddr); /* flush */ 12541 } 12542 else { 12543 lpfc_debugfs_slow_ring_trc(phba, 12544 "ISR slow ring: pwork:" 12545 "x%x hawork:x%x wait:x%x", 12546 phba->work_ha, work_ha_copy, 12547 (uint32_t)((unsigned long) 12548 &phba->work_waitq)); 12549 } 12550 spin_unlock_irqrestore(&phba->hbalock, iflag); 12551 } 12552 } 12553 spin_lock_irqsave(&phba->hbalock, iflag); 12554 if (work_ha_copy & HA_ERATT) { 12555 if (lpfc_sli_read_hs(phba)) 12556 goto unplug_error; 12557 /* 12558 * Check if there is a deferred error condition 12559 * is active 12560 */ 12561 if ((HS_FFER1 & phba->work_hs) && 12562 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12563 HS_FFER6 | HS_FFER7 | HS_FFER8) & 12564 phba->work_hs)) { 12565 phba->hba_flag |= DEFER_ERATT; 12566 /* Clear all interrupt enable conditions */ 12567 writel(0, phba->HCregaddr); 12568 readl(phba->HCregaddr); 12569 } 12570 } 12571 12572 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 12573 pmb = phba->sli.mbox_active; 12574 pmbox = &pmb->u.mb; 12575 mbox = phba->mbox; 12576 vport = pmb->vport; 12577 12578 /* First check out the status word */ 12579 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 12580 if (pmbox->mbxOwner != OWN_HOST) { 12581 spin_unlock_irqrestore(&phba->hbalock, iflag); 12582 /* 12583 * Stray Mailbox Interrupt, mbxCommand <cmd> 12584 * mbxStatus <status> 12585 */ 12586 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 12587 LOG_SLI, 12588 "(%d):0304 Stray Mailbox " 12589 "Interrupt mbxCommand x%x " 12590 "mbxStatus x%x\n", 12591 (vport ? vport->vpi : 0), 12592 pmbox->mbxCommand, 12593 pmbox->mbxStatus); 12594 /* clear mailbox attention bit */ 12595 work_ha_copy &= ~HA_MBATT; 12596 } else { 12597 phba->sli.mbox_active = NULL; 12598 spin_unlock_irqrestore(&phba->hbalock, iflag); 12599 phba->last_completion_time = jiffies; 12600 del_timer(&phba->sli.mbox_tmo); 12601 if (pmb->mbox_cmpl) { 12602 lpfc_sli_pcimem_bcopy(mbox, pmbox, 12603 MAILBOX_CMD_SIZE); 12604 if (pmb->out_ext_byte_len && 12605 pmb->ctx_buf) 12606 lpfc_sli_pcimem_bcopy( 12607 phba->mbox_ext, 12608 pmb->ctx_buf, 12609 pmb->out_ext_byte_len); 12610 } 12611 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 12612 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 12613 12614 lpfc_debugfs_disc_trc(vport, 12615 LPFC_DISC_TRC_MBOX_VPORT, 12616 "MBOX dflt rpi: : " 12617 "status:x%x rpi:x%x", 12618 (uint32_t)pmbox->mbxStatus, 12619 pmbox->un.varWords[0], 0); 12620 12621 if (!pmbox->mbxStatus) { 12622 mp = (struct lpfc_dmabuf *) 12623 (pmb->ctx_buf); 12624 ndlp = (struct lpfc_nodelist *) 12625 pmb->ctx_ndlp; 12626 12627 /* Reg_LOGIN of dflt RPI was 12628 * successful. new lets get 12629 * rid of the RPI using the 12630 * same mbox buffer. 12631 */ 12632 lpfc_unreg_login(phba, 12633 vport->vpi, 12634 pmbox->un.varWords[0], 12635 pmb); 12636 pmb->mbox_cmpl = 12637 lpfc_mbx_cmpl_dflt_rpi; 12638 pmb->ctx_buf = mp; 12639 pmb->ctx_ndlp = ndlp; 12640 pmb->vport = vport; 12641 rc = lpfc_sli_issue_mbox(phba, 12642 pmb, 12643 MBX_NOWAIT); 12644 if (rc != MBX_BUSY) 12645 lpfc_printf_log(phba, 12646 KERN_ERR, 12647 LOG_MBOX | LOG_SLI, 12648 "0350 rc should have" 12649 "been MBX_BUSY\n"); 12650 if (rc != MBX_NOT_FINISHED) 12651 goto send_current_mbox; 12652 } 12653 } 12654 spin_lock_irqsave( 12655 &phba->pport->work_port_lock, 12656 iflag); 12657 phba->pport->work_port_events &= 12658 ~WORKER_MBOX_TMO; 12659 spin_unlock_irqrestore( 12660 &phba->pport->work_port_lock, 12661 iflag); 12662 lpfc_mbox_cmpl_put(phba, pmb); 12663 } 12664 } else 12665 spin_unlock_irqrestore(&phba->hbalock, iflag); 12666 12667 if ((work_ha_copy & HA_MBATT) && 12668 (phba->sli.mbox_active == NULL)) { 12669 send_current_mbox: 12670 /* Process next mailbox command if there is one */ 12671 do { 12672 rc = lpfc_sli_issue_mbox(phba, NULL, 12673 MBX_NOWAIT); 12674 } while (rc == MBX_NOT_FINISHED); 12675 if (rc != MBX_SUCCESS) 12676 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 12677 LOG_SLI, "0349 rc should be " 12678 "MBX_SUCCESS\n"); 12679 } 12680 12681 spin_lock_irqsave(&phba->hbalock, iflag); 12682 phba->work_ha |= work_ha_copy; 12683 spin_unlock_irqrestore(&phba->hbalock, iflag); 12684 lpfc_worker_wake_up(phba); 12685 } 12686 return IRQ_HANDLED; 12687 unplug_error: 12688 spin_unlock_irqrestore(&phba->hbalock, iflag); 12689 return IRQ_HANDLED; 12690 12691 } /* lpfc_sli_sp_intr_handler */ 12692 12693 /** 12694 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 12695 * @irq: Interrupt number. 12696 * @dev_id: The device context pointer. 12697 * 12698 * This function is directly called from the PCI layer as an interrupt 12699 * service routine when device with SLI-3 interface spec is enabled with 12700 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 12701 * ring event in the HBA. However, when the device is enabled with either 12702 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 12703 * device-level interrupt handler. When the PCI slot is in error recovery 12704 * or the HBA is undergoing initialization, the interrupt handler will not 12705 * process the interrupt. The SCSI FCP fast-path ring event are handled in 12706 * the intrrupt context. This function is called without any lock held. 12707 * It gets the hbalock to access and update SLI data structures. 12708 * 12709 * This function returns IRQ_HANDLED when interrupt is handled else it 12710 * returns IRQ_NONE. 12711 **/ 12712 irqreturn_t 12713 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 12714 { 12715 struct lpfc_hba *phba; 12716 uint32_t ha_copy; 12717 unsigned long status; 12718 unsigned long iflag; 12719 struct lpfc_sli_ring *pring; 12720 12721 /* Get the driver's phba structure from the dev_id and 12722 * assume the HBA is not interrupting. 12723 */ 12724 phba = (struct lpfc_hba *) dev_id; 12725 12726 if (unlikely(!phba)) 12727 return IRQ_NONE; 12728 12729 /* 12730 * Stuff needs to be attented to when this function is invoked as an 12731 * individual interrupt handler in MSI-X multi-message interrupt mode 12732 */ 12733 if (phba->intr_type == MSIX) { 12734 /* Check device state for handling interrupt */ 12735 if (lpfc_intr_state_check(phba)) 12736 return IRQ_NONE; 12737 /* Need to read HA REG for FCP ring and other ring events */ 12738 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12739 return IRQ_HANDLED; 12740 /* Clear up only attention source related to fast-path */ 12741 spin_lock_irqsave(&phba->hbalock, iflag); 12742 /* 12743 * If there is deferred error attention, do not check for 12744 * any interrupt. 12745 */ 12746 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12747 spin_unlock_irqrestore(&phba->hbalock, iflag); 12748 return IRQ_NONE; 12749 } 12750 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 12751 phba->HAregaddr); 12752 readl(phba->HAregaddr); /* flush */ 12753 spin_unlock_irqrestore(&phba->hbalock, iflag); 12754 } else 12755 ha_copy = phba->ha_copy; 12756 12757 /* 12758 * Process all events on FCP ring. Take the optimized path for FCP IO. 12759 */ 12760 ha_copy &= ~(phba->work_ha_mask); 12761 12762 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12763 status >>= (4*LPFC_FCP_RING); 12764 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12765 if (status & HA_RXMASK) 12766 lpfc_sli_handle_fast_ring_event(phba, pring, status); 12767 12768 if (phba->cfg_multi_ring_support == 2) { 12769 /* 12770 * Process all events on extra ring. Take the optimized path 12771 * for extra ring IO. 12772 */ 12773 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12774 status >>= (4*LPFC_EXTRA_RING); 12775 if (status & HA_RXMASK) { 12776 lpfc_sli_handle_fast_ring_event(phba, 12777 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 12778 status); 12779 } 12780 } 12781 return IRQ_HANDLED; 12782 } /* lpfc_sli_fp_intr_handler */ 12783 12784 /** 12785 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 12786 * @irq: Interrupt number. 12787 * @dev_id: The device context pointer. 12788 * 12789 * This function is the HBA device-level interrupt handler to device with 12790 * SLI-3 interface spec, called from the PCI layer when either MSI or 12791 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 12792 * requires driver attention. This function invokes the slow-path interrupt 12793 * attention handling function and fast-path interrupt attention handling 12794 * function in turn to process the relevant HBA attention events. This 12795 * function is called without any lock held. It gets the hbalock to access 12796 * and update SLI data structures. 12797 * 12798 * This function returns IRQ_HANDLED when interrupt is handled, else it 12799 * returns IRQ_NONE. 12800 **/ 12801 irqreturn_t 12802 lpfc_sli_intr_handler(int irq, void *dev_id) 12803 { 12804 struct lpfc_hba *phba; 12805 irqreturn_t sp_irq_rc, fp_irq_rc; 12806 unsigned long status1, status2; 12807 uint32_t hc_copy; 12808 12809 /* 12810 * Get the driver's phba structure from the dev_id and 12811 * assume the HBA is not interrupting. 12812 */ 12813 phba = (struct lpfc_hba *) dev_id; 12814 12815 if (unlikely(!phba)) 12816 return IRQ_NONE; 12817 12818 /* Check device state for handling interrupt */ 12819 if (lpfc_intr_state_check(phba)) 12820 return IRQ_NONE; 12821 12822 spin_lock(&phba->hbalock); 12823 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 12824 spin_unlock(&phba->hbalock); 12825 return IRQ_HANDLED; 12826 } 12827 12828 if (unlikely(!phba->ha_copy)) { 12829 spin_unlock(&phba->hbalock); 12830 return IRQ_NONE; 12831 } else if (phba->ha_copy & HA_ERATT) { 12832 if (phba->hba_flag & HBA_ERATT_HANDLED) 12833 /* ERATT polling has handled ERATT */ 12834 phba->ha_copy &= ~HA_ERATT; 12835 else 12836 /* Indicate interrupt handler handles ERATT */ 12837 phba->hba_flag |= HBA_ERATT_HANDLED; 12838 } 12839 12840 /* 12841 * If there is deferred error attention, do not check for any interrupt. 12842 */ 12843 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12844 spin_unlock(&phba->hbalock); 12845 return IRQ_NONE; 12846 } 12847 12848 /* Clear attention sources except link and error attentions */ 12849 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 12850 spin_unlock(&phba->hbalock); 12851 return IRQ_HANDLED; 12852 } 12853 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 12854 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 12855 phba->HCregaddr); 12856 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 12857 writel(hc_copy, phba->HCregaddr); 12858 readl(phba->HAregaddr); /* flush */ 12859 spin_unlock(&phba->hbalock); 12860 12861 /* 12862 * Invokes slow-path host attention interrupt handling as appropriate. 12863 */ 12864 12865 /* status of events with mailbox and link attention */ 12866 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 12867 12868 /* status of events with ELS ring */ 12869 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 12870 status2 >>= (4*LPFC_ELS_RING); 12871 12872 if (status1 || (status2 & HA_RXMASK)) 12873 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 12874 else 12875 sp_irq_rc = IRQ_NONE; 12876 12877 /* 12878 * Invoke fast-path host attention interrupt handling as appropriate. 12879 */ 12880 12881 /* status of events with FCP ring */ 12882 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12883 status1 >>= (4*LPFC_FCP_RING); 12884 12885 /* status of events with extra ring */ 12886 if (phba->cfg_multi_ring_support == 2) { 12887 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12888 status2 >>= (4*LPFC_EXTRA_RING); 12889 } else 12890 status2 = 0; 12891 12892 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 12893 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 12894 else 12895 fp_irq_rc = IRQ_NONE; 12896 12897 /* Return device-level interrupt handling status */ 12898 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 12899 } /* lpfc_sli_intr_handler */ 12900 12901 /** 12902 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 12903 * @phba: pointer to lpfc hba data structure. 12904 * 12905 * This routine is invoked by the worker thread to process all the pending 12906 * SLI4 els abort xri events. 12907 **/ 12908 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 12909 { 12910 struct lpfc_cq_event *cq_event; 12911 12912 /* First, declare the els xri abort event has been handled */ 12913 spin_lock_irq(&phba->hbalock); 12914 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 12915 spin_unlock_irq(&phba->hbalock); 12916 /* Now, handle all the els xri abort events */ 12917 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 12918 /* Get the first event from the head of the event queue */ 12919 spin_lock_irq(&phba->hbalock); 12920 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 12921 cq_event, struct lpfc_cq_event, list); 12922 spin_unlock_irq(&phba->hbalock); 12923 /* Notify aborted XRI for ELS work queue */ 12924 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 12925 /* Free the event processed back to the free pool */ 12926 lpfc_sli4_cq_event_release(phba, cq_event); 12927 } 12928 } 12929 12930 /** 12931 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 12932 * @phba: pointer to lpfc hba data structure 12933 * @pIocbIn: pointer to the rspiocbq 12934 * @pIocbOut: pointer to the cmdiocbq 12935 * @wcqe: pointer to the complete wcqe 12936 * 12937 * This routine transfers the fields of a command iocbq to a response iocbq 12938 * by copying all the IOCB fields from command iocbq and transferring the 12939 * completion status information from the complete wcqe. 12940 **/ 12941 static void 12942 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 12943 struct lpfc_iocbq *pIocbIn, 12944 struct lpfc_iocbq *pIocbOut, 12945 struct lpfc_wcqe_complete *wcqe) 12946 { 12947 int numBdes, i; 12948 unsigned long iflags; 12949 uint32_t status, max_response; 12950 struct lpfc_dmabuf *dmabuf; 12951 struct ulp_bde64 *bpl, bde; 12952 size_t offset = offsetof(struct lpfc_iocbq, iocb); 12953 12954 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 12955 sizeof(struct lpfc_iocbq) - offset); 12956 /* Map WCQE parameters into irspiocb parameters */ 12957 status = bf_get(lpfc_wcqe_c_status, wcqe); 12958 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 12959 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 12960 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 12961 pIocbIn->iocb.un.fcpi.fcpi_parm = 12962 pIocbOut->iocb.un.fcpi.fcpi_parm - 12963 wcqe->total_data_placed; 12964 else 12965 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 12966 else { 12967 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 12968 switch (pIocbOut->iocb.ulpCommand) { 12969 case CMD_ELS_REQUEST64_CR: 12970 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 12971 bpl = (struct ulp_bde64 *)dmabuf->virt; 12972 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 12973 max_response = bde.tus.f.bdeSize; 12974 break; 12975 case CMD_GEN_REQUEST64_CR: 12976 max_response = 0; 12977 if (!pIocbOut->context3) 12978 break; 12979 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 12980 sizeof(struct ulp_bde64); 12981 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 12982 bpl = (struct ulp_bde64 *)dmabuf->virt; 12983 for (i = 0; i < numBdes; i++) { 12984 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 12985 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 12986 max_response += bde.tus.f.bdeSize; 12987 } 12988 break; 12989 default: 12990 max_response = wcqe->total_data_placed; 12991 break; 12992 } 12993 if (max_response < wcqe->total_data_placed) 12994 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 12995 else 12996 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 12997 wcqe->total_data_placed; 12998 } 12999 13000 /* Convert BG errors for completion status */ 13001 if (status == CQE_STATUS_DI_ERROR) { 13002 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 13003 13004 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 13005 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 13006 else 13007 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 13008 13009 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 13010 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 13011 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13012 BGS_GUARD_ERR_MASK; 13013 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 13014 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13015 BGS_APPTAG_ERR_MASK; 13016 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 13017 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13018 BGS_REFTAG_ERR_MASK; 13019 13020 /* Check to see if there was any good data before the error */ 13021 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 13022 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13023 BGS_HI_WATER_MARK_PRESENT_MASK; 13024 pIocbIn->iocb.unsli3.sli3_bg.bghm = 13025 wcqe->total_data_placed; 13026 } 13027 13028 /* 13029 * Set ALL the error bits to indicate we don't know what 13030 * type of error it is. 13031 */ 13032 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 13033 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13034 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 13035 BGS_GUARD_ERR_MASK); 13036 } 13037 13038 /* Pick up HBA exchange busy condition */ 13039 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 13040 spin_lock_irqsave(&phba->hbalock, iflags); 13041 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 13042 spin_unlock_irqrestore(&phba->hbalock, iflags); 13043 } 13044 } 13045 13046 /** 13047 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 13048 * @phba: Pointer to HBA context object. 13049 * @wcqe: Pointer to work-queue completion queue entry. 13050 * 13051 * This routine handles an ELS work-queue completion event and construct 13052 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 13053 * discovery engine to handle. 13054 * 13055 * Return: Pointer to the receive IOCBQ, NULL otherwise. 13056 **/ 13057 static struct lpfc_iocbq * 13058 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 13059 struct lpfc_iocbq *irspiocbq) 13060 { 13061 struct lpfc_sli_ring *pring; 13062 struct lpfc_iocbq *cmdiocbq; 13063 struct lpfc_wcqe_complete *wcqe; 13064 unsigned long iflags; 13065 13066 pring = lpfc_phba_elsring(phba); 13067 if (unlikely(!pring)) 13068 return NULL; 13069 13070 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 13071 pring->stats.iocb_event++; 13072 /* Look up the ELS command IOCB and create pseudo response IOCB */ 13073 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13074 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13075 if (unlikely(!cmdiocbq)) { 13076 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13077 "0386 ELS complete with no corresponding " 13078 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 13079 wcqe->word0, wcqe->total_data_placed, 13080 wcqe->parameter, wcqe->word3); 13081 lpfc_sli_release_iocbq(phba, irspiocbq); 13082 return NULL; 13083 } 13084 13085 spin_lock_irqsave(&pring->ring_lock, iflags); 13086 /* Put the iocb back on the txcmplq */ 13087 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 13088 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13089 13090 /* Fake the irspiocbq and copy necessary response information */ 13091 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 13092 13093 return irspiocbq; 13094 } 13095 13096 inline struct lpfc_cq_event * 13097 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 13098 { 13099 struct lpfc_cq_event *cq_event; 13100 13101 /* Allocate a new internal CQ_EVENT entry */ 13102 cq_event = lpfc_sli4_cq_event_alloc(phba); 13103 if (!cq_event) { 13104 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13105 "0602 Failed to alloc CQ_EVENT entry\n"); 13106 return NULL; 13107 } 13108 13109 /* Move the CQE into the event */ 13110 memcpy(&cq_event->cqe, entry, size); 13111 return cq_event; 13112 } 13113 13114 /** 13115 * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event 13116 * @phba: Pointer to HBA context object. 13117 * @cqe: Pointer to mailbox completion queue entry. 13118 * 13119 * This routine process a mailbox completion queue entry with asynchrous 13120 * event. 13121 * 13122 * Return: true if work posted to worker thread, otherwise false. 13123 **/ 13124 static bool 13125 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13126 { 13127 struct lpfc_cq_event *cq_event; 13128 unsigned long iflags; 13129 13130 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13131 "0392 Async Event: word0:x%x, word1:x%x, " 13132 "word2:x%x, word3:x%x\n", mcqe->word0, 13133 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 13134 13135 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 13136 if (!cq_event) 13137 return false; 13138 spin_lock_irqsave(&phba->hbalock, iflags); 13139 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 13140 /* Set the async event flag */ 13141 phba->hba_flag |= ASYNC_EVENT; 13142 spin_unlock_irqrestore(&phba->hbalock, iflags); 13143 13144 return true; 13145 } 13146 13147 /** 13148 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 13149 * @phba: Pointer to HBA context object. 13150 * @cqe: Pointer to mailbox completion queue entry. 13151 * 13152 * This routine process a mailbox completion queue entry with mailbox 13153 * completion event. 13154 * 13155 * Return: true if work posted to worker thread, otherwise false. 13156 **/ 13157 static bool 13158 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13159 { 13160 uint32_t mcqe_status; 13161 MAILBOX_t *mbox, *pmbox; 13162 struct lpfc_mqe *mqe; 13163 struct lpfc_vport *vport; 13164 struct lpfc_nodelist *ndlp; 13165 struct lpfc_dmabuf *mp; 13166 unsigned long iflags; 13167 LPFC_MBOXQ_t *pmb; 13168 bool workposted = false; 13169 int rc; 13170 13171 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 13172 if (!bf_get(lpfc_trailer_completed, mcqe)) 13173 goto out_no_mqe_complete; 13174 13175 /* Get the reference to the active mbox command */ 13176 spin_lock_irqsave(&phba->hbalock, iflags); 13177 pmb = phba->sli.mbox_active; 13178 if (unlikely(!pmb)) { 13179 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 13180 "1832 No pending MBOX command to handle\n"); 13181 spin_unlock_irqrestore(&phba->hbalock, iflags); 13182 goto out_no_mqe_complete; 13183 } 13184 spin_unlock_irqrestore(&phba->hbalock, iflags); 13185 mqe = &pmb->u.mqe; 13186 pmbox = (MAILBOX_t *)&pmb->u.mqe; 13187 mbox = phba->mbox; 13188 vport = pmb->vport; 13189 13190 /* Reset heartbeat timer */ 13191 phba->last_completion_time = jiffies; 13192 del_timer(&phba->sli.mbox_tmo); 13193 13194 /* Move mbox data to caller's mailbox region, do endian swapping */ 13195 if (pmb->mbox_cmpl && mbox) 13196 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 13197 13198 /* 13199 * For mcqe errors, conditionally move a modified error code to 13200 * the mbox so that the error will not be missed. 13201 */ 13202 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 13203 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 13204 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 13205 bf_set(lpfc_mqe_status, mqe, 13206 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 13207 } 13208 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13209 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13210 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 13211 "MBOX dflt rpi: status:x%x rpi:x%x", 13212 mcqe_status, 13213 pmbox->un.varWords[0], 0); 13214 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 13215 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 13216 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 13217 /* Reg_LOGIN of dflt RPI was successful. Now lets get 13218 * RID of the PPI using the same mbox buffer. 13219 */ 13220 lpfc_unreg_login(phba, vport->vpi, 13221 pmbox->un.varWords[0], pmb); 13222 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 13223 pmb->ctx_buf = mp; 13224 pmb->ctx_ndlp = ndlp; 13225 pmb->vport = vport; 13226 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 13227 if (rc != MBX_BUSY) 13228 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 13229 LOG_SLI, "0385 rc should " 13230 "have been MBX_BUSY\n"); 13231 if (rc != MBX_NOT_FINISHED) 13232 goto send_current_mbox; 13233 } 13234 } 13235 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 13236 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 13237 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 13238 13239 /* There is mailbox completion work to do */ 13240 spin_lock_irqsave(&phba->hbalock, iflags); 13241 __lpfc_mbox_cmpl_put(phba, pmb); 13242 phba->work_ha |= HA_MBATT; 13243 spin_unlock_irqrestore(&phba->hbalock, iflags); 13244 workposted = true; 13245 13246 send_current_mbox: 13247 spin_lock_irqsave(&phba->hbalock, iflags); 13248 /* Release the mailbox command posting token */ 13249 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 13250 /* Setting active mailbox pointer need to be in sync to flag clear */ 13251 phba->sli.mbox_active = NULL; 13252 if (bf_get(lpfc_trailer_consumed, mcqe)) 13253 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13254 spin_unlock_irqrestore(&phba->hbalock, iflags); 13255 /* Wake up worker thread to post the next pending mailbox command */ 13256 lpfc_worker_wake_up(phba); 13257 return workposted; 13258 13259 out_no_mqe_complete: 13260 spin_lock_irqsave(&phba->hbalock, iflags); 13261 if (bf_get(lpfc_trailer_consumed, mcqe)) 13262 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13263 spin_unlock_irqrestore(&phba->hbalock, iflags); 13264 return false; 13265 } 13266 13267 /** 13268 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 13269 * @phba: Pointer to HBA context object. 13270 * @cqe: Pointer to mailbox completion queue entry. 13271 * 13272 * This routine process a mailbox completion queue entry, it invokes the 13273 * proper mailbox complete handling or asynchrous event handling routine 13274 * according to the MCQE's async bit. 13275 * 13276 * Return: true if work posted to worker thread, otherwise false. 13277 **/ 13278 static bool 13279 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13280 struct lpfc_cqe *cqe) 13281 { 13282 struct lpfc_mcqe mcqe; 13283 bool workposted; 13284 13285 cq->CQ_mbox++; 13286 13287 /* Copy the mailbox MCQE and convert endian order as needed */ 13288 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 13289 13290 /* Invoke the proper event handling routine */ 13291 if (!bf_get(lpfc_trailer_async, &mcqe)) 13292 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 13293 else 13294 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 13295 return workposted; 13296 } 13297 13298 /** 13299 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 13300 * @phba: Pointer to HBA context object. 13301 * @cq: Pointer to associated CQ 13302 * @wcqe: Pointer to work-queue completion queue entry. 13303 * 13304 * This routine handles an ELS work-queue completion event. 13305 * 13306 * Return: true if work posted to worker thread, otherwise false. 13307 **/ 13308 static bool 13309 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13310 struct lpfc_wcqe_complete *wcqe) 13311 { 13312 struct lpfc_iocbq *irspiocbq; 13313 unsigned long iflags; 13314 struct lpfc_sli_ring *pring = cq->pring; 13315 int txq_cnt = 0; 13316 int txcmplq_cnt = 0; 13317 13318 /* Check for response status */ 13319 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 13320 /* Log the error status */ 13321 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13322 "0357 ELS CQE error: status=x%x: " 13323 "CQE: %08x %08x %08x %08x\n", 13324 bf_get(lpfc_wcqe_c_status, wcqe), 13325 wcqe->word0, wcqe->total_data_placed, 13326 wcqe->parameter, wcqe->word3); 13327 } 13328 13329 /* Get an irspiocbq for later ELS response processing use */ 13330 irspiocbq = lpfc_sli_get_iocbq(phba); 13331 if (!irspiocbq) { 13332 if (!list_empty(&pring->txq)) 13333 txq_cnt++; 13334 if (!list_empty(&pring->txcmplq)) 13335 txcmplq_cnt++; 13336 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13337 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 13338 "els_txcmplq_cnt=%d\n", 13339 txq_cnt, phba->iocb_cnt, 13340 txcmplq_cnt); 13341 return false; 13342 } 13343 13344 /* Save off the slow-path queue event for work thread to process */ 13345 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 13346 spin_lock_irqsave(&phba->hbalock, iflags); 13347 list_add_tail(&irspiocbq->cq_event.list, 13348 &phba->sli4_hba.sp_queue_event); 13349 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13350 spin_unlock_irqrestore(&phba->hbalock, iflags); 13351 13352 return true; 13353 } 13354 13355 /** 13356 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 13357 * @phba: Pointer to HBA context object. 13358 * @wcqe: Pointer to work-queue completion queue entry. 13359 * 13360 * This routine handles slow-path WQ entry consumed event by invoking the 13361 * proper WQ release routine to the slow-path WQ. 13362 **/ 13363 static void 13364 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 13365 struct lpfc_wcqe_release *wcqe) 13366 { 13367 /* sanity check on queue memory */ 13368 if (unlikely(!phba->sli4_hba.els_wq)) 13369 return; 13370 /* Check for the slow-path ELS work queue */ 13371 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 13372 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 13373 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 13374 else 13375 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13376 "2579 Slow-path wqe consume event carries " 13377 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 13378 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 13379 phba->sli4_hba.els_wq->queue_id); 13380 } 13381 13382 /** 13383 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 13384 * @phba: Pointer to HBA context object. 13385 * @cq: Pointer to a WQ completion queue. 13386 * @wcqe: Pointer to work-queue completion queue entry. 13387 * 13388 * This routine handles an XRI abort event. 13389 * 13390 * Return: true if work posted to worker thread, otherwise false. 13391 **/ 13392 static bool 13393 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 13394 struct lpfc_queue *cq, 13395 struct sli4_wcqe_xri_aborted *wcqe) 13396 { 13397 bool workposted = false; 13398 struct lpfc_cq_event *cq_event; 13399 unsigned long iflags; 13400 13401 switch (cq->subtype) { 13402 case LPFC_IO: 13403 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 13404 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13405 /* Notify aborted XRI for NVME work queue */ 13406 if (phba->nvmet_support) 13407 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 13408 } 13409 workposted = false; 13410 break; 13411 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 13412 case LPFC_ELS: 13413 cq_event = lpfc_cq_event_setup( 13414 phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted)); 13415 if (!cq_event) 13416 return false; 13417 cq_event->hdwq = cq->hdwq; 13418 spin_lock_irqsave(&phba->hbalock, iflags); 13419 list_add_tail(&cq_event->list, 13420 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 13421 /* Set the els xri abort event flag */ 13422 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 13423 spin_unlock_irqrestore(&phba->hbalock, iflags); 13424 workposted = true; 13425 break; 13426 default: 13427 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13428 "0603 Invalid CQ subtype %d: " 13429 "%08x %08x %08x %08x\n", 13430 cq->subtype, wcqe->word0, wcqe->parameter, 13431 wcqe->word2, wcqe->word3); 13432 workposted = false; 13433 break; 13434 } 13435 return workposted; 13436 } 13437 13438 #define FC_RCTL_MDS_DIAGS 0xF4 13439 13440 /** 13441 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 13442 * @phba: Pointer to HBA context object. 13443 * @rcqe: Pointer to receive-queue completion queue entry. 13444 * 13445 * This routine process a receive-queue completion queue entry. 13446 * 13447 * Return: true if work posted to worker thread, otherwise false. 13448 **/ 13449 static bool 13450 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 13451 { 13452 bool workposted = false; 13453 struct fc_frame_header *fc_hdr; 13454 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 13455 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 13456 struct lpfc_nvmet_tgtport *tgtp; 13457 struct hbq_dmabuf *dma_buf; 13458 uint32_t status, rq_id; 13459 unsigned long iflags; 13460 13461 /* sanity check on queue memory */ 13462 if (unlikely(!hrq) || unlikely(!drq)) 13463 return workposted; 13464 13465 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13466 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13467 else 13468 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13469 if (rq_id != hrq->queue_id) 13470 goto out; 13471 13472 status = bf_get(lpfc_rcqe_status, rcqe); 13473 switch (status) { 13474 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13475 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13476 "2537 Receive Frame Truncated!!\n"); 13477 /* fall through */ 13478 case FC_STATUS_RQ_SUCCESS: 13479 spin_lock_irqsave(&phba->hbalock, iflags); 13480 lpfc_sli4_rq_release(hrq, drq); 13481 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 13482 if (!dma_buf) { 13483 hrq->RQ_no_buf_found++; 13484 spin_unlock_irqrestore(&phba->hbalock, iflags); 13485 goto out; 13486 } 13487 hrq->RQ_rcv_buf++; 13488 hrq->RQ_buf_posted--; 13489 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 13490 13491 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 13492 13493 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 13494 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 13495 spin_unlock_irqrestore(&phba->hbalock, iflags); 13496 /* Handle MDS Loopback frames */ 13497 lpfc_sli4_handle_mds_loopback(phba->pport, dma_buf); 13498 break; 13499 } 13500 13501 /* save off the frame for the work thread to process */ 13502 list_add_tail(&dma_buf->cq_event.list, 13503 &phba->sli4_hba.sp_queue_event); 13504 /* Frame received */ 13505 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13506 spin_unlock_irqrestore(&phba->hbalock, iflags); 13507 workposted = true; 13508 break; 13509 case FC_STATUS_INSUFF_BUF_FRM_DISC: 13510 if (phba->nvmet_support) { 13511 tgtp = phba->targetport->private; 13512 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME, 13513 "6402 RQE Error x%x, posted %d err_cnt " 13514 "%d: %x %x %x\n", 13515 status, hrq->RQ_buf_posted, 13516 hrq->RQ_no_posted_buf, 13517 atomic_read(&tgtp->rcv_fcp_cmd_in), 13518 atomic_read(&tgtp->rcv_fcp_cmd_out), 13519 atomic_read(&tgtp->xmt_fcp_release)); 13520 } 13521 /* fallthrough */ 13522 13523 case FC_STATUS_INSUFF_BUF_NEED_BUF: 13524 hrq->RQ_no_posted_buf++; 13525 /* Post more buffers if possible */ 13526 spin_lock_irqsave(&phba->hbalock, iflags); 13527 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 13528 spin_unlock_irqrestore(&phba->hbalock, iflags); 13529 workposted = true; 13530 break; 13531 } 13532 out: 13533 return workposted; 13534 } 13535 13536 /** 13537 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 13538 * @phba: Pointer to HBA context object. 13539 * @cq: Pointer to the completion queue. 13540 * @cqe: Pointer to a completion queue entry. 13541 * 13542 * This routine process a slow-path work-queue or receive queue completion queue 13543 * entry. 13544 * 13545 * Return: true if work posted to worker thread, otherwise false. 13546 **/ 13547 static bool 13548 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13549 struct lpfc_cqe *cqe) 13550 { 13551 struct lpfc_cqe cqevt; 13552 bool workposted = false; 13553 13554 /* Copy the work queue CQE and convert endian order if needed */ 13555 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 13556 13557 /* Check and process for different type of WCQE and dispatch */ 13558 switch (bf_get(lpfc_cqe_code, &cqevt)) { 13559 case CQE_CODE_COMPL_WQE: 13560 /* Process the WQ/RQ complete event */ 13561 phba->last_completion_time = jiffies; 13562 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 13563 (struct lpfc_wcqe_complete *)&cqevt); 13564 break; 13565 case CQE_CODE_RELEASE_WQE: 13566 /* Process the WQ release event */ 13567 lpfc_sli4_sp_handle_rel_wcqe(phba, 13568 (struct lpfc_wcqe_release *)&cqevt); 13569 break; 13570 case CQE_CODE_XRI_ABORTED: 13571 /* Process the WQ XRI abort event */ 13572 phba->last_completion_time = jiffies; 13573 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 13574 (struct sli4_wcqe_xri_aborted *)&cqevt); 13575 break; 13576 case CQE_CODE_RECEIVE: 13577 case CQE_CODE_RECEIVE_V1: 13578 /* Process the RQ event */ 13579 phba->last_completion_time = jiffies; 13580 workposted = lpfc_sli4_sp_handle_rcqe(phba, 13581 (struct lpfc_rcqe *)&cqevt); 13582 break; 13583 default: 13584 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13585 "0388 Not a valid WCQE code: x%x\n", 13586 bf_get(lpfc_cqe_code, &cqevt)); 13587 break; 13588 } 13589 return workposted; 13590 } 13591 13592 /** 13593 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 13594 * @phba: Pointer to HBA context object. 13595 * @eqe: Pointer to fast-path event queue entry. 13596 * 13597 * This routine process a event queue entry from the slow-path event queue. 