1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 5 * EMULEX and SLI are trademarks of Emulex. * 6 * www.emulex.com * 7 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 8 * * 9 * This program is free software; you can redistribute it and/or * 10 * modify it under the terms of version 2 of the GNU General * 11 * Public License as published by the Free Software Foundation. * 12 * This program is distributed in the hope that it will be useful. * 13 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 14 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 15 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 16 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 17 * TO BE LEGALLY INVALID. See the GNU General Public License for * 18 * more details, a copy of which can be found in the file COPYING * 19 * included with this package. * 20 *******************************************************************/ 21 22 #include <linux/blkdev.h> 23 #include <linux/pci.h> 24 #include <linux/interrupt.h> 25 #include <linux/delay.h> 26 #include <linux/slab.h> 27 #include <linux/lockdep.h> 28 29 #include <scsi/scsi.h> 30 #include <scsi/scsi_cmnd.h> 31 #include <scsi/scsi_device.h> 32 #include <scsi/scsi_host.h> 33 #include <scsi/scsi_transport_fc.h> 34 #include <scsi/fc/fc_fs.h> 35 #include <linux/aer.h> 36 37 #include "lpfc_hw4.h" 38 #include "lpfc_hw.h" 39 #include "lpfc_sli.h" 40 #include "lpfc_sli4.h" 41 #include "lpfc_nl.h" 42 #include "lpfc_disc.h" 43 #include "lpfc_scsi.h" 44 #include "lpfc.h" 45 #include "lpfc_crtn.h" 46 #include "lpfc_logmsg.h" 47 #include "lpfc_compat.h" 48 #include "lpfc_debugfs.h" 49 #include "lpfc_vport.h" 50 #include "lpfc_version.h" 51 52 /* There are only four IOCB completion types. */ 53 typedef enum _lpfc_iocb_type { 54 LPFC_UNKNOWN_IOCB, 55 LPFC_UNSOL_IOCB, 56 LPFC_SOL_IOCB, 57 LPFC_ABORT_IOCB 58 } lpfc_iocb_type; 59 60 61 /* Provide function prototypes local to this module. */ 62 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 63 uint32_t); 64 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 65 uint8_t *, uint32_t *); 66 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 67 struct lpfc_iocbq *); 68 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 69 struct hbq_dmabuf *); 70 static int lpfc_sli4_fp_handle_wcqe(struct lpfc_hba *, struct lpfc_queue *, 71 struct lpfc_cqe *); 72 static int lpfc_sli4_post_els_sgl_list(struct lpfc_hba *, struct list_head *, 73 int); 74 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *, struct lpfc_eqe *, 75 uint32_t); 76 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 77 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 78 79 static IOCB_t * 80 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 81 { 82 return &iocbq->iocb; 83 } 84 85 /** 86 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 87 * @q: The Work Queue to operate on. 88 * @wqe: The work Queue Entry to put on the Work queue. 89 * 90 * This routine will copy the contents of @wqe to the next available entry on 91 * the @q. This function will then ring the Work Queue Doorbell to signal the 92 * HBA to start processing the Work Queue Entry. This function returns 0 if 93 * successful. If no entries are available on @q then this function will return 94 * -ENOMEM. 95 * The caller is expected to hold the hbalock when calling this routine. 96 **/ 97 static uint32_t 98 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe *wqe) 99 { 100 union lpfc_wqe *temp_wqe; 101 struct lpfc_register doorbell; 102 uint32_t host_index; 103 uint32_t idx; 104 105 /* sanity check on queue memory */ 106 if (unlikely(!q)) 107 return -ENOMEM; 108 temp_wqe = q->qe[q->host_index].wqe; 109 110 /* If the host has not yet processed the next entry then we are done */ 111 idx = ((q->host_index + 1) % q->entry_count); 112 if (idx == q->hba_index) { 113 q->WQ_overflow++; 114 return -ENOMEM; 115 } 116 q->WQ_posted++; 117 /* set consumption flag every once in a while */ 118 if (!((q->host_index + 1) % q->entry_repost)) 119 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 120 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 121 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 122 lpfc_sli_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 123 /* ensure WQE bcopy flushed before doorbell write */ 124 wmb(); 125 126 /* Update the host index before invoking device */ 127 host_index = q->host_index; 128 129 q->host_index = idx; 130 131 /* Ring Doorbell */ 132 doorbell.word0 = 0; 133 if (q->db_format == LPFC_DB_LIST_FORMAT) { 134 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 135 bf_set(lpfc_wq_db_list_fm_index, &doorbell, host_index); 136 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 137 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 138 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 139 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 140 } else { 141 return -EINVAL; 142 } 143 writel(doorbell.word0, q->db_regaddr); 144 145 return 0; 146 } 147 148 /** 149 * lpfc_sli4_wq_release - Updates internal hba index for WQ 150 * @q: The Work Queue to operate on. 151 * @index: The index to advance the hba index to. 152 * 153 * This routine will update the HBA index of a queue to reflect consumption of 154 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 155 * an entry the host calls this function to update the queue's internal 156 * pointers. This routine returns the number of entries that were consumed by 157 * the HBA. 158 **/ 159 static uint32_t 160 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 161 { 162 uint32_t released = 0; 163 164 /* sanity check on queue memory */ 165 if (unlikely(!q)) 166 return 0; 167 168 if (q->hba_index == index) 169 return 0; 170 do { 171 q->hba_index = ((q->hba_index + 1) % q->entry_count); 172 released++; 173 } while (q->hba_index != index); 174 return released; 175 } 176 177 /** 178 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 179 * @q: The Mailbox Queue to operate on. 180 * @wqe: The Mailbox Queue Entry to put on the Work queue. 181 * 182 * This routine will copy the contents of @mqe to the next available entry on 183 * the @q. This function will then ring the Work Queue Doorbell to signal the 184 * HBA to start processing the Work Queue Entry. This function returns 0 if 185 * successful. If no entries are available on @q then this function will return 186 * -ENOMEM. 187 * The caller is expected to hold the hbalock when calling this routine. 188 **/ 189 static uint32_t 190 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 191 { 192 struct lpfc_mqe *temp_mqe; 193 struct lpfc_register doorbell; 194 195 /* sanity check on queue memory */ 196 if (unlikely(!q)) 197 return -ENOMEM; 198 temp_mqe = q->qe[q->host_index].mqe; 199 200 /* If the host has not yet processed the next entry then we are done */ 201 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 202 return -ENOMEM; 203 lpfc_sli_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 204 /* Save off the mailbox pointer for completion */ 205 q->phba->mbox = (MAILBOX_t *)temp_mqe; 206 207 /* Update the host index before invoking device */ 208 q->host_index = ((q->host_index + 1) % q->entry_count); 209 210 /* Ring Doorbell */ 211 doorbell.word0 = 0; 212 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 213 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 214 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 215 return 0; 216 } 217 218 /** 219 * lpfc_sli4_mq_release - Updates internal hba index for MQ 220 * @q: The Mailbox Queue to operate on. 221 * 222 * This routine will update the HBA index of a queue to reflect consumption of 223 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 224 * an entry the host calls this function to update the queue's internal 225 * pointers. This routine returns the number of entries that were consumed by 226 * the HBA. 227 **/ 228 static uint32_t 229 lpfc_sli4_mq_release(struct lpfc_queue *q) 230 { 231 /* sanity check on queue memory */ 232 if (unlikely(!q)) 233 return 0; 234 235 /* Clear the mailbox pointer for completion */ 236 q->phba->mbox = NULL; 237 q->hba_index = ((q->hba_index + 1) % q->entry_count); 238 return 1; 239 } 240 241 /** 242 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 243 * @q: The Event Queue to get the first valid EQE from 244 * 245 * This routine will get the first valid Event Queue Entry from @q, update 246 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 247 * the Queue (no more work to do), or the Queue is full of EQEs that have been 248 * processed, but not popped back to the HBA then this routine will return NULL. 249 **/ 250 static struct lpfc_eqe * 251 lpfc_sli4_eq_get(struct lpfc_queue *q) 252 { 253 struct lpfc_eqe *eqe; 254 uint32_t idx; 255 256 /* sanity check on queue memory */ 257 if (unlikely(!q)) 258 return NULL; 259 eqe = q->qe[q->hba_index].eqe; 260 261 /* If the next EQE is not valid then we are done */ 262 if (!bf_get_le32(lpfc_eqe_valid, eqe)) 263 return NULL; 264 /* If the host has not yet processed the next entry then we are done */ 265 idx = ((q->hba_index + 1) % q->entry_count); 266 if (idx == q->host_index) 267 return NULL; 268 269 q->hba_index = idx; 270 271 /* 272 * insert barrier for instruction interlock : data from the hardware 273 * must have the valid bit checked before it can be copied and acted 274 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 275 * instructions allowing action on content before valid bit checked, 276 * add barrier here as well. May not be needed as "content" is a 277 * single 32-bit entity here (vs multi word structure for cq's). 278 */ 279 mb(); 280 return eqe; 281 } 282 283 /** 284 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 285 * @q: The Event Queue to disable interrupts 286 * 287 **/ 288 static inline void 289 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 290 { 291 struct lpfc_register doorbell; 292 293 doorbell.word0 = 0; 294 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 295 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 296 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 297 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 298 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 299 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 300 } 301 302 /** 303 * lpfc_sli4_eq_release - Indicates the host has finished processing an EQ 304 * @q: The Event Queue that the host has completed processing for. 305 * @arm: Indicates whether the host wants to arms this CQ. 306 * 307 * This routine will mark all Event Queue Entries on @q, from the last 308 * known completed entry to the last entry that was processed, as completed 309 * by clearing the valid bit for each completion queue entry. Then it will 310 * notify the HBA, by ringing the doorbell, that the EQEs have been processed. 311 * The internal host index in the @q will be updated by this routine to indicate 312 * that the host has finished processing the entries. The @arm parameter 313 * indicates that the queue should be rearmed when ringing the doorbell. 314 * 315 * This function will return the number of EQEs that were popped. 316 **/ 317 uint32_t 318 lpfc_sli4_eq_release(struct lpfc_queue *q, bool arm) 319 { 320 uint32_t released = 0; 321 struct lpfc_eqe *temp_eqe; 322 struct lpfc_register doorbell; 323 324 /* sanity check on queue memory */ 325 if (unlikely(!q)) 326 return 0; 327 328 /* while there are valid entries */ 329 while (q->hba_index != q->host_index) { 330 temp_eqe = q->qe[q->host_index].eqe; 331 bf_set_le32(lpfc_eqe_valid, temp_eqe, 0); 332 released++; 333 q->host_index = ((q->host_index + 1) % q->entry_count); 334 } 335 if (unlikely(released == 0 && !arm)) 336 return 0; 337 338 /* ring doorbell for number popped */ 339 doorbell.word0 = 0; 340 if (arm) { 341 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 342 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 343 } 344 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 345 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 346 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 347 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 348 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 349 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 350 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 351 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 352 readl(q->phba->sli4_hba.EQCQDBregaddr); 353 return released; 354 } 355 356 /** 357 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 358 * @q: The Completion Queue to get the first valid CQE from 359 * 360 * This routine will get the first valid Completion Queue Entry from @q, update 361 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 362 * the Queue (no more work to do), or the Queue is full of CQEs that have been 363 * processed, but not popped back to the HBA then this routine will return NULL. 364 **/ 365 static struct lpfc_cqe * 366 lpfc_sli4_cq_get(struct lpfc_queue *q) 367 { 368 struct lpfc_cqe *cqe; 369 uint32_t idx; 370 371 /* sanity check on queue memory */ 372 if (unlikely(!q)) 373 return NULL; 374 375 /* If the next CQE is not valid then we are done */ 376 if (!bf_get_le32(lpfc_cqe_valid, q->qe[q->hba_index].cqe)) 377 return NULL; 378 /* If the host has not yet processed the next entry then we are done */ 379 idx = ((q->hba_index + 1) % q->entry_count); 380 if (idx == q->host_index) 381 return NULL; 382 383 cqe = q->qe[q->hba_index].cqe; 384 q->hba_index = idx; 385 386 /* 387 * insert barrier for instruction interlock : data from the hardware 388 * must have the valid bit checked before it can be copied and acted 389 * upon. Speculative instructions were allowing a bcopy at the start 390 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 391 * after our return, to copy data before the valid bit check above 392 * was done. As such, some of the copied data was stale. The barrier 393 * ensures the check is before any data is copied. 394 */ 395 mb(); 396 return cqe; 397 } 398 399 /** 400 * lpfc_sli4_cq_release - Indicates the host has finished processing a CQ 401 * @q: The Completion Queue that the host has completed processing for. 402 * @arm: Indicates whether the host wants to arms this CQ. 403 * 404 * This routine will mark all Completion queue entries on @q, from the last 405 * known completed entry to the last entry that was processed, as completed 406 * by clearing the valid bit for each completion queue entry. Then it will 407 * notify the HBA, by ringing the doorbell, that the CQEs have been processed. 408 * The internal host index in the @q will be updated by this routine to indicate 409 * that the host has finished processing the entries. The @arm parameter 410 * indicates that the queue should be rearmed when ringing the doorbell. 411 * 412 * This function will return the number of CQEs that were released. 413 **/ 414 uint32_t 415 lpfc_sli4_cq_release(struct lpfc_queue *q, bool arm) 416 { 417 uint32_t released = 0; 418 struct lpfc_cqe *temp_qe; 419 struct lpfc_register doorbell; 420 421 /* sanity check on queue memory */ 422 if (unlikely(!q)) 423 return 0; 424 /* while there are valid entries */ 425 while (q->hba_index != q->host_index) { 426 temp_qe = q->qe[q->host_index].cqe; 427 bf_set_le32(lpfc_cqe_valid, temp_qe, 0); 428 released++; 429 q->host_index = ((q->host_index + 1) % q->entry_count); 430 } 431 if (unlikely(released == 0 && !arm)) 432 return 0; 433 434 /* ring doorbell for number popped */ 435 doorbell.word0 = 0; 436 if (arm) 437 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 438 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 439 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 440 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 441 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 442 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 443 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 444 return released; 445 } 446 447 /** 448 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 449 * @q: The Header Receive Queue to operate on. 450 * @wqe: The Receive Queue Entry to put on the Receive queue. 451 * 452 * This routine will copy the contents of @wqe to the next available entry on 453 * the @q. This function will then ring the Receive Queue Doorbell to signal the 454 * HBA to start processing the Receive Queue Entry. This function returns the 455 * index that the rqe was copied to if successful. If no entries are available 456 * on @q then this function will return -ENOMEM. 457 * The caller is expected to hold the hbalock when calling this routine. 458 **/ 459 static int 460 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 461 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 462 { 463 struct lpfc_rqe *temp_hrqe; 464 struct lpfc_rqe *temp_drqe; 465 struct lpfc_register doorbell; 466 int put_index; 467 468 /* sanity check on queue memory */ 469 if (unlikely(!hq) || unlikely(!dq)) 470 return -ENOMEM; 471 put_index = hq->host_index; 472 temp_hrqe = hq->qe[hq->host_index].rqe; 473 temp_drqe = dq->qe[dq->host_index].rqe; 474 475 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 476 return -EINVAL; 477 if (hq->host_index != dq->host_index) 478 return -EINVAL; 479 /* If the host has not yet processed the next entry then we are done */ 480 if (((hq->host_index + 1) % hq->entry_count) == hq->hba_index) 481 return -EBUSY; 482 lpfc_sli_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 483 lpfc_sli_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 484 485 /* Update the host index to point to the next slot */ 486 hq->host_index = ((hq->host_index + 1) % hq->entry_count); 487 dq->host_index = ((dq->host_index + 1) % dq->entry_count); 488 489 /* Ring The Header Receive Queue Doorbell */ 490 if (!(hq->host_index % hq->entry_repost)) { 491 doorbell.word0 = 0; 492 if (hq->db_format == LPFC_DB_RING_FORMAT) { 493 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 494 hq->entry_repost); 495 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 496 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 497 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 498 hq->entry_repost); 499 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 500 hq->host_index); 501 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 502 } else { 503 return -EINVAL; 504 } 505 writel(doorbell.word0, hq->db_regaddr); 506 } 507 return put_index; 508 } 509 510 /** 511 * lpfc_sli4_rq_release - Updates internal hba index for RQ 512 * @q: The Header Receive Queue to operate on. 513 * 514 * This routine will update the HBA index of a queue to reflect consumption of 515 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 516 * consumed an entry the host calls this function to update the queue's 517 * internal pointers. This routine returns the number of entries that were 518 * consumed by the HBA. 519 **/ 520 static uint32_t 521 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 522 { 523 /* sanity check on queue memory */ 524 if (unlikely(!hq) || unlikely(!dq)) 525 return 0; 526 527 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 528 return 0; 529 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 530 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 531 return 1; 532 } 533 534 /** 535 * lpfc_cmd_iocb - Get next command iocb entry in the ring 536 * @phba: Pointer to HBA context object. 537 * @pring: Pointer to driver SLI ring object. 538 * 539 * This function returns pointer to next command iocb entry 540 * in the command ring. The caller must hold hbalock to prevent 541 * other threads consume the next command iocb. 542 * SLI-2/SLI-3 provide different sized iocbs. 543 **/ 544 static inline IOCB_t * 545 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 546 { 547 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 548 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 549 } 550 551 /** 552 * lpfc_resp_iocb - Get next response iocb entry in the ring 553 * @phba: Pointer to HBA context object. 554 * @pring: Pointer to driver SLI ring object. 555 * 556 * This function returns pointer to next response iocb entry 557 * in the response ring. The caller must hold hbalock to make sure 558 * that no other thread consume the next response iocb. 559 * SLI-2/SLI-3 provide different sized iocbs. 560 **/ 561 static inline IOCB_t * 562 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 563 { 564 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 565 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 566 } 567 568 /** 569 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 570 * @phba: Pointer to HBA context object. 571 * 572 * This function is called with hbalock held. This function 573 * allocates a new driver iocb object from the iocb pool. If the 574 * allocation is successful, it returns pointer to the newly 575 * allocated iocb object else it returns NULL. 576 **/ 577 struct lpfc_iocbq * 578 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 579 { 580 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 581 struct lpfc_iocbq * iocbq = NULL; 582 583 lockdep_assert_held(&phba->hbalock); 584 585 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 586 if (iocbq) 587 phba->iocb_cnt++; 588 if (phba->iocb_cnt > phba->iocb_max) 589 phba->iocb_max = phba->iocb_cnt; 590 return iocbq; 591 } 592 593 /** 594 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 595 * @phba: Pointer to HBA context object. 596 * @xritag: XRI value. 597 * 598 * This function clears the sglq pointer from the array of acive 599 * sglq's. The xritag that is passed in is used to index into the 600 * array. Before the xritag can be used it needs to be adjusted 601 * by subtracting the xribase. 602 * 603 * Returns sglq ponter = success, NULL = Failure. 604 **/ 605 static struct lpfc_sglq * 606 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 607 { 608 struct lpfc_sglq *sglq; 609 610 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 611 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 612 return sglq; 613 } 614 615 /** 616 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 617 * @phba: Pointer to HBA context object. 618 * @xritag: XRI value. 619 * 620 * This function returns the sglq pointer from the array of acive 621 * sglq's. The xritag that is passed in is used to index into the 622 * array. Before the xritag can be used it needs to be adjusted 623 * by subtracting the xribase. 624 * 625 * Returns sglq ponter = success, NULL = Failure. 626 **/ 627 struct lpfc_sglq * 628 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 629 { 630 struct lpfc_sglq *sglq; 631 632 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 633 return sglq; 634 } 635 636 /** 637 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 638 * @phba: Pointer to HBA context object. 639 * @xritag: xri used in this exchange. 640 * @rrq: The RRQ to be cleared. 641 * 642 **/ 643 void 644 lpfc_clr_rrq_active(struct lpfc_hba *phba, 645 uint16_t xritag, 646 struct lpfc_node_rrq *rrq) 647 { 648 struct lpfc_nodelist *ndlp = NULL; 649 650 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp)) 651 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 652 653 /* The target DID could have been swapped (cable swap) 654 * we should use the ndlp from the findnode if it is 655 * available. 656 */ 657 if ((!ndlp) && rrq->ndlp) 658 ndlp = rrq->ndlp; 659 660 if (!ndlp) 661 goto out; 662 663 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 664 rrq->send_rrq = 0; 665 rrq->xritag = 0; 666 rrq->rrq_stop_time = 0; 667 } 668 out: 669 mempool_free(rrq, phba->rrq_pool); 670 } 671 672 /** 673 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 674 * @phba: Pointer to HBA context object. 675 * 676 * This function is called with hbalock held. This function 677 * Checks if stop_time (ratov from setting rrq active) has 678 * been reached, if it has and the send_rrq flag is set then 679 * it will call lpfc_send_rrq. If the send_rrq flag is not set 680 * then it will just call the routine to clear the rrq and 681 * free the rrq resource. 682 * The timer is set to the next rrq that is going to expire before 683 * leaving the routine. 684 * 685 **/ 686 void 687 lpfc_handle_rrq_active(struct lpfc_hba *phba) 688 { 689 struct lpfc_node_rrq *rrq; 690 struct lpfc_node_rrq *nextrrq; 691 unsigned long next_time; 692 unsigned long iflags; 693 LIST_HEAD(send_rrq); 694 695 spin_lock_irqsave(&phba->hbalock, iflags); 696 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 697 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 698 list_for_each_entry_safe(rrq, nextrrq, 699 &phba->active_rrq_list, list) { 700 if (time_after(jiffies, rrq->rrq_stop_time)) 701 list_move(&rrq->list, &send_rrq); 702 else if (time_before(rrq->rrq_stop_time, next_time)) 703 next_time = rrq->rrq_stop_time; 704 } 705 spin_unlock_irqrestore(&phba->hbalock, iflags); 706 if ((!list_empty(&phba->active_rrq_list)) && 707 (!(phba->pport->load_flag & FC_UNLOADING))) 708 mod_timer(&phba->rrq_tmr, next_time); 709 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 710 list_del(&rrq->list); 711 if (!rrq->send_rrq) 712 /* this call will free the rrq */ 713 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 714 else if (lpfc_send_rrq(phba, rrq)) { 715 /* if we send the rrq then the completion handler 716 * will clear the bit in the xribitmap. 717 */ 718 lpfc_clr_rrq_active(phba, rrq->xritag, 719 rrq); 720 } 721 } 722 } 723 724 /** 725 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 726 * @vport: Pointer to vport context object. 727 * @xri: The xri used in the exchange. 728 * @did: The targets DID for this exchange. 729 * 730 * returns NULL = rrq not found in the phba->active_rrq_list. 731 * rrq = rrq for this xri and target. 732 **/ 733 struct lpfc_node_rrq * 734 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 735 { 736 struct lpfc_hba *phba = vport->phba; 737 struct lpfc_node_rrq *rrq; 738 struct lpfc_node_rrq *nextrrq; 739 unsigned long iflags; 740 741 if (phba->sli_rev != LPFC_SLI_REV4) 742 return NULL; 743 spin_lock_irqsave(&phba->hbalock, iflags); 744 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 745 if (rrq->vport == vport && rrq->xritag == xri && 746 rrq->nlp_DID == did){ 747 list_del(&rrq->list); 748 spin_unlock_irqrestore(&phba->hbalock, iflags); 749 return rrq; 750 } 751 } 752 spin_unlock_irqrestore(&phba->hbalock, iflags); 753 return NULL; 754 } 755 756 /** 757 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 758 * @vport: Pointer to vport context object. 759 * @ndlp: Pointer to the lpfc_node_list structure. 760 * If ndlp is NULL Remove all active RRQs for this vport from the 761 * phba->active_rrq_list and clear the rrq. 762 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 763 **/ 764 void 765 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 766 767 { 768 struct lpfc_hba *phba = vport->phba; 769 struct lpfc_node_rrq *rrq; 770 struct lpfc_node_rrq *nextrrq; 771 unsigned long iflags; 772 LIST_HEAD(rrq_list); 773 774 if (phba->sli_rev != LPFC_SLI_REV4) 775 return; 776 if (!ndlp) { 777 lpfc_sli4_vport_delete_els_xri_aborted(vport); 778 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 779 } 780 spin_lock_irqsave(&phba->hbalock, iflags); 781 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) 782 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp)) 783 list_move(&rrq->list, &rrq_list); 784 spin_unlock_irqrestore(&phba->hbalock, iflags); 785 786 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 787 list_del(&rrq->list); 788 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 789 } 790 } 791 792 /** 793 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 794 * @phba: Pointer to HBA context object. 795 * @ndlp: Targets nodelist pointer for this exchange. 796 * @xritag the xri in the bitmap to test. 797 * 798 * This function is called with hbalock held. This function 799 * returns 0 = rrq not active for this xri 800 * 1 = rrq is valid for this xri. 801 **/ 802 int 803 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 804 uint16_t xritag) 805 { 806 lockdep_assert_held(&phba->hbalock); 807 if (!ndlp) 808 return 0; 809 if (!ndlp->active_rrqs_xri_bitmap) 810 return 0; 811 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 812 return 1; 813 else 814 return 0; 815 } 816 817 /** 818 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 819 * @phba: Pointer to HBA context object. 820 * @ndlp: nodelist pointer for this target. 821 * @xritag: xri used in this exchange. 822 * @rxid: Remote Exchange ID. 823 * @send_rrq: Flag used to determine if we should send rrq els cmd. 824 * 825 * This function takes the hbalock. 826 * The active bit is always set in the active rrq xri_bitmap even 827 * if there is no slot avaiable for the other rrq information. 828 * 829 * returns 0 rrq actived for this xri 830 * < 0 No memory or invalid ndlp. 831 **/ 832 int 833 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 834 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 835 { 836 unsigned long iflags; 837 struct lpfc_node_rrq *rrq; 838 int empty; 839 840 if (!ndlp) 841 return -EINVAL; 842 843 if (!phba->cfg_enable_rrq) 844 return -EINVAL; 845 846 spin_lock_irqsave(&phba->hbalock, iflags); 847 if (phba->pport->load_flag & FC_UNLOADING) { 848 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 849 goto out; 850 } 851 852 /* 853 * set the active bit even if there is no mem available. 854 */ 855 if (NLP_CHK_FREE_REQ(ndlp)) 856 goto out; 857 858 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 859 goto out; 860 861 if (!ndlp->active_rrqs_xri_bitmap) 862 goto out; 863 864 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 865 goto out; 866 867 spin_unlock_irqrestore(&phba->hbalock, iflags); 868 rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL); 869 if (!rrq) { 870 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 871 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 872 " DID:0x%x Send:%d\n", 873 xritag, rxid, ndlp->nlp_DID, send_rrq); 874 return -EINVAL; 875 } 876 if (phba->cfg_enable_rrq == 1) 877 rrq->send_rrq = send_rrq; 878 else 879 rrq->send_rrq = 0; 880 rrq->xritag = xritag; 881 rrq->rrq_stop_time = jiffies + 882 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 883 rrq->ndlp = ndlp; 884 rrq->nlp_DID = ndlp->nlp_DID; 885 rrq->vport = ndlp->vport; 886 rrq->rxid = rxid; 887 spin_lock_irqsave(&phba->hbalock, iflags); 888 empty = list_empty(&phba->active_rrq_list); 889 list_add_tail(&rrq->list, &phba->active_rrq_list); 890 phba->hba_flag |= HBA_RRQ_ACTIVE; 891 if (empty) 892 lpfc_worker_wake_up(phba); 893 spin_unlock_irqrestore(&phba->hbalock, iflags); 894 return 0; 895 out: 896 spin_unlock_irqrestore(&phba->hbalock, iflags); 897 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 898 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 899 " DID:0x%x Send:%d\n", 900 xritag, rxid, ndlp->nlp_DID, send_rrq); 901 return -EINVAL; 902 } 903 904 /** 905 * __lpfc_sli_get_sglq - Allocates an iocb object from sgl pool 906 * @phba: Pointer to HBA context object. 907 * @piocb: Pointer to the iocbq. 908 * 909 * This function is called with the ring lock held. This function 910 * gets a new driver sglq object from the sglq list. If the 911 * list is not empty then it is successful, it returns pointer to the newly 912 * allocated sglq object else it returns NULL. 913 **/ 914 static struct lpfc_sglq * 915 __lpfc_sli_get_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 916 { 917 struct list_head *lpfc_sgl_list = &phba->sli4_hba.lpfc_sgl_list; 918 struct lpfc_sglq *sglq = NULL; 919 struct lpfc_sglq *start_sglq = NULL; 920 struct lpfc_scsi_buf *lpfc_cmd; 921 struct lpfc_nodelist *ndlp; 922 int found = 0; 923 924 lockdep_assert_held(&phba->hbalock); 925 926 if (piocbq->iocb_flag & LPFC_IO_FCP) { 927 lpfc_cmd = (struct lpfc_scsi_buf *) piocbq->context1; 928 ndlp = lpfc_cmd->rdata->pnode; 929 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 930 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 931 ndlp = piocbq->context_un.ndlp; 932 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 933 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 934 ndlp = NULL; 935 else 936 ndlp = piocbq->context_un.ndlp; 937 } else { 938 ndlp = piocbq->context1; 939 } 940 941 list_remove_head(lpfc_sgl_list, sglq, struct lpfc_sglq, list); 942 start_sglq = sglq; 943 while (!found) { 944 if (!sglq) 945 return NULL; 946 if (lpfc_test_rrq_active(phba, ndlp, sglq->sli4_lxritag)) { 947 /* This xri has an rrq outstanding for this DID. 948 * put it back in the list and get another xri. 949 */ 950 list_add_tail(&sglq->list, lpfc_sgl_list); 951 sglq = NULL; 952 list_remove_head(lpfc_sgl_list, sglq, 953 struct lpfc_sglq, list); 954 if (sglq == start_sglq) { 955 sglq = NULL; 956 break; 957 } else 958 continue; 959 } 960 sglq->ndlp = ndlp; 961 found = 1; 962 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 963 sglq->state = SGL_ALLOCATED; 964 } 965 return sglq; 966 } 967 968 /** 969 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 970 * @phba: Pointer to HBA context object. 971 * 972 * This function is called with no lock held. This function 973 * allocates a new driver iocb object from the iocb pool. If the 974 * allocation is successful, it returns pointer to the newly 975 * allocated iocb object else it returns NULL. 976 **/ 977 struct lpfc_iocbq * 978 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 979 { 980 struct lpfc_iocbq * iocbq = NULL; 981 unsigned long iflags; 982 983 spin_lock_irqsave(&phba->hbalock, iflags); 984 iocbq = __lpfc_sli_get_iocbq(phba); 985 spin_unlock_irqrestore(&phba->hbalock, iflags); 986 return iocbq; 987 } 988 989 /** 990 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 991 * @phba: Pointer to HBA context object. 