1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2021 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 #include <linux/crash_dump.h> 39 #ifdef CONFIG_X86 40 #include <asm/set_memory.h> 41 #endif 42 43 #include "lpfc_hw4.h" 44 #include "lpfc_hw.h" 45 #include "lpfc_sli.h" 46 #include "lpfc_sli4.h" 47 #include "lpfc_nl.h" 48 #include "lpfc_disc.h" 49 #include "lpfc.h" 50 #include "lpfc_scsi.h" 51 #include "lpfc_nvme.h" 52 #include "lpfc_crtn.h" 53 #include "lpfc_logmsg.h" 54 #include "lpfc_compat.h" 55 #include "lpfc_debugfs.h" 56 #include "lpfc_vport.h" 57 #include "lpfc_version.h" 58 59 /* There are only four IOCB completion types. */ 60 typedef enum _lpfc_iocb_type { 61 LPFC_UNKNOWN_IOCB, 62 LPFC_UNSOL_IOCB, 63 LPFC_SOL_IOCB, 64 LPFC_ABORT_IOCB 65 } lpfc_iocb_type; 66 67 68 /* Provide function prototypes local to this module. */ 69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 70 uint32_t); 71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint8_t *, uint32_t *); 73 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 74 struct lpfc_iocbq *); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 80 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_queue *eq, 85 struct lpfc_eqe *eqe); 86 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 87 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 88 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 89 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 90 struct lpfc_queue *cq, 91 struct lpfc_cqe *cqe); 92 93 union lpfc_wqe128 lpfc_iread_cmd_template; 94 union lpfc_wqe128 lpfc_iwrite_cmd_template; 95 union lpfc_wqe128 lpfc_icmnd_cmd_template; 96 97 static IOCB_t * 98 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 99 { 100 return &iocbq->iocb; 101 } 102 103 /* Setup WQE templates for IOs */ 104 void lpfc_wqe_cmd_template(void) 105 { 106 union lpfc_wqe128 *wqe; 107 108 /* IREAD template */ 109 wqe = &lpfc_iread_cmd_template; 110 memset(wqe, 0, sizeof(union lpfc_wqe128)); 111 112 /* Word 0, 1, 2 - BDE is variable */ 113 114 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 115 116 /* Word 4 - total_xfer_len is variable */ 117 118 /* Word 5 - is zero */ 119 120 /* Word 6 - ctxt_tag, xri_tag is variable */ 121 122 /* Word 7 */ 123 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 124 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 125 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 126 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 127 128 /* Word 8 - abort_tag is variable */ 129 130 /* Word 9 - reqtag is variable */ 131 132 /* Word 10 - dbde, wqes is variable */ 133 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 134 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 135 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 136 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 137 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 138 139 /* Word 11 - pbde is variable */ 140 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 141 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 142 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 143 144 /* Word 12 - is zero */ 145 146 /* Word 13, 14, 15 - PBDE is variable */ 147 148 /* IWRITE template */ 149 wqe = &lpfc_iwrite_cmd_template; 150 memset(wqe, 0, sizeof(union lpfc_wqe128)); 151 152 /* Word 0, 1, 2 - BDE is variable */ 153 154 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 155 156 /* Word 4 - total_xfer_len is variable */ 157 158 /* Word 5 - initial_xfer_len is variable */ 159 160 /* Word 6 - ctxt_tag, xri_tag is variable */ 161 162 /* Word 7 */ 163 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 164 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 165 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 166 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 167 168 /* Word 8 - abort_tag is variable */ 169 170 /* Word 9 - reqtag is variable */ 171 172 /* Word 10 - dbde, wqes is variable */ 173 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 174 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 175 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 176 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 177 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 178 179 /* Word 11 - pbde is variable */ 180 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 181 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 182 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 183 184 /* Word 12 - is zero */ 185 186 /* Word 13, 14, 15 - PBDE is variable */ 187 188 /* ICMND template */ 189 wqe = &lpfc_icmnd_cmd_template; 190 memset(wqe, 0, sizeof(union lpfc_wqe128)); 191 192 /* Word 0, 1, 2 - BDE is variable */ 193 194 /* Word 3 - payload_offset_len is variable */ 195 196 /* Word 4, 5 - is zero */ 197 198 /* Word 6 - ctxt_tag, xri_tag is variable */ 199 200 /* Word 7 */ 201 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 202 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 203 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 204 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 205 206 /* Word 8 - abort_tag is variable */ 207 208 /* Word 9 - reqtag is variable */ 209 210 /* Word 10 - dbde, wqes is variable */ 211 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 212 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 213 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 214 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 215 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 216 217 /* Word 11 */ 218 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 219 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 220 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 221 222 /* Word 12, 13, 14, 15 - is zero */ 223 } 224 225 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 226 /** 227 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 228 * @srcp: Source memory pointer. 229 * @destp: Destination memory pointer. 230 * @cnt: Number of words required to be copied. 231 * Must be a multiple of sizeof(uint64_t) 232 * 233 * This function is used for copying data between driver memory 234 * and the SLI WQ. This function also changes the endianness 235 * of each word if native endianness is different from SLI 236 * endianness. This function can be called with or without 237 * lock. 238 **/ 239 static void 240 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 241 { 242 uint64_t *src = srcp; 243 uint64_t *dest = destp; 244 int i; 245 246 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 247 *dest++ = *src++; 248 } 249 #else 250 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 251 #endif 252 253 /** 254 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 255 * @q: The Work Queue to operate on. 256 * @wqe: The work Queue Entry to put on the Work queue. 257 * 258 * This routine will copy the contents of @wqe to the next available entry on 259 * the @q. This function will then ring the Work Queue Doorbell to signal the 260 * HBA to start processing the Work Queue Entry. This function returns 0 if 261 * successful. If no entries are available on @q then this function will return 262 * -ENOMEM. 263 * The caller is expected to hold the hbalock when calling this routine. 264 **/ 265 static int 266 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 267 { 268 union lpfc_wqe *temp_wqe; 269 struct lpfc_register doorbell; 270 uint32_t host_index; 271 uint32_t idx; 272 uint32_t i = 0; 273 uint8_t *tmp; 274 u32 if_type; 275 276 /* sanity check on queue memory */ 277 if (unlikely(!q)) 278 return -ENOMEM; 279 280 temp_wqe = lpfc_sli4_qe(q, q->host_index); 281 282 /* If the host has not yet processed the next entry then we are done */ 283 idx = ((q->host_index + 1) % q->entry_count); 284 if (idx == q->hba_index) { 285 q->WQ_overflow++; 286 return -EBUSY; 287 } 288 q->WQ_posted++; 289 /* set consumption flag every once in a while */ 290 if (!((q->host_index + 1) % q->notify_interval)) 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 292 else 293 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 294 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 295 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 296 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 297 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 298 /* write to DPP aperture taking advatage of Combined Writes */ 299 tmp = (uint8_t *)temp_wqe; 300 #ifdef __raw_writeq 301 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 302 __raw_writeq(*((uint64_t *)(tmp + i)), 303 q->dpp_regaddr + i); 304 #else 305 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 306 __raw_writel(*((uint32_t *)(tmp + i)), 307 q->dpp_regaddr + i); 308 #endif 309 } 310 /* ensure WQE bcopy and DPP flushed before doorbell write */ 311 wmb(); 312 313 /* Update the host index before invoking device */ 314 host_index = q->host_index; 315 316 q->host_index = idx; 317 318 /* Ring Doorbell */ 319 doorbell.word0 = 0; 320 if (q->db_format == LPFC_DB_LIST_FORMAT) { 321 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 322 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 323 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 324 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 325 q->dpp_id); 326 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 327 q->queue_id); 328 } else { 329 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 330 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 331 332 /* Leave bits <23:16> clear for if_type 6 dpp */ 333 if_type = bf_get(lpfc_sli_intf_if_type, 334 &q->phba->sli4_hba.sli_intf); 335 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 336 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 337 host_index); 338 } 339 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 340 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 341 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 342 } else { 343 return -EINVAL; 344 } 345 writel(doorbell.word0, q->db_regaddr); 346 347 return 0; 348 } 349 350 /** 351 * lpfc_sli4_wq_release - Updates internal hba index for WQ 352 * @q: The Work Queue to operate on. 353 * @index: The index to advance the hba index to. 354 * 355 * This routine will update the HBA index of a queue to reflect consumption of 356 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 357 * an entry the host calls this function to update the queue's internal 358 * pointers. 359 **/ 360 static void 361 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 362 { 363 /* sanity check on queue memory */ 364 if (unlikely(!q)) 365 return; 366 367 q->hba_index = index; 368 } 369 370 /** 371 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 372 * @q: The Mailbox Queue to operate on. 373 * @mqe: The Mailbox Queue Entry to put on the Work queue. 374 * 375 * This routine will copy the contents of @mqe to the next available entry on 376 * the @q. This function will then ring the Work Queue Doorbell to signal the 377 * HBA to start processing the Work Queue Entry. This function returns 0 if 378 * successful. If no entries are available on @q then this function will return 379 * -ENOMEM. 380 * The caller is expected to hold the hbalock when calling this routine. 381 **/ 382 static uint32_t 383 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 384 { 385 struct lpfc_mqe *temp_mqe; 386 struct lpfc_register doorbell; 387 388 /* sanity check on queue memory */ 389 if (unlikely(!q)) 390 return -ENOMEM; 391 temp_mqe = lpfc_sli4_qe(q, q->host_index); 392 393 /* If the host has not yet processed the next entry then we are done */ 394 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 395 return -ENOMEM; 396 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 397 /* Save off the mailbox pointer for completion */ 398 q->phba->mbox = (MAILBOX_t *)temp_mqe; 399 400 /* Update the host index before invoking device */ 401 q->host_index = ((q->host_index + 1) % q->entry_count); 402 403 /* Ring Doorbell */ 404 doorbell.word0 = 0; 405 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 406 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 407 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 408 return 0; 409 } 410 411 /** 412 * lpfc_sli4_mq_release - Updates internal hba index for MQ 413 * @q: The Mailbox Queue to operate on. 414 * 415 * This routine will update the HBA index of a queue to reflect consumption of 416 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 417 * an entry the host calls this function to update the queue's internal 418 * pointers. This routine returns the number of entries that were consumed by 419 * the HBA. 420 **/ 421 static uint32_t 422 lpfc_sli4_mq_release(struct lpfc_queue *q) 423 { 424 /* sanity check on queue memory */ 425 if (unlikely(!q)) 426 return 0; 427 428 /* Clear the mailbox pointer for completion */ 429 q->phba->mbox = NULL; 430 q->hba_index = ((q->hba_index + 1) % q->entry_count); 431 return 1; 432 } 433 434 /** 435 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 436 * @q: The Event Queue to get the first valid EQE from 437 * 438 * This routine will get the first valid Event Queue Entry from @q, update 439 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 440 * the Queue (no more work to do), or the Queue is full of EQEs that have been 441 * processed, but not popped back to the HBA then this routine will return NULL. 442 **/ 443 static struct lpfc_eqe * 444 lpfc_sli4_eq_get(struct lpfc_queue *q) 445 { 446 struct lpfc_eqe *eqe; 447 448 /* sanity check on queue memory */ 449 if (unlikely(!q)) 450 return NULL; 451 eqe = lpfc_sli4_qe(q, q->host_index); 452 453 /* If the next EQE is not valid then we are done */ 454 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 455 return NULL; 456 457 /* 458 * insert barrier for instruction interlock : data from the hardware 459 * must have the valid bit checked before it can be copied and acted 460 * upon. Speculative instructions were allowing a bcopy at the start 461 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 462 * after our return, to copy data before the valid bit check above 463 * was done. As such, some of the copied data was stale. The barrier 464 * ensures the check is before any data is copied. 465 */ 466 mb(); 467 return eqe; 468 } 469 470 /** 471 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 472 * @q: The Event Queue to disable interrupts 473 * 474 **/ 475 void 476 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 477 { 478 struct lpfc_register doorbell; 479 480 doorbell.word0 = 0; 481 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 482 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 483 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 484 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 485 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 486 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 487 } 488 489 /** 490 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 491 * @q: The Event Queue to disable interrupts 492 * 493 **/ 494 void 495 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 496 { 497 struct lpfc_register doorbell; 498 499 doorbell.word0 = 0; 500 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 501 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 502 } 503 504 /** 505 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 506 * @phba: adapter with EQ 507 * @q: The Event Queue that the host has completed processing for. 508 * @count: Number of elements that have been consumed 509 * @arm: Indicates whether the host wants to arms this CQ. 510 * 511 * This routine will notify the HBA, by ringing the doorbell, that count 512 * number of EQEs have been processed. The @arm parameter indicates whether 513 * the queue should be rearmed when ringing the doorbell. 514 **/ 515 void 516 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 517 uint32_t count, bool arm) 518 { 519 struct lpfc_register doorbell; 520 521 /* sanity check on queue memory */ 522 if (unlikely(!q || (count == 0 && !arm))) 523 return; 524 525 /* ring doorbell for number popped */ 526 doorbell.word0 = 0; 527 if (arm) { 528 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 529 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 530 } 531 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 532 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 533 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 534 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 535 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 536 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 537 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 538 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 539 readl(q->phba->sli4_hba.EQDBregaddr); 540 } 541 542 /** 543 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 544 * @phba: adapter with EQ 545 * @q: The Event Queue that the host has completed processing for. 546 * @count: Number of elements that have been consumed 547 * @arm: Indicates whether the host wants to arms this CQ. 548 * 549 * This routine will notify the HBA, by ringing the doorbell, that count 550 * number of EQEs have been processed. The @arm parameter indicates whether 551 * the queue should be rearmed when ringing the doorbell. 552 **/ 553 void 554 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 555 uint32_t count, bool arm) 556 { 557 struct lpfc_register doorbell; 558 559 /* sanity check on queue memory */ 560 if (unlikely(!q || (count == 0 && !arm))) 561 return; 562 563 /* ring doorbell for number popped */ 564 doorbell.word0 = 0; 565 if (arm) 566 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 567 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 568 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 569 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 570 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 571 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 572 readl(q->phba->sli4_hba.EQDBregaddr); 573 } 574 575 static void 576 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 577 struct lpfc_eqe *eqe) 578 { 579 if (!phba->sli4_hba.pc_sli4_params.eqav) 580 bf_set_le32(lpfc_eqe_valid, eqe, 0); 581 582 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 583 584 /* if the index wrapped around, toggle the valid bit */ 585 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 586 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 587 } 588 589 static void 590 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 591 { 592 struct lpfc_eqe *eqe = NULL; 593 u32 eq_count = 0, cq_count = 0; 594 struct lpfc_cqe *cqe = NULL; 595 struct lpfc_queue *cq = NULL, *childq = NULL; 596 int cqid = 0; 597 598 /* walk all the EQ entries and drop on the floor */ 599 eqe = lpfc_sli4_eq_get(eq); 600 while (eqe) { 601 /* Get the reference to the corresponding CQ */ 602 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 603 cq = NULL; 604 605 list_for_each_entry(childq, &eq->child_list, list) { 606 if (childq->queue_id == cqid) { 607 cq = childq; 608 break; 609 } 610 } 611 /* If CQ is valid, iterate through it and drop all the CQEs */ 612 if (cq) { 613 cqe = lpfc_sli4_cq_get(cq); 614 while (cqe) { 615 __lpfc_sli4_consume_cqe(phba, cq, cqe); 616 cq_count++; 617 cqe = lpfc_sli4_cq_get(cq); 618 } 619 /* Clear and re-arm the CQ */ 620 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 621 LPFC_QUEUE_REARM); 622 cq_count = 0; 623 } 624 __lpfc_sli4_consume_eqe(phba, eq, eqe); 625 eq_count++; 626 eqe = lpfc_sli4_eq_get(eq); 627 } 628 629 /* Clear and re-arm the EQ */ 630 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 631 } 632 633 static int 634 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 635 uint8_t rearm) 636 { 637 struct lpfc_eqe *eqe; 638 int count = 0, consumed = 0; 639 640 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 641 goto rearm_and_exit; 642 643 eqe = lpfc_sli4_eq_get(eq); 644 while (eqe) { 645 lpfc_sli4_hba_handle_eqe(phba, eq, eqe); 646 __lpfc_sli4_consume_eqe(phba, eq, eqe); 647 648 consumed++; 649 if (!(++count % eq->max_proc_limit)) 650 break; 651 652 if (!(count % eq->notify_interval)) { 653 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 654 LPFC_QUEUE_NOARM); 655 consumed = 0; 656 } 657 658 eqe = lpfc_sli4_eq_get(eq); 659 } 660 eq->EQ_processed += count; 661 662 /* Track the max number of EQEs processed in 1 intr */ 663 if (count > eq->EQ_max_eqe) 664 eq->EQ_max_eqe = count; 665 666 xchg(&eq->queue_claimed, 0); 667 668 rearm_and_exit: 669 /* Always clear the EQ. */ 670 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 671 672 return count; 673 } 674 675 /** 676 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 677 * @q: The Completion Queue to get the first valid CQE from 678 * 679 * This routine will get the first valid Completion Queue Entry from @q, update 680 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 681 * the Queue (no more work to do), or the Queue is full of CQEs that have been 682 * processed, but not popped back to the HBA then this routine will return NULL. 683 **/ 684 static struct lpfc_cqe * 685 lpfc_sli4_cq_get(struct lpfc_queue *q) 686 { 687 struct lpfc_cqe *cqe; 688 689 /* sanity check on queue memory */ 690 if (unlikely(!q)) 691 return NULL; 692 cqe = lpfc_sli4_qe(q, q->host_index); 693 694 /* If the next CQE is not valid then we are done */ 695 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 696 return NULL; 697 698 /* 699 * insert barrier for instruction interlock : data from the hardware 700 * must have the valid bit checked before it can be copied and acted 701 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 702 * instructions allowing action on content before valid bit checked, 703 * add barrier here as well. May not be needed as "content" is a 704 * single 32-bit entity here (vs multi word structure for cq's). 705 */ 706 mb(); 707 return cqe; 708 } 709 710 static void 711 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 712 struct lpfc_cqe *cqe) 713 { 714 if (!phba->sli4_hba.pc_sli4_params.cqav) 715 bf_set_le32(lpfc_cqe_valid, cqe, 0); 716 717 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 718 719 /* if the index wrapped around, toggle the valid bit */ 720 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 721 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 722 } 723 724 /** 725 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 726 * @phba: the adapter with the CQ 727 * @q: The Completion Queue that the host has completed processing for. 728 * @count: the number of elements that were consumed 729 * @arm: Indicates whether the host wants to arms this CQ. 730 * 731 * This routine will notify the HBA, by ringing the doorbell, that the 732 * CQEs have been processed. The @arm parameter specifies whether the 733 * queue should be rearmed when ringing the doorbell. 734 **/ 735 void 736 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 737 uint32_t count, bool arm) 738 { 739 struct lpfc_register doorbell; 740 741 /* sanity check on queue memory */ 742 if (unlikely(!q || (count == 0 && !arm))) 743 return; 744 745 /* ring doorbell for number popped */ 746 doorbell.word0 = 0; 747 if (arm) 748 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 749 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 750 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 751 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 752 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 753 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 754 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 755 } 756 757 /** 758 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 759 * @phba: the adapter with the CQ 760 * @q: The Completion Queue that the host has completed processing for. 761 * @count: the number of elements that were consumed 762 * @arm: Indicates whether the host wants to arms this CQ. 763 * 764 * This routine will notify the HBA, by ringing the doorbell, that the 765 * CQEs have been processed. The @arm parameter specifies whether the 766 * queue should be rearmed when ringing the doorbell. 767 **/ 768 void 769 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 770 uint32_t count, bool arm) 771 { 772 struct lpfc_register doorbell; 773 774 /* sanity check on queue memory */ 775 if (unlikely(!q || (count == 0 && !arm))) 776 return; 777 778 /* ring doorbell for number popped */ 779 doorbell.word0 = 0; 780 if (arm) 781 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 782 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 783 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 784 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 785 } 786 787 /* 788 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 789 * 790 * This routine will copy the contents of @wqe to the next available entry on 791 * the @q. This function will then ring the Receive Queue Doorbell to signal the 792 * HBA to start processing the Receive Queue Entry. This function returns the 793 * index that the rqe was copied to if successful. If no entries are available 794 * on @q then this function will return -ENOMEM. 795 * The caller is expected to hold the hbalock when calling this routine. 796 **/ 797 int 798 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 799 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 800 { 801 struct lpfc_rqe *temp_hrqe; 802 struct lpfc_rqe *temp_drqe; 803 struct lpfc_register doorbell; 804 int hq_put_index; 805 int dq_put_index; 806 807 /* sanity check on queue memory */ 808 if (unlikely(!hq) || unlikely(!dq)) 809 return -ENOMEM; 810 hq_put_index = hq->host_index; 811 dq_put_index = dq->host_index; 812 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 813 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 814 815 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 816 return -EINVAL; 817 if (hq_put_index != dq_put_index) 818 return -EINVAL; 819 /* If the host has not yet processed the next entry then we are done */ 820 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 821 return -EBUSY; 822 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 823 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 824 825 /* Update the host index to point to the next slot */ 826 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 827 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 828 hq->RQ_buf_posted++; 829 830 /* Ring The Header Receive Queue Doorbell */ 831 if (!(hq->host_index % hq->notify_interval)) { 832 doorbell.word0 = 0; 833 if (hq->db_format == LPFC_DB_RING_FORMAT) { 834 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 835 hq->notify_interval); 836 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 837 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 838 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 839 hq->notify_interval); 840 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 841 hq->host_index); 842 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 843 } else { 844 return -EINVAL; 845 } 846 writel(doorbell.word0, hq->db_regaddr); 847 } 848 return hq_put_index; 849 } 850 851 /* 852 * lpfc_sli4_rq_release - Updates internal hba index for RQ 853 * 854 * This routine will update the HBA index of a queue to reflect consumption of 855 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 856 * consumed an entry the host calls this function to update the queue's 857 * internal pointers. This routine returns the number of entries that were 858 * consumed by the HBA. 859 **/ 860 static uint32_t 861 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 862 { 863 /* sanity check on queue memory */ 864 if (unlikely(!hq) || unlikely(!dq)) 865 return 0; 866 867 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 868 return 0; 869 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 870 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 871 return 1; 872 } 873 874 /** 875 * lpfc_cmd_iocb - Get next command iocb entry in the ring 876 * @phba: Pointer to HBA context object. 877 * @pring: Pointer to driver SLI ring object. 878 * 879 * This function returns pointer to next command iocb entry 880 * in the command ring. The caller must hold hbalock to prevent 881 * other threads consume the next command iocb. 882 * SLI-2/SLI-3 provide different sized iocbs. 883 **/ 884 static inline IOCB_t * 885 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 886 { 887 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 888 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 889 } 890 891 /** 892 * lpfc_resp_iocb - Get next response iocb entry in the ring 893 * @phba: Pointer to HBA context object. 894 * @pring: Pointer to driver SLI ring object. 895 * 896 * This function returns pointer to next response iocb entry 897 * in the response ring. The caller must hold hbalock to make sure 898 * that no other thread consume the next response iocb. 899 * SLI-2/SLI-3 provide different sized iocbs. 900 **/ 901 static inline IOCB_t * 902 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 903 { 904 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 905 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 906 } 907 908 /** 909 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 910 * @phba: Pointer to HBA context object. 911 * 912 * This function is called with hbalock held. This function 913 * allocates a new driver iocb object from the iocb pool. If the 914 * allocation is successful, it returns pointer to the newly 915 * allocated iocb object else it returns NULL. 916 **/ 917 struct lpfc_iocbq * 918 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 919 { 920 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 921 struct lpfc_iocbq * iocbq = NULL; 922 923 lockdep_assert_held(&phba->hbalock); 924 925 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 926 if (iocbq) 927 phba->iocb_cnt++; 928 if (phba->iocb_cnt > phba->iocb_max) 929 phba->iocb_max = phba->iocb_cnt; 930 return iocbq; 931 } 932 933 /** 934 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 935 * @phba: Pointer to HBA context object. 936 * @xritag: XRI value. 937 * 938 * This function clears the sglq pointer from the array of active 939 * sglq's. The xritag that is passed in is used to index into the 940 * array. Before the xritag can be used it needs to be adjusted 941 * by subtracting the xribase. 942 * 943 * Returns sglq ponter = success, NULL = Failure. 944 **/ 945 struct lpfc_sglq * 946 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 947 { 948 struct lpfc_sglq *sglq; 949 950 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 951 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 952 return sglq; 953 } 954 955 /** 956 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 957 * @phba: Pointer to HBA context object. 958 * @xritag: XRI value. 959 * 960 * This function returns the sglq pointer from the array of active 961 * sglq's. The xritag that is passed in is used to index into the 962 * array. Before the xritag can be used it needs to be adjusted 963 * by subtracting the xribase. 964 * 965 * Returns sglq ponter = success, NULL = Failure. 966 **/ 967 struct lpfc_sglq * 968 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 969 { 970 struct lpfc_sglq *sglq; 971 972 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 973 return sglq; 974 } 975 976 /** 977 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 978 * @phba: Pointer to HBA context object. 979 * @xritag: xri used in this exchange. 980 * @rrq: The RRQ to be cleared. 981 * 982 **/ 983 void 984 lpfc_clr_rrq_active(struct lpfc_hba *phba, 985 uint16_t xritag, 986 struct lpfc_node_rrq *rrq) 987 { 988 struct lpfc_nodelist *ndlp = NULL; 989 990 /* Lookup did to verify if did is still active on this vport */ 991 if (rrq->vport) 992 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 993 994 if (!ndlp) 995 goto out; 996 997 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 998 rrq->send_rrq = 0; 999 rrq->xritag = 0; 1000 rrq->rrq_stop_time = 0; 1001 } 1002 out: 1003 mempool_free(rrq, phba->rrq_pool); 1004 } 1005 1006 /** 1007 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1008 * @phba: Pointer to HBA context object. 1009 * 1010 * This function is called with hbalock held. This function 1011 * Checks if stop_time (ratov from setting rrq active) has 1012 * been reached, if it has and the send_rrq flag is set then 1013 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1014 * then it will just call the routine to clear the rrq and 1015 * free the rrq resource. 1016 * The timer is set to the next rrq that is going to expire before 1017 * leaving the routine. 1018 * 1019 **/ 1020 void 1021 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1022 { 1023 struct lpfc_node_rrq *rrq; 1024 struct lpfc_node_rrq *nextrrq; 1025 unsigned long next_time; 1026 unsigned long iflags; 1027 LIST_HEAD(send_rrq); 1028 1029 spin_lock_irqsave(&phba->hbalock, iflags); 1030 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1031 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1032 list_for_each_entry_safe(rrq, nextrrq, 1033 &phba->active_rrq_list, list) { 1034 if (time_after(jiffies, rrq->rrq_stop_time)) 1035 list_move(&rrq->list, &send_rrq); 1036 else if (time_before(rrq->rrq_stop_time, next_time)) 1037 next_time = rrq->rrq_stop_time; 1038 } 1039 spin_unlock_irqrestore(&phba->hbalock, iflags); 1040 if ((!list_empty(&phba->active_rrq_list)) && 1041 (!(phba->pport->load_flag & FC_UNLOADING))) 1042 mod_timer(&phba->rrq_tmr, next_time); 1043 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1044 list_del(&rrq->list); 1045 if (!rrq->send_rrq) { 1046 /* this call will free the rrq */ 1047 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1048 } else if (lpfc_send_rrq(phba, rrq)) { 1049 /* if we send the rrq then the completion handler 1050 * will clear the bit in the xribitmap. 1051 */ 1052 lpfc_clr_rrq_active(phba, rrq->xritag, 1053 rrq); 1054 } 1055 } 1056 } 1057 1058 /** 1059 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1060 * @vport: Pointer to vport context object. 1061 * @xri: The xri used in the exchange. 1062 * @did: The targets DID for this exchange. 1063 * 1064 * returns NULL = rrq not found in the phba->active_rrq_list. 1065 * rrq = rrq for this xri and target. 1066 **/ 1067 struct lpfc_node_rrq * 1068 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1069 { 1070 struct lpfc_hba *phba = vport->phba; 1071 struct lpfc_node_rrq *rrq; 1072 struct lpfc_node_rrq *nextrrq; 1073 unsigned long iflags; 1074 1075 if (phba->sli_rev != LPFC_SLI_REV4) 1076 return NULL; 1077 spin_lock_irqsave(&phba->hbalock, iflags); 1078 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1079 if (rrq->vport == vport && rrq->xritag == xri && 1080 rrq->nlp_DID == did){ 1081 list_del(&rrq->list); 1082 spin_unlock_irqrestore(&phba->hbalock, iflags); 1083 return rrq; 1084 } 1085 } 1086 spin_unlock_irqrestore(&phba->hbalock, iflags); 1087 return NULL; 1088 } 1089 1090 /** 1091 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1092 * @vport: Pointer to vport context object. 1093 * @ndlp: Pointer to the lpfc_node_list structure. 1094 * If ndlp is NULL Remove all active RRQs for this vport from the 1095 * phba->active_rrq_list and clear the rrq. 1096 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1097 **/ 1098 void 1099 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1100 1101 { 1102 struct lpfc_hba *phba = vport->phba; 1103 struct lpfc_node_rrq *rrq; 1104 struct lpfc_node_rrq *nextrrq; 1105 unsigned long iflags; 1106 LIST_HEAD(rrq_list); 1107 1108 if (phba->sli_rev != LPFC_SLI_REV4) 1109 return; 1110 if (!ndlp) { 1111 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1112 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1113 } 1114 spin_lock_irqsave(&phba->hbalock, iflags); 1115 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1116 if (rrq->vport != vport) 1117 continue; 1118 1119 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1120 list_move(&rrq->list, &rrq_list); 1121 1122 } 1123 spin_unlock_irqrestore(&phba->hbalock, iflags); 1124 1125 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1126 list_del(&rrq->list); 1127 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1128 } 1129 } 1130 1131 /** 1132 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1133 * @phba: Pointer to HBA context object. 1134 * @ndlp: Targets nodelist pointer for this exchange. 1135 * @xritag: the xri in the bitmap to test. 1136 * 1137 * This function returns: 1138 * 0 = rrq not active for this xri 1139 * 1 = rrq is valid for this xri. 1140 **/ 1141 int 1142 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1143 uint16_t xritag) 1144 { 1145 if (!ndlp) 1146 return 0; 1147 if (!ndlp->active_rrqs_xri_bitmap) 1148 return 0; 1149 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1150 return 1; 1151 else 1152 return 0; 1153 } 1154 1155 /** 1156 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1157 * @phba: Pointer to HBA context object. 1158 * @ndlp: nodelist pointer for this target. 1159 * @xritag: xri used in this exchange. 1160 * @rxid: Remote Exchange ID. 1161 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1162 * 1163 * This function takes the hbalock. 1164 * The active bit is always set in the active rrq xri_bitmap even 1165 * if there is no slot avaiable for the other rrq information. 1166 * 1167 * returns 0 rrq actived for this xri 1168 * < 0 No memory or invalid ndlp. 1169 **/ 1170 int 1171 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1172 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1173 { 1174 unsigned long iflags; 1175 struct lpfc_node_rrq *rrq; 1176 int empty; 1177 1178 if (!ndlp) 1179 return -EINVAL; 1180 1181 if (!phba->cfg_enable_rrq) 1182 return -EINVAL; 1183 1184 spin_lock_irqsave(&phba->hbalock, iflags); 1185 if (phba->pport->load_flag & FC_UNLOADING) { 1186 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1187 goto out; 1188 } 1189 1190 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1191 goto out; 1192 1193 if (!ndlp->active_rrqs_xri_bitmap) 1194 goto out; 1195 1196 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1197 goto out; 1198 1199 spin_unlock_irqrestore(&phba->hbalock, iflags); 1200 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1201 if (!rrq) { 1202 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1203 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1204 " DID:0x%x Send:%d\n", 1205 xritag, rxid, ndlp->nlp_DID, send_rrq); 1206 return -EINVAL; 1207 } 1208 if (phba->cfg_enable_rrq == 1) 1209 rrq->send_rrq = send_rrq; 1210 else 1211 rrq->send_rrq = 0; 1212 rrq->xritag = xritag; 1213 rrq->rrq_stop_time = jiffies + 1214 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1215 rrq->nlp_DID = ndlp->nlp_DID; 1216 rrq->vport = ndlp->vport; 1217 rrq->rxid = rxid; 1218 spin_lock_irqsave(&phba->hbalock, iflags); 1219 empty = list_empty(&phba->active_rrq_list); 1220 list_add_tail(&rrq->list, &phba->active_rrq_list); 1221 phba->hba_flag |= HBA_RRQ_ACTIVE; 1222 if (empty) 1223 lpfc_worker_wake_up(phba); 1224 spin_unlock_irqrestore(&phba->hbalock, iflags); 1225 return 0; 1226 out: 1227 spin_unlock_irqrestore(&phba->hbalock, iflags); 1228 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1229 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1230 " DID:0x%x Send:%d\n", 1231 xritag, rxid, ndlp->nlp_DID, send_rrq); 1232 return -EINVAL; 1233 } 1234 1235 /** 1236 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1237 * @phba: Pointer to HBA context object. 1238 * @piocbq: Pointer to the iocbq. 1239 * 1240 * The driver calls this function with either the nvme ls ring lock 1241 * or the fc els ring lock held depending on the iocb usage. This function 1242 * gets a new driver sglq object from the sglq list. If the list is not empty 1243 * then it is successful, it returns pointer to the newly allocated sglq 1244 * object else it returns NULL. 1245 **/ 1246 static struct lpfc_sglq * 1247 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1248 { 1249 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1250 struct lpfc_sglq *sglq = NULL; 1251 struct lpfc_sglq *start_sglq = NULL; 1252 struct lpfc_io_buf *lpfc_cmd; 1253 struct lpfc_nodelist *ndlp; 1254 struct lpfc_sli_ring *pring = NULL; 1255 int found = 0; 1256 1257 if (piocbq->iocb_flag & LPFC_IO_NVME_LS) 1258 pring = phba->sli4_hba.nvmels_wq->pring; 1259 else 1260 pring = lpfc_phba_elsring(phba); 1261 1262 lockdep_assert_held(&pring->ring_lock); 1263 1264 if (piocbq->iocb_flag & LPFC_IO_FCP) { 1265 lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1; 1266 ndlp = lpfc_cmd->rdata->pnode; 1267 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 1268 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 1269 ndlp = piocbq->context_un.ndlp; 1270 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 1271 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 1272 ndlp = NULL; 1273 else 1274 ndlp = piocbq->context_un.ndlp; 1275 } else { 1276 ndlp = piocbq->context1; 1277 } 1278 1279 spin_lock(&phba->sli4_hba.sgl_list_lock); 1280 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1281 start_sglq = sglq; 1282 while (!found) { 1283 if (!sglq) 1284 break; 1285 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1286 test_bit(sglq->sli4_lxritag, 1287 ndlp->active_rrqs_xri_bitmap)) { 1288 /* This xri has an rrq outstanding for this DID. 1289 * put it back in the list and get another xri. 1290 */ 1291 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1292 sglq = NULL; 1293 list_remove_head(lpfc_els_sgl_list, sglq, 1294 struct lpfc_sglq, list); 1295 if (sglq == start_sglq) { 1296 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1297 sglq = NULL; 1298 break; 1299 } else 1300 continue; 1301 } 1302 sglq->ndlp = ndlp; 1303 found = 1; 1304 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1305 sglq->state = SGL_ALLOCATED; 1306 } 1307 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1308 return sglq; 1309 } 1310 1311 /** 1312 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1313 * @phba: Pointer to HBA context object. 1314 * @piocbq: Pointer to the iocbq. 1315 * 1316 * This function is called with the sgl_list lock held. This function 1317 * gets a new driver sglq object from the sglq list. If the 1318 * list is not empty then it is successful, it returns pointer to the newly 1319 * allocated sglq object else it returns NULL. 1320 **/ 1321 struct lpfc_sglq * 1322 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1323 { 1324 struct list_head *lpfc_nvmet_sgl_list; 1325 struct lpfc_sglq *sglq = NULL; 1326 1327 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1328 1329 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1330 1331 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1332 if (!sglq) 1333 return NULL; 1334 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1335 sglq->state = SGL_ALLOCATED; 1336 return sglq; 1337 } 1338 1339 /** 1340 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1341 * @phba: Pointer to HBA context object. 1342 * 1343 * This function is called with no lock held. This function 1344 * allocates a new driver iocb object from the iocb pool. If the 1345 * allocation is successful, it returns pointer to the newly 1346 * allocated iocb object else it returns NULL. 1347 **/ 1348 struct lpfc_iocbq * 1349 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1350 { 1351 struct lpfc_iocbq * iocbq = NULL; 1352 unsigned long iflags; 1353 1354 spin_lock_irqsave(&phba->hbalock, iflags); 1355 iocbq = __lpfc_sli_get_iocbq(phba); 1356 spin_unlock_irqrestore(&phba->hbalock, iflags); 1357 return iocbq; 1358 } 1359 1360 /** 1361 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1362 * @phba: Pointer to HBA context object. 1363 * @iocbq: Pointer to driver iocb object. 1364 * 1365 * This function is called to release the driver iocb object 1366 * to the iocb pool. The iotag in the iocb object 1367 * does not change for each use of the iocb object. This function 1368 * clears all other fields of the iocb object when it is freed. 1369 * The sqlq structure that holds the xritag and phys and virtual 1370 * mappings for the scatter gather list is retrieved from the 1371 * active array of sglq. The get of the sglq pointer also clears 1372 * the entry in the array. If the status of the IO indiactes that 1373 * this IO was aborted then the sglq entry it put on the 1374 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1375 * IO has good status or fails for any other reason then the sglq 1376 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1377 * asserted held in the code path calling this routine. 1378 **/ 1379 static void 1380 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1381 { 1382 struct lpfc_sglq *sglq; 1383 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1384 unsigned long iflag = 0; 1385 struct lpfc_sli_ring *pring; 1386 1387 if (iocbq->sli4_xritag == NO_XRI) 1388 sglq = NULL; 1389 else 1390 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1391 1392 1393 if (sglq) { 1394 if (iocbq->iocb_flag & LPFC_IO_NVMET) { 1395 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1396 iflag); 1397 sglq->state = SGL_FREED; 1398 sglq->ndlp = NULL; 1399 list_add_tail(&sglq->list, 1400 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1401 spin_unlock_irqrestore( 1402 &phba->sli4_hba.sgl_list_lock, iflag); 1403 goto out; 1404 } 1405 1406 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1407 (!(unlikely(pci_channel_offline(phba->pcidev)))) && 1408 sglq->state != SGL_XRI_ABORTED) { 1409 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1410 iflag); 1411 1412 /* Check if we can get a reference on ndlp */ 1413 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1414 sglq->ndlp = NULL; 1415 1416 list_add(&sglq->list, 1417 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1418 spin_unlock_irqrestore( 1419 &phba->sli4_hba.sgl_list_lock, iflag); 1420 } else { 1421 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1422 iflag); 1423 sglq->state = SGL_FREED; 1424 sglq->ndlp = NULL; 1425 list_add_tail(&sglq->list, 1426 &phba->sli4_hba.lpfc_els_sgl_list); 1427 spin_unlock_irqrestore( 1428 &phba->sli4_hba.sgl_list_lock, iflag); 1429 pring = lpfc_phba_elsring(phba); 1430 /* Check if TXQ queue needs to be serviced */ 1431 if (pring && (!list_empty(&pring->txq))) 1432 lpfc_worker_wake_up(phba); 1433 } 1434 } 1435 1436 out: 1437 /* 1438 * Clean all volatile data fields, preserve iotag and node struct. 1439 */ 1440 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1441 iocbq->sli4_lxritag = NO_XRI; 1442 iocbq->sli4_xritag = NO_XRI; 1443 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF | 1444 LPFC_IO_NVME_LS); 1445 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1446 } 1447 1448 1449 /** 1450 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1451 * @phba: Pointer to HBA context object. 1452 * @iocbq: Pointer to driver iocb object. 1453 * 1454 * This function is called to release the driver iocb object to the 1455 * iocb pool. The iotag in the iocb object does not change for each 1456 * use of the iocb object. This function clears all other fields of 1457 * the iocb object when it is freed. The hbalock is asserted held in 1458 * the code path calling this routine. 1459 **/ 1460 static void 1461 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1462 { 1463 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1464 1465 /* 1466 * Clean all volatile data fields, preserve iotag and node struct. 1467 */ 1468 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1469 iocbq->sli4_xritag = NO_XRI; 1470 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1471 } 1472 1473 /** 1474 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1475 * @phba: Pointer to HBA context object. 1476 * @iocbq: Pointer to driver iocb object. 1477 * 1478 * This function is called with hbalock held to release driver 1479 * iocb object to the iocb pool. The iotag in the iocb object 1480 * does not change for each use of the iocb object. This function 1481 * clears all other fields of the iocb object when it is freed. 1482 **/ 1483 static void 1484 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1485 { 1486 lockdep_assert_held(&phba->hbalock); 1487 1488 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1489 phba->iocb_cnt--; 1490 } 1491 1492 /** 1493 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1494 * @phba: Pointer to HBA context object. 1495 * @iocbq: Pointer to driver iocb object. 1496 * 1497 * This function is called with no lock held to release the iocb to 1498 * iocb pool. 1499 **/ 1500 void 1501 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1502 { 1503 unsigned long iflags; 1504 1505 /* 1506 * Clean all volatile data fields, preserve iotag and node struct. 1507 */ 1508 spin_lock_irqsave(&phba->hbalock, iflags); 1509 __lpfc_sli_release_iocbq(phba, iocbq); 1510 spin_unlock_irqrestore(&phba->hbalock, iflags); 1511 } 1512 1513 /** 1514 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1515 * @phba: Pointer to HBA context object. 1516 * @iocblist: List of IOCBs. 1517 * @ulpstatus: ULP status in IOCB command field. 1518 * @ulpWord4: ULP word-4 in IOCB command field. 1519 * 1520 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1521 * on the list by invoking the complete callback function associated with the 1522 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1523 * fields. 1524 **/ 1525 void 1526 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1527 uint32_t ulpstatus, uint32_t ulpWord4) 1528 { 1529 struct lpfc_iocbq *piocb; 1530 1531 while (!list_empty(iocblist)) { 1532 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1533 if (piocb->wqe_cmpl) { 1534 if (piocb->iocb_flag & LPFC_IO_NVME) 1535 lpfc_nvme_cancel_iocb(phba, piocb, 1536 ulpstatus, ulpWord4); 1537 else 1538 lpfc_sli_release_iocbq(phba, piocb); 1539 1540 } else if (piocb->iocb_cmpl) { 1541 piocb->iocb.ulpStatus = ulpstatus; 1542 piocb->iocb.un.ulpWord[4] = ulpWord4; 1543 (piocb->iocb_cmpl) (phba, piocb, piocb); 1544 } else { 1545 lpfc_sli_release_iocbq(phba, piocb); 1546 } 1547 } 1548 return; 1549 } 1550 1551 /** 1552 * lpfc_sli_iocb_cmd_type - Get the iocb type 1553 * @iocb_cmnd: iocb command code. 1554 * 1555 * This function is called by ring event handler function to get the iocb type. 1556 * This function translates the iocb command to an iocb command type used to 1557 * decide the final disposition of each completed IOCB. 1558 * The function returns 1559 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1560 * LPFC_SOL_IOCB if it is a solicited iocb completion 1561 * LPFC_ABORT_IOCB if it is an abort iocb 1562 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1563 * 1564 * The caller is not required to hold any lock. 1565 **/ 1566 static lpfc_iocb_type 1567 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1568 { 1569 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1570 1571 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1572 return 0; 1573 1574 switch (iocb_cmnd) { 1575 case CMD_XMIT_SEQUENCE_CR: 1576 case CMD_XMIT_SEQUENCE_CX: 1577 case CMD_XMIT_BCAST_CN: 1578 case CMD_XMIT_BCAST_CX: 1579 case CMD_ELS_REQUEST_CR: 1580 case CMD_ELS_REQUEST_CX: 1581 case CMD_CREATE_XRI_CR: 1582 case CMD_CREATE_XRI_CX: 1583 case CMD_GET_RPI_CN: 1584 case CMD_XMIT_ELS_RSP_CX: 1585 case CMD_GET_RPI_CR: 1586 case CMD_FCP_IWRITE_CR: 1587 case CMD_FCP_IWRITE_CX: 1588 case CMD_FCP_IREAD_CR: 1589 case CMD_FCP_IREAD_CX: 1590 case CMD_FCP_ICMND_CR: 1591 case CMD_FCP_ICMND_CX: 1592 case CMD_FCP_TSEND_CX: 1593 case CMD_FCP_TRSP_CX: 1594 case CMD_FCP_TRECEIVE_CX: 1595 case CMD_FCP_AUTO_TRSP_CX: 1596 case CMD_ADAPTER_MSG: 1597 case CMD_ADAPTER_DUMP: 1598 case CMD_XMIT_SEQUENCE64_CR: 1599 case CMD_XMIT_SEQUENCE64_CX: 1600 case CMD_XMIT_BCAST64_CN: 1601 case CMD_XMIT_BCAST64_CX: 1602 case CMD_ELS_REQUEST64_CR: 1603 case CMD_ELS_REQUEST64_CX: 1604 case CMD_FCP_IWRITE64_CR: 1605 case CMD_FCP_IWRITE64_CX: 1606 case CMD_FCP_IREAD64_CR: 1607 case CMD_FCP_IREAD64_CX: 1608 case CMD_FCP_ICMND64_CR: 1609 case CMD_FCP_ICMND64_CX: 1610 case CMD_FCP_TSEND64_CX: 1611 case CMD_FCP_TRSP64_CX: 1612 case CMD_FCP_TRECEIVE64_CX: 1613 case CMD_GEN_REQUEST64_CR: 1614 case CMD_GEN_REQUEST64_CX: 1615 case CMD_XMIT_ELS_RSP64_CX: 1616 case DSSCMD_IWRITE64_CR: 1617 case DSSCMD_IWRITE64_CX: 1618 case DSSCMD_IREAD64_CR: 1619 case DSSCMD_IREAD64_CX: 1620 case CMD_SEND_FRAME: 1621 type = LPFC_SOL_IOCB; 1622 break; 1623 case CMD_ABORT_XRI_CN: 1624 case CMD_ABORT_XRI_CX: 1625 case CMD_CLOSE_XRI_CN: 1626 case CMD_CLOSE_XRI_CX: 1627 case CMD_XRI_ABORTED_CX: 1628 case CMD_ABORT_MXRI64_CN: 1629 case CMD_XMIT_BLS_RSP64_CX: 1630 type = LPFC_ABORT_IOCB; 1631 break; 1632 case CMD_RCV_SEQUENCE_CX: 1633 case CMD_RCV_ELS_REQ_CX: 1634 case CMD_RCV_SEQUENCE64_CX: 1635 case CMD_RCV_ELS_REQ64_CX: 1636 case CMD_ASYNC_STATUS: 1637 case CMD_IOCB_RCV_SEQ64_CX: 1638 case CMD_IOCB_RCV_ELS64_CX: 1639 case CMD_IOCB_RCV_CONT64_CX: 1640 case CMD_IOCB_RET_XRI64_CX: 1641 type = LPFC_UNSOL_IOCB; 1642 break; 1643 case CMD_IOCB_XMIT_MSEQ64_CR: 1644 case CMD_IOCB_XMIT_MSEQ64_CX: 1645 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1646 case CMD_IOCB_RCV_ELS_LIST64_CX: 1647 case CMD_IOCB_CLOSE_EXTENDED_CN: 1648 case CMD_IOCB_ABORT_EXTENDED_CN: 1649 case CMD_IOCB_RET_HBQE64_CN: 1650 case CMD_IOCB_FCP_IBIDIR64_CR: 1651 case CMD_IOCB_FCP_IBIDIR64_CX: 1652 case CMD_IOCB_FCP_ITASKMGT64_CX: 1653 case CMD_IOCB_LOGENTRY_CN: 1654 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1655 printk("%s - Unhandled SLI-3 Command x%x\n", 1656 __func__, iocb_cmnd); 1657 type = LPFC_UNKNOWN_IOCB; 1658 break; 1659 default: 1660 type = LPFC_UNKNOWN_IOCB; 1661 break; 1662 } 1663 1664 return type; 1665 } 1666 1667 /** 1668 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1669 * @phba: Pointer to HBA context object. 1670 * 1671 * This function is called from SLI initialization code 1672 * to configure every ring of the HBA's SLI interface. The 1673 * caller is not required to hold any lock. This function issues 1674 * a config_ring mailbox command for each ring. 1675 * This function returns zero if successful else returns a negative 1676 * error code. 1677 **/ 1678 static int 1679 lpfc_sli_ring_map(struct lpfc_hba *phba) 1680 { 1681 struct lpfc_sli *psli = &phba->sli; 1682 LPFC_MBOXQ_t *pmb; 1683 MAILBOX_t *pmbox; 1684 int i, rc, ret = 0; 1685 1686 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1687 if (!pmb) 1688 return -ENOMEM; 1689 pmbox = &pmb->u.mb; 1690 phba->link_state = LPFC_INIT_MBX_CMDS; 1691 for (i = 0; i < psli->num_rings; i++) { 1692 lpfc_config_ring(phba, i, pmb); 1693 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1694 if (rc != MBX_SUCCESS) { 1695 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1696 "0446 Adapter failed to init (%d), " 1697 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1698 "ring %d\n", 1699 rc, pmbox->mbxCommand, 1700 pmbox->mbxStatus, i); 1701 phba->link_state = LPFC_HBA_ERROR; 1702 ret = -ENXIO; 1703 break; 1704 } 1705 } 1706 mempool_free(pmb, phba->mbox_mem_pool); 1707 return ret; 1708 } 1709 1710 /** 1711 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1712 * @phba: Pointer to HBA context object. 1713 * @pring: Pointer to driver SLI ring object. 1714 * @piocb: Pointer to the driver iocb object. 1715 * 1716 * The driver calls this function with the hbalock held for SLI3 ports or 1717 * the ring lock held for SLI4 ports. The function adds the 1718 * new iocb to txcmplq of the given ring. This function always returns 1719 * 0. If this function is called for ELS ring, this function checks if 1720 * there is a vport associated with the ELS command. This function also 1721 * starts els_tmofunc timer if this is an ELS command. 1722 **/ 1723 static int 1724 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1725 struct lpfc_iocbq *piocb) 1726 { 1727 if (phba->sli_rev == LPFC_SLI_REV4) 1728 lockdep_assert_held(&pring->ring_lock); 1729 else 1730 lockdep_assert_held(&phba->hbalock); 1731 1732 BUG_ON(!piocb); 1733 1734 list_add_tail(&piocb->list, &pring->txcmplq); 1735 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1736 pring->txcmplq_cnt++; 1737 1738 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1739 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1740 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1741 BUG_ON(!piocb->vport); 1742 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1743 mod_timer(&piocb->vport->els_tmofunc, 1744 jiffies + 1745 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1746 } 1747 1748 return 0; 1749 } 1750 1751 /** 1752 * lpfc_sli_ringtx_get - Get first element of the txq 1753 * @phba: Pointer to HBA context object. 1754 * @pring: Pointer to driver SLI ring object. 1755 * 1756 * This function is called with hbalock held to get next 1757 * iocb in txq of the given ring. If there is any iocb in 1758 * the txq, the function returns first iocb in the list after 1759 * removing the iocb from the list, else it returns NULL. 1760 **/ 1761 struct lpfc_iocbq * 1762 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1763 { 1764 struct lpfc_iocbq *cmd_iocb; 1765 1766 lockdep_assert_held(&phba->hbalock); 1767 1768 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1769 return cmd_iocb; 1770 } 1771 1772 /** 1773 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl 1774 * @phba: Pointer to HBA context object. 1775 * @cmdiocb: Pointer to driver command iocb object. 1776 * @cmf_cmpl: Pointer to completed WCQE. 1777 * 1778 * This routine will inform the driver of any BW adjustments we need 1779 * to make. These changes will be picked up during the next CMF 1780 * timer interrupt. In addition, any BW changes will be logged 1781 * with LOG_CGN_MGMT. 1782 **/ 1783 static void 1784 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 1785 struct lpfc_wcqe_complete *cmf_cmpl) 1786 { 1787 union lpfc_wqe128 *wqe; 1788 uint32_t status, info; 1789 uint64_t bw, bwdif, slop; 1790 uint64_t pcent, bwpcent; 1791 int asig, afpin, sigcnt, fpincnt; 1792 int wsigmax, wfpinmax, cg, tdp; 1793 char *s; 1794 1795 /* First check for error */ 1796 status = bf_get(lpfc_wcqe_c_status, cmf_cmpl); 1797 if (status) { 1798 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1799 "6211 CMF_SYNC_WQE Error " 1800 "req_tag x%x status x%x hwstatus x%x " 1801 "tdatap x%x parm x%x\n", 1802 bf_get(lpfc_wcqe_c_request_tag, cmf_cmpl), 1803 bf_get(lpfc_wcqe_c_status, cmf_cmpl), 1804 bf_get(lpfc_wcqe_c_hw_status, cmf_cmpl), 1805 cmf_cmpl->total_data_placed, 1806 cmf_cmpl->parameter); 1807 goto out; 1808 } 1809 1810 /* Gather congestion information on a successful cmpl */ 1811 info = cmf_cmpl->parameter; 1812 phba->cmf_active_info = info; 1813 1814 /* See if firmware info count is valid or has changed */ 1815 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info) 1816 info = 0; 1817 else 1818 phba->cmf_info_per_interval = info; 1819 1820 tdp = bf_get(lpfc_wcqe_c_cmf_bw, cmf_cmpl); 1821 cg = bf_get(lpfc_wcqe_c_cmf_cg, cmf_cmpl); 1822 1823 /* Get BW requirement from firmware */ 1824 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE; 1825 if (!bw) { 1826 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1827 "6212 CMF_SYNC_WQE x%x: NULL bw\n", 1828 bf_get(lpfc_wcqe_c_request_tag, cmf_cmpl)); 1829 goto out; 1830 } 1831 1832 /* Gather information needed for logging if a BW change is required */ 1833 wqe = &cmdiocb->wqe; 1834 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync); 1835 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync); 1836 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync); 1837 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync); 1838 if (phba->cmf_max_bytes_per_interval != bw || 1839 (asig || afpin || sigcnt || fpincnt)) { 1840 /* Are we increasing or decreasing BW */ 1841 if (phba->cmf_max_bytes_per_interval < bw) { 1842 bwdif = bw - phba->cmf_max_bytes_per_interval; 1843 s = "Increase"; 1844 } else { 1845 bwdif = phba->cmf_max_bytes_per_interval - bw; 1846 s = "Decrease"; 1847 } 1848 1849 /* What is the change percentage */ 1850 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/ 1851 pcent = div64_u64(bwdif * 100 + slop, 1852 phba->cmf_link_byte_count); 1853 bwpcent = div64_u64(bw * 100 + slop, 1854 phba->cmf_link_byte_count); 1855 if (asig) { 1856 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1857 "6237 BW Threshold %lld%% (%lld): " 1858 "%lld%% %s: Signal Alarm: cg:%d " 1859 "Info:%u\n", 1860 bwpcent, bw, pcent, s, cg, 1861 phba->cmf_active_info); 1862 } else if (afpin) { 1863 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1864 "6238 BW Threshold %lld%% (%lld): " 1865 "%lld%% %s: FPIN Alarm: cg:%d " 1866 "Info:%u\n", 1867 bwpcent, bw, pcent, s, cg, 1868 phba->cmf_active_info); 1869 } else if (sigcnt) { 1870 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync); 1871 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1872 "6239 BW Threshold %lld%% (%lld): " 1873 "%lld%% %s: Signal Warning: " 1874 "Cnt %d Max %d: cg:%d Info:%u\n", 1875 bwpcent, bw, pcent, s, sigcnt, 1876 wsigmax, cg, phba->cmf_active_info); 1877 } else if (fpincnt) { 1878 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync); 1879 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1880 "6240 BW Threshold %lld%% (%lld): " 1881 "%lld%% %s: FPIN Warning: " 1882 "Cnt %d Max %d: cg:%d Info:%u\n", 1883 bwpcent, bw, pcent, s, fpincnt, 1884 wfpinmax, cg, phba->cmf_active_info); 1885 } else { 1886 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1887 "6241 BW Threshold %lld%% (%lld): " 1888 "CMF %lld%% %s: cg:%d Info:%u\n", 1889 bwpcent, bw, pcent, s, cg, 1890 phba->cmf_active_info); 1891 } 1892 } else if (info) { 1893 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1894 "6246 Info Threshold %u\n", info); 1895 } 1896 1897 /* Save BW change to be picked up during next timer interrupt */ 1898 phba->cmf_last_sync_bw = bw; 1899 out: 1900 lpfc_sli_release_iocbq(phba, cmdiocb); 1901 } 1902 1903 /** 1904 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE 1905 * @phba: Pointer to HBA context object. 1906 * @ms: ms to set in WQE interval, 0 means use init op 1907 * @total: Total rcv bytes for this interval 1908 * 1909 * This routine is called every CMF timer interrupt. Its purpose is 1910 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events 1911 * that may indicate we have congestion (FPINs or Signals). Upon 1912 * completion, the firmware will indicate any BW restrictions the 1913 * driver may need to take. 1914 **/ 1915 int 1916 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total) 1917 { 1918 union lpfc_wqe128 *wqe; 1919 struct lpfc_iocbq *sync_buf; 1920 unsigned long iflags; 1921 u32 ret_val; 1922 u32 atot, wtot, max; 1923 1924 /* First address any alarm / warning activity */ 1925 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0); 1926 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0); 1927 1928 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */ 1929 if (phba->cmf_active_mode != LPFC_CFG_MANAGED || 1930 phba->link_state == LPFC_LINK_DOWN) 1931 return 0; 1932 1933 spin_lock_irqsave(&phba->hbalock, iflags); 1934 sync_buf = __lpfc_sli_get_iocbq(phba); 1935 if (!sync_buf) { 1936 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 1937 "6213 No available WQEs for CMF_SYNC_WQE\n"); 1938 ret_val = ENOMEM; 1939 goto out_unlock; 1940 } 1941 1942 wqe = &sync_buf->wqe; 1943 1944 /* WQEs are reused. Clear stale data and set key fields to zero */ 1945 memset(wqe, 0, sizeof(*wqe)); 1946 1947 /* If this is the very first CMF_SYNC_WQE, issue an init operation */ 1948 if (!ms) { 1949 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1950 "6441 CMF Init %d - CMF_SYNC_WQE\n", 1951 phba->fc_eventTag); 1952 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */ 1953 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL); 1954 goto initpath; 1955 } 1956 1957 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */ 1958 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms); 1959 1960 /* Check for alarms / warnings */ 1961 if (atot) { 1962 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1963 /* We hit an Signal alarm condition */ 1964 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1); 1965 } else { 1966 /* We hit a FPIN alarm condition */ 1967 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1); 1968 } 1969 } else if (wtot) { 1970 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 1971 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1972 /* We hit an Signal warning condition */ 1973 max = LPFC_SEC_TO_MSEC / lpfc_fabric_cgn_frequency * 1974 lpfc_acqe_cgn_frequency; 1975 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max); 1976 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot); 1977 } else { 1978 /* We hit a FPIN warning condition */ 1979 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1); 1980 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1); 1981 } 1982 } 1983 1984 /* Update total read blocks during previous timer interval */ 1985 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE); 1986 1987 initpath: 1988 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER); 1989 wqe->cmf_sync.event_tag = phba->fc_eventTag; 1990 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE); 1991 1992 /* Setup reqtag to match the wqe completion. */ 1993 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag); 1994 1995 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1); 1996 1997 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND); 1998 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1); 1999 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT); 2000 2001 sync_buf->vport = phba->pport; 2002 sync_buf->wqe_cmpl = lpfc_cmf_sync_cmpl; 2003 sync_buf->iocb_cmpl = NULL; 2004 sync_buf->context1 = NULL; 2005 sync_buf->context2 = NULL; 2006 sync_buf->context3 = NULL; 2007 sync_buf->sli4_xritag = NO_XRI; 2008 2009 sync_buf->iocb_flag |= LPFC_IO_CMF; 2010 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf); 2011 if (ret_val) 2012 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 2013 "6214 Cannot issue CMF_SYNC_WQE: x%x\n", 2014 ret_val); 2015 out_unlock: 2016 spin_unlock_irqrestore(&phba->hbalock, iflags); 2017 return ret_val; 2018 } 2019 2020 /** 2021 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 2022 * @phba: Pointer to HBA context object. 2023 * @pring: Pointer to driver SLI ring object. 2024 * 2025 * This function is called with hbalock held and the caller must post the 2026 * iocb without releasing the lock. If the caller releases the lock, 2027 * iocb slot returned by the function is not guaranteed to be available. 2028 * The function returns pointer to the next available iocb slot if there 2029 * is available slot in the ring, else it returns NULL. 2030 * If the get index of the ring is ahead of the put index, the function 2031 * will post an error attention event to the worker thread to take the 2032 * HBA to offline state. 2033 **/ 2034 static IOCB_t * 2035 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2036 { 2037 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2038 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 2039 2040 lockdep_assert_held(&phba->hbalock); 2041 2042 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 2043 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 2044 pring->sli.sli3.next_cmdidx = 0; 2045 2046 if (unlikely(pring->sli.sli3.local_getidx == 2047 pring->sli.sli3.next_cmdidx)) { 2048 2049 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 2050 2051 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 2052 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2053 "0315 Ring %d issue: portCmdGet %d " 2054 "is bigger than cmd ring %d\n", 2055 pring->ringno, 2056 pring->sli.sli3.local_getidx, 2057 max_cmd_idx); 2058 2059 phba->link_state = LPFC_HBA_ERROR; 2060 /* 2061 * All error attention handlers are posted to 2062 * worker thread 2063 */ 2064 phba->work_ha |= HA_ERATT; 2065 phba->work_hs = HS_FFER3; 2066 2067 lpfc_worker_wake_up(phba); 2068 2069 return NULL; 2070 } 2071 2072 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 2073 return NULL; 2074 } 2075 2076 return lpfc_cmd_iocb(phba, pring); 2077 } 2078 2079 /** 2080 * lpfc_sli_next_iotag - Get an iotag for the iocb 2081 * @phba: Pointer to HBA context object. 2082 * @iocbq: Pointer to driver iocb object. 2083 * 2084 * This function gets an iotag for the iocb. If there is no unused iotag and 2085 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 2086 * array and assigns a new iotag. 2087 * The function returns the allocated iotag if successful, else returns zero. 2088 * Zero is not a valid iotag. 2089 * The caller is not required to hold any lock. 2090 **/ 2091 uint16_t 2092 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 2093 { 2094 struct lpfc_iocbq **new_arr; 2095 struct lpfc_iocbq **old_arr; 2096 size_t new_len; 2097 struct lpfc_sli *psli = &phba->sli; 2098 uint16_t iotag; 2099 2100 spin_lock_irq(&phba->hbalock); 2101 iotag = psli->last_iotag; 2102 if(++iotag < psli->iocbq_lookup_len) { 2103 psli->last_iotag = iotag; 2104 psli->iocbq_lookup[iotag] = iocbq; 2105 spin_unlock_irq(&phba->hbalock); 2106 iocbq->iotag = iotag; 2107 return iotag; 2108 } else if (psli->iocbq_lookup_len < (0xffff 2109 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 2110 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 2111 spin_unlock_irq(&phba->hbalock); 2112 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 2113 GFP_KERNEL); 2114 if (new_arr) { 2115 spin_lock_irq(&phba->hbalock); 2116 old_arr = psli->iocbq_lookup; 2117 if (new_len <= psli->iocbq_lookup_len) { 2118 /* highly unprobable case */ 2119 kfree(new_arr); 2120 iotag = psli->last_iotag; 2121 if(++iotag < psli->iocbq_lookup_len) { 2122 psli->last_iotag = iotag; 2123 psli->iocbq_lookup[iotag] = iocbq; 2124 spin_unlock_irq(&phba->hbalock); 2125 iocbq->iotag = iotag; 2126 return iotag; 2127 } 2128 spin_unlock_irq(&phba->hbalock); 2129 return 0; 2130 } 2131 if (psli->iocbq_lookup) 2132 memcpy(new_arr, old_arr, 2133 ((psli->last_iotag + 1) * 2134 sizeof (struct lpfc_iocbq *))); 2135 psli->iocbq_lookup = new_arr; 2136 psli->iocbq_lookup_len = new_len; 2137 psli->last_iotag = iotag; 2138 psli->iocbq_lookup[iotag] = iocbq; 2139 spin_unlock_irq(&phba->hbalock); 2140 iocbq->iotag = iotag; 2141 kfree(old_arr); 2142 return iotag; 2143 } 2144 } else 2145 spin_unlock_irq(&phba->hbalock); 2146 2147 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2148 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 2149 psli->last_iotag); 2150 2151 return 0; 2152 } 2153 2154 /** 2155 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 2156 * @phba: Pointer to HBA context object. 2157 * @pring: Pointer to driver SLI ring object. 2158 * @iocb: Pointer to iocb slot in the ring. 2159 * @nextiocb: Pointer to driver iocb object which need to be 2160 * posted to firmware. 2161 * 2162 * This function is called to post a new iocb to the firmware. This 2163 * function copies the new iocb to ring iocb slot and updates the 2164 * ring pointers. It adds the new iocb to txcmplq if there is 2165 * a completion call back for this iocb else the function will free the 2166 * iocb object. The hbalock is asserted held in the code path calling 2167 * this routine. 2168 **/ 2169 static void 2170 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2171 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 2172 { 2173 /* 2174 * Set up an iotag 2175 */ 2176 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 2177 2178 2179 if (pring->ringno == LPFC_ELS_RING) { 2180 lpfc_debugfs_slow_ring_trc(phba, 2181 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 2182 *(((uint32_t *) &nextiocb->iocb) + 4), 2183 *(((uint32_t *) &nextiocb->iocb) + 6), 2184 *(((uint32_t *) &nextiocb->iocb) + 7)); 2185 } 2186 2187 /* 2188 * Issue iocb command to adapter 2189 */ 2190 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 2191 wmb(); 2192 pring->stats.iocb_cmd++; 2193 2194 /* 2195 * If there is no completion routine to call, we can release the 2196 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 2197 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 2198 */ 2199 if (nextiocb->iocb_cmpl) 2200 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 2201 else 2202 __lpfc_sli_release_iocbq(phba, nextiocb); 2203 2204 /* 2205 * Let the HBA know what IOCB slot will be the next one the 2206 * driver will put a command into. 2207 */ 2208 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 2209 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 2210 } 2211 2212 /** 2213 * lpfc_sli_update_full_ring - Update the chip attention register 2214 * @phba: Pointer to HBA context object. 2215 * @pring: Pointer to driver SLI ring object. 2216 * 2217 * The caller is not required to hold any lock for calling this function. 2218 * This function updates the chip attention bits for the ring to inform firmware 2219 * that there are pending work to be done for this ring and requests an 2220 * interrupt when there is space available in the ring. This function is 2221 * called when the driver is unable to post more iocbs to the ring due 2222 * to unavailability of space in the ring. 2223 **/ 2224 static void 2225 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2226 { 2227 int ringno = pring->ringno; 2228 2229 pring->flag |= LPFC_CALL_RING_AVAILABLE; 2230 2231 wmb(); 2232 2233 /* 2234 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 2235 * The HBA will tell us when an IOCB entry is available. 2236 */ 2237 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 2238 readl(phba->CAregaddr); /* flush */ 2239 2240 pring->stats.iocb_cmd_full++; 2241 } 2242 2243 /** 2244 * lpfc_sli_update_ring - Update chip attention register 2245 * @phba: Pointer to HBA context object. 2246 * @pring: Pointer to driver SLI ring object. 2247 * 2248 * This function updates the chip attention register bit for the 2249 * given ring to inform HBA that there is more work to be done 2250 * in this ring. The caller is not required to hold any lock. 2251 **/ 2252 static void 2253 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2254 { 2255 int ringno = pring->ringno; 2256 2257 /* 2258 * Tell the HBA that there is work to do in this ring. 2259 */ 2260 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2261 wmb(); 2262 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2263 readl(phba->CAregaddr); /* flush */ 2264 } 2265 } 2266 2267 /** 2268 * lpfc_sli_resume_iocb - Process iocbs in the txq 2269 * @phba: Pointer to HBA context object. 2270 * @pring: Pointer to driver SLI ring object. 2271 * 2272 * This function is called with hbalock held to post pending iocbs 2273 * in the txq to the firmware. This function is called when driver 2274 * detects space available in the ring. 2275 **/ 2276 static void 2277 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2278 { 2279 IOCB_t *iocb; 2280 struct lpfc_iocbq *nextiocb; 2281 2282 lockdep_assert_held(&phba->hbalock); 2283 2284 /* 2285 * Check to see if: 2286 * (a) there is anything on the txq to send 2287 * (b) link is up 2288 * (c) link attention events can be processed (fcp ring only) 2289 * (d) IOCB processing is not blocked by the outstanding mbox command. 2290 */ 2291 2292 if (lpfc_is_link_up(phba) && 2293 (!list_empty(&pring->txq)) && 2294 (pring->ringno != LPFC_FCP_RING || 2295 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2296 2297 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2298 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2299 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2300 2301 if (iocb) 2302 lpfc_sli_update_ring(phba, pring); 2303 else 2304 lpfc_sli_update_full_ring(phba, pring); 2305 } 2306 2307 return; 2308 } 2309 2310 /** 2311 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2312 * @phba: Pointer to HBA context object. 2313 * @hbqno: HBQ number. 2314 * 2315 * This function is called with hbalock held to get the next 2316 * available slot for the given HBQ. If there is free slot 2317 * available for the HBQ it will return pointer to the next available 2318 * HBQ entry else it will return NULL. 2319 **/ 2320 static struct lpfc_hbq_entry * 2321 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2322 { 2323 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2324 2325 lockdep_assert_held(&phba->hbalock); 2326 2327 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2328 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2329 hbqp->next_hbqPutIdx = 0; 2330 2331 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2332 uint32_t raw_index = phba->hbq_get[hbqno]; 2333 uint32_t getidx = le32_to_cpu(raw_index); 2334 2335 hbqp->local_hbqGetIdx = getidx; 2336 2337 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2338 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2339 "1802 HBQ %d: local_hbqGetIdx " 2340 "%u is > than hbqp->entry_count %u\n", 2341 hbqno, hbqp->local_hbqGetIdx, 2342 hbqp->entry_count); 2343 2344 phba->link_state = LPFC_HBA_ERROR; 2345 return NULL; 2346 } 2347 2348 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2349 return NULL; 2350 } 2351 2352 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2353 hbqp->hbqPutIdx; 2354 } 2355 2356 /** 2357 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2358 * @phba: Pointer to HBA context object. 2359 * 2360 * This function is called with no lock held to free all the 2361 * hbq buffers while uninitializing the SLI interface. It also 2362 * frees the HBQ buffers returned by the firmware but not yet 2363 * processed by the upper layers. 2364 **/ 2365 void 2366 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2367 { 2368 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2369 struct hbq_dmabuf *hbq_buf; 2370 unsigned long flags; 2371 int i, hbq_count; 2372 2373 hbq_count = lpfc_sli_hbq_count(); 2374 /* Return all memory used by all HBQs */ 2375 spin_lock_irqsave(&phba->hbalock, flags); 2376 for (i = 0; i < hbq_count; ++i) { 2377 list_for_each_entry_safe(dmabuf, next_dmabuf, 2378 &phba->hbqs[i].hbq_buffer_list, list) { 2379 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2380 list_del(&hbq_buf->dbuf.list); 2381 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2382 } 2383 phba->hbqs[i].buffer_count = 0; 2384 } 2385 2386 /* Mark the HBQs not in use */ 2387 phba->hbq_in_use = 0; 2388 spin_unlock_irqrestore(&phba->hbalock, flags); 2389 } 2390 2391 /** 2392 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2393 * @phba: Pointer to HBA context object. 2394 * @hbqno: HBQ number. 2395 * @hbq_buf: Pointer to HBQ buffer. 2396 * 2397 * This function is called with the hbalock held to post a 2398 * hbq buffer to the firmware. If the function finds an empty 2399 * slot in the HBQ, it will post the buffer. The function will return 2400 * pointer to the hbq entry if it successfully post the buffer 2401 * else it will return NULL. 2402 **/ 2403 static int 2404 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2405 struct hbq_dmabuf *hbq_buf) 2406 { 2407 lockdep_assert_held(&phba->hbalock); 2408 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2409 } 2410 2411 /** 2412 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2413 * @phba: Pointer to HBA context object. 2414 * @hbqno: HBQ number. 2415 * @hbq_buf: Pointer to HBQ buffer. 2416 * 2417 * This function is called with the hbalock held to post a hbq buffer to the 2418 * firmware. If the function finds an empty slot in the HBQ, it will post the 2419 * buffer and place it on the hbq_buffer_list. The function will return zero if 2420 * it successfully post the buffer else it will return an error. 2421 **/ 2422 static int 2423 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2424 struct hbq_dmabuf *hbq_buf) 2425 { 2426 struct lpfc_hbq_entry *hbqe; 2427 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2428 2429 lockdep_assert_held(&phba->hbalock); 2430 /* Get next HBQ entry slot to use */ 2431 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2432 if (hbqe) { 2433 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2434 2435 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2436 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2437 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2438 hbqe->bde.tus.f.bdeFlags = 0; 2439 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2440 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2441 /* Sync SLIM */ 2442 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2443 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2444 /* flush */ 2445 readl(phba->hbq_put + hbqno); 2446 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2447 return 0; 2448 } else 2449 return -ENOMEM; 2450 } 2451 2452 /** 2453 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2454 * @phba: Pointer to HBA context object. 2455 * @hbqno: HBQ number. 2456 * @hbq_buf: Pointer to HBQ buffer. 2457 * 2458 * This function is called with the hbalock held to post an RQE to the SLI4 2459 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2460 * the hbq_buffer_list and return zero, otherwise it will return an error. 2461 **/ 2462 static int 2463 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2464 struct hbq_dmabuf *hbq_buf) 2465 { 2466 int rc; 2467 struct lpfc_rqe hrqe; 2468 struct lpfc_rqe drqe; 2469 struct lpfc_queue *hrq; 2470 struct lpfc_queue *drq; 2471 2472 if (hbqno != LPFC_ELS_HBQ) 2473 return 1; 2474 hrq = phba->sli4_hba.hdr_rq; 2475 drq = phba->sli4_hba.dat_rq; 2476 2477 lockdep_assert_held(&phba->hbalock); 2478 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2479 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2480 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2481 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2482 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2483 if (rc < 0) 2484 return rc; 2485 hbq_buf->tag = (rc | (hbqno << 16)); 2486 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2487 return 0; 2488 } 2489 2490 /* HBQ for ELS and CT traffic. */ 2491 static struct lpfc_hbq_init lpfc_els_hbq = { 2492 .rn = 1, 2493 .entry_count = 256, 2494 .mask_count = 0, 2495 .profile = 0, 2496 .ring_mask = (1 << LPFC_ELS_RING), 2497 .buffer_count = 0, 2498 .init_count = 40, 2499 .add_count = 40, 2500 }; 2501 2502 /* Array of HBQs */ 2503 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2504 &lpfc_els_hbq, 2505 }; 2506 2507 /** 2508 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2509 * @phba: Pointer to HBA context object. 2510 * @hbqno: HBQ number. 2511 * @count: Number of HBQ buffers to be posted. 2512 * 2513 * This function is called with no lock held to post more hbq buffers to the 2514 * given HBQ. The function returns the number of HBQ buffers successfully 2515 * posted. 2516 **/ 2517 static int 2518 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2519 { 2520 uint32_t i, posted = 0; 2521 unsigned long flags; 2522 struct hbq_dmabuf *hbq_buffer; 2523 LIST_HEAD(hbq_buf_list); 2524 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2525 return 0; 2526 2527 if ((phba->hbqs[hbqno].buffer_count + count) > 2528 lpfc_hbq_defs[hbqno]->entry_count) 2529 count = lpfc_hbq_defs[hbqno]->entry_count - 2530 phba->hbqs[hbqno].buffer_count; 2531 if (!count) 2532 return 0; 2533 /* Allocate HBQ entries */ 2534 for (i = 0; i < count; i++) { 2535 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2536 if (!hbq_buffer) 2537 break; 2538 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2539 } 2540 /* Check whether HBQ is still in use */ 2541 spin_lock_irqsave(&phba->hbalock, flags); 2542 if (!phba->hbq_in_use) 2543 goto err; 2544 while (!list_empty(&hbq_buf_list)) { 2545 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2546 dbuf.list); 2547 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2548 (hbqno << 16)); 2549 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2550 phba->hbqs[hbqno].buffer_count++; 2551 posted++; 2552 } else 2553 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2554 } 2555 spin_unlock_irqrestore(&phba->hbalock, flags); 2556 return posted; 2557 err: 2558 spin_unlock_irqrestore(&phba->hbalock, flags); 2559 while (!list_empty(&hbq_buf_list)) { 2560 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2561 dbuf.list); 2562 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2563 } 2564 return 0; 2565 } 2566 2567 /** 2568 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2569 * @phba: Pointer to HBA context object. 2570 * @qno: HBQ number. 2571 * 2572 * This function posts more buffers to the HBQ. This function 2573 * is called with no lock held. The function returns the number of HBQ entries 2574 * successfully allocated. 2575 **/ 2576 int 2577 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2578 { 2579 if (phba->sli_rev == LPFC_SLI_REV4) 2580 return 0; 2581 else 2582 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2583 lpfc_hbq_defs[qno]->add_count); 2584 } 2585 2586 /** 2587 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2588 * @phba: Pointer to HBA context object. 2589 * @qno: HBQ queue number. 2590 * 2591 * This function is called from SLI initialization code path with 2592 * no lock held to post initial HBQ buffers to firmware. The 2593 * function returns the number of HBQ entries successfully allocated. 2594 **/ 2595 static int 2596 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2597 { 2598 if (phba->sli_rev == LPFC_SLI_REV4) 2599 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2600 lpfc_hbq_defs[qno]->entry_count); 2601 else 2602 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2603 lpfc_hbq_defs[qno]->init_count); 2604 } 2605 2606 /* 2607 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2608 * 2609 * This function removes the first hbq buffer on an hbq list and returns a 2610 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2611 **/ 2612 static struct hbq_dmabuf * 2613 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2614 { 2615 struct lpfc_dmabuf *d_buf; 2616 2617 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2618 if (!d_buf) 2619 return NULL; 2620 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2621 } 2622 2623 /** 2624 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2625 * @phba: Pointer to HBA context object. 2626 * @hrq: HBQ number. 2627 * 2628 * This function removes the first RQ buffer on an RQ buffer list and returns a 2629 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2630 **/ 2631 static struct rqb_dmabuf * 2632 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2633 { 2634 struct lpfc_dmabuf *h_buf; 2635 struct lpfc_rqb *rqbp; 2636 2637 rqbp = hrq->rqbp; 2638 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2639 struct lpfc_dmabuf, list); 2640 if (!h_buf) 2641 return NULL; 2642 rqbp->buffer_count--; 2643 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2644 } 2645 2646 /** 2647 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2648 * @phba: Pointer to HBA context object. 2649 * @tag: Tag of the hbq buffer. 2650 * 2651 * This function searches for the hbq buffer associated with the given tag in 2652 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2653 * otherwise it returns NULL. 2654 **/ 2655 static struct hbq_dmabuf * 2656 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2657 { 2658 struct lpfc_dmabuf *d_buf; 2659 struct hbq_dmabuf *hbq_buf; 2660 uint32_t hbqno; 2661 2662 hbqno = tag >> 16; 2663 if (hbqno >= LPFC_MAX_HBQS) 2664 return NULL; 2665 2666 spin_lock_irq(&phba->hbalock); 2667 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2668 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2669 if (hbq_buf->tag == tag) { 2670 spin_unlock_irq(&phba->hbalock); 2671 return hbq_buf; 2672 } 2673 } 2674 spin_unlock_irq(&phba->hbalock); 2675 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2676 "1803 Bad hbq tag. Data: x%x x%x\n", 2677 tag, phba->hbqs[tag >> 16].buffer_count); 2678 return NULL; 2679 } 2680 2681 /** 2682 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2683 * @phba: Pointer to HBA context object. 2684 * @hbq_buffer: Pointer to HBQ buffer. 2685 * 2686 * This function is called with hbalock. This function gives back 2687 * the hbq buffer to firmware. If the HBQ does not have space to 2688 * post the buffer, it will free the buffer. 2689 **/ 2690 void 2691 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2692 { 2693 uint32_t hbqno; 2694 2695 if (hbq_buffer) { 2696 hbqno = hbq_buffer->tag >> 16; 2697 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2698 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2699 } 2700 } 2701 2702 /** 2703 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2704 * @mbxCommand: mailbox command code. 2705 * 2706 * This function is called by the mailbox event handler function to verify 2707 * that the completed mailbox command is a legitimate mailbox command. If the 2708 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2709 * and the mailbox event handler will take the HBA offline. 2710 **/ 2711 static int 2712 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2713 { 2714 uint8_t ret; 2715 2716 switch (mbxCommand) { 2717 case MBX_LOAD_SM: 2718 case MBX_READ_NV: 2719 case MBX_WRITE_NV: 2720 case MBX_WRITE_VPARMS: 2721 case MBX_RUN_BIU_DIAG: 2722 case MBX_INIT_LINK: 2723 case MBX_DOWN_LINK: 2724 case MBX_CONFIG_LINK: 2725 case MBX_CONFIG_RING: 2726 case MBX_RESET_RING: 2727 case MBX_READ_CONFIG: 2728 case MBX_READ_RCONFIG: 2729 case MBX_READ_SPARM: 2730 case MBX_READ_STATUS: 2731 case MBX_READ_RPI: 2732 case MBX_READ_XRI: 2733 case MBX_READ_REV: 2734 case MBX_READ_LNK_STAT: 2735 case MBX_REG_LOGIN: 2736 case MBX_UNREG_LOGIN: 2737 case MBX_CLEAR_LA: 2738 case MBX_DUMP_MEMORY: 2739 case MBX_DUMP_CONTEXT: 2740 case MBX_RUN_DIAGS: 2741 case MBX_RESTART: 2742 case MBX_UPDATE_CFG: 2743 case MBX_DOWN_LOAD: 2744 case MBX_DEL_LD_ENTRY: 2745 case MBX_RUN_PROGRAM: 2746 case MBX_SET_MASK: 2747 case MBX_SET_VARIABLE: 2748 case MBX_UNREG_D_ID: 2749 case MBX_KILL_BOARD: 2750 case MBX_CONFIG_FARP: 2751 case MBX_BEACON: 2752 case MBX_LOAD_AREA: 2753 case MBX_RUN_BIU_DIAG64: 2754 case MBX_CONFIG_PORT: 2755 case MBX_READ_SPARM64: 2756 case MBX_READ_RPI64: 2757 case MBX_REG_LOGIN64: 2758 case MBX_READ_TOPOLOGY: 2759 case MBX_WRITE_WWN: 2760 case MBX_SET_DEBUG: 2761 case MBX_LOAD_EXP_ROM: 2762 case MBX_ASYNCEVT_ENABLE: 2763 case MBX_REG_VPI: 2764 case MBX_UNREG_VPI: 2765 case MBX_HEARTBEAT: 2766 case MBX_PORT_CAPABILITIES: 2767 case MBX_PORT_IOV_CONTROL: 2768 case MBX_SLI4_CONFIG: 2769 case MBX_SLI4_REQ_FTRS: 2770 case MBX_REG_FCFI: 2771 case MBX_UNREG_FCFI: 2772 case MBX_REG_VFI: 2773 case MBX_UNREG_VFI: 2774 case MBX_INIT_VPI: 2775 case MBX_INIT_VFI: 2776 case MBX_RESUME_RPI: 2777 case MBX_READ_EVENT_LOG_STATUS: 2778 case MBX_READ_EVENT_LOG: 2779 case MBX_SECURITY_MGMT: 2780 case MBX_AUTH_PORT: 2781 case MBX_ACCESS_VDATA: 2782 ret = mbxCommand; 2783 break; 2784 default: 2785 ret = MBX_SHUTDOWN; 2786 break; 2787 } 2788 return ret; 2789 } 2790 2791 /** 2792 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2793 * @phba: Pointer to HBA context object. 2794 * @pmboxq: Pointer to mailbox command. 2795 * 2796 * This is completion handler function for mailbox commands issued from 2797 * lpfc_sli_issue_mbox_wait function. This function is called by the 2798 * mailbox event handler function with no lock held. This function 2799 * will wake up thread waiting on the wait queue pointed by context1 2800 * of the mailbox. 2801 **/ 2802 void 2803 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2804 { 2805 unsigned long drvr_flag; 2806 struct completion *pmbox_done; 2807 2808 /* 2809 * If pmbox_done is empty, the driver thread gave up waiting and 2810 * continued running. 2811 */ 2812 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2813 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2814 pmbox_done = (struct completion *)pmboxq->context3; 2815 if (pmbox_done) 2816 complete(pmbox_done); 2817 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2818 return; 2819 } 2820 2821 static void 2822 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2823 { 2824 unsigned long iflags; 2825 2826 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2827 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2828 spin_lock_irqsave(&ndlp->lock, iflags); 2829 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2830 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2831 spin_unlock_irqrestore(&ndlp->lock, iflags); 2832 } 2833 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2834 } 2835 2836 /** 2837 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2838 * @phba: Pointer to HBA context object. 2839 * @pmb: Pointer to mailbox object. 2840 * 2841 * This function is the default mailbox completion handler. It 2842 * frees the memory resources associated with the completed mailbox 2843 * command. If the completed command is a REG_LOGIN mailbox command, 2844 * this function will issue a UREG_LOGIN to re-claim the RPI. 2845 **/ 2846 void 2847 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2848 { 2849 struct lpfc_vport *vport = pmb->vport; 2850 struct lpfc_dmabuf *mp; 2851 struct lpfc_nodelist *ndlp; 2852 struct Scsi_Host *shost; 2853 uint16_t rpi, vpi; 2854 int rc; 2855 2856 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 2857 2858 if (mp) { 2859 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2860 kfree(mp); 2861 } 2862 2863 /* 2864 * If a REG_LOGIN succeeded after node is destroyed or node 2865 * is in re-discovery driver need to cleanup the RPI. 2866 */ 2867 if (!(phba->pport->load_flag & FC_UNLOADING) && 2868 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2869 !pmb->u.mb.mbxStatus) { 2870 rpi = pmb->u.mb.un.varWords[0]; 2871 vpi = pmb->u.mb.un.varRegLogin.vpi; 2872 if (phba->sli_rev == LPFC_SLI_REV4) 2873 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2874 lpfc_unreg_login(phba, vpi, rpi, pmb); 2875 pmb->vport = vport; 2876 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2877 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2878 if (rc != MBX_NOT_FINISHED) 2879 return; 2880 } 2881 2882 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2883 !(phba->pport->load_flag & FC_UNLOADING) && 2884 !pmb->u.mb.mbxStatus) { 2885 shost = lpfc_shost_from_vport(vport); 2886 spin_lock_irq(shost->host_lock); 2887 vport->vpi_state |= LPFC_VPI_REGISTERED; 2888 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2889 spin_unlock_irq(shost->host_lock); 2890 } 2891 2892 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2893 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2894 lpfc_nlp_put(ndlp); 2895 pmb->ctx_buf = NULL; 2896 pmb->ctx_ndlp = NULL; 2897 } 2898 2899 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2900 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2901 2902 /* Check to see if there are any deferred events to process */ 2903 if (ndlp) { 2904 lpfc_printf_vlog( 2905 vport, 2906 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2907 "1438 UNREG cmpl deferred mbox x%x " 2908 "on NPort x%x Data: x%x x%x x%px x%x x%x\n", 2909 ndlp->nlp_rpi, ndlp->nlp_DID, 2910 ndlp->nlp_flag, ndlp->nlp_defer_did, 2911 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2912 2913 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2914 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2915 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2916 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2917 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2918 } else { 2919 __lpfc_sli_rpi_release(vport, ndlp); 2920 } 2921 2922 /* The unreg_login mailbox is complete and had a 2923 * reference that has to be released. The PLOGI 2924 * got its own ref. 2925 */ 2926 lpfc_nlp_put(ndlp); 2927 pmb->ctx_ndlp = NULL; 2928 } 2929 } 2930 2931 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2932 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2933 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2934 lpfc_nlp_put(ndlp); 2935 } 2936 2937 /* Check security permission status on INIT_LINK mailbox command */ 2938 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2939 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2940 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2941 "2860 SLI authentication is required " 2942 "for INIT_LINK but has not done yet\n"); 2943 2944 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2945 lpfc_sli4_mbox_cmd_free(phba, pmb); 2946 else 2947 mempool_free(pmb, phba->mbox_mem_pool); 2948 } 2949 /** 2950 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2951 * @phba: Pointer to HBA context object. 2952 * @pmb: Pointer to mailbox object. 