13598 * It will check the MajorCode and MinorCode to determine this is for a 13599 * completion event on a completion queue, if not, an error shall be logged 13600 * and just return. Otherwise, it will get to the corresponding completion 13601 * queue and process all the entries on that completion queue, rearm the 13602 * completion queue, and then return. 13603 * 13604 **/ 13605 static void 13606 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 13607 struct lpfc_queue *speq) 13608 { 13609 struct lpfc_queue *cq = NULL, *childq; 13610 uint16_t cqid; 13611 13612 /* Get the reference to the corresponding CQ */ 13613 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 13614 13615 list_for_each_entry(childq, &speq->child_list, list) { 13616 if (childq->queue_id == cqid) { 13617 cq = childq; 13618 break; 13619 } 13620 } 13621 if (unlikely(!cq)) { 13622 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 13623 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13624 "0365 Slow-path CQ identifier " 13625 "(%d) does not exist\n", cqid); 13626 return; 13627 } 13628 13629 /* Save EQ associated with this CQ */ 13630 cq->assoc_qp = speq; 13631 13632 if (!queue_work_on(cq->chann, phba->wq, &cq->spwork)) 13633 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13634 "0390 Cannot schedule soft IRQ " 13635 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 13636 cqid, cq->queue_id, raw_smp_processor_id()); 13637 } 13638 13639 /** 13640 * __lpfc_sli4_process_cq - Process elements of a CQ 13641 * @phba: Pointer to HBA context object. 13642 * @cq: Pointer to CQ to be processed 13643 * @handler: Routine to process each cqe 13644 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 13645 * 13646 * This routine processes completion queue entries in a CQ. While a valid 13647 * queue element is found, the handler is called. During processing checks 13648 * are made for periodic doorbell writes to let the hardware know of 13649 * element consumption. 13650 * 13651 * If the max limit on cqes to process is hit, or there are no more valid 13652 * entries, the loop stops. If we processed a sufficient number of elements, 13653 * meaning there is sufficient load, rather than rearming and generating 13654 * another interrupt, a cq rescheduling delay will be set. A delay of 0 13655 * indicates no rescheduling. 13656 * 13657 * Returns True if work scheduled, False otherwise. 13658 **/ 13659 static bool 13660 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 13661 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 13662 struct lpfc_cqe *), unsigned long *delay) 13663 { 13664 struct lpfc_cqe *cqe; 13665 bool workposted = false; 13666 int count = 0, consumed = 0; 13667 bool arm = true; 13668 13669 /* default - no reschedule */ 13670 *delay = 0; 13671 13672 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 13673 goto rearm_and_exit; 13674 13675 /* Process all the entries to the CQ */ 13676 cq->q_flag = 0; 13677 cqe = lpfc_sli4_cq_get(cq); 13678 while (cqe) { 13679 workposted |= handler(phba, cq, cqe); 13680 __lpfc_sli4_consume_cqe(phba, cq, cqe); 13681 13682 consumed++; 13683 if (!(++count % cq->max_proc_limit)) 13684 break; 13685 13686 if (!(count % cq->notify_interval)) { 13687 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 13688 LPFC_QUEUE_NOARM); 13689 consumed = 0; 13690 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 13691 } 13692 13693 if (count == LPFC_NVMET_CQ_NOTIFY) 13694 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 13695 13696 cqe = lpfc_sli4_cq_get(cq); 13697 } 13698 if (count >= phba->cfg_cq_poll_threshold) { 13699 *delay = 1; 13700 arm = false; 13701 } 13702 13703 /* Track the max number of CQEs processed in 1 EQ */ 13704 if (count > cq->CQ_max_cqe) 13705 cq->CQ_max_cqe = count; 13706 13707 cq->assoc_qp->EQ_cqe_cnt += count; 13708 13709 /* Catch the no cq entry condition */ 13710 if (unlikely(count == 0)) 13711 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13712 "0369 No entry from completion queue " 13713 "qid=%d\n", cq->queue_id); 13714 13715 cq->queue_claimed = 0; 13716 13717 rearm_and_exit: 13718 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 13719 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 13720 13721 return workposted; 13722 } 13723 13724 /** 13725 * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 13726 * @cq: pointer to CQ to process 13727 * 13728 * This routine calls the cq processing routine with a handler specific 13729 * to the type of queue bound to it. 13730 * 13731 * The CQ routine returns two values: the first is the calling status, 13732 * which indicates whether work was queued to the background discovery 13733 * thread. If true, the routine should wakeup the discovery thread; 13734 * the second is the delay parameter. If non-zero, rather than rearming 13735 * the CQ and yet another interrupt, the CQ handler should be queued so 13736 * that it is processed in a subsequent polling action. The value of 13737 * the delay indicates when to reschedule it. 13738 **/ 13739 static void 13740 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 13741 { 13742 struct lpfc_hba *phba = cq->phba; 13743 unsigned long delay; 13744 bool workposted = false; 13745 13746 /* Process and rearm the CQ */ 13747 switch (cq->type) { 13748 case LPFC_MCQ: 13749 workposted |= __lpfc_sli4_process_cq(phba, cq, 13750 lpfc_sli4_sp_handle_mcqe, 13751 &delay); 13752 break; 13753 case LPFC_WCQ: 13754 if (cq->subtype == LPFC_IO) 13755 workposted |= __lpfc_sli4_process_cq(phba, cq, 13756 lpfc_sli4_fp_handle_cqe, 13757 &delay); 13758 else 13759 workposted |= __lpfc_sli4_process_cq(phba, cq, 13760 lpfc_sli4_sp_handle_cqe, 13761 &delay); 13762 break; 13763 default: 13764 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13765 "0370 Invalid completion queue type (%d)\n", 13766 cq->type); 13767 return; 13768 } 13769 13770 if (delay) { 13771 if (!queue_delayed_work_on(cq->chann, phba->wq, 13772 &cq->sched_spwork, delay)) 13773 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13774 "0394 Cannot schedule soft IRQ " 13775 "for cqid=%d on CPU %d\n", 13776 cq->queue_id, cq->chann); 13777 } 13778 13779 /* wake up worker thread if there are works to be done */ 13780 if (workposted) 13781 lpfc_worker_wake_up(phba); 13782 } 13783 13784 /** 13785 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 13786 * interrupt 13787 * @work: pointer to work element 13788 * 13789 * translates from the work handler and calls the slow-path handler. 13790 **/ 13791 static void 13792 lpfc_sli4_sp_process_cq(struct work_struct *work) 13793 { 13794 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 13795 13796 __lpfc_sli4_sp_process_cq(cq); 13797 } 13798 13799 /** 13800 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 13801 * @work: pointer to work element 13802 * 13803 * translates from the work handler and calls the slow-path handler. 13804 **/ 13805 static void 13806 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 13807 { 13808 struct lpfc_queue *cq = container_of(to_delayed_work(work), 13809 struct lpfc_queue, sched_spwork); 13810 13811 __lpfc_sli4_sp_process_cq(cq); 13812 } 13813 13814 /** 13815 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 13816 * @phba: Pointer to HBA context object. 13817 * @cq: Pointer to associated CQ 13818 * @wcqe: Pointer to work-queue completion queue entry. 13819 * 13820 * This routine process a fast-path work queue completion entry from fast-path 13821 * event queue for FCP command response completion. 13822 **/ 13823 static void 13824 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13825 struct lpfc_wcqe_complete *wcqe) 13826 { 13827 struct lpfc_sli_ring *pring = cq->pring; 13828 struct lpfc_iocbq *cmdiocbq; 13829 struct lpfc_iocbq irspiocbq; 13830 unsigned long iflags; 13831 13832 /* Check for response status */ 13833 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 13834 /* If resource errors reported from HBA, reduce queue 13835 * depth of the SCSI device. 13836 */ 13837 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 13838 IOSTAT_LOCAL_REJECT)) && 13839 ((wcqe->parameter & IOERR_PARAM_MASK) == 13840 IOERR_NO_RESOURCES)) 13841 phba->lpfc_rampdown_queue_depth(phba); 13842 13843 /* Log the error status */ 13844 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13845 "0373 FCP CQE error: status=x%x: " 13846 "CQE: %08x %08x %08x %08x\n", 13847 bf_get(lpfc_wcqe_c_status, wcqe), 13848 wcqe->word0, wcqe->total_data_placed, 13849 wcqe->parameter, wcqe->word3); 13850 } 13851 13852 /* Look up the FCP command IOCB and create pseudo response IOCB */ 13853 spin_lock_irqsave(&pring->ring_lock, iflags); 13854 pring->stats.iocb_event++; 13855 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13856 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13857 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13858 if (unlikely(!cmdiocbq)) { 13859 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13860 "0374 FCP complete with no corresponding " 13861 "cmdiocb: iotag (%d)\n", 13862 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13863 return; 13864 } 13865 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 13866 cmdiocbq->isr_timestamp = cq->isr_timestamp; 13867 #endif 13868 if (cmdiocbq->iocb_cmpl == NULL) { 13869 if (cmdiocbq->wqe_cmpl) { 13870 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 13871 spin_lock_irqsave(&phba->hbalock, iflags); 13872 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 13873 spin_unlock_irqrestore(&phba->hbalock, iflags); 13874 } 13875 13876 /* Pass the cmd_iocb and the wcqe to the upper layer */ 13877 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); 13878 return; 13879 } 13880 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13881 "0375 FCP cmdiocb not callback function " 13882 "iotag: (%d)\n", 13883 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13884 return; 13885 } 13886 13887 /* Fake the irspiocb and copy necessary response information */ 13888 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 13889 13890 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 13891 spin_lock_irqsave(&phba->hbalock, iflags); 13892 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 13893 spin_unlock_irqrestore(&phba->hbalock, iflags); 13894 } 13895 13896 /* Pass the cmd_iocb and the rsp state to the upper layer */ 13897 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 13898 } 13899 13900 /** 13901 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 13902 * @phba: Pointer to HBA context object. 13903 * @cq: Pointer to completion queue. 13904 * @wcqe: Pointer to work-queue completion queue entry. 13905 * 13906 * This routine handles an fast-path WQ entry consumed event by invoking the 13907 * proper WQ release routine to the slow-path WQ. 13908 **/ 13909 static void 13910 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13911 struct lpfc_wcqe_release *wcqe) 13912 { 13913 struct lpfc_queue *childwq; 13914 bool wqid_matched = false; 13915 uint16_t hba_wqid; 13916 13917 /* Check for fast-path FCP work queue release */ 13918 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 13919 list_for_each_entry(childwq, &cq->child_list, list) { 13920 if (childwq->queue_id == hba_wqid) { 13921 lpfc_sli4_wq_release(childwq, 13922 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 13923 if (childwq->q_flag & HBA_NVMET_WQFULL) 13924 lpfc_nvmet_wqfull_process(phba, childwq); 13925 wqid_matched = true; 13926 break; 13927 } 13928 } 13929 /* Report warning log message if no match found */ 13930 if (wqid_matched != true) 13931 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13932 "2580 Fast-path wqe consume event carries " 13933 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 13934 } 13935 13936 /** 13937 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 13938 * @phba: Pointer to HBA context object. 13939 * @rcqe: Pointer to receive-queue completion queue entry. 13940 * 13941 * This routine process a receive-queue completion queue entry. 13942 * 13943 * Return: true if work posted to worker thread, otherwise false. 13944 **/ 13945 static bool 13946 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13947 struct lpfc_rcqe *rcqe) 13948 { 13949 bool workposted = false; 13950 struct lpfc_queue *hrq; 13951 struct lpfc_queue *drq; 13952 struct rqb_dmabuf *dma_buf; 13953 struct fc_frame_header *fc_hdr; 13954 struct lpfc_nvmet_tgtport *tgtp; 13955 uint32_t status, rq_id; 13956 unsigned long iflags; 13957 uint32_t fctl, idx; 13958 13959 if ((phba->nvmet_support == 0) || 13960 (phba->sli4_hba.nvmet_cqset == NULL)) 13961 return workposted; 13962 13963 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 13964 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 13965 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 13966 13967 /* sanity check on queue memory */ 13968 if (unlikely(!hrq) || unlikely(!drq)) 13969 return workposted; 13970 13971 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13972 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13973 else 13974 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13975 13976 if ((phba->nvmet_support == 0) || 13977 (rq_id != hrq->queue_id)) 13978 return workposted; 13979 13980 status = bf_get(lpfc_rcqe_status, rcqe); 13981 switch (status) { 13982 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13983 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13984 "6126 Receive Frame Truncated!!\n"); 13985 /* fall through */ 13986 case FC_STATUS_RQ_SUCCESS: 13987 spin_lock_irqsave(&phba->hbalock, iflags); 13988 lpfc_sli4_rq_release(hrq, drq); 13989 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 13990 if (!dma_buf) { 13991 hrq->RQ_no_buf_found++; 13992 spin_unlock_irqrestore(&phba->hbalock, iflags); 13993 goto out; 13994 } 13995 spin_unlock_irqrestore(&phba->hbalock, iflags); 13996 hrq->RQ_rcv_buf++; 13997 hrq->RQ_buf_posted--; 13998 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 13999 14000 /* Just some basic sanity checks on FCP Command frame */ 14001 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 14002 fc_hdr->fh_f_ctl[1] << 8 | 14003 fc_hdr->fh_f_ctl[2]); 14004 if (((fctl & 14005 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 14006 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 14007 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 14008 goto drop; 14009 14010 if (fc_hdr->fh_type == FC_TYPE_FCP) { 14011 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 14012 lpfc_nvmet_unsol_fcp_event( 14013 phba, idx, dma_buf, cq->isr_timestamp, 14014 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 14015 return false; 14016 } 14017 drop: 14018 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 14019 break; 14020 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14021 if (phba->nvmet_support) { 14022 tgtp = phba->targetport->private; 14023 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME, 14024 "6401 RQE Error x%x, posted %d err_cnt " 14025 "%d: %x %x %x\n", 14026 status, hrq->RQ_buf_posted, 14027 hrq->RQ_no_posted_buf, 14028 atomic_read(&tgtp->rcv_fcp_cmd_in), 14029 atomic_read(&tgtp->rcv_fcp_cmd_out), 14030 atomic_read(&tgtp->xmt_fcp_release)); 14031 } 14032 /* fallthrough */ 14033 14034 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14035 hrq->RQ_no_posted_buf++; 14036 /* Post more buffers if possible */ 14037 break; 14038 } 14039 out: 14040 return workposted; 14041 } 14042 14043 /** 14044 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 14045 * @phba: adapter with cq 14046 * @cq: Pointer to the completion queue. 14047 * @eqe: Pointer to fast-path completion queue entry. 14048 * 14049 * This routine process a fast-path work queue completion entry from fast-path 14050 * event queue for FCP command response completion. 14051 * 14052 * Return: true if work posted to worker thread, otherwise false. 14053 **/ 14054 static bool 14055 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14056 struct lpfc_cqe *cqe) 14057 { 14058 struct lpfc_wcqe_release wcqe; 14059 bool workposted = false; 14060 14061 /* Copy the work queue CQE and convert endian order if needed */ 14062 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 14063 14064 /* Check and process for different type of WCQE and dispatch */ 14065 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 14066 case CQE_CODE_COMPL_WQE: 14067 case CQE_CODE_NVME_ERSP: 14068 cq->CQ_wq++; 14069 /* Process the WQ complete event */ 14070 phba->last_completion_time = jiffies; 14071 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 14072 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 14073 (struct lpfc_wcqe_complete *)&wcqe); 14074 break; 14075 case CQE_CODE_RELEASE_WQE: 14076 cq->CQ_release_wqe++; 14077 /* Process the WQ release event */ 14078 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 14079 (struct lpfc_wcqe_release *)&wcqe); 14080 break; 14081 case CQE_CODE_XRI_ABORTED: 14082 cq->CQ_xri_aborted++; 14083 /* Process the WQ XRI abort event */ 14084 phba->last_completion_time = jiffies; 14085 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14086 (struct sli4_wcqe_xri_aborted *)&wcqe); 14087 break; 14088 case CQE_CODE_RECEIVE_V1: 14089 case CQE_CODE_RECEIVE: 14090 phba->last_completion_time = jiffies; 14091 if (cq->subtype == LPFC_NVMET) { 14092 workposted = lpfc_sli4_nvmet_handle_rcqe( 14093 phba, cq, (struct lpfc_rcqe *)&wcqe); 14094 } 14095 break; 14096 default: 14097 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14098 "0144 Not a valid CQE code: x%x\n", 14099 bf_get(lpfc_wcqe_c_code, &wcqe)); 14100 break; 14101 } 14102 return workposted; 14103 } 14104 14105 /** 14106 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 14107 * @phba: Pointer to HBA context object. 14108 * @eqe: Pointer to fast-path event queue entry. 14109 * 14110 * This routine process a event queue entry from the fast-path event queue. 14111 * It will check the MajorCode and MinorCode to determine this is for a 14112 * completion event on a completion queue, if not, an error shall be logged 14113 * and just return. Otherwise, it will get to the corresponding completion 14114 * queue and process all the entries on the completion queue, rearm the 14115 * completion queue, and then return. 14116 **/ 14117 static void 14118 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 14119 struct lpfc_eqe *eqe) 14120 { 14121 struct lpfc_queue *cq = NULL; 14122 uint32_t qidx = eq->hdwq; 14123 uint16_t cqid, id; 14124 14125 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 14126 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14127 "0366 Not a valid completion " 14128 "event: majorcode=x%x, minorcode=x%x\n", 14129 bf_get_le32(lpfc_eqe_major_code, eqe), 14130 bf_get_le32(lpfc_eqe_minor_code, eqe)); 14131 return; 14132 } 14133 14134 /* Get the reference to the corresponding CQ */ 14135 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14136 14137 /* Use the fast lookup method first */ 14138 if (cqid <= phba->sli4_hba.cq_max) { 14139 cq = phba->sli4_hba.cq_lookup[cqid]; 14140 if (cq) 14141 goto work_cq; 14142 } 14143 14144 /* Next check for NVMET completion */ 14145 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 14146 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 14147 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 14148 /* Process NVMET unsol rcv */ 14149 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 14150 goto process_cq; 14151 } 14152 } 14153 14154 if (phba->sli4_hba.nvmels_cq && 14155 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 14156 /* Process NVME unsol rcv */ 14157 cq = phba->sli4_hba.nvmels_cq; 14158 } 14159 14160 /* Otherwise this is a Slow path event */ 14161 if (cq == NULL) { 14162 lpfc_sli4_sp_handle_eqe(phba, eqe, 14163 phba->sli4_hba.hdwq[qidx].hba_eq); 14164 return; 14165 } 14166 14167 process_cq: 14168 if (unlikely(cqid != cq->queue_id)) { 14169 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14170 "0368 Miss-matched fast-path completion " 14171 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 14172 cqid, cq->queue_id); 14173 return; 14174 } 14175 14176 work_cq: 14177 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 14178 if (phba->ktime_on) 14179 cq->isr_timestamp = ktime_get_ns(); 14180 else 14181 cq->isr_timestamp = 0; 14182 #endif 14183 if (!queue_work_on(cq->chann, phba->wq, &cq->irqwork)) 14184 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14185 "0363 Cannot schedule soft IRQ " 14186 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14187 cqid, cq->queue_id, raw_smp_processor_id()); 14188 } 14189 14190 /** 14191 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 14192 * @cq: Pointer to CQ to be processed 14193 * 14194 * This routine calls the cq processing routine with the handler for 14195 * fast path CQEs. 14196 * 14197 * The CQ routine returns two values: the first is the calling status, 14198 * which indicates whether work was queued to the background discovery 14199 * thread. If true, the routine should wakeup the discovery thread; 14200 * the second is the delay parameter. If non-zero, rather than rearming 14201 * the CQ and yet another interrupt, the CQ handler should be queued so 14202 * that it is processed in a subsequent polling action. The value of 14203 * the delay indicates when to reschedule it. 14204 **/ 14205 static void 14206 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq) 14207 { 14208 struct lpfc_hba *phba = cq->phba; 14209 unsigned long delay; 14210 bool workposted = false; 14211 14212 /* process and rearm the CQ */ 14213 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 14214 &delay); 14215 14216 if (delay) { 14217 if (!queue_delayed_work_on(cq->chann, phba->wq, 14218 &cq->sched_irqwork, delay)) 14219 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14220 "0367 Cannot schedule soft IRQ " 14221 "for cqid=%d on CPU %d\n", 14222 cq->queue_id, cq->chann); 14223 } 14224 14225 /* wake up worker thread if there are works to be done */ 14226 if (workposted) 14227 lpfc_worker_wake_up(phba); 14228 } 14229 14230 /** 14231 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 14232 * interrupt 14233 * @work: pointer to work element 14234 * 14235 * translates from the work handler and calls the fast-path handler. 14236 **/ 14237 static void 14238 lpfc_sli4_hba_process_cq(struct work_struct *work) 14239 { 14240 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 14241 14242 __lpfc_sli4_hba_process_cq(cq); 14243 } 14244 14245 /** 14246 * lpfc_sli4_hba_process_cq - fast-path work handler when started by timer 14247 * @work: pointer to work element 14248 * 14249 * translates from the work handler and calls the fast-path handler. 14250 **/ 14251 static void 14252 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 14253 { 14254 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14255 struct lpfc_queue, sched_irqwork); 14256 14257 __lpfc_sli4_hba_process_cq(cq); 14258 } 14259 14260 /** 14261 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 14262 * @irq: Interrupt number. 14263 * @dev_id: The device context pointer. 14264 * 14265 * This function is directly called from the PCI layer as an interrupt 14266 * service routine when device with SLI-4 interface spec is enabled with 14267 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 14268 * ring event in the HBA. However, when the device is enabled with either 14269 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 14270 * device-level interrupt handler. When the PCI slot is in error recovery 14271 * or the HBA is undergoing initialization, the interrupt handler will not 14272 * process the interrupt. The SCSI FCP fast-path ring event are handled in 14273 * the intrrupt context. This function is called without any lock held. 14274 * It gets the hbalock to access and update SLI data structures. Note that, 14275 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 14276 * equal to that of FCP CQ index. 14277 * 14278 * The link attention and ELS ring attention events are handled 14279 * by the worker thread. The interrupt handler signals the worker thread 14280 * and returns for these events. This function is called without any lock 14281 * held. It gets the hbalock to access and update SLI data structures. 14282 * 14283 * This function returns IRQ_HANDLED when interrupt is handled else it 14284 * returns IRQ_NONE. 14285 **/ 14286 irqreturn_t 14287 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 14288 { 14289 struct lpfc_hba *phba; 14290 struct lpfc_hba_eq_hdl *hba_eq_hdl; 14291 struct lpfc_queue *fpeq; 14292 unsigned long iflag; 14293 int ecount = 0; 14294 int hba_eqidx; 14295 struct lpfc_eq_intr_info *eqi; 14296 uint32_t icnt; 14297 14298 /* Get the driver's phba structure from the dev_id */ 14299 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 14300 phba = hba_eq_hdl->phba; 14301 hba_eqidx = hba_eq_hdl->idx; 14302 14303 if (unlikely(!phba)) 14304 return IRQ_NONE; 14305 if (unlikely(!phba->sli4_hba.hdwq)) 14306 return IRQ_NONE; 14307 14308 /* Get to the EQ struct associated with this vector */ 14309 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 14310 if (unlikely(!fpeq)) 14311 return IRQ_NONE; 14312 14313 /* Check device state for handling interrupt */ 14314 if (unlikely(lpfc_intr_state_check(phba))) { 14315 /* Check again for link_state with lock held */ 14316 spin_lock_irqsave(&phba->hbalock, iflag); 14317 if (phba->link_state < LPFC_LINK_DOWN) 14318 /* Flush, clear interrupt, and rearm the EQ */ 14319 lpfc_sli4_eqcq_flush(phba, fpeq); 14320 spin_unlock_irqrestore(&phba->hbalock, iflag); 14321 return IRQ_NONE; 14322 } 14323 14324 eqi = phba->sli4_hba.eq_info; 14325 icnt = this_cpu_inc_return(eqi->icnt); 14326 fpeq->last_cpu = raw_smp_processor_id(); 14327 14328 if (icnt > LPFC_EQD_ISR_TRIGGER && 14329 fpeq->q_flag & HBA_EQ_DELAY_CHK && 14330 phba->cfg_auto_imax && 14331 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 14332 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 14333 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 14334 14335 /* process and rearm the EQ */ 14336 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 14337 14338 if (unlikely(ecount == 0)) { 14339 fpeq->EQ_no_entry++; 14340 if (phba->intr_type == MSIX) 14341 /* MSI-X treated interrupt served as no EQ share INT */ 14342 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14343 "0358 MSI-X interrupt with no EQE\n"); 14344 else 14345 /* Non MSI-X treated on interrupt as EQ share INT */ 14346 return IRQ_NONE; 14347 } 14348 14349 return IRQ_HANDLED; 14350 } /* lpfc_sli4_fp_intr_handler */ 14351 14352 /** 14353 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 14354 * @irq: Interrupt number. 14355 * @dev_id: The device context pointer. 14356 * 14357 * This function is the device-level interrupt handler to device with SLI-4 14358 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 14359 * interrupt mode is enabled and there is an event in the HBA which requires 14360 * driver attention. This function invokes the slow-path interrupt attention 14361 * handling function and fast-path interrupt attention handling function in 14362 * turn to process the relevant HBA attention events. This function is called 14363 * without any lock held. It gets the hbalock to access and update SLI data 14364 * structures. 14365 * 14366 * This function returns IRQ_HANDLED when interrupt is handled, else it 14367 * returns IRQ_NONE. 14368 **/ 14369 irqreturn_t 14370 lpfc_sli4_intr_handler(int irq, void *dev_id) 14371 { 14372 struct lpfc_hba *phba; 14373 irqreturn_t hba_irq_rc; 14374 bool hba_handled = false; 14375 int qidx; 14376 14377 /* Get the driver's phba structure from the dev_id */ 14378 phba = (struct lpfc_hba *)dev_id; 14379 14380 if (unlikely(!phba)) 14381 return IRQ_NONE; 14382 14383 /* 14384 * Invoke fast-path host attention interrupt handling as appropriate. 14385 */ 14386 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 14387 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 14388 &phba->sli4_hba.hba_eq_hdl[qidx]); 14389 if (hba_irq_rc == IRQ_HANDLED) 14390 hba_handled |= true; 14391 } 14392 14393 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 14394 } /* lpfc_sli4_intr_handler */ 14395 14396 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 14397 { 14398 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 14399 struct lpfc_queue *eq; 14400 int i = 0; 14401 14402 rcu_read_lock(); 14403 14404 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 14405 i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH); 14406 if (!list_empty(&phba->poll_list)) 14407 mod_timer(&phba->cpuhp_poll_timer, 14408 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 14409 14410 rcu_read_unlock(); 14411 } 14412 14413 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path) 14414 { 14415 struct lpfc_hba *phba = eq->phba; 14416 int i = 0; 14417 14418 /* 14419 * Unlocking an irq is one of the entry point to check 14420 * for re-schedule, but we are good for io submission 14421 * path as midlayer does a get_cpu to glue us in. Flush 14422 * out the invalidate queue so we can see the updated 14423 * value for flag. 14424 */ 14425 smp_rmb(); 14426 14427 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 14428 /* We will not likely get the completion for the caller 14429 * during this iteration but i guess that's fine. 14430 * Future io's coming on this eq should be able to 14431 * pick it up. As for the case of single io's, they 14432 * will be handled through a sched from polling timer 14433 * function which is currently triggered every 1msec. 14434 */ 14435 i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM); 14436 14437 return i; 14438 } 14439 14440 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 14441 { 14442 struct lpfc_hba *phba = eq->phba; 14443 14444 if (list_empty(&phba->poll_list)) { 14445 timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0); 14446 /* kickstart slowpath processing for this eq */ 14447 mod_timer(&phba->cpuhp_poll_timer, 14448 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 14449 } 14450 14451 list_add_rcu(&eq->_poll_list, &phba->poll_list); 14452 synchronize_rcu(); 14453 } 14454 14455 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 14456 { 14457 struct lpfc_hba *phba = eq->phba; 14458 14459 /* Disable slowpath processing for this eq. Kick start the eq 14460 * by RE-ARMING the eq's ASAP 14461 */ 14462 list_del_rcu(&eq->_poll_list); 14463 synchronize_rcu(); 14464 14465 if (list_empty(&phba->poll_list)) 14466 del_timer_sync(&phba->cpuhp_poll_timer); 14467 } 14468 14469 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 14470 { 14471 struct lpfc_queue *eq, *next; 14472 14473 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 14474 list_del(&eq->_poll_list); 14475 14476 INIT_LIST_HEAD(&phba->poll_list); 14477 synchronize_rcu(); 14478 } 14479 14480 static inline void 14481 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 14482 { 14483 if (mode == eq->mode) 14484 return; 14485 /* 14486 * currently this function is only called during a hotplug 14487 * event and the cpu on which this function is executing 14488 * is going offline. By now the hotplug has instructed 14489 * the scheduler to remove this cpu from cpu active mask. 14490 * So we don't need to work about being put aside by the 14491 * scheduler for a high priority process. Yes, the inte- 14492 * rrupts could come but they are known to retire ASAP. 14493 */ 14494 14495 /* Disable polling in the fastpath */ 14496 WRITE_ONCE(eq->mode, mode); 14497 /* flush out the store buffer */ 14498 smp_wmb(); 14499 14500 /* 14501 * Add this eq to the polling list and start polling. For 14502 * a grace period both interrupt handler and poller will 14503 * try to process the eq _but_ that's fine. We have a 14504 * synchronization mechanism in place (queue_claimed) to 14505 * deal with it. This is just a draining phase for int- 14506 * errupt handler (not eq's) as we have guranteed through 14507 * barrier that all the CPUs have seen the new CQ_POLLED 14508 * state. which will effectively disable the REARMING of 14509 * the EQ. The whole idea is eq's die off eventually as 14510 * we are not rearming EQ's anymore. 14511 */ 14512 mode ? lpfc_sli4_add_to_poll_list(eq) : 14513 lpfc_sli4_remove_from_poll_list(eq); 14514 } 14515 14516 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 14517 { 14518 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 14519 } 14520 14521 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 14522 { 14523 struct lpfc_hba *phba = eq->phba; 14524 14525 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 14526 14527 /* Kick start for the pending io's in h/w. 14528 * Once we switch back to interrupt processing on a eq 14529 * the io path completion will only arm eq's when it 14530 * receives a completion. But since eq's are in disa- 14531 * rmed state it doesn't receive a completion. This 14532 * creates a deadlock scenaro. 14533 */ 14534 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 14535 } 14536 14537 /** 14538 * lpfc_sli4_queue_free - free a queue structure and associated memory 14539 * @queue: The queue structure to free. 14540 * 14541 * This function frees a queue structure and the DMAable memory used for 14542 * the host resident queue. This function must be called after destroying the 14543 * queue on the HBA. 14544 **/ 14545 void 14546 lpfc_sli4_queue_free(struct lpfc_queue *queue) 14547 { 14548 struct lpfc_dmabuf *dmabuf; 14549 14550 if (!queue) 14551 return; 14552 14553 if (!list_empty(&queue->wq_list)) 14554 list_del(&queue->wq_list); 14555 14556 while (!list_empty(&queue->page_list)) { 14557 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 14558 list); 14559 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 14560 dmabuf->virt, dmabuf->phys); 14561 kfree(dmabuf); 14562 } 14563 if (queue->rqbp) { 14564 lpfc_free_rq_buffer(queue->phba, queue); 14565 kfree(queue->rqbp); 14566 } 14567 14568 if (!list_empty(&queue->cpu_list)) 14569 list_del(&queue->cpu_list); 14570 14571 kfree(queue); 14572 return; 14573 } 14574 14575 /** 14576 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 14577 * @phba: The HBA that this queue is being created on. 14578 * @page_size: The size of a queue page 14579 * @entry_size: The size of each queue entry for this queue. 14580 * @entry count: The number of entries that this queue will handle. 14581 * @cpu: The cpu that will primarily utilize this queue. 14582 * 14583 * This function allocates a queue structure and the DMAable memory used for 14584 * the host resident queue. This function must be called before creating the 14585 * queue on the HBA. 14586 **/ 14587 struct lpfc_queue * 14588 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 14589 uint32_t entry_size, uint32_t entry_count, int cpu) 14590 { 14591 struct lpfc_queue *queue; 14592 struct lpfc_dmabuf *dmabuf; 14593 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14594 uint16_t x, pgcnt; 14595 14596 if (!phba->sli4_hba.pc_sli4_params.supported) 14597 hw_page_size = page_size; 14598 14599 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 14600 14601 /* If needed, Adjust page count to match the max the adapter supports */ 14602 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 14603 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 14604 14605 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 14606 GFP_KERNEL, cpu_to_node(cpu)); 14607 if (!queue) 14608 return NULL; 14609 14610 INIT_LIST_HEAD(&queue->list); 14611 INIT_LIST_HEAD(&queue->_poll_list); 14612 INIT_LIST_HEAD(&queue->wq_list); 14613 INIT_LIST_HEAD(&queue->wqfull_list); 14614 INIT_LIST_HEAD(&queue->page_list); 14615 INIT_LIST_HEAD(&queue->child_list); 14616 INIT_LIST_HEAD(&queue->cpu_list); 14617 14618 /* Set queue parameters now. If the system cannot provide memory 14619 * resources, the free routine needs to know what was allocated. 