992 * @iocbq: Pointer to driver iocb object. 993 * 994 * This function is called with hbalock held to release driver 995 * iocb object to the iocb pool. The iotag in the iocb object 996 * does not change for each use of the iocb object. This function 997 * clears all other fields of the iocb object when it is freed. 998 * The sqlq structure that holds the xritag and phys and virtual 999 * mappings for the scatter gather list is retrieved from the 1000 * active array of sglq. The get of the sglq pointer also clears 1001 * the entry in the array. If the status of the IO indiactes that 1002 * this IO was aborted then the sglq entry it put on the 1003 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1004 * IO has good status or fails for any other reason then the sglq 1005 * entry is added to the free list (lpfc_sgl_list). 1006 **/ 1007 static void 1008 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1009 { 1010 struct lpfc_sglq *sglq; 1011 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1012 unsigned long iflag = 0; 1013 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 1014 1015 lockdep_assert_held(&phba->hbalock); 1016 1017 if (iocbq->sli4_xritag == NO_XRI) 1018 sglq = NULL; 1019 else 1020 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1021 1022 1023 if (sglq) { 1024 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1025 (sglq->state != SGL_XRI_ABORTED)) { 1026 spin_lock_irqsave(&phba->sli4_hba.abts_sgl_list_lock, 1027 iflag); 1028 list_add(&sglq->list, 1029 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1030 spin_unlock_irqrestore( 1031 &phba->sli4_hba.abts_sgl_list_lock, iflag); 1032 } else { 1033 spin_lock_irqsave(&pring->ring_lock, iflag); 1034 sglq->state = SGL_FREED; 1035 sglq->ndlp = NULL; 1036 list_add_tail(&sglq->list, 1037 &phba->sli4_hba.lpfc_sgl_list); 1038 spin_unlock_irqrestore(&pring->ring_lock, iflag); 1039 1040 /* Check if TXQ queue needs to be serviced */ 1041 if (!list_empty(&pring->txq)) 1042 lpfc_worker_wake_up(phba); 1043 } 1044 } 1045 1046 1047 /* 1048 * Clean all volatile data fields, preserve iotag and node struct. 1049 */ 1050 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1051 iocbq->sli4_lxritag = NO_XRI; 1052 iocbq->sli4_xritag = NO_XRI; 1053 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1054 } 1055 1056 1057 /** 1058 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1059 * @phba: Pointer to HBA context object. 1060 * @iocbq: Pointer to driver iocb object. 1061 * 1062 * This function is called with hbalock held to release driver 1063 * iocb object to the iocb pool. The iotag in the iocb object 1064 * does not change for each use of the iocb object. This function 1065 * clears all other fields of the iocb object when it is freed. 1066 **/ 1067 static void 1068 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1069 { 1070 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1071 1072 lockdep_assert_held(&phba->hbalock); 1073 1074 /* 1075 * Clean all volatile data fields, preserve iotag and node struct. 1076 */ 1077 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1078 iocbq->sli4_xritag = NO_XRI; 1079 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1080 } 1081 1082 /** 1083 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1084 * @phba: Pointer to HBA context object. 1085 * @iocbq: Pointer to driver iocb object. 1086 * 1087 * This function is called with hbalock held to release driver 1088 * iocb object to the iocb pool. The iotag in the iocb object 1089 * does not change for each use of the iocb object. This function 1090 * clears all other fields of the iocb object when it is freed. 1091 **/ 1092 static void 1093 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1094 { 1095 lockdep_assert_held(&phba->hbalock); 1096 1097 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1098 phba->iocb_cnt--; 1099 } 1100 1101 /** 1102 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1103 * @phba: Pointer to HBA context object. 1104 * @iocbq: Pointer to driver iocb object. 1105 * 1106 * This function is called with no lock held to release the iocb to 1107 * iocb pool. 1108 **/ 1109 void 1110 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1111 { 1112 unsigned long iflags; 1113 1114 /* 1115 * Clean all volatile data fields, preserve iotag and node struct. 1116 */ 1117 spin_lock_irqsave(&phba->hbalock, iflags); 1118 __lpfc_sli_release_iocbq(phba, iocbq); 1119 spin_unlock_irqrestore(&phba->hbalock, iflags); 1120 } 1121 1122 /** 1123 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1124 * @phba: Pointer to HBA context object. 1125 * @iocblist: List of IOCBs. 1126 * @ulpstatus: ULP status in IOCB command field. 1127 * @ulpWord4: ULP word-4 in IOCB command field. 1128 * 1129 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1130 * on the list by invoking the complete callback function associated with the 1131 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1132 * fields. 1133 **/ 1134 void 1135 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1136 uint32_t ulpstatus, uint32_t ulpWord4) 1137 { 1138 struct lpfc_iocbq *piocb; 1139 1140 while (!list_empty(iocblist)) { 1141 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1142 if (!piocb->iocb_cmpl) 1143 lpfc_sli_release_iocbq(phba, piocb); 1144 else { 1145 piocb->iocb.ulpStatus = ulpstatus; 1146 piocb->iocb.un.ulpWord[4] = ulpWord4; 1147 (piocb->iocb_cmpl) (phba, piocb, piocb); 1148 } 1149 } 1150 return; 1151 } 1152 1153 /** 1154 * lpfc_sli_iocb_cmd_type - Get the iocb type 1155 * @iocb_cmnd: iocb command code. 1156 * 1157 * This function is called by ring event handler function to get the iocb type. 1158 * This function translates the iocb command to an iocb command type used to 1159 * decide the final disposition of each completed IOCB. 1160 * The function returns 1161 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1162 * LPFC_SOL_IOCB if it is a solicited iocb completion 1163 * LPFC_ABORT_IOCB if it is an abort iocb 1164 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1165 * 1166 * The caller is not required to hold any lock. 1167 **/ 1168 static lpfc_iocb_type 1169 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1170 { 1171 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1172 1173 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1174 return 0; 1175 1176 switch (iocb_cmnd) { 1177 case CMD_XMIT_SEQUENCE_CR: 1178 case CMD_XMIT_SEQUENCE_CX: 1179 case CMD_XMIT_BCAST_CN: 1180 case CMD_XMIT_BCAST_CX: 1181 case CMD_ELS_REQUEST_CR: 1182 case CMD_ELS_REQUEST_CX: 1183 case CMD_CREATE_XRI_CR: 1184 case CMD_CREATE_XRI_CX: 1185 case CMD_GET_RPI_CN: 1186 case CMD_XMIT_ELS_RSP_CX: 1187 case CMD_GET_RPI_CR: 1188 case CMD_FCP_IWRITE_CR: 1189 case CMD_FCP_IWRITE_CX: 1190 case CMD_FCP_IREAD_CR: 1191 case CMD_FCP_IREAD_CX: 1192 case CMD_FCP_ICMND_CR: 1193 case CMD_FCP_ICMND_CX: 1194 case CMD_FCP_TSEND_CX: 1195 case CMD_FCP_TRSP_CX: 1196 case CMD_FCP_TRECEIVE_CX: 1197 case CMD_FCP_AUTO_TRSP_CX: 1198 case CMD_ADAPTER_MSG: 1199 case CMD_ADAPTER_DUMP: 1200 case CMD_XMIT_SEQUENCE64_CR: 1201 case CMD_XMIT_SEQUENCE64_CX: 1202 case CMD_XMIT_BCAST64_CN: 1203 case CMD_XMIT_BCAST64_CX: 1204 case CMD_ELS_REQUEST64_CR: 1205 case CMD_ELS_REQUEST64_CX: 1206 case CMD_FCP_IWRITE64_CR: 1207 case CMD_FCP_IWRITE64_CX: 1208 case CMD_FCP_IREAD64_CR: 1209 case CMD_FCP_IREAD64_CX: 1210 case CMD_FCP_ICMND64_CR: 1211 case CMD_FCP_ICMND64_CX: 1212 case CMD_FCP_TSEND64_CX: 1213 case CMD_FCP_TRSP64_CX: 1214 case CMD_FCP_TRECEIVE64_CX: 1215 case CMD_GEN_REQUEST64_CR: 1216 case CMD_GEN_REQUEST64_CX: 1217 case CMD_XMIT_ELS_RSP64_CX: 1218 case DSSCMD_IWRITE64_CR: 1219 case DSSCMD_IWRITE64_CX: 1220 case DSSCMD_IREAD64_CR: 1221 case DSSCMD_IREAD64_CX: 1222 type = LPFC_SOL_IOCB; 1223 break; 1224 case CMD_ABORT_XRI_CN: 1225 case CMD_ABORT_XRI_CX: 1226 case CMD_CLOSE_XRI_CN: 1227 case CMD_CLOSE_XRI_CX: 1228 case CMD_XRI_ABORTED_CX: 1229 case CMD_ABORT_MXRI64_CN: 1230 case CMD_XMIT_BLS_RSP64_CX: 1231 type = LPFC_ABORT_IOCB; 1232 break; 1233 case CMD_RCV_SEQUENCE_CX: 1234 case CMD_RCV_ELS_REQ_CX: 1235 case CMD_RCV_SEQUENCE64_CX: 1236 case CMD_RCV_ELS_REQ64_CX: 1237 case CMD_ASYNC_STATUS: 1238 case CMD_IOCB_RCV_SEQ64_CX: 1239 case CMD_IOCB_RCV_ELS64_CX: 1240 case CMD_IOCB_RCV_CONT64_CX: 1241 case CMD_IOCB_RET_XRI64_CX: 1242 type = LPFC_UNSOL_IOCB; 1243 break; 1244 case CMD_IOCB_XMIT_MSEQ64_CR: 1245 case CMD_IOCB_XMIT_MSEQ64_CX: 1246 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1247 case CMD_IOCB_RCV_ELS_LIST64_CX: 1248 case CMD_IOCB_CLOSE_EXTENDED_CN: 1249 case CMD_IOCB_ABORT_EXTENDED_CN: 1250 case CMD_IOCB_RET_HBQE64_CN: 1251 case CMD_IOCB_FCP_IBIDIR64_CR: 1252 case CMD_IOCB_FCP_IBIDIR64_CX: 1253 case CMD_IOCB_FCP_ITASKMGT64_CX: 1254 case CMD_IOCB_LOGENTRY_CN: 1255 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1256 printk("%s - Unhandled SLI-3 Command x%x\n", 1257 __func__, iocb_cmnd); 1258 type = LPFC_UNKNOWN_IOCB; 1259 break; 1260 default: 1261 type = LPFC_UNKNOWN_IOCB; 1262 break; 1263 } 1264 1265 return type; 1266 } 1267 1268 /** 1269 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1270 * @phba: Pointer to HBA context object. 1271 * 1272 * This function is called from SLI initialization code 1273 * to configure every ring of the HBA's SLI interface. The 1274 * caller is not required to hold any lock. This function issues 1275 * a config_ring mailbox command for each ring. 1276 * This function returns zero if successful else returns a negative 1277 * error code. 1278 **/ 1279 static int 1280 lpfc_sli_ring_map(struct lpfc_hba *phba) 1281 { 1282 struct lpfc_sli *psli = &phba->sli; 1283 LPFC_MBOXQ_t *pmb; 1284 MAILBOX_t *pmbox; 1285 int i, rc, ret = 0; 1286 1287 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1288 if (!pmb) 1289 return -ENOMEM; 1290 pmbox = &pmb->u.mb; 1291 phba->link_state = LPFC_INIT_MBX_CMDS; 1292 for (i = 0; i < psli->num_rings; i++) { 1293 lpfc_config_ring(phba, i, pmb); 1294 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1295 if (rc != MBX_SUCCESS) { 1296 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1297 "0446 Adapter failed to init (%d), " 1298 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1299 "ring %d\n", 1300 rc, pmbox->mbxCommand, 1301 pmbox->mbxStatus, i); 1302 phba->link_state = LPFC_HBA_ERROR; 1303 ret = -ENXIO; 1304 break; 1305 } 1306 } 1307 mempool_free(pmb, phba->mbox_mem_pool); 1308 return ret; 1309 } 1310 1311 /** 1312 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1313 * @phba: Pointer to HBA context object. 1314 * @pring: Pointer to driver SLI ring object. 1315 * @piocb: Pointer to the driver iocb object. 1316 * 1317 * This function is called with hbalock held. The function adds the 1318 * new iocb to txcmplq of the given ring. This function always returns 1319 * 0. If this function is called for ELS ring, this function checks if 1320 * there is a vport associated with the ELS command. This function also 1321 * starts els_tmofunc timer if this is an ELS command. 1322 **/ 1323 static int 1324 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1325 struct lpfc_iocbq *piocb) 1326 { 1327 lockdep_assert_held(&phba->hbalock); 1328 1329 BUG_ON(!piocb); 1330 1331 list_add_tail(&piocb->list, &pring->txcmplq); 1332 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1333 1334 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1335 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1336 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1337 BUG_ON(!piocb->vport); 1338 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1339 mod_timer(&piocb->vport->els_tmofunc, 1340 jiffies + 1341 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1342 } 1343 1344 return 0; 1345 } 1346 1347 /** 1348 * lpfc_sli_ringtx_get - Get first element of the txq 1349 * @phba: Pointer to HBA context object. 1350 * @pring: Pointer to driver SLI ring object. 1351 * 1352 * This function is called with hbalock held to get next 1353 * iocb in txq of the given ring. If there is any iocb in 1354 * the txq, the function returns first iocb in the list after 1355 * removing the iocb from the list, else it returns NULL. 1356 **/ 1357 struct lpfc_iocbq * 1358 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1359 { 1360 struct lpfc_iocbq *cmd_iocb; 1361 1362 lockdep_assert_held(&phba->hbalock); 1363 1364 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1365 return cmd_iocb; 1366 } 1367 1368 /** 1369 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1370 * @phba: Pointer to HBA context object. 1371 * @pring: Pointer to driver SLI ring object. 1372 * 1373 * This function is called with hbalock held and the caller must post the 1374 * iocb without releasing the lock. If the caller releases the lock, 1375 * iocb slot returned by the function is not guaranteed to be available. 1376 * The function returns pointer to the next available iocb slot if there 1377 * is available slot in the ring, else it returns NULL. 1378 * If the get index of the ring is ahead of the put index, the function 1379 * will post an error attention event to the worker thread to take the 1380 * HBA to offline state. 1381 **/ 1382 static IOCB_t * 1383 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1384 { 1385 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1386 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1387 1388 lockdep_assert_held(&phba->hbalock); 1389 1390 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1391 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1392 pring->sli.sli3.next_cmdidx = 0; 1393 1394 if (unlikely(pring->sli.sli3.local_getidx == 1395 pring->sli.sli3.next_cmdidx)) { 1396 1397 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1398 1399 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1400 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 1401 "0315 Ring %d issue: portCmdGet %d " 1402 "is bigger than cmd ring %d\n", 1403 pring->ringno, 1404 pring->sli.sli3.local_getidx, 1405 max_cmd_idx); 1406 1407 phba->link_state = LPFC_HBA_ERROR; 1408 /* 1409 * All error attention handlers are posted to 1410 * worker thread 1411 */ 1412 phba->work_ha |= HA_ERATT; 1413 phba->work_hs = HS_FFER3; 1414 1415 lpfc_worker_wake_up(phba); 1416 1417 return NULL; 1418 } 1419 1420 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1421 return NULL; 1422 } 1423 1424 return lpfc_cmd_iocb(phba, pring); 1425 } 1426 1427 /** 1428 * lpfc_sli_next_iotag - Get an iotag for the iocb 1429 * @phba: Pointer to HBA context object. 1430 * @iocbq: Pointer to driver iocb object. 1431 * 1432 * This function gets an iotag for the iocb. If there is no unused iotag and 1433 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1434 * array and assigns a new iotag. 1435 * The function returns the allocated iotag if successful, else returns zero. 1436 * Zero is not a valid iotag. 1437 * The caller is not required to hold any lock. 1438 **/ 1439 uint16_t 1440 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1441 { 1442 struct lpfc_iocbq **new_arr; 1443 struct lpfc_iocbq **old_arr; 1444 size_t new_len; 1445 struct lpfc_sli *psli = &phba->sli; 1446 uint16_t iotag; 1447 1448 spin_lock_irq(&phba->hbalock); 1449 iotag = psli->last_iotag; 1450 if(++iotag < psli->iocbq_lookup_len) { 1451 psli->last_iotag = iotag; 1452 psli->iocbq_lookup[iotag] = iocbq; 1453 spin_unlock_irq(&phba->hbalock); 1454 iocbq->iotag = iotag; 1455 return iotag; 1456 } else if (psli->iocbq_lookup_len < (0xffff 1457 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1458 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1459 spin_unlock_irq(&phba->hbalock); 1460 new_arr = kzalloc(new_len * sizeof (struct lpfc_iocbq *), 1461 GFP_KERNEL); 1462 if (new_arr) { 1463 spin_lock_irq(&phba->hbalock); 1464 old_arr = psli->iocbq_lookup; 1465 if (new_len <= psli->iocbq_lookup_len) { 1466 /* highly unprobable case */ 1467 kfree(new_arr); 1468 iotag = psli->last_iotag; 1469 if(++iotag < psli->iocbq_lookup_len) { 1470 psli->last_iotag = iotag; 1471 psli->iocbq_lookup[iotag] = iocbq; 1472 spin_unlock_irq(&phba->hbalock); 1473 iocbq->iotag = iotag; 1474 return iotag; 1475 } 1476 spin_unlock_irq(&phba->hbalock); 1477 return 0; 1478 } 1479 if (psli->iocbq_lookup) 1480 memcpy(new_arr, old_arr, 1481 ((psli->last_iotag + 1) * 1482 sizeof (struct lpfc_iocbq *))); 1483 psli->iocbq_lookup = new_arr; 1484 psli->iocbq_lookup_len = new_len; 1485 psli->last_iotag = iotag; 1486 psli->iocbq_lookup[iotag] = iocbq; 1487 spin_unlock_irq(&phba->hbalock); 1488 iocbq->iotag = iotag; 1489 kfree(old_arr); 1490 return iotag; 1491 } 1492 } else 1493 spin_unlock_irq(&phba->hbalock); 1494 1495 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1496 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1497 psli->last_iotag); 1498 1499 return 0; 1500 } 1501 1502 /** 1503 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1504 * @phba: Pointer to HBA context object. 1505 * @pring: Pointer to driver SLI ring object. 1506 * @iocb: Pointer to iocb slot in the ring. 1507 * @nextiocb: Pointer to driver iocb object which need to be 1508 * posted to firmware. 1509 * 1510 * This function is called with hbalock held to post a new iocb to 1511 * the firmware. This function copies the new iocb to ring iocb slot and 1512 * updates the ring pointers. It adds the new iocb to txcmplq if there is 1513 * a completion call back for this iocb else the function will free the 1514 * iocb object. 1515 **/ 1516 static void 1517 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1518 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1519 { 1520 lockdep_assert_held(&phba->hbalock); 1521 /* 1522 * Set up an iotag 1523 */ 1524 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1525 1526 1527 if (pring->ringno == LPFC_ELS_RING) { 1528 lpfc_debugfs_slow_ring_trc(phba, 1529 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1530 *(((uint32_t *) &nextiocb->iocb) + 4), 1531 *(((uint32_t *) &nextiocb->iocb) + 6), 1532 *(((uint32_t *) &nextiocb->iocb) + 7)); 1533 } 1534 1535 /* 1536 * Issue iocb command to adapter 1537 */ 1538 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1539 wmb(); 1540 pring->stats.iocb_cmd++; 1541 1542 /* 1543 * If there is no completion routine to call, we can release the 1544 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1545 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1546 */ 1547 if (nextiocb->iocb_cmpl) 1548 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1549 else 1550 __lpfc_sli_release_iocbq(phba, nextiocb); 1551 1552 /* 1553 * Let the HBA know what IOCB slot will be the next one the 1554 * driver will put a command into. 1555 */ 1556 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1557 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1558 } 1559 1560 /** 1561 * lpfc_sli_update_full_ring - Update the chip attention register 1562 * @phba: Pointer to HBA context object. 1563 * @pring: Pointer to driver SLI ring object. 1564 * 1565 * The caller is not required to hold any lock for calling this function. 1566 * This function updates the chip attention bits for the ring to inform firmware 1567 * that there are pending work to be done for this ring and requests an 1568 * interrupt when there is space available in the ring. This function is 1569 * called when the driver is unable to post more iocbs to the ring due 1570 * to unavailability of space in the ring. 1571 **/ 1572 static void 1573 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1574 { 1575 int ringno = pring->ringno; 1576 1577 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1578 1579 wmb(); 1580 1581 /* 1582 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1583 * The HBA will tell us when an IOCB entry is available. 1584 */ 1585 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1586 readl(phba->CAregaddr); /* flush */ 1587 1588 pring->stats.iocb_cmd_full++; 1589 } 1590 1591 /** 1592 * lpfc_sli_update_ring - Update chip attention register 1593 * @phba: Pointer to HBA context object. 1594 * @pring: Pointer to driver SLI ring object. 1595 * 1596 * This function updates the chip attention register bit for the 1597 * given ring to inform HBA that there is more work to be done 1598 * in this ring. The caller is not required to hold any lock. 1599 **/ 1600 static void 1601 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1602 { 1603 int ringno = pring->ringno; 1604 1605 /* 1606 * Tell the HBA that there is work to do in this ring. 1607 */ 1608 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 1609 wmb(); 1610 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 1611 readl(phba->CAregaddr); /* flush */ 1612 } 1613 } 1614 1615 /** 1616 * lpfc_sli_resume_iocb - Process iocbs in the txq 1617 * @phba: Pointer to HBA context object. 1618 * @pring: Pointer to driver SLI ring object. 1619 * 1620 * This function is called with hbalock held to post pending iocbs 1621 * in the txq to the firmware. This function is called when driver 1622 * detects space available in the ring. 1623 **/ 1624 static void 1625 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1626 { 1627 IOCB_t *iocb; 1628 struct lpfc_iocbq *nextiocb; 1629 1630 lockdep_assert_held(&phba->hbalock); 1631 1632 /* 1633 * Check to see if: 1634 * (a) there is anything on the txq to send 1635 * (b) link is up 1636 * (c) link attention events can be processed (fcp ring only) 1637 * (d) IOCB processing is not blocked by the outstanding mbox command. 1638 */ 1639 1640 if (lpfc_is_link_up(phba) && 1641 (!list_empty(&pring->txq)) && 1642 (pring->ringno != phba->sli.fcp_ring || 1643 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 1644 1645 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 1646 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 1647 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 1648 1649 if (iocb) 1650 lpfc_sli_update_ring(phba, pring); 1651 else 1652 lpfc_sli_update_full_ring(phba, pring); 1653 } 1654 1655 return; 1656 } 1657 1658 /** 1659 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 1660 * @phba: Pointer to HBA context object. 1661 * @hbqno: HBQ number. 1662 * 1663 * This function is called with hbalock held to get the next 1664 * available slot for the given HBQ. If there is free slot 1665 * available for the HBQ it will return pointer to the next available 1666 * HBQ entry else it will return NULL. 1667 **/ 1668 static struct lpfc_hbq_entry * 1669 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 1670 { 1671 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1672 1673 lockdep_assert_held(&phba->hbalock); 1674 1675 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 1676 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 1677 hbqp->next_hbqPutIdx = 0; 1678 1679 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 1680 uint32_t raw_index = phba->hbq_get[hbqno]; 1681 uint32_t getidx = le32_to_cpu(raw_index); 1682 1683 hbqp->local_hbqGetIdx = getidx; 1684 1685 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 1686 lpfc_printf_log(phba, KERN_ERR, 1687 LOG_SLI | LOG_VPORT, 1688 "1802 HBQ %d: local_hbqGetIdx " 1689 "%u is > than hbqp->entry_count %u\n", 1690 hbqno, hbqp->local_hbqGetIdx, 1691 hbqp->entry_count); 1692 1693 phba->link_state = LPFC_HBA_ERROR; 1694 return NULL; 1695 } 1696 1697 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 1698 return NULL; 1699 } 1700 1701 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 1702 hbqp->hbqPutIdx; 1703 } 1704 1705 /** 1706 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 1707 * @phba: Pointer to HBA context object. 1708 * 1709 * This function is called with no lock held to free all the 1710 * hbq buffers while uninitializing the SLI interface. It also 1711 * frees the HBQ buffers returned by the firmware but not yet 1712 * processed by the upper layers. 1713 **/ 1714 void 1715 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 1716 { 1717 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 1718 struct hbq_dmabuf *hbq_buf; 1719 unsigned long flags; 1720 int i, hbq_count; 1721 uint32_t hbqno; 1722 1723 hbq_count = lpfc_sli_hbq_count(); 1724 /* Return all memory used by all HBQs */ 1725 spin_lock_irqsave(&phba->hbalock, flags); 1726 for (i = 0; i < hbq_count; ++i) { 1727 list_for_each_entry_safe(dmabuf, next_dmabuf, 1728 &phba->hbqs[i].hbq_buffer_list, list) { 1729 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 1730 list_del(&hbq_buf->dbuf.list); 1731 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 1732 } 1733 phba->hbqs[i].buffer_count = 0; 1734 } 1735 /* Return all HBQ buffer that are in-fly */ 1736 list_for_each_entry_safe(dmabuf, next_dmabuf, &phba->rb_pend_list, 1737 list) { 1738 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 1739 list_del(&hbq_buf->dbuf.list); 1740 if (hbq_buf->tag == -1) { 1741 (phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer) 1742 (phba, hbq_buf); 1743 } else { 1744 hbqno = hbq_buf->tag >> 16; 1745 if (hbqno >= LPFC_MAX_HBQS) 1746 (phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer) 1747 (phba, hbq_buf); 1748 else 1749 (phba->hbqs[hbqno].hbq_free_buffer)(phba, 1750 hbq_buf); 1751 } 1752 } 1753 1754 /* Mark the HBQs not in use */ 1755 phba->hbq_in_use = 0; 1756 spin_unlock_irqrestore(&phba->hbalock, flags); 1757 } 1758 1759 /** 1760 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 1761 * @phba: Pointer to HBA context object. 1762 * @hbqno: HBQ number. 1763 * @hbq_buf: Pointer to HBQ buffer. 1764 * 1765 * This function is called with the hbalock held to post a 1766 * hbq buffer to the firmware. If the function finds an empty 1767 * slot in the HBQ, it will post the buffer. The function will return 1768 * pointer to the hbq entry if it successfully post the buffer 1769 * else it will return NULL. 1770 **/ 1771 static int 1772 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 1773 struct hbq_dmabuf *hbq_buf) 1774 { 1775 lockdep_assert_held(&phba->hbalock); 1776 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 1777 } 1778 1779 /** 1780 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 1781 * @phba: Pointer to HBA context object. 1782 * @hbqno: HBQ number. 1783 * @hbq_buf: Pointer to HBQ buffer. 1784 * 1785 * This function is called with the hbalock held to post a hbq buffer to the 1786 * firmware. If the function finds an empty slot in the HBQ, it will post the 1787 * buffer and place it on the hbq_buffer_list. The function will return zero if 1788 * it successfully post the buffer else it will return an error. 1789 **/ 1790 static int 1791 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 1792 struct hbq_dmabuf *hbq_buf) 1793 { 1794 struct lpfc_hbq_entry *hbqe; 1795 dma_addr_t physaddr = hbq_buf->dbuf.phys; 1796 1797 lockdep_assert_held(&phba->hbalock); 1798 /* Get next HBQ entry slot to use */ 1799 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 1800 if (hbqe) { 1801 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1802 1803 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 1804 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 1805 hbqe->bde.tus.f.bdeSize = hbq_buf->size; 1806 hbqe->bde.tus.f.bdeFlags = 0; 1807 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 1808 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 1809 /* Sync SLIM */ 1810 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 1811 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 1812 /* flush */ 1813 readl(phba->hbq_put + hbqno); 1814 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 1815 return 0; 1816 } else 1817 return -ENOMEM; 1818 } 1819 1820 /** 1821 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 1822 * @phba: Pointer to HBA context object. 1823 * @hbqno: HBQ number. 1824 * @hbq_buf: Pointer to HBQ buffer. 1825 * 1826 * This function is called with the hbalock held to post an RQE to the SLI4 1827 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 1828 * the hbq_buffer_list and return zero, otherwise it will return an error. 1829 **/ 1830 static int 1831 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 1832 struct hbq_dmabuf *hbq_buf) 1833 { 1834 int rc; 1835 struct lpfc_rqe hrqe; 1836 struct lpfc_rqe drqe; 1837 1838 lockdep_assert_held(&phba->hbalock); 1839 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 1840 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 1841 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 1842 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 1843 rc = lpfc_sli4_rq_put(phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq, 1844 &hrqe, &drqe); 1845 if (rc < 0) 1846 return rc; 1847 hbq_buf->tag = rc; 1848 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 1849 return 0; 1850 } 1851 1852 /* HBQ for ELS and CT traffic. */ 1853 static struct lpfc_hbq_init lpfc_els_hbq = { 1854 .rn = 1, 1855 .entry_count = 256, 1856 .mask_count = 0, 1857 .profile = 0, 1858 .ring_mask = (1 << LPFC_ELS_RING), 1859 .buffer_count = 0, 1860 .init_count = 40, 1861 .add_count = 40, 1862 }; 1863 1864 /* HBQ for the extra ring if needed */ 1865 static struct lpfc_hbq_init lpfc_extra_hbq = { 1866 .rn = 1, 1867 .entry_count = 200, 1868 .mask_count = 0, 1869 .profile = 0, 1870 .ring_mask = (1 << LPFC_EXTRA_RING), 1871 .buffer_count = 0, 1872 .init_count = 0, 1873 .add_count = 5, 1874 }; 1875 1876 /* Array of HBQs */ 1877 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 1878 &lpfc_els_hbq, 1879 &lpfc_extra_hbq, 1880 }; 1881 1882 /** 1883 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 1884 * @phba: Pointer to HBA context object. 1885 * @hbqno: HBQ number. 1886 * @count: Number of HBQ buffers to be posted. 1887 * 1888 * This function is called with no lock held to post more hbq buffers to the 1889 * given HBQ. The function returns the number of HBQ buffers successfully 1890 * posted. 1891 **/ 1892 static int 1893 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 1894 { 1895 uint32_t i, posted = 0; 1896 unsigned long flags; 1897 struct hbq_dmabuf *hbq_buffer; 1898 LIST_HEAD(hbq_buf_list); 1899 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 1900 return 0; 1901 1902 if ((phba->hbqs[hbqno].buffer_count + count) > 1903 lpfc_hbq_defs[hbqno]->entry_count) 1904 count = lpfc_hbq_defs[hbqno]->entry_count - 1905 phba->hbqs[hbqno].buffer_count; 1906 if (!count) 1907 return 0; 1908 /* Allocate HBQ entries */ 1909 for (i = 0; i < count; i++) { 1910 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 1911 if (!hbq_buffer) 1912 break; 1913 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 1914 } 1915 /* Check whether HBQ is still in use */ 1916 spin_lock_irqsave(&phba->hbalock, flags); 1917 if (!phba->hbq_in_use) 1918 goto err; 1919 while (!list_empty(&hbq_buf_list)) { 1920 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 1921 dbuf.list); 1922 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 1923 (hbqno << 16)); 1924 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 1925 phba->hbqs[hbqno].buffer_count++; 1926 posted++; 1927 } else 1928 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 1929 } 1930 spin_unlock_irqrestore(&phba->hbalock, flags); 1931 return posted; 1932 err: 1933 spin_unlock_irqrestore(&phba->hbalock, flags); 1934 while (!list_empty(&hbq_buf_list)) { 1935 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 1936 dbuf.list); 1937 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 1938 } 1939 return 0; 1940 } 1941 1942 /** 1943 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 1944 * @phba: Pointer to HBA context object. 1945 * @qno: HBQ number. 1946 * 1947 * This function posts more buffers to the HBQ. This function 1948 * is called with no lock held. The function returns the number of HBQ entries 1949 * successfully allocated. 1950 **/ 1951 int 1952 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 1953 { 1954 if (phba->sli_rev == LPFC_SLI_REV4) 1955 return 0; 1956 else 1957 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 1958 lpfc_hbq_defs[qno]->add_count); 1959 } 1960 1961 /** 1962 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 1963 * @phba: Pointer to HBA context object. 1964 * @qno: HBQ queue number. 1965 * 1966 * This function is called from SLI initialization code path with 1967 * no lock held to post initial HBQ buffers to firmware. The 1968 * function returns the number of HBQ entries successfully allocated. 1969 **/ 1970 static int 1971 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 1972 { 1973 if (phba->sli_rev == LPFC_SLI_REV4) 1974 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 1975 lpfc_hbq_defs[qno]->entry_count); 1976 else 1977 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 1978 lpfc_hbq_defs[qno]->init_count); 1979 } 1980 1981 /** 1982 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 1983 * @phba: Pointer to HBA context object. 1984 * @hbqno: HBQ number. 1985 * 1986 * This function removes the first hbq buffer on an hbq list and returns a 1987 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 1988 **/ 1989 static struct hbq_dmabuf * 1990 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 1991 { 1992 struct lpfc_dmabuf *d_buf; 1993 1994 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 1995 if (!d_buf) 1996 return NULL; 1997 return container_of(d_buf, struct hbq_dmabuf, dbuf); 1998 } 1999 2000 /** 2001 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2002 * @phba: Pointer to HBA context object. 