2953 * 2954 * This function is the unreg rpi mailbox completion handler. It 2955 * frees the memory resources associated with the completed mailbox 2956 * command. An additional reference is put on the ndlp to prevent 2957 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2958 * the unreg mailbox command completes, this routine puts the 2959 * reference back. 2960 * 2961 **/ 2962 void 2963 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2964 { 2965 struct lpfc_vport *vport = pmb->vport; 2966 struct lpfc_nodelist *ndlp; 2967 2968 ndlp = pmb->ctx_ndlp; 2969 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2970 if (phba->sli_rev == LPFC_SLI_REV4 && 2971 (bf_get(lpfc_sli_intf_if_type, 2972 &phba->sli4_hba.sli_intf) >= 2973 LPFC_SLI_INTF_IF_TYPE_2)) { 2974 if (ndlp) { 2975 lpfc_printf_vlog( 2976 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2977 "0010 UNREG_LOGIN vpi:%x " 2978 "rpi:%x DID:%x defer x%x flg x%x " 2979 "x%px\n", 2980 vport->vpi, ndlp->nlp_rpi, 2981 ndlp->nlp_DID, ndlp->nlp_defer_did, 2982 ndlp->nlp_flag, 2983 ndlp); 2984 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2985 2986 /* Check to see if there are any deferred 2987 * events to process 2988 */ 2989 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2990 (ndlp->nlp_defer_did != 2991 NLP_EVT_NOTHING_PENDING)) { 2992 lpfc_printf_vlog( 2993 vport, KERN_INFO, LOG_DISCOVERY, 2994 "4111 UNREG cmpl deferred " 2995 "clr x%x on " 2996 "NPort x%x Data: x%x x%px\n", 2997 ndlp->nlp_rpi, ndlp->nlp_DID, 2998 ndlp->nlp_defer_did, ndlp); 2999 ndlp->nlp_flag &= ~NLP_UNREG_INP; 3000 ndlp->nlp_defer_did = 3001 NLP_EVT_NOTHING_PENDING; 3002 lpfc_issue_els_plogi( 3003 vport, ndlp->nlp_DID, 0); 3004 } else { 3005 __lpfc_sli_rpi_release(vport, ndlp); 3006 } 3007 lpfc_nlp_put(ndlp); 3008 } 3009 } 3010 } 3011 3012 mempool_free(pmb, phba->mbox_mem_pool); 3013 } 3014 3015 /** 3016 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 3017 * @phba: Pointer to HBA context object. 3018 * 3019 * This function is called with no lock held. This function processes all 3020 * the completed mailbox commands and gives it to upper layers. The interrupt 3021 * service routine processes mailbox completion interrupt and adds completed 3022 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 3023 * Worker thread call lpfc_sli_handle_mb_event, which will return the 3024 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 3025 * function returns the mailbox commands to the upper layer by calling the 3026 * completion handler function of each mailbox. 3027 **/ 3028 int 3029 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 3030 { 3031 MAILBOX_t *pmbox; 3032 LPFC_MBOXQ_t *pmb; 3033 int rc; 3034 LIST_HEAD(cmplq); 3035 3036 phba->sli.slistat.mbox_event++; 3037 3038 /* Get all completed mailboxe buffers into the cmplq */ 3039 spin_lock_irq(&phba->hbalock); 3040 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 3041 spin_unlock_irq(&phba->hbalock); 3042 3043 /* Get a Mailbox buffer to setup mailbox commands for callback */ 3044 do { 3045 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 3046 if (pmb == NULL) 3047 break; 3048 3049 pmbox = &pmb->u.mb; 3050 3051 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 3052 if (pmb->vport) { 3053 lpfc_debugfs_disc_trc(pmb->vport, 3054 LPFC_DISC_TRC_MBOX_VPORT, 3055 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 3056 (uint32_t)pmbox->mbxCommand, 3057 pmbox->un.varWords[0], 3058 pmbox->un.varWords[1]); 3059 } 3060 else { 3061 lpfc_debugfs_disc_trc(phba->pport, 3062 LPFC_DISC_TRC_MBOX, 3063 "MBOX cmpl: cmd:x%x mb:x%x x%x", 3064 (uint32_t)pmbox->mbxCommand, 3065 pmbox->un.varWords[0], 3066 pmbox->un.varWords[1]); 3067 } 3068 } 3069 3070 /* 3071 * It is a fatal error if unknown mbox command completion. 3072 */ 3073 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 3074 MBX_SHUTDOWN) { 3075 /* Unknown mailbox command compl */ 3076 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3077 "(%d):0323 Unknown Mailbox command " 3078 "x%x (x%x/x%x) Cmpl\n", 3079 pmb->vport ? pmb->vport->vpi : 3080 LPFC_VPORT_UNKNOWN, 3081 pmbox->mbxCommand, 3082 lpfc_sli_config_mbox_subsys_get(phba, 3083 pmb), 3084 lpfc_sli_config_mbox_opcode_get(phba, 3085 pmb)); 3086 phba->link_state = LPFC_HBA_ERROR; 3087 phba->work_hs = HS_FFER3; 3088 lpfc_handle_eratt(phba); 3089 continue; 3090 } 3091 3092 if (pmbox->mbxStatus) { 3093 phba->sli.slistat.mbox_stat_err++; 3094 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 3095 /* Mbox cmd cmpl error - RETRYing */ 3096 lpfc_printf_log(phba, KERN_INFO, 3097 LOG_MBOX | LOG_SLI, 3098 "(%d):0305 Mbox cmd cmpl " 3099 "error - RETRYing Data: x%x " 3100 "(x%x/x%x) x%x x%x x%x\n", 3101 pmb->vport ? pmb->vport->vpi : 3102 LPFC_VPORT_UNKNOWN, 3103 pmbox->mbxCommand, 3104 lpfc_sli_config_mbox_subsys_get(phba, 3105 pmb), 3106 lpfc_sli_config_mbox_opcode_get(phba, 3107 pmb), 3108 pmbox->mbxStatus, 3109 pmbox->un.varWords[0], 3110 pmb->vport ? pmb->vport->port_state : 3111 LPFC_VPORT_UNKNOWN); 3112 pmbox->mbxStatus = 0; 3113 pmbox->mbxOwner = OWN_HOST; 3114 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3115 if (rc != MBX_NOT_FINISHED) 3116 continue; 3117 } 3118 } 3119 3120 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 3121 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 3122 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 3123 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 3124 "x%x x%x x%x\n", 3125 pmb->vport ? pmb->vport->vpi : 0, 3126 pmbox->mbxCommand, 3127 lpfc_sli_config_mbox_subsys_get(phba, pmb), 3128 lpfc_sli_config_mbox_opcode_get(phba, pmb), 3129 pmb->mbox_cmpl, 3130 *((uint32_t *) pmbox), 3131 pmbox->un.varWords[0], 3132 pmbox->un.varWords[1], 3133 pmbox->un.varWords[2], 3134 pmbox->un.varWords[3], 3135 pmbox->un.varWords[4], 3136 pmbox->un.varWords[5], 3137 pmbox->un.varWords[6], 3138 pmbox->un.varWords[7], 3139 pmbox->un.varWords[8], 3140 pmbox->un.varWords[9], 3141 pmbox->un.varWords[10]); 3142 3143 if (pmb->mbox_cmpl) 3144 pmb->mbox_cmpl(phba,pmb); 3145 } while (1); 3146 return 0; 3147 } 3148 3149 /** 3150 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 3151 * @phba: Pointer to HBA context object. 3152 * @pring: Pointer to driver SLI ring object. 3153 * @tag: buffer tag. 3154 * 3155 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 3156 * is set in the tag the buffer is posted for a particular exchange, 3157 * the function will return the buffer without replacing the buffer. 3158 * If the buffer is for unsolicited ELS or CT traffic, this function 3159 * returns the buffer and also posts another buffer to the firmware. 3160 **/ 3161 static struct lpfc_dmabuf * 3162 lpfc_sli_get_buff(struct lpfc_hba *phba, 3163 struct lpfc_sli_ring *pring, 3164 uint32_t tag) 3165 { 3166 struct hbq_dmabuf *hbq_entry; 3167 3168 if (tag & QUE_BUFTAG_BIT) 3169 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 3170 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 3171 if (!hbq_entry) 3172 return NULL; 3173 return &hbq_entry->dbuf; 3174 } 3175 3176 /** 3177 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 3178 * containing a NVME LS request. 3179 * @phba: pointer to lpfc hba data structure. 3180 * @piocb: pointer to the iocbq struct representing the sequence starting 3181 * frame. 3182 * 3183 * This routine initially validates the NVME LS, validates there is a login 3184 * with the port that sent the LS, and then calls the appropriate nvme host 3185 * or target LS request handler. 3186 **/ 3187 static void 3188 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 3189 { 3190 struct lpfc_nodelist *ndlp; 3191 struct lpfc_dmabuf *d_buf; 3192 struct hbq_dmabuf *nvmebuf; 3193 struct fc_frame_header *fc_hdr; 3194 struct lpfc_async_xchg_ctx *axchg = NULL; 3195 char *failwhy = NULL; 3196 uint32_t oxid, sid, did, fctl, size; 3197 int ret = 1; 3198 3199 d_buf = piocb->context2; 3200 3201 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 3202 fc_hdr = nvmebuf->hbuf.virt; 3203 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 3204 sid = sli4_sid_from_fc_hdr(fc_hdr); 3205 did = sli4_did_from_fc_hdr(fc_hdr); 3206 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 3207 fc_hdr->fh_f_ctl[1] << 8 | 3208 fc_hdr->fh_f_ctl[2]); 3209 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 3210 3211 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 3212 oxid, size, sid); 3213 3214 if (phba->pport->load_flag & FC_UNLOADING) { 3215 failwhy = "Driver Unloading"; 3216 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 3217 failwhy = "NVME FC4 Disabled"; 3218 } else if (!phba->nvmet_support && !phba->pport->localport) { 3219 failwhy = "No Localport"; 3220 } else if (phba->nvmet_support && !phba->targetport) { 3221 failwhy = "No Targetport"; 3222 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 3223 failwhy = "Bad NVME LS R_CTL"; 3224 } else if (unlikely((fctl & 0x00FF0000) != 3225 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 3226 failwhy = "Bad NVME LS F_CTL"; 3227 } else { 3228 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 3229 if (!axchg) 3230 failwhy = "No CTX memory"; 3231 } 3232 3233 if (unlikely(failwhy)) { 3234 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3235 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 3236 sid, oxid, failwhy); 3237 goto out_fail; 3238 } 3239 3240 /* validate the source of the LS is logged in */ 3241 ndlp = lpfc_findnode_did(phba->pport, sid); 3242 if (!ndlp || 3243 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3244 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3245 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 3246 "6216 NVME Unsol rcv: No ndlp: " 3247 "NPort_ID x%x oxid x%x\n", 3248 sid, oxid); 3249 goto out_fail; 3250 } 3251 3252 axchg->phba = phba; 3253 axchg->ndlp = ndlp; 3254 axchg->size = size; 3255 axchg->oxid = oxid; 3256 axchg->sid = sid; 3257 axchg->wqeq = NULL; 3258 axchg->state = LPFC_NVME_STE_LS_RCV; 3259 axchg->entry_cnt = 1; 3260 axchg->rqb_buffer = (void *)nvmebuf; 3261 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3262 axchg->payload = nvmebuf->dbuf.virt; 3263 INIT_LIST_HEAD(&axchg->list); 3264 3265 if (phba->nvmet_support) { 3266 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3267 spin_lock_irq(&ndlp->lock); 3268 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3269 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3270 spin_unlock_irq(&ndlp->lock); 3271 3272 /* This reference is a single occurrence to hold the 3273 * node valid until the nvmet transport calls 3274 * host_release. 3275 */ 3276 if (!lpfc_nlp_get(ndlp)) 3277 goto out_fail; 3278 3279 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3280 "6206 NVMET unsol ls_req ndlp x%px " 3281 "DID x%x xflags x%x refcnt %d\n", 3282 ndlp, ndlp->nlp_DID, 3283 ndlp->fc4_xpt_flags, 3284 kref_read(&ndlp->kref)); 3285 } else { 3286 spin_unlock_irq(&ndlp->lock); 3287 } 3288 } else { 3289 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3290 } 3291 3292 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3293 if (!ret) 3294 return; 3295 3296 out_fail: 3297 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3298 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3299 "NVMe%s handler failed %d\n", 3300 did, sid, oxid, 3301 (phba->nvmet_support) ? "T" : "I", ret); 3302 3303 /* recycle receive buffer */ 3304 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3305 3306 /* If start of new exchange, abort it */ 3307 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3308 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3309 3310 if (ret) 3311 kfree(axchg); 3312 } 3313 3314 /** 3315 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3316 * @phba: Pointer to HBA context object. 3317 * @pring: Pointer to driver SLI ring object. 3318 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3319 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3320 * @fch_type: the type for the first frame of the sequence. 3321 * 3322 * This function is called with no lock held. This function uses the r_ctl and 3323 * type of the received sequence to find the correct callback function to call 3324 * to process the sequence. 3325 **/ 3326 static int 3327 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3328 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3329 uint32_t fch_type) 3330 { 3331 int i; 3332 3333 switch (fch_type) { 3334 case FC_TYPE_NVME: 3335 lpfc_nvme_unsol_ls_handler(phba, saveq); 3336 return 1; 3337 default: 3338 break; 3339 } 3340 3341 /* unSolicited Responses */ 3342 if (pring->prt[0].profile) { 3343 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3344 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3345 saveq); 3346 return 1; 3347 } 3348 /* We must search, based on rctl / type 3349 for the right routine */ 3350 for (i = 0; i < pring->num_mask; i++) { 3351 if ((pring->prt[i].rctl == fch_r_ctl) && 3352 (pring->prt[i].type == fch_type)) { 3353 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3354 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3355 (phba, pring, saveq); 3356 return 1; 3357 } 3358 } 3359 return 0; 3360 } 3361 3362 /** 3363 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3364 * @phba: Pointer to HBA context object. 3365 * @pring: Pointer to driver SLI ring object. 3366 * @saveq: Pointer to the unsolicited iocb. 3367 * 3368 * This function is called with no lock held by the ring event handler 3369 * when there is an unsolicited iocb posted to the response ring by the 3370 * firmware. This function gets the buffer associated with the iocbs 3371 * and calls the event handler for the ring. This function handles both 3372 * qring buffers and hbq buffers. 3373 * When the function returns 1 the caller can free the iocb object otherwise 3374 * upper layer functions will free the iocb objects. 3375 **/ 3376 static int 3377 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3378 struct lpfc_iocbq *saveq) 3379 { 3380 IOCB_t * irsp; 3381 WORD5 * w5p; 3382 uint32_t Rctl, Type; 3383 struct lpfc_iocbq *iocbq; 3384 struct lpfc_dmabuf *dmzbuf; 3385 3386 irsp = &(saveq->iocb); 3387 3388 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3389 if (pring->lpfc_sli_rcv_async_status) 3390 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3391 else 3392 lpfc_printf_log(phba, 3393 KERN_WARNING, 3394 LOG_SLI, 3395 "0316 Ring %d handler: unexpected " 3396 "ASYNC_STATUS iocb received evt_code " 3397 "0x%x\n", 3398 pring->ringno, 3399 irsp->un.asyncstat.evt_code); 3400 return 1; 3401 } 3402 3403 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3404 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3405 if (irsp->ulpBdeCount > 0) { 3406 dmzbuf = lpfc_sli_get_buff(phba, pring, 3407 irsp->un.ulpWord[3]); 3408 lpfc_in_buf_free(phba, dmzbuf); 3409 } 3410 3411 if (irsp->ulpBdeCount > 1) { 3412 dmzbuf = lpfc_sli_get_buff(phba, pring, 3413 irsp->unsli3.sli3Words[3]); 3414 lpfc_in_buf_free(phba, dmzbuf); 3415 } 3416 3417 if (irsp->ulpBdeCount > 2) { 3418 dmzbuf = lpfc_sli_get_buff(phba, pring, 3419 irsp->unsli3.sli3Words[7]); 3420 lpfc_in_buf_free(phba, dmzbuf); 3421 } 3422 3423 return 1; 3424 } 3425 3426 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3427 if (irsp->ulpBdeCount != 0) { 3428 saveq->context2 = lpfc_sli_get_buff(phba, pring, 3429 irsp->un.ulpWord[3]); 3430 if (!saveq->context2) 3431 lpfc_printf_log(phba, 3432 KERN_ERR, 3433 LOG_SLI, 3434 "0341 Ring %d Cannot find buffer for " 3435 "an unsolicited iocb. tag 0x%x\n", 3436 pring->ringno, 3437 irsp->un.ulpWord[3]); 3438 } 3439 if (irsp->ulpBdeCount == 2) { 3440 saveq->context3 = lpfc_sli_get_buff(phba, pring, 3441 irsp->unsli3.sli3Words[7]); 3442 if (!saveq->context3) 3443 lpfc_printf_log(phba, 3444 KERN_ERR, 3445 LOG_SLI, 3446 "0342 Ring %d Cannot find buffer for an" 3447 " unsolicited iocb. tag 0x%x\n", 3448 pring->ringno, 3449 irsp->unsli3.sli3Words[7]); 3450 } 3451 list_for_each_entry(iocbq, &saveq->list, list) { 3452 irsp = &(iocbq->iocb); 3453 if (irsp->ulpBdeCount != 0) { 3454 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 3455 irsp->un.ulpWord[3]); 3456 if (!iocbq->context2) 3457 lpfc_printf_log(phba, 3458 KERN_ERR, 3459 LOG_SLI, 3460 "0343 Ring %d Cannot find " 3461 "buffer for an unsolicited iocb" 3462 ". tag 0x%x\n", pring->ringno, 3463 irsp->un.ulpWord[3]); 3464 } 3465 if (irsp->ulpBdeCount == 2) { 3466 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 3467 irsp->unsli3.sli3Words[7]); 3468 if (!iocbq->context3) 3469 lpfc_printf_log(phba, 3470 KERN_ERR, 3471 LOG_SLI, 3472 "0344 Ring %d Cannot find " 3473 "buffer for an unsolicited " 3474 "iocb. tag 0x%x\n", 3475 pring->ringno, 3476 irsp->unsli3.sli3Words[7]); 3477 } 3478 } 3479 } 3480 if (irsp->ulpBdeCount != 0 && 3481 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3482 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3483 int found = 0; 3484 3485 /* search continue save q for same XRI */ 3486 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3487 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3488 saveq->iocb.unsli3.rcvsli3.ox_id) { 3489 list_add_tail(&saveq->list, &iocbq->list); 3490 found = 1; 3491 break; 3492 } 3493 } 3494 if (!found) 3495 list_add_tail(&saveq->clist, 3496 &pring->iocb_continue_saveq); 3497 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3498 list_del_init(&iocbq->clist); 3499 saveq = iocbq; 3500 irsp = &(saveq->iocb); 3501 } else 3502 return 0; 3503 } 3504 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3505 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3506 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3507 Rctl = FC_RCTL_ELS_REQ; 3508 Type = FC_TYPE_ELS; 3509 } else { 3510 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3511 Rctl = w5p->hcsw.Rctl; 3512 Type = w5p->hcsw.Type; 3513 3514 /* Firmware Workaround */ 3515 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3516 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3517 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3518 Rctl = FC_RCTL_ELS_REQ; 3519 Type = FC_TYPE_ELS; 3520 w5p->hcsw.Rctl = Rctl; 3521 w5p->hcsw.Type = Type; 3522 } 3523 } 3524 3525 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3526 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3527 "0313 Ring %d handler: unexpected Rctl x%x " 3528 "Type x%x received\n", 3529 pring->ringno, Rctl, Type); 3530 3531 return 1; 3532 } 3533 3534 /** 3535 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3536 * @phba: Pointer to HBA context object. 3537 * @pring: Pointer to driver SLI ring object. 3538 * @prspiocb: Pointer to response iocb object. 3539 * 3540 * This function looks up the iocb_lookup table to get the command iocb 3541 * corresponding to the given response iocb using the iotag of the 3542 * response iocb. The driver calls this function with the hbalock held 3543 * for SLI3 ports or the ring lock held for SLI4 ports. 3544 * This function returns the command iocb object if it finds the command 3545 * iocb else returns NULL. 3546 **/ 3547 static struct lpfc_iocbq * 3548 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3549 struct lpfc_sli_ring *pring, 3550 struct lpfc_iocbq *prspiocb) 3551 { 3552 struct lpfc_iocbq *cmd_iocb = NULL; 3553 uint16_t iotag; 3554 spinlock_t *temp_lock = NULL; 3555 unsigned long iflag = 0; 3556 3557 if (phba->sli_rev == LPFC_SLI_REV4) 3558 temp_lock = &pring->ring_lock; 3559 else 3560 temp_lock = &phba->hbalock; 3561 3562 spin_lock_irqsave(temp_lock, iflag); 3563 iotag = prspiocb->iocb.ulpIoTag; 3564 3565 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3566 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3567 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3568 /* remove from txcmpl queue list */ 3569 list_del_init(&cmd_iocb->list); 3570 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3571 pring->txcmplq_cnt--; 3572 spin_unlock_irqrestore(temp_lock, iflag); 3573 return cmd_iocb; 3574 } 3575 } 3576 3577 spin_unlock_irqrestore(temp_lock, iflag); 3578 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3579 "0317 iotag x%x is out of " 3580 "range: max iotag x%x wd0 x%x\n", 3581 iotag, phba->sli.last_iotag, 3582 *(((uint32_t *) &prspiocb->iocb) + 7)); 3583 return NULL; 3584 } 3585 3586 /** 3587 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3588 * @phba: Pointer to HBA context object. 3589 * @pring: Pointer to driver SLI ring object. 3590 * @iotag: IOCB tag. 3591 * 3592 * This function looks up the iocb_lookup table to get the command iocb 3593 * corresponding to the given iotag. The driver calls this function with 3594 * the ring lock held because this function is an SLI4 port only helper. 3595 * This function returns the command iocb object if it finds the command 3596 * iocb else returns NULL. 3597 **/ 3598 static struct lpfc_iocbq * 3599 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3600 struct lpfc_sli_ring *pring, uint16_t iotag) 3601 { 3602 struct lpfc_iocbq *cmd_iocb = NULL; 3603 spinlock_t *temp_lock = NULL; 3604 unsigned long iflag = 0; 3605 3606 if (phba->sli_rev == LPFC_SLI_REV4) 3607 temp_lock = &pring->ring_lock; 3608 else 3609 temp_lock = &phba->hbalock; 3610 3611 spin_lock_irqsave(temp_lock, iflag); 3612 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3613 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3614 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3615 /* remove from txcmpl queue list */ 3616 list_del_init(&cmd_iocb->list); 3617 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3618 pring->txcmplq_cnt--; 3619 spin_unlock_irqrestore(temp_lock, iflag); 3620 return cmd_iocb; 3621 } 3622 } 3623 3624 spin_unlock_irqrestore(temp_lock, iflag); 3625 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3626 "0372 iotag x%x lookup error: max iotag (x%x) " 3627 "iocb_flag x%x\n", 3628 iotag, phba->sli.last_iotag, 3629 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); 3630 return NULL; 3631 } 3632 3633 /** 3634 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3635 * @phba: Pointer to HBA context object. 3636 * @pring: Pointer to driver SLI ring object. 3637 * @saveq: Pointer to the response iocb to be processed. 3638 * 3639 * This function is called by the ring event handler for non-fcp 3640 * rings when there is a new response iocb in the response ring. 3641 * The caller is not required to hold any locks. This function 3642 * gets the command iocb associated with the response iocb and 3643 * calls the completion handler for the command iocb. If there 3644 * is no completion handler, the function will free the resources 3645 * associated with command iocb. If the response iocb is for 3646 * an already aborted command iocb, the status of the completion 3647 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3648 * This function always returns 1. 3649 **/ 3650 static int 3651 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3652 struct lpfc_iocbq *saveq) 3653 { 3654 struct lpfc_iocbq *cmdiocbp; 3655 int rc = 1; 3656 unsigned long iflag; 3657 3658 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3659 if (cmdiocbp) { 3660 if (cmdiocbp->iocb_cmpl) { 3661 /* 3662 * If an ELS command failed send an event to mgmt 3663 * application. 3664 */ 3665 if (saveq->iocb.ulpStatus && 3666 (pring->ringno == LPFC_ELS_RING) && 3667 (cmdiocbp->iocb.ulpCommand == 3668 CMD_ELS_REQUEST64_CR)) 3669 lpfc_send_els_failure_event(phba, 3670 cmdiocbp, saveq); 3671 3672 /* 3673 * Post all ELS completions to the worker thread. 3674 * All other are passed to the completion callback. 3675 */ 3676 if (pring->ringno == LPFC_ELS_RING) { 3677 if ((phba->sli_rev < LPFC_SLI_REV4) && 3678 (cmdiocbp->iocb_flag & 3679 LPFC_DRIVER_ABORTED)) { 3680 spin_lock_irqsave(&phba->hbalock, 3681 iflag); 3682 cmdiocbp->iocb_flag &= 3683 ~LPFC_DRIVER_ABORTED; 3684 spin_unlock_irqrestore(&phba->hbalock, 3685 iflag); 3686 saveq->iocb.ulpStatus = 3687 IOSTAT_LOCAL_REJECT; 3688 saveq->iocb.un.ulpWord[4] = 3689 IOERR_SLI_ABORTED; 3690 3691 /* Firmware could still be in progress 3692 * of DMAing payload, so don't free data 3693 * buffer till after a hbeat. 3694 */ 3695 spin_lock_irqsave(&phba->hbalock, 3696 iflag); 3697 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 3698 spin_unlock_irqrestore(&phba->hbalock, 3699 iflag); 3700 } 3701 if (phba->sli_rev == LPFC_SLI_REV4) { 3702 if (saveq->iocb_flag & 3703 LPFC_EXCHANGE_BUSY) { 3704 /* Set cmdiocb flag for the 3705 * exchange busy so sgl (xri) 3706 * will not be released until 3707 * the abort xri is received 3708 * from hba. 3709 */ 3710 spin_lock_irqsave( 3711 &phba->hbalock, iflag); 3712 cmdiocbp->iocb_flag |= 3713 LPFC_EXCHANGE_BUSY; 3714 spin_unlock_irqrestore( 3715 &phba->hbalock, iflag); 3716 } 3717 if (cmdiocbp->iocb_flag & 3718 LPFC_DRIVER_ABORTED) { 3719 /* 3720 * Clear LPFC_DRIVER_ABORTED 3721 * bit in case it was driver 3722 * initiated abort. 3723 */ 3724 spin_lock_irqsave( 3725 &phba->hbalock, iflag); 3726 cmdiocbp->iocb_flag &= 3727 ~LPFC_DRIVER_ABORTED; 3728 spin_unlock_irqrestore( 3729 &phba->hbalock, iflag); 3730 cmdiocbp->iocb.ulpStatus = 3731 IOSTAT_LOCAL_REJECT; 3732 cmdiocbp->iocb.un.ulpWord[4] = 3733 IOERR_ABORT_REQUESTED; 3734 /* 3735 * For SLI4, irsiocb contains 3736 * NO_XRI in sli_xritag, it 3737 * shall not affect releasing 3738 * sgl (xri) process. 3739 */ 3740 saveq->iocb.ulpStatus = 3741 IOSTAT_LOCAL_REJECT; 3742 saveq->iocb.un.ulpWord[4] = 3743 IOERR_SLI_ABORTED; 3744 spin_lock_irqsave( 3745 &phba->hbalock, iflag); 3746 saveq->iocb_flag |= 3747 LPFC_DELAY_MEM_FREE; 3748 spin_unlock_irqrestore( 3749 &phba->hbalock, iflag); 3750 } 3751 } 3752 } 3753 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 3754 } else 3755 lpfc_sli_release_iocbq(phba, cmdiocbp); 3756 } else { 3757 /* 3758 * Unknown initiating command based on the response iotag. 3759 * This could be the case on the ELS ring because of 3760 * lpfc_els_abort(). 3761 */ 3762 if (pring->ringno != LPFC_ELS_RING) { 3763 /* 3764 * Ring <ringno> handler: unexpected completion IoTag 3765 * <IoTag> 3766 */ 3767 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3768 "0322 Ring %d handler: " 3769 "unexpected completion IoTag x%x " 3770 "Data: x%x x%x x%x x%x\n", 3771 pring->ringno, 3772 saveq->iocb.ulpIoTag, 3773 saveq->iocb.ulpStatus, 3774 saveq->iocb.un.ulpWord[4], 3775 saveq->iocb.ulpCommand, 3776 saveq->iocb.ulpContext); 3777 } 3778 } 3779 3780 return rc; 3781 } 3782 3783 /** 3784 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3785 * @phba: Pointer to HBA context object. 3786 * @pring: Pointer to driver SLI ring object. 3787 * 3788 * This function is called from the iocb ring event handlers when 3789 * put pointer is ahead of the get pointer for a ring. This function signal 3790 * an error attention condition to the worker thread and the worker 3791 * thread will transition the HBA to offline state. 3792 **/ 3793 static void 3794 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3795 { 3796 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3797 /* 3798 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3799 * rsp ring <portRspMax> 3800 */ 3801 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3802 "0312 Ring %d handler: portRspPut %d " 3803 "is bigger than rsp ring %d\n", 3804 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3805 pring->sli.sli3.numRiocb); 3806 3807 phba->link_state = LPFC_HBA_ERROR; 3808 3809 /* 3810 * All error attention handlers are posted to 3811 * worker thread 3812 */ 3813 phba->work_ha |= HA_ERATT; 3814 phba->work_hs = HS_FFER3; 3815 3816 lpfc_worker_wake_up(phba); 3817 3818 return; 3819 } 3820 3821 /** 3822 * lpfc_poll_eratt - Error attention polling timer timeout handler 3823 * @t: Context to fetch pointer to address of HBA context object from. 3824 * 3825 * This function is invoked by the Error Attention polling timer when the 3826 * timer times out. It will check the SLI Error Attention register for 3827 * possible attention events. If so, it will post an Error Attention event 3828 * and wake up worker thread to process it. Otherwise, it will set up the 3829 * Error Attention polling timer for the next poll. 3830 **/ 3831 void lpfc_poll_eratt(struct timer_list *t) 3832 { 3833 struct lpfc_hba *phba; 3834 uint32_t eratt = 0; 3835 uint64_t sli_intr, cnt; 3836 3837 phba = from_timer(phba, t, eratt_poll); 3838 3839 /* Here we will also keep track of interrupts per sec of the hba */ 3840 sli_intr = phba->sli.slistat.sli_intr; 3841 3842 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3843 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3844 sli_intr); 3845 else 3846 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3847 3848 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3849 do_div(cnt, phba->eratt_poll_interval); 3850 phba->sli.slistat.sli_ips = cnt; 3851 3852 phba->sli.slistat.sli_prev_intr = sli_intr; 3853 3854 /* Check chip HA register for error event */ 3855 eratt = lpfc_sli_check_eratt(phba); 3856 3857 if (eratt) 3858 /* Tell the worker thread there is work to do */ 3859 lpfc_worker_wake_up(phba); 3860 else 3861 /* Restart the timer for next eratt poll */ 3862 mod_timer(&phba->eratt_poll, 3863 jiffies + 3864 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3865 return; 3866 } 3867 3868 3869 /** 3870 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3871 * @phba: Pointer to HBA context object. 3872 * @pring: Pointer to driver SLI ring object. 3873 * @mask: Host attention register mask for this ring. 3874 * 3875 * This function is called from the interrupt context when there is a ring 3876 * event for the fcp ring. The caller does not hold any lock. 3877 * The function processes each response iocb in the response ring until it 3878 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3879 * LE bit set. The function will call the completion handler of the command iocb 3880 * if the response iocb indicates a completion for a command iocb or it is 3881 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3882 * function if this is an unsolicited iocb. 3883 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3884 * to check it explicitly. 3885 */ 3886 int 3887 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3888 struct lpfc_sli_ring *pring, uint32_t mask) 3889 { 3890 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3891 IOCB_t *irsp = NULL; 3892 IOCB_t *entry = NULL; 3893 struct lpfc_iocbq *cmdiocbq = NULL; 3894 struct lpfc_iocbq rspiocbq; 3895 uint32_t status; 3896 uint32_t portRspPut, portRspMax; 3897 int rc = 1; 3898 lpfc_iocb_type type; 3899 unsigned long iflag; 3900 uint32_t rsp_cmpl = 0; 3901 3902 spin_lock_irqsave(&phba->hbalock, iflag); 3903 pring->stats.iocb_event++; 3904 3905 /* 3906 * The next available response entry should never exceed the maximum 3907 * entries. If it does, treat it as an adapter hardware error. 3908 */ 3909 portRspMax = pring->sli.sli3.numRiocb; 3910 portRspPut = le32_to_cpu(pgp->rspPutInx); 3911 if (unlikely(portRspPut >= portRspMax)) { 3912 lpfc_sli_rsp_pointers_error(phba, pring); 3913 spin_unlock_irqrestore(&phba->hbalock, iflag); 3914 return 1; 3915 } 3916 if (phba->fcp_ring_in_use) { 3917 spin_unlock_irqrestore(&phba->hbalock, iflag); 3918 return 1; 3919 } else 3920 phba->fcp_ring_in_use = 1; 3921 3922 rmb(); 3923 while (pring->sli.sli3.rspidx != portRspPut) { 3924 /* 3925 * Fetch an entry off the ring and copy it into a local data 3926 * structure. The copy involves a byte-swap since the 3927 * network byte order and pci byte orders are different. 3928 */ 3929 entry = lpfc_resp_iocb(phba, pring); 3930 phba->last_completion_time = jiffies; 3931 3932 if (++pring->sli.sli3.rspidx >= portRspMax) 3933 pring->sli.sli3.rspidx = 0; 3934 3935 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3936 (uint32_t *) &rspiocbq.iocb, 3937 phba->iocb_rsp_size); 3938 INIT_LIST_HEAD(&(rspiocbq.list)); 3939 irsp = &rspiocbq.iocb; 3940 3941 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3942 pring->stats.iocb_rsp++; 3943 rsp_cmpl++; 3944 3945 if (unlikely(irsp->ulpStatus)) { 3946 /* 3947 * If resource errors reported from HBA, reduce 3948 * queuedepths of the SCSI device. 3949 */ 3950 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3951 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3952 IOERR_NO_RESOURCES)) { 3953 spin_unlock_irqrestore(&phba->hbalock, iflag); 3954 phba->lpfc_rampdown_queue_depth(phba); 3955 spin_lock_irqsave(&phba->hbalock, iflag); 3956 } 3957 3958 /* Rsp ring <ringno> error: IOCB */ 3959 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3960 "0336 Rsp Ring %d error: IOCB Data: " 3961 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3962 pring->ringno, 3963 irsp->un.ulpWord[0], 3964 irsp->un.ulpWord[1], 3965 irsp->un.ulpWord[2], 3966 irsp->un.ulpWord[3], 3967 irsp->un.ulpWord[4], 3968 irsp->un.ulpWord[5], 3969 *(uint32_t *)&irsp->un1, 3970 *((uint32_t *)&irsp->un1 + 1)); 3971 } 3972 3973 switch (type) { 3974 case LPFC_ABORT_IOCB: 3975 case LPFC_SOL_IOCB: 3976 /* 3977 * Idle exchange closed via ABTS from port. No iocb 3978 * resources need to be recovered. 3979 */ 3980 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3981 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3982 "0333 IOCB cmd 0x%x" 3983 " processed. Skipping" 3984 " completion\n", 3985 irsp->ulpCommand); 3986 break; 3987 } 3988 3989 spin_unlock_irqrestore(&phba->hbalock, iflag); 3990 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3991 &rspiocbq); 3992 spin_lock_irqsave(&phba->hbalock, iflag); 3993 if (unlikely(!cmdiocbq)) 3994 break; 3995 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3996 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3997 if (cmdiocbq->iocb_cmpl) { 3998 spin_unlock_irqrestore(&phba->hbalock, iflag); 3999 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 4000 &rspiocbq); 4001 spin_lock_irqsave(&phba->hbalock, iflag); 4002 } 4003 break; 4004 case LPFC_UNSOL_IOCB: 4005 spin_unlock_irqrestore(&phba->hbalock, iflag); 4006 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 4007 spin_lock_irqsave(&phba->hbalock, iflag); 4008 break; 4009 default: 4010 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4011 char adaptermsg[LPFC_MAX_ADPTMSG]; 4012 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4013 memcpy(&adaptermsg[0], (uint8_t *) irsp, 4014 MAX_MSG_DATA); 4015 dev_warn(&((phba->pcidev)->dev), 4016 "lpfc%d: %s\n", 4017 phba->brd_no, adaptermsg); 4018 } else { 4019 /* Unknown IOCB command */ 4020 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4021 "0334 Unknown IOCB command " 4022 "Data: x%x, x%x x%x x%x x%x\n", 4023 type, irsp->ulpCommand, 4024 irsp->ulpStatus, 4025 irsp->ulpIoTag, 4026 irsp->ulpContext); 4027 } 4028 break; 4029 } 4030 4031 /* 4032 * The response IOCB has been processed. Update the ring 4033 * pointer in SLIM. If the port response put pointer has not 4034 * been updated, sync the pgp->rspPutInx and fetch the new port 4035 * response put pointer. 4036 */ 4037 writel(pring->sli.sli3.rspidx, 4038 &phba->host_gp[pring->ringno].rspGetInx); 4039 4040 if (pring->sli.sli3.rspidx == portRspPut) 4041 portRspPut = le32_to_cpu(pgp->rspPutInx); 4042 } 4043 4044 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 4045 pring->stats.iocb_rsp_full++; 4046 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4047 writel(status, phba->CAregaddr); 4048 readl(phba->CAregaddr); 4049 } 4050 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4051 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4052 pring->stats.iocb_cmd_empty++; 4053 4054 /* Force update of the local copy of cmdGetInx */ 4055 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4056 lpfc_sli_resume_iocb(phba, pring); 4057 4058 if ((pring->lpfc_sli_cmd_available)) 4059 (pring->lpfc_sli_cmd_available) (phba, pring); 4060 4061 } 4062 4063 phba->fcp_ring_in_use = 0; 4064 spin_unlock_irqrestore(&phba->hbalock, iflag); 4065 return rc; 4066 } 4067 4068 /** 4069 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 4070 * @phba: Pointer to HBA context object. 4071 * @pring: Pointer to driver SLI ring object. 4072 * @rspiocbp: Pointer to driver response IOCB object. 4073 * 4074 * This function is called from the worker thread when there is a slow-path 4075 * response IOCB to process. This function chains all the response iocbs until 4076 * seeing the iocb with the LE bit set. The function will call 4077 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 4078 * completion of a command iocb. The function will call the 4079 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 4080 * The function frees the resources or calls the completion handler if this 4081 * iocb is an abort completion. The function returns NULL when the response 4082 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 4083 * this function shall chain the iocb on to the iocb_continueq and return the 4084 * response iocb passed in. 4085 **/ 4086 static struct lpfc_iocbq * 4087 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 4088 struct lpfc_iocbq *rspiocbp) 4089 { 4090 struct lpfc_iocbq *saveq; 4091 struct lpfc_iocbq *cmdiocbp; 4092 struct lpfc_iocbq *next_iocb; 4093 IOCB_t *irsp = NULL; 4094 uint32_t free_saveq; 4095 uint8_t iocb_cmd_type; 4096 lpfc_iocb_type type; 4097 unsigned long iflag; 4098 int rc; 4099 4100 spin_lock_irqsave(&phba->hbalock, iflag); 4101 /* First add the response iocb to the countinueq list */ 4102 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 4103 pring->iocb_continueq_cnt++; 4104 4105 /* Now, determine whether the list is completed for processing */ 4106 irsp = &rspiocbp->iocb; 4107 if (irsp->ulpLe) { 4108 /* 4109 * By default, the driver expects to free all resources 4110 * associated with this iocb completion. 4111 */ 4112 free_saveq = 1; 4113 saveq = list_get_first(&pring->iocb_continueq, 4114 struct lpfc_iocbq, list); 4115 irsp = &(saveq->iocb); 4116 list_del_init(&pring->iocb_continueq); 4117 pring->iocb_continueq_cnt = 0; 4118 4119 pring->stats.iocb_rsp++; 4120 4121 /* 4122 * If resource errors reported from HBA, reduce 4123 * queuedepths of the SCSI device. 4124 */ 4125 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 4126 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 4127 IOERR_NO_RESOURCES)) { 4128 spin_unlock_irqrestore(&phba->hbalock, iflag); 4129 phba->lpfc_rampdown_queue_depth(phba); 4130 spin_lock_irqsave(&phba->hbalock, iflag); 4131 } 4132 4133 if (irsp->ulpStatus) { 4134 /* Rsp ring <ringno> error: IOCB */ 4135 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4136 "0328 Rsp Ring %d error: " 4137 "IOCB Data: " 4138 "x%x x%x x%x x%x " 4139 "x%x x%x x%x x%x " 4140 "x%x x%x x%x x%x " 4141 "x%x x%x x%x x%x\n", 4142 pring->ringno, 4143 irsp->un.ulpWord[0], 4144 irsp->un.ulpWord[1], 4145 irsp->un.ulpWord[2], 4146 irsp->un.ulpWord[3], 4147 irsp->un.ulpWord[4], 4148 irsp->un.ulpWord[5], 4149 *(((uint32_t *) irsp) + 6), 4150 *(((uint32_t *) irsp) + 7), 4151 *(((uint32_t *) irsp) + 8), 4152 *(((uint32_t *) irsp) + 9), 4153 *(((uint32_t *) irsp) + 10), 4154 *(((uint32_t *) irsp) + 11), 4155 *(((uint32_t *) irsp) + 12), 4156 *(((uint32_t *) irsp) + 13), 4157 *(((uint32_t *) irsp) + 14), 4158 *(((uint32_t *) irsp) + 15)); 4159 } 4160 4161 /* 4162 * Fetch the IOCB command type and call the correct completion 4163 * routine. Solicited and Unsolicited IOCBs on the ELS ring 4164 * get freed back to the lpfc_iocb_list by the discovery 4165 * kernel thread. 4166 */ 4167 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 4168 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 4169 switch (type) { 4170 case LPFC_SOL_IOCB: 4171 spin_unlock_irqrestore(&phba->hbalock, iflag); 4172 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 4173 spin_lock_irqsave(&phba->hbalock, iflag); 4174 break; 4175 4176 case LPFC_UNSOL_IOCB: 4177 spin_unlock_irqrestore(&phba->hbalock, iflag); 4178 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 4179 spin_lock_irqsave(&phba->hbalock, iflag); 4180 if (!rc) 4181 free_saveq = 0; 4182 break; 4183 4184 case LPFC_ABORT_IOCB: 4185 cmdiocbp = NULL; 4186 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) { 4187 spin_unlock_irqrestore(&phba->hbalock, iflag); 4188 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 4189 saveq); 4190 spin_lock_irqsave(&phba->hbalock, iflag); 4191 } 4192 if (cmdiocbp) { 4193 /* Call the specified completion routine */ 4194 if (cmdiocbp->iocb_cmpl) { 4195 spin_unlock_irqrestore(&phba->hbalock, 4196 iflag); 4197 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 4198 saveq); 4199 spin_lock_irqsave(&phba->hbalock, 4200 iflag); 4201 } else 4202 __lpfc_sli_release_iocbq(phba, 4203 cmdiocbp); 4204 } 4205 break; 4206 4207 case LPFC_UNKNOWN_IOCB: 4208 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4209 char adaptermsg[LPFC_MAX_ADPTMSG]; 4210 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4211 memcpy(&adaptermsg[0], (uint8_t *)irsp, 4212 MAX_MSG_DATA); 4213 dev_warn(&((phba->pcidev)->dev), 4214 "lpfc%d: %s\n", 4215 phba->brd_no, adaptermsg); 4216 } else { 4217 /* Unknown IOCB command */ 4218 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4219 "0335 Unknown IOCB " 4220 "command Data: x%x " 4221 "x%x x%x x%x\n", 4222 irsp->ulpCommand, 4223 irsp->ulpStatus, 4224 irsp->ulpIoTag, 4225 irsp->ulpContext); 4226 } 4227 break; 4228 } 4229 4230 if (free_saveq) { 4231 list_for_each_entry_safe(rspiocbp, next_iocb, 4232 &saveq->list, list) { 4233 list_del_init(&rspiocbp->list); 4234 __lpfc_sli_release_iocbq(phba, rspiocbp); 4235 } 4236 __lpfc_sli_release_iocbq(phba, saveq); 4237 } 4238 rspiocbp = NULL; 4239 } 4240 spin_unlock_irqrestore(&phba->hbalock, iflag); 4241 return rspiocbp; 4242 } 4243 4244 /** 4245 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 4246 * @phba: Pointer to HBA context object. 4247 * @pring: Pointer to driver SLI ring object. 4248 * @mask: Host attention register mask for this ring. 4249 * 4250 * This routine wraps the actual slow_ring event process routine from the 4251 * API jump table function pointer from the lpfc_hba struct. 4252 **/ 4253 void 4254 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4255 struct lpfc_sli_ring *pring, uint32_t mask) 4256 { 4257 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4258 } 4259 4260 /** 4261 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4262 * @phba: Pointer to HBA context object. 4263 * @pring: Pointer to driver SLI ring object. 4264 * @mask: Host attention register mask for this ring. 4265 * 4266 * This function is called from the worker thread when there is a ring event 4267 * for non-fcp rings. The caller does not hold any lock. The function will 4268 * remove each response iocb in the response ring and calls the handle 4269 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4270 **/ 4271 static void 4272 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4273 struct lpfc_sli_ring *pring, uint32_t mask) 4274 { 4275 struct lpfc_pgp *pgp; 4276 IOCB_t *entry; 4277 IOCB_t *irsp = NULL; 4278 struct lpfc_iocbq *rspiocbp = NULL; 4279 uint32_t portRspPut, portRspMax; 4280 unsigned long iflag; 4281 uint32_t status; 4282 4283 pgp = &phba->port_gp[pring->ringno]; 4284 spin_lock_irqsave(&phba->hbalock, iflag); 4285 pring->stats.iocb_event++; 4286 4287 /* 4288 * The next available response entry should never exceed the maximum 4289 * entries. If it does, treat it as an adapter hardware error. 4290 */ 4291 portRspMax = pring->sli.sli3.numRiocb; 4292 portRspPut = le32_to_cpu(pgp->rspPutInx); 4293 if (portRspPut >= portRspMax) { 4294 /* 4295 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4296 * rsp ring <portRspMax> 4297 */ 4298 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4299 "0303 Ring %d handler: portRspPut %d " 4300 "is bigger than rsp ring %d\n", 4301 pring->ringno, portRspPut, portRspMax); 4302 4303 phba->link_state = LPFC_HBA_ERROR; 4304 spin_unlock_irqrestore(&phba->hbalock, iflag); 4305 4306 phba->work_hs = HS_FFER3; 4307 lpfc_handle_eratt(phba); 4308 4309 return; 4310 } 4311 4312 rmb(); 4313 while (pring->sli.sli3.rspidx != portRspPut) { 4314 /* 4315 * Build a completion list and call the appropriate handler. 4316 * The process is to get the next available response iocb, get 4317 * a free iocb from the list, copy the response data into the 4318 * free iocb, insert to the continuation list, and update the 4319 * next response index to slim. This process makes response 4320 * iocb's in the ring available to DMA as fast as possible but 4321 * pays a penalty for a copy operation. Since the iocb is 4322 * only 32 bytes, this penalty is considered small relative to 4323 * the PCI reads for register values and a slim write. When 4324 * the ulpLe field is set, the entire Command has been 4325 * received. 4326 */ 4327 entry = lpfc_resp_iocb(phba, pring); 4328 4329 phba->last_completion_time = jiffies; 4330 rspiocbp = __lpfc_sli_get_iocbq(phba); 4331 if (rspiocbp == NULL) { 4332 printk(KERN_ERR "%s: out of buffers! Failing " 4333 "completion.\n", __func__); 4334 break; 4335 } 4336 4337 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4338 phba->iocb_rsp_size); 4339 irsp = &rspiocbp->iocb; 4340 4341 if (++pring->sli.sli3.rspidx >= portRspMax) 4342 pring->sli.sli3.rspidx = 0; 4343 4344 if (pring->ringno == LPFC_ELS_RING) { 4345 lpfc_debugfs_slow_ring_trc(phba, 4346 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4347 *(((uint32_t *) irsp) + 4), 4348 *(((uint32_t *) irsp) + 6), 4349 *(((uint32_t *) irsp) + 7)); 4350 } 4351 4352 writel(pring->sli.sli3.rspidx, 4353 &phba->host_gp[pring->ringno].rspGetInx); 4354 4355 spin_unlock_irqrestore(&phba->hbalock, iflag); 4356 /* Handle the response IOCB */ 4357 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4358 spin_lock_irqsave(&phba->hbalock, iflag); 4359 4360 /* 4361 * If the port response put pointer has not been updated, sync 4362 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4363 * response put pointer. 4364 */ 4365 if (pring->sli.sli3.rspidx == portRspPut) { 4366 portRspPut = le32_to_cpu(pgp->rspPutInx); 4367 } 4368 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4369 4370 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4371 /* At least one response entry has been freed */ 4372 pring->stats.iocb_rsp_full++; 4373 /* SET RxRE_RSP in Chip Att register */ 4374 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4375 writel(status, phba->CAregaddr); 4376 readl(phba->CAregaddr); /* flush */ 4377 } 4378 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4379 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4380 pring->stats.iocb_cmd_empty++; 4381 4382 /* Force update of the local copy of cmdGetInx */ 4383 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4384 lpfc_sli_resume_iocb(phba, pring); 4385 4386 if ((pring->lpfc_sli_cmd_available)) 4387 (pring->lpfc_sli_cmd_available) (phba, pring); 4388 4389 } 4390 4391 spin_unlock_irqrestore(&phba->hbalock, iflag); 4392 return; 4393 } 4394 4395 /** 4396 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4397 * @phba: Pointer to HBA context object. 4398 * @pring: Pointer to driver SLI ring object. 4399 * @mask: Host attention register mask for this ring. 4400 * 4401 * This function is called from the worker thread when there is a pending 4402 * ELS response iocb on the driver internal slow-path response iocb worker 4403 * queue. The caller does not hold any lock. The function will remove each 4404 * response iocb from the response worker queue and calls the handle 4405 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4406 **/ 4407 static void 4408 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4409 struct lpfc_sli_ring *pring, uint32_t mask) 4410 { 4411 struct lpfc_iocbq *irspiocbq; 4412 struct hbq_dmabuf *dmabuf; 4413 struct lpfc_cq_event *cq_event; 4414 unsigned long iflag; 4415 int count = 0; 4416 4417 spin_lock_irqsave(&phba->hbalock, iflag); 4418 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4419 spin_unlock_irqrestore(&phba->hbalock, iflag); 4420 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4421 /* Get the response iocb from the head of work queue */ 4422 spin_lock_irqsave(&phba->hbalock, iflag); 4423 list_remove_head(&phba->sli4_hba.sp_queue_event, 4424 cq_event, struct lpfc_cq_event, list); 4425 spin_unlock_irqrestore(&phba->hbalock, iflag); 4426 4427 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4428 case CQE_CODE_COMPL_WQE: 4429 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4430 cq_event); 4431 /* Translate ELS WCQE to response IOCBQ */ 4432 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 4433 irspiocbq); 4434 if (irspiocbq) 4435 lpfc_sli_sp_handle_rspiocb(phba, pring, 4436 irspiocbq); 4437 count++; 4438 break; 4439 case CQE_CODE_RECEIVE: 4440 case CQE_CODE_RECEIVE_V1: 4441 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4442 cq_event); 4443 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4444 count++; 4445 break; 4446 default: 4447 break; 4448 } 4449 4450 /* Limit the number of events to 64 to avoid soft lockups */ 4451 if (count == 64) 4452 break; 4453 } 4454 } 4455 4456 /** 4457 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4458 * @phba: Pointer to HBA context object. 4459 * @pring: Pointer to driver SLI ring object. 4460 * 4461 * This function aborts all iocbs in the given ring and frees all the iocb 4462 * objects in txq. This function issues an abort iocb for all the iocb commands 4463 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4464 * the return of this function. The caller is not required to hold any locks. 4465 **/ 4466 void 4467 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4468 { 4469 LIST_HEAD(completions); 4470 struct lpfc_iocbq *iocb, *next_iocb; 4471 4472 if (pring->ringno == LPFC_ELS_RING) { 4473 lpfc_fabric_abort_hba(phba); 4474 } 4475 4476 /* Error everything on txq and txcmplq 4477 * First do the txq. 4478 */ 4479 if (phba->sli_rev >= LPFC_SLI_REV4) { 4480 spin_lock_irq(&pring->ring_lock); 4481 list_splice_init(&pring->txq, &completions); 4482 pring->txq_cnt = 0; 4483 spin_unlock_irq(&pring->ring_lock); 4484 4485 spin_lock_irq(&phba->hbalock); 4486 /* Next issue ABTS for everything on the txcmplq */ 4487 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4488 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); 4489 spin_unlock_irq(&phba->hbalock); 4490 } else { 4491 spin_lock_irq(&phba->hbalock); 4492 list_splice_init(&pring->txq, &completions); 4493 pring->txq_cnt = 0; 4494 4495 /* Next issue ABTS for everything on the txcmplq */ 4496 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4497 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); 4498 spin_unlock_irq(&phba->hbalock); 4499 } 4500 /* Make sure HBA is alive */ 4501 lpfc_issue_hb_tmo(phba); 4502 4503 /* Cancel all the IOCBs from the completions list */ 4504 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 4505 IOERR_SLI_ABORTED); 4506 } 4507 4508 /** 4509 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4510 * @phba: Pointer to HBA context object. 4511 * 4512 * This function aborts all iocbs in FCP rings and frees all the iocb 4513 * objects in txq. This function issues an abort iocb for all the iocb commands 4514 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4515 * the return of this function. The caller is not required to hold any locks. 4516 **/ 4517 void 4518 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4519 { 4520 struct lpfc_sli *psli = &phba->sli; 4521 struct lpfc_sli_ring *pring; 4522 uint32_t i; 4523 4524 /* Look on all the FCP Rings for the iotag */ 4525 if (phba->sli_rev >= LPFC_SLI_REV4) { 4526 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4527 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4528 lpfc_sli_abort_iocb_ring(phba, pring); 4529 } 4530 } else { 4531 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4532 lpfc_sli_abort_iocb_ring(phba, pring); 4533 } 4534 } 4535 4536 /** 4537 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4538 * @phba: Pointer to HBA context object. 4539 * 4540 * This function flushes all iocbs in the IO ring and frees all the iocb 4541 * objects in txq and txcmplq. This function will not issue abort iocbs 4542 * for all the iocb commands in txcmplq, they will just be returned with 4543 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4544 * slot has been permanently disabled. 4545 **/ 4546 void 4547 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4548 { 4549 LIST_HEAD(txq); 4550 LIST_HEAD(txcmplq); 4551 struct lpfc_sli *psli = &phba->sli; 4552 struct lpfc_sli_ring *pring; 4553 uint32_t i; 4554 struct lpfc_iocbq *piocb, *next_iocb; 4555 4556 spin_lock_irq(&phba->hbalock); 4557 if (phba->hba_flag & HBA_IOQ_FLUSH || 4558 !phba->sli4_hba.hdwq) { 4559 spin_unlock_irq(&phba->hbalock); 4560 return; 4561 } 4562 /* Indicate the I/O queues are flushed */ 4563 phba->hba_flag |= HBA_IOQ_FLUSH; 4564 spin_unlock_irq(&phba->hbalock); 4565 4566 /* Look on all the FCP Rings for the iotag */ 4567 if (phba->sli_rev >= LPFC_SLI_REV4) { 4568 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4569 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4570 4571 spin_lock_irq(&pring->ring_lock); 4572 /* Retrieve everything on txq */ 4573 list_splice_init(&pring->txq, &txq); 4574 list_for_each_entry_safe(piocb, next_iocb, 4575 &pring->txcmplq, list) 4576 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4577 /* Retrieve everything on the txcmplq */ 4578 list_splice_init(&pring->txcmplq, &txcmplq); 4579 pring->txq_cnt = 0; 4580 pring->txcmplq_cnt = 0; 4581 spin_unlock_irq(&pring->ring_lock); 4582 4583 /* Flush the txq */ 4584 lpfc_sli_cancel_iocbs(phba, &txq, 4585 IOSTAT_LOCAL_REJECT, 4586 IOERR_SLI_DOWN); 4587 /* Flush the txcmplq */ 4588 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4589 IOSTAT_LOCAL_REJECT, 4590 IOERR_SLI_DOWN); 4591 if (unlikely(pci_channel_offline(phba->pcidev))) 4592 lpfc_sli4_io_xri_aborted(phba, NULL, 0); 4593 } 4594 } else { 4595 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4596 4597 spin_lock_irq(&phba->hbalock); 4598 /* Retrieve everything on txq */ 4599 list_splice_init(&pring->txq, &txq); 4600 list_for_each_entry_safe(piocb, next_iocb, 4601 &pring->txcmplq, list) 4602 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4603 /* Retrieve everything on the txcmplq */ 4604 list_splice_init(&pring->txcmplq, &txcmplq); 4605 pring->txq_cnt = 0; 4606 pring->txcmplq_cnt = 0; 4607 spin_unlock_irq(&phba->hbalock); 4608 4609 /* Flush the txq */ 4610 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4611 IOERR_SLI_DOWN); 4612 /* Flush the txcmpq */ 4613 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4614 IOERR_SLI_DOWN); 4615 } 4616 } 4617 4618 /** 4619 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4620 * @phba: Pointer to HBA context object. 4621 * @mask: Bit mask to be checked. 4622 * 4623 * This function reads the host status register and compares 4624 * with the provided bit mask to check if HBA completed 4625 * the restart. This function will wait in a loop for the 4626 * HBA to complete restart. If the HBA does not restart within 4627 * 15 iterations, the function will reset the HBA again. The 4628 * function returns 1 when HBA fail to restart otherwise returns 4629 * zero. 4630 **/ 4631 static int 4632 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4633 { 4634 uint32_t status; 4635 int i = 0; 4636 int retval = 0; 4637 4638 /* Read the HBA Host Status Register */ 4639 if (lpfc_readl(phba->HSregaddr, &status)) 4640 return 1; 4641 4642 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4643 4644 /* 4645 * Check status register every 100ms for 5 retries, then every 4646 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4647 * every 2.5 sec for 4. 4648 * Break our of the loop if errors occurred during init. 4649 */ 4650 while (((status & mask) != mask) && 4651 !(status & HS_FFERM) && 4652 i++ < 20) { 4653 4654 if (i <= 5) 4655 msleep(10); 4656 else if (i <= 10) 4657 msleep(500); 4658 else 4659 msleep(2500); 4660 4661 if (i == 15) { 4662 /* Do post */ 4663 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4664 lpfc_sli_brdrestart(phba); 4665 } 4666 /* Read the HBA Host Status Register */ 4667 if (lpfc_readl(phba->HSregaddr, &status)) { 4668 retval = 1; 4669 break; 4670 } 4671 } 4672 4673 /* Check to see if any errors occurred during init */ 4674 if ((status & HS_FFERM) || (i >= 20)) { 4675 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4676 "2751 Adapter failed to restart, " 4677 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4678 status, 4679 readl(phba->MBslimaddr + 0xa8), 4680 readl(phba->MBslimaddr + 0xac)); 4681 phba->link_state = LPFC_HBA_ERROR; 4682 retval = 1; 4683 } 4684 4685 return retval; 4686 } 4687 4688 /** 4689 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4690 * @phba: Pointer to HBA context object. 4691 * @mask: Bit mask to be checked. 4692 * 4693 * This function checks the host status register to check if HBA is 4694 * ready. This function will wait in a loop for the HBA to be ready 4695 * If the HBA is not ready , the function will will reset the HBA PCI 4696 * function again. The function returns 1 when HBA fail to be ready 4697 * otherwise returns zero. 4698 **/ 4699 static int 4700 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4701 { 4702 uint32_t status; 4703 int retval = 0; 4704 4705 /* Read the HBA Host Status Register */ 4706 status = lpfc_sli4_post_status_check(phba); 4707 4708 if (status) { 4709 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4710 lpfc_sli_brdrestart(phba); 4711 status = lpfc_sli4_post_status_check(phba); 4712 } 4713 4714 /* Check to see if any errors occurred during init */ 4715 if (status) { 4716 phba->link_state = LPFC_HBA_ERROR; 4717 retval = 1; 4718 } else 4719 phba->sli4_hba.intr_enable = 0; 4720 4721 phba->hba_flag &= ~HBA_SETUP; 4722 return retval; 4723 } 4724 4725 /** 4726 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4727 * @phba: Pointer to HBA context object. 4728 * @mask: Bit mask to be checked. 4729 * 4730 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4731 * from the API jump table function pointer from the lpfc_hba struct. 4732 **/ 4733 int 4734 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4735 { 4736 return phba->lpfc_sli_brdready(phba, mask); 4737 } 4738 4739 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4740 4741 /** 4742 * lpfc_reset_barrier - Make HBA ready for HBA reset 4743 * @phba: Pointer to HBA context object. 4744 * 4745 * This function is called before resetting an HBA. This function is called 4746 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4747 **/ 4748 void lpfc_reset_barrier(struct lpfc_hba *phba) 4749 { 4750 uint32_t __iomem *resp_buf; 4751 uint32_t __iomem *mbox_buf; 4752 volatile uint32_t mbox; 4753 uint32_t hc_copy, ha_copy, resp_data; 4754 int i; 4755 uint8_t hdrtype; 4756 4757 lockdep_assert_held(&phba->hbalock); 4758 4759 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4760 if (hdrtype != 0x80 || 4761 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4762 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4763 return; 4764 4765 /* 4766 * Tell the other part of the chip to suspend temporarily all 4767 * its DMA activity. 4768 */ 4769 resp_buf = phba->MBslimaddr; 4770 4771 /* Disable the error attention */ 4772 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4773 return; 4774 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4775 readl(phba->HCregaddr); /* flush */ 4776 phba->link_flag |= LS_IGNORE_ERATT; 4777 4778 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4779 return; 4780 if (ha_copy & HA_ERATT) { 4781 /* Clear Chip error bit */ 4782 writel(HA_ERATT, phba->HAregaddr); 4783 phba->pport->stopped = 1; 4784 } 4785 4786 mbox = 0; 4787 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 4788 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 4789 4790 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4791 mbox_buf = phba->MBslimaddr; 4792 writel(mbox, mbox_buf); 4793 4794 for (i = 0; i < 50; i++) { 4795 if (lpfc_readl((resp_buf + 1), &resp_data)) 4796 return; 4797 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4798 mdelay(1); 4799 else 4800 break; 4801 } 4802 resp_data = 0; 4803 if (lpfc_readl((resp_buf + 1), &resp_data)) 4804 return; 4805 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4806 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4807 phba->pport->stopped) 4808 goto restore_hc; 4809 else 4810 goto clear_errat; 4811 } 4812 4813 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 4814 resp_data = 0; 4815 for (i = 0; i < 500; i++) { 4816 if (lpfc_readl(resp_buf, &resp_data)) 4817 return; 4818 if (resp_data != mbox) 4819 mdelay(1); 4820 else 4821 break; 4822 } 4823 4824 clear_errat: 4825 4826 while (++i < 500) { 4827 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4828 return; 4829 if (!(ha_copy & HA_ERATT)) 4830 mdelay(1); 4831 else 4832 break; 4833 } 4834 4835 if (readl(phba->HAregaddr) & HA_ERATT) { 4836 writel(HA_ERATT, phba->HAregaddr); 4837 phba->pport->stopped = 1; 4838 } 4839 4840 restore_hc: 4841 phba->link_flag &= ~LS_IGNORE_ERATT; 4842 writel(hc_copy, phba->HCregaddr); 4843 readl(phba->HCregaddr); /* flush */ 4844 } 4845 4846 /** 4847 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4848 * @phba: Pointer to HBA context object. 4849 * 4850 * This function issues a kill_board mailbox command and waits for 4851 * the error attention interrupt. This function is called for stopping 4852 * the firmware processing. The caller is not required to hold any 4853 * locks. This function calls lpfc_hba_down_post function to free 4854 * any pending commands after the kill. The function will return 1 when it 4855 * fails to kill the board else will return 0. 4856 **/ 4857 int 4858 lpfc_sli_brdkill(struct lpfc_hba *phba) 4859 { 4860 struct lpfc_sli *psli; 4861 LPFC_MBOXQ_t *pmb; 4862 uint32_t status; 4863 uint32_t ha_copy; 4864 int retval; 4865 int i = 0; 4866 4867 psli = &phba->sli; 4868 4869 /* Kill HBA */ 4870 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4871 "0329 Kill HBA Data: x%x x%x\n", 4872 phba->pport->port_state, psli->sli_flag); 4873 4874 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4875 if (!pmb) 4876 return 1; 4877 4878 /* Disable the error attention */ 4879 spin_lock_irq(&phba->hbalock); 4880 if (lpfc_readl(phba->HCregaddr, &status)) { 4881 spin_unlock_irq(&phba->hbalock); 4882 mempool_free(pmb, phba->mbox_mem_pool); 4883 return 1; 4884 } 4885 status &= ~HC_ERINT_ENA; 4886 writel(status, phba->HCregaddr); 4887 readl(phba->HCregaddr); /* flush */ 4888 phba->link_flag |= LS_IGNORE_ERATT; 4889 spin_unlock_irq(&phba->hbalock); 4890 4891 lpfc_kill_board(phba, pmb); 4892 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4893 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4894 4895 if (retval != MBX_SUCCESS) { 4896 if (retval != MBX_BUSY) 4897 mempool_free(pmb, phba->mbox_mem_pool); 4898 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4899 "2752 KILL_BOARD command failed retval %d\n", 4900 retval); 4901 spin_lock_irq(&phba->hbalock); 4902 phba->link_flag &= ~LS_IGNORE_ERATT; 4903 spin_unlock_irq(&phba->hbalock); 4904 return 1; 4905 } 4906 4907 spin_lock_irq(&phba->hbalock); 4908 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4909 spin_unlock_irq(&phba->hbalock); 4910 4911 mempool_free(pmb, phba->mbox_mem_pool); 4912 4913 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4914 * attention every 100ms for 3 seconds. If we don't get ERATT after 4915 * 3 seconds we still set HBA_ERROR state because the status of the 4916 * board is now undefined. 4917 */ 4918 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4919 return 1; 4920 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4921 mdelay(100); 4922 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4923 return 1; 4924 } 4925 4926 del_timer_sync(&psli->mbox_tmo); 4927 if (ha_copy & HA_ERATT) { 4928 writel(HA_ERATT, phba->HAregaddr); 4929 phba->pport->stopped = 1; 4930 } 4931 spin_lock_irq(&phba->hbalock); 4932 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4933 psli->mbox_active = NULL; 4934 phba->link_flag &= ~LS_IGNORE_ERATT; 4935 spin_unlock_irq(&phba->hbalock); 4936 4937 lpfc_hba_down_post(phba); 4938 phba->link_state = LPFC_HBA_ERROR; 4939 4940 return ha_copy & HA_ERATT ? 0 : 1; 4941 } 4942 4943 /** 4944 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4945 * @phba: Pointer to HBA context object. 4946 * 4947 * This function resets the HBA by writing HC_INITFF to the control 4948 * register. After the HBA resets, this function resets all the iocb ring 4949 * indices. This function disables PCI layer parity checking during 4950 * the reset. 4951 * This function returns 0 always. 4952 * The caller is not required to hold any locks. 4953 **/ 4954 int 4955 lpfc_sli_brdreset(struct lpfc_hba *phba) 4956 { 4957 struct lpfc_sli *psli; 4958 struct lpfc_sli_ring *pring; 4959 uint16_t cfg_value; 4960 int i; 4961 4962 psli = &phba->sli; 4963 4964 /* Reset HBA */ 4965 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4966 "0325 Reset HBA Data: x%x x%x\n", 4967 (phba->pport) ? phba->pport->port_state : 0, 4968 psli->sli_flag); 4969 4970 /* perform board reset */ 4971 phba->fc_eventTag = 0; 4972 phba->link_events = 0; 4973 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4974 if (phba->pport) { 4975 phba->pport->fc_myDID = 0; 4976 phba->pport->fc_prevDID = 0; 4977 } 4978 4979 /* Turn off parity checking and serr during the physical reset */ 4980 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 4981 return -EIO; 4982 4983 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4984 (cfg_value & 4985 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4986 4987 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4988 4989 /* Now toggle INITFF bit in the Host Control Register */ 4990 writel(HC_INITFF, phba->HCregaddr); 4991 mdelay(1); 4992 readl(phba->HCregaddr); /* flush */ 4993 writel(0, phba->HCregaddr); 4994 readl(phba->HCregaddr); /* flush */ 4995 4996 /* Restore PCI cmd register */ 4997 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4998 4999 /* Initialize relevant SLI info */ 5000 for (i = 0; i < psli->num_rings; i++) { 5001 pring = &psli->sli3_ring[i]; 5002 pring->flag = 0; 5003 pring->sli.sli3.rspidx = 0; 5004 pring->sli.sli3.next_cmdidx = 0; 5005 pring->sli.sli3.local_getidx = 0; 5006 pring->sli.sli3.cmdidx = 0; 5007 pring->missbufcnt = 0; 5008 } 5009 5010 phba->link_state = LPFC_WARM_START; 5011 return 0; 5012 } 5013 5014 /** 5015 * lpfc_sli4_brdreset - Reset a sli-4 HBA 5016 * @phba: Pointer to HBA context object. 5017 * 5018 * This function resets a SLI4 HBA. This function disables PCI layer parity 5019 * checking during resets the device. The caller is not required to hold 5020 * any locks. 5021 * 5022 * This function returns 0 on success else returns negative error code. 5023 **/ 5024 int 5025 lpfc_sli4_brdreset(struct lpfc_hba *phba) 5026 { 5027 struct lpfc_sli *psli = &phba->sli; 5028 uint16_t cfg_value; 5029 int rc = 0; 5030 5031 /* Reset HBA */ 5032 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5033 "0295 Reset HBA Data: x%x x%x x%x\n", 5034 phba->pport->port_state, psli->sli_flag, 5035 phba->hba_flag); 5036 5037 /* perform board reset */ 5038 phba->fc_eventTag = 0; 5039 phba->link_events = 0; 5040 phba->pport->fc_myDID = 0; 5041 phba->pport->fc_prevDID = 0; 5042 phba->hba_flag &= ~HBA_SETUP; 5043 5044 spin_lock_irq(&phba->hbalock); 5045 psli->sli_flag &= ~(LPFC_PROCESS_LA); 5046 phba->fcf.fcf_flag = 0; 5047 spin_unlock_irq(&phba->hbalock); 5048 5049 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 5050 if (phba->hba_flag & HBA_FW_DUMP_OP) { 5051 phba->hba_flag &= ~HBA_FW_DUMP_OP; 5052 return rc; 5053 } 5054 5055 /* Now physically reset the device */ 5056 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5057 "0389 Performing PCI function reset!\n"); 5058 5059 /* Turn off parity checking and serr during the physical reset */ 5060 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 5061 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5062 "3205 PCI read Config failed\n"); 5063 return -EIO; 5064 } 5065 5066 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 5067 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5068 5069 /* Perform FCoE PCI function reset before freeing queue memory */ 5070 rc = lpfc_pci_function_reset(phba); 5071 5072 /* Restore PCI cmd register */ 5073 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5074 5075 return rc; 5076 } 5077 5078 /** 5079 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 5080 * @phba: Pointer to HBA context object. 5081 * 5082 * This function is called in the SLI initialization code path to 5083 * restart the HBA. The caller is not required to hold any lock. 5084 * This function writes MBX_RESTART mailbox command to the SLIM and 5085 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 5086 * function to free any pending commands. The function enables 5087 * POST only during the first initialization. The function returns zero. 5088 * The function does not guarantee completion of MBX_RESTART mailbox 5089 * command before the return of this function. 5090 **/ 5091 static int 5092 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 5093 { 5094 MAILBOX_t *mb; 5095 struct lpfc_sli *psli; 5096 volatile uint32_t word0; 5097 void __iomem *to_slim; 5098 uint32_t hba_aer_enabled; 5099 5100 spin_lock_irq(&phba->hbalock); 5101 5102 /* Take PCIe device Advanced Error Reporting (AER) state */ 5103 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 5104 5105 psli = &phba->sli; 5106 5107 /* Restart HBA */ 5108 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5109 "0337 Restart HBA Data: x%x x%x\n", 5110 (phba->pport) ? phba->pport->port_state : 0, 5111 psli->sli_flag); 5112 5113 word0 = 0; 5114 mb = (MAILBOX_t *) &word0; 5115 mb->mbxCommand = MBX_RESTART; 5116 mb->mbxHc = 1; 5117 5118 lpfc_reset_barrier(phba); 5119 5120 to_slim = phba->MBslimaddr; 5121 writel(*(uint32_t *) mb, to_slim); 5122 readl(to_slim); /* flush */ 5123 5124 /* Only skip post after fc_ffinit is completed */ 5125 if (phba->pport && phba->pport->port_state) 5126 word0 = 1; /* This is really setting up word1 */ 5127 else 5128 word0 = 0; /* This is really setting up word1 */ 5129 to_slim = phba->MBslimaddr + sizeof (uint32_t); 5130 writel(*(uint32_t *) mb, to_slim); 5131 readl(to_slim); /* flush */ 5132 5133 lpfc_sli_brdreset(phba); 5134 if (phba->pport) 5135 phba->pport->stopped = 0; 5136 phba->link_state = LPFC_INIT_START; 5137 phba->hba_flag = 0; 5138 spin_unlock_irq(&phba->hbalock); 5139 5140 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5141 psli->stats_start = ktime_get_seconds(); 5142 5143 /* Give the INITFF and Post time to settle. */ 5144 mdelay(100); 5145 5146 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 5147 if (hba_aer_enabled) 5148 pci_disable_pcie_error_reporting(phba->pcidev); 5149 5150 lpfc_hba_down_post(phba); 5151 5152 return 0; 5153 } 5154 5155 /** 5156 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 5157 * @phba: Pointer to HBA context object. 5158 * 5159 * This function is called in the SLI initialization code path to restart 5160 * a SLI4 HBA. The caller is not required to hold any lock. 5161 * At the end of the function, it calls lpfc_hba_down_post function to 5162 * free any pending commands. 5163 **/ 5164 static int 5165 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 5166 { 5167 struct lpfc_sli *psli = &phba->sli; 5168 uint32_t hba_aer_enabled; 5169 int rc; 5170 5171 /* Restart HBA */ 5172 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5173 "0296 Restart HBA Data: x%x x%x\n", 5174 phba->pport->port_state, psli->sli_flag); 5175 5176 /* Take PCIe device Advanced Error Reporting (AER) state */ 5177 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 5178 5179 rc = lpfc_sli4_brdreset(phba); 5180 if (rc) { 5181 phba->link_state = LPFC_HBA_ERROR; 5182 goto hba_down_queue; 5183 } 5184 5185 spin_lock_irq(&phba->hbalock); 5186 phba->pport->stopped = 0; 5187 phba->link_state = LPFC_INIT_START; 5188 phba->hba_flag = 0; 5189 spin_unlock_irq(&phba->hbalock); 5190 5191 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5192 psli->stats_start = ktime_get_seconds(); 5193 5194 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 5195 if (hba_aer_enabled) 5196 pci_disable_pcie_error_reporting(phba->pcidev); 5197 5198 hba_down_queue: 5199 lpfc_hba_down_post(phba); 5200 lpfc_sli4_queue_destroy(phba); 5201 5202 return rc; 5203 } 5204 5205 /** 5206 * lpfc_sli_brdrestart - Wrapper func for restarting hba 5207 * @phba: Pointer to HBA context object. 5208 * 5209 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 5210 * API jump table function pointer from the lpfc_hba struct. 5211 **/ 5212 int 5213 lpfc_sli_brdrestart(struct lpfc_hba *phba) 5214 { 5215 return phba->lpfc_sli_brdrestart(phba); 5216 } 5217 5218 /** 5219 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 5220 * @phba: Pointer to HBA context object. 5221 * 5222 * This function is called after a HBA restart to wait for successful 5223 * restart of the HBA. Successful restart of the HBA is indicated by 5224 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 5225 * iteration, the function will restart the HBA again. The function returns 5226 * zero if HBA successfully restarted else returns negative error code. 5227 **/ 5228 int 5229 lpfc_sli_chipset_init(struct lpfc_hba *phba) 5230 { 5231 uint32_t status, i = 0; 5232 5233 /* Read the HBA Host Status Register */ 5234 if (lpfc_readl(phba->HSregaddr, &status)) 5235 return -EIO; 5236 5237 /* Check status register to see what current state is */ 5238 i = 0; 5239 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 5240 5241 /* Check every 10ms for 10 retries, then every 100ms for 90 5242 * retries, then every 1 sec for 50 retires for a total of 5243 * ~60 seconds before reset the board again and check every 5244 * 1 sec for 50 retries. The up to 60 seconds before the 5245 * board ready is required by the Falcon FIPS zeroization 5246 * complete, and any reset the board in between shall cause 5247 * restart of zeroization, further delay the board ready. 5248 */ 5249 if (i++ >= 200) { 5250 /* Adapter failed to init, timeout, status reg 5251 <status> */ 5252 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5253 "0436 Adapter failed to init, " 5254 "timeout, status reg x%x, " 5255 "FW Data: A8 x%x AC x%x\n", status, 5256 readl(phba->MBslimaddr + 0xa8), 5257 readl(phba->MBslimaddr + 0xac)); 5258 phba->link_state = LPFC_HBA_ERROR; 5259 return -ETIMEDOUT; 5260 } 5261 5262 /* Check to see if any errors occurred during init */ 5263 if (status & HS_FFERM) { 5264 /* ERROR: During chipset initialization */ 5265 /* Adapter failed to init, chipset, status reg 5266 <status> */ 5267 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5268 "0437 Adapter failed to init, " 5269 "chipset, status reg x%x, " 5270 "FW Data: A8 x%x AC x%x\n", status, 5271 readl(phba->MBslimaddr + 0xa8), 5272 readl(phba->MBslimaddr + 0xac)); 5273 phba->link_state = LPFC_HBA_ERROR; 5274 return -EIO; 5275 } 5276 5277 if (i <= 10) 5278 msleep(10); 5279 else if (i <= 100) 5280 msleep(100); 5281 else 5282 msleep(1000); 5283 5284 if (i == 150) { 5285 /* Do post */ 5286 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5287 lpfc_sli_brdrestart(phba); 5288 } 5289 /* Read the HBA Host Status Register */ 5290 if (lpfc_readl(phba->HSregaddr, &status)) 5291 return -EIO; 5292 } 5293 5294 /* Check to see if any errors occurred during init */ 5295 if (status & HS_FFERM) { 5296 /* ERROR: During chipset initialization */ 5297 /* Adapter failed to init, chipset, status reg <status> */ 5298 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5299 "0438 Adapter failed to init, chipset, " 5300 "status reg x%x, " 5301 "FW Data: A8 x%x AC x%x\n", status, 5302 readl(phba->MBslimaddr + 0xa8), 5303 readl(phba->MBslimaddr + 0xac)); 5304 phba->link_state = LPFC_HBA_ERROR; 5305 return -EIO; 5306 } 5307 5308 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5309 5310 /* Clear all interrupt enable conditions */ 5311 writel(0, phba->HCregaddr); 5312 readl(phba->HCregaddr); /* flush */ 5313 5314 /* setup host attn register */ 5315 writel(0xffffffff, phba->HAregaddr); 5316 readl(phba->HAregaddr); /* flush */ 5317 return 0; 5318 } 5319 5320 /** 5321 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5322 * 5323 * This function calculates and returns the number of HBQs required to be 5324 * configured. 5325 **/ 5326 int 5327 lpfc_sli_hbq_count(void) 5328 { 5329 return ARRAY_SIZE(lpfc_hbq_defs); 5330 } 5331 5332 /** 5333 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5334 * 5335 * This function adds the number of hbq entries in every HBQ to get 5336 * the total number of hbq entries required for the HBA and returns 5337 * the total count. 5338 **/ 5339 static int 5340 lpfc_sli_hbq_entry_count(void) 5341 { 5342 int hbq_count = lpfc_sli_hbq_count(); 5343 int count = 0; 5344 int i; 5345 5346 for (i = 0; i < hbq_count; ++i) 5347 count += lpfc_hbq_defs[i]->entry_count; 5348 return count; 5349 } 5350 5351 /** 5352 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5353 * 5354 * This function calculates amount of memory required for all hbq entries 5355 * to be configured and returns the total memory required. 5356 **/ 5357 int 5358 lpfc_sli_hbq_size(void) 5359 { 5360 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5361 } 5362 5363 /** 5364 * lpfc_sli_hbq_setup - configure and initialize HBQs 5365 * @phba: Pointer to HBA context object. 5366 * 5367 * This function is called during the SLI initialization to configure 5368 * all the HBQs and post buffers to the HBQ. The caller is not 5369 * required to hold any locks. This function will return zero if successful 5370 * else it will return negative error code. 5371 **/ 5372 static int 5373 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5374 { 5375 int hbq_count = lpfc_sli_hbq_count(); 5376 LPFC_MBOXQ_t *pmb; 5377 MAILBOX_t *pmbox; 5378 uint32_t hbqno; 5379 uint32_t hbq_entry_index; 5380 5381 /* Get a Mailbox buffer to setup mailbox 5382 * commands for HBA initialization 5383 */ 5384 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5385 5386 if (!pmb) 5387 return -ENOMEM; 5388 5389 pmbox = &pmb->u.mb; 5390 5391 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5392 phba->link_state = LPFC_INIT_MBX_CMDS; 5393 phba->hbq_in_use = 1; 5394 5395 hbq_entry_index = 0; 5396 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5397 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5398 phba->hbqs[hbqno].hbqPutIdx = 0; 5399 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5400 phba->hbqs[hbqno].entry_count = 5401 lpfc_hbq_defs[hbqno]->entry_count; 5402 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5403 hbq_entry_index, pmb); 5404 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5405 5406 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5407 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5408 mbxStatus <status>, ring <num> */ 5409 5410 lpfc_printf_log(phba, KERN_ERR, 5411 LOG_SLI | LOG_VPORT, 5412 "1805 Adapter failed to init. " 5413 "Data: x%x x%x x%x\n", 5414 pmbox->mbxCommand, 5415 pmbox->mbxStatus, hbqno); 5416 5417 phba->link_state = LPFC_HBA_ERROR; 5418 mempool_free(pmb, phba->mbox_mem_pool); 5419 return -ENXIO; 5420 } 5421 } 5422 phba->hbq_count = hbq_count; 5423 5424 mempool_free(pmb, phba->mbox_mem_pool); 5425 5426 /* Initially populate or replenish the HBQs */ 5427 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5428 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5429 return 0; 5430 } 5431 5432 /** 5433 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5434 * @phba: Pointer to HBA context object. 5435 * 5436 * This function is called during the SLI initialization to configure 5437 * all the HBQs and post buffers to the HBQ. The caller is not 5438 * required to hold any locks. This function will return zero if successful 5439 * else it will return negative error code. 5440 **/ 5441 static int 5442 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5443 { 5444 phba->hbq_in_use = 1; 5445 /** 5446 * Specific case when the MDS diagnostics is enabled and supported. 5447 * The receive buffer count is truncated to manage the incoming 5448 * traffic. 5449 **/ 5450 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5451 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5452 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5453 else 5454 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5455 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5456 phba->hbq_count = 1; 5457 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5458 /* Initially populate or replenish the HBQs */ 5459 return 0; 5460 } 5461 5462 /** 5463 * lpfc_sli_config_port - Issue config port mailbox command 5464 * @phba: Pointer to HBA context object. 5465 * @sli_mode: sli mode - 2/3 5466 * 5467 * This function is called by the sli initialization code path 5468 * to issue config_port mailbox command. This function restarts the 5469 * HBA firmware and issues a config_port mailbox command to configure 5470 * the SLI interface in the sli mode specified by sli_mode 5471 * variable. The caller is not required to hold any locks. 5472 * The function returns 0 if successful, else returns negative error 5473 * code. 5474 **/ 5475 int 5476 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5477 { 5478 LPFC_MBOXQ_t *pmb; 5479 uint32_t resetcount = 0, rc = 0, done = 0; 5480 5481 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5482 if (!pmb) { 5483 phba->link_state = LPFC_HBA_ERROR; 5484 return -ENOMEM; 5485 } 5486 5487 phba->sli_rev = sli_mode; 5488 while (resetcount < 2 && !done) { 5489 spin_lock_irq(&phba->hbalock); 5490 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5491 spin_unlock_irq(&phba->hbalock); 5492 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5493 lpfc_sli_brdrestart(phba); 5494 rc = lpfc_sli_chipset_init(phba); 5495 if (rc) 5496 break; 5497 5498 spin_lock_irq(&phba->hbalock); 5499 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5500 spin_unlock_irq(&phba->hbalock); 5501 resetcount++; 5502 5503 /* Call pre CONFIG_PORT mailbox command initialization. A 5504 * value of 0 means the call was successful. Any other 5505 * nonzero value is a failure, but if ERESTART is returned, 5506 * the driver may reset the HBA and try again. 5507 */ 5508 rc = lpfc_config_port_prep(phba); 5509 if (rc == -ERESTART) { 5510 phba->link_state = LPFC_LINK_UNKNOWN; 5511 continue; 5512 } else if (rc) 5513 break; 5514 5515 phba->link_state = LPFC_INIT_MBX_CMDS; 5516 lpfc_config_port(phba, pmb); 5517 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5518 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5519 LPFC_SLI3_HBQ_ENABLED | 5520 LPFC_SLI3_CRP_ENABLED | 5521 LPFC_SLI3_DSS_ENABLED); 5522 if (rc != MBX_SUCCESS) { 5523 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5524 "0442 Adapter failed to init, mbxCmd x%x " 5525 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5526 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5527 spin_lock_irq(&phba->hbalock); 5528 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5529 spin_unlock_irq(&phba->hbalock); 5530 rc = -ENXIO; 5531 } else { 5532 /* Allow asynchronous mailbox command to go through */ 5533 spin_lock_irq(&phba->hbalock); 5534 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5535 spin_unlock_irq(&phba->hbalock); 5536 done = 1; 5537 5538 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5539 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5540 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5541 "3110 Port did not grant ASABT\n"); 5542 } 5543 } 5544 if (!done) { 5545 rc = -EINVAL; 5546 goto do_prep_failed; 5547 } 5548 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5549 if (!pmb->u.mb.un.varCfgPort.cMA) { 5550 rc = -ENXIO; 5551 goto do_prep_failed; 5552 } 5553 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5554 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5555 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5556 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5557 phba->max_vpi : phba->max_vports; 5558 5559 } else 5560 phba->max_vpi = 0; 5561 if (pmb->u.mb.un.varCfgPort.gerbm) 5562 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5563 if (pmb->u.mb.un.varCfgPort.gcrp) 5564 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5565 5566 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5567 phba->port_gp = phba->mbox->us.s3_pgp.port; 5568 5569 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5570 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5571 phba->cfg_enable_bg = 0; 5572 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5573 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5574 "0443 Adapter did not grant " 5575 "BlockGuard\n"); 5576 } 5577 } 5578 } else { 5579 phba->hbq_get = NULL; 5580 phba->port_gp = phba->mbox->us.s2.port; 5581 phba->max_vpi = 0; 5582 } 5583 do_prep_failed: 5584 mempool_free(pmb, phba->mbox_mem_pool); 5585 return rc; 5586 } 5587 5588 5589 /** 5590 * lpfc_sli_hba_setup - SLI initialization function 5591 * @phba: Pointer to HBA context object. 5592 * 5593 * This function is the main SLI initialization function. This function 5594 * is called by the HBA initialization code, HBA reset code and HBA 5595 * error attention handler code. Caller is not required to hold any 5596 * locks. This function issues config_port mailbox command to configure 5597 * the SLI, setup iocb rings and HBQ rings. In the end the function 5598 * calls the config_port_post function to issue init_link mailbox 5599 * command and to start the discovery. The function will return zero 5600 * if successful, else it will return negative error code. 5601 **/ 5602 int 5603 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5604 { 5605 uint32_t rc; 5606 int i; 5607 int longs; 5608 5609 /* Enable ISR already does config_port because of config_msi mbx */ 5610 if (phba->hba_flag & HBA_NEEDS_CFG_PORT) { 5611 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5612 if (rc) 5613 return -EIO; 5614 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 5615 } 5616 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5617 5618 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5619 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5620 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5621 if (!rc) { 5622 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5623 "2709 This device supports " 5624 "Advanced Error Reporting (AER)\n"); 5625 spin_lock_irq(&phba->hbalock); 5626 phba->hba_flag |= HBA_AER_ENABLED; 5627 spin_unlock_irq(&phba->hbalock); 5628 } else { 5629 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5630 "2708 This device does not support " 5631 "Advanced Error Reporting (AER): %d\n", 5632 rc); 5633 phba->cfg_aer_support = 0; 5634 } 5635 } 5636 5637 if (phba->sli_rev == 3) { 5638 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5639 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5640 } else { 5641 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5642 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5643 phba->sli3_options = 0; 5644 } 5645 5646 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5647 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5648 phba->sli_rev, phba->max_vpi); 5649 rc = lpfc_sli_ring_map(phba); 5650 5651 if (rc) 5652 goto lpfc_sli_hba_setup_error; 5653 5654 /* Initialize VPIs. */ 5655 if (phba->sli_rev == LPFC_SLI_REV3) { 5656 /* 5657 * The VPI bitmask and physical ID array are allocated 5658 * and initialized once only - at driver load. A port 5659 * reset doesn't need to reinitialize this memory. 5660 */ 5661 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5662 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5663 phba->vpi_bmask = kcalloc(longs, 5664 sizeof(unsigned long), 5665 GFP_KERNEL); 5666 if (!phba->vpi_bmask) { 5667 rc = -ENOMEM; 5668 goto lpfc_sli_hba_setup_error; 5669 } 5670 5671 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5672 sizeof(uint16_t), 5673 GFP_KERNEL); 5674 if (!phba->vpi_ids) { 5675 kfree(phba->vpi_bmask); 5676 rc = -ENOMEM; 5677 goto lpfc_sli_hba_setup_error; 5678 } 5679 for (i = 0; i < phba->max_vpi; i++) 5680 phba->vpi_ids[i] = i; 5681 } 5682 } 5683 5684 /* Init HBQs */ 5685 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5686 rc = lpfc_sli_hbq_setup(phba); 5687 if (rc) 5688 goto lpfc_sli_hba_setup_error; 5689 } 5690 spin_lock_irq(&phba->hbalock); 5691 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5692 spin_unlock_irq(&phba->hbalock); 5693 5694 rc = lpfc_config_port_post(phba); 5695 if (rc) 5696 goto lpfc_sli_hba_setup_error; 5697 5698 return rc; 5699 5700 lpfc_sli_hba_setup_error: 5701 phba->link_state = LPFC_HBA_ERROR; 5702 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5703 "0445 Firmware initialization failed\n"); 5704 return rc; 5705 } 5706 5707 /** 5708 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5709 * @phba: Pointer to HBA context object. 5710 * 5711 * This function issue a dump mailbox command to read config region 5712 * 23 and parse the records in the region and populate driver 5713 * data structure. 5714 **/ 5715 static int 5716 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5717 { 5718 LPFC_MBOXQ_t *mboxq; 5719 struct lpfc_dmabuf *mp; 5720 struct lpfc_mqe *mqe; 5721 uint32_t data_length; 5722 int rc; 5723 5724 /* Program the default value of vlan_id and fc_map */ 5725 phba->valid_vlan = 0; 5726 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5727 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5728 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5729 5730 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5731 if (!mboxq) 5732 return -ENOMEM; 5733 5734 mqe = &mboxq->u.mqe; 5735 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5736 rc = -ENOMEM; 5737 goto out_free_mboxq; 5738 } 5739 5740 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5741 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5742 5743 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5744 "(%d):2571 Mailbox cmd x%x Status x%x " 5745 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5746 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5747 "CQ: x%x x%x x%x x%x\n", 5748 mboxq->vport ? mboxq->vport->vpi : 0, 5749 bf_get(lpfc_mqe_command, mqe), 5750 bf_get(lpfc_mqe_status, mqe), 5751 mqe->un.mb_words[0], mqe->un.mb_words[1], 5752 mqe->un.mb_words[2], mqe->un.mb_words[3], 5753 mqe->un.mb_words[4], mqe->un.mb_words[5], 5754 mqe->un.mb_words[6], mqe->un.mb_words[7], 5755 mqe->un.mb_words[8], mqe->un.mb_words[9], 5756 mqe->un.mb_words[10], mqe->un.mb_words[11], 5757 mqe->un.mb_words[12], mqe->un.mb_words[13], 5758 mqe->un.mb_words[14], mqe->un.mb_words[15], 5759 mqe->un.mb_words[16], mqe->un.mb_words[50], 5760 mboxq->mcqe.word0, 5761 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5762 mboxq->mcqe.trailer); 5763 5764 if (rc) { 5765 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5766 kfree(mp); 5767 rc = -EIO; 5768 goto out_free_mboxq; 5769 } 5770 data_length = mqe->un.mb_words[5]; 5771 if (data_length > DMP_RGN23_SIZE) { 5772 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5773 kfree(mp); 5774 rc = -EIO; 5775 goto out_free_mboxq; 5776 } 5777 5778 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5779 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5780 kfree(mp); 5781 rc = 0; 5782 5783 out_free_mboxq: 5784 mempool_free(mboxq, phba->mbox_mem_pool); 5785 return rc; 5786 } 5787 5788 /** 5789 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5790 * @phba: pointer to lpfc hba data structure. 5791 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5792 * @vpd: pointer to the memory to hold resulting port vpd data. 5793 * @vpd_size: On input, the number of bytes allocated to @vpd. 5794 * On output, the number of data bytes in @vpd. 5795 * 5796 * This routine executes a READ_REV SLI4 mailbox command. In 5797 * addition, this routine gets the port vpd data. 5798 * 5799 * Return codes 5800 * 0 - successful 5801 * -ENOMEM - could not allocated memory. 5802 **/ 5803 static int 5804 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5805 uint8_t *vpd, uint32_t *vpd_size) 5806 { 5807 int rc = 0; 5808 uint32_t dma_size; 5809 struct lpfc_dmabuf *dmabuf; 5810 struct lpfc_mqe *mqe; 5811 5812 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5813 if (!dmabuf) 5814 return -ENOMEM; 5815 5816 /* 5817 * Get a DMA buffer for the vpd data resulting from the READ_REV 5818 * mailbox command. 5819 */ 5820 dma_size = *vpd_size; 5821 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5822 &dmabuf->phys, GFP_KERNEL); 5823 if (!dmabuf->virt) { 5824 kfree(dmabuf); 5825 return -ENOMEM; 5826 } 5827 5828 /* 5829 * The SLI4 implementation of READ_REV conflicts at word1, 5830 * bits 31:16 and SLI4 adds vpd functionality not present 5831 * in SLI3. This code corrects the conflicts. 5832 */ 5833 lpfc_read_rev(phba, mboxq); 5834 mqe = &mboxq->u.mqe; 5835 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5836 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5837 mqe->un.read_rev.word1 &= 0x0000FFFF; 5838 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5839 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5840 5841 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5842 if (rc) { 5843 dma_free_coherent(&phba->pcidev->dev, dma_size, 5844 dmabuf->virt, dmabuf->phys); 5845 kfree(dmabuf); 5846 return -EIO; 5847 } 5848 5849 /* 5850 * The available vpd length cannot be bigger than the 5851 * DMA buffer passed to the port. Catch the less than 5852 * case and update the caller's size. 5853 */ 5854 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5855 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5856 5857 memcpy(vpd, dmabuf->virt, *vpd_size); 5858 5859 dma_free_coherent(&phba->pcidev->dev, dma_size, 5860 dmabuf->virt, dmabuf->phys); 5861 kfree(dmabuf); 5862 return 0; 5863 } 5864 5865 /** 5866 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5867 * @phba: pointer to lpfc hba data structure. 5868 * 5869 * This routine retrieves SLI4 device physical port name this PCI function 5870 * is attached to. 5871 * 5872 * Return codes 5873 * 0 - successful 5874 * otherwise - failed to retrieve controller attributes 5875 **/ 5876 static int 5877 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5878 { 5879 LPFC_MBOXQ_t *mboxq; 5880 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5881 struct lpfc_controller_attribute *cntl_attr; 5882 void *virtaddr = NULL; 5883 uint32_t alloclen, reqlen; 5884 uint32_t shdr_status, shdr_add_status; 5885 union lpfc_sli4_cfg_shdr *shdr; 5886 int rc; 5887 5888 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5889 if (!mboxq) 5890 return -ENOMEM; 5891 5892 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5893 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5894 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5895 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5896 LPFC_SLI4_MBX_NEMBED); 5897 5898 if (alloclen < reqlen) { 5899 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5900 "3084 Allocated DMA memory size (%d) is " 5901 "less than the requested DMA memory size " 5902 "(%d)\n", alloclen, reqlen); 5903 rc = -ENOMEM; 5904 goto out_free_mboxq; 5905 } 5906 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5907 virtaddr = mboxq->sge_array->addr[0]; 5908 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5909 shdr = &mbx_cntl_attr->cfg_shdr; 5910 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5911 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5912 if (shdr_status || shdr_add_status || rc) { 5913 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5914 "3085 Mailbox x%x (x%x/x%x) failed, " 5915 "rc:x%x, status:x%x, add_status:x%x\n", 5916 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5917 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5918 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5919 rc, shdr_status, shdr_add_status); 5920 rc = -ENXIO; 5921 goto out_free_mboxq; 5922 } 5923 5924 cntl_attr = &mbx_cntl_attr->cntl_attr; 5925 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5926 phba->sli4_hba.lnk_info.lnk_tp = 5927 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5928 phba->sli4_hba.lnk_info.lnk_no = 5929 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5930 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr); 5931 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr); 5932 5933 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 5934 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 5935 sizeof(phba->BIOSVersion)); 5936 5937 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5938 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, " 5939 "flash_id: x%02x, asic_rev: x%02x\n", 5940 phba->sli4_hba.lnk_info.lnk_tp, 5941 phba->sli4_hba.lnk_info.lnk_no, 5942 phba->BIOSVersion, phba->sli4_hba.flash_id, 5943 phba->sli4_hba.asic_rev); 5944 out_free_mboxq: 5945 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5946 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5947 else 5948 mempool_free(mboxq, phba->mbox_mem_pool); 5949 return rc; 5950 } 5951 5952 /** 5953 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 5954 * @phba: pointer to lpfc hba data structure. 