14620 */ 14621 queue->page_count = pgcnt; 14622 queue->q_pgs = (void **)&queue[1]; 14623 queue->entry_cnt_per_pg = hw_page_size / entry_size; 14624 queue->entry_size = entry_size; 14625 queue->entry_count = entry_count; 14626 queue->page_size = hw_page_size; 14627 queue->phba = phba; 14628 14629 for (x = 0; x < queue->page_count; x++) { 14630 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 14631 dev_to_node(&phba->pcidev->dev)); 14632 if (!dmabuf) 14633 goto out_fail; 14634 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 14635 hw_page_size, &dmabuf->phys, 14636 GFP_KERNEL); 14637 if (!dmabuf->virt) { 14638 kfree(dmabuf); 14639 goto out_fail; 14640 } 14641 dmabuf->buffer_tag = x; 14642 list_add_tail(&dmabuf->list, &queue->page_list); 14643 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 14644 queue->q_pgs[x] = dmabuf->virt; 14645 } 14646 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 14647 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 14648 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 14649 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 14650 14651 /* notify_interval will be set during q creation */ 14652 14653 return queue; 14654 out_fail: 14655 lpfc_sli4_queue_free(queue); 14656 return NULL; 14657 } 14658 14659 /** 14660 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 14661 * @phba: HBA structure that indicates port to create a queue on. 14662 * @pci_barset: PCI BAR set flag. 14663 * 14664 * This function shall perform iomap of the specified PCI BAR address to host 14665 * memory address if not already done so and return it. The returned host 14666 * memory address can be NULL. 14667 */ 14668 static void __iomem * 14669 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 14670 { 14671 if (!phba->pcidev) 14672 return NULL; 14673 14674 switch (pci_barset) { 14675 case WQ_PCI_BAR_0_AND_1: 14676 return phba->pci_bar0_memmap_p; 14677 case WQ_PCI_BAR_2_AND_3: 14678 return phba->pci_bar2_memmap_p; 14679 case WQ_PCI_BAR_4_AND_5: 14680 return phba->pci_bar4_memmap_p; 14681 default: 14682 break; 14683 } 14684 return NULL; 14685 } 14686 14687 /** 14688 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 14689 * @phba: HBA structure that EQs are on. 14690 * @startq: The starting EQ index to modify 14691 * @numq: The number of EQs (consecutive indexes) to modify 14692 * @usdelay: amount of delay 14693 * 14694 * This function revises the EQ delay on 1 or more EQs. The EQ delay 14695 * is set either by writing to a register (if supported by the SLI Port) 14696 * or by mailbox command. The mailbox command allows several EQs to be 14697 * updated at once. 14698 * 14699 * The @phba struct is used to send a mailbox command to HBA. The @startq 14700 * is used to get the starting EQ index to change. The @numq value is 14701 * used to specify how many consecutive EQ indexes, starting at EQ index, 14702 * are to be changed. This function is asynchronous and will wait for any 14703 * mailbox commands to finish before returning. 14704 * 14705 * On success this function will return a zero. If unable to allocate 14706 * enough memory this function will return -ENOMEM. If a mailbox command 14707 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 14708 * have had their delay multipler changed. 14709 **/ 14710 void 14711 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 14712 uint32_t numq, uint32_t usdelay) 14713 { 14714 struct lpfc_mbx_modify_eq_delay *eq_delay; 14715 LPFC_MBOXQ_t *mbox; 14716 struct lpfc_queue *eq; 14717 int cnt = 0, rc, length; 14718 uint32_t shdr_status, shdr_add_status; 14719 uint32_t dmult; 14720 int qidx; 14721 union lpfc_sli4_cfg_shdr *shdr; 14722 14723 if (startq >= phba->cfg_irq_chann) 14724 return; 14725 14726 if (usdelay > 0xFFFF) { 14727 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 14728 "6429 usdelay %d too large. Scaled down to " 14729 "0xFFFF.\n", usdelay); 14730 usdelay = 0xFFFF; 14731 } 14732 14733 /* set values by EQ_DELAY register if supported */ 14734 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 14735 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 14736 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 14737 if (!eq) 14738 continue; 14739 14740 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 14741 14742 if (++cnt >= numq) 14743 break; 14744 } 14745 return; 14746 } 14747 14748 /* Otherwise, set values by mailbox cmd */ 14749 14750 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14751 if (!mbox) { 14752 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_FCP | LOG_NVME, 14753 "6428 Failed allocating mailbox cmd buffer." 14754 " EQ delay was not set.\n"); 14755 return; 14756 } 14757 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 14758 sizeof(struct lpfc_sli4_cfg_mhdr)); 14759 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14760 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 14761 length, LPFC_SLI4_MBX_EMBED); 14762 eq_delay = &mbox->u.mqe.un.eq_delay; 14763 14764 /* Calculate delay multiper from maximum interrupt per second */ 14765 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 14766 if (dmult) 14767 dmult--; 14768 if (dmult > LPFC_DMULT_MAX) 14769 dmult = LPFC_DMULT_MAX; 14770 14771 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 14772 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 14773 if (!eq) 14774 continue; 14775 eq->q_mode = usdelay; 14776 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 14777 eq_delay->u.request.eq[cnt].phase = 0; 14778 eq_delay->u.request.eq[cnt].delay_multi = dmult; 14779 14780 if (++cnt >= numq) 14781 break; 14782 } 14783 eq_delay->u.request.num_eq = cnt; 14784 14785 mbox->vport = phba->pport; 14786 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14787 mbox->ctx_buf = NULL; 14788 mbox->ctx_ndlp = NULL; 14789 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14790 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 14791 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14792 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14793 if (shdr_status || shdr_add_status || rc) { 14794 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14795 "2512 MODIFY_EQ_DELAY mailbox failed with " 14796 "status x%x add_status x%x, mbx status x%x\n", 14797 shdr_status, shdr_add_status, rc); 14798 } 14799 mempool_free(mbox, phba->mbox_mem_pool); 14800 return; 14801 } 14802 14803 /** 14804 * lpfc_eq_create - Create an Event Queue on the HBA 14805 * @phba: HBA structure that indicates port to create a queue on. 14806 * @eq: The queue structure to use to create the event queue. 14807 * @imax: The maximum interrupt per second limit. 14808 * 14809 * This function creates an event queue, as detailed in @eq, on a port, 14810 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 14811 * 14812 * The @phba struct is used to send mailbox command to HBA. The @eq struct 14813 * is used to get the entry count and entry size that are necessary to 14814 * determine the number of pages to allocate and use for this queue. This 14815 * function will send the EQ_CREATE mailbox command to the HBA to setup the 14816 * event queue. This function is asynchronous and will wait for the mailbox 14817 * command to finish before continuing. 14818 * 14819 * On success this function will return a zero. If unable to allocate enough 14820 * memory this function will return -ENOMEM. If the queue create mailbox command 14821 * fails this function will return -ENXIO. 14822 **/ 14823 int 14824 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 14825 { 14826 struct lpfc_mbx_eq_create *eq_create; 14827 LPFC_MBOXQ_t *mbox; 14828 int rc, length, status = 0; 14829 struct lpfc_dmabuf *dmabuf; 14830 uint32_t shdr_status, shdr_add_status; 14831 union lpfc_sli4_cfg_shdr *shdr; 14832 uint16_t dmult; 14833 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14834 14835 /* sanity check on queue memory */ 14836 if (!eq) 14837 return -ENODEV; 14838 if (!phba->sli4_hba.pc_sli4_params.supported) 14839 hw_page_size = SLI4_PAGE_SIZE; 14840 14841 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14842 if (!mbox) 14843 return -ENOMEM; 14844 length = (sizeof(struct lpfc_mbx_eq_create) - 14845 sizeof(struct lpfc_sli4_cfg_mhdr)); 14846 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14847 LPFC_MBOX_OPCODE_EQ_CREATE, 14848 length, LPFC_SLI4_MBX_EMBED); 14849 eq_create = &mbox->u.mqe.un.eq_create; 14850 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 14851 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 14852 eq->page_count); 14853 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 14854 LPFC_EQE_SIZE); 14855 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 14856 14857 /* Use version 2 of CREATE_EQ if eqav is set */ 14858 if (phba->sli4_hba.pc_sli4_params.eqav) { 14859 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14860 LPFC_Q_CREATE_VERSION_2); 14861 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 14862 phba->sli4_hba.pc_sli4_params.eqav); 14863 } 14864 14865 /* don't setup delay multiplier using EQ_CREATE */ 14866 dmult = 0; 14867 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 14868 dmult); 14869 switch (eq->entry_count) { 14870 default: 14871 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14872 "0360 Unsupported EQ count. (%d)\n", 14873 eq->entry_count); 14874 if (eq->entry_count < 256) { 14875 status = -EINVAL; 14876 goto out; 14877 } 14878 /* fall through - otherwise default to smallest count */ 14879 case 256: 14880 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14881 LPFC_EQ_CNT_256); 14882 break; 14883 case 512: 14884 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14885 LPFC_EQ_CNT_512); 14886 break; 14887 case 1024: 14888 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14889 LPFC_EQ_CNT_1024); 14890 break; 14891 case 2048: 14892 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14893 LPFC_EQ_CNT_2048); 14894 break; 14895 case 4096: 14896 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14897 LPFC_EQ_CNT_4096); 14898 break; 14899 } 14900 list_for_each_entry(dmabuf, &eq->page_list, list) { 14901 memset(dmabuf->virt, 0, hw_page_size); 14902 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14903 putPaddrLow(dmabuf->phys); 14904 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14905 putPaddrHigh(dmabuf->phys); 14906 } 14907 mbox->vport = phba->pport; 14908 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14909 mbox->ctx_buf = NULL; 14910 mbox->ctx_ndlp = NULL; 14911 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14912 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14913 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14914 if (shdr_status || shdr_add_status || rc) { 14915 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14916 "2500 EQ_CREATE mailbox failed with " 14917 "status x%x add_status x%x, mbx status x%x\n", 14918 shdr_status, shdr_add_status, rc); 14919 status = -ENXIO; 14920 } 14921 eq->type = LPFC_EQ; 14922 eq->subtype = LPFC_NONE; 14923 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 14924 if (eq->queue_id == 0xFFFF) 14925 status = -ENXIO; 14926 eq->host_index = 0; 14927 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 14928 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 14929 out: 14930 mempool_free(mbox, phba->mbox_mem_pool); 14931 return status; 14932 } 14933 14934 /** 14935 * lpfc_cq_create - Create a Completion Queue on the HBA 14936 * @phba: HBA structure that indicates port to create a queue on. 14937 * @cq: The queue structure to use to create the completion queue. 14938 * @eq: The event queue to bind this completion queue to. 14939 * 14940 * This function creates a completion queue, as detailed in @wq, on a port, 14941 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 14942 * 14943 * The @phba struct is used to send mailbox command to HBA. The @cq struct 14944 * is used to get the entry count and entry size that are necessary to 14945 * determine the number of pages to allocate and use for this queue. The @eq 14946 * is used to indicate which event queue to bind this completion queue to. This 14947 * function will send the CQ_CREATE mailbox command to the HBA to setup the 14948 * completion queue. This function is asynchronous and will wait for the mailbox 14949 * command to finish before continuing. 14950 * 14951 * On success this function will return a zero. If unable to allocate enough 14952 * memory this function will return -ENOMEM. If the queue create mailbox command 14953 * fails this function will return -ENXIO. 14954 **/ 14955 int 14956 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 14957 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 14958 { 14959 struct lpfc_mbx_cq_create *cq_create; 14960 struct lpfc_dmabuf *dmabuf; 14961 LPFC_MBOXQ_t *mbox; 14962 int rc, length, status = 0; 14963 uint32_t shdr_status, shdr_add_status; 14964 union lpfc_sli4_cfg_shdr *shdr; 14965 14966 /* sanity check on queue memory */ 14967 if (!cq || !eq) 14968 return -ENODEV; 14969 14970 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14971 if (!mbox) 14972 return -ENOMEM; 14973 length = (sizeof(struct lpfc_mbx_cq_create) - 14974 sizeof(struct lpfc_sli4_cfg_mhdr)); 14975 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14976 LPFC_MBOX_OPCODE_CQ_CREATE, 14977 length, LPFC_SLI4_MBX_EMBED); 14978 cq_create = &mbox->u.mqe.un.cq_create; 14979 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 14980 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 14981 cq->page_count); 14982 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 14983 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 14984 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14985 phba->sli4_hba.pc_sli4_params.cqv); 14986 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 14987 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 14988 (cq->page_size / SLI4_PAGE_SIZE)); 14989 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 14990 eq->queue_id); 14991 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 14992 phba->sli4_hba.pc_sli4_params.cqav); 14993 } else { 14994 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 14995 eq->queue_id); 14996 } 14997 switch (cq->entry_count) { 14998 case 2048: 14999 case 4096: 15000 if (phba->sli4_hba.pc_sli4_params.cqv == 15001 LPFC_Q_CREATE_VERSION_2) { 15002 cq_create->u.request.context.lpfc_cq_context_count = 15003 cq->entry_count; 15004 bf_set(lpfc_cq_context_count, 15005 &cq_create->u.request.context, 15006 LPFC_CQ_CNT_WORD7); 15007 break; 15008 } 15009 /* fall through */ 15010 default: 15011 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15012 "0361 Unsupported CQ count: " 15013 "entry cnt %d sz %d pg cnt %d\n", 15014 cq->entry_count, cq->entry_size, 15015 cq->page_count); 15016 if (cq->entry_count < 256) { 15017 status = -EINVAL; 15018 goto out; 15019 } 15020 /* fall through - otherwise default to smallest count */ 15021 case 256: 15022 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15023 LPFC_CQ_CNT_256); 15024 break; 15025 case 512: 15026 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15027 LPFC_CQ_CNT_512); 15028 break; 15029 case 1024: 15030 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15031 LPFC_CQ_CNT_1024); 15032 break; 15033 } 15034 list_for_each_entry(dmabuf, &cq->page_list, list) { 15035 memset(dmabuf->virt, 0, cq->page_size); 15036 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15037 putPaddrLow(dmabuf->phys); 15038 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15039 putPaddrHigh(dmabuf->phys); 15040 } 15041 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15042 15043 /* The IOCTL status is embedded in the mailbox subheader. */ 15044 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15045 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15046 if (shdr_status || shdr_add_status || rc) { 15047 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15048 "2501 CQ_CREATE mailbox failed with " 15049 "status x%x add_status x%x, mbx status x%x\n", 15050 shdr_status, shdr_add_status, rc); 15051 status = -ENXIO; 15052 goto out; 15053 } 15054 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15055 if (cq->queue_id == 0xFFFF) { 15056 status = -ENXIO; 15057 goto out; 15058 } 15059 /* link the cq onto the parent eq child list */ 15060 list_add_tail(&cq->list, &eq->child_list); 15061 /* Set up completion queue's type and subtype */ 15062 cq->type = type; 15063 cq->subtype = subtype; 15064 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15065 cq->assoc_qid = eq->queue_id; 15066 cq->assoc_qp = eq; 15067 cq->host_index = 0; 15068 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 15069 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 15070 15071 if (cq->queue_id > phba->sli4_hba.cq_max) 15072 phba->sli4_hba.cq_max = cq->queue_id; 15073 out: 15074 mempool_free(mbox, phba->mbox_mem_pool); 15075 return status; 15076 } 15077 15078 /** 15079 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 15080 * @phba: HBA structure that indicates port to create a queue on. 15081 * @cqp: The queue structure array to use to create the completion queues. 15082 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 15083 * 15084 * This function creates a set of completion queue, s to support MRQ 15085 * as detailed in @cqp, on a port, 15086 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 15087 * 15088 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15089 * is used to get the entry count and entry size that are necessary to 15090 * determine the number of pages to allocate and use for this queue. The @eq 15091 * is used to indicate which event queue to bind this completion queue to. This 15092 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 15093 * completion queue. This function is asynchronous and will wait for the mailbox 15094 * command to finish before continuing. 15095 * 15096 * On success this function will return a zero. If unable to allocate enough 15097 * memory this function will return -ENOMEM. If the queue create mailbox command 15098 * fails this function will return -ENXIO. 15099 **/ 15100 int 15101 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 15102 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 15103 uint32_t subtype) 15104 { 15105 struct lpfc_queue *cq; 15106 struct lpfc_queue *eq; 15107 struct lpfc_mbx_cq_create_set *cq_set; 15108 struct lpfc_dmabuf *dmabuf; 15109 LPFC_MBOXQ_t *mbox; 15110 int rc, length, alloclen, status = 0; 15111 int cnt, idx, numcq, page_idx = 0; 15112 uint32_t shdr_status, shdr_add_status; 15113 union lpfc_sli4_cfg_shdr *shdr; 15114 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15115 15116 /* sanity check on queue memory */ 15117 numcq = phba->cfg_nvmet_mrq; 15118 if (!cqp || !hdwq || !numcq) 15119 return -ENODEV; 15120 15121 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15122 if (!mbox) 15123 return -ENOMEM; 15124 15125 length = sizeof(struct lpfc_mbx_cq_create_set); 15126 length += ((numcq * cqp[0]->page_count) * 15127 sizeof(struct dma_address)); 15128 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15129 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 15130 LPFC_SLI4_MBX_NEMBED); 15131 if (alloclen < length) { 15132 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15133 "3098 Allocated DMA memory size (%d) is " 15134 "less than the requested DMA memory size " 15135 "(%d)\n", alloclen, length); 15136 status = -ENOMEM; 15137 goto out; 15138 } 15139 cq_set = mbox->sge_array->addr[0]; 15140 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 15141 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 15142 15143 for (idx = 0; idx < numcq; idx++) { 15144 cq = cqp[idx]; 15145 eq = hdwq[idx].hba_eq; 15146 if (!cq || !eq) { 15147 status = -ENOMEM; 15148 goto out; 15149 } 15150 if (!phba->sli4_hba.pc_sli4_params.supported) 15151 hw_page_size = cq->page_size; 15152 15153 switch (idx) { 15154 case 0: 15155 bf_set(lpfc_mbx_cq_create_set_page_size, 15156 &cq_set->u.request, 15157 (hw_page_size / SLI4_PAGE_SIZE)); 15158 bf_set(lpfc_mbx_cq_create_set_num_pages, 15159 &cq_set->u.request, cq->page_count); 15160 bf_set(lpfc_mbx_cq_create_set_evt, 15161 &cq_set->u.request, 1); 15162 bf_set(lpfc_mbx_cq_create_set_valid, 15163 &cq_set->u.request, 1); 15164 bf_set(lpfc_mbx_cq_create_set_cqe_size, 15165 &cq_set->u.request, 0); 15166 bf_set(lpfc_mbx_cq_create_set_num_cq, 15167 &cq_set->u.request, numcq); 15168 bf_set(lpfc_mbx_cq_create_set_autovalid, 15169 &cq_set->u.request, 15170 phba->sli4_hba.pc_sli4_params.cqav); 15171 switch (cq->entry_count) { 15172 case 2048: 15173 case 4096: 15174 if (phba->sli4_hba.pc_sli4_params.cqv == 15175 LPFC_Q_CREATE_VERSION_2) { 15176 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15177 &cq_set->u.request, 15178 cq->entry_count); 15179 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15180 &cq_set->u.request, 15181 LPFC_CQ_CNT_WORD7); 15182 break; 15183 } 15184 /* fall through */ 15185 default: 15186 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15187 "3118 Bad CQ count. (%d)\n", 15188 cq->entry_count); 15189 if (cq->entry_count < 256) { 15190 status = -EINVAL; 15191 goto out; 15192 } 15193 /* fall through - otherwise default to smallest */ 15194 case 256: 15195 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15196 &cq_set->u.request, LPFC_CQ_CNT_256); 15197 break; 15198 case 512: 15199 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15200 &cq_set->u.request, LPFC_CQ_CNT_512); 15201 break; 15202 case 1024: 15203 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15204 &cq_set->u.request, LPFC_CQ_CNT_1024); 15205 break; 15206 } 15207 bf_set(lpfc_mbx_cq_create_set_eq_id0, 15208 &cq_set->u.request, eq->queue_id); 15209 break; 15210 case 1: 15211 bf_set(lpfc_mbx_cq_create_set_eq_id1, 15212 &cq_set->u.request, eq->queue_id); 15213 break; 15214 case 2: 15215 bf_set(lpfc_mbx_cq_create_set_eq_id2, 15216 &cq_set->u.request, eq->queue_id); 15217 break; 15218 case 3: 15219 bf_set(lpfc_mbx_cq_create_set_eq_id3, 15220 &cq_set->u.request, eq->queue_id); 15221 break; 15222 case 4: 15223 bf_set(lpfc_mbx_cq_create_set_eq_id4, 15224 &cq_set->u.request, eq->queue_id); 15225 break; 15226 case 5: 15227 bf_set(lpfc_mbx_cq_create_set_eq_id5, 15228 &cq_set->u.request, eq->queue_id); 15229 break; 15230 case 6: 15231 bf_set(lpfc_mbx_cq_create_set_eq_id6, 15232 &cq_set->u.request, eq->queue_id); 15233 break; 15234 case 7: 15235 bf_set(lpfc_mbx_cq_create_set_eq_id7, 15236 &cq_set->u.request, eq->queue_id); 15237 break; 15238 case 8: 15239 bf_set(lpfc_mbx_cq_create_set_eq_id8, 15240 &cq_set->u.request, eq->queue_id); 15241 break; 15242 case 9: 15243 bf_set(lpfc_mbx_cq_create_set_eq_id9, 15244 &cq_set->u.request, eq->queue_id); 15245 break; 15246 case 10: 15247 bf_set(lpfc_mbx_cq_create_set_eq_id10, 15248 &cq_set->u.request, eq->queue_id); 15249 break; 15250 case 11: 15251 bf_set(lpfc_mbx_cq_create_set_eq_id11, 15252 &cq_set->u.request, eq->queue_id); 15253 break; 15254 case 12: 15255 bf_set(lpfc_mbx_cq_create_set_eq_id12, 15256 &cq_set->u.request, eq->queue_id); 15257 break; 15258 case 13: 15259 bf_set(lpfc_mbx_cq_create_set_eq_id13, 15260 &cq_set->u.request, eq->queue_id); 15261 break; 15262 case 14: 15263 bf_set(lpfc_mbx_cq_create_set_eq_id14, 15264 &cq_set->u.request, eq->queue_id); 15265 break; 15266 case 15: 15267 bf_set(lpfc_mbx_cq_create_set_eq_id15, 15268 &cq_set->u.request, eq->queue_id); 15269 break; 15270 } 15271 15272 /* link the cq onto the parent eq child list */ 15273 list_add_tail(&cq->list, &eq->child_list); 15274 /* Set up completion queue's type and subtype */ 15275 cq->type = type; 15276 cq->subtype = subtype; 15277 cq->assoc_qid = eq->queue_id; 15278 cq->assoc_qp = eq; 15279 cq->host_index = 0; 15280 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 15281 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 15282 cq->entry_count); 15283 cq->chann = idx; 15284 15285 rc = 0; 15286 list_for_each_entry(dmabuf, &cq->page_list, list) { 15287 memset(dmabuf->virt, 0, hw_page_size); 15288 cnt = page_idx + dmabuf->buffer_tag; 15289 cq_set->u.request.page[cnt].addr_lo = 15290 putPaddrLow(dmabuf->phys); 15291 cq_set->u.request.page[cnt].addr_hi = 15292 putPaddrHigh(dmabuf->phys); 15293 rc++; 15294 } 15295 page_idx += rc; 15296 } 15297 15298 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15299 15300 /* The IOCTL status is embedded in the mailbox subheader. */ 15301 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15302 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15303 if (shdr_status || shdr_add_status || rc) { 15304 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15305 "3119 CQ_CREATE_SET mailbox failed with " 15306 "status x%x add_status x%x, mbx status x%x\n", 15307 shdr_status, shdr_add_status, rc); 15308 status = -ENXIO; 15309 goto out; 15310 } 15311 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 15312 if (rc == 0xFFFF) { 15313 status = -ENXIO; 15314 goto out; 15315 } 15316 15317 for (idx = 0; idx < numcq; idx++) { 15318 cq = cqp[idx]; 15319 cq->queue_id = rc + idx; 15320 if (cq->queue_id > phba->sli4_hba.cq_max) 15321 phba->sli4_hba.cq_max = cq->queue_id; 15322 } 15323 15324 out: 15325 lpfc_sli4_mbox_cmd_free(phba, mbox); 15326 return status; 15327 } 15328 15329 /** 15330 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 15331 * @phba: HBA structure that indicates port to create a queue on. 15332 * @mq: The queue structure to use to create the mailbox queue. 15333 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 15334 * @cq: The completion queue to associate with this cq. 15335 * 15336 * This function provides failback (fb) functionality when the 15337 * mq_create_ext fails on older FW generations. It's purpose is identical 15338 * to mq_create_ext otherwise. 15339 * 15340 * This routine cannot fail as all attributes were previously accessed and 15341 * initialized in mq_create_ext. 15342 **/ 15343 static void 15344 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 15345 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 15346 { 15347 struct lpfc_mbx_mq_create *mq_create; 15348 struct lpfc_dmabuf *dmabuf; 15349 int length; 15350 15351 length = (sizeof(struct lpfc_mbx_mq_create) - 15352 sizeof(struct lpfc_sli4_cfg_mhdr)); 15353 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15354 LPFC_MBOX_OPCODE_MQ_CREATE, 15355 length, LPFC_SLI4_MBX_EMBED); 15356 mq_create = &mbox->u.mqe.un.mq_create; 15357 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 15358 mq->page_count); 15359 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 15360 cq->queue_id); 15361 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 15362 switch (mq->entry_count) { 15363 case 16: 15364 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15365 LPFC_MQ_RING_SIZE_16); 15366 break; 15367 case 32: 15368 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15369 LPFC_MQ_RING_SIZE_32); 15370 break; 15371 case 64: 15372 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15373 LPFC_MQ_RING_SIZE_64); 15374 break; 15375 case 128: 15376 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15377 LPFC_MQ_RING_SIZE_128); 15378 break; 15379 } 15380 list_for_each_entry(dmabuf, &mq->page_list, list) { 15381 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15382 putPaddrLow(dmabuf->phys); 15383 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15384 putPaddrHigh(dmabuf->phys); 15385 } 15386 } 15387 15388 /** 15389 * lpfc_mq_create - Create a mailbox Queue on the HBA 15390 * @phba: HBA structure that indicates port to create a queue on. 15391 * @mq: The queue structure to use to create the mailbox queue. 15392 * @cq: The completion queue to associate with this cq. 15393 * @subtype: The queue's subtype. 15394 * 15395 * This function creates a mailbox queue, as detailed in @mq, on a port, 15396 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 15397 * 15398 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15399 * is used to get the entry count and entry size that are necessary to 15400 * determine the number of pages to allocate and use for this queue. This 15401 * function will send the MQ_CREATE mailbox command to the HBA to setup the 15402 * mailbox queue. This function is asynchronous and will wait for the mailbox 15403 * command to finish before continuing. 15404 * 15405 * On success this function will return a zero. If unable to allocate enough 15406 * memory this function will return -ENOMEM. If the queue create mailbox command 15407 * fails this function will return -ENXIO. 15408 **/ 15409 int32_t 15410 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 15411 struct lpfc_queue *cq, uint32_t subtype) 15412 { 15413 struct lpfc_mbx_mq_create *mq_create; 15414 struct lpfc_mbx_mq_create_ext *mq_create_ext; 15415 struct lpfc_dmabuf *dmabuf; 15416 LPFC_MBOXQ_t *mbox; 15417 int rc, length, status = 0; 15418 uint32_t shdr_status, shdr_add_status; 15419 union lpfc_sli4_cfg_shdr *shdr; 15420 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15421 15422 /* sanity check on queue memory */ 15423 if (!mq || !cq) 15424 return -ENODEV; 15425 if (!phba->sli4_hba.pc_sli4_params.supported) 15426 hw_page_size = SLI4_PAGE_SIZE; 15427 15428 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15429 if (!mbox) 15430 return -ENOMEM; 15431 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 15432 sizeof(struct lpfc_sli4_cfg_mhdr)); 15433 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15434 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 15435 length, LPFC_SLI4_MBX_EMBED); 15436 15437 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 15438 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 15439 bf_set(lpfc_mbx_mq_create_ext_num_pages, 15440 &mq_create_ext->u.request, mq->page_count); 15441 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 15442 &mq_create_ext->u.request, 1); 15443 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 15444 &mq_create_ext->u.request, 1); 15445 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 15446 &mq_create_ext->u.request, 1); 15447 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 15448 &mq_create_ext->u.request, 1); 15449 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 15450 &mq_create_ext->u.request, 1); 15451 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 15452 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15453 phba->sli4_hba.pc_sli4_params.mqv); 15454 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 15455 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 15456 cq->queue_id); 15457 else 15458 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 15459 cq->queue_id); 15460 switch (mq->entry_count) { 15461 default: 15462 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15463 "0362 Unsupported MQ count. (%d)\n", 15464 mq->entry_count); 15465 if (mq->entry_count < 16) { 15466 status = -EINVAL; 15467 goto out; 15468 } 15469 /* fall through - otherwise default to smallest count */ 15470 case 16: 15471 bf_set(lpfc_mq_context_ring_size, 15472 &mq_create_ext->u.request.context, 15473 LPFC_MQ_RING_SIZE_16); 15474 break; 15475 case 32: 15476 bf_set(lpfc_mq_context_ring_size, 15477 &mq_create_ext->u.request.context, 15478 LPFC_MQ_RING_SIZE_32); 15479 break; 15480 case 64: 15481 bf_set(lpfc_mq_context_ring_size, 15482 &mq_create_ext->u.request.context, 15483 LPFC_MQ_RING_SIZE_64); 15484 break; 15485 case 128: 15486 bf_set(lpfc_mq_context_ring_size, 15487 &mq_create_ext->u.request.context, 15488 LPFC_MQ_RING_SIZE_128); 15489 break; 15490 } 15491 list_for_each_entry(dmabuf, &mq->page_list, list) { 15492 memset(dmabuf->virt, 0, hw_page_size); 15493 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 15494 putPaddrLow(dmabuf->phys); 15495 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 15496 putPaddrHigh(dmabuf->phys); 15497 } 15498 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15499 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 15500 &mq_create_ext->u.response); 15501 if (rc != MBX_SUCCESS) { 15502 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15503 "2795 MQ_CREATE_EXT failed with " 15504 "status x%x. Failback to MQ_CREATE.\n", 15505 rc); 15506 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 15507 mq_create = &mbox->u.mqe.un.mq_create; 15508 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15509 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 15510 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 15511 &mq_create->u.response); 15512 } 15513 15514 /* The IOCTL status is embedded in the mailbox subheader. */ 15515 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15516 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15517 if (shdr_status || shdr_add_status || rc) { 15518 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15519 "2502 MQ_CREATE mailbox failed with " 15520 "status x%x add_status x%x, mbx status x%x\n", 15521 shdr_status, shdr_add_status, rc); 15522 status = -ENXIO; 15523 goto out; 15524 } 15525 if (mq->queue_id == 0xFFFF) { 15526 status = -ENXIO; 15527 goto out; 15528 } 15529 mq->type = LPFC_MQ; 15530 mq->assoc_qid = cq->queue_id; 15531 mq->subtype = subtype; 15532 mq->host_index = 0; 15533 mq->hba_index = 0; 15534 15535 /* link the mq onto the parent cq child list */ 15536 list_add_tail(&mq->list, &cq->child_list); 15537 out: 15538 mempool_free(mbox, phba->mbox_mem_pool); 15539 return status; 15540 } 15541 15542 /** 15543 * lpfc_wq_create - Create a Work Queue on the HBA 15544 * @phba: HBA structure that indicates port to create a queue on. 15545 * @wq: The queue structure to use to create the work queue. 15546 * @cq: The completion queue to bind this work queue to. 15547 * @subtype: The subtype of the work queue indicating its functionality. 15548 * 15549 * This function creates a work queue, as detailed in @wq, on a port, described 15550 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 15551 * 15552 * The @phba struct is used to send mailbox command to HBA. The @wq struct 15553 * is used to get the entry count and entry size that are necessary to 15554 * determine the number of pages to allocate and use for this queue. The @cq 15555 * is used to indicate which completion queue to bind this work queue to. This 15556 * function will send the WQ_CREATE mailbox command to the HBA to setup the 15557 * work queue. This function is asynchronous and will wait for the mailbox 15558 * command to finish before continuing. 15559 * 15560 * On success this function will return a zero. If unable to allocate enough 15561 * memory this function will return -ENOMEM. If the queue create mailbox command 15562 * fails this function will return -ENXIO. 