2003 * @tag: Tag of the hbq buffer. 2004 * 2005 * This function searches for the hbq buffer associated with the given tag in 2006 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2007 * otherwise it returns NULL. 2008 **/ 2009 static struct hbq_dmabuf * 2010 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2011 { 2012 struct lpfc_dmabuf *d_buf; 2013 struct hbq_dmabuf *hbq_buf; 2014 uint32_t hbqno; 2015 2016 hbqno = tag >> 16; 2017 if (hbqno >= LPFC_MAX_HBQS) 2018 return NULL; 2019 2020 spin_lock_irq(&phba->hbalock); 2021 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2022 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2023 if (hbq_buf->tag == tag) { 2024 spin_unlock_irq(&phba->hbalock); 2025 return hbq_buf; 2026 } 2027 } 2028 spin_unlock_irq(&phba->hbalock); 2029 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT, 2030 "1803 Bad hbq tag. Data: x%x x%x\n", 2031 tag, phba->hbqs[tag >> 16].buffer_count); 2032 return NULL; 2033 } 2034 2035 /** 2036 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2037 * @phba: Pointer to HBA context object. 2038 * @hbq_buffer: Pointer to HBQ buffer. 2039 * 2040 * This function is called with hbalock. This function gives back 2041 * the hbq buffer to firmware. If the HBQ does not have space to 2042 * post the buffer, it will free the buffer. 2043 **/ 2044 void 2045 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2046 { 2047 uint32_t hbqno; 2048 2049 if (hbq_buffer) { 2050 hbqno = hbq_buffer->tag >> 16; 2051 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2052 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2053 } 2054 } 2055 2056 /** 2057 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2058 * @mbxCommand: mailbox command code. 2059 * 2060 * This function is called by the mailbox event handler function to verify 2061 * that the completed mailbox command is a legitimate mailbox command. If the 2062 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2063 * and the mailbox event handler will take the HBA offline. 2064 **/ 2065 static int 2066 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2067 { 2068 uint8_t ret; 2069 2070 switch (mbxCommand) { 2071 case MBX_LOAD_SM: 2072 case MBX_READ_NV: 2073 case MBX_WRITE_NV: 2074 case MBX_WRITE_VPARMS: 2075 case MBX_RUN_BIU_DIAG: 2076 case MBX_INIT_LINK: 2077 case MBX_DOWN_LINK: 2078 case MBX_CONFIG_LINK: 2079 case MBX_CONFIG_RING: 2080 case MBX_RESET_RING: 2081 case MBX_READ_CONFIG: 2082 case MBX_READ_RCONFIG: 2083 case MBX_READ_SPARM: 2084 case MBX_READ_STATUS: 2085 case MBX_READ_RPI: 2086 case MBX_READ_XRI: 2087 case MBX_READ_REV: 2088 case MBX_READ_LNK_STAT: 2089 case MBX_REG_LOGIN: 2090 case MBX_UNREG_LOGIN: 2091 case MBX_CLEAR_LA: 2092 case MBX_DUMP_MEMORY: 2093 case MBX_DUMP_CONTEXT: 2094 case MBX_RUN_DIAGS: 2095 case MBX_RESTART: 2096 case MBX_UPDATE_CFG: 2097 case MBX_DOWN_LOAD: 2098 case MBX_DEL_LD_ENTRY: 2099 case MBX_RUN_PROGRAM: 2100 case MBX_SET_MASK: 2101 case MBX_SET_VARIABLE: 2102 case MBX_UNREG_D_ID: 2103 case MBX_KILL_BOARD: 2104 case MBX_CONFIG_FARP: 2105 case MBX_BEACON: 2106 case MBX_LOAD_AREA: 2107 case MBX_RUN_BIU_DIAG64: 2108 case MBX_CONFIG_PORT: 2109 case MBX_READ_SPARM64: 2110 case MBX_READ_RPI64: 2111 case MBX_REG_LOGIN64: 2112 case MBX_READ_TOPOLOGY: 2113 case MBX_WRITE_WWN: 2114 case MBX_SET_DEBUG: 2115 case MBX_LOAD_EXP_ROM: 2116 case MBX_ASYNCEVT_ENABLE: 2117 case MBX_REG_VPI: 2118 case MBX_UNREG_VPI: 2119 case MBX_HEARTBEAT: 2120 case MBX_PORT_CAPABILITIES: 2121 case MBX_PORT_IOV_CONTROL: 2122 case MBX_SLI4_CONFIG: 2123 case MBX_SLI4_REQ_FTRS: 2124 case MBX_REG_FCFI: 2125 case MBX_UNREG_FCFI: 2126 case MBX_REG_VFI: 2127 case MBX_UNREG_VFI: 2128 case MBX_INIT_VPI: 2129 case MBX_INIT_VFI: 2130 case MBX_RESUME_RPI: 2131 case MBX_READ_EVENT_LOG_STATUS: 2132 case MBX_READ_EVENT_LOG: 2133 case MBX_SECURITY_MGMT: 2134 case MBX_AUTH_PORT: 2135 case MBX_ACCESS_VDATA: 2136 ret = mbxCommand; 2137 break; 2138 default: 2139 ret = MBX_SHUTDOWN; 2140 break; 2141 } 2142 return ret; 2143 } 2144 2145 /** 2146 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2147 * @phba: Pointer to HBA context object. 2148 * @pmboxq: Pointer to mailbox command. 2149 * 2150 * This is completion handler function for mailbox commands issued from 2151 * lpfc_sli_issue_mbox_wait function. This function is called by the 2152 * mailbox event handler function with no lock held. This function 2153 * will wake up thread waiting on the wait queue pointed by context1 2154 * of the mailbox. 2155 **/ 2156 void 2157 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2158 { 2159 wait_queue_head_t *pdone_q; 2160 unsigned long drvr_flag; 2161 2162 /* 2163 * If pdone_q is empty, the driver thread gave up waiting and 2164 * continued running. 2165 */ 2166 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2167 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2168 pdone_q = (wait_queue_head_t *) pmboxq->context1; 2169 if (pdone_q) 2170 wake_up_interruptible(pdone_q); 2171 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2172 return; 2173 } 2174 2175 2176 /** 2177 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2178 * @phba: Pointer to HBA context object. 2179 * @pmb: Pointer to mailbox object. 2180 * 2181 * This function is the default mailbox completion handler. It 2182 * frees the memory resources associated with the completed mailbox 2183 * command. If the completed command is a REG_LOGIN mailbox command, 2184 * this function will issue a UREG_LOGIN to re-claim the RPI. 2185 **/ 2186 void 2187 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2188 { 2189 struct lpfc_vport *vport = pmb->vport; 2190 struct lpfc_dmabuf *mp; 2191 struct lpfc_nodelist *ndlp; 2192 struct Scsi_Host *shost; 2193 uint16_t rpi, vpi; 2194 int rc; 2195 2196 mp = (struct lpfc_dmabuf *) (pmb->context1); 2197 2198 if (mp) { 2199 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2200 kfree(mp); 2201 } 2202 2203 /* 2204 * If a REG_LOGIN succeeded after node is destroyed or node 2205 * is in re-discovery driver need to cleanup the RPI. 2206 */ 2207 if (!(phba->pport->load_flag & FC_UNLOADING) && 2208 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2209 !pmb->u.mb.mbxStatus) { 2210 rpi = pmb->u.mb.un.varWords[0]; 2211 vpi = pmb->u.mb.un.varRegLogin.vpi; 2212 lpfc_unreg_login(phba, vpi, rpi, pmb); 2213 pmb->vport = vport; 2214 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2215 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2216 if (rc != MBX_NOT_FINISHED) 2217 return; 2218 } 2219 2220 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2221 !(phba->pport->load_flag & FC_UNLOADING) && 2222 !pmb->u.mb.mbxStatus) { 2223 shost = lpfc_shost_from_vport(vport); 2224 spin_lock_irq(shost->host_lock); 2225 vport->vpi_state |= LPFC_VPI_REGISTERED; 2226 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2227 spin_unlock_irq(shost->host_lock); 2228 } 2229 2230 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2231 ndlp = (struct lpfc_nodelist *)pmb->context2; 2232 lpfc_nlp_put(ndlp); 2233 pmb->context2 = NULL; 2234 } 2235 2236 /* Check security permission status on INIT_LINK mailbox command */ 2237 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2238 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2239 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2240 "2860 SLI authentication is required " 2241 "for INIT_LINK but has not done yet\n"); 2242 2243 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2244 lpfc_sli4_mbox_cmd_free(phba, pmb); 2245 else 2246 mempool_free(pmb, phba->mbox_mem_pool); 2247 } 2248 /** 2249 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2250 * @phba: Pointer to HBA context object. 2251 * @pmb: Pointer to mailbox object. 2252 * 2253 * This function is the unreg rpi mailbox completion handler. It 2254 * frees the memory resources associated with the completed mailbox 2255 * command. An additional refrenece is put on the ndlp to prevent 2256 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2257 * the unreg mailbox command completes, this routine puts the 2258 * reference back. 2259 * 2260 **/ 2261 void 2262 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2263 { 2264 struct lpfc_vport *vport = pmb->vport; 2265 struct lpfc_nodelist *ndlp; 2266 2267 ndlp = pmb->context1; 2268 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2269 if (phba->sli_rev == LPFC_SLI_REV4 && 2270 (bf_get(lpfc_sli_intf_if_type, 2271 &phba->sli4_hba.sli_intf) == 2272 LPFC_SLI_INTF_IF_TYPE_2)) { 2273 if (ndlp) { 2274 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 2275 "0010 UNREG_LOGIN vpi:%x " 2276 "rpi:%x DID:%x map:%x %p\n", 2277 vport->vpi, ndlp->nlp_rpi, 2278 ndlp->nlp_DID, 2279 ndlp->nlp_usg_map, ndlp); 2280 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2281 lpfc_nlp_put(ndlp); 2282 } 2283 } 2284 } 2285 2286 mempool_free(pmb, phba->mbox_mem_pool); 2287 } 2288 2289 /** 2290 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2291 * @phba: Pointer to HBA context object. 2292 * 2293 * This function is called with no lock held. This function processes all 2294 * the completed mailbox commands and gives it to upper layers. The interrupt 2295 * service routine processes mailbox completion interrupt and adds completed 2296 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2297 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2298 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2299 * function returns the mailbox commands to the upper layer by calling the 2300 * completion handler function of each mailbox. 2301 **/ 2302 int 2303 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2304 { 2305 MAILBOX_t *pmbox; 2306 LPFC_MBOXQ_t *pmb; 2307 int rc; 2308 LIST_HEAD(cmplq); 2309 2310 phba->sli.slistat.mbox_event++; 2311 2312 /* Get all completed mailboxe buffers into the cmplq */ 2313 spin_lock_irq(&phba->hbalock); 2314 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2315 spin_unlock_irq(&phba->hbalock); 2316 2317 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2318 do { 2319 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2320 if (pmb == NULL) 2321 break; 2322 2323 pmbox = &pmb->u.mb; 2324 2325 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2326 if (pmb->vport) { 2327 lpfc_debugfs_disc_trc(pmb->vport, 2328 LPFC_DISC_TRC_MBOX_VPORT, 2329 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2330 (uint32_t)pmbox->mbxCommand, 2331 pmbox->un.varWords[0], 2332 pmbox->un.varWords[1]); 2333 } 2334 else { 2335 lpfc_debugfs_disc_trc(phba->pport, 2336 LPFC_DISC_TRC_MBOX, 2337 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2338 (uint32_t)pmbox->mbxCommand, 2339 pmbox->un.varWords[0], 2340 pmbox->un.varWords[1]); 2341 } 2342 } 2343 2344 /* 2345 * It is a fatal error if unknown mbox command completion. 2346 */ 2347 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2348 MBX_SHUTDOWN) { 2349 /* Unknown mailbox command compl */ 2350 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2351 "(%d):0323 Unknown Mailbox command " 2352 "x%x (x%x/x%x) Cmpl\n", 2353 pmb->vport ? pmb->vport->vpi : 0, 2354 pmbox->mbxCommand, 2355 lpfc_sli_config_mbox_subsys_get(phba, 2356 pmb), 2357 lpfc_sli_config_mbox_opcode_get(phba, 2358 pmb)); 2359 phba->link_state = LPFC_HBA_ERROR; 2360 phba->work_hs = HS_FFER3; 2361 lpfc_handle_eratt(phba); 2362 continue; 2363 } 2364 2365 if (pmbox->mbxStatus) { 2366 phba->sli.slistat.mbox_stat_err++; 2367 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2368 /* Mbox cmd cmpl error - RETRYing */ 2369 lpfc_printf_log(phba, KERN_INFO, 2370 LOG_MBOX | LOG_SLI, 2371 "(%d):0305 Mbox cmd cmpl " 2372 "error - RETRYing Data: x%x " 2373 "(x%x/x%x) x%x x%x x%x\n", 2374 pmb->vport ? pmb->vport->vpi : 0, 2375 pmbox->mbxCommand, 2376 lpfc_sli_config_mbox_subsys_get(phba, 2377 pmb), 2378 lpfc_sli_config_mbox_opcode_get(phba, 2379 pmb), 2380 pmbox->mbxStatus, 2381 pmbox->un.varWords[0], 2382 pmb->vport->port_state); 2383 pmbox->mbxStatus = 0; 2384 pmbox->mbxOwner = OWN_HOST; 2385 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2386 if (rc != MBX_NOT_FINISHED) 2387 continue; 2388 } 2389 } 2390 2391 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2392 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2393 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p " 2394 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2395 "x%x x%x x%x\n", 2396 pmb->vport ? pmb->vport->vpi : 0, 2397 pmbox->mbxCommand, 2398 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2399 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2400 pmb->mbox_cmpl, 2401 *((uint32_t *) pmbox), 2402 pmbox->un.varWords[0], 2403 pmbox->un.varWords[1], 2404 pmbox->un.varWords[2], 2405 pmbox->un.varWords[3], 2406 pmbox->un.varWords[4], 2407 pmbox->un.varWords[5], 2408 pmbox->un.varWords[6], 2409 pmbox->un.varWords[7], 2410 pmbox->un.varWords[8], 2411 pmbox->un.varWords[9], 2412 pmbox->un.varWords[10]); 2413 2414 if (pmb->mbox_cmpl) 2415 pmb->mbox_cmpl(phba,pmb); 2416 } while (1); 2417 return 0; 2418 } 2419 2420 /** 2421 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2422 * @phba: Pointer to HBA context object. 2423 * @pring: Pointer to driver SLI ring object. 2424 * @tag: buffer tag. 2425 * 2426 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2427 * is set in the tag the buffer is posted for a particular exchange, 2428 * the function will return the buffer without replacing the buffer. 2429 * If the buffer is for unsolicited ELS or CT traffic, this function 2430 * returns the buffer and also posts another buffer to the firmware. 2431 **/ 2432 static struct lpfc_dmabuf * 2433 lpfc_sli_get_buff(struct lpfc_hba *phba, 2434 struct lpfc_sli_ring *pring, 2435 uint32_t tag) 2436 { 2437 struct hbq_dmabuf *hbq_entry; 2438 2439 if (tag & QUE_BUFTAG_BIT) 2440 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2441 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2442 if (!hbq_entry) 2443 return NULL; 2444 return &hbq_entry->dbuf; 2445 } 2446 2447 /** 2448 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 2449 * @phba: Pointer to HBA context object. 2450 * @pring: Pointer to driver SLI ring object. 2451 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 2452 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 2453 * @fch_type: the type for the first frame of the sequence. 2454 * 2455 * This function is called with no lock held. This function uses the r_ctl and 2456 * type of the received sequence to find the correct callback function to call 2457 * to process the sequence. 2458 **/ 2459 static int 2460 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2461 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 2462 uint32_t fch_type) 2463 { 2464 int i; 2465 2466 /* unSolicited Responses */ 2467 if (pring->prt[0].profile) { 2468 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 2469 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 2470 saveq); 2471 return 1; 2472 } 2473 /* We must search, based on rctl / type 2474 for the right routine */ 2475 for (i = 0; i < pring->num_mask; i++) { 2476 if ((pring->prt[i].rctl == fch_r_ctl) && 2477 (pring->prt[i].type == fch_type)) { 2478 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 2479 (pring->prt[i].lpfc_sli_rcv_unsol_event) 2480 (phba, pring, saveq); 2481 return 1; 2482 } 2483 } 2484 return 0; 2485 } 2486 2487 /** 2488 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 2489 * @phba: Pointer to HBA context object. 2490 * @pring: Pointer to driver SLI ring object. 2491 * @saveq: Pointer to the unsolicited iocb. 2492 * 2493 * This function is called with no lock held by the ring event handler 2494 * when there is an unsolicited iocb posted to the response ring by the 2495 * firmware. This function gets the buffer associated with the iocbs 2496 * and calls the event handler for the ring. This function handles both 2497 * qring buffers and hbq buffers. 2498 * When the function returns 1 the caller can free the iocb object otherwise 2499 * upper layer functions will free the iocb objects. 2500 **/ 2501 static int 2502 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2503 struct lpfc_iocbq *saveq) 2504 { 2505 IOCB_t * irsp; 2506 WORD5 * w5p; 2507 uint32_t Rctl, Type; 2508 struct lpfc_iocbq *iocbq; 2509 struct lpfc_dmabuf *dmzbuf; 2510 2511 irsp = &(saveq->iocb); 2512 2513 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 2514 if (pring->lpfc_sli_rcv_async_status) 2515 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 2516 else 2517 lpfc_printf_log(phba, 2518 KERN_WARNING, 2519 LOG_SLI, 2520 "0316 Ring %d handler: unexpected " 2521 "ASYNC_STATUS iocb received evt_code " 2522 "0x%x\n", 2523 pring->ringno, 2524 irsp->un.asyncstat.evt_code); 2525 return 1; 2526 } 2527 2528 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 2529 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 2530 if (irsp->ulpBdeCount > 0) { 2531 dmzbuf = lpfc_sli_get_buff(phba, pring, 2532 irsp->un.ulpWord[3]); 2533 lpfc_in_buf_free(phba, dmzbuf); 2534 } 2535 2536 if (irsp->ulpBdeCount > 1) { 2537 dmzbuf = lpfc_sli_get_buff(phba, pring, 2538 irsp->unsli3.sli3Words[3]); 2539 lpfc_in_buf_free(phba, dmzbuf); 2540 } 2541 2542 if (irsp->ulpBdeCount > 2) { 2543 dmzbuf = lpfc_sli_get_buff(phba, pring, 2544 irsp->unsli3.sli3Words[7]); 2545 lpfc_in_buf_free(phba, dmzbuf); 2546 } 2547 2548 return 1; 2549 } 2550 2551 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 2552 if (irsp->ulpBdeCount != 0) { 2553 saveq->context2 = lpfc_sli_get_buff(phba, pring, 2554 irsp->un.ulpWord[3]); 2555 if (!saveq->context2) 2556 lpfc_printf_log(phba, 2557 KERN_ERR, 2558 LOG_SLI, 2559 "0341 Ring %d Cannot find buffer for " 2560 "an unsolicited iocb. tag 0x%x\n", 2561 pring->ringno, 2562 irsp->un.ulpWord[3]); 2563 } 2564 if (irsp->ulpBdeCount == 2) { 2565 saveq->context3 = lpfc_sli_get_buff(phba, pring, 2566 irsp->unsli3.sli3Words[7]); 2567 if (!saveq->context3) 2568 lpfc_printf_log(phba, 2569 KERN_ERR, 2570 LOG_SLI, 2571 "0342 Ring %d Cannot find buffer for an" 2572 " unsolicited iocb. tag 0x%x\n", 2573 pring->ringno, 2574 irsp->unsli3.sli3Words[7]); 2575 } 2576 list_for_each_entry(iocbq, &saveq->list, list) { 2577 irsp = &(iocbq->iocb); 2578 if (irsp->ulpBdeCount != 0) { 2579 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 2580 irsp->un.ulpWord[3]); 2581 if (!iocbq->context2) 2582 lpfc_printf_log(phba, 2583 KERN_ERR, 2584 LOG_SLI, 2585 "0343 Ring %d Cannot find " 2586 "buffer for an unsolicited iocb" 2587 ". tag 0x%x\n", pring->ringno, 2588 irsp->un.ulpWord[3]); 2589 } 2590 if (irsp->ulpBdeCount == 2) { 2591 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 2592 irsp->unsli3.sli3Words[7]); 2593 if (!iocbq->context3) 2594 lpfc_printf_log(phba, 2595 KERN_ERR, 2596 LOG_SLI, 2597 "0344 Ring %d Cannot find " 2598 "buffer for an unsolicited " 2599 "iocb. tag 0x%x\n", 2600 pring->ringno, 2601 irsp->unsli3.sli3Words[7]); 2602 } 2603 } 2604 } 2605 if (irsp->ulpBdeCount != 0 && 2606 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 2607 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 2608 int found = 0; 2609 2610 /* search continue save q for same XRI */ 2611 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 2612 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 2613 saveq->iocb.unsli3.rcvsli3.ox_id) { 2614 list_add_tail(&saveq->list, &iocbq->list); 2615 found = 1; 2616 break; 2617 } 2618 } 2619 if (!found) 2620 list_add_tail(&saveq->clist, 2621 &pring->iocb_continue_saveq); 2622 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 2623 list_del_init(&iocbq->clist); 2624 saveq = iocbq; 2625 irsp = &(saveq->iocb); 2626 } else 2627 return 0; 2628 } 2629 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 2630 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 2631 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 2632 Rctl = FC_RCTL_ELS_REQ; 2633 Type = FC_TYPE_ELS; 2634 } else { 2635 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 2636 Rctl = w5p->hcsw.Rctl; 2637 Type = w5p->hcsw.Type; 2638 2639 /* Firmware Workaround */ 2640 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 2641 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 2642 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 2643 Rctl = FC_RCTL_ELS_REQ; 2644 Type = FC_TYPE_ELS; 2645 w5p->hcsw.Rctl = Rctl; 2646 w5p->hcsw.Type = Type; 2647 } 2648 } 2649 2650 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 2651 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2652 "0313 Ring %d handler: unexpected Rctl x%x " 2653 "Type x%x received\n", 2654 pring->ringno, Rctl, Type); 2655 2656 return 1; 2657 } 2658 2659 /** 2660 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 2661 * @phba: Pointer to HBA context object. 2662 * @pring: Pointer to driver SLI ring object. 2663 * @prspiocb: Pointer to response iocb object. 2664 * 2665 * This function looks up the iocb_lookup table to get the command iocb 2666 * corresponding to the given response iocb using the iotag of the 2667 * response iocb. This function is called with the hbalock held. 2668 * This function returns the command iocb object if it finds the command 2669 * iocb else returns NULL. 2670 **/ 2671 static struct lpfc_iocbq * 2672 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 2673 struct lpfc_sli_ring *pring, 2674 struct lpfc_iocbq *prspiocb) 2675 { 2676 struct lpfc_iocbq *cmd_iocb = NULL; 2677 uint16_t iotag; 2678 lockdep_assert_held(&phba->hbalock); 2679 2680 iotag = prspiocb->iocb.ulpIoTag; 2681 2682 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2683 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2684 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2685 /* remove from txcmpl queue list */ 2686 list_del_init(&cmd_iocb->list); 2687 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 2688 return cmd_iocb; 2689 } 2690 } 2691 2692 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2693 "0317 iotag x%x is out of " 2694 "range: max iotag x%x wd0 x%x\n", 2695 iotag, phba->sli.last_iotag, 2696 *(((uint32_t *) &prspiocb->iocb) + 7)); 2697 return NULL; 2698 } 2699 2700 /** 2701 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 2702 * @phba: Pointer to HBA context object. 2703 * @pring: Pointer to driver SLI ring object. 2704 * @iotag: IOCB tag. 2705 * 2706 * This function looks up the iocb_lookup table to get the command iocb 2707 * corresponding to the given iotag. This function is called with the 2708 * hbalock held. 2709 * This function returns the command iocb object if it finds the command 2710 * iocb else returns NULL. 2711 **/ 2712 static struct lpfc_iocbq * 2713 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 2714 struct lpfc_sli_ring *pring, uint16_t iotag) 2715 { 2716 struct lpfc_iocbq *cmd_iocb; 2717 2718 lockdep_assert_held(&phba->hbalock); 2719 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2720 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2721 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2722 /* remove from txcmpl queue list */ 2723 list_del_init(&cmd_iocb->list); 2724 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 2725 return cmd_iocb; 2726 } 2727 } 2728 2729 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2730 "0372 iotag x%x is out of range: max iotag (x%x)\n", 2731 iotag, phba->sli.last_iotag); 2732 return NULL; 2733 } 2734 2735 /** 2736 * lpfc_sli_process_sol_iocb - process solicited iocb completion 2737 * @phba: Pointer to HBA context object. 2738 * @pring: Pointer to driver SLI ring object. 2739 * @saveq: Pointer to the response iocb to be processed. 2740 * 2741 * This function is called by the ring event handler for non-fcp 2742 * rings when there is a new response iocb in the response ring. 2743 * The caller is not required to hold any locks. This function 2744 * gets the command iocb associated with the response iocb and 2745 * calls the completion handler for the command iocb. If there 2746 * is no completion handler, the function will free the resources 2747 * associated with command iocb. If the response iocb is for 2748 * an already aborted command iocb, the status of the completion 2749 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 2750 * This function always returns 1. 2751 **/ 2752 static int 2753 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2754 struct lpfc_iocbq *saveq) 2755 { 2756 struct lpfc_iocbq *cmdiocbp; 2757 int rc = 1; 2758 unsigned long iflag; 2759 2760 /* Based on the iotag field, get the cmd IOCB from the txcmplq */ 2761 spin_lock_irqsave(&phba->hbalock, iflag); 2762 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 2763 spin_unlock_irqrestore(&phba->hbalock, iflag); 2764 2765 if (cmdiocbp) { 2766 if (cmdiocbp->iocb_cmpl) { 2767 /* 2768 * If an ELS command failed send an event to mgmt 2769 * application. 2770 */ 2771 if (saveq->iocb.ulpStatus && 2772 (pring->ringno == LPFC_ELS_RING) && 2773 (cmdiocbp->iocb.ulpCommand == 2774 CMD_ELS_REQUEST64_CR)) 2775 lpfc_send_els_failure_event(phba, 2776 cmdiocbp, saveq); 2777 2778 /* 2779 * Post all ELS completions to the worker thread. 2780 * All other are passed to the completion callback. 2781 */ 2782 if (pring->ringno == LPFC_ELS_RING) { 2783 if ((phba->sli_rev < LPFC_SLI_REV4) && 2784 (cmdiocbp->iocb_flag & 2785 LPFC_DRIVER_ABORTED)) { 2786 spin_lock_irqsave(&phba->hbalock, 2787 iflag); 2788 cmdiocbp->iocb_flag &= 2789 ~LPFC_DRIVER_ABORTED; 2790 spin_unlock_irqrestore(&phba->hbalock, 2791 iflag); 2792 saveq->iocb.ulpStatus = 2793 IOSTAT_LOCAL_REJECT; 2794 saveq->iocb.un.ulpWord[4] = 2795 IOERR_SLI_ABORTED; 2796 2797 /* Firmware could still be in progress 2798 * of DMAing payload, so don't free data 2799 * buffer till after a hbeat. 2800 */ 2801 spin_lock_irqsave(&phba->hbalock, 2802 iflag); 2803 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 2804 spin_unlock_irqrestore(&phba->hbalock, 2805 iflag); 2806 } 2807 if (phba->sli_rev == LPFC_SLI_REV4) { 2808 if (saveq->iocb_flag & 2809 LPFC_EXCHANGE_BUSY) { 2810 /* Set cmdiocb flag for the 2811 * exchange busy so sgl (xri) 2812 * will not be released until 2813 * the abort xri is received 2814 * from hba. 2815 */ 2816 spin_lock_irqsave( 2817 &phba->hbalock, iflag); 2818 cmdiocbp->iocb_flag |= 2819 LPFC_EXCHANGE_BUSY; 2820 spin_unlock_irqrestore( 2821 &phba->hbalock, iflag); 2822 } 2823 if (cmdiocbp->iocb_flag & 2824 LPFC_DRIVER_ABORTED) { 2825 /* 2826 * Clear LPFC_DRIVER_ABORTED 2827 * bit in case it was driver 2828 * initiated abort. 2829 */ 2830 spin_lock_irqsave( 2831 &phba->hbalock, iflag); 2832 cmdiocbp->iocb_flag &= 2833 ~LPFC_DRIVER_ABORTED; 2834 spin_unlock_irqrestore( 2835 &phba->hbalock, iflag); 2836 cmdiocbp->iocb.ulpStatus = 2837 IOSTAT_LOCAL_REJECT; 2838 cmdiocbp->iocb.un.ulpWord[4] = 2839 IOERR_ABORT_REQUESTED; 2840 /* 2841 * For SLI4, irsiocb contains 2842 * NO_XRI in sli_xritag, it 2843 * shall not affect releasing 2844 * sgl (xri) process. 2845 */ 2846 saveq->iocb.ulpStatus = 2847 IOSTAT_LOCAL_REJECT; 2848 saveq->iocb.un.ulpWord[4] = 2849 IOERR_SLI_ABORTED; 2850 spin_lock_irqsave( 2851 &phba->hbalock, iflag); 2852 saveq->iocb_flag |= 2853 LPFC_DELAY_MEM_FREE; 2854 spin_unlock_irqrestore( 2855 &phba->hbalock, iflag); 2856 } 2857 } 2858 } 2859 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 2860 } else 2861 lpfc_sli_release_iocbq(phba, cmdiocbp); 2862 } else { 2863 /* 2864 * Unknown initiating command based on the response iotag. 2865 * This could be the case on the ELS ring because of 2866 * lpfc_els_abort(). 2867 */ 2868 if (pring->ringno != LPFC_ELS_RING) { 2869 /* 2870 * Ring <ringno> handler: unexpected completion IoTag 2871 * <IoTag> 2872 */ 2873 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2874 "0322 Ring %d handler: " 2875 "unexpected completion IoTag x%x " 2876 "Data: x%x x%x x%x x%x\n", 2877 pring->ringno, 2878 saveq->iocb.ulpIoTag, 2879 saveq->iocb.ulpStatus, 2880 saveq->iocb.un.ulpWord[4], 2881 saveq->iocb.ulpCommand, 2882 saveq->iocb.ulpContext); 2883 } 2884 } 2885 2886 return rc; 2887 } 2888 2889 /** 2890 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 2891 * @phba: Pointer to HBA context object. 2892 * @pring: Pointer to driver SLI ring object. 2893 * 2894 * This function is called from the iocb ring event handlers when 2895 * put pointer is ahead of the get pointer for a ring. This function signal 2896 * an error attention condition to the worker thread and the worker 2897 * thread will transition the HBA to offline state. 2898 **/ 2899 static void 2900 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2901 { 2902 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2903 /* 2904 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 2905 * rsp ring <portRspMax> 2906 */ 2907 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2908 "0312 Ring %d handler: portRspPut %d " 2909 "is bigger than rsp ring %d\n", 2910 pring->ringno, le32_to_cpu(pgp->rspPutInx), 2911 pring->sli.sli3.numRiocb); 2912 2913 phba->link_state = LPFC_HBA_ERROR; 2914 2915 /* 2916 * All error attention handlers are posted to 2917 * worker thread 2918 */ 2919 phba->work_ha |= HA_ERATT; 2920 phba->work_hs = HS_FFER3; 2921 2922 lpfc_worker_wake_up(phba); 2923 2924 return; 2925 } 2926 2927 /** 2928 * lpfc_poll_eratt - Error attention polling timer timeout handler 2929 * @ptr: Pointer to address of HBA context object. 2930 * 2931 * This function is invoked by the Error Attention polling timer when the 2932 * timer times out. It will check the SLI Error Attention register for 2933 * possible attention events. If so, it will post an Error Attention event 2934 * and wake up worker thread to process it. Otherwise, it will set up the 2935 * Error Attention polling timer for the next poll. 2936 **/ 2937 void lpfc_poll_eratt(unsigned long ptr) 2938 { 2939 struct lpfc_hba *phba; 2940 uint32_t eratt = 0; 2941 uint64_t sli_intr, cnt; 2942 2943 phba = (struct lpfc_hba *)ptr; 2944 2945 /* Here we will also keep track of interrupts per sec of the hba */ 2946 sli_intr = phba->sli.slistat.sli_intr; 2947 2948 if (phba->sli.slistat.sli_prev_intr > sli_intr) 2949 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 2950 sli_intr); 2951 else 2952 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 2953 2954 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 2955 do_div(cnt, phba->eratt_poll_interval); 2956 phba->sli.slistat.sli_ips = cnt; 2957 2958 phba->sli.slistat.sli_prev_intr = sli_intr; 2959 2960 /* Check chip HA register for error event */ 2961 eratt = lpfc_sli_check_eratt(phba); 2962 2963 if (eratt) 2964 /* Tell the worker thread there is work to do */ 2965 lpfc_worker_wake_up(phba); 2966 else 2967 /* Restart the timer for next eratt poll */ 2968 mod_timer(&phba->eratt_poll, 2969 jiffies + 2970 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 2971 return; 2972 } 2973 2974 2975 /** 2976 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 2977 * @phba: Pointer to HBA context object. 2978 * @pring: Pointer to driver SLI ring object. 2979 * @mask: Host attention register mask for this ring. 2980 * 2981 * This function is called from the interrupt context when there is a ring 2982 * event for the fcp ring. The caller does not hold any lock. 2983 * The function processes each response iocb in the response ring until it 2984 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 2985 * LE bit set. The function will call the completion handler of the command iocb 2986 * if the response iocb indicates a completion for a command iocb or it is 2987 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 2988 * function if this is an unsolicited iocb. 2989 * This routine presumes LPFC_FCP_RING handling and doesn't bother 2990 * to check it explicitly. 2991 */ 2992 int 2993 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 2994 struct lpfc_sli_ring *pring, uint32_t mask) 2995 { 2996 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2997 IOCB_t *irsp = NULL; 2998 IOCB_t *entry = NULL; 2999 struct lpfc_iocbq *cmdiocbq = NULL; 3000 struct lpfc_iocbq rspiocbq; 3001 uint32_t status; 3002 uint32_t portRspPut, portRspMax; 3003 int rc = 1; 3004 lpfc_iocb_type type; 3005 unsigned long iflag; 3006 uint32_t rsp_cmpl = 0; 3007 3008 spin_lock_irqsave(&phba->hbalock, iflag); 3009 pring->stats.iocb_event++; 3010 3011 /* 3012 * The next available response entry should never exceed the maximum 3013 * entries. If it does, treat it as an adapter hardware error. 3014 */ 3015 portRspMax = pring->sli.sli3.numRiocb; 3016 portRspPut = le32_to_cpu(pgp->rspPutInx); 3017 if (unlikely(portRspPut >= portRspMax)) { 3018 lpfc_sli_rsp_pointers_error(phba, pring); 3019 spin_unlock_irqrestore(&phba->hbalock, iflag); 3020 return 1; 3021 } 3022 if (phba->fcp_ring_in_use) { 3023 spin_unlock_irqrestore(&phba->hbalock, iflag); 3024 return 1; 3025 } else 3026 phba->fcp_ring_in_use = 1; 3027 3028 rmb(); 3029 while (pring->sli.sli3.rspidx != portRspPut) { 3030 /* 3031 * Fetch an entry off the ring and copy it into a local data 3032 * structure. The copy involves a byte-swap since the 3033 * network byte order and pci byte orders are different. 3034 */ 3035 entry = lpfc_resp_iocb(phba, pring); 3036 phba->last_completion_time = jiffies; 3037 3038 if (++pring->sli.sli3.rspidx >= portRspMax) 3039 pring->sli.sli3.rspidx = 0; 3040 3041 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3042 (uint32_t *) &rspiocbq.iocb, 3043 phba->iocb_rsp_size); 3044 INIT_LIST_HEAD(&(rspiocbq.list)); 3045 irsp = &rspiocbq.iocb; 3046 3047 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3048 pring->stats.iocb_rsp++; 3049 rsp_cmpl++; 3050 3051 if (unlikely(irsp->ulpStatus)) { 3052 /* 3053 * If resource errors reported from HBA, reduce 3054 * queuedepths of the SCSI device. 