5955 * 5956 * This routine retrieves SLI4 device physical port name this PCI function 5957 * is attached to. 5958 * 5959 * Return codes 5960 * 0 - successful 5961 * otherwise - failed to retrieve physical port name 5962 **/ 5963 static int 5964 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 5965 { 5966 LPFC_MBOXQ_t *mboxq; 5967 struct lpfc_mbx_get_port_name *get_port_name; 5968 uint32_t shdr_status, shdr_add_status; 5969 union lpfc_sli4_cfg_shdr *shdr; 5970 char cport_name = 0; 5971 int rc; 5972 5973 /* We assume nothing at this point */ 5974 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5975 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 5976 5977 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5978 if (!mboxq) 5979 return -ENOMEM; 5980 /* obtain link type and link number via READ_CONFIG */ 5981 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5982 lpfc_sli4_read_config(phba); 5983 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 5984 goto retrieve_ppname; 5985 5986 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 5987 rc = lpfc_sli4_get_ctl_attr(phba); 5988 if (rc) 5989 goto out_free_mboxq; 5990 5991 retrieve_ppname: 5992 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5993 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5994 sizeof(struct lpfc_mbx_get_port_name) - 5995 sizeof(struct lpfc_sli4_cfg_mhdr), 5996 LPFC_SLI4_MBX_EMBED); 5997 get_port_name = &mboxq->u.mqe.un.get_port_name; 5998 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5999 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 6000 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 6001 phba->sli4_hba.lnk_info.lnk_tp); 6002 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6003 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6004 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6005 if (shdr_status || shdr_add_status || rc) { 6006 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6007 "3087 Mailbox x%x (x%x/x%x) failed: " 6008 "rc:x%x, status:x%x, add_status:x%x\n", 6009 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6010 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6011 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6012 rc, shdr_status, shdr_add_status); 6013 rc = -ENXIO; 6014 goto out_free_mboxq; 6015 } 6016 switch (phba->sli4_hba.lnk_info.lnk_no) { 6017 case LPFC_LINK_NUMBER_0: 6018 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 6019 &get_port_name->u.response); 6020 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6021 break; 6022 case LPFC_LINK_NUMBER_1: 6023 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 6024 &get_port_name->u.response); 6025 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6026 break; 6027 case LPFC_LINK_NUMBER_2: 6028 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 6029 &get_port_name->u.response); 6030 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6031 break; 6032 case LPFC_LINK_NUMBER_3: 6033 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 6034 &get_port_name->u.response); 6035 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6036 break; 6037 default: 6038 break; 6039 } 6040 6041 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 6042 phba->Port[0] = cport_name; 6043 phba->Port[1] = '\0'; 6044 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6045 "3091 SLI get port name: %s\n", phba->Port); 6046 } 6047 6048 out_free_mboxq: 6049 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6050 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6051 else 6052 mempool_free(mboxq, phba->mbox_mem_pool); 6053 return rc; 6054 } 6055 6056 /** 6057 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 6058 * @phba: pointer to lpfc hba data structure. 6059 * 6060 * This routine is called to explicitly arm the SLI4 device's completion and 6061 * event queues 6062 **/ 6063 static void 6064 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 6065 { 6066 int qidx; 6067 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 6068 struct lpfc_sli4_hdw_queue *qp; 6069 struct lpfc_queue *eq; 6070 6071 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 6072 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 6073 if (sli4_hba->nvmels_cq) 6074 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 6075 LPFC_QUEUE_REARM); 6076 6077 if (sli4_hba->hdwq) { 6078 /* Loop thru all Hardware Queues */ 6079 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 6080 qp = &sli4_hba->hdwq[qidx]; 6081 /* ARM the corresponding CQ */ 6082 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 6083 LPFC_QUEUE_REARM); 6084 } 6085 6086 /* Loop thru all IRQ vectors */ 6087 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 6088 eq = sli4_hba->hba_eq_hdl[qidx].eq; 6089 /* ARM the corresponding EQ */ 6090 sli4_hba->sli4_write_eq_db(phba, eq, 6091 0, LPFC_QUEUE_REARM); 6092 } 6093 } 6094 6095 if (phba->nvmet_support) { 6096 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 6097 sli4_hba->sli4_write_cq_db(phba, 6098 sli4_hba->nvmet_cqset[qidx], 0, 6099 LPFC_QUEUE_REARM); 6100 } 6101 } 6102 } 6103 6104 /** 6105 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 6106 * @phba: Pointer to HBA context object. 6107 * @type: The resource extent type. 6108 * @extnt_count: buffer to hold port available extent count. 6109 * @extnt_size: buffer to hold element count per extent. 6110 * 6111 * This function calls the port and retrievs the number of available 6112 * extents and their size for a particular extent type. 6113 * 6114 * Returns: 0 if successful. Nonzero otherwise. 6115 **/ 6116 int 6117 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 6118 uint16_t *extnt_count, uint16_t *extnt_size) 6119 { 6120 int rc = 0; 6121 uint32_t length; 6122 uint32_t mbox_tmo; 6123 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 6124 LPFC_MBOXQ_t *mbox; 6125 6126 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6127 if (!mbox) 6128 return -ENOMEM; 6129 6130 /* Find out how many extents are available for this resource type */ 6131 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 6132 sizeof(struct lpfc_sli4_cfg_mhdr)); 6133 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6134 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 6135 length, LPFC_SLI4_MBX_EMBED); 6136 6137 /* Send an extents count of 0 - the GET doesn't use it. */ 6138 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6139 LPFC_SLI4_MBX_EMBED); 6140 if (unlikely(rc)) { 6141 rc = -EIO; 6142 goto err_exit; 6143 } 6144 6145 if (!phba->sli4_hba.intr_enable) 6146 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6147 else { 6148 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6149 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6150 } 6151 if (unlikely(rc)) { 6152 rc = -EIO; 6153 goto err_exit; 6154 } 6155 6156 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 6157 if (bf_get(lpfc_mbox_hdr_status, 6158 &rsrc_info->header.cfg_shdr.response)) { 6159 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6160 "2930 Failed to get resource extents " 6161 "Status 0x%x Add'l Status 0x%x\n", 6162 bf_get(lpfc_mbox_hdr_status, 6163 &rsrc_info->header.cfg_shdr.response), 6164 bf_get(lpfc_mbox_hdr_add_status, 6165 &rsrc_info->header.cfg_shdr.response)); 6166 rc = -EIO; 6167 goto err_exit; 6168 } 6169 6170 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 6171 &rsrc_info->u.rsp); 6172 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 6173 &rsrc_info->u.rsp); 6174 6175 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6176 "3162 Retrieved extents type-%d from port: count:%d, " 6177 "size:%d\n", type, *extnt_count, *extnt_size); 6178 6179 err_exit: 6180 mempool_free(mbox, phba->mbox_mem_pool); 6181 return rc; 6182 } 6183 6184 /** 6185 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 6186 * @phba: Pointer to HBA context object. 6187 * @type: The extent type to check. 6188 * 6189 * This function reads the current available extents from the port and checks 6190 * if the extent count or extent size has changed since the last access. 6191 * Callers use this routine post port reset to understand if there is a 6192 * extent reprovisioning requirement. 6193 * 6194 * Returns: 6195 * -Error: error indicates problem. 6196 * 1: Extent count or size has changed. 6197 * 0: No changes. 6198 **/ 6199 static int 6200 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 6201 { 6202 uint16_t curr_ext_cnt, rsrc_ext_cnt; 6203 uint16_t size_diff, rsrc_ext_size; 6204 int rc = 0; 6205 struct lpfc_rsrc_blks *rsrc_entry; 6206 struct list_head *rsrc_blk_list = NULL; 6207 6208 size_diff = 0; 6209 curr_ext_cnt = 0; 6210 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6211 &rsrc_ext_cnt, 6212 &rsrc_ext_size); 6213 if (unlikely(rc)) 6214 return -EIO; 6215 6216 switch (type) { 6217 case LPFC_RSC_TYPE_FCOE_RPI: 6218 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6219 break; 6220 case LPFC_RSC_TYPE_FCOE_VPI: 6221 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 6222 break; 6223 case LPFC_RSC_TYPE_FCOE_XRI: 6224 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6225 break; 6226 case LPFC_RSC_TYPE_FCOE_VFI: 6227 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6228 break; 6229 default: 6230 break; 6231 } 6232 6233 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 6234 curr_ext_cnt++; 6235 if (rsrc_entry->rsrc_size != rsrc_ext_size) 6236 size_diff++; 6237 } 6238 6239 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 6240 rc = 1; 6241 6242 return rc; 6243 } 6244 6245 /** 6246 * lpfc_sli4_cfg_post_extnts - 6247 * @phba: Pointer to HBA context object. 6248 * @extnt_cnt: number of available extents. 6249 * @type: the extent type (rpi, xri, vfi, vpi). 6250 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 6251 * @mbox: pointer to the caller's allocated mailbox structure. 6252 * 6253 * This function executes the extents allocation request. It also 6254 * takes care of the amount of memory needed to allocate or get the 6255 * allocated extents. It is the caller's responsibility to evaluate 6256 * the response. 6257 * 6258 * Returns: 6259 * -Error: Error value describes the condition found. 6260 * 0: if successful 6261 **/ 6262 static int 6263 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6264 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6265 { 6266 int rc = 0; 6267 uint32_t req_len; 6268 uint32_t emb_len; 6269 uint32_t alloc_len, mbox_tmo; 6270 6271 /* Calculate the total requested length of the dma memory */ 6272 req_len = extnt_cnt * sizeof(uint16_t); 6273 6274 /* 6275 * Calculate the size of an embedded mailbox. The uint32_t 6276 * accounts for extents-specific word. 6277 */ 6278 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6279 sizeof(uint32_t); 6280 6281 /* 6282 * Presume the allocation and response will fit into an embedded 6283 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6284 */ 6285 *emb = LPFC_SLI4_MBX_EMBED; 6286 if (req_len > emb_len) { 6287 req_len = extnt_cnt * sizeof(uint16_t) + 6288 sizeof(union lpfc_sli4_cfg_shdr) + 6289 sizeof(uint32_t); 6290 *emb = LPFC_SLI4_MBX_NEMBED; 6291 } 6292 6293 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6294 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6295 req_len, *emb); 6296 if (alloc_len < req_len) { 6297 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6298 "2982 Allocated DMA memory size (x%x) is " 6299 "less than the requested DMA memory " 6300 "size (x%x)\n", alloc_len, req_len); 6301 return -ENOMEM; 6302 } 6303 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6304 if (unlikely(rc)) 6305 return -EIO; 6306 6307 if (!phba->sli4_hba.intr_enable) 6308 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6309 else { 6310 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6311 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6312 } 6313 6314 if (unlikely(rc)) 6315 rc = -EIO; 6316 return rc; 6317 } 6318 6319 /** 6320 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6321 * @phba: Pointer to HBA context object. 6322 * @type: The resource extent type to allocate. 6323 * 6324 * This function allocates the number of elements for the specified 6325 * resource type. 6326 **/ 6327 static int 6328 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6329 { 6330 bool emb = false; 6331 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6332 uint16_t rsrc_id, rsrc_start, j, k; 6333 uint16_t *ids; 6334 int i, rc; 6335 unsigned long longs; 6336 unsigned long *bmask; 6337 struct lpfc_rsrc_blks *rsrc_blks; 6338 LPFC_MBOXQ_t *mbox; 6339 uint32_t length; 6340 struct lpfc_id_range *id_array = NULL; 6341 void *virtaddr = NULL; 6342 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6343 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6344 struct list_head *ext_blk_list; 6345 6346 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6347 &rsrc_cnt, 6348 &rsrc_size); 6349 if (unlikely(rc)) 6350 return -EIO; 6351 6352 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6353 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6354 "3009 No available Resource Extents " 6355 "for resource type 0x%x: Count: 0x%x, " 6356 "Size 0x%x\n", type, rsrc_cnt, 6357 rsrc_size); 6358 return -ENOMEM; 6359 } 6360 6361 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6362 "2903 Post resource extents type-0x%x: " 6363 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6364 6365 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6366 if (!mbox) 6367 return -ENOMEM; 6368 6369 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6370 if (unlikely(rc)) { 6371 rc = -EIO; 6372 goto err_exit; 6373 } 6374 6375 /* 6376 * Figure out where the response is located. Then get local pointers 6377 * to the response data. The port does not guarantee to respond to 6378 * all extents counts request so update the local variable with the 6379 * allocated count from the port. 6380 */ 6381 if (emb == LPFC_SLI4_MBX_EMBED) { 6382 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6383 id_array = &rsrc_ext->u.rsp.id[0]; 6384 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6385 } else { 6386 virtaddr = mbox->sge_array->addr[0]; 6387 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6388 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6389 id_array = &n_rsrc->id; 6390 } 6391 6392 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6393 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6394 6395 /* 6396 * Based on the resource size and count, correct the base and max 6397 * resource values. 6398 */ 6399 length = sizeof(struct lpfc_rsrc_blks); 6400 switch (type) { 6401 case LPFC_RSC_TYPE_FCOE_RPI: 6402 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6403 sizeof(unsigned long), 6404 GFP_KERNEL); 6405 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6406 rc = -ENOMEM; 6407 goto err_exit; 6408 } 6409 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6410 sizeof(uint16_t), 6411 GFP_KERNEL); 6412 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6413 kfree(phba->sli4_hba.rpi_bmask); 6414 rc = -ENOMEM; 6415 goto err_exit; 6416 } 6417 6418 /* 6419 * The next_rpi was initialized with the maximum available 6420 * count but the port may allocate a smaller number. Catch 6421 * that case and update the next_rpi. 6422 */ 6423 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6424 6425 /* Initialize local ptrs for common extent processing later. */ 6426 bmask = phba->sli4_hba.rpi_bmask; 6427 ids = phba->sli4_hba.rpi_ids; 6428 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6429 break; 6430 case LPFC_RSC_TYPE_FCOE_VPI: 6431 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6432 GFP_KERNEL); 6433 if (unlikely(!phba->vpi_bmask)) { 6434 rc = -ENOMEM; 6435 goto err_exit; 6436 } 6437 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6438 GFP_KERNEL); 6439 if (unlikely(!phba->vpi_ids)) { 6440 kfree(phba->vpi_bmask); 6441 rc = -ENOMEM; 6442 goto err_exit; 6443 } 6444 6445 /* Initialize local ptrs for common extent processing later. */ 6446 bmask = phba->vpi_bmask; 6447 ids = phba->vpi_ids; 6448 ext_blk_list = &phba->lpfc_vpi_blk_list; 6449 break; 6450 case LPFC_RSC_TYPE_FCOE_XRI: 6451 phba->sli4_hba.xri_bmask = kcalloc(longs, 6452 sizeof(unsigned long), 6453 GFP_KERNEL); 6454 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6455 rc = -ENOMEM; 6456 goto err_exit; 6457 } 6458 phba->sli4_hba.max_cfg_param.xri_used = 0; 6459 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6460 sizeof(uint16_t), 6461 GFP_KERNEL); 6462 if (unlikely(!phba->sli4_hba.xri_ids)) { 6463 kfree(phba->sli4_hba.xri_bmask); 6464 rc = -ENOMEM; 6465 goto err_exit; 6466 } 6467 6468 /* Initialize local ptrs for common extent processing later. */ 6469 bmask = phba->sli4_hba.xri_bmask; 6470 ids = phba->sli4_hba.xri_ids; 6471 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6472 break; 6473 case LPFC_RSC_TYPE_FCOE_VFI: 6474 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6475 sizeof(unsigned long), 6476 GFP_KERNEL); 6477 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6478 rc = -ENOMEM; 6479 goto err_exit; 6480 } 6481 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6482 sizeof(uint16_t), 6483 GFP_KERNEL); 6484 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6485 kfree(phba->sli4_hba.vfi_bmask); 6486 rc = -ENOMEM; 6487 goto err_exit; 6488 } 6489 6490 /* Initialize local ptrs for common extent processing later. */ 6491 bmask = phba->sli4_hba.vfi_bmask; 6492 ids = phba->sli4_hba.vfi_ids; 6493 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6494 break; 6495 default: 6496 /* Unsupported Opcode. Fail call. */ 6497 id_array = NULL; 6498 bmask = NULL; 6499 ids = NULL; 6500 ext_blk_list = NULL; 6501 goto err_exit; 6502 } 6503 6504 /* 6505 * Complete initializing the extent configuration with the 6506 * allocated ids assigned to this function. The bitmask serves 6507 * as an index into the array and manages the available ids. The 6508 * array just stores the ids communicated to the port via the wqes. 6509 */ 6510 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6511 if ((i % 2) == 0) 6512 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6513 &id_array[k]); 6514 else 6515 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6516 &id_array[k]); 6517 6518 rsrc_blks = kzalloc(length, GFP_KERNEL); 6519 if (unlikely(!rsrc_blks)) { 6520 rc = -ENOMEM; 6521 kfree(bmask); 6522 kfree(ids); 6523 goto err_exit; 6524 } 6525 rsrc_blks->rsrc_start = rsrc_id; 6526 rsrc_blks->rsrc_size = rsrc_size; 6527 list_add_tail(&rsrc_blks->list, ext_blk_list); 6528 rsrc_start = rsrc_id; 6529 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6530 phba->sli4_hba.io_xri_start = rsrc_start + 6531 lpfc_sli4_get_iocb_cnt(phba); 6532 } 6533 6534 while (rsrc_id < (rsrc_start + rsrc_size)) { 6535 ids[j] = rsrc_id; 6536 rsrc_id++; 6537 j++; 6538 } 6539 /* Entire word processed. Get next word.*/ 6540 if ((i % 2) == 1) 6541 k++; 6542 } 6543 err_exit: 6544 lpfc_sli4_mbox_cmd_free(phba, mbox); 6545 return rc; 6546 } 6547 6548 6549 6550 /** 6551 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6552 * @phba: Pointer to HBA context object. 6553 * @type: the extent's type. 6554 * 6555 * This function deallocates all extents of a particular resource type. 6556 * SLI4 does not allow for deallocating a particular extent range. It 6557 * is the caller's responsibility to release all kernel memory resources. 6558 **/ 6559 static int 6560 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6561 { 6562 int rc; 6563 uint32_t length, mbox_tmo = 0; 6564 LPFC_MBOXQ_t *mbox; 6565 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6566 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6567 6568 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6569 if (!mbox) 6570 return -ENOMEM; 6571 6572 /* 6573 * This function sends an embedded mailbox because it only sends the 6574 * the resource type. All extents of this type are released by the 6575 * port. 6576 */ 6577 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6578 sizeof(struct lpfc_sli4_cfg_mhdr)); 6579 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6580 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6581 length, LPFC_SLI4_MBX_EMBED); 6582 6583 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6584 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6585 LPFC_SLI4_MBX_EMBED); 6586 if (unlikely(rc)) { 6587 rc = -EIO; 6588 goto out_free_mbox; 6589 } 6590 if (!phba->sli4_hba.intr_enable) 6591 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6592 else { 6593 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6594 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6595 } 6596 if (unlikely(rc)) { 6597 rc = -EIO; 6598 goto out_free_mbox; 6599 } 6600 6601 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6602 if (bf_get(lpfc_mbox_hdr_status, 6603 &dealloc_rsrc->header.cfg_shdr.response)) { 6604 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6605 "2919 Failed to release resource extents " 6606 "for type %d - Status 0x%x Add'l Status 0x%x. " 6607 "Resource memory not released.\n", 6608 type, 6609 bf_get(lpfc_mbox_hdr_status, 6610 &dealloc_rsrc->header.cfg_shdr.response), 6611 bf_get(lpfc_mbox_hdr_add_status, 6612 &dealloc_rsrc->header.cfg_shdr.response)); 6613 rc = -EIO; 6614 goto out_free_mbox; 6615 } 6616 6617 /* Release kernel memory resources for the specific type. */ 6618 switch (type) { 6619 case LPFC_RSC_TYPE_FCOE_VPI: 6620 kfree(phba->vpi_bmask); 6621 kfree(phba->vpi_ids); 6622 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6623 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6624 &phba->lpfc_vpi_blk_list, list) { 6625 list_del_init(&rsrc_blk->list); 6626 kfree(rsrc_blk); 6627 } 6628 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6629 break; 6630 case LPFC_RSC_TYPE_FCOE_XRI: 6631 kfree(phba->sli4_hba.xri_bmask); 6632 kfree(phba->sli4_hba.xri_ids); 6633 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6634 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6635 list_del_init(&rsrc_blk->list); 6636 kfree(rsrc_blk); 6637 } 6638 break; 6639 case LPFC_RSC_TYPE_FCOE_VFI: 6640 kfree(phba->sli4_hba.vfi_bmask); 6641 kfree(phba->sli4_hba.vfi_ids); 6642 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6643 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6644 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6645 list_del_init(&rsrc_blk->list); 6646 kfree(rsrc_blk); 6647 } 6648 break; 6649 case LPFC_RSC_TYPE_FCOE_RPI: 6650 /* RPI bitmask and physical id array are cleaned up earlier. */ 6651 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6652 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6653 list_del_init(&rsrc_blk->list); 6654 kfree(rsrc_blk); 6655 } 6656 break; 6657 default: 6658 break; 6659 } 6660 6661 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6662 6663 out_free_mbox: 6664 mempool_free(mbox, phba->mbox_mem_pool); 6665 return rc; 6666 } 6667 6668 static void 6669 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6670 uint32_t feature) 6671 { 6672 uint32_t len; 6673 u32 sig_freq = 0; 6674 6675 len = sizeof(struct lpfc_mbx_set_feature) - 6676 sizeof(struct lpfc_sli4_cfg_mhdr); 6677 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6678 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6679 LPFC_SLI4_MBX_EMBED); 6680 6681 switch (feature) { 6682 case LPFC_SET_UE_RECOVERY: 6683 bf_set(lpfc_mbx_set_feature_UER, 6684 &mbox->u.mqe.un.set_feature, 1); 6685 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6686 mbox->u.mqe.un.set_feature.param_len = 8; 6687 break; 6688 case LPFC_SET_MDS_DIAGS: 6689 bf_set(lpfc_mbx_set_feature_mds, 6690 &mbox->u.mqe.un.set_feature, 1); 6691 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6692 &mbox->u.mqe.un.set_feature, 1); 6693 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6694 mbox->u.mqe.un.set_feature.param_len = 8; 6695 break; 6696 case LPFC_SET_CGN_SIGNAL: 6697 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6698 sig_freq = 0; 6699 else 6700 sig_freq = phba->cgn_sig_freq; 6701 6702 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6703 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq, 6704 &mbox->u.mqe.un.set_feature, sig_freq); 6705 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6706 &mbox->u.mqe.un.set_feature, sig_freq); 6707 } 6708 6709 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY) 6710 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6711 &mbox->u.mqe.un.set_feature, sig_freq); 6712 6713 if (phba->cmf_active_mode == LPFC_CFG_OFF || 6714 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED) 6715 sig_freq = 0; 6716 else 6717 sig_freq = lpfc_acqe_cgn_frequency; 6718 6719 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq, 6720 &mbox->u.mqe.un.set_feature, sig_freq); 6721 6722 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL; 6723 mbox->u.mqe.un.set_feature.param_len = 12; 6724 break; 6725 case LPFC_SET_DUAL_DUMP: 6726 bf_set(lpfc_mbx_set_feature_dd, 6727 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6728 bf_set(lpfc_mbx_set_feature_ddquery, 6729 &mbox->u.mqe.un.set_feature, 0); 6730 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6731 mbox->u.mqe.un.set_feature.param_len = 4; 6732 break; 6733 case LPFC_SET_ENABLE_MI: 6734 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI; 6735 mbox->u.mqe.un.set_feature.param_len = 4; 6736 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature, 6737 phba->pport->cfg_lun_queue_depth); 6738 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature, 6739 phba->sli4_hba.pc_sli4_params.mi_ver); 6740 break; 6741 case LPFC_SET_ENABLE_CMF: 6742 bf_set(lpfc_mbx_set_feature_dd, &mbox->u.mqe.un.set_feature, 1); 6743 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF; 6744 mbox->u.mqe.un.set_feature.param_len = 4; 6745 bf_set(lpfc_mbx_set_feature_cmf, 6746 &mbox->u.mqe.un.set_feature, 1); 6747 break; 6748 } 6749 return; 6750 } 6751 6752 /** 6753 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6754 * @phba: Pointer to HBA context object. 6755 * 6756 * Disable FW logging into host memory on the adapter. To 6757 * be done before reading logs from the host memory. 6758 **/ 6759 void 6760 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6761 { 6762 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6763 6764 spin_lock_irq(&phba->hbalock); 6765 ras_fwlog->state = INACTIVE; 6766 spin_unlock_irq(&phba->hbalock); 6767 6768 /* Disable FW logging to host memory */ 6769 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6770 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6771 6772 /* Wait 10ms for firmware to stop using DMA buffer */ 6773 usleep_range(10 * 1000, 20 * 1000); 6774 } 6775 6776 /** 6777 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6778 * @phba: Pointer to HBA context object. 6779 * 6780 * This function is called to free memory allocated for RAS FW logging 6781 * support in the driver. 6782 **/ 6783 void 6784 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6785 { 6786 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6787 struct lpfc_dmabuf *dmabuf, *next; 6788 6789 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6790 list_for_each_entry_safe(dmabuf, next, 6791 &ras_fwlog->fwlog_buff_list, 6792 list) { 6793 list_del(&dmabuf->list); 6794 dma_free_coherent(&phba->pcidev->dev, 6795 LPFC_RAS_MAX_ENTRY_SIZE, 6796 dmabuf->virt, dmabuf->phys); 6797 kfree(dmabuf); 6798 } 6799 } 6800 6801 if (ras_fwlog->lwpd.virt) { 6802 dma_free_coherent(&phba->pcidev->dev, 6803 sizeof(uint32_t) * 2, 6804 ras_fwlog->lwpd.virt, 6805 ras_fwlog->lwpd.phys); 6806 ras_fwlog->lwpd.virt = NULL; 6807 } 6808 6809 spin_lock_irq(&phba->hbalock); 6810 ras_fwlog->state = INACTIVE; 6811 spin_unlock_irq(&phba->hbalock); 6812 } 6813 6814 /** 6815 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6816 * @phba: Pointer to HBA context object. 6817 * @fwlog_buff_count: Count of buffers to be created. 6818 * 6819 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6820 * to update FW log is posted to the adapter. 6821 * Buffer count is calculated based on module param ras_fwlog_buffsize 6822 * Size of each buffer posted to FW is 64K. 6823 **/ 6824 6825 static int 6826 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6827 uint32_t fwlog_buff_count) 6828 { 6829 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6830 struct lpfc_dmabuf *dmabuf; 6831 int rc = 0, i = 0; 6832 6833 /* Initialize List */ 6834 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6835 6836 /* Allocate memory for the LWPD */ 6837 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6838 sizeof(uint32_t) * 2, 6839 &ras_fwlog->lwpd.phys, 6840 GFP_KERNEL); 6841 if (!ras_fwlog->lwpd.virt) { 6842 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6843 "6185 LWPD Memory Alloc Failed\n"); 6844 6845 return -ENOMEM; 6846 } 6847 6848 ras_fwlog->fw_buffcount = fwlog_buff_count; 6849 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6850 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6851 GFP_KERNEL); 6852 if (!dmabuf) { 6853 rc = -ENOMEM; 6854 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6855 "6186 Memory Alloc failed FW logging"); 6856 goto free_mem; 6857 } 6858 6859 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6860 LPFC_RAS_MAX_ENTRY_SIZE, 6861 &dmabuf->phys, GFP_KERNEL); 6862 if (!dmabuf->virt) { 6863 kfree(dmabuf); 6864 rc = -ENOMEM; 6865 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6866 "6187 DMA Alloc Failed FW logging"); 6867 goto free_mem; 6868 } 6869 dmabuf->buffer_tag = i; 6870 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6871 } 6872 6873 free_mem: 6874 if (rc) 6875 lpfc_sli4_ras_dma_free(phba); 6876 6877 return rc; 6878 } 6879 6880 /** 6881 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6882 * @phba: pointer to lpfc hba data structure. 6883 * @pmb: pointer to the driver internal queue element for mailbox command. 6884 * 6885 * Completion handler for driver's RAS MBX command to the device. 6886 **/ 6887 static void 6888 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6889 { 6890 MAILBOX_t *mb; 6891 union lpfc_sli4_cfg_shdr *shdr; 6892 uint32_t shdr_status, shdr_add_status; 6893 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6894 6895 mb = &pmb->u.mb; 6896 6897 shdr = (union lpfc_sli4_cfg_shdr *) 6898 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6899 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6900 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6901 6902 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6903 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6904 "6188 FW LOG mailbox " 6905 "completed with status x%x add_status x%x," 6906 " mbx status x%x\n", 6907 shdr_status, shdr_add_status, mb->mbxStatus); 6908 6909 ras_fwlog->ras_hwsupport = false; 6910 goto disable_ras; 6911 } 6912 6913 spin_lock_irq(&phba->hbalock); 6914 ras_fwlog->state = ACTIVE; 6915 spin_unlock_irq(&phba->hbalock); 6916 mempool_free(pmb, phba->mbox_mem_pool); 6917 6918 return; 6919 6920 disable_ras: 6921 /* Free RAS DMA memory */ 6922 lpfc_sli4_ras_dma_free(phba); 6923 mempool_free(pmb, phba->mbox_mem_pool); 6924 } 6925 6926 /** 6927 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 6928 * @phba: pointer to lpfc hba data structure. 6929 * @fwlog_level: Logging verbosity level. 6930 * @fwlog_enable: Enable/Disable logging. 6931 * 6932 * Initialize memory and post mailbox command to enable FW logging in host 6933 * memory. 6934 **/ 6935 int 6936 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 6937 uint32_t fwlog_level, 6938 uint32_t fwlog_enable) 6939 { 6940 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6941 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 6942 struct lpfc_dmabuf *dmabuf; 6943 LPFC_MBOXQ_t *mbox; 6944 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 6945 int rc = 0; 6946 6947 spin_lock_irq(&phba->hbalock); 6948 ras_fwlog->state = INACTIVE; 6949 spin_unlock_irq(&phba->hbalock); 6950 6951 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 6952 phba->cfg_ras_fwlog_buffsize); 6953 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 6954 6955 /* 6956 * If re-enabling FW logging support use earlier allocated 6957 * DMA buffers while posting MBX command. 6958 **/ 6959 if (!ras_fwlog->lwpd.virt) { 6960 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 6961 if (rc) { 6962 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6963 "6189 FW Log Memory Allocation Failed"); 6964 return rc; 6965 } 6966 } 6967 6968 /* Setup Mailbox command */ 6969 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6970 if (!mbox) { 6971 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6972 "6190 RAS MBX Alloc Failed"); 6973 rc = -ENOMEM; 6974 goto mem_free; 6975 } 6976 6977 ras_fwlog->fw_loglevel = fwlog_level; 6978 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 6979 sizeof(struct lpfc_sli4_cfg_mhdr)); 6980 6981 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 6982 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 6983 len, LPFC_SLI4_MBX_EMBED); 6984 6985 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 6986 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 6987 fwlog_enable); 6988 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 6989 ras_fwlog->fw_loglevel); 6990 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 6991 ras_fwlog->fw_buffcount); 6992 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 6993 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 6994 6995 /* Update DMA buffer address */ 6996 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 6997 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 6998 6999 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 7000 putPaddrLow(dmabuf->phys); 7001 7002 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 7003 putPaddrHigh(dmabuf->phys); 7004 } 7005 7006 /* Update LPWD address */ 7007 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 7008 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 7009 7010 spin_lock_irq(&phba->hbalock); 7011 ras_fwlog->state = REG_INPROGRESS; 7012 spin_unlock_irq(&phba->hbalock); 7013 mbox->vport = phba->pport; 7014 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 7015 7016 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 7017 7018 if (rc == MBX_NOT_FINISHED) { 7019 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7020 "6191 FW-Log Mailbox failed. " 7021 "status %d mbxStatus : x%x", rc, 7022 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 7023 mempool_free(mbox, phba->mbox_mem_pool); 7024 rc = -EIO; 7025 goto mem_free; 7026 } else 7027 rc = 0; 7028 mem_free: 7029 if (rc) 7030 lpfc_sli4_ras_dma_free(phba); 7031 7032 return rc; 7033 } 7034 7035 /** 7036 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 7037 * @phba: Pointer to HBA context object. 7038 * 7039 * Check if RAS is supported on the adapter and initialize it. 7040 **/ 7041 void 7042 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 7043 { 7044 /* Check RAS FW Log needs to be enabled or not */ 7045 if (lpfc_check_fwlog_support(phba)) 7046 return; 7047 7048 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 7049 LPFC_RAS_ENABLE_LOGGING); 7050 } 7051 7052 /** 7053 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 7054 * @phba: Pointer to HBA context object. 7055 * 7056 * This function allocates all SLI4 resource identifiers. 7057 **/ 7058 int 7059 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 7060 { 7061 int i, rc, error = 0; 7062 uint16_t count, base; 7063 unsigned long longs; 7064 7065 if (!phba->sli4_hba.rpi_hdrs_in_use) 7066 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 7067 if (phba->sli4_hba.extents_in_use) { 7068 /* 7069 * The port supports resource extents. The XRI, VPI, VFI, RPI 7070 * resource extent count must be read and allocated before 7071 * provisioning the resource id arrays. 7072 */ 7073 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7074 LPFC_IDX_RSRC_RDY) { 7075 /* 7076 * Extent-based resources are set - the driver could 7077 * be in a port reset. Figure out if any corrective 7078 * actions need to be taken. 7079 */ 7080 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7081 LPFC_RSC_TYPE_FCOE_VFI); 7082 if (rc != 0) 7083 error++; 7084 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7085 LPFC_RSC_TYPE_FCOE_VPI); 7086 if (rc != 0) 7087 error++; 7088 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7089 LPFC_RSC_TYPE_FCOE_XRI); 7090 if (rc != 0) 7091 error++; 7092 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7093 LPFC_RSC_TYPE_FCOE_RPI); 7094 if (rc != 0) 7095 error++; 7096 7097 /* 7098 * It's possible that the number of resources 7099 * provided to this port instance changed between 7100 * resets. Detect this condition and reallocate 7101 * resources. Otherwise, there is no action. 7102 */ 7103 if (error) { 7104 lpfc_printf_log(phba, KERN_INFO, 7105 LOG_MBOX | LOG_INIT, 7106 "2931 Detected extent resource " 7107 "change. Reallocating all " 7108 "extents.\n"); 7109 rc = lpfc_sli4_dealloc_extent(phba, 7110 LPFC_RSC_TYPE_FCOE_VFI); 7111 rc = lpfc_sli4_dealloc_extent(phba, 7112 LPFC_RSC_TYPE_FCOE_VPI); 7113 rc = lpfc_sli4_dealloc_extent(phba, 7114 LPFC_RSC_TYPE_FCOE_XRI); 7115 rc = lpfc_sli4_dealloc_extent(phba, 7116 LPFC_RSC_TYPE_FCOE_RPI); 7117 } else 7118 return 0; 7119 } 7120 7121 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7122 if (unlikely(rc)) 7123 goto err_exit; 7124 7125 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7126 if (unlikely(rc)) 7127 goto err_exit; 7128 7129 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7130 if (unlikely(rc)) 7131 goto err_exit; 7132 7133 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7134 if (unlikely(rc)) 7135 goto err_exit; 7136 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7137 LPFC_IDX_RSRC_RDY); 7138 return rc; 7139 } else { 7140 /* 7141 * The port does not support resource extents. The XRI, VPI, 7142 * VFI, RPI resource ids were determined from READ_CONFIG. 7143 * Just allocate the bitmasks and provision the resource id 7144 * arrays. If a port reset is active, the resources don't 7145 * need any action - just exit. 7146 */ 7147 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7148 LPFC_IDX_RSRC_RDY) { 7149 lpfc_sli4_dealloc_resource_identifiers(phba); 7150 lpfc_sli4_remove_rpis(phba); 7151 } 7152 /* RPIs. */ 7153 count = phba->sli4_hba.max_cfg_param.max_rpi; 7154 if (count <= 0) { 7155 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7156 "3279 Invalid provisioning of " 7157 "rpi:%d\n", count); 7158 rc = -EINVAL; 7159 goto err_exit; 7160 } 7161 base = phba->sli4_hba.max_cfg_param.rpi_base; 7162 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7163 phba->sli4_hba.rpi_bmask = kcalloc(longs, 7164 sizeof(unsigned long), 7165 GFP_KERNEL); 7166 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 7167 rc = -ENOMEM; 7168 goto err_exit; 7169 } 7170 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 7171 GFP_KERNEL); 7172 if (unlikely(!phba->sli4_hba.rpi_ids)) { 7173 rc = -ENOMEM; 7174 goto free_rpi_bmask; 7175 } 7176 7177 for (i = 0; i < count; i++) 7178 phba->sli4_hba.rpi_ids[i] = base + i; 7179 7180 /* VPIs. */ 7181 count = phba->sli4_hba.max_cfg_param.max_vpi; 7182 if (count <= 0) { 7183 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7184 "3280 Invalid provisioning of " 7185 "vpi:%d\n", count); 7186 rc = -EINVAL; 7187 goto free_rpi_ids; 7188 } 7189 base = phba->sli4_hba.max_cfg_param.vpi_base; 7190 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7191 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 7192 GFP_KERNEL); 7193 if (unlikely(!phba->vpi_bmask)) { 7194 rc = -ENOMEM; 7195 goto free_rpi_ids; 7196 } 7197 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 7198 GFP_KERNEL); 7199 if (unlikely(!phba->vpi_ids)) { 7200 rc = -ENOMEM; 7201 goto free_vpi_bmask; 7202 } 7203 7204 for (i = 0; i < count; i++) 7205 phba->vpi_ids[i] = base + i; 7206 7207 /* XRIs. */ 7208 count = phba->sli4_hba.max_cfg_param.max_xri; 7209 if (count <= 0) { 7210 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7211 "3281 Invalid provisioning of " 7212 "xri:%d\n", count); 7213 rc = -EINVAL; 7214 goto free_vpi_ids; 7215 } 7216 base = phba->sli4_hba.max_cfg_param.xri_base; 7217 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7218 phba->sli4_hba.xri_bmask = kcalloc(longs, 7219 sizeof(unsigned long), 7220 GFP_KERNEL); 7221 if (unlikely(!phba->sli4_hba.xri_bmask)) { 7222 rc = -ENOMEM; 7223 goto free_vpi_ids; 7224 } 7225 phba->sli4_hba.max_cfg_param.xri_used = 0; 7226 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 7227 GFP_KERNEL); 7228 if (unlikely(!phba->sli4_hba.xri_ids)) { 7229 rc = -ENOMEM; 7230 goto free_xri_bmask; 7231 } 7232 7233 for (i = 0; i < count; i++) 7234 phba->sli4_hba.xri_ids[i] = base + i; 7235 7236 /* VFIs. */ 7237 count = phba->sli4_hba.max_cfg_param.max_vfi; 7238 if (count <= 0) { 7239 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7240 "3282 Invalid provisioning of " 7241 "vfi:%d\n", count); 7242 rc = -EINVAL; 7243 goto free_xri_ids; 7244 } 7245 base = phba->sli4_hba.max_cfg_param.vfi_base; 7246 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7247 phba->sli4_hba.vfi_bmask = kcalloc(longs, 7248 sizeof(unsigned long), 7249 GFP_KERNEL); 7250 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 7251 rc = -ENOMEM; 7252 goto free_xri_ids; 7253 } 7254 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 7255 GFP_KERNEL); 7256 if (unlikely(!phba->sli4_hba.vfi_ids)) { 7257 rc = -ENOMEM; 7258 goto free_vfi_bmask; 7259 } 7260 7261 for (i = 0; i < count; i++) 7262 phba->sli4_hba.vfi_ids[i] = base + i; 7263 7264 /* 7265 * Mark all resources ready. An HBA reset doesn't need 7266 * to reset the initialization. 7267 */ 7268 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7269 LPFC_IDX_RSRC_RDY); 7270 return 0; 7271 } 7272 7273 free_vfi_bmask: 7274 kfree(phba->sli4_hba.vfi_bmask); 7275 phba->sli4_hba.vfi_bmask = NULL; 7276 free_xri_ids: 7277 kfree(phba->sli4_hba.xri_ids); 7278 phba->sli4_hba.xri_ids = NULL; 7279 free_xri_bmask: 7280 kfree(phba->sli4_hba.xri_bmask); 7281 phba->sli4_hba.xri_bmask = NULL; 7282 free_vpi_ids: 7283 kfree(phba->vpi_ids); 7284 phba->vpi_ids = NULL; 7285 free_vpi_bmask: 7286 kfree(phba->vpi_bmask); 7287 phba->vpi_bmask = NULL; 7288 free_rpi_ids: 7289 kfree(phba->sli4_hba.rpi_ids); 7290 phba->sli4_hba.rpi_ids = NULL; 7291 free_rpi_bmask: 7292 kfree(phba->sli4_hba.rpi_bmask); 7293 phba->sli4_hba.rpi_bmask = NULL; 7294 err_exit: 7295 return rc; 7296 } 7297 7298 /** 7299 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 7300 * @phba: Pointer to HBA context object. 7301 * 7302 * This function allocates the number of elements for the specified 7303 * resource type. 7304 **/ 7305 int 7306 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7307 { 7308 if (phba->sli4_hba.extents_in_use) { 7309 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7310 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7311 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7312 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7313 } else { 7314 kfree(phba->vpi_bmask); 7315 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7316 kfree(phba->vpi_ids); 7317 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7318 kfree(phba->sli4_hba.xri_bmask); 7319 kfree(phba->sli4_hba.xri_ids); 7320 kfree(phba->sli4_hba.vfi_bmask); 7321 kfree(phba->sli4_hba.vfi_ids); 7322 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7323 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7324 } 7325 7326 return 0; 7327 } 7328 7329 /** 7330 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7331 * @phba: Pointer to HBA context object. 7332 * @type: The resource extent type. 7333 * @extnt_cnt: buffer to hold port extent count response 7334 * @extnt_size: buffer to hold port extent size response. 7335 * 7336 * This function calls the port to read the host allocated extents 7337 * for a particular type. 7338 **/ 7339 int 7340 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7341 uint16_t *extnt_cnt, uint16_t *extnt_size) 7342 { 7343 bool emb; 7344 int rc = 0; 7345 uint16_t curr_blks = 0; 7346 uint32_t req_len, emb_len; 7347 uint32_t alloc_len, mbox_tmo; 7348 struct list_head *blk_list_head; 7349 struct lpfc_rsrc_blks *rsrc_blk; 7350 LPFC_MBOXQ_t *mbox; 7351 void *virtaddr = NULL; 7352 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7353 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7354 union lpfc_sli4_cfg_shdr *shdr; 7355 7356 switch (type) { 7357 case LPFC_RSC_TYPE_FCOE_VPI: 7358 blk_list_head = &phba->lpfc_vpi_blk_list; 7359 break; 7360 case LPFC_RSC_TYPE_FCOE_XRI: 7361 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7362 break; 7363 case LPFC_RSC_TYPE_FCOE_VFI: 7364 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7365 break; 7366 case LPFC_RSC_TYPE_FCOE_RPI: 7367 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7368 break; 7369 default: 7370 return -EIO; 7371 } 7372 7373 /* Count the number of extents currently allocatd for this type. */ 7374 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7375 if (curr_blks == 0) { 7376 /* 7377 * The GET_ALLOCATED mailbox does not return the size, 7378 * just the count. The size should be just the size 7379 * stored in the current allocated block and all sizes 7380 * for an extent type are the same so set the return 7381 * value now. 7382 */ 7383 *extnt_size = rsrc_blk->rsrc_size; 7384 } 7385 curr_blks++; 7386 } 7387 7388 /* 7389 * Calculate the size of an embedded mailbox. The uint32_t 7390 * accounts for extents-specific word. 7391 */ 7392 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7393 sizeof(uint32_t); 7394 7395 /* 7396 * Presume the allocation and response will fit into an embedded 7397 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7398 */ 7399 emb = LPFC_SLI4_MBX_EMBED; 7400 req_len = emb_len; 7401 if (req_len > emb_len) { 7402 req_len = curr_blks * sizeof(uint16_t) + 7403 sizeof(union lpfc_sli4_cfg_shdr) + 7404 sizeof(uint32_t); 7405 emb = LPFC_SLI4_MBX_NEMBED; 7406 } 7407 7408 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7409 if (!mbox) 7410 return -ENOMEM; 7411 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7412 7413 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7414 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7415 req_len, emb); 7416 if (alloc_len < req_len) { 7417 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7418 "2983 Allocated DMA memory size (x%x) is " 7419 "less than the requested DMA memory " 7420 "size (x%x)\n", alloc_len, req_len); 7421 rc = -ENOMEM; 7422 goto err_exit; 7423 } 7424 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7425 if (unlikely(rc)) { 7426 rc = -EIO; 7427 goto err_exit; 7428 } 7429 7430 if (!phba->sli4_hba.intr_enable) 7431 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7432 else { 7433 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7434 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7435 } 7436 7437 if (unlikely(rc)) { 7438 rc = -EIO; 7439 goto err_exit; 7440 } 7441 7442 /* 7443 * Figure out where the response is located. Then get local pointers 7444 * to the response data. The port does not guarantee to respond to 7445 * all extents counts request so update the local variable with the 7446 * allocated count from the port. 7447 */ 7448 if (emb == LPFC_SLI4_MBX_EMBED) { 7449 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7450 shdr = &rsrc_ext->header.cfg_shdr; 7451 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7452 } else { 7453 virtaddr = mbox->sge_array->addr[0]; 7454 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7455 shdr = &n_rsrc->cfg_shdr; 7456 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7457 } 7458 7459 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7460 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7461 "2984 Failed to read allocated resources " 7462 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7463 type, 7464 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7465 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7466 rc = -EIO; 7467 goto err_exit; 7468 } 7469 err_exit: 7470 lpfc_sli4_mbox_cmd_free(phba, mbox); 7471 return rc; 7472 } 7473 7474 /** 7475 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7476 * @phba: pointer to lpfc hba data structure. 7477 * @sgl_list: linked link of sgl buffers to post 7478 * @cnt: number of linked list buffers 7479 * 7480 * This routine walks the list of buffers that have been allocated and 7481 * repost them to the port by using SGL block post. This is needed after a 7482 * pci_function_reset/warm_start or start. It attempts to construct blocks 7483 * of buffer sgls which contains contiguous xris and uses the non-embedded 7484 * SGL block post mailbox commands to post them to the port. For single 7485 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7486 * mailbox command for posting. 7487 * 7488 * Returns: 0 = success, non-zero failure. 7489 **/ 7490 static int 7491 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7492 struct list_head *sgl_list, int cnt) 7493 { 7494 struct lpfc_sglq *sglq_entry = NULL; 7495 struct lpfc_sglq *sglq_entry_next = NULL; 7496 struct lpfc_sglq *sglq_entry_first = NULL; 7497 int status, total_cnt; 7498 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7499 int last_xritag = NO_XRI; 7500 LIST_HEAD(prep_sgl_list); 7501 LIST_HEAD(blck_sgl_list); 7502 LIST_HEAD(allc_sgl_list); 7503 LIST_HEAD(post_sgl_list); 7504 LIST_HEAD(free_sgl_list); 7505 7506 spin_lock_irq(&phba->hbalock); 7507 spin_lock(&phba->sli4_hba.sgl_list_lock); 7508 list_splice_init(sgl_list, &allc_sgl_list); 7509 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7510 spin_unlock_irq(&phba->hbalock); 7511 7512 total_cnt = cnt; 7513 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7514 &allc_sgl_list, list) { 7515 list_del_init(&sglq_entry->list); 7516 block_cnt++; 7517 if ((last_xritag != NO_XRI) && 7518 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7519 /* a hole in xri block, form a sgl posting block */ 7520 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7521 post_cnt = block_cnt - 1; 7522 /* prepare list for next posting block */ 7523 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7524 block_cnt = 1; 7525 } else { 7526 /* prepare list for next posting block */ 7527 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7528 /* enough sgls for non-embed sgl mbox command */ 7529 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7530 list_splice_init(&prep_sgl_list, 7531 &blck_sgl_list); 7532 post_cnt = block_cnt; 7533 block_cnt = 0; 7534 } 7535 } 7536 num_posted++; 7537 7538 /* keep track of last sgl's xritag */ 7539 last_xritag = sglq_entry->sli4_xritag; 7540 7541 /* end of repost sgl list condition for buffers */ 7542 if (num_posted == total_cnt) { 7543 if (post_cnt == 0) { 7544 list_splice_init(&prep_sgl_list, 7545 &blck_sgl_list); 7546 post_cnt = block_cnt; 7547 } else if (block_cnt == 1) { 7548 status = lpfc_sli4_post_sgl(phba, 7549 sglq_entry->phys, 0, 7550 sglq_entry->sli4_xritag); 7551 if (!status) { 7552 /* successful, put sgl to posted list */ 7553 list_add_tail(&sglq_entry->list, 7554 &post_sgl_list); 7555 } else { 7556 /* Failure, put sgl to free list */ 7557 lpfc_printf_log(phba, KERN_WARNING, 7558 LOG_SLI, 7559 "3159 Failed to post " 7560 "sgl, xritag:x%x\n", 7561 sglq_entry->sli4_xritag); 7562 list_add_tail(&sglq_entry->list, 7563 &free_sgl_list); 7564 total_cnt--; 7565 } 7566 } 7567 } 7568 7569 /* continue until a nembed page worth of sgls */ 7570 if (post_cnt == 0) 7571 continue; 7572 7573 /* post the buffer list sgls as a block */ 7574 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7575 post_cnt); 7576 7577 if (!status) { 7578 /* success, put sgl list to posted sgl list */ 7579 list_splice_init(&blck_sgl_list, &post_sgl_list); 7580 } else { 7581 /* Failure, put sgl list to free sgl list */ 7582 sglq_entry_first = list_first_entry(&blck_sgl_list, 7583 struct lpfc_sglq, 7584 list); 7585 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7586 "3160 Failed to post sgl-list, " 7587 "xritag:x%x-x%x\n", 7588 sglq_entry_first->sli4_xritag, 7589 (sglq_entry_first->sli4_xritag + 7590 post_cnt - 1)); 7591 list_splice_init(&blck_sgl_list, &free_sgl_list); 7592 total_cnt -= post_cnt; 7593 } 7594 7595 /* don't reset xirtag due to hole in xri block */ 7596 if (block_cnt == 0) 7597 last_xritag = NO_XRI; 7598 7599 /* reset sgl post count for next round of posting */ 7600 post_cnt = 0; 7601 } 7602 7603 /* free the sgls failed to post */ 7604 lpfc_free_sgl_list(phba, &free_sgl_list); 7605 7606 /* push sgls posted to the available list */ 7607 if (!list_empty(&post_sgl_list)) { 7608 spin_lock_irq(&phba->hbalock); 7609 spin_lock(&phba->sli4_hba.sgl_list_lock); 7610 list_splice_init(&post_sgl_list, sgl_list); 7611 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7612 spin_unlock_irq(&phba->hbalock); 7613 } else { 7614 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7615 "3161 Failure to post sgl to port.\n"); 7616 return -EIO; 7617 } 7618 7619 /* return the number of XRIs actually posted */ 7620 return total_cnt; 7621 } 7622 7623 /** 7624 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7625 * @phba: pointer to lpfc hba data structure. 7626 * 7627 * This routine walks the list of nvme buffers that have been allocated and 7628 * repost them to the port by using SGL block post. This is needed after a 7629 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7630 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7631 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7632 * 7633 * Returns: 0 = success, non-zero failure. 7634 **/ 7635 static int 7636 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7637 { 7638 LIST_HEAD(post_nblist); 7639 int num_posted, rc = 0; 7640 7641 /* get all NVME buffers need to repost to a local list */ 7642 lpfc_io_buf_flush(phba, &post_nblist); 7643 7644 /* post the list of nvme buffer sgls to port if available */ 7645 if (!list_empty(&post_nblist)) { 7646 num_posted = lpfc_sli4_post_io_sgl_list( 7647 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7648 /* failed to post any nvme buffer, return error */ 7649 if (num_posted == 0) 7650 rc = -EIO; 7651 } 7652 return rc; 7653 } 7654 7655 static void 7656 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7657 { 7658 uint32_t len; 7659 7660 len = sizeof(struct lpfc_mbx_set_host_data) - 7661 sizeof(struct lpfc_sli4_cfg_mhdr); 7662 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7663 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7664 LPFC_SLI4_MBX_EMBED); 7665 7666 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7667 mbox->u.mqe.un.set_host_data.param_len = 7668 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7669 snprintf(mbox->u.mqe.un.set_host_data.un.data, 7670 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7671 "Linux %s v"LPFC_DRIVER_VERSION, 7672 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7673 } 7674 7675 int 7676 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7677 struct lpfc_queue *drq, int count, int idx) 7678 { 7679 int rc, i; 7680 struct lpfc_rqe hrqe; 7681 struct lpfc_rqe drqe; 7682 struct lpfc_rqb *rqbp; 7683 unsigned long flags; 7684 struct rqb_dmabuf *rqb_buffer; 7685 LIST_HEAD(rqb_buf_list); 7686 7687 rqbp = hrq->rqbp; 7688 for (i = 0; i < count; i++) { 7689 spin_lock_irqsave(&phba->hbalock, flags); 7690 /* IF RQ is already full, don't bother */ 7691 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7692 spin_unlock_irqrestore(&phba->hbalock, flags); 7693 break; 7694 } 7695 spin_unlock_irqrestore(&phba->hbalock, flags); 7696 7697 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7698 if (!rqb_buffer) 7699 break; 7700 rqb_buffer->hrq = hrq; 7701 rqb_buffer->drq = drq; 7702 rqb_buffer->idx = idx; 7703 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7704 } 7705 7706 spin_lock_irqsave(&phba->hbalock, flags); 7707 while (!list_empty(&rqb_buf_list)) { 7708 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7709 hbuf.list); 7710 7711 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7712 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7713 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7714 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7715 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7716 if (rc < 0) { 7717 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7718 "6421 Cannot post to HRQ %d: %x %x %x " 7719 "DRQ %x %x\n", 7720 hrq->queue_id, 7721 hrq->host_index, 7722 hrq->hba_index, 7723 hrq->entry_count, 7724 drq->host_index, 7725 drq->hba_index); 7726 rqbp->rqb_free_buffer(phba, rqb_buffer); 7727 } else { 7728 list_add_tail(&rqb_buffer->hbuf.list, 7729 &rqbp->rqb_buffer_list); 7730 rqbp->buffer_count++; 7731 } 7732 } 7733 spin_unlock_irqrestore(&phba->hbalock, flags); 7734 return 1; 7735 } 7736 7737 static void 7738 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7739 { 7740 struct lpfc_vport *vport = pmb->vport; 7741 union lpfc_sli4_cfg_shdr *shdr; 7742 u32 shdr_status, shdr_add_status; 7743 u32 sig, acqe; 7744 7745 /* Two outcomes. (1) Set featurs was successul and EDC negotiation 7746 * is done. (2) Mailbox failed and send FPIN support only. 7747 */ 7748 shdr = (union lpfc_sli4_cfg_shdr *) 7749 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7750 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7751 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7752 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7753 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 7754 "2516 CGN SET_FEATURE mbox failed with " 7755 "status x%x add_status x%x, mbx status x%x " 7756 "Reset Congestion to FPINs only\n", 7757 shdr_status, shdr_add_status, 7758 pmb->u.mb.mbxStatus); 7759 /* If there is a mbox error, move on to RDF */ 7760 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7761 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7762 goto out; 7763 } 7764 7765 /* Zero out Congestion Signal ACQE counter */ 7766 phba->cgn_acqe_cnt = 0; 7767 7768 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq, 7769 &pmb->u.mqe.un.set_feature); 7770 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq, 7771 &pmb->u.mqe.un.set_feature); 7772 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7773 "4620 SET_FEATURES Success: Freq: %ds %dms " 7774 " Reg: x%x x%x\n", acqe, sig, 7775 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7776 out: 7777 mempool_free(pmb, phba->mbox_mem_pool); 7778 7779 /* Register for FPIN events from the fabric now that the 7780 * EDC common_set_features has completed. 7781 */ 7782 lpfc_issue_els_rdf(vport, 0); 7783 } 7784 7785 int 7786 lpfc_config_cgn_signal(struct lpfc_hba *phba) 7787 { 7788 LPFC_MBOXQ_t *mboxq; 7789 u32 rc; 7790 7791 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7792 if (!mboxq) 7793 goto out_rdf; 7794 7795 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL); 7796 mboxq->vport = phba->pport; 7797 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs; 7798 7799 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7800 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: " 7801 "Reg: x%x x%x\n", 7802 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency, 7803 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7804 7805 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7806 if (rc == MBX_NOT_FINISHED) 7807 goto out; 7808 return 0; 7809 7810 out: 7811 mempool_free(mboxq, phba->mbox_mem_pool); 7812 out_rdf: 7813 /* If there is a mbox error, move on to RDF */ 7814 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7815 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7816 lpfc_issue_els_rdf(phba->pport, 0); 7817 return -EIO; 7818 } 7819 7820 /** 7821 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7822 * @phba: pointer to lpfc hba data structure. 7823 * 7824 * This routine initializes the per-cq idle_stat to dynamically dictate 7825 * polling decisions. 7826 * 7827 * Return codes: 7828 * None 7829 **/ 7830 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7831 { 7832 int i; 7833 struct lpfc_sli4_hdw_queue *hdwq; 7834 struct lpfc_queue *cq; 7835 struct lpfc_idle_stat *idle_stat; 7836 u64 wall; 7837 7838 for_each_present_cpu(i) { 7839 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7840 cq = hdwq->io_cq; 7841 7842 /* Skip if we've already handled this cq's primary CPU */ 7843 if (cq->chann != i) 7844 continue; 7845 7846 idle_stat = &phba->sli4_hba.idle_stat[i]; 7847 7848 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 7849 idle_stat->prev_wall = wall; 7850 7851 if (phba->nvmet_support || 7852 phba->cmf_active_mode != LPFC_CFG_OFF) 7853 cq->poll_mode = LPFC_QUEUE_WORK; 7854 else 7855 cq->poll_mode = LPFC_IRQ_POLL; 7856 } 7857 7858 if (!phba->nvmet_support) 7859 schedule_delayed_work(&phba->idle_stat_delay_work, 7860 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 7861 } 7862 7863 static void lpfc_sli4_dip(struct lpfc_hba *phba) 7864 { 7865 uint32_t if_type; 7866 7867 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 7868 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 7869 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 7870 struct lpfc_register reg_data; 7871 7872 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 7873 ®_data.word0)) 7874 return; 7875 7876 if (bf_get(lpfc_sliport_status_dip, ®_data)) 7877 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7878 "2904 Firmware Dump Image Present" 7879 " on Adapter"); 7880 } 7881 } 7882 7883 /** 7884 * lpfc_cmf_setup - Initialize idle_stat tracking 7885 * @phba: Pointer to HBA context object. 7886 * 7887 * This is called from HBA setup during driver load or when the HBA 7888 * comes online. this does all the initialization to support CMF and MI. 7889 **/ 7890 static int 7891 lpfc_cmf_setup(struct lpfc_hba *phba) 7892 { 7893 LPFC_MBOXQ_t *mboxq; 7894 struct lpfc_mqe *mqe; 7895 struct lpfc_dmabuf *mp; 7896 struct lpfc_pc_sli4_params *sli4_params; 7897 struct lpfc_sli4_parameters *mbx_sli4_parameters; 7898 int length; 7899 int rc, cmf, mi_ver; 7900 7901 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7902 if (!mboxq) 7903 return -ENOMEM; 7904 mqe = &mboxq->u.mqe; 7905 7906 /* Read the port's SLI4 Config Parameters */ 7907 length = (sizeof(struct lpfc_mbx_get_sli4_parameters) - 7908 sizeof(struct lpfc_sli4_cfg_mhdr)); 7909 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 7910 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS, 7911 length, LPFC_SLI4_MBX_EMBED); 7912 7913 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7914 if (unlikely(rc)) { 7915 mempool_free(mboxq, phba->mbox_mem_pool); 7916 return rc; 7917 } 7918 7919 /* Gather info on CMF and MI support */ 7920 sli4_params = &phba->sli4_hba.pc_sli4_params; 7921 mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters; 7922 sli4_params->mi_ver = bf_get(cfg_mi_ver, mbx_sli4_parameters); 7923 sli4_params->cmf = bf_get(cfg_cmf, mbx_sli4_parameters); 7924 7925 /* Are we forcing MI off via module parameter? */ 7926 if (!phba->cfg_enable_mi) 7927 sli4_params->mi_ver = 0; 7928 7929 /* Always try to enable MI feature if we can */ 7930 if (sli4_params->mi_ver) { 7931 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI); 7932 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7933 mi_ver = bf_get(lpfc_mbx_set_feature_mi, 7934 &mboxq->u.mqe.un.set_feature); 7935 7936 if (rc == MBX_SUCCESS) { 7937 if (mi_ver) { 7938 lpfc_printf_log(phba, 7939 KERN_WARNING, LOG_CGN_MGMT, 7940 "6215 MI is enabled\n"); 7941 sli4_params->mi_ver = mi_ver; 7942 } else { 7943 lpfc_printf_log(phba, 7944 KERN_WARNING, LOG_CGN_MGMT, 7945 "6338 MI is disabled\n"); 7946 sli4_params->mi_ver = 0; 7947 } 7948 } else { 7949 /* mi_ver is already set from GET_SLI4_PARAMETERS */ 7950 lpfc_printf_log(phba, KERN_INFO, 7951 LOG_CGN_MGMT | LOG_INIT, 7952 "6245 Enable MI Mailbox x%x (x%x/x%x) " 7953 "failed, rc:x%x mi:x%x\n", 7954 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7955 lpfc_sli_config_mbox_subsys_get 7956 (phba, mboxq), 7957 lpfc_sli_config_mbox_opcode_get 7958 (phba, mboxq), 7959 rc, sli4_params->mi_ver); 7960 } 7961 } else { 7962 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 7963 "6217 MI is disabled\n"); 7964 } 7965 7966 /* Ensure FDMI is enabled for MI if enable_mi is set */ 7967 if (sli4_params->mi_ver) 7968 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT; 7969 7970 /* Always try to enable CMF feature if we can */ 7971 if (sli4_params->cmf) { 7972 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF); 7973 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7974 cmf = bf_get(lpfc_mbx_set_feature_cmf, 7975 &mboxq->u.mqe.un.set_feature); 7976 if (rc == MBX_SUCCESS && cmf) { 7977 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 7978 "6218 CMF is enabled: mode %d\n", 7979 phba->cmf_active_mode); 7980 } else { 7981 lpfc_printf_log(phba, KERN_WARNING, 7982 LOG_CGN_MGMT | LOG_INIT, 7983 "6219 Enable CMF Mailbox x%x (x%x/x%x) " 7984 "failed, rc:x%x dd:x%x\n", 7985 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7986 lpfc_sli_config_mbox_subsys_get 7987 (phba, mboxq), 7988 lpfc_sli_config_mbox_opcode_get 7989 (phba, mboxq), 7990 rc, cmf); 7991 sli4_params->cmf = 0; 7992 phba->cmf_active_mode = LPFC_CFG_OFF; 7993 goto no_cmf; 7994 } 7995 7996 /* Allocate Congestion Information Buffer */ 7997 if (!phba->cgn_i) { 7998 mp = kmalloc(sizeof(*mp), GFP_KERNEL); 7999 if (mp) 8000 mp->virt = dma_alloc_coherent 8001 (&phba->pcidev->dev, 8002 sizeof(struct lpfc_cgn_info), 8003 &mp->phys, GFP_KERNEL); 8004 if (!mp || !mp->virt) { 8005 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8006 "2640 Failed to alloc memory " 8007 "for Congestion Info\n"); 8008 kfree(mp); 8009 sli4_params->cmf = 0; 8010 phba->cmf_active_mode = LPFC_CFG_OFF; 8011 goto no_cmf; 8012 } 8013 phba->cgn_i = mp; 8014 8015 /* initialize congestion buffer info */ 8016 lpfc_init_congestion_buf(phba); 8017 lpfc_init_congestion_stat(phba); 8018 8019 /* Zero out Congestion Signal counters */ 8020 atomic64_set(&phba->cgn_acqe_stat.alarm, 0); 8021 atomic64_set(&phba->cgn_acqe_stat.warn, 0); 8022 } 8023 8024 rc = lpfc_sli4_cgn_params_read(phba); 8025 if (rc < 0) { 8026 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8027 "6242 Error reading Cgn Params (%d)\n", 8028 rc); 8029 /* Ensure CGN Mode is off */ 8030 sli4_params->cmf = 0; 8031 } else if (!rc) { 8032 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8033 "6243 CGN Event empty object.\n"); 8034 /* Ensure CGN Mode is off */ 8035 sli4_params->cmf = 0; 8036 } 8037 } else { 8038 no_cmf: 8039 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8040 "6220 CMF is disabled\n"); 8041 } 8042 8043 /* Only register congestion buffer with firmware if BOTH 8044 * CMF and E2E are enabled. 8045 */ 8046 if (sli4_params->cmf && sli4_params->mi_ver) { 8047 rc = lpfc_reg_congestion_buf(phba); 8048 if (rc) { 8049 dma_free_coherent(&phba->pcidev->dev, 8050 sizeof(struct lpfc_cgn_info), 8051 phba->cgn_i->virt, phba->cgn_i->phys); 8052 kfree(phba->cgn_i); 8053 phba->cgn_i = NULL; 8054 /* Ensure CGN Mode is off */ 8055 phba->cmf_active_mode = LPFC_CFG_OFF; 8056 return 0; 8057 } 8058 } 8059 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8060 "6470 Setup MI version %d CMF %d mode %d\n", 8061 sli4_params->mi_ver, sli4_params->cmf, 8062 phba->cmf_active_mode); 8063 8064 mempool_free(mboxq, phba->mbox_mem_pool); 8065 8066 /* Initialize atomic counters */ 8067 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 8068 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 8069 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 8070 atomic_set(&phba->cgn_sync_warn_cnt, 0); 8071 atomic_set(&phba->cgn_driver_evt_cnt, 0); 8072 atomic_set(&phba->cgn_latency_evt_cnt, 0); 8073 atomic64_set(&phba->cgn_latency_evt, 0); 8074 8075 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 8076 8077 /* Allocate RX Monitor Buffer */ 8078 if (!phba->rxtable) { 8079 phba->rxtable = kmalloc_array(LPFC_MAX_RXMONITOR_ENTRY, 8080 sizeof(struct rxtable_entry), 8081 GFP_KERNEL); 8082 if (!phba->rxtable) { 8083 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8084 "2644 Failed to alloc memory " 8085 "for RX Monitor Buffer\n"); 8086 return -ENOMEM; 8087 } 8088 } 8089 atomic_set(&phba->rxtable_idx_head, 0); 8090 atomic_set(&phba->rxtable_idx_tail, 0); 8091 return 0; 8092 } 8093 8094 static int 8095 lpfc_set_host_tm(struct lpfc_hba *phba) 8096 { 8097 LPFC_MBOXQ_t *mboxq; 8098 uint32_t len, rc; 8099 struct timespec64 cur_time; 8100 struct tm broken; 8101 uint32_t month, day, year; 8102 uint32_t hour, minute, second; 8103 struct lpfc_mbx_set_host_date_time *tm; 8104 8105 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8106 if (!mboxq) 8107 return -ENOMEM; 8108 8109 len = sizeof(struct lpfc_mbx_set_host_data) - 8110 sizeof(struct lpfc_sli4_cfg_mhdr); 8111 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 8112 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 8113 LPFC_SLI4_MBX_EMBED); 8114 8115 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME; 8116 mboxq->u.mqe.un.set_host_data.param_len = 8117 sizeof(struct lpfc_mbx_set_host_date_time); 8118 tm = &mboxq->u.mqe.un.set_host_data.un.tm; 8119 ktime_get_real_ts64(&cur_time); 8120 time64_to_tm(cur_time.tv_sec, 0, &broken); 8121 month = broken.tm_mon + 1; 8122 day = broken.tm_mday; 8123 year = broken.tm_year - 100; 8124 hour = broken.tm_hour; 8125 minute = broken.tm_min; 8126 second = broken.tm_sec; 8127 bf_set(lpfc_mbx_set_host_month, tm, month); 8128 bf_set(lpfc_mbx_set_host_day, tm, day); 8129 bf_set(lpfc_mbx_set_host_year, tm, year); 8130 bf_set(lpfc_mbx_set_host_hour, tm, hour); 8131 bf_set(lpfc_mbx_set_host_min, tm, minute); 8132 bf_set(lpfc_mbx_set_host_sec, tm, second); 8133 8134 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8135 mempool_free(mboxq, phba->mbox_mem_pool); 8136 return rc; 8137 } 8138 8139 /** 8140 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 8141 * @phba: Pointer to HBA context object. 8142 * 8143 * This function is the main SLI4 device initialization PCI function. This 8144 * function is called by the HBA initialization code, HBA reset code and 8145 * HBA error attention handler code. Caller is not required to hold any 8146 * locks. 8147 **/ 8148 int 8149 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 8150 { 8151 int rc, i, cnt, len, dd; 8152 LPFC_MBOXQ_t *mboxq; 8153 struct lpfc_mqe *mqe; 8154 uint8_t *vpd; 8155 uint32_t vpd_size; 8156 uint32_t ftr_rsp = 0; 8157 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 8158 struct lpfc_vport *vport = phba->pport; 8159 struct lpfc_dmabuf *mp; 8160 struct lpfc_rqb *rqbp; 8161 u32 flg; 8162 8163 /* Perform a PCI function reset to start from clean */ 8164 rc = lpfc_pci_function_reset(phba); 8165 if (unlikely(rc)) 8166 return -ENODEV; 8167 8168 /* Check the HBA Host Status Register for readyness */ 8169 rc = lpfc_sli4_post_status_check(phba); 8170 if (unlikely(rc)) 8171 return -ENODEV; 8172 else { 8173 spin_lock_irq(&phba->hbalock); 8174 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 8175 flg = phba->sli.sli_flag; 8176 spin_unlock_irq(&phba->hbalock); 8177 /* Allow a little time after setting SLI_ACTIVE for any polled 8178 * MBX commands to complete via BSG. 8179 */ 8180 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) { 8181 msleep(20); 8182 spin_lock_irq(&phba->hbalock); 8183 flg = phba->sli.sli_flag; 8184 spin_unlock_irq(&phba->hbalock); 8185 } 8186 } 8187 8188 lpfc_sli4_dip(phba); 8189 8190 /* 8191 * Allocate a single mailbox container for initializing the 8192 * port. 8193 */ 8194 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8195 if (!mboxq) 8196 return -ENOMEM; 8197 8198 /* Issue READ_REV to collect vpd and FW information. */ 8199 vpd_size = SLI4_PAGE_SIZE; 8200 vpd = kzalloc(vpd_size, GFP_KERNEL); 8201 if (!vpd) { 8202 rc = -ENOMEM; 8203 goto out_free_mbox; 8204 } 8205 8206 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 8207 if (unlikely(rc)) { 8208 kfree(vpd); 8209 goto out_free_mbox; 8210 } 8211 8212 mqe = &mboxq->u.mqe; 8213 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 8214 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 8215 phba->hba_flag |= HBA_FCOE_MODE; 8216 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 8217 } else { 8218 phba->hba_flag &= ~HBA_FCOE_MODE; 8219 } 8220 8221 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 8222 LPFC_DCBX_CEE_MODE) 8223 phba->hba_flag |= HBA_FIP_SUPPORT; 8224 else 8225 phba->hba_flag &= ~HBA_FIP_SUPPORT; 8226 8227 phba->hba_flag &= ~HBA_IOQ_FLUSH; 8228 8229 if (phba->sli_rev != LPFC_SLI_REV4) { 8230 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8231 "0376 READ_REV Error. SLI Level %d " 8232 "FCoE enabled %d\n", 8233 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 8234 rc = -EIO; 8235 kfree(vpd); 8236 goto out_free_mbox; 8237 } 8238 8239 rc = lpfc_set_host_tm(phba); 8240 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 8241 "6468 Set host date / time: Status x%x:\n", rc); 8242 8243 /* 8244 * Continue initialization with default values even if driver failed 8245 * to read FCoE param config regions, only read parameters if the 8246 * board is FCoE 8247 */ 8248 if (phba->hba_flag & HBA_FCOE_MODE && 8249 lpfc_sli4_read_fcoe_params(phba)) 8250 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 8251 "2570 Failed to read FCoE parameters\n"); 8252 8253 /* 8254 * Retrieve sli4 device physical port name, failure of doing it 8255 * is considered as non-fatal. 8256 */ 8257 rc = lpfc_sli4_retrieve_pport_name(phba); 8258 if (!rc) 8259 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8260 "3080 Successful retrieving SLI4 device " 8261 "physical port name: %s.\n", phba->Port); 8262 8263 rc = lpfc_sli4_get_ctl_attr(phba); 8264 if (!rc) 8265 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8266 "8351 Successful retrieving SLI4 device " 8267 "CTL ATTR\n"); 8268 8269 /* 8270 * Evaluate the read rev and vpd data. Populate the driver 8271 * state with the results. If this routine fails, the failure 8272 * is not fatal as the driver will use generic values. 8273 */ 8274 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 8275 if (unlikely(!rc)) { 8276 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8277 "0377 Error %d parsing vpd. " 8278 "Using defaults.\n", rc); 8279 rc = 0; 8280 } 8281 kfree(vpd); 8282 8283 /* Save information as VPD data */ 8284 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 8285 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 8286 8287 /* 8288 * This is because first G7 ASIC doesn't support the standard 8289 * 0x5a NVME cmd descriptor type/subtype 8290 */ 8291 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8292 LPFC_SLI_INTF_IF_TYPE_6) && 8293 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 8294 (phba->vpd.rev.smRev == 0) && 8295 (phba->cfg_nvme_embed_cmd == 1)) 8296 phba->cfg_nvme_embed_cmd = 0; 8297 8298 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 8299 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 8300 &mqe->un.read_rev); 8301 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 8302 &mqe->un.read_rev); 8303 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 8304 &mqe->un.read_rev); 8305 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 8306 &mqe->un.read_rev); 8307 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 8308 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 8309 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 8310 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 8311 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 8312 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 8313 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8314 "(%d):0380 READ_REV Status x%x " 8315 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 8316 mboxq->vport ? mboxq->vport->vpi : 0, 8317 bf_get(lpfc_mqe_status, mqe), 8318 phba->vpd.rev.opFwName, 8319 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 8320 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 8321 8322 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8323 LPFC_SLI_INTF_IF_TYPE_0) { 8324 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 8325 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8326 if (rc == MBX_SUCCESS) { 8327 phba->hba_flag |= HBA_RECOVERABLE_UE; 8328 /* Set 1Sec interval to detect UE */ 8329 phba->eratt_poll_interval = 1; 8330 phba->sli4_hba.ue_to_sr = bf_get( 8331 lpfc_mbx_set_feature_UESR, 8332 &mboxq->u.mqe.un.set_feature); 8333 phba->sli4_hba.ue_to_rp = bf_get( 8334 lpfc_mbx_set_feature_UERP, 8335 &mboxq->u.mqe.un.set_feature); 8336 } 8337 } 8338 8339 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 8340 /* Enable MDS Diagnostics only if the SLI Port supports it */ 8341 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 8342 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8343 if (rc != MBX_SUCCESS) 8344 phba->mds_diags_support = 0; 8345 } 8346 8347 /* 8348 * Discover the port's supported feature set and match it against the 8349 * hosts requests. 8350 */ 8351 lpfc_request_features(phba, mboxq); 8352 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8353 if (unlikely(rc)) { 8354 rc = -EIO; 8355 goto out_free_mbox; 8356 } 8357 8358 /* Disable VMID if app header is not supported */ 8359 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, 8360 &mqe->un.req_ftrs))) { 8361 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); 8362 phba->cfg_vmid_app_header = 0; 8363 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, 8364 "1242 vmid feature not supported\n"); 8365 } 8366 8367 /* 8368 * The port must support FCP initiator mode as this is the 8369 * only mode running in the host. 8370 */ 8371 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 8372 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8373 "0378 No support for fcpi mode.\n"); 8374 ftr_rsp++; 8375 } 8376 8377 /* Performance Hints are ONLY for FCoE */ 8378 if (phba->hba_flag & HBA_FCOE_MODE) { 8379 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 8380 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 8381 else 8382 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 8383 } 8384 8385 /* 8386 * If the port cannot support the host's requested features 8387 * then turn off the global config parameters to disable the 8388 * feature in the driver. This is not a fatal error. 8389 */ 8390 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8391 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 8392 phba->cfg_enable_bg = 0; 8393 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 8394 ftr_rsp++; 8395 } 8396 } 8397 8398 if (phba->max_vpi && phba->cfg_enable_npiv && 8399 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8400 ftr_rsp++; 8401 8402 if (ftr_rsp) { 8403 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8404 "0379 Feature Mismatch Data: x%08x %08x " 8405 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 8406 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 8407 phba->cfg_enable_npiv, phba->max_vpi); 8408 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 8409 phba->cfg_enable_bg = 0; 8410 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8411 phba->cfg_enable_npiv = 0; 8412 } 8413 8414 /* These SLI3 features are assumed in SLI4 */ 8415 spin_lock_irq(&phba->hbalock); 8416 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 8417 spin_unlock_irq(&phba->hbalock); 8418 8419 /* Always try to enable dual dump feature if we can */ 8420 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 8421 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8422 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 8423 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 8424 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8425 "6448 Dual Dump is enabled\n"); 8426 else 8427 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 8428 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 8429 "rc:x%x dd:x%x\n", 8430 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8431 lpfc_sli_config_mbox_subsys_get( 8432 phba, mboxq), 8433 lpfc_sli_config_mbox_opcode_get( 8434 phba, mboxq), 8435 rc, dd); 8436 /* 8437 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 8438 * calls depends on these resources to complete port setup. 8439 */ 8440 rc = lpfc_sli4_alloc_resource_identifiers(phba); 8441 if (rc) { 8442 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8443 "2920 Failed to alloc Resource IDs " 8444 "rc = x%x\n", rc); 8445 goto out_free_mbox; 8446 } 8447 8448 lpfc_set_host_data(phba, mboxq); 8449 8450 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8451 if (rc) { 8452 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8453 "2134 Failed to set host os driver version %x", 8454 rc); 8455 } 8456 8457 /* Read the port's service parameters. */ 8458 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 8459 if (rc) { 8460 phba->link_state = LPFC_HBA_ERROR; 8461 rc = -ENOMEM; 8462 goto out_free_mbox; 8463 } 8464 8465 mboxq->vport = vport; 8466 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8467 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 8468 if (rc == MBX_SUCCESS) { 8469 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 8470 rc = 0; 8471 } 8472 8473 /* 8474 * This memory was allocated by the lpfc_read_sparam routine. Release 8475 * it to the mbuf pool. 8476 */ 8477 lpfc_mbuf_free(phba, mp->virt, mp->phys); 8478 kfree(mp); 8479 mboxq->ctx_buf = NULL; 8480 if (unlikely(rc)) { 8481 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8482 "0382 READ_SPARAM command failed " 8483 "status %d, mbxStatus x%x\n", 8484 rc, bf_get(lpfc_mqe_status, mqe)); 8485 phba->link_state = LPFC_HBA_ERROR; 8486 rc = -EIO; 8487 goto out_free_mbox; 8488 } 8489 8490 lpfc_update_vport_wwn(vport); 8491 8492 /* Update the fc_host data structures with new wwn. */ 8493 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 8494 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 8495 8496 /* Create all the SLI4 queues */ 8497 rc = lpfc_sli4_queue_create(phba); 8498 if (rc) { 8499 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8500 "3089 Failed to allocate queues\n"); 8501 rc = -ENODEV; 8502 goto out_free_mbox; 8503 } 8504 /* Set up all the queues to the device */ 8505 rc = lpfc_sli4_queue_setup(phba); 8506 if (unlikely(rc)) { 8507 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8508 "0381 Error %d during queue setup.\n ", rc); 8509 goto out_stop_timers; 8510 } 8511 /* Initialize the driver internal SLI layer lists. */ 8512 lpfc_sli4_setup(phba); 8513 lpfc_sli4_queue_init(phba); 8514 8515 /* update host els xri-sgl sizes and mappings */ 8516 rc = lpfc_sli4_els_sgl_update(phba); 8517 if (unlikely(rc)) { 8518 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8519 "1400 Failed to update xri-sgl size and " 8520 "mapping: %d\n", rc); 8521 goto out_destroy_queue; 8522 } 8523 8524 /* register the els sgl pool to the port */ 8525 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 8526 phba->sli4_hba.els_xri_cnt); 8527 if (unlikely(rc < 0)) { 8528 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8529 "0582 Error %d during els sgl post " 8530 "operation\n", rc); 8531 rc = -ENODEV; 8532 goto out_destroy_queue; 8533 } 8534 phba->sli4_hba.els_xri_cnt = rc; 8535 8536 if (phba->nvmet_support) { 8537 /* update host nvmet xri-sgl sizes and mappings */ 8538 rc = lpfc_sli4_nvmet_sgl_update(phba); 8539 if (unlikely(rc)) { 8540 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8541 "6308 Failed to update nvmet-sgl size " 8542 "and mapping: %d\n", rc); 8543 goto out_destroy_queue; 8544 } 8545 8546 /* register the nvmet sgl pool to the port */ 8547 rc = lpfc_sli4_repost_sgl_list( 8548 phba, 8549 &phba->sli4_hba.lpfc_nvmet_sgl_list, 8550 phba->sli4_hba.nvmet_xri_cnt); 8551 if (unlikely(rc < 0)) { 8552 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8553 "3117 Error %d during nvmet " 8554 "sgl post\n", rc); 8555 rc = -ENODEV; 8556 goto out_destroy_queue; 8557 } 8558 phba->sli4_hba.nvmet_xri_cnt = rc; 8559 8560 /* We allocate an iocbq for every receive context SGL. 8561 * The additional allocation is for abort and ls handling. 8562 */ 8563 cnt = phba->sli4_hba.nvmet_xri_cnt + 8564 phba->sli4_hba.max_cfg_param.max_xri; 8565 } else { 8566 /* update host common xri-sgl sizes and mappings */ 8567 rc = lpfc_sli4_io_sgl_update(phba); 8568 if (unlikely(rc)) { 8569 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8570 "6082 Failed to update nvme-sgl size " 8571 "and mapping: %d\n", rc); 8572 goto out_destroy_queue; 8573 } 8574 8575 /* register the allocated common sgl pool to the port */ 8576 rc = lpfc_sli4_repost_io_sgl_list(phba); 8577 if (unlikely(rc)) { 8578 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8579 "6116 Error %d during nvme sgl post " 8580 "operation\n", rc); 8581 /* Some NVME buffers were moved to abort nvme list */ 8582 /* A pci function reset will repost them */ 8583 rc = -ENODEV; 8584 goto out_destroy_queue; 8585 } 8586 /* Each lpfc_io_buf job structure has an iocbq element. 8587 * This cnt provides for abort, els, ct and ls requests. 8588 */ 8589 cnt = phba->sli4_hba.max_cfg_param.max_xri; 8590 } 8591 8592 if (!phba->sli.iocbq_lookup) { 8593 /* Initialize and populate the iocb list per host */ 8594 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8595 "2821 initialize iocb list with %d entries\n", 8596 cnt); 8597 rc = lpfc_init_iocb_list(phba, cnt); 8598 if (rc) { 8599 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8600 "1413 Failed to init iocb list.\n"); 8601 goto out_destroy_queue; 8602 } 8603 } 8604 8605 if (phba->nvmet_support) 8606 lpfc_nvmet_create_targetport(phba); 8607 8608 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 8609 /* Post initial buffers to all RQs created */ 8610 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 8611 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 8612 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 8613 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 8614 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 8615 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 8616 rqbp->buffer_count = 0; 8617 8618 lpfc_post_rq_buffer( 8619 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 8620 phba->sli4_hba.nvmet_mrq_data[i], 8621 phba->cfg_nvmet_mrq_post, i); 8622 } 8623 } 8624 8625 /* Post the rpi header region to the device. */ 8626 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 8627 if (unlikely(rc)) { 8628 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8629 "0393 Error %d during rpi post operation\n", 8630 rc); 8631 rc = -ENODEV; 8632 goto out_free_iocblist; 8633 } 8634 lpfc_sli4_node_prep(phba); 8635 8636 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 8637 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 8638 /* 8639 * The FC Port needs to register FCFI (index 0) 8640 */ 8641 lpfc_reg_fcfi(phba, mboxq); 8642 mboxq->vport = phba->pport; 8643 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8644 if (rc != MBX_SUCCESS) 8645 goto out_unset_queue; 8646 rc = 0; 8647 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 8648 &mboxq->u.mqe.un.reg_fcfi); 8649 } else { 8650 /* We are a NVME Target mode with MRQ > 1 */ 8651 8652 /* First register the FCFI */ 8653 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 8654 mboxq->vport = phba->pport; 8655 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8656 if (rc != MBX_SUCCESS) 8657 goto out_unset_queue; 8658 rc = 0; 8659 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 8660 &mboxq->u.mqe.un.reg_fcfi_mrq); 8661 8662 /* Next register the MRQs */ 8663 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 8664 mboxq->vport = phba->pport; 8665 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8666 if (rc != MBX_SUCCESS) 8667 goto out_unset_queue; 8668 rc = 0; 8669 } 8670 /* Check if the port is configured to be disabled */ 8671 lpfc_sli_read_link_ste(phba); 8672 } 8673 8674 /* Don't post more new bufs if repost already recovered 8675 * the nvme sgls. 8676 */ 8677 if (phba->nvmet_support == 0) { 8678 if (phba->sli4_hba.io_xri_cnt == 0) { 8679 len = lpfc_new_io_buf( 8680 phba, phba->sli4_hba.io_xri_max); 8681 if (len == 0) { 8682 rc = -ENOMEM; 8683 goto out_unset_queue; 8684 } 8685 8686 if (phba->cfg_xri_rebalancing) 8687 lpfc_create_multixri_pools(phba); 8688 } 8689 } else { 8690 phba->cfg_xri_rebalancing = 0; 8691 } 8692 8693 /* Allow asynchronous mailbox command to go through */ 8694 spin_lock_irq(&phba->hbalock); 8695 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8696 spin_unlock_irq(&phba->hbalock); 8697 8698 /* Post receive buffers to the device */ 8699 lpfc_sli4_rb_setup(phba); 8700 8701 /* Reset HBA FCF states after HBA reset */ 8702 phba->fcf.fcf_flag = 0; 8703 phba->fcf.current_rec.flag = 0; 8704 8705 /* Start the ELS watchdog timer */ 8706 mod_timer(&vport->els_tmofunc, 8707 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 8708 8709 /* Start heart beat timer */ 8710 mod_timer(&phba->hb_tmofunc, 8711 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 8712 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 8713 phba->last_completion_time = jiffies; 8714 8715 /* start eq_delay heartbeat */ 8716 if (phba->cfg_auto_imax) 8717 queue_delayed_work(phba->wq, &phba->eq_delay_work, 8718 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 8719 8720 /* start per phba idle_stat_delay heartbeat */ 8721 lpfc_init_idle_stat_hb(phba); 8722 8723 /* Start error attention (ERATT) polling timer */ 8724 mod_timer(&phba->eratt_poll, 8725 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 8726 8727 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 8728 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 8729 rc = pci_enable_pcie_error_reporting(phba->pcidev); 8730 if (!rc) { 8731 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8732 "2829 This device supports " 8733 "Advanced Error Reporting (AER)\n"); 8734 spin_lock_irq(&phba->hbalock); 8735 phba->hba_flag |= HBA_AER_ENABLED; 8736 spin_unlock_irq(&phba->hbalock); 8737 } else { 8738 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8739 "2830 This device does not support " 8740 "Advanced Error Reporting (AER)\n"); 8741 phba->cfg_aer_support = 0; 8742 } 8743 rc = 0; 8744 } 8745 8746 /* 8747 * The port is ready, set the host's link state to LINK_DOWN 8748 * in preparation for link interrupts. 8749 */ 8750 spin_lock_irq(&phba->hbalock); 8751 phba->link_state = LPFC_LINK_DOWN; 8752 8753 /* Check if physical ports are trunked */ 8754 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 8755 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 8756 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 8757 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 8758 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 8759 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 8760 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 8761 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 8762 spin_unlock_irq(&phba->hbalock); 8763 8764 /* Arm the CQs and then EQs on device */ 8765 lpfc_sli4_arm_cqeq_intr(phba); 8766 8767 /* Indicate device interrupt mode */ 8768 phba->sli4_hba.intr_enable = 1; 8769 8770 /* Setup CMF after HBA is initialized */ 8771 lpfc_cmf_setup(phba); 8772 8773 if (!(phba->hba_flag & HBA_FCOE_MODE) && 8774 (phba->hba_flag & LINK_DISABLED)) { 8775 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8776 "3103 Adapter Link is disabled.\n"); 8777 lpfc_down_link(phba, mboxq); 8778 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8779 if (rc != MBX_SUCCESS) { 8780 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8781 "3104 Adapter failed to issue " 8782 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 8783 goto out_io_buff_free; 8784 } 8785 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 8786 /* don't perform init_link on SLI4 FC port loopback test */ 8787 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 8788 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 8789 if (rc) 8790 goto out_io_buff_free; 8791 } 8792 } 8793 mempool_free(mboxq, phba->mbox_mem_pool); 8794 8795 phba->hba_flag |= HBA_SETUP; 8796 return rc; 8797 8798 out_io_buff_free: 8799 /* Free allocated IO Buffers */ 8800 lpfc_io_free(phba); 8801 out_unset_queue: 8802 /* Unset all the queues set up in this routine when error out */ 8803 lpfc_sli4_queue_unset(phba); 8804 out_free_iocblist: 8805 lpfc_free_iocb_list(phba); 8806 out_destroy_queue: 8807 lpfc_sli4_queue_destroy(phba); 8808 out_stop_timers: 8809 lpfc_stop_hba_timers(phba); 8810 out_free_mbox: 8811 mempool_free(mboxq, phba->mbox_mem_pool); 8812 return rc; 8813 } 8814 8815 /** 8816 * lpfc_mbox_timeout - Timeout call back function for mbox timer 8817 * @t: Context to fetch pointer to hba structure from. 8818 * 8819 * This is the callback function for mailbox timer. The mailbox 8820 * timer is armed when a new mailbox command is issued and the timer 8821 * is deleted when the mailbox complete. The function is called by 8822 * the kernel timer code when a mailbox does not complete within 8823 * expected time. This function wakes up the worker thread to 8824 * process the mailbox timeout and returns. All the processing is 8825 * done by the worker thread function lpfc_mbox_timeout_handler. 8826 **/ 8827 void 8828 lpfc_mbox_timeout(struct timer_list *t) 8829 { 8830 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 8831 unsigned long iflag; 8832 uint32_t tmo_posted; 8833 8834 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 8835 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 8836 if (!tmo_posted) 8837 phba->pport->work_port_events |= WORKER_MBOX_TMO; 8838 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 8839 8840 if (!tmo_posted) 8841 lpfc_worker_wake_up(phba); 8842 return; 8843 } 8844 8845 /** 8846 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 8847 * are pending 8848 * @phba: Pointer to HBA context object. 8849 * 8850 * This function checks if any mailbox completions are present on the mailbox 8851 * completion queue. 8852 **/ 8853 static bool 8854 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 8855 { 8856 8857 uint32_t idx; 8858 struct lpfc_queue *mcq; 8859 struct lpfc_mcqe *mcqe; 8860 bool pending_completions = false; 8861 uint8_t qe_valid; 8862 8863 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8864 return false; 8865 8866 /* Check for completions on mailbox completion queue */ 8867 8868 mcq = phba->sli4_hba.mbx_cq; 8869 idx = mcq->hba_index; 8870 qe_valid = mcq->qe_valid; 8871 while (bf_get_le32(lpfc_cqe_valid, 8872 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 8873 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 8874 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 8875 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 8876 pending_completions = true; 8877 break; 8878 } 8879 idx = (idx + 1) % mcq->entry_count; 8880 if (mcq->hba_index == idx) 8881 break; 8882 8883 /* if the index wrapped around, toggle the valid bit */ 8884 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 8885 qe_valid = (qe_valid) ? 0 : 1; 8886 } 8887 return pending_completions; 8888 8889 } 8890 8891 /** 8892 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 8893 * that were missed. 8894 * @phba: Pointer to HBA context object. 8895 * 8896 * For sli4, it is possible to miss an interrupt. As such mbox completions 8897 * maybe missed causing erroneous mailbox timeouts to occur. This function 8898 * checks to see if mbox completions are on the mailbox completion queue 8899 * and will process all the completions associated with the eq for the 8900 * mailbox completion queue. 8901 **/ 8902 static bool 8903 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 8904 { 8905 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 8906 uint32_t eqidx; 8907 struct lpfc_queue *fpeq = NULL; 8908 struct lpfc_queue *eq; 8909 bool mbox_pending; 8910 8911 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8912 return false; 8913 8914 /* Find the EQ associated with the mbox CQ */ 8915 if (sli4_hba->hdwq) { 8916 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 8917 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 8918 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 8919 fpeq = eq; 8920 break; 8921 } 8922 } 8923 } 8924 if (!fpeq) 8925 return false; 8926 8927 /* Turn off interrupts from this EQ */ 8928 8929 sli4_hba->sli4_eq_clr_intr(fpeq); 8930 8931 /* Check to see if a mbox completion is pending */ 8932 8933 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 8934 8935 /* 8936 * If a mbox completion is pending, process all the events on EQ 8937 * associated with the mbox completion queue (this could include 8938 * mailbox commands, async events, els commands, receive queue data 8939 * and fcp commands) 8940 */ 8941 8942 if (mbox_pending) 8943 /* process and rearm the EQ */ 8944 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 8945 else 8946 /* Always clear and re-arm the EQ */ 8947 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 8948 8949 return mbox_pending; 8950 8951 } 8952 8953 /** 8954 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 8955 * @phba: Pointer to HBA context object. 