15563 **/ 15564 int 15565 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 15566 struct lpfc_queue *cq, uint32_t subtype) 15567 { 15568 struct lpfc_mbx_wq_create *wq_create; 15569 struct lpfc_dmabuf *dmabuf; 15570 LPFC_MBOXQ_t *mbox; 15571 int rc, length, status = 0; 15572 uint32_t shdr_status, shdr_add_status; 15573 union lpfc_sli4_cfg_shdr *shdr; 15574 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15575 struct dma_address *page; 15576 void __iomem *bar_memmap_p; 15577 uint32_t db_offset; 15578 uint16_t pci_barset; 15579 uint8_t dpp_barset; 15580 uint32_t dpp_offset; 15581 unsigned long pg_addr; 15582 uint8_t wq_create_version; 15583 15584 /* sanity check on queue memory */ 15585 if (!wq || !cq) 15586 return -ENODEV; 15587 if (!phba->sli4_hba.pc_sli4_params.supported) 15588 hw_page_size = wq->page_size; 15589 15590 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15591 if (!mbox) 15592 return -ENOMEM; 15593 length = (sizeof(struct lpfc_mbx_wq_create) - 15594 sizeof(struct lpfc_sli4_cfg_mhdr)); 15595 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15596 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 15597 length, LPFC_SLI4_MBX_EMBED); 15598 wq_create = &mbox->u.mqe.un.wq_create; 15599 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 15600 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 15601 wq->page_count); 15602 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 15603 cq->queue_id); 15604 15605 /* wqv is the earliest version supported, NOT the latest */ 15606 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15607 phba->sli4_hba.pc_sli4_params.wqv); 15608 15609 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 15610 (wq->page_size > SLI4_PAGE_SIZE)) 15611 wq_create_version = LPFC_Q_CREATE_VERSION_1; 15612 else 15613 wq_create_version = LPFC_Q_CREATE_VERSION_0; 15614 15615 15616 if (phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) 15617 wq_create_version = LPFC_Q_CREATE_VERSION_1; 15618 else 15619 wq_create_version = LPFC_Q_CREATE_VERSION_0; 15620 15621 switch (wq_create_version) { 15622 case LPFC_Q_CREATE_VERSION_1: 15623 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 15624 wq->entry_count); 15625 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15626 LPFC_Q_CREATE_VERSION_1); 15627 15628 switch (wq->entry_size) { 15629 default: 15630 case 64: 15631 bf_set(lpfc_mbx_wq_create_wqe_size, 15632 &wq_create->u.request_1, 15633 LPFC_WQ_WQE_SIZE_64); 15634 break; 15635 case 128: 15636 bf_set(lpfc_mbx_wq_create_wqe_size, 15637 &wq_create->u.request_1, 15638 LPFC_WQ_WQE_SIZE_128); 15639 break; 15640 } 15641 /* Request DPP by default */ 15642 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 15643 bf_set(lpfc_mbx_wq_create_page_size, 15644 &wq_create->u.request_1, 15645 (wq->page_size / SLI4_PAGE_SIZE)); 15646 page = wq_create->u.request_1.page; 15647 break; 15648 default: 15649 page = wq_create->u.request.page; 15650 break; 15651 } 15652 15653 list_for_each_entry(dmabuf, &wq->page_list, list) { 15654 memset(dmabuf->virt, 0, hw_page_size); 15655 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 15656 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 15657 } 15658 15659 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15660 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 15661 15662 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15663 /* The IOCTL status is embedded in the mailbox subheader. */ 15664 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15665 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15666 if (shdr_status || shdr_add_status || rc) { 15667 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15668 "2503 WQ_CREATE mailbox failed with " 15669 "status x%x add_status x%x, mbx status x%x\n", 15670 shdr_status, shdr_add_status, rc); 15671 status = -ENXIO; 15672 goto out; 15673 } 15674 15675 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 15676 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 15677 &wq_create->u.response); 15678 else 15679 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 15680 &wq_create->u.response_1); 15681 15682 if (wq->queue_id == 0xFFFF) { 15683 status = -ENXIO; 15684 goto out; 15685 } 15686 15687 wq->db_format = LPFC_DB_LIST_FORMAT; 15688 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 15689 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 15690 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 15691 &wq_create->u.response); 15692 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 15693 (wq->db_format != LPFC_DB_RING_FORMAT)) { 15694 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15695 "3265 WQ[%d] doorbell format " 15696 "not supported: x%x\n", 15697 wq->queue_id, wq->db_format); 15698 status = -EINVAL; 15699 goto out; 15700 } 15701 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 15702 &wq_create->u.response); 15703 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15704 pci_barset); 15705 if (!bar_memmap_p) { 15706 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15707 "3263 WQ[%d] failed to memmap " 15708 "pci barset:x%x\n", 15709 wq->queue_id, pci_barset); 15710 status = -ENOMEM; 15711 goto out; 15712 } 15713 db_offset = wq_create->u.response.doorbell_offset; 15714 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 15715 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 15716 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15717 "3252 WQ[%d] doorbell offset " 15718 "not supported: x%x\n", 15719 wq->queue_id, db_offset); 15720 status = -EINVAL; 15721 goto out; 15722 } 15723 wq->db_regaddr = bar_memmap_p + db_offset; 15724 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15725 "3264 WQ[%d]: barset:x%x, offset:x%x, " 15726 "format:x%x\n", wq->queue_id, 15727 pci_barset, db_offset, wq->db_format); 15728 } else 15729 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 15730 } else { 15731 /* Check if DPP was honored by the firmware */ 15732 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 15733 &wq_create->u.response_1); 15734 if (wq->dpp_enable) { 15735 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 15736 &wq_create->u.response_1); 15737 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15738 pci_barset); 15739 if (!bar_memmap_p) { 15740 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15741 "3267 WQ[%d] failed to memmap " 15742 "pci barset:x%x\n", 15743 wq->queue_id, pci_barset); 15744 status = -ENOMEM; 15745 goto out; 15746 } 15747 db_offset = wq_create->u.response_1.doorbell_offset; 15748 wq->db_regaddr = bar_memmap_p + db_offset; 15749 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 15750 &wq_create->u.response_1); 15751 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 15752 &wq_create->u.response_1); 15753 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15754 dpp_barset); 15755 if (!bar_memmap_p) { 15756 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15757 "3268 WQ[%d] failed to memmap " 15758 "pci barset:x%x\n", 15759 wq->queue_id, dpp_barset); 15760 status = -ENOMEM; 15761 goto out; 15762 } 15763 dpp_offset = wq_create->u.response_1.dpp_offset; 15764 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 15765 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15766 "3271 WQ[%d]: barset:x%x, offset:x%x, " 15767 "dpp_id:x%x dpp_barset:x%x " 15768 "dpp_offset:x%x\n", 15769 wq->queue_id, pci_barset, db_offset, 15770 wq->dpp_id, dpp_barset, dpp_offset); 15771 15772 /* Enable combined writes for DPP aperture */ 15773 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 15774 #ifdef CONFIG_X86 15775 rc = set_memory_wc(pg_addr, 1); 15776 if (rc) { 15777 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15778 "3272 Cannot setup Combined " 15779 "Write on WQ[%d] - disable DPP\n", 15780 wq->queue_id); 15781 phba->cfg_enable_dpp = 0; 15782 } 15783 #else 15784 phba->cfg_enable_dpp = 0; 15785 #endif 15786 } else 15787 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 15788 } 15789 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 15790 if (wq->pring == NULL) { 15791 status = -ENOMEM; 15792 goto out; 15793 } 15794 wq->type = LPFC_WQ; 15795 wq->assoc_qid = cq->queue_id; 15796 wq->subtype = subtype; 15797 wq->host_index = 0; 15798 wq->hba_index = 0; 15799 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 15800 15801 /* link the wq onto the parent cq child list */ 15802 list_add_tail(&wq->list, &cq->child_list); 15803 out: 15804 mempool_free(mbox, phba->mbox_mem_pool); 15805 return status; 15806 } 15807 15808 /** 15809 * lpfc_rq_create - Create a Receive Queue on the HBA 15810 * @phba: HBA structure that indicates port to create a queue on. 15811 * @hrq: The queue structure to use to create the header receive queue. 15812 * @drq: The queue structure to use to create the data receive queue. 15813 * @cq: The completion queue to bind this work queue to. 15814 * 15815 * This function creates a receive buffer queue pair , as detailed in @hrq and 15816 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 15817 * to the HBA. 15818 * 15819 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 15820 * struct is used to get the entry count that is necessary to determine the 15821 * number of pages to use for this queue. The @cq is used to indicate which 15822 * completion queue to bind received buffers that are posted to these queues to. 15823 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 15824 * receive queue pair. This function is asynchronous and will wait for the 15825 * mailbox command to finish before continuing. 15826 * 15827 * On success this function will return a zero. If unable to allocate enough 15828 * memory this function will return -ENOMEM. If the queue create mailbox command 15829 * fails this function will return -ENXIO. 15830 **/ 15831 int 15832 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 15833 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 15834 { 15835 struct lpfc_mbx_rq_create *rq_create; 15836 struct lpfc_dmabuf *dmabuf; 15837 LPFC_MBOXQ_t *mbox; 15838 int rc, length, status = 0; 15839 uint32_t shdr_status, shdr_add_status; 15840 union lpfc_sli4_cfg_shdr *shdr; 15841 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15842 void __iomem *bar_memmap_p; 15843 uint32_t db_offset; 15844 uint16_t pci_barset; 15845 15846 /* sanity check on queue memory */ 15847 if (!hrq || !drq || !cq) 15848 return -ENODEV; 15849 if (!phba->sli4_hba.pc_sli4_params.supported) 15850 hw_page_size = SLI4_PAGE_SIZE; 15851 15852 if (hrq->entry_count != drq->entry_count) 15853 return -EINVAL; 15854 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15855 if (!mbox) 15856 return -ENOMEM; 15857 length = (sizeof(struct lpfc_mbx_rq_create) - 15858 sizeof(struct lpfc_sli4_cfg_mhdr)); 15859 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15860 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 15861 length, LPFC_SLI4_MBX_EMBED); 15862 rq_create = &mbox->u.mqe.un.rq_create; 15863 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 15864 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15865 phba->sli4_hba.pc_sli4_params.rqv); 15866 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 15867 bf_set(lpfc_rq_context_rqe_count_1, 15868 &rq_create->u.request.context, 15869 hrq->entry_count); 15870 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 15871 bf_set(lpfc_rq_context_rqe_size, 15872 &rq_create->u.request.context, 15873 LPFC_RQE_SIZE_8); 15874 bf_set(lpfc_rq_context_page_size, 15875 &rq_create->u.request.context, 15876 LPFC_RQ_PAGE_SIZE_4096); 15877 } else { 15878 switch (hrq->entry_count) { 15879 default: 15880 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15881 "2535 Unsupported RQ count. (%d)\n", 15882 hrq->entry_count); 15883 if (hrq->entry_count < 512) { 15884 status = -EINVAL; 15885 goto out; 15886 } 15887 /* fall through - otherwise default to smallest count */ 15888 case 512: 15889 bf_set(lpfc_rq_context_rqe_count, 15890 &rq_create->u.request.context, 15891 LPFC_RQ_RING_SIZE_512); 15892 break; 15893 case 1024: 15894 bf_set(lpfc_rq_context_rqe_count, 15895 &rq_create->u.request.context, 15896 LPFC_RQ_RING_SIZE_1024); 15897 break; 15898 case 2048: 15899 bf_set(lpfc_rq_context_rqe_count, 15900 &rq_create->u.request.context, 15901 LPFC_RQ_RING_SIZE_2048); 15902 break; 15903 case 4096: 15904 bf_set(lpfc_rq_context_rqe_count, 15905 &rq_create->u.request.context, 15906 LPFC_RQ_RING_SIZE_4096); 15907 break; 15908 } 15909 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 15910 LPFC_HDR_BUF_SIZE); 15911 } 15912 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 15913 cq->queue_id); 15914 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 15915 hrq->page_count); 15916 list_for_each_entry(dmabuf, &hrq->page_list, list) { 15917 memset(dmabuf->virt, 0, hw_page_size); 15918 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15919 putPaddrLow(dmabuf->phys); 15920 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15921 putPaddrHigh(dmabuf->phys); 15922 } 15923 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15924 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 15925 15926 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15927 /* The IOCTL status is embedded in the mailbox subheader. */ 15928 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15929 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15930 if (shdr_status || shdr_add_status || rc) { 15931 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15932 "2504 RQ_CREATE mailbox failed with " 15933 "status x%x add_status x%x, mbx status x%x\n", 15934 shdr_status, shdr_add_status, rc); 15935 status = -ENXIO; 15936 goto out; 15937 } 15938 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 15939 if (hrq->queue_id == 0xFFFF) { 15940 status = -ENXIO; 15941 goto out; 15942 } 15943 15944 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 15945 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 15946 &rq_create->u.response); 15947 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 15948 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 15949 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15950 "3262 RQ [%d] doorbell format not " 15951 "supported: x%x\n", hrq->queue_id, 15952 hrq->db_format); 15953 status = -EINVAL; 15954 goto out; 15955 } 15956 15957 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 15958 &rq_create->u.response); 15959 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 15960 if (!bar_memmap_p) { 15961 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15962 "3269 RQ[%d] failed to memmap pci " 15963 "barset:x%x\n", hrq->queue_id, 15964 pci_barset); 15965 status = -ENOMEM; 15966 goto out; 15967 } 15968 15969 db_offset = rq_create->u.response.doorbell_offset; 15970 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 15971 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 15972 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15973 "3270 RQ[%d] doorbell offset not " 15974 "supported: x%x\n", hrq->queue_id, 15975 db_offset); 15976 status = -EINVAL; 15977 goto out; 15978 } 15979 hrq->db_regaddr = bar_memmap_p + db_offset; 15980 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15981 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 15982 "format:x%x\n", hrq->queue_id, pci_barset, 15983 db_offset, hrq->db_format); 15984 } else { 15985 hrq->db_format = LPFC_DB_RING_FORMAT; 15986 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 15987 } 15988 hrq->type = LPFC_HRQ; 15989 hrq->assoc_qid = cq->queue_id; 15990 hrq->subtype = subtype; 15991 hrq->host_index = 0; 15992 hrq->hba_index = 0; 15993 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 15994 15995 /* now create the data queue */ 15996 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15997 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 15998 length, LPFC_SLI4_MBX_EMBED); 15999 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16000 phba->sli4_hba.pc_sli4_params.rqv); 16001 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 16002 bf_set(lpfc_rq_context_rqe_count_1, 16003 &rq_create->u.request.context, hrq->entry_count); 16004 if (subtype == LPFC_NVMET) 16005 rq_create->u.request.context.buffer_size = 16006 LPFC_NVMET_DATA_BUF_SIZE; 16007 else 16008 rq_create->u.request.context.buffer_size = 16009 LPFC_DATA_BUF_SIZE; 16010 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 16011 LPFC_RQE_SIZE_8); 16012 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 16013 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16014 } else { 16015 switch (drq->entry_count) { 16016 default: 16017 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16018 "2536 Unsupported RQ count. (%d)\n", 16019 drq->entry_count); 16020 if (drq->entry_count < 512) { 16021 status = -EINVAL; 16022 goto out; 16023 } 16024 /* fall through - otherwise default to smallest count */ 16025 case 512: 16026 bf_set(lpfc_rq_context_rqe_count, 16027 &rq_create->u.request.context, 16028 LPFC_RQ_RING_SIZE_512); 16029 break; 16030 case 1024: 16031 bf_set(lpfc_rq_context_rqe_count, 16032 &rq_create->u.request.context, 16033 LPFC_RQ_RING_SIZE_1024); 16034 break; 16035 case 2048: 16036 bf_set(lpfc_rq_context_rqe_count, 16037 &rq_create->u.request.context, 16038 LPFC_RQ_RING_SIZE_2048); 16039 break; 16040 case 4096: 16041 bf_set(lpfc_rq_context_rqe_count, 16042 &rq_create->u.request.context, 16043 LPFC_RQ_RING_SIZE_4096); 16044 break; 16045 } 16046 if (subtype == LPFC_NVMET) 16047 bf_set(lpfc_rq_context_buf_size, 16048 &rq_create->u.request.context, 16049 LPFC_NVMET_DATA_BUF_SIZE); 16050 else 16051 bf_set(lpfc_rq_context_buf_size, 16052 &rq_create->u.request.context, 16053 LPFC_DATA_BUF_SIZE); 16054 } 16055 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16056 cq->queue_id); 16057 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16058 drq->page_count); 16059 list_for_each_entry(dmabuf, &drq->page_list, list) { 16060 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16061 putPaddrLow(dmabuf->phys); 16062 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16063 putPaddrHigh(dmabuf->phys); 16064 } 16065 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16066 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16067 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16068 /* The IOCTL status is embedded in the mailbox subheader. */ 16069 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 16070 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16071 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16072 if (shdr_status || shdr_add_status || rc) { 16073 status = -ENXIO; 16074 goto out; 16075 } 16076 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16077 if (drq->queue_id == 0xFFFF) { 16078 status = -ENXIO; 16079 goto out; 16080 } 16081 drq->type = LPFC_DRQ; 16082 drq->assoc_qid = cq->queue_id; 16083 drq->subtype = subtype; 16084 drq->host_index = 0; 16085 drq->hba_index = 0; 16086 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16087 16088 /* link the header and data RQs onto the parent cq child list */ 16089 list_add_tail(&hrq->list, &cq->child_list); 16090 list_add_tail(&drq->list, &cq->child_list); 16091 16092 out: 16093 mempool_free(mbox, phba->mbox_mem_pool); 16094 return status; 16095 } 16096 16097 /** 16098 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 16099 * @phba: HBA structure that indicates port to create a queue on. 16100 * @hrqp: The queue structure array to use to create the header receive queues. 16101 * @drqp: The queue structure array to use to create the data receive queues. 16102 * @cqp: The completion queue array to bind these receive queues to. 16103 * 16104 * This function creates a receive buffer queue pair , as detailed in @hrq and 16105 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 16106 * to the HBA. 16107 * 16108 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 16109 * struct is used to get the entry count that is necessary to determine the 16110 * number of pages to use for this queue. The @cq is used to indicate which 16111 * completion queue to bind received buffers that are posted to these queues to. 16112 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 16113 * receive queue pair. This function is asynchronous and will wait for the 16114 * mailbox command to finish before continuing. 16115 * 16116 * On success this function will return a zero. If unable to allocate enough 16117 * memory this function will return -ENOMEM. If the queue create mailbox command 16118 * fails this function will return -ENXIO. 16119 **/ 16120 int 16121 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 16122 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 16123 uint32_t subtype) 16124 { 16125 struct lpfc_queue *hrq, *drq, *cq; 16126 struct lpfc_mbx_rq_create_v2 *rq_create; 16127 struct lpfc_dmabuf *dmabuf; 16128 LPFC_MBOXQ_t *mbox; 16129 int rc, length, alloclen, status = 0; 16130 int cnt, idx, numrq, page_idx = 0; 16131 uint32_t shdr_status, shdr_add_status; 16132 union lpfc_sli4_cfg_shdr *shdr; 16133 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16134 16135 numrq = phba->cfg_nvmet_mrq; 16136 /* sanity check on array memory */ 16137 if (!hrqp || !drqp || !cqp || !numrq) 16138 return -ENODEV; 16139 if (!phba->sli4_hba.pc_sli4_params.supported) 16140 hw_page_size = SLI4_PAGE_SIZE; 16141 16142 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16143 if (!mbox) 16144 return -ENOMEM; 16145 16146 length = sizeof(struct lpfc_mbx_rq_create_v2); 16147 length += ((2 * numrq * hrqp[0]->page_count) * 16148 sizeof(struct dma_address)); 16149 16150 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16151 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 16152 LPFC_SLI4_MBX_NEMBED); 16153 if (alloclen < length) { 16154 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16155 "3099 Allocated DMA memory size (%d) is " 16156 "less than the requested DMA memory size " 16157 "(%d)\n", alloclen, length); 16158 status = -ENOMEM; 16159 goto out; 16160 } 16161 16162 16163 16164 rq_create = mbox->sge_array->addr[0]; 16165 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 16166 16167 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 16168 cnt = 0; 16169 16170 for (idx = 0; idx < numrq; idx++) { 16171 hrq = hrqp[idx]; 16172 drq = drqp[idx]; 16173 cq = cqp[idx]; 16174 16175 /* sanity check on queue memory */ 16176 if (!hrq || !drq || !cq) { 16177 status = -ENODEV; 16178 goto out; 16179 } 16180 16181 if (hrq->entry_count != drq->entry_count) { 16182 status = -EINVAL; 16183 goto out; 16184 } 16185 16186 if (idx == 0) { 16187 bf_set(lpfc_mbx_rq_create_num_pages, 16188 &rq_create->u.request, 16189 hrq->page_count); 16190 bf_set(lpfc_mbx_rq_create_rq_cnt, 16191 &rq_create->u.request, (numrq * 2)); 16192 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 16193 1); 16194 bf_set(lpfc_rq_context_base_cq, 16195 &rq_create->u.request.context, 16196 cq->queue_id); 16197 bf_set(lpfc_rq_context_data_size, 16198 &rq_create->u.request.context, 16199 LPFC_NVMET_DATA_BUF_SIZE); 16200 bf_set(lpfc_rq_context_hdr_size, 16201 &rq_create->u.request.context, 16202 LPFC_HDR_BUF_SIZE); 16203 bf_set(lpfc_rq_context_rqe_count_1, 16204 &rq_create->u.request.context, 16205 hrq->entry_count); 16206 bf_set(lpfc_rq_context_rqe_size, 16207 &rq_create->u.request.context, 16208 LPFC_RQE_SIZE_8); 16209 bf_set(lpfc_rq_context_page_size, 16210 &rq_create->u.request.context, 16211 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16212 } 16213 rc = 0; 16214 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16215 memset(dmabuf->virt, 0, hw_page_size); 16216 cnt = page_idx + dmabuf->buffer_tag; 16217 rq_create->u.request.page[cnt].addr_lo = 16218 putPaddrLow(dmabuf->phys); 16219 rq_create->u.request.page[cnt].addr_hi = 16220 putPaddrHigh(dmabuf->phys); 16221 rc++; 16222 } 16223 page_idx += rc; 16224 16225 rc = 0; 16226 list_for_each_entry(dmabuf, &drq->page_list, list) { 16227 memset(dmabuf->virt, 0, hw_page_size); 16228 cnt = page_idx + dmabuf->buffer_tag; 16229 rq_create->u.request.page[cnt].addr_lo = 16230 putPaddrLow(dmabuf->phys); 16231 rq_create->u.request.page[cnt].addr_hi = 16232 putPaddrHigh(dmabuf->phys); 16233 rc++; 16234 } 16235 page_idx += rc; 16236 16237 hrq->db_format = LPFC_DB_RING_FORMAT; 16238 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16239 hrq->type = LPFC_HRQ; 16240 hrq->assoc_qid = cq->queue_id; 16241 hrq->subtype = subtype; 16242 hrq->host_index = 0; 16243 hrq->hba_index = 0; 16244 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16245 16246 drq->db_format = LPFC_DB_RING_FORMAT; 16247 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16248 drq->type = LPFC_DRQ; 16249 drq->assoc_qid = cq->queue_id; 16250 drq->subtype = subtype; 16251 drq->host_index = 0; 16252 drq->hba_index = 0; 16253 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16254 16255 list_add_tail(&hrq->list, &cq->child_list); 16256 list_add_tail(&drq->list, &cq->child_list); 16257 } 16258 16259 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16260 /* The IOCTL status is embedded in the mailbox subheader. */ 16261 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16262 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16263 if (shdr_status || shdr_add_status || rc) { 16264 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16265 "3120 RQ_CREATE mailbox failed with " 16266 "status x%x add_status x%x, mbx status x%x\n", 16267 shdr_status, shdr_add_status, rc); 16268 status = -ENXIO; 16269 goto out; 16270 } 16271 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16272 if (rc == 0xFFFF) { 16273 status = -ENXIO; 16274 goto out; 16275 } 16276 16277 /* Initialize all RQs with associated queue id */ 16278 for (idx = 0; idx < numrq; idx++) { 16279 hrq = hrqp[idx]; 16280 hrq->queue_id = rc + (2 * idx); 16281 drq = drqp[idx]; 16282 drq->queue_id = rc + (2 * idx) + 1; 16283 } 16284 16285 out: 16286 lpfc_sli4_mbox_cmd_free(phba, mbox); 16287 return status; 16288 } 16289 16290 /** 16291 * lpfc_eq_destroy - Destroy an event Queue on the HBA 16292 * @eq: The queue structure associated with the queue to destroy. 16293 * 16294 * This function destroys a queue, as detailed in @eq by sending an mailbox 16295 * command, specific to the type of queue, to the HBA. 16296 * 16297 * The @eq struct is used to get the queue ID of the queue to destroy. 16298 * 16299 * On success this function will return a zero. If the queue destroy mailbox 16300 * command fails this function will return -ENXIO. 16301 **/ 16302 int 16303 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 16304 { 16305 LPFC_MBOXQ_t *mbox; 16306 int rc, length, status = 0; 16307 uint32_t shdr_status, shdr_add_status; 16308 union lpfc_sli4_cfg_shdr *shdr; 16309 16310 /* sanity check on queue memory */ 16311 if (!eq) 16312 return -ENODEV; 16313 16314 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 16315 if (!mbox) 16316 return -ENOMEM; 16317 length = (sizeof(struct lpfc_mbx_eq_destroy) - 16318 sizeof(struct lpfc_sli4_cfg_mhdr)); 16319 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16320 LPFC_MBOX_OPCODE_EQ_DESTROY, 16321 length, LPFC_SLI4_MBX_EMBED); 16322 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 16323 eq->queue_id); 16324 mbox->vport = eq->phba->pport; 16325 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16326 16327 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 16328 /* The IOCTL status is embedded in the mailbox subheader. */ 16329 shdr = (union lpfc_sli4_cfg_shdr *) 16330 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 16331 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16332 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16333 if (shdr_status || shdr_add_status || rc) { 16334 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16335 "2505 EQ_DESTROY mailbox failed with " 16336 "status x%x add_status x%x, mbx status x%x\n", 16337 shdr_status, shdr_add_status, rc); 16338 status = -ENXIO; 16339 } 16340 16341 /* Remove eq from any list */ 16342 list_del_init(&eq->list); 16343 mempool_free(mbox, eq->phba->mbox_mem_pool); 16344 return status; 16345 } 16346 16347 /** 16348 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 16349 * @cq: The queue structure associated with the queue to destroy. 16350 * 16351 * This function destroys a queue, as detailed in @cq by sending an mailbox 16352 * command, specific to the type of queue, to the HBA. 16353 * 16354 * The @cq struct is used to get the queue ID of the queue to destroy. 16355 * 16356 * On success this function will return a zero. If the queue destroy mailbox 16357 * command fails this function will return -ENXIO. 16358 **/ 16359 int 16360 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 16361 { 16362 LPFC_MBOXQ_t *mbox; 16363 int rc, length, status = 0; 16364 uint32_t shdr_status, shdr_add_status; 16365 union lpfc_sli4_cfg_shdr *shdr; 16366 16367 /* sanity check on queue memory */ 16368 if (!cq) 16369 return -ENODEV; 16370 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 16371 if (!mbox) 16372 return -ENOMEM; 16373 length = (sizeof(struct lpfc_mbx_cq_destroy) - 16374 sizeof(struct lpfc_sli4_cfg_mhdr)); 16375 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16376 LPFC_MBOX_OPCODE_CQ_DESTROY, 16377 length, LPFC_SLI4_MBX_EMBED); 16378 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 16379 cq->queue_id); 16380 mbox->vport = cq->phba->pport; 16381 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16382 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 16383 /* The IOCTL status is embedded in the mailbox subheader. */ 16384 shdr = (union lpfc_sli4_cfg_shdr *) 16385 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 16386 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16387 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16388 if (shdr_status || shdr_add_status || rc) { 16389 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16390 "2506 CQ_DESTROY mailbox failed with " 16391 "status x%x add_status x%x, mbx status x%x\n", 16392 shdr_status, shdr_add_status, rc); 16393 status = -ENXIO; 16394 } 16395 /* Remove cq from any list */ 16396 list_del_init(&cq->list); 16397 mempool_free(mbox, cq->phba->mbox_mem_pool); 16398 return status; 16399 } 16400 16401 /** 16402 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 16403 * @qm: The queue structure associated with the queue to destroy. 16404 * 16405 * This function destroys a queue, as detailed in @mq by sending an mailbox 16406 * command, specific to the type of queue, to the HBA. 16407 * 16408 * The @mq struct is used to get the queue ID of the queue to destroy. 16409 * 16410 * On success this function will return a zero. If the queue destroy mailbox 16411 * command fails this function will return -ENXIO. 16412 **/ 16413 int 16414 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 16415 { 16416 LPFC_MBOXQ_t *mbox; 16417 int rc, length, status = 0; 16418 uint32_t shdr_status, shdr_add_status; 16419 union lpfc_sli4_cfg_shdr *shdr; 16420 16421 /* sanity check on queue memory */ 16422 if (!mq) 16423 return -ENODEV; 16424 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 16425 if (!mbox) 16426 return -ENOMEM; 16427 length = (sizeof(struct lpfc_mbx_mq_destroy) - 16428 sizeof(struct lpfc_sli4_cfg_mhdr)); 16429 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16430 LPFC_MBOX_OPCODE_MQ_DESTROY, 16431 length, LPFC_SLI4_MBX_EMBED); 16432 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 16433 mq->queue_id); 16434 mbox->vport = mq->phba->pport; 16435 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16436 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 16437 /* The IOCTL status is embedded in the mailbox subheader. */ 16438 shdr = (union lpfc_sli4_cfg_shdr *) 16439 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 16440 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16441 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16442 if (shdr_status || shdr_add_status || rc) { 16443 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16444 "2507 MQ_DESTROY mailbox failed with " 16445 "status x%x add_status x%x, mbx status x%x\n", 16446 shdr_status, shdr_add_status, rc); 16447 status = -ENXIO; 16448 } 16449 /* Remove mq from any list */ 16450 list_del_init(&mq->list); 16451 mempool_free(mbox, mq->phba->mbox_mem_pool); 16452 return status; 16453 } 16454 16455 /** 16456 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 16457 * @wq: The queue structure associated with the queue to destroy. 16458 * 16459 * This function destroys a queue, as detailed in @wq by sending an mailbox 16460 * command, specific to the type of queue, to the HBA. 16461 * 16462 * The @wq struct is used to get the queue ID of the queue to destroy. 16463 * 16464 * On success this function will return a zero. If the queue destroy mailbox 16465 * command fails this function will return -ENXIO. 16466 **/ 16467 int 16468 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 16469 { 16470 LPFC_MBOXQ_t *mbox; 16471 int rc, length, status = 0; 16472 uint32_t shdr_status, shdr_add_status; 16473 union lpfc_sli4_cfg_shdr *shdr; 16474 16475 /* sanity check on queue memory */ 16476 if (!wq) 16477 return -ENODEV; 16478 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 16479 if (!mbox) 16480 return -ENOMEM; 16481 length = (sizeof(struct lpfc_mbx_wq_destroy) - 16482 sizeof(struct lpfc_sli4_cfg_mhdr)); 16483 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16484 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 16485 length, LPFC_SLI4_MBX_EMBED); 16486 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 16487 wq->queue_id); 16488 mbox->vport = wq->phba->pport; 16489 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16490 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 16491 shdr = (union lpfc_sli4_cfg_shdr *) 16492 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 16493 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16494 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16495 if (shdr_status || shdr_add_status || rc) { 16496 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16497 "2508 WQ_DESTROY mailbox failed with " 16498 "status x%x add_status x%x, mbx status x%x\n", 16499 shdr_status, shdr_add_status, rc); 16500 status = -ENXIO; 16501 } 16502 /* Remove wq from any list */ 16503 list_del_init(&wq->list); 16504 kfree(wq->pring); 16505 wq->pring = NULL; 16506 mempool_free(mbox, wq->phba->mbox_mem_pool); 16507 return status; 16508 } 16509 16510 /** 16511 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 16512 * @rq: The queue structure associated with the queue to destroy. 16513 * 16514 * This function destroys a queue, as detailed in @rq by sending an mailbox 16515 * command, specific to the type of queue, to the HBA. 16516 * 16517 * The @rq struct is used to get the queue ID of the queue to destroy. 16518 * 16519 * On success this function will return a zero. If the queue destroy mailbox 16520 * command fails this function will return -ENXIO. 16521 **/ 16522 int 16523 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 16524 struct lpfc_queue *drq) 16525 { 16526 LPFC_MBOXQ_t *mbox; 16527 int rc, length, status = 0; 16528 uint32_t shdr_status, shdr_add_status; 16529 union lpfc_sli4_cfg_shdr *shdr; 16530 16531 /* sanity check on queue memory */ 16532 if (!hrq || !drq) 16533 return -ENODEV; 16534 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 16535 if (!mbox) 16536 return -ENOMEM; 16537 length = (sizeof(struct lpfc_mbx_rq_destroy) - 16538 sizeof(struct lpfc_sli4_cfg_mhdr)); 16539 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16540 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 16541 length, LPFC_SLI4_MBX_EMBED); 16542 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 16543 hrq->queue_id); 16544 mbox->vport = hrq->phba->pport; 16545 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16546 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 16547 /* The IOCTL status is embedded in the mailbox subheader. */ 16548 shdr = (union lpfc_sli4_cfg_shdr *) 16549 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 16550 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16551 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16552 if (shdr_status || shdr_add_status || rc) { 16553 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16554 "2509 RQ_DESTROY mailbox failed with " 16555 "status x%x add_status x%x, mbx status x%x\n", 16556 shdr_status, shdr_add_status, rc); 16557 if (rc != MBX_TIMEOUT) 16558 mempool_free(mbox, hrq->phba->mbox_mem_pool); 16559 return -ENXIO; 16560 } 16561 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 16562 drq->queue_id); 16563 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 16564 shdr = (union lpfc_sli4_cfg_shdr *) 16565 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 16566 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16567 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16568 if (shdr_status || shdr_add_status || rc) { 16569 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16570 "2510 RQ_DESTROY mailbox failed with " 16571 "status x%x add_status x%x, mbx status x%x\n", 16572 shdr_status, shdr_add_status, rc); 16573 status = -ENXIO; 16574 } 16575 list_del_init(&hrq->list); 16576 list_del_init(&drq->list); 16577 mempool_free(mbox, hrq->phba->mbox_mem_pool); 16578 return status; 16579 } 16580 16581 /** 16582 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 16583 * @phba: The virtual port for which this call being executed. 16584 * @pdma_phys_addr0: Physical address of the 1st SGL page. 16585 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 16586 * @xritag: the xritag that ties this io to the SGL pages. 16587 * 16588 * This routine will post the sgl pages for the IO that has the xritag 16589 * that is in the iocbq structure. The xritag is assigned during iocbq 16590 * creation and persists for as long as the driver is loaded. 16591 * if the caller has fewer than 256 scatter gather segments to map then 16592 * pdma_phys_addr1 should be 0. 16593 * If the caller needs to map more than 256 scatter gather segment then 16594 * pdma_phys_addr1 should be a valid physical address. 16595 * physical address for SGLs must be 64 byte aligned. 16596 * If you are going to map 2 SGL's then the first one must have 256 entries 16597 * the second sgl can have between 1 and 256 entries. 16598 * 16599 * Return codes: 16600 * 0 - Success 16601 * -ENXIO, -ENOMEM - Failure 16602 **/ 16603 int 16604 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 16605 dma_addr_t pdma_phys_addr0, 16606 dma_addr_t pdma_phys_addr1, 16607 uint16_t xritag) 16608 { 16609 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 16610 LPFC_MBOXQ_t *mbox; 16611 int rc; 16612 uint32_t shdr_status, shdr_add_status; 16613 uint32_t mbox_tmo; 16614 union lpfc_sli4_cfg_shdr *shdr; 16615 16616 if (xritag == NO_XRI) { 16617 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16618 "0364 Invalid param:\n"); 16619 return -EINVAL; 16620 } 16621 16622 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16623 if (!mbox) 16624 return -ENOMEM; 16625 16626 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16627 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 16628 sizeof(struct lpfc_mbx_post_sgl_pages) - 16629 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 16630 16631 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 16632 &mbox->u.mqe.un.post_sgl_pages; 16633 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 16634 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 16635 16636 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 16637 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 16638 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 16639 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 16640 16641 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 16642 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 16643 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 16644 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 16645 if (!phba->sli4_hba.intr_enable) 16646 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16647 else { 16648 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16649 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16650 } 16651 /* The IOCTL status is embedded in the mailbox subheader. */ 16652 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 16653 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16654 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16655 if (rc != MBX_TIMEOUT) 16656 mempool_free(mbox, phba->mbox_mem_pool); 16657 if (shdr_status || shdr_add_status || rc) { 16658 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16659 "2511 POST_SGL mailbox failed with " 16660 "status x%x add_status x%x, mbx status x%x\n", 16661 shdr_status, shdr_add_status, rc); 16662 } 16663 return 0; 16664 } 16665 16666 /** 16667 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 16668 * @phba: pointer to lpfc hba data structure. 