3055 */ 3056 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3057 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3058 IOERR_NO_RESOURCES)) { 3059 spin_unlock_irqrestore(&phba->hbalock, iflag); 3060 phba->lpfc_rampdown_queue_depth(phba); 3061 spin_lock_irqsave(&phba->hbalock, iflag); 3062 } 3063 3064 /* Rsp ring <ringno> error: IOCB */ 3065 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3066 "0336 Rsp Ring %d error: IOCB Data: " 3067 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3068 pring->ringno, 3069 irsp->un.ulpWord[0], 3070 irsp->un.ulpWord[1], 3071 irsp->un.ulpWord[2], 3072 irsp->un.ulpWord[3], 3073 irsp->un.ulpWord[4], 3074 irsp->un.ulpWord[5], 3075 *(uint32_t *)&irsp->un1, 3076 *((uint32_t *)&irsp->un1 + 1)); 3077 } 3078 3079 switch (type) { 3080 case LPFC_ABORT_IOCB: 3081 case LPFC_SOL_IOCB: 3082 /* 3083 * Idle exchange closed via ABTS from port. No iocb 3084 * resources need to be recovered. 3085 */ 3086 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3087 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3088 "0333 IOCB cmd 0x%x" 3089 " processed. Skipping" 3090 " completion\n", 3091 irsp->ulpCommand); 3092 break; 3093 } 3094 3095 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3096 &rspiocbq); 3097 if (unlikely(!cmdiocbq)) 3098 break; 3099 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3100 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3101 if (cmdiocbq->iocb_cmpl) { 3102 spin_unlock_irqrestore(&phba->hbalock, iflag); 3103 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3104 &rspiocbq); 3105 spin_lock_irqsave(&phba->hbalock, iflag); 3106 } 3107 break; 3108 case LPFC_UNSOL_IOCB: 3109 spin_unlock_irqrestore(&phba->hbalock, iflag); 3110 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3111 spin_lock_irqsave(&phba->hbalock, iflag); 3112 break; 3113 default: 3114 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3115 char adaptermsg[LPFC_MAX_ADPTMSG]; 3116 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3117 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3118 MAX_MSG_DATA); 3119 dev_warn(&((phba->pcidev)->dev), 3120 "lpfc%d: %s\n", 3121 phba->brd_no, adaptermsg); 3122 } else { 3123 /* Unknown IOCB command */ 3124 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3125 "0334 Unknown IOCB command " 3126 "Data: x%x, x%x x%x x%x x%x\n", 3127 type, irsp->ulpCommand, 3128 irsp->ulpStatus, 3129 irsp->ulpIoTag, 3130 irsp->ulpContext); 3131 } 3132 break; 3133 } 3134 3135 /* 3136 * The response IOCB has been processed. Update the ring 3137 * pointer in SLIM. If the port response put pointer has not 3138 * been updated, sync the pgp->rspPutInx and fetch the new port 3139 * response put pointer. 3140 */ 3141 writel(pring->sli.sli3.rspidx, 3142 &phba->host_gp[pring->ringno].rspGetInx); 3143 3144 if (pring->sli.sli3.rspidx == portRspPut) 3145 portRspPut = le32_to_cpu(pgp->rspPutInx); 3146 } 3147 3148 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3149 pring->stats.iocb_rsp_full++; 3150 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3151 writel(status, phba->CAregaddr); 3152 readl(phba->CAregaddr); 3153 } 3154 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3155 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3156 pring->stats.iocb_cmd_empty++; 3157 3158 /* Force update of the local copy of cmdGetInx */ 3159 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3160 lpfc_sli_resume_iocb(phba, pring); 3161 3162 if ((pring->lpfc_sli_cmd_available)) 3163 (pring->lpfc_sli_cmd_available) (phba, pring); 3164 3165 } 3166 3167 phba->fcp_ring_in_use = 0; 3168 spin_unlock_irqrestore(&phba->hbalock, iflag); 3169 return rc; 3170 } 3171 3172 /** 3173 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3174 * @phba: Pointer to HBA context object. 3175 * @pring: Pointer to driver SLI ring object. 3176 * @rspiocbp: Pointer to driver response IOCB object. 3177 * 3178 * This function is called from the worker thread when there is a slow-path 3179 * response IOCB to process. This function chains all the response iocbs until 3180 * seeing the iocb with the LE bit set. The function will call 3181 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3182 * completion of a command iocb. The function will call the 3183 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3184 * The function frees the resources or calls the completion handler if this 3185 * iocb is an abort completion. The function returns NULL when the response 3186 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3187 * this function shall chain the iocb on to the iocb_continueq and return the 3188 * response iocb passed in. 3189 **/ 3190 static struct lpfc_iocbq * 3191 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3192 struct lpfc_iocbq *rspiocbp) 3193 { 3194 struct lpfc_iocbq *saveq; 3195 struct lpfc_iocbq *cmdiocbp; 3196 struct lpfc_iocbq *next_iocb; 3197 IOCB_t *irsp = NULL; 3198 uint32_t free_saveq; 3199 uint8_t iocb_cmd_type; 3200 lpfc_iocb_type type; 3201 unsigned long iflag; 3202 int rc; 3203 3204 spin_lock_irqsave(&phba->hbalock, iflag); 3205 /* First add the response iocb to the countinueq list */ 3206 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3207 pring->iocb_continueq_cnt++; 3208 3209 /* Now, determine whether the list is completed for processing */ 3210 irsp = &rspiocbp->iocb; 3211 if (irsp->ulpLe) { 3212 /* 3213 * By default, the driver expects to free all resources 3214 * associated with this iocb completion. 3215 */ 3216 free_saveq = 1; 3217 saveq = list_get_first(&pring->iocb_continueq, 3218 struct lpfc_iocbq, list); 3219 irsp = &(saveq->iocb); 3220 list_del_init(&pring->iocb_continueq); 3221 pring->iocb_continueq_cnt = 0; 3222 3223 pring->stats.iocb_rsp++; 3224 3225 /* 3226 * If resource errors reported from HBA, reduce 3227 * queuedepths of the SCSI device. 3228 */ 3229 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3230 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3231 IOERR_NO_RESOURCES)) { 3232 spin_unlock_irqrestore(&phba->hbalock, iflag); 3233 phba->lpfc_rampdown_queue_depth(phba); 3234 spin_lock_irqsave(&phba->hbalock, iflag); 3235 } 3236 3237 if (irsp->ulpStatus) { 3238 /* Rsp ring <ringno> error: IOCB */ 3239 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3240 "0328 Rsp Ring %d error: " 3241 "IOCB Data: " 3242 "x%x x%x x%x x%x " 3243 "x%x x%x x%x x%x " 3244 "x%x x%x x%x x%x " 3245 "x%x x%x x%x x%x\n", 3246 pring->ringno, 3247 irsp->un.ulpWord[0], 3248 irsp->un.ulpWord[1], 3249 irsp->un.ulpWord[2], 3250 irsp->un.ulpWord[3], 3251 irsp->un.ulpWord[4], 3252 irsp->un.ulpWord[5], 3253 *(((uint32_t *) irsp) + 6), 3254 *(((uint32_t *) irsp) + 7), 3255 *(((uint32_t *) irsp) + 8), 3256 *(((uint32_t *) irsp) + 9), 3257 *(((uint32_t *) irsp) + 10), 3258 *(((uint32_t *) irsp) + 11), 3259 *(((uint32_t *) irsp) + 12), 3260 *(((uint32_t *) irsp) + 13), 3261 *(((uint32_t *) irsp) + 14), 3262 *(((uint32_t *) irsp) + 15)); 3263 } 3264 3265 /* 3266 * Fetch the IOCB command type and call the correct completion 3267 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3268 * get freed back to the lpfc_iocb_list by the discovery 3269 * kernel thread. 3270 */ 3271 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3272 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3273 switch (type) { 3274 case LPFC_SOL_IOCB: 3275 spin_unlock_irqrestore(&phba->hbalock, iflag); 3276 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3277 spin_lock_irqsave(&phba->hbalock, iflag); 3278 break; 3279 3280 case LPFC_UNSOL_IOCB: 3281 spin_unlock_irqrestore(&phba->hbalock, iflag); 3282 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3283 spin_lock_irqsave(&phba->hbalock, iflag); 3284 if (!rc) 3285 free_saveq = 0; 3286 break; 3287 3288 case LPFC_ABORT_IOCB: 3289 cmdiocbp = NULL; 3290 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) 3291 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3292 saveq); 3293 if (cmdiocbp) { 3294 /* Call the specified completion routine */ 3295 if (cmdiocbp->iocb_cmpl) { 3296 spin_unlock_irqrestore(&phba->hbalock, 3297 iflag); 3298 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3299 saveq); 3300 spin_lock_irqsave(&phba->hbalock, 3301 iflag); 3302 } else 3303 __lpfc_sli_release_iocbq(phba, 3304 cmdiocbp); 3305 } 3306 break; 3307 3308 case LPFC_UNKNOWN_IOCB: 3309 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3310 char adaptermsg[LPFC_MAX_ADPTMSG]; 3311 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3312 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3313 MAX_MSG_DATA); 3314 dev_warn(&((phba->pcidev)->dev), 3315 "lpfc%d: %s\n", 3316 phba->brd_no, adaptermsg); 3317 } else { 3318 /* Unknown IOCB command */ 3319 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3320 "0335 Unknown IOCB " 3321 "command Data: x%x " 3322 "x%x x%x x%x\n", 3323 irsp->ulpCommand, 3324 irsp->ulpStatus, 3325 irsp->ulpIoTag, 3326 irsp->ulpContext); 3327 } 3328 break; 3329 } 3330 3331 if (free_saveq) { 3332 list_for_each_entry_safe(rspiocbp, next_iocb, 3333 &saveq->list, list) { 3334 list_del_init(&rspiocbp->list); 3335 __lpfc_sli_release_iocbq(phba, rspiocbp); 3336 } 3337 __lpfc_sli_release_iocbq(phba, saveq); 3338 } 3339 rspiocbp = NULL; 3340 } 3341 spin_unlock_irqrestore(&phba->hbalock, iflag); 3342 return rspiocbp; 3343 } 3344 3345 /** 3346 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3347 * @phba: Pointer to HBA context object. 3348 * @pring: Pointer to driver SLI ring object. 3349 * @mask: Host attention register mask for this ring. 3350 * 3351 * This routine wraps the actual slow_ring event process routine from the 3352 * API jump table function pointer from the lpfc_hba struct. 3353 **/ 3354 void 3355 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 3356 struct lpfc_sli_ring *pring, uint32_t mask) 3357 { 3358 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 3359 } 3360 3361 /** 3362 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 3363 * @phba: Pointer to HBA context object. 3364 * @pring: Pointer to driver SLI ring object. 3365 * @mask: Host attention register mask for this ring. 3366 * 3367 * This function is called from the worker thread when there is a ring event 3368 * for non-fcp rings. The caller does not hold any lock. The function will 3369 * remove each response iocb in the response ring and calls the handle 3370 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3371 **/ 3372 static void 3373 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 3374 struct lpfc_sli_ring *pring, uint32_t mask) 3375 { 3376 struct lpfc_pgp *pgp; 3377 IOCB_t *entry; 3378 IOCB_t *irsp = NULL; 3379 struct lpfc_iocbq *rspiocbp = NULL; 3380 uint32_t portRspPut, portRspMax; 3381 unsigned long iflag; 3382 uint32_t status; 3383 3384 pgp = &phba->port_gp[pring->ringno]; 3385 spin_lock_irqsave(&phba->hbalock, iflag); 3386 pring->stats.iocb_event++; 3387 3388 /* 3389 * The next available response entry should never exceed the maximum 3390 * entries. If it does, treat it as an adapter hardware error. 3391 */ 3392 portRspMax = pring->sli.sli3.numRiocb; 3393 portRspPut = le32_to_cpu(pgp->rspPutInx); 3394 if (portRspPut >= portRspMax) { 3395 /* 3396 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3397 * rsp ring <portRspMax> 3398 */ 3399 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3400 "0303 Ring %d handler: portRspPut %d " 3401 "is bigger than rsp ring %d\n", 3402 pring->ringno, portRspPut, portRspMax); 3403 3404 phba->link_state = LPFC_HBA_ERROR; 3405 spin_unlock_irqrestore(&phba->hbalock, iflag); 3406 3407 phba->work_hs = HS_FFER3; 3408 lpfc_handle_eratt(phba); 3409 3410 return; 3411 } 3412 3413 rmb(); 3414 while (pring->sli.sli3.rspidx != portRspPut) { 3415 /* 3416 * Build a completion list and call the appropriate handler. 3417 * The process is to get the next available response iocb, get 3418 * a free iocb from the list, copy the response data into the 3419 * free iocb, insert to the continuation list, and update the 3420 * next response index to slim. This process makes response 3421 * iocb's in the ring available to DMA as fast as possible but 3422 * pays a penalty for a copy operation. Since the iocb is 3423 * only 32 bytes, this penalty is considered small relative to 3424 * the PCI reads for register values and a slim write. When 3425 * the ulpLe field is set, the entire Command has been 3426 * received. 3427 */ 3428 entry = lpfc_resp_iocb(phba, pring); 3429 3430 phba->last_completion_time = jiffies; 3431 rspiocbp = __lpfc_sli_get_iocbq(phba); 3432 if (rspiocbp == NULL) { 3433 printk(KERN_ERR "%s: out of buffers! Failing " 3434 "completion.\n", __func__); 3435 break; 3436 } 3437 3438 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 3439 phba->iocb_rsp_size); 3440 irsp = &rspiocbp->iocb; 3441 3442 if (++pring->sli.sli3.rspidx >= portRspMax) 3443 pring->sli.sli3.rspidx = 0; 3444 3445 if (pring->ringno == LPFC_ELS_RING) { 3446 lpfc_debugfs_slow_ring_trc(phba, 3447 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 3448 *(((uint32_t *) irsp) + 4), 3449 *(((uint32_t *) irsp) + 6), 3450 *(((uint32_t *) irsp) + 7)); 3451 } 3452 3453 writel(pring->sli.sli3.rspidx, 3454 &phba->host_gp[pring->ringno].rspGetInx); 3455 3456 spin_unlock_irqrestore(&phba->hbalock, iflag); 3457 /* Handle the response IOCB */ 3458 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 3459 spin_lock_irqsave(&phba->hbalock, iflag); 3460 3461 /* 3462 * If the port response put pointer has not been updated, sync 3463 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 3464 * response put pointer. 3465 */ 3466 if (pring->sli.sli3.rspidx == portRspPut) { 3467 portRspPut = le32_to_cpu(pgp->rspPutInx); 3468 } 3469 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 3470 3471 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 3472 /* At least one response entry has been freed */ 3473 pring->stats.iocb_rsp_full++; 3474 /* SET RxRE_RSP in Chip Att register */ 3475 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3476 writel(status, phba->CAregaddr); 3477 readl(phba->CAregaddr); /* flush */ 3478 } 3479 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3480 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3481 pring->stats.iocb_cmd_empty++; 3482 3483 /* Force update of the local copy of cmdGetInx */ 3484 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3485 lpfc_sli_resume_iocb(phba, pring); 3486 3487 if ((pring->lpfc_sli_cmd_available)) 3488 (pring->lpfc_sli_cmd_available) (phba, pring); 3489 3490 } 3491 3492 spin_unlock_irqrestore(&phba->hbalock, iflag); 3493 return; 3494 } 3495 3496 /** 3497 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 3498 * @phba: Pointer to HBA context object. 3499 * @pring: Pointer to driver SLI ring object. 3500 * @mask: Host attention register mask for this ring. 3501 * 3502 * This function is called from the worker thread when there is a pending 3503 * ELS response iocb on the driver internal slow-path response iocb worker 3504 * queue. The caller does not hold any lock. The function will remove each 3505 * response iocb from the response worker queue and calls the handle 3506 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3507 **/ 3508 static void 3509 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 3510 struct lpfc_sli_ring *pring, uint32_t mask) 3511 { 3512 struct lpfc_iocbq *irspiocbq; 3513 struct hbq_dmabuf *dmabuf; 3514 struct lpfc_cq_event *cq_event; 3515 unsigned long iflag; 3516 3517 spin_lock_irqsave(&phba->hbalock, iflag); 3518 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 3519 spin_unlock_irqrestore(&phba->hbalock, iflag); 3520 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 3521 /* Get the response iocb from the head of work queue */ 3522 spin_lock_irqsave(&phba->hbalock, iflag); 3523 list_remove_head(&phba->sli4_hba.sp_queue_event, 3524 cq_event, struct lpfc_cq_event, list); 3525 spin_unlock_irqrestore(&phba->hbalock, iflag); 3526 3527 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 3528 case CQE_CODE_COMPL_WQE: 3529 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 3530 cq_event); 3531 /* Translate ELS WCQE to response IOCBQ */ 3532 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 3533 irspiocbq); 3534 if (irspiocbq) 3535 lpfc_sli_sp_handle_rspiocb(phba, pring, 3536 irspiocbq); 3537 break; 3538 case CQE_CODE_RECEIVE: 3539 case CQE_CODE_RECEIVE_V1: 3540 dmabuf = container_of(cq_event, struct hbq_dmabuf, 3541 cq_event); 3542 lpfc_sli4_handle_received_buffer(phba, dmabuf); 3543 break; 3544 default: 3545 break; 3546 } 3547 } 3548 } 3549 3550 /** 3551 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 3552 * @phba: Pointer to HBA context object. 3553 * @pring: Pointer to driver SLI ring object. 3554 * 3555 * This function aborts all iocbs in the given ring and frees all the iocb 3556 * objects in txq. This function issues an abort iocb for all the iocb commands 3557 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3558 * the return of this function. The caller is not required to hold any locks. 3559 **/ 3560 void 3561 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3562 { 3563 LIST_HEAD(completions); 3564 struct lpfc_iocbq *iocb, *next_iocb; 3565 3566 if (pring->ringno == LPFC_ELS_RING) { 3567 lpfc_fabric_abort_hba(phba); 3568 } 3569 3570 /* Error everything on txq and txcmplq 3571 * First do the txq. 3572 */ 3573 if (phba->sli_rev >= LPFC_SLI_REV4) { 3574 spin_lock_irq(&pring->ring_lock); 3575 list_splice_init(&pring->txq, &completions); 3576 pring->txq_cnt = 0; 3577 spin_unlock_irq(&pring->ring_lock); 3578 3579 spin_lock_irq(&phba->hbalock); 3580 /* Next issue ABTS for everything on the txcmplq */ 3581 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3582 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3583 spin_unlock_irq(&phba->hbalock); 3584 } else { 3585 spin_lock_irq(&phba->hbalock); 3586 list_splice_init(&pring->txq, &completions); 3587 pring->txq_cnt = 0; 3588 3589 /* Next issue ABTS for everything on the txcmplq */ 3590 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3591 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3592 spin_unlock_irq(&phba->hbalock); 3593 } 3594 3595 /* Cancel all the IOCBs from the completions list */ 3596 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 3597 IOERR_SLI_ABORTED); 3598 } 3599 3600 /** 3601 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 3602 * @phba: Pointer to HBA context object. 3603 * @pring: Pointer to driver SLI ring object. 3604 * 3605 * This function aborts all iocbs in FCP rings and frees all the iocb 3606 * objects in txq. This function issues an abort iocb for all the iocb commands 3607 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3608 * the return of this function. The caller is not required to hold any locks. 3609 **/ 3610 void 3611 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 3612 { 3613 struct lpfc_sli *psli = &phba->sli; 3614 struct lpfc_sli_ring *pring; 3615 uint32_t i; 3616 3617 /* Look on all the FCP Rings for the iotag */ 3618 if (phba->sli_rev >= LPFC_SLI_REV4) { 3619 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3620 pring = &psli->ring[i + MAX_SLI3_CONFIGURED_RINGS]; 3621 lpfc_sli_abort_iocb_ring(phba, pring); 3622 } 3623 } else { 3624 pring = &psli->ring[psli->fcp_ring]; 3625 lpfc_sli_abort_iocb_ring(phba, pring); 3626 } 3627 } 3628 3629 3630 /** 3631 * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring 3632 * @phba: Pointer to HBA context object. 3633 * 3634 * This function flushes all iocbs in the fcp ring and frees all the iocb 3635 * objects in txq and txcmplq. This function will not issue abort iocbs 3636 * for all the iocb commands in txcmplq, they will just be returned with 3637 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 3638 * slot has been permanently disabled. 3639 **/ 3640 void 3641 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba) 3642 { 3643 LIST_HEAD(txq); 3644 LIST_HEAD(txcmplq); 3645 struct lpfc_sli *psli = &phba->sli; 3646 struct lpfc_sli_ring *pring; 3647 uint32_t i; 3648 3649 spin_lock_irq(&phba->hbalock); 3650 /* Indicate the I/O queues are flushed */ 3651 phba->hba_flag |= HBA_FCP_IOQ_FLUSH; 3652 spin_unlock_irq(&phba->hbalock); 3653 3654 /* Look on all the FCP Rings for the iotag */ 3655 if (phba->sli_rev >= LPFC_SLI_REV4) { 3656 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3657 pring = &psli->ring[i + MAX_SLI3_CONFIGURED_RINGS]; 3658 3659 spin_lock_irq(&pring->ring_lock); 3660 /* Retrieve everything on txq */ 3661 list_splice_init(&pring->txq, &txq); 3662 /* Retrieve everything on the txcmplq */ 3663 list_splice_init(&pring->txcmplq, &txcmplq); 3664 pring->txq_cnt = 0; 3665 pring->txcmplq_cnt = 0; 3666 spin_unlock_irq(&pring->ring_lock); 3667 3668 /* Flush the txq */ 3669 lpfc_sli_cancel_iocbs(phba, &txq, 3670 IOSTAT_LOCAL_REJECT, 3671 IOERR_SLI_DOWN); 3672 /* Flush the txcmpq */ 3673 lpfc_sli_cancel_iocbs(phba, &txcmplq, 3674 IOSTAT_LOCAL_REJECT, 3675 IOERR_SLI_DOWN); 3676 } 3677 } else { 3678 pring = &psli->ring[psli->fcp_ring]; 3679 3680 spin_lock_irq(&phba->hbalock); 3681 /* Retrieve everything on txq */ 3682 list_splice_init(&pring->txq, &txq); 3683 /* Retrieve everything on the txcmplq */ 3684 list_splice_init(&pring->txcmplq, &txcmplq); 3685 pring->txq_cnt = 0; 3686 pring->txcmplq_cnt = 0; 3687 spin_unlock_irq(&phba->hbalock); 3688 3689 /* Flush the txq */ 3690 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 3691 IOERR_SLI_DOWN); 3692 /* Flush the txcmpq */ 3693 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 3694 IOERR_SLI_DOWN); 3695 } 3696 } 3697 3698 /** 3699 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 3700 * @phba: Pointer to HBA context object. 3701 * @mask: Bit mask to be checked. 3702 * 3703 * This function reads the host status register and compares 3704 * with the provided bit mask to check if HBA completed 3705 * the restart. This function will wait in a loop for the 3706 * HBA to complete restart. If the HBA does not restart within 3707 * 15 iterations, the function will reset the HBA again. The 3708 * function returns 1 when HBA fail to restart otherwise returns 3709 * zero. 3710 **/ 3711 static int 3712 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 3713 { 3714 uint32_t status; 3715 int i = 0; 3716 int retval = 0; 3717 3718 /* Read the HBA Host Status Register */ 3719 if (lpfc_readl(phba->HSregaddr, &status)) 3720 return 1; 3721 3722 /* 3723 * Check status register every 100ms for 5 retries, then every 3724 * 500ms for 5, then every 2.5 sec for 5, then reset board and 3725 * every 2.5 sec for 4. 3726 * Break our of the loop if errors occurred during init. 3727 */ 3728 while (((status & mask) != mask) && 3729 !(status & HS_FFERM) && 3730 i++ < 20) { 3731 3732 if (i <= 5) 3733 msleep(10); 3734 else if (i <= 10) 3735 msleep(500); 3736 else 3737 msleep(2500); 3738 3739 if (i == 15) { 3740 /* Do post */ 3741 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 3742 lpfc_sli_brdrestart(phba); 3743 } 3744 /* Read the HBA Host Status Register */ 3745 if (lpfc_readl(phba->HSregaddr, &status)) { 3746 retval = 1; 3747 break; 3748 } 3749 } 3750 3751 /* Check to see if any errors occurred during init */ 3752 if ((status & HS_FFERM) || (i >= 20)) { 3753 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 3754 "2751 Adapter failed to restart, " 3755 "status reg x%x, FW Data: A8 x%x AC x%x\n", 3756 status, 3757 readl(phba->MBslimaddr + 0xa8), 3758 readl(phba->MBslimaddr + 0xac)); 3759 phba->link_state = LPFC_HBA_ERROR; 3760 retval = 1; 3761 } 3762 3763 return retval; 3764 } 3765 3766 /** 3767 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 3768 * @phba: Pointer to HBA context object. 3769 * @mask: Bit mask to be checked. 3770 * 3771 * This function checks the host status register to check if HBA is 3772 * ready. This function will wait in a loop for the HBA to be ready 3773 * If the HBA is not ready , the function will will reset the HBA PCI 3774 * function again. The function returns 1 when HBA fail to be ready 3775 * otherwise returns zero. 3776 **/ 3777 static int 3778 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 3779 { 3780 uint32_t status; 3781 int retval = 0; 3782 3783 /* Read the HBA Host Status Register */ 3784 status = lpfc_sli4_post_status_check(phba); 3785 3786 if (status) { 3787 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 3788 lpfc_sli_brdrestart(phba); 3789 status = lpfc_sli4_post_status_check(phba); 3790 } 3791 3792 /* Check to see if any errors occurred during init */ 3793 if (status) { 3794 phba->link_state = LPFC_HBA_ERROR; 3795 retval = 1; 3796 } else 3797 phba->sli4_hba.intr_enable = 0; 3798 3799 return retval; 3800 } 3801 3802 /** 3803 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 3804 * @phba: Pointer to HBA context object. 3805 * @mask: Bit mask to be checked. 3806 * 3807 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 3808 * from the API jump table function pointer from the lpfc_hba struct. 3809 **/ 3810 int 3811 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 3812 { 3813 return phba->lpfc_sli_brdready(phba, mask); 3814 } 3815 3816 #define BARRIER_TEST_PATTERN (0xdeadbeef) 3817 3818 /** 3819 * lpfc_reset_barrier - Make HBA ready for HBA reset 3820 * @phba: Pointer to HBA context object. 3821 * 3822 * This function is called before resetting an HBA. This function is called 3823 * with hbalock held and requests HBA to quiesce DMAs before a reset. 3824 **/ 3825 void lpfc_reset_barrier(struct lpfc_hba *phba) 3826 { 3827 uint32_t __iomem *resp_buf; 3828 uint32_t __iomem *mbox_buf; 3829 volatile uint32_t mbox; 3830 uint32_t hc_copy, ha_copy, resp_data; 3831 int i; 3832 uint8_t hdrtype; 3833 3834 lockdep_assert_held(&phba->hbalock); 3835 3836 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 3837 if (hdrtype != 0x80 || 3838 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 3839 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 3840 return; 3841 3842 /* 3843 * Tell the other part of the chip to suspend temporarily all 3844 * its DMA activity. 3845 */ 3846 resp_buf = phba->MBslimaddr; 3847 3848 /* Disable the error attention */ 3849 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 3850 return; 3851 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 3852 readl(phba->HCregaddr); /* flush */ 3853 phba->link_flag |= LS_IGNORE_ERATT; 3854 3855 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 3856 return; 3857 if (ha_copy & HA_ERATT) { 3858 /* Clear Chip error bit */ 3859 writel(HA_ERATT, phba->HAregaddr); 3860 phba->pport->stopped = 1; 3861 } 3862 3863 mbox = 0; 3864 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 3865 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 3866 3867 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 3868 mbox_buf = phba->MBslimaddr; 3869 writel(mbox, mbox_buf); 3870 3871 for (i = 0; i < 50; i++) { 3872 if (lpfc_readl((resp_buf + 1), &resp_data)) 3873 return; 3874 if (resp_data != ~(BARRIER_TEST_PATTERN)) 3875 mdelay(1); 3876 else 3877 break; 3878 } 3879 resp_data = 0; 3880 if (lpfc_readl((resp_buf + 1), &resp_data)) 3881 return; 3882 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 3883 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 3884 phba->pport->stopped) 3885 goto restore_hc; 3886 else 3887 goto clear_errat; 3888 } 3889 3890 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 3891 resp_data = 0; 3892 for (i = 0; i < 500; i++) { 3893 if (lpfc_readl(resp_buf, &resp_data)) 3894 return; 3895 if (resp_data != mbox) 3896 mdelay(1); 3897 else 3898 break; 3899 } 3900 3901 clear_errat: 3902 3903 while (++i < 500) { 3904 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 3905 return; 3906 if (!(ha_copy & HA_ERATT)) 3907 mdelay(1); 3908 else 3909 break; 3910 } 3911 3912 if (readl(phba->HAregaddr) & HA_ERATT) { 3913 writel(HA_ERATT, phba->HAregaddr); 3914 phba->pport->stopped = 1; 3915 } 3916 3917 restore_hc: 3918 phba->link_flag &= ~LS_IGNORE_ERATT; 3919 writel(hc_copy, phba->HCregaddr); 3920 readl(phba->HCregaddr); /* flush */ 3921 } 3922 3923 /** 3924 * lpfc_sli_brdkill - Issue a kill_board mailbox command 3925 * @phba: Pointer to HBA context object. 3926 * 3927 * This function issues a kill_board mailbox command and waits for 3928 * the error attention interrupt. This function is called for stopping 3929 * the firmware processing. The caller is not required to hold any 3930 * locks. This function calls lpfc_hba_down_post function to free 3931 * any pending commands after the kill. The function will return 1 when it 3932 * fails to kill the board else will return 0. 3933 **/ 3934 int 3935 lpfc_sli_brdkill(struct lpfc_hba *phba) 3936 { 3937 struct lpfc_sli *psli; 3938 LPFC_MBOXQ_t *pmb; 3939 uint32_t status; 3940 uint32_t ha_copy; 3941 int retval; 3942 int i = 0; 3943 3944 psli = &phba->sli; 3945 3946 /* Kill HBA */ 3947 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3948 "0329 Kill HBA Data: x%x x%x\n", 3949 phba->pport->port_state, psli->sli_flag); 3950 3951 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 3952 if (!pmb) 3953 return 1; 3954 3955 /* Disable the error attention */ 3956 spin_lock_irq(&phba->hbalock); 3957 if (lpfc_readl(phba->HCregaddr, &status)) { 3958 spin_unlock_irq(&phba->hbalock); 3959 mempool_free(pmb, phba->mbox_mem_pool); 3960 return 1; 3961 } 3962 status &= ~HC_ERINT_ENA; 3963 writel(status, phba->HCregaddr); 3964 readl(phba->HCregaddr); /* flush */ 3965 phba->link_flag |= LS_IGNORE_ERATT; 3966 spin_unlock_irq(&phba->hbalock); 3967 3968 lpfc_kill_board(phba, pmb); 3969 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 3970 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3971 3972 if (retval != MBX_SUCCESS) { 3973 if (retval != MBX_BUSY) 3974 mempool_free(pmb, phba->mbox_mem_pool); 3975 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3976 "2752 KILL_BOARD command failed retval %d\n", 3977 retval); 3978 spin_lock_irq(&phba->hbalock); 3979 phba->link_flag &= ~LS_IGNORE_ERATT; 3980 spin_unlock_irq(&phba->hbalock); 3981 return 1; 3982 } 3983 3984 spin_lock_irq(&phba->hbalock); 3985 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 3986 spin_unlock_irq(&phba->hbalock); 3987 3988 mempool_free(pmb, phba->mbox_mem_pool); 3989 3990 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 3991 * attention every 100ms for 3 seconds. If we don't get ERATT after 3992 * 3 seconds we still set HBA_ERROR state because the status of the 3993 * board is now undefined. 3994 */ 3995 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 3996 return 1; 3997 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 3998 mdelay(100); 3999 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4000 return 1; 4001 } 4002 4003 del_timer_sync(&psli->mbox_tmo); 4004 if (ha_copy & HA_ERATT) { 4005 writel(HA_ERATT, phba->HAregaddr); 4006 phba->pport->stopped = 1; 4007 } 4008 spin_lock_irq(&phba->hbalock); 4009 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4010 psli->mbox_active = NULL; 4011 phba->link_flag &= ~LS_IGNORE_ERATT; 4012 spin_unlock_irq(&phba->hbalock); 4013 4014 lpfc_hba_down_post(phba); 4015 phba->link_state = LPFC_HBA_ERROR; 4016 4017 return ha_copy & HA_ERATT ? 0 : 1; 4018 } 4019 4020 /** 4021 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4022 * @phba: Pointer to HBA context object. 4023 * 4024 * This function resets the HBA by writing HC_INITFF to the control 4025 * register. After the HBA resets, this function resets all the iocb ring 4026 * indices. This function disables PCI layer parity checking during 4027 * the reset. 4028 * This function returns 0 always. 4029 * The caller is not required to hold any locks. 4030 **/ 4031 int 4032 lpfc_sli_brdreset(struct lpfc_hba *phba) 4033 { 4034 struct lpfc_sli *psli; 4035 struct lpfc_sli_ring *pring; 4036 uint16_t cfg_value; 4037 int i; 4038 4039 psli = &phba->sli; 4040 4041 /* Reset HBA */ 4042 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4043 "0325 Reset HBA Data: x%x x%x\n", 4044 phba->pport->port_state, psli->sli_flag); 4045 4046 /* perform board reset */ 4047 phba->fc_eventTag = 0; 4048 phba->link_events = 0; 4049 phba->pport->fc_myDID = 0; 4050 phba->pport->fc_prevDID = 0; 4051 4052 /* Turn off parity checking and serr during the physical reset */ 4053 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4054 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4055 (cfg_value & 4056 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4057 4058 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4059 4060 /* Now toggle INITFF bit in the Host Control Register */ 4061 writel(HC_INITFF, phba->HCregaddr); 4062 mdelay(1); 4063 readl(phba->HCregaddr); /* flush */ 4064 writel(0, phba->HCregaddr); 4065 readl(phba->HCregaddr); /* flush */ 4066 4067 /* Restore PCI cmd register */ 4068 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4069 4070 /* Initialize relevant SLI info */ 4071 for (i = 0; i < psli->num_rings; i++) { 4072 pring = &psli->ring[i]; 4073 pring->flag = 0; 4074 pring->sli.sli3.rspidx = 0; 4075 pring->sli.sli3.next_cmdidx = 0; 4076 pring->sli.sli3.local_getidx = 0; 4077 pring->sli.sli3.cmdidx = 0; 4078 pring->missbufcnt = 0; 4079 } 4080 4081 phba->link_state = LPFC_WARM_START; 4082 return 0; 4083 } 4084 4085 /** 4086 * lpfc_sli4_brdreset - Reset a sli-4 HBA 4087 * @phba: Pointer to HBA context object. 