8956 * 8957 * This function is called from worker thread when a mailbox command times out. 8958 * The caller is not required to hold any locks. This function will reset the 8959 * HBA and recover all the pending commands. 8960 **/ 8961 void 8962 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 8963 { 8964 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 8965 MAILBOX_t *mb = NULL; 8966 8967 struct lpfc_sli *psli = &phba->sli; 8968 8969 /* If the mailbox completed, process the completion */ 8970 lpfc_sli4_process_missed_mbox_completions(phba); 8971 8972 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 8973 return; 8974 8975 if (pmbox != NULL) 8976 mb = &pmbox->u.mb; 8977 /* Check the pmbox pointer first. There is a race condition 8978 * between the mbox timeout handler getting executed in the 8979 * worklist and the mailbox actually completing. When this 8980 * race condition occurs, the mbox_active will be NULL. 8981 */ 8982 spin_lock_irq(&phba->hbalock); 8983 if (pmbox == NULL) { 8984 lpfc_printf_log(phba, KERN_WARNING, 8985 LOG_MBOX | LOG_SLI, 8986 "0353 Active Mailbox cleared - mailbox timeout " 8987 "exiting\n"); 8988 spin_unlock_irq(&phba->hbalock); 8989 return; 8990 } 8991 8992 /* Mbox cmd <mbxCommand> timeout */ 8993 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8994 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 8995 mb->mbxCommand, 8996 phba->pport->port_state, 8997 phba->sli.sli_flag, 8998 phba->sli.mbox_active); 8999 spin_unlock_irq(&phba->hbalock); 9000 9001 /* Setting state unknown so lpfc_sli_abort_iocb_ring 9002 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 9003 * it to fail all outstanding SCSI IO. 9004 */ 9005 spin_lock_irq(&phba->pport->work_port_lock); 9006 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 9007 spin_unlock_irq(&phba->pport->work_port_lock); 9008 spin_lock_irq(&phba->hbalock); 9009 phba->link_state = LPFC_LINK_UNKNOWN; 9010 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 9011 spin_unlock_irq(&phba->hbalock); 9012 9013 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9014 "0345 Resetting board due to mailbox timeout\n"); 9015 9016 /* Reset the HBA device */ 9017 lpfc_reset_hba(phba); 9018 } 9019 9020 /** 9021 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 9022 * @phba: Pointer to HBA context object. 9023 * @pmbox: Pointer to mailbox object. 9024 * @flag: Flag indicating how the mailbox need to be processed. 9025 * 9026 * This function is called by discovery code and HBA management code 9027 * to submit a mailbox command to firmware with SLI-3 interface spec. This 9028 * function gets the hbalock to protect the data structures. 9029 * The mailbox command can be submitted in polling mode, in which case 9030 * this function will wait in a polling loop for the completion of the 9031 * mailbox. 9032 * If the mailbox is submitted in no_wait mode (not polling) the 9033 * function will submit the command and returns immediately without waiting 9034 * for the mailbox completion. The no_wait is supported only when HBA 9035 * is in SLI2/SLI3 mode - interrupts are enabled. 9036 * The SLI interface allows only one mailbox pending at a time. If the 9037 * mailbox is issued in polling mode and there is already a mailbox 9038 * pending, then the function will return an error. If the mailbox is issued 9039 * in NO_WAIT mode and there is a mailbox pending already, the function 9040 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 9041 * The sli layer owns the mailbox object until the completion of mailbox 9042 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 9043 * return codes the caller owns the mailbox command after the return of 9044 * the function. 9045 **/ 9046 static int 9047 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 9048 uint32_t flag) 9049 { 9050 MAILBOX_t *mbx; 9051 struct lpfc_sli *psli = &phba->sli; 9052 uint32_t status, evtctr; 9053 uint32_t ha_copy, hc_copy; 9054 int i; 9055 unsigned long timeout; 9056 unsigned long drvr_flag = 0; 9057 uint32_t word0, ldata; 9058 void __iomem *to_slim; 9059 int processing_queue = 0; 9060 9061 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9062 if (!pmbox) { 9063 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9064 /* processing mbox queue from intr_handler */ 9065 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9066 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9067 return MBX_SUCCESS; 9068 } 9069 processing_queue = 1; 9070 pmbox = lpfc_mbox_get(phba); 9071 if (!pmbox) { 9072 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9073 return MBX_SUCCESS; 9074 } 9075 } 9076 9077 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 9078 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 9079 if(!pmbox->vport) { 9080 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9081 lpfc_printf_log(phba, KERN_ERR, 9082 LOG_MBOX | LOG_VPORT, 9083 "1806 Mbox x%x failed. No vport\n", 9084 pmbox->u.mb.mbxCommand); 9085 dump_stack(); 9086 goto out_not_finished; 9087 } 9088 } 9089 9090 /* If the PCI channel is in offline state, do not post mbox. */ 9091 if (unlikely(pci_channel_offline(phba->pcidev))) { 9092 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9093 goto out_not_finished; 9094 } 9095 9096 /* If HBA has a deferred error attention, fail the iocb. */ 9097 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 9098 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9099 goto out_not_finished; 9100 } 9101 9102 psli = &phba->sli; 9103 9104 mbx = &pmbox->u.mb; 9105 status = MBX_SUCCESS; 9106 9107 if (phba->link_state == LPFC_HBA_ERROR) { 9108 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9109 9110 /* Mbox command <mbxCommand> cannot issue */ 9111 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9112 "(%d):0311 Mailbox command x%x cannot " 9113 "issue Data: x%x x%x\n", 9114 pmbox->vport ? pmbox->vport->vpi : 0, 9115 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9116 goto out_not_finished; 9117 } 9118 9119 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 9120 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 9121 !(hc_copy & HC_MBINT_ENA)) { 9122 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9123 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9124 "(%d):2528 Mailbox command x%x cannot " 9125 "issue Data: x%x x%x\n", 9126 pmbox->vport ? pmbox->vport->vpi : 0, 9127 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9128 goto out_not_finished; 9129 } 9130 } 9131 9132 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9133 /* Polling for a mbox command when another one is already active 9134 * is not allowed in SLI. Also, the driver must have established 9135 * SLI2 mode to queue and process multiple mbox commands. 9136 */ 9137 9138 if (flag & MBX_POLL) { 9139 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9140 9141 /* Mbox command <mbxCommand> cannot issue */ 9142 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9143 "(%d):2529 Mailbox command x%x " 9144 "cannot issue Data: x%x x%x\n", 9145 pmbox->vport ? pmbox->vport->vpi : 0, 9146 pmbox->u.mb.mbxCommand, 9147 psli->sli_flag, flag); 9148 goto out_not_finished; 9149 } 9150 9151 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 9152 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9153 /* Mbox command <mbxCommand> cannot issue */ 9154 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9155 "(%d):2530 Mailbox command x%x " 9156 "cannot issue Data: x%x x%x\n", 9157 pmbox->vport ? pmbox->vport->vpi : 0, 9158 pmbox->u.mb.mbxCommand, 9159 psli->sli_flag, flag); 9160 goto out_not_finished; 9161 } 9162 9163 /* Another mailbox command is still being processed, queue this 9164 * command to be processed later. 9165 */ 9166 lpfc_mbox_put(phba, pmbox); 9167 9168 /* Mbox cmd issue - BUSY */ 9169 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9170 "(%d):0308 Mbox cmd issue - BUSY Data: " 9171 "x%x x%x x%x x%x\n", 9172 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 9173 mbx->mbxCommand, 9174 phba->pport ? phba->pport->port_state : 0xff, 9175 psli->sli_flag, flag); 9176 9177 psli->slistat.mbox_busy++; 9178 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9179 9180 if (pmbox->vport) { 9181 lpfc_debugfs_disc_trc(pmbox->vport, 9182 LPFC_DISC_TRC_MBOX_VPORT, 9183 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 9184 (uint32_t)mbx->mbxCommand, 9185 mbx->un.varWords[0], mbx->un.varWords[1]); 9186 } 9187 else { 9188 lpfc_debugfs_disc_trc(phba->pport, 9189 LPFC_DISC_TRC_MBOX, 9190 "MBOX Bsy: cmd:x%x mb:x%x x%x", 9191 (uint32_t)mbx->mbxCommand, 9192 mbx->un.varWords[0], mbx->un.varWords[1]); 9193 } 9194 9195 return MBX_BUSY; 9196 } 9197 9198 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9199 9200 /* If we are not polling, we MUST be in SLI2 mode */ 9201 if (flag != MBX_POLL) { 9202 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 9203 (mbx->mbxCommand != MBX_KILL_BOARD)) { 9204 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9205 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9206 /* Mbox command <mbxCommand> cannot issue */ 9207 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9208 "(%d):2531 Mailbox command x%x " 9209 "cannot issue Data: x%x x%x\n", 9210 pmbox->vport ? pmbox->vport->vpi : 0, 9211 pmbox->u.mb.mbxCommand, 9212 psli->sli_flag, flag); 9213 goto out_not_finished; 9214 } 9215 /* timeout active mbox command */ 9216 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9217 1000); 9218 mod_timer(&psli->mbox_tmo, jiffies + timeout); 9219 } 9220 9221 /* Mailbox cmd <cmd> issue */ 9222 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9223 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 9224 "x%x\n", 9225 pmbox->vport ? pmbox->vport->vpi : 0, 9226 mbx->mbxCommand, 9227 phba->pport ? phba->pport->port_state : 0xff, 9228 psli->sli_flag, flag); 9229 9230 if (mbx->mbxCommand != MBX_HEARTBEAT) { 9231 if (pmbox->vport) { 9232 lpfc_debugfs_disc_trc(pmbox->vport, 9233 LPFC_DISC_TRC_MBOX_VPORT, 9234 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9235 (uint32_t)mbx->mbxCommand, 9236 mbx->un.varWords[0], mbx->un.varWords[1]); 9237 } 9238 else { 9239 lpfc_debugfs_disc_trc(phba->pport, 9240 LPFC_DISC_TRC_MBOX, 9241 "MBOX Send: cmd:x%x mb:x%x x%x", 9242 (uint32_t)mbx->mbxCommand, 9243 mbx->un.varWords[0], mbx->un.varWords[1]); 9244 } 9245 } 9246 9247 psli->slistat.mbox_cmd++; 9248 evtctr = psli->slistat.mbox_event; 9249 9250 /* next set own bit for the adapter and copy over command word */ 9251 mbx->mbxOwner = OWN_CHIP; 9252 9253 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9254 /* Populate mbox extension offset word. */ 9255 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 9256 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9257 = (uint8_t *)phba->mbox_ext 9258 - (uint8_t *)phba->mbox; 9259 } 9260 9261 /* Copy the mailbox extension data */ 9262 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 9263 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 9264 (uint8_t *)phba->mbox_ext, 9265 pmbox->in_ext_byte_len); 9266 } 9267 /* Copy command data to host SLIM area */ 9268 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 9269 } else { 9270 /* Populate mbox extension offset word. */ 9271 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 9272 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9273 = MAILBOX_HBA_EXT_OFFSET; 9274 9275 /* Copy the mailbox extension data */ 9276 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 9277 lpfc_memcpy_to_slim(phba->MBslimaddr + 9278 MAILBOX_HBA_EXT_OFFSET, 9279 pmbox->ctx_buf, pmbox->in_ext_byte_len); 9280 9281 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9282 /* copy command data into host mbox for cmpl */ 9283 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 9284 MAILBOX_CMD_SIZE); 9285 9286 /* First copy mbox command data to HBA SLIM, skip past first 9287 word */ 9288 to_slim = phba->MBslimaddr + sizeof (uint32_t); 9289 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 9290 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 9291 9292 /* Next copy over first word, with mbxOwner set */ 9293 ldata = *((uint32_t *)mbx); 9294 to_slim = phba->MBslimaddr; 9295 writel(ldata, to_slim); 9296 readl(to_slim); /* flush */ 9297 9298 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9299 /* switch over to host mailbox */ 9300 psli->sli_flag |= LPFC_SLI_ACTIVE; 9301 } 9302 9303 wmb(); 9304 9305 switch (flag) { 9306 case MBX_NOWAIT: 9307 /* Set up reference to mailbox command */ 9308 psli->mbox_active = pmbox; 9309 /* Interrupt board to do it */ 9310 writel(CA_MBATT, phba->CAregaddr); 9311 readl(phba->CAregaddr); /* flush */ 9312 /* Don't wait for it to finish, just return */ 9313 break; 9314 9315 case MBX_POLL: 9316 /* Set up null reference to mailbox command */ 9317 psli->mbox_active = NULL; 9318 /* Interrupt board to do it */ 9319 writel(CA_MBATT, phba->CAregaddr); 9320 readl(phba->CAregaddr); /* flush */ 9321 9322 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9323 /* First read mbox status word */ 9324 word0 = *((uint32_t *)phba->mbox); 9325 word0 = le32_to_cpu(word0); 9326 } else { 9327 /* First read mbox status word */ 9328 if (lpfc_readl(phba->MBslimaddr, &word0)) { 9329 spin_unlock_irqrestore(&phba->hbalock, 9330 drvr_flag); 9331 goto out_not_finished; 9332 } 9333 } 9334 9335 /* Read the HBA Host Attention Register */ 9336 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9337 spin_unlock_irqrestore(&phba->hbalock, 9338 drvr_flag); 9339 goto out_not_finished; 9340 } 9341 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9342 1000) + jiffies; 9343 i = 0; 9344 /* Wait for command to complete */ 9345 while (((word0 & OWN_CHIP) == OWN_CHIP) || 9346 (!(ha_copy & HA_MBATT) && 9347 (phba->link_state > LPFC_WARM_START))) { 9348 if (time_after(jiffies, timeout)) { 9349 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9350 spin_unlock_irqrestore(&phba->hbalock, 9351 drvr_flag); 9352 goto out_not_finished; 9353 } 9354 9355 /* Check if we took a mbox interrupt while we were 9356 polling */ 9357 if (((word0 & OWN_CHIP) != OWN_CHIP) 9358 && (evtctr != psli->slistat.mbox_event)) 9359 break; 9360 9361 if (i++ > 10) { 9362 spin_unlock_irqrestore(&phba->hbalock, 9363 drvr_flag); 9364 msleep(1); 9365 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9366 } 9367 9368 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9369 /* First copy command data */ 9370 word0 = *((uint32_t *)phba->mbox); 9371 word0 = le32_to_cpu(word0); 9372 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 9373 MAILBOX_t *slimmb; 9374 uint32_t slimword0; 9375 /* Check real SLIM for any errors */ 9376 slimword0 = readl(phba->MBslimaddr); 9377 slimmb = (MAILBOX_t *) & slimword0; 9378 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 9379 && slimmb->mbxStatus) { 9380 psli->sli_flag &= 9381 ~LPFC_SLI_ACTIVE; 9382 word0 = slimword0; 9383 } 9384 } 9385 } else { 9386 /* First copy command data */ 9387 word0 = readl(phba->MBslimaddr); 9388 } 9389 /* Read the HBA Host Attention Register */ 9390 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9391 spin_unlock_irqrestore(&phba->hbalock, 9392 drvr_flag); 9393 goto out_not_finished; 9394 } 9395 } 9396 9397 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9398 /* copy results back to user */ 9399 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 9400 MAILBOX_CMD_SIZE); 9401 /* Copy the mailbox extension data */ 9402 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9403 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 9404 pmbox->ctx_buf, 9405 pmbox->out_ext_byte_len); 9406 } 9407 } else { 9408 /* First copy command data */ 9409 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 9410 MAILBOX_CMD_SIZE); 9411 /* Copy the mailbox extension data */ 9412 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9413 lpfc_memcpy_from_slim( 9414 pmbox->ctx_buf, 9415 phba->MBslimaddr + 9416 MAILBOX_HBA_EXT_OFFSET, 9417 pmbox->out_ext_byte_len); 9418 } 9419 } 9420 9421 writel(HA_MBATT, phba->HAregaddr); 9422 readl(phba->HAregaddr); /* flush */ 9423 9424 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9425 status = mbx->mbxStatus; 9426 } 9427 9428 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9429 return status; 9430 9431 out_not_finished: 9432 if (processing_queue) { 9433 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 9434 lpfc_mbox_cmpl_put(phba, pmbox); 9435 } 9436 return MBX_NOT_FINISHED; 9437 } 9438 9439 /** 9440 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 9441 * @phba: Pointer to HBA context object. 9442 * 9443 * The function blocks the posting of SLI4 asynchronous mailbox commands from 9444 * the driver internal pending mailbox queue. It will then try to wait out the 9445 * possible outstanding mailbox command before return. 9446 * 9447 * Returns: 9448 * 0 - the outstanding mailbox command completed; otherwise, the wait for 9449 * the outstanding mailbox command timed out. 9450 **/ 9451 static int 9452 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 9453 { 9454 struct lpfc_sli *psli = &phba->sli; 9455 LPFC_MBOXQ_t *mboxq; 9456 int rc = 0; 9457 unsigned long timeout = 0; 9458 u32 sli_flag; 9459 u8 cmd, subsys, opcode; 9460 9461 /* Mark the asynchronous mailbox command posting as blocked */ 9462 spin_lock_irq(&phba->hbalock); 9463 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 9464 /* Determine how long we might wait for the active mailbox 9465 * command to be gracefully completed by firmware. 9466 */ 9467 if (phba->sli.mbox_active) 9468 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 9469 phba->sli.mbox_active) * 9470 1000) + jiffies; 9471 spin_unlock_irq(&phba->hbalock); 9472 9473 /* Make sure the mailbox is really active */ 9474 if (timeout) 9475 lpfc_sli4_process_missed_mbox_completions(phba); 9476 9477 /* Wait for the outstanding mailbox command to complete */ 9478 while (phba->sli.mbox_active) { 9479 /* Check active mailbox complete status every 2ms */ 9480 msleep(2); 9481 if (time_after(jiffies, timeout)) { 9482 /* Timeout, mark the outstanding cmd not complete */ 9483 9484 /* Sanity check sli.mbox_active has not completed or 9485 * cancelled from another context during last 2ms sleep, 9486 * so take hbalock to be sure before logging. 9487 */ 9488 spin_lock_irq(&phba->hbalock); 9489 if (phba->sli.mbox_active) { 9490 mboxq = phba->sli.mbox_active; 9491 cmd = mboxq->u.mb.mbxCommand; 9492 subsys = lpfc_sli_config_mbox_subsys_get(phba, 9493 mboxq); 9494 opcode = lpfc_sli_config_mbox_opcode_get(phba, 9495 mboxq); 9496 sli_flag = psli->sli_flag; 9497 spin_unlock_irq(&phba->hbalock); 9498 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9499 "2352 Mailbox command x%x " 9500 "(x%x/x%x) sli_flag x%x could " 9501 "not complete\n", 9502 cmd, subsys, opcode, 9503 sli_flag); 9504 } else { 9505 spin_unlock_irq(&phba->hbalock); 9506 } 9507 9508 rc = 1; 9509 break; 9510 } 9511 } 9512 9513 /* Can not cleanly block async mailbox command, fails it */ 9514 if (rc) { 9515 spin_lock_irq(&phba->hbalock); 9516 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9517 spin_unlock_irq(&phba->hbalock); 9518 } 9519 return rc; 9520 } 9521 9522 /** 9523 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 9524 * @phba: Pointer to HBA context object. 9525 * 9526 * The function unblocks and resume posting of SLI4 asynchronous mailbox 9527 * commands from the driver internal pending mailbox queue. It makes sure 9528 * that there is no outstanding mailbox command before resuming posting 9529 * asynchronous mailbox commands. If, for any reason, there is outstanding 9530 * mailbox command, it will try to wait it out before resuming asynchronous 9531 * mailbox command posting. 9532 **/ 9533 static void 9534 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 9535 { 9536 struct lpfc_sli *psli = &phba->sli; 9537 9538 spin_lock_irq(&phba->hbalock); 9539 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9540 /* Asynchronous mailbox posting is not blocked, do nothing */ 9541 spin_unlock_irq(&phba->hbalock); 9542 return; 9543 } 9544 9545 /* Outstanding synchronous mailbox command is guaranteed to be done, 9546 * successful or timeout, after timing-out the outstanding mailbox 9547 * command shall always be removed, so just unblock posting async 9548 * mailbox command and resume 9549 */ 9550 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9551 spin_unlock_irq(&phba->hbalock); 9552 9553 /* wake up worker thread to post asynchronous mailbox command */ 9554 lpfc_worker_wake_up(phba); 9555 } 9556 9557 /** 9558 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 9559 * @phba: Pointer to HBA context object. 9560 * @mboxq: Pointer to mailbox object. 9561 * 9562 * The function waits for the bootstrap mailbox register ready bit from 9563 * port for twice the regular mailbox command timeout value. 9564 * 9565 * 0 - no timeout on waiting for bootstrap mailbox register ready. 9566 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 9567 **/ 9568 static int 9569 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9570 { 9571 uint32_t db_ready; 9572 unsigned long timeout; 9573 struct lpfc_register bmbx_reg; 9574 9575 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 9576 * 1000) + jiffies; 9577 9578 do { 9579 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 9580 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 9581 if (!db_ready) 9582 mdelay(2); 9583 9584 if (time_after(jiffies, timeout)) 9585 return MBXERR_ERROR; 9586 } while (!db_ready); 9587 9588 return 0; 9589 } 9590 9591 /** 9592 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 9593 * @phba: Pointer to HBA context object. 9594 * @mboxq: Pointer to mailbox object. 9595 * 9596 * The function posts a mailbox to the port. The mailbox is expected 9597 * to be comletely filled in and ready for the port to operate on it. 9598 * This routine executes a synchronous completion operation on the 9599 * mailbox by polling for its completion. 9600 * 9601 * The caller must not be holding any locks when calling this routine. 9602 * 9603 * Returns: 9604 * MBX_SUCCESS - mailbox posted successfully 9605 * Any of the MBX error values. 9606 **/ 9607 static int 9608 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9609 { 9610 int rc = MBX_SUCCESS; 9611 unsigned long iflag; 9612 uint32_t mcqe_status; 9613 uint32_t mbx_cmnd; 9614 struct lpfc_sli *psli = &phba->sli; 9615 struct lpfc_mqe *mb = &mboxq->u.mqe; 9616 struct lpfc_bmbx_create *mbox_rgn; 9617 struct dma_address *dma_address; 9618 9619 /* 9620 * Only one mailbox can be active to the bootstrap mailbox region 9621 * at a time and there is no queueing provided. 9622 */ 9623 spin_lock_irqsave(&phba->hbalock, iflag); 9624 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9625 spin_unlock_irqrestore(&phba->hbalock, iflag); 9626 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9627 "(%d):2532 Mailbox command x%x (x%x/x%x) " 9628 "cannot issue Data: x%x x%x\n", 9629 mboxq->vport ? mboxq->vport->vpi : 0, 9630 mboxq->u.mb.mbxCommand, 9631 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9632 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9633 psli->sli_flag, MBX_POLL); 9634 return MBXERR_ERROR; 9635 } 9636 /* The server grabs the token and owns it until release */ 9637 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9638 phba->sli.mbox_active = mboxq; 9639 spin_unlock_irqrestore(&phba->hbalock, iflag); 9640 9641 /* wait for bootstrap mbox register for readyness */ 9642 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9643 if (rc) 9644 goto exit; 9645 /* 9646 * Initialize the bootstrap memory region to avoid stale data areas 9647 * in the mailbox post. Then copy the caller's mailbox contents to 9648 * the bmbx mailbox region. 9649 */ 9650 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 9651 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 9652 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 9653 sizeof(struct lpfc_mqe)); 9654 9655 /* Post the high mailbox dma address to the port and wait for ready. */ 9656 dma_address = &phba->sli4_hba.bmbx.dma_address; 9657 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 9658 9659 /* wait for bootstrap mbox register for hi-address write done */ 9660 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9661 if (rc) 9662 goto exit; 9663 9664 /* Post the low mailbox dma address to the port. */ 9665 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 9666 9667 /* wait for bootstrap mbox register for low address write done */ 9668 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9669 if (rc) 9670 goto exit; 9671 9672 /* 9673 * Read the CQ to ensure the mailbox has completed. 9674 * If so, update the mailbox status so that the upper layers 9675 * can complete the request normally. 9676 */ 9677 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 9678 sizeof(struct lpfc_mqe)); 9679 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 9680 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 9681 sizeof(struct lpfc_mcqe)); 9682 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 9683 /* 9684 * When the CQE status indicates a failure and the mailbox status 9685 * indicates success then copy the CQE status into the mailbox status 9686 * (and prefix it with x4000). 9687 */ 9688 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 9689 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 9690 bf_set(lpfc_mqe_status, mb, 9691 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 9692 rc = MBXERR_ERROR; 9693 } else 9694 lpfc_sli4_swap_str(phba, mboxq); 9695 9696 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9697 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 9698 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 9699 " x%x x%x CQ: x%x x%x x%x x%x\n", 9700 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9701 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9702 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9703 bf_get(lpfc_mqe_status, mb), 9704 mb->un.mb_words[0], mb->un.mb_words[1], 9705 mb->un.mb_words[2], mb->un.mb_words[3], 9706 mb->un.mb_words[4], mb->un.mb_words[5], 9707 mb->un.mb_words[6], mb->un.mb_words[7], 9708 mb->un.mb_words[8], mb->un.mb_words[9], 9709 mb->un.mb_words[10], mb->un.mb_words[11], 9710 mb->un.mb_words[12], mboxq->mcqe.word0, 9711 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 9712 mboxq->mcqe.trailer); 9713 exit: 9714 /* We are holding the token, no needed for lock when release */ 9715 spin_lock_irqsave(&phba->hbalock, iflag); 9716 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9717 phba->sli.mbox_active = NULL; 9718 spin_unlock_irqrestore(&phba->hbalock, iflag); 9719 return rc; 9720 } 9721 9722 /** 9723 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 9724 * @phba: Pointer to HBA context object. 9725 * @mboxq: Pointer to mailbox object. 9726 * @flag: Flag indicating how the mailbox need to be processed. 9727 * 9728 * This function is called by discovery code and HBA management code to submit 9729 * a mailbox command to firmware with SLI-4 interface spec. 9730 * 9731 * Return codes the caller owns the mailbox command after the return of the 9732 * function. 9733 **/ 9734 static int 9735 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 9736 uint32_t flag) 9737 { 9738 struct lpfc_sli *psli = &phba->sli; 9739 unsigned long iflags; 9740 int rc; 9741 9742 /* dump from issue mailbox command if setup */ 9743 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 9744 9745 rc = lpfc_mbox_dev_check(phba); 9746 if (unlikely(rc)) { 9747 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9748 "(%d):2544 Mailbox command x%x (x%x/x%x) " 9749 "cannot issue Data: x%x x%x\n", 9750 mboxq->vport ? mboxq->vport->vpi : 0, 9751 mboxq->u.mb.mbxCommand, 9752 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9753 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9754 psli->sli_flag, flag); 9755 goto out_not_finished; 9756 } 9757 9758 /* Detect polling mode and jump to a handler */ 9759 if (!phba->sli4_hba.intr_enable) { 9760 if (flag == MBX_POLL) 9761 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9762 else 9763 rc = -EIO; 9764 if (rc != MBX_SUCCESS) 9765 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9766 "(%d):2541 Mailbox command x%x " 9767 "(x%x/x%x) failure: " 9768 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9769 "Data: x%x x%x\n", 9770 mboxq->vport ? mboxq->vport->vpi : 0, 9771 mboxq->u.mb.mbxCommand, 9772 lpfc_sli_config_mbox_subsys_get(phba, 9773 mboxq), 9774 lpfc_sli_config_mbox_opcode_get(phba, 9775 mboxq), 9776 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9777 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9778 bf_get(lpfc_mcqe_ext_status, 9779 &mboxq->mcqe), 9780 psli->sli_flag, flag); 9781 return rc; 9782 } else if (flag == MBX_POLL) { 9783 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9784 "(%d):2542 Try to issue mailbox command " 9785 "x%x (x%x/x%x) synchronously ahead of async " 9786 "mailbox command queue: x%x x%x\n", 9787 mboxq->vport ? mboxq->vport->vpi : 0, 9788 mboxq->u.mb.mbxCommand, 9789 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9790 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9791 psli->sli_flag, flag); 9792 /* Try to block the asynchronous mailbox posting */ 9793 rc = lpfc_sli4_async_mbox_block(phba); 9794 if (!rc) { 9795 /* Successfully blocked, now issue sync mbox cmd */ 9796 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9797 if (rc != MBX_SUCCESS) 9798 lpfc_printf_log(phba, KERN_WARNING, 9799 LOG_MBOX | LOG_SLI, 9800 "(%d):2597 Sync Mailbox command " 9801 "x%x (x%x/x%x) failure: " 9802 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9803 "Data: x%x x%x\n", 9804 mboxq->vport ? mboxq->vport->vpi : 0, 9805 mboxq->u.mb.mbxCommand, 9806 lpfc_sli_config_mbox_subsys_get(phba, 9807 mboxq), 9808 lpfc_sli_config_mbox_opcode_get(phba, 9809 mboxq), 9810 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9811 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9812 bf_get(lpfc_mcqe_ext_status, 9813 &mboxq->mcqe), 9814 psli->sli_flag, flag); 9815 /* Unblock the async mailbox posting afterward */ 9816 lpfc_sli4_async_mbox_unblock(phba); 9817 } 9818 return rc; 9819 } 9820 9821 /* Now, interrupt mode asynchronous mailbox command */ 9822 rc = lpfc_mbox_cmd_check(phba, mboxq); 9823 if (rc) { 9824 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9825 "(%d):2543 Mailbox command x%x (x%x/x%x) " 9826 "cannot issue Data: x%x x%x\n", 9827 mboxq->vport ? mboxq->vport->vpi : 0, 9828 mboxq->u.mb.mbxCommand, 9829 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9830 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9831 psli->sli_flag, flag); 9832 goto out_not_finished; 9833 } 9834 9835 /* Put the mailbox command to the driver internal FIFO */ 9836 psli->slistat.mbox_busy++; 9837 spin_lock_irqsave(&phba->hbalock, iflags); 9838 lpfc_mbox_put(phba, mboxq); 9839 spin_unlock_irqrestore(&phba->hbalock, iflags); 9840 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9841 "(%d):0354 Mbox cmd issue - Enqueue Data: " 9842 "x%x (x%x/x%x) x%x x%x x%x\n", 9843 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 9844 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 9845 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9846 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9847 phba->pport->port_state, 9848 psli->sli_flag, MBX_NOWAIT); 9849 /* Wake up worker thread to transport mailbox command from head */ 9850 lpfc_worker_wake_up(phba); 9851 9852 return MBX_BUSY; 9853 9854 out_not_finished: 9855 return MBX_NOT_FINISHED; 9856 } 9857 9858 /** 9859 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 9860 * @phba: Pointer to HBA context object. 9861 * 9862 * This function is called by worker thread to send a mailbox command to 9863 * SLI4 HBA firmware. 9864 * 9865 **/ 9866 int 9867 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 9868 { 9869 struct lpfc_sli *psli = &phba->sli; 9870 LPFC_MBOXQ_t *mboxq; 9871 int rc = MBX_SUCCESS; 9872 unsigned long iflags; 9873 struct lpfc_mqe *mqe; 9874 uint32_t mbx_cmnd; 9875 9876 /* Check interrupt mode before post async mailbox command */ 9877 if (unlikely(!phba->sli4_hba.intr_enable)) 9878 return MBX_NOT_FINISHED; 9879 9880 /* Check for mailbox command service token */ 9881 spin_lock_irqsave(&phba->hbalock, iflags); 9882 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9883 spin_unlock_irqrestore(&phba->hbalock, iflags); 9884 return MBX_NOT_FINISHED; 9885 } 9886 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9887 spin_unlock_irqrestore(&phba->hbalock, iflags); 9888 return MBX_NOT_FINISHED; 9889 } 9890 if (unlikely(phba->sli.mbox_active)) { 9891 spin_unlock_irqrestore(&phba->hbalock, iflags); 9892 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9893 "0384 There is pending active mailbox cmd\n"); 9894 return MBX_NOT_FINISHED; 9895 } 9896 /* Take the mailbox command service token */ 9897 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9898 9899 /* Get the next mailbox command from head of queue */ 9900 mboxq = lpfc_mbox_get(phba); 9901 9902 /* If no more mailbox command waiting for post, we're done */ 9903 if (!mboxq) { 9904 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9905 spin_unlock_irqrestore(&phba->hbalock, iflags); 9906 return MBX_SUCCESS; 9907 } 9908 phba->sli.mbox_active = mboxq; 9909 spin_unlock_irqrestore(&phba->hbalock, iflags); 9910 9911 /* Check device readiness for posting mailbox command */ 9912 rc = lpfc_mbox_dev_check(phba); 9913 if (unlikely(rc)) 9914 /* Driver clean routine will clean up pending mailbox */ 9915 goto out_not_finished; 9916 9917 /* Prepare the mbox command to be posted */ 9918 mqe = &mboxq->u.mqe; 9919 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 9920 9921 /* Start timer for the mbox_tmo and log some mailbox post messages */ 9922 mod_timer(&psli->mbox_tmo, (jiffies + 9923 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 9924 9925 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9926 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 9927 "x%x x%x\n", 9928 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9929 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9930 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9931 phba->pport->port_state, psli->sli_flag); 9932 9933 if (mbx_cmnd != MBX_HEARTBEAT) { 9934 if (mboxq->vport) { 9935 lpfc_debugfs_disc_trc(mboxq->vport, 9936 LPFC_DISC_TRC_MBOX_VPORT, 9937 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9938 mbx_cmnd, mqe->un.mb_words[0], 9939 mqe->un.mb_words[1]); 9940 } else { 9941 lpfc_debugfs_disc_trc(phba->pport, 9942 LPFC_DISC_TRC_MBOX, 9943 "MBOX Send: cmd:x%x mb:x%x x%x", 9944 mbx_cmnd, mqe->un.mb_words[0], 9945 mqe->un.mb_words[1]); 9946 } 9947 } 9948 psli->slistat.mbox_cmd++; 9949 9950 /* Post the mailbox command to the port */ 9951 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 9952 if (rc != MBX_SUCCESS) { 9953 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9954 "(%d):2533 Mailbox command x%x (x%x/x%x) " 9955 "cannot issue Data: x%x x%x\n", 9956 mboxq->vport ? mboxq->vport->vpi : 0, 9957 mboxq->u.mb.mbxCommand, 9958 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9959 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9960 psli->sli_flag, MBX_NOWAIT); 9961 goto out_not_finished; 9962 } 9963 9964 return rc; 9965 9966 out_not_finished: 9967 spin_lock_irqsave(&phba->hbalock, iflags); 9968 if (phba->sli.mbox_active) { 9969 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 9970 __lpfc_mbox_cmpl_put(phba, mboxq); 9971 /* Release the token */ 9972 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9973 phba->sli.mbox_active = NULL; 9974 } 9975 spin_unlock_irqrestore(&phba->hbalock, iflags); 9976 9977 return MBX_NOT_FINISHED; 9978 } 9979 9980 /** 9981 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 9982 * @phba: Pointer to HBA context object. 9983 * @pmbox: Pointer to mailbox object. 9984 * @flag: Flag indicating how the mailbox need to be processed. 9985 * 9986 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 9987 * the API jump table function pointer from the lpfc_hba struct. 9988 * 9989 * Return codes the caller owns the mailbox command after the return of the 9990 * function. 9991 **/ 9992 int 9993 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 9994 { 9995 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 9996 } 9997 9998 /** 9999 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 10000 * @phba: The hba struct for which this call is being executed. 10001 * @dev_grp: The HBA PCI-Device group number. 10002 * 10003 * This routine sets up the mbox interface API function jump table in @phba 10004 * struct. 10005 * Returns: 0 - success, -ENODEV - failure. 10006 **/ 10007 int 10008 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10009 { 10010 10011 switch (dev_grp) { 10012 case LPFC_PCI_DEV_LP: 10013 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 10014 phba->lpfc_sli_handle_slow_ring_event = 10015 lpfc_sli_handle_slow_ring_event_s3; 10016 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 10017 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 10018 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 10019 break; 10020 case LPFC_PCI_DEV_OC: 10021 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 10022 phba->lpfc_sli_handle_slow_ring_event = 10023 lpfc_sli_handle_slow_ring_event_s4; 10024 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 10025 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 10026 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 10027 break; 10028 default: 10029 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10030 "1420 Invalid HBA PCI-device group: 0x%x\n", 10031 dev_grp); 10032 return -ENODEV; 10033 } 10034 return 0; 10035 } 10036 10037 /** 10038 * __lpfc_sli_ringtx_put - Add an iocb to the txq 10039 * @phba: Pointer to HBA context object. 10040 * @pring: Pointer to driver SLI ring object. 10041 * @piocb: Pointer to address of newly added command iocb. 10042 * 10043 * This function is called with hbalock held for SLI3 ports or 10044 * the ring lock held for SLI4 ports to add a command 10045 * iocb to the txq when SLI layer cannot submit the command iocb 10046 * to the ring. 10047 **/ 10048 void 10049 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10050 struct lpfc_iocbq *piocb) 10051 { 10052 if (phba->sli_rev == LPFC_SLI_REV4) 10053 lockdep_assert_held(&pring->ring_lock); 10054 else 10055 lockdep_assert_held(&phba->hbalock); 10056 /* Insert the caller's iocb in the txq tail for later processing. */ 10057 list_add_tail(&piocb->list, &pring->txq); 10058 } 10059 10060 /** 10061 * lpfc_sli_next_iocb - Get the next iocb in the txq 10062 * @phba: Pointer to HBA context object. 10063 * @pring: Pointer to driver SLI ring object. 10064 * @piocb: Pointer to address of newly added command iocb. 10065 * 10066 * This function is called with hbalock held before a new 10067 * iocb is submitted to the firmware. This function checks 10068 * txq to flush the iocbs in txq to Firmware before 10069 * submitting new iocbs to the Firmware. 10070 * If there are iocbs in the txq which need to be submitted 10071 * to firmware, lpfc_sli_next_iocb returns the first element 10072 * of the txq after dequeuing it from txq. 10073 * If there is no iocb in the txq then the function will return 10074 * *piocb and *piocb is set to NULL. Caller needs to check 10075 * *piocb to find if there are more commands in the txq. 10076 **/ 10077 static struct lpfc_iocbq * 10078 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10079 struct lpfc_iocbq **piocb) 10080 { 10081 struct lpfc_iocbq * nextiocb; 10082 10083 lockdep_assert_held(&phba->hbalock); 10084 10085 nextiocb = lpfc_sli_ringtx_get(phba, pring); 10086 if (!nextiocb) { 10087 nextiocb = *piocb; 10088 *piocb = NULL; 10089 } 10090 10091 return nextiocb; 10092 } 10093 10094 /** 10095 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 10096 * @phba: Pointer to HBA context object. 10097 * @ring_number: SLI ring number to issue iocb on. 10098 * @piocb: Pointer to command iocb. 10099 * @flag: Flag indicating if this command can be put into txq. 10100 * 10101 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 10102 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 10103 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 10104 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 10105 * this function allows only iocbs for posting buffers. This function finds 10106 * next available slot in the command ring and posts the command to the 10107 * available slot and writes the port attention register to request HBA start 10108 * processing new iocb. If there is no slot available in the ring and 10109 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 10110 * the function returns IOCB_BUSY. 10111 * 10112 * This function is called with hbalock held. The function will return success 10113 * after it successfully submit the iocb to firmware or after adding to the 10114 * txq. 10115 **/ 10116 static int 10117 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 10118 struct lpfc_iocbq *piocb, uint32_t flag) 10119 { 10120 struct lpfc_iocbq *nextiocb; 10121 IOCB_t *iocb; 10122 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 10123 10124 lockdep_assert_held(&phba->hbalock); 10125 10126 if (piocb->iocb_cmpl && (!piocb->vport) && 10127 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 10128 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 10129 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10130 "1807 IOCB x%x failed. No vport\n", 10131 piocb->iocb.ulpCommand); 10132 dump_stack(); 10133 return IOCB_ERROR; 10134 } 10135 10136 10137 /* If the PCI channel is in offline state, do not post iocbs. */ 10138 if (unlikely(pci_channel_offline(phba->pcidev))) 10139 return IOCB_ERROR; 10140 10141 /* If HBA has a deferred error attention, fail the iocb. */ 10142 if (unlikely(phba->hba_flag & DEFER_ERATT)) 10143 return IOCB_ERROR; 10144 10145 /* 10146 * We should never get an IOCB if we are in a < LINK_DOWN state 10147 */ 10148 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10149 return IOCB_ERROR; 10150 10151 /* 10152 * Check to see if we are blocking IOCB processing because of a 10153 * outstanding event. 10154 */ 10155 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 10156 goto iocb_busy; 10157 10158 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 10159 /* 10160 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 10161 * can be issued if the link is not up. 10162 */ 10163 switch (piocb->iocb.ulpCommand) { 10164 case CMD_GEN_REQUEST64_CR: 10165 case CMD_GEN_REQUEST64_CX: 10166 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 10167 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 10168 FC_RCTL_DD_UNSOL_CMD) || 10169 (piocb->iocb.un.genreq64.w5.hcsw.Type != 10170 MENLO_TRANSPORT_TYPE)) 10171 10172 goto iocb_busy; 10173 break; 10174 case CMD_QUE_RING_BUF_CN: 10175 case CMD_QUE_RING_BUF64_CN: 10176 /* 10177 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 10178 * completion, iocb_cmpl MUST be 0. 10179 */ 10180 if (piocb->iocb_cmpl) 10181 piocb->iocb_cmpl = NULL; 10182 fallthrough; 10183 case CMD_CREATE_XRI_CR: 10184 case CMD_CLOSE_XRI_CN: 10185 case CMD_CLOSE_XRI_CX: 10186 break; 10187 default: 10188 goto iocb_busy; 10189 } 10190 10191 /* 10192 * For FCP commands, we must be in a state where we can process link 10193 * attention events. 10194 */ 10195 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 10196 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 10197 goto iocb_busy; 10198 } 10199 10200 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 10201 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 10202 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 10203 10204 if (iocb) 10205 lpfc_sli_update_ring(phba, pring); 10206 else 10207 lpfc_sli_update_full_ring(phba, pring); 10208 10209 if (!piocb) 10210 return IOCB_SUCCESS; 10211 10212 goto out_busy; 10213 10214 iocb_busy: 10215 pring->stats.iocb_cmd_delay++; 10216 10217 out_busy: 10218 10219 if (!(flag & SLI_IOCB_RET_IOCB)) { 10220 __lpfc_sli_ringtx_put(phba, pring, piocb); 10221 return IOCB_SUCCESS; 10222 } 10223 10224 return IOCB_BUSY; 10225 } 10226 10227 /** 10228 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 10229 * @phba: Pointer to HBA context object. 10230 * @piocbq: Pointer to command iocb. 10231 * @sglq: Pointer to the scatter gather queue object. 10232 * 10233 * This routine converts the bpl or bde that is in the IOCB 10234 * to a sgl list for the sli4 hardware. The physical address 10235 * of the bpl/bde is converted back to a virtual address. 10236 * If the IOCB contains a BPL then the list of BDE's is 10237 * converted to sli4_sge's. If the IOCB contains a single 10238 * BDE then it is converted to a single sli_sge. 10239 * The IOCB is still in cpu endianess so the contents of 10240 * the bpl can be used without byte swapping. 10241 * 10242 * Returns valid XRI = Success, NO_XRI = Failure. 10243 **/ 10244 static uint16_t 10245 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 10246 struct lpfc_sglq *sglq) 10247 { 10248 uint16_t xritag = NO_XRI; 10249 struct ulp_bde64 *bpl = NULL; 10250 struct ulp_bde64 bde; 10251 struct sli4_sge *sgl = NULL; 10252 struct lpfc_dmabuf *dmabuf; 10253 IOCB_t *icmd; 10254 int numBdes = 0; 10255 int i = 0; 10256 uint32_t offset = 0; /* accumulated offset in the sg request list */ 10257 int inbound = 0; /* number of sg reply entries inbound from firmware */ 10258 10259 if (!piocbq || !sglq) 10260 return xritag; 10261 10262 sgl = (struct sli4_sge *)sglq->sgl; 10263 icmd = &piocbq->iocb; 10264 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 10265 return sglq->sli4_xritag; 10266 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 10267 numBdes = icmd->un.genreq64.bdl.bdeSize / 10268 sizeof(struct ulp_bde64); 10269 /* The addrHigh and addrLow fields within the IOCB 10270 * have not been byteswapped yet so there is no 10271 * need to swap them back. 10272 */ 10273 if (piocbq->context3) 10274 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 10275 else 10276 return xritag; 10277 10278 bpl = (struct ulp_bde64 *)dmabuf->virt; 10279 if (!bpl) 10280 return xritag; 10281 10282 for (i = 0; i < numBdes; i++) { 10283 /* Should already be byte swapped. */ 10284 sgl->addr_hi = bpl->addrHigh; 10285 sgl->addr_lo = bpl->addrLow; 10286 10287 sgl->word2 = le32_to_cpu(sgl->word2); 10288 if ((i+1) == numBdes) 10289 bf_set(lpfc_sli4_sge_last, sgl, 1); 10290 else 10291 bf_set(lpfc_sli4_sge_last, sgl, 0); 10292 /* swap the size field back to the cpu so we 10293 * can assign it to the sgl. 10294 */ 10295 bde.tus.w = le32_to_cpu(bpl->tus.w); 10296 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 10297 /* The offsets in the sgl need to be accumulated 10298 * separately for the request and reply lists. 10299 * The request is always first, the reply follows. 10300 */ 10301 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 10302 /* add up the reply sg entries */ 10303 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 10304 inbound++; 10305 /* first inbound? reset the offset */ 10306 if (inbound == 1) 10307 offset = 0; 10308 bf_set(lpfc_sli4_sge_offset, sgl, offset); 10309 bf_set(lpfc_sli4_sge_type, sgl, 10310 LPFC_SGE_TYPE_DATA); 10311 offset += bde.tus.f.bdeSize; 10312 } 10313 sgl->word2 = cpu_to_le32(sgl->word2); 10314 bpl++; 10315 sgl++; 10316 } 10317 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 10318 /* The addrHigh and addrLow fields of the BDE have not 10319 * been byteswapped yet so they need to be swapped 10320 * before putting them in the sgl. 10321 */ 10322 sgl->addr_hi = 10323 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 10324 sgl->addr_lo = 10325 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 10326 sgl->word2 = le32_to_cpu(sgl->word2); 10327 bf_set(lpfc_sli4_sge_last, sgl, 1); 10328 sgl->word2 = cpu_to_le32(sgl->word2); 10329 sgl->sge_len = 10330 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 10331 } 10332 return sglq->sli4_xritag; 10333 } 10334 10335 /** 10336 * lpfc_sli4_iocb2wqe - Convert the IOCB to a work queue entry. 10337 * @phba: Pointer to HBA context object. 10338 * @iocbq: Pointer to command iocb. 10339 * @wqe: Pointer to the work queue entry. 10340 * 10341 * This routine converts the iocb command to its Work Queue Entry 10342 * equivalent. The wqe pointer should not have any fields set when 10343 * this routine is called because it will memcpy over them. 10344 * This routine does not set the CQ_ID or the WQEC bits in the 10345 * wqe. 10346 * 10347 * Returns: 0 = Success, IOCB_ERROR = Failure. 10348 **/ 10349 static int 10350 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 10351 union lpfc_wqe128 *wqe) 10352 { 10353 uint32_t xmit_len = 0, total_len = 0; 10354 uint8_t ct = 0; 10355 uint32_t fip; 10356 uint32_t abort_tag; 10357 uint8_t command_type = ELS_COMMAND_NON_FIP; 10358 uint8_t cmnd; 10359 uint16_t xritag; 10360 uint16_t abrt_iotag; 10361 struct lpfc_iocbq *abrtiocbq; 10362 struct ulp_bde64 *bpl = NULL; 10363 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 10364 int numBdes, i; 10365 struct ulp_bde64 bde; 10366 struct lpfc_nodelist *ndlp; 10367 uint32_t *pcmd; 10368 uint32_t if_type; 10369 10370 fip = phba->hba_flag & HBA_FIP_SUPPORT; 10371 /* The fcp commands will set command type */ 10372 if (iocbq->iocb_flag & LPFC_IO_FCP) 10373 command_type = FCP_COMMAND; 10374 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 10375 command_type = ELS_COMMAND_FIP; 10376 else 10377 command_type = ELS_COMMAND_NON_FIP; 10378 10379 if (phba->fcp_embed_io) 10380 memset(wqe, 0, sizeof(union lpfc_wqe128)); 10381 /* Some of the fields are in the right position already */ 10382 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 10383 /* The ct field has moved so reset */ 10384 wqe->generic.wqe_com.word7 = 0; 10385 wqe->generic.wqe_com.word10 = 0; 10386 10387 abort_tag = (uint32_t) iocbq->iotag; 10388 xritag = iocbq->sli4_xritag; 10389 /* words0-2 bpl convert bde */ 10390 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 10391 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 10392 sizeof(struct ulp_bde64); 10393 bpl = (struct ulp_bde64 *) 10394 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 10395 if (!bpl) 10396 return IOCB_ERROR; 10397 10398 /* Should already be byte swapped. */ 10399 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 10400 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 10401 /* swap the size field back to the cpu so we 10402 * can assign it to the sgl. 10403 */ 10404 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 10405 xmit_len = wqe->generic.bde.tus.f.bdeSize; 10406 total_len = 0; 10407 for (i = 0; i < numBdes; i++) { 10408 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 10409 total_len += bde.tus.f.bdeSize; 10410 } 10411 } else 10412 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 10413 10414 iocbq->iocb.ulpIoTag = iocbq->iotag; 10415 cmnd = iocbq->iocb.ulpCommand; 10416 10417 switch (iocbq->iocb.ulpCommand) { 10418 case CMD_ELS_REQUEST64_CR: 10419 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 10420 ndlp = iocbq->context_un.ndlp; 10421 else 10422 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10423 if (!iocbq->iocb.ulpLe) { 10424 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10425 "2007 Only Limited Edition cmd Format" 10426 " supported 0x%x\n", 10427 iocbq->iocb.ulpCommand); 10428 return IOCB_ERROR; 10429 } 10430 10431 wqe->els_req.payload_len = xmit_len; 10432 /* Els_reguest64 has a TMO */ 10433 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 10434 iocbq->iocb.ulpTimeout); 10435 /* Need a VF for word 4 set the vf bit*/ 10436 bf_set(els_req64_vf, &wqe->els_req, 0); 10437 /* And a VFID for word 12 */ 10438 bf_set(els_req64_vfid, &wqe->els_req, 0); 10439 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 10440 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10441 iocbq->iocb.ulpContext); 10442 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 10443 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 10444 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 10445 if (command_type == ELS_COMMAND_FIP) 10446 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 10447 >> LPFC_FIP_ELS_ID_SHIFT); 10448 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 10449 iocbq->context2)->virt); 10450 if_type = bf_get(lpfc_sli_intf_if_type, 10451 &phba->sli4_hba.sli_intf); 10452 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 10453 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 10454 *pcmd == ELS_CMD_SCR || 10455 *pcmd == ELS_CMD_RDF || 10456 *pcmd == ELS_CMD_EDC || 10457 *pcmd == ELS_CMD_RSCN_XMT || 10458 *pcmd == ELS_CMD_FDISC || 10459 *pcmd == ELS_CMD_LOGO || 10460 *pcmd == ELS_CMD_QFPA || 10461 *pcmd == ELS_CMD_UVEM || 10462 *pcmd == ELS_CMD_PLOGI)) { 10463 bf_set(els_req64_sp, &wqe->els_req, 1); 10464 bf_set(els_req64_sid, &wqe->els_req, 10465 iocbq->vport->fc_myDID); 10466 if ((*pcmd == ELS_CMD_FLOGI) && 10467 !(phba->fc_topology == 10468 LPFC_TOPOLOGY_LOOP)) 10469 bf_set(els_req64_sid, &wqe->els_req, 0); 10470 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 10471 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10472 phba->vpi_ids[iocbq->vport->vpi]); 10473 } else if (pcmd && iocbq->context1) { 10474 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 10475 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10476 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 10477 } 10478 } 10479 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 10480 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 10481 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 10482 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 10483 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 10484 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 10485 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 10486 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 10487 wqe->els_req.max_response_payload_len = total_len - xmit_len; 10488 break; 10489 case CMD_XMIT_SEQUENCE64_CX: 10490 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 10491 iocbq->iocb.un.ulpWord[3]); 10492 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 10493 iocbq->iocb.unsli3.rcvsli3.ox_id); 10494 /* The entire sequence is transmitted for this IOCB */ 10495 xmit_len = total_len; 10496 cmnd = CMD_XMIT_SEQUENCE64_CR; 10497 if (phba->link_flag & LS_LOOPBACK_MODE) 10498 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 10499 fallthrough; 10500 case CMD_XMIT_SEQUENCE64_CR: 10501 /* word3 iocb=io_tag32 wqe=reserved */ 10502 wqe->xmit_sequence.rsvd3 = 0; 10503 /* word4 relative_offset memcpy */ 10504 /* word5 r_ctl/df_ctl memcpy */ 10505 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 10506 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 10507 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 10508 LPFC_WQE_IOD_WRITE); 10509 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 10510 LPFC_WQE_LENLOC_WORD12); 10511 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 10512 wqe->xmit_sequence.xmit_len = xmit_len; 10513 command_type = OTHER_COMMAND; 10514 break; 10515 case CMD_XMIT_BCAST64_CN: 10516 /* word3 iocb=iotag32 wqe=seq_payload_len */ 10517 wqe->xmit_bcast64.seq_payload_len = xmit_len; 10518 /* word4 iocb=rsvd wqe=rsvd */ 10519 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 10520 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 10521 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 10522 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10523 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 10524 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 10525 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 10526 LPFC_WQE_LENLOC_WORD3); 10527 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 10528 break; 10529 case CMD_FCP_IWRITE64_CR: 10530 command_type = FCP_COMMAND_DATA_OUT; 10531 /* word3 iocb=iotag wqe=payload_offset_len */ 10532 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 10533 bf_set(payload_offset_len, &wqe->fcp_iwrite, 10534 xmit_len + sizeof(struct fcp_rsp)); 10535 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 10536 0); 10537 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 10538 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 10539 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 10540 iocbq->iocb.ulpFCP2Rcvy); 10541 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 10542 /* Always open the exchange */ 10543 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 10544 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 10545 LPFC_WQE_LENLOC_WORD4); 10546 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 10547 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 10548 if (iocbq->iocb_flag & LPFC_IO_OAS) { 10549 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 10550 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 10551 if (iocbq->priority) { 10552 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10553 (iocbq->priority << 1)); 10554 } else { 10555 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10556 (phba->cfg_XLanePriority << 1)); 10557 } 10558 } 10559 /* Note, word 10 is already initialized to 0 */ 10560 10561 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 10562 if (phba->cfg_enable_pbde) 10563 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1); 10564 else 10565 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 10566 10567 if (phba->fcp_embed_io) { 10568 struct lpfc_io_buf *lpfc_cmd; 10569 struct sli4_sge *sgl; 10570 struct fcp_cmnd *fcp_cmnd; 10571 uint32_t *ptr; 10572 10573 /* 128 byte wqe support here */ 10574 10575 lpfc_cmd = iocbq->context1; 10576 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10577 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10578 10579 /* Word 0-2 - FCP_CMND */ 10580 wqe->generic.bde.tus.f.bdeFlags = 10581 BUFF_TYPE_BDE_IMMED; 10582 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10583 wqe->generic.bde.addrHigh = 0; 10584 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10585 10586 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10587 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10588 10589 /* Word 22-29 FCP CMND Payload */ 10590 ptr = &wqe->words[22]; 10591 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10592 } 10593 break; 10594 case CMD_FCP_IREAD64_CR: 10595 /* word3 iocb=iotag wqe=payload_offset_len */ 10596 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 10597 bf_set(payload_offset_len, &wqe->fcp_iread, 10598 xmit_len + sizeof(struct fcp_rsp)); 10599 bf_set(cmd_buff_len, &wqe->fcp_iread, 10600 0); 10601 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 10602 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 10603 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 10604 iocbq->iocb.ulpFCP2Rcvy); 10605 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 10606 /* Always open the exchange */ 10607 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 10608 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 10609 LPFC_WQE_LENLOC_WORD4); 10610 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 10611 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 10612 if (iocbq->iocb_flag & LPFC_IO_OAS) { 10613 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 10614 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 10615 if (iocbq->priority) { 10616 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 10617 (iocbq->priority << 1)); 10618 } else { 10619 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 10620 (phba->cfg_XLanePriority << 1)); 10621 } 10622 } 10623 /* Note, word 10 is already initialized to 0 */ 10624 10625 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 10626 if (phba->cfg_enable_pbde) 10627 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1); 10628 else 10629 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 10630 10631 if (phba->fcp_embed_io) { 10632 struct lpfc_io_buf *lpfc_cmd; 10633 struct sli4_sge *sgl; 10634 struct fcp_cmnd *fcp_cmnd; 10635 uint32_t *ptr; 10636 10637 /* 128 byte wqe support here */ 10638 10639 lpfc_cmd = iocbq->context1; 10640 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10641 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10642 10643 /* Word 0-2 - FCP_CMND */ 10644 wqe->generic.bde.tus.f.bdeFlags = 10645 BUFF_TYPE_BDE_IMMED; 10646 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10647 wqe->generic.bde.addrHigh = 0; 10648 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10649 10650 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 10651 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 10652 10653 /* Word 22-29 FCP CMND Payload */ 10654 ptr = &wqe->words[22]; 10655 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10656 } 10657 break; 10658 case CMD_FCP_ICMND64_CR: 10659 /* word3 iocb=iotag wqe=payload_offset_len */ 10660 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 10661 bf_set(payload_offset_len, &wqe->fcp_icmd, 10662 xmit_len + sizeof(struct fcp_rsp)); 10663 bf_set(cmd_buff_len, &wqe->fcp_icmd, 10664 0); 10665 /* word3 iocb=IO_TAG wqe=reserved */ 10666 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 10667 /* Always open the exchange */ 10668 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 10669 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 10670 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 10671 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 10672 LPFC_WQE_LENLOC_NONE); 10673 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 10674 iocbq->iocb.ulpFCP2Rcvy); 10675 if (iocbq->iocb_flag & LPFC_IO_OAS) { 10676 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 10677 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 10678 if (iocbq->priority) { 10679 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 10680 (iocbq->priority << 1)); 10681 } else { 10682 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 10683 (phba->cfg_XLanePriority << 1)); 10684 } 10685 } 10686 /* Note, word 10 is already initialized to 0 */ 10687 10688 if (phba->fcp_embed_io) { 10689 struct lpfc_io_buf *lpfc_cmd; 10690 struct sli4_sge *sgl; 10691 struct fcp_cmnd *fcp_cmnd; 10692 uint32_t *ptr; 10693 10694 /* 128 byte wqe support here */ 10695 10696 lpfc_cmd = iocbq->context1; 10697 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10698 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10699 10700 /* Word 0-2 - FCP_CMND */ 10701 wqe->generic.bde.tus.f.bdeFlags = 10702 BUFF_TYPE_BDE_IMMED; 10703 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10704 wqe->generic.bde.addrHigh = 0; 10705 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10706 10707 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 10708 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 10709 10710 /* Word 22-29 FCP CMND Payload */ 10711 ptr = &wqe->words[22]; 10712 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10713 } 10714 break; 10715 case CMD_GEN_REQUEST64_CR: 10716 /* For this command calculate the xmit length of the 10717 * request bde. 10718 */ 10719 xmit_len = 0; 10720 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 10721 sizeof(struct ulp_bde64); 10722 for (i = 0; i < numBdes; i++) { 10723 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 10724 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 10725 break; 10726 xmit_len += bde.tus.f.bdeSize; 10727 } 10728 /* word3 iocb=IO_TAG wqe=request_payload_len */ 10729 wqe->gen_req.request_payload_len = xmit_len; 10730 /* word4 iocb=parameter wqe=relative_offset memcpy */ 10731 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 10732 /* word6 context tag copied in memcpy */ 10733 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 10734 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 10735 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10736 "2015 Invalid CT %x command 0x%x\n", 10737 ct, iocbq->iocb.ulpCommand); 10738 return IOCB_ERROR; 10739 } 10740 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 10741 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 10742 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 10743 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 10744 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 10745 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 10746 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 10747 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 10748 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 10749 command_type = OTHER_COMMAND; 10750 break; 10751 case CMD_XMIT_ELS_RSP64_CX: 10752 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10753 /* words0-2 BDE memcpy */ 10754 /* word3 iocb=iotag32 wqe=response_payload_len */ 10755 wqe->xmit_els_rsp.response_payload_len = xmit_len; 10756 /* word4 */ 10757 wqe->xmit_els_rsp.word4 = 0; 10758 /* word5 iocb=rsvd wge=did */ 10759 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 10760 iocbq->iocb.un.xseq64.xmit_els_remoteID); 10761 10762 if_type = bf_get(lpfc_sli_intf_if_type, 10763 &phba->sli4_hba.sli_intf); 10764 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 10765 if (iocbq->vport->fc_flag & FC_PT2PT) { 10766 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 10767 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 10768 iocbq->vport->fc_myDID); 10769 if (iocbq->vport->fc_myDID == Fabric_DID) { 10770 bf_set(wqe_els_did, 10771 &wqe->xmit_els_rsp.wqe_dest, 0); 10772 } 10773 } 10774 } 10775 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 10776 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10777 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 10778 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 10779 iocbq->iocb.unsli3.rcvsli3.ox_id); 10780 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 10781 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 10782 phba->vpi_ids[iocbq->vport->vpi]); 10783 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 10784 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 10785 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 10786 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 10787 LPFC_WQE_LENLOC_WORD3); 10788 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 10789 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 10790 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 10791 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 10792 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 10793 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 10794 iocbq->vport->fc_myDID); 10795 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 10796 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 10797 phba->vpi_ids[phba->pport->vpi]); 10798 } 10799 command_type = OTHER_COMMAND; 10800 break; 10801 case CMD_CLOSE_XRI_CN: 10802 case CMD_ABORT_XRI_CN: 10803 case CMD_ABORT_XRI_CX: 10804 /* words 0-2 memcpy should be 0 rserved */ 10805 /* port will send abts */ 10806 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 10807 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 10808 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 10809 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 10810 } else 10811 fip = 0; 10812 10813 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 10814 /* 10815 * The link is down, or the command was ELS_FIP 10816 * so the fw does not need to send abts 10817 * on the wire. 10818 */ 10819 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 10820 else 10821 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 10822 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 10823 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 10824 wqe->abort_cmd.rsrvd5 = 0; 10825 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 10826 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10827 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 10828 /* 10829 * The abort handler will send us CMD_ABORT_XRI_CN or 10830 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 10831 */ 10832 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 10833 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 10834 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 10835 LPFC_WQE_LENLOC_NONE); 10836 cmnd = CMD_ABORT_XRI_CX; 10837 command_type = OTHER_COMMAND; 10838 xritag = 0; 10839 break; 10840 case CMD_XMIT_BLS_RSP64_CX: 10841 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10842 /* As BLS ABTS RSP WQE is very different from other WQEs, 10843 * we re-construct this WQE here based on information in 10844 * iocbq from scratch. 10845 */ 10846 memset(wqe, 0, sizeof(*wqe)); 10847 /* OX_ID is invariable to who sent ABTS to CT exchange */ 10848 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 10849 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 10850 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 10851 LPFC_ABTS_UNSOL_INT) { 10852 /* ABTS sent by initiator to CT exchange, the 10853 * RX_ID field will be filled with the newly 10854 * allocated responder XRI. 10855 */ 10856 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10857 iocbq->sli4_xritag); 10858 } else { 10859 /* ABTS sent by responder to CT exchange, the 10860 * RX_ID field will be filled with the responder 10861 * RX_ID from ABTS. 10862 */ 10863 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10864 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 10865 } 10866 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 10867 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 10868 10869 /* Use CT=VPI */ 10870 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 10871 ndlp->nlp_DID); 10872 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 10873 iocbq->iocb.ulpContext); 10874 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 10875 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 10876 phba->vpi_ids[phba->pport->vpi]); 10877 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 10878 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 10879 LPFC_WQE_LENLOC_NONE); 10880 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 10881 command_type = OTHER_COMMAND; 10882 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 10883 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 10884 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 10885 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 10886 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 10887 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 10888 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 10889 } 10890 10891 break; 10892 case CMD_SEND_FRAME: 10893 bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME); 10894 bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */ 10895 bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */ 10896 bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1); 10897 bf_set(wqe_xbl, &wqe->generic.wqe_com, 1); 10898 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10899 bf_set(wqe_xc, &wqe->generic.wqe_com, 1); 10900 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA); 10901 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10902 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10903 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10904 return 0; 10905 case CMD_XRI_ABORTED_CX: 10906 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 10907 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 10908 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 10909 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 10910 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 10911 default: 10912 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10913 "2014 Invalid command 0x%x\n", 10914 iocbq->iocb.ulpCommand); 10915 return IOCB_ERROR; 10916 } 10917 10918 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 10919 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 10920 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 10921 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 10922 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 10923 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 10924 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 10925 LPFC_IO_DIF_INSERT); 10926 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10927 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10928 wqe->generic.wqe_com.abort_tag = abort_tag; 10929 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 10930 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 10931 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 10932 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10933 return 0; 10934 } 10935 10936 /** 10937 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10938 * @phba: Pointer to HBA context object. 10939 * @ring_number: SLI ring number to issue wqe on. 10940 * @piocb: Pointer to command iocb. 10941 * @flag: Flag indicating if this command can be put into txq. 10942 * 10943 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10944 * send an iocb command to an HBA with SLI-4 interface spec. 10945 * 10946 * This function takes the hbalock before invoking the lockless version. 10947 * The function will return success after it successfully submit the wqe to 10948 * firmware or after adding to the txq. 10949 **/ 10950 static int 10951 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10952 struct lpfc_iocbq *piocb, uint32_t flag) 10953 { 10954 unsigned long iflags; 10955 int rc; 10956 10957 spin_lock_irqsave(&phba->hbalock, iflags); 10958 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10959 spin_unlock_irqrestore(&phba->hbalock, iflags); 10960 10961 return rc; 10962 } 10963 10964 /** 10965 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10966 * @phba: Pointer to HBA context object. 10967 * @ring_number: SLI ring number to issue wqe on. 10968 * @piocb: Pointer to command iocb. 10969 * @flag: Flag indicating if this command can be put into txq. 10970 * 10971 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10972 * an wqe command to an HBA with SLI-4 interface spec. 10973 * 10974 * This function is a lockless version. The function will return success 10975 * after it successfully submit the wqe to firmware or after adding to the 10976 * txq. 10977 **/ 10978 static int 10979 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10980 struct lpfc_iocbq *piocb, uint32_t flag) 10981 { 10982 int rc; 10983 struct lpfc_io_buf *lpfc_cmd = 10984 (struct lpfc_io_buf *)piocb->context1; 10985 union lpfc_wqe128 *wqe = &piocb->wqe; 10986 struct sli4_sge *sgl; 10987 10988 /* 128 byte wqe support here */ 10989 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10990 10991 if (phba->fcp_embed_io) { 10992 struct fcp_cmnd *fcp_cmnd; 10993 u32 *ptr; 10994 10995 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10996 10997 /* Word 0-2 - FCP_CMND */ 10998 wqe->generic.bde.tus.f.bdeFlags = 10999 BUFF_TYPE_BDE_IMMED; 11000 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 11001 wqe->generic.bde.addrHigh = 0; 11002 wqe->generic.bde.addrLow = 88; /* Word 22 */ 11003 11004 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 11005 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 11006 11007 /* Word 22-29 FCP CMND Payload */ 11008 ptr = &wqe->words[22]; 11009 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 11010 } else { 11011 /* Word 0-2 - Inline BDE */ 11012 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 11013 wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd); 11014 wqe->generic.bde.addrHigh = sgl->addr_hi; 11015 wqe->generic.bde.addrLow = sgl->addr_lo; 11016 11017 /* Word 10 */ 11018 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 11019 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 11020 } 11021 11022 /* add the VMID tags as per switch response */ 11023 if (unlikely(piocb->iocb_flag & LPFC_IO_VMID)) { 11024 if (phba->pport->vmid_priority_tagging) { 11025 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 11026 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 11027 (piocb->vmid_tag.cs_ctl_vmid)); 11028 } else { 11029 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); 11030 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 11031 wqe->words[31] = piocb->vmid_tag.app_id; 11032 } 11033 } 11034 rc = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 11035 return rc; 11036 } 11037 11038 /** 11039 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 11040 * @phba: Pointer to HBA context object. 11041 * @ring_number: SLI ring number to issue iocb on. 11042 * @piocb: Pointer to command iocb. 11043 * @flag: Flag indicating if this command can be put into txq. 11044 * 11045 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 11046 * an iocb command to an HBA with SLI-4 interface spec. 11047 * 11048 * This function is called with ringlock held. The function will return success 11049 * after it successfully submit the iocb to firmware or after adding to the 11050 * txq. 11051 **/ 11052 static int 11053 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 11054 struct lpfc_iocbq *piocb, uint32_t flag) 11055 { 11056 struct lpfc_sglq *sglq; 11057 union lpfc_wqe128 wqe; 11058 struct lpfc_queue *wq; 11059 struct lpfc_sli_ring *pring; 11060 11061 /* Get the WQ */ 11062 if ((piocb->iocb_flag & LPFC_IO_FCP) || 11063 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 11064 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 11065 } else { 11066 wq = phba->sli4_hba.els_wq; 11067 } 11068 11069 /* Get corresponding ring */ 11070 pring = wq->pring; 11071 11072 /* 11073 * The WQE can be either 64 or 128 bytes, 11074 */ 11075 11076 lockdep_assert_held(&pring->ring_lock); 11077 11078 if (piocb->sli4_xritag == NO_XRI) { 11079 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 11080 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 11081 sglq = NULL; 11082 else { 11083 if (!list_empty(&pring->txq)) { 11084 if (!(flag & SLI_IOCB_RET_IOCB)) { 11085 __lpfc_sli_ringtx_put(phba, 11086 pring, piocb); 11087 return IOCB_SUCCESS; 11088 } else { 11089 return IOCB_BUSY; 11090 } 11091 } else { 11092 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 11093 if (!sglq) { 11094 if (!(flag & SLI_IOCB_RET_IOCB)) { 11095 __lpfc_sli_ringtx_put(phba, 11096 pring, 11097 piocb); 11098 return IOCB_SUCCESS; 11099 } else 11100 return IOCB_BUSY; 11101 } 11102 } 11103 } 11104 } else if (piocb->iocb_flag & LPFC_IO_FCP) { 11105 /* These IO's already have an XRI and a mapped sgl. */ 11106 sglq = NULL; 11107 } 11108 else { 11109 /* 11110 * This is a continuation of a commandi,(CX) so this 11111 * sglq is on the active list 11112 */ 11113 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 11114 if (!sglq) 11115 return IOCB_ERROR; 11116 } 11117 11118 if (sglq) { 11119 piocb->sli4_lxritag = sglq->sli4_lxritag; 11120 piocb->sli4_xritag = sglq->sli4_xritag; 11121 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 11122 return IOCB_ERROR; 11123 } 11124 11125 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe)) 11126 return IOCB_ERROR; 11127 11128 if (lpfc_sli4_wq_put(wq, &wqe)) 11129 return IOCB_ERROR; 11130 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 11131 11132 return 0; 11133 } 11134 11135 /* 11136 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 11137 * 11138 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 11139 * or IOCB for sli-3 function. 11140 * pointer from the lpfc_hba struct. 11141 * 11142 * Return codes: 11143 * IOCB_ERROR - Error 11144 * IOCB_SUCCESS - Success 11145 * IOCB_BUSY - Busy 11146 **/ 11147 int 11148 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 11149 struct lpfc_iocbq *piocb, uint32_t flag) 11150 { 11151 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 11152 } 11153 11154 /* 11155 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 11156 * 11157 * This routine wraps the actual lockless version for issusing IOCB function 11158 * pointer from the lpfc_hba struct. 11159 * 11160 * Return codes: 11161 * IOCB_ERROR - Error 11162 * IOCB_SUCCESS - Success 11163 * IOCB_BUSY - Busy 11164 **/ 11165 int 11166 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11167 struct lpfc_iocbq *piocb, uint32_t flag) 11168 { 11169 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11170 } 11171 11172 /** 11173 * lpfc_sli_api_table_setup - Set up sli api function jump table 11174 * @phba: The hba struct for which this call is being executed. 11175 * @dev_grp: The HBA PCI-Device group number. 11176 * 11177 * This routine sets up the SLI interface API function jump table in @phba 11178 * struct. 11179 * Returns: 0 - success, -ENODEV - failure. 11180 **/ 11181 int 11182 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 11183 { 11184 11185 switch (dev_grp) { 11186 case LPFC_PCI_DEV_LP: 11187 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 11188 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 11189 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 11190 break; 11191 case LPFC_PCI_DEV_OC: 11192 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 11193 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 11194 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 11195 break; 11196 default: 11197 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11198 "1419 Invalid HBA PCI-device group: 0x%x\n", 11199 dev_grp); 11200 return -ENODEV; 11201 } 11202 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 11203 return 0; 11204 } 11205 11206 /** 11207 * lpfc_sli4_calc_ring - Calculates which ring to use 11208 * @phba: Pointer to HBA context object. 11209 * @piocb: Pointer to command iocb. 11210 * 11211 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 11212 * hba_wqidx, thus we need to calculate the corresponding ring. 11213 * Since ABORTS must go on the same WQ of the command they are 11214 * aborting, we use command's hba_wqidx. 11215 */ 11216 struct lpfc_sli_ring * 11217 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 11218 { 11219 struct lpfc_io_buf *lpfc_cmd; 11220 11221 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 11222 if (unlikely(!phba->sli4_hba.hdwq)) 11223 return NULL; 11224 /* 11225 * for abort iocb hba_wqidx should already 11226 * be setup based on what work queue we used. 11227 */ 11228 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 11229 lpfc_cmd = (struct lpfc_io_buf *)piocb->context1; 11230 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 11231 } 11232 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 11233 } else { 11234 if (unlikely(!phba->sli4_hba.els_wq)) 11235 return NULL; 11236 piocb->hba_wqidx = 0; 11237 return phba->sli4_hba.els_wq->pring; 11238 } 11239 } 11240 11241 /** 11242 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 11243 * @phba: Pointer to HBA context object. 11244 * @ring_number: Ring number 11245 * @piocb: Pointer to command iocb. 11246 * @flag: Flag indicating if this command can be put into txq. 11247 * 11248 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 11249 * function. This function gets the hbalock and calls 11250 * __lpfc_sli_issue_iocb function and will return the error returned 11251 * by __lpfc_sli_issue_iocb function. This wrapper is used by 11252 * functions which do not hold hbalock. 11253 **/ 11254 int 11255 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11256 struct lpfc_iocbq *piocb, uint32_t flag) 11257 { 11258 struct lpfc_sli_ring *pring; 11259 struct lpfc_queue *eq; 11260 unsigned long iflags; 11261 int rc; 11262 11263 if (phba->sli_rev == LPFC_SLI_REV4) { 11264 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 11265 11266 pring = lpfc_sli4_calc_ring(phba, piocb); 11267 if (unlikely(pring == NULL)) 11268 return IOCB_ERROR; 11269 11270 spin_lock_irqsave(&pring->ring_lock, iflags); 11271 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11272 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11273 11274 lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH); 11275 } else { 11276 /* For now, SLI2/3 will still use hbalock */ 11277 spin_lock_irqsave(&phba->hbalock, iflags); 11278 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11279 spin_unlock_irqrestore(&phba->hbalock, iflags); 11280 } 11281 return rc; 11282 } 11283 11284 /** 11285 * lpfc_extra_ring_setup - Extra ring setup function 11286 * @phba: Pointer to HBA context object. 11287 * 11288 * This function is called while driver attaches with the 11289 * HBA to setup the extra ring. The extra ring is used 11290 * only when driver needs to support target mode functionality 11291 * or IP over FC functionalities. 11292 * 11293 * This function is called with no lock held. SLI3 only. 11294 **/ 11295 static int 11296 lpfc_extra_ring_setup( struct lpfc_hba *phba) 11297 { 11298 struct lpfc_sli *psli; 11299 struct lpfc_sli_ring *pring; 11300 11301 psli = &phba->sli; 11302 11303 /* Adjust cmd/rsp ring iocb entries more evenly */ 11304 11305 /* Take some away from the FCP ring */ 11306 pring = &psli->sli3_ring[LPFC_FCP_RING]; 11307 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11308 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11309 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11310 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11311 11312 /* and give them to the extra ring */ 11313 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 11314 11315 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11316 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11317 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11318 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11319 11320 /* Setup default profile for this ring */ 11321 pring->iotag_max = 4096; 11322 pring->num_mask = 1; 11323 pring->prt[0].profile = 0; /* Mask 0 */ 11324 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 11325 pring->prt[0].type = phba->cfg_multi_ring_type; 11326 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 11327 return 0; 11328 } 11329 11330 static void 11331 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 11332 struct lpfc_nodelist *ndlp) 11333 { 11334 unsigned long iflags; 11335 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 11336 11337 spin_lock_irqsave(&phba->hbalock, iflags); 11338 if (!list_empty(&evtp->evt_listp)) { 11339 spin_unlock_irqrestore(&phba->hbalock, iflags); 11340 return; 11341 } 11342 11343 /* Incrementing the reference count until the queued work is done. */ 11344 evtp->evt_arg1 = lpfc_nlp_get(ndlp); 11345 if (!evtp->evt_arg1) { 11346 spin_unlock_irqrestore(&phba->hbalock, iflags); 11347 return; 11348 } 11349 evtp->evt = LPFC_EVT_RECOVER_PORT; 11350 list_add_tail(&evtp->evt_listp, &phba->work_list); 11351 spin_unlock_irqrestore(&phba->hbalock, iflags); 11352 11353 lpfc_worker_wake_up(phba); 11354 } 11355 11356 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 11357 * @phba: Pointer to HBA context object. 11358 * @iocbq: Pointer to iocb object. 11359 * 11360 * The async_event handler calls this routine when it receives 11361 * an ASYNC_STATUS_CN event from the port. The port generates 11362 * this event when an Abort Sequence request to an rport fails 11363 * twice in succession. The abort could be originated by the 11364 * driver or by the port. The ABTS could have been for an ELS 11365 * or FCP IO. The port only generates this event when an ABTS 11366 * fails to complete after one retry. 11367 */ 11368 static void 11369 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 11370 struct lpfc_iocbq *iocbq) 11371 { 11372 struct lpfc_nodelist *ndlp = NULL; 11373 uint16_t rpi = 0, vpi = 0; 11374 struct lpfc_vport *vport = NULL; 11375 11376 /* The rpi in the ulpContext is vport-sensitive. */ 11377 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 11378 rpi = iocbq->iocb.ulpContext; 11379 11380 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11381 "3092 Port generated ABTS async event " 11382 "on vpi %d rpi %d status 0x%x\n", 11383 vpi, rpi, iocbq->iocb.ulpStatus); 11384 11385 vport = lpfc_find_vport_by_vpid(phba, vpi); 11386 if (!vport) 11387 goto err_exit; 11388 ndlp = lpfc_findnode_rpi(vport, rpi); 11389 if (!ndlp) 11390 goto err_exit; 11391 11392 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 11393 lpfc_sli_abts_recover_port(vport, ndlp); 11394 return; 11395 11396 err_exit: 11397 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11398 "3095 Event Context not found, no " 11399 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 11400 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 11401 vpi, rpi); 11402 } 11403 11404 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 11405 * @phba: pointer to HBA context object. 11406 * @ndlp: nodelist pointer for the impacted rport. 11407 * @axri: pointer to the wcqe containing the failed exchange. 11408 * 11409 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 11410 * port. The port generates this event when an abort exchange request to an 11411 * rport fails twice in succession with no reply. The abort could be originated 11412 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 11413 */ 11414 void 11415 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 11416 struct lpfc_nodelist *ndlp, 11417 struct sli4_wcqe_xri_aborted *axri) 11418 { 11419 uint32_t ext_status = 0; 11420 11421 if (!ndlp) { 11422 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11423 "3115 Node Context not found, driver " 11424 "ignoring abts err event\n"); 11425 return; 11426 } 11427 11428 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11429 "3116 Port generated FCP XRI ABORT event on " 11430 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 11431 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 11432 bf_get(lpfc_wcqe_xa_xri, axri), 11433 bf_get(lpfc_wcqe_xa_status, axri), 11434 axri->parameter); 11435 11436 /* 11437 * Catch the ABTS protocol failure case. Older OCe FW releases returned 11438 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 11439 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 11440 */ 11441 ext_status = axri->parameter & IOERR_PARAM_MASK; 11442 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 11443 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 11444 lpfc_sli_post_recovery_event(phba, ndlp); 11445 } 11446 11447 /** 11448 * lpfc_sli_async_event_handler - ASYNC iocb handler function 11449 * @phba: Pointer to HBA context object. 11450 * @pring: Pointer to driver SLI ring object. 11451 * @iocbq: Pointer to iocb object. 11452 * 11453 * This function is called by the slow ring event handler 11454 * function when there is an ASYNC event iocb in the ring. 11455 * This function is called with no lock held. 11456 * Currently this function handles only temperature related 11457 * ASYNC events. The function decodes the temperature sensor 11458 * event message and posts events for the management applications. 11459 **/ 11460 static void 11461 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 11462 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 11463 { 11464 IOCB_t *icmd; 11465 uint16_t evt_code; 11466 struct temp_event temp_event_data; 11467 struct Scsi_Host *shost; 11468 uint32_t *iocb_w; 11469 11470 icmd = &iocbq->iocb; 11471 evt_code = icmd->un.asyncstat.evt_code; 11472 11473 switch (evt_code) { 11474 case ASYNC_TEMP_WARN: 11475 case ASYNC_TEMP_SAFE: 11476 temp_event_data.data = (uint32_t) icmd->ulpContext; 11477 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 11478 if (evt_code == ASYNC_TEMP_WARN) { 11479 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 11480 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11481 "0347 Adapter is very hot, please take " 11482 "corrective action. temperature : %d Celsius\n", 11483 (uint32_t) icmd->ulpContext); 11484 } else { 11485 temp_event_data.event_code = LPFC_NORMAL_TEMP; 11486 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11487 "0340 Adapter temperature is OK now. " 11488 "temperature : %d Celsius\n", 11489 (uint32_t) icmd->ulpContext); 11490 } 11491 11492 /* Send temperature change event to applications */ 11493 shost = lpfc_shost_from_vport(phba->pport); 11494 fc_host_post_vendor_event(shost, fc_get_event_number(), 11495 sizeof(temp_event_data), (char *) &temp_event_data, 11496 LPFC_NL_VENDOR_ID); 11497 break; 11498 case ASYNC_STATUS_CN: 11499 lpfc_sli_abts_err_handler(phba, iocbq); 11500 break; 11501 default: 11502 iocb_w = (uint32_t *) icmd; 11503 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11504 "0346 Ring %d handler: unexpected ASYNC_STATUS" 11505 " evt_code 0x%x\n" 11506 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 11507 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 11508 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 11509 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 11510 pring->ringno, icmd->un.asyncstat.evt_code, 11511 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 11512 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 11513 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 11514 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 11515 11516 break; 11517 } 11518 } 11519 11520 11521 /** 11522 * lpfc_sli4_setup - SLI ring setup function 11523 * @phba: Pointer to HBA context object. 11524 * 11525 * lpfc_sli_setup sets up rings of the SLI interface with 11526 * number of iocbs per ring and iotags. This function is 11527 * called while driver attach to the HBA and before the 11528 * interrupts are enabled. So there is no need for locking. 11529 * 11530 * This function always returns 0. 11531 **/ 11532 int 11533 lpfc_sli4_setup(struct lpfc_hba *phba) 11534 { 11535 struct lpfc_sli_ring *pring; 11536 11537 pring = phba->sli4_hba.els_wq->pring; 11538 pring->num_mask = LPFC_MAX_RING_MASK; 11539 pring->prt[0].profile = 0; /* Mask 0 */ 11540 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11541 pring->prt[0].type = FC_TYPE_ELS; 11542 pring->prt[0].lpfc_sli_rcv_unsol_event = 11543 lpfc_els_unsol_event; 11544 pring->prt[1].profile = 0; /* Mask 1 */ 11545 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11546 pring->prt[1].type = FC_TYPE_ELS; 11547 pring->prt[1].lpfc_sli_rcv_unsol_event = 11548 lpfc_els_unsol_event; 11549 pring->prt[2].profile = 0; /* Mask 2 */ 11550 /* NameServer Inquiry */ 11551 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11552 /* NameServer */ 11553 pring->prt[2].type = FC_TYPE_CT; 11554 pring->prt[2].lpfc_sli_rcv_unsol_event = 11555 lpfc_ct_unsol_event; 11556 pring->prt[3].profile = 0; /* Mask 3 */ 11557 /* NameServer response */ 11558 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11559 /* NameServer */ 11560 pring->prt[3].type = FC_TYPE_CT; 11561 pring->prt[3].lpfc_sli_rcv_unsol_event = 11562 lpfc_ct_unsol_event; 11563 return 0; 11564 } 11565 11566 /** 11567 * lpfc_sli_setup - SLI ring setup function 11568 * @phba: Pointer to HBA context object. 11569 * 11570 * lpfc_sli_setup sets up rings of the SLI interface with 11571 * number of iocbs per ring and iotags. This function is 11572 * called while driver attach to the HBA and before the 11573 * interrupts are enabled. So there is no need for locking. 