16669 * 16670 * This routine is invoked to post rpi header templates to the 16671 * HBA consistent with the SLI-4 interface spec. This routine 16672 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 16673 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 16674 * 16675 * Returns 16676 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 16677 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 16678 **/ 16679 static uint16_t 16680 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 16681 { 16682 unsigned long xri; 16683 16684 /* 16685 * Fetch the next logical xri. Because this index is logical, 16686 * the driver starts at 0 each time. 16687 */ 16688 spin_lock_irq(&phba->hbalock); 16689 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 16690 phba->sli4_hba.max_cfg_param.max_xri, 0); 16691 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 16692 spin_unlock_irq(&phba->hbalock); 16693 return NO_XRI; 16694 } else { 16695 set_bit(xri, phba->sli4_hba.xri_bmask); 16696 phba->sli4_hba.max_cfg_param.xri_used++; 16697 } 16698 spin_unlock_irq(&phba->hbalock); 16699 return xri; 16700 } 16701 16702 /** 16703 * lpfc_sli4_free_xri - Release an xri for reuse. 16704 * @phba: pointer to lpfc hba data structure. 16705 * 16706 * This routine is invoked to release an xri to the pool of 16707 * available rpis maintained by the driver. 16708 **/ 16709 static void 16710 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 16711 { 16712 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 16713 phba->sli4_hba.max_cfg_param.xri_used--; 16714 } 16715 } 16716 16717 /** 16718 * lpfc_sli4_free_xri - Release an xri for reuse. 16719 * @phba: pointer to lpfc hba data structure. 16720 * 16721 * This routine is invoked to release an xri to the pool of 16722 * available rpis maintained by the driver. 16723 **/ 16724 void 16725 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 16726 { 16727 spin_lock_irq(&phba->hbalock); 16728 __lpfc_sli4_free_xri(phba, xri); 16729 spin_unlock_irq(&phba->hbalock); 16730 } 16731 16732 /** 16733 * lpfc_sli4_next_xritag - Get an xritag for the io 16734 * @phba: Pointer to HBA context object. 16735 * 16736 * This function gets an xritag for the iocb. If there is no unused xritag 16737 * it will return 0xffff. 16738 * The function returns the allocated xritag if successful, else returns zero. 16739 * Zero is not a valid xritag. 16740 * The caller is not required to hold any lock. 16741 **/ 16742 uint16_t 16743 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 16744 { 16745 uint16_t xri_index; 16746 16747 xri_index = lpfc_sli4_alloc_xri(phba); 16748 if (xri_index == NO_XRI) 16749 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 16750 "2004 Failed to allocate XRI.last XRITAG is %d" 16751 " Max XRI is %d, Used XRI is %d\n", 16752 xri_index, 16753 phba->sli4_hba.max_cfg_param.max_xri, 16754 phba->sli4_hba.max_cfg_param.xri_used); 16755 return xri_index; 16756 } 16757 16758 /** 16759 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 16760 * @phba: pointer to lpfc hba data structure. 16761 * @post_sgl_list: pointer to els sgl entry list. 16762 * @count: number of els sgl entries on the list. 16763 * 16764 * This routine is invoked to post a block of driver's sgl pages to the 16765 * HBA using non-embedded mailbox command. No Lock is held. This routine 16766 * is only called when the driver is loading and after all IO has been 16767 * stopped. 16768 **/ 16769 static int 16770 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 16771 struct list_head *post_sgl_list, 16772 int post_cnt) 16773 { 16774 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 16775 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 16776 struct sgl_page_pairs *sgl_pg_pairs; 16777 void *viraddr; 16778 LPFC_MBOXQ_t *mbox; 16779 uint32_t reqlen, alloclen, pg_pairs; 16780 uint32_t mbox_tmo; 16781 uint16_t xritag_start = 0; 16782 int rc = 0; 16783 uint32_t shdr_status, shdr_add_status; 16784 union lpfc_sli4_cfg_shdr *shdr; 16785 16786 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 16787 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 16788 if (reqlen > SLI4_PAGE_SIZE) { 16789 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16790 "2559 Block sgl registration required DMA " 16791 "size (%d) great than a page\n", reqlen); 16792 return -ENOMEM; 16793 } 16794 16795 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16796 if (!mbox) 16797 return -ENOMEM; 16798 16799 /* Allocate DMA memory and set up the non-embedded mailbox command */ 16800 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16801 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 16802 LPFC_SLI4_MBX_NEMBED); 16803 16804 if (alloclen < reqlen) { 16805 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16806 "0285 Allocated DMA memory size (%d) is " 16807 "less than the requested DMA memory " 16808 "size (%d)\n", alloclen, reqlen); 16809 lpfc_sli4_mbox_cmd_free(phba, mbox); 16810 return -ENOMEM; 16811 } 16812 /* Set up the SGL pages in the non-embedded DMA pages */ 16813 viraddr = mbox->sge_array->addr[0]; 16814 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 16815 sgl_pg_pairs = &sgl->sgl_pg_pairs; 16816 16817 pg_pairs = 0; 16818 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 16819 /* Set up the sge entry */ 16820 sgl_pg_pairs->sgl_pg0_addr_lo = 16821 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 16822 sgl_pg_pairs->sgl_pg0_addr_hi = 16823 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 16824 sgl_pg_pairs->sgl_pg1_addr_lo = 16825 cpu_to_le32(putPaddrLow(0)); 16826 sgl_pg_pairs->sgl_pg1_addr_hi = 16827 cpu_to_le32(putPaddrHigh(0)); 16828 16829 /* Keep the first xritag on the list */ 16830 if (pg_pairs == 0) 16831 xritag_start = sglq_entry->sli4_xritag; 16832 sgl_pg_pairs++; 16833 pg_pairs++; 16834 } 16835 16836 /* Complete initialization and perform endian conversion. */ 16837 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 16838 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 16839 sgl->word0 = cpu_to_le32(sgl->word0); 16840 16841 if (!phba->sli4_hba.intr_enable) 16842 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16843 else { 16844 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16845 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16846 } 16847 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 16848 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16849 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16850 if (rc != MBX_TIMEOUT) 16851 lpfc_sli4_mbox_cmd_free(phba, mbox); 16852 if (shdr_status || shdr_add_status || rc) { 16853 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16854 "2513 POST_SGL_BLOCK mailbox command failed " 16855 "status x%x add_status x%x mbx status x%x\n", 16856 shdr_status, shdr_add_status, rc); 16857 rc = -ENXIO; 16858 } 16859 return rc; 16860 } 16861 16862 /** 16863 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 16864 * @phba: pointer to lpfc hba data structure. 16865 * @nblist: pointer to nvme buffer list. 16866 * @count: number of scsi buffers on the list. 16867 * 16868 * This routine is invoked to post a block of @count scsi sgl pages from a 16869 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 16870 * No Lock is held. 16871 * 16872 **/ 16873 static int 16874 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 16875 int count) 16876 { 16877 struct lpfc_io_buf *lpfc_ncmd; 16878 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 16879 struct sgl_page_pairs *sgl_pg_pairs; 16880 void *viraddr; 16881 LPFC_MBOXQ_t *mbox; 16882 uint32_t reqlen, alloclen, pg_pairs; 16883 uint32_t mbox_tmo; 16884 uint16_t xritag_start = 0; 16885 int rc = 0; 16886 uint32_t shdr_status, shdr_add_status; 16887 dma_addr_t pdma_phys_bpl1; 16888 union lpfc_sli4_cfg_shdr *shdr; 16889 16890 /* Calculate the requested length of the dma memory */ 16891 reqlen = count * sizeof(struct sgl_page_pairs) + 16892 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 16893 if (reqlen > SLI4_PAGE_SIZE) { 16894 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 16895 "6118 Block sgl registration required DMA " 16896 "size (%d) great than a page\n", reqlen); 16897 return -ENOMEM; 16898 } 16899 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16900 if (!mbox) { 16901 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16902 "6119 Failed to allocate mbox cmd memory\n"); 16903 return -ENOMEM; 16904 } 16905 16906 /* Allocate DMA memory and set up the non-embedded mailbox command */ 16907 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16908 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 16909 reqlen, LPFC_SLI4_MBX_NEMBED); 16910 16911 if (alloclen < reqlen) { 16912 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16913 "6120 Allocated DMA memory size (%d) is " 16914 "less than the requested DMA memory " 16915 "size (%d)\n", alloclen, reqlen); 16916 lpfc_sli4_mbox_cmd_free(phba, mbox); 16917 return -ENOMEM; 16918 } 16919 16920 /* Get the first SGE entry from the non-embedded DMA memory */ 16921 viraddr = mbox->sge_array->addr[0]; 16922 16923 /* Set up the SGL pages in the non-embedded DMA pages */ 16924 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 16925 sgl_pg_pairs = &sgl->sgl_pg_pairs; 16926 16927 pg_pairs = 0; 16928 list_for_each_entry(lpfc_ncmd, nblist, list) { 16929 /* Set up the sge entry */ 16930 sgl_pg_pairs->sgl_pg0_addr_lo = 16931 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 16932 sgl_pg_pairs->sgl_pg0_addr_hi = 16933 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 16934 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 16935 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 16936 SGL_PAGE_SIZE; 16937 else 16938 pdma_phys_bpl1 = 0; 16939 sgl_pg_pairs->sgl_pg1_addr_lo = 16940 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 16941 sgl_pg_pairs->sgl_pg1_addr_hi = 16942 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 16943 /* Keep the first xritag on the list */ 16944 if (pg_pairs == 0) 16945 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 16946 sgl_pg_pairs++; 16947 pg_pairs++; 16948 } 16949 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 16950 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 16951 /* Perform endian conversion if necessary */ 16952 sgl->word0 = cpu_to_le32(sgl->word0); 16953 16954 if (!phba->sli4_hba.intr_enable) { 16955 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16956 } else { 16957 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16958 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16959 } 16960 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 16961 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16962 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16963 if (rc != MBX_TIMEOUT) 16964 lpfc_sli4_mbox_cmd_free(phba, mbox); 16965 if (shdr_status || shdr_add_status || rc) { 16966 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16967 "6125 POST_SGL_BLOCK mailbox command failed " 16968 "status x%x add_status x%x mbx status x%x\n", 16969 shdr_status, shdr_add_status, rc); 16970 rc = -ENXIO; 16971 } 16972 return rc; 16973 } 16974 16975 /** 16976 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 16977 * @phba: pointer to lpfc hba data structure. 16978 * @post_nblist: pointer to the nvme buffer list. 16979 * 16980 * This routine walks a list of nvme buffers that was passed in. It attempts 16981 * to construct blocks of nvme buffer sgls which contains contiguous xris and 16982 * uses the non-embedded SGL block post mailbox commands to post to the port. 16983 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 16984 * embedded SGL post mailbox command for posting. The @post_nblist passed in 16985 * must be local list, thus no lock is needed when manipulate the list. 16986 * 16987 * Returns: 0 = failure, non-zero number of successfully posted buffers. 16988 **/ 16989 int 16990 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 16991 struct list_head *post_nblist, int sb_count) 16992 { 16993 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 16994 int status, sgl_size; 16995 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 16996 dma_addr_t pdma_phys_sgl1; 16997 int last_xritag = NO_XRI; 16998 int cur_xritag; 16999 LIST_HEAD(prep_nblist); 17000 LIST_HEAD(blck_nblist); 17001 LIST_HEAD(nvme_nblist); 17002 17003 /* sanity check */ 17004 if (sb_count <= 0) 17005 return -EINVAL; 17006 17007 sgl_size = phba->cfg_sg_dma_buf_size; 17008 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 17009 list_del_init(&lpfc_ncmd->list); 17010 block_cnt++; 17011 if ((last_xritag != NO_XRI) && 17012 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 17013 /* a hole in xri block, form a sgl posting block */ 17014 list_splice_init(&prep_nblist, &blck_nblist); 17015 post_cnt = block_cnt - 1; 17016 /* prepare list for next posting block */ 17017 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 17018 block_cnt = 1; 17019 } else { 17020 /* prepare list for next posting block */ 17021 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 17022 /* enough sgls for non-embed sgl mbox command */ 17023 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 17024 list_splice_init(&prep_nblist, &blck_nblist); 17025 post_cnt = block_cnt; 17026 block_cnt = 0; 17027 } 17028 } 17029 num_posting++; 17030 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 17031 17032 /* end of repost sgl list condition for NVME buffers */ 17033 if (num_posting == sb_count) { 17034 if (post_cnt == 0) { 17035 /* last sgl posting block */ 17036 list_splice_init(&prep_nblist, &blck_nblist); 17037 post_cnt = block_cnt; 17038 } else if (block_cnt == 1) { 17039 /* last single sgl with non-contiguous xri */ 17040 if (sgl_size > SGL_PAGE_SIZE) 17041 pdma_phys_sgl1 = 17042 lpfc_ncmd->dma_phys_sgl + 17043 SGL_PAGE_SIZE; 17044 else 17045 pdma_phys_sgl1 = 0; 17046 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 17047 status = lpfc_sli4_post_sgl( 17048 phba, lpfc_ncmd->dma_phys_sgl, 17049 pdma_phys_sgl1, cur_xritag); 17050 if (status) { 17051 /* Post error. Buffer unavailable. */ 17052 lpfc_ncmd->flags |= 17053 LPFC_SBUF_NOT_POSTED; 17054 } else { 17055 /* Post success. Bffer available. */ 17056 lpfc_ncmd->flags &= 17057 ~LPFC_SBUF_NOT_POSTED; 17058 lpfc_ncmd->status = IOSTAT_SUCCESS; 17059 num_posted++; 17060 } 17061 /* success, put on NVME buffer sgl list */ 17062 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 17063 } 17064 } 17065 17066 /* continue until a nembed page worth of sgls */ 17067 if (post_cnt == 0) 17068 continue; 17069 17070 /* post block of NVME buffer list sgls */ 17071 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 17072 post_cnt); 17073 17074 /* don't reset xirtag due to hole in xri block */ 17075 if (block_cnt == 0) 17076 last_xritag = NO_XRI; 17077 17078 /* reset NVME buffer post count for next round of posting */ 17079 post_cnt = 0; 17080 17081 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 17082 while (!list_empty(&blck_nblist)) { 17083 list_remove_head(&blck_nblist, lpfc_ncmd, 17084 struct lpfc_io_buf, list); 17085 if (status) { 17086 /* Post error. Mark buffer unavailable. */ 17087 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 17088 } else { 17089 /* Post success, Mark buffer available. */ 17090 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 17091 lpfc_ncmd->status = IOSTAT_SUCCESS; 17092 num_posted++; 17093 } 17094 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 17095 } 17096 } 17097 /* Push NVME buffers with sgl posted to the available list */ 17098 lpfc_io_buf_replenish(phba, &nvme_nblist); 17099 17100 return num_posted; 17101 } 17102 17103 /** 17104 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 17105 * @phba: pointer to lpfc_hba struct that the frame was received on 17106 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17107 * 17108 * This function checks the fields in the @fc_hdr to see if the FC frame is a 17109 * valid type of frame that the LPFC driver will handle. This function will 17110 * return a zero if the frame is a valid frame or a non zero value when the 17111 * frame does not pass the check. 17112 **/ 17113 static int 17114 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 17115 { 17116 /* make rctl_names static to save stack space */ 17117 struct fc_vft_header *fc_vft_hdr; 17118 uint32_t *header = (uint32_t *) fc_hdr; 17119 17120 #define FC_RCTL_MDS_DIAGS 0xF4 17121 17122 switch (fc_hdr->fh_r_ctl) { 17123 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 17124 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 17125 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 17126 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 17127 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 17128 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 17129 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 17130 case FC_RCTL_DD_CMD_STATUS: /* command status */ 17131 case FC_RCTL_ELS_REQ: /* extended link services request */ 17132 case FC_RCTL_ELS_REP: /* extended link services reply */ 17133 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 17134 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 17135 case FC_RCTL_BA_NOP: /* basic link service NOP */ 17136 case FC_RCTL_BA_ABTS: /* basic link service abort */ 17137 case FC_RCTL_BA_RMC: /* remove connection */ 17138 case FC_RCTL_BA_ACC: /* basic accept */ 17139 case FC_RCTL_BA_RJT: /* basic reject */ 17140 case FC_RCTL_BA_PRMT: 17141 case FC_RCTL_ACK_1: /* acknowledge_1 */ 17142 case FC_RCTL_ACK_0: /* acknowledge_0 */ 17143 case FC_RCTL_P_RJT: /* port reject */ 17144 case FC_RCTL_F_RJT: /* fabric reject */ 17145 case FC_RCTL_P_BSY: /* port busy */ 17146 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 17147 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 17148 case FC_RCTL_LCR: /* link credit reset */ 17149 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 17150 case FC_RCTL_END: /* end */ 17151 break; 17152 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 17153 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 17154 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 17155 return lpfc_fc_frame_check(phba, fc_hdr); 17156 default: 17157 goto drop; 17158 } 17159 17160 switch (fc_hdr->fh_type) { 17161 case FC_TYPE_BLS: 17162 case FC_TYPE_ELS: 17163 case FC_TYPE_FCP: 17164 case FC_TYPE_CT: 17165 case FC_TYPE_NVME: 17166 break; 17167 case FC_TYPE_IP: 17168 case FC_TYPE_ILS: 17169 default: 17170 goto drop; 17171 } 17172 17173 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 17174 "2538 Received frame rctl:x%x, type:x%x, " 17175 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 17176 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 17177 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 17178 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 17179 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 17180 be32_to_cpu(header[6])); 17181 return 0; 17182 drop: 17183 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 17184 "2539 Dropped frame rctl:x%x type:x%x\n", 17185 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17186 return 1; 17187 } 17188 17189 /** 17190 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 17191 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17192 * 17193 * This function processes the FC header to retrieve the VFI from the VF 17194 * header, if one exists. This function will return the VFI if one exists 17195 * or 0 if no VSAN Header exists. 17196 **/ 17197 static uint32_t 17198 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 17199 { 17200 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 17201 17202 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 17203 return 0; 17204 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 17205 } 17206 17207 /** 17208 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 17209 * @phba: Pointer to the HBA structure to search for the vport on 17210 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17211 * @fcfi: The FC Fabric ID that the frame came from 17212 * 17213 * This function searches the @phba for a vport that matches the content of the 17214 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 17215 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 17216 * returns the matching vport pointer or NULL if unable to match frame to a 17217 * vport. 17218 **/ 17219 static struct lpfc_vport * 17220 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 17221 uint16_t fcfi, uint32_t did) 17222 { 17223 struct lpfc_vport **vports; 17224 struct lpfc_vport *vport = NULL; 17225 int i; 17226 17227 if (did == Fabric_DID) 17228 return phba->pport; 17229 if ((phba->pport->fc_flag & FC_PT2PT) && 17230 !(phba->link_state == LPFC_HBA_READY)) 17231 return phba->pport; 17232 17233 vports = lpfc_create_vport_work_array(phba); 17234 if (vports != NULL) { 17235 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 17236 if (phba->fcf.fcfi == fcfi && 17237 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 17238 vports[i]->fc_myDID == did) { 17239 vport = vports[i]; 17240 break; 17241 } 17242 } 17243 } 17244 lpfc_destroy_vport_work_array(phba, vports); 17245 return vport; 17246 } 17247 17248 /** 17249 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 17250 * @vport: The vport to work on. 17251 * 17252 * This function updates the receive sequence time stamp for this vport. The 17253 * receive sequence time stamp indicates the time that the last frame of the 17254 * the sequence that has been idle for the longest amount of time was received. 17255 * the driver uses this time stamp to indicate if any received sequences have 17256 * timed out. 17257 **/ 17258 static void 17259 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 17260 { 17261 struct lpfc_dmabuf *h_buf; 17262 struct hbq_dmabuf *dmabuf = NULL; 17263 17264 /* get the oldest sequence on the rcv list */ 17265 h_buf = list_get_first(&vport->rcv_buffer_list, 17266 struct lpfc_dmabuf, list); 17267 if (!h_buf) 17268 return; 17269 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17270 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 17271 } 17272 17273 /** 17274 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 17275 * @vport: The vport that the received sequences were sent to. 17276 * 17277 * This function cleans up all outstanding received sequences. This is called 17278 * by the driver when a link event or user action invalidates all the received 17279 * sequences. 17280 **/ 17281 void 17282 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 17283 { 17284 struct lpfc_dmabuf *h_buf, *hnext; 17285 struct lpfc_dmabuf *d_buf, *dnext; 17286 struct hbq_dmabuf *dmabuf = NULL; 17287 17288 /* start with the oldest sequence on the rcv list */ 17289 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17290 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17291 list_del_init(&dmabuf->hbuf.list); 17292 list_for_each_entry_safe(d_buf, dnext, 17293 &dmabuf->dbuf.list, list) { 17294 list_del_init(&d_buf->list); 17295 lpfc_in_buf_free(vport->phba, d_buf); 17296 } 17297 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17298 } 17299 } 17300 17301 /** 17302 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 17303 * @vport: The vport that the received sequences were sent to. 17304 * 17305 * This function determines whether any received sequences have timed out by 17306 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 17307 * indicates that there is at least one timed out sequence this routine will 17308 * go through the received sequences one at a time from most inactive to most 17309 * active to determine which ones need to be cleaned up. Once it has determined 17310 * that a sequence needs to be cleaned up it will simply free up the resources 17311 * without sending an abort. 17312 **/ 17313 void 17314 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 17315 { 17316 struct lpfc_dmabuf *h_buf, *hnext; 17317 struct lpfc_dmabuf *d_buf, *dnext; 17318 struct hbq_dmabuf *dmabuf = NULL; 17319 unsigned long timeout; 17320 int abort_count = 0; 17321 17322 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17323 vport->rcv_buffer_time_stamp); 17324 if (list_empty(&vport->rcv_buffer_list) || 17325 time_before(jiffies, timeout)) 17326 return; 17327 /* start with the oldest sequence on the rcv list */ 17328 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17329 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17330 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17331 dmabuf->time_stamp); 17332 if (time_before(jiffies, timeout)) 17333 break; 17334 abort_count++; 17335 list_del_init(&dmabuf->hbuf.list); 17336 list_for_each_entry_safe(d_buf, dnext, 17337 &dmabuf->dbuf.list, list) { 17338 list_del_init(&d_buf->list); 17339 lpfc_in_buf_free(vport->phba, d_buf); 17340 } 17341 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17342 } 17343 if (abort_count) 17344 lpfc_update_rcv_time_stamp(vport); 17345 } 17346 17347 /** 17348 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 17349 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 17350 * 17351 * This function searches through the existing incomplete sequences that have 17352 * been sent to this @vport. If the frame matches one of the incomplete 17353 * sequences then the dbuf in the @dmabuf is added to the list of frames that 17354 * make up that sequence. If no sequence is found that matches this frame then 17355 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 17356 * This function returns a pointer to the first dmabuf in the sequence list that 17357 * the frame was linked to. 17358 **/ 17359 static struct hbq_dmabuf * 17360 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 17361 { 17362 struct fc_frame_header *new_hdr; 17363 struct fc_frame_header *temp_hdr; 17364 struct lpfc_dmabuf *d_buf; 17365 struct lpfc_dmabuf *h_buf; 17366 struct hbq_dmabuf *seq_dmabuf = NULL; 17367 struct hbq_dmabuf *temp_dmabuf = NULL; 17368 uint8_t found = 0; 17369 17370 INIT_LIST_HEAD(&dmabuf->dbuf.list); 17371 dmabuf->time_stamp = jiffies; 17372 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17373 17374 /* Use the hdr_buf to find the sequence that this frame belongs to */ 17375 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 17376 temp_hdr = (struct fc_frame_header *)h_buf->virt; 17377 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 17378 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 17379 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 17380 continue; 17381 /* found a pending sequence that matches this frame */ 17382 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17383 break; 17384 } 17385 if (!seq_dmabuf) { 17386 /* 17387 * This indicates first frame received for this sequence. 17388 * Queue the buffer on the vport's rcv_buffer_list. 17389 */ 17390 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17391 lpfc_update_rcv_time_stamp(vport); 17392 return dmabuf; 17393 } 17394 temp_hdr = seq_dmabuf->hbuf.virt; 17395 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 17396 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17397 list_del_init(&seq_dmabuf->hbuf.list); 17398 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17399 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17400 lpfc_update_rcv_time_stamp(vport); 17401 return dmabuf; 17402 } 17403 /* move this sequence to the tail to indicate a young sequence */ 17404 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 17405 seq_dmabuf->time_stamp = jiffies; 17406 lpfc_update_rcv_time_stamp(vport); 17407 if (list_empty(&seq_dmabuf->dbuf.list)) { 17408 temp_hdr = dmabuf->hbuf.virt; 17409 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17410 return seq_dmabuf; 17411 } 17412 /* find the correct place in the sequence to insert this frame */ 17413 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 17414 while (!found) { 17415 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17416 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 17417 /* 17418 * If the frame's sequence count is greater than the frame on 17419 * the list then insert the frame right after this frame 17420 */ 17421 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 17422 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17423 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 17424 found = 1; 17425 break; 17426 } 17427 17428 if (&d_buf->list == &seq_dmabuf->dbuf.list) 17429 break; 17430 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 17431 } 17432 17433 if (found) 17434 return seq_dmabuf; 17435 return NULL; 17436 } 17437 17438 /** 17439 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 17440 * @vport: pointer to a vitural port 17441 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17442 * 17443 * This function tries to abort from the partially assembed sequence, described 17444 * by the information from basic abbort @dmabuf. It checks to see whether such 17445 * partially assembled sequence held by the driver. If so, it shall free up all 17446 * the frames from the partially assembled sequence. 17447 * 17448 * Return 17449 * true -- if there is matching partially assembled sequence present and all 17450 * the frames freed with the sequence; 17451 * false -- if there is no matching partially assembled sequence present so 17452 * nothing got aborted in the lower layer driver 17453 **/ 17454 static bool 17455 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 17456 struct hbq_dmabuf *dmabuf) 17457 { 17458 struct fc_frame_header *new_hdr; 17459 struct fc_frame_header *temp_hdr; 17460 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 17461 struct hbq_dmabuf *seq_dmabuf = NULL; 17462 17463 /* Use the hdr_buf to find the sequence that matches this frame */ 17464 INIT_LIST_HEAD(&dmabuf->dbuf.list); 17465 INIT_LIST_HEAD(&dmabuf->hbuf.list); 17466 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17467 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 17468 temp_hdr = (struct fc_frame_header *)h_buf->virt; 17469 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 17470 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 17471 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 17472 continue; 17473 /* found a pending sequence that matches this frame */ 17474 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17475 break; 17476 } 17477 17478 /* Free up all the frames from the partially assembled sequence */ 17479 if (seq_dmabuf) { 17480 list_for_each_entry_safe(d_buf, n_buf, 17481 &seq_dmabuf->dbuf.list, list) { 17482 list_del_init(&d_buf->list); 17483 lpfc_in_buf_free(vport->phba, d_buf); 17484 } 17485 return true; 17486 } 17487 return false; 17488 } 17489 17490 /** 17491 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 17492 * @vport: pointer to a vitural port 17493 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17494 * 17495 * This function tries to abort from the assembed sequence from upper level 17496 * protocol, described by the information from basic abbort @dmabuf. It 17497 * checks to see whether such pending context exists at upper level protocol. 17498 * If so, it shall clean up the pending context. 17499 * 17500 * Return 17501 * true -- if there is matching pending context of the sequence cleaned 17502 * at ulp; 17503 * false -- if there is no matching pending context of the sequence present 17504 * at ulp. 17505 **/ 17506 static bool 17507 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 17508 { 17509 struct lpfc_hba *phba = vport->phba; 17510 int handled; 17511 17512 /* Accepting abort at ulp with SLI4 only */ 17513 if (phba->sli_rev < LPFC_SLI_REV4) 17514 return false; 17515 17516 /* Register all caring upper level protocols to attend abort */ 17517 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 17518 if (handled) 17519 return true; 17520 17521 return false; 17522 } 17523 17524 /** 17525 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 17526 * @phba: Pointer to HBA context object. 17527 * @cmd_iocbq: pointer to the command iocbq structure. 17528 * @rsp_iocbq: pointer to the response iocbq structure. 17529 * 17530 * This function handles the sequence abort response iocb command complete 17531 * event. It properly releases the memory allocated to the sequence abort 17532 * accept iocb. 17533 **/ 17534 static void 17535 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 17536 struct lpfc_iocbq *cmd_iocbq, 17537 struct lpfc_iocbq *rsp_iocbq) 17538 { 17539 struct lpfc_nodelist *ndlp; 17540 17541 if (cmd_iocbq) { 17542 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 17543 lpfc_nlp_put(ndlp); 17544 lpfc_nlp_not_used(ndlp); 17545 lpfc_sli_release_iocbq(phba, cmd_iocbq); 17546 } 17547 17548 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 17549 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 17550 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17551 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 17552 rsp_iocbq->iocb.ulpStatus, 17553 rsp_iocbq->iocb.un.ulpWord[4]); 17554 } 17555 17556 /** 17557 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 17558 * @phba: Pointer to HBA context object. 17559 * @xri: xri id in transaction. 17560 * 17561 * This function validates the xri maps to the known range of XRIs allocated an 17562 * used by the driver. 17563 **/ 17564 uint16_t 17565 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 17566 uint16_t xri) 17567 { 17568 uint16_t i; 17569 17570 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 17571 if (xri == phba->sli4_hba.xri_ids[i]) 17572 return i; 17573 } 17574 return NO_XRI; 17575 } 17576 17577 /** 17578 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 17579 * @phba: Pointer to HBA context object. 17580 * @fc_hdr: pointer to a FC frame header. 17581 * 17582 * This function sends a basic response to a previous unsol sequence abort 17583 * event after aborting the sequence handling. 17584 **/ 17585 void 17586 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 17587 struct fc_frame_header *fc_hdr, bool aborted) 17588 { 17589 struct lpfc_hba *phba = vport->phba; 17590 struct lpfc_iocbq *ctiocb = NULL; 17591 struct lpfc_nodelist *ndlp; 17592 uint16_t oxid, rxid, xri, lxri; 17593 uint32_t sid, fctl; 17594 IOCB_t *icmd; 17595 int rc; 17596 17597 if (!lpfc_is_link_up(phba)) 17598 return; 17599 17600 sid = sli4_sid_from_fc_hdr(fc_hdr); 17601 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 17602 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 17603 17604 ndlp = lpfc_findnode_did(vport, sid); 17605 if (!ndlp) { 17606 ndlp = lpfc_nlp_init(vport, sid); 17607 if (!ndlp) { 17608 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 17609 "1268 Failed to allocate ndlp for " 17610 "oxid:x%x SID:x%x\n", oxid, sid); 17611 return; 17612 } 17613 /* Put ndlp onto pport node list */ 17614 lpfc_enqueue_node(vport, ndlp); 17615 } else if (!NLP_CHK_NODE_ACT(ndlp)) { 17616 /* re-setup ndlp without removing from node list */ 17617 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE); 17618 if (!ndlp) { 17619 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 17620 "3275 Failed to active ndlp found " 17621 "for oxid:x%x SID:x%x\n", oxid, sid); 17622 return; 17623 } 17624 } 17625 17626 /* Allocate buffer for rsp iocb */ 17627 ctiocb = lpfc_sli_get_iocbq(phba); 17628 if (!ctiocb) 17629 return; 17630 17631 /* Extract the F_CTL field from FC_HDR */ 17632 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 17633 17634 icmd = &ctiocb->iocb; 17635 icmd->un.xseq64.bdl.bdeSize = 0; 17636 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 17637 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 17638 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 17639 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 17640 17641 /* Fill in the rest of iocb fields */ 17642 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 17643 icmd->ulpBdeCount = 0; 17644 icmd->ulpLe = 1; 17645 icmd->ulpClass = CLASS3; 17646 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 17647 ctiocb->context1 = lpfc_nlp_get(ndlp); 17648 17649 ctiocb->vport = phba->pport; 17650 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 17651 ctiocb->sli4_lxritag = NO_XRI; 17652 ctiocb->sli4_xritag = NO_XRI; 17653 17654 if (fctl & FC_FC_EX_CTX) 17655 /* Exchange responder sent the abort so we 17656 * own the oxid. 17657 */ 17658 xri = oxid; 17659 else 17660 xri = rxid; 17661 lxri = lpfc_sli4_xri_inrange(phba, xri); 17662 if (lxri != NO_XRI) 17663 lpfc_set_rrq_active(phba, ndlp, lxri, 17664 (xri == oxid) ? rxid : oxid, 0); 17665 /* For BA_ABTS from exchange responder, if the logical xri with 17666 * the oxid maps to the FCP XRI range, the port no longer has 17667 * that exchange context, send a BLS_RJT. Override the IOCB for 17668 * a BA_RJT. 17669 */ 17670 if ((fctl & FC_FC_EX_CTX) && 17671 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 17672 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 17673 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 17674 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 17675 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 17676 } 17677 17678 /* If BA_ABTS failed to abort a partially assembled receive sequence, 17679 * the driver no longer has that exchange, send a BLS_RJT. Override 17680 * the IOCB for a BA_RJT. 17681 */ 17682 if (aborted == false) { 17683 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 17684 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 17685 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 17686 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 17687 } 17688 17689 if (fctl & FC_FC_EX_CTX) { 17690 /* ABTS sent by responder to CT exchange, construction 17691 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 17692 * field and RX_ID from ABTS for RX_ID field. 