4088 * 4089 * This function resets a SLI4 HBA. This function disables PCI layer parity 4090 * checking during resets the device. The caller is not required to hold 4091 * any locks. 4092 * 4093 * This function returns 0 always. 4094 **/ 4095 int 4096 lpfc_sli4_brdreset(struct lpfc_hba *phba) 4097 { 4098 struct lpfc_sli *psli = &phba->sli; 4099 uint16_t cfg_value; 4100 int rc = 0; 4101 4102 /* Reset HBA */ 4103 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4104 "0295 Reset HBA Data: x%x x%x x%x\n", 4105 phba->pport->port_state, psli->sli_flag, 4106 phba->hba_flag); 4107 4108 /* perform board reset */ 4109 phba->fc_eventTag = 0; 4110 phba->link_events = 0; 4111 phba->pport->fc_myDID = 0; 4112 phba->pport->fc_prevDID = 0; 4113 4114 spin_lock_irq(&phba->hbalock); 4115 psli->sli_flag &= ~(LPFC_PROCESS_LA); 4116 phba->fcf.fcf_flag = 0; 4117 spin_unlock_irq(&phba->hbalock); 4118 4119 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 4120 if (phba->hba_flag & HBA_FW_DUMP_OP) { 4121 phba->hba_flag &= ~HBA_FW_DUMP_OP; 4122 return rc; 4123 } 4124 4125 /* Now physically reset the device */ 4126 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4127 "0389 Performing PCI function reset!\n"); 4128 4129 /* Turn off parity checking and serr during the physical reset */ 4130 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4131 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4132 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4133 4134 /* Perform FCoE PCI function reset before freeing queue memory */ 4135 rc = lpfc_pci_function_reset(phba); 4136 lpfc_sli4_queue_destroy(phba); 4137 4138 /* Restore PCI cmd register */ 4139 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4140 4141 return rc; 4142 } 4143 4144 /** 4145 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4146 * @phba: Pointer to HBA context object. 4147 * 4148 * This function is called in the SLI initialization code path to 4149 * restart the HBA. The caller is not required to hold any lock. 4150 * This function writes MBX_RESTART mailbox command to the SLIM and 4151 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4152 * function to free any pending commands. The function enables 4153 * POST only during the first initialization. The function returns zero. 4154 * The function does not guarantee completion of MBX_RESTART mailbox 4155 * command before the return of this function. 4156 **/ 4157 static int 4158 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4159 { 4160 MAILBOX_t *mb; 4161 struct lpfc_sli *psli; 4162 volatile uint32_t word0; 4163 void __iomem *to_slim; 4164 uint32_t hba_aer_enabled; 4165 4166 spin_lock_irq(&phba->hbalock); 4167 4168 /* Take PCIe device Advanced Error Reporting (AER) state */ 4169 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4170 4171 psli = &phba->sli; 4172 4173 /* Restart HBA */ 4174 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4175 "0337 Restart HBA Data: x%x x%x\n", 4176 phba->pport->port_state, psli->sli_flag); 4177 4178 word0 = 0; 4179 mb = (MAILBOX_t *) &word0; 4180 mb->mbxCommand = MBX_RESTART; 4181 mb->mbxHc = 1; 4182 4183 lpfc_reset_barrier(phba); 4184 4185 to_slim = phba->MBslimaddr; 4186 writel(*(uint32_t *) mb, to_slim); 4187 readl(to_slim); /* flush */ 4188 4189 /* Only skip post after fc_ffinit is completed */ 4190 if (phba->pport->port_state) 4191 word0 = 1; /* This is really setting up word1 */ 4192 else 4193 word0 = 0; /* This is really setting up word1 */ 4194 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4195 writel(*(uint32_t *) mb, to_slim); 4196 readl(to_slim); /* flush */ 4197 4198 lpfc_sli_brdreset(phba); 4199 phba->pport->stopped = 0; 4200 phba->link_state = LPFC_INIT_START; 4201 phba->hba_flag = 0; 4202 spin_unlock_irq(&phba->hbalock); 4203 4204 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4205 psli->stats_start = get_seconds(); 4206 4207 /* Give the INITFF and Post time to settle. */ 4208 mdelay(100); 4209 4210 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4211 if (hba_aer_enabled) 4212 pci_disable_pcie_error_reporting(phba->pcidev); 4213 4214 lpfc_hba_down_post(phba); 4215 4216 return 0; 4217 } 4218 4219 /** 4220 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4221 * @phba: Pointer to HBA context object. 4222 * 4223 * This function is called in the SLI initialization code path to restart 4224 * a SLI4 HBA. The caller is not required to hold any lock. 4225 * At the end of the function, it calls lpfc_hba_down_post function to 4226 * free any pending commands. 4227 **/ 4228 static int 4229 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4230 { 4231 struct lpfc_sli *psli = &phba->sli; 4232 uint32_t hba_aer_enabled; 4233 int rc; 4234 4235 /* Restart HBA */ 4236 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4237 "0296 Restart HBA Data: x%x x%x\n", 4238 phba->pport->port_state, psli->sli_flag); 4239 4240 /* Take PCIe device Advanced Error Reporting (AER) state */ 4241 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4242 4243 rc = lpfc_sli4_brdreset(phba); 4244 4245 spin_lock_irq(&phba->hbalock); 4246 phba->pport->stopped = 0; 4247 phba->link_state = LPFC_INIT_START; 4248 phba->hba_flag = 0; 4249 spin_unlock_irq(&phba->hbalock); 4250 4251 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4252 psli->stats_start = get_seconds(); 4253 4254 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4255 if (hba_aer_enabled) 4256 pci_disable_pcie_error_reporting(phba->pcidev); 4257 4258 lpfc_hba_down_post(phba); 4259 4260 return rc; 4261 } 4262 4263 /** 4264 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4265 * @phba: Pointer to HBA context object. 4266 * 4267 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4268 * API jump table function pointer from the lpfc_hba struct. 4269 **/ 4270 int 4271 lpfc_sli_brdrestart(struct lpfc_hba *phba) 4272 { 4273 return phba->lpfc_sli_brdrestart(phba); 4274 } 4275 4276 /** 4277 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4278 * @phba: Pointer to HBA context object. 4279 * 4280 * This function is called after a HBA restart to wait for successful 4281 * restart of the HBA. Successful restart of the HBA is indicated by 4282 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4283 * iteration, the function will restart the HBA again. The function returns 4284 * zero if HBA successfully restarted else returns negative error code. 4285 **/ 4286 static int 4287 lpfc_sli_chipset_init(struct lpfc_hba *phba) 4288 { 4289 uint32_t status, i = 0; 4290 4291 /* Read the HBA Host Status Register */ 4292 if (lpfc_readl(phba->HSregaddr, &status)) 4293 return -EIO; 4294 4295 /* Check status register to see what current state is */ 4296 i = 0; 4297 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4298 4299 /* Check every 10ms for 10 retries, then every 100ms for 90 4300 * retries, then every 1 sec for 50 retires for a total of 4301 * ~60 seconds before reset the board again and check every 4302 * 1 sec for 50 retries. The up to 60 seconds before the 4303 * board ready is required by the Falcon FIPS zeroization 4304 * complete, and any reset the board in between shall cause 4305 * restart of zeroization, further delay the board ready. 4306 */ 4307 if (i++ >= 200) { 4308 /* Adapter failed to init, timeout, status reg 4309 <status> */ 4310 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4311 "0436 Adapter failed to init, " 4312 "timeout, status reg x%x, " 4313 "FW Data: A8 x%x AC x%x\n", status, 4314 readl(phba->MBslimaddr + 0xa8), 4315 readl(phba->MBslimaddr + 0xac)); 4316 phba->link_state = LPFC_HBA_ERROR; 4317 return -ETIMEDOUT; 4318 } 4319 4320 /* Check to see if any errors occurred during init */ 4321 if (status & HS_FFERM) { 4322 /* ERROR: During chipset initialization */ 4323 /* Adapter failed to init, chipset, status reg 4324 <status> */ 4325 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4326 "0437 Adapter failed to init, " 4327 "chipset, status reg x%x, " 4328 "FW Data: A8 x%x AC x%x\n", status, 4329 readl(phba->MBslimaddr + 0xa8), 4330 readl(phba->MBslimaddr + 0xac)); 4331 phba->link_state = LPFC_HBA_ERROR; 4332 return -EIO; 4333 } 4334 4335 if (i <= 10) 4336 msleep(10); 4337 else if (i <= 100) 4338 msleep(100); 4339 else 4340 msleep(1000); 4341 4342 if (i == 150) { 4343 /* Do post */ 4344 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4345 lpfc_sli_brdrestart(phba); 4346 } 4347 /* Read the HBA Host Status Register */ 4348 if (lpfc_readl(phba->HSregaddr, &status)) 4349 return -EIO; 4350 } 4351 4352 /* Check to see if any errors occurred during init */ 4353 if (status & HS_FFERM) { 4354 /* ERROR: During chipset initialization */ 4355 /* Adapter failed to init, chipset, status reg <status> */ 4356 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4357 "0438 Adapter failed to init, chipset, " 4358 "status reg x%x, " 4359 "FW Data: A8 x%x AC x%x\n", status, 4360 readl(phba->MBslimaddr + 0xa8), 4361 readl(phba->MBslimaddr + 0xac)); 4362 phba->link_state = LPFC_HBA_ERROR; 4363 return -EIO; 4364 } 4365 4366 /* Clear all interrupt enable conditions */ 4367 writel(0, phba->HCregaddr); 4368 readl(phba->HCregaddr); /* flush */ 4369 4370 /* setup host attn register */ 4371 writel(0xffffffff, phba->HAregaddr); 4372 readl(phba->HAregaddr); /* flush */ 4373 return 0; 4374 } 4375 4376 /** 4377 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 4378 * 4379 * This function calculates and returns the number of HBQs required to be 4380 * configured. 4381 **/ 4382 int 4383 lpfc_sli_hbq_count(void) 4384 { 4385 return ARRAY_SIZE(lpfc_hbq_defs); 4386 } 4387 4388 /** 4389 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 4390 * 4391 * This function adds the number of hbq entries in every HBQ to get 4392 * the total number of hbq entries required for the HBA and returns 4393 * the total count. 4394 **/ 4395 static int 4396 lpfc_sli_hbq_entry_count(void) 4397 { 4398 int hbq_count = lpfc_sli_hbq_count(); 4399 int count = 0; 4400 int i; 4401 4402 for (i = 0; i < hbq_count; ++i) 4403 count += lpfc_hbq_defs[i]->entry_count; 4404 return count; 4405 } 4406 4407 /** 4408 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 4409 * 4410 * This function calculates amount of memory required for all hbq entries 4411 * to be configured and returns the total memory required. 4412 **/ 4413 int 4414 lpfc_sli_hbq_size(void) 4415 { 4416 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 4417 } 4418 4419 /** 4420 * lpfc_sli_hbq_setup - configure and initialize HBQs 4421 * @phba: Pointer to HBA context object. 4422 * 4423 * This function is called during the SLI initialization to configure 4424 * all the HBQs and post buffers to the HBQ. The caller is not 4425 * required to hold any locks. This function will return zero if successful 4426 * else it will return negative error code. 4427 **/ 4428 static int 4429 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 4430 { 4431 int hbq_count = lpfc_sli_hbq_count(); 4432 LPFC_MBOXQ_t *pmb; 4433 MAILBOX_t *pmbox; 4434 uint32_t hbqno; 4435 uint32_t hbq_entry_index; 4436 4437 /* Get a Mailbox buffer to setup mailbox 4438 * commands for HBA initialization 4439 */ 4440 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4441 4442 if (!pmb) 4443 return -ENOMEM; 4444 4445 pmbox = &pmb->u.mb; 4446 4447 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 4448 phba->link_state = LPFC_INIT_MBX_CMDS; 4449 phba->hbq_in_use = 1; 4450 4451 hbq_entry_index = 0; 4452 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 4453 phba->hbqs[hbqno].next_hbqPutIdx = 0; 4454 phba->hbqs[hbqno].hbqPutIdx = 0; 4455 phba->hbqs[hbqno].local_hbqGetIdx = 0; 4456 phba->hbqs[hbqno].entry_count = 4457 lpfc_hbq_defs[hbqno]->entry_count; 4458 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 4459 hbq_entry_index, pmb); 4460 hbq_entry_index += phba->hbqs[hbqno].entry_count; 4461 4462 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 4463 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 4464 mbxStatus <status>, ring <num> */ 4465 4466 lpfc_printf_log(phba, KERN_ERR, 4467 LOG_SLI | LOG_VPORT, 4468 "1805 Adapter failed to init. " 4469 "Data: x%x x%x x%x\n", 4470 pmbox->mbxCommand, 4471 pmbox->mbxStatus, hbqno); 4472 4473 phba->link_state = LPFC_HBA_ERROR; 4474 mempool_free(pmb, phba->mbox_mem_pool); 4475 return -ENXIO; 4476 } 4477 } 4478 phba->hbq_count = hbq_count; 4479 4480 mempool_free(pmb, phba->mbox_mem_pool); 4481 4482 /* Initially populate or replenish the HBQs */ 4483 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 4484 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 4485 return 0; 4486 } 4487 4488 /** 4489 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 4490 * @phba: Pointer to HBA context object. 4491 * 4492 * This function is called during the SLI initialization to configure 4493 * all the HBQs and post buffers to the HBQ. The caller is not 4494 * required to hold any locks. This function will return zero if successful 4495 * else it will return negative error code. 4496 **/ 4497 static int 4498 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 4499 { 4500 phba->hbq_in_use = 1; 4501 phba->hbqs[0].entry_count = lpfc_hbq_defs[0]->entry_count; 4502 phba->hbq_count = 1; 4503 /* Initially populate or replenish the HBQs */ 4504 lpfc_sli_hbqbuf_init_hbqs(phba, 0); 4505 return 0; 4506 } 4507 4508 /** 4509 * lpfc_sli_config_port - Issue config port mailbox command 4510 * @phba: Pointer to HBA context object. 4511 * @sli_mode: sli mode - 2/3 4512 * 4513 * This function is called by the sli initialization code path 4514 * to issue config_port mailbox command. This function restarts the 4515 * HBA firmware and issues a config_port mailbox command to configure 4516 * the SLI interface in the sli mode specified by sli_mode 4517 * variable. The caller is not required to hold any locks. 4518 * The function returns 0 if successful, else returns negative error 4519 * code. 4520 **/ 4521 int 4522 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 4523 { 4524 LPFC_MBOXQ_t *pmb; 4525 uint32_t resetcount = 0, rc = 0, done = 0; 4526 4527 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4528 if (!pmb) { 4529 phba->link_state = LPFC_HBA_ERROR; 4530 return -ENOMEM; 4531 } 4532 4533 phba->sli_rev = sli_mode; 4534 while (resetcount < 2 && !done) { 4535 spin_lock_irq(&phba->hbalock); 4536 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 4537 spin_unlock_irq(&phba->hbalock); 4538 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4539 lpfc_sli_brdrestart(phba); 4540 rc = lpfc_sli_chipset_init(phba); 4541 if (rc) 4542 break; 4543 4544 spin_lock_irq(&phba->hbalock); 4545 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4546 spin_unlock_irq(&phba->hbalock); 4547 resetcount++; 4548 4549 /* Call pre CONFIG_PORT mailbox command initialization. A 4550 * value of 0 means the call was successful. Any other 4551 * nonzero value is a failure, but if ERESTART is returned, 4552 * the driver may reset the HBA and try again. 4553 */ 4554 rc = lpfc_config_port_prep(phba); 4555 if (rc == -ERESTART) { 4556 phba->link_state = LPFC_LINK_UNKNOWN; 4557 continue; 4558 } else if (rc) 4559 break; 4560 4561 phba->link_state = LPFC_INIT_MBX_CMDS; 4562 lpfc_config_port(phba, pmb); 4563 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 4564 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 4565 LPFC_SLI3_HBQ_ENABLED | 4566 LPFC_SLI3_CRP_ENABLED | 4567 LPFC_SLI3_BG_ENABLED | 4568 LPFC_SLI3_DSS_ENABLED); 4569 if (rc != MBX_SUCCESS) { 4570 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4571 "0442 Adapter failed to init, mbxCmd x%x " 4572 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 4573 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 4574 spin_lock_irq(&phba->hbalock); 4575 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 4576 spin_unlock_irq(&phba->hbalock); 4577 rc = -ENXIO; 4578 } else { 4579 /* Allow asynchronous mailbox command to go through */ 4580 spin_lock_irq(&phba->hbalock); 4581 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 4582 spin_unlock_irq(&phba->hbalock); 4583 done = 1; 4584 4585 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 4586 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 4587 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 4588 "3110 Port did not grant ASABT\n"); 4589 } 4590 } 4591 if (!done) { 4592 rc = -EINVAL; 4593 goto do_prep_failed; 4594 } 4595 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 4596 if (!pmb->u.mb.un.varCfgPort.cMA) { 4597 rc = -ENXIO; 4598 goto do_prep_failed; 4599 } 4600 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 4601 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 4602 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 4603 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 4604 phba->max_vpi : phba->max_vports; 4605 4606 } else 4607 phba->max_vpi = 0; 4608 phba->fips_level = 0; 4609 phba->fips_spec_rev = 0; 4610 if (pmb->u.mb.un.varCfgPort.gdss) { 4611 phba->sli3_options |= LPFC_SLI3_DSS_ENABLED; 4612 phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level; 4613 phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev; 4614 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4615 "2850 Security Crypto Active. FIPS x%d " 4616 "(Spec Rev: x%d)", 4617 phba->fips_level, phba->fips_spec_rev); 4618 } 4619 if (pmb->u.mb.un.varCfgPort.sec_err) { 4620 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4621 "2856 Config Port Security Crypto " 4622 "Error: x%x ", 4623 pmb->u.mb.un.varCfgPort.sec_err); 4624 } 4625 if (pmb->u.mb.un.varCfgPort.gerbm) 4626 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 4627 if (pmb->u.mb.un.varCfgPort.gcrp) 4628 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 4629 4630 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 4631 phba->port_gp = phba->mbox->us.s3_pgp.port; 4632 4633 if (phba->cfg_enable_bg) { 4634 if (pmb->u.mb.un.varCfgPort.gbg) 4635 phba->sli3_options |= LPFC_SLI3_BG_ENABLED; 4636 else 4637 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4638 "0443 Adapter did not grant " 4639 "BlockGuard\n"); 4640 } 4641 } else { 4642 phba->hbq_get = NULL; 4643 phba->port_gp = phba->mbox->us.s2.port; 4644 phba->max_vpi = 0; 4645 } 4646 do_prep_failed: 4647 mempool_free(pmb, phba->mbox_mem_pool); 4648 return rc; 4649 } 4650 4651 4652 /** 4653 * lpfc_sli_hba_setup - SLI initialization function 4654 * @phba: Pointer to HBA context object. 4655 * 4656 * This function is the main SLI initialization function. This function 4657 * is called by the HBA initialization code, HBA reset code and HBA 4658 * error attention handler code. Caller is not required to hold any 4659 * locks. This function issues config_port mailbox command to configure 4660 * the SLI, setup iocb rings and HBQ rings. In the end the function 4661 * calls the config_port_post function to issue init_link mailbox 4662 * command and to start the discovery. The function will return zero 4663 * if successful, else it will return negative error code. 4664 **/ 4665 int 4666 lpfc_sli_hba_setup(struct lpfc_hba *phba) 4667 { 4668 uint32_t rc; 4669 int mode = 3, i; 4670 int longs; 4671 4672 switch (phba->cfg_sli_mode) { 4673 case 2: 4674 if (phba->cfg_enable_npiv) { 4675 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4676 "1824 NPIV enabled: Override sli_mode " 4677 "parameter (%d) to auto (0).\n", 4678 phba->cfg_sli_mode); 4679 break; 4680 } 4681 mode = 2; 4682 break; 4683 case 0: 4684 case 3: 4685 break; 4686 default: 4687 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4688 "1819 Unrecognized sli_mode parameter: %d.\n", 4689 phba->cfg_sli_mode); 4690 4691 break; 4692 } 4693 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 4694 4695 rc = lpfc_sli_config_port(phba, mode); 4696 4697 if (rc && phba->cfg_sli_mode == 3) 4698 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4699 "1820 Unable to select SLI-3. " 4700 "Not supported by adapter.\n"); 4701 if (rc && mode != 2) 4702 rc = lpfc_sli_config_port(phba, 2); 4703 else if (rc && mode == 2) 4704 rc = lpfc_sli_config_port(phba, 3); 4705 if (rc) 4706 goto lpfc_sli_hba_setup_error; 4707 4708 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 4709 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 4710 rc = pci_enable_pcie_error_reporting(phba->pcidev); 4711 if (!rc) { 4712 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4713 "2709 This device supports " 4714 "Advanced Error Reporting (AER)\n"); 4715 spin_lock_irq(&phba->hbalock); 4716 phba->hba_flag |= HBA_AER_ENABLED; 4717 spin_unlock_irq(&phba->hbalock); 4718 } else { 4719 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4720 "2708 This device does not support " 4721 "Advanced Error Reporting (AER): %d\n", 4722 rc); 4723 phba->cfg_aer_support = 0; 4724 } 4725 } 4726 4727 if (phba->sli_rev == 3) { 4728 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 4729 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 4730 } else { 4731 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 4732 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 4733 phba->sli3_options = 0; 4734 } 4735 4736 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4737 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 4738 phba->sli_rev, phba->max_vpi); 4739 rc = lpfc_sli_ring_map(phba); 4740 4741 if (rc) 4742 goto lpfc_sli_hba_setup_error; 4743 4744 /* Initialize VPIs. */ 4745 if (phba->sli_rev == LPFC_SLI_REV3) { 4746 /* 4747 * The VPI bitmask and physical ID array are allocated 4748 * and initialized once only - at driver load. A port 4749 * reset doesn't need to reinitialize this memory. 4750 */ 4751 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 4752 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 4753 phba->vpi_bmask = kzalloc(longs * sizeof(unsigned long), 4754 GFP_KERNEL); 4755 if (!phba->vpi_bmask) { 4756 rc = -ENOMEM; 4757 goto lpfc_sli_hba_setup_error; 4758 } 4759 4760 phba->vpi_ids = kzalloc( 4761 (phba->max_vpi+1) * sizeof(uint16_t), 4762 GFP_KERNEL); 4763 if (!phba->vpi_ids) { 4764 kfree(phba->vpi_bmask); 4765 rc = -ENOMEM; 4766 goto lpfc_sli_hba_setup_error; 4767 } 4768 for (i = 0; i < phba->max_vpi; i++) 4769 phba->vpi_ids[i] = i; 4770 } 4771 } 4772 4773 /* Init HBQs */ 4774 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 4775 rc = lpfc_sli_hbq_setup(phba); 4776 if (rc) 4777 goto lpfc_sli_hba_setup_error; 4778 } 4779 spin_lock_irq(&phba->hbalock); 4780 phba->sli.sli_flag |= LPFC_PROCESS_LA; 4781 spin_unlock_irq(&phba->hbalock); 4782 4783 rc = lpfc_config_port_post(phba); 4784 if (rc) 4785 goto lpfc_sli_hba_setup_error; 4786 4787 return rc; 4788 4789 lpfc_sli_hba_setup_error: 4790 phba->link_state = LPFC_HBA_ERROR; 4791 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4792 "0445 Firmware initialization failed\n"); 4793 return rc; 4794 } 4795 4796 /** 4797 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 4798 * @phba: Pointer to HBA context object. 4799 * @mboxq: mailbox pointer. 4800 * This function issue a dump mailbox command to read config region 4801 * 23 and parse the records in the region and populate driver 4802 * data structure. 4803 **/ 4804 static int 4805 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 4806 { 4807 LPFC_MBOXQ_t *mboxq; 4808 struct lpfc_dmabuf *mp; 4809 struct lpfc_mqe *mqe; 4810 uint32_t data_length; 4811 int rc; 4812 4813 /* Program the default value of vlan_id and fc_map */ 4814 phba->valid_vlan = 0; 4815 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 4816 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 4817 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 4818 4819 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4820 if (!mboxq) 4821 return -ENOMEM; 4822 4823 mqe = &mboxq->u.mqe; 4824 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 4825 rc = -ENOMEM; 4826 goto out_free_mboxq; 4827 } 4828 4829 mp = (struct lpfc_dmabuf *) mboxq->context1; 4830 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4831 4832 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 4833 "(%d):2571 Mailbox cmd x%x Status x%x " 4834 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 4835 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 4836 "CQ: x%x x%x x%x x%x\n", 4837 mboxq->vport ? mboxq->vport->vpi : 0, 4838 bf_get(lpfc_mqe_command, mqe), 4839 bf_get(lpfc_mqe_status, mqe), 4840 mqe->un.mb_words[0], mqe->un.mb_words[1], 4841 mqe->un.mb_words[2], mqe->un.mb_words[3], 4842 mqe->un.mb_words[4], mqe->un.mb_words[5], 4843 mqe->un.mb_words[6], mqe->un.mb_words[7], 4844 mqe->un.mb_words[8], mqe->un.mb_words[9], 4845 mqe->un.mb_words[10], mqe->un.mb_words[11], 4846 mqe->un.mb_words[12], mqe->un.mb_words[13], 4847 mqe->un.mb_words[14], mqe->un.mb_words[15], 4848 mqe->un.mb_words[16], mqe->un.mb_words[50], 4849 mboxq->mcqe.word0, 4850 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 4851 mboxq->mcqe.trailer); 4852 4853 if (rc) { 4854 lpfc_mbuf_free(phba, mp->virt, mp->phys); 4855 kfree(mp); 4856 rc = -EIO; 4857 goto out_free_mboxq; 4858 } 4859 data_length = mqe->un.mb_words[5]; 4860 if (data_length > DMP_RGN23_SIZE) { 4861 lpfc_mbuf_free(phba, mp->virt, mp->phys); 4862 kfree(mp); 4863 rc = -EIO; 4864 goto out_free_mboxq; 4865 } 4866 4867 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 4868 lpfc_mbuf_free(phba, mp->virt, mp->phys); 4869 kfree(mp); 4870 rc = 0; 4871 4872 out_free_mboxq: 4873 mempool_free(mboxq, phba->mbox_mem_pool); 4874 return rc; 4875 } 4876 4877 /** 4878 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 4879 * @phba: pointer to lpfc hba data structure. 4880 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 4881 * @vpd: pointer to the memory to hold resulting port vpd data. 4882 * @vpd_size: On input, the number of bytes allocated to @vpd. 4883 * On output, the number of data bytes in @vpd. 4884 * 4885 * This routine executes a READ_REV SLI4 mailbox command. In 4886 * addition, this routine gets the port vpd data. 4887 * 4888 * Return codes 4889 * 0 - successful 4890 * -ENOMEM - could not allocated memory. 4891 **/ 4892 static int 4893 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 4894 uint8_t *vpd, uint32_t *vpd_size) 4895 { 4896 int rc = 0; 4897 uint32_t dma_size; 4898 struct lpfc_dmabuf *dmabuf; 4899 struct lpfc_mqe *mqe; 4900 4901 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 4902 if (!dmabuf) 4903 return -ENOMEM; 4904 4905 /* 4906 * Get a DMA buffer for the vpd data resulting from the READ_REV 4907 * mailbox command. 4908 */ 4909 dma_size = *vpd_size; 4910 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, dma_size, 4911 &dmabuf->phys, GFP_KERNEL); 4912 if (!dmabuf->virt) { 4913 kfree(dmabuf); 4914 return -ENOMEM; 4915 } 4916 4917 /* 4918 * The SLI4 implementation of READ_REV conflicts at word1, 4919 * bits 31:16 and SLI4 adds vpd functionality not present 4920 * in SLI3. This code corrects the conflicts. 4921 */ 4922 lpfc_read_rev(phba, mboxq); 4923 mqe = &mboxq->u.mqe; 4924 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 4925 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 4926 mqe->un.read_rev.word1 &= 0x0000FFFF; 4927 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 4928 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 4929 4930 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4931 if (rc) { 4932 dma_free_coherent(&phba->pcidev->dev, dma_size, 4933 dmabuf->virt, dmabuf->phys); 4934 kfree(dmabuf); 4935 return -EIO; 4936 } 4937 4938 /* 4939 * The available vpd length cannot be bigger than the 4940 * DMA buffer passed to the port. Catch the less than 4941 * case and update the caller's size. 4942 */ 4943 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 4944 *vpd_size = mqe->un.read_rev.avail_vpd_len; 4945 4946 memcpy(vpd, dmabuf->virt, *vpd_size); 4947 4948 dma_free_coherent(&phba->pcidev->dev, dma_size, 4949 dmabuf->virt, dmabuf->phys); 4950 kfree(dmabuf); 4951 return 0; 4952 } 4953 4954 /** 4955 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 4956 * @phba: pointer to lpfc hba data structure. 4957 * 4958 * This routine retrieves SLI4 device physical port name this PCI function 4959 * is attached to. 4960 * 4961 * Return codes 4962 * 0 - successful 4963 * otherwise - failed to retrieve physical port name 4964 **/ 4965 static int 4966 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 4967 { 4968 LPFC_MBOXQ_t *mboxq; 4969 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 4970 struct lpfc_controller_attribute *cntl_attr; 4971 struct lpfc_mbx_get_port_name *get_port_name; 4972 void *virtaddr = NULL; 4973 uint32_t alloclen, reqlen; 4974 uint32_t shdr_status, shdr_add_status; 4975 union lpfc_sli4_cfg_shdr *shdr; 4976 char cport_name = 0; 4977 int rc; 4978 4979 /* We assume nothing at this point */ 4980 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 4981 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 4982 4983 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4984 if (!mboxq) 4985 return -ENOMEM; 4986 /* obtain link type and link number via READ_CONFIG */ 4987 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 4988 lpfc_sli4_read_config(phba); 4989 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 4990 goto retrieve_ppname; 4991 4992 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 4993 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 4994 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 4995 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 4996 LPFC_SLI4_MBX_NEMBED); 4997 if (alloclen < reqlen) { 4998 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4999 "3084 Allocated DMA memory size (%d) is " 5000 "less than the requested DMA memory size " 5001 "(%d)\n", alloclen, reqlen); 5002 rc = -ENOMEM; 5003 goto out_free_mboxq; 5004 } 5005 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5006 virtaddr = mboxq->sge_array->addr[0]; 5007 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5008 shdr = &mbx_cntl_attr->cfg_shdr; 5009 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5010 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5011 if (shdr_status || shdr_add_status || rc) { 5012 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5013 "3085 Mailbox x%x (x%x/x%x) failed, " 5014 "rc:x%x, status:x%x, add_status:x%x\n", 5015 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5016 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5017 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5018 rc, shdr_status, shdr_add_status); 5019 rc = -ENXIO; 5020 goto out_free_mboxq; 5021 } 5022 cntl_attr = &mbx_cntl_attr->cntl_attr; 5023 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5024 phba->sli4_hba.lnk_info.lnk_tp = 5025 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5026 phba->sli4_hba.lnk_info.lnk_no = 5027 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5028 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5029 "3086 lnk_type:%d, lnk_numb:%d\n", 5030 phba->sli4_hba.lnk_info.lnk_tp, 5031 phba->sli4_hba.lnk_info.lnk_no); 5032 5033 retrieve_ppname: 5034 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5035 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5036 sizeof(struct lpfc_mbx_get_port_name) - 5037 sizeof(struct lpfc_sli4_cfg_mhdr), 5038 LPFC_SLI4_MBX_EMBED); 5039 get_port_name = &mboxq->u.mqe.un.get_port_name; 5040 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5041 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5042 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5043 phba->sli4_hba.lnk_info.lnk_tp); 5044 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5045 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5046 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5047 if (shdr_status || shdr_add_status || rc) { 5048 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5049 "3087 Mailbox x%x (x%x/x%x) failed: " 5050 "rc:x%x, status:x%x, add_status:x%x\n", 5051 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5052 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5053 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5054 rc, shdr_status, shdr_add_status); 5055 rc = -ENXIO; 5056 goto out_free_mboxq; 5057 } 5058 switch (phba->sli4_hba.lnk_info.lnk_no) { 5059 case LPFC_LINK_NUMBER_0: 5060 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 5061 &get_port_name->u.response); 5062 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5063 break; 5064 case LPFC_LINK_NUMBER_1: 5065 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 5066 &get_port_name->u.response); 5067 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5068 break; 5069 case LPFC_LINK_NUMBER_2: 5070 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 5071 &get_port_name->u.response); 5072 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5073 break; 5074 case LPFC_LINK_NUMBER_3: 5075 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 5076 &get_port_name->u.response); 5077 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5078 break; 5079 default: 5080 break; 5081 } 5082 5083 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 5084 phba->Port[0] = cport_name; 5085 phba->Port[1] = '\0'; 5086 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5087 "3091 SLI get port name: %s\n", phba->Port); 5088 } 5089 5090 out_free_mboxq: 5091 if (rc != MBX_TIMEOUT) { 5092 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5093 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5094 else 5095 mempool_free(mboxq, phba->mbox_mem_pool); 5096 } 5097 return rc; 5098 } 5099 5100 /** 5101 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 5102 * @phba: pointer to lpfc hba data structure. 