11574 * 11575 * This function always returns 0. SLI3 only. 11576 **/ 11577 int 11578 lpfc_sli_setup(struct lpfc_hba *phba) 11579 { 11580 int i, totiocbsize = 0; 11581 struct lpfc_sli *psli = &phba->sli; 11582 struct lpfc_sli_ring *pring; 11583 11584 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 11585 psli->sli_flag = 0; 11586 11587 psli->iocbq_lookup = NULL; 11588 psli->iocbq_lookup_len = 0; 11589 psli->last_iotag = 0; 11590 11591 for (i = 0; i < psli->num_rings; i++) { 11592 pring = &psli->sli3_ring[i]; 11593 switch (i) { 11594 case LPFC_FCP_RING: /* ring 0 - FCP */ 11595 /* numCiocb and numRiocb are used in config_port */ 11596 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 11597 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 11598 pring->sli.sli3.numCiocb += 11599 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11600 pring->sli.sli3.numRiocb += 11601 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11602 pring->sli.sli3.numCiocb += 11603 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11604 pring->sli.sli3.numRiocb += 11605 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11606 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11607 SLI3_IOCB_CMD_SIZE : 11608 SLI2_IOCB_CMD_SIZE; 11609 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11610 SLI3_IOCB_RSP_SIZE : 11611 SLI2_IOCB_RSP_SIZE; 11612 pring->iotag_ctr = 0; 11613 pring->iotag_max = 11614 (phba->cfg_hba_queue_depth * 2); 11615 pring->fast_iotag = pring->iotag_max; 11616 pring->num_mask = 0; 11617 break; 11618 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 11619 /* numCiocb and numRiocb are used in config_port */ 11620 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 11621 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 11622 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11623 SLI3_IOCB_CMD_SIZE : 11624 SLI2_IOCB_CMD_SIZE; 11625 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11626 SLI3_IOCB_RSP_SIZE : 11627 SLI2_IOCB_RSP_SIZE; 11628 pring->iotag_max = phba->cfg_hba_queue_depth; 11629 pring->num_mask = 0; 11630 break; 11631 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 11632 /* numCiocb and numRiocb are used in config_port */ 11633 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 11634 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 11635 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11636 SLI3_IOCB_CMD_SIZE : 11637 SLI2_IOCB_CMD_SIZE; 11638 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11639 SLI3_IOCB_RSP_SIZE : 11640 SLI2_IOCB_RSP_SIZE; 11641 pring->fast_iotag = 0; 11642 pring->iotag_ctr = 0; 11643 pring->iotag_max = 4096; 11644 pring->lpfc_sli_rcv_async_status = 11645 lpfc_sli_async_event_handler; 11646 pring->num_mask = LPFC_MAX_RING_MASK; 11647 pring->prt[0].profile = 0; /* Mask 0 */ 11648 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11649 pring->prt[0].type = FC_TYPE_ELS; 11650 pring->prt[0].lpfc_sli_rcv_unsol_event = 11651 lpfc_els_unsol_event; 11652 pring->prt[1].profile = 0; /* Mask 1 */ 11653 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11654 pring->prt[1].type = FC_TYPE_ELS; 11655 pring->prt[1].lpfc_sli_rcv_unsol_event = 11656 lpfc_els_unsol_event; 11657 pring->prt[2].profile = 0; /* Mask 2 */ 11658 /* NameServer Inquiry */ 11659 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11660 /* NameServer */ 11661 pring->prt[2].type = FC_TYPE_CT; 11662 pring->prt[2].lpfc_sli_rcv_unsol_event = 11663 lpfc_ct_unsol_event; 11664 pring->prt[3].profile = 0; /* Mask 3 */ 11665 /* NameServer response */ 11666 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11667 /* NameServer */ 11668 pring->prt[3].type = FC_TYPE_CT; 11669 pring->prt[3].lpfc_sli_rcv_unsol_event = 11670 lpfc_ct_unsol_event; 11671 break; 11672 } 11673 totiocbsize += (pring->sli.sli3.numCiocb * 11674 pring->sli.sli3.sizeCiocb) + 11675 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 11676 } 11677 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 11678 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 11679 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 11680 "SLI2 SLIM Data: x%x x%lx\n", 11681 phba->brd_no, totiocbsize, 11682 (unsigned long) MAX_SLIM_IOCB_SIZE); 11683 } 11684 if (phba->cfg_multi_ring_support == 2) 11685 lpfc_extra_ring_setup(phba); 11686 11687 return 0; 11688 } 11689 11690 /** 11691 * lpfc_sli4_queue_init - Queue initialization function 11692 * @phba: Pointer to HBA context object. 11693 * 11694 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 11695 * ring. This function also initializes ring indices of each ring. 11696 * This function is called during the initialization of the SLI 11697 * interface of an HBA. 11698 * This function is called with no lock held and always returns 11699 * 1. 11700 **/ 11701 void 11702 lpfc_sli4_queue_init(struct lpfc_hba *phba) 11703 { 11704 struct lpfc_sli *psli; 11705 struct lpfc_sli_ring *pring; 11706 int i; 11707 11708 psli = &phba->sli; 11709 spin_lock_irq(&phba->hbalock); 11710 INIT_LIST_HEAD(&psli->mboxq); 11711 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11712 /* Initialize list headers for txq and txcmplq as double linked lists */ 11713 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11714 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11715 pring->flag = 0; 11716 pring->ringno = LPFC_FCP_RING; 11717 pring->txcmplq_cnt = 0; 11718 INIT_LIST_HEAD(&pring->txq); 11719 INIT_LIST_HEAD(&pring->txcmplq); 11720 INIT_LIST_HEAD(&pring->iocb_continueq); 11721 spin_lock_init(&pring->ring_lock); 11722 } 11723 pring = phba->sli4_hba.els_wq->pring; 11724 pring->flag = 0; 11725 pring->ringno = LPFC_ELS_RING; 11726 pring->txcmplq_cnt = 0; 11727 INIT_LIST_HEAD(&pring->txq); 11728 INIT_LIST_HEAD(&pring->txcmplq); 11729 INIT_LIST_HEAD(&pring->iocb_continueq); 11730 spin_lock_init(&pring->ring_lock); 11731 11732 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11733 pring = phba->sli4_hba.nvmels_wq->pring; 11734 pring->flag = 0; 11735 pring->ringno = LPFC_ELS_RING; 11736 pring->txcmplq_cnt = 0; 11737 INIT_LIST_HEAD(&pring->txq); 11738 INIT_LIST_HEAD(&pring->txcmplq); 11739 INIT_LIST_HEAD(&pring->iocb_continueq); 11740 spin_lock_init(&pring->ring_lock); 11741 } 11742 11743 spin_unlock_irq(&phba->hbalock); 11744 } 11745 11746 /** 11747 * lpfc_sli_queue_init - Queue initialization function 11748 * @phba: Pointer to HBA context object. 11749 * 11750 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11751 * ring. This function also initializes ring indices of each ring. 11752 * This function is called during the initialization of the SLI 11753 * interface of an HBA. 11754 * This function is called with no lock held and always returns 11755 * 1. 11756 **/ 11757 void 11758 lpfc_sli_queue_init(struct lpfc_hba *phba) 11759 { 11760 struct lpfc_sli *psli; 11761 struct lpfc_sli_ring *pring; 11762 int i; 11763 11764 psli = &phba->sli; 11765 spin_lock_irq(&phba->hbalock); 11766 INIT_LIST_HEAD(&psli->mboxq); 11767 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11768 /* Initialize list headers for txq and txcmplq as double linked lists */ 11769 for (i = 0; i < psli->num_rings; i++) { 11770 pring = &psli->sli3_ring[i]; 11771 pring->ringno = i; 11772 pring->sli.sli3.next_cmdidx = 0; 11773 pring->sli.sli3.local_getidx = 0; 11774 pring->sli.sli3.cmdidx = 0; 11775 INIT_LIST_HEAD(&pring->iocb_continueq); 11776 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11777 INIT_LIST_HEAD(&pring->postbufq); 11778 pring->flag = 0; 11779 INIT_LIST_HEAD(&pring->txq); 11780 INIT_LIST_HEAD(&pring->txcmplq); 11781 spin_lock_init(&pring->ring_lock); 11782 } 11783 spin_unlock_irq(&phba->hbalock); 11784 } 11785 11786 /** 11787 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11788 * @phba: Pointer to HBA context object. 11789 * 11790 * This routine flushes the mailbox command subsystem. It will unconditionally 11791 * flush all the mailbox commands in the three possible stages in the mailbox 11792 * command sub-system: pending mailbox command queue; the outstanding mailbox 11793 * command; and completed mailbox command queue. It is caller's responsibility 11794 * to make sure that the driver is in the proper state to flush the mailbox 11795 * command sub-system. Namely, the posting of mailbox commands into the 11796 * pending mailbox command queue from the various clients must be stopped; 11797 * either the HBA is in a state that it will never works on the outstanding 11798 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11799 * mailbox command has been completed. 11800 **/ 11801 static void 11802 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11803 { 11804 LIST_HEAD(completions); 11805 struct lpfc_sli *psli = &phba->sli; 11806 LPFC_MBOXQ_t *pmb; 11807 unsigned long iflag; 11808 11809 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11810 local_bh_disable(); 11811 11812 /* Flush all the mailbox commands in the mbox system */ 11813 spin_lock_irqsave(&phba->hbalock, iflag); 11814 11815 /* The pending mailbox command queue */ 11816 list_splice_init(&phba->sli.mboxq, &completions); 11817 /* The outstanding active mailbox command */ 11818 if (psli->mbox_active) { 11819 list_add_tail(&psli->mbox_active->list, &completions); 11820 psli->mbox_active = NULL; 11821 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11822 } 11823 /* The completed mailbox command queue */ 11824 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11825 spin_unlock_irqrestore(&phba->hbalock, iflag); 11826 11827 /* Enable softirqs again, done with phba->hbalock */ 11828 local_bh_enable(); 11829 11830 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11831 while (!list_empty(&completions)) { 11832 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11833 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11834 if (pmb->mbox_cmpl) 11835 pmb->mbox_cmpl(phba, pmb); 11836 } 11837 } 11838 11839 /** 11840 * lpfc_sli_host_down - Vport cleanup function 11841 * @vport: Pointer to virtual port object. 11842 * 11843 * lpfc_sli_host_down is called to clean up the resources 11844 * associated with a vport before destroying virtual 11845 * port data structures. 11846 * This function does following operations: 11847 * - Free discovery resources associated with this virtual 11848 * port. 11849 * - Free iocbs associated with this virtual port in 11850 * the txq. 11851 * - Send abort for all iocb commands associated with this 11852 * vport in txcmplq. 11853 * 11854 * This function is called with no lock held and always returns 1. 11855 **/ 11856 int 11857 lpfc_sli_host_down(struct lpfc_vport *vport) 11858 { 11859 LIST_HEAD(completions); 11860 struct lpfc_hba *phba = vport->phba; 11861 struct lpfc_sli *psli = &phba->sli; 11862 struct lpfc_queue *qp = NULL; 11863 struct lpfc_sli_ring *pring; 11864 struct lpfc_iocbq *iocb, *next_iocb; 11865 int i; 11866 unsigned long flags = 0; 11867 uint16_t prev_pring_flag; 11868 11869 lpfc_cleanup_discovery_resources(vport); 11870 11871 spin_lock_irqsave(&phba->hbalock, flags); 11872 11873 /* 11874 * Error everything on the txq since these iocbs 11875 * have not been given to the FW yet. 11876 * Also issue ABTS for everything on the txcmplq 11877 */ 11878 if (phba->sli_rev != LPFC_SLI_REV4) { 11879 for (i = 0; i < psli->num_rings; i++) { 11880 pring = &psli->sli3_ring[i]; 11881 prev_pring_flag = pring->flag; 11882 /* Only slow rings */ 11883 if (pring->ringno == LPFC_ELS_RING) { 11884 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11885 /* Set the lpfc data pending flag */ 11886 set_bit(LPFC_DATA_READY, &phba->data_flags); 11887 } 11888 list_for_each_entry_safe(iocb, next_iocb, 11889 &pring->txq, list) { 11890 if (iocb->vport != vport) 11891 continue; 11892 list_move_tail(&iocb->list, &completions); 11893 } 11894 list_for_each_entry_safe(iocb, next_iocb, 11895 &pring->txcmplq, list) { 11896 if (iocb->vport != vport) 11897 continue; 11898 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11899 NULL); 11900 } 11901 pring->flag = prev_pring_flag; 11902 } 11903 } else { 11904 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11905 pring = qp->pring; 11906 if (!pring) 11907 continue; 11908 if (pring == phba->sli4_hba.els_wq->pring) { 11909 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11910 /* Set the lpfc data pending flag */ 11911 set_bit(LPFC_DATA_READY, &phba->data_flags); 11912 } 11913 prev_pring_flag = pring->flag; 11914 spin_lock(&pring->ring_lock); 11915 list_for_each_entry_safe(iocb, next_iocb, 11916 &pring->txq, list) { 11917 if (iocb->vport != vport) 11918 continue; 11919 list_move_tail(&iocb->list, &completions); 11920 } 11921 spin_unlock(&pring->ring_lock); 11922 list_for_each_entry_safe(iocb, next_iocb, 11923 &pring->txcmplq, list) { 11924 if (iocb->vport != vport) 11925 continue; 11926 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11927 NULL); 11928 } 11929 pring->flag = prev_pring_flag; 11930 } 11931 } 11932 spin_unlock_irqrestore(&phba->hbalock, flags); 11933 11934 /* Make sure HBA is alive */ 11935 lpfc_issue_hb_tmo(phba); 11936 11937 /* Cancel all the IOCBs from the completions list */ 11938 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11939 IOERR_SLI_DOWN); 11940 return 1; 11941 } 11942 11943 /** 11944 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11945 * @phba: Pointer to HBA context object. 11946 * 11947 * This function cleans up all iocb, buffers, mailbox commands 11948 * while shutting down the HBA. This function is called with no 11949 * lock held and always returns 1. 11950 * This function does the following to cleanup driver resources: 11951 * - Free discovery resources for each virtual port 11952 * - Cleanup any pending fabric iocbs 11953 * - Iterate through the iocb txq and free each entry 11954 * in the list. 11955 * - Free up any buffer posted to the HBA 11956 * - Free mailbox commands in the mailbox queue. 11957 **/ 11958 int 11959 lpfc_sli_hba_down(struct lpfc_hba *phba) 11960 { 11961 LIST_HEAD(completions); 11962 struct lpfc_sli *psli = &phba->sli; 11963 struct lpfc_queue *qp = NULL; 11964 struct lpfc_sli_ring *pring; 11965 struct lpfc_dmabuf *buf_ptr; 11966 unsigned long flags = 0; 11967 int i; 11968 11969 /* Shutdown the mailbox command sub-system */ 11970 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 11971 11972 lpfc_hba_down_prep(phba); 11973 11974 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11975 local_bh_disable(); 11976 11977 lpfc_fabric_abort_hba(phba); 11978 11979 spin_lock_irqsave(&phba->hbalock, flags); 11980 11981 /* 11982 * Error everything on the txq since these iocbs 11983 * have not been given to the FW yet. 11984 */ 11985 if (phba->sli_rev != LPFC_SLI_REV4) { 11986 for (i = 0; i < psli->num_rings; i++) { 11987 pring = &psli->sli3_ring[i]; 11988 /* Only slow rings */ 11989 if (pring->ringno == LPFC_ELS_RING) { 11990 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11991 /* Set the lpfc data pending flag */ 11992 set_bit(LPFC_DATA_READY, &phba->data_flags); 11993 } 11994 list_splice_init(&pring->txq, &completions); 11995 } 11996 } else { 11997 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11998 pring = qp->pring; 11999 if (!pring) 12000 continue; 12001 spin_lock(&pring->ring_lock); 12002 list_splice_init(&pring->txq, &completions); 12003 spin_unlock(&pring->ring_lock); 12004 if (pring == phba->sli4_hba.els_wq->pring) { 12005 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12006 /* Set the lpfc data pending flag */ 12007 set_bit(LPFC_DATA_READY, &phba->data_flags); 12008 } 12009 } 12010 } 12011 spin_unlock_irqrestore(&phba->hbalock, flags); 12012 12013 /* Cancel all the IOCBs from the completions list */ 12014 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 12015 IOERR_SLI_DOWN); 12016 12017 spin_lock_irqsave(&phba->hbalock, flags); 12018 list_splice_init(&phba->elsbuf, &completions); 12019 phba->elsbuf_cnt = 0; 12020 phba->elsbuf_prev_cnt = 0; 12021 spin_unlock_irqrestore(&phba->hbalock, flags); 12022 12023 while (!list_empty(&completions)) { 12024 list_remove_head(&completions, buf_ptr, 12025 struct lpfc_dmabuf, list); 12026 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 12027 kfree(buf_ptr); 12028 } 12029 12030 /* Enable softirqs again, done with phba->hbalock */ 12031 local_bh_enable(); 12032 12033 /* Return any active mbox cmds */ 12034 del_timer_sync(&psli->mbox_tmo); 12035 12036 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 12037 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12038 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 12039 12040 return 1; 12041 } 12042 12043 /** 12044 * lpfc_sli_pcimem_bcopy - SLI memory copy function 12045 * @srcp: Source memory pointer. 12046 * @destp: Destination memory pointer. 12047 * @cnt: Number of words required to be copied. 12048 * 12049 * This function is used for copying data between driver memory 12050 * and the SLI memory. This function also changes the endianness 12051 * of each word if native endianness is different from SLI 12052 * endianness. This function can be called with or without 12053 * lock. 12054 **/ 12055 void 12056 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 12057 { 12058 uint32_t *src = srcp; 12059 uint32_t *dest = destp; 12060 uint32_t ldata; 12061 int i; 12062 12063 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 12064 ldata = *src; 12065 ldata = le32_to_cpu(ldata); 12066 *dest = ldata; 12067 src++; 12068 dest++; 12069 } 12070 } 12071 12072 12073 /** 12074 * lpfc_sli_bemem_bcopy - SLI memory copy function 12075 * @srcp: Source memory pointer. 12076 * @destp: Destination memory pointer. 12077 * @cnt: Number of words required to be copied. 12078 * 12079 * This function is used for copying data between a data structure 12080 * with big endian representation to local endianness. 12081 * This function can be called with or without lock. 12082 **/ 12083 void 12084 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 12085 { 12086 uint32_t *src = srcp; 12087 uint32_t *dest = destp; 12088 uint32_t ldata; 12089 int i; 12090 12091 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 12092 ldata = *src; 12093 ldata = be32_to_cpu(ldata); 12094 *dest = ldata; 12095 src++; 12096 dest++; 12097 } 12098 } 12099 12100 /** 12101 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 12102 * @phba: Pointer to HBA context object. 12103 * @pring: Pointer to driver SLI ring object. 12104 * @mp: Pointer to driver buffer object. 12105 * 12106 * This function is called with no lock held. 12107 * It always return zero after adding the buffer to the postbufq 12108 * buffer list. 12109 **/ 12110 int 12111 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12112 struct lpfc_dmabuf *mp) 12113 { 12114 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 12115 later */ 12116 spin_lock_irq(&phba->hbalock); 12117 list_add_tail(&mp->list, &pring->postbufq); 12118 pring->postbufq_cnt++; 12119 spin_unlock_irq(&phba->hbalock); 12120 return 0; 12121 } 12122 12123 /** 12124 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 12125 * @phba: Pointer to HBA context object. 12126 * 12127 * When HBQ is enabled, buffers are searched based on tags. This function 12128 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 12129 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 12130 * does not conflict with tags of buffer posted for unsolicited events. 12131 * The function returns the allocated tag. The function is called with 12132 * no locks held. 12133 **/ 12134 uint32_t 12135 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 12136 { 12137 spin_lock_irq(&phba->hbalock); 12138 phba->buffer_tag_count++; 12139 /* 12140 * Always set the QUE_BUFTAG_BIT to distiguish between 12141 * a tag assigned by HBQ. 12142 */ 12143 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 12144 spin_unlock_irq(&phba->hbalock); 12145 return phba->buffer_tag_count; 12146 } 12147 12148 /** 12149 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 12150 * @phba: Pointer to HBA context object. 12151 * @pring: Pointer to driver SLI ring object. 12152 * @tag: Buffer tag. 12153 * 12154 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 12155 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 12156 * iocb is posted to the response ring with the tag of the buffer. 12157 * This function searches the pring->postbufq list using the tag 12158 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 12159 * iocb. If the buffer is found then lpfc_dmabuf object of the 12160 * buffer is returned to the caller else NULL is returned. 12161 * This function is called with no lock held. 12162 **/ 12163 struct lpfc_dmabuf * 12164 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12165 uint32_t tag) 12166 { 12167 struct lpfc_dmabuf *mp, *next_mp; 12168 struct list_head *slp = &pring->postbufq; 12169 12170 /* Search postbufq, from the beginning, looking for a match on tag */ 12171 spin_lock_irq(&phba->hbalock); 12172 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12173 if (mp->buffer_tag == tag) { 12174 list_del_init(&mp->list); 12175 pring->postbufq_cnt--; 12176 spin_unlock_irq(&phba->hbalock); 12177 return mp; 12178 } 12179 } 12180 12181 spin_unlock_irq(&phba->hbalock); 12182 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12183 "0402 Cannot find virtual addr for buffer tag on " 12184 "ring %d Data x%lx x%px x%px x%x\n", 12185 pring->ringno, (unsigned long) tag, 12186 slp->next, slp->prev, pring->postbufq_cnt); 12187 12188 return NULL; 12189 } 12190 12191 /** 12192 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 12193 * @phba: Pointer to HBA context object. 12194 * @pring: Pointer to driver SLI ring object. 12195 * @phys: DMA address of the buffer. 12196 * 12197 * This function searches the buffer list using the dma_address 12198 * of unsolicited event to find the driver's lpfc_dmabuf object 12199 * corresponding to the dma_address. The function returns the 12200 * lpfc_dmabuf object if a buffer is found else it returns NULL. 12201 * This function is called by the ct and els unsolicited event 12202 * handlers to get the buffer associated with the unsolicited 12203 * event. 12204 * 12205 * This function is called with no lock held. 12206 **/ 12207 struct lpfc_dmabuf * 12208 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12209 dma_addr_t phys) 12210 { 12211 struct lpfc_dmabuf *mp, *next_mp; 12212 struct list_head *slp = &pring->postbufq; 12213 12214 /* Search postbufq, from the beginning, looking for a match on phys */ 12215 spin_lock_irq(&phba->hbalock); 12216 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12217 if (mp->phys == phys) { 12218 list_del_init(&mp->list); 12219 pring->postbufq_cnt--; 12220 spin_unlock_irq(&phba->hbalock); 12221 return mp; 12222 } 12223 } 12224 12225 spin_unlock_irq(&phba->hbalock); 12226 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12227 "0410 Cannot find virtual addr for mapped buf on " 12228 "ring %d Data x%llx x%px x%px x%x\n", 12229 pring->ringno, (unsigned long long)phys, 12230 slp->next, slp->prev, pring->postbufq_cnt); 12231 return NULL; 12232 } 12233 12234 /** 12235 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 12236 * @phba: Pointer to HBA context object. 12237 * @cmdiocb: Pointer to driver command iocb object. 12238 * @rspiocb: Pointer to driver response iocb object. 12239 * 12240 * This function is the completion handler for the abort iocbs for 12241 * ELS commands. This function is called from the ELS ring event 12242 * handler with no lock held. This function frees memory resources 12243 * associated with the abort iocb. 12244 **/ 12245 static void 12246 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12247 struct lpfc_iocbq *rspiocb) 12248 { 12249 IOCB_t *irsp = &rspiocb->iocb; 12250 uint16_t abort_iotag, abort_context; 12251 struct lpfc_iocbq *abort_iocb = NULL; 12252 12253 if (irsp->ulpStatus) { 12254 12255 /* 12256 * Assume that the port already completed and returned, or 12257 * will return the iocb. Just Log the message. 12258 */ 12259 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 12260 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 12261 12262 spin_lock_irq(&phba->hbalock); 12263 if (phba->sli_rev < LPFC_SLI_REV4) { 12264 if (irsp->ulpCommand == CMD_ABORT_XRI_CX && 12265 irsp->ulpStatus == IOSTAT_LOCAL_REJECT && 12266 irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) { 12267 spin_unlock_irq(&phba->hbalock); 12268 goto release_iocb; 12269 } 12270 if (abort_iotag != 0 && 12271 abort_iotag <= phba->sli.last_iotag) 12272 abort_iocb = 12273 phba->sli.iocbq_lookup[abort_iotag]; 12274 } else 12275 /* For sli4 the abort_tag is the XRI, 12276 * so the abort routine puts the iotag of the iocb 12277 * being aborted in the context field of the abort 12278 * IOCB. 12279 */ 12280 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 12281 12282 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 12283 "0327 Cannot abort els iocb x%px " 12284 "with tag %x context %x, abort status %x, " 12285 "abort code %x\n", 12286 abort_iocb, abort_iotag, abort_context, 12287 irsp->ulpStatus, irsp->un.ulpWord[4]); 12288 12289 spin_unlock_irq(&phba->hbalock); 12290 } 12291 release_iocb: 12292 lpfc_sli_release_iocbq(phba, cmdiocb); 12293 return; 12294 } 12295 12296 /** 12297 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 12298 * @phba: Pointer to HBA context object. 12299 * @cmdiocb: Pointer to driver command iocb object. 12300 * @rspiocb: Pointer to driver response iocb object. 12301 * 12302 * The function is called from SLI ring event handler with no 12303 * lock held. This function is the completion handler for ELS commands 12304 * which are aborted. The function frees memory resources used for 12305 * the aborted ELS commands. 12306 **/ 12307 void 12308 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12309 struct lpfc_iocbq *rspiocb) 12310 { 12311 struct lpfc_nodelist *ndlp = NULL; 12312 IOCB_t *irsp = &rspiocb->iocb; 12313 12314 /* ELS cmd tag <ulpIoTag> completes */ 12315 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 12316 "0139 Ignoring ELS cmd code x%x completion Data: " 12317 "x%x x%x x%x\n", 12318 irsp->ulpIoTag, irsp->ulpStatus, 12319 irsp->un.ulpWord[4], irsp->ulpTimeout); 12320 /* 12321 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp 12322 * if exchange is busy. 12323 */ 12324 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 12325 ndlp = cmdiocb->context_un.ndlp; 12326 lpfc_ct_free_iocb(phba, cmdiocb); 12327 } else { 12328 ndlp = (struct lpfc_nodelist *) cmdiocb->context1; 12329 lpfc_els_free_iocb(phba, cmdiocb); 12330 } 12331 12332 lpfc_nlp_put(ndlp); 12333 } 12334 12335 /** 12336 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 12337 * @phba: Pointer to HBA context object. 12338 * @pring: Pointer to driver SLI ring object. 12339 * @cmdiocb: Pointer to driver command iocb object. 12340 * @cmpl: completion function. 12341 * 12342 * This function issues an abort iocb for the provided command iocb. In case 12343 * of unloading, the abort iocb will not be issued to commands on the ELS 12344 * ring. Instead, the callback function shall be changed to those commands 12345 * so that nothing happens when them finishes. This function is called with 12346 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 12347 * when the command iocb is an abort request. 12348 * 12349 **/ 12350 int 12351 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12352 struct lpfc_iocbq *cmdiocb, void *cmpl) 12353 { 12354 struct lpfc_vport *vport = cmdiocb->vport; 12355 struct lpfc_iocbq *abtsiocbp; 12356 IOCB_t *icmd = NULL; 12357 IOCB_t *iabt = NULL; 12358 int retval = IOCB_ERROR; 12359 unsigned long iflags; 12360 struct lpfc_nodelist *ndlp; 12361 12362 /* 12363 * There are certain command types we don't want to abort. And we 12364 * don't want to abort commands that are already in the process of 12365 * being aborted. 12366 */ 12367 icmd = &cmdiocb->iocb; 12368 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 12369 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 12370 cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) 12371 return IOCB_ABORTING; 12372 12373 if (!pring) { 12374 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 12375 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 12376 else 12377 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 12378 return retval; 12379 } 12380 12381 /* 12382 * If we're unloading, don't abort iocb on the ELS ring, but change 12383 * the callback so that nothing happens when it finishes. 12384 */ 12385 if ((vport->load_flag & FC_UNLOADING) && 12386 pring->ringno == LPFC_ELS_RING) { 12387 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 12388 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 12389 else 12390 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 12391 return retval; 12392 } 12393 12394 /* issue ABTS for this IOCB based on iotag */ 12395 abtsiocbp = __lpfc_sli_get_iocbq(phba); 12396 if (abtsiocbp == NULL) 12397 return IOCB_NORESOURCE; 12398 12399 /* This signals the response to set the correct status 12400 * before calling the completion handler 12401 */ 12402 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 12403 12404 iabt = &abtsiocbp->iocb; 12405 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 12406 iabt->un.acxri.abortContextTag = icmd->ulpContext; 12407 if (phba->sli_rev == LPFC_SLI_REV4) { 12408 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 12409 if (pring->ringno == LPFC_ELS_RING) 12410 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 12411 } else { 12412 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 12413 if (pring->ringno == LPFC_ELS_RING) { 12414 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1); 12415 iabt->un.acxri.abortContextTag = ndlp->nlp_rpi; 12416 } 12417 } 12418 iabt->ulpLe = 1; 12419 iabt->ulpClass = icmd->ulpClass; 12420 12421 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12422 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 12423 if (cmdiocb->iocb_flag & LPFC_IO_FCP) { 12424 abtsiocbp->iocb_flag |= LPFC_IO_FCP; 12425 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 12426 } 12427 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 12428 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 12429 12430 if (phba->link_state >= LPFC_LINK_UP) 12431 iabt->ulpCommand = CMD_ABORT_XRI_CN; 12432 else 12433 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 12434 12435 if (cmpl) 12436 abtsiocbp->iocb_cmpl = cmpl; 12437 else 12438 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 12439 abtsiocbp->vport = vport; 12440 12441 if (phba->sli_rev == LPFC_SLI_REV4) { 12442 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 12443 if (unlikely(pring == NULL)) 12444 goto abort_iotag_exit; 12445 /* Note: both hbalock and ring_lock need to be set here */ 12446 spin_lock_irqsave(&pring->ring_lock, iflags); 12447 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12448 abtsiocbp, 0); 12449 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12450 } else { 12451 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12452 abtsiocbp, 0); 12453 } 12454 12455 abort_iotag_exit: 12456 12457 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 12458 "0339 Abort xri x%x, original iotag x%x, " 12459 "abort cmd iotag x%x retval x%x\n", 12460 iabt->un.acxri.abortIoTag, 12461 iabt->un.acxri.abortContextTag, 12462 abtsiocbp->iotag, retval); 12463 12464 if (retval) { 12465 cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED; 12466 __lpfc_sli_release_iocbq(phba, abtsiocbp); 12467 } 12468 12469 /* 12470 * Caller to this routine should check for IOCB_ERROR 12471 * and handle it properly. This routine no longer removes 12472 * iocb off txcmplq and call compl in case of IOCB_ERROR. 12473 */ 12474 return retval; 12475 } 12476 12477 /** 12478 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 12479 * @phba: pointer to lpfc HBA data structure. 12480 * 12481 * This routine will abort all pending and outstanding iocbs to an HBA. 12482 **/ 12483 void 12484 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 12485 { 12486 struct lpfc_sli *psli = &phba->sli; 12487 struct lpfc_sli_ring *pring; 12488 struct lpfc_queue *qp = NULL; 12489 int i; 12490 12491 if (phba->sli_rev != LPFC_SLI_REV4) { 12492 for (i = 0; i < psli->num_rings; i++) { 12493 pring = &psli->sli3_ring[i]; 12494 lpfc_sli_abort_iocb_ring(phba, pring); 12495 } 12496 return; 12497 } 12498 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12499 pring = qp->pring; 12500 if (!pring) 12501 continue; 12502 lpfc_sli_abort_iocb_ring(phba, pring); 12503 } 12504 } 12505 12506 /** 12507 * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts 12508 * @iocbq: Pointer to iocb object. 12509 * @vport: Pointer to driver virtual port object. 12510 * 12511 * This function acts as an iocb filter for functions which abort FCP iocbs. 12512 * 12513 * Return values 12514 * -ENODEV, if a null iocb or vport ptr is encountered 12515 * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as 12516 * driver already started the abort process, or is an abort iocb itself 12517 * 0, passes criteria for aborting the FCP I/O iocb 12518 **/ 12519 static int 12520 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq, 12521 struct lpfc_vport *vport) 12522 { 12523 IOCB_t *icmd = NULL; 12524 12525 /* No null ptr vports */ 12526 if (!iocbq || iocbq->vport != vport) 12527 return -ENODEV; 12528 12529 /* iocb must be for FCP IO, already exists on the TX cmpl queue, 12530 * can't be premarked as driver aborted, nor be an ABORT iocb itself 12531 */ 12532 icmd = &iocbq->iocb; 12533 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 12534 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ) || 12535 (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) || 12536 (icmd->ulpCommand == CMD_ABORT_XRI_CN || 12537 icmd->ulpCommand == CMD_CLOSE_XRI_CN)) 12538 return -EINVAL; 12539 12540 return 0; 12541 } 12542 12543 /** 12544 * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target 12545 * @iocbq: Pointer to driver iocb object. 12546 * @vport: Pointer to driver virtual port object. 12547 * @tgt_id: SCSI ID of the target. 12548 * @lun_id: LUN ID of the scsi device. 12549 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 12550 * 12551 * This function acts as an iocb filter for validating a lun/SCSI target/SCSI 12552 * host. 12553 * 12554 * It will return 12555 * 0 if the filtering criteria is met for the given iocb and will return 12556 * 1 if the filtering criteria is not met. 12557 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 12558 * given iocb is for the SCSI device specified by vport, tgt_id and 12559 * lun_id parameter. 12560 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 12561 * given iocb is for the SCSI target specified by vport and tgt_id 12562 * parameters. 12563 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 12564 * given iocb is for the SCSI host associated with the given vport. 12565 * This function is called with no locks held. 12566 **/ 12567 static int 12568 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 12569 uint16_t tgt_id, uint64_t lun_id, 12570 lpfc_ctx_cmd ctx_cmd) 12571 { 12572 struct lpfc_io_buf *lpfc_cmd; 12573 int rc = 1; 12574 12575 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12576 12577 if (lpfc_cmd->pCmd == NULL) 12578 return rc; 12579 12580 switch (ctx_cmd) { 12581 case LPFC_CTX_LUN: 12582 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12583 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 12584 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 12585 rc = 0; 12586 break; 12587 case LPFC_CTX_TGT: 12588 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12589 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 12590 rc = 0; 12591 break; 12592 case LPFC_CTX_HOST: 12593 rc = 0; 12594 break; 12595 default: 12596 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 12597 __func__, ctx_cmd); 12598 break; 12599 } 12600 12601 return rc; 12602 } 12603 12604 /** 12605 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 12606 * @vport: Pointer to virtual port. 12607 * @tgt_id: SCSI ID of the target. 12608 * @lun_id: LUN ID of the scsi device. 12609 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12610 * 12611 * This function returns number of FCP commands pending for the vport. 12612 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 12613 * commands pending on the vport associated with SCSI device specified 12614 * by tgt_id and lun_id parameters. 12615 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 12616 * commands pending on the vport associated with SCSI target specified 12617 * by tgt_id parameter. 12618 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 12619 * commands pending on the vport. 12620 * This function returns the number of iocbs which satisfy the filter. 12621 * This function is called without any lock held. 12622 **/ 12623 int 12624 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 12625 lpfc_ctx_cmd ctx_cmd) 12626 { 12627 struct lpfc_hba *phba = vport->phba; 12628 struct lpfc_iocbq *iocbq; 12629 IOCB_t *icmd = NULL; 12630 int sum, i; 12631 unsigned long iflags; 12632 12633 spin_lock_irqsave(&phba->hbalock, iflags); 12634 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 12635 iocbq = phba->sli.iocbq_lookup[i]; 12636 12637 if (!iocbq || iocbq->vport != vport) 12638 continue; 12639 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 12640 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) 12641 continue; 12642 12643 /* Include counting outstanding aborts */ 12644 icmd = &iocbq->iocb; 12645 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 12646 icmd->ulpCommand == CMD_CLOSE_XRI_CN) { 12647 sum++; 12648 continue; 12649 } 12650 12651 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12652 ctx_cmd) == 0) 12653 sum++; 12654 } 12655 spin_unlock_irqrestore(&phba->hbalock, iflags); 12656 12657 return sum; 12658 } 12659 12660 /** 12661 * lpfc_sli4_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12662 * @phba: Pointer to HBA context object 12663 * @cmdiocb: Pointer to command iocb object. 12664 * @wcqe: pointer to the complete wcqe 12665 * 12666 * This function is called when an aborted FCP iocb completes. This 12667 * function is called by the ring event handler with no lock held. 12668 * This function frees the iocb. It is called for sli-4 adapters. 12669 **/ 12670 void 12671 lpfc_sli4_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12672 struct lpfc_wcqe_complete *wcqe) 12673 { 12674 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12675 "3017 ABORT_XRI_CN completing on rpi x%x " 12676 "original iotag x%x, abort cmd iotag x%x " 12677 "status 0x%x, reason 0x%x\n", 12678 cmdiocb->iocb.un.acxri.abortContextTag, 12679 cmdiocb->iocb.un.acxri.abortIoTag, 12680 cmdiocb->iotag, 12681 (bf_get(lpfc_wcqe_c_status, wcqe) 12682 & LPFC_IOCB_STATUS_MASK), 12683 wcqe->parameter); 12684 lpfc_sli_release_iocbq(phba, cmdiocb); 12685 } 12686 12687 /** 12688 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12689 * @phba: Pointer to HBA context object 12690 * @cmdiocb: Pointer to command iocb object. 12691 * @rspiocb: Pointer to response iocb object. 12692 * 12693 * This function is called when an aborted FCP iocb completes. This 12694 * function is called by the ring event handler with no lock held. 12695 * This function frees the iocb. 12696 **/ 12697 void 12698 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12699 struct lpfc_iocbq *rspiocb) 12700 { 12701 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12702 "3096 ABORT_XRI_CN completing on rpi x%x " 12703 "original iotag x%x, abort cmd iotag x%x " 12704 "status 0x%x, reason 0x%x\n", 12705 cmdiocb->iocb.un.acxri.abortContextTag, 12706 cmdiocb->iocb.un.acxri.abortIoTag, 12707 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 12708 rspiocb->iocb.un.ulpWord[4]); 12709 lpfc_sli_release_iocbq(phba, cmdiocb); 12710 return; 12711 } 12712 12713 /** 12714 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 12715 * @vport: Pointer to virtual port. 12716 * @tgt_id: SCSI ID of the target. 12717 * @lun_id: LUN ID of the scsi device. 12718 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12719 * 12720 * This function sends an abort command for every SCSI command 12721 * associated with the given virtual port pending on the ring 12722 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12723 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12724 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12725 * followed by lpfc_sli_validate_fcp_iocb. 12726 * 12727 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 12728 * FCP iocbs associated with lun specified by tgt_id and lun_id 12729 * parameters 12730 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 12731 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12732 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 12733 * FCP iocbs associated with virtual port. 12734 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 12735 * lpfc_sli4_calc_ring is used. 12736 * This function returns number of iocbs it failed to abort. 12737 * This function is called with no locks held. 12738 **/ 12739 int 12740 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 12741 lpfc_ctx_cmd abort_cmd) 12742 { 12743 struct lpfc_hba *phba = vport->phba; 12744 struct lpfc_sli_ring *pring = NULL; 12745 struct lpfc_iocbq *iocbq; 12746 int errcnt = 0, ret_val = 0; 12747 unsigned long iflags; 12748 int i; 12749 void *fcp_cmpl = NULL; 12750 12751 /* all I/Os are in process of being flushed */ 12752 if (phba->hba_flag & HBA_IOQ_FLUSH) 12753 return errcnt; 12754 12755 for (i = 1; i <= phba->sli.last_iotag; i++) { 12756 iocbq = phba->sli.iocbq_lookup[i]; 12757 12758 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12759 continue; 12760 12761 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12762 abort_cmd) != 0) 12763 continue; 12764 12765 spin_lock_irqsave(&phba->hbalock, iflags); 12766 if (phba->sli_rev == LPFC_SLI_REV3) { 12767 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12768 fcp_cmpl = lpfc_sli_abort_fcp_cmpl; 12769 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12770 pring = lpfc_sli4_calc_ring(phba, iocbq); 12771 fcp_cmpl = lpfc_sli4_abort_fcp_cmpl; 12772 } 12773 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12774 fcp_cmpl); 12775 spin_unlock_irqrestore(&phba->hbalock, iflags); 12776 if (ret_val != IOCB_SUCCESS) 12777 errcnt++; 12778 } 12779 12780 return errcnt; 12781 } 12782 12783 /** 12784 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12785 * @vport: Pointer to virtual port. 12786 * @pring: Pointer to driver SLI ring object. 12787 * @tgt_id: SCSI ID of the target. 12788 * @lun_id: LUN ID of the scsi device. 12789 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12790 * 12791 * This function sends an abort command for every SCSI command 12792 * associated with the given virtual port pending on the ring 12793 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12794 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12795 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12796 * followed by lpfc_sli_validate_fcp_iocb. 12797 * 12798 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12799 * FCP iocbs associated with lun specified by tgt_id and lun_id 12800 * parameters 12801 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12802 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12803 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12804 * FCP iocbs associated with virtual port. 12805 * This function returns number of iocbs it aborted . 12806 * This function is called with no locks held right after a taskmgmt 12807 * command is sent. 12808 **/ 12809 int 12810 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12811 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12812 { 12813 struct lpfc_hba *phba = vport->phba; 12814 struct lpfc_io_buf *lpfc_cmd; 12815 struct lpfc_iocbq *abtsiocbq; 12816 struct lpfc_nodelist *ndlp; 12817 struct lpfc_iocbq *iocbq; 12818 IOCB_t *icmd; 12819 int sum, i, ret_val; 12820 unsigned long iflags; 12821 struct lpfc_sli_ring *pring_s4 = NULL; 12822 12823 spin_lock_irqsave(&phba->hbalock, iflags); 12824 12825 /* all I/Os are in process of being flushed */ 12826 if (phba->hba_flag & HBA_IOQ_FLUSH) { 12827 spin_unlock_irqrestore(&phba->hbalock, iflags); 12828 return 0; 12829 } 12830 sum = 0; 12831 12832 for (i = 1; i <= phba->sli.last_iotag; i++) { 12833 iocbq = phba->sli.iocbq_lookup[i]; 12834 12835 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12836 continue; 12837 12838 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12839 cmd) != 0) 12840 continue; 12841 12842 /* Guard against IO completion being called at same time */ 12843 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12844 spin_lock(&lpfc_cmd->buf_lock); 12845 12846 if (!lpfc_cmd->pCmd) { 12847 spin_unlock(&lpfc_cmd->buf_lock); 12848 continue; 12849 } 12850 12851 if (phba->sli_rev == LPFC_SLI_REV4) { 12852 pring_s4 = 12853 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12854 if (!pring_s4) { 12855 spin_unlock(&lpfc_cmd->buf_lock); 12856 continue; 12857 } 12858 /* Note: both hbalock and ring_lock must be set here */ 12859 spin_lock(&pring_s4->ring_lock); 12860 } 12861 12862 /* 12863 * If the iocbq is already being aborted, don't take a second 12864 * action, but do count it. 12865 */ 12866 if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) || 12867 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) { 12868 if (phba->sli_rev == LPFC_SLI_REV4) 12869 spin_unlock(&pring_s4->ring_lock); 12870 spin_unlock(&lpfc_cmd->buf_lock); 12871 continue; 12872 } 12873 12874 /* issue ABTS for this IOCB based on iotag */ 12875 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12876 if (!abtsiocbq) { 12877 if (phba->sli_rev == LPFC_SLI_REV4) 12878 spin_unlock(&pring_s4->ring_lock); 12879 spin_unlock(&lpfc_cmd->buf_lock); 12880 continue; 12881 } 12882 12883 icmd = &iocbq->iocb; 12884 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 12885 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 12886 if (phba->sli_rev == LPFC_SLI_REV4) 12887 abtsiocbq->iocb.un.acxri.abortIoTag = 12888 iocbq->sli4_xritag; 12889 else 12890 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 12891 abtsiocbq->iocb.ulpLe = 1; 12892 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 12893 abtsiocbq->vport = vport; 12894 12895 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12896 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12897 if (iocbq->iocb_flag & LPFC_IO_FCP) 12898 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 12899 if (iocbq->iocb_flag & LPFC_IO_FOF) 12900 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 12901 12902 ndlp = lpfc_cmd->rdata->pnode; 12903 12904 if (lpfc_is_link_up(phba) && 12905 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 12906 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 12907 else 12908 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 12909 12910 /* Setup callback routine and issue the command. */ 12911 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 12912 12913 /* 12914 * Indicate the IO is being aborted by the driver and set 12915 * the caller's flag into the aborted IO. 12916 */ 12917 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 12918 12919 if (phba->sli_rev == LPFC_SLI_REV4) { 12920 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12921 abtsiocbq, 0); 12922 spin_unlock(&pring_s4->ring_lock); 12923 } else { 12924 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12925 abtsiocbq, 0); 12926 } 12927 12928 spin_unlock(&lpfc_cmd->buf_lock); 12929 12930 if (ret_val == IOCB_ERROR) 12931 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12932 else 12933 sum++; 12934 } 12935 spin_unlock_irqrestore(&phba->hbalock, iflags); 12936 return sum; 12937 } 12938 12939 /** 12940 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12941 * @phba: Pointer to HBA context object. 12942 * @cmdiocbq: Pointer to command iocb. 12943 * @rspiocbq: Pointer to response iocb. 12944 * 12945 * This function is the completion handler for iocbs issued using 12946 * lpfc_sli_issue_iocb_wait function. This function is called by the 12947 * ring event handler function without any lock held. This function 12948 * can be called from both worker thread context and interrupt 12949 * context. This function also can be called from other thread which 12950 * cleans up the SLI layer objects. 12951 * This function copy the contents of the response iocb to the 12952 * response iocb memory object provided by the caller of 12953 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12954 * sleeps for the iocb completion. 12955 **/ 12956 static void 12957 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12958 struct lpfc_iocbq *cmdiocbq, 12959 struct lpfc_iocbq *rspiocbq) 12960 { 12961 wait_queue_head_t *pdone_q; 12962 unsigned long iflags; 12963 struct lpfc_io_buf *lpfc_cmd; 12964 12965 spin_lock_irqsave(&phba->hbalock, iflags); 12966 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 12967 12968 /* 12969 * A time out has occurred for the iocb. If a time out 12970 * completion handler has been supplied, call it. Otherwise, 12971 * just free the iocbq. 12972 */ 12973 12974 spin_unlock_irqrestore(&phba->hbalock, iflags); 12975 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 12976 cmdiocbq->wait_iocb_cmpl = NULL; 12977 if (cmdiocbq->iocb_cmpl) 12978 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 12979 else 12980 lpfc_sli_release_iocbq(phba, cmdiocbq); 12981 return; 12982 } 12983 12984 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 12985 if (cmdiocbq->context2 && rspiocbq) 12986 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 12987 &rspiocbq->iocb, sizeof(IOCB_t)); 12988 12989 /* Set the exchange busy flag for task management commands */ 12990 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 12991 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 12992 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 12993 cur_iocbq); 12994 if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY)) 12995 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 12996 else 12997 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 12998 } 12999 13000 pdone_q = cmdiocbq->context_un.wait_queue; 13001 if (pdone_q) 13002 wake_up(pdone_q); 13003 spin_unlock_irqrestore(&phba->hbalock, iflags); 13004 return; 13005 } 13006 13007 /** 13008 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 13009 * @phba: Pointer to HBA context object.. 13010 * @piocbq: Pointer to command iocb. 13011 * @flag: Flag to test. 13012 * 13013 * This routine grabs the hbalock and then test the iocb_flag to 13014 * see if the passed in flag is set. 13015 * Returns: 13016 * 1 if flag is set. 13017 * 0 if flag is not set. 13018 **/ 13019 static int 13020 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 13021 struct lpfc_iocbq *piocbq, uint32_t flag) 13022 { 13023 unsigned long iflags; 13024 int ret; 13025 13026 spin_lock_irqsave(&phba->hbalock, iflags); 13027 ret = piocbq->iocb_flag & flag; 13028 spin_unlock_irqrestore(&phba->hbalock, iflags); 13029 return ret; 13030 13031 } 13032 13033 /** 13034 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 13035 * @phba: Pointer to HBA context object.. 13036 * @ring_number: Ring number 13037 * @piocb: Pointer to command iocb. 13038 * @prspiocbq: Pointer to response iocb. 13039 * @timeout: Timeout in number of seconds. 13040 * 13041 * This function issues the iocb to firmware and waits for the 13042 * iocb to complete. The iocb_cmpl field of the shall be used 13043 * to handle iocbs which time out. If the field is NULL, the 13044 * function shall free the iocbq structure. If more clean up is 13045 * needed, the caller is expected to provide a completion function 13046 * that will provide the needed clean up. If the iocb command is 13047 * not completed within timeout seconds, the function will either 13048 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 13049 * completion function set in the iocb_cmpl field and then return 13050 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 13051 * resources if this function returns IOCB_TIMEDOUT. 13052 * The function waits for the iocb completion using an 13053 * non-interruptible wait. 13054 * This function will sleep while waiting for iocb completion. 13055 * So, this function should not be called from any context which 13056 * does not allow sleeping. Due to the same reason, this function 13057 * cannot be called with interrupt disabled. 13058 * This function assumes that the iocb completions occur while 13059 * this function sleep. So, this function cannot be called from 13060 * the thread which process iocb completion for this ring. 13061 * This function clears the iocb_flag of the iocb object before 13062 * issuing the iocb and the iocb completion handler sets this 13063 * flag and wakes this thread when the iocb completes. 13064 * The contents of the response iocb will be copied to prspiocbq 13065 * by the completion handler when the command completes. 13066 * This function returns IOCB_SUCCESS when success. 13067 * This function is called with no lock held. 13068 **/ 13069 int 13070 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 13071 uint32_t ring_number, 13072 struct lpfc_iocbq *piocb, 13073 struct lpfc_iocbq *prspiocbq, 13074 uint32_t timeout) 13075 { 13076 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 13077 long timeleft, timeout_req = 0; 13078 int retval = IOCB_SUCCESS; 13079 uint32_t creg_val; 13080 struct lpfc_iocbq *iocb; 13081 int txq_cnt = 0; 13082 int txcmplq_cnt = 0; 13083 struct lpfc_sli_ring *pring; 13084 unsigned long iflags; 13085 bool iocb_completed = true; 13086 13087 if (phba->sli_rev >= LPFC_SLI_REV4) 13088 pring = lpfc_sli4_calc_ring(phba, piocb); 13089 else 13090 pring = &phba->sli.sli3_ring[ring_number]; 13091 /* 13092 * If the caller has provided a response iocbq buffer, then context2 13093 * is NULL or its an error. 13094 */ 13095 if (prspiocbq) { 13096 if (piocb->context2) 13097 return IOCB_ERROR; 13098 piocb->context2 = prspiocbq; 13099 } 13100 13101 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 13102 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 13103 piocb->context_un.wait_queue = &done_q; 13104 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 13105 13106 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13107 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13108 return IOCB_ERROR; 13109 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 13110 writel(creg_val, phba->HCregaddr); 13111 readl(phba->HCregaddr); /* flush */ 13112 } 13113 13114 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 13115 SLI_IOCB_RET_IOCB); 13116 if (retval == IOCB_SUCCESS) { 13117 timeout_req = msecs_to_jiffies(timeout * 1000); 13118 timeleft = wait_event_timeout(done_q, 13119 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 13120 timeout_req); 13121 spin_lock_irqsave(&phba->hbalock, iflags); 13122 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 13123 13124 /* 13125 * IOCB timed out. Inform the wake iocb wait 13126 * completion function and set local status 13127 */ 13128 13129 iocb_completed = false; 13130 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 13131 } 13132 spin_unlock_irqrestore(&phba->hbalock, iflags); 13133 if (iocb_completed) { 13134 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13135 "0331 IOCB wake signaled\n"); 13136 /* Note: we are not indicating if the IOCB has a success 13137 * status or not - that's for the caller to check. 13138 * IOCB_SUCCESS means just that the command was sent and 13139 * completed. Not that it completed successfully. 13140 * */ 13141 } else if (timeleft == 0) { 13142 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13143 "0338 IOCB wait timeout error - no " 13144 "wake response Data x%x\n", timeout); 13145 retval = IOCB_TIMEDOUT; 13146 } else { 13147 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13148 "0330 IOCB wake NOT set, " 13149 "Data x%x x%lx\n", 13150 timeout, (timeleft / jiffies)); 13151 retval = IOCB_TIMEDOUT; 13152 } 13153 } else if (retval == IOCB_BUSY) { 13154 if (phba->cfg_log_verbose & LOG_SLI) { 13155 list_for_each_entry(iocb, &pring->txq, list) { 13156 txq_cnt++; 13157 } 13158 list_for_each_entry(iocb, &pring->txcmplq, list) { 13159 txcmplq_cnt++; 13160 } 13161 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13162 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 13163 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 13164 } 13165 return retval; 13166 } else { 13167 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13168 "0332 IOCB wait issue failed, Data x%x\n", 13169 retval); 13170 retval = IOCB_ERROR; 13171 } 13172 13173 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13174 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13175 return IOCB_ERROR; 13176 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 13177 writel(creg_val, phba->HCregaddr); 13178 readl(phba->HCregaddr); /* flush */ 13179 } 13180 13181 if (prspiocbq) 13182 piocb->context2 = NULL; 13183 13184 piocb->context_un.wait_queue = NULL; 13185 piocb->iocb_cmpl = NULL; 13186 return retval; 13187 } 13188 13189 /** 13190 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 13191 * @phba: Pointer to HBA context object. 13192 * @pmboxq: Pointer to driver mailbox object. 13193 * @timeout: Timeout in number of seconds. 13194 * 13195 * This function issues the mailbox to firmware and waits for the 13196 * mailbox command to complete. If the mailbox command is not 13197 * completed within timeout seconds, it returns MBX_TIMEOUT. 13198 * The function waits for the mailbox completion using an 13199 * interruptible wait. If the thread is woken up due to a 13200 * signal, MBX_TIMEOUT error is returned to the caller. Caller 13201 * should not free the mailbox resources, if this function returns 13202 * MBX_TIMEOUT. 13203 * This function will sleep while waiting for mailbox completion. 13204 * So, this function should not be called from any context which 13205 * does not allow sleeping. Due to the same reason, this function 13206 * cannot be called with interrupt disabled. 13207 * This function assumes that the mailbox completion occurs while 13208 * this function sleep. So, this function cannot be called from 13209 * the worker thread which processes mailbox completion. 13210 * This function is called in the context of HBA management 13211 * applications. 13212 * This function returns MBX_SUCCESS when successful. 13213 * This function is called with no lock held. 13214 **/ 13215 int 13216 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 13217 uint32_t timeout) 13218 { 13219 struct completion mbox_done; 13220 int retval; 13221 unsigned long flag; 13222 13223 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 13224 /* setup wake call as IOCB callback */ 13225 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 13226 13227 /* setup context3 field to pass wait_queue pointer to wake function */ 13228 init_completion(&mbox_done); 13229 pmboxq->context3 = &mbox_done; 13230 /* now issue the command */ 13231 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 13232 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 13233 wait_for_completion_timeout(&mbox_done, 13234 msecs_to_jiffies(timeout * 1000)); 13235 13236 spin_lock_irqsave(&phba->hbalock, flag); 13237 pmboxq->context3 = NULL; 13238 /* 13239 * if LPFC_MBX_WAKE flag is set the mailbox is completed 13240 * else do not free the resources. 13241 */ 13242 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 13243 retval = MBX_SUCCESS; 13244 } else { 13245 retval = MBX_TIMEOUT; 13246 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13247 } 13248 spin_unlock_irqrestore(&phba->hbalock, flag); 13249 } 13250 return retval; 13251 } 13252 13253 /** 13254 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 13255 * @phba: Pointer to HBA context. 13256 * @mbx_action: Mailbox shutdown options. 13257 * 13258 * This function is called to shutdown the driver's mailbox sub-system. 13259 * It first marks the mailbox sub-system is in a block state to prevent 13260 * the asynchronous mailbox command from issued off the pending mailbox 13261 * command queue. If the mailbox command sub-system shutdown is due to 13262 * HBA error conditions such as EEH or ERATT, this routine shall invoke 13263 * the mailbox sub-system flush routine to forcefully bring down the 13264 * mailbox sub-system. Otherwise, if it is due to normal condition (such 13265 * as with offline or HBA function reset), this routine will wait for the 13266 * outstanding mailbox command to complete before invoking the mailbox 13267 * sub-system flush routine to gracefully bring down mailbox sub-system. 13268 **/ 13269 void 13270 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 13271 { 13272 struct lpfc_sli *psli = &phba->sli; 13273 unsigned long timeout; 13274 13275 if (mbx_action == LPFC_MBX_NO_WAIT) { 13276 /* delay 100ms for port state */ 13277 msleep(100); 13278 lpfc_sli_mbox_sys_flush(phba); 13279 return; 13280 } 13281 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 13282 13283 /* Disable softirqs, including timers from obtaining phba->hbalock */ 13284 local_bh_disable(); 13285 13286 spin_lock_irq(&phba->hbalock); 13287 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13288 13289 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 13290 /* Determine how long we might wait for the active mailbox 13291 * command to be gracefully completed by firmware. 13292 */ 13293 if (phba->sli.mbox_active) 13294 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 13295 phba->sli.mbox_active) * 13296 1000) + jiffies; 13297 spin_unlock_irq(&phba->hbalock); 13298 13299 /* Enable softirqs again, done with phba->hbalock */ 13300 local_bh_enable(); 13301 13302 while (phba->sli.mbox_active) { 13303 /* Check active mailbox complete status every 2ms */ 13304 msleep(2); 13305 if (time_after(jiffies, timeout)) 13306 /* Timeout, let the mailbox flush routine to 13307 * forcefully release active mailbox command 13308 */ 13309 break; 13310 } 13311 } else { 13312 spin_unlock_irq(&phba->hbalock); 13313 13314 /* Enable softirqs again, done with phba->hbalock */ 13315 local_bh_enable(); 13316 } 13317 13318 lpfc_sli_mbox_sys_flush(phba); 13319 } 13320 13321 /** 13322 * lpfc_sli_eratt_read - read sli-3 error attention events 13323 * @phba: Pointer to HBA context. 13324 * 13325 * This function is called to read the SLI3 device error attention registers 13326 * for possible error attention events. The caller must hold the hostlock 13327 * with spin_lock_irq(). 13328 * 13329 * This function returns 1 when there is Error Attention in the Host Attention 13330 * Register and returns 0 otherwise. 13331 **/ 13332 static int 13333 lpfc_sli_eratt_read(struct lpfc_hba *phba) 13334 { 13335 uint32_t ha_copy; 13336 13337 /* Read chip Host Attention (HA) register */ 13338 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13339 goto unplug_err; 13340 13341 if (ha_copy & HA_ERATT) { 13342 /* Read host status register to retrieve error event */ 13343 if (lpfc_sli_read_hs(phba)) 13344 goto unplug_err; 13345 13346 /* Check if there is a deferred error condition is active */ 13347 if ((HS_FFER1 & phba->work_hs) && 13348 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13349 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 13350 phba->hba_flag |= DEFER_ERATT; 13351 /* Clear all interrupt enable conditions */ 13352 writel(0, phba->HCregaddr); 13353 readl(phba->HCregaddr); 13354 } 13355 13356 /* Set the driver HA work bitmap */ 13357 phba->work_ha |= HA_ERATT; 13358 /* Indicate polling handles this ERATT */ 13359 phba->hba_flag |= HBA_ERATT_HANDLED; 13360 return 1; 13361 } 13362 return 0; 13363 13364 unplug_err: 13365 /* Set the driver HS work bitmap */ 13366 phba->work_hs |= UNPLUG_ERR; 13367 /* Set the driver HA work bitmap */ 13368 phba->work_ha |= HA_ERATT; 13369 /* Indicate polling handles this ERATT */ 13370 phba->hba_flag |= HBA_ERATT_HANDLED; 13371 return 1; 13372 } 13373 13374 /** 13375 * lpfc_sli4_eratt_read - read sli-4 error attention events 13376 * @phba: Pointer to HBA context. 13377 * 13378 * This function is called to read the SLI4 device error attention registers 13379 * for possible error attention events. The caller must hold the hostlock 13380 * with spin_lock_irq(). 13381 * 13382 * This function returns 1 when there is Error Attention in the Host Attention 13383 * Register and returns 0 otherwise. 13384 **/ 13385 static int 13386 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 13387 { 13388 uint32_t uerr_sta_hi, uerr_sta_lo; 13389 uint32_t if_type, portsmphr; 13390 struct lpfc_register portstat_reg; 13391 13392 /* 13393 * For now, use the SLI4 device internal unrecoverable error 13394 * registers for error attention. This can be changed later. 13395 */ 13396 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 13397 switch (if_type) { 13398 case LPFC_SLI_INTF_IF_TYPE_0: 13399 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 13400 &uerr_sta_lo) || 13401 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 13402 &uerr_sta_hi)) { 13403 phba->work_hs |= UNPLUG_ERR; 13404 phba->work_ha |= HA_ERATT; 13405 phba->hba_flag |= HBA_ERATT_HANDLED; 13406 return 1; 13407 } 13408 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 13409 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 13410 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13411 "1423 HBA Unrecoverable error: " 13412 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 13413 "ue_mask_lo_reg=0x%x, " 13414 "ue_mask_hi_reg=0x%x\n", 13415 uerr_sta_lo, uerr_sta_hi, 13416 phba->sli4_hba.ue_mask_lo, 13417 phba->sli4_hba.ue_mask_hi); 13418 phba->work_status[0] = uerr_sta_lo; 13419 phba->work_status[1] = uerr_sta_hi; 13420 phba->work_ha |= HA_ERATT; 13421 phba->hba_flag |= HBA_ERATT_HANDLED; 13422 return 1; 13423 } 13424 break; 13425 case LPFC_SLI_INTF_IF_TYPE_2: 13426 case LPFC_SLI_INTF_IF_TYPE_6: 13427 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 13428 &portstat_reg.word0) || 13429 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 13430 &portsmphr)){ 13431 phba->work_hs |= UNPLUG_ERR; 13432 phba->work_ha |= HA_ERATT; 13433 phba->hba_flag |= HBA_ERATT_HANDLED; 13434 return 1; 13435 } 13436 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 13437 phba->work_status[0] = 13438 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 13439 phba->work_status[1] = 13440 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 13441 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13442 "2885 Port Status Event: " 13443 "port status reg 0x%x, " 13444 "port smphr reg 0x%x, " 13445 "error 1=0x%x, error 2=0x%x\n", 13446 portstat_reg.word0, 13447 portsmphr, 13448 phba->work_status[0], 13449 phba->work_status[1]); 13450 phba->work_ha |= HA_ERATT; 13451 phba->hba_flag |= HBA_ERATT_HANDLED; 13452 return 1; 13453 } 13454 break; 13455 case LPFC_SLI_INTF_IF_TYPE_1: 13456 default: 13457 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13458 "2886 HBA Error Attention on unsupported " 13459 "if type %d.", if_type); 13460 return 1; 13461 } 13462 13463 return 0; 13464 } 13465 13466 /** 13467 * lpfc_sli_check_eratt - check error attention events 13468 * @phba: Pointer to HBA context. 13469 * 13470 * This function is called from timer soft interrupt context to check HBA's 13471 * error attention register bit for error attention events. 13472 * 13473 * This function returns 1 when there is Error Attention in the Host Attention 13474 * Register and returns 0 otherwise. 13475 **/ 13476 int 13477 lpfc_sli_check_eratt(struct lpfc_hba *phba) 13478 { 13479 uint32_t ha_copy; 13480 13481 /* If somebody is waiting to handle an eratt, don't process it 13482 * here. The brdkill function will do this. 13483 */ 13484 if (phba->link_flag & LS_IGNORE_ERATT) 13485 return 0; 13486 13487 /* Check if interrupt handler handles this ERATT */ 13488 spin_lock_irq(&phba->hbalock); 13489 if (phba->hba_flag & HBA_ERATT_HANDLED) { 13490 /* Interrupt handler has handled ERATT */ 13491 spin_unlock_irq(&phba->hbalock); 13492 return 0; 13493 } 13494 13495 /* 13496 * If there is deferred error attention, do not check for error 13497 * attention 13498 */ 13499 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13500 spin_unlock_irq(&phba->hbalock); 13501 return 0; 13502 } 13503 13504 /* If PCI channel is offline, don't process it */ 13505 if (unlikely(pci_channel_offline(phba->pcidev))) { 13506 spin_unlock_irq(&phba->hbalock); 13507 return 0; 13508 } 13509 13510 switch (phba->sli_rev) { 13511 case LPFC_SLI_REV2: 13512 case LPFC_SLI_REV3: 13513 /* Read chip Host Attention (HA) register */ 13514 ha_copy = lpfc_sli_eratt_read(phba); 13515 break; 13516 case LPFC_SLI_REV4: 13517 /* Read device Uncoverable Error (UERR) registers */ 13518 ha_copy = lpfc_sli4_eratt_read(phba); 13519 break; 13520 default: 13521 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13522 "0299 Invalid SLI revision (%d)\n", 13523 phba->sli_rev); 13524 ha_copy = 0; 13525 break; 13526 } 13527 spin_unlock_irq(&phba->hbalock); 13528 13529 return ha_copy; 13530 } 13531 13532 /** 13533 * lpfc_intr_state_check - Check device state for interrupt handling 13534 * @phba: Pointer to HBA context. 13535 * 13536 * This inline routine checks whether a device or its PCI slot is in a state 13537 * that the interrupt should be handled. 13538 * 13539 * This function returns 0 if the device or the PCI slot is in a state that 13540 * interrupt should be handled, otherwise -EIO. 13541 */ 13542 static inline int 13543 lpfc_intr_state_check(struct lpfc_hba *phba) 13544 { 13545 /* If the pci channel is offline, ignore all the interrupts */ 13546 if (unlikely(pci_channel_offline(phba->pcidev))) 13547 return -EIO; 13548 13549 /* Update device level interrupt statistics */ 13550 phba->sli.slistat.sli_intr++; 13551 13552 /* Ignore all interrupts during initialization. */ 13553 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 13554 return -EIO; 13555 13556 return 0; 13557 } 13558 13559 /** 13560 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 13561 * @irq: Interrupt number. 13562 * @dev_id: The device context pointer. 13563 * 13564 * This function is directly called from the PCI layer as an interrupt 13565 * service routine when device with SLI-3 interface spec is enabled with 13566 * MSI-X multi-message interrupt mode and there are slow-path events in 13567 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 13568 * interrupt mode, this function is called as part of the device-level 13569 * interrupt handler. When the PCI slot is in error recovery or the HBA 13570 * is undergoing initialization, the interrupt handler will not process 13571 * the interrupt. The link attention and ELS ring attention events are 13572 * handled by the worker thread. The interrupt handler signals the worker 13573 * thread and returns for these events. This function is called without 13574 * any lock held. It gets the hbalock to access and update SLI data 13575 * structures. 13576 * 13577 * This function returns IRQ_HANDLED when interrupt is handled else it 13578 * returns IRQ_NONE. 13579 **/ 13580 irqreturn_t 13581 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 13582 { 13583 struct lpfc_hba *phba; 13584 uint32_t ha_copy, hc_copy; 13585 uint32_t work_ha_copy; 13586 unsigned long status; 13587 unsigned long iflag; 13588 uint32_t control; 13589 13590 MAILBOX_t *mbox, *pmbox; 13591 struct lpfc_vport *vport; 13592 struct lpfc_nodelist *ndlp; 13593 struct lpfc_dmabuf *mp; 13594 LPFC_MBOXQ_t *pmb; 13595 int rc; 13596 13597 /* 13598 * Get the driver's phba structure from the dev_id and 13599 * assume the HBA is not interrupting. 13600 */ 13601 phba = (struct lpfc_hba *)dev_id; 13602 13603 if (unlikely(!phba)) 13604 return IRQ_NONE; 13605 13606 /* 13607 * Stuff needs to be attented to when this function is invoked as an 13608 * individual interrupt handler in MSI-X multi-message interrupt mode 13609 */ 13610 if (phba->intr_type == MSIX) { 13611 /* Check device state for handling interrupt */ 13612 if (lpfc_intr_state_check(phba)) 13613 return IRQ_NONE; 13614 /* Need to read HA REG for slow-path events */ 13615 spin_lock_irqsave(&phba->hbalock, iflag); 13616 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13617 goto unplug_error; 13618 /* If somebody is waiting to handle an eratt don't process it 13619 * here. The brdkill function will do this. 13620 */ 13621 if (phba->link_flag & LS_IGNORE_ERATT) 13622 ha_copy &= ~HA_ERATT; 13623 /* Check the need for handling ERATT in interrupt handler */ 13624 if (ha_copy & HA_ERATT) { 13625 if (phba->hba_flag & HBA_ERATT_HANDLED) 13626 /* ERATT polling has handled ERATT */ 13627 ha_copy &= ~HA_ERATT; 13628 else 13629 /* Indicate interrupt handler handles ERATT */ 13630 phba->hba_flag |= HBA_ERATT_HANDLED; 13631 } 13632 13633 /* 13634 * If there is deferred error attention, do not check for any 13635 * interrupt. 13636 */ 13637 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13638 spin_unlock_irqrestore(&phba->hbalock, iflag); 13639 return IRQ_NONE; 13640 } 13641 13642 /* Clear up only attention source related to slow-path */ 13643 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 13644 goto unplug_error; 13645 13646 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 13647 HC_LAINT_ENA | HC_ERINT_ENA), 13648 phba->HCregaddr); 13649 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 13650 phba->HAregaddr); 13651 writel(hc_copy, phba->HCregaddr); 13652 readl(phba->HAregaddr); /* flush */ 13653 spin_unlock_irqrestore(&phba->hbalock, iflag); 13654 } else 13655 ha_copy = phba->ha_copy; 13656 13657 work_ha_copy = ha_copy & phba->work_ha_mask; 13658 13659 if (work_ha_copy) { 13660 if (work_ha_copy & HA_LATT) { 13661 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 13662 /* 13663 * Turn off Link Attention interrupts 13664 * until CLEAR_LA done 13665 */ 13666 spin_lock_irqsave(&phba->hbalock, iflag); 13667 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 13668 if (lpfc_readl(phba->HCregaddr, &control)) 13669 goto unplug_error; 13670 control &= ~HC_LAINT_ENA; 13671 writel(control, phba->HCregaddr); 13672 readl(phba->HCregaddr); /* flush */ 13673 spin_unlock_irqrestore(&phba->hbalock, iflag); 13674 } 13675 else 13676 work_ha_copy &= ~HA_LATT; 13677 } 13678 13679 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 13680 /* 13681 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 13682 * the only slow ring. 13683 */ 13684 status = (work_ha_copy & 13685 (HA_RXMASK << (4*LPFC_ELS_RING))); 13686 status >>= (4*LPFC_ELS_RING); 13687 if (status & HA_RXMASK) { 13688 spin_lock_irqsave(&phba->hbalock, iflag); 13689 if (lpfc_readl(phba->HCregaddr, &control)) 13690 goto unplug_error; 13691 13692 lpfc_debugfs_slow_ring_trc(phba, 13693 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 13694 control, status, 13695 (uint32_t)phba->sli.slistat.sli_intr); 13696 13697 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 13698 lpfc_debugfs_slow_ring_trc(phba, 13699 "ISR Disable ring:" 13700 "pwork:x%x hawork:x%x wait:x%x", 13701 phba->work_ha, work_ha_copy, 13702 (uint32_t)((unsigned long) 13703 &phba->work_waitq)); 13704 13705 control &= 13706 ~(HC_R0INT_ENA << LPFC_ELS_RING); 13707 writel(control, phba->HCregaddr); 13708 readl(phba->HCregaddr); /* flush */ 13709 } 13710 else { 13711 lpfc_debugfs_slow_ring_trc(phba, 13712 "ISR slow ring: pwork:" 13713 "x%x hawork:x%x wait:x%x", 13714 phba->work_ha, work_ha_copy, 13715 (uint32_t)((unsigned long) 13716 &phba->work_waitq)); 13717 } 13718 spin_unlock_irqrestore(&phba->hbalock, iflag); 13719 } 13720 } 13721 spin_lock_irqsave(&phba->hbalock, iflag); 13722 if (work_ha_copy & HA_ERATT) { 13723 if (lpfc_sli_read_hs(phba)) 13724 goto unplug_error; 13725 /* 13726 * Check if there is a deferred error condition 13727 * is active 13728 */ 13729 if ((HS_FFER1 & phba->work_hs) && 13730 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13731 HS_FFER6 | HS_FFER7 | HS_FFER8) & 13732 phba->work_hs)) { 13733 phba->hba_flag |= DEFER_ERATT; 13734 /* Clear all interrupt enable conditions */ 13735 writel(0, phba->HCregaddr); 13736 readl(phba->HCregaddr); 13737 } 13738 } 13739 13740 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 13741 pmb = phba->sli.mbox_active; 13742 pmbox = &pmb->u.mb; 13743 mbox = phba->mbox; 13744 vport = pmb->vport; 13745 13746 /* First check out the status word */ 13747 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 13748 if (pmbox->mbxOwner != OWN_HOST) { 13749 spin_unlock_irqrestore(&phba->hbalock, iflag); 13750 /* 13751 * Stray Mailbox Interrupt, mbxCommand <cmd> 13752 * mbxStatus <status> 13753 */ 13754 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13755 "(%d):0304 Stray Mailbox " 13756 "Interrupt mbxCommand x%x " 13757 "mbxStatus x%x\n", 13758 (vport ? vport->vpi : 0), 13759 pmbox->mbxCommand, 13760 pmbox->mbxStatus); 13761 /* clear mailbox attention bit */ 13762 work_ha_copy &= ~HA_MBATT; 13763 } else { 13764 phba->sli.mbox_active = NULL; 13765 spin_unlock_irqrestore(&phba->hbalock, iflag); 13766 phba->last_completion_time = jiffies; 13767 del_timer(&phba->sli.mbox_tmo); 13768 if (pmb->mbox_cmpl) { 13769 lpfc_sli_pcimem_bcopy(mbox, pmbox, 13770 MAILBOX_CMD_SIZE); 13771 if (pmb->out_ext_byte_len && 13772 pmb->ctx_buf) 13773 lpfc_sli_pcimem_bcopy( 13774 phba->mbox_ext, 13775 pmb->ctx_buf, 13776 pmb->out_ext_byte_len); 13777 } 13778 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13779 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13780 13781 lpfc_debugfs_disc_trc(vport, 13782 LPFC_DISC_TRC_MBOX_VPORT, 13783 "MBOX dflt rpi: : " 13784 "status:x%x rpi:x%x", 13785 (uint32_t)pmbox->mbxStatus, 13786 pmbox->un.varWords[0], 0); 13787 13788 if (!pmbox->mbxStatus) { 13789 mp = (struct lpfc_dmabuf *) 13790 (pmb->ctx_buf); 13791 ndlp = (struct lpfc_nodelist *) 13792 pmb->ctx_ndlp; 13793 13794 /* Reg_LOGIN of dflt RPI was 13795 * successful. new lets get 13796 * rid of the RPI using the 13797 * same mbox buffer. 13798 */ 13799 lpfc_unreg_login(phba, 13800 vport->vpi, 13801 pmbox->un.varWords[0], 13802 pmb); 13803 pmb->mbox_cmpl = 13804 lpfc_mbx_cmpl_dflt_rpi; 13805 pmb->ctx_buf = mp; 13806 pmb->ctx_ndlp = ndlp; 13807 pmb->vport = vport; 13808 rc = lpfc_sli_issue_mbox(phba, 13809 pmb, 13810 MBX_NOWAIT); 13811 if (rc != MBX_BUSY) 13812 lpfc_printf_log(phba, 13813 KERN_ERR, 13814 LOG_TRACE_EVENT, 13815 "0350 rc should have" 13816 "been MBX_BUSY\n"); 13817 if (rc != MBX_NOT_FINISHED) 13818 goto send_current_mbox; 13819 } 13820 } 13821 spin_lock_irqsave( 13822 &phba->pport->work_port_lock, 13823 iflag); 13824 phba->pport->work_port_events &= 13825 ~WORKER_MBOX_TMO; 13826 spin_unlock_irqrestore( 13827 &phba->pport->work_port_lock, 13828 iflag); 13829 13830 /* Do NOT queue MBX_HEARTBEAT to the worker 13831 * thread for processing. 13832 */ 13833 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13834 /* Process mbox now */ 13835 phba->sli.mbox_active = NULL; 13836 phba->sli.sli_flag &= 13837 ~LPFC_SLI_MBOX_ACTIVE; 13838 if (pmb->mbox_cmpl) 13839 pmb->mbox_cmpl(phba, pmb); 13840 } else { 13841 /* Queue to worker thread to process */ 13842 lpfc_mbox_cmpl_put(phba, pmb); 13843 } 13844 } 13845 } else 13846 spin_unlock_irqrestore(&phba->hbalock, iflag); 13847 13848 if ((work_ha_copy & HA_MBATT) && 13849 (phba->sli.mbox_active == NULL)) { 13850 send_current_mbox: 13851 /* Process next mailbox command if there is one */ 13852 do { 13853 rc = lpfc_sli_issue_mbox(phba, NULL, 13854 MBX_NOWAIT); 13855 } while (rc == MBX_NOT_FINISHED); 13856 if (rc != MBX_SUCCESS) 13857 lpfc_printf_log(phba, KERN_ERR, 13858 LOG_TRACE_EVENT, 13859 "0349 rc should be " 13860 "MBX_SUCCESS\n"); 13861 } 13862 13863 spin_lock_irqsave(&phba->hbalock, iflag); 13864 phba->work_ha |= work_ha_copy; 13865 spin_unlock_irqrestore(&phba->hbalock, iflag); 13866 lpfc_worker_wake_up(phba); 13867 } 13868 return IRQ_HANDLED; 13869 unplug_error: 13870 spin_unlock_irqrestore(&phba->hbalock, iflag); 13871 return IRQ_HANDLED; 13872 13873 } /* lpfc_sli_sp_intr_handler */ 13874 13875 /** 13876 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13877 * @irq: Interrupt number. 13878 * @dev_id: The device context pointer. 13879 * 13880 * This function is directly called from the PCI layer as an interrupt 13881 * service routine when device with SLI-3 interface spec is enabled with 13882 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13883 * ring event in the HBA. However, when the device is enabled with either 13884 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13885 * device-level interrupt handler. When the PCI slot is in error recovery 13886 * or the HBA is undergoing initialization, the interrupt handler will not 13887 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13888 * the intrrupt context. This function is called without any lock held. 13889 * It gets the hbalock to access and update SLI data structures. 13890 * 13891 * This function returns IRQ_HANDLED when interrupt is handled else it 13892 * returns IRQ_NONE. 13893 **/ 13894 irqreturn_t 13895 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13896 { 13897 struct lpfc_hba *phba; 13898 uint32_t ha_copy; 13899 unsigned long status; 13900 unsigned long iflag; 13901 struct lpfc_sli_ring *pring; 13902 13903 /* Get the driver's phba structure from the dev_id and 13904 * assume the HBA is not interrupting. 13905 */ 13906 phba = (struct lpfc_hba *) dev_id; 13907 13908 if (unlikely(!phba)) 13909 return IRQ_NONE; 13910 13911 /* 13912 * Stuff needs to be attented to when this function is invoked as an 13913 * individual interrupt handler in MSI-X multi-message interrupt mode 13914 */ 13915 if (phba->intr_type == MSIX) { 13916 /* Check device state for handling interrupt */ 13917 if (lpfc_intr_state_check(phba)) 13918 return IRQ_NONE; 13919 /* Need to read HA REG for FCP ring and other ring events */ 13920 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13921 return IRQ_HANDLED; 13922 /* Clear up only attention source related to fast-path */ 13923 spin_lock_irqsave(&phba->hbalock, iflag); 13924 /* 13925 * If there is deferred error attention, do not check for 13926 * any interrupt. 13927 */ 13928 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13929 spin_unlock_irqrestore(&phba->hbalock, iflag); 13930 return IRQ_NONE; 13931 } 13932 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13933 phba->HAregaddr); 13934 readl(phba->HAregaddr); /* flush */ 13935 spin_unlock_irqrestore(&phba->hbalock, iflag); 13936 } else 13937 ha_copy = phba->ha_copy; 13938 13939 /* 13940 * Process all events on FCP ring. Take the optimized path for FCP IO. 13941 */ 13942 ha_copy &= ~(phba->work_ha_mask); 13943 13944 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13945 status >>= (4*LPFC_FCP_RING); 13946 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13947 if (status & HA_RXMASK) 13948 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13949 13950 if (phba->cfg_multi_ring_support == 2) { 13951 /* 13952 * Process all events on extra ring. Take the optimized path 13953 * for extra ring IO. 13954 */ 13955 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13956 status >>= (4*LPFC_EXTRA_RING); 13957 if (status & HA_RXMASK) { 13958 lpfc_sli_handle_fast_ring_event(phba, 13959 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 13960 status); 13961 } 13962 } 13963 return IRQ_HANDLED; 13964 } /* lpfc_sli_fp_intr_handler */ 13965 13966 /** 13967 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 13968 * @irq: Interrupt number. 13969 * @dev_id: The device context pointer. 13970 * 13971 * This function is the HBA device-level interrupt handler to device with 13972 * SLI-3 interface spec, called from the PCI layer when either MSI or 13973 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 13974 * requires driver attention. This function invokes the slow-path interrupt 13975 * attention handling function and fast-path interrupt attention handling 13976 * function in turn to process the relevant HBA attention events. This 13977 * function is called without any lock held. It gets the hbalock to access 13978 * and update SLI data structures. 13979 * 13980 * This function returns IRQ_HANDLED when interrupt is handled, else it 13981 * returns IRQ_NONE. 13982 **/ 13983 irqreturn_t 13984 lpfc_sli_intr_handler(int irq, void *dev_id) 13985 { 13986 struct lpfc_hba *phba; 13987 irqreturn_t sp_irq_rc, fp_irq_rc; 13988 unsigned long status1, status2; 13989 uint32_t hc_copy; 13990 13991 /* 13992 * Get the driver's phba structure from the dev_id and 13993 * assume the HBA is not interrupting. 13994 */ 13995 phba = (struct lpfc_hba *) dev_id; 13996 13997 if (unlikely(!phba)) 13998 return IRQ_NONE; 13999 14000 /* Check device state for handling interrupt */ 14001 if (lpfc_intr_state_check(phba)) 14002 return IRQ_NONE; 14003 14004 spin_lock(&phba->hbalock); 14005 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 14006 spin_unlock(&phba->hbalock); 14007 return IRQ_HANDLED; 14008 } 14009 14010 if (unlikely(!phba->ha_copy)) { 14011 spin_unlock(&phba->hbalock); 14012 return IRQ_NONE; 14013 } else if (phba->ha_copy & HA_ERATT) { 14014 if (phba->hba_flag & HBA_ERATT_HANDLED) 14015 /* ERATT polling has handled ERATT */ 14016 phba->ha_copy &= ~HA_ERATT; 14017 else 14018 /* Indicate interrupt handler handles ERATT */ 14019 phba->hba_flag |= HBA_ERATT_HANDLED; 14020 } 14021 14022 /* 14023 * If there is deferred error attention, do not check for any interrupt. 14024 */ 14025 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 14026 spin_unlock(&phba->hbalock); 14027 return IRQ_NONE; 14028 } 14029 14030 /* Clear attention sources except link and error attentions */ 14031 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 14032 spin_unlock(&phba->hbalock); 14033 return IRQ_HANDLED; 14034 } 14035 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 14036 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 14037 phba->HCregaddr); 14038 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 14039 writel(hc_copy, phba->HCregaddr); 14040 readl(phba->HAregaddr); /* flush */ 14041 spin_unlock(&phba->hbalock); 14042 14043 /* 14044 * Invokes slow-path host attention interrupt handling as appropriate. 14045 */ 14046 14047 /* status of events with mailbox and link attention */ 14048 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 14049 14050 /* status of events with ELS ring */ 14051 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 14052 status2 >>= (4*LPFC_ELS_RING); 14053 14054 if (status1 || (status2 & HA_RXMASK)) 14055 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 14056 else 14057 sp_irq_rc = IRQ_NONE; 14058 14059 /* 14060 * Invoke fast-path host attention interrupt handling as appropriate. 14061 */ 14062 14063 /* status of events with FCP ring */ 14064 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 14065 status1 >>= (4*LPFC_FCP_RING); 14066 14067 /* status of events with extra ring */ 14068 if (phba->cfg_multi_ring_support == 2) { 14069 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 14070 status2 >>= (4*LPFC_EXTRA_RING); 14071 } else 14072 status2 = 0; 14073 14074 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 14075 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 14076 else 14077 fp_irq_rc = IRQ_NONE; 14078 14079 /* Return device-level interrupt handling status */ 14080 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 14081 } /* lpfc_sli_intr_handler */ 14082 14083 /** 14084 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 14085 * @phba: pointer to lpfc hba data structure. 14086 * 14087 * This routine is invoked by the worker thread to process all the pending 14088 * SLI4 els abort xri events. 14089 **/ 14090 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 14091 { 14092 struct lpfc_cq_event *cq_event; 14093 unsigned long iflags; 14094 14095 /* First, declare the els xri abort event has been handled */ 14096 spin_lock_irqsave(&phba->hbalock, iflags); 14097 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 14098 spin_unlock_irqrestore(&phba->hbalock, iflags); 14099 14100 /* Now, handle all the els xri abort events */ 14101 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14102 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 14103 /* Get the first event from the head of the event queue */ 14104 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 14105 cq_event, struct lpfc_cq_event, list); 14106 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14107 iflags); 14108 /* Notify aborted XRI for ELS work queue */ 14109 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 14110 14111 /* Free the event processed back to the free pool */ 14112 lpfc_sli4_cq_event_release(phba, cq_event); 14113 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14114 iflags); 14115 } 14116 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14117 } 14118 14119 /** 14120 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 14121 * @phba: pointer to lpfc hba data structure 14122 * @pIocbIn: pointer to the rspiocbq 14123 * @pIocbOut: pointer to the cmdiocbq 14124 * @wcqe: pointer to the complete wcqe 14125 * 14126 * This routine transfers the fields of a command iocbq to a response iocbq 14127 * by copying all the IOCB fields from command iocbq and transferring the 14128 * completion status information from the complete wcqe. 14129 **/ 14130 static void 14131 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 14132 struct lpfc_iocbq *pIocbIn, 14133 struct lpfc_iocbq *pIocbOut, 14134 struct lpfc_wcqe_complete *wcqe) 14135 { 14136 int numBdes, i; 14137 unsigned long iflags; 14138 uint32_t status, max_response; 14139 struct lpfc_dmabuf *dmabuf; 14140 struct ulp_bde64 *bpl, bde; 14141 size_t offset = offsetof(struct lpfc_iocbq, iocb); 14142 14143 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 14144 sizeof(struct lpfc_iocbq) - offset); 14145 /* Map WCQE parameters into irspiocb parameters */ 14146 status = bf_get(lpfc_wcqe_c_status, wcqe); 14147 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 14148 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 14149 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 14150 pIocbIn->iocb.un.fcpi.fcpi_parm = 14151 pIocbOut->iocb.un.fcpi.fcpi_parm - 14152 wcqe->total_data_placed; 14153 else 14154 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 14155 else { 14156 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 14157 switch (pIocbOut->iocb.ulpCommand) { 14158 case CMD_ELS_REQUEST64_CR: 14159 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 14160 bpl = (struct ulp_bde64 *)dmabuf->virt; 14161 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 14162 max_response = bde.tus.f.bdeSize; 14163 break; 14164 case CMD_GEN_REQUEST64_CR: 14165 max_response = 0; 14166 if (!pIocbOut->context3) 14167 break; 14168 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 14169 sizeof(struct ulp_bde64); 14170 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 14171 bpl = (struct ulp_bde64 *)dmabuf->virt; 14172 for (i = 0; i < numBdes; i++) { 14173 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 14174 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 14175 max_response += bde.tus.f.bdeSize; 14176 } 14177 break; 14178 default: 14179 max_response = wcqe->total_data_placed; 14180 break; 14181 } 14182 if (max_response < wcqe->total_data_placed) 14183 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 14184 else 14185 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 14186 wcqe->total_data_placed; 14187 } 14188 14189 /* Convert BG errors for completion status */ 14190 if (status == CQE_STATUS_DI_ERROR) { 14191 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 14192 14193 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 14194 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 14195 else 14196 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 14197 14198 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 14199 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 14200 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14201 BGS_GUARD_ERR_MASK; 14202 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 14203 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14204 BGS_APPTAG_ERR_MASK; 14205 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 14206 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14207 BGS_REFTAG_ERR_MASK; 14208 14209 /* Check to see if there was any good data before the error */ 14210 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 14211 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14212 BGS_HI_WATER_MARK_PRESENT_MASK; 14213 pIocbIn->iocb.unsli3.sli3_bg.bghm = 14214 wcqe->total_data_placed; 14215 } 14216 14217 /* 14218 * Set ALL the error bits to indicate we don't know what 14219 * type of error it is. 14220 */ 14221 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 14222 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 14223 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 14224 BGS_GUARD_ERR_MASK); 14225 } 14226 14227 /* Pick up HBA exchange busy condition */ 14228 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 14229 spin_lock_irqsave(&phba->hbalock, iflags); 14230 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 14231 spin_unlock_irqrestore(&phba->hbalock, iflags); 14232 } 14233 } 14234 14235 /** 14236 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 14237 * @phba: Pointer to HBA context object. 14238 * @irspiocbq: Pointer to work-queue completion queue entry. 14239 * 14240 * This routine handles an ELS work-queue completion event and construct 14241 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 14242 * discovery engine to handle. 14243 * 14244 * Return: Pointer to the receive IOCBQ, NULL otherwise. 14245 **/ 14246 static struct lpfc_iocbq * 14247 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 14248 struct lpfc_iocbq *irspiocbq) 14249 { 14250 struct lpfc_sli_ring *pring; 14251 struct lpfc_iocbq *cmdiocbq; 14252 struct lpfc_wcqe_complete *wcqe; 14253 unsigned long iflags; 14254 14255 pring = lpfc_phba_elsring(phba); 14256 if (unlikely(!pring)) 14257 return NULL; 14258 14259 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 14260 pring->stats.iocb_event++; 14261 /* Look up the ELS command IOCB and create pseudo response IOCB */ 14262 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14263 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14264 if (unlikely(!cmdiocbq)) { 14265 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14266 "0386 ELS complete with no corresponding " 14267 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 14268 wcqe->word0, wcqe->total_data_placed, 14269 wcqe->parameter, wcqe->word3); 14270 lpfc_sli_release_iocbq(phba, irspiocbq); 14271 return NULL; 14272 } 14273 14274 spin_lock_irqsave(&pring->ring_lock, iflags); 14275 /* Put the iocb back on the txcmplq */ 14276 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 14277 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14278 14279 /* Fake the irspiocbq and copy necessary response information */ 14280 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 14281 14282 return irspiocbq; 14283 } 14284 14285 inline struct lpfc_cq_event * 14286 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 14287 { 14288 struct lpfc_cq_event *cq_event; 14289 14290 /* Allocate a new internal CQ_EVENT entry */ 14291 cq_event = lpfc_sli4_cq_event_alloc(phba); 14292 if (!cq_event) { 14293 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14294 "0602 Failed to alloc CQ_EVENT entry\n"); 14295 return NULL; 14296 } 14297 14298 /* Move the CQE into the event */ 14299 memcpy(&cq_event->cqe, entry, size); 14300 return cq_event; 14301 } 14302 14303 /** 14304 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 14305 * @phba: Pointer to HBA context object. 14306 * @mcqe: Pointer to mailbox completion queue entry. 14307 * 14308 * This routine process a mailbox completion queue entry with asynchronous 14309 * event. 14310 * 14311 * Return: true if work posted to worker thread, otherwise false. 14312 **/ 14313 static bool 14314 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14315 { 14316 struct lpfc_cq_event *cq_event; 14317 unsigned long iflags; 14318 14319 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14320 "0392 Async Event: word0:x%x, word1:x%x, " 14321 "word2:x%x, word3:x%x\n", mcqe->word0, 14322 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 14323 14324 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 14325 if (!cq_event) 14326 return false; 14327 14328 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 14329 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 14330 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 14331 14332 /* Set the async event flag */ 14333 spin_lock_irqsave(&phba->hbalock, iflags); 14334 phba->hba_flag |= ASYNC_EVENT; 14335 spin_unlock_irqrestore(&phba->hbalock, iflags); 14336 14337 return true; 14338 } 14339 14340 /** 14341 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 14342 * @phba: Pointer to HBA context object. 14343 * @mcqe: Pointer to mailbox completion queue entry. 14344 * 14345 * This routine process a mailbox completion queue entry with mailbox 14346 * completion event. 14347 * 14348 * Return: true if work posted to worker thread, otherwise false. 14349 **/ 14350 static bool 14351 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14352 { 14353 uint32_t mcqe_status; 14354 MAILBOX_t *mbox, *pmbox; 14355 struct lpfc_mqe *mqe; 14356 struct lpfc_vport *vport; 14357 struct lpfc_nodelist *ndlp; 14358 struct lpfc_dmabuf *mp; 14359 unsigned long iflags; 14360 LPFC_MBOXQ_t *pmb; 14361 bool workposted = false; 14362 int rc; 14363 14364 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 14365 if (!bf_get(lpfc_trailer_completed, mcqe)) 14366 goto out_no_mqe_complete; 14367 14368 /* Get the reference to the active mbox command */ 14369 spin_lock_irqsave(&phba->hbalock, iflags); 14370 pmb = phba->sli.mbox_active; 14371 if (unlikely(!pmb)) { 14372 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14373 "1832 No pending MBOX command to handle\n"); 14374 spin_unlock_irqrestore(&phba->hbalock, iflags); 14375 goto out_no_mqe_complete; 14376 } 14377 spin_unlock_irqrestore(&phba->hbalock, iflags); 14378 mqe = &pmb->u.mqe; 14379 pmbox = (MAILBOX_t *)&pmb->u.mqe; 14380 mbox = phba->mbox; 14381 vport = pmb->vport; 14382 14383 /* Reset heartbeat timer */ 14384 phba->last_completion_time = jiffies; 14385 del_timer(&phba->sli.mbox_tmo); 14386 14387 /* Move mbox data to caller's mailbox region, do endian swapping */ 14388 if (pmb->mbox_cmpl && mbox) 14389 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 14390 14391 /* 14392 * For mcqe errors, conditionally move a modified error code to 14393 * the mbox so that the error will not be missed. 