17693 */ 17694 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 17695 } else { 17696 /* ABTS sent by initiator to CT exchange, construction 17697 * of BA_ACC will need to allocate a new XRI as for the 17698 * XRI_TAG field. 17699 */ 17700 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 17701 } 17702 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 17703 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 17704 17705 /* Xmit CT abts response on exchange <xid> */ 17706 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 17707 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 17708 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 17709 17710 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 17711 if (rc == IOCB_ERROR) { 17712 lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS, 17713 "2925 Failed to issue CT ABTS RSP x%x on " 17714 "xri x%x, Data x%x\n", 17715 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 17716 phba->link_state); 17717 lpfc_nlp_put(ndlp); 17718 ctiocb->context1 = NULL; 17719 lpfc_sli_release_iocbq(phba, ctiocb); 17720 } 17721 } 17722 17723 /** 17724 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 17725 * @vport: Pointer to the vport on which this sequence was received 17726 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17727 * 17728 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 17729 * receive sequence is only partially assembed by the driver, it shall abort 17730 * the partially assembled frames for the sequence. Otherwise, if the 17731 * unsolicited receive sequence has been completely assembled and passed to 17732 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the 17733 * unsolicited sequence has been aborted. After that, it will issue a basic 17734 * accept to accept the abort. 17735 **/ 17736 static void 17737 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 17738 struct hbq_dmabuf *dmabuf) 17739 { 17740 struct lpfc_hba *phba = vport->phba; 17741 struct fc_frame_header fc_hdr; 17742 uint32_t fctl; 17743 bool aborted; 17744 17745 /* Make a copy of fc_hdr before the dmabuf being released */ 17746 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 17747 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 17748 17749 if (fctl & FC_FC_EX_CTX) { 17750 /* ABTS by responder to exchange, no cleanup needed */ 17751 aborted = true; 17752 } else { 17753 /* ABTS by initiator to exchange, need to do cleanup */ 17754 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 17755 if (aborted == false) 17756 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 17757 } 17758 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17759 17760 if (phba->nvmet_support) { 17761 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 17762 return; 17763 } 17764 17765 /* Respond with BA_ACC or BA_RJT accordingly */ 17766 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 17767 } 17768 17769 /** 17770 * lpfc_seq_complete - Indicates if a sequence is complete 17771 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17772 * 17773 * This function checks the sequence, starting with the frame described by 17774 * @dmabuf, to see if all the frames associated with this sequence are present. 17775 * the frames associated with this sequence are linked to the @dmabuf using the 17776 * dbuf list. This function looks for two major things. 1) That the first frame 17777 * has a sequence count of zero. 2) There is a frame with last frame of sequence 17778 * set. 3) That there are no holes in the sequence count. The function will 17779 * return 1 when the sequence is complete, otherwise it will return 0. 17780 **/ 17781 static int 17782 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 17783 { 17784 struct fc_frame_header *hdr; 17785 struct lpfc_dmabuf *d_buf; 17786 struct hbq_dmabuf *seq_dmabuf; 17787 uint32_t fctl; 17788 int seq_count = 0; 17789 17790 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17791 /* make sure first fame of sequence has a sequence count of zero */ 17792 if (hdr->fh_seq_cnt != seq_count) 17793 return 0; 17794 fctl = (hdr->fh_f_ctl[0] << 16 | 17795 hdr->fh_f_ctl[1] << 8 | 17796 hdr->fh_f_ctl[2]); 17797 /* If last frame of sequence we can return success. */ 17798 if (fctl & FC_FC_END_SEQ) 17799 return 1; 17800 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 17801 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17802 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 17803 /* If there is a hole in the sequence count then fail. */ 17804 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 17805 return 0; 17806 fctl = (hdr->fh_f_ctl[0] << 16 | 17807 hdr->fh_f_ctl[1] << 8 | 17808 hdr->fh_f_ctl[2]); 17809 /* If last frame of sequence we can return success. */ 17810 if (fctl & FC_FC_END_SEQ) 17811 return 1; 17812 } 17813 return 0; 17814 } 17815 17816 /** 17817 * lpfc_prep_seq - Prep sequence for ULP processing 17818 * @vport: Pointer to the vport on which this sequence was received 17819 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17820 * 17821 * This function takes a sequence, described by a list of frames, and creates 17822 * a list of iocbq structures to describe the sequence. This iocbq list will be 17823 * used to issue to the generic unsolicited sequence handler. This routine 17824 * returns a pointer to the first iocbq in the list. If the function is unable 17825 * to allocate an iocbq then it throw out the received frames that were not 17826 * able to be described and return a pointer to the first iocbq. If unable to 17827 * allocate any iocbqs (including the first) this function will return NULL. 17828 **/ 17829 static struct lpfc_iocbq * 17830 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 17831 { 17832 struct hbq_dmabuf *hbq_buf; 17833 struct lpfc_dmabuf *d_buf, *n_buf; 17834 struct lpfc_iocbq *first_iocbq, *iocbq; 17835 struct fc_frame_header *fc_hdr; 17836 uint32_t sid; 17837 uint32_t len, tot_len; 17838 struct ulp_bde64 *pbde; 17839 17840 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 17841 /* remove from receive buffer list */ 17842 list_del_init(&seq_dmabuf->hbuf.list); 17843 lpfc_update_rcv_time_stamp(vport); 17844 /* get the Remote Port's SID */ 17845 sid = sli4_sid_from_fc_hdr(fc_hdr); 17846 tot_len = 0; 17847 /* Get an iocbq struct to fill in. */ 17848 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 17849 if (first_iocbq) { 17850 /* Initialize the first IOCB. */ 17851 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 17852 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 17853 first_iocbq->vport = vport; 17854 17855 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 17856 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 17857 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 17858 first_iocbq->iocb.un.rcvels.parmRo = 17859 sli4_did_from_fc_hdr(fc_hdr); 17860 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 17861 } else 17862 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 17863 first_iocbq->iocb.ulpContext = NO_XRI; 17864 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 17865 be16_to_cpu(fc_hdr->fh_ox_id); 17866 /* iocbq is prepped for internal consumption. Physical vpi. */ 17867 first_iocbq->iocb.unsli3.rcvsli3.vpi = 17868 vport->phba->vpi_ids[vport->vpi]; 17869 /* put the first buffer into the first IOCBq */ 17870 tot_len = bf_get(lpfc_rcqe_length, 17871 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 17872 17873 first_iocbq->context2 = &seq_dmabuf->dbuf; 17874 first_iocbq->context3 = NULL; 17875 first_iocbq->iocb.ulpBdeCount = 1; 17876 if (tot_len > LPFC_DATA_BUF_SIZE) 17877 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 17878 LPFC_DATA_BUF_SIZE; 17879 else 17880 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 17881 17882 first_iocbq->iocb.un.rcvels.remoteID = sid; 17883 17884 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 17885 } 17886 iocbq = first_iocbq; 17887 /* 17888 * Each IOCBq can have two Buffers assigned, so go through the list 17889 * of buffers for this sequence and save two buffers in each IOCBq 17890 */ 17891 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 17892 if (!iocbq) { 17893 lpfc_in_buf_free(vport->phba, d_buf); 17894 continue; 17895 } 17896 if (!iocbq->context3) { 17897 iocbq->context3 = d_buf; 17898 iocbq->iocb.ulpBdeCount++; 17899 /* We need to get the size out of the right CQE */ 17900 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17901 len = bf_get(lpfc_rcqe_length, 17902 &hbq_buf->cq_event.cqe.rcqe_cmpl); 17903 pbde = (struct ulp_bde64 *) 17904 &iocbq->iocb.unsli3.sli3Words[4]; 17905 if (len > LPFC_DATA_BUF_SIZE) 17906 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 17907 else 17908 pbde->tus.f.bdeSize = len; 17909 17910 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 17911 tot_len += len; 17912 } else { 17913 iocbq = lpfc_sli_get_iocbq(vport->phba); 17914 if (!iocbq) { 17915 if (first_iocbq) { 17916 first_iocbq->iocb.ulpStatus = 17917 IOSTAT_FCP_RSP_ERROR; 17918 first_iocbq->iocb.un.ulpWord[4] = 17919 IOERR_NO_RESOURCES; 17920 } 17921 lpfc_in_buf_free(vport->phba, d_buf); 17922 continue; 17923 } 17924 /* We need to get the size out of the right CQE */ 17925 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17926 len = bf_get(lpfc_rcqe_length, 17927 &hbq_buf->cq_event.cqe.rcqe_cmpl); 17928 iocbq->context2 = d_buf; 17929 iocbq->context3 = NULL; 17930 iocbq->iocb.ulpBdeCount = 1; 17931 if (len > LPFC_DATA_BUF_SIZE) 17932 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 17933 LPFC_DATA_BUF_SIZE; 17934 else 17935 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 17936 17937 tot_len += len; 17938 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 17939 17940 iocbq->iocb.un.rcvels.remoteID = sid; 17941 list_add_tail(&iocbq->list, &first_iocbq->list); 17942 } 17943 } 17944 return first_iocbq; 17945 } 17946 17947 static void 17948 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 17949 struct hbq_dmabuf *seq_dmabuf) 17950 { 17951 struct fc_frame_header *fc_hdr; 17952 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 17953 struct lpfc_hba *phba = vport->phba; 17954 17955 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 17956 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 17957 if (!iocbq) { 17958 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17959 "2707 Ring %d handler: Failed to allocate " 17960 "iocb Rctl x%x Type x%x received\n", 17961 LPFC_ELS_RING, 17962 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17963 return; 17964 } 17965 if (!lpfc_complete_unsol_iocb(phba, 17966 phba->sli4_hba.els_wq->pring, 17967 iocbq, fc_hdr->fh_r_ctl, 17968 fc_hdr->fh_type)) 17969 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17970 "2540 Ring %d handler: unexpected Rctl " 17971 "x%x Type x%x received\n", 17972 LPFC_ELS_RING, 17973 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17974 17975 /* Free iocb created in lpfc_prep_seq */ 17976 list_for_each_entry_safe(curr_iocb, next_iocb, 17977 &iocbq->list, list) { 17978 list_del_init(&curr_iocb->list); 17979 lpfc_sli_release_iocbq(phba, curr_iocb); 17980 } 17981 lpfc_sli_release_iocbq(phba, iocbq); 17982 } 17983 17984 static void 17985 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 17986 struct lpfc_iocbq *rspiocb) 17987 { 17988 struct lpfc_dmabuf *pcmd = cmdiocb->context2; 17989 17990 if (pcmd && pcmd->virt) 17991 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 17992 kfree(pcmd); 17993 lpfc_sli_release_iocbq(phba, cmdiocb); 17994 lpfc_drain_txq(phba); 17995 } 17996 17997 static void 17998 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 17999 struct hbq_dmabuf *dmabuf) 18000 { 18001 struct fc_frame_header *fc_hdr; 18002 struct lpfc_hba *phba = vport->phba; 18003 struct lpfc_iocbq *iocbq = NULL; 18004 union lpfc_wqe *wqe; 18005 struct lpfc_dmabuf *pcmd = NULL; 18006 uint32_t frame_len; 18007 int rc; 18008 unsigned long iflags; 18009 18010 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18011 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 18012 18013 /* Send the received frame back */ 18014 iocbq = lpfc_sli_get_iocbq(phba); 18015 if (!iocbq) { 18016 /* Queue cq event and wakeup worker thread to process it */ 18017 spin_lock_irqsave(&phba->hbalock, iflags); 18018 list_add_tail(&dmabuf->cq_event.list, 18019 &phba->sli4_hba.sp_queue_event); 18020 phba->hba_flag |= HBA_SP_QUEUE_EVT; 18021 spin_unlock_irqrestore(&phba->hbalock, iflags); 18022 lpfc_worker_wake_up(phba); 18023 return; 18024 } 18025 18026 /* Allocate buffer for command payload */ 18027 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 18028 if (pcmd) 18029 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 18030 &pcmd->phys); 18031 if (!pcmd || !pcmd->virt) 18032 goto exit; 18033 18034 INIT_LIST_HEAD(&pcmd->list); 18035 18036 /* copyin the payload */ 18037 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 18038 18039 /* fill in BDE's for command */ 18040 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys); 18041 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys); 18042 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 18043 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len; 18044 18045 iocbq->context2 = pcmd; 18046 iocbq->vport = vport; 18047 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK; 18048 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 18049 18050 /* 18051 * Setup rest of the iocb as though it were a WQE 18052 * Build the SEND_FRAME WQE 18053 */ 18054 wqe = (union lpfc_wqe *)&iocbq->iocb; 18055 18056 wqe->send_frame.frame_len = frame_len; 18057 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr)); 18058 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1)); 18059 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2)); 18060 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3)); 18061 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4)); 18062 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5)); 18063 18064 iocbq->iocb.ulpCommand = CMD_SEND_FRAME; 18065 iocbq->iocb.ulpLe = 1; 18066 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl; 18067 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 18068 if (rc == IOCB_ERROR) 18069 goto exit; 18070 18071 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18072 return; 18073 18074 exit: 18075 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18076 "2023 Unable to process MDS loopback frame\n"); 18077 if (pcmd && pcmd->virt) 18078 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 18079 kfree(pcmd); 18080 if (iocbq) 18081 lpfc_sli_release_iocbq(phba, iocbq); 18082 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18083 } 18084 18085 /** 18086 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 18087 * @phba: Pointer to HBA context object. 18088 * 18089 * This function is called with no lock held. This function processes all 18090 * the received buffers and gives it to upper layers when a received buffer 18091 * indicates that it is the final frame in the sequence. The interrupt 18092 * service routine processes received buffers at interrupt contexts. 18093 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 18094 * appropriate receive function when the final frame in a sequence is received. 18095 **/ 18096 void 18097 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 18098 struct hbq_dmabuf *dmabuf) 18099 { 18100 struct hbq_dmabuf *seq_dmabuf; 18101 struct fc_frame_header *fc_hdr; 18102 struct lpfc_vport *vport; 18103 uint32_t fcfi; 18104 uint32_t did; 18105 18106 /* Process each received buffer */ 18107 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18108 18109 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 18110 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 18111 vport = phba->pport; 18112 /* Handle MDS Loopback frames */ 18113 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 18114 return; 18115 } 18116 18117 /* check to see if this a valid type of frame */ 18118 if (lpfc_fc_frame_check(phba, fc_hdr)) { 18119 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18120 return; 18121 } 18122 18123 if ((bf_get(lpfc_cqe_code, 18124 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 18125 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 18126 &dmabuf->cq_event.cqe.rcqe_cmpl); 18127 else 18128 fcfi = bf_get(lpfc_rcqe_fcf_id, 18129 &dmabuf->cq_event.cqe.rcqe_cmpl); 18130 18131 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 18132 vport = phba->pport; 18133 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 18134 "2023 MDS Loopback %d bytes\n", 18135 bf_get(lpfc_rcqe_length, 18136 &dmabuf->cq_event.cqe.rcqe_cmpl)); 18137 /* Handle MDS Loopback frames */ 18138 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 18139 return; 18140 } 18141 18142 /* d_id this frame is directed to */ 18143 did = sli4_did_from_fc_hdr(fc_hdr); 18144 18145 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 18146 if (!vport) { 18147 /* throw out the frame */ 18148 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18149 return; 18150 } 18151 18152 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 18153 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 18154 (did != Fabric_DID)) { 18155 /* 18156 * Throw out the frame if we are not pt2pt. 18157 * The pt2pt protocol allows for discovery frames 18158 * to be received without a registered VPI. 18159 */ 18160 if (!(vport->fc_flag & FC_PT2PT) || 18161 (phba->link_state == LPFC_HBA_READY)) { 18162 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18163 return; 18164 } 18165 } 18166 18167 /* Handle the basic abort sequence (BA_ABTS) event */ 18168 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 18169 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 18170 return; 18171 } 18172 18173 /* Link this frame */ 18174 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 18175 if (!seq_dmabuf) { 18176 /* unable to add frame to vport - throw it out */ 18177 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18178 return; 18179 } 18180 /* If not last frame in sequence continue processing frames. */ 18181 if (!lpfc_seq_complete(seq_dmabuf)) 18182 return; 18183 18184 /* Send the complete sequence to the upper layer protocol */ 18185 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 18186 } 18187 18188 /** 18189 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 18190 * @phba: pointer to lpfc hba data structure. 18191 * 18192 * This routine is invoked to post rpi header templates to the 18193 * HBA consistent with the SLI-4 interface spec. This routine 18194 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18195 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18196 * 18197 * This routine does not require any locks. It's usage is expected 18198 * to be driver load or reset recovery when the driver is 18199 * sequential. 18200 * 18201 * Return codes 18202 * 0 - successful 18203 * -EIO - The mailbox failed to complete successfully. 18204 * When this error occurs, the driver is not guaranteed 18205 * to have any rpi regions posted to the device and 18206 * must either attempt to repost the regions or take a 18207 * fatal error. 18208 **/ 18209 int 18210 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 18211 { 18212 struct lpfc_rpi_hdr *rpi_page; 18213 uint32_t rc = 0; 18214 uint16_t lrpi = 0; 18215 18216 /* SLI4 ports that support extents do not require RPI headers. */ 18217 if (!phba->sli4_hba.rpi_hdrs_in_use) 18218 goto exit; 18219 if (phba->sli4_hba.extents_in_use) 18220 return -EIO; 18221 18222 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 18223 /* 18224 * Assign the rpi headers a physical rpi only if the driver 18225 * has not initialized those resources. A port reset only 18226 * needs the headers posted. 18227 */ 18228 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 18229 LPFC_RPI_RSRC_RDY) 18230 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18231 18232 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 18233 if (rc != MBX_SUCCESS) { 18234 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18235 "2008 Error %d posting all rpi " 18236 "headers\n", rc); 18237 rc = -EIO; 18238 break; 18239 } 18240 } 18241 18242 exit: 18243 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 18244 LPFC_RPI_RSRC_RDY); 18245 return rc; 18246 } 18247 18248 /** 18249 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 18250 * @phba: pointer to lpfc hba data structure. 18251 * @rpi_page: pointer to the rpi memory region. 18252 * 18253 * This routine is invoked to post a single rpi header to the 18254 * HBA consistent with the SLI-4 interface spec. This memory region 18255 * maps up to 64 rpi context regions. 18256 * 18257 * Return codes 18258 * 0 - successful 18259 * -ENOMEM - No available memory 18260 * -EIO - The mailbox failed to complete successfully. 18261 **/ 18262 int 18263 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 18264 { 18265 LPFC_MBOXQ_t *mboxq; 18266 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 18267 uint32_t rc = 0; 18268 uint32_t shdr_status, shdr_add_status; 18269 union lpfc_sli4_cfg_shdr *shdr; 18270 18271 /* SLI4 ports that support extents do not require RPI headers. */ 18272 if (!phba->sli4_hba.rpi_hdrs_in_use) 18273 return rc; 18274 if (phba->sli4_hba.extents_in_use) 18275 return -EIO; 18276 18277 /* The port is notified of the header region via a mailbox command. */ 18278 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18279 if (!mboxq) { 18280 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18281 "2001 Unable to allocate memory for issuing " 18282 "SLI_CONFIG_SPECIAL mailbox command\n"); 18283 return -ENOMEM; 18284 } 18285 18286 /* Post all rpi memory regions to the port. */ 18287 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 18288 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 18289 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 18290 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 18291 sizeof(struct lpfc_sli4_cfg_mhdr), 18292 LPFC_SLI4_MBX_EMBED); 18293 18294 18295 /* Post the physical rpi to the port for this rpi header. */ 18296 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 18297 rpi_page->start_rpi); 18298 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 18299 hdr_tmpl, rpi_page->page_count); 18300 18301 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 18302 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 18303 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 18304 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 18305 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18306 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18307 if (rc != MBX_TIMEOUT) 18308 mempool_free(mboxq, phba->mbox_mem_pool); 18309 if (shdr_status || shdr_add_status || rc) { 18310 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18311 "2514 POST_RPI_HDR mailbox failed with " 18312 "status x%x add_status x%x, mbx status x%x\n", 18313 shdr_status, shdr_add_status, rc); 18314 rc = -ENXIO; 18315 } else { 18316 /* 18317 * The next_rpi stores the next logical module-64 rpi value used 18318 * to post physical rpis in subsequent rpi postings. 18319 */ 18320 spin_lock_irq(&phba->hbalock); 18321 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 18322 spin_unlock_irq(&phba->hbalock); 18323 } 18324 return rc; 18325 } 18326 18327 /** 18328 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 18329 * @phba: pointer to lpfc hba data structure. 18330 * 18331 * This routine is invoked to post rpi header templates to the 18332 * HBA consistent with the SLI-4 interface spec. This routine 18333 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18334 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18335 * 18336 * Returns 18337 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 18338 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 18339 **/ 18340 int 18341 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 18342 { 18343 unsigned long rpi; 18344 uint16_t max_rpi, rpi_limit; 18345 uint16_t rpi_remaining, lrpi = 0; 18346 struct lpfc_rpi_hdr *rpi_hdr; 18347 unsigned long iflag; 18348 18349 /* 18350 * Fetch the next logical rpi. Because this index is logical, 18351 * the driver starts at 0 each time. 18352 */ 18353 spin_lock_irqsave(&phba->hbalock, iflag); 18354 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 18355 rpi_limit = phba->sli4_hba.next_rpi; 18356 18357 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 18358 if (rpi >= rpi_limit) 18359 rpi = LPFC_RPI_ALLOC_ERROR; 18360 else { 18361 set_bit(rpi, phba->sli4_hba.rpi_bmask); 18362 phba->sli4_hba.max_cfg_param.rpi_used++; 18363 phba->sli4_hba.rpi_count++; 18364 } 18365 lpfc_printf_log(phba, KERN_INFO, 18366 LOG_NODE | LOG_DISCOVERY, 18367 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 18368 (int) rpi, max_rpi, rpi_limit); 18369 18370 /* 18371 * Don't try to allocate more rpi header regions if the device limit 18372 * has been exhausted. 18373 */ 18374 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 18375 (phba->sli4_hba.rpi_count >= max_rpi)) { 18376 spin_unlock_irqrestore(&phba->hbalock, iflag); 18377 return rpi; 18378 } 18379 18380 /* 18381 * RPI header postings are not required for SLI4 ports capable of 18382 * extents. 18383 */ 18384 if (!phba->sli4_hba.rpi_hdrs_in_use) { 18385 spin_unlock_irqrestore(&phba->hbalock, iflag); 18386 return rpi; 18387 } 18388 18389 /* 18390 * If the driver is running low on rpi resources, allocate another 18391 * page now. Note that the next_rpi value is used because 18392 * it represents how many are actually in use whereas max_rpi notes 18393 * how many are supported max by the device. 18394 */ 18395 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 18396 spin_unlock_irqrestore(&phba->hbalock, iflag); 18397 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 18398 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 18399 if (!rpi_hdr) { 18400 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18401 "2002 Error Could not grow rpi " 18402 "count\n"); 18403 } else { 18404 lrpi = rpi_hdr->start_rpi; 18405 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18406 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 18407 } 18408 } 18409 18410 return rpi; 18411 } 18412 18413 /** 18414 * lpfc_sli4_free_rpi - Release an rpi for reuse. 18415 * @phba: pointer to lpfc hba data structure. 18416 * 18417 * This routine is invoked to release an rpi to the pool of 18418 * available rpis maintained by the driver. 18419 **/ 18420 static void 18421 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 18422 { 18423 /* 18424 * if the rpi value indicates a prior unreg has already 18425 * been done, skip the unreg. 18426 */ 18427 if (rpi == LPFC_RPI_ALLOC_ERROR) 18428 return; 18429 18430 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 18431 phba->sli4_hba.rpi_count--; 18432 phba->sli4_hba.max_cfg_param.rpi_used--; 18433 } else { 18434 lpfc_printf_log(phba, KERN_INFO, 18435 LOG_NODE | LOG_DISCOVERY, 18436 "2016 rpi %x not inuse\n", 18437 rpi); 18438 } 18439 } 18440 18441 /** 18442 * lpfc_sli4_free_rpi - Release an rpi for reuse. 18443 * @phba: pointer to lpfc hba data structure. 18444 * 18445 * This routine is invoked to release an rpi to the pool of 18446 * available rpis maintained by the driver. 18447 **/ 18448 void 18449 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 18450 { 18451 spin_lock_irq(&phba->hbalock); 18452 __lpfc_sli4_free_rpi(phba, rpi); 18453 spin_unlock_irq(&phba->hbalock); 18454 } 18455 18456 /** 18457 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 18458 * @phba: pointer to lpfc hba data structure. 18459 * 18460 * This routine is invoked to remove the memory region that 18461 * provided rpi via a bitmask. 18462 **/ 18463 void 18464 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 18465 { 18466 kfree(phba->sli4_hba.rpi_bmask); 18467 kfree(phba->sli4_hba.rpi_ids); 18468 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 18469 } 18470 18471 /** 18472 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 18473 * @phba: pointer to lpfc hba data structure. 18474 * 18475 * This routine is invoked to remove the memory region that 18476 * provided rpi via a bitmask. 18477 **/ 18478 int 18479 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 18480 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 18481 { 18482 LPFC_MBOXQ_t *mboxq; 18483 struct lpfc_hba *phba = ndlp->phba; 18484 int rc; 18485 18486 /* The port is notified of the header region via a mailbox command. */ 18487 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18488 if (!mboxq) 18489 return -ENOMEM; 18490 18491 /* Post all rpi memory regions to the port. */ 18492 lpfc_resume_rpi(mboxq, ndlp); 18493 if (cmpl) { 18494 mboxq->mbox_cmpl = cmpl; 18495 mboxq->ctx_buf = arg; 18496 mboxq->ctx_ndlp = ndlp; 18497 } else 18498 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 18499 mboxq->vport = ndlp->vport; 18500 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18501 if (rc == MBX_NOT_FINISHED) { 18502 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18503 "2010 Resume RPI Mailbox failed " 18504 "status %d, mbxStatus x%x\n", rc, 18505 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 18506 mempool_free(mboxq, phba->mbox_mem_pool); 18507 return -EIO; 18508 } 18509 return 0; 18510 } 18511 18512 /** 18513 * lpfc_sli4_init_vpi - Initialize a vpi with the port 18514 * @vport: Pointer to the vport for which the vpi is being initialized 18515 * 18516 * This routine is invoked to activate a vpi with the port. 18517 * 18518 * Returns: 18519 * 0 success 18520 * -Evalue otherwise 18521 **/ 18522 int 18523 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 18524 { 18525 LPFC_MBOXQ_t *mboxq; 18526 int rc = 0; 18527 int retval = MBX_SUCCESS; 18528 uint32_t mbox_tmo; 18529 struct lpfc_hba *phba = vport->phba; 18530 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18531 if (!mboxq) 18532 return -ENOMEM; 18533 lpfc_init_vpi(phba, mboxq, vport->vpi); 18534 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 18535 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 18536 if (rc != MBX_SUCCESS) { 18537 lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI, 18538 "2022 INIT VPI Mailbox failed " 18539 "status %d, mbxStatus x%x\n", rc, 18540 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 18541 retval = -EIO; 18542 } 18543 if (rc != MBX_TIMEOUT) 18544 mempool_free(mboxq, vport->phba->mbox_mem_pool); 18545 18546 return retval; 18547 } 18548 18549 /** 18550 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 18551 * @phba: pointer to lpfc hba data structure. 18552 * @mboxq: Pointer to mailbox object. 18553 * 18554 * This routine is invoked to manually add a single FCF record. The caller 18555 * must pass a completely initialized FCF_Record. This routine takes 18556 * care of the nonembedded mailbox operations. 18557 **/ 18558 static void 18559 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 18560 { 18561 void *virt_addr; 18562 union lpfc_sli4_cfg_shdr *shdr; 18563 uint32_t shdr_status, shdr_add_status; 18564 18565 virt_addr = mboxq->sge_array->addr[0]; 18566 /* The IOCTL status is embedded in the mailbox subheader. */ 18567 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 18568 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18569 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18570 18571 if ((shdr_status || shdr_add_status) && 18572 (shdr_status != STATUS_FCF_IN_USE)) 18573 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18574 "2558 ADD_FCF_RECORD mailbox failed with " 18575 "status x%x add_status x%x\n", 18576 shdr_status, shdr_add_status); 18577 18578 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18579 } 18580 18581 /** 18582 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 18583 * @phba: pointer to lpfc hba data structure. 18584 * @fcf_record: pointer to the initialized fcf record to add. 18585 * 18586 * This routine is invoked to manually add a single FCF record. The caller 18587 * must pass a completely initialized FCF_Record. This routine takes 18588 * care of the nonembedded mailbox operations. 18589 **/ 18590 int 18591 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 18592 { 18593 int rc = 0; 18594 LPFC_MBOXQ_t *mboxq; 18595 uint8_t *bytep; 18596 void *virt_addr; 18597 struct lpfc_mbx_sge sge; 18598 uint32_t alloc_len, req_len; 18599 uint32_t fcfindex; 18600 18601 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18602 if (!mboxq) { 18603 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18604 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 18605 return -ENOMEM; 18606 } 18607 18608 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 18609 sizeof(uint32_t); 18610 18611 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18612 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 18613 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 18614 req_len, LPFC_SLI4_MBX_NEMBED); 18615 if (alloc_len < req_len) { 18616 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18617 "2523 Allocated DMA memory size (x%x) is " 18618 "less than the requested DMA memory " 18619 "size (x%x)\n", alloc_len, req_len); 18620 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18621 return -ENOMEM; 18622 } 18623 18624 /* 18625 * Get the first SGE entry from the non-embedded DMA memory. This 18626 * routine only uses a single SGE. 18627 */ 18628 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 18629 virt_addr = mboxq->sge_array->addr[0]; 18630 /* 18631 * Configure the FCF record for FCFI 0. This is the driver's 18632 * hardcoded default and gets used in nonFIP mode. 18633 */ 18634 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 18635 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 18636 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 18637 18638 /* 18639 * Copy the fcf_index and the FCF Record Data. The data starts after 18640 * the FCoE header plus word10. The data copy needs to be endian 18641 * correct. 18642 */ 18643 bytep += sizeof(uint32_t); 18644 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 18645 mboxq->vport = phba->pport; 18646 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 18647 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18648 if (rc == MBX_NOT_FINISHED) { 18649 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18650 "2515 ADD_FCF_RECORD mailbox failed with " 18651 "status 0x%x\n", rc); 18652 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18653 rc = -EIO; 18654 } else 18655 rc = 0; 18656 18657 return rc; 18658 } 18659 18660 /** 18661 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 18662 * @phba: pointer to lpfc hba data structure. 18663 * @fcf_record: pointer to the fcf record to write the default data. 18664 * @fcf_index: FCF table entry index. 18665 * 18666 * This routine is invoked to build the driver's default FCF record. The 18667 * values used are hardcoded. This routine handles memory initialization. 18668 * 18669 **/ 18670 void 18671 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 18672 struct fcf_record *fcf_record, 18673 uint16_t fcf_index) 18674 { 18675 memset(fcf_record, 0, sizeof(struct fcf_record)); 18676 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 18677 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 18678 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 18679 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 18680 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 18681 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 18682 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 18683 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 18684 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 18685 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 18686 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 18687 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 18688 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 18689 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 18690 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 18691 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 18692 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 18693 /* Set the VLAN bit map */ 18694 if (phba->valid_vlan) { 18695 fcf_record->vlan_bitmap[phba->vlan_id / 8] 18696 = 1 << (phba->vlan_id % 8); 18697 } 18698 } 18699 18700 /** 18701 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 18702 * @phba: pointer to lpfc hba data structure. 18703 * @fcf_index: FCF table entry offset. 18704 * 18705 * This routine is invoked to scan the entire FCF table by reading FCF 18706 * record and processing it one at a time starting from the @fcf_index 18707 * for initial FCF discovery or fast FCF failover rediscovery. 18708 * 18709 * Return 0 if the mailbox command is submitted successfully, none 0 18710 * otherwise. 