5103 * 5104 * This routine is called to explicitly arm the SLI4 device's completion and 5105 * event queues 5106 **/ 5107 static void 5108 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 5109 { 5110 int fcp_eqidx; 5111 5112 lpfc_sli4_cq_release(phba->sli4_hba.mbx_cq, LPFC_QUEUE_REARM); 5113 lpfc_sli4_cq_release(phba->sli4_hba.els_cq, LPFC_QUEUE_REARM); 5114 fcp_eqidx = 0; 5115 if (phba->sli4_hba.fcp_cq) { 5116 do { 5117 lpfc_sli4_cq_release(phba->sli4_hba.fcp_cq[fcp_eqidx], 5118 LPFC_QUEUE_REARM); 5119 } while (++fcp_eqidx < phba->cfg_fcp_io_channel); 5120 } 5121 5122 if (phba->cfg_fof) 5123 lpfc_sli4_cq_release(phba->sli4_hba.oas_cq, LPFC_QUEUE_REARM); 5124 5125 if (phba->sli4_hba.hba_eq) { 5126 for (fcp_eqidx = 0; fcp_eqidx < phba->cfg_fcp_io_channel; 5127 fcp_eqidx++) 5128 lpfc_sli4_eq_release(phba->sli4_hba.hba_eq[fcp_eqidx], 5129 LPFC_QUEUE_REARM); 5130 } 5131 5132 if (phba->cfg_fof) 5133 lpfc_sli4_eq_release(phba->sli4_hba.fof_eq, LPFC_QUEUE_REARM); 5134 } 5135 5136 /** 5137 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 5138 * @phba: Pointer to HBA context object. 5139 * @type: The resource extent type. 5140 * @extnt_count: buffer to hold port available extent count. 5141 * @extnt_size: buffer to hold element count per extent. 5142 * 5143 * This function calls the port and retrievs the number of available 5144 * extents and their size for a particular extent type. 5145 * 5146 * Returns: 0 if successful. Nonzero otherwise. 5147 **/ 5148 int 5149 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5150 uint16_t *extnt_count, uint16_t *extnt_size) 5151 { 5152 int rc = 0; 5153 uint32_t length; 5154 uint32_t mbox_tmo; 5155 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5156 LPFC_MBOXQ_t *mbox; 5157 5158 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5159 if (!mbox) 5160 return -ENOMEM; 5161 5162 /* Find out how many extents are available for this resource type */ 5163 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5164 sizeof(struct lpfc_sli4_cfg_mhdr)); 5165 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5166 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5167 length, LPFC_SLI4_MBX_EMBED); 5168 5169 /* Send an extents count of 0 - the GET doesn't use it. */ 5170 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5171 LPFC_SLI4_MBX_EMBED); 5172 if (unlikely(rc)) { 5173 rc = -EIO; 5174 goto err_exit; 5175 } 5176 5177 if (!phba->sli4_hba.intr_enable) 5178 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5179 else { 5180 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5181 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5182 } 5183 if (unlikely(rc)) { 5184 rc = -EIO; 5185 goto err_exit; 5186 } 5187 5188 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5189 if (bf_get(lpfc_mbox_hdr_status, 5190 &rsrc_info->header.cfg_shdr.response)) { 5191 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5192 "2930 Failed to get resource extents " 5193 "Status 0x%x Add'l Status 0x%x\n", 5194 bf_get(lpfc_mbox_hdr_status, 5195 &rsrc_info->header.cfg_shdr.response), 5196 bf_get(lpfc_mbox_hdr_add_status, 5197 &rsrc_info->header.cfg_shdr.response)); 5198 rc = -EIO; 5199 goto err_exit; 5200 } 5201 5202 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5203 &rsrc_info->u.rsp); 5204 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5205 &rsrc_info->u.rsp); 5206 5207 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5208 "3162 Retrieved extents type-%d from port: count:%d, " 5209 "size:%d\n", type, *extnt_count, *extnt_size); 5210 5211 err_exit: 5212 mempool_free(mbox, phba->mbox_mem_pool); 5213 return rc; 5214 } 5215 5216 /** 5217 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5218 * @phba: Pointer to HBA context object. 5219 * @type: The extent type to check. 5220 * 5221 * This function reads the current available extents from the port and checks 5222 * if the extent count or extent size has changed since the last access. 5223 * Callers use this routine post port reset to understand if there is a 5224 * extent reprovisioning requirement. 5225 * 5226 * Returns: 5227 * -Error: error indicates problem. 5228 * 1: Extent count or size has changed. 5229 * 0: No changes. 5230 **/ 5231 static int 5232 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5233 { 5234 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5235 uint16_t size_diff, rsrc_ext_size; 5236 int rc = 0; 5237 struct lpfc_rsrc_blks *rsrc_entry; 5238 struct list_head *rsrc_blk_list = NULL; 5239 5240 size_diff = 0; 5241 curr_ext_cnt = 0; 5242 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5243 &rsrc_ext_cnt, 5244 &rsrc_ext_size); 5245 if (unlikely(rc)) 5246 return -EIO; 5247 5248 switch (type) { 5249 case LPFC_RSC_TYPE_FCOE_RPI: 5250 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5251 break; 5252 case LPFC_RSC_TYPE_FCOE_VPI: 5253 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5254 break; 5255 case LPFC_RSC_TYPE_FCOE_XRI: 5256 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5257 break; 5258 case LPFC_RSC_TYPE_FCOE_VFI: 5259 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5260 break; 5261 default: 5262 break; 5263 } 5264 5265 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5266 curr_ext_cnt++; 5267 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5268 size_diff++; 5269 } 5270 5271 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5272 rc = 1; 5273 5274 return rc; 5275 } 5276 5277 /** 5278 * lpfc_sli4_cfg_post_extnts - 5279 * @phba: Pointer to HBA context object. 5280 * @extnt_cnt - number of available extents. 5281 * @type - the extent type (rpi, xri, vfi, vpi). 5282 * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5283 * @mbox - pointer to the caller's allocated mailbox structure. 5284 * 5285 * This function executes the extents allocation request. It also 5286 * takes care of the amount of memory needed to allocate or get the 5287 * allocated extents. It is the caller's responsibility to evaluate 5288 * the response. 5289 * 5290 * Returns: 5291 * -Error: Error value describes the condition found. 5292 * 0: if successful 5293 **/ 5294 static int 5295 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 5296 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 5297 { 5298 int rc = 0; 5299 uint32_t req_len; 5300 uint32_t emb_len; 5301 uint32_t alloc_len, mbox_tmo; 5302 5303 /* Calculate the total requested length of the dma memory */ 5304 req_len = extnt_cnt * sizeof(uint16_t); 5305 5306 /* 5307 * Calculate the size of an embedded mailbox. The uint32_t 5308 * accounts for extents-specific word. 5309 */ 5310 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 5311 sizeof(uint32_t); 5312 5313 /* 5314 * Presume the allocation and response will fit into an embedded 5315 * mailbox. If not true, reconfigure to a non-embedded mailbox. 5316 */ 5317 *emb = LPFC_SLI4_MBX_EMBED; 5318 if (req_len > emb_len) { 5319 req_len = extnt_cnt * sizeof(uint16_t) + 5320 sizeof(union lpfc_sli4_cfg_shdr) + 5321 sizeof(uint32_t); 5322 *emb = LPFC_SLI4_MBX_NEMBED; 5323 } 5324 5325 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5326 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 5327 req_len, *emb); 5328 if (alloc_len < req_len) { 5329 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5330 "2982 Allocated DMA memory size (x%x) is " 5331 "less than the requested DMA memory " 5332 "size (x%x)\n", alloc_len, req_len); 5333 return -ENOMEM; 5334 } 5335 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 5336 if (unlikely(rc)) 5337 return -EIO; 5338 5339 if (!phba->sli4_hba.intr_enable) 5340 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5341 else { 5342 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5343 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5344 } 5345 5346 if (unlikely(rc)) 5347 rc = -EIO; 5348 return rc; 5349 } 5350 5351 /** 5352 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 5353 * @phba: Pointer to HBA context object. 5354 * @type: The resource extent type to allocate. 5355 * 5356 * This function allocates the number of elements for the specified 5357 * resource type. 5358 **/ 5359 static int 5360 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 5361 { 5362 bool emb = false; 5363 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 5364 uint16_t rsrc_id, rsrc_start, j, k; 5365 uint16_t *ids; 5366 int i, rc; 5367 unsigned long longs; 5368 unsigned long *bmask; 5369 struct lpfc_rsrc_blks *rsrc_blks; 5370 LPFC_MBOXQ_t *mbox; 5371 uint32_t length; 5372 struct lpfc_id_range *id_array = NULL; 5373 void *virtaddr = NULL; 5374 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 5375 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 5376 struct list_head *ext_blk_list; 5377 5378 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5379 &rsrc_cnt, 5380 &rsrc_size); 5381 if (unlikely(rc)) 5382 return -EIO; 5383 5384 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 5385 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5386 "3009 No available Resource Extents " 5387 "for resource type 0x%x: Count: 0x%x, " 5388 "Size 0x%x\n", type, rsrc_cnt, 5389 rsrc_size); 5390 return -ENOMEM; 5391 } 5392 5393 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 5394 "2903 Post resource extents type-0x%x: " 5395 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 5396 5397 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5398 if (!mbox) 5399 return -ENOMEM; 5400 5401 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 5402 if (unlikely(rc)) { 5403 rc = -EIO; 5404 goto err_exit; 5405 } 5406 5407 /* 5408 * Figure out where the response is located. Then get local pointers 5409 * to the response data. The port does not guarantee to respond to 5410 * all extents counts request so update the local variable with the 5411 * allocated count from the port. 5412 */ 5413 if (emb == LPFC_SLI4_MBX_EMBED) { 5414 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 5415 id_array = &rsrc_ext->u.rsp.id[0]; 5416 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 5417 } else { 5418 virtaddr = mbox->sge_array->addr[0]; 5419 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 5420 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 5421 id_array = &n_rsrc->id; 5422 } 5423 5424 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 5425 rsrc_id_cnt = rsrc_cnt * rsrc_size; 5426 5427 /* 5428 * Based on the resource size and count, correct the base and max 5429 * resource values. 5430 */ 5431 length = sizeof(struct lpfc_rsrc_blks); 5432 switch (type) { 5433 case LPFC_RSC_TYPE_FCOE_RPI: 5434 phba->sli4_hba.rpi_bmask = kzalloc(longs * 5435 sizeof(unsigned long), 5436 GFP_KERNEL); 5437 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 5438 rc = -ENOMEM; 5439 goto err_exit; 5440 } 5441 phba->sli4_hba.rpi_ids = kzalloc(rsrc_id_cnt * 5442 sizeof(uint16_t), 5443 GFP_KERNEL); 5444 if (unlikely(!phba->sli4_hba.rpi_ids)) { 5445 kfree(phba->sli4_hba.rpi_bmask); 5446 rc = -ENOMEM; 5447 goto err_exit; 5448 } 5449 5450 /* 5451 * The next_rpi was initialized with the maximum available 5452 * count but the port may allocate a smaller number. Catch 5453 * that case and update the next_rpi. 5454 */ 5455 phba->sli4_hba.next_rpi = rsrc_id_cnt; 5456 5457 /* Initialize local ptrs for common extent processing later. */ 5458 bmask = phba->sli4_hba.rpi_bmask; 5459 ids = phba->sli4_hba.rpi_ids; 5460 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5461 break; 5462 case LPFC_RSC_TYPE_FCOE_VPI: 5463 phba->vpi_bmask = kzalloc(longs * 5464 sizeof(unsigned long), 5465 GFP_KERNEL); 5466 if (unlikely(!phba->vpi_bmask)) { 5467 rc = -ENOMEM; 5468 goto err_exit; 5469 } 5470 phba->vpi_ids = kzalloc(rsrc_id_cnt * 5471 sizeof(uint16_t), 5472 GFP_KERNEL); 5473 if (unlikely(!phba->vpi_ids)) { 5474 kfree(phba->vpi_bmask); 5475 rc = -ENOMEM; 5476 goto err_exit; 5477 } 5478 5479 /* Initialize local ptrs for common extent processing later. */ 5480 bmask = phba->vpi_bmask; 5481 ids = phba->vpi_ids; 5482 ext_blk_list = &phba->lpfc_vpi_blk_list; 5483 break; 5484 case LPFC_RSC_TYPE_FCOE_XRI: 5485 phba->sli4_hba.xri_bmask = kzalloc(longs * 5486 sizeof(unsigned long), 5487 GFP_KERNEL); 5488 if (unlikely(!phba->sli4_hba.xri_bmask)) { 5489 rc = -ENOMEM; 5490 goto err_exit; 5491 } 5492 phba->sli4_hba.max_cfg_param.xri_used = 0; 5493 phba->sli4_hba.xri_ids = kzalloc(rsrc_id_cnt * 5494 sizeof(uint16_t), 5495 GFP_KERNEL); 5496 if (unlikely(!phba->sli4_hba.xri_ids)) { 5497 kfree(phba->sli4_hba.xri_bmask); 5498 rc = -ENOMEM; 5499 goto err_exit; 5500 } 5501 5502 /* Initialize local ptrs for common extent processing later. */ 5503 bmask = phba->sli4_hba.xri_bmask; 5504 ids = phba->sli4_hba.xri_ids; 5505 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5506 break; 5507 case LPFC_RSC_TYPE_FCOE_VFI: 5508 phba->sli4_hba.vfi_bmask = kzalloc(longs * 5509 sizeof(unsigned long), 5510 GFP_KERNEL); 5511 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 5512 rc = -ENOMEM; 5513 goto err_exit; 5514 } 5515 phba->sli4_hba.vfi_ids = kzalloc(rsrc_id_cnt * 5516 sizeof(uint16_t), 5517 GFP_KERNEL); 5518 if (unlikely(!phba->sli4_hba.vfi_ids)) { 5519 kfree(phba->sli4_hba.vfi_bmask); 5520 rc = -ENOMEM; 5521 goto err_exit; 5522 } 5523 5524 /* Initialize local ptrs for common extent processing later. */ 5525 bmask = phba->sli4_hba.vfi_bmask; 5526 ids = phba->sli4_hba.vfi_ids; 5527 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5528 break; 5529 default: 5530 /* Unsupported Opcode. Fail call. */ 5531 id_array = NULL; 5532 bmask = NULL; 5533 ids = NULL; 5534 ext_blk_list = NULL; 5535 goto err_exit; 5536 } 5537 5538 /* 5539 * Complete initializing the extent configuration with the 5540 * allocated ids assigned to this function. The bitmask serves 5541 * as an index into the array and manages the available ids. The 5542 * array just stores the ids communicated to the port via the wqes. 5543 */ 5544 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 5545 if ((i % 2) == 0) 5546 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 5547 &id_array[k]); 5548 else 5549 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 5550 &id_array[k]); 5551 5552 rsrc_blks = kzalloc(length, GFP_KERNEL); 5553 if (unlikely(!rsrc_blks)) { 5554 rc = -ENOMEM; 5555 kfree(bmask); 5556 kfree(ids); 5557 goto err_exit; 5558 } 5559 rsrc_blks->rsrc_start = rsrc_id; 5560 rsrc_blks->rsrc_size = rsrc_size; 5561 list_add_tail(&rsrc_blks->list, ext_blk_list); 5562 rsrc_start = rsrc_id; 5563 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) 5564 phba->sli4_hba.scsi_xri_start = rsrc_start + 5565 lpfc_sli4_get_els_iocb_cnt(phba); 5566 5567 while (rsrc_id < (rsrc_start + rsrc_size)) { 5568 ids[j] = rsrc_id; 5569 rsrc_id++; 5570 j++; 5571 } 5572 /* Entire word processed. Get next word.*/ 5573 if ((i % 2) == 1) 5574 k++; 5575 } 5576 err_exit: 5577 lpfc_sli4_mbox_cmd_free(phba, mbox); 5578 return rc; 5579 } 5580 5581 /** 5582 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 5583 * @phba: Pointer to HBA context object. 5584 * @type: the extent's type. 5585 * 5586 * This function deallocates all extents of a particular resource type. 5587 * SLI4 does not allow for deallocating a particular extent range. It 5588 * is the caller's responsibility to release all kernel memory resources. 5589 **/ 5590 static int 5591 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 5592 { 5593 int rc; 5594 uint32_t length, mbox_tmo = 0; 5595 LPFC_MBOXQ_t *mbox; 5596 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 5597 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 5598 5599 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5600 if (!mbox) 5601 return -ENOMEM; 5602 5603 /* 5604 * This function sends an embedded mailbox because it only sends the 5605 * the resource type. All extents of this type are released by the 5606 * port. 5607 */ 5608 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 5609 sizeof(struct lpfc_sli4_cfg_mhdr)); 5610 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5611 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 5612 length, LPFC_SLI4_MBX_EMBED); 5613 5614 /* Send an extents count of 0 - the dealloc doesn't use it. */ 5615 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5616 LPFC_SLI4_MBX_EMBED); 5617 if (unlikely(rc)) { 5618 rc = -EIO; 5619 goto out_free_mbox; 5620 } 5621 if (!phba->sli4_hba.intr_enable) 5622 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5623 else { 5624 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5625 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5626 } 5627 if (unlikely(rc)) { 5628 rc = -EIO; 5629 goto out_free_mbox; 5630 } 5631 5632 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 5633 if (bf_get(lpfc_mbox_hdr_status, 5634 &dealloc_rsrc->header.cfg_shdr.response)) { 5635 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5636 "2919 Failed to release resource extents " 5637 "for type %d - Status 0x%x Add'l Status 0x%x. " 5638 "Resource memory not released.\n", 5639 type, 5640 bf_get(lpfc_mbox_hdr_status, 5641 &dealloc_rsrc->header.cfg_shdr.response), 5642 bf_get(lpfc_mbox_hdr_add_status, 5643 &dealloc_rsrc->header.cfg_shdr.response)); 5644 rc = -EIO; 5645 goto out_free_mbox; 5646 } 5647 5648 /* Release kernel memory resources for the specific type. */ 5649 switch (type) { 5650 case LPFC_RSC_TYPE_FCOE_VPI: 5651 kfree(phba->vpi_bmask); 5652 kfree(phba->vpi_ids); 5653 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5654 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5655 &phba->lpfc_vpi_blk_list, list) { 5656 list_del_init(&rsrc_blk->list); 5657 kfree(rsrc_blk); 5658 } 5659 phba->sli4_hba.max_cfg_param.vpi_used = 0; 5660 break; 5661 case LPFC_RSC_TYPE_FCOE_XRI: 5662 kfree(phba->sli4_hba.xri_bmask); 5663 kfree(phba->sli4_hba.xri_ids); 5664 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5665 &phba->sli4_hba.lpfc_xri_blk_list, list) { 5666 list_del_init(&rsrc_blk->list); 5667 kfree(rsrc_blk); 5668 } 5669 break; 5670 case LPFC_RSC_TYPE_FCOE_VFI: 5671 kfree(phba->sli4_hba.vfi_bmask); 5672 kfree(phba->sli4_hba.vfi_ids); 5673 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5674 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5675 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 5676 list_del_init(&rsrc_blk->list); 5677 kfree(rsrc_blk); 5678 } 5679 break; 5680 case LPFC_RSC_TYPE_FCOE_RPI: 5681 /* RPI bitmask and physical id array are cleaned up earlier. */ 5682 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5683 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 5684 list_del_init(&rsrc_blk->list); 5685 kfree(rsrc_blk); 5686 } 5687 break; 5688 default: 5689 break; 5690 } 5691 5692 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5693 5694 out_free_mbox: 5695 mempool_free(mbox, phba->mbox_mem_pool); 5696 return rc; 5697 } 5698 5699 static void 5700 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 5701 uint32_t feature) 5702 { 5703 uint32_t len; 5704 5705 len = sizeof(struct lpfc_mbx_set_feature) - 5706 sizeof(struct lpfc_sli4_cfg_mhdr); 5707 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5708 LPFC_MBOX_OPCODE_SET_FEATURES, len, 5709 LPFC_SLI4_MBX_EMBED); 5710 5711 switch (feature) { 5712 case LPFC_SET_UE_RECOVERY: 5713 bf_set(lpfc_mbx_set_feature_UER, 5714 &mbox->u.mqe.un.set_feature, 1); 5715 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 5716 mbox->u.mqe.un.set_feature.param_len = 8; 5717 break; 5718 case LPFC_SET_MDS_DIAGS: 5719 bf_set(lpfc_mbx_set_feature_mds, 5720 &mbox->u.mqe.un.set_feature, 1); 5721 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 5722 &mbox->u.mqe.un.set_feature, 0); 5723 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 5724 mbox->u.mqe.un.set_feature.param_len = 8; 5725 break; 5726 } 5727 5728 return; 5729 } 5730 5731 /** 5732 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 5733 * @phba: Pointer to HBA context object. 5734 * 5735 * This function allocates all SLI4 resource identifiers. 5736 **/ 5737 int 5738 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 5739 { 5740 int i, rc, error = 0; 5741 uint16_t count, base; 5742 unsigned long longs; 5743 5744 if (!phba->sli4_hba.rpi_hdrs_in_use) 5745 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 5746 if (phba->sli4_hba.extents_in_use) { 5747 /* 5748 * The port supports resource extents. The XRI, VPI, VFI, RPI 5749 * resource extent count must be read and allocated before 5750 * provisioning the resource id arrays. 5751 */ 5752 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 5753 LPFC_IDX_RSRC_RDY) { 5754 /* 5755 * Extent-based resources are set - the driver could 5756 * be in a port reset. Figure out if any corrective 5757 * actions need to be taken. 5758 */ 5759 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5760 LPFC_RSC_TYPE_FCOE_VFI); 5761 if (rc != 0) 5762 error++; 5763 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5764 LPFC_RSC_TYPE_FCOE_VPI); 5765 if (rc != 0) 5766 error++; 5767 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5768 LPFC_RSC_TYPE_FCOE_XRI); 5769 if (rc != 0) 5770 error++; 5771 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5772 LPFC_RSC_TYPE_FCOE_RPI); 5773 if (rc != 0) 5774 error++; 5775 5776 /* 5777 * It's possible that the number of resources 5778 * provided to this port instance changed between 5779 * resets. Detect this condition and reallocate 5780 * resources. Otherwise, there is no action. 5781 */ 5782 if (error) { 5783 lpfc_printf_log(phba, KERN_INFO, 5784 LOG_MBOX | LOG_INIT, 5785 "2931 Detected extent resource " 5786 "change. Reallocating all " 5787 "extents.\n"); 5788 rc = lpfc_sli4_dealloc_extent(phba, 5789 LPFC_RSC_TYPE_FCOE_VFI); 5790 rc = lpfc_sli4_dealloc_extent(phba, 5791 LPFC_RSC_TYPE_FCOE_VPI); 5792 rc = lpfc_sli4_dealloc_extent(phba, 5793 LPFC_RSC_TYPE_FCOE_XRI); 5794 rc = lpfc_sli4_dealloc_extent(phba, 5795 LPFC_RSC_TYPE_FCOE_RPI); 5796 } else 5797 return 0; 5798 } 5799 5800 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 5801 if (unlikely(rc)) 5802 goto err_exit; 5803 5804 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 5805 if (unlikely(rc)) 5806 goto err_exit; 5807 5808 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 5809 if (unlikely(rc)) 5810 goto err_exit; 5811 5812 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 5813 if (unlikely(rc)) 5814 goto err_exit; 5815 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 5816 LPFC_IDX_RSRC_RDY); 5817 return rc; 5818 } else { 5819 /* 5820 * The port does not support resource extents. The XRI, VPI, 5821 * VFI, RPI resource ids were determined from READ_CONFIG. 5822 * Just allocate the bitmasks and provision the resource id 5823 * arrays. If a port reset is active, the resources don't 5824 * need any action - just exit. 5825 */ 5826 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 5827 LPFC_IDX_RSRC_RDY) { 5828 lpfc_sli4_dealloc_resource_identifiers(phba); 5829 lpfc_sli4_remove_rpis(phba); 5830 } 5831 /* RPIs. */ 5832 count = phba->sli4_hba.max_cfg_param.max_rpi; 5833 if (count <= 0) { 5834 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5835 "3279 Invalid provisioning of " 5836 "rpi:%d\n", count); 5837 rc = -EINVAL; 5838 goto err_exit; 5839 } 5840 base = phba->sli4_hba.max_cfg_param.rpi_base; 5841 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 5842 phba->sli4_hba.rpi_bmask = kzalloc(longs * 5843 sizeof(unsigned long), 5844 GFP_KERNEL); 5845 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 5846 rc = -ENOMEM; 5847 goto err_exit; 5848 } 5849 phba->sli4_hba.rpi_ids = kzalloc(count * 5850 sizeof(uint16_t), 5851 GFP_KERNEL); 5852 if (unlikely(!phba->sli4_hba.rpi_ids)) { 5853 rc = -ENOMEM; 5854 goto free_rpi_bmask; 5855 } 5856 5857 for (i = 0; i < count; i++) 5858 phba->sli4_hba.rpi_ids[i] = base + i; 5859 5860 /* VPIs. */ 5861 count = phba->sli4_hba.max_cfg_param.max_vpi; 5862 if (count <= 0) { 5863 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5864 "3280 Invalid provisioning of " 5865 "vpi:%d\n", count); 5866 rc = -EINVAL; 5867 goto free_rpi_ids; 5868 } 5869 base = phba->sli4_hba.max_cfg_param.vpi_base; 5870 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 5871 phba->vpi_bmask = kzalloc(longs * 5872 sizeof(unsigned long), 5873 GFP_KERNEL); 5874 if (unlikely(!phba->vpi_bmask)) { 5875 rc = -ENOMEM; 5876 goto free_rpi_ids; 5877 } 5878 phba->vpi_ids = kzalloc(count * 5879 sizeof(uint16_t), 5880 GFP_KERNEL); 5881 if (unlikely(!phba->vpi_ids)) { 5882 rc = -ENOMEM; 5883 goto free_vpi_bmask; 5884 } 5885 5886 for (i = 0; i < count; i++) 5887 phba->vpi_ids[i] = base + i; 5888 5889 /* XRIs. */ 5890 count = phba->sli4_hba.max_cfg_param.max_xri; 5891 if (count <= 0) { 5892 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5893 "3281 Invalid provisioning of " 5894 "xri:%d\n", count); 5895 rc = -EINVAL; 5896 goto free_vpi_ids; 5897 } 5898 base = phba->sli4_hba.max_cfg_param.xri_base; 5899 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 5900 phba->sli4_hba.xri_bmask = kzalloc(longs * 5901 sizeof(unsigned long), 5902 GFP_KERNEL); 5903 if (unlikely(!phba->sli4_hba.xri_bmask)) { 5904 rc = -ENOMEM; 5905 goto free_vpi_ids; 5906 } 5907 phba->sli4_hba.max_cfg_param.xri_used = 0; 5908 phba->sli4_hba.xri_ids = kzalloc(count * 5909 sizeof(uint16_t), 5910 GFP_KERNEL); 5911 if (unlikely(!phba->sli4_hba.xri_ids)) { 5912 rc = -ENOMEM; 5913 goto free_xri_bmask; 5914 } 5915 5916 for (i = 0; i < count; i++) 5917 phba->sli4_hba.xri_ids[i] = base + i; 5918 5919 /* VFIs. */ 5920 count = phba->sli4_hba.max_cfg_param.max_vfi; 5921 if (count <= 0) { 5922 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5923 "3282 Invalid provisioning of " 5924 "vfi:%d\n", count); 5925 rc = -EINVAL; 5926 goto free_xri_ids; 5927 } 5928 base = phba->sli4_hba.max_cfg_param.vfi_base; 5929 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 5930 phba->sli4_hba.vfi_bmask = kzalloc(longs * 5931 sizeof(unsigned long), 5932 GFP_KERNEL); 5933 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 5934 rc = -ENOMEM; 5935 goto free_xri_ids; 5936 } 5937 phba->sli4_hba.vfi_ids = kzalloc(count * 5938 sizeof(uint16_t), 5939 GFP_KERNEL); 5940 if (unlikely(!phba->sli4_hba.vfi_ids)) { 5941 rc = -ENOMEM; 5942 goto free_vfi_bmask; 5943 } 5944 5945 for (i = 0; i < count; i++) 5946 phba->sli4_hba.vfi_ids[i] = base + i; 5947 5948 /* 5949 * Mark all resources ready. An HBA reset doesn't need 5950 * to reset the initialization. 5951 */ 5952 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 5953 LPFC_IDX_RSRC_RDY); 5954 return 0; 5955 } 5956 5957 free_vfi_bmask: 5958 kfree(phba->sli4_hba.vfi_bmask); 5959 phba->sli4_hba.vfi_bmask = NULL; 5960 free_xri_ids: 5961 kfree(phba->sli4_hba.xri_ids); 5962 phba->sli4_hba.xri_ids = NULL; 5963 free_xri_bmask: 5964 kfree(phba->sli4_hba.xri_bmask); 5965 phba->sli4_hba.xri_bmask = NULL; 5966 free_vpi_ids: 5967 kfree(phba->vpi_ids); 5968 phba->vpi_ids = NULL; 5969 free_vpi_bmask: 5970 kfree(phba->vpi_bmask); 5971 phba->vpi_bmask = NULL; 5972 free_rpi_ids: 5973 kfree(phba->sli4_hba.rpi_ids); 5974 phba->sli4_hba.rpi_ids = NULL; 5975 free_rpi_bmask: 5976 kfree(phba->sli4_hba.rpi_bmask); 5977 phba->sli4_hba.rpi_bmask = NULL; 5978 err_exit: 5979 return rc; 5980 } 5981 5982 /** 5983 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 5984 * @phba: Pointer to HBA context object. 5985 * 5986 * This function allocates the number of elements for the specified 5987 * resource type. 5988 **/ 5989 int 5990 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 5991 { 5992 if (phba->sli4_hba.extents_in_use) { 5993 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 5994 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 5995 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 5996 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 5997 } else { 5998 kfree(phba->vpi_bmask); 5999 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6000 kfree(phba->vpi_ids); 6001 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6002 kfree(phba->sli4_hba.xri_bmask); 6003 kfree(phba->sli4_hba.xri_ids); 6004 kfree(phba->sli4_hba.vfi_bmask); 6005 kfree(phba->sli4_hba.vfi_ids); 6006 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6007 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6008 } 6009 6010 return 0; 6011 } 6012 6013 /** 6014 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 6015 * @phba: Pointer to HBA context object. 6016 * @type: The resource extent type. 6017 * @extnt_count: buffer to hold port extent count response 6018 * @extnt_size: buffer to hold port extent size response. 6019 * 6020 * This function calls the port to read the host allocated extents 6021 * for a particular type. 6022 **/ 6023 int 6024 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 6025 uint16_t *extnt_cnt, uint16_t *extnt_size) 6026 { 6027 bool emb; 6028 int rc = 0; 6029 uint16_t curr_blks = 0; 6030 uint32_t req_len, emb_len; 6031 uint32_t alloc_len, mbox_tmo; 6032 struct list_head *blk_list_head; 6033 struct lpfc_rsrc_blks *rsrc_blk; 6034 LPFC_MBOXQ_t *mbox; 6035 void *virtaddr = NULL; 6036 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6037 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6038 union lpfc_sli4_cfg_shdr *shdr; 6039 6040 switch (type) { 6041 case LPFC_RSC_TYPE_FCOE_VPI: 6042 blk_list_head = &phba->lpfc_vpi_blk_list; 6043 break; 6044 case LPFC_RSC_TYPE_FCOE_XRI: 6045 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 6046 break; 6047 case LPFC_RSC_TYPE_FCOE_VFI: 6048 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 6049 break; 6050 case LPFC_RSC_TYPE_FCOE_RPI: 6051 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 6052 break; 6053 default: 6054 return -EIO; 6055 } 6056 6057 /* Count the number of extents currently allocatd for this type. */ 6058 list_for_each_entry(rsrc_blk, blk_list_head, list) { 6059 if (curr_blks == 0) { 6060 /* 6061 * The GET_ALLOCATED mailbox does not return the size, 6062 * just the count. The size should be just the size 6063 * stored in the current allocated block and all sizes 6064 * for an extent type are the same so set the return 6065 * value now. 6066 */ 6067 *extnt_size = rsrc_blk->rsrc_size; 6068 } 6069 curr_blks++; 6070 } 6071 6072 /* 6073 * Calculate the size of an embedded mailbox. The uint32_t 6074 * accounts for extents-specific word. 6075 */ 6076 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6077 sizeof(uint32_t); 6078 6079 /* 6080 * Presume the allocation and response will fit into an embedded 6081 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6082 */ 6083 emb = LPFC_SLI4_MBX_EMBED; 6084 req_len = emb_len; 6085 if (req_len > emb_len) { 6086 req_len = curr_blks * sizeof(uint16_t) + 6087 sizeof(union lpfc_sli4_cfg_shdr) + 6088 sizeof(uint32_t); 6089 emb = LPFC_SLI4_MBX_NEMBED; 6090 } 6091 6092 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6093 if (!mbox) 6094 return -ENOMEM; 6095 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 6096 6097 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6098 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 6099 req_len, emb); 6100 if (alloc_len < req_len) { 6101 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6102 "2983 Allocated DMA memory size (x%x) is " 6103 "less than the requested DMA memory " 6104 "size (x%x)\n", alloc_len, req_len); 6105 rc = -ENOMEM; 6106 goto err_exit; 6107 } 6108 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 6109 if (unlikely(rc)) { 6110 rc = -EIO; 6111 goto err_exit; 6112 } 6113 6114 if (!phba->sli4_hba.intr_enable) 6115 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6116 else { 6117 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6118 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6119 } 6120 6121 if (unlikely(rc)) { 6122 rc = -EIO; 6123 goto err_exit; 6124 } 6125 6126 /* 6127 * Figure out where the response is located. Then get local pointers 6128 * to the response data. The port does not guarantee to respond to 6129 * all extents counts request so update the local variable with the 6130 * allocated count from the port. 6131 */ 6132 if (emb == LPFC_SLI4_MBX_EMBED) { 6133 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6134 shdr = &rsrc_ext->header.cfg_shdr; 6135 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6136 } else { 6137 virtaddr = mbox->sge_array->addr[0]; 6138 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6139 shdr = &n_rsrc->cfg_shdr; 6140 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6141 } 6142 6143 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 6144 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 6145 "2984 Failed to read allocated resources " 6146 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 6147 type, 6148 bf_get(lpfc_mbox_hdr_status, &shdr->response), 6149 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 6150 rc = -EIO; 6151 goto err_exit; 6152 } 6153 err_exit: 6154 lpfc_sli4_mbox_cmd_free(phba, mbox); 6155 return rc; 6156 } 6157 6158 /** 6159 * lpfc_sli4_repost_els_sgl_list - Repsot the els buffers sgl pages as block 6160 * @phba: pointer to lpfc hba data structure. 6161 * 6162 * This routine walks the list of els buffers that have been allocated and 6163 * repost them to the port by using SGL block post. This is needed after a 6164 * pci_function_reset/warm_start or start. It attempts to construct blocks 6165 * of els buffer sgls which contains contiguous xris and uses the non-embedded 6166 * SGL block post mailbox commands to post them to the port. For single els 6167 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 6168 * mailbox command for posting. 