14394 */ 14395 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 14396 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 14397 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 14398 bf_set(lpfc_mqe_status, mqe, 14399 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 14400 } 14401 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 14402 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 14403 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 14404 "MBOX dflt rpi: status:x%x rpi:x%x", 14405 mcqe_status, 14406 pmbox->un.varWords[0], 0); 14407 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 14408 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 14409 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 14410 14411 /* Reg_LOGIN of dflt RPI was successful. Mark the 14412 * node as having an UNREG_LOGIN in progress to stop 14413 * an unsolicited PLOGI from the same NPortId from 14414 * starting another mailbox transaction. 14415 */ 14416 spin_lock_irqsave(&ndlp->lock, iflags); 14417 ndlp->nlp_flag |= NLP_UNREG_INP; 14418 spin_unlock_irqrestore(&ndlp->lock, iflags); 14419 lpfc_unreg_login(phba, vport->vpi, 14420 pmbox->un.varWords[0], pmb); 14421 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 14422 pmb->ctx_buf = mp; 14423 14424 /* No reference taken here. This is a default 14425 * RPI reg/immediate unreg cycle. The reference was 14426 * taken in the reg rpi path and is released when 14427 * this mailbox completes. 14428 */ 14429 pmb->ctx_ndlp = ndlp; 14430 pmb->vport = vport; 14431 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 14432 if (rc != MBX_BUSY) 14433 lpfc_printf_log(phba, KERN_ERR, 14434 LOG_TRACE_EVENT, 14435 "0385 rc should " 14436 "have been MBX_BUSY\n"); 14437 if (rc != MBX_NOT_FINISHED) 14438 goto send_current_mbox; 14439 } 14440 } 14441 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 14442 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 14443 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 14444 14445 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 14446 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 14447 spin_lock_irqsave(&phba->hbalock, iflags); 14448 /* Release the mailbox command posting token */ 14449 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14450 phba->sli.mbox_active = NULL; 14451 if (bf_get(lpfc_trailer_consumed, mcqe)) 14452 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14453 spin_unlock_irqrestore(&phba->hbalock, iflags); 14454 14455 /* Post the next mbox command, if there is one */ 14456 lpfc_sli4_post_async_mbox(phba); 14457 14458 /* Process cmpl now */ 14459 if (pmb->mbox_cmpl) 14460 pmb->mbox_cmpl(phba, pmb); 14461 return false; 14462 } 14463 14464 /* There is mailbox completion work to queue to the worker thread */ 14465 spin_lock_irqsave(&phba->hbalock, iflags); 14466 __lpfc_mbox_cmpl_put(phba, pmb); 14467 phba->work_ha |= HA_MBATT; 14468 spin_unlock_irqrestore(&phba->hbalock, iflags); 14469 workposted = true; 14470 14471 send_current_mbox: 14472 spin_lock_irqsave(&phba->hbalock, iflags); 14473 /* Release the mailbox command posting token */ 14474 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14475 /* Setting active mailbox pointer need to be in sync to flag clear */ 14476 phba->sli.mbox_active = NULL; 14477 if (bf_get(lpfc_trailer_consumed, mcqe)) 14478 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14479 spin_unlock_irqrestore(&phba->hbalock, iflags); 14480 /* Wake up worker thread to post the next pending mailbox command */ 14481 lpfc_worker_wake_up(phba); 14482 return workposted; 14483 14484 out_no_mqe_complete: 14485 spin_lock_irqsave(&phba->hbalock, iflags); 14486 if (bf_get(lpfc_trailer_consumed, mcqe)) 14487 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14488 spin_unlock_irqrestore(&phba->hbalock, iflags); 14489 return false; 14490 } 14491 14492 /** 14493 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 14494 * @phba: Pointer to HBA context object. 14495 * @cq: Pointer to associated CQ 14496 * @cqe: Pointer to mailbox completion queue entry. 14497 * 14498 * This routine process a mailbox completion queue entry, it invokes the 14499 * proper mailbox complete handling or asynchronous event handling routine 14500 * according to the MCQE's async bit. 14501 * 14502 * Return: true if work posted to worker thread, otherwise false. 14503 **/ 14504 static bool 14505 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14506 struct lpfc_cqe *cqe) 14507 { 14508 struct lpfc_mcqe mcqe; 14509 bool workposted; 14510 14511 cq->CQ_mbox++; 14512 14513 /* Copy the mailbox MCQE and convert endian order as needed */ 14514 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 14515 14516 /* Invoke the proper event handling routine */ 14517 if (!bf_get(lpfc_trailer_async, &mcqe)) 14518 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 14519 else 14520 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 14521 return workposted; 14522 } 14523 14524 /** 14525 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 14526 * @phba: Pointer to HBA context object. 14527 * @cq: Pointer to associated CQ 14528 * @wcqe: Pointer to work-queue completion queue entry. 14529 * 14530 * This routine handles an ELS work-queue completion event. 14531 * 14532 * Return: true if work posted to worker thread, otherwise false. 14533 **/ 14534 static bool 14535 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14536 struct lpfc_wcqe_complete *wcqe) 14537 { 14538 struct lpfc_iocbq *irspiocbq; 14539 unsigned long iflags; 14540 struct lpfc_sli_ring *pring = cq->pring; 14541 int txq_cnt = 0; 14542 int txcmplq_cnt = 0; 14543 14544 /* Check for response status */ 14545 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14546 /* Log the error status */ 14547 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14548 "0357 ELS CQE error: status=x%x: " 14549 "CQE: %08x %08x %08x %08x\n", 14550 bf_get(lpfc_wcqe_c_status, wcqe), 14551 wcqe->word0, wcqe->total_data_placed, 14552 wcqe->parameter, wcqe->word3); 14553 } 14554 14555 /* Get an irspiocbq for later ELS response processing use */ 14556 irspiocbq = lpfc_sli_get_iocbq(phba); 14557 if (!irspiocbq) { 14558 if (!list_empty(&pring->txq)) 14559 txq_cnt++; 14560 if (!list_empty(&pring->txcmplq)) 14561 txcmplq_cnt++; 14562 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14563 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 14564 "els_txcmplq_cnt=%d\n", 14565 txq_cnt, phba->iocb_cnt, 14566 txcmplq_cnt); 14567 return false; 14568 } 14569 14570 /* Save off the slow-path queue event for work thread to process */ 14571 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 14572 spin_lock_irqsave(&phba->hbalock, iflags); 14573 list_add_tail(&irspiocbq->cq_event.list, 14574 &phba->sli4_hba.sp_queue_event); 14575 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14576 spin_unlock_irqrestore(&phba->hbalock, iflags); 14577 14578 return true; 14579 } 14580 14581 /** 14582 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 14583 * @phba: Pointer to HBA context object. 14584 * @wcqe: Pointer to work-queue completion queue entry. 14585 * 14586 * This routine handles slow-path WQ entry consumed event by invoking the 14587 * proper WQ release routine to the slow-path WQ. 14588 **/ 14589 static void 14590 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 14591 struct lpfc_wcqe_release *wcqe) 14592 { 14593 /* sanity check on queue memory */ 14594 if (unlikely(!phba->sli4_hba.els_wq)) 14595 return; 14596 /* Check for the slow-path ELS work queue */ 14597 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 14598 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 14599 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14600 else 14601 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14602 "2579 Slow-path wqe consume event carries " 14603 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 14604 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 14605 phba->sli4_hba.els_wq->queue_id); 14606 } 14607 14608 /** 14609 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 14610 * @phba: Pointer to HBA context object. 14611 * @cq: Pointer to a WQ completion queue. 14612 * @wcqe: Pointer to work-queue completion queue entry. 14613 * 14614 * This routine handles an XRI abort event. 14615 * 14616 * Return: true if work posted to worker thread, otherwise false. 14617 **/ 14618 static bool 14619 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 14620 struct lpfc_queue *cq, 14621 struct sli4_wcqe_xri_aborted *wcqe) 14622 { 14623 bool workposted = false; 14624 struct lpfc_cq_event *cq_event; 14625 unsigned long iflags; 14626 14627 switch (cq->subtype) { 14628 case LPFC_IO: 14629 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 14630 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14631 /* Notify aborted XRI for NVME work queue */ 14632 if (phba->nvmet_support) 14633 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 14634 } 14635 workposted = false; 14636 break; 14637 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 14638 case LPFC_ELS: 14639 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 14640 if (!cq_event) { 14641 workposted = false; 14642 break; 14643 } 14644 cq_event->hdwq = cq->hdwq; 14645 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14646 iflags); 14647 list_add_tail(&cq_event->list, 14648 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 14649 /* Set the els xri abort event flag */ 14650 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 14651 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14652 iflags); 14653 workposted = true; 14654 break; 14655 default: 14656 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14657 "0603 Invalid CQ subtype %d: " 14658 "%08x %08x %08x %08x\n", 14659 cq->subtype, wcqe->word0, wcqe->parameter, 14660 wcqe->word2, wcqe->word3); 14661 workposted = false; 14662 break; 14663 } 14664 return workposted; 14665 } 14666 14667 #define FC_RCTL_MDS_DIAGS 0xF4 14668 14669 /** 14670 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 14671 * @phba: Pointer to HBA context object. 14672 * @rcqe: Pointer to receive-queue completion queue entry. 14673 * 14674 * This routine process a receive-queue completion queue entry. 14675 * 14676 * Return: true if work posted to worker thread, otherwise false. 14677 **/ 14678 static bool 14679 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 14680 { 14681 bool workposted = false; 14682 struct fc_frame_header *fc_hdr; 14683 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 14684 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 14685 struct lpfc_nvmet_tgtport *tgtp; 14686 struct hbq_dmabuf *dma_buf; 14687 uint32_t status, rq_id; 14688 unsigned long iflags; 14689 14690 /* sanity check on queue memory */ 14691 if (unlikely(!hrq) || unlikely(!drq)) 14692 return workposted; 14693 14694 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14695 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14696 else 14697 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14698 if (rq_id != hrq->queue_id) 14699 goto out; 14700 14701 status = bf_get(lpfc_rcqe_status, rcqe); 14702 switch (status) { 14703 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14704 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14705 "2537 Receive Frame Truncated!!\n"); 14706 fallthrough; 14707 case FC_STATUS_RQ_SUCCESS: 14708 spin_lock_irqsave(&phba->hbalock, iflags); 14709 lpfc_sli4_rq_release(hrq, drq); 14710 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14711 if (!dma_buf) { 14712 hrq->RQ_no_buf_found++; 14713 spin_unlock_irqrestore(&phba->hbalock, iflags); 14714 goto out; 14715 } 14716 hrq->RQ_rcv_buf++; 14717 hrq->RQ_buf_posted--; 14718 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 14719 14720 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14721 14722 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 14723 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 14724 spin_unlock_irqrestore(&phba->hbalock, iflags); 14725 /* Handle MDS Loopback frames */ 14726 if (!(phba->pport->load_flag & FC_UNLOADING)) 14727 lpfc_sli4_handle_mds_loopback(phba->pport, 14728 dma_buf); 14729 else 14730 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14731 break; 14732 } 14733 14734 /* save off the frame for the work thread to process */ 14735 list_add_tail(&dma_buf->cq_event.list, 14736 &phba->sli4_hba.sp_queue_event); 14737 /* Frame received */ 14738 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14739 spin_unlock_irqrestore(&phba->hbalock, iflags); 14740 workposted = true; 14741 break; 14742 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14743 if (phba->nvmet_support) { 14744 tgtp = phba->targetport->private; 14745 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14746 "6402 RQE Error x%x, posted %d err_cnt " 14747 "%d: %x %x %x\n", 14748 status, hrq->RQ_buf_posted, 14749 hrq->RQ_no_posted_buf, 14750 atomic_read(&tgtp->rcv_fcp_cmd_in), 14751 atomic_read(&tgtp->rcv_fcp_cmd_out), 14752 atomic_read(&tgtp->xmt_fcp_release)); 14753 } 14754 fallthrough; 14755 14756 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14757 hrq->RQ_no_posted_buf++; 14758 /* Post more buffers if possible */ 14759 spin_lock_irqsave(&phba->hbalock, iflags); 14760 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 14761 spin_unlock_irqrestore(&phba->hbalock, iflags); 14762 workposted = true; 14763 break; 14764 } 14765 out: 14766 return workposted; 14767 } 14768 14769 /** 14770 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 14771 * @phba: Pointer to HBA context object. 14772 * @cq: Pointer to the completion queue. 14773 * @cqe: Pointer to a completion queue entry. 14774 * 14775 * This routine process a slow-path work-queue or receive queue completion queue 14776 * entry. 14777 * 14778 * Return: true if work posted to worker thread, otherwise false. 14779 **/ 14780 static bool 14781 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14782 struct lpfc_cqe *cqe) 14783 { 14784 struct lpfc_cqe cqevt; 14785 bool workposted = false; 14786 14787 /* Copy the work queue CQE and convert endian order if needed */ 14788 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14789 14790 /* Check and process for different type of WCQE and dispatch */ 14791 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14792 case CQE_CODE_COMPL_WQE: 14793 /* Process the WQ/RQ complete event */ 14794 phba->last_completion_time = jiffies; 14795 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14796 (struct lpfc_wcqe_complete *)&cqevt); 14797 break; 14798 case CQE_CODE_RELEASE_WQE: 14799 /* Process the WQ release event */ 14800 lpfc_sli4_sp_handle_rel_wcqe(phba, 14801 (struct lpfc_wcqe_release *)&cqevt); 14802 break; 14803 case CQE_CODE_XRI_ABORTED: 14804 /* Process the WQ XRI abort event */ 14805 phba->last_completion_time = jiffies; 14806 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14807 (struct sli4_wcqe_xri_aborted *)&cqevt); 14808 break; 14809 case CQE_CODE_RECEIVE: 14810 case CQE_CODE_RECEIVE_V1: 14811 /* Process the RQ event */ 14812 phba->last_completion_time = jiffies; 14813 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14814 (struct lpfc_rcqe *)&cqevt); 14815 break; 14816 default: 14817 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14818 "0388 Not a valid WCQE code: x%x\n", 14819 bf_get(lpfc_cqe_code, &cqevt)); 14820 break; 14821 } 14822 return workposted; 14823 } 14824 14825 /** 14826 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14827 * @phba: Pointer to HBA context object. 14828 * @eqe: Pointer to fast-path event queue entry. 14829 * @speq: Pointer to slow-path event queue. 14830 * 14831 * This routine process a event queue entry from the slow-path event queue. 14832 * It will check the MajorCode and MinorCode to determine this is for a 14833 * completion event on a completion queue, if not, an error shall be logged 14834 * and just return. Otherwise, it will get to the corresponding completion 14835 * queue and process all the entries on that completion queue, rearm the 14836 * completion queue, and then return. 14837 * 14838 **/ 14839 static void 14840 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14841 struct lpfc_queue *speq) 14842 { 14843 struct lpfc_queue *cq = NULL, *childq; 14844 uint16_t cqid; 14845 int ret = 0; 14846 14847 /* Get the reference to the corresponding CQ */ 14848 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14849 14850 list_for_each_entry(childq, &speq->child_list, list) { 14851 if (childq->queue_id == cqid) { 14852 cq = childq; 14853 break; 14854 } 14855 } 14856 if (unlikely(!cq)) { 14857 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14858 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14859 "0365 Slow-path CQ identifier " 14860 "(%d) does not exist\n", cqid); 14861 return; 14862 } 14863 14864 /* Save EQ associated with this CQ */ 14865 cq->assoc_qp = speq; 14866 14867 if (is_kdump_kernel()) 14868 ret = queue_work(phba->wq, &cq->spwork); 14869 else 14870 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14871 14872 if (!ret) 14873 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14874 "0390 Cannot schedule queue work " 14875 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14876 cqid, cq->queue_id, raw_smp_processor_id()); 14877 } 14878 14879 /** 14880 * __lpfc_sli4_process_cq - Process elements of a CQ 14881 * @phba: Pointer to HBA context object. 14882 * @cq: Pointer to CQ to be processed 14883 * @handler: Routine to process each cqe 14884 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14885 * @poll_mode: Polling mode we were called from 14886 * 14887 * This routine processes completion queue entries in a CQ. While a valid 14888 * queue element is found, the handler is called. During processing checks 14889 * are made for periodic doorbell writes to let the hardware know of 14890 * element consumption. 14891 * 14892 * If the max limit on cqes to process is hit, or there are no more valid 14893 * entries, the loop stops. If we processed a sufficient number of elements, 14894 * meaning there is sufficient load, rather than rearming and generating 14895 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14896 * indicates no rescheduling. 14897 * 14898 * Returns True if work scheduled, False otherwise. 14899 **/ 14900 static bool 14901 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14902 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14903 struct lpfc_cqe *), unsigned long *delay, 14904 enum lpfc_poll_mode poll_mode) 14905 { 14906 struct lpfc_cqe *cqe; 14907 bool workposted = false; 14908 int count = 0, consumed = 0; 14909 bool arm = true; 14910 14911 /* default - no reschedule */ 14912 *delay = 0; 14913 14914 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14915 goto rearm_and_exit; 14916 14917 /* Process all the entries to the CQ */ 14918 cq->q_flag = 0; 14919 cqe = lpfc_sli4_cq_get(cq); 14920 while (cqe) { 14921 workposted |= handler(phba, cq, cqe); 14922 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14923 14924 consumed++; 14925 if (!(++count % cq->max_proc_limit)) 14926 break; 14927 14928 if (!(count % cq->notify_interval)) { 14929 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14930 LPFC_QUEUE_NOARM); 14931 consumed = 0; 14932 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14933 } 14934 14935 if (count == LPFC_NVMET_CQ_NOTIFY) 14936 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14937 14938 cqe = lpfc_sli4_cq_get(cq); 14939 } 14940 if (count >= phba->cfg_cq_poll_threshold) { 14941 *delay = 1; 14942 arm = false; 14943 } 14944 14945 /* Note: complete the irq_poll softirq before rearming CQ */ 14946 if (poll_mode == LPFC_IRQ_POLL) 14947 irq_poll_complete(&cq->iop); 14948 14949 /* Track the max number of CQEs processed in 1 EQ */ 14950 if (count > cq->CQ_max_cqe) 14951 cq->CQ_max_cqe = count; 14952 14953 cq->assoc_qp->EQ_cqe_cnt += count; 14954 14955 /* Catch the no cq entry condition */ 14956 if (unlikely(count == 0)) 14957 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14958 "0369 No entry from completion queue " 14959 "qid=%d\n", cq->queue_id); 14960 14961 xchg(&cq->queue_claimed, 0); 14962 14963 rearm_and_exit: 14964 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14965 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14966 14967 return workposted; 14968 } 14969 14970 /** 14971 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14972 * @cq: pointer to CQ to process 14973 * 14974 * This routine calls the cq processing routine with a handler specific 14975 * to the type of queue bound to it. 14976 * 14977 * The CQ routine returns two values: the first is the calling status, 14978 * which indicates whether work was queued to the background discovery 14979 * thread. If true, the routine should wakeup the discovery thread; 14980 * the second is the delay parameter. If non-zero, rather than rearming 14981 * the CQ and yet another interrupt, the CQ handler should be queued so 14982 * that it is processed in a subsequent polling action. The value of 14983 * the delay indicates when to reschedule it. 14984 **/ 14985 static void 14986 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14987 { 14988 struct lpfc_hba *phba = cq->phba; 14989 unsigned long delay; 14990 bool workposted = false; 14991 int ret = 0; 14992 14993 /* Process and rearm the CQ */ 14994 switch (cq->type) { 14995 case LPFC_MCQ: 14996 workposted |= __lpfc_sli4_process_cq(phba, cq, 14997 lpfc_sli4_sp_handle_mcqe, 14998 &delay, LPFC_QUEUE_WORK); 14999 break; 15000 case LPFC_WCQ: 15001 if (cq->subtype == LPFC_IO) 15002 workposted |= __lpfc_sli4_process_cq(phba, cq, 15003 lpfc_sli4_fp_handle_cqe, 15004 &delay, LPFC_QUEUE_WORK); 15005 else 15006 workposted |= __lpfc_sli4_process_cq(phba, cq, 15007 lpfc_sli4_sp_handle_cqe, 15008 &delay, LPFC_QUEUE_WORK); 15009 break; 15010 default: 15011 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15012 "0370 Invalid completion queue type (%d)\n", 15013 cq->type); 15014 return; 15015 } 15016 15017 if (delay) { 15018 if (is_kdump_kernel()) 15019 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 15020 delay); 15021 else 15022 ret = queue_delayed_work_on(cq->chann, phba->wq, 15023 &cq->sched_spwork, delay); 15024 if (!ret) 15025 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15026 "0394 Cannot schedule queue work " 15027 "for cqid=%d on CPU %d\n", 15028 cq->queue_id, cq->chann); 15029 } 15030 15031 /* wake up worker thread if there are works to be done */ 15032 if (workposted) 15033 lpfc_worker_wake_up(phba); 15034 } 15035 15036 /** 15037 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 15038 * interrupt 15039 * @work: pointer to work element 15040 * 15041 * translates from the work handler and calls the slow-path handler. 15042 **/ 15043 static void 15044 lpfc_sli4_sp_process_cq(struct work_struct *work) 15045 { 15046 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 15047 15048 __lpfc_sli4_sp_process_cq(cq); 15049 } 15050 15051 /** 15052 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 15053 * @work: pointer to work element 15054 * 15055 * translates from the work handler and calls the slow-path handler. 15056 **/ 15057 static void 15058 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 15059 { 15060 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15061 struct lpfc_queue, sched_spwork); 15062 15063 __lpfc_sli4_sp_process_cq(cq); 15064 } 15065 15066 /** 15067 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 15068 * @phba: Pointer to HBA context object. 15069 * @cq: Pointer to associated CQ 15070 * @wcqe: Pointer to work-queue completion queue entry. 15071 * 15072 * This routine process a fast-path work queue completion entry from fast-path 15073 * event queue for FCP command response completion. 15074 **/ 15075 static void 15076 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15077 struct lpfc_wcqe_complete *wcqe) 15078 { 15079 struct lpfc_sli_ring *pring = cq->pring; 15080 struct lpfc_iocbq *cmdiocbq; 15081 struct lpfc_iocbq irspiocbq; 15082 unsigned long iflags; 15083 15084 /* Check for response status */ 15085 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 15086 /* If resource errors reported from HBA, reduce queue 15087 * depth of the SCSI device. 15088 */ 15089 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 15090 IOSTAT_LOCAL_REJECT)) && 15091 ((wcqe->parameter & IOERR_PARAM_MASK) == 15092 IOERR_NO_RESOURCES)) 15093 phba->lpfc_rampdown_queue_depth(phba); 15094 15095 /* Log the cmpl status */ 15096 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 15097 "0373 FCP CQE cmpl: status=x%x: " 15098 "CQE: %08x %08x %08x %08x\n", 15099 bf_get(lpfc_wcqe_c_status, wcqe), 15100 wcqe->word0, wcqe->total_data_placed, 15101 wcqe->parameter, wcqe->word3); 15102 } 15103 15104 /* Look up the FCP command IOCB and create pseudo response IOCB */ 15105 spin_lock_irqsave(&pring->ring_lock, iflags); 15106 pring->stats.iocb_event++; 15107 spin_unlock_irqrestore(&pring->ring_lock, iflags); 15108 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 15109 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15110 if (unlikely(!cmdiocbq)) { 15111 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15112 "0374 FCP complete with no corresponding " 15113 "cmdiocb: iotag (%d)\n", 15114 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15115 return; 15116 } 15117 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 15118 cmdiocbq->isr_timestamp = cq->isr_timestamp; 15119 #endif 15120 if (cmdiocbq->iocb_cmpl == NULL) { 15121 if (cmdiocbq->wqe_cmpl) { 15122 /* For FCP the flag is cleared in wqe_cmpl */ 15123 if (!(cmdiocbq->iocb_flag & LPFC_IO_FCP) && 15124 cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 15125 spin_lock_irqsave(&phba->hbalock, iflags); 15126 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 15127 spin_unlock_irqrestore(&phba->hbalock, iflags); 15128 } 15129 15130 /* Pass the cmd_iocb and the wcqe to the upper layer */ 15131 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); 15132 return; 15133 } 15134 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15135 "0375 FCP cmdiocb not callback function " 15136 "iotag: (%d)\n", 15137 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15138 return; 15139 } 15140 15141 /* Only SLI4 non-IO commands stil use IOCB */ 15142 /* Fake the irspiocb and copy necessary response information */ 15143 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 15144 15145 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 15146 spin_lock_irqsave(&phba->hbalock, iflags); 15147 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 15148 spin_unlock_irqrestore(&phba->hbalock, iflags); 15149 } 15150 15151 /* Pass the cmd_iocb and the rsp state to the upper layer */ 15152 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 15153 } 15154 15155 /** 15156 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 15157 * @phba: Pointer to HBA context object. 15158 * @cq: Pointer to completion queue. 15159 * @wcqe: Pointer to work-queue completion queue entry. 15160 * 15161 * This routine handles an fast-path WQ entry consumed event by invoking the 15162 * proper WQ release routine to the slow-path WQ. 15163 **/ 15164 static void 15165 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15166 struct lpfc_wcqe_release *wcqe) 15167 { 15168 struct lpfc_queue *childwq; 15169 bool wqid_matched = false; 15170 uint16_t hba_wqid; 15171 15172 /* Check for fast-path FCP work queue release */ 15173 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 15174 list_for_each_entry(childwq, &cq->child_list, list) { 15175 if (childwq->queue_id == hba_wqid) { 15176 lpfc_sli4_wq_release(childwq, 15177 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 15178 if (childwq->q_flag & HBA_NVMET_WQFULL) 15179 lpfc_nvmet_wqfull_process(phba, childwq); 15180 wqid_matched = true; 15181 break; 15182 } 15183 } 15184 /* Report warning log message if no match found */ 15185 if (wqid_matched != true) 15186 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15187 "2580 Fast-path wqe consume event carries " 15188 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 15189 } 15190 15191 /** 15192 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 15193 * @phba: Pointer to HBA context object. 15194 * @cq: Pointer to completion queue. 15195 * @rcqe: Pointer to receive-queue completion queue entry. 15196 * 15197 * This routine process a receive-queue completion queue entry. 15198 * 15199 * Return: true if work posted to worker thread, otherwise false. 15200 **/ 15201 static bool 15202 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15203 struct lpfc_rcqe *rcqe) 15204 { 15205 bool workposted = false; 15206 struct lpfc_queue *hrq; 15207 struct lpfc_queue *drq; 15208 struct rqb_dmabuf *dma_buf; 15209 struct fc_frame_header *fc_hdr; 15210 struct lpfc_nvmet_tgtport *tgtp; 15211 uint32_t status, rq_id; 15212 unsigned long iflags; 15213 uint32_t fctl, idx; 15214 15215 if ((phba->nvmet_support == 0) || 15216 (phba->sli4_hba.nvmet_cqset == NULL)) 15217 return workposted; 15218 15219 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 15220 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 15221 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 15222 15223 /* sanity check on queue memory */ 15224 if (unlikely(!hrq) || unlikely(!drq)) 15225 return workposted; 15226 15227 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 15228 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 15229 else 15230 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 15231 15232 if ((phba->nvmet_support == 0) || 15233 (rq_id != hrq->queue_id)) 15234 return workposted; 15235 15236 status = bf_get(lpfc_rcqe_status, rcqe); 15237 switch (status) { 15238 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 15239 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15240 "6126 Receive Frame Truncated!!\n"); 15241 fallthrough; 15242 case FC_STATUS_RQ_SUCCESS: 15243 spin_lock_irqsave(&phba->hbalock, iflags); 15244 lpfc_sli4_rq_release(hrq, drq); 15245 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15246 if (!dma_buf) { 15247 hrq->RQ_no_buf_found++; 15248 spin_unlock_irqrestore(&phba->hbalock, iflags); 15249 goto out; 15250 } 15251 spin_unlock_irqrestore(&phba->hbalock, iflags); 15252 hrq->RQ_rcv_buf++; 15253 hrq->RQ_buf_posted--; 15254 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 15255 15256 /* Just some basic sanity checks on FCP Command frame */ 15257 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 15258 fc_hdr->fh_f_ctl[1] << 8 | 15259 fc_hdr->fh_f_ctl[2]); 15260 if (((fctl & 15261 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 15262 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 15263 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 15264 goto drop; 15265 15266 if (fc_hdr->fh_type == FC_TYPE_FCP) { 15267 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 15268 lpfc_nvmet_unsol_fcp_event( 15269 phba, idx, dma_buf, cq->isr_timestamp, 15270 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 15271 return false; 15272 } 15273 drop: 15274 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15275 break; 15276 case FC_STATUS_INSUFF_BUF_FRM_DISC: 15277 if (phba->nvmet_support) { 15278 tgtp = phba->targetport->private; 15279 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15280 "6401 RQE Error x%x, posted %d err_cnt " 15281 "%d: %x %x %x\n", 15282 status, hrq->RQ_buf_posted, 15283 hrq->RQ_no_posted_buf, 15284 atomic_read(&tgtp->rcv_fcp_cmd_in), 15285 atomic_read(&tgtp->rcv_fcp_cmd_out), 15286 atomic_read(&tgtp->xmt_fcp_release)); 15287 } 15288 fallthrough; 15289 15290 case FC_STATUS_INSUFF_BUF_NEED_BUF: 15291 hrq->RQ_no_posted_buf++; 15292 /* Post more buffers if possible */ 15293 break; 15294 } 15295 out: 15296 return workposted; 15297 } 15298 15299 /** 15300 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 15301 * @phba: adapter with cq 15302 * @cq: Pointer to the completion queue. 15303 * @cqe: Pointer to fast-path completion queue entry. 15304 * 15305 * This routine process a fast-path work queue completion entry from fast-path 15306 * event queue for FCP command response completion. 15307 * 15308 * Return: true if work posted to worker thread, otherwise false. 15309 **/ 15310 static bool 15311 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15312 struct lpfc_cqe *cqe) 15313 { 15314 struct lpfc_wcqe_release wcqe; 15315 bool workposted = false; 15316 15317 /* Copy the work queue CQE and convert endian order if needed */ 15318 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 15319 15320 /* Check and process for different type of WCQE and dispatch */ 15321 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 15322 case CQE_CODE_COMPL_WQE: 15323 case CQE_CODE_NVME_ERSP: 15324 cq->CQ_wq++; 15325 /* Process the WQ complete event */ 15326 phba->last_completion_time = jiffies; 15327 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 15328 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 15329 (struct lpfc_wcqe_complete *)&wcqe); 15330 break; 15331 case CQE_CODE_RELEASE_WQE: 15332 cq->CQ_release_wqe++; 15333 /* Process the WQ release event */ 15334 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 15335 (struct lpfc_wcqe_release *)&wcqe); 15336 break; 15337 case CQE_CODE_XRI_ABORTED: 15338 cq->CQ_xri_aborted++; 15339 /* Process the WQ XRI abort event */ 15340 phba->last_completion_time = jiffies; 15341 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 15342 (struct sli4_wcqe_xri_aborted *)&wcqe); 15343 break; 15344 case CQE_CODE_RECEIVE_V1: 15345 case CQE_CODE_RECEIVE: 15346 phba->last_completion_time = jiffies; 15347 if (cq->subtype == LPFC_NVMET) { 15348 workposted = lpfc_sli4_nvmet_handle_rcqe( 15349 phba, cq, (struct lpfc_rcqe *)&wcqe); 15350 } 15351 break; 15352 default: 15353 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15354 "0144 Not a valid CQE code: x%x\n", 15355 bf_get(lpfc_wcqe_c_code, &wcqe)); 15356 break; 15357 } 15358 return workposted; 15359 } 15360 15361 /** 15362 * lpfc_sli4_sched_cq_work - Schedules cq work 15363 * @phba: Pointer to HBA context object. 15364 * @cq: Pointer to CQ 15365 * @cqid: CQ ID 15366 * 15367 * This routine checks the poll mode of the CQ corresponding to 15368 * cq->chann, then either schedules a softirq or queue_work to complete 15369 * cq work. 15370 * 15371 * queue_work path is taken if in NVMET mode, or if poll_mode is in 15372 * LPFC_QUEUE_WORK mode. Otherwise, softirq path is taken. 15373 * 15374 **/ 15375 static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba, 15376 struct lpfc_queue *cq, uint16_t cqid) 15377 { 15378 int ret = 0; 15379 15380 switch (cq->poll_mode) { 15381 case LPFC_IRQ_POLL: 15382 /* CGN mgmt is mutually exclusive from softirq processing */ 15383 if (phba->cmf_active_mode == LPFC_CFG_OFF) { 15384 irq_poll_sched(&cq->iop); 15385 break; 15386 } 15387 fallthrough; 15388 case LPFC_QUEUE_WORK: 15389 default: 15390 if (is_kdump_kernel()) 15391 ret = queue_work(phba->wq, &cq->irqwork); 15392 else 15393 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 15394 if (!ret) 15395 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15396 "0383 Cannot schedule queue work " 15397 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 15398 cqid, cq->queue_id, 15399 raw_smp_processor_id()); 15400 } 15401 } 15402 15403 /** 15404 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 15405 * @phba: Pointer to HBA context object. 15406 * @eq: Pointer to the queue structure. 15407 * @eqe: Pointer to fast-path event queue entry. 15408 * 15409 * This routine process a event queue entry from the fast-path event queue. 15410 * It will check the MajorCode and MinorCode to determine this is for a 15411 * completion event on a completion queue, if not, an error shall be logged 15412 * and just return. Otherwise, it will get to the corresponding completion 15413 * queue and process all the entries on the completion queue, rearm the 15414 * completion queue, and then return. 15415 **/ 15416 static void 15417 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 15418 struct lpfc_eqe *eqe) 15419 { 15420 struct lpfc_queue *cq = NULL; 15421 uint32_t qidx = eq->hdwq; 15422 uint16_t cqid, id; 15423 15424 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 15425 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15426 "0366 Not a valid completion " 15427 "event: majorcode=x%x, minorcode=x%x\n", 15428 bf_get_le32(lpfc_eqe_major_code, eqe), 15429 bf_get_le32(lpfc_eqe_minor_code, eqe)); 15430 return; 15431 } 15432 15433 /* Get the reference to the corresponding CQ */ 15434 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 15435 15436 /* Use the fast lookup method first */ 15437 if (cqid <= phba->sli4_hba.cq_max) { 15438 cq = phba->sli4_hba.cq_lookup[cqid]; 15439 if (cq) 15440 goto work_cq; 15441 } 15442 15443 /* Next check for NVMET completion */ 15444 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 15445 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 15446 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 15447 /* Process NVMET unsol rcv */ 15448 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 15449 goto process_cq; 15450 } 15451 } 15452 15453 if (phba->sli4_hba.nvmels_cq && 15454 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 15455 /* Process NVME unsol rcv */ 15456 cq = phba->sli4_hba.nvmels_cq; 15457 } 15458 15459 /* Otherwise this is a Slow path event */ 15460 if (cq == NULL) { 15461 lpfc_sli4_sp_handle_eqe(phba, eqe, 15462 phba->sli4_hba.hdwq[qidx].hba_eq); 15463 return; 15464 } 15465 15466 process_cq: 15467 if (unlikely(cqid != cq->queue_id)) { 15468 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15469 "0368 Miss-matched fast-path completion " 15470 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 15471 cqid, cq->queue_id); 15472 return; 15473 } 15474 15475 work_cq: 15476 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 15477 if (phba->ktime_on) 15478 cq->isr_timestamp = ktime_get_ns(); 15479 else 15480 cq->isr_timestamp = 0; 15481 #endif 15482 lpfc_sli4_sched_cq_work(phba, cq, cqid); 15483 } 15484 15485 /** 15486 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 15487 * @cq: Pointer to CQ to be processed 15488 * @poll_mode: Enum lpfc_poll_state to determine poll mode 15489 * 15490 * This routine calls the cq processing routine with the handler for 15491 * fast path CQEs. 15492 * 15493 * The CQ routine returns two values: the first is the calling status, 15494 * which indicates whether work was queued to the background discovery 15495 * thread. If true, the routine should wakeup the discovery thread; 15496 * the second is the delay parameter. If non-zero, rather than rearming 15497 * the CQ and yet another interrupt, the CQ handler should be queued so 15498 * that it is processed in a subsequent polling action. The value of 15499 * the delay indicates when to reschedule it. 15500 **/ 15501 static void 15502 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq, 15503 enum lpfc_poll_mode poll_mode) 15504 { 15505 struct lpfc_hba *phba = cq->phba; 15506 unsigned long delay; 15507 bool workposted = false; 15508 int ret = 0; 15509 15510 /* process and rearm the CQ */ 15511 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 15512 &delay, poll_mode); 15513 15514 if (delay) { 15515 if (is_kdump_kernel()) 15516 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 15517 delay); 15518 else 15519 ret = queue_delayed_work_on(cq->chann, phba->wq, 15520 &cq->sched_irqwork, delay); 15521 if (!ret) 15522 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15523 "0367 Cannot schedule queue work " 15524 "for cqid=%d on CPU %d\n", 15525 cq->queue_id, cq->chann); 15526 } 15527 15528 /* wake up worker thread if there are works to be done */ 15529 if (workposted) 15530 lpfc_worker_wake_up(phba); 15531 } 15532 15533 /** 15534 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 15535 * interrupt 15536 * @work: pointer to work element 15537 * 15538 * translates from the work handler and calls the fast-path handler. 15539 **/ 15540 static void 15541 lpfc_sli4_hba_process_cq(struct work_struct *work) 15542 { 15543 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 15544 15545 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 15546 } 15547 15548 /** 15549 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 15550 * @work: pointer to work element 15551 * 15552 * translates from the work handler and calls the fast-path handler. 15553 **/ 15554 static void 15555 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 15556 { 15557 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15558 struct lpfc_queue, sched_irqwork); 15559 15560 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 15561 } 15562 15563 /** 15564 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 15565 * @irq: Interrupt number. 15566 * @dev_id: The device context pointer. 15567 * 15568 * This function is directly called from the PCI layer as an interrupt 15569 * service routine when device with SLI-4 interface spec is enabled with 15570 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 15571 * ring event in the HBA. However, when the device is enabled with either 15572 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 15573 * device-level interrupt handler. When the PCI slot is in error recovery 15574 * or the HBA is undergoing initialization, the interrupt handler will not 15575 * process the interrupt. The SCSI FCP fast-path ring event are handled in 15576 * the intrrupt context. This function is called without any lock held. 15577 * It gets the hbalock to access and update SLI data structures. Note that, 15578 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 15579 * equal to that of FCP CQ index. 15580 * 15581 * The link attention and ELS ring attention events are handled 15582 * by the worker thread. The interrupt handler signals the worker thread 15583 * and returns for these events. This function is called without any lock 15584 * held. It gets the hbalock to access and update SLI data structures. 15585 * 15586 * This function returns IRQ_HANDLED when interrupt is handled else it 15587 * returns IRQ_NONE. 15588 **/ 15589 irqreturn_t 15590 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 15591 { 15592 struct lpfc_hba *phba; 15593 struct lpfc_hba_eq_hdl *hba_eq_hdl; 15594 struct lpfc_queue *fpeq; 15595 unsigned long iflag; 15596 int ecount = 0; 15597 int hba_eqidx; 15598 struct lpfc_eq_intr_info *eqi; 15599 15600 /* Get the driver's phba structure from the dev_id */ 15601 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 15602 phba = hba_eq_hdl->phba; 15603 hba_eqidx = hba_eq_hdl->idx; 15604 15605 if (unlikely(!phba)) 15606 return IRQ_NONE; 15607 if (unlikely(!phba->sli4_hba.hdwq)) 15608 return IRQ_NONE; 15609 15610 /* Get to the EQ struct associated with this vector */ 15611 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 15612 if (unlikely(!fpeq)) 15613 return IRQ_NONE; 15614 15615 /* Check device state for handling interrupt */ 15616 if (unlikely(lpfc_intr_state_check(phba))) { 15617 /* Check again for link_state with lock held */ 15618 spin_lock_irqsave(&phba->hbalock, iflag); 15619 if (phba->link_state < LPFC_LINK_DOWN) 15620 /* Flush, clear interrupt, and rearm the EQ */ 15621 lpfc_sli4_eqcq_flush(phba, fpeq); 15622 spin_unlock_irqrestore(&phba->hbalock, iflag); 15623 return IRQ_NONE; 15624 } 15625 15626 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 15627 eqi->icnt++; 15628 15629 fpeq->last_cpu = raw_smp_processor_id(); 15630 15631 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 15632 fpeq->q_flag & HBA_EQ_DELAY_CHK && 15633 phba->cfg_auto_imax && 15634 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 15635 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 15636 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 15637 15638 /* process and rearm the EQ */ 15639 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 15640 15641 if (unlikely(ecount == 0)) { 15642 fpeq->EQ_no_entry++; 15643 if (phba->intr_type == MSIX) 15644 /* MSI-X treated interrupt served as no EQ share INT */ 15645 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15646 "0358 MSI-X interrupt with no EQE\n"); 15647 else 15648 /* Non MSI-X treated on interrupt as EQ share INT */ 15649 return IRQ_NONE; 15650 } 15651 15652 return IRQ_HANDLED; 15653 } /* lpfc_sli4_hba_intr_handler */ 15654 15655 /** 15656 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 15657 * @irq: Interrupt number. 15658 * @dev_id: The device context pointer. 15659 * 15660 * This function is the device-level interrupt handler to device with SLI-4 15661 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 15662 * interrupt mode is enabled and there is an event in the HBA which requires 15663 * driver attention. This function invokes the slow-path interrupt attention 15664 * handling function and fast-path interrupt attention handling function in 15665 * turn to process the relevant HBA attention events. This function is called 15666 * without any lock held. It gets the hbalock to access and update SLI data 15667 * structures. 15668 * 15669 * This function returns IRQ_HANDLED when interrupt is handled, else it 15670 * returns IRQ_NONE. 15671 **/ 15672 irqreturn_t 15673 lpfc_sli4_intr_handler(int irq, void *dev_id) 15674 { 15675 struct lpfc_hba *phba; 15676 irqreturn_t hba_irq_rc; 15677 bool hba_handled = false; 15678 int qidx; 15679 15680 /* Get the driver's phba structure from the dev_id */ 15681 phba = (struct lpfc_hba *)dev_id; 15682 15683 if (unlikely(!phba)) 15684 return IRQ_NONE; 15685 15686 /* 15687 * Invoke fast-path host attention interrupt handling as appropriate. 15688 */ 15689 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 15690 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 15691 &phba->sli4_hba.hba_eq_hdl[qidx]); 15692 if (hba_irq_rc == IRQ_HANDLED) 15693 hba_handled |= true; 15694 } 15695 15696 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 15697 } /* lpfc_sli4_intr_handler */ 15698 15699 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 15700 { 15701 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 15702 struct lpfc_queue *eq; 15703 int i = 0; 15704 15705 rcu_read_lock(); 15706 15707 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 15708 i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH); 15709 if (!list_empty(&phba->poll_list)) 15710 mod_timer(&phba->cpuhp_poll_timer, 15711 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15712 15713 rcu_read_unlock(); 15714 } 15715 15716 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path) 15717 { 15718 struct lpfc_hba *phba = eq->phba; 15719 int i = 0; 15720 15721 /* 15722 * Unlocking an irq is one of the entry point to check 15723 * for re-schedule, but we are good for io submission 15724 * path as midlayer does a get_cpu to glue us in. Flush 15725 * out the invalidate queue so we can see the updated 15726 * value for flag. 15727 */ 15728 smp_rmb(); 15729 15730 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 15731 /* We will not likely get the completion for the caller 15732 * during this iteration but i guess that's fine. 15733 * Future io's coming on this eq should be able to 15734 * pick it up. As for the case of single io's, they 15735 * will be handled through a sched from polling timer 15736 * function which is currently triggered every 1msec. 15737 */ 15738 i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM); 15739 15740 return i; 15741 } 15742 15743 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 15744 { 15745 struct lpfc_hba *phba = eq->phba; 15746 15747 /* kickstart slowpath processing if needed */ 15748 if (list_empty(&phba->poll_list)) 15749 mod_timer(&phba->cpuhp_poll_timer, 15750 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15751 15752 list_add_rcu(&eq->_poll_list, &phba->poll_list); 15753 synchronize_rcu(); 15754 } 15755 15756 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 15757 { 15758 struct lpfc_hba *phba = eq->phba; 15759 15760 /* Disable slowpath processing for this eq. Kick start the eq 15761 * by RE-ARMING the eq's ASAP 15762 */ 15763 list_del_rcu(&eq->_poll_list); 15764 synchronize_rcu(); 15765 15766 if (list_empty(&phba->poll_list)) 15767 del_timer_sync(&phba->cpuhp_poll_timer); 15768 } 15769 15770 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 15771 { 15772 struct lpfc_queue *eq, *next; 15773 15774 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 15775 list_del(&eq->_poll_list); 15776 15777 INIT_LIST_HEAD(&phba->poll_list); 15778 synchronize_rcu(); 15779 } 15780 15781 static inline void 15782 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15783 { 15784 if (mode == eq->mode) 15785 return; 15786 /* 15787 * currently this function is only called during a hotplug 15788 * event and the cpu on which this function is executing 15789 * is going offline. By now the hotplug has instructed 15790 * the scheduler to remove this cpu from cpu active mask. 15791 * So we don't need to work about being put aside by the 15792 * scheduler for a high priority process. Yes, the inte- 15793 * rrupts could come but they are known to retire ASAP. 15794 */ 15795 15796 /* Disable polling in the fastpath */ 15797 WRITE_ONCE(eq->mode, mode); 15798 /* flush out the store buffer */ 15799 smp_wmb(); 15800 15801 /* 15802 * Add this eq to the polling list and start polling. For 15803 * a grace period both interrupt handler and poller will 15804 * try to process the eq _but_ that's fine. We have a 15805 * synchronization mechanism in place (queue_claimed) to 15806 * deal with it. This is just a draining phase for int- 15807 * errupt handler (not eq's) as we have guranteed through 15808 * barrier that all the CPUs have seen the new CQ_POLLED 15809 * state. which will effectively disable the REARMING of 15810 * the EQ. The whole idea is eq's die off eventually as 15811 * we are not rearming EQ's anymore. 15812 */ 15813 mode ? lpfc_sli4_add_to_poll_list(eq) : 15814 lpfc_sli4_remove_from_poll_list(eq); 15815 } 15816 15817 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15818 { 15819 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15820 } 15821 15822 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15823 { 15824 struct lpfc_hba *phba = eq->phba; 15825 15826 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15827 15828 /* Kick start for the pending io's in h/w. 15829 * Once we switch back to interrupt processing on a eq 15830 * the io path completion will only arm eq's when it 15831 * receives a completion. But since eq's are in disa- 15832 * rmed state it doesn't receive a completion. This 15833 * creates a deadlock scenaro. 15834 */ 15835 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15836 } 15837 15838 /** 15839 * lpfc_sli4_queue_free - free a queue structure and associated memory 15840 * @queue: The queue structure to free. 15841 * 15842 * This function frees a queue structure and the DMAable memory used for 15843 * the host resident queue. This function must be called after destroying the 15844 * queue on the HBA. 15845 **/ 15846 void 15847 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15848 { 15849 struct lpfc_dmabuf *dmabuf; 15850 15851 if (!queue) 15852 return; 15853 15854 if (!list_empty(&queue->wq_list)) 15855 list_del(&queue->wq_list); 15856 15857 while (!list_empty(&queue->page_list)) { 15858 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15859 list); 15860 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15861 dmabuf->virt, dmabuf->phys); 15862 kfree(dmabuf); 15863 } 15864 if (queue->rqbp) { 15865 lpfc_free_rq_buffer(queue->phba, queue); 15866 kfree(queue->rqbp); 15867 } 15868 15869 if (!list_empty(&queue->cpu_list)) 15870 list_del(&queue->cpu_list); 15871 15872 kfree(queue); 15873 return; 15874 } 15875 15876 /** 15877 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15878 * @phba: The HBA that this queue is being created on. 15879 * @page_size: The size of a queue page 15880 * @entry_size: The size of each queue entry for this queue. 15881 * @entry_count: The number of entries that this queue will handle. 15882 * @cpu: The cpu that will primarily utilize this queue. 15883 * 15884 * This function allocates a queue structure and the DMAable memory used for 15885 * the host resident queue. This function must be called before creating the 15886 * queue on the HBA. 15887 **/ 15888 struct lpfc_queue * 15889 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15890 uint32_t entry_size, uint32_t entry_count, int cpu) 15891 { 15892 struct lpfc_queue *queue; 15893 struct lpfc_dmabuf *dmabuf; 15894 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15895 uint16_t x, pgcnt; 15896 15897 if (!phba->sli4_hba.pc_sli4_params.supported) 15898 hw_page_size = page_size; 15899 15900 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15901 15902 /* If needed, Adjust page count to match the max the adapter supports */ 15903 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15904 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15905 15906 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15907 GFP_KERNEL, cpu_to_node(cpu)); 15908 if (!queue) 15909 return NULL; 15910 15911 INIT_LIST_HEAD(&queue->list); 15912 INIT_LIST_HEAD(&queue->_poll_list); 15913 INIT_LIST_HEAD(&queue->wq_list); 15914 INIT_LIST_HEAD(&queue->wqfull_list); 15915 INIT_LIST_HEAD(&queue->page_list); 15916 INIT_LIST_HEAD(&queue->child_list); 15917 INIT_LIST_HEAD(&queue->cpu_list); 15918 15919 /* Set queue parameters now. If the system cannot provide memory 15920 * resources, the free routine needs to know what was allocated. 15921 */ 15922 queue->page_count = pgcnt; 15923 queue->q_pgs = (void **)&queue[1]; 15924 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15925 queue->entry_size = entry_size; 15926 queue->entry_count = entry_count; 15927 queue->page_size = hw_page_size; 15928 queue->phba = phba; 15929 15930 for (x = 0; x < queue->page_count; x++) { 15931 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15932 dev_to_node(&phba->pcidev->dev)); 15933 if (!dmabuf) 15934 goto out_fail; 15935 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15936 hw_page_size, &dmabuf->phys, 15937 GFP_KERNEL); 15938 if (!dmabuf->virt) { 15939 kfree(dmabuf); 15940 goto out_fail; 15941 } 15942 dmabuf->buffer_tag = x; 15943 list_add_tail(&dmabuf->list, &queue->page_list); 15944 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15945 queue->q_pgs[x] = dmabuf->virt; 15946 } 15947 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15948 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15949 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15950 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15951 15952 /* notify_interval will be set during q creation */ 15953 15954 return queue; 15955 out_fail: 15956 lpfc_sli4_queue_free(queue); 15957 return NULL; 15958 } 15959 15960 /** 15961 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15962 * @phba: HBA structure that indicates port to create a queue on. 15963 * @pci_barset: PCI BAR set flag. 15964 * 15965 * This function shall perform iomap of the specified PCI BAR address to host 15966 * memory address if not already done so and return it. The returned host 15967 * memory address can be NULL. 15968 */ 15969 static void __iomem * 15970 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15971 { 15972 if (!phba->pcidev) 15973 return NULL; 15974 15975 switch (pci_barset) { 15976 case WQ_PCI_BAR_0_AND_1: 15977 return phba->pci_bar0_memmap_p; 15978 case WQ_PCI_BAR_2_AND_3: 15979 return phba->pci_bar2_memmap_p; 15980 case WQ_PCI_BAR_4_AND_5: 15981 return phba->pci_bar4_memmap_p; 15982 default: 15983 break; 15984 } 15985 return NULL; 15986 } 15987 15988 /** 15989 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15990 * @phba: HBA structure that EQs are on. 15991 * @startq: The starting EQ index to modify 15992 * @numq: The number of EQs (consecutive indexes) to modify 15993 * @usdelay: amount of delay 15994 * 15995 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15996 * is set either by writing to a register (if supported by the SLI Port) 15997 * or by mailbox command. The mailbox command allows several EQs to be 15998 * updated at once. 15999 * 16000 * The @phba struct is used to send a mailbox command to HBA. The @startq 16001 * is used to get the starting EQ index to change. The @numq value is 16002 * used to specify how many consecutive EQ indexes, starting at EQ index, 16003 * are to be changed. This function is asynchronous and will wait for any 16004 * mailbox commands to finish before returning. 16005 * 16006 * On success this function will return a zero. If unable to allocate 16007 * enough memory this function will return -ENOMEM. If a mailbox command 16008 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 16009 * have had their delay multipler changed. 16010 **/ 16011 void 16012 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 16013 uint32_t numq, uint32_t usdelay) 16014 { 16015 struct lpfc_mbx_modify_eq_delay *eq_delay; 16016 LPFC_MBOXQ_t *mbox; 16017 struct lpfc_queue *eq; 16018 int cnt = 0, rc, length; 16019 uint32_t shdr_status, shdr_add_status; 16020 uint32_t dmult; 16021 int qidx; 16022 union lpfc_sli4_cfg_shdr *shdr; 16023 16024 if (startq >= phba->cfg_irq_chann) 16025 return; 16026 16027 if (usdelay > 0xFFFF) { 16028 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 16029 "6429 usdelay %d too large. Scaled down to " 16030 "0xFFFF.\n", usdelay); 16031 usdelay = 0xFFFF; 16032 } 16033 16034 /* set values by EQ_DELAY register if supported */ 16035 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 16036 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 16037 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 16038 if (!eq) 16039 continue; 16040 16041 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 16042 16043 if (++cnt >= numq) 16044 break; 16045 } 16046 return; 16047 } 16048 16049 /* Otherwise, set values by mailbox cmd */ 16050 16051 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16052 if (!mbox) { 16053 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16054 "6428 Failed allocating mailbox cmd buffer." 16055 " EQ delay was not set.\n"); 16056 return; 16057 } 16058 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 16059 sizeof(struct lpfc_sli4_cfg_mhdr)); 16060 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16061 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 16062 length, LPFC_SLI4_MBX_EMBED); 16063 eq_delay = &mbox->u.mqe.un.eq_delay; 16064 16065 /* Calculate delay multiper from maximum interrupt per second */ 16066 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 16067 if (dmult) 16068 dmult--; 16069 if (dmult > LPFC_DMULT_MAX) 16070 dmult = LPFC_DMULT_MAX; 16071 16072 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 16073 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 16074 if (!eq) 16075 continue; 16076 eq->q_mode = usdelay; 16077 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 16078 eq_delay->u.request.eq[cnt].phase = 0; 16079 eq_delay->u.request.eq[cnt].delay_multi = dmult; 16080 16081 if (++cnt >= numq) 16082 break; 16083 } 16084 eq_delay->u.request.num_eq = cnt; 16085 16086 mbox->vport = phba->pport; 16087 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16088 mbox->ctx_buf = NULL; 16089 mbox->ctx_ndlp = NULL; 16090 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16091 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 16092 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16093 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16094 if (shdr_status || shdr_add_status || rc) { 16095 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16096 "2512 MODIFY_EQ_DELAY mailbox failed with " 16097 "status x%x add_status x%x, mbx status x%x\n", 16098 shdr_status, shdr_add_status, rc); 16099 } 16100 mempool_free(mbox, phba->mbox_mem_pool); 16101 return; 16102 } 16103 16104 /** 16105 * lpfc_eq_create - Create an Event Queue on the HBA 16106 * @phba: HBA structure that indicates port to create a queue on. 16107 * @eq: The queue structure to use to create the event queue. 16108 * @imax: The maximum interrupt per second limit. 16109 * 16110 * This function creates an event queue, as detailed in @eq, on a port, 16111 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 16112 * 16113 * The @phba struct is used to send mailbox command to HBA. The @eq struct 16114 * is used to get the entry count and entry size that are necessary to 16115 * determine the number of pages to allocate and use for this queue. This 16116 * function will send the EQ_CREATE mailbox command to the HBA to setup the 16117 * event queue. This function is asynchronous and will wait for the mailbox 16118 * command to finish before continuing. 16119 * 16120 * On success this function will return a zero. If unable to allocate enough 16121 * memory this function will return -ENOMEM. If the queue create mailbox command 16122 * fails this function will return -ENXIO. 16123 **/ 16124 int 16125 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 16126 { 16127 struct lpfc_mbx_eq_create *eq_create; 16128 LPFC_MBOXQ_t *mbox; 16129 int rc, length, status = 0; 16130 struct lpfc_dmabuf *dmabuf; 16131 uint32_t shdr_status, shdr_add_status; 16132 union lpfc_sli4_cfg_shdr *shdr; 16133 uint16_t dmult; 16134 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16135 16136 /* sanity check on queue memory */ 16137 if (!eq) 16138 return -ENODEV; 16139 if (!phba->sli4_hba.pc_sli4_params.supported) 16140 hw_page_size = SLI4_PAGE_SIZE; 16141 16142 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16143 if (!mbox) 16144 return -ENOMEM; 16145 length = (sizeof(struct lpfc_mbx_eq_create) - 16146 sizeof(struct lpfc_sli4_cfg_mhdr)); 16147 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16148 LPFC_MBOX_OPCODE_EQ_CREATE, 16149 length, LPFC_SLI4_MBX_EMBED); 16150 eq_create = &mbox->u.mqe.un.eq_create; 16151 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 16152 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 16153 eq->page_count); 16154 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 16155 LPFC_EQE_SIZE); 16156 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 16157 16158 /* Use version 2 of CREATE_EQ if eqav is set */ 16159 if (phba->sli4_hba.pc_sli4_params.eqav) { 16160 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16161 LPFC_Q_CREATE_VERSION_2); 16162 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 16163 phba->sli4_hba.pc_sli4_params.eqav); 16164 } 16165 16166 /* don't setup delay multiplier using EQ_CREATE */ 16167 dmult = 0; 16168 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 16169 dmult); 16170 switch (eq->entry_count) { 16171 default: 16172 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16173 "0360 Unsupported EQ count. (%d)\n", 16174 eq->entry_count); 16175 if (eq->entry_count < 256) { 16176 status = -EINVAL; 16177 goto out; 16178 } 16179 fallthrough; /* otherwise default to smallest count */ 16180 case 256: 16181 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16182 LPFC_EQ_CNT_256); 16183 break; 16184 case 512: 16185 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16186 LPFC_EQ_CNT_512); 16187 break; 16188 case 1024: 16189 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16190 LPFC_EQ_CNT_1024); 16191 break; 16192 case 2048: 16193 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16194 LPFC_EQ_CNT_2048); 16195 break; 16196 case 4096: 16197 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16198 LPFC_EQ_CNT_4096); 16199 break; 16200 } 16201 list_for_each_entry(dmabuf, &eq->page_list, list) { 16202 memset(dmabuf->virt, 0, hw_page_size); 16203 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16204 putPaddrLow(dmabuf->phys); 16205 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16206 putPaddrHigh(dmabuf->phys); 16207 } 16208 mbox->vport = phba->pport; 16209 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16210 mbox->ctx_buf = NULL; 16211 mbox->ctx_ndlp = NULL; 16212 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16213 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16214 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16215 if (shdr_status || shdr_add_status || rc) { 16216 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16217 "2500 EQ_CREATE mailbox failed with " 16218 "status x%x add_status x%x, mbx status x%x\n", 16219 shdr_status, shdr_add_status, rc); 16220 status = -ENXIO; 16221 } 16222 eq->type = LPFC_EQ; 16223 eq->subtype = LPFC_NONE; 16224 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 16225 if (eq->queue_id == 0xFFFF) 16226 status = -ENXIO; 16227 eq->host_index = 0; 16228 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 16229 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 16230 out: 16231 mempool_free(mbox, phba->mbox_mem_pool); 16232 return status; 16233 } 16234 16235 static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget) 16236 { 16237 struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop); 16238 16239 __lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL); 16240 16241 return 1; 16242 } 16243 16244 /** 16245 * lpfc_cq_create - Create a Completion Queue on the HBA 16246 * @phba: HBA structure that indicates port to create a queue on. 16247 * @cq: The queue structure to use to create the completion queue. 16248 * @eq: The event queue to bind this completion queue to. 16249 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16250 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16251 * 16252 * This function creates a completion queue, as detailed in @wq, on a port, 16253 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 16254 * 16255 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16256 * is used to get the entry count and entry size that are necessary to 16257 * determine the number of pages to allocate and use for this queue. The @eq 16258 * is used to indicate which event queue to bind this completion queue to. This 16259 * function will send the CQ_CREATE mailbox command to the HBA to setup the 16260 * completion queue. This function is asynchronous and will wait for the mailbox 16261 * command to finish before continuing. 16262 * 16263 * On success this function will return a zero. If unable to allocate enough 16264 * memory this function will return -ENOMEM. If the queue create mailbox command 16265 * fails this function will return -ENXIO. 16266 **/ 16267 int 16268 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 16269 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 16270 { 16271 struct lpfc_mbx_cq_create *cq_create; 16272 struct lpfc_dmabuf *dmabuf; 16273 LPFC_MBOXQ_t *mbox; 16274 int rc, length, status = 0; 16275 uint32_t shdr_status, shdr_add_status; 16276 union lpfc_sli4_cfg_shdr *shdr; 16277 16278 /* sanity check on queue memory */ 16279 if (!cq || !eq) 16280 return -ENODEV; 16281 16282 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16283 if (!mbox) 16284 return -ENOMEM; 16285 length = (sizeof(struct lpfc_mbx_cq_create) - 16286 sizeof(struct lpfc_sli4_cfg_mhdr)); 16287 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16288 LPFC_MBOX_OPCODE_CQ_CREATE, 16289 length, LPFC_SLI4_MBX_EMBED); 16290 cq_create = &mbox->u.mqe.un.cq_create; 16291 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 16292 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 16293 cq->page_count); 16294 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 16295 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 16296 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16297 phba->sli4_hba.pc_sli4_params.cqv); 16298 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 16299 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 16300 (cq->page_size / SLI4_PAGE_SIZE)); 16301 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 16302 eq->queue_id); 16303 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 16304 phba->sli4_hba.pc_sli4_params.cqav); 16305 } else { 16306 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 16307 eq->queue_id); 16308 } 16309 switch (cq->entry_count) { 16310 case 2048: 16311 case 4096: 16312 if (phba->sli4_hba.pc_sli4_params.cqv == 16313 LPFC_Q_CREATE_VERSION_2) { 16314 cq_create->u.request.context.lpfc_cq_context_count = 16315 cq->entry_count; 16316 bf_set(lpfc_cq_context_count, 16317 &cq_create->u.request.context, 16318 LPFC_CQ_CNT_WORD7); 16319 break; 16320 } 16321 fallthrough; 16322 default: 16323 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16324 "0361 Unsupported CQ count: " 16325 "entry cnt %d sz %d pg cnt %d\n", 16326 cq->entry_count, cq->entry_size, 16327 cq->page_count); 16328 if (cq->entry_count < 256) { 16329 status = -EINVAL; 16330 goto out; 16331 } 16332 fallthrough; /* otherwise default to smallest count */ 16333 case 256: 16334 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16335 LPFC_CQ_CNT_256); 16336 break; 16337 case 512: 16338 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16339 LPFC_CQ_CNT_512); 16340 break; 16341 case 1024: 16342 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16343 LPFC_CQ_CNT_1024); 16344 break; 16345 } 16346 list_for_each_entry(dmabuf, &cq->page_list, list) { 16347 memset(dmabuf->virt, 0, cq->page_size); 16348 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16349 putPaddrLow(dmabuf->phys); 16350 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16351 putPaddrHigh(dmabuf->phys); 16352 } 16353 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16354 16355 /* The IOCTL status is embedded in the mailbox subheader. */ 16356 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16357 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16358 if (shdr_status || shdr_add_status || rc) { 16359 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16360 "2501 CQ_CREATE mailbox failed with " 16361 "status x%x add_status x%x, mbx status x%x\n", 16362 shdr_status, shdr_add_status, rc); 16363 status = -ENXIO; 16364 goto out; 16365 } 16366 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16367 if (cq->queue_id == 0xFFFF) { 16368 status = -ENXIO; 16369 goto out; 16370 } 16371 /* link the cq onto the parent eq child list */ 16372 list_add_tail(&cq->list, &eq->child_list); 16373 /* Set up completion queue's type and subtype */ 16374 cq->type = type; 16375 cq->subtype = subtype; 16376 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16377 cq->assoc_qid = eq->queue_id; 16378 cq->assoc_qp = eq; 16379 cq->host_index = 0; 16380 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16381 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 16382 16383 if (cq->queue_id > phba->sli4_hba.cq_max) 16384 phba->sli4_hba.cq_max = cq->queue_id; 16385 16386 irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler); 16387 out: 16388 mempool_free(mbox, phba->mbox_mem_pool); 16389 return status; 16390 } 16391 16392 /** 16393 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 16394 * @phba: HBA structure that indicates port to create a queue on. 16395 * @cqp: The queue structure array to use to create the completion queues. 16396 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 16397 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16398 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16399 * 16400 * This function creates a set of completion queue, s to support MRQ 16401 * as detailed in @cqp, on a port, 16402 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 16403 * 16404 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16405 * is used to get the entry count and entry size that are necessary to 16406 * determine the number of pages to allocate and use for this queue. The @eq 16407 * is used to indicate which event queue to bind this completion queue to. This 16408 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 16409 * completion queue. This function is asynchronous and will wait for the mailbox 16410 * command to finish before continuing. 16411 * 16412 * On success this function will return a zero. If unable to allocate enough 16413 * memory this function will return -ENOMEM. If the queue create mailbox command 16414 * fails this function will return -ENXIO. 16415 **/ 16416 int 16417 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 16418 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 16419 uint32_t subtype) 16420 { 16421 struct lpfc_queue *cq; 16422 struct lpfc_queue *eq; 16423 struct lpfc_mbx_cq_create_set *cq_set; 16424 struct lpfc_dmabuf *dmabuf; 16425 LPFC_MBOXQ_t *mbox; 16426 int rc, length, alloclen, status = 0; 16427 int cnt, idx, numcq, page_idx = 0; 16428 uint32_t shdr_status, shdr_add_status; 16429 union lpfc_sli4_cfg_shdr *shdr; 16430 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16431 16432 /* sanity check on queue memory */ 16433 numcq = phba->cfg_nvmet_mrq; 16434 if (!cqp || !hdwq || !numcq) 16435 return -ENODEV; 16436 16437 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16438 if (!mbox) 16439 return -ENOMEM; 16440 16441 length = sizeof(struct lpfc_mbx_cq_create_set); 16442 length += ((numcq * cqp[0]->page_count) * 16443 sizeof(struct dma_address)); 16444 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16445 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 16446 LPFC_SLI4_MBX_NEMBED); 16447 if (alloclen < length) { 16448 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16449 "3098 Allocated DMA memory size (%d) is " 16450 "less than the requested DMA memory size " 16451 "(%d)\n", alloclen, length); 16452 status = -ENOMEM; 16453 goto out; 16454 } 16455 cq_set = mbox->sge_array->addr[0]; 16456 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 16457 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 16458 16459 for (idx = 0; idx < numcq; idx++) { 16460 cq = cqp[idx]; 16461 eq = hdwq[idx].hba_eq; 16462 if (!cq || !eq) { 16463 status = -ENOMEM; 16464 goto out; 16465 } 16466 if (!phba->sli4_hba.pc_sli4_params.supported) 16467 hw_page_size = cq->page_size; 16468 16469 switch (idx) { 16470 case 0: 16471 bf_set(lpfc_mbx_cq_create_set_page_size, 16472 &cq_set->u.request, 16473 (hw_page_size / SLI4_PAGE_SIZE)); 16474 bf_set(lpfc_mbx_cq_create_set_num_pages, 16475 &cq_set->u.request, cq->page_count); 16476 bf_set(lpfc_mbx_cq_create_set_evt, 16477 &cq_set->u.request, 1); 16478 bf_set(lpfc_mbx_cq_create_set_valid, 16479 &cq_set->u.request, 1); 16480 bf_set(lpfc_mbx_cq_create_set_cqe_size, 16481 &cq_set->u.request, 0); 16482 bf_set(lpfc_mbx_cq_create_set_num_cq, 16483 &cq_set->u.request, numcq); 16484 bf_set(lpfc_mbx_cq_create_set_autovalid, 16485 &cq_set->u.request, 16486 phba->sli4_hba.pc_sli4_params.cqav); 16487 switch (cq->entry_count) { 16488 case 2048: 16489 case 4096: 16490 if (phba->sli4_hba.pc_sli4_params.cqv == 16491 LPFC_Q_CREATE_VERSION_2) { 16492 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16493 &cq_set->u.request, 16494 cq->entry_count); 16495 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16496 &cq_set->u.request, 16497 LPFC_CQ_CNT_WORD7); 16498 break; 16499 } 16500 fallthrough; 16501 default: 16502 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16503 "3118 Bad CQ count. (%d)\n", 16504 cq->entry_count); 16505 if (cq->entry_count < 256) { 16506 status = -EINVAL; 16507 goto out; 16508 } 16509 fallthrough; /* otherwise default to smallest */ 16510 case 256: 16511 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16512 &cq_set->u.request, LPFC_CQ_CNT_256); 16513 break; 16514 case 512: 16515 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16516 &cq_set->u.request, LPFC_CQ_CNT_512); 16517 break; 16518 case 1024: 16519 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16520 &cq_set->u.request, LPFC_CQ_CNT_1024); 16521 break; 16522 } 16523 bf_set(lpfc_mbx_cq_create_set_eq_id0, 16524 &cq_set->u.request, eq->queue_id); 16525 break; 16526 case 1: 16527 bf_set(lpfc_mbx_cq_create_set_eq_id1, 16528 &cq_set->u.request, eq->queue_id); 16529 break; 16530 case 2: 16531 bf_set(lpfc_mbx_cq_create_set_eq_id2, 16532 &cq_set->u.request, eq->queue_id); 16533 break; 16534 case 3: 16535 bf_set(lpfc_mbx_cq_create_set_eq_id3, 16536 &cq_set->u.request, eq->queue_id); 16537 break; 16538 case 4: 16539 bf_set(lpfc_mbx_cq_create_set_eq_id4, 16540 &cq_set->u.request, eq->queue_id); 16541 break; 16542 case 5: 16543 bf_set(lpfc_mbx_cq_create_set_eq_id5, 16544 &cq_set->u.request, eq->queue_id); 16545 break; 16546 case 6: 16547 bf_set(lpfc_mbx_cq_create_set_eq_id6, 16548 &cq_set->u.request, eq->queue_id); 16549 break; 16550 case 7: 16551 bf_set(lpfc_mbx_cq_create_set_eq_id7, 16552 &cq_set->u.request, eq->queue_id); 16553 break; 16554 case 8: 16555 bf_set(lpfc_mbx_cq_create_set_eq_id8, 16556 &cq_set->u.request, eq->queue_id); 16557 break; 16558 case 9: 16559 bf_set(lpfc_mbx_cq_create_set_eq_id9, 16560 &cq_set->u.request, eq->queue_id); 16561 break; 16562 case 10: 16563 bf_set(lpfc_mbx_cq_create_set_eq_id10, 16564 &cq_set->u.request, eq->queue_id); 16565 break; 16566 case 11: 16567 bf_set(lpfc_mbx_cq_create_set_eq_id11, 16568 &cq_set->u.request, eq->queue_id); 16569 break; 16570 case 12: 16571 bf_set(lpfc_mbx_cq_create_set_eq_id12, 16572 &cq_set->u.request, eq->queue_id); 16573 break; 16574 case 13: 16575 bf_set(lpfc_mbx_cq_create_set_eq_id13, 16576 &cq_set->u.request, eq->queue_id); 16577 break; 16578 case 14: 16579 bf_set(lpfc_mbx_cq_create_set_eq_id14, 16580 &cq_set->u.request, eq->queue_id); 16581 break; 16582 case 15: 16583 bf_set(lpfc_mbx_cq_create_set_eq_id15, 16584 &cq_set->u.request, eq->queue_id); 16585 break; 16586 } 16587 16588 /* link the cq onto the parent eq child list */ 16589 list_add_tail(&cq->list, &eq->child_list); 16590 /* Set up completion queue's type and subtype */ 16591 cq->type = type; 16592 cq->subtype = subtype; 16593 cq->assoc_qid = eq->queue_id; 16594 cq->assoc_qp = eq; 16595 cq->host_index = 0; 16596 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16597 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 16598 cq->entry_count); 16599 cq->chann = idx; 16600 16601 rc = 0; 16602 list_for_each_entry(dmabuf, &cq->page_list, list) { 16603 memset(dmabuf->virt, 0, hw_page_size); 16604 cnt = page_idx + dmabuf->buffer_tag; 16605 cq_set->u.request.page[cnt].addr_lo = 16606 putPaddrLow(dmabuf->phys); 16607 cq_set->u.request.page[cnt].addr_hi = 16608 putPaddrHigh(dmabuf->phys); 16609 rc++; 16610 } 16611 page_idx += rc; 16612 } 16613 16614 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16615 16616 /* The IOCTL status is embedded in the mailbox subheader. */ 16617 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16618 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16619 if (shdr_status || shdr_add_status || rc) { 16620 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16621 "3119 CQ_CREATE_SET mailbox failed with " 16622 "status x%x add_status x%x, mbx status x%x\n", 16623 shdr_status, shdr_add_status, rc); 16624 status = -ENXIO; 16625 goto out; 16626 } 16627 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 16628 if (rc == 0xFFFF) { 16629 status = -ENXIO; 16630 goto out; 16631 } 16632 16633 for (idx = 0; idx < numcq; idx++) { 16634 cq = cqp[idx]; 16635 cq->queue_id = rc + idx; 16636 if (cq->queue_id > phba->sli4_hba.cq_max) 16637 phba->sli4_hba.cq_max = cq->queue_id; 16638 } 16639 16640 out: 16641 lpfc_sli4_mbox_cmd_free(phba, mbox); 16642 return status; 16643 } 16644 16645 /** 16646 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 16647 * @phba: HBA structure that indicates port to create a queue on. 16648 * @mq: The queue structure to use to create the mailbox queue. 16649 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 16650 * @cq: The completion queue to associate with this cq. 16651 * 16652 * This function provides failback (fb) functionality when the 16653 * mq_create_ext fails on older FW generations. It's purpose is identical 16654 * to mq_create_ext otherwise. 16655 * 16656 * This routine cannot fail as all attributes were previously accessed and 16657 * initialized in mq_create_ext. 16658 **/ 16659 static void 16660 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 16661 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 16662 { 16663 struct lpfc_mbx_mq_create *mq_create; 16664 struct lpfc_dmabuf *dmabuf; 16665 int length; 16666 16667 length = (sizeof(struct lpfc_mbx_mq_create) - 16668 sizeof(struct lpfc_sli4_cfg_mhdr)); 16669 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16670 LPFC_MBOX_OPCODE_MQ_CREATE, 16671 length, LPFC_SLI4_MBX_EMBED); 16672 mq_create = &mbox->u.mqe.un.mq_create; 16673 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 16674 mq->page_count); 16675 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 16676 cq->queue_id); 16677 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 16678 switch (mq->entry_count) { 16679 case 16: 16680 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16681 LPFC_MQ_RING_SIZE_16); 16682 break; 16683 case 32: 16684 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16685 LPFC_MQ_RING_SIZE_32); 16686 break; 16687 case 64: 16688 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16689 LPFC_MQ_RING_SIZE_64); 16690 break; 16691 case 128: 16692 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16693 LPFC_MQ_RING_SIZE_128); 16694 break; 16695 } 16696 list_for_each_entry(dmabuf, &mq->page_list, list) { 16697 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16698 putPaddrLow(dmabuf->phys); 16699 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16700 putPaddrHigh(dmabuf->phys); 16701 } 16702 } 16703 16704 /** 16705 * lpfc_mq_create - Create a mailbox Queue on the HBA 16706 * @phba: HBA structure that indicates port to create a queue on. 16707 * @mq: The queue structure to use to create the mailbox queue. 16708 * @cq: The completion queue to associate with this cq. 16709 * @subtype: The queue's subtype. 16710 * 16711 * This function creates a mailbox queue, as detailed in @mq, on a port, 16712 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 16713 * 16714 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16715 * is used to get the entry count and entry size that are necessary to 16716 * determine the number of pages to allocate and use for this queue. This 16717 * function will send the MQ_CREATE mailbox command to the HBA to setup the 16718 * mailbox queue. This function is asynchronous and will wait for the mailbox 16719 * command to finish before continuing. 16720 * 16721 * On success this function will return a zero. If unable to allocate enough 16722 * memory this function will return -ENOMEM. If the queue create mailbox command 16723 * fails this function will return -ENXIO. 16724 **/ 16725 int32_t 16726 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 16727 struct lpfc_queue *cq, uint32_t subtype) 16728 { 16729 struct lpfc_mbx_mq_create *mq_create; 16730 struct lpfc_mbx_mq_create_ext *mq_create_ext; 16731 struct lpfc_dmabuf *dmabuf; 16732 LPFC_MBOXQ_t *mbox; 16733 int rc, length, status = 0; 16734 uint32_t shdr_status, shdr_add_status; 16735 union lpfc_sli4_cfg_shdr *shdr; 16736 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16737 16738 /* sanity check on queue memory */ 16739 if (!mq || !cq) 16740 return -ENODEV; 16741 if (!phba->sli4_hba.pc_sli4_params.supported) 16742 hw_page_size = SLI4_PAGE_SIZE; 16743 16744 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16745 if (!mbox) 16746 return -ENOMEM; 16747 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 16748 sizeof(struct lpfc_sli4_cfg_mhdr)); 16749 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16750 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 16751 length, LPFC_SLI4_MBX_EMBED); 16752 16753 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 16754 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 16755 bf_set(lpfc_mbx_mq_create_ext_num_pages, 16756 &mq_create_ext->u.request, mq->page_count); 16757 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 16758 &mq_create_ext->u.request, 1); 16759 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 16760 &mq_create_ext->u.request, 1); 16761 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 16762 &mq_create_ext->u.request, 1); 16763 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 16764 &mq_create_ext->u.request, 1); 16765 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 16766 &mq_create_ext->u.request, 1); 16767 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 16768 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16769 phba->sli4_hba.pc_sli4_params.mqv); 16770 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 16771 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 16772 cq->queue_id); 16773 else 16774 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 16775 cq->queue_id); 16776 switch (mq->entry_count) { 16777 default: 16778 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16779 "0362 Unsupported MQ count. (%d)\n", 16780 mq->entry_count); 16781 if (mq->entry_count < 16) { 16782 status = -EINVAL; 16783 goto out; 16784 } 16785 fallthrough; /* otherwise default to smallest count */ 16786 case 16: 16787 bf_set(lpfc_mq_context_ring_size, 16788 &mq_create_ext->u.request.context, 16789 LPFC_MQ_RING_SIZE_16); 16790 break; 16791 case 32: 16792 bf_set(lpfc_mq_context_ring_size, 16793 &mq_create_ext->u.request.context, 16794 LPFC_MQ_RING_SIZE_32); 16795 break; 16796 case 64: 16797 bf_set(lpfc_mq_context_ring_size, 16798 &mq_create_ext->u.request.context, 16799 LPFC_MQ_RING_SIZE_64); 16800 break; 16801 case 128: 16802 bf_set(lpfc_mq_context_ring_size, 16803 &mq_create_ext->u.request.context, 16804 LPFC_MQ_RING_SIZE_128); 16805 break; 16806 } 16807 list_for_each_entry(dmabuf, &mq->page_list, list) { 16808 memset(dmabuf->virt, 0, hw_page_size); 16809 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16810 putPaddrLow(dmabuf->phys); 16811 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16812 putPaddrHigh(dmabuf->phys); 16813 } 16814 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16815 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16816 &mq_create_ext->u.response); 16817 if (rc != MBX_SUCCESS) { 16818 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16819 "2795 MQ_CREATE_EXT failed with " 16820 "status x%x. Failback to MQ_CREATE.\n", 16821 rc); 16822 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16823 mq_create = &mbox->u.mqe.un.mq_create; 16824 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16825 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16826 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16827 &mq_create->u.response); 16828 } 16829 16830 /* The IOCTL status is embedded in the mailbox subheader. */ 16831 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16832 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16833 if (shdr_status || shdr_add_status || rc) { 16834 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16835 "2502 MQ_CREATE mailbox failed with " 16836 "status x%x add_status x%x, mbx status x%x\n", 16837 shdr_status, shdr_add_status, rc); 16838 status = -ENXIO; 16839 goto out; 16840 } 16841 if (mq->queue_id == 0xFFFF) { 16842 status = -ENXIO; 16843 goto out; 16844 } 16845 mq->type = LPFC_MQ; 16846 mq->assoc_qid = cq->queue_id; 16847 mq->subtype = subtype; 16848 mq->host_index = 0; 16849 mq->hba_index = 0; 16850 16851 /* link the mq onto the parent cq child list */ 16852 list_add_tail(&mq->list, &cq->child_list); 16853 out: 16854 mempool_free(mbox, phba->mbox_mem_pool); 16855 return status; 16856 } 16857 16858 /** 16859 * lpfc_wq_create - Create a Work Queue on the HBA 16860 * @phba: HBA structure that indicates port to create a queue on. 16861 * @wq: The queue structure to use to create the work queue. 16862 * @cq: The completion queue to bind this work queue to. 16863 * @subtype: The subtype of the work queue indicating its functionality. 16864 * 16865 * This function creates a work queue, as detailed in @wq, on a port, described 16866 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16867 * 16868 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16869 * is used to get the entry count and entry size that are necessary to 16870 * determine the number of pages to allocate and use for this queue. The @cq 16871 * is used to indicate which completion queue to bind this work queue to. This 16872 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16873 * work queue. This function is asynchronous and will wait for the mailbox 16874 * command to finish before continuing. 16875 * 16876 * On success this function will return a zero. If unable to allocate enough 16877 * memory this function will return -ENOMEM. If the queue create mailbox command 16878 * fails this function will return -ENXIO. 16879 **/ 16880 int 16881 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16882 struct lpfc_queue *cq, uint32_t subtype) 16883 { 16884 struct lpfc_mbx_wq_create *wq_create; 16885 struct lpfc_dmabuf *dmabuf; 16886 LPFC_MBOXQ_t *mbox; 16887 int rc, length, status = 0; 16888 uint32_t shdr_status, shdr_add_status; 16889 union lpfc_sli4_cfg_shdr *shdr; 16890 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16891 struct dma_address *page; 16892 void __iomem *bar_memmap_p; 16893 uint32_t db_offset; 16894 uint16_t pci_barset; 16895 uint8_t dpp_barset; 16896 uint32_t dpp_offset; 16897 uint8_t wq_create_version; 16898 #ifdef CONFIG_X86 16899 unsigned long pg_addr; 16900 #endif 16901 16902 /* sanity check on queue memory */ 16903 if (!wq || !cq) 16904 return -ENODEV; 16905 if (!phba->sli4_hba.pc_sli4_params.supported) 16906 hw_page_size = wq->page_size; 16907 16908 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16909 if (!mbox) 16910 return -ENOMEM; 16911 length = (sizeof(struct lpfc_mbx_wq_create) - 16912 sizeof(struct lpfc_sli4_cfg_mhdr)); 16913 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16914 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16915 length, LPFC_SLI4_MBX_EMBED); 16916 wq_create = &mbox->u.mqe.un.wq_create; 16917 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16918 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16919 wq->page_count); 16920 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16921 cq->queue_id); 16922 16923 /* wqv is the earliest version supported, NOT the latest */ 16924 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16925 phba->sli4_hba.pc_sli4_params.wqv); 16926 16927 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16928 (wq->page_size > SLI4_PAGE_SIZE)) 16929 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16930 else 16931 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16932 16933 switch (wq_create_version) { 16934 case LPFC_Q_CREATE_VERSION_1: 16935 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16936 wq->entry_count); 16937 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16938 LPFC_Q_CREATE_VERSION_1); 16939 16940 switch (wq->entry_size) { 16941 default: 16942 case 64: 16943 bf_set(lpfc_mbx_wq_create_wqe_size, 16944 &wq_create->u.request_1, 16945 LPFC_WQ_WQE_SIZE_64); 16946 break; 16947 case 128: 16948 bf_set(lpfc_mbx_wq_create_wqe_size, 16949 &wq_create->u.request_1, 16950 LPFC_WQ_WQE_SIZE_128); 16951 break; 16952 } 16953 /* Request DPP by default */ 16954 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16955 bf_set(lpfc_mbx_wq_create_page_size, 16956 &wq_create->u.request_1, 16957 (wq->page_size / SLI4_PAGE_SIZE)); 16958 page = wq_create->u.request_1.page; 16959 break; 16960 default: 16961 page = wq_create->u.request.page; 16962 break; 16963 } 16964 16965 list_for_each_entry(dmabuf, &wq->page_list, list) { 16966 memset(dmabuf->virt, 0, hw_page_size); 16967 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16968 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16969 } 16970 16971 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16972 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16973 16974 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16975 /* The IOCTL status is embedded in the mailbox subheader. */ 16976 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16977 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16978 if (shdr_status || shdr_add_status || rc) { 16979 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16980 "2503 WQ_CREATE mailbox failed with " 16981 "status x%x add_status x%x, mbx status x%x\n", 16982 shdr_status, shdr_add_status, rc); 16983 status = -ENXIO; 16984 goto out; 16985 } 16986 16987 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16988 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16989 &wq_create->u.response); 16990 else 16991 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16992 &wq_create->u.response_1); 16993 16994 if (wq->queue_id == 0xFFFF) { 16995 status = -ENXIO; 16996 goto out; 16997 } 16998 16999 wq->db_format = LPFC_DB_LIST_FORMAT; 17000 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 17001 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 17002 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 17003 &wq_create->u.response); 17004 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 17005 (wq->db_format != LPFC_DB_RING_FORMAT)) { 17006 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17007 "3265 WQ[%d] doorbell format " 17008 "not supported: x%x\n", 17009 wq->queue_id, wq->db_format); 17010 status = -EINVAL; 17011 goto out; 17012 } 17013 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 17014 &wq_create->u.response); 17015 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17016 pci_barset); 17017 if (!bar_memmap_p) { 17018 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17019 "3263 WQ[%d] failed to memmap " 17020 "pci barset:x%x\n", 17021 wq->queue_id, pci_barset); 17022 status = -ENOMEM; 17023 goto out; 17024 } 17025 db_offset = wq_create->u.response.doorbell_offset; 17026 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 17027 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 17028 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17029 "3252 WQ[%d] doorbell offset " 17030 "not supported: x%x\n", 17031 wq->queue_id, db_offset); 17032 status = -EINVAL; 17033 goto out; 17034 } 17035 wq->db_regaddr = bar_memmap_p + db_offset; 17036 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17037 "3264 WQ[%d]: barset:x%x, offset:x%x, " 17038 "format:x%x\n", wq->queue_id, 17039 pci_barset, db_offset, wq->db_format); 17040 } else 17041 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17042 } else { 17043 /* Check if DPP was honored by the firmware */ 17044 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 17045 &wq_create->u.response_1); 17046 if (wq->dpp_enable) { 17047 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 17048 &wq_create->u.response_1); 17049 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17050 pci_barset); 17051 if (!bar_memmap_p) { 17052 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17053 "3267 WQ[%d] failed to memmap " 17054 "pci barset:x%x\n", 17055 wq->queue_id, pci_barset); 17056 status = -ENOMEM; 17057 goto out; 17058 } 17059 db_offset = wq_create->u.response_1.doorbell_offset; 17060 wq->db_regaddr = bar_memmap_p + db_offset; 17061 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 17062 &wq_create->u.response_1); 17063 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 17064 &wq_create->u.response_1); 17065 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17066 dpp_barset); 17067 if (!bar_memmap_p) { 17068 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17069 "3268 WQ[%d] failed to memmap " 17070 "pci barset:x%x\n", 17071 wq->queue_id, dpp_barset); 17072 status = -ENOMEM; 17073 goto out; 17074 } 17075 dpp_offset = wq_create->u.response_1.dpp_offset; 17076 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 17077 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17078 "3271 WQ[%d]: barset:x%x, offset:x%x, " 17079 "dpp_id:x%x dpp_barset:x%x " 17080 "dpp_offset:x%x\n", 17081 wq->queue_id, pci_barset, db_offset, 17082 wq->dpp_id, dpp_barset, dpp_offset); 17083 17084 #ifdef CONFIG_X86 17085 /* Enable combined writes for DPP aperture */ 17086 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 17087 rc = set_memory_wc(pg_addr, 1); 17088 if (rc) { 17089 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17090 "3272 Cannot setup Combined " 17091 "Write on WQ[%d] - disable DPP\n", 17092 wq->queue_id); 17093 phba->cfg_enable_dpp = 0; 17094 } 17095 #else 17096 phba->cfg_enable_dpp = 0; 17097 #endif 17098 } else 17099 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17100 } 17101 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 17102 if (wq->pring == NULL) { 17103 status = -ENOMEM; 17104 goto out; 17105 } 17106 wq->type = LPFC_WQ; 17107 wq->assoc_qid = cq->queue_id; 17108 wq->subtype = subtype; 17109 wq->host_index = 0; 17110 wq->hba_index = 0; 17111 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 17112 17113 /* link the wq onto the parent cq child list */ 17114 list_add_tail(&wq->list, &cq->child_list); 17115 out: 17116 mempool_free(mbox, phba->mbox_mem_pool); 17117 return status; 17118 } 17119 17120 /** 17121 * lpfc_rq_create - Create a Receive Queue on the HBA 17122 * @phba: HBA structure that indicates port to create a queue on. 17123 * @hrq: The queue structure to use to create the header receive queue. 