18711 **/ 18712 int 18713 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 18714 { 18715 int rc = 0, error; 18716 LPFC_MBOXQ_t *mboxq; 18717 18718 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 18719 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 18720 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18721 if (!mboxq) { 18722 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18723 "2000 Failed to allocate mbox for " 18724 "READ_FCF cmd\n"); 18725 error = -ENOMEM; 18726 goto fail_fcf_scan; 18727 } 18728 /* Construct the read FCF record mailbox command */ 18729 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 18730 if (rc) { 18731 error = -EINVAL; 18732 goto fail_fcf_scan; 18733 } 18734 /* Issue the mailbox command asynchronously */ 18735 mboxq->vport = phba->pport; 18736 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 18737 18738 spin_lock_irq(&phba->hbalock); 18739 phba->hba_flag |= FCF_TS_INPROG; 18740 spin_unlock_irq(&phba->hbalock); 18741 18742 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18743 if (rc == MBX_NOT_FINISHED) 18744 error = -EIO; 18745 else { 18746 /* Reset eligible FCF count for new scan */ 18747 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 18748 phba->fcf.eligible_fcf_cnt = 0; 18749 error = 0; 18750 } 18751 fail_fcf_scan: 18752 if (error) { 18753 if (mboxq) 18754 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18755 /* FCF scan failed, clear FCF_TS_INPROG flag */ 18756 spin_lock_irq(&phba->hbalock); 18757 phba->hba_flag &= ~FCF_TS_INPROG; 18758 spin_unlock_irq(&phba->hbalock); 18759 } 18760 return error; 18761 } 18762 18763 /** 18764 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 18765 * @phba: pointer to lpfc hba data structure. 18766 * @fcf_index: FCF table entry offset. 18767 * 18768 * This routine is invoked to read an FCF record indicated by @fcf_index 18769 * and to use it for FLOGI roundrobin FCF failover. 18770 * 18771 * Return 0 if the mailbox command is submitted successfully, none 0 18772 * otherwise. 18773 **/ 18774 int 18775 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 18776 { 18777 int rc = 0, error; 18778 LPFC_MBOXQ_t *mboxq; 18779 18780 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18781 if (!mboxq) { 18782 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 18783 "2763 Failed to allocate mbox for " 18784 "READ_FCF cmd\n"); 18785 error = -ENOMEM; 18786 goto fail_fcf_read; 18787 } 18788 /* Construct the read FCF record mailbox command */ 18789 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 18790 if (rc) { 18791 error = -EINVAL; 18792 goto fail_fcf_read; 18793 } 18794 /* Issue the mailbox command asynchronously */ 18795 mboxq->vport = phba->pport; 18796 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 18797 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18798 if (rc == MBX_NOT_FINISHED) 18799 error = -EIO; 18800 else 18801 error = 0; 18802 18803 fail_fcf_read: 18804 if (error && mboxq) 18805 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18806 return error; 18807 } 18808 18809 /** 18810 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 18811 * @phba: pointer to lpfc hba data structure. 18812 * @fcf_index: FCF table entry offset. 18813 * 18814 * This routine is invoked to read an FCF record indicated by @fcf_index to 18815 * determine whether it's eligible for FLOGI roundrobin failover list. 18816 * 18817 * Return 0 if the mailbox command is submitted successfully, none 0 18818 * otherwise. 18819 **/ 18820 int 18821 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 18822 { 18823 int rc = 0, error; 18824 LPFC_MBOXQ_t *mboxq; 18825 18826 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18827 if (!mboxq) { 18828 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 18829 "2758 Failed to allocate mbox for " 18830 "READ_FCF cmd\n"); 18831 error = -ENOMEM; 18832 goto fail_fcf_read; 18833 } 18834 /* Construct the read FCF record mailbox command */ 18835 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 18836 if (rc) { 18837 error = -EINVAL; 18838 goto fail_fcf_read; 18839 } 18840 /* Issue the mailbox command asynchronously */ 18841 mboxq->vport = phba->pport; 18842 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 18843 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18844 if (rc == MBX_NOT_FINISHED) 18845 error = -EIO; 18846 else 18847 error = 0; 18848 18849 fail_fcf_read: 18850 if (error && mboxq) 18851 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18852 return error; 18853 } 18854 18855 /** 18856 * lpfc_check_next_fcf_pri_level 18857 * phba pointer to the lpfc_hba struct for this port. 18858 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 18859 * routine when the rr_bmask is empty. The FCF indecies are put into the 18860 * rr_bmask based on their priority level. Starting from the highest priority 18861 * to the lowest. The most likely FCF candidate will be in the highest 18862 * priority group. When this routine is called it searches the fcf_pri list for 18863 * next lowest priority group and repopulates the rr_bmask with only those 18864 * fcf_indexes. 18865 * returns: 18866 * 1=success 0=failure 18867 **/ 18868 static int 18869 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 18870 { 18871 uint16_t next_fcf_pri; 18872 uint16_t last_index; 18873 struct lpfc_fcf_pri *fcf_pri; 18874 int rc; 18875 int ret = 0; 18876 18877 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 18878 LPFC_SLI4_FCF_TBL_INDX_MAX); 18879 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18880 "3060 Last IDX %d\n", last_index); 18881 18882 /* Verify the priority list has 2 or more entries */ 18883 spin_lock_irq(&phba->hbalock); 18884 if (list_empty(&phba->fcf.fcf_pri_list) || 18885 list_is_singular(&phba->fcf.fcf_pri_list)) { 18886 spin_unlock_irq(&phba->hbalock); 18887 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18888 "3061 Last IDX %d\n", last_index); 18889 return 0; /* Empty rr list */ 18890 } 18891 spin_unlock_irq(&phba->hbalock); 18892 18893 next_fcf_pri = 0; 18894 /* 18895 * Clear the rr_bmask and set all of the bits that are at this 18896 * priority. 18897 */ 18898 memset(phba->fcf.fcf_rr_bmask, 0, 18899 sizeof(*phba->fcf.fcf_rr_bmask)); 18900 spin_lock_irq(&phba->hbalock); 18901 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 18902 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 18903 continue; 18904 /* 18905 * the 1st priority that has not FLOGI failed 18906 * will be the highest. 18907 */ 18908 if (!next_fcf_pri) 18909 next_fcf_pri = fcf_pri->fcf_rec.priority; 18910 spin_unlock_irq(&phba->hbalock); 18911 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 18912 rc = lpfc_sli4_fcf_rr_index_set(phba, 18913 fcf_pri->fcf_rec.fcf_index); 18914 if (rc) 18915 return 0; 18916 } 18917 spin_lock_irq(&phba->hbalock); 18918 } 18919 /* 18920 * if next_fcf_pri was not set above and the list is not empty then 18921 * we have failed flogis on all of them. So reset flogi failed 18922 * and start at the beginning. 18923 */ 18924 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 18925 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 18926 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 18927 /* 18928 * the 1st priority that has not FLOGI failed 18929 * will be the highest. 18930 */ 18931 if (!next_fcf_pri) 18932 next_fcf_pri = fcf_pri->fcf_rec.priority; 18933 spin_unlock_irq(&phba->hbalock); 18934 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 18935 rc = lpfc_sli4_fcf_rr_index_set(phba, 18936 fcf_pri->fcf_rec.fcf_index); 18937 if (rc) 18938 return 0; 18939 } 18940 spin_lock_irq(&phba->hbalock); 18941 } 18942 } else 18943 ret = 1; 18944 spin_unlock_irq(&phba->hbalock); 18945 18946 return ret; 18947 } 18948 /** 18949 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 18950 * @phba: pointer to lpfc hba data structure. 18951 * 18952 * This routine is to get the next eligible FCF record index in a round 18953 * robin fashion. If the next eligible FCF record index equals to the 18954 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 18955 * shall be returned, otherwise, the next eligible FCF record's index 18956 * shall be returned. 18957 **/ 18958 uint16_t 18959 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 18960 { 18961 uint16_t next_fcf_index; 18962 18963 initial_priority: 18964 /* Search start from next bit of currently registered FCF index */ 18965 next_fcf_index = phba->fcf.current_rec.fcf_indx; 18966 18967 next_priority: 18968 /* Determine the next fcf index to check */ 18969 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 18970 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 18971 LPFC_SLI4_FCF_TBL_INDX_MAX, 18972 next_fcf_index); 18973 18974 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 18975 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 18976 /* 18977 * If we have wrapped then we need to clear the bits that 18978 * have been tested so that we can detect when we should 18979 * change the priority level. 18980 */ 18981 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 18982 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 18983 } 18984 18985 18986 /* Check roundrobin failover list empty condition */ 18987 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 18988 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 18989 /* 18990 * If next fcf index is not found check if there are lower 18991 * Priority level fcf's in the fcf_priority list. 18992 * Set up the rr_bmask with all of the avaiable fcf bits 18993 * at that level and continue the selection process. 18994 */ 18995 if (lpfc_check_next_fcf_pri_level(phba)) 18996 goto initial_priority; 18997 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 18998 "2844 No roundrobin failover FCF available\n"); 18999 19000 return LPFC_FCOE_FCF_NEXT_NONE; 19001 } 19002 19003 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 19004 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 19005 LPFC_FCF_FLOGI_FAILED) { 19006 if (list_is_singular(&phba->fcf.fcf_pri_list)) 19007 return LPFC_FCOE_FCF_NEXT_NONE; 19008 19009 goto next_priority; 19010 } 19011 19012 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19013 "2845 Get next roundrobin failover FCF (x%x)\n", 19014 next_fcf_index); 19015 19016 return next_fcf_index; 19017 } 19018 19019 /** 19020 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 19021 * @phba: pointer to lpfc hba data structure. 19022 * 19023 * This routine sets the FCF record index in to the eligible bmask for 19024 * roundrobin failover search. It checks to make sure that the index 19025 * does not go beyond the range of the driver allocated bmask dimension 19026 * before setting the bit. 19027 * 19028 * Returns 0 if the index bit successfully set, otherwise, it returns 19029 * -EINVAL. 19030 **/ 19031 int 19032 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 19033 { 19034 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19035 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19036 "2610 FCF (x%x) reached driver's book " 19037 "keeping dimension:x%x\n", 19038 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 19039 return -EINVAL; 19040 } 19041 /* Set the eligible FCF record index bmask */ 19042 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 19043 19044 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19045 "2790 Set FCF (x%x) to roundrobin FCF failover " 19046 "bmask\n", fcf_index); 19047 19048 return 0; 19049 } 19050 19051 /** 19052 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 19053 * @phba: pointer to lpfc hba data structure. 19054 * 19055 * This routine clears the FCF record index from the eligible bmask for 19056 * roundrobin failover search. It checks to make sure that the index 19057 * does not go beyond the range of the driver allocated bmask dimension 19058 * before clearing the bit. 19059 **/ 19060 void 19061 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 19062 { 19063 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 19064 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19065 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19066 "2762 FCF (x%x) reached driver's book " 19067 "keeping dimension:x%x\n", 19068 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 19069 return; 19070 } 19071 /* Clear the eligible FCF record index bmask */ 19072 spin_lock_irq(&phba->hbalock); 19073 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 19074 list) { 19075 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 19076 list_del_init(&fcf_pri->list); 19077 break; 19078 } 19079 } 19080 spin_unlock_irq(&phba->hbalock); 19081 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 19082 19083 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19084 "2791 Clear FCF (x%x) from roundrobin failover " 19085 "bmask\n", fcf_index); 19086 } 19087 19088 /** 19089 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 19090 * @phba: pointer to lpfc hba data structure. 19091 * 19092 * This routine is the completion routine for the rediscover FCF table mailbox 19093 * command. If the mailbox command returned failure, it will try to stop the 19094 * FCF rediscover wait timer. 19095 **/ 19096 static void 19097 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 19098 { 19099 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 19100 uint32_t shdr_status, shdr_add_status; 19101 19102 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 19103 19104 shdr_status = bf_get(lpfc_mbox_hdr_status, 19105 &redisc_fcf->header.cfg_shdr.response); 19106 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 19107 &redisc_fcf->header.cfg_shdr.response); 19108 if (shdr_status || shdr_add_status) { 19109 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19110 "2746 Requesting for FCF rediscovery failed " 19111 "status x%x add_status x%x\n", 19112 shdr_status, shdr_add_status); 19113 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 19114 spin_lock_irq(&phba->hbalock); 19115 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 19116 spin_unlock_irq(&phba->hbalock); 19117 /* 19118 * CVL event triggered FCF rediscover request failed, 19119 * last resort to re-try current registered FCF entry. 19120 */ 19121 lpfc_retry_pport_discovery(phba); 19122 } else { 19123 spin_lock_irq(&phba->hbalock); 19124 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 19125 spin_unlock_irq(&phba->hbalock); 19126 /* 19127 * DEAD FCF event triggered FCF rediscover request 19128 * failed, last resort to fail over as a link down 19129 * to FCF registration. 19130 */ 19131 lpfc_sli4_fcf_dead_failthrough(phba); 19132 } 19133 } else { 19134 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19135 "2775 Start FCF rediscover quiescent timer\n"); 19136 /* 19137 * Start FCF rediscovery wait timer for pending FCF 19138 * before rescan FCF record table. 19139 */ 19140 lpfc_fcf_redisc_wait_start_timer(phba); 19141 } 19142 19143 mempool_free(mbox, phba->mbox_mem_pool); 19144 } 19145 19146 /** 19147 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 19148 * @phba: pointer to lpfc hba data structure. 19149 * 19150 * This routine is invoked to request for rediscovery of the entire FCF table 19151 * by the port. 19152 **/ 19153 int 19154 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 19155 { 19156 LPFC_MBOXQ_t *mbox; 19157 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 19158 int rc, length; 19159 19160 /* Cancel retry delay timers to all vports before FCF rediscover */ 19161 lpfc_cancel_all_vport_retry_delay_timer(phba); 19162 19163 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19164 if (!mbox) { 19165 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 19166 "2745 Failed to allocate mbox for " 19167 "requesting FCF rediscover.\n"); 19168 return -ENOMEM; 19169 } 19170 19171 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 19172 sizeof(struct lpfc_sli4_cfg_mhdr)); 19173 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 19174 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 19175 length, LPFC_SLI4_MBX_EMBED); 19176 19177 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 19178 /* Set count to 0 for invalidating the entire FCF database */ 19179 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 19180 19181 /* Issue the mailbox command asynchronously */ 19182 mbox->vport = phba->pport; 19183 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 19184 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 19185 19186 if (rc == MBX_NOT_FINISHED) { 19187 mempool_free(mbox, phba->mbox_mem_pool); 19188 return -EIO; 19189 } 19190 return 0; 19191 } 19192 19193 /** 19194 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 19195 * @phba: pointer to lpfc hba data structure. 19196 * 19197 * This function is the failover routine as a last resort to the FCF DEAD 19198 * event when driver failed to perform fast FCF failover. 19199 **/ 19200 void 19201 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 19202 { 19203 uint32_t link_state; 19204 19205 /* 19206 * Last resort as FCF DEAD event failover will treat this as 19207 * a link down, but save the link state because we don't want 19208 * it to be changed to Link Down unless it is already down. 19209 */ 19210 link_state = phba->link_state; 19211 lpfc_linkdown(phba); 19212 phba->link_state = link_state; 19213 19214 /* Unregister FCF if no devices connected to it */ 19215 lpfc_unregister_unused_fcf(phba); 19216 } 19217 19218 /** 19219 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 19220 * @phba: pointer to lpfc hba data structure. 19221 * @rgn23_data: pointer to configure region 23 data. 19222 * 19223 * This function gets SLI3 port configure region 23 data through memory dump 19224 * mailbox command. When it successfully retrieves data, the size of the data 19225 * will be returned, otherwise, 0 will be returned. 19226 **/ 19227 static uint32_t 19228 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19229 { 19230 LPFC_MBOXQ_t *pmb = NULL; 19231 MAILBOX_t *mb; 19232 uint32_t offset = 0; 19233 int rc; 19234 19235 if (!rgn23_data) 19236 return 0; 19237 19238 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19239 if (!pmb) { 19240 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19241 "2600 failed to allocate mailbox memory\n"); 19242 return 0; 19243 } 19244 mb = &pmb->u.mb; 19245 19246 do { 19247 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 19248 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 19249 19250 if (rc != MBX_SUCCESS) { 19251 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19252 "2601 failed to read config " 19253 "region 23, rc 0x%x Status 0x%x\n", 19254 rc, mb->mbxStatus); 19255 mb->un.varDmp.word_cnt = 0; 19256 } 19257 /* 19258 * dump mem may return a zero when finished or we got a 19259 * mailbox error, either way we are done. 19260 */ 19261 if (mb->un.varDmp.word_cnt == 0) 19262 break; 19263 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 19264 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 19265 19266 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 19267 rgn23_data + offset, 19268 mb->un.varDmp.word_cnt); 19269 offset += mb->un.varDmp.word_cnt; 19270 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 19271 19272 mempool_free(pmb, phba->mbox_mem_pool); 19273 return offset; 19274 } 19275 19276 /** 19277 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 19278 * @phba: pointer to lpfc hba data structure. 19279 * @rgn23_data: pointer to configure region 23 data. 19280 * 19281 * This function gets SLI4 port configure region 23 data through memory dump 19282 * mailbox command. When it successfully retrieves data, the size of the data 19283 * will be returned, otherwise, 0 will be returned. 19284 **/ 19285 static uint32_t 19286 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19287 { 19288 LPFC_MBOXQ_t *mboxq = NULL; 19289 struct lpfc_dmabuf *mp = NULL; 19290 struct lpfc_mqe *mqe; 19291 uint32_t data_length = 0; 19292 int rc; 19293 19294 if (!rgn23_data) 19295 return 0; 19296 19297 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19298 if (!mboxq) { 19299 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19300 "3105 failed to allocate mailbox memory\n"); 19301 return 0; 19302 } 19303 19304 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 19305 goto out; 19306 mqe = &mboxq->u.mqe; 19307 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 19308 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19309 if (rc) 19310 goto out; 19311 data_length = mqe->un.mb_words[5]; 19312 if (data_length == 0) 19313 goto out; 19314 if (data_length > DMP_RGN23_SIZE) { 19315 data_length = 0; 19316 goto out; 19317 } 19318 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 19319 out: 19320 mempool_free(mboxq, phba->mbox_mem_pool); 19321 if (mp) { 19322 lpfc_mbuf_free(phba, mp->virt, mp->phys); 19323 kfree(mp); 19324 } 19325 return data_length; 19326 } 19327 19328 /** 19329 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 19330 * @phba: pointer to lpfc hba data structure. 19331 * 19332 * This function read region 23 and parse TLV for port status to 19333 * decide if the user disaled the port. If the TLV indicates the 19334 * port is disabled, the hba_flag is set accordingly. 19335 **/ 19336 void 19337 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 19338 { 19339 uint8_t *rgn23_data = NULL; 19340 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 19341 uint32_t offset = 0; 19342 19343 /* Get adapter Region 23 data */ 19344 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 19345 if (!rgn23_data) 19346 goto out; 19347 19348 if (phba->sli_rev < LPFC_SLI_REV4) 19349 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 19350 else { 19351 if_type = bf_get(lpfc_sli_intf_if_type, 19352 &phba->sli4_hba.sli_intf); 19353 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 19354 goto out; 19355 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 19356 } 19357 19358 if (!data_size) 19359 goto out; 19360 19361 /* Check the region signature first */ 19362 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 19363 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19364 "2619 Config region 23 has bad signature\n"); 19365 goto out; 19366 } 19367 offset += 4; 19368 19369 /* Check the data structure version */ 19370 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 19371 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19372 "2620 Config region 23 has bad version\n"); 19373 goto out; 19374 } 19375 offset += 4; 19376 19377 /* Parse TLV entries in the region */ 19378 while (offset < data_size) { 19379 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 19380 break; 19381 /* 19382 * If the TLV is not driver specific TLV or driver id is 19383 * not linux driver id, skip the record. 19384 */ 19385 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 19386 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 19387 (rgn23_data[offset + 3] != 0)) { 19388 offset += rgn23_data[offset + 1] * 4 + 4; 19389 continue; 19390 } 19391 19392 /* Driver found a driver specific TLV in the config region */ 19393 sub_tlv_len = rgn23_data[offset + 1] * 4; 19394 offset += 4; 19395 tlv_offset = 0; 19396 19397 /* 19398 * Search for configured port state sub-TLV. 19399 */ 19400 while ((offset < data_size) && 19401 (tlv_offset < sub_tlv_len)) { 19402 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 19403 offset += 4; 19404 tlv_offset += 4; 19405 break; 19406 } 19407 if (rgn23_data[offset] != PORT_STE_TYPE) { 19408 offset += rgn23_data[offset + 1] * 4 + 4; 19409 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 19410 continue; 19411 } 19412 19413 /* This HBA contains PORT_STE configured */ 19414 if (!rgn23_data[offset + 2]) 19415 phba->hba_flag |= LINK_DISABLED; 19416 19417 goto out; 19418 } 19419 } 19420 19421 out: 19422 kfree(rgn23_data); 19423 return; 19424 } 19425 19426 /** 19427 * lpfc_wr_object - write an object to the firmware 19428 * @phba: HBA structure that indicates port to create a queue on. 19429 * @dmabuf_list: list of dmabufs to write to the port. 19430 * @size: the total byte value of the objects to write to the port. 19431 * @offset: the current offset to be used to start the transfer. 19432 * 19433 * This routine will create a wr_object mailbox command to send to the port. 19434 * the mailbox command will be constructed using the dma buffers described in 19435 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 19436 * BDEs that the imbedded mailbox can support. The @offset variable will be 19437 * used to indicate the starting offset of the transfer and will also return 19438 * the offset after the write object mailbox has completed. @size is used to 19439 * determine the end of the object and whether the eof bit should be set. 19440 * 19441 * Return 0 is successful and offset will contain the the new offset to use 19442 * for the next write. 19443 * Return negative value for error cases. 19444 **/ 19445 int 19446 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 19447 uint32_t size, uint32_t *offset) 19448 { 19449 struct lpfc_mbx_wr_object *wr_object; 19450 LPFC_MBOXQ_t *mbox; 19451 int rc = 0, i = 0; 19452 uint32_t shdr_status, shdr_add_status, shdr_change_status; 19453 uint32_t mbox_tmo; 19454 struct lpfc_dmabuf *dmabuf; 19455 uint32_t written = 0; 19456 bool check_change_status = false; 19457 19458 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19459 if (!mbox) 19460 return -ENOMEM; 19461 19462 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 19463 LPFC_MBOX_OPCODE_WRITE_OBJECT, 19464 sizeof(struct lpfc_mbx_wr_object) - 19465 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 19466 19467 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 19468 wr_object->u.request.write_offset = *offset; 19469 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 19470 wr_object->u.request.object_name[0] = 19471 cpu_to_le32(wr_object->u.request.object_name[0]); 19472 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 19473 list_for_each_entry(dmabuf, dmabuf_list, list) { 19474 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 19475 break; 19476 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 19477 wr_object->u.request.bde[i].addrHigh = 19478 putPaddrHigh(dmabuf->phys); 19479 if (written + SLI4_PAGE_SIZE >= size) { 19480 wr_object->u.request.bde[i].tus.f.bdeSize = 19481 (size - written); 19482 written += (size - written); 19483 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 19484 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 19485 check_change_status = true; 19486 } else { 19487 wr_object->u.request.bde[i].tus.f.bdeSize = 19488 SLI4_PAGE_SIZE; 19489 written += SLI4_PAGE_SIZE; 19490 } 19491 i++; 19492 } 19493 wr_object->u.request.bde_count = i; 19494 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 19495 if (!phba->sli4_hba.intr_enable) 19496 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 19497 else { 19498 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 19499 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 19500 } 19501 /* The IOCTL status is embedded in the mailbox subheader. */ 19502 shdr_status = bf_get(lpfc_mbox_hdr_status, 19503 &wr_object->header.cfg_shdr.response); 19504 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 19505 &wr_object->header.cfg_shdr.response); 19506 if (check_change_status) { 19507 shdr_change_status = bf_get(lpfc_wr_object_change_status, 19508 &wr_object->u.response); 19509 switch (shdr_change_status) { 19510 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 19511 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19512 "3198 Firmware write complete: System " 19513 "reboot required to instantiate\n"); 19514 break; 19515 case (LPFC_CHANGE_STATUS_FW_RESET): 19516 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19517 "3199 Firmware write complete: Firmware" 19518 " reset required to instantiate\n"); 19519 break; 19520 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 19521 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19522 "3200 Firmware write complete: Port " 19523 "Migration or PCI Reset required to " 19524 "instantiate\n"); 19525 break; 19526 case (LPFC_CHANGE_STATUS_PCI_RESET): 19527 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19528 "3201 Firmware write complete: PCI " 19529 "Reset required to instantiate\n"); 19530 break; 19531 default: 19532 break; 19533 } 19534 } 19535 if (rc != MBX_TIMEOUT) 19536 mempool_free(mbox, phba->mbox_mem_pool); 19537 if (shdr_status || shdr_add_status || rc) { 19538 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19539 "3025 Write Object mailbox failed with " 19540 "status x%x add_status x%x, mbx status x%x\n", 19541 shdr_status, shdr_add_status, rc); 19542 rc = -ENXIO; 19543 *offset = shdr_add_status; 19544 } else 19545 *offset += wr_object->u.response.actual_write_length; 19546 return rc; 19547 } 19548 19549 /** 19550 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 19551 * @vport: pointer to vport data structure. 19552 * 19553 * This function iterate through the mailboxq and clean up all REG_LOGIN 19554 * and REG_VPI mailbox commands associated with the vport. This function 19555 * is called when driver want to restart discovery of the vport due to 19556 * a Clear Virtual Link event. 19557 **/ 19558 void 19559 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 19560 { 19561 struct lpfc_hba *phba = vport->phba; 19562 LPFC_MBOXQ_t *mb, *nextmb; 19563 struct lpfc_dmabuf *mp; 19564 struct lpfc_nodelist *ndlp; 19565 struct lpfc_nodelist *act_mbx_ndlp = NULL; 19566 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 19567 LIST_HEAD(mbox_cmd_list); 19568 uint8_t restart_loop; 19569 19570 /* Clean up internally queued mailbox commands with the vport */ 19571 spin_lock_irq(&phba->hbalock); 19572 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 19573 if (mb->vport != vport) 19574 continue; 19575 19576 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 19577 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 19578 continue; 19579 19580 list_del(&mb->list); 19581 list_add_tail(&mb->list, &mbox_cmd_list); 19582 } 19583 /* Clean up active mailbox command with the vport */ 19584 mb = phba->sli.mbox_active; 19585 if (mb && (mb->vport == vport)) { 19586 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 19587 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 19588 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19589 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 19590 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 19591 /* Put reference count for delayed processing */ 19592 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 19593 /* Unregister the RPI when mailbox complete */ 19594 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 19595 } 19596 } 19597 /* Cleanup any mailbox completions which are not yet processed */ 19598 do { 19599 restart_loop = 0; 19600 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 19601 /* 19602 * If this mailox is already processed or it is 19603 * for another vport ignore it. 19604 */ 19605 if ((mb->vport != vport) || 19606 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 19607 continue; 19608 19609 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 19610 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 19611 continue; 19612 19613 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19614 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 19615 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 19616 /* Unregister the RPI when mailbox complete */ 19617 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 19618 restart_loop = 1; 19619 spin_unlock_irq(&phba->hbalock); 19620 spin_lock(shost->host_lock); 19621 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19622 spin_unlock(shost->host_lock); 19623 spin_lock_irq(&phba->hbalock); 19624 break; 19625 } 19626 } 19627 } while (restart_loop); 19628 19629 spin_unlock_irq(&phba->hbalock); 19630 19631 /* Release the cleaned-up mailbox commands */ 19632 while (!list_empty(&mbox_cmd_list)) { 19633 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 19634 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 19635 mp = (struct lpfc_dmabuf *)(mb->ctx_buf); 19636 if (mp) { 19637 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 19638 kfree(mp); 19639 } 19640 mb->ctx_buf = NULL; 19641 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 19642 mb->ctx_ndlp = NULL; 19643 if (ndlp) { 19644 spin_lock(shost->host_lock); 19645 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19646 spin_unlock(shost->host_lock); 19647 lpfc_nlp_put(ndlp); 19648 } 19649 } 19650 mempool_free(mb, phba->mbox_mem_pool); 19651 } 19652 19653 /* Release the ndlp with the cleaned-up active mailbox command */ 19654 if (act_mbx_ndlp) { 19655 spin_lock(shost->host_lock); 19656 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19657 spin_unlock(shost->host_lock); 19658 lpfc_nlp_put(act_mbx_ndlp); 19659 } 19660 } 19661 19662 /** 19663 * lpfc_drain_txq - Drain the txq 19664 * @phba: Pointer to HBA context object. 19665 * 19666 * This function attempt to submit IOCBs on the txq 19667 * to the adapter. For SLI4 adapters, the txq contains 19668 * ELS IOCBs that have been deferred because the there 19669 * are no SGLs. This congestion can occur with large 19670 * vport counts during node discovery. 19671 **/ 19672 19673 uint32_t 19674 lpfc_drain_txq(struct lpfc_hba *phba) 19675 { 19676 LIST_HEAD(completions); 19677 struct lpfc_sli_ring *pring; 19678 struct lpfc_iocbq *piocbq = NULL; 19679 unsigned long iflags = 0; 19680 char *fail_msg = NULL; 19681 struct lpfc_sglq *sglq; 19682 union lpfc_wqe128 wqe; 19683 uint32_t txq_cnt = 0; 19684 struct lpfc_queue *wq; 19685 19686 if (phba->link_flag & LS_MDS_LOOPBACK) { 19687 /* MDS WQE are posted only to first WQ*/ 19688 wq = phba->sli4_hba.hdwq[0].io_wq; 19689 if (unlikely(!wq)) 19690 return 0; 19691 pring = wq->pring; 19692 } else { 19693 wq = phba->sli4_hba.els_wq; 19694 if (unlikely(!wq)) 19695 return 0; 19696 pring = lpfc_phba_elsring(phba); 19697 } 19698 19699 if (unlikely(!pring) || list_empty(&pring->txq)) 19700 return 0; 19701 19702 spin_lock_irqsave(&pring->ring_lock, iflags); 19703 list_for_each_entry(piocbq, &pring->txq, list) { 19704 txq_cnt++; 19705 } 19706 19707 if (txq_cnt > pring->txq_max) 19708 pring->txq_max = txq_cnt; 19709 19710 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19711 19712 while (!list_empty(&pring->txq)) { 19713 spin_lock_irqsave(&pring->ring_lock, iflags); 19714 19715 piocbq = lpfc_sli_ringtx_get(phba, pring); 19716 if (!piocbq) { 19717 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19718 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 19719 "2823 txq empty and txq_cnt is %d\n ", 19720 txq_cnt); 19721 break; 19722 } 19723 sglq = __lpfc_sli_get_els_sglq(phba, piocbq); 19724 if (!sglq) { 19725 __lpfc_sli_ringtx_put(phba, pring, piocbq); 19726 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19727 break; 19728 } 19729 txq_cnt--; 19730 19731 /* The xri and iocb resources secured, 19732 * attempt to issue request 19733 */ 19734 piocbq->sli4_lxritag = sglq->sli4_lxritag; 19735 piocbq->sli4_xritag = sglq->sli4_xritag; 19736 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 19737 fail_msg = "to convert bpl to sgl"; 19738 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 19739 fail_msg = "to convert iocb to wqe"; 19740 else if (lpfc_sli4_wq_put(wq, &wqe)) 19741 fail_msg = " - Wq is full"; 19742 else 19743 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 19744 19745 if (fail_msg) { 19746 /* Failed means we can't issue and need to cancel */ 19747 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 19748 "2822 IOCB failed %s iotag 0x%x " 19749 "xri 0x%x\n", 19750 fail_msg, 19751 piocbq->iotag, piocbq->sli4_xritag); 19752 list_add_tail(&piocbq->list, &completions); 19753 } 19754 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19755 } 19756 19757 /* Cancel all the IOCBs that cannot be issued */ 19758 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 19759 IOERR_SLI_ABORTED); 19760 19761 return txq_cnt; 19762 } 19763 19764 /** 19765 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 19766 * @phba: Pointer to HBA context object. 19767 * @pwqe: Pointer to command WQE. 19768 * @sglq: Pointer to the scatter gather queue object. 19769 * 19770 * This routine converts the bpl or bde that is in the WQE 19771 * to a sgl list for the sli4 hardware. The physical address 19772 * of the bpl/bde is converted back to a virtual address. 19773 * If the WQE contains a BPL then the list of BDE's is 19774 * converted to sli4_sge's. If the WQE contains a single 19775 * BDE then it is converted to a single sli_sge. 19776 * The WQE is still in cpu endianness so the contents of 19777 * the bpl can be used without byte swapping. 19778 * 19779 * Returns valid XRI = Success, NO_XRI = Failure. 