6169 * 6170 * Returns: 0 = success, non-zero failure. 6171 **/ 6172 static int 6173 lpfc_sli4_repost_els_sgl_list(struct lpfc_hba *phba) 6174 { 6175 struct lpfc_sglq *sglq_entry = NULL; 6176 struct lpfc_sglq *sglq_entry_next = NULL; 6177 struct lpfc_sglq *sglq_entry_first = NULL; 6178 int status, total_cnt, post_cnt = 0, num_posted = 0, block_cnt = 0; 6179 int last_xritag = NO_XRI; 6180 struct lpfc_sli_ring *pring; 6181 LIST_HEAD(prep_sgl_list); 6182 LIST_HEAD(blck_sgl_list); 6183 LIST_HEAD(allc_sgl_list); 6184 LIST_HEAD(post_sgl_list); 6185 LIST_HEAD(free_sgl_list); 6186 6187 pring = &phba->sli.ring[LPFC_ELS_RING]; 6188 spin_lock_irq(&phba->hbalock); 6189 spin_lock(&pring->ring_lock); 6190 list_splice_init(&phba->sli4_hba.lpfc_sgl_list, &allc_sgl_list); 6191 spin_unlock(&pring->ring_lock); 6192 spin_unlock_irq(&phba->hbalock); 6193 6194 total_cnt = phba->sli4_hba.els_xri_cnt; 6195 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 6196 &allc_sgl_list, list) { 6197 list_del_init(&sglq_entry->list); 6198 block_cnt++; 6199 if ((last_xritag != NO_XRI) && 6200 (sglq_entry->sli4_xritag != last_xritag + 1)) { 6201 /* a hole in xri block, form a sgl posting block */ 6202 list_splice_init(&prep_sgl_list, &blck_sgl_list); 6203 post_cnt = block_cnt - 1; 6204 /* prepare list for next posting block */ 6205 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6206 block_cnt = 1; 6207 } else { 6208 /* prepare list for next posting block */ 6209 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6210 /* enough sgls for non-embed sgl mbox command */ 6211 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 6212 list_splice_init(&prep_sgl_list, 6213 &blck_sgl_list); 6214 post_cnt = block_cnt; 6215 block_cnt = 0; 6216 } 6217 } 6218 num_posted++; 6219 6220 /* keep track of last sgl's xritag */ 6221 last_xritag = sglq_entry->sli4_xritag; 6222 6223 /* end of repost sgl list condition for els buffers */ 6224 if (num_posted == phba->sli4_hba.els_xri_cnt) { 6225 if (post_cnt == 0) { 6226 list_splice_init(&prep_sgl_list, 6227 &blck_sgl_list); 6228 post_cnt = block_cnt; 6229 } else if (block_cnt == 1) { 6230 status = lpfc_sli4_post_sgl(phba, 6231 sglq_entry->phys, 0, 6232 sglq_entry->sli4_xritag); 6233 if (!status) { 6234 /* successful, put sgl to posted list */ 6235 list_add_tail(&sglq_entry->list, 6236 &post_sgl_list); 6237 } else { 6238 /* Failure, put sgl to free list */ 6239 lpfc_printf_log(phba, KERN_WARNING, 6240 LOG_SLI, 6241 "3159 Failed to post els " 6242 "sgl, xritag:x%x\n", 6243 sglq_entry->sli4_xritag); 6244 list_add_tail(&sglq_entry->list, 6245 &free_sgl_list); 6246 total_cnt--; 6247 } 6248 } 6249 } 6250 6251 /* continue until a nembed page worth of sgls */ 6252 if (post_cnt == 0) 6253 continue; 6254 6255 /* post the els buffer list sgls as a block */ 6256 status = lpfc_sli4_post_els_sgl_list(phba, &blck_sgl_list, 6257 post_cnt); 6258 6259 if (!status) { 6260 /* success, put sgl list to posted sgl list */ 6261 list_splice_init(&blck_sgl_list, &post_sgl_list); 6262 } else { 6263 /* Failure, put sgl list to free sgl list */ 6264 sglq_entry_first = list_first_entry(&blck_sgl_list, 6265 struct lpfc_sglq, 6266 list); 6267 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6268 "3160 Failed to post els sgl-list, " 6269 "xritag:x%x-x%x\n", 6270 sglq_entry_first->sli4_xritag, 6271 (sglq_entry_first->sli4_xritag + 6272 post_cnt - 1)); 6273 list_splice_init(&blck_sgl_list, &free_sgl_list); 6274 total_cnt -= post_cnt; 6275 } 6276 6277 /* don't reset xirtag due to hole in xri block */ 6278 if (block_cnt == 0) 6279 last_xritag = NO_XRI; 6280 6281 /* reset els sgl post count for next round of posting */ 6282 post_cnt = 0; 6283 } 6284 /* update the number of XRIs posted for ELS */ 6285 phba->sli4_hba.els_xri_cnt = total_cnt; 6286 6287 /* free the els sgls failed to post */ 6288 lpfc_free_sgl_list(phba, &free_sgl_list); 6289 6290 /* push els sgls posted to the availble list */ 6291 if (!list_empty(&post_sgl_list)) { 6292 spin_lock_irq(&phba->hbalock); 6293 spin_lock(&pring->ring_lock); 6294 list_splice_init(&post_sgl_list, 6295 &phba->sli4_hba.lpfc_sgl_list); 6296 spin_unlock(&pring->ring_lock); 6297 spin_unlock_irq(&phba->hbalock); 6298 } else { 6299 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6300 "3161 Failure to post els sgl to port.\n"); 6301 return -EIO; 6302 } 6303 return 0; 6304 } 6305 6306 void 6307 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 6308 { 6309 uint32_t len; 6310 6311 len = sizeof(struct lpfc_mbx_set_host_data) - 6312 sizeof(struct lpfc_sli4_cfg_mhdr); 6313 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6314 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 6315 LPFC_SLI4_MBX_EMBED); 6316 6317 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 6318 mbox->u.mqe.un.set_host_data.param_len = 6319 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 6320 snprintf(mbox->u.mqe.un.set_host_data.data, 6321 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 6322 "Linux %s v"LPFC_DRIVER_VERSION, 6323 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 6324 } 6325 6326 /** 6327 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 6328 * @phba: Pointer to HBA context object. 6329 * 6330 * This function is the main SLI4 device initialization PCI function. This 6331 * function is called by the HBA initialization code, HBA reset code and 6332 * HBA error attention handler code. Caller is not required to hold any 6333 * locks. 6334 **/ 6335 int 6336 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 6337 { 6338 int rc; 6339 LPFC_MBOXQ_t *mboxq; 6340 struct lpfc_mqe *mqe; 6341 uint8_t *vpd; 6342 uint32_t vpd_size; 6343 uint32_t ftr_rsp = 0; 6344 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 6345 struct lpfc_vport *vport = phba->pport; 6346 struct lpfc_dmabuf *mp; 6347 6348 /* Perform a PCI function reset to start from clean */ 6349 rc = lpfc_pci_function_reset(phba); 6350 if (unlikely(rc)) 6351 return -ENODEV; 6352 6353 /* Check the HBA Host Status Register for readyness */ 6354 rc = lpfc_sli4_post_status_check(phba); 6355 if (unlikely(rc)) 6356 return -ENODEV; 6357 else { 6358 spin_lock_irq(&phba->hbalock); 6359 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 6360 spin_unlock_irq(&phba->hbalock); 6361 } 6362 6363 /* 6364 * Allocate a single mailbox container for initializing the 6365 * port. 6366 */ 6367 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6368 if (!mboxq) 6369 return -ENOMEM; 6370 6371 /* Issue READ_REV to collect vpd and FW information. */ 6372 vpd_size = SLI4_PAGE_SIZE; 6373 vpd = kzalloc(vpd_size, GFP_KERNEL); 6374 if (!vpd) { 6375 rc = -ENOMEM; 6376 goto out_free_mbox; 6377 } 6378 6379 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 6380 if (unlikely(rc)) { 6381 kfree(vpd); 6382 goto out_free_mbox; 6383 } 6384 6385 mqe = &mboxq->u.mqe; 6386 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 6387 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 6388 phba->hba_flag |= HBA_FCOE_MODE; 6389 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 6390 } else { 6391 phba->hba_flag &= ~HBA_FCOE_MODE; 6392 } 6393 6394 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 6395 LPFC_DCBX_CEE_MODE) 6396 phba->hba_flag |= HBA_FIP_SUPPORT; 6397 else 6398 phba->hba_flag &= ~HBA_FIP_SUPPORT; 6399 6400 phba->hba_flag &= ~HBA_FCP_IOQ_FLUSH; 6401 6402 if (phba->sli_rev != LPFC_SLI_REV4) { 6403 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6404 "0376 READ_REV Error. SLI Level %d " 6405 "FCoE enabled %d\n", 6406 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 6407 rc = -EIO; 6408 kfree(vpd); 6409 goto out_free_mbox; 6410 } 6411 6412 /* 6413 * Continue initialization with default values even if driver failed 6414 * to read FCoE param config regions, only read parameters if the 6415 * board is FCoE 6416 */ 6417 if (phba->hba_flag & HBA_FCOE_MODE && 6418 lpfc_sli4_read_fcoe_params(phba)) 6419 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 6420 "2570 Failed to read FCoE parameters\n"); 6421 6422 /* 6423 * Retrieve sli4 device physical port name, failure of doing it 6424 * is considered as non-fatal. 6425 */ 6426 rc = lpfc_sli4_retrieve_pport_name(phba); 6427 if (!rc) 6428 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6429 "3080 Successful retrieving SLI4 device " 6430 "physical port name: %s.\n", phba->Port); 6431 6432 /* 6433 * Evaluate the read rev and vpd data. Populate the driver 6434 * state with the results. If this routine fails, the failure 6435 * is not fatal as the driver will use generic values. 6436 */ 6437 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 6438 if (unlikely(!rc)) { 6439 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6440 "0377 Error %d parsing vpd. " 6441 "Using defaults.\n", rc); 6442 rc = 0; 6443 } 6444 kfree(vpd); 6445 6446 /* Save information as VPD data */ 6447 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 6448 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 6449 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 6450 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 6451 &mqe->un.read_rev); 6452 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 6453 &mqe->un.read_rev); 6454 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 6455 &mqe->un.read_rev); 6456 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 6457 &mqe->un.read_rev); 6458 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 6459 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 6460 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 6461 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 6462 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 6463 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 6464 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6465 "(%d):0380 READ_REV Status x%x " 6466 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 6467 mboxq->vport ? mboxq->vport->vpi : 0, 6468 bf_get(lpfc_mqe_status, mqe), 6469 phba->vpd.rev.opFwName, 6470 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 6471 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 6472 6473 /* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3) */ 6474 rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3); 6475 if (phba->pport->cfg_lun_queue_depth > rc) { 6476 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6477 "3362 LUN queue depth changed from %d to %d\n", 6478 phba->pport->cfg_lun_queue_depth, rc); 6479 phba->pport->cfg_lun_queue_depth = rc; 6480 } 6481 6482 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 6483 LPFC_SLI_INTF_IF_TYPE_0) { 6484 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 6485 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6486 if (rc == MBX_SUCCESS) { 6487 phba->hba_flag |= HBA_RECOVERABLE_UE; 6488 /* Set 1Sec interval to detect UE */ 6489 phba->eratt_poll_interval = 1; 6490 phba->sli4_hba.ue_to_sr = bf_get( 6491 lpfc_mbx_set_feature_UESR, 6492 &mboxq->u.mqe.un.set_feature); 6493 phba->sli4_hba.ue_to_rp = bf_get( 6494 lpfc_mbx_set_feature_UERP, 6495 &mboxq->u.mqe.un.set_feature); 6496 } 6497 } 6498 6499 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 6500 /* Enable MDS Diagnostics only if the SLI Port supports it */ 6501 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 6502 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6503 if (rc != MBX_SUCCESS) 6504 phba->mds_diags_support = 0; 6505 } 6506 6507 /* 6508 * Discover the port's supported feature set and match it against the 6509 * hosts requests. 6510 */ 6511 lpfc_request_features(phba, mboxq); 6512 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6513 if (unlikely(rc)) { 6514 rc = -EIO; 6515 goto out_free_mbox; 6516 } 6517 6518 /* 6519 * The port must support FCP initiator mode as this is the 6520 * only mode running in the host. 6521 */ 6522 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 6523 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6524 "0378 No support for fcpi mode.\n"); 6525 ftr_rsp++; 6526 } 6527 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 6528 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 6529 else 6530 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 6531 /* 6532 * If the port cannot support the host's requested features 6533 * then turn off the global config parameters to disable the 6534 * feature in the driver. This is not a fatal error. 6535 */ 6536 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 6537 if (phba->cfg_enable_bg) { 6538 if (bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)) 6539 phba->sli3_options |= LPFC_SLI3_BG_ENABLED; 6540 else 6541 ftr_rsp++; 6542 } 6543 6544 if (phba->max_vpi && phba->cfg_enable_npiv && 6545 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 6546 ftr_rsp++; 6547 6548 if (ftr_rsp) { 6549 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6550 "0379 Feature Mismatch Data: x%08x %08x " 6551 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 6552 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 6553 phba->cfg_enable_npiv, phba->max_vpi); 6554 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 6555 phba->cfg_enable_bg = 0; 6556 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 6557 phba->cfg_enable_npiv = 0; 6558 } 6559 6560 /* These SLI3 features are assumed in SLI4 */ 6561 spin_lock_irq(&phba->hbalock); 6562 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 6563 spin_unlock_irq(&phba->hbalock); 6564 6565 /* 6566 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 6567 * calls depends on these resources to complete port setup. 6568 */ 6569 rc = lpfc_sli4_alloc_resource_identifiers(phba); 6570 if (rc) { 6571 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6572 "2920 Failed to alloc Resource IDs " 6573 "rc = x%x\n", rc); 6574 goto out_free_mbox; 6575 } 6576 6577 lpfc_set_host_data(phba, mboxq); 6578 6579 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6580 if (rc) { 6581 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6582 "2134 Failed to set host os driver version %x", 6583 rc); 6584 } 6585 6586 /* Read the port's service parameters. */ 6587 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 6588 if (rc) { 6589 phba->link_state = LPFC_HBA_ERROR; 6590 rc = -ENOMEM; 6591 goto out_free_mbox; 6592 } 6593 6594 mboxq->vport = vport; 6595 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6596 mp = (struct lpfc_dmabuf *) mboxq->context1; 6597 if (rc == MBX_SUCCESS) { 6598 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 6599 rc = 0; 6600 } 6601 6602 /* 6603 * This memory was allocated by the lpfc_read_sparam routine. Release 6604 * it to the mbuf pool. 6605 */ 6606 lpfc_mbuf_free(phba, mp->virt, mp->phys); 6607 kfree(mp); 6608 mboxq->context1 = NULL; 6609 if (unlikely(rc)) { 6610 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6611 "0382 READ_SPARAM command failed " 6612 "status %d, mbxStatus x%x\n", 6613 rc, bf_get(lpfc_mqe_status, mqe)); 6614 phba->link_state = LPFC_HBA_ERROR; 6615 rc = -EIO; 6616 goto out_free_mbox; 6617 } 6618 6619 lpfc_update_vport_wwn(vport); 6620 6621 /* Update the fc_host data structures with new wwn. */ 6622 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 6623 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 6624 6625 /* update host els and scsi xri-sgl sizes and mappings */ 6626 rc = lpfc_sli4_xri_sgl_update(phba); 6627 if (unlikely(rc)) { 6628 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6629 "1400 Failed to update xri-sgl size and " 6630 "mapping: %d\n", rc); 6631 goto out_free_mbox; 6632 } 6633 6634 /* register the els sgl pool to the port */ 6635 rc = lpfc_sli4_repost_els_sgl_list(phba); 6636 if (unlikely(rc)) { 6637 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6638 "0582 Error %d during els sgl post " 6639 "operation\n", rc); 6640 rc = -ENODEV; 6641 goto out_free_mbox; 6642 } 6643 6644 /* register the allocated scsi sgl pool to the port */ 6645 rc = lpfc_sli4_repost_scsi_sgl_list(phba); 6646 if (unlikely(rc)) { 6647 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6648 "0383 Error %d during scsi sgl post " 6649 "operation\n", rc); 6650 /* Some Scsi buffers were moved to the abort scsi list */ 6651 /* A pci function reset will repost them */ 6652 rc = -ENODEV; 6653 goto out_free_mbox; 6654 } 6655 6656 /* Post the rpi header region to the device. */ 6657 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 6658 if (unlikely(rc)) { 6659 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6660 "0393 Error %d during rpi post operation\n", 6661 rc); 6662 rc = -ENODEV; 6663 goto out_free_mbox; 6664 } 6665 lpfc_sli4_node_prep(phba); 6666 6667 /* Create all the SLI4 queues */ 6668 rc = lpfc_sli4_queue_create(phba); 6669 if (rc) { 6670 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6671 "3089 Failed to allocate queues\n"); 6672 rc = -ENODEV; 6673 goto out_stop_timers; 6674 } 6675 /* Set up all the queues to the device */ 6676 rc = lpfc_sli4_queue_setup(phba); 6677 if (unlikely(rc)) { 6678 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6679 "0381 Error %d during queue setup.\n ", rc); 6680 goto out_destroy_queue; 6681 } 6682 6683 /* Arm the CQs and then EQs on device */ 6684 lpfc_sli4_arm_cqeq_intr(phba); 6685 6686 /* Indicate device interrupt mode */ 6687 phba->sli4_hba.intr_enable = 1; 6688 6689 /* Allow asynchronous mailbox command to go through */ 6690 spin_lock_irq(&phba->hbalock); 6691 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 6692 spin_unlock_irq(&phba->hbalock); 6693 6694 /* Post receive buffers to the device */ 6695 lpfc_sli4_rb_setup(phba); 6696 6697 /* Reset HBA FCF states after HBA reset */ 6698 phba->fcf.fcf_flag = 0; 6699 phba->fcf.current_rec.flag = 0; 6700 6701 /* Start the ELS watchdog timer */ 6702 mod_timer(&vport->els_tmofunc, 6703 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 6704 6705 /* Start heart beat timer */ 6706 mod_timer(&phba->hb_tmofunc, 6707 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 6708 phba->hb_outstanding = 0; 6709 phba->last_completion_time = jiffies; 6710 6711 /* Start error attention (ERATT) polling timer */ 6712 mod_timer(&phba->eratt_poll, 6713 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 6714 6715 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 6716 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 6717 rc = pci_enable_pcie_error_reporting(phba->pcidev); 6718 if (!rc) { 6719 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6720 "2829 This device supports " 6721 "Advanced Error Reporting (AER)\n"); 6722 spin_lock_irq(&phba->hbalock); 6723 phba->hba_flag |= HBA_AER_ENABLED; 6724 spin_unlock_irq(&phba->hbalock); 6725 } else { 6726 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6727 "2830 This device does not support " 6728 "Advanced Error Reporting (AER)\n"); 6729 phba->cfg_aer_support = 0; 6730 } 6731 rc = 0; 6732 } 6733 6734 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 6735 /* 6736 * The FC Port needs to register FCFI (index 0) 6737 */ 6738 lpfc_reg_fcfi(phba, mboxq); 6739 mboxq->vport = phba->pport; 6740 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6741 if (rc != MBX_SUCCESS) 6742 goto out_unset_queue; 6743 rc = 0; 6744 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 6745 &mboxq->u.mqe.un.reg_fcfi); 6746 6747 /* Check if the port is configured to be disabled */ 6748 lpfc_sli_read_link_ste(phba); 6749 } 6750 6751 /* 6752 * The port is ready, set the host's link state to LINK_DOWN 6753 * in preparation for link interrupts. 6754 */ 6755 spin_lock_irq(&phba->hbalock); 6756 phba->link_state = LPFC_LINK_DOWN; 6757 spin_unlock_irq(&phba->hbalock); 6758 if (!(phba->hba_flag & HBA_FCOE_MODE) && 6759 (phba->hba_flag & LINK_DISABLED)) { 6760 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 6761 "3103 Adapter Link is disabled.\n"); 6762 lpfc_down_link(phba, mboxq); 6763 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6764 if (rc != MBX_SUCCESS) { 6765 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 6766 "3104 Adapter failed to issue " 6767 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 6768 goto out_unset_queue; 6769 } 6770 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 6771 /* don't perform init_link on SLI4 FC port loopback test */ 6772 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 6773 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 6774 if (rc) 6775 goto out_unset_queue; 6776 } 6777 } 6778 mempool_free(mboxq, phba->mbox_mem_pool); 6779 return rc; 6780 out_unset_queue: 6781 /* Unset all the queues set up in this routine when error out */ 6782 lpfc_sli4_queue_unset(phba); 6783 out_destroy_queue: 6784 lpfc_sli4_queue_destroy(phba); 6785 out_stop_timers: 6786 lpfc_stop_hba_timers(phba); 6787 out_free_mbox: 6788 mempool_free(mboxq, phba->mbox_mem_pool); 6789 return rc; 6790 } 6791 6792 /** 6793 * lpfc_mbox_timeout - Timeout call back function for mbox timer 6794 * @ptr: context object - pointer to hba structure. 6795 * 6796 * This is the callback function for mailbox timer. The mailbox 6797 * timer is armed when a new mailbox command is issued and the timer 6798 * is deleted when the mailbox complete. The function is called by 6799 * the kernel timer code when a mailbox does not complete within 6800 * expected time. This function wakes up the worker thread to 6801 * process the mailbox timeout and returns. All the processing is 6802 * done by the worker thread function lpfc_mbox_timeout_handler. 6803 **/ 6804 void 6805 lpfc_mbox_timeout(unsigned long ptr) 6806 { 6807 struct lpfc_hba *phba = (struct lpfc_hba *) ptr; 6808 unsigned long iflag; 6809 uint32_t tmo_posted; 6810 6811 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 6812 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 6813 if (!tmo_posted) 6814 phba->pport->work_port_events |= WORKER_MBOX_TMO; 6815 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 6816 6817 if (!tmo_posted) 6818 lpfc_worker_wake_up(phba); 6819 return; 6820 } 6821 6822 /** 6823 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 6824 * are pending 6825 * @phba: Pointer to HBA context object. 6826 * 6827 * This function checks if any mailbox completions are present on the mailbox 6828 * completion queue. 6829 **/ 6830 static bool 6831 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 6832 { 6833 6834 uint32_t idx; 6835 struct lpfc_queue *mcq; 6836 struct lpfc_mcqe *mcqe; 6837 bool pending_completions = false; 6838 6839 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 6840 return false; 6841 6842 /* Check for completions on mailbox completion queue */ 6843 6844 mcq = phba->sli4_hba.mbx_cq; 6845 idx = mcq->hba_index; 6846 while (bf_get_le32(lpfc_cqe_valid, mcq->qe[idx].cqe)) { 6847 mcqe = (struct lpfc_mcqe *)mcq->qe[idx].cqe; 6848 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 6849 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 6850 pending_completions = true; 6851 break; 6852 } 6853 idx = (idx + 1) % mcq->entry_count; 6854 if (mcq->hba_index == idx) 6855 break; 6856 } 6857 return pending_completions; 6858 6859 } 6860 6861 /** 6862 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 6863 * that were missed. 6864 * @phba: Pointer to HBA context object. 6865 * 6866 * For sli4, it is possible to miss an interrupt. As such mbox completions 6867 * maybe missed causing erroneous mailbox timeouts to occur. This function 6868 * checks to see if mbox completions are on the mailbox completion queue 6869 * and will process all the completions associated with the eq for the 6870 * mailbox completion queue. 6871 **/ 6872 bool 6873 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 6874 { 6875 6876 uint32_t eqidx; 6877 struct lpfc_queue *fpeq = NULL; 6878 struct lpfc_eqe *eqe; 6879 bool mbox_pending; 6880 6881 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 6882 return false; 6883 6884 /* Find the eq associated with the mcq */ 6885 6886 if (phba->sli4_hba.hba_eq) 6887 for (eqidx = 0; eqidx < phba->cfg_fcp_io_channel; eqidx++) 6888 if (phba->sli4_hba.hba_eq[eqidx]->queue_id == 6889 phba->sli4_hba.mbx_cq->assoc_qid) { 6890 fpeq = phba->sli4_hba.hba_eq[eqidx]; 6891 break; 6892 } 6893 if (!fpeq) 6894 return false; 6895 6896 /* Turn off interrupts from this EQ */ 6897 6898 lpfc_sli4_eq_clr_intr(fpeq); 6899 6900 /* Check to see if a mbox completion is pending */ 6901 6902 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 6903 6904 /* 6905 * If a mbox completion is pending, process all the events on EQ 6906 * associated with the mbox completion queue (this could include 6907 * mailbox commands, async events, els commands, receive queue data 6908 * and fcp commands) 6909 */ 6910 6911 if (mbox_pending) 6912 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 6913 lpfc_sli4_hba_handle_eqe(phba, eqe, eqidx); 6914 fpeq->EQ_processed++; 6915 } 6916 6917 /* Always clear and re-arm the EQ */ 6918 6919 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 6920 6921 return mbox_pending; 6922 6923 } 6924 6925 /** 6926 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 6927 * @phba: Pointer to HBA context object. 6928 * 6929 * This function is called from worker thread when a mailbox command times out. 6930 * The caller is not required to hold any locks. This function will reset the 6931 * HBA and recover all the pending commands. 6932 **/ 6933 void 6934 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 6935 { 6936 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 6937 MAILBOX_t *mb = NULL; 6938 6939 struct lpfc_sli *psli = &phba->sli; 6940 6941 /* If the mailbox completed, process the completion and return */ 6942 if (lpfc_sli4_process_missed_mbox_completions(phba)) 6943 return; 6944 6945 if (pmbox != NULL) 6946 mb = &pmbox->u.mb; 6947 /* Check the pmbox pointer first. There is a race condition 6948 * between the mbox timeout handler getting executed in the 6949 * worklist and the mailbox actually completing. When this 6950 * race condition occurs, the mbox_active will be NULL. 6951 */ 6952 spin_lock_irq(&phba->hbalock); 6953 if (pmbox == NULL) { 6954 lpfc_printf_log(phba, KERN_WARNING, 6955 LOG_MBOX | LOG_SLI, 6956 "0353 Active Mailbox cleared - mailbox timeout " 6957 "exiting\n"); 6958 spin_unlock_irq(&phba->hbalock); 6959 return; 6960 } 6961 6962 /* Mbox cmd <mbxCommand> timeout */ 6963 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6964 "0310 Mailbox command x%x timeout Data: x%x x%x x%p\n", 6965 mb->mbxCommand, 6966 phba->pport->port_state, 6967 phba->sli.sli_flag, 6968 phba->sli.mbox_active); 6969 spin_unlock_irq(&phba->hbalock); 6970 6971 /* Setting state unknown so lpfc_sli_abort_iocb_ring 6972 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 6973 * it to fail all outstanding SCSI IO. 6974 */ 6975 spin_lock_irq(&phba->pport->work_port_lock); 6976 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 6977 spin_unlock_irq(&phba->pport->work_port_lock); 6978 spin_lock_irq(&phba->hbalock); 6979 phba->link_state = LPFC_LINK_UNKNOWN; 6980 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 6981 spin_unlock_irq(&phba->hbalock); 6982 6983 lpfc_sli_abort_fcp_rings(phba); 6984 6985 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6986 "0345 Resetting board due to mailbox timeout\n"); 6987 6988 /* Reset the HBA device */ 6989 lpfc_reset_hba(phba); 6990 } 6991 6992 /** 6993 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 6994 * @phba: Pointer to HBA context object. 6995 * @pmbox: Pointer to mailbox object. 6996 * @flag: Flag indicating how the mailbox need to be processed. 6997 * 6998 * This function is called by discovery code and HBA management code 6999 * to submit a mailbox command to firmware with SLI-3 interface spec. This 7000 * function gets the hbalock to protect the data structures. 7001 * The mailbox command can be submitted in polling mode, in which case 7002 * this function will wait in a polling loop for the completion of the 7003 * mailbox. 7004 * If the mailbox is submitted in no_wait mode (not polling) the 7005 * function will submit the command and returns immediately without waiting 7006 * for the mailbox completion. The no_wait is supported only when HBA 7007 * is in SLI2/SLI3 mode - interrupts are enabled. 7008 * The SLI interface allows only one mailbox pending at a time. If the 7009 * mailbox is issued in polling mode and there is already a mailbox 7010 * pending, then the function will return an error. If the mailbox is issued 7011 * in NO_WAIT mode and there is a mailbox pending already, the function 7012 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 7013 * The sli layer owns the mailbox object until the completion of mailbox 7014 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 7015 * return codes the caller owns the mailbox command after the return of 7016 * the function. 7017 **/ 7018 static int 7019 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 7020 uint32_t flag) 7021 { 7022 MAILBOX_t *mbx; 7023 struct lpfc_sli *psli = &phba->sli; 7024 uint32_t status, evtctr; 7025 uint32_t ha_copy, hc_copy; 7026 int i; 7027 unsigned long timeout; 7028 unsigned long drvr_flag = 0; 7029 uint32_t word0, ldata; 7030 void __iomem *to_slim; 7031 int processing_queue = 0; 7032 7033 spin_lock_irqsave(&phba->hbalock, drvr_flag); 7034 if (!pmbox) { 7035 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7036 /* processing mbox queue from intr_handler */ 7037 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7038 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7039 return MBX_SUCCESS; 7040 } 7041 processing_queue = 1; 7042 pmbox = lpfc_mbox_get(phba); 7043 if (!pmbox) { 7044 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7045 return MBX_SUCCESS; 7046 } 7047 } 7048 7049 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 7050 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 7051 if(!pmbox->vport) { 7052 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7053 lpfc_printf_log(phba, KERN_ERR, 7054 LOG_MBOX | LOG_VPORT, 7055 "1806 Mbox x%x failed. No vport\n", 7056 pmbox->u.mb.mbxCommand); 7057 dump_stack(); 7058 goto out_not_finished; 7059 } 7060 } 7061 7062 /* If the PCI channel is in offline state, do not post mbox. */ 7063 if (unlikely(pci_channel_offline(phba->pcidev))) { 7064 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7065 goto out_not_finished; 7066 } 7067 7068 /* If HBA has a deferred error attention, fail the iocb. */ 7069 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 7070 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7071 goto out_not_finished; 7072 } 7073 7074 psli = &phba->sli; 7075 7076 mbx = &pmbox->u.mb; 7077 status = MBX_SUCCESS; 7078 7079 if (phba->link_state == LPFC_HBA_ERROR) { 7080 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7081 7082 /* Mbox command <mbxCommand> cannot issue */ 7083 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7084 "(%d):0311 Mailbox command x%x cannot " 7085 "issue Data: x%x x%x\n", 7086 pmbox->vport ? pmbox->vport->vpi : 0, 7087 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 7088 goto out_not_finished; 7089 } 7090 7091 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 7092 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 7093 !(hc_copy & HC_MBINT_ENA)) { 7094 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7095 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7096 "(%d):2528 Mailbox command x%x cannot " 7097 "issue Data: x%x x%x\n", 7098 pmbox->vport ? pmbox->vport->vpi : 0, 7099 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 7100 goto out_not_finished; 7101 } 7102 } 7103 7104 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7105 /* Polling for a mbox command when another one is already active 7106 * is not allowed in SLI. Also, the driver must have established 7107 * SLI2 mode to queue and process multiple mbox commands. 7108 */ 7109 7110 if (flag & MBX_POLL) { 7111 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7112 7113 /* Mbox command <mbxCommand> cannot issue */ 7114 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7115 "(%d):2529 Mailbox command x%x " 7116 "cannot issue Data: x%x x%x\n", 7117 pmbox->vport ? pmbox->vport->vpi : 0, 7118 pmbox->u.mb.mbxCommand, 7119 psli->sli_flag, flag); 7120 goto out_not_finished; 7121 } 7122 7123 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 7124 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7125 /* Mbox command <mbxCommand> cannot issue */ 7126 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7127 "(%d):2530 Mailbox command x%x " 7128 "cannot issue Data: x%x x%x\n", 7129 pmbox->vport ? pmbox->vport->vpi : 0, 7130 pmbox->u.mb.mbxCommand, 7131 psli->sli_flag, flag); 7132 goto out_not_finished; 7133 } 7134 7135 /* Another mailbox command is still being processed, queue this 7136 * command to be processed later. 