17124 * @drq: The queue structure to use to create the data receive queue. 17125 * @cq: The completion queue to bind this work queue to. 17126 * @subtype: The subtype of the work queue indicating its functionality. 17127 * 17128 * This function creates a receive buffer queue pair , as detailed in @hrq and 17129 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17130 * to the HBA. 17131 * 17132 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17133 * struct is used to get the entry count that is necessary to determine the 17134 * number of pages to use for this queue. The @cq is used to indicate which 17135 * completion queue to bind received buffers that are posted to these queues to. 17136 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17137 * receive queue pair. This function is asynchronous and will wait for the 17138 * mailbox command to finish before continuing. 17139 * 17140 * On success this function will return a zero. If unable to allocate enough 17141 * memory this function will return -ENOMEM. If the queue create mailbox command 17142 * fails this function will return -ENXIO. 17143 **/ 17144 int 17145 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17146 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 17147 { 17148 struct lpfc_mbx_rq_create *rq_create; 17149 struct lpfc_dmabuf *dmabuf; 17150 LPFC_MBOXQ_t *mbox; 17151 int rc, length, status = 0; 17152 uint32_t shdr_status, shdr_add_status; 17153 union lpfc_sli4_cfg_shdr *shdr; 17154 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17155 void __iomem *bar_memmap_p; 17156 uint32_t db_offset; 17157 uint16_t pci_barset; 17158 17159 /* sanity check on queue memory */ 17160 if (!hrq || !drq || !cq) 17161 return -ENODEV; 17162 if (!phba->sli4_hba.pc_sli4_params.supported) 17163 hw_page_size = SLI4_PAGE_SIZE; 17164 17165 if (hrq->entry_count != drq->entry_count) 17166 return -EINVAL; 17167 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17168 if (!mbox) 17169 return -ENOMEM; 17170 length = (sizeof(struct lpfc_mbx_rq_create) - 17171 sizeof(struct lpfc_sli4_cfg_mhdr)); 17172 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17173 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17174 length, LPFC_SLI4_MBX_EMBED); 17175 rq_create = &mbox->u.mqe.un.rq_create; 17176 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17177 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17178 phba->sli4_hba.pc_sli4_params.rqv); 17179 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17180 bf_set(lpfc_rq_context_rqe_count_1, 17181 &rq_create->u.request.context, 17182 hrq->entry_count); 17183 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 17184 bf_set(lpfc_rq_context_rqe_size, 17185 &rq_create->u.request.context, 17186 LPFC_RQE_SIZE_8); 17187 bf_set(lpfc_rq_context_page_size, 17188 &rq_create->u.request.context, 17189 LPFC_RQ_PAGE_SIZE_4096); 17190 } else { 17191 switch (hrq->entry_count) { 17192 default: 17193 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17194 "2535 Unsupported RQ count. (%d)\n", 17195 hrq->entry_count); 17196 if (hrq->entry_count < 512) { 17197 status = -EINVAL; 17198 goto out; 17199 } 17200 fallthrough; /* otherwise default to smallest count */ 17201 case 512: 17202 bf_set(lpfc_rq_context_rqe_count, 17203 &rq_create->u.request.context, 17204 LPFC_RQ_RING_SIZE_512); 17205 break; 17206 case 1024: 17207 bf_set(lpfc_rq_context_rqe_count, 17208 &rq_create->u.request.context, 17209 LPFC_RQ_RING_SIZE_1024); 17210 break; 17211 case 2048: 17212 bf_set(lpfc_rq_context_rqe_count, 17213 &rq_create->u.request.context, 17214 LPFC_RQ_RING_SIZE_2048); 17215 break; 17216 case 4096: 17217 bf_set(lpfc_rq_context_rqe_count, 17218 &rq_create->u.request.context, 17219 LPFC_RQ_RING_SIZE_4096); 17220 break; 17221 } 17222 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 17223 LPFC_HDR_BUF_SIZE); 17224 } 17225 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17226 cq->queue_id); 17227 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17228 hrq->page_count); 17229 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17230 memset(dmabuf->virt, 0, hw_page_size); 17231 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17232 putPaddrLow(dmabuf->phys); 17233 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17234 putPaddrHigh(dmabuf->phys); 17235 } 17236 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17237 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17238 17239 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17240 /* The IOCTL status is embedded in the mailbox subheader. */ 17241 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17242 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17243 if (shdr_status || shdr_add_status || rc) { 17244 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17245 "2504 RQ_CREATE mailbox failed with " 17246 "status x%x add_status x%x, mbx status x%x\n", 17247 shdr_status, shdr_add_status, rc); 17248 status = -ENXIO; 17249 goto out; 17250 } 17251 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17252 if (hrq->queue_id == 0xFFFF) { 17253 status = -ENXIO; 17254 goto out; 17255 } 17256 17257 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 17258 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 17259 &rq_create->u.response); 17260 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 17261 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 17262 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17263 "3262 RQ [%d] doorbell format not " 17264 "supported: x%x\n", hrq->queue_id, 17265 hrq->db_format); 17266 status = -EINVAL; 17267 goto out; 17268 } 17269 17270 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 17271 &rq_create->u.response); 17272 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 17273 if (!bar_memmap_p) { 17274 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17275 "3269 RQ[%d] failed to memmap pci " 17276 "barset:x%x\n", hrq->queue_id, 17277 pci_barset); 17278 status = -ENOMEM; 17279 goto out; 17280 } 17281 17282 db_offset = rq_create->u.response.doorbell_offset; 17283 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 17284 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 17285 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17286 "3270 RQ[%d] doorbell offset not " 17287 "supported: x%x\n", hrq->queue_id, 17288 db_offset); 17289 status = -EINVAL; 17290 goto out; 17291 } 17292 hrq->db_regaddr = bar_memmap_p + db_offset; 17293 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17294 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 17295 "format:x%x\n", hrq->queue_id, pci_barset, 17296 db_offset, hrq->db_format); 17297 } else { 17298 hrq->db_format = LPFC_DB_RING_FORMAT; 17299 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17300 } 17301 hrq->type = LPFC_HRQ; 17302 hrq->assoc_qid = cq->queue_id; 17303 hrq->subtype = subtype; 17304 hrq->host_index = 0; 17305 hrq->hba_index = 0; 17306 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17307 17308 /* now create the data queue */ 17309 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17310 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17311 length, LPFC_SLI4_MBX_EMBED); 17312 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17313 phba->sli4_hba.pc_sli4_params.rqv); 17314 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17315 bf_set(lpfc_rq_context_rqe_count_1, 17316 &rq_create->u.request.context, hrq->entry_count); 17317 if (subtype == LPFC_NVMET) 17318 rq_create->u.request.context.buffer_size = 17319 LPFC_NVMET_DATA_BUF_SIZE; 17320 else 17321 rq_create->u.request.context.buffer_size = 17322 LPFC_DATA_BUF_SIZE; 17323 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 17324 LPFC_RQE_SIZE_8); 17325 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 17326 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17327 } else { 17328 switch (drq->entry_count) { 17329 default: 17330 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17331 "2536 Unsupported RQ count. (%d)\n", 17332 drq->entry_count); 17333 if (drq->entry_count < 512) { 17334 status = -EINVAL; 17335 goto out; 17336 } 17337 fallthrough; /* otherwise default to smallest count */ 17338 case 512: 17339 bf_set(lpfc_rq_context_rqe_count, 17340 &rq_create->u.request.context, 17341 LPFC_RQ_RING_SIZE_512); 17342 break; 17343 case 1024: 17344 bf_set(lpfc_rq_context_rqe_count, 17345 &rq_create->u.request.context, 17346 LPFC_RQ_RING_SIZE_1024); 17347 break; 17348 case 2048: 17349 bf_set(lpfc_rq_context_rqe_count, 17350 &rq_create->u.request.context, 17351 LPFC_RQ_RING_SIZE_2048); 17352 break; 17353 case 4096: 17354 bf_set(lpfc_rq_context_rqe_count, 17355 &rq_create->u.request.context, 17356 LPFC_RQ_RING_SIZE_4096); 17357 break; 17358 } 17359 if (subtype == LPFC_NVMET) 17360 bf_set(lpfc_rq_context_buf_size, 17361 &rq_create->u.request.context, 17362 LPFC_NVMET_DATA_BUF_SIZE); 17363 else 17364 bf_set(lpfc_rq_context_buf_size, 17365 &rq_create->u.request.context, 17366 LPFC_DATA_BUF_SIZE); 17367 } 17368 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17369 cq->queue_id); 17370 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17371 drq->page_count); 17372 list_for_each_entry(dmabuf, &drq->page_list, list) { 17373 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17374 putPaddrLow(dmabuf->phys); 17375 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17376 putPaddrHigh(dmabuf->phys); 17377 } 17378 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17379 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17380 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17381 /* The IOCTL status is embedded in the mailbox subheader. */ 17382 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17383 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17384 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17385 if (shdr_status || shdr_add_status || rc) { 17386 status = -ENXIO; 17387 goto out; 17388 } 17389 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17390 if (drq->queue_id == 0xFFFF) { 17391 status = -ENXIO; 17392 goto out; 17393 } 17394 drq->type = LPFC_DRQ; 17395 drq->assoc_qid = cq->queue_id; 17396 drq->subtype = subtype; 17397 drq->host_index = 0; 17398 drq->hba_index = 0; 17399 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17400 17401 /* link the header and data RQs onto the parent cq child list */ 17402 list_add_tail(&hrq->list, &cq->child_list); 17403 list_add_tail(&drq->list, &cq->child_list); 17404 17405 out: 17406 mempool_free(mbox, phba->mbox_mem_pool); 17407 return status; 17408 } 17409 17410 /** 17411 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 17412 * @phba: HBA structure that indicates port to create a queue on. 17413 * @hrqp: The queue structure array to use to create the header receive queues. 17414 * @drqp: The queue structure array to use to create the data receive queues. 17415 * @cqp: The completion queue array to bind these receive queues to. 17416 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 17417 * 17418 * This function creates a receive buffer queue pair , as detailed in @hrq and 17419 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17420 * to the HBA. 17421 * 17422 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17423 * struct is used to get the entry count that is necessary to determine the 17424 * number of pages to use for this queue. The @cq is used to indicate which 17425 * completion queue to bind received buffers that are posted to these queues to. 17426 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17427 * receive queue pair. This function is asynchronous and will wait for the 17428 * mailbox command to finish before continuing. 17429 * 17430 * On success this function will return a zero. If unable to allocate enough 17431 * memory this function will return -ENOMEM. If the queue create mailbox command 17432 * fails this function will return -ENXIO. 17433 **/ 17434 int 17435 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 17436 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 17437 uint32_t subtype) 17438 { 17439 struct lpfc_queue *hrq, *drq, *cq; 17440 struct lpfc_mbx_rq_create_v2 *rq_create; 17441 struct lpfc_dmabuf *dmabuf; 17442 LPFC_MBOXQ_t *mbox; 17443 int rc, length, alloclen, status = 0; 17444 int cnt, idx, numrq, page_idx = 0; 17445 uint32_t shdr_status, shdr_add_status; 17446 union lpfc_sli4_cfg_shdr *shdr; 17447 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17448 17449 numrq = phba->cfg_nvmet_mrq; 17450 /* sanity check on array memory */ 17451 if (!hrqp || !drqp || !cqp || !numrq) 17452 return -ENODEV; 17453 if (!phba->sli4_hba.pc_sli4_params.supported) 17454 hw_page_size = SLI4_PAGE_SIZE; 17455 17456 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17457 if (!mbox) 17458 return -ENOMEM; 17459 17460 length = sizeof(struct lpfc_mbx_rq_create_v2); 17461 length += ((2 * numrq * hrqp[0]->page_count) * 17462 sizeof(struct dma_address)); 17463 17464 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17465 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 17466 LPFC_SLI4_MBX_NEMBED); 17467 if (alloclen < length) { 17468 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17469 "3099 Allocated DMA memory size (%d) is " 17470 "less than the requested DMA memory size " 17471 "(%d)\n", alloclen, length); 17472 status = -ENOMEM; 17473 goto out; 17474 } 17475 17476 17477 17478 rq_create = mbox->sge_array->addr[0]; 17479 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 17480 17481 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 17482 cnt = 0; 17483 17484 for (idx = 0; idx < numrq; idx++) { 17485 hrq = hrqp[idx]; 17486 drq = drqp[idx]; 17487 cq = cqp[idx]; 17488 17489 /* sanity check on queue memory */ 17490 if (!hrq || !drq || !cq) { 17491 status = -ENODEV; 17492 goto out; 17493 } 17494 17495 if (hrq->entry_count != drq->entry_count) { 17496 status = -EINVAL; 17497 goto out; 17498 } 17499 17500 if (idx == 0) { 17501 bf_set(lpfc_mbx_rq_create_num_pages, 17502 &rq_create->u.request, 17503 hrq->page_count); 17504 bf_set(lpfc_mbx_rq_create_rq_cnt, 17505 &rq_create->u.request, (numrq * 2)); 17506 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 17507 1); 17508 bf_set(lpfc_rq_context_base_cq, 17509 &rq_create->u.request.context, 17510 cq->queue_id); 17511 bf_set(lpfc_rq_context_data_size, 17512 &rq_create->u.request.context, 17513 LPFC_NVMET_DATA_BUF_SIZE); 17514 bf_set(lpfc_rq_context_hdr_size, 17515 &rq_create->u.request.context, 17516 LPFC_HDR_BUF_SIZE); 17517 bf_set(lpfc_rq_context_rqe_count_1, 17518 &rq_create->u.request.context, 17519 hrq->entry_count); 17520 bf_set(lpfc_rq_context_rqe_size, 17521 &rq_create->u.request.context, 17522 LPFC_RQE_SIZE_8); 17523 bf_set(lpfc_rq_context_page_size, 17524 &rq_create->u.request.context, 17525 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17526 } 17527 rc = 0; 17528 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17529 memset(dmabuf->virt, 0, hw_page_size); 17530 cnt = page_idx + dmabuf->buffer_tag; 17531 rq_create->u.request.page[cnt].addr_lo = 17532 putPaddrLow(dmabuf->phys); 17533 rq_create->u.request.page[cnt].addr_hi = 17534 putPaddrHigh(dmabuf->phys); 17535 rc++; 17536 } 17537 page_idx += rc; 17538 17539 rc = 0; 17540 list_for_each_entry(dmabuf, &drq->page_list, list) { 17541 memset(dmabuf->virt, 0, hw_page_size); 17542 cnt = page_idx + dmabuf->buffer_tag; 17543 rq_create->u.request.page[cnt].addr_lo = 17544 putPaddrLow(dmabuf->phys); 17545 rq_create->u.request.page[cnt].addr_hi = 17546 putPaddrHigh(dmabuf->phys); 17547 rc++; 17548 } 17549 page_idx += rc; 17550 17551 hrq->db_format = LPFC_DB_RING_FORMAT; 17552 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17553 hrq->type = LPFC_HRQ; 17554 hrq->assoc_qid = cq->queue_id; 17555 hrq->subtype = subtype; 17556 hrq->host_index = 0; 17557 hrq->hba_index = 0; 17558 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17559 17560 drq->db_format = LPFC_DB_RING_FORMAT; 17561 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17562 drq->type = LPFC_DRQ; 17563 drq->assoc_qid = cq->queue_id; 17564 drq->subtype = subtype; 17565 drq->host_index = 0; 17566 drq->hba_index = 0; 17567 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17568 17569 list_add_tail(&hrq->list, &cq->child_list); 17570 list_add_tail(&drq->list, &cq->child_list); 17571 } 17572 17573 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17574 /* The IOCTL status is embedded in the mailbox subheader. */ 17575 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17576 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17577 if (shdr_status || shdr_add_status || rc) { 17578 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17579 "3120 RQ_CREATE mailbox failed with " 17580 "status x%x add_status x%x, mbx status x%x\n", 17581 shdr_status, shdr_add_status, rc); 17582 status = -ENXIO; 17583 goto out; 17584 } 17585 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17586 if (rc == 0xFFFF) { 17587 status = -ENXIO; 17588 goto out; 17589 } 17590 17591 /* Initialize all RQs with associated queue id */ 17592 for (idx = 0; idx < numrq; idx++) { 17593 hrq = hrqp[idx]; 17594 hrq->queue_id = rc + (2 * idx); 17595 drq = drqp[idx]; 17596 drq->queue_id = rc + (2 * idx) + 1; 17597 } 17598 17599 out: 17600 lpfc_sli4_mbox_cmd_free(phba, mbox); 17601 return status; 17602 } 17603 17604 /** 17605 * lpfc_eq_destroy - Destroy an event Queue on the HBA 17606 * @phba: HBA structure that indicates port to destroy a queue on. 17607 * @eq: The queue structure associated with the queue to destroy. 17608 * 17609 * This function destroys a queue, as detailed in @eq by sending an mailbox 17610 * command, specific to the type of queue, to the HBA. 17611 * 17612 * The @eq struct is used to get the queue ID of the queue to destroy. 17613 * 17614 * On success this function will return a zero. If the queue destroy mailbox 17615 * command fails this function will return -ENXIO. 17616 **/ 17617 int 17618 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 17619 { 17620 LPFC_MBOXQ_t *mbox; 17621 int rc, length, status = 0; 17622 uint32_t shdr_status, shdr_add_status; 17623 union lpfc_sli4_cfg_shdr *shdr; 17624 17625 /* sanity check on queue memory */ 17626 if (!eq) 17627 return -ENODEV; 17628 17629 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 17630 if (!mbox) 17631 return -ENOMEM; 17632 length = (sizeof(struct lpfc_mbx_eq_destroy) - 17633 sizeof(struct lpfc_sli4_cfg_mhdr)); 17634 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17635 LPFC_MBOX_OPCODE_EQ_DESTROY, 17636 length, LPFC_SLI4_MBX_EMBED); 17637 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 17638 eq->queue_id); 17639 mbox->vport = eq->phba->pport; 17640 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17641 17642 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 17643 /* The IOCTL status is embedded in the mailbox subheader. */ 17644 shdr = (union lpfc_sli4_cfg_shdr *) 17645 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 17646 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17647 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17648 if (shdr_status || shdr_add_status || rc) { 17649 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17650 "2505 EQ_DESTROY mailbox failed with " 17651 "status x%x add_status x%x, mbx status x%x\n", 17652 shdr_status, shdr_add_status, rc); 17653 status = -ENXIO; 17654 } 17655 17656 /* Remove eq from any list */ 17657 list_del_init(&eq->list); 17658 mempool_free(mbox, eq->phba->mbox_mem_pool); 17659 return status; 17660 } 17661 17662 /** 17663 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 17664 * @phba: HBA structure that indicates port to destroy a queue on. 17665 * @cq: The queue structure associated with the queue to destroy. 17666 * 17667 * This function destroys a queue, as detailed in @cq by sending an mailbox 17668 * command, specific to the type of queue, to the HBA. 17669 * 17670 * The @cq struct is used to get the queue ID of the queue to destroy. 17671 * 17672 * On success this function will return a zero. If the queue destroy mailbox 17673 * command fails this function will return -ENXIO. 17674 **/ 17675 int 17676 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 17677 { 17678 LPFC_MBOXQ_t *mbox; 17679 int rc, length, status = 0; 17680 uint32_t shdr_status, shdr_add_status; 17681 union lpfc_sli4_cfg_shdr *shdr; 17682 17683 /* sanity check on queue memory */ 17684 if (!cq) 17685 return -ENODEV; 17686 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 17687 if (!mbox) 17688 return -ENOMEM; 17689 length = (sizeof(struct lpfc_mbx_cq_destroy) - 17690 sizeof(struct lpfc_sli4_cfg_mhdr)); 17691 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17692 LPFC_MBOX_OPCODE_CQ_DESTROY, 17693 length, LPFC_SLI4_MBX_EMBED); 17694 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 17695 cq->queue_id); 17696 mbox->vport = cq->phba->pport; 17697 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17698 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 17699 /* The IOCTL status is embedded in the mailbox subheader. */ 17700 shdr = (union lpfc_sli4_cfg_shdr *) 17701 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 17702 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17703 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17704 if (shdr_status || shdr_add_status || rc) { 17705 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17706 "2506 CQ_DESTROY mailbox failed with " 17707 "status x%x add_status x%x, mbx status x%x\n", 17708 shdr_status, shdr_add_status, rc); 17709 status = -ENXIO; 17710 } 17711 /* Remove cq from any list */ 17712 list_del_init(&cq->list); 17713 mempool_free(mbox, cq->phba->mbox_mem_pool); 17714 return status; 17715 } 17716 17717 /** 17718 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 17719 * @phba: HBA structure that indicates port to destroy a queue on. 17720 * @mq: The queue structure associated with the queue to destroy. 17721 * 17722 * This function destroys a queue, as detailed in @mq by sending an mailbox 17723 * command, specific to the type of queue, to the HBA. 17724 * 17725 * The @mq struct is used to get the queue ID of the queue to destroy. 17726 * 17727 * On success this function will return a zero. If the queue destroy mailbox 17728 * command fails this function will return -ENXIO. 17729 **/ 17730 int 17731 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 17732 { 17733 LPFC_MBOXQ_t *mbox; 17734 int rc, length, status = 0; 17735 uint32_t shdr_status, shdr_add_status; 17736 union lpfc_sli4_cfg_shdr *shdr; 17737 17738 /* sanity check on queue memory */ 17739 if (!mq) 17740 return -ENODEV; 17741 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 17742 if (!mbox) 17743 return -ENOMEM; 17744 length = (sizeof(struct lpfc_mbx_mq_destroy) - 17745 sizeof(struct lpfc_sli4_cfg_mhdr)); 17746 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17747 LPFC_MBOX_OPCODE_MQ_DESTROY, 17748 length, LPFC_SLI4_MBX_EMBED); 17749 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 17750 mq->queue_id); 17751 mbox->vport = mq->phba->pport; 17752 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17753 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 17754 /* The IOCTL status is embedded in the mailbox subheader. */ 17755 shdr = (union lpfc_sli4_cfg_shdr *) 17756 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 17757 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17758 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17759 if (shdr_status || shdr_add_status || rc) { 17760 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17761 "2507 MQ_DESTROY mailbox failed with " 17762 "status x%x add_status x%x, mbx status x%x\n", 17763 shdr_status, shdr_add_status, rc); 17764 status = -ENXIO; 17765 } 17766 /* Remove mq from any list */ 17767 list_del_init(&mq->list); 17768 mempool_free(mbox, mq->phba->mbox_mem_pool); 17769 return status; 17770 } 17771 17772 /** 17773 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 17774 * @phba: HBA structure that indicates port to destroy a queue on. 17775 * @wq: The queue structure associated with the queue to destroy. 17776 * 17777 * This function destroys a queue, as detailed in @wq by sending an mailbox 17778 * command, specific to the type of queue, to the HBA. 17779 * 17780 * The @wq struct is used to get the queue ID of the queue to destroy. 17781 * 17782 * On success this function will return a zero. If the queue destroy mailbox 17783 * command fails this function will return -ENXIO. 17784 **/ 17785 int 17786 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17787 { 17788 LPFC_MBOXQ_t *mbox; 17789 int rc, length, status = 0; 17790 uint32_t shdr_status, shdr_add_status; 17791 union lpfc_sli4_cfg_shdr *shdr; 17792 17793 /* sanity check on queue memory */ 17794 if (!wq) 17795 return -ENODEV; 17796 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17797 if (!mbox) 17798 return -ENOMEM; 17799 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17800 sizeof(struct lpfc_sli4_cfg_mhdr)); 17801 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17802 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17803 length, LPFC_SLI4_MBX_EMBED); 17804 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17805 wq->queue_id); 17806 mbox->vport = wq->phba->pport; 17807 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17808 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17809 shdr = (union lpfc_sli4_cfg_shdr *) 17810 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17811 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17812 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17813 if (shdr_status || shdr_add_status || rc) { 17814 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17815 "2508 WQ_DESTROY mailbox failed with " 17816 "status x%x add_status x%x, mbx status x%x\n", 17817 shdr_status, shdr_add_status, rc); 17818 status = -ENXIO; 17819 } 17820 /* Remove wq from any list */ 17821 list_del_init(&wq->list); 17822 kfree(wq->pring); 17823 wq->pring = NULL; 17824 mempool_free(mbox, wq->phba->mbox_mem_pool); 17825 return status; 17826 } 17827 17828 /** 17829 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17830 * @phba: HBA structure that indicates port to destroy a queue on. 17831 * @hrq: The queue structure associated with the queue to destroy. 17832 * @drq: The queue structure associated with the queue to destroy. 17833 * 17834 * This function destroys a queue, as detailed in @rq by sending an mailbox 17835 * command, specific to the type of queue, to the HBA. 17836 * 17837 * The @rq struct is used to get the queue ID of the queue to destroy. 17838 * 17839 * On success this function will return a zero. If the queue destroy mailbox 17840 * command fails this function will return -ENXIO. 17841 **/ 17842 int 17843 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17844 struct lpfc_queue *drq) 17845 { 17846 LPFC_MBOXQ_t *mbox; 17847 int rc, length, status = 0; 17848 uint32_t shdr_status, shdr_add_status; 17849 union lpfc_sli4_cfg_shdr *shdr; 17850 17851 /* sanity check on queue memory */ 17852 if (!hrq || !drq) 17853 return -ENODEV; 17854 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17855 if (!mbox) 17856 return -ENOMEM; 17857 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17858 sizeof(struct lpfc_sli4_cfg_mhdr)); 17859 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17860 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17861 length, LPFC_SLI4_MBX_EMBED); 17862 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17863 hrq->queue_id); 17864 mbox->vport = hrq->phba->pport; 17865 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17866 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17867 /* The IOCTL status is embedded in the mailbox subheader. */ 17868 shdr = (union lpfc_sli4_cfg_shdr *) 17869 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17870 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17871 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17872 if (shdr_status || shdr_add_status || rc) { 17873 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17874 "2509 RQ_DESTROY mailbox failed with " 17875 "status x%x add_status x%x, mbx status x%x\n", 17876 shdr_status, shdr_add_status, rc); 17877 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17878 return -ENXIO; 17879 } 17880 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17881 drq->queue_id); 17882 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17883 shdr = (union lpfc_sli4_cfg_shdr *) 17884 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17885 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17886 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17887 if (shdr_status || shdr_add_status || rc) { 17888 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17889 "2510 RQ_DESTROY mailbox failed with " 17890 "status x%x add_status x%x, mbx status x%x\n", 17891 shdr_status, shdr_add_status, rc); 17892 status = -ENXIO; 17893 } 17894 list_del_init(&hrq->list); 17895 list_del_init(&drq->list); 17896 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17897 return status; 17898 } 17899 17900 /** 17901 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17902 * @phba: The virtual port for which this call being executed. 17903 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17904 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17905 * @xritag: the xritag that ties this io to the SGL pages. 17906 * 17907 * This routine will post the sgl pages for the IO that has the xritag 17908 * that is in the iocbq structure. The xritag is assigned during iocbq 17909 * creation and persists for as long as the driver is loaded. 17910 * if the caller has fewer than 256 scatter gather segments to map then 17911 * pdma_phys_addr1 should be 0. 17912 * If the caller needs to map more than 256 scatter gather segment then 17913 * pdma_phys_addr1 should be a valid physical address. 17914 * physical address for SGLs must be 64 byte aligned. 17915 * If you are going to map 2 SGL's then the first one must have 256 entries 17916 * the second sgl can have between 1 and 256 entries. 17917 * 17918 * Return codes: 17919 * 0 - Success 17920 * -ENXIO, -ENOMEM - Failure 17921 **/ 17922 int 17923 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17924 dma_addr_t pdma_phys_addr0, 17925 dma_addr_t pdma_phys_addr1, 17926 uint16_t xritag) 17927 { 17928 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17929 LPFC_MBOXQ_t *mbox; 17930 int rc; 17931 uint32_t shdr_status, shdr_add_status; 17932 uint32_t mbox_tmo; 17933 union lpfc_sli4_cfg_shdr *shdr; 17934 17935 if (xritag == NO_XRI) { 17936 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17937 "0364 Invalid param:\n"); 17938 return -EINVAL; 17939 } 17940 17941 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17942 if (!mbox) 17943 return -ENOMEM; 17944 17945 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17946 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17947 sizeof(struct lpfc_mbx_post_sgl_pages) - 17948 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17949 17950 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17951 &mbox->u.mqe.un.post_sgl_pages; 17952 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17953 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17954 17955 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17956 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17957 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17958 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17959 17960 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17961 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17962 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17963 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17964 if (!phba->sli4_hba.intr_enable) 17965 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17966 else { 17967 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17968 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17969 } 17970 /* The IOCTL status is embedded in the mailbox subheader. */ 17971 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17972 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17973 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17974 if (!phba->sli4_hba.intr_enable) 17975 mempool_free(mbox, phba->mbox_mem_pool); 17976 else if (rc != MBX_TIMEOUT) 17977 mempool_free(mbox, phba->mbox_mem_pool); 17978 if (shdr_status || shdr_add_status || rc) { 17979 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17980 "2511 POST_SGL mailbox failed with " 17981 "status x%x add_status x%x, mbx status x%x\n", 17982 shdr_status, shdr_add_status, rc); 17983 } 17984 return 0; 17985 } 17986 17987 /** 17988 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17989 * @phba: pointer to lpfc hba data structure. 17990 * 17991 * This routine is invoked to post rpi header templates to the 17992 * HBA consistent with the SLI-4 interface spec. This routine 17993 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17994 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17995 * 17996 * Returns 17997 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17998 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17999 **/ 18000 static uint16_t 18001 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 18002 { 18003 unsigned long xri; 18004 18005 /* 18006 * Fetch the next logical xri. Because this index is logical, 18007 * the driver starts at 0 each time. 18008 */ 18009 spin_lock_irq(&phba->hbalock); 18010 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 18011 phba->sli4_hba.max_cfg_param.max_xri, 0); 18012 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 18013 spin_unlock_irq(&phba->hbalock); 18014 return NO_XRI; 18015 } else { 18016 set_bit(xri, phba->sli4_hba.xri_bmask); 18017 phba->sli4_hba.max_cfg_param.xri_used++; 18018 } 18019 spin_unlock_irq(&phba->hbalock); 18020 return xri; 18021 } 18022 18023 /** 18024 * __lpfc_sli4_free_xri - Release an xri for reuse. 18025 * @phba: pointer to lpfc hba data structure. 18026 * @xri: xri to release. 18027 * 18028 * This routine is invoked to release an xri to the pool of 18029 * available rpis maintained by the driver. 18030 **/ 18031 static void 18032 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18033 { 18034 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 18035 phba->sli4_hba.max_cfg_param.xri_used--; 18036 } 18037 } 18038 18039 /** 18040 * lpfc_sli4_free_xri - Release an xri for reuse. 18041 * @phba: pointer to lpfc hba data structure. 18042 * @xri: xri to release. 18043 * 18044 * This routine is invoked to release an xri to the pool of 18045 * available rpis maintained by the driver. 18046 **/ 18047 void 18048 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18049 { 18050 spin_lock_irq(&phba->hbalock); 18051 __lpfc_sli4_free_xri(phba, xri); 18052 spin_unlock_irq(&phba->hbalock); 18053 } 18054 18055 /** 18056 * lpfc_sli4_next_xritag - Get an xritag for the io 18057 * @phba: Pointer to HBA context object. 18058 * 18059 * This function gets an xritag for the iocb. If there is no unused xritag 18060 * it will return 0xffff. 18061 * The function returns the allocated xritag if successful, else returns zero. 18062 * Zero is not a valid xritag. 18063 * The caller is not required to hold any lock. 18064 **/ 18065 uint16_t 18066 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 18067 { 18068 uint16_t xri_index; 18069 18070 xri_index = lpfc_sli4_alloc_xri(phba); 18071 if (xri_index == NO_XRI) 18072 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18073 "2004 Failed to allocate XRI.last XRITAG is %d" 18074 " Max XRI is %d, Used XRI is %d\n", 18075 xri_index, 18076 phba->sli4_hba.max_cfg_param.max_xri, 18077 phba->sli4_hba.max_cfg_param.xri_used); 18078 return xri_index; 18079 } 18080 18081 /** 18082 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 18083 * @phba: pointer to lpfc hba data structure. 18084 * @post_sgl_list: pointer to els sgl entry list. 18085 * @post_cnt: number of els sgl entries on the list. 18086 * 18087 * This routine is invoked to post a block of driver's sgl pages to the 18088 * HBA using non-embedded mailbox command. No Lock is held. This routine 18089 * is only called when the driver is loading and after all IO has been 18090 * stopped. 18091 **/ 18092 static int 18093 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 18094 struct list_head *post_sgl_list, 18095 int post_cnt) 18096 { 18097 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 18098 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18099 struct sgl_page_pairs *sgl_pg_pairs; 18100 void *viraddr; 18101 LPFC_MBOXQ_t *mbox; 18102 uint32_t reqlen, alloclen, pg_pairs; 18103 uint32_t mbox_tmo; 18104 uint16_t xritag_start = 0; 18105 int rc = 0; 18106 uint32_t shdr_status, shdr_add_status; 18107 union lpfc_sli4_cfg_shdr *shdr; 18108 18109 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 18110 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18111 if (reqlen > SLI4_PAGE_SIZE) { 18112 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18113 "2559 Block sgl registration required DMA " 18114 "size (%d) great than a page\n", reqlen); 18115 return -ENOMEM; 18116 } 18117 18118 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18119 if (!mbox) 18120 return -ENOMEM; 18121 18122 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18123 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18124 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 18125 LPFC_SLI4_MBX_NEMBED); 18126 18127 if (alloclen < reqlen) { 18128 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18129 "0285 Allocated DMA memory size (%d) is " 18130 "less than the requested DMA memory " 18131 "size (%d)\n", alloclen, reqlen); 18132 lpfc_sli4_mbox_cmd_free(phba, mbox); 18133 return -ENOMEM; 18134 } 18135 /* Set up the SGL pages in the non-embedded DMA pages */ 18136 viraddr = mbox->sge_array->addr[0]; 18137 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18138 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18139 18140 pg_pairs = 0; 18141 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 18142 /* Set up the sge entry */ 18143 sgl_pg_pairs->sgl_pg0_addr_lo = 18144 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 18145 sgl_pg_pairs->sgl_pg0_addr_hi = 18146 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 18147 sgl_pg_pairs->sgl_pg1_addr_lo = 18148 cpu_to_le32(putPaddrLow(0)); 18149 sgl_pg_pairs->sgl_pg1_addr_hi = 18150 cpu_to_le32(putPaddrHigh(0)); 18151 18152 /* Keep the first xritag on the list */ 18153 if (pg_pairs == 0) 18154 xritag_start = sglq_entry->sli4_xritag; 18155 sgl_pg_pairs++; 18156 pg_pairs++; 18157 } 18158 18159 /* Complete initialization and perform endian conversion. */ 18160 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18161 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 18162 sgl->word0 = cpu_to_le32(sgl->word0); 18163 18164 if (!phba->sli4_hba.intr_enable) 18165 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18166 else { 18167 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18168 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18169 } 18170 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 18171 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18172 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18173 if (!phba->sli4_hba.intr_enable) 18174 lpfc_sli4_mbox_cmd_free(phba, mbox); 18175 else if (rc != MBX_TIMEOUT) 18176 lpfc_sli4_mbox_cmd_free(phba, mbox); 18177 if (shdr_status || shdr_add_status || rc) { 18178 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18179 "2513 POST_SGL_BLOCK mailbox command failed " 18180 "status x%x add_status x%x mbx status x%x\n", 18181 shdr_status, shdr_add_status, rc); 18182 rc = -ENXIO; 18183 } 18184 return rc; 18185 } 18186 18187 /** 18188 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 18189 * @phba: pointer to lpfc hba data structure. 18190 * @nblist: pointer to nvme buffer list. 18191 * @count: number of scsi buffers on the list. 18192 * 18193 * This routine is invoked to post a block of @count scsi sgl pages from a 18194 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 18195 * No Lock is held. 18196 * 18197 **/ 18198 static int 18199 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 18200 int count) 18201 { 18202 struct lpfc_io_buf *lpfc_ncmd; 18203 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18204 struct sgl_page_pairs *sgl_pg_pairs; 18205 void *viraddr; 18206 LPFC_MBOXQ_t *mbox; 18207 uint32_t reqlen, alloclen, pg_pairs; 18208 uint32_t mbox_tmo; 18209 uint16_t xritag_start = 0; 18210 int rc = 0; 18211 uint32_t shdr_status, shdr_add_status; 18212 dma_addr_t pdma_phys_bpl1; 18213 union lpfc_sli4_cfg_shdr *shdr; 18214 18215 /* Calculate the requested length of the dma memory */ 18216 reqlen = count * sizeof(struct sgl_page_pairs) + 18217 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18218 if (reqlen > SLI4_PAGE_SIZE) { 18219 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 18220 "6118 Block sgl registration required DMA " 18221 "size (%d) great than a page\n", reqlen); 18222 return -ENOMEM; 18223 } 18224 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18225 if (!mbox) { 18226 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18227 "6119 Failed to allocate mbox cmd memory\n"); 18228 return -ENOMEM; 18229 } 18230 18231 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18232 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18233 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 18234 reqlen, LPFC_SLI4_MBX_NEMBED); 18235 18236 if (alloclen < reqlen) { 18237 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18238 "6120 Allocated DMA memory size (%d) is " 18239 "less than the requested DMA memory " 18240 "size (%d)\n", alloclen, reqlen); 18241 lpfc_sli4_mbox_cmd_free(phba, mbox); 18242 return -ENOMEM; 18243 } 18244 18245 /* Get the first SGE entry from the non-embedded DMA memory */ 18246 viraddr = mbox->sge_array->addr[0]; 18247 18248 /* Set up the SGL pages in the non-embedded DMA pages */ 18249 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18250 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18251 18252 pg_pairs = 0; 18253 list_for_each_entry(lpfc_ncmd, nblist, list) { 18254 /* Set up the sge entry */ 18255 sgl_pg_pairs->sgl_pg0_addr_lo = 18256 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 18257 sgl_pg_pairs->sgl_pg0_addr_hi = 18258 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 18259 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 18260 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 18261 SGL_PAGE_SIZE; 18262 else 18263 pdma_phys_bpl1 = 0; 18264 sgl_pg_pairs->sgl_pg1_addr_lo = 18265 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 18266 sgl_pg_pairs->sgl_pg1_addr_hi = 18267 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 18268 /* Keep the first xritag on the list */ 18269 if (pg_pairs == 0) 18270 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 18271 sgl_pg_pairs++; 18272 pg_pairs++; 18273 } 18274 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18275 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 18276 /* Perform endian conversion if necessary */ 18277 sgl->word0 = cpu_to_le32(sgl->word0); 18278 18279 if (!phba->sli4_hba.intr_enable) { 18280 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18281 } else { 18282 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18283 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18284 } 18285 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 18286 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18287 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18288 if (!phba->sli4_hba.intr_enable) 18289 lpfc_sli4_mbox_cmd_free(phba, mbox); 18290 else if (rc != MBX_TIMEOUT) 18291 lpfc_sli4_mbox_cmd_free(phba, mbox); 18292 if (shdr_status || shdr_add_status || rc) { 18293 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18294 "6125 POST_SGL_BLOCK mailbox command failed " 18295 "status x%x add_status x%x mbx status x%x\n", 18296 shdr_status, shdr_add_status, rc); 18297 rc = -ENXIO; 18298 } 18299 return rc; 18300 } 18301 18302 /** 18303 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 18304 * @phba: pointer to lpfc hba data structure. 18305 * @post_nblist: pointer to the nvme buffer list. 18306 * @sb_count: number of nvme buffers. 18307 * 18308 * This routine walks a list of nvme buffers that was passed in. It attempts 18309 * to construct blocks of nvme buffer sgls which contains contiguous xris and 18310 * uses the non-embedded SGL block post mailbox commands to post to the port. 18311 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 18312 * embedded SGL post mailbox command for posting. The @post_nblist passed in 18313 * must be local list, thus no lock is needed when manipulate the list. 18314 * 18315 * Returns: 0 = failure, non-zero number of successfully posted buffers. 18316 **/ 18317 int 18318 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 18319 struct list_head *post_nblist, int sb_count) 18320 { 18321 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 18322 int status, sgl_size; 18323 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 18324 dma_addr_t pdma_phys_sgl1; 18325 int last_xritag = NO_XRI; 18326 int cur_xritag; 18327 LIST_HEAD(prep_nblist); 18328 LIST_HEAD(blck_nblist); 18329 LIST_HEAD(nvme_nblist); 18330 18331 /* sanity check */ 18332 if (sb_count <= 0) 18333 return -EINVAL; 18334 18335 sgl_size = phba->cfg_sg_dma_buf_size; 18336 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 18337 list_del_init(&lpfc_ncmd->list); 18338 block_cnt++; 18339 if ((last_xritag != NO_XRI) && 18340 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 18341 /* a hole in xri block, form a sgl posting block */ 18342 list_splice_init(&prep_nblist, &blck_nblist); 18343 post_cnt = block_cnt - 1; 18344 /* prepare list for next posting block */ 18345 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18346 block_cnt = 1; 18347 } else { 18348 /* prepare list for next posting block */ 18349 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18350 /* enough sgls for non-embed sgl mbox command */ 18351 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 18352 list_splice_init(&prep_nblist, &blck_nblist); 18353 post_cnt = block_cnt; 18354 block_cnt = 0; 18355 } 18356 } 18357 num_posting++; 18358 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18359 18360 /* end of repost sgl list condition for NVME buffers */ 18361 if (num_posting == sb_count) { 18362 if (post_cnt == 0) { 18363 /* last sgl posting block */ 18364 list_splice_init(&prep_nblist, &blck_nblist); 18365 post_cnt = block_cnt; 18366 } else if (block_cnt == 1) { 18367 /* last single sgl with non-contiguous xri */ 18368 if (sgl_size > SGL_PAGE_SIZE) 18369 pdma_phys_sgl1 = 18370 lpfc_ncmd->dma_phys_sgl + 18371 SGL_PAGE_SIZE; 18372 else 18373 pdma_phys_sgl1 = 0; 18374 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18375 status = lpfc_sli4_post_sgl( 18376 phba, lpfc_ncmd->dma_phys_sgl, 18377 pdma_phys_sgl1, cur_xritag); 18378 if (status) { 18379 /* Post error. Buffer unavailable. */ 18380 lpfc_ncmd->flags |= 18381 LPFC_SBUF_NOT_POSTED; 18382 } else { 18383 /* Post success. Bffer available. */ 18384 lpfc_ncmd->flags &= 18385 ~LPFC_SBUF_NOT_POSTED; 18386 lpfc_ncmd->status = IOSTAT_SUCCESS; 18387 num_posted++; 18388 } 18389 /* success, put on NVME buffer sgl list */ 18390 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18391 } 18392 } 18393 18394 /* continue until a nembed page worth of sgls */ 18395 if (post_cnt == 0) 18396 continue; 18397 18398 /* post block of NVME buffer list sgls */ 18399 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 18400 post_cnt); 18401 18402 /* don't reset xirtag due to hole in xri block */ 18403 if (block_cnt == 0) 18404 last_xritag = NO_XRI; 18405 18406 /* reset NVME buffer post count for next round of posting */ 18407 post_cnt = 0; 18408 18409 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 18410 while (!list_empty(&blck_nblist)) { 18411 list_remove_head(&blck_nblist, lpfc_ncmd, 18412 struct lpfc_io_buf, list); 18413 if (status) { 18414 /* Post error. Mark buffer unavailable. */ 18415 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 18416 } else { 18417 /* Post success, Mark buffer available. */ 18418 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 18419 lpfc_ncmd->status = IOSTAT_SUCCESS; 18420 num_posted++; 18421 } 18422 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18423 } 18424 } 18425 /* Push NVME buffers with sgl posted to the available list */ 18426 lpfc_io_buf_replenish(phba, &nvme_nblist); 18427 18428 return num_posted; 18429 } 18430 18431 /** 18432 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 18433 * @phba: pointer to lpfc_hba struct that the frame was received on 18434 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18435 * 18436 * This function checks the fields in the @fc_hdr to see if the FC frame is a 18437 * valid type of frame that the LPFC driver will handle. This function will 18438 * return a zero if the frame is a valid frame or a non zero value when the 18439 * frame does not pass the check. 18440 **/ 18441 static int 18442 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 18443 { 18444 /* make rctl_names static to save stack space */ 18445 struct fc_vft_header *fc_vft_hdr; 18446 uint32_t *header = (uint32_t *) fc_hdr; 18447 18448 #define FC_RCTL_MDS_DIAGS 0xF4 18449 18450 switch (fc_hdr->fh_r_ctl) { 18451 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 18452 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 18453 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 18454 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 18455 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 18456 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 18457 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 18458 case FC_RCTL_DD_CMD_STATUS: /* command status */ 18459 case FC_RCTL_ELS_REQ: /* extended link services request */ 18460 case FC_RCTL_ELS_REP: /* extended link services reply */ 18461 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 18462 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 18463 case FC_RCTL_BA_NOP: /* basic link service NOP */ 18464 case FC_RCTL_BA_ABTS: /* basic link service abort */ 18465 case FC_RCTL_BA_RMC: /* remove connection */ 18466 case FC_RCTL_BA_ACC: /* basic accept */ 18467 case FC_RCTL_BA_RJT: /* basic reject */ 18468 case FC_RCTL_BA_PRMT: 18469 case FC_RCTL_ACK_1: /* acknowledge_1 */ 18470 case FC_RCTL_ACK_0: /* acknowledge_0 */ 18471 case FC_RCTL_P_RJT: /* port reject */ 18472 case FC_RCTL_F_RJT: /* fabric reject */ 18473 case FC_RCTL_P_BSY: /* port busy */ 18474 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 18475 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 18476 case FC_RCTL_LCR: /* link credit reset */ 18477 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 18478 case FC_RCTL_END: /* end */ 18479 break; 18480 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 18481 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18482 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 18483 return lpfc_fc_frame_check(phba, fc_hdr); 18484 default: 18485 goto drop; 18486 } 18487 18488 switch (fc_hdr->fh_type) { 18489 case FC_TYPE_BLS: 18490 case FC_TYPE_ELS: 18491 case FC_TYPE_FCP: 18492 case FC_TYPE_CT: 18493 case FC_TYPE_NVME: 18494 break; 18495 case FC_TYPE_IP: 18496 case FC_TYPE_ILS: 18497 default: 18498 goto drop; 18499 } 18500 18501 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 18502 "2538 Received frame rctl:x%x, type:x%x, " 18503 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 18504 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 18505 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 18506 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 18507 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 18508 be32_to_cpu(header[6])); 18509 return 0; 18510 drop: 18511 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 18512 "2539 Dropped frame rctl:x%x type:x%x\n", 18513 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18514 return 1; 18515 } 18516 18517 /** 18518 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 18519 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18520 * 18521 * This function processes the FC header to retrieve the VFI from the VF 18522 * header, if one exists. This function will return the VFI if one exists 18523 * or 0 if no VSAN Header exists. 18524 **/ 18525 static uint32_t 18526 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 18527 { 18528 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18529 18530 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 18531 return 0; 18532 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 18533 } 18534 18535 /** 18536 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 18537 * @phba: Pointer to the HBA structure to search for the vport on 18538 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18539 * @fcfi: The FC Fabric ID that the frame came from 18540 * @did: Destination ID to match against 18541 * 18542 * This function searches the @phba for a vport that matches the content of the 18543 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 18544 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 18545 * returns the matching vport pointer or NULL if unable to match frame to a 18546 * vport. 18547 **/ 18548 static struct lpfc_vport * 18549 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 18550 uint16_t fcfi, uint32_t did) 18551 { 18552 struct lpfc_vport **vports; 18553 struct lpfc_vport *vport = NULL; 18554 int i; 18555 18556 if (did == Fabric_DID) 18557 return phba->pport; 18558 if ((phba->pport->fc_flag & FC_PT2PT) && 18559 !(phba->link_state == LPFC_HBA_READY)) 18560 return phba->pport; 18561 18562 vports = lpfc_create_vport_work_array(phba); 18563 if (vports != NULL) { 18564 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 18565 if (phba->fcf.fcfi == fcfi && 18566 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 18567 vports[i]->fc_myDID == did) { 18568 vport = vports[i]; 18569 break; 18570 } 18571 } 18572 } 18573 lpfc_destroy_vport_work_array(phba, vports); 18574 return vport; 18575 } 18576 18577 /** 18578 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 18579 * @vport: The vport to work on. 18580 * 18581 * This function updates the receive sequence time stamp for this vport. The 18582 * receive sequence time stamp indicates the time that the last frame of the 18583 * the sequence that has been idle for the longest amount of time was received. 18584 * the driver uses this time stamp to indicate if any received sequences have 18585 * timed out. 18586 **/ 18587 static void 18588 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 18589 { 18590 struct lpfc_dmabuf *h_buf; 18591 struct hbq_dmabuf *dmabuf = NULL; 18592 18593 /* get the oldest sequence on the rcv list */ 18594 h_buf = list_get_first(&vport->rcv_buffer_list, 18595 struct lpfc_dmabuf, list); 18596 if (!h_buf) 18597 return; 18598 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18599 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 18600 } 18601 18602 /** 18603 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 18604 * @vport: The vport that the received sequences were sent to. 18605 * 18606 * This function cleans up all outstanding received sequences. This is called 18607 * by the driver when a link event or user action invalidates all the received 18608 * sequences. 18609 **/ 18610 void 18611 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 18612 { 18613 struct lpfc_dmabuf *h_buf, *hnext; 18614 struct lpfc_dmabuf *d_buf, *dnext; 18615 struct hbq_dmabuf *dmabuf = NULL; 18616 18617 /* start with the oldest sequence on the rcv list */ 18618 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18619 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18620 list_del_init(&dmabuf->hbuf.list); 18621 list_for_each_entry_safe(d_buf, dnext, 18622 &dmabuf->dbuf.list, list) { 18623 list_del_init(&d_buf->list); 18624 lpfc_in_buf_free(vport->phba, d_buf); 18625 } 18626 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18627 } 18628 } 18629 18630 /** 18631 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 18632 * @vport: The vport that the received sequences were sent to. 18633 * 18634 * This function determines whether any received sequences have timed out by 18635 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 18636 * indicates that there is at least one timed out sequence this routine will 18637 * go through the received sequences one at a time from most inactive to most 18638 * active to determine which ones need to be cleaned up. Once it has determined 18639 * that a sequence needs to be cleaned up it will simply free up the resources 18640 * without sending an abort. 18641 **/ 18642 void 18643 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 18644 { 18645 struct lpfc_dmabuf *h_buf, *hnext; 18646 struct lpfc_dmabuf *d_buf, *dnext; 18647 struct hbq_dmabuf *dmabuf = NULL; 18648 unsigned long timeout; 18649 int abort_count = 0; 18650 18651 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18652 vport->rcv_buffer_time_stamp); 18653 if (list_empty(&vport->rcv_buffer_list) || 18654 time_before(jiffies, timeout)) 18655 return; 18656 /* start with the oldest sequence on the rcv list */ 18657 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18658 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18659 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18660 dmabuf->time_stamp); 18661 if (time_before(jiffies, timeout)) 18662 break; 18663 abort_count++; 18664 list_del_init(&dmabuf->hbuf.list); 18665 list_for_each_entry_safe(d_buf, dnext, 18666 &dmabuf->dbuf.list, list) { 18667 list_del_init(&d_buf->list); 18668 lpfc_in_buf_free(vport->phba, d_buf); 18669 } 18670 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18671 } 18672 if (abort_count) 18673 lpfc_update_rcv_time_stamp(vport); 18674 } 18675 18676 /** 18677 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 18678 * @vport: pointer to a vitural port 18679 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 18680 * 18681 * This function searches through the existing incomplete sequences that have 18682 * been sent to this @vport. If the frame matches one of the incomplete 18683 * sequences then the dbuf in the @dmabuf is added to the list of frames that 18684 * make up that sequence. If no sequence is found that matches this frame then 18685 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 18686 * This function returns a pointer to the first dmabuf in the sequence list that 18687 * the frame was linked to. 18688 **/ 18689 static struct hbq_dmabuf * 18690 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18691 { 18692 struct fc_frame_header *new_hdr; 18693 struct fc_frame_header *temp_hdr; 18694 struct lpfc_dmabuf *d_buf; 18695 struct lpfc_dmabuf *h_buf; 18696 struct hbq_dmabuf *seq_dmabuf = NULL; 18697 struct hbq_dmabuf *temp_dmabuf = NULL; 18698 uint8_t found = 0; 18699 18700 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18701 dmabuf->time_stamp = jiffies; 18702 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18703 18704 /* Use the hdr_buf to find the sequence that this frame belongs to */ 18705 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18706 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18707 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18708 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18709 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18710 continue; 18711 /* found a pending sequence that matches this frame */ 18712 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18713 break; 18714 } 18715 if (!seq_dmabuf) { 18716 /* 18717 * This indicates first frame received for this sequence. 18718 * Queue the buffer on the vport's rcv_buffer_list. 18719 */ 18720 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18721 lpfc_update_rcv_time_stamp(vport); 18722 return dmabuf; 18723 } 18724 temp_hdr = seq_dmabuf->hbuf.virt; 18725 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 18726 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18727 list_del_init(&seq_dmabuf->hbuf.list); 18728 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18729 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18730 lpfc_update_rcv_time_stamp(vport); 18731 return dmabuf; 18732 } 18733 /* move this sequence to the tail to indicate a young sequence */ 18734 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 18735 seq_dmabuf->time_stamp = jiffies; 18736 lpfc_update_rcv_time_stamp(vport); 18737 if (list_empty(&seq_dmabuf->dbuf.list)) { 18738 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18739 return seq_dmabuf; 18740 } 18741 /* find the correct place in the sequence to insert this frame */ 18742 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 18743 while (!found) { 18744 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18745 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 18746 /* 18747 * If the frame's sequence count is greater than the frame on 18748 * the list then insert the frame right after this frame 18749 */ 18750 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 18751 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18752 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 18753 found = 1; 18754 break; 18755 } 18756 18757 if (&d_buf->list == &seq_dmabuf->dbuf.list) 18758 break; 18759 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 18760 } 18761 18762 if (found) 18763 return seq_dmabuf; 18764 return NULL; 18765 } 18766 18767 /** 18768 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 18769 * @vport: pointer to a vitural port 18770 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18771 * 18772 * This function tries to abort from the partially assembed sequence, described 18773 * by the information from basic abbort @dmabuf. It checks to see whether such 18774 * partially assembled sequence held by the driver. If so, it shall free up all 18775 * the frames from the partially assembled sequence. 18776 * 18777 * Return 18778 * true -- if there is matching partially assembled sequence present and all 18779 * the frames freed with the sequence; 18780 * false -- if there is no matching partially assembled sequence present so 18781 * nothing got aborted in the lower layer driver 18782 **/ 18783 static bool 18784 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18785 struct hbq_dmabuf *dmabuf) 18786 { 18787 struct fc_frame_header *new_hdr; 18788 struct fc_frame_header *temp_hdr; 18789 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18790 struct hbq_dmabuf *seq_dmabuf = NULL; 18791 18792 /* Use the hdr_buf to find the sequence that matches this frame */ 18793 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18794 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18795 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18796 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18797 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18798 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18799 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18800 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18801 continue; 18802 /* found a pending sequence that matches this frame */ 18803 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18804 break; 18805 } 18806 18807 /* Free up all the frames from the partially assembled sequence */ 18808 if (seq_dmabuf) { 18809 list_for_each_entry_safe(d_buf, n_buf, 18810 &seq_dmabuf->dbuf.list, list) { 18811 list_del_init(&d_buf->list); 18812 lpfc_in_buf_free(vport->phba, d_buf); 18813 } 18814 return true; 18815 } 18816 return false; 18817 } 18818 18819 /** 18820 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18821 * @vport: pointer to a vitural port 18822 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18823 * 18824 * This function tries to abort from the assembed sequence from upper level 18825 * protocol, described by the information from basic abbort @dmabuf. It 18826 * checks to see whether such pending context exists at upper level protocol. 18827 * If so, it shall clean up the pending context. 18828 * 18829 * Return 18830 * true -- if there is matching pending context of the sequence cleaned 18831 * at ulp; 18832 * false -- if there is no matching pending context of the sequence present 18833 * at ulp. 18834 **/ 18835 static bool 18836 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18837 { 18838 struct lpfc_hba *phba = vport->phba; 18839 int handled; 18840 18841 /* Accepting abort at ulp with SLI4 only */ 18842 if (phba->sli_rev < LPFC_SLI_REV4) 18843 return false; 18844 18845 /* Register all caring upper level protocols to attend abort */ 18846 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18847 if (handled) 18848 return true; 18849 18850 return false; 18851 } 18852 18853 /** 18854 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18855 * @phba: Pointer to HBA context object. 18856 * @cmd_iocbq: pointer to the command iocbq structure. 18857 * @rsp_iocbq: pointer to the response iocbq structure. 18858 * 18859 * This function handles the sequence abort response iocb command complete 18860 * event. It properly releases the memory allocated to the sequence abort 18861 * accept iocb. 18862 **/ 18863 static void 18864 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18865 struct lpfc_iocbq *cmd_iocbq, 18866 struct lpfc_iocbq *rsp_iocbq) 18867 { 18868 struct lpfc_nodelist *ndlp; 18869 18870 if (cmd_iocbq) { 18871 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 18872 lpfc_nlp_put(ndlp); 18873 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18874 } 18875 18876 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18877 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18878 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18879 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18880 rsp_iocbq->iocb.ulpStatus, 18881 rsp_iocbq->iocb.un.ulpWord[4]); 18882 } 18883 18884 /** 18885 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18886 * @phba: Pointer to HBA context object. 18887 * @xri: xri id in transaction. 18888 * 18889 * This function validates the xri maps to the known range of XRIs allocated an 18890 * used by the driver. 18891 **/ 18892 uint16_t 18893 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18894 uint16_t xri) 18895 { 18896 uint16_t i; 18897 18898 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18899 if (xri == phba->sli4_hba.xri_ids[i]) 18900 return i; 18901 } 18902 return NO_XRI; 18903 } 18904 18905 /** 18906 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18907 * @vport: pointer to a virtual port. 18908 * @fc_hdr: pointer to a FC frame header. 18909 * @aborted: was the partially assembled receive sequence successfully aborted 18910 * 18911 * This function sends a basic response to a previous unsol sequence abort 18912 * event after aborting the sequence handling. 18913 **/ 18914 void 18915 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18916 struct fc_frame_header *fc_hdr, bool aborted) 18917 { 18918 struct lpfc_hba *phba = vport->phba; 18919 struct lpfc_iocbq *ctiocb = NULL; 18920 struct lpfc_nodelist *ndlp; 18921 uint16_t oxid, rxid, xri, lxri; 18922 uint32_t sid, fctl; 18923 IOCB_t *icmd; 18924 int rc; 18925 18926 if (!lpfc_is_link_up(phba)) 18927 return; 18928 18929 sid = sli4_sid_from_fc_hdr(fc_hdr); 18930 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18931 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18932 18933 ndlp = lpfc_findnode_did(vport, sid); 18934 if (!ndlp) { 18935 ndlp = lpfc_nlp_init(vport, sid); 18936 if (!ndlp) { 18937 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18938 "1268 Failed to allocate ndlp for " 18939 "oxid:x%x SID:x%x\n", oxid, sid); 18940 return; 18941 } 18942 /* Put ndlp onto pport node list */ 18943 lpfc_enqueue_node(vport, ndlp); 18944 } 18945 18946 /* Allocate buffer for rsp iocb */ 18947 ctiocb = lpfc_sli_get_iocbq(phba); 18948 if (!ctiocb) 18949 return; 18950 18951 /* Extract the F_CTL field from FC_HDR */ 18952 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18953 18954 icmd = &ctiocb->iocb; 18955 icmd->un.xseq64.bdl.bdeSize = 0; 18956 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 18957 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 18958 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 18959 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 18960 18961 /* Fill in the rest of iocb fields */ 18962 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 18963 icmd->ulpBdeCount = 0; 18964 icmd->ulpLe = 1; 18965 icmd->ulpClass = CLASS3; 18966 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 18967 ctiocb->context1 = lpfc_nlp_get(ndlp); 18968 if (!ctiocb->context1) { 18969 lpfc_sli_release_iocbq(phba, ctiocb); 18970 return; 18971 } 18972 18973 ctiocb->vport = phba->pport; 18974 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18975 ctiocb->sli4_lxritag = NO_XRI; 18976 ctiocb->sli4_xritag = NO_XRI; 18977 18978 if (fctl & FC_FC_EX_CTX) 18979 /* Exchange responder sent the abort so we 18980 * own the oxid. 18981 */ 18982 xri = oxid; 18983 else 18984 xri = rxid; 18985 lxri = lpfc_sli4_xri_inrange(phba, xri); 18986 if (lxri != NO_XRI) 18987 lpfc_set_rrq_active(phba, ndlp, lxri, 18988 (xri == oxid) ? rxid : oxid, 0); 18989 /* For BA_ABTS from exchange responder, if the logical xri with 18990 * the oxid maps to the FCP XRI range, the port no longer has 18991 * that exchange context, send a BLS_RJT. Override the IOCB for 18992 * a BA_RJT. 18993 */ 18994 if ((fctl & FC_FC_EX_CTX) && 18995 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 18996 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 18997 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 18998 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 18999 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 19000 } 19001 19002 /* If BA_ABTS failed to abort a partially assembled receive sequence, 19003 * the driver no longer has that exchange, send a BLS_RJT. Override 19004 * the IOCB for a BA_RJT. 19005 */ 19006 if (aborted == false) { 19007 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 19008 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 19009 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 19010 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 19011 } 19012 19013 if (fctl & FC_FC_EX_CTX) { 19014 /* ABTS sent by responder to CT exchange, construction 19015 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 19016 * field and RX_ID from ABTS for RX_ID field. 19017 */ 19018 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 19019 } else { 19020 /* ABTS sent by initiator to CT exchange, construction 19021 * of BA_ACC will need to allocate a new XRI as for the 19022 * XRI_TAG field. 19023 */ 19024 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 19025 } 19026 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 19027 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 19028 19029 /* Xmit CT abts response on exchange <xid> */ 19030 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 19031 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 19032 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 19033 19034 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 19035 if (rc == IOCB_ERROR) { 19036 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19037 "2925 Failed to issue CT ABTS RSP x%x on " 19038 "xri x%x, Data x%x\n", 19039 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 19040 phba->link_state); 19041 lpfc_nlp_put(ndlp); 19042 ctiocb->context1 = NULL; 19043 lpfc_sli_release_iocbq(phba, ctiocb); 19044 } 19045 } 19046 19047 /** 19048 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 19049 * @vport: Pointer to the vport on which this sequence was received 19050 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19051 * 19052 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 19053 * receive sequence is only partially assembed by the driver, it shall abort 19054 * the partially assembled frames for the sequence. Otherwise, if the 19055 * unsolicited receive sequence has been completely assembled and passed to 19056 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 19057 * unsolicited sequence has been aborted. After that, it will issue a basic 19058 * accept to accept the abort. 19059 **/ 19060 static void 19061 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 19062 struct hbq_dmabuf *dmabuf) 19063 { 19064 struct lpfc_hba *phba = vport->phba; 19065 struct fc_frame_header fc_hdr; 19066 uint32_t fctl; 19067 bool aborted; 19068 19069 /* Make a copy of fc_hdr before the dmabuf being released */ 19070 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 19071 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 19072 19073 if (fctl & FC_FC_EX_CTX) { 19074 /* ABTS by responder to exchange, no cleanup needed */ 19075 aborted = true; 19076 } else { 19077 /* ABTS by initiator to exchange, need to do cleanup */ 19078 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 19079 if (aborted == false) 19080 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 19081 } 19082 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19083 19084 if (phba->nvmet_support) { 19085 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 19086 return; 19087 } 19088 19089 /* Respond with BA_ACC or BA_RJT accordingly */ 19090 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 19091 } 19092 19093 /** 19094 * lpfc_seq_complete - Indicates if a sequence is complete 19095 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19096 * 19097 * This function checks the sequence, starting with the frame described by 19098 * @dmabuf, to see if all the frames associated with this sequence are present. 19099 * the frames associated with this sequence are linked to the @dmabuf using the 19100 * dbuf list. This function looks for two major things. 1) That the first frame 19101 * has a sequence count of zero. 2) There is a frame with last frame of sequence 19102 * set. 3) That there are no holes in the sequence count. The function will 19103 * return 1 when the sequence is complete, otherwise it will return 0. 19104 **/ 19105 static int 19106 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 19107 { 19108 struct fc_frame_header *hdr; 19109 struct lpfc_dmabuf *d_buf; 19110 struct hbq_dmabuf *seq_dmabuf; 19111 uint32_t fctl; 19112 int seq_count = 0; 19113 19114 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19115 /* make sure first fame of sequence has a sequence count of zero */ 19116 if (hdr->fh_seq_cnt != seq_count) 19117 return 0; 19118 fctl = (hdr->fh_f_ctl[0] << 16 | 19119 hdr->fh_f_ctl[1] << 8 | 19120 hdr->fh_f_ctl[2]); 19121 /* If last frame of sequence we can return success. */ 19122 if (fctl & FC_FC_END_SEQ) 19123 return 1; 19124 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 19125 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19126 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19127 /* If there is a hole in the sequence count then fail. */ 19128 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 19129 return 0; 19130 fctl = (hdr->fh_f_ctl[0] << 16 | 19131 hdr->fh_f_ctl[1] << 8 | 19132 hdr->fh_f_ctl[2]); 19133 /* If last frame of sequence we can return success. */ 19134 if (fctl & FC_FC_END_SEQ) 19135 return 1; 19136 } 19137 return 0; 19138 } 19139 19140 /** 19141 * lpfc_prep_seq - Prep sequence for ULP processing 19142 * @vport: Pointer to the vport on which this sequence was received 19143 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 19144 * 19145 * This function takes a sequence, described by a list of frames, and creates 19146 * a list of iocbq structures to describe the sequence. This iocbq list will be 19147 * used to issue to the generic unsolicited sequence handler. This routine 19148 * returns a pointer to the first iocbq in the list. If the function is unable 19149 * to allocate an iocbq then it throw out the received frames that were not 19150 * able to be described and return a pointer to the first iocbq. If unable to 19151 * allocate any iocbqs (including the first) this function will return NULL. 19152 **/ 19153 static struct lpfc_iocbq * 19154 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 19155 { 19156 struct hbq_dmabuf *hbq_buf; 19157 struct lpfc_dmabuf *d_buf, *n_buf; 19158 struct lpfc_iocbq *first_iocbq, *iocbq; 19159 struct fc_frame_header *fc_hdr; 19160 uint32_t sid; 19161 uint32_t len, tot_len; 19162 struct ulp_bde64 *pbde; 19163 19164 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19165 /* remove from receive buffer list */ 19166 list_del_init(&seq_dmabuf->hbuf.list); 19167 lpfc_update_rcv_time_stamp(vport); 19168 /* get the Remote Port's SID */ 19169 sid = sli4_sid_from_fc_hdr(fc_hdr); 19170 tot_len = 0; 19171 /* Get an iocbq struct to fill in. */ 19172 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 19173 if (first_iocbq) { 19174 /* Initialize the first IOCB. */ 19175 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 19176 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 19177 first_iocbq->vport = vport; 19178 19179 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 19180 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 19181 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 19182 first_iocbq->iocb.un.rcvels.parmRo = 19183 sli4_did_from_fc_hdr(fc_hdr); 19184 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 19185 } else 19186 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 19187 first_iocbq->iocb.ulpContext = NO_XRI; 19188 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 19189 be16_to_cpu(fc_hdr->fh_ox_id); 19190 /* iocbq is prepped for internal consumption. Physical vpi. */ 19191 first_iocbq->iocb.unsli3.rcvsli3.vpi = 19192 vport->phba->vpi_ids[vport->vpi]; 19193 /* put the first buffer into the first IOCBq */ 19194 tot_len = bf_get(lpfc_rcqe_length, 19195 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 19196 19197 first_iocbq->context2 = &seq_dmabuf->dbuf; 19198 first_iocbq->context3 = NULL; 19199 first_iocbq->iocb.ulpBdeCount = 1; 19200 if (tot_len > LPFC_DATA_BUF_SIZE) 19201 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 19202 LPFC_DATA_BUF_SIZE; 19203 else 19204 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 19205 19206 first_iocbq->iocb.un.rcvels.remoteID = sid; 19207 19208 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 19209 } 19210 iocbq = first_iocbq; 19211 /* 19212 * Each IOCBq can have two Buffers assigned, so go through the list 19213 * of buffers for this sequence and save two buffers in each IOCBq 19214 */ 19215 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 19216 if (!iocbq) { 19217 lpfc_in_buf_free(vport->phba, d_buf); 19218 continue; 19219 } 19220 if (!iocbq->context3) { 19221 iocbq->context3 = d_buf; 19222 iocbq->iocb.ulpBdeCount++; 19223 /* We need to get the size out of the right CQE */ 19224 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19225 len = bf_get(lpfc_rcqe_length, 19226 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19227 pbde = (struct ulp_bde64 *) 19228 &iocbq->iocb.unsli3.sli3Words[4]; 19229 if (len > LPFC_DATA_BUF_SIZE) 19230 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 19231 else 19232 pbde->tus.f.bdeSize = len; 19233 19234 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 19235 tot_len += len; 19236 } else { 19237 iocbq = lpfc_sli_get_iocbq(vport->phba); 19238 if (!iocbq) { 19239 if (first_iocbq) { 19240 first_iocbq->iocb.ulpStatus = 19241 IOSTAT_FCP_RSP_ERROR; 19242 first_iocbq->iocb.un.ulpWord[4] = 19243 IOERR_NO_RESOURCES; 19244 } 19245 lpfc_in_buf_free(vport->phba, d_buf); 19246 continue; 19247 } 19248 /* We need to get the size out of the right CQE */ 19249 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19250 len = bf_get(lpfc_rcqe_length, 19251 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19252 iocbq->context2 = d_buf; 19253 iocbq->context3 = NULL; 19254 iocbq->iocb.ulpBdeCount = 1; 19255 if (len > LPFC_DATA_BUF_SIZE) 19256 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 19257 LPFC_DATA_BUF_SIZE; 19258 else 19259 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 19260 19261 tot_len += len; 19262 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 19263 19264 iocbq->iocb.un.rcvels.remoteID = sid; 19265 list_add_tail(&iocbq->list, &first_iocbq->list); 19266 } 19267 } 19268 /* Free the sequence's header buffer */ 19269 if (!first_iocbq) 19270 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 19271 19272 return first_iocbq; 19273 } 19274 19275 static void 19276 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 19277 struct hbq_dmabuf *seq_dmabuf) 19278 { 19279 struct fc_frame_header *fc_hdr; 19280 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 19281 struct lpfc_hba *phba = vport->phba; 19282 19283 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19284 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 19285 if (!iocbq) { 19286 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19287 "2707 Ring %d handler: Failed to allocate " 19288 "iocb Rctl x%x Type x%x received\n", 19289 LPFC_ELS_RING, 19290 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19291 return; 19292 } 19293 if (!lpfc_complete_unsol_iocb(phba, 19294 phba->sli4_hba.els_wq->pring, 19295 iocbq, fc_hdr->fh_r_ctl, 19296 fc_hdr->fh_type)) 19297 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19298 "2540 Ring %d handler: unexpected Rctl " 19299 "x%x Type x%x received\n", 19300 LPFC_ELS_RING, 19301 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19302 19303 /* Free iocb created in lpfc_prep_seq */ 19304 list_for_each_entry_safe(curr_iocb, next_iocb, 19305 &iocbq->list, list) { 19306 list_del_init(&curr_iocb->list); 19307 lpfc_sli_release_iocbq(phba, curr_iocb); 19308 } 19309 lpfc_sli_release_iocbq(phba, iocbq); 19310 } 19311 19312 static void 19313 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 19314 struct lpfc_iocbq *rspiocb) 19315 { 19316 struct lpfc_dmabuf *pcmd = cmdiocb->context2; 19317 19318 if (pcmd && pcmd->virt) 19319 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19320 kfree(pcmd); 19321 lpfc_sli_release_iocbq(phba, cmdiocb); 19322 lpfc_drain_txq(phba); 19323 } 19324 19325 static void 19326 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 19327 struct hbq_dmabuf *dmabuf) 19328 { 19329 struct fc_frame_header *fc_hdr; 19330 struct lpfc_hba *phba = vport->phba; 19331 struct lpfc_iocbq *iocbq = NULL; 19332 union lpfc_wqe *wqe; 19333 struct lpfc_dmabuf *pcmd = NULL; 19334 uint32_t frame_len; 19335 int rc; 19336 unsigned long iflags; 19337 19338 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19339 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 19340 19341 /* Send the received frame back */ 19342 iocbq = lpfc_sli_get_iocbq(phba); 19343 if (!iocbq) { 19344 /* Queue cq event and wakeup worker thread to process it */ 19345 spin_lock_irqsave(&phba->hbalock, iflags); 19346 list_add_tail(&dmabuf->cq_event.list, 19347 &phba->sli4_hba.sp_queue_event); 19348 phba->hba_flag |= HBA_SP_QUEUE_EVT; 19349 spin_unlock_irqrestore(&phba->hbalock, iflags); 19350 lpfc_worker_wake_up(phba); 19351 return; 19352 } 19353 19354 /* Allocate buffer for command payload */ 19355 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 19356 if (pcmd) 19357 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 19358 &pcmd->phys); 19359 if (!pcmd || !pcmd->virt) 19360 goto exit; 19361 19362 INIT_LIST_HEAD(&pcmd->list); 19363 19364 /* copyin the payload */ 19365 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 19366 19367 /* fill in BDE's for command */ 19368 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys); 19369 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys); 19370 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 19371 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len; 19372 19373 iocbq->context2 = pcmd; 19374 iocbq->vport = vport; 19375 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK; 19376 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 19377 19378 /* 19379 * Setup rest of the iocb as though it were a WQE 19380 * Build the SEND_FRAME WQE 19381 */ 19382 wqe = (union lpfc_wqe *)&iocbq->iocb; 19383 19384 wqe->send_frame.frame_len = frame_len; 19385 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr)); 19386 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1)); 19387 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2)); 19388 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3)); 19389 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4)); 19390 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5)); 19391 19392 iocbq->iocb.ulpCommand = CMD_SEND_FRAME; 19393 iocbq->iocb.ulpLe = 1; 19394 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl; 19395 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 19396 if (rc == IOCB_ERROR) 19397 goto exit; 19398 19399 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19400 return; 19401 19402 exit: 19403 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 19404 "2023 Unable to process MDS loopback frame\n"); 19405 if (pcmd && pcmd->virt) 19406 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19407 kfree(pcmd); 19408 if (iocbq) 19409 lpfc_sli_release_iocbq(phba, iocbq); 19410 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19411 } 19412 19413 /** 19414 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 19415 * @phba: Pointer to HBA context object. 19416 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 19417 * 19418 * This function is called with no lock held. This function processes all 19419 * the received buffers and gives it to upper layers when a received buffer 19420 * indicates that it is the final frame in the sequence. The interrupt 19421 * service routine processes received buffers at interrupt contexts. 19422 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 19423 * appropriate receive function when the final frame in a sequence is received. 19424 **/ 19425 void 19426 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 19427 struct hbq_dmabuf *dmabuf) 19428 { 19429 struct hbq_dmabuf *seq_dmabuf; 19430 struct fc_frame_header *fc_hdr; 19431 struct lpfc_vport *vport; 19432 uint32_t fcfi; 19433 uint32_t did; 19434 19435 /* Process each received buffer */ 19436 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19437 19438 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 19439 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 19440 vport = phba->pport; 19441 /* Handle MDS Loopback frames */ 19442 if (!(phba->pport->load_flag & FC_UNLOADING)) 19443 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19444 else 19445 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19446 return; 19447 } 19448 19449 /* check to see if this a valid type of frame */ 19450 if (lpfc_fc_frame_check(phba, fc_hdr)) { 19451 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19452 return; 19453 } 19454 19455 if ((bf_get(lpfc_cqe_code, 19456 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 19457 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 19458 &dmabuf->cq_event.cqe.rcqe_cmpl); 19459 else 19460 fcfi = bf_get(lpfc_rcqe_fcf_id, 19461 &dmabuf->cq_event.cqe.rcqe_cmpl); 19462 19463 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 19464 vport = phba->pport; 19465 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 19466 "2023 MDS Loopback %d bytes\n", 19467 bf_get(lpfc_rcqe_length, 19468 &dmabuf->cq_event.cqe.rcqe_cmpl)); 19469 /* Handle MDS Loopback frames */ 19470 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19471 return; 19472 } 19473 19474 /* d_id this frame is directed to */ 19475 did = sli4_did_from_fc_hdr(fc_hdr); 19476 19477 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 19478 if (!vport) { 19479 /* throw out the frame */ 19480 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19481 return; 19482 } 19483 19484 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 19485 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 19486 (did != Fabric_DID)) { 19487 /* 19488 * Throw out the frame if we are not pt2pt. 19489 * The pt2pt protocol allows for discovery frames 19490 * to be received without a registered VPI. 19491 */ 19492 if (!(vport->fc_flag & FC_PT2PT) || 19493 (phba->link_state == LPFC_HBA_READY)) { 19494 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19495 return; 19496 } 19497 } 19498 19499 /* Handle the basic abort sequence (BA_ABTS) event */ 19500 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 19501 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 19502 return; 19503 } 19504 19505 /* Link this frame */ 19506 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 19507 if (!seq_dmabuf) { 19508 /* unable to add frame to vport - throw it out */ 19509 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19510 return; 19511 } 19512 /* If not last frame in sequence continue processing frames. */ 19513 if (!lpfc_seq_complete(seq_dmabuf)) 19514 return; 19515 19516 /* Send the complete sequence to the upper layer protocol */ 19517 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 19518 } 19519 19520 /** 19521 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 19522 * @phba: pointer to lpfc hba data structure. 19523 * 19524 * This routine is invoked to post rpi header templates to the 19525 * HBA consistent with the SLI-4 interface spec. This routine 19526 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19527 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19528 * 19529 * This routine does not require any locks. It's usage is expected 19530 * to be driver load or reset recovery when the driver is 19531 * sequential. 19532 * 19533 * Return codes 19534 * 0 - successful 19535 * -EIO - The mailbox failed to complete successfully. 19536 * When this error occurs, the driver is not guaranteed 19537 * to have any rpi regions posted to the device and 19538 * must either attempt to repost the regions or take a 19539 * fatal error. 19540 **/ 19541 int 19542 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 19543 { 19544 struct lpfc_rpi_hdr *rpi_page; 19545 uint32_t rc = 0; 19546 uint16_t lrpi = 0; 19547 19548 /* SLI4 ports that support extents do not require RPI headers. */ 19549 if (!phba->sli4_hba.rpi_hdrs_in_use) 19550 goto exit; 19551 if (phba->sli4_hba.extents_in_use) 19552 return -EIO; 19553 19554 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 19555 /* 19556 * Assign the rpi headers a physical rpi only if the driver 19557 * has not initialized those resources. A port reset only 19558 * needs the headers posted. 19559 */ 19560 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 19561 LPFC_RPI_RSRC_RDY) 19562 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19563 19564 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 19565 if (rc != MBX_SUCCESS) { 19566 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19567 "2008 Error %d posting all rpi " 19568 "headers\n", rc); 19569 rc = -EIO; 19570 break; 19571 } 19572 } 19573 19574 exit: 19575 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 19576 LPFC_RPI_RSRC_RDY); 19577 return rc; 19578 } 19579 19580 /** 19581 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 19582 * @phba: pointer to lpfc hba data structure. 19583 * @rpi_page: pointer to the rpi memory region. 19584 * 19585 * This routine is invoked to post a single rpi header to the 19586 * HBA consistent with the SLI-4 interface spec. This memory region 19587 * maps up to 64 rpi context regions. 19588 * 19589 * Return codes 19590 * 0 - successful 19591 * -ENOMEM - No available memory 19592 * -EIO - The mailbox failed to complete successfully. 19593 **/ 19594 int 19595 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 19596 { 19597 LPFC_MBOXQ_t *mboxq; 19598 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 19599 uint32_t rc = 0; 19600 uint32_t shdr_status, shdr_add_status; 19601 union lpfc_sli4_cfg_shdr *shdr; 19602 19603 /* SLI4 ports that support extents do not require RPI headers. */ 19604 if (!phba->sli4_hba.rpi_hdrs_in_use) 19605 return rc; 19606 if (phba->sli4_hba.extents_in_use) 19607 return -EIO; 19608 19609 /* The port is notified of the header region via a mailbox command. */ 19610 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19611 if (!mboxq) { 19612 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19613 "2001 Unable to allocate memory for issuing " 19614 "SLI_CONFIG_SPECIAL mailbox command\n"); 19615 return -ENOMEM; 19616 } 19617 19618 /* Post all rpi memory regions to the port. */ 19619 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 19620 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19621 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 19622 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 19623 sizeof(struct lpfc_sli4_cfg_mhdr), 19624 LPFC_SLI4_MBX_EMBED); 19625 19626 19627 /* Post the physical rpi to the port for this rpi header. */ 19628 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 19629 rpi_page->start_rpi); 19630 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 19631 hdr_tmpl, rpi_page->page_count); 19632 19633 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 19634 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 19635 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19636 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 19637 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19638 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19639 mempool_free(mboxq, phba->mbox_mem_pool); 19640 if (shdr_status || shdr_add_status || rc) { 19641 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19642 "2514 POST_RPI_HDR mailbox failed with " 19643 "status x%x add_status x%x, mbx status x%x\n", 19644 shdr_status, shdr_add_status, rc); 19645 rc = -ENXIO; 19646 } else { 19647 /* 19648 * The next_rpi stores the next logical module-64 rpi value used 19649 * to post physical rpis in subsequent rpi postings. 19650 */ 19651 spin_lock_irq(&phba->hbalock); 19652 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 19653 spin_unlock_irq(&phba->hbalock); 19654 } 19655 return rc; 19656 } 19657 19658 /** 19659 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 19660 * @phba: pointer to lpfc hba data structure. 19661 * 19662 * This routine is invoked to post rpi header templates to the 19663 * HBA consistent with the SLI-4 interface spec. This routine 19664 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19665 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19666 * 19667 * Returns 19668 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 19669 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 19670 **/ 19671 int 19672 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 19673 { 19674 unsigned long rpi; 19675 uint16_t max_rpi, rpi_limit; 19676 uint16_t rpi_remaining, lrpi = 0; 19677 struct lpfc_rpi_hdr *rpi_hdr; 19678 unsigned long iflag; 19679 19680 /* 19681 * Fetch the next logical rpi. Because this index is logical, 19682 * the driver starts at 0 each time. 19683 */ 19684 spin_lock_irqsave(&phba->hbalock, iflag); 19685 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 19686 rpi_limit = phba->sli4_hba.next_rpi; 19687 19688 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 19689 if (rpi >= rpi_limit) 19690 rpi = LPFC_RPI_ALLOC_ERROR; 19691 else { 19692 set_bit(rpi, phba->sli4_hba.rpi_bmask); 19693 phba->sli4_hba.max_cfg_param.rpi_used++; 19694 phba->sli4_hba.rpi_count++; 19695 } 19696 lpfc_printf_log(phba, KERN_INFO, 19697 LOG_NODE | LOG_DISCOVERY, 19698 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 19699 (int) rpi, max_rpi, rpi_limit); 19700 19701 /* 19702 * Don't try to allocate more rpi header regions if the device limit 19703 * has been exhausted. 19704 */ 19705 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 19706 (phba->sli4_hba.rpi_count >= max_rpi)) { 19707 spin_unlock_irqrestore(&phba->hbalock, iflag); 19708 return rpi; 19709 } 19710 19711 /* 19712 * RPI header postings are not required for SLI4 ports capable of 19713 * extents. 19714 */ 19715 if (!phba->sli4_hba.rpi_hdrs_in_use) { 19716 spin_unlock_irqrestore(&phba->hbalock, iflag); 19717 return rpi; 19718 } 19719 19720 /* 19721 * If the driver is running low on rpi resources, allocate another 19722 * page now. Note that the next_rpi value is used because 19723 * it represents how many are actually in use whereas max_rpi notes 19724 * how many are supported max by the device. 