19780 */ 19781 static uint16_t 19782 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 19783 struct lpfc_sglq *sglq) 19784 { 19785 uint16_t xritag = NO_XRI; 19786 struct ulp_bde64 *bpl = NULL; 19787 struct ulp_bde64 bde; 19788 struct sli4_sge *sgl = NULL; 19789 struct lpfc_dmabuf *dmabuf; 19790 union lpfc_wqe128 *wqe; 19791 int numBdes = 0; 19792 int i = 0; 19793 uint32_t offset = 0; /* accumulated offset in the sg request list */ 19794 int inbound = 0; /* number of sg reply entries inbound from firmware */ 19795 uint32_t cmd; 19796 19797 if (!pwqeq || !sglq) 19798 return xritag; 19799 19800 sgl = (struct sli4_sge *)sglq->sgl; 19801 wqe = &pwqeq->wqe; 19802 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 19803 19804 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 19805 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 19806 return sglq->sli4_xritag; 19807 numBdes = pwqeq->rsvd2; 19808 if (numBdes) { 19809 /* The addrHigh and addrLow fields within the WQE 19810 * have not been byteswapped yet so there is no 19811 * need to swap them back. 19812 */ 19813 if (pwqeq->context3) 19814 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 19815 else 19816 return xritag; 19817 19818 bpl = (struct ulp_bde64 *)dmabuf->virt; 19819 if (!bpl) 19820 return xritag; 19821 19822 for (i = 0; i < numBdes; i++) { 19823 /* Should already be byte swapped. */ 19824 sgl->addr_hi = bpl->addrHigh; 19825 sgl->addr_lo = bpl->addrLow; 19826 19827 sgl->word2 = le32_to_cpu(sgl->word2); 19828 if ((i+1) == numBdes) 19829 bf_set(lpfc_sli4_sge_last, sgl, 1); 19830 else 19831 bf_set(lpfc_sli4_sge_last, sgl, 0); 19832 /* swap the size field back to the cpu so we 19833 * can assign it to the sgl. 19834 */ 19835 bde.tus.w = le32_to_cpu(bpl->tus.w); 19836 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 19837 /* The offsets in the sgl need to be accumulated 19838 * separately for the request and reply lists. 19839 * The request is always first, the reply follows. 19840 */ 19841 switch (cmd) { 19842 case CMD_GEN_REQUEST64_WQE: 19843 /* add up the reply sg entries */ 19844 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 19845 inbound++; 19846 /* first inbound? reset the offset */ 19847 if (inbound == 1) 19848 offset = 0; 19849 bf_set(lpfc_sli4_sge_offset, sgl, offset); 19850 bf_set(lpfc_sli4_sge_type, sgl, 19851 LPFC_SGE_TYPE_DATA); 19852 offset += bde.tus.f.bdeSize; 19853 break; 19854 case CMD_FCP_TRSP64_WQE: 19855 bf_set(lpfc_sli4_sge_offset, sgl, 0); 19856 bf_set(lpfc_sli4_sge_type, sgl, 19857 LPFC_SGE_TYPE_DATA); 19858 break; 19859 case CMD_FCP_TSEND64_WQE: 19860 case CMD_FCP_TRECEIVE64_WQE: 19861 bf_set(lpfc_sli4_sge_type, sgl, 19862 bpl->tus.f.bdeFlags); 19863 if (i < 3) 19864 offset = 0; 19865 else 19866 offset += bde.tus.f.bdeSize; 19867 bf_set(lpfc_sli4_sge_offset, sgl, offset); 19868 break; 19869 } 19870 sgl->word2 = cpu_to_le32(sgl->word2); 19871 bpl++; 19872 sgl++; 19873 } 19874 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 19875 /* The addrHigh and addrLow fields of the BDE have not 19876 * been byteswapped yet so they need to be swapped 19877 * before putting them in the sgl. 19878 */ 19879 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 19880 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 19881 sgl->word2 = le32_to_cpu(sgl->word2); 19882 bf_set(lpfc_sli4_sge_last, sgl, 1); 19883 sgl->word2 = cpu_to_le32(sgl->word2); 19884 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 19885 } 19886 return sglq->sli4_xritag; 19887 } 19888 19889 /** 19890 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 19891 * @phba: Pointer to HBA context object. 19892 * @ring_number: Base sli ring number 19893 * @pwqe: Pointer to command WQE. 19894 **/ 19895 int 19896 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 19897 struct lpfc_iocbq *pwqe) 19898 { 19899 union lpfc_wqe128 *wqe = &pwqe->wqe; 19900 struct lpfc_nvmet_rcv_ctx *ctxp; 19901 struct lpfc_queue *wq; 19902 struct lpfc_sglq *sglq; 19903 struct lpfc_sli_ring *pring; 19904 unsigned long iflags; 19905 uint32_t ret = 0; 19906 19907 /* NVME_LS and NVME_LS ABTS requests. */ 19908 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { 19909 pring = phba->sli4_hba.nvmels_wq->pring; 19910 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 19911 qp, wq_access); 19912 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 19913 if (!sglq) { 19914 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19915 return WQE_BUSY; 19916 } 19917 pwqe->sli4_lxritag = sglq->sli4_lxritag; 19918 pwqe->sli4_xritag = sglq->sli4_xritag; 19919 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 19920 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19921 return WQE_ERROR; 19922 } 19923 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 19924 pwqe->sli4_xritag); 19925 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 19926 if (ret) { 19927 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19928 return ret; 19929 } 19930 19931 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 19932 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19933 19934 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 19935 return 0; 19936 } 19937 19938 /* NVME_FCREQ and NVME_ABTS requests */ 19939 if (pwqe->iocb_flag & LPFC_IO_NVME) { 19940 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 19941 wq = qp->io_wq; 19942 pring = wq->pring; 19943 19944 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 19945 19946 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 19947 qp, wq_access); 19948 ret = lpfc_sli4_wq_put(wq, wqe); 19949 if (ret) { 19950 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19951 return ret; 19952 } 19953 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 19954 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19955 19956 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 19957 return 0; 19958 } 19959 19960 /* NVMET requests */ 19961 if (pwqe->iocb_flag & LPFC_IO_NVMET) { 19962 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 19963 wq = qp->io_wq; 19964 pring = wq->pring; 19965 19966 ctxp = pwqe->context2; 19967 sglq = ctxp->ctxbuf->sglq; 19968 if (pwqe->sli4_xritag == NO_XRI) { 19969 pwqe->sli4_lxritag = sglq->sli4_lxritag; 19970 pwqe->sli4_xritag = sglq->sli4_xritag; 19971 } 19972 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 19973 pwqe->sli4_xritag); 19974 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 19975 19976 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 19977 qp, wq_access); 19978 ret = lpfc_sli4_wq_put(wq, wqe); 19979 if (ret) { 19980 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19981 return ret; 19982 } 19983 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 19984 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19985 19986 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 19987 return 0; 19988 } 19989 return WQE_ERROR; 19990 } 19991 19992 #ifdef LPFC_MXP_STAT 19993 /** 19994 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 19995 * @phba: pointer to lpfc hba data structure. 19996 * @hwqid: belong to which HWQ. 19997 * 19998 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 19999 * 15 seconds after a test case is running. 20000 * 20001 * The user should call lpfc_debugfs_multixripools_write before running a test 20002 * case to clear stat_snapshot_taken. Then the user starts a test case. During 20003 * test case is running, stat_snapshot_taken is incremented by 1 every time when 20004 * this routine is called from heartbeat timer. When stat_snapshot_taken is 20005 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 20006 **/ 20007 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 20008 { 20009 struct lpfc_sli4_hdw_queue *qp; 20010 struct lpfc_multixri_pool *multixri_pool; 20011 struct lpfc_pvt_pool *pvt_pool; 20012 struct lpfc_pbl_pool *pbl_pool; 20013 u32 txcmplq_cnt; 20014 20015 qp = &phba->sli4_hba.hdwq[hwqid]; 20016 multixri_pool = qp->p_multixri_pool; 20017 if (!multixri_pool) 20018 return; 20019 20020 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 20021 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20022 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20023 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20024 20025 multixri_pool->stat_pbl_count = pbl_pool->count; 20026 multixri_pool->stat_pvt_count = pvt_pool->count; 20027 multixri_pool->stat_busy_count = txcmplq_cnt; 20028 } 20029 20030 multixri_pool->stat_snapshot_taken++; 20031 } 20032 #endif 20033 20034 /** 20035 * lpfc_adjust_pvt_pool_count - Adjust private pool count 20036 * @phba: pointer to lpfc hba data structure. 20037 * @hwqid: belong to which HWQ. 20038 * 20039 * This routine moves some XRIs from private to public pool when private pool 20040 * is not busy. 20041 **/ 20042 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 20043 { 20044 struct lpfc_multixri_pool *multixri_pool; 20045 u32 io_req_count; 20046 u32 prev_io_req_count; 20047 20048 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 20049 if (!multixri_pool) 20050 return; 20051 io_req_count = multixri_pool->io_req_count; 20052 prev_io_req_count = multixri_pool->prev_io_req_count; 20053 20054 if (prev_io_req_count != io_req_count) { 20055 /* Private pool is busy */ 20056 multixri_pool->prev_io_req_count = io_req_count; 20057 } else { 20058 /* Private pool is not busy. 20059 * Move XRIs from private to public pool. 20060 */ 20061 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 20062 } 20063 } 20064 20065 /** 20066 * lpfc_adjust_high_watermark - Adjust high watermark 20067 * @phba: pointer to lpfc hba data structure. 20068 * @hwqid: belong to which HWQ. 20069 * 20070 * This routine sets high watermark as number of outstanding XRIs, 20071 * but make sure the new value is between xri_limit/2 and xri_limit. 20072 **/ 20073 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 20074 { 20075 u32 new_watermark; 20076 u32 watermark_max; 20077 u32 watermark_min; 20078 u32 xri_limit; 20079 u32 txcmplq_cnt; 20080 u32 abts_io_bufs; 20081 struct lpfc_multixri_pool *multixri_pool; 20082 struct lpfc_sli4_hdw_queue *qp; 20083 20084 qp = &phba->sli4_hba.hdwq[hwqid]; 20085 multixri_pool = qp->p_multixri_pool; 20086 if (!multixri_pool) 20087 return; 20088 xri_limit = multixri_pool->xri_limit; 20089 20090 watermark_max = xri_limit; 20091 watermark_min = xri_limit / 2; 20092 20093 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20094 abts_io_bufs = qp->abts_scsi_io_bufs; 20095 abts_io_bufs += qp->abts_nvme_io_bufs; 20096 20097 new_watermark = txcmplq_cnt + abts_io_bufs; 20098 new_watermark = min(watermark_max, new_watermark); 20099 new_watermark = max(watermark_min, new_watermark); 20100 multixri_pool->pvt_pool.high_watermark = new_watermark; 20101 20102 #ifdef LPFC_MXP_STAT 20103 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 20104 new_watermark); 20105 #endif 20106 } 20107 20108 /** 20109 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 20110 * @phba: pointer to lpfc hba data structure. 20111 * @hwqid: belong to which HWQ. 20112 * 20113 * This routine is called from hearbeat timer when pvt_pool is idle. 20114 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 20115 * The first step moves (all - low_watermark) amount of XRIs. 20116 * The second step moves the rest of XRIs. 20117 **/ 20118 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 20119 { 20120 struct lpfc_pbl_pool *pbl_pool; 20121 struct lpfc_pvt_pool *pvt_pool; 20122 struct lpfc_sli4_hdw_queue *qp; 20123 struct lpfc_io_buf *lpfc_ncmd; 20124 struct lpfc_io_buf *lpfc_ncmd_next; 20125 unsigned long iflag; 20126 struct list_head tmp_list; 20127 u32 tmp_count; 20128 20129 qp = &phba->sli4_hba.hdwq[hwqid]; 20130 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20131 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20132 tmp_count = 0; 20133 20134 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 20135 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 20136 20137 if (pvt_pool->count > pvt_pool->low_watermark) { 20138 /* Step 1: move (all - low_watermark) from pvt_pool 20139 * to pbl_pool 20140 */ 20141 20142 /* Move low watermark of bufs from pvt_pool to tmp_list */ 20143 INIT_LIST_HEAD(&tmp_list); 20144 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 20145 &pvt_pool->list, list) { 20146 list_move_tail(&lpfc_ncmd->list, &tmp_list); 20147 tmp_count++; 20148 if (tmp_count >= pvt_pool->low_watermark) 20149 break; 20150 } 20151 20152 /* Move all bufs from pvt_pool to pbl_pool */ 20153 list_splice_init(&pvt_pool->list, &pbl_pool->list); 20154 20155 /* Move all bufs from tmp_list to pvt_pool */ 20156 list_splice(&tmp_list, &pvt_pool->list); 20157 20158 pbl_pool->count += (pvt_pool->count - tmp_count); 20159 pvt_pool->count = tmp_count; 20160 } else { 20161 /* Step 2: move the rest from pvt_pool to pbl_pool */ 20162 list_splice_init(&pvt_pool->list, &pbl_pool->list); 20163 pbl_pool->count += pvt_pool->count; 20164 pvt_pool->count = 0; 20165 } 20166 20167 spin_unlock(&pvt_pool->lock); 20168 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20169 } 20170 20171 /** 20172 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 20173 * @phba: pointer to lpfc hba data structure 20174 * @pbl_pool: specified public free XRI pool 20175 * @pvt_pool: specified private free XRI pool 20176 * @count: number of XRIs to move 20177 * 20178 * This routine tries to move some free common bufs from the specified pbl_pool 20179 * to the specified pvt_pool. It might move less than count XRIs if there's not 20180 * enough in public pool. 20181 * 20182 * Return: 20183 * true - if XRIs are successfully moved from the specified pbl_pool to the 20184 * specified pvt_pool 20185 * false - if the specified pbl_pool is empty or locked by someone else 20186 **/ 20187 static bool 20188 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 20189 struct lpfc_pbl_pool *pbl_pool, 20190 struct lpfc_pvt_pool *pvt_pool, u32 count) 20191 { 20192 struct lpfc_io_buf *lpfc_ncmd; 20193 struct lpfc_io_buf *lpfc_ncmd_next; 20194 unsigned long iflag; 20195 int ret; 20196 20197 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 20198 if (ret) { 20199 if (pbl_pool->count) { 20200 /* Move a batch of XRIs from public to private pool */ 20201 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 20202 list_for_each_entry_safe(lpfc_ncmd, 20203 lpfc_ncmd_next, 20204 &pbl_pool->list, 20205 list) { 20206 list_move_tail(&lpfc_ncmd->list, 20207 &pvt_pool->list); 20208 pvt_pool->count++; 20209 pbl_pool->count--; 20210 count--; 20211 if (count == 0) 20212 break; 20213 } 20214 20215 spin_unlock(&pvt_pool->lock); 20216 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20217 return true; 20218 } 20219 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20220 } 20221 20222 return false; 20223 } 20224 20225 /** 20226 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 20227 * @phba: pointer to lpfc hba data structure. 20228 * @hwqid: belong to which HWQ. 20229 * @count: number of XRIs to move 20230 * 20231 * This routine tries to find some free common bufs in one of public pools with 20232 * Round Robin method. The search always starts from local hwqid, then the next 20233 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 20234 * a batch of free common bufs are moved to private pool on hwqid. 20235 * It might move less than count XRIs if there's not enough in public pool. 20236 **/ 20237 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 20238 { 20239 struct lpfc_multixri_pool *multixri_pool; 20240 struct lpfc_multixri_pool *next_multixri_pool; 20241 struct lpfc_pvt_pool *pvt_pool; 20242 struct lpfc_pbl_pool *pbl_pool; 20243 struct lpfc_sli4_hdw_queue *qp; 20244 u32 next_hwqid; 20245 u32 hwq_count; 20246 int ret; 20247 20248 qp = &phba->sli4_hba.hdwq[hwqid]; 20249 multixri_pool = qp->p_multixri_pool; 20250 pvt_pool = &multixri_pool->pvt_pool; 20251 pbl_pool = &multixri_pool->pbl_pool; 20252 20253 /* Check if local pbl_pool is available */ 20254 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 20255 if (ret) { 20256 #ifdef LPFC_MXP_STAT 20257 multixri_pool->local_pbl_hit_count++; 20258 #endif 20259 return; 20260 } 20261 20262 hwq_count = phba->cfg_hdw_queue; 20263 20264 /* Get the next hwqid which was found last time */ 20265 next_hwqid = multixri_pool->rrb_next_hwqid; 20266 20267 do { 20268 /* Go to next hwq */ 20269 next_hwqid = (next_hwqid + 1) % hwq_count; 20270 20271 next_multixri_pool = 20272 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 20273 pbl_pool = &next_multixri_pool->pbl_pool; 20274 20275 /* Check if the public free xri pool is available */ 20276 ret = _lpfc_move_xri_pbl_to_pvt( 20277 phba, qp, pbl_pool, pvt_pool, count); 20278 20279 /* Exit while-loop if success or all hwqid are checked */ 20280 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 20281 20282 /* Starting point for the next time */ 20283 multixri_pool->rrb_next_hwqid = next_hwqid; 20284 20285 if (!ret) { 20286 /* stats: all public pools are empty*/ 20287 multixri_pool->pbl_empty_count++; 20288 } 20289 20290 #ifdef LPFC_MXP_STAT 20291 if (ret) { 20292 if (next_hwqid == hwqid) 20293 multixri_pool->local_pbl_hit_count++; 20294 else 20295 multixri_pool->other_pbl_hit_count++; 20296 } 20297 #endif 20298 } 20299 20300 /** 20301 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 20302 * @phba: pointer to lpfc hba data structure. 20303 * @qp: belong to which HWQ. 20304 * 20305 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 20306 * low watermark. 20307 **/ 20308 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 20309 { 20310 struct lpfc_multixri_pool *multixri_pool; 20311 struct lpfc_pvt_pool *pvt_pool; 20312 20313 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 20314 pvt_pool = &multixri_pool->pvt_pool; 20315 20316 if (pvt_pool->count < pvt_pool->low_watermark) 20317 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 20318 } 20319 20320 /** 20321 * lpfc_release_io_buf - Return one IO buf back to free pool 20322 * @phba: pointer to lpfc hba data structure. 20323 * @lpfc_ncmd: IO buf to be returned. 20324 * @qp: belong to which HWQ. 20325 * 20326 * This routine returns one IO buf back to free pool. If this is an urgent IO, 20327 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 20328 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 20329 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 20330 * lpfc_io_buf_list_put. 20331 **/ 20332 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 20333 struct lpfc_sli4_hdw_queue *qp) 20334 { 20335 unsigned long iflag; 20336 struct lpfc_pbl_pool *pbl_pool; 20337 struct lpfc_pvt_pool *pvt_pool; 20338 struct lpfc_epd_pool *epd_pool; 20339 u32 txcmplq_cnt; 20340 u32 xri_owned; 20341 u32 xri_limit; 20342 u32 abts_io_bufs; 20343 20344 /* MUST zero fields if buffer is reused by another protocol */ 20345 lpfc_ncmd->nvmeCmd = NULL; 20346 lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL; 20347 lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL; 20348 20349 if (phba->cfg_xpsgl && !phba->nvmet_support && 20350 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 20351 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 20352 20353 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 20354 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 20355 20356 if (phba->cfg_xri_rebalancing) { 20357 if (lpfc_ncmd->expedite) { 20358 /* Return to expedite pool */ 20359 epd_pool = &phba->epd_pool; 20360 spin_lock_irqsave(&epd_pool->lock, iflag); 20361 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 20362 epd_pool->count++; 20363 spin_unlock_irqrestore(&epd_pool->lock, iflag); 20364 return; 20365 } 20366 20367 /* Avoid invalid access if an IO sneaks in and is being rejected 20368 * just _after_ xri pools are destroyed in lpfc_offline. 20369 * Nothing much can be done at this point. 20370 */ 20371 if (!qp->p_multixri_pool) 20372 return; 20373 20374 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20375 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20376 20377 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20378 abts_io_bufs = qp->abts_scsi_io_bufs; 20379 abts_io_bufs += qp->abts_nvme_io_bufs; 20380 20381 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 20382 xri_limit = qp->p_multixri_pool->xri_limit; 20383 20384 #ifdef LPFC_MXP_STAT 20385 if (xri_owned <= xri_limit) 20386 qp->p_multixri_pool->below_limit_count++; 20387 else 20388 qp->p_multixri_pool->above_limit_count++; 20389 #endif 20390 20391 /* XRI goes to either public or private free xri pool 20392 * based on watermark and xri_limit 20393 */ 20394 if ((pvt_pool->count < pvt_pool->low_watermark) || 20395 (xri_owned < xri_limit && 20396 pvt_pool->count < pvt_pool->high_watermark)) { 20397 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 20398 qp, free_pvt_pool); 20399 list_add_tail(&lpfc_ncmd->list, 20400 &pvt_pool->list); 20401 pvt_pool->count++; 20402 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 20403 } else { 20404 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 20405 qp, free_pub_pool); 20406 list_add_tail(&lpfc_ncmd->list, 20407 &pbl_pool->list); 20408 pbl_pool->count++; 20409 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20410 } 20411 } else { 20412 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 20413 qp, free_xri); 20414 list_add_tail(&lpfc_ncmd->list, 20415 &qp->lpfc_io_buf_list_put); 20416 qp->put_io_bufs++; 20417 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 20418 iflag); 20419 } 20420 } 20421 20422 /** 20423 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 20424 * @phba: pointer to lpfc hba data structure. 20425 * @pvt_pool: pointer to private pool data structure. 20426 * @ndlp: pointer to lpfc nodelist data structure. 20427 * 20428 * This routine tries to get one free IO buf from private pool. 20429 * 20430 * Return: 20431 * pointer to one free IO buf - if private pool is not empty 20432 * NULL - if private pool is empty 20433 **/ 20434 static struct lpfc_io_buf * 20435 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 20436 struct lpfc_sli4_hdw_queue *qp, 20437 struct lpfc_pvt_pool *pvt_pool, 20438 struct lpfc_nodelist *ndlp) 20439 { 20440 struct lpfc_io_buf *lpfc_ncmd; 20441 struct lpfc_io_buf *lpfc_ncmd_next; 20442 unsigned long iflag; 20443 20444 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 20445 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 20446 &pvt_pool->list, list) { 20447 if (lpfc_test_rrq_active( 20448 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 20449 continue; 20450 list_del(&lpfc_ncmd->list); 20451 pvt_pool->count--; 20452 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 20453 return lpfc_ncmd; 20454 } 20455 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 20456 20457 return NULL; 20458 } 20459 20460 /** 20461 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 20462 * @phba: pointer to lpfc hba data structure. 20463 * 20464 * This routine tries to get one free IO buf from expedite pool. 20465 * 20466 * Return: 20467 * pointer to one free IO buf - if expedite pool is not empty 20468 * NULL - if expedite pool is empty 20469 **/ 20470 static struct lpfc_io_buf * 20471 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 20472 { 20473 struct lpfc_io_buf *lpfc_ncmd; 20474 struct lpfc_io_buf *lpfc_ncmd_next; 20475 unsigned long iflag; 20476 struct lpfc_epd_pool *epd_pool; 20477 20478 epd_pool = &phba->epd_pool; 20479 lpfc_ncmd = NULL; 20480 20481 spin_lock_irqsave(&epd_pool->lock, iflag); 20482 if (epd_pool->count > 0) { 20483 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 20484 &epd_pool->list, list) { 20485 list_del(&lpfc_ncmd->list); 20486 epd_pool->count--; 20487 break; 20488 } 20489 } 20490 spin_unlock_irqrestore(&epd_pool->lock, iflag); 20491 20492 return lpfc_ncmd; 20493 } 20494 20495 /** 20496 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 20497 * @phba: pointer to lpfc hba data structure. 20498 * @ndlp: pointer to lpfc nodelist data structure. 20499 * @hwqid: belong to which HWQ 20500 * @expedite: 1 means this request is urgent. 20501 * 20502 * This routine will do the following actions and then return a pointer to 20503 * one free IO buf. 20504 * 20505 * 1. If private free xri count is empty, move some XRIs from public to 20506 * private pool. 20507 * 2. Get one XRI from private free xri pool. 20508 * 3. If we fail to get one from pvt_pool and this is an expedite request, 20509 * get one free xri from expedite pool. 20510 * 20511 * Note: ndlp is only used on SCSI side for RRQ testing. 20512 * The caller should pass NULL for ndlp on NVME side. 20513 * 20514 * Return: 20515 * pointer to one free IO buf - if private pool is not empty 20516 * NULL - if private pool is empty 20517 **/ 20518 static struct lpfc_io_buf * 20519 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 20520 struct lpfc_nodelist *ndlp, 20521 int hwqid, int expedite) 20522 { 20523 struct lpfc_sli4_hdw_queue *qp; 20524 struct lpfc_multixri_pool *multixri_pool; 20525 struct lpfc_pvt_pool *pvt_pool; 20526 struct lpfc_io_buf *lpfc_ncmd; 20527 20528 qp = &phba->sli4_hba.hdwq[hwqid]; 20529 lpfc_ncmd = NULL; 20530 multixri_pool = qp->p_multixri_pool; 20531 pvt_pool = &multixri_pool->pvt_pool; 20532 multixri_pool->io_req_count++; 20533 20534 /* If pvt_pool is empty, move some XRIs from public to private pool */ 20535 if (pvt_pool->count == 0) 20536 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 20537 20538 /* Get one XRI from private free xri pool */ 20539 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 20540 20541 if (lpfc_ncmd) { 20542 lpfc_ncmd->hdwq = qp; 20543 lpfc_ncmd->hdwq_no = hwqid; 20544 } else if (expedite) { 20545 /* If we fail to get one from pvt_pool and this is an expedite 20546 * request, get one free xri from expedite pool. 20547 */ 20548 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 20549 } 20550 20551 return lpfc_ncmd; 20552 } 20553 20554 static inline struct lpfc_io_buf * 20555 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 20556 { 20557 struct lpfc_sli4_hdw_queue *qp; 20558 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 20559 20560 qp = &phba->sli4_hba.hdwq[idx]; 20561 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 20562 &qp->lpfc_io_buf_list_get, list) { 20563 if (lpfc_test_rrq_active(phba, ndlp, 20564 lpfc_cmd->cur_iocbq.sli4_lxritag)) 20565 continue; 20566 20567 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 20568 continue; 20569 20570 list_del_init(&lpfc_cmd->list); 20571 qp->get_io_bufs--; 20572 lpfc_cmd->hdwq = qp; 20573 lpfc_cmd->hdwq_no = idx; 20574 return lpfc_cmd; 20575 } 20576 return NULL; 20577 } 20578 20579 /** 20580 * lpfc_get_io_buf - Get one IO buffer from free pool 20581 * @phba: The HBA for which this call is being executed. 20582 * @ndlp: pointer to lpfc nodelist data structure. 20583 * @hwqid: belong to which HWQ 20584 * @expedite: 1 means this request is urgent. 20585 * 20586 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 20587 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 20588 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 20589 * 20590 * Note: ndlp is only used on SCSI side for RRQ testing. 20591 * The caller should pass NULL for ndlp on NVME side. 20592 * 20593 * Return codes: 20594 * NULL - Error 20595 * Pointer to lpfc_io_buf - Success 20596 **/ 20597 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 20598 struct lpfc_nodelist *ndlp, 20599 u32 hwqid, int expedite) 20600 { 20601 struct lpfc_sli4_hdw_queue *qp; 20602 unsigned long iflag; 20603 struct lpfc_io_buf *lpfc_cmd; 20604 20605 qp = &phba->sli4_hba.hdwq[hwqid]; 20606 lpfc_cmd = NULL; 20607 20608 if (phba->cfg_xri_rebalancing) 20609 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 20610 phba, ndlp, hwqid, expedite); 20611 else { 20612 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 20613 qp, alloc_xri_get); 20614 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 20615 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 20616 if (!lpfc_cmd) { 20617 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 20618 qp, alloc_xri_put); 20619 list_splice(&qp->lpfc_io_buf_list_put, 20620 &qp->lpfc_io_buf_list_get); 20621 qp->get_io_bufs += qp->put_io_bufs; 20622 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 20623 qp->put_io_bufs = 0; 20624 spin_unlock(&qp->io_buf_list_put_lock); 20625 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 20626 expedite) 20627 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 20628 } 20629 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 20630 } 20631 20632 return lpfc_cmd; 20633 } 20634 20635 /** 20636 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 20637 * @phba: The HBA for which this call is being executed. 20638 * @lpfc_buf: IO buf structure to append the SGL chunk 20639 * 20640 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 20641 * and will allocate an SGL chunk if the pool is empty. 20642 * 20643 * Return codes: 20644 * NULL - Error 20645 * Pointer to sli4_hybrid_sgl - Success 20646 **/ 20647 struct sli4_hybrid_sgl * 20648 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 20649 { 20650 struct sli4_hybrid_sgl *list_entry = NULL; 20651 struct sli4_hybrid_sgl *tmp = NULL; 20652 struct sli4_hybrid_sgl *allocated_sgl = NULL; 20653 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 20654 struct list_head *buf_list = &hdwq->sgl_list; 20655 unsigned long iflags; 20656 20657 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20658 20659 if (likely(!list_empty(buf_list))) { 20660 /* break off 1 chunk from the sgl_list */ 20661 list_for_each_entry_safe(list_entry, tmp, 20662 buf_list, list_node) { 20663 list_move_tail(&list_entry->list_node, 20664 &lpfc_buf->dma_sgl_xtra_list); 20665 break; 20666 } 20667 } else { 20668 /* allocate more */ 20669 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20670 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 20671 cpu_to_node(hdwq->io_wq->chann)); 20672 if (!tmp) { 20673 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 20674 "8353 error kmalloc memory for HDWQ " 20675 "%d %s\n", 20676 lpfc_buf->hdwq_no, __func__); 20677 return NULL; 20678 } 20679 20680 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 20681 GFP_ATOMIC, &tmp->dma_phys_sgl); 20682 if (!tmp->dma_sgl) { 20683 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 20684 "8354 error pool_alloc memory for HDWQ " 20685 "%d %s\n", 20686 lpfc_buf->hdwq_no, __func__); 20687 kfree(tmp); 20688 return NULL; 20689 } 20690 20691 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20692 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 20693 } 20694 20695 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 20696 struct sli4_hybrid_sgl, 20697 list_node); 20698 20699 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20700 20701 return allocated_sgl; 20702 } 20703 20704 /** 20705 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 20706 * @phba: The HBA for which this call is being executed. 20707 * @lpfc_buf: IO buf structure with the SGL chunk 20708 * 20709 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 20710 * 20711 * Return codes: 20712 * 0 - Success 20713 * -EINVAL - Error 20714 **/ 20715 int 20716 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 20717 { 20718 int rc = 0; 20719 struct sli4_hybrid_sgl *list_entry = NULL; 20720 struct sli4_hybrid_sgl *tmp = NULL; 20721 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 20722 struct list_head *buf_list = &hdwq->sgl_list; 20723 unsigned long iflags; 20724 20725 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20726 20727 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 20728 list_for_each_entry_safe(list_entry, tmp, 20729 &lpfc_buf->dma_sgl_xtra_list, 20730 list_node) { 20731 list_move_tail(&list_entry->list_node, 20732 buf_list); 20733 } 20734 } else { 20735 rc = -EINVAL; 20736 } 20737 20738 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20739 return rc; 20740 } 20741 20742 /** 20743 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 20744 * @phba: phba object 20745 * @hdwq: hdwq to cleanup sgl buff resources on 20746 * 20747 * This routine frees all SGL chunks of hdwq SGL chunk pool. 20748 * 20749 * Return codes: 20750 * None 20751 **/ 20752 void 20753 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 20754 struct lpfc_sli4_hdw_queue *hdwq) 20755 { 20756 struct list_head *buf_list = &hdwq->sgl_list; 20757 struct sli4_hybrid_sgl *list_entry = NULL; 20758 struct sli4_hybrid_sgl *tmp = NULL; 20759 unsigned long iflags; 20760 20761 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20762 20763 /* Free sgl pool */ 20764 list_for_each_entry_safe(list_entry, tmp, 20765 buf_list, list_node) { 20766 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 20767 list_entry->dma_sgl, 20768 list_entry->dma_phys_sgl); 20769 list_del(&list_entry->list_node); 20770 kfree(list_entry); 20771 } 20772 20773 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20774 } 20775 20776 /** 20777 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 20778 * @phba: The HBA for which this call is being executed. 20779 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 20780 * 20781 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 20782 * and will allocate an CMD/RSP buffer if the pool is empty. 20783 * 20784 * Return codes: 20785 * NULL - Error 20786 * Pointer to fcp_cmd_rsp_buf - Success 20787 **/ 20788 struct fcp_cmd_rsp_buf * 20789 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 20790 struct lpfc_io_buf *lpfc_buf) 20791 { 20792 struct fcp_cmd_rsp_buf *list_entry = NULL; 20793 struct fcp_cmd_rsp_buf *tmp = NULL; 20794 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 20795 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 20796 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 20797 unsigned long iflags; 20798 20799 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20800 20801 if (likely(!list_empty(buf_list))) { 20802 /* break off 1 chunk from the list */ 20803 list_for_each_entry_safe(list_entry, tmp, 20804 buf_list, 20805 list_node) { 20806 list_move_tail(&list_entry->list_node, 20807 &lpfc_buf->dma_cmd_rsp_list); 20808 break; 20809 } 20810 } else { 20811 /* allocate more */ 20812 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20813 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 20814 cpu_to_node(hdwq->io_wq->chann)); 20815 if (!tmp) { 20816 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 20817 "8355 error kmalloc memory for HDWQ " 20818 "%d %s\n", 20819 lpfc_buf->hdwq_no, __func__); 20820 return NULL; 20821 } 20822 20823 tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool, 20824 GFP_ATOMIC, 20825 &tmp->fcp_cmd_rsp_dma_handle); 20826 20827 if (!tmp->fcp_cmnd) { 20828 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 20829 "8356 error pool_alloc memory for HDWQ " 20830 "%d %s\n", 20831 lpfc_buf->hdwq_no, __func__); 20832 kfree(tmp); 20833 return NULL; 20834 } 20835 20836 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 20837 sizeof(struct fcp_cmnd)); 20838 20839 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20840 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 20841 } 20842 20843 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 20844 struct fcp_cmd_rsp_buf, 20845 list_node); 20846 20847 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20848 20849 return allocated_buf; 20850 } 20851 20852 /** 20853 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 20854 * @phba: The HBA for which this call is being executed. 20855 * @lpfc_buf: IO buf structure with the CMD/RSP buf 20856 * 20857 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 20858 * 20859 * Return codes: 20860 * 0 - Success 20861 * -EINVAL - Error 20862 **/ 20863 int 20864 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 20865 struct lpfc_io_buf *lpfc_buf) 20866 { 20867 int rc = 0; 20868 struct fcp_cmd_rsp_buf *list_entry = NULL; 20869 struct fcp_cmd_rsp_buf *tmp = NULL; 20870 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 20871 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 20872 unsigned long iflags; 20873 20874 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20875 20876 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 20877 list_for_each_entry_safe(list_entry, tmp, 20878 &lpfc_buf->dma_cmd_rsp_list, 20879 list_node) { 20880 list_move_tail(&list_entry->list_node, 20881 buf_list); 20882 } 20883 } else { 20884 rc = -EINVAL; 20885 } 20886 20887 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20888 return rc; 20889 } 20890 20891 /** 20892 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 20893 * @phba: phba object 20894 * @hdwq: hdwq to cleanup cmd rsp buff resources on 20895 * 20896 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 20897 * 20898 * Return codes: 20899 * None 20900 **/ 20901 void 20902 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 20903 struct lpfc_sli4_hdw_queue *hdwq) 20904 { 20905 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 20906 struct fcp_cmd_rsp_buf *list_entry = NULL; 20907 struct fcp_cmd_rsp_buf *tmp = NULL; 20908 unsigned long iflags; 20909 20910 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20911 20912 /* Free cmd_rsp buf pool */ 20913 list_for_each_entry_safe(list_entry, tmp, 20914 buf_list, 20915 list_node) { 20916 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 20917 list_entry->fcp_cmnd, 20918 list_entry->fcp_cmd_rsp_dma_handle); 20919 list_del(&list_entry->list_node); 20920 kfree(list_entry); 20921 } 20922 20923 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20924 } 20925