19725 */ 19726 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 19727 spin_unlock_irqrestore(&phba->hbalock, iflag); 19728 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 19729 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 19730 if (!rpi_hdr) { 19731 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19732 "2002 Error Could not grow rpi " 19733 "count\n"); 19734 } else { 19735 lrpi = rpi_hdr->start_rpi; 19736 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19737 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 19738 } 19739 } 19740 19741 return rpi; 19742 } 19743 19744 /** 19745 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 19746 * @phba: pointer to lpfc hba data structure. 19747 * @rpi: rpi to free 19748 * 19749 * This routine is invoked to release an rpi to the pool of 19750 * available rpis maintained by the driver. 19751 **/ 19752 static void 19753 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19754 { 19755 /* 19756 * if the rpi value indicates a prior unreg has already 19757 * been done, skip the unreg. 19758 */ 19759 if (rpi == LPFC_RPI_ALLOC_ERROR) 19760 return; 19761 19762 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 19763 phba->sli4_hba.rpi_count--; 19764 phba->sli4_hba.max_cfg_param.rpi_used--; 19765 } else { 19766 lpfc_printf_log(phba, KERN_INFO, 19767 LOG_NODE | LOG_DISCOVERY, 19768 "2016 rpi %x not inuse\n", 19769 rpi); 19770 } 19771 } 19772 19773 /** 19774 * lpfc_sli4_free_rpi - Release an rpi for reuse. 19775 * @phba: pointer to lpfc hba data structure. 19776 * @rpi: rpi to free 19777 * 19778 * This routine is invoked to release an rpi to the pool of 19779 * available rpis maintained by the driver. 19780 **/ 19781 void 19782 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19783 { 19784 spin_lock_irq(&phba->hbalock); 19785 __lpfc_sli4_free_rpi(phba, rpi); 19786 spin_unlock_irq(&phba->hbalock); 19787 } 19788 19789 /** 19790 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19791 * @phba: pointer to lpfc hba data structure. 19792 * 19793 * This routine is invoked to remove the memory region that 19794 * provided rpi via a bitmask. 19795 **/ 19796 void 19797 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19798 { 19799 kfree(phba->sli4_hba.rpi_bmask); 19800 kfree(phba->sli4_hba.rpi_ids); 19801 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19802 } 19803 19804 /** 19805 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19806 * @ndlp: pointer to lpfc nodelist data structure. 19807 * @cmpl: completion call-back. 19808 * @arg: data to load as MBox 'caller buffer information' 19809 * 19810 * This routine is invoked to remove the memory region that 19811 * provided rpi via a bitmask. 19812 **/ 19813 int 19814 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19815 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 19816 { 19817 LPFC_MBOXQ_t *mboxq; 19818 struct lpfc_hba *phba = ndlp->phba; 19819 int rc; 19820 19821 /* The port is notified of the header region via a mailbox command. */ 19822 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19823 if (!mboxq) 19824 return -ENOMEM; 19825 19826 /* If cmpl assigned, then this nlp_get pairs with 19827 * lpfc_mbx_cmpl_resume_rpi. 19828 * 19829 * Else cmpl is NULL, then this nlp_get pairs with 19830 * lpfc_sli_def_mbox_cmpl. 19831 */ 19832 if (!lpfc_nlp_get(ndlp)) { 19833 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19834 "2122 %s: Failed to get nlp ref\n", 19835 __func__); 19836 mempool_free(mboxq, phba->mbox_mem_pool); 19837 return -EIO; 19838 } 19839 19840 /* Post all rpi memory regions to the port. */ 19841 lpfc_resume_rpi(mboxq, ndlp); 19842 if (cmpl) { 19843 mboxq->mbox_cmpl = cmpl; 19844 mboxq->ctx_buf = arg; 19845 } else 19846 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19847 mboxq->ctx_ndlp = ndlp; 19848 mboxq->vport = ndlp->vport; 19849 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19850 if (rc == MBX_NOT_FINISHED) { 19851 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19852 "2010 Resume RPI Mailbox failed " 19853 "status %d, mbxStatus x%x\n", rc, 19854 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19855 lpfc_nlp_put(ndlp); 19856 mempool_free(mboxq, phba->mbox_mem_pool); 19857 return -EIO; 19858 } 19859 return 0; 19860 } 19861 19862 /** 19863 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19864 * @vport: Pointer to the vport for which the vpi is being initialized 19865 * 19866 * This routine is invoked to activate a vpi with the port. 19867 * 19868 * Returns: 19869 * 0 success 19870 * -Evalue otherwise 19871 **/ 19872 int 19873 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19874 { 19875 LPFC_MBOXQ_t *mboxq; 19876 int rc = 0; 19877 int retval = MBX_SUCCESS; 19878 uint32_t mbox_tmo; 19879 struct lpfc_hba *phba = vport->phba; 19880 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19881 if (!mboxq) 19882 return -ENOMEM; 19883 lpfc_init_vpi(phba, mboxq, vport->vpi); 19884 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19885 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19886 if (rc != MBX_SUCCESS) { 19887 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19888 "2022 INIT VPI Mailbox failed " 19889 "status %d, mbxStatus x%x\n", rc, 19890 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19891 retval = -EIO; 19892 } 19893 if (rc != MBX_TIMEOUT) 19894 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19895 19896 return retval; 19897 } 19898 19899 /** 19900 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19901 * @phba: pointer to lpfc hba data structure. 19902 * @mboxq: Pointer to mailbox object. 19903 * 19904 * This routine is invoked to manually add a single FCF record. The caller 19905 * must pass a completely initialized FCF_Record. This routine takes 19906 * care of the nonembedded mailbox operations. 19907 **/ 19908 static void 19909 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19910 { 19911 void *virt_addr; 19912 union lpfc_sli4_cfg_shdr *shdr; 19913 uint32_t shdr_status, shdr_add_status; 19914 19915 virt_addr = mboxq->sge_array->addr[0]; 19916 /* The IOCTL status is embedded in the mailbox subheader. */ 19917 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19918 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19919 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19920 19921 if ((shdr_status || shdr_add_status) && 19922 (shdr_status != STATUS_FCF_IN_USE)) 19923 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19924 "2558 ADD_FCF_RECORD mailbox failed with " 19925 "status x%x add_status x%x\n", 19926 shdr_status, shdr_add_status); 19927 19928 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19929 } 19930 19931 /** 19932 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19933 * @phba: pointer to lpfc hba data structure. 19934 * @fcf_record: pointer to the initialized fcf record to add. 19935 * 19936 * This routine is invoked to manually add a single FCF record. The caller 19937 * must pass a completely initialized FCF_Record. This routine takes 19938 * care of the nonembedded mailbox operations. 19939 **/ 19940 int 19941 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19942 { 19943 int rc = 0; 19944 LPFC_MBOXQ_t *mboxq; 19945 uint8_t *bytep; 19946 void *virt_addr; 19947 struct lpfc_mbx_sge sge; 19948 uint32_t alloc_len, req_len; 19949 uint32_t fcfindex; 19950 19951 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19952 if (!mboxq) { 19953 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19954 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 19955 return -ENOMEM; 19956 } 19957 19958 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 19959 sizeof(uint32_t); 19960 19961 /* Allocate DMA memory and set up the non-embedded mailbox command */ 19962 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19963 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 19964 req_len, LPFC_SLI4_MBX_NEMBED); 19965 if (alloc_len < req_len) { 19966 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19967 "2523 Allocated DMA memory size (x%x) is " 19968 "less than the requested DMA memory " 19969 "size (x%x)\n", alloc_len, req_len); 19970 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19971 return -ENOMEM; 19972 } 19973 19974 /* 19975 * Get the first SGE entry from the non-embedded DMA memory. This 19976 * routine only uses a single SGE. 19977 */ 19978 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 19979 virt_addr = mboxq->sge_array->addr[0]; 19980 /* 19981 * Configure the FCF record for FCFI 0. This is the driver's 19982 * hardcoded default and gets used in nonFIP mode. 19983 */ 19984 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 19985 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 19986 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 19987 19988 /* 19989 * Copy the fcf_index and the FCF Record Data. The data starts after 19990 * the FCoE header plus word10. The data copy needs to be endian 19991 * correct. 19992 */ 19993 bytep += sizeof(uint32_t); 19994 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 19995 mboxq->vport = phba->pport; 19996 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 19997 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19998 if (rc == MBX_NOT_FINISHED) { 19999 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20000 "2515 ADD_FCF_RECORD mailbox failed with " 20001 "status 0x%x\n", rc); 20002 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20003 rc = -EIO; 20004 } else 20005 rc = 0; 20006 20007 return rc; 20008 } 20009 20010 /** 20011 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 20012 * @phba: pointer to lpfc hba data structure. 20013 * @fcf_record: pointer to the fcf record to write the default data. 20014 * @fcf_index: FCF table entry index. 20015 * 20016 * This routine is invoked to build the driver's default FCF record. The 20017 * values used are hardcoded. This routine handles memory initialization. 20018 * 20019 **/ 20020 void 20021 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 20022 struct fcf_record *fcf_record, 20023 uint16_t fcf_index) 20024 { 20025 memset(fcf_record, 0, sizeof(struct fcf_record)); 20026 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 20027 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 20028 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 20029 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 20030 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 20031 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 20032 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 20033 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 20034 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 20035 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 20036 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 20037 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 20038 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 20039 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 20040 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 20041 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 20042 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 20043 /* Set the VLAN bit map */ 20044 if (phba->valid_vlan) { 20045 fcf_record->vlan_bitmap[phba->vlan_id / 8] 20046 = 1 << (phba->vlan_id % 8); 20047 } 20048 } 20049 20050 /** 20051 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 20052 * @phba: pointer to lpfc hba data structure. 20053 * @fcf_index: FCF table entry offset. 20054 * 20055 * This routine is invoked to scan the entire FCF table by reading FCF 20056 * record and processing it one at a time starting from the @fcf_index 20057 * for initial FCF discovery or fast FCF failover rediscovery. 20058 * 20059 * Return 0 if the mailbox command is submitted successfully, none 0 20060 * otherwise. 20061 **/ 20062 int 20063 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20064 { 20065 int rc = 0, error; 20066 LPFC_MBOXQ_t *mboxq; 20067 20068 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 20069 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 20070 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20071 if (!mboxq) { 20072 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20073 "2000 Failed to allocate mbox for " 20074 "READ_FCF cmd\n"); 20075 error = -ENOMEM; 20076 goto fail_fcf_scan; 20077 } 20078 /* Construct the read FCF record mailbox command */ 20079 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20080 if (rc) { 20081 error = -EINVAL; 20082 goto fail_fcf_scan; 20083 } 20084 /* Issue the mailbox command asynchronously */ 20085 mboxq->vport = phba->pport; 20086 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 20087 20088 spin_lock_irq(&phba->hbalock); 20089 phba->hba_flag |= FCF_TS_INPROG; 20090 spin_unlock_irq(&phba->hbalock); 20091 20092 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20093 if (rc == MBX_NOT_FINISHED) 20094 error = -EIO; 20095 else { 20096 /* Reset eligible FCF count for new scan */ 20097 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 20098 phba->fcf.eligible_fcf_cnt = 0; 20099 error = 0; 20100 } 20101 fail_fcf_scan: 20102 if (error) { 20103 if (mboxq) 20104 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20105 /* FCF scan failed, clear FCF_TS_INPROG flag */ 20106 spin_lock_irq(&phba->hbalock); 20107 phba->hba_flag &= ~FCF_TS_INPROG; 20108 spin_unlock_irq(&phba->hbalock); 20109 } 20110 return error; 20111 } 20112 20113 /** 20114 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 20115 * @phba: pointer to lpfc hba data structure. 20116 * @fcf_index: FCF table entry offset. 20117 * 20118 * This routine is invoked to read an FCF record indicated by @fcf_index 20119 * and to use it for FLOGI roundrobin FCF failover. 20120 * 20121 * Return 0 if the mailbox command is submitted successfully, none 0 20122 * otherwise. 20123 **/ 20124 int 20125 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20126 { 20127 int rc = 0, error; 20128 LPFC_MBOXQ_t *mboxq; 20129 20130 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20131 if (!mboxq) { 20132 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20133 "2763 Failed to allocate mbox for " 20134 "READ_FCF cmd\n"); 20135 error = -ENOMEM; 20136 goto fail_fcf_read; 20137 } 20138 /* Construct the read FCF record mailbox command */ 20139 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20140 if (rc) { 20141 error = -EINVAL; 20142 goto fail_fcf_read; 20143 } 20144 /* Issue the mailbox command asynchronously */ 20145 mboxq->vport = phba->pport; 20146 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 20147 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20148 if (rc == MBX_NOT_FINISHED) 20149 error = -EIO; 20150 else 20151 error = 0; 20152 20153 fail_fcf_read: 20154 if (error && mboxq) 20155 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20156 return error; 20157 } 20158 20159 /** 20160 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 20161 * @phba: pointer to lpfc hba data structure. 20162 * @fcf_index: FCF table entry offset. 20163 * 20164 * This routine is invoked to read an FCF record indicated by @fcf_index to 20165 * determine whether it's eligible for FLOGI roundrobin failover list. 20166 * 20167 * Return 0 if the mailbox command is submitted successfully, none 0 20168 * otherwise. 20169 **/ 20170 int 20171 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20172 { 20173 int rc = 0, error; 20174 LPFC_MBOXQ_t *mboxq; 20175 20176 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20177 if (!mboxq) { 20178 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20179 "2758 Failed to allocate mbox for " 20180 "READ_FCF cmd\n"); 20181 error = -ENOMEM; 20182 goto fail_fcf_read; 20183 } 20184 /* Construct the read FCF record mailbox command */ 20185 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20186 if (rc) { 20187 error = -EINVAL; 20188 goto fail_fcf_read; 20189 } 20190 /* Issue the mailbox command asynchronously */ 20191 mboxq->vport = phba->pport; 20192 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 20193 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20194 if (rc == MBX_NOT_FINISHED) 20195 error = -EIO; 20196 else 20197 error = 0; 20198 20199 fail_fcf_read: 20200 if (error && mboxq) 20201 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20202 return error; 20203 } 20204 20205 /** 20206 * lpfc_check_next_fcf_pri_level 20207 * @phba: pointer to the lpfc_hba struct for this port. 20208 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 20209 * routine when the rr_bmask is empty. The FCF indecies are put into the 20210 * rr_bmask based on their priority level. Starting from the highest priority 20211 * to the lowest. The most likely FCF candidate will be in the highest 20212 * priority group. When this routine is called it searches the fcf_pri list for 20213 * next lowest priority group and repopulates the rr_bmask with only those 20214 * fcf_indexes. 20215 * returns: 20216 * 1=success 0=failure 20217 **/ 20218 static int 20219 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 20220 { 20221 uint16_t next_fcf_pri; 20222 uint16_t last_index; 20223 struct lpfc_fcf_pri *fcf_pri; 20224 int rc; 20225 int ret = 0; 20226 20227 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20228 LPFC_SLI4_FCF_TBL_INDX_MAX); 20229 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20230 "3060 Last IDX %d\n", last_index); 20231 20232 /* Verify the priority list has 2 or more entries */ 20233 spin_lock_irq(&phba->hbalock); 20234 if (list_empty(&phba->fcf.fcf_pri_list) || 20235 list_is_singular(&phba->fcf.fcf_pri_list)) { 20236 spin_unlock_irq(&phba->hbalock); 20237 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20238 "3061 Last IDX %d\n", last_index); 20239 return 0; /* Empty rr list */ 20240 } 20241 spin_unlock_irq(&phba->hbalock); 20242 20243 next_fcf_pri = 0; 20244 /* 20245 * Clear the rr_bmask and set all of the bits that are at this 20246 * priority. 20247 */ 20248 memset(phba->fcf.fcf_rr_bmask, 0, 20249 sizeof(*phba->fcf.fcf_rr_bmask)); 20250 spin_lock_irq(&phba->hbalock); 20251 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20252 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 20253 continue; 20254 /* 20255 * the 1st priority that has not FLOGI failed 20256 * will be the highest. 20257 */ 20258 if (!next_fcf_pri) 20259 next_fcf_pri = fcf_pri->fcf_rec.priority; 20260 spin_unlock_irq(&phba->hbalock); 20261 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20262 rc = lpfc_sli4_fcf_rr_index_set(phba, 20263 fcf_pri->fcf_rec.fcf_index); 20264 if (rc) 20265 return 0; 20266 } 20267 spin_lock_irq(&phba->hbalock); 20268 } 20269 /* 20270 * if next_fcf_pri was not set above and the list is not empty then 20271 * we have failed flogis on all of them. So reset flogi failed 20272 * and start at the beginning. 20273 */ 20274 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 20275 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20276 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 20277 /* 20278 * the 1st priority that has not FLOGI failed 20279 * will be the highest. 20280 */ 20281 if (!next_fcf_pri) 20282 next_fcf_pri = fcf_pri->fcf_rec.priority; 20283 spin_unlock_irq(&phba->hbalock); 20284 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20285 rc = lpfc_sli4_fcf_rr_index_set(phba, 20286 fcf_pri->fcf_rec.fcf_index); 20287 if (rc) 20288 return 0; 20289 } 20290 spin_lock_irq(&phba->hbalock); 20291 } 20292 } else 20293 ret = 1; 20294 spin_unlock_irq(&phba->hbalock); 20295 20296 return ret; 20297 } 20298 /** 20299 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 20300 * @phba: pointer to lpfc hba data structure. 20301 * 20302 * This routine is to get the next eligible FCF record index in a round 20303 * robin fashion. If the next eligible FCF record index equals to the 20304 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 20305 * shall be returned, otherwise, the next eligible FCF record's index 20306 * shall be returned. 20307 **/ 20308 uint16_t 20309 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 20310 { 20311 uint16_t next_fcf_index; 20312 20313 initial_priority: 20314 /* Search start from next bit of currently registered FCF index */ 20315 next_fcf_index = phba->fcf.current_rec.fcf_indx; 20316 20317 next_priority: 20318 /* Determine the next fcf index to check */ 20319 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 20320 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 20321 LPFC_SLI4_FCF_TBL_INDX_MAX, 20322 next_fcf_index); 20323 20324 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 20325 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20326 /* 20327 * If we have wrapped then we need to clear the bits that 20328 * have been tested so that we can detect when we should 20329 * change the priority level. 20330 */ 20331 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 20332 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 20333 } 20334 20335 20336 /* Check roundrobin failover list empty condition */ 20337 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 20338 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 20339 /* 20340 * If next fcf index is not found check if there are lower 20341 * Priority level fcf's in the fcf_priority list. 20342 * Set up the rr_bmask with all of the avaiable fcf bits 20343 * at that level and continue the selection process. 20344 */ 20345 if (lpfc_check_next_fcf_pri_level(phba)) 20346 goto initial_priority; 20347 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 20348 "2844 No roundrobin failover FCF available\n"); 20349 20350 return LPFC_FCOE_FCF_NEXT_NONE; 20351 } 20352 20353 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 20354 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 20355 LPFC_FCF_FLOGI_FAILED) { 20356 if (list_is_singular(&phba->fcf.fcf_pri_list)) 20357 return LPFC_FCOE_FCF_NEXT_NONE; 20358 20359 goto next_priority; 20360 } 20361 20362 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20363 "2845 Get next roundrobin failover FCF (x%x)\n", 20364 next_fcf_index); 20365 20366 return next_fcf_index; 20367 } 20368 20369 /** 20370 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 20371 * @phba: pointer to lpfc hba data structure. 20372 * @fcf_index: index into the FCF table to 'set' 20373 * 20374 * This routine sets the FCF record index in to the eligible bmask for 20375 * roundrobin failover search. It checks to make sure that the index 20376 * does not go beyond the range of the driver allocated bmask dimension 20377 * before setting the bit. 20378 * 20379 * Returns 0 if the index bit successfully set, otherwise, it returns 20380 * -EINVAL. 20381 **/ 20382 int 20383 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 20384 { 20385 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20386 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20387 "2610 FCF (x%x) reached driver's book " 20388 "keeping dimension:x%x\n", 20389 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20390 return -EINVAL; 20391 } 20392 /* Set the eligible FCF record index bmask */ 20393 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20394 20395 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20396 "2790 Set FCF (x%x) to roundrobin FCF failover " 20397 "bmask\n", fcf_index); 20398 20399 return 0; 20400 } 20401 20402 /** 20403 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 20404 * @phba: pointer to lpfc hba data structure. 20405 * @fcf_index: index into the FCF table to 'clear' 20406 * 20407 * This routine clears the FCF record index from the eligible bmask for 20408 * roundrobin failover search. It checks to make sure that the index 20409 * does not go beyond the range of the driver allocated bmask dimension 20410 * before clearing the bit. 20411 **/ 20412 void 20413 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 20414 { 20415 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 20416 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20417 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20418 "2762 FCF (x%x) reached driver's book " 20419 "keeping dimension:x%x\n", 20420 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20421 return; 20422 } 20423 /* Clear the eligible FCF record index bmask */ 20424 spin_lock_irq(&phba->hbalock); 20425 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 20426 list) { 20427 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 20428 list_del_init(&fcf_pri->list); 20429 break; 20430 } 20431 } 20432 spin_unlock_irq(&phba->hbalock); 20433 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20434 20435 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20436 "2791 Clear FCF (x%x) from roundrobin failover " 20437 "bmask\n", fcf_index); 20438 } 20439 20440 /** 20441 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 20442 * @phba: pointer to lpfc hba data structure. 20443 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 20444 * 20445 * This routine is the completion routine for the rediscover FCF table mailbox 20446 * command. If the mailbox command returned failure, it will try to stop the 20447 * FCF rediscover wait timer. 20448 **/ 20449 static void 20450 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 20451 { 20452 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20453 uint32_t shdr_status, shdr_add_status; 20454 20455 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20456 20457 shdr_status = bf_get(lpfc_mbox_hdr_status, 20458 &redisc_fcf->header.cfg_shdr.response); 20459 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20460 &redisc_fcf->header.cfg_shdr.response); 20461 if (shdr_status || shdr_add_status) { 20462 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20463 "2746 Requesting for FCF rediscovery failed " 20464 "status x%x add_status x%x\n", 20465 shdr_status, shdr_add_status); 20466 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 20467 spin_lock_irq(&phba->hbalock); 20468 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 20469 spin_unlock_irq(&phba->hbalock); 20470 /* 20471 * CVL event triggered FCF rediscover request failed, 20472 * last resort to re-try current registered FCF entry. 20473 */ 20474 lpfc_retry_pport_discovery(phba); 20475 } else { 20476 spin_lock_irq(&phba->hbalock); 20477 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 20478 spin_unlock_irq(&phba->hbalock); 20479 /* 20480 * DEAD FCF event triggered FCF rediscover request 20481 * failed, last resort to fail over as a link down 20482 * to FCF registration. 20483 */ 20484 lpfc_sli4_fcf_dead_failthrough(phba); 20485 } 20486 } else { 20487 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20488 "2775 Start FCF rediscover quiescent timer\n"); 20489 /* 20490 * Start FCF rediscovery wait timer for pending FCF 20491 * before rescan FCF record table. 20492 */ 20493 lpfc_fcf_redisc_wait_start_timer(phba); 20494 } 20495 20496 mempool_free(mbox, phba->mbox_mem_pool); 20497 } 20498 20499 /** 20500 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 20501 * @phba: pointer to lpfc hba data structure. 20502 * 20503 * This routine is invoked to request for rediscovery of the entire FCF table 20504 * by the port. 20505 **/ 20506 int 20507 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 20508 { 20509 LPFC_MBOXQ_t *mbox; 20510 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20511 int rc, length; 20512 20513 /* Cancel retry delay timers to all vports before FCF rediscover */ 20514 lpfc_cancel_all_vport_retry_delay_timer(phba); 20515 20516 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20517 if (!mbox) { 20518 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20519 "2745 Failed to allocate mbox for " 20520 "requesting FCF rediscover.\n"); 20521 return -ENOMEM; 20522 } 20523 20524 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 20525 sizeof(struct lpfc_sli4_cfg_mhdr)); 20526 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 20527 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 20528 length, LPFC_SLI4_MBX_EMBED); 20529 20530 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20531 /* Set count to 0 for invalidating the entire FCF database */ 20532 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 20533 20534 /* Issue the mailbox command asynchronously */ 20535 mbox->vport = phba->pport; 20536 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 20537 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 20538 20539 if (rc == MBX_NOT_FINISHED) { 20540 mempool_free(mbox, phba->mbox_mem_pool); 20541 return -EIO; 20542 } 20543 return 0; 20544 } 20545 20546 /** 20547 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 20548 * @phba: pointer to lpfc hba data structure. 20549 * 20550 * This function is the failover routine as a last resort to the FCF DEAD 20551 * event when driver failed to perform fast FCF failover. 20552 **/ 20553 void 20554 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 20555 { 20556 uint32_t link_state; 20557 20558 /* 20559 * Last resort as FCF DEAD event failover will treat this as 20560 * a link down, but save the link state because we don't want 20561 * it to be changed to Link Down unless it is already down. 20562 */ 20563 link_state = phba->link_state; 20564 lpfc_linkdown(phba); 20565 phba->link_state = link_state; 20566 20567 /* Unregister FCF if no devices connected to it */ 20568 lpfc_unregister_unused_fcf(phba); 20569 } 20570 20571 /** 20572 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 20573 * @phba: pointer to lpfc hba data structure. 20574 * @rgn23_data: pointer to configure region 23 data. 20575 * 20576 * This function gets SLI3 port configure region 23 data through memory dump 20577 * mailbox command. When it successfully retrieves data, the size of the data 20578 * will be returned, otherwise, 0 will be returned. 20579 **/ 20580 static uint32_t 20581 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20582 { 20583 LPFC_MBOXQ_t *pmb = NULL; 20584 MAILBOX_t *mb; 20585 uint32_t offset = 0; 20586 int rc; 20587 20588 if (!rgn23_data) 20589 return 0; 20590 20591 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20592 if (!pmb) { 20593 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20594 "2600 failed to allocate mailbox memory\n"); 20595 return 0; 20596 } 20597 mb = &pmb->u.mb; 20598 20599 do { 20600 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 20601 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 20602 20603 if (rc != MBX_SUCCESS) { 20604 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20605 "2601 failed to read config " 20606 "region 23, rc 0x%x Status 0x%x\n", 20607 rc, mb->mbxStatus); 20608 mb->un.varDmp.word_cnt = 0; 20609 } 20610 /* 20611 * dump mem may return a zero when finished or we got a 20612 * mailbox error, either way we are done. 20613 */ 20614 if (mb->un.varDmp.word_cnt == 0) 20615 break; 20616 20617 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 20618 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 20619 20620 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 20621 rgn23_data + offset, 20622 mb->un.varDmp.word_cnt); 20623 offset += mb->un.varDmp.word_cnt; 20624 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 20625 20626 mempool_free(pmb, phba->mbox_mem_pool); 20627 return offset; 20628 } 20629 20630 /** 20631 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 20632 * @phba: pointer to lpfc hba data structure. 20633 * @rgn23_data: pointer to configure region 23 data. 20634 * 20635 * This function gets SLI4 port configure region 23 data through memory dump 20636 * mailbox command. When it successfully retrieves data, the size of the data 20637 * will be returned, otherwise, 0 will be returned. 20638 **/ 20639 static uint32_t 20640 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20641 { 20642 LPFC_MBOXQ_t *mboxq = NULL; 20643 struct lpfc_dmabuf *mp = NULL; 20644 struct lpfc_mqe *mqe; 20645 uint32_t data_length = 0; 20646 int rc; 20647 20648 if (!rgn23_data) 20649 return 0; 20650 20651 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20652 if (!mboxq) { 20653 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20654 "3105 failed to allocate mailbox memory\n"); 20655 return 0; 20656 } 20657 20658 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 20659 goto out; 20660 mqe = &mboxq->u.mqe; 20661 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 20662 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 20663 if (rc) 20664 goto out; 20665 data_length = mqe->un.mb_words[5]; 20666 if (data_length == 0) 20667 goto out; 20668 if (data_length > DMP_RGN23_SIZE) { 20669 data_length = 0; 20670 goto out; 20671 } 20672 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 20673 out: 20674 mempool_free(mboxq, phba->mbox_mem_pool); 20675 if (mp) { 20676 lpfc_mbuf_free(phba, mp->virt, mp->phys); 20677 kfree(mp); 20678 } 20679 return data_length; 20680 } 20681 20682 /** 20683 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 20684 * @phba: pointer to lpfc hba data structure. 20685 * 20686 * This function read region 23 and parse TLV for port status to 20687 * decide if the user disaled the port. If the TLV indicates the 20688 * port is disabled, the hba_flag is set accordingly. 20689 **/ 20690 void 20691 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 20692 { 20693 uint8_t *rgn23_data = NULL; 20694 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 20695 uint32_t offset = 0; 20696 20697 /* Get adapter Region 23 data */ 20698 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 20699 if (!rgn23_data) 20700 goto out; 20701 20702 if (phba->sli_rev < LPFC_SLI_REV4) 20703 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 20704 else { 20705 if_type = bf_get(lpfc_sli_intf_if_type, 20706 &phba->sli4_hba.sli_intf); 20707 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 20708 goto out; 20709 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 20710 } 20711 20712 if (!data_size) 20713 goto out; 20714 20715 /* Check the region signature first */ 20716 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 20717 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20718 "2619 Config region 23 has bad signature\n"); 20719 goto out; 20720 } 20721 offset += 4; 20722 20723 /* Check the data structure version */ 20724 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 20725 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20726 "2620 Config region 23 has bad version\n"); 20727 goto out; 20728 } 20729 offset += 4; 20730 20731 /* Parse TLV entries in the region */ 20732 while (offset < data_size) { 20733 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 20734 break; 20735 /* 20736 * If the TLV is not driver specific TLV or driver id is 20737 * not linux driver id, skip the record. 20738 */ 20739 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 20740 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 20741 (rgn23_data[offset + 3] != 0)) { 20742 offset += rgn23_data[offset + 1] * 4 + 4; 20743 continue; 20744 } 20745 20746 /* Driver found a driver specific TLV in the config region */ 20747 sub_tlv_len = rgn23_data[offset + 1] * 4; 20748 offset += 4; 20749 tlv_offset = 0; 20750 20751 /* 20752 * Search for configured port state sub-TLV. 20753 */ 20754 while ((offset < data_size) && 20755 (tlv_offset < sub_tlv_len)) { 20756 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 20757 offset += 4; 20758 tlv_offset += 4; 20759 break; 20760 } 20761 if (rgn23_data[offset] != PORT_STE_TYPE) { 20762 offset += rgn23_data[offset + 1] * 4 + 4; 20763 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 20764 continue; 20765 } 20766 20767 /* This HBA contains PORT_STE configured */ 20768 if (!rgn23_data[offset + 2]) 20769 phba->hba_flag |= LINK_DISABLED; 20770 20771 goto out; 20772 } 20773 } 20774 20775 out: 20776 kfree(rgn23_data); 20777 return; 20778 } 20779 20780 /** 20781 * lpfc_log_fw_write_cmpl - logs firmware write completion status 20782 * @phba: pointer to lpfc hba data structure 20783 * @shdr_status: wr_object rsp's status field 20784 * @shdr_add_status: wr_object rsp's add_status field 20785 * @shdr_add_status_2: wr_object rsp's add_status_2 field 20786 * @shdr_change_status: wr_object rsp's change_status field 20787 * @shdr_csf: wr_object rsp's csf bit 20788 * 20789 * This routine is intended to be called after a firmware write completes. 20790 * It will log next action items to be performed by the user to instantiate 20791 * the newly downloaded firmware or reason for incompatibility. 20792 **/ 20793 static void 20794 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status, 20795 u32 shdr_add_status, u32 shdr_add_status_2, 20796 u32 shdr_change_status, u32 shdr_csf) 20797 { 20798 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20799 "4198 %s: flash_id x%02x, asic_rev x%02x, " 20800 "status x%02x, add_status x%02x, add_status_2 x%02x, " 20801 "change_status x%02x, csf %01x\n", __func__, 20802 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev, 20803 shdr_status, shdr_add_status, shdr_add_status_2, 20804 shdr_change_status, shdr_csf); 20805 20806 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) { 20807 switch (shdr_add_status_2) { 20808 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH: 20809 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20810 "4199 Firmware write failed: " 20811 "image incompatible with flash x%02x\n", 20812 phba->sli4_hba.flash_id); 20813 break; 20814 case LPFC_ADD_STATUS_2_INCORRECT_ASIC: 20815 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20816 "4200 Firmware write failed: " 20817 "image incompatible with ASIC " 20818 "architecture x%02x\n", 20819 phba->sli4_hba.asic_rev); 20820 break; 20821 default: 20822 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20823 "4210 Firmware write failed: " 20824 "add_status_2 x%02x\n", 20825 shdr_add_status_2); 20826 break; 20827 } 20828 } else if (!shdr_status && !shdr_add_status) { 20829 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20830 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20831 if (shdr_csf) 20832 shdr_change_status = 20833 LPFC_CHANGE_STATUS_PCI_RESET; 20834 } 20835 20836 switch (shdr_change_status) { 20837 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20838 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20839 "3198 Firmware write complete: System " 20840 "reboot required to instantiate\n"); 20841 break; 20842 case (LPFC_CHANGE_STATUS_FW_RESET): 20843 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20844 "3199 Firmware write complete: " 20845 "Firmware reset required to " 20846 "instantiate\n"); 20847 break; 20848 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20849 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20850 "3200 Firmware write complete: Port " 20851 "Migration or PCI Reset required to " 20852 "instantiate\n"); 20853 break; 20854 case (LPFC_CHANGE_STATUS_PCI_RESET): 20855 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20856 "3201 Firmware write complete: PCI " 20857 "Reset required to instantiate\n"); 20858 break; 20859 default: 20860 break; 20861 } 20862 } 20863 } 20864 20865 /** 20866 * lpfc_wr_object - write an object to the firmware 20867 * @phba: HBA structure that indicates port to create a queue on. 20868 * @dmabuf_list: list of dmabufs to write to the port. 20869 * @size: the total byte value of the objects to write to the port. 20870 * @offset: the current offset to be used to start the transfer. 20871 * 20872 * This routine will create a wr_object mailbox command to send to the port. 20873 * the mailbox command will be constructed using the dma buffers described in 20874 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20875 * BDEs that the imbedded mailbox can support. The @offset variable will be 20876 * used to indicate the starting offset of the transfer and will also return 20877 * the offset after the write object mailbox has completed. @size is used to 20878 * determine the end of the object and whether the eof bit should be set. 20879 * 20880 * Return 0 is successful and offset will contain the the new offset to use 20881 * for the next write. 20882 * Return negative value for error cases. 20883 **/ 20884 int 20885 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20886 uint32_t size, uint32_t *offset) 20887 { 20888 struct lpfc_mbx_wr_object *wr_object; 20889 LPFC_MBOXQ_t *mbox; 20890 int rc = 0, i = 0; 20891 uint32_t shdr_status, shdr_add_status, shdr_add_status_2; 20892 uint32_t shdr_change_status = 0, shdr_csf = 0; 20893 uint32_t mbox_tmo; 20894 struct lpfc_dmabuf *dmabuf; 20895 uint32_t written = 0; 20896 bool check_change_status = false; 20897 20898 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20899 if (!mbox) 20900 return -ENOMEM; 20901 20902 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20903 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20904 sizeof(struct lpfc_mbx_wr_object) - 20905 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20906 20907 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20908 wr_object->u.request.write_offset = *offset; 20909 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20910 wr_object->u.request.object_name[0] = 20911 cpu_to_le32(wr_object->u.request.object_name[0]); 20912 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20913 list_for_each_entry(dmabuf, dmabuf_list, list) { 20914 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20915 break; 20916 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20917 wr_object->u.request.bde[i].addrHigh = 20918 putPaddrHigh(dmabuf->phys); 20919 if (written + SLI4_PAGE_SIZE >= size) { 20920 wr_object->u.request.bde[i].tus.f.bdeSize = 20921 (size - written); 20922 written += (size - written); 20923 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20924 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20925 check_change_status = true; 20926 } else { 20927 wr_object->u.request.bde[i].tus.f.bdeSize = 20928 SLI4_PAGE_SIZE; 20929 written += SLI4_PAGE_SIZE; 20930 } 20931 i++; 20932 } 20933 wr_object->u.request.bde_count = i; 20934 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20935 if (!phba->sli4_hba.intr_enable) 20936 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20937 else { 20938 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20939 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20940 } 20941 /* The IOCTL status is embedded in the mailbox subheader. */ 20942 shdr_status = bf_get(lpfc_mbox_hdr_status, 20943 &wr_object->header.cfg_shdr.response); 20944 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20945 &wr_object->header.cfg_shdr.response); 20946 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2, 20947 &wr_object->header.cfg_shdr.response); 20948 if (check_change_status) { 20949 shdr_change_status = bf_get(lpfc_wr_object_change_status, 20950 &wr_object->u.response); 20951 shdr_csf = bf_get(lpfc_wr_object_csf, 20952 &wr_object->u.response); 20953 } 20954 20955 if (!phba->sli4_hba.intr_enable) 20956 mempool_free(mbox, phba->mbox_mem_pool); 20957 else if (rc != MBX_TIMEOUT) 20958 mempool_free(mbox, phba->mbox_mem_pool); 20959 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) { 20960 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20961 "3025 Write Object mailbox failed with " 20962 "status x%x add_status x%x, add_status_2 x%x, " 20963 "mbx status x%x\n", 20964 shdr_status, shdr_add_status, shdr_add_status_2, 20965 rc); 20966 rc = -ENXIO; 20967 *offset = shdr_add_status; 20968 } else { 20969 *offset += wr_object->u.response.actual_write_length; 20970 } 20971 20972 if (rc || check_change_status) 20973 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status, 20974 shdr_add_status_2, shdr_change_status, 20975 shdr_csf); 20976 return rc; 20977 } 20978 20979 /** 20980 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 20981 * @vport: pointer to vport data structure. 20982 * 20983 * This function iterate through the mailboxq and clean up all REG_LOGIN 20984 * and REG_VPI mailbox commands associated with the vport. This function 20985 * is called when driver want to restart discovery of the vport due to 20986 * a Clear Virtual Link event. 20987 **/ 20988 void 20989 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 20990 { 20991 struct lpfc_hba *phba = vport->phba; 20992 LPFC_MBOXQ_t *mb, *nextmb; 20993 struct lpfc_dmabuf *mp; 20994 struct lpfc_nodelist *ndlp; 20995 struct lpfc_nodelist *act_mbx_ndlp = NULL; 20996 LIST_HEAD(mbox_cmd_list); 20997 uint8_t restart_loop; 20998 20999 /* Clean up internally queued mailbox commands with the vport */ 21000 spin_lock_irq(&phba->hbalock); 21001 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 21002 if (mb->vport != vport) 21003 continue; 21004 21005 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21006 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21007 continue; 21008 21009 list_move_tail(&mb->list, &mbox_cmd_list); 21010 } 21011 /* Clean up active mailbox command with the vport */ 21012 mb = phba->sli.mbox_active; 21013 if (mb && (mb->vport == vport)) { 21014 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 21015 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 21016 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21017 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21018 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 21019 /* Put reference count for delayed processing */ 21020 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 21021 /* Unregister the RPI when mailbox complete */ 21022 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21023 } 21024 } 21025 /* Cleanup any mailbox completions which are not yet processed */ 21026 do { 21027 restart_loop = 0; 21028 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 21029 /* 21030 * If this mailox is already processed or it is 21031 * for another vport ignore it. 21032 */ 21033 if ((mb->vport != vport) || 21034 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 21035 continue; 21036 21037 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21038 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21039 continue; 21040 21041 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21042 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21043 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 21044 /* Unregister the RPI when mailbox complete */ 21045 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21046 restart_loop = 1; 21047 spin_unlock_irq(&phba->hbalock); 21048 spin_lock(&ndlp->lock); 21049 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21050 spin_unlock(&ndlp->lock); 21051 spin_lock_irq(&phba->hbalock); 21052 break; 21053 } 21054 } 21055 } while (restart_loop); 21056 21057 spin_unlock_irq(&phba->hbalock); 21058 21059 /* Release the cleaned-up mailbox commands */ 21060 while (!list_empty(&mbox_cmd_list)) { 21061 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 21062 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21063 mp = (struct lpfc_dmabuf *)(mb->ctx_buf); 21064 if (mp) { 21065 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 21066 kfree(mp); 21067 } 21068 mb->ctx_buf = NULL; 21069 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 21070 mb->ctx_ndlp = NULL; 21071 if (ndlp) { 21072 spin_lock(&ndlp->lock); 21073 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21074 spin_unlock(&ndlp->lock); 21075 lpfc_nlp_put(ndlp); 21076 } 21077 } 21078 mempool_free(mb, phba->mbox_mem_pool); 21079 } 21080 21081 /* Release the ndlp with the cleaned-up active mailbox command */ 21082 if (act_mbx_ndlp) { 21083 spin_lock(&act_mbx_ndlp->lock); 21084 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21085 spin_unlock(&act_mbx_ndlp->lock); 21086 lpfc_nlp_put(act_mbx_ndlp); 21087 } 21088 } 21089 21090 /** 21091 * lpfc_drain_txq - Drain the txq 21092 * @phba: Pointer to HBA context object. 21093 * 21094 * This function attempt to submit IOCBs on the txq 21095 * to the adapter. For SLI4 adapters, the txq contains 21096 * ELS IOCBs that have been deferred because the there 21097 * are no SGLs. This congestion can occur with large 21098 * vport counts during node discovery. 21099 **/ 21100 21101 uint32_t 21102 lpfc_drain_txq(struct lpfc_hba *phba) 21103 { 21104 LIST_HEAD(completions); 21105 struct lpfc_sli_ring *pring; 21106 struct lpfc_iocbq *piocbq = NULL; 21107 unsigned long iflags = 0; 21108 char *fail_msg = NULL; 21109 struct lpfc_sglq *sglq; 21110 union lpfc_wqe128 wqe; 21111 uint32_t txq_cnt = 0; 21112 struct lpfc_queue *wq; 21113 21114 if (phba->link_flag & LS_MDS_LOOPBACK) { 21115 /* MDS WQE are posted only to first WQ*/ 21116 wq = phba->sli4_hba.hdwq[0].io_wq; 21117 if (unlikely(!wq)) 21118 return 0; 21119 pring = wq->pring; 21120 } else { 21121 wq = phba->sli4_hba.els_wq; 21122 if (unlikely(!wq)) 21123 return 0; 21124 pring = lpfc_phba_elsring(phba); 21125 } 21126 21127 if (unlikely(!pring) || list_empty(&pring->txq)) 21128 return 0; 21129 21130 spin_lock_irqsave(&pring->ring_lock, iflags); 21131 list_for_each_entry(piocbq, &pring->txq, list) { 21132 txq_cnt++; 21133 } 21134 21135 if (txq_cnt > pring->txq_max) 21136 pring->txq_max = txq_cnt; 21137 21138 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21139 21140 while (!list_empty(&pring->txq)) { 21141 spin_lock_irqsave(&pring->ring_lock, iflags); 21142 21143 piocbq = lpfc_sli_ringtx_get(phba, pring); 21144 if (!piocbq) { 21145 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21146 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21147 "2823 txq empty and txq_cnt is %d\n ", 21148 txq_cnt); 21149 break; 21150 } 21151 sglq = __lpfc_sli_get_els_sglq(phba, piocbq); 21152 if (!sglq) { 21153 __lpfc_sli_ringtx_put(phba, pring, piocbq); 21154 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21155 break; 21156 } 21157 txq_cnt--; 21158 21159 /* The xri and iocb resources secured, 21160 * attempt to issue request 21161 */ 21162 piocbq->sli4_lxritag = sglq->sli4_lxritag; 21163 piocbq->sli4_xritag = sglq->sli4_xritag; 21164 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 21165 fail_msg = "to convert bpl to sgl"; 21166 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 21167 fail_msg = "to convert iocb to wqe"; 21168 else if (lpfc_sli4_wq_put(wq, &wqe)) 21169 fail_msg = " - Wq is full"; 21170 else 21171 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 21172 21173 if (fail_msg) { 21174 /* Failed means we can't issue and need to cancel */ 21175 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21176 "2822 IOCB failed %s iotag 0x%x " 21177 "xri 0x%x\n", 21178 fail_msg, 21179 piocbq->iotag, piocbq->sli4_xritag); 21180 list_add_tail(&piocbq->list, &completions); 21181 fail_msg = NULL; 21182 } 21183 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21184 } 21185 21186 /* Cancel all the IOCBs that cannot be issued */ 21187 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 21188 IOERR_SLI_ABORTED); 21189 21190 return txq_cnt; 21191 } 21192 21193 /** 21194 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 21195 * @phba: Pointer to HBA context object. 21196 * @pwqeq: Pointer to command WQE. 21197 * @sglq: Pointer to the scatter gather queue object. 21198 * 21199 * This routine converts the bpl or bde that is in the WQE 21200 * to a sgl list for the sli4 hardware. The physical address 21201 * of the bpl/bde is converted back to a virtual address. 21202 * If the WQE contains a BPL then the list of BDE's is 21203 * converted to sli4_sge's. If the WQE contains a single 21204 * BDE then it is converted to a single sli_sge. 21205 * The WQE is still in cpu endianness so the contents of 21206 * the bpl can be used without byte swapping. 21207 * 21208 * Returns valid XRI = Success, NO_XRI = Failure. 21209 */ 21210 static uint16_t 21211 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 21212 struct lpfc_sglq *sglq) 21213 { 21214 uint16_t xritag = NO_XRI; 21215 struct ulp_bde64 *bpl = NULL; 21216 struct ulp_bde64 bde; 21217 struct sli4_sge *sgl = NULL; 21218 struct lpfc_dmabuf *dmabuf; 21219 union lpfc_wqe128 *wqe; 21220 int numBdes = 0; 21221 int i = 0; 21222 uint32_t offset = 0; /* accumulated offset in the sg request list */ 21223 int inbound = 0; /* number of sg reply entries inbound from firmware */ 21224 uint32_t cmd; 21225 21226 if (!pwqeq || !sglq) 21227 return xritag; 21228 21229 sgl = (struct sli4_sge *)sglq->sgl; 21230 wqe = &pwqeq->wqe; 21231 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 21232 21233 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 21234 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 21235 return sglq->sli4_xritag; 21236 numBdes = pwqeq->rsvd2; 21237 if (numBdes) { 21238 /* The addrHigh and addrLow fields within the WQE 21239 * have not been byteswapped yet so there is no 21240 * need to swap them back. 21241 */ 21242 if (pwqeq->context3) 21243 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 21244 else 21245 return xritag; 21246 21247 bpl = (struct ulp_bde64 *)dmabuf->virt; 21248 if (!bpl) 21249 return xritag; 21250 21251 for (i = 0; i < numBdes; i++) { 21252 /* Should already be byte swapped. */ 21253 sgl->addr_hi = bpl->addrHigh; 21254 sgl->addr_lo = bpl->addrLow; 21255 21256 sgl->word2 = le32_to_cpu(sgl->word2); 21257 if ((i+1) == numBdes) 21258 bf_set(lpfc_sli4_sge_last, sgl, 1); 21259 else 21260 bf_set(lpfc_sli4_sge_last, sgl, 0); 21261 /* swap the size field back to the cpu so we 21262 * can assign it to the sgl. 21263 */ 21264 bde.tus.w = le32_to_cpu(bpl->tus.w); 21265 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 21266 /* The offsets in the sgl need to be accumulated 21267 * separately for the request and reply lists. 21268 * The request is always first, the reply follows. 21269 */ 21270 switch (cmd) { 21271 case CMD_GEN_REQUEST64_WQE: 21272 /* add up the reply sg entries */ 21273 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 21274 inbound++; 21275 /* first inbound? reset the offset */ 21276 if (inbound == 1) 21277 offset = 0; 21278 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21279 bf_set(lpfc_sli4_sge_type, sgl, 21280 LPFC_SGE_TYPE_DATA); 21281 offset += bde.tus.f.bdeSize; 21282 break; 21283 case CMD_FCP_TRSP64_WQE: 21284 bf_set(lpfc_sli4_sge_offset, sgl, 0); 21285 bf_set(lpfc_sli4_sge_type, sgl, 21286 LPFC_SGE_TYPE_DATA); 21287 break; 21288 case CMD_FCP_TSEND64_WQE: 21289 case CMD_FCP_TRECEIVE64_WQE: 21290 bf_set(lpfc_sli4_sge_type, sgl, 21291 bpl->tus.f.bdeFlags); 21292 if (i < 3) 21293 offset = 0; 21294 else 21295 offset += bde.tus.f.bdeSize; 21296 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21297 break; 21298 } 21299 sgl->word2 = cpu_to_le32(sgl->word2); 21300 bpl++; 21301 sgl++; 21302 } 21303 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 21304 /* The addrHigh and addrLow fields of the BDE have not 21305 * been byteswapped yet so they need to be swapped 21306 * before putting them in the sgl. 21307 */ 21308 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 21309 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 21310 sgl->word2 = le32_to_cpu(sgl->word2); 21311 bf_set(lpfc_sli4_sge_last, sgl, 1); 21312 sgl->word2 = cpu_to_le32(sgl->word2); 21313 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 21314 } 21315 return sglq->sli4_xritag; 21316 } 21317 21318 /** 21319 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 21320 * @phba: Pointer to HBA context object. 21321 * @qp: Pointer to HDW queue. 21322 * @pwqe: Pointer to command WQE. 21323 **/ 21324 int 21325 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21326 struct lpfc_iocbq *pwqe) 21327 { 21328 union lpfc_wqe128 *wqe = &pwqe->wqe; 21329 struct lpfc_async_xchg_ctx *ctxp; 21330 struct lpfc_queue *wq; 21331 struct lpfc_sglq *sglq; 21332 struct lpfc_sli_ring *pring; 21333 unsigned long iflags; 21334 uint32_t ret = 0; 21335 21336 /* NVME_LS and NVME_LS ABTS requests. */ 21337 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { 21338 pring = phba->sli4_hba.nvmels_wq->pring; 21339 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21340 qp, wq_access); 21341 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 21342 if (!sglq) { 21343 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21344 return WQE_BUSY; 21345 } 21346 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21347 pwqe->sli4_xritag = sglq->sli4_xritag; 21348 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 21349 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21350 return WQE_ERROR; 21351 } 21352 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21353 pwqe->sli4_xritag); 21354 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 21355 if (ret) { 21356 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21357 return ret; 21358 } 21359 21360 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21361 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21362 21363 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21364 return 0; 21365 } 21366 21367 /* NVME_FCREQ and NVME_ABTS requests */ 21368 if (pwqe->iocb_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) { 21369 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21370 wq = qp->io_wq; 21371 pring = wq->pring; 21372 21373 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21374 21375 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21376 qp, wq_access); 21377 ret = lpfc_sli4_wq_put(wq, wqe); 21378 if (ret) { 21379 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21380 return ret; 21381 } 21382 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21383 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21384 21385 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21386 return 0; 21387 } 21388 21389 /* NVMET requests */ 21390 if (pwqe->iocb_flag & LPFC_IO_NVMET) { 21391 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21392 wq = qp->io_wq; 21393 pring = wq->pring; 21394 21395 ctxp = pwqe->context2; 21396 sglq = ctxp->ctxbuf->sglq; 21397 if (pwqe->sli4_xritag == NO_XRI) { 21398 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21399 pwqe->sli4_xritag = sglq->sli4_xritag; 21400 } 21401 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21402 pwqe->sli4_xritag); 21403 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21404 21405 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21406 qp, wq_access); 21407 ret = lpfc_sli4_wq_put(wq, wqe); 21408 if (ret) { 21409 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21410 return ret; 21411 } 21412 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21413 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21414 21415 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21416 return 0; 21417 } 21418 return WQE_ERROR; 21419 } 21420 21421 /** 21422 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 21423 * @phba: Pointer to HBA context object. 21424 * @cmdiocb: Pointer to driver command iocb object. 21425 * @cmpl: completion function. 21426 * 21427 * Fill the appropriate fields for the abort WQE and call 21428 * internal routine lpfc_sli4_issue_wqe to send the WQE 21429 * This function is called with hbalock held and no ring_lock held. 21430 * 21431 * RETURNS 0 - SUCCESS 21432 **/ 21433 21434 int 21435 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 21436 void *cmpl) 21437 { 21438 struct lpfc_vport *vport = cmdiocb->vport; 21439 struct lpfc_iocbq *abtsiocb = NULL; 21440 union lpfc_wqe128 *abtswqe; 21441 struct lpfc_io_buf *lpfc_cmd; 21442 int retval = IOCB_ERROR; 21443 u16 xritag = cmdiocb->sli4_xritag; 21444 21445 /* 21446 * The scsi command can not be in txq and it is in flight because the 21447 * pCmd is still pointing at the SCSI command we have to abort. There 21448 * is no need to search the txcmplq. Just send an abort to the FW. 21449 */ 21450 21451 abtsiocb = __lpfc_sli_get_iocbq(phba); 21452 if (!abtsiocb) 21453 return WQE_NORESOURCE; 21454 21455 /* Indicate the IO is being aborted by the driver. */ 21456 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 21457 21458 abtswqe = &abtsiocb->wqe; 21459 memset(abtswqe, 0, sizeof(*abtswqe)); 21460 21461 if (!lpfc_is_link_up(phba)) 21462 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 21463 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 21464 abtswqe->abort_cmd.rsrvd5 = 0; 21465 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 21466 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 21467 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 21468 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 21469 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 21470 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 21471 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 21472 21473 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 21474 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 21475 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 21476 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 21477 abtsiocb->iocb_flag |= LPFC_IO_FCP; 21478 if (cmdiocb->iocb_flag & LPFC_IO_NVME) 21479 abtsiocb->iocb_flag |= LPFC_IO_NVME; 21480 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 21481 abtsiocb->iocb_flag |= LPFC_IO_FOF; 21482 abtsiocb->vport = vport; 21483 abtsiocb->wqe_cmpl = cmpl; 21484 21485 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 21486 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 21487 21488 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21489 "0359 Abort xri x%x, original iotag x%x, " 21490 "abort cmd iotag x%x retval x%x\n", 21491 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 21492 21493 if (retval) { 21494 cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED; 21495 __lpfc_sli_release_iocbq(phba, abtsiocb); 21496 } 21497 21498 return retval; 21499 } 21500 21501 #ifdef LPFC_MXP_STAT 21502 /** 21503 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 21504 * @phba: pointer to lpfc hba data structure. 21505 * @hwqid: belong to which HWQ. 21506 * 21507 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 21508 * 15 seconds after a test case is running. 21509 * 21510 * The user should call lpfc_debugfs_multixripools_write before running a test 21511 * case to clear stat_snapshot_taken. Then the user starts a test case. During 21512 * test case is running, stat_snapshot_taken is incremented by 1 every time when 21513 * this routine is called from heartbeat timer. When stat_snapshot_taken is 21514 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 21515 **/ 21516 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 21517 { 21518 struct lpfc_sli4_hdw_queue *qp; 21519 struct lpfc_multixri_pool *multixri_pool; 21520 struct lpfc_pvt_pool *pvt_pool; 21521 struct lpfc_pbl_pool *pbl_pool; 21522 u32 txcmplq_cnt; 21523 21524 qp = &phba->sli4_hba.hdwq[hwqid]; 21525 multixri_pool = qp->p_multixri_pool; 21526 if (!multixri_pool) 21527 return; 21528 21529 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 21530 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21531 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21532 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21533 21534 multixri_pool->stat_pbl_count = pbl_pool->count; 21535 multixri_pool->stat_pvt_count = pvt_pool->count; 21536 multixri_pool->stat_busy_count = txcmplq_cnt; 21537 } 21538 21539 multixri_pool->stat_snapshot_taken++; 21540 } 21541 #endif 21542 21543 /** 21544 * lpfc_adjust_pvt_pool_count - Adjust private pool count 21545 * @phba: pointer to lpfc hba data structure. 21546 * @hwqid: belong to which HWQ. 21547 * 21548 * This routine moves some XRIs from private to public pool when private pool 21549 * is not busy. 21550 **/ 21551 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 21552 { 21553 struct lpfc_multixri_pool *multixri_pool; 21554 u32 io_req_count; 21555 u32 prev_io_req_count; 21556 21557 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21558 if (!multixri_pool) 21559 return; 21560 io_req_count = multixri_pool->io_req_count; 21561 prev_io_req_count = multixri_pool->prev_io_req_count; 21562 21563 if (prev_io_req_count != io_req_count) { 21564 /* Private pool is busy */ 21565 multixri_pool->prev_io_req_count = io_req_count; 21566 } else { 21567 /* Private pool is not busy. 21568 * Move XRIs from private to public pool. 21569 */ 21570 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 21571 } 21572 } 21573 21574 /** 21575 * lpfc_adjust_high_watermark - Adjust high watermark 21576 * @phba: pointer to lpfc hba data structure. 21577 * @hwqid: belong to which HWQ. 21578 * 21579 * This routine sets high watermark as number of outstanding XRIs, 21580 * but make sure the new value is between xri_limit/2 and xri_limit. 21581 **/ 21582 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 21583 { 21584 u32 new_watermark; 21585 u32 watermark_max; 21586 u32 watermark_min; 21587 u32 xri_limit; 21588 u32 txcmplq_cnt; 21589 u32 abts_io_bufs; 21590 struct lpfc_multixri_pool *multixri_pool; 21591 struct lpfc_sli4_hdw_queue *qp; 21592 21593 qp = &phba->sli4_hba.hdwq[hwqid]; 21594 multixri_pool = qp->p_multixri_pool; 21595 if (!multixri_pool) 21596 return; 21597 xri_limit = multixri_pool->xri_limit; 21598 21599 watermark_max = xri_limit; 21600 watermark_min = xri_limit / 2; 21601 21602 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21603 abts_io_bufs = qp->abts_scsi_io_bufs; 21604 abts_io_bufs += qp->abts_nvme_io_bufs; 21605 21606 new_watermark = txcmplq_cnt + abts_io_bufs; 21607 new_watermark = min(watermark_max, new_watermark); 21608 new_watermark = max(watermark_min, new_watermark); 21609 multixri_pool->pvt_pool.high_watermark = new_watermark; 21610 21611 #ifdef LPFC_MXP_STAT 21612 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 21613 new_watermark); 21614 #endif 21615 } 21616 21617 /** 21618 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 21619 * @phba: pointer to lpfc hba data structure. 21620 * @hwqid: belong to which HWQ. 21621 * 21622 * This routine is called from hearbeat timer when pvt_pool is idle. 21623 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 21624 * The first step moves (all - low_watermark) amount of XRIs. 21625 * The second step moves the rest of XRIs. 21626 **/ 21627 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 21628 { 21629 struct lpfc_pbl_pool *pbl_pool; 21630 struct lpfc_pvt_pool *pvt_pool; 21631 struct lpfc_sli4_hdw_queue *qp; 21632 struct lpfc_io_buf *lpfc_ncmd; 21633 struct lpfc_io_buf *lpfc_ncmd_next; 21634 unsigned long iflag; 21635 struct list_head tmp_list; 21636 u32 tmp_count; 21637 21638 qp = &phba->sli4_hba.hdwq[hwqid]; 21639 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21640 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21641 tmp_count = 0; 21642 21643 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 21644 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 21645 21646 if (pvt_pool->count > pvt_pool->low_watermark) { 21647 /* Step 1: move (all - low_watermark) from pvt_pool 21648 * to pbl_pool 21649 */ 21650 21651 /* Move low watermark of bufs from pvt_pool to tmp_list */ 21652 INIT_LIST_HEAD(&tmp_list); 21653 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21654 &pvt_pool->list, list) { 21655 list_move_tail(&lpfc_ncmd->list, &tmp_list); 21656 tmp_count++; 21657 if (tmp_count >= pvt_pool->low_watermark) 21658 break; 21659 } 21660 21661 /* Move all bufs from pvt_pool to pbl_pool */ 21662 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21663 21664 /* Move all bufs from tmp_list to pvt_pool */ 21665 list_splice(&tmp_list, &pvt_pool->list); 21666 21667 pbl_pool->count += (pvt_pool->count - tmp_count); 21668 pvt_pool->count = tmp_count; 21669 } else { 21670 /* Step 2: move the rest from pvt_pool to pbl_pool */ 21671 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21672 pbl_pool->count += pvt_pool->count; 21673 pvt_pool->count = 0; 21674 } 21675 21676 spin_unlock(&pvt_pool->lock); 21677 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21678 } 21679 21680 /** 21681 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21682 * @phba: pointer to lpfc hba data structure 21683 * @qp: pointer to HDW queue 21684 * @pbl_pool: specified public free XRI pool 21685 * @pvt_pool: specified private free XRI pool 21686 * @count: number of XRIs to move 21687 * 21688 * This routine tries to move some free common bufs from the specified pbl_pool 21689 * to the specified pvt_pool. It might move less than count XRIs if there's not 21690 * enough in public pool. 21691 * 21692 * Return: 21693 * true - if XRIs are successfully moved from the specified pbl_pool to the 21694 * specified pvt_pool 21695 * false - if the specified pbl_pool is empty or locked by someone else 21696 **/ 21697 static bool 21698 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21699 struct lpfc_pbl_pool *pbl_pool, 21700 struct lpfc_pvt_pool *pvt_pool, u32 count) 21701 { 21702 struct lpfc_io_buf *lpfc_ncmd; 21703 struct lpfc_io_buf *lpfc_ncmd_next; 21704 unsigned long iflag; 21705 int ret; 21706 21707 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 21708 if (ret) { 21709 if (pbl_pool->count) { 21710 /* Move a batch of XRIs from public to private pool */ 21711 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 21712 list_for_each_entry_safe(lpfc_ncmd, 21713 lpfc_ncmd_next, 21714 &pbl_pool->list, 21715 list) { 21716 list_move_tail(&lpfc_ncmd->list, 21717 &pvt_pool->list); 21718 pvt_pool->count++; 21719 pbl_pool->count--; 21720 count--; 21721 if (count == 0) 21722 break; 21723 } 21724 21725 spin_unlock(&pvt_pool->lock); 21726 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21727 return true; 21728 } 21729 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21730 } 21731 21732 return false; 21733 } 21734 21735 /** 21736 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21737 * @phba: pointer to lpfc hba data structure. 21738 * @hwqid: belong to which HWQ. 21739 * @count: number of XRIs to move 21740 * 21741 * This routine tries to find some free common bufs in one of public pools with 21742 * Round Robin method. The search always starts from local hwqid, then the next 21743 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 21744 * a batch of free common bufs are moved to private pool on hwqid. 21745 * It might move less than count XRIs if there's not enough in public pool. 21746 **/ 21747 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 21748 { 21749 struct lpfc_multixri_pool *multixri_pool; 21750 struct lpfc_multixri_pool *next_multixri_pool; 21751 struct lpfc_pvt_pool *pvt_pool; 21752 struct lpfc_pbl_pool *pbl_pool; 21753 struct lpfc_sli4_hdw_queue *qp; 21754 u32 next_hwqid; 21755 u32 hwq_count; 21756 int ret; 21757 21758 qp = &phba->sli4_hba.hdwq[hwqid]; 21759 multixri_pool = qp->p_multixri_pool; 21760 pvt_pool = &multixri_pool->pvt_pool; 21761 pbl_pool = &multixri_pool->pbl_pool; 21762 21763 /* Check if local pbl_pool is available */ 21764 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 21765 if (ret) { 21766 #ifdef LPFC_MXP_STAT 21767 multixri_pool->local_pbl_hit_count++; 21768 #endif 21769 return; 21770 } 21771 21772 hwq_count = phba->cfg_hdw_queue; 21773 21774 /* Get the next hwqid which was found last time */ 21775 next_hwqid = multixri_pool->rrb_next_hwqid; 21776 21777 do { 21778 /* Go to next hwq */ 21779 next_hwqid = (next_hwqid + 1) % hwq_count; 21780 21781 next_multixri_pool = 21782 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 21783 pbl_pool = &next_multixri_pool->pbl_pool; 21784 21785 /* Check if the public free xri pool is available */ 21786 ret = _lpfc_move_xri_pbl_to_pvt( 21787 phba, qp, pbl_pool, pvt_pool, count); 21788 21789 /* Exit while-loop if success or all hwqid are checked */ 21790 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 21791 21792 /* Starting point for the next time */ 21793 multixri_pool->rrb_next_hwqid = next_hwqid; 21794 21795 if (!ret) { 21796 /* stats: all public pools are empty*/ 21797 multixri_pool->pbl_empty_count++; 21798 } 21799 21800 #ifdef LPFC_MXP_STAT 21801 if (ret) { 21802 if (next_hwqid == hwqid) 21803 multixri_pool->local_pbl_hit_count++; 21804 else 21805 multixri_pool->other_pbl_hit_count++; 21806 } 21807 #endif 21808 } 21809 21810 /** 21811 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 21812 * @phba: pointer to lpfc hba data structure. 21813 * @hwqid: belong to which HWQ. 21814 * 21815 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 21816 * low watermark. 21817 **/ 21818 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 21819 { 21820 struct lpfc_multixri_pool *multixri_pool; 21821 struct lpfc_pvt_pool *pvt_pool; 21822 21823 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21824 pvt_pool = &multixri_pool->pvt_pool; 21825 21826 if (pvt_pool->count < pvt_pool->low_watermark) 21827 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21828 } 21829 21830 /** 21831 * lpfc_release_io_buf - Return one IO buf back to free pool 21832 * @phba: pointer to lpfc hba data structure. 21833 * @lpfc_ncmd: IO buf to be returned. 21834 * @qp: belong to which HWQ. 21835 * 21836 * This routine returns one IO buf back to free pool. If this is an urgent IO, 21837 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 21838 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 21839 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 21840 * lpfc_io_buf_list_put. 21841 **/ 21842 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21843 struct lpfc_sli4_hdw_queue *qp) 21844 { 21845 unsigned long iflag; 21846 struct lpfc_pbl_pool *pbl_pool; 21847 struct lpfc_pvt_pool *pvt_pool; 21848 struct lpfc_epd_pool *epd_pool; 21849 u32 txcmplq_cnt; 21850 u32 xri_owned; 21851 u32 xri_limit; 21852 u32 abts_io_bufs; 21853 21854 /* MUST zero fields if buffer is reused by another protocol */ 21855 lpfc_ncmd->nvmeCmd = NULL; 21856 lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL; 21857 lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL; 21858 21859 if (phba->cfg_xpsgl && !phba->nvmet_support && 21860 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21861 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21862 21863 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21864 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21865 21866 if (phba->cfg_xri_rebalancing) { 21867 if (lpfc_ncmd->expedite) { 21868 /* Return to expedite pool */ 21869 epd_pool = &phba->epd_pool; 21870 spin_lock_irqsave(&epd_pool->lock, iflag); 21871 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21872 epd_pool->count++; 21873 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21874 return; 21875 } 21876 21877 /* Avoid invalid access if an IO sneaks in and is being rejected 21878 * just _after_ xri pools are destroyed in lpfc_offline. 21879 * Nothing much can be done at this point. 21880 */ 21881 if (!qp->p_multixri_pool) 21882 return; 21883 21884 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21885 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21886 21887 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21888 abts_io_bufs = qp->abts_scsi_io_bufs; 21889 abts_io_bufs += qp->abts_nvme_io_bufs; 21890 21891 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21892 xri_limit = qp->p_multixri_pool->xri_limit; 21893 21894 #ifdef LPFC_MXP_STAT 21895 if (xri_owned <= xri_limit) 21896 qp->p_multixri_pool->below_limit_count++; 21897 else 21898 qp->p_multixri_pool->above_limit_count++; 21899 #endif 21900 21901 /* XRI goes to either public or private free xri pool 21902 * based on watermark and xri_limit 21903 */ 21904 if ((pvt_pool->count < pvt_pool->low_watermark) || 21905 (xri_owned < xri_limit && 21906 pvt_pool->count < pvt_pool->high_watermark)) { 21907 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21908 qp, free_pvt_pool); 21909 list_add_tail(&lpfc_ncmd->list, 21910 &pvt_pool->list); 21911 pvt_pool->count++; 21912 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21913 } else { 21914 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21915 qp, free_pub_pool); 21916 list_add_tail(&lpfc_ncmd->list, 21917 &pbl_pool->list); 21918 pbl_pool->count++; 21919 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21920 } 21921 } else { 21922 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21923 qp, free_xri); 21924 list_add_tail(&lpfc_ncmd->list, 21925 &qp->lpfc_io_buf_list_put); 21926 qp->put_io_bufs++; 21927 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21928 iflag); 21929 } 21930 } 21931 21932 /** 21933 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21934 * @phba: pointer to lpfc hba data structure. 21935 * @qp: pointer to HDW queue 21936 * @pvt_pool: pointer to private pool data structure. 21937 * @ndlp: pointer to lpfc nodelist data structure. 21938 * 21939 * This routine tries to get one free IO buf from private pool. 21940 * 21941 * Return: 21942 * pointer to one free IO buf - if private pool is not empty 21943 * NULL - if private pool is empty 21944 **/ 21945 static struct lpfc_io_buf * 21946 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21947 struct lpfc_sli4_hdw_queue *qp, 21948 struct lpfc_pvt_pool *pvt_pool, 21949 struct lpfc_nodelist *ndlp) 21950 { 21951 struct lpfc_io_buf *lpfc_ncmd; 21952 struct lpfc_io_buf *lpfc_ncmd_next; 21953 unsigned long iflag; 21954 21955 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21956 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21957 &pvt_pool->list, list) { 21958 if (lpfc_test_rrq_active( 21959 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21960 continue; 21961 list_del(&lpfc_ncmd->list); 21962 pvt_pool->count--; 21963 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21964 return lpfc_ncmd; 21965 } 21966 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21967 21968 return NULL; 21969 } 21970 21971 /** 21972 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 21973 * @phba: pointer to lpfc hba data structure. 21974 * 21975 * This routine tries to get one free IO buf from expedite pool. 21976 * 21977 * Return: 21978 * pointer to one free IO buf - if expedite pool is not empty 21979 * NULL - if expedite pool is empty 21980 **/ 21981 static struct lpfc_io_buf * 21982 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 21983 { 21984 struct lpfc_io_buf *lpfc_ncmd; 21985 struct lpfc_io_buf *lpfc_ncmd_next; 21986 unsigned long iflag; 21987 struct lpfc_epd_pool *epd_pool; 21988 21989 epd_pool = &phba->epd_pool; 21990 lpfc_ncmd = NULL; 21991 21992 spin_lock_irqsave(&epd_pool->lock, iflag); 21993 if (epd_pool->count > 0) { 21994 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21995 &epd_pool->list, list) { 21996 list_del(&lpfc_ncmd->list); 21997 epd_pool->count--; 21998 break; 21999 } 22000 } 22001 spin_unlock_irqrestore(&epd_pool->lock, iflag); 22002 22003 return lpfc_ncmd; 22004 } 22005 22006 /** 22007 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 22008 * @phba: pointer to lpfc hba data structure. 22009 * @ndlp: pointer to lpfc nodelist data structure. 22010 * @hwqid: belong to which HWQ 22011 * @expedite: 1 means this request is urgent. 22012 * 22013 * This routine will do the following actions and then return a pointer to 22014 * one free IO buf. 22015 * 22016 * 1. If private free xri count is empty, move some XRIs from public to 22017 * private pool. 22018 * 2. Get one XRI from private free xri pool. 22019 * 3. If we fail to get one from pvt_pool and this is an expedite request, 22020 * get one free xri from expedite pool. 22021 * 22022 * Note: ndlp is only used on SCSI side for RRQ testing. 22023 * The caller should pass NULL for ndlp on NVME side. 22024 * 22025 * Return: 22026 * pointer to one free IO buf - if private pool is not empty 22027 * NULL - if private pool is empty 22028 **/ 22029 static struct lpfc_io_buf * 22030 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 22031 struct lpfc_nodelist *ndlp, 22032 int hwqid, int expedite) 22033 { 22034 struct lpfc_sli4_hdw_queue *qp; 22035 struct lpfc_multixri_pool *multixri_pool; 22036 struct lpfc_pvt_pool *pvt_pool; 22037 struct lpfc_io_buf *lpfc_ncmd; 22038 22039 qp = &phba->sli4_hba.hdwq[hwqid]; 22040 lpfc_ncmd = NULL; 22041 if (!qp) { 22042 lpfc_printf_log(phba, KERN_INFO, 22043 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22044 "5556 NULL qp for hwqid x%x\n", hwqid); 22045 return lpfc_ncmd; 22046 } 22047 multixri_pool = qp->p_multixri_pool; 22048 if (!multixri_pool) { 22049 lpfc_printf_log(phba, KERN_INFO, 22050 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22051 "5557 NULL multixri for hwqid x%x\n", hwqid); 22052 return lpfc_ncmd; 22053 } 22054 pvt_pool = &multixri_pool->pvt_pool; 22055 if (!pvt_pool) { 22056 lpfc_printf_log(phba, KERN_INFO, 22057 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22058 "5558 NULL pvt_pool for hwqid x%x\n", hwqid); 22059 return lpfc_ncmd; 22060 } 22061 multixri_pool->io_req_count++; 22062 22063 /* If pvt_pool is empty, move some XRIs from public to private pool */ 22064 if (pvt_pool->count == 0) 22065 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 22066 22067 /* Get one XRI from private free xri pool */ 22068 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 22069 22070 if (lpfc_ncmd) { 22071 lpfc_ncmd->hdwq = qp; 22072 lpfc_ncmd->hdwq_no = hwqid; 22073 } else if (expedite) { 22074 /* If we fail to get one from pvt_pool and this is an expedite 22075 * request, get one free xri from expedite pool. 22076 */ 22077 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 22078 } 22079 22080 return lpfc_ncmd; 22081 } 22082 22083 static inline struct lpfc_io_buf * 22084 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 22085 { 22086 struct lpfc_sli4_hdw_queue *qp; 22087 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 22088 22089 qp = &phba->sli4_hba.hdwq[idx]; 22090 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 22091 &qp->lpfc_io_buf_list_get, list) { 22092 if (lpfc_test_rrq_active(phba, ndlp, 22093 lpfc_cmd->cur_iocbq.sli4_lxritag)) 22094 continue; 22095 22096 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 22097 continue; 22098 22099 list_del_init(&lpfc_cmd->list); 22100 qp->get_io_bufs--; 22101 lpfc_cmd->hdwq = qp; 22102 lpfc_cmd->hdwq_no = idx; 22103 return lpfc_cmd; 22104 } 22105 return NULL; 22106 } 22107 22108 /** 22109 * lpfc_get_io_buf - Get one IO buffer from free pool 22110 * @phba: The HBA for which this call is being executed. 22111 * @ndlp: pointer to lpfc nodelist data structure. 22112 * @hwqid: belong to which HWQ 22113 * @expedite: 1 means this request is urgent. 22114 * 22115 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 22116 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 22117 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 22118 * 22119 * Note: ndlp is only used on SCSI side for RRQ testing. 22120 * The caller should pass NULL for ndlp on NVME side. 22121 * 22122 * Return codes: 22123 * NULL - Error 22124 * Pointer to lpfc_io_buf - Success 22125 **/ 22126 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 22127 struct lpfc_nodelist *ndlp, 22128 u32 hwqid, int expedite) 22129 { 22130 struct lpfc_sli4_hdw_queue *qp; 22131 unsigned long iflag; 22132 struct lpfc_io_buf *lpfc_cmd; 22133 22134 qp = &phba->sli4_hba.hdwq[hwqid]; 22135 lpfc_cmd = NULL; 22136 if (!qp) { 22137 lpfc_printf_log(phba, KERN_WARNING, 22138 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22139 "5555 NULL qp for hwqid x%x\n", hwqid); 22140 return lpfc_cmd; 22141 } 22142 22143 if (phba->cfg_xri_rebalancing) 22144 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 22145 phba, ndlp, hwqid, expedite); 22146 else { 22147 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 22148 qp, alloc_xri_get); 22149 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 22150 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22151 if (!lpfc_cmd) { 22152 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 22153 qp, alloc_xri_put); 22154 list_splice(&qp->lpfc_io_buf_list_put, 22155 &qp->lpfc_io_buf_list_get); 22156 qp->get_io_bufs += qp->put_io_bufs; 22157 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 22158 qp->put_io_bufs = 0; 22159 spin_unlock(&qp->io_buf_list_put_lock); 22160 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 22161 expedite) 22162 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22163 } 22164 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 22165 } 22166 22167 return lpfc_cmd; 22168 } 22169 22170 /** 22171 * lpfc_read_object - Retrieve object data from HBA 22172 * @phba: The HBA for which this call is being executed. 22173 * @rdobject: Pathname of object data we want to read. 22174 * @datap: Pointer to where data will be copied to. 22175 * @datasz: size of data area 22176 * 22177 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less. 22178 * The data will be truncated if datasz is not large enough. 22179 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0. 22180 * Returns the actual bytes read from the object. 22181 */ 22182 int 22183 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap, 22184 uint32_t datasz) 22185 { 22186 struct lpfc_mbx_read_object *read_object; 22187 LPFC_MBOXQ_t *mbox; 22188 int rc, length, eof, j, byte_cnt = 0; 22189 uint32_t shdr_status, shdr_add_status; 22190 union lpfc_sli4_cfg_shdr *shdr; 22191 struct lpfc_dmabuf *pcmd; 22192 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0}; 22193 22194 /* sanity check on queue memory */ 22195 if (!datap) 22196 return -ENODEV; 22197 22198 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 22199 if (!mbox) 22200 return -ENOMEM; 22201 length = (sizeof(struct lpfc_mbx_read_object) - 22202 sizeof(struct lpfc_sli4_cfg_mhdr)); 22203 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 22204 LPFC_MBOX_OPCODE_READ_OBJECT, 22205 length, LPFC_SLI4_MBX_EMBED); 22206 read_object = &mbox->u.mqe.un.read_object; 22207 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr; 22208 22209 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0); 22210 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz); 22211 read_object->u.request.rd_object_offset = 0; 22212 read_object->u.request.rd_object_cnt = 1; 22213 22214 memset((void *)read_object->u.request.rd_object_name, 0, 22215 LPFC_OBJ_NAME_SZ); 22216 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject); 22217 for (j = 0; j < strlen(rdobject); j++) 22218 read_object->u.request.rd_object_name[j] = 22219 cpu_to_le32(rd_object_name[j]); 22220 22221 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL); 22222 if (pcmd) 22223 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys); 22224 if (!pcmd || !pcmd->virt) { 22225 kfree(pcmd); 22226 mempool_free(mbox, phba->mbox_mem_pool); 22227 return -ENOMEM; 22228 } 22229 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE); 22230 read_object->u.request.rd_object_hbuf[0].pa_lo = 22231 putPaddrLow(pcmd->phys); 22232 read_object->u.request.rd_object_hbuf[0].pa_hi = 22233 putPaddrHigh(pcmd->phys); 22234 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE; 22235 22236 mbox->vport = phba->pport; 22237 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 22238 mbox->ctx_buf = NULL; 22239 mbox->ctx_ndlp = NULL; 22240 22241 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 22242 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 22243 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 22244 22245 if (shdr_status == STATUS_FAILED && 22246 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) { 22247 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22248 "4674 No port cfg file in FW.\n"); 22249 byte_cnt = -ENOENT; 22250 } else if (shdr_status || shdr_add_status || rc) { 22251 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22252 "2625 READ_OBJECT mailbox failed with " 22253 "status x%x add_status x%x, mbx status x%x\n", 22254 shdr_status, shdr_add_status, rc); 22255 byte_cnt = -ENXIO; 22256 } else { 22257 /* Success */ 22258 length = read_object->u.response.rd_object_actual_rlen; 22259 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response); 22260 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT, 22261 "2626 READ_OBJECT Success len %d:%d, EOF %d\n", 22262 length, datasz, eof); 22263 22264 /* Detect the port config file exists but is empty */ 22265 if (!length && eof) { 22266 byte_cnt = 0; 22267 goto exit; 22268 } 22269 22270 byte_cnt = length; 22271 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt); 22272 } 22273 22274 exit: 22275 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys); 22276 kfree(pcmd); 22277 mempool_free(mbox, phba->mbox_mem_pool); 22278 return byte_cnt; 22279 } 22280 22281 /** 22282 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 22283 * @phba: The HBA for which this call is being executed. 22284 * @lpfc_buf: IO buf structure to append the SGL chunk 22285 * 22286 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 22287 * and will allocate an SGL chunk if the pool is empty. 22288 * 22289 * Return codes: 22290 * NULL - Error 22291 * Pointer to sli4_hybrid_sgl - Success 22292 **/ 22293 struct sli4_hybrid_sgl * 22294 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22295 { 22296 struct sli4_hybrid_sgl *list_entry = NULL; 22297 struct sli4_hybrid_sgl *tmp = NULL; 22298 struct sli4_hybrid_sgl *allocated_sgl = NULL; 22299 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22300 struct list_head *buf_list = &hdwq->sgl_list; 22301 unsigned long iflags; 22302 22303 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22304 22305 if (likely(!list_empty(buf_list))) { 22306 /* break off 1 chunk from the sgl_list */ 22307 list_for_each_entry_safe(list_entry, tmp, 22308 buf_list, list_node) { 22309 list_move_tail(&list_entry->list_node, 22310 &lpfc_buf->dma_sgl_xtra_list); 22311 break; 22312 } 22313 } else { 22314 /* allocate more */ 22315 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22316 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22317 cpu_to_node(hdwq->io_wq->chann)); 22318 if (!tmp) { 22319 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22320 "8353 error kmalloc memory for HDWQ " 22321 "%d %s\n", 22322 lpfc_buf->hdwq_no, __func__); 22323 return NULL; 22324 } 22325 22326 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 22327 GFP_ATOMIC, &tmp->dma_phys_sgl); 22328 if (!tmp->dma_sgl) { 22329 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22330 "8354 error pool_alloc memory for HDWQ " 22331 "%d %s\n", 22332 lpfc_buf->hdwq_no, __func__); 22333 kfree(tmp); 22334 return NULL; 22335 } 22336 22337 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22338 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 22339 } 22340 22341 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 22342 struct sli4_hybrid_sgl, 22343 list_node); 22344 22345 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22346 22347 return allocated_sgl; 22348 } 22349 22350 /** 22351 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 22352 * @phba: The HBA for which this call is being executed. 22353 * @lpfc_buf: IO buf structure with the SGL chunk 22354 * 22355 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 22356 * 22357 * Return codes: 22358 * 0 - Success 22359 * -EINVAL - Error 22360 **/ 22361 int 22362 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22363 { 22364 int rc = 0; 22365 struct sli4_hybrid_sgl *list_entry = NULL; 22366 struct sli4_hybrid_sgl *tmp = NULL; 22367 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22368 struct list_head *buf_list = &hdwq->sgl_list; 22369 unsigned long iflags; 22370 22371 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22372 22373 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 22374 list_for_each_entry_safe(list_entry, tmp, 22375 &lpfc_buf->dma_sgl_xtra_list, 22376 list_node) { 22377 list_move_tail(&list_entry->list_node, 22378 buf_list); 22379 } 22380 } else { 22381 rc = -EINVAL; 22382 } 22383 22384 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22385 return rc; 22386 } 22387 22388 /** 22389 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 22390 * @phba: phba object 22391 * @hdwq: hdwq to cleanup sgl buff resources on 22392 * 22393 * This routine frees all SGL chunks of hdwq SGL chunk pool. 22394 * 22395 * Return codes: 22396 * None 22397 **/ 22398 void 22399 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 22400 struct lpfc_sli4_hdw_queue *hdwq) 22401 { 22402 struct list_head *buf_list = &hdwq->sgl_list; 22403 struct sli4_hybrid_sgl *list_entry = NULL; 22404 struct sli4_hybrid_sgl *tmp = NULL; 22405 unsigned long iflags; 22406 22407 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22408 22409 /* Free sgl pool */ 22410 list_for_each_entry_safe(list_entry, tmp, 22411 buf_list, list_node) { 22412 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 22413 list_entry->dma_sgl, 22414 list_entry->dma_phys_sgl); 22415 list_del(&list_entry->list_node); 22416 kfree(list_entry); 22417 } 22418 22419 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22420 } 22421 22422 /** 22423 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 22424 * @phba: The HBA for which this call is being executed. 22425 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 22426 * 22427 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 22428 * and will allocate an CMD/RSP buffer if the pool is empty. 22429 * 22430 * Return codes: 22431 * NULL - Error 22432 * Pointer to fcp_cmd_rsp_buf - Success 22433 **/ 22434 struct fcp_cmd_rsp_buf * 22435 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22436 struct lpfc_io_buf *lpfc_buf) 22437 { 22438 struct fcp_cmd_rsp_buf *list_entry = NULL; 22439 struct fcp_cmd_rsp_buf *tmp = NULL; 22440 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 22441 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22442 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22443 unsigned long iflags; 22444 22445 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22446 22447 if (likely(!list_empty(buf_list))) { 22448 /* break off 1 chunk from the list */ 22449 list_for_each_entry_safe(list_entry, tmp, 22450 buf_list, 22451 list_node) { 22452 list_move_tail(&list_entry->list_node, 22453 &lpfc_buf->dma_cmd_rsp_list); 22454 break; 22455 } 22456 } else { 22457 /* allocate more */ 22458 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22459 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22460 cpu_to_node(hdwq->io_wq->chann)); 22461 if (!tmp) { 22462 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22463 "8355 error kmalloc memory for HDWQ " 22464 "%d %s\n", 22465 lpfc_buf->hdwq_no, __func__); 22466 return NULL; 22467 } 22468 22469 tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool, 22470 GFP_ATOMIC, 22471 &tmp->fcp_cmd_rsp_dma_handle); 22472 22473 if (!tmp->fcp_cmnd) { 22474 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22475 "8356 error pool_alloc memory for HDWQ " 22476 "%d %s\n", 22477 lpfc_buf->hdwq_no, __func__); 22478 kfree(tmp); 22479 return NULL; 22480 } 22481 22482 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 22483 sizeof(struct fcp_cmnd)); 22484 22485 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22486 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 22487 } 22488 22489 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 22490 struct fcp_cmd_rsp_buf, 22491 list_node); 22492 22493 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22494 22495 return allocated_buf; 22496 } 22497 22498 /** 22499 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 22500 * @phba: The HBA for which this call is being executed. 22501 * @lpfc_buf: IO buf structure with the CMD/RSP buf 22502 * 22503 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 22504 * 22505 * Return codes: 22506 * 0 - Success 22507 * -EINVAL - Error 22508 **/ 22509 int 22510 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22511 struct lpfc_io_buf *lpfc_buf) 22512 { 22513 int rc = 0; 22514 struct fcp_cmd_rsp_buf *list_entry = NULL; 22515 struct fcp_cmd_rsp_buf *tmp = NULL; 22516 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22517 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22518 unsigned long iflags; 22519 22520 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22521 22522 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 22523 list_for_each_entry_safe(list_entry, tmp, 22524 &lpfc_buf->dma_cmd_rsp_list, 22525 list_node) { 22526 list_move_tail(&list_entry->list_node, 22527 buf_list); 22528 } 22529 } else { 22530 rc = -EINVAL; 22531 } 22532 22533 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22534 return rc; 22535 } 22536 22537 /** 22538 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 22539 * @phba: phba object 22540 * @hdwq: hdwq to cleanup cmd rsp buff resources on 22541 * 22542 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 22543 * 22544 * Return codes: 22545 * None 22546 **/ 22547 void 22548 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22549 struct lpfc_sli4_hdw_queue *hdwq) 22550 { 22551 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22552 struct fcp_cmd_rsp_buf *list_entry = NULL; 22553 struct fcp_cmd_rsp_buf *tmp = NULL; 22554 unsigned long iflags; 22555 22556 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22557 22558 /* Free cmd_rsp buf pool */ 22559 list_for_each_entry_safe(list_entry, tmp, 22560 buf_list, 22561 list_node) { 22562 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 22563 list_entry->fcp_cmnd, 22564 list_entry->fcp_cmd_rsp_dma_handle); 22565 list_del(&list_entry->list_node); 22566 kfree(list_entry); 22567 } 22568 22569 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22570 } 22571