7137 */ 7138 lpfc_mbox_put(phba, pmbox); 7139 7140 /* Mbox cmd issue - BUSY */ 7141 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7142 "(%d):0308 Mbox cmd issue - BUSY Data: " 7143 "x%x x%x x%x x%x\n", 7144 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 7145 mbx->mbxCommand, phba->pport->port_state, 7146 psli->sli_flag, flag); 7147 7148 psli->slistat.mbox_busy++; 7149 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7150 7151 if (pmbox->vport) { 7152 lpfc_debugfs_disc_trc(pmbox->vport, 7153 LPFC_DISC_TRC_MBOX_VPORT, 7154 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 7155 (uint32_t)mbx->mbxCommand, 7156 mbx->un.varWords[0], mbx->un.varWords[1]); 7157 } 7158 else { 7159 lpfc_debugfs_disc_trc(phba->pport, 7160 LPFC_DISC_TRC_MBOX, 7161 "MBOX Bsy: cmd:x%x mb:x%x x%x", 7162 (uint32_t)mbx->mbxCommand, 7163 mbx->un.varWords[0], mbx->un.varWords[1]); 7164 } 7165 7166 return MBX_BUSY; 7167 } 7168 7169 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7170 7171 /* If we are not polling, we MUST be in SLI2 mode */ 7172 if (flag != MBX_POLL) { 7173 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 7174 (mbx->mbxCommand != MBX_KILL_BOARD)) { 7175 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7176 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7177 /* Mbox command <mbxCommand> cannot issue */ 7178 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7179 "(%d):2531 Mailbox command x%x " 7180 "cannot issue Data: x%x x%x\n", 7181 pmbox->vport ? pmbox->vport->vpi : 0, 7182 pmbox->u.mb.mbxCommand, 7183 psli->sli_flag, flag); 7184 goto out_not_finished; 7185 } 7186 /* timeout active mbox command */ 7187 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 7188 1000); 7189 mod_timer(&psli->mbox_tmo, jiffies + timeout); 7190 } 7191 7192 /* Mailbox cmd <cmd> issue */ 7193 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7194 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 7195 "x%x\n", 7196 pmbox->vport ? pmbox->vport->vpi : 0, 7197 mbx->mbxCommand, phba->pport->port_state, 7198 psli->sli_flag, flag); 7199 7200 if (mbx->mbxCommand != MBX_HEARTBEAT) { 7201 if (pmbox->vport) { 7202 lpfc_debugfs_disc_trc(pmbox->vport, 7203 LPFC_DISC_TRC_MBOX_VPORT, 7204 "MBOX Send vport: cmd:x%x mb:x%x x%x", 7205 (uint32_t)mbx->mbxCommand, 7206 mbx->un.varWords[0], mbx->un.varWords[1]); 7207 } 7208 else { 7209 lpfc_debugfs_disc_trc(phba->pport, 7210 LPFC_DISC_TRC_MBOX, 7211 "MBOX Send: cmd:x%x mb:x%x x%x", 7212 (uint32_t)mbx->mbxCommand, 7213 mbx->un.varWords[0], mbx->un.varWords[1]); 7214 } 7215 } 7216 7217 psli->slistat.mbox_cmd++; 7218 evtctr = psli->slistat.mbox_event; 7219 7220 /* next set own bit for the adapter and copy over command word */ 7221 mbx->mbxOwner = OWN_CHIP; 7222 7223 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7224 /* Populate mbox extension offset word. */ 7225 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 7226 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 7227 = (uint8_t *)phba->mbox_ext 7228 - (uint8_t *)phba->mbox; 7229 } 7230 7231 /* Copy the mailbox extension data */ 7232 if (pmbox->in_ext_byte_len && pmbox->context2) { 7233 lpfc_sli_pcimem_bcopy(pmbox->context2, 7234 (uint8_t *)phba->mbox_ext, 7235 pmbox->in_ext_byte_len); 7236 } 7237 /* Copy command data to host SLIM area */ 7238 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 7239 } else { 7240 /* Populate mbox extension offset word. */ 7241 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 7242 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 7243 = MAILBOX_HBA_EXT_OFFSET; 7244 7245 /* Copy the mailbox extension data */ 7246 if (pmbox->in_ext_byte_len && pmbox->context2) { 7247 lpfc_memcpy_to_slim(phba->MBslimaddr + 7248 MAILBOX_HBA_EXT_OFFSET, 7249 pmbox->context2, pmbox->in_ext_byte_len); 7250 7251 } 7252 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 7253 /* copy command data into host mbox for cmpl */ 7254 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 7255 } 7256 7257 /* First copy mbox command data to HBA SLIM, skip past first 7258 word */ 7259 to_slim = phba->MBslimaddr + sizeof (uint32_t); 7260 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 7261 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 7262 7263 /* Next copy over first word, with mbxOwner set */ 7264 ldata = *((uint32_t *)mbx); 7265 to_slim = phba->MBslimaddr; 7266 writel(ldata, to_slim); 7267 readl(to_slim); /* flush */ 7268 7269 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 7270 /* switch over to host mailbox */ 7271 psli->sli_flag |= LPFC_SLI_ACTIVE; 7272 } 7273 } 7274 7275 wmb(); 7276 7277 switch (flag) { 7278 case MBX_NOWAIT: 7279 /* Set up reference to mailbox command */ 7280 psli->mbox_active = pmbox; 7281 /* Interrupt board to do it */ 7282 writel(CA_MBATT, phba->CAregaddr); 7283 readl(phba->CAregaddr); /* flush */ 7284 /* Don't wait for it to finish, just return */ 7285 break; 7286 7287 case MBX_POLL: 7288 /* Set up null reference to mailbox command */ 7289 psli->mbox_active = NULL; 7290 /* Interrupt board to do it */ 7291 writel(CA_MBATT, phba->CAregaddr); 7292 readl(phba->CAregaddr); /* flush */ 7293 7294 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7295 /* First read mbox status word */ 7296 word0 = *((uint32_t *)phba->mbox); 7297 word0 = le32_to_cpu(word0); 7298 } else { 7299 /* First read mbox status word */ 7300 if (lpfc_readl(phba->MBslimaddr, &word0)) { 7301 spin_unlock_irqrestore(&phba->hbalock, 7302 drvr_flag); 7303 goto out_not_finished; 7304 } 7305 } 7306 7307 /* Read the HBA Host Attention Register */ 7308 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 7309 spin_unlock_irqrestore(&phba->hbalock, 7310 drvr_flag); 7311 goto out_not_finished; 7312 } 7313 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 7314 1000) + jiffies; 7315 i = 0; 7316 /* Wait for command to complete */ 7317 while (((word0 & OWN_CHIP) == OWN_CHIP) || 7318 (!(ha_copy & HA_MBATT) && 7319 (phba->link_state > LPFC_WARM_START))) { 7320 if (time_after(jiffies, timeout)) { 7321 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7322 spin_unlock_irqrestore(&phba->hbalock, 7323 drvr_flag); 7324 goto out_not_finished; 7325 } 7326 7327 /* Check if we took a mbox interrupt while we were 7328 polling */ 7329 if (((word0 & OWN_CHIP) != OWN_CHIP) 7330 && (evtctr != psli->slistat.mbox_event)) 7331 break; 7332 7333 if (i++ > 10) { 7334 spin_unlock_irqrestore(&phba->hbalock, 7335 drvr_flag); 7336 msleep(1); 7337 spin_lock_irqsave(&phba->hbalock, drvr_flag); 7338 } 7339 7340 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7341 /* First copy command data */ 7342 word0 = *((uint32_t *)phba->mbox); 7343 word0 = le32_to_cpu(word0); 7344 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 7345 MAILBOX_t *slimmb; 7346 uint32_t slimword0; 7347 /* Check real SLIM for any errors */ 7348 slimword0 = readl(phba->MBslimaddr); 7349 slimmb = (MAILBOX_t *) & slimword0; 7350 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 7351 && slimmb->mbxStatus) { 7352 psli->sli_flag &= 7353 ~LPFC_SLI_ACTIVE; 7354 word0 = slimword0; 7355 } 7356 } 7357 } else { 7358 /* First copy command data */ 7359 word0 = readl(phba->MBslimaddr); 7360 } 7361 /* Read the HBA Host Attention Register */ 7362 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 7363 spin_unlock_irqrestore(&phba->hbalock, 7364 drvr_flag); 7365 goto out_not_finished; 7366 } 7367 } 7368 7369 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7370 /* copy results back to user */ 7371 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, MAILBOX_CMD_SIZE); 7372 /* Copy the mailbox extension data */ 7373 if (pmbox->out_ext_byte_len && pmbox->context2) { 7374 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 7375 pmbox->context2, 7376 pmbox->out_ext_byte_len); 7377 } 7378 } else { 7379 /* First copy command data */ 7380 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 7381 MAILBOX_CMD_SIZE); 7382 /* Copy the mailbox extension data */ 7383 if (pmbox->out_ext_byte_len && pmbox->context2) { 7384 lpfc_memcpy_from_slim(pmbox->context2, 7385 phba->MBslimaddr + 7386 MAILBOX_HBA_EXT_OFFSET, 7387 pmbox->out_ext_byte_len); 7388 } 7389 } 7390 7391 writel(HA_MBATT, phba->HAregaddr); 7392 readl(phba->HAregaddr); /* flush */ 7393 7394 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7395 status = mbx->mbxStatus; 7396 } 7397 7398 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7399 return status; 7400 7401 out_not_finished: 7402 if (processing_queue) { 7403 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 7404 lpfc_mbox_cmpl_put(phba, pmbox); 7405 } 7406 return MBX_NOT_FINISHED; 7407 } 7408 7409 /** 7410 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 7411 * @phba: Pointer to HBA context object. 7412 * 7413 * The function blocks the posting of SLI4 asynchronous mailbox commands from 7414 * the driver internal pending mailbox queue. It will then try to wait out the 7415 * possible outstanding mailbox command before return. 7416 * 7417 * Returns: 7418 * 0 - the outstanding mailbox command completed; otherwise, the wait for 7419 * the outstanding mailbox command timed out. 7420 **/ 7421 static int 7422 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 7423 { 7424 struct lpfc_sli *psli = &phba->sli; 7425 int rc = 0; 7426 unsigned long timeout = 0; 7427 7428 /* Mark the asynchronous mailbox command posting as blocked */ 7429 spin_lock_irq(&phba->hbalock); 7430 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 7431 /* Determine how long we might wait for the active mailbox 7432 * command to be gracefully completed by firmware. 7433 */ 7434 if (phba->sli.mbox_active) 7435 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 7436 phba->sli.mbox_active) * 7437 1000) + jiffies; 7438 spin_unlock_irq(&phba->hbalock); 7439 7440 /* Make sure the mailbox is really active */ 7441 if (timeout) 7442 lpfc_sli4_process_missed_mbox_completions(phba); 7443 7444 /* Wait for the outstnading mailbox command to complete */ 7445 while (phba->sli.mbox_active) { 7446 /* Check active mailbox complete status every 2ms */ 7447 msleep(2); 7448 if (time_after(jiffies, timeout)) { 7449 /* Timeout, marked the outstanding cmd not complete */ 7450 rc = 1; 7451 break; 7452 } 7453 } 7454 7455 /* Can not cleanly block async mailbox command, fails it */ 7456 if (rc) { 7457 spin_lock_irq(&phba->hbalock); 7458 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7459 spin_unlock_irq(&phba->hbalock); 7460 } 7461 return rc; 7462 } 7463 7464 /** 7465 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 7466 * @phba: Pointer to HBA context object. 7467 * 7468 * The function unblocks and resume posting of SLI4 asynchronous mailbox 7469 * commands from the driver internal pending mailbox queue. It makes sure 7470 * that there is no outstanding mailbox command before resuming posting 7471 * asynchronous mailbox commands. If, for any reason, there is outstanding 7472 * mailbox command, it will try to wait it out before resuming asynchronous 7473 * mailbox command posting. 7474 **/ 7475 static void 7476 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 7477 { 7478 struct lpfc_sli *psli = &phba->sli; 7479 7480 spin_lock_irq(&phba->hbalock); 7481 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7482 /* Asynchronous mailbox posting is not blocked, do nothing */ 7483 spin_unlock_irq(&phba->hbalock); 7484 return; 7485 } 7486 7487 /* Outstanding synchronous mailbox command is guaranteed to be done, 7488 * successful or timeout, after timing-out the outstanding mailbox 7489 * command shall always be removed, so just unblock posting async 7490 * mailbox command and resume 7491 */ 7492 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7493 spin_unlock_irq(&phba->hbalock); 7494 7495 /* wake up worker thread to post asynchronlous mailbox command */ 7496 lpfc_worker_wake_up(phba); 7497 } 7498 7499 /** 7500 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 7501 * @phba: Pointer to HBA context object. 7502 * @mboxq: Pointer to mailbox object. 7503 * 7504 * The function waits for the bootstrap mailbox register ready bit from 7505 * port for twice the regular mailbox command timeout value. 7506 * 7507 * 0 - no timeout on waiting for bootstrap mailbox register ready. 7508 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 7509 **/ 7510 static int 7511 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 7512 { 7513 uint32_t db_ready; 7514 unsigned long timeout; 7515 struct lpfc_register bmbx_reg; 7516 7517 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 7518 * 1000) + jiffies; 7519 7520 do { 7521 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 7522 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 7523 if (!db_ready) 7524 msleep(2); 7525 7526 if (time_after(jiffies, timeout)) 7527 return MBXERR_ERROR; 7528 } while (!db_ready); 7529 7530 return 0; 7531 } 7532 7533 /** 7534 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 7535 * @phba: Pointer to HBA context object. 7536 * @mboxq: Pointer to mailbox object. 7537 * 7538 * The function posts a mailbox to the port. The mailbox is expected 7539 * to be comletely filled in and ready for the port to operate on it. 7540 * This routine executes a synchronous completion operation on the 7541 * mailbox by polling for its completion. 7542 * 7543 * The caller must not be holding any locks when calling this routine. 7544 * 7545 * Returns: 7546 * MBX_SUCCESS - mailbox posted successfully 7547 * Any of the MBX error values. 7548 **/ 7549 static int 7550 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 7551 { 7552 int rc = MBX_SUCCESS; 7553 unsigned long iflag; 7554 uint32_t mcqe_status; 7555 uint32_t mbx_cmnd; 7556 struct lpfc_sli *psli = &phba->sli; 7557 struct lpfc_mqe *mb = &mboxq->u.mqe; 7558 struct lpfc_bmbx_create *mbox_rgn; 7559 struct dma_address *dma_address; 7560 7561 /* 7562 * Only one mailbox can be active to the bootstrap mailbox region 7563 * at a time and there is no queueing provided. 7564 */ 7565 spin_lock_irqsave(&phba->hbalock, iflag); 7566 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7567 spin_unlock_irqrestore(&phba->hbalock, iflag); 7568 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7569 "(%d):2532 Mailbox command x%x (x%x/x%x) " 7570 "cannot issue Data: x%x x%x\n", 7571 mboxq->vport ? mboxq->vport->vpi : 0, 7572 mboxq->u.mb.mbxCommand, 7573 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7574 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7575 psli->sli_flag, MBX_POLL); 7576 return MBXERR_ERROR; 7577 } 7578 /* The server grabs the token and owns it until release */ 7579 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7580 phba->sli.mbox_active = mboxq; 7581 spin_unlock_irqrestore(&phba->hbalock, iflag); 7582 7583 /* wait for bootstrap mbox register for readyness */ 7584 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7585 if (rc) 7586 goto exit; 7587 7588 /* 7589 * Initialize the bootstrap memory region to avoid stale data areas 7590 * in the mailbox post. Then copy the caller's mailbox contents to 7591 * the bmbx mailbox region. 7592 */ 7593 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 7594 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 7595 lpfc_sli_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 7596 sizeof(struct lpfc_mqe)); 7597 7598 /* Post the high mailbox dma address to the port and wait for ready. */ 7599 dma_address = &phba->sli4_hba.bmbx.dma_address; 7600 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 7601 7602 /* wait for bootstrap mbox register for hi-address write done */ 7603 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7604 if (rc) 7605 goto exit; 7606 7607 /* Post the low mailbox dma address to the port. */ 7608 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 7609 7610 /* wait for bootstrap mbox register for low address write done */ 7611 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7612 if (rc) 7613 goto exit; 7614 7615 /* 7616 * Read the CQ to ensure the mailbox has completed. 7617 * If so, update the mailbox status so that the upper layers 7618 * can complete the request normally. 7619 */ 7620 lpfc_sli_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 7621 sizeof(struct lpfc_mqe)); 7622 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 7623 lpfc_sli_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 7624 sizeof(struct lpfc_mcqe)); 7625 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 7626 /* 7627 * When the CQE status indicates a failure and the mailbox status 7628 * indicates success then copy the CQE status into the mailbox status 7629 * (and prefix it with x4000). 7630 */ 7631 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 7632 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 7633 bf_set(lpfc_mqe_status, mb, 7634 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 7635 rc = MBXERR_ERROR; 7636 } else 7637 lpfc_sli4_swap_str(phba, mboxq); 7638 7639 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7640 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 7641 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 7642 " x%x x%x CQ: x%x x%x x%x x%x\n", 7643 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 7644 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7645 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7646 bf_get(lpfc_mqe_status, mb), 7647 mb->un.mb_words[0], mb->un.mb_words[1], 7648 mb->un.mb_words[2], mb->un.mb_words[3], 7649 mb->un.mb_words[4], mb->un.mb_words[5], 7650 mb->un.mb_words[6], mb->un.mb_words[7], 7651 mb->un.mb_words[8], mb->un.mb_words[9], 7652 mb->un.mb_words[10], mb->un.mb_words[11], 7653 mb->un.mb_words[12], mboxq->mcqe.word0, 7654 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 7655 mboxq->mcqe.trailer); 7656 exit: 7657 /* We are holding the token, no needed for lock when release */ 7658 spin_lock_irqsave(&phba->hbalock, iflag); 7659 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7660 phba->sli.mbox_active = NULL; 7661 spin_unlock_irqrestore(&phba->hbalock, iflag); 7662 return rc; 7663 } 7664 7665 /** 7666 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 7667 * @phba: Pointer to HBA context object. 7668 * @pmbox: Pointer to mailbox object. 7669 * @flag: Flag indicating how the mailbox need to be processed. 7670 * 7671 * This function is called by discovery code and HBA management code to submit 7672 * a mailbox command to firmware with SLI-4 interface spec. 7673 * 7674 * Return codes the caller owns the mailbox command after the return of the 7675 * function. 7676 **/ 7677 static int 7678 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 7679 uint32_t flag) 7680 { 7681 struct lpfc_sli *psli = &phba->sli; 7682 unsigned long iflags; 7683 int rc; 7684 7685 /* dump from issue mailbox command if setup */ 7686 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 7687 7688 rc = lpfc_mbox_dev_check(phba); 7689 if (unlikely(rc)) { 7690 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7691 "(%d):2544 Mailbox command x%x (x%x/x%x) " 7692 "cannot issue Data: x%x x%x\n", 7693 mboxq->vport ? mboxq->vport->vpi : 0, 7694 mboxq->u.mb.mbxCommand, 7695 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7696 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7697 psli->sli_flag, flag); 7698 goto out_not_finished; 7699 } 7700 7701 /* Detect polling mode and jump to a handler */ 7702 if (!phba->sli4_hba.intr_enable) { 7703 if (flag == MBX_POLL) 7704 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 7705 else 7706 rc = -EIO; 7707 if (rc != MBX_SUCCESS) 7708 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7709 "(%d):2541 Mailbox command x%x " 7710 "(x%x/x%x) failure: " 7711 "mqe_sta: x%x mcqe_sta: x%x/x%x " 7712 "Data: x%x x%x\n,", 7713 mboxq->vport ? mboxq->vport->vpi : 0, 7714 mboxq->u.mb.mbxCommand, 7715 lpfc_sli_config_mbox_subsys_get(phba, 7716 mboxq), 7717 lpfc_sli_config_mbox_opcode_get(phba, 7718 mboxq), 7719 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 7720 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 7721 bf_get(lpfc_mcqe_ext_status, 7722 &mboxq->mcqe), 7723 psli->sli_flag, flag); 7724 return rc; 7725 } else if (flag == MBX_POLL) { 7726 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7727 "(%d):2542 Try to issue mailbox command " 7728 "x%x (x%x/x%x) synchronously ahead of async" 7729 "mailbox command queue: x%x x%x\n", 7730 mboxq->vport ? mboxq->vport->vpi : 0, 7731 mboxq->u.mb.mbxCommand, 7732 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7733 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7734 psli->sli_flag, flag); 7735 /* Try to block the asynchronous mailbox posting */ 7736 rc = lpfc_sli4_async_mbox_block(phba); 7737 if (!rc) { 7738 /* Successfully blocked, now issue sync mbox cmd */ 7739 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 7740 if (rc != MBX_SUCCESS) 7741 lpfc_printf_log(phba, KERN_WARNING, 7742 LOG_MBOX | LOG_SLI, 7743 "(%d):2597 Sync Mailbox command " 7744 "x%x (x%x/x%x) failure: " 7745 "mqe_sta: x%x mcqe_sta: x%x/x%x " 7746 "Data: x%x x%x\n,", 7747 mboxq->vport ? mboxq->vport->vpi : 0, 7748 mboxq->u.mb.mbxCommand, 7749 lpfc_sli_config_mbox_subsys_get(phba, 7750 mboxq), 7751 lpfc_sli_config_mbox_opcode_get(phba, 7752 mboxq), 7753 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 7754 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 7755 bf_get(lpfc_mcqe_ext_status, 7756 &mboxq->mcqe), 7757 psli->sli_flag, flag); 7758 /* Unblock the async mailbox posting afterward */ 7759 lpfc_sli4_async_mbox_unblock(phba); 7760 } 7761 return rc; 7762 } 7763 7764 /* Now, interrupt mode asynchrous mailbox command */ 7765 rc = lpfc_mbox_cmd_check(phba, mboxq); 7766 if (rc) { 7767 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7768 "(%d):2543 Mailbox command x%x (x%x/x%x) " 7769 "cannot issue Data: x%x x%x\n", 7770 mboxq->vport ? mboxq->vport->vpi : 0, 7771 mboxq->u.mb.mbxCommand, 7772 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7773 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7774 psli->sli_flag, flag); 7775 goto out_not_finished; 7776 } 7777 7778 /* Put the mailbox command to the driver internal FIFO */ 7779 psli->slistat.mbox_busy++; 7780 spin_lock_irqsave(&phba->hbalock, iflags); 7781 lpfc_mbox_put(phba, mboxq); 7782 spin_unlock_irqrestore(&phba->hbalock, iflags); 7783 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7784 "(%d):0354 Mbox cmd issue - Enqueue Data: " 7785 "x%x (x%x/x%x) x%x x%x x%x\n", 7786 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 7787 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7788 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7789 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7790 phba->pport->port_state, 7791 psli->sli_flag, MBX_NOWAIT); 7792 /* Wake up worker thread to transport mailbox command from head */ 7793 lpfc_worker_wake_up(phba); 7794 7795 return MBX_BUSY; 7796 7797 out_not_finished: 7798 return MBX_NOT_FINISHED; 7799 } 7800 7801 /** 7802 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 7803 * @phba: Pointer to HBA context object. 7804 * 7805 * This function is called by worker thread to send a mailbox command to 7806 * SLI4 HBA firmware. 7807 * 7808 **/ 7809 int 7810 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 7811 { 7812 struct lpfc_sli *psli = &phba->sli; 7813 LPFC_MBOXQ_t *mboxq; 7814 int rc = MBX_SUCCESS; 7815 unsigned long iflags; 7816 struct lpfc_mqe *mqe; 7817 uint32_t mbx_cmnd; 7818 7819 /* Check interrupt mode before post async mailbox command */ 7820 if (unlikely(!phba->sli4_hba.intr_enable)) 7821 return MBX_NOT_FINISHED; 7822 7823 /* Check for mailbox command service token */ 7824 spin_lock_irqsave(&phba->hbalock, iflags); 7825 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7826 spin_unlock_irqrestore(&phba->hbalock, iflags); 7827 return MBX_NOT_FINISHED; 7828 } 7829 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7830 spin_unlock_irqrestore(&phba->hbalock, iflags); 7831 return MBX_NOT_FINISHED; 7832 } 7833 if (unlikely(phba->sli.mbox_active)) { 7834 spin_unlock_irqrestore(&phba->hbalock, iflags); 7835 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7836 "0384 There is pending active mailbox cmd\n"); 7837 return MBX_NOT_FINISHED; 7838 } 7839 /* Take the mailbox command service token */ 7840 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7841 7842 /* Get the next mailbox command from head of queue */ 7843 mboxq = lpfc_mbox_get(phba); 7844 7845 /* If no more mailbox command waiting for post, we're done */ 7846 if (!mboxq) { 7847 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7848 spin_unlock_irqrestore(&phba->hbalock, iflags); 7849 return MBX_SUCCESS; 7850 } 7851 phba->sli.mbox_active = mboxq; 7852 spin_unlock_irqrestore(&phba->hbalock, iflags); 7853 7854 /* Check device readiness for posting mailbox command */ 7855 rc = lpfc_mbox_dev_check(phba); 7856 if (unlikely(rc)) 7857 /* Driver clean routine will clean up pending mailbox */ 7858 goto out_not_finished; 7859 7860 /* Prepare the mbox command to be posted */ 7861 mqe = &mboxq->u.mqe; 7862 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 7863 7864 /* Start timer for the mbox_tmo and log some mailbox post messages */ 7865 mod_timer(&psli->mbox_tmo, (jiffies + 7866 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 7867 7868 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7869 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 7870 "x%x x%x\n", 7871 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 7872 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7873 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7874 phba->pport->port_state, psli->sli_flag); 7875 7876 if (mbx_cmnd != MBX_HEARTBEAT) { 7877 if (mboxq->vport) { 7878 lpfc_debugfs_disc_trc(mboxq->vport, 7879 LPFC_DISC_TRC_MBOX_VPORT, 7880 "MBOX Send vport: cmd:x%x mb:x%x x%x", 7881 mbx_cmnd, mqe->un.mb_words[0], 7882 mqe->un.mb_words[1]); 7883 } else { 7884 lpfc_debugfs_disc_trc(phba->pport, 7885 LPFC_DISC_TRC_MBOX, 7886 "MBOX Send: cmd:x%x mb:x%x x%x", 7887 mbx_cmnd, mqe->un.mb_words[0], 7888 mqe->un.mb_words[1]); 7889 } 7890 } 7891 psli->slistat.mbox_cmd++; 7892 7893 /* Post the mailbox command to the port */ 7894 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 7895 if (rc != MBX_SUCCESS) { 7896 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7897 "(%d):2533 Mailbox command x%x (x%x/x%x) " 7898 "cannot issue Data: x%x x%x\n", 7899 mboxq->vport ? mboxq->vport->vpi : 0, 7900 mboxq->u.mb.mbxCommand, 7901 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7902 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7903 psli->sli_flag, MBX_NOWAIT); 7904 goto out_not_finished; 7905 } 7906 7907 return rc; 7908 7909 out_not_finished: 7910 spin_lock_irqsave(&phba->hbalock, iflags); 7911 if (phba->sli.mbox_active) { 7912 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 7913 __lpfc_mbox_cmpl_put(phba, mboxq); 7914 /* Release the token */ 7915 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7916 phba->sli.mbox_active = NULL; 7917 } 7918 spin_unlock_irqrestore(&phba->hbalock, iflags); 7919 7920 return MBX_NOT_FINISHED; 7921 } 7922 7923 /** 7924 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 7925 * @phba: Pointer to HBA context object. 7926 * @pmbox: Pointer to mailbox object. 7927 * @flag: Flag indicating how the mailbox need to be processed. 7928 * 7929 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 7930 * the API jump table function pointer from the lpfc_hba struct. 7931 * 7932 * Return codes the caller owns the mailbox command after the return of the 7933 * function. 7934 **/ 7935 int 7936 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 7937 { 7938 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 7939 } 7940 7941 /** 7942 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 7943 * @phba: The hba struct for which this call is being executed. 7944 * @dev_grp: The HBA PCI-Device group number. 7945 * 7946 * This routine sets up the mbox interface API function jump table in @phba 7947 * struct. 7948 * Returns: 0 - success, -ENODEV - failure. 7949 **/ 7950 int 7951 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 7952 { 7953 7954 switch (dev_grp) { 7955 case LPFC_PCI_DEV_LP: 7956 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 7957 phba->lpfc_sli_handle_slow_ring_event = 7958 lpfc_sli_handle_slow_ring_event_s3; 7959 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 7960 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 7961 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 7962 break; 7963 case LPFC_PCI_DEV_OC: 7964 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 7965 phba->lpfc_sli_handle_slow_ring_event = 7966 lpfc_sli_handle_slow_ring_event_s4; 7967 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 7968 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 7969 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 7970 break; 7971 default: 7972 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7973 "1420 Invalid HBA PCI-device group: 0x%x\n", 7974 dev_grp); 7975 return -ENODEV; 7976 break; 7977 } 7978 return 0; 7979 } 7980 7981 /** 7982 * __lpfc_sli_ringtx_put - Add an iocb to the txq 7983 * @phba: Pointer to HBA context object. 7984 * @pring: Pointer to driver SLI ring object. 7985 * @piocb: Pointer to address of newly added command iocb. 7986 * 7987 * This function is called with hbalock held to add a command 7988 * iocb to the txq when SLI layer cannot submit the command iocb 7989 * to the ring. 7990 **/ 7991 void 7992 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 7993 struct lpfc_iocbq *piocb) 7994 { 7995 lockdep_assert_held(&phba->hbalock); 7996 /* Insert the caller's iocb in the txq tail for later processing. */ 7997 list_add_tail(&piocb->list, &pring->txq); 7998 } 7999 8000 /** 8001 * lpfc_sli_next_iocb - Get the next iocb in the txq 8002 * @phba: Pointer to HBA context object. 8003 * @pring: Pointer to driver SLI ring object. 8004 * @piocb: Pointer to address of newly added command iocb. 8005 * 8006 * This function is called with hbalock held before a new 8007 * iocb is submitted to the firmware. This function checks 8008 * txq to flush the iocbs in txq to Firmware before 8009 * submitting new iocbs to the Firmware. 8010 * If there are iocbs in the txq which need to be submitted 8011 * to firmware, lpfc_sli_next_iocb returns the first element 8012 * of the txq after dequeuing it from txq. 8013 * If there is no iocb in the txq then the function will return 8014 * *piocb and *piocb is set to NULL. Caller needs to check 8015 * *piocb to find if there are more commands in the txq. 8016 **/ 8017 static struct lpfc_iocbq * 8018 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 8019 struct lpfc_iocbq **piocb) 8020 { 8021 struct lpfc_iocbq * nextiocb; 8022 8023 lockdep_assert_held(&phba->hbalock); 8024 8025 nextiocb = lpfc_sli_ringtx_get(phba, pring); 8026 if (!nextiocb) { 8027 nextiocb = *piocb; 8028 *piocb = NULL; 8029 } 8030 8031 return nextiocb; 8032 } 8033 8034 /** 8035 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 8036 * @phba: Pointer to HBA context object. 8037 * @ring_number: SLI ring number to issue iocb on. 8038 * @piocb: Pointer to command iocb. 8039 * @flag: Flag indicating if this command can be put into txq. 8040 * 8041 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 8042 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 8043 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 8044 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 8045 * this function allows only iocbs for posting buffers. This function finds 8046 * next available slot in the command ring and posts the command to the 8047 * available slot and writes the port attention register to request HBA start 8048 * processing new iocb. If there is no slot available in the ring and 8049 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 8050 * the function returns IOCB_BUSY. 8051 * 8052 * This function is called with hbalock held. The function will return success 8053 * after it successfully submit the iocb to firmware or after adding to the 8054 * txq. 8055 **/ 8056 static int 8057 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 8058 struct lpfc_iocbq *piocb, uint32_t flag) 8059 { 8060 struct lpfc_iocbq *nextiocb; 8061 IOCB_t *iocb; 8062 struct lpfc_sli_ring *pring = &phba->sli.ring[ring_number]; 8063 8064 lockdep_assert_held(&phba->hbalock); 8065 8066 if (piocb->iocb_cmpl && (!piocb->vport) && 8067 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 8068 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 8069 lpfc_printf_log(phba, KERN_ERR, 8070 LOG_SLI | LOG_VPORT, 8071 "1807 IOCB x%x failed. No vport\n", 8072 piocb->iocb.ulpCommand); 8073 dump_stack(); 8074 return IOCB_ERROR; 8075 } 8076 8077 8078 /* If the PCI channel is in offline state, do not post iocbs. */ 8079 if (unlikely(pci_channel_offline(phba->pcidev))) 8080 return IOCB_ERROR; 8081 8082 /* If HBA has a deferred error attention, fail the iocb. */ 8083 if (unlikely(phba->hba_flag & DEFER_ERATT)) 8084 return IOCB_ERROR; 8085 8086 /* 8087 * We should never get an IOCB if we are in a < LINK_DOWN state 8088 */ 8089 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 8090 return IOCB_ERROR; 8091 8092 /* 8093 * Check to see if we are blocking IOCB processing because of a 8094 * outstanding event. 8095 */ 8096 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 8097 goto iocb_busy; 8098 8099 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 8100 /* 8101 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 8102 * can be issued if the link is not up. 8103 */ 8104 switch (piocb->iocb.ulpCommand) { 8105 case CMD_GEN_REQUEST64_CR: 8106 case CMD_GEN_REQUEST64_CX: 8107 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 8108 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 8109 FC_RCTL_DD_UNSOL_CMD) || 8110 (piocb->iocb.un.genreq64.w5.hcsw.Type != 8111 MENLO_TRANSPORT_TYPE)) 8112 8113 goto iocb_busy; 8114 break; 8115 case CMD_QUE_RING_BUF_CN: 8116 case CMD_QUE_RING_BUF64_CN: 8117 /* 8118 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 8119 * completion, iocb_cmpl MUST be 0. 8120 */ 8121 if (piocb->iocb_cmpl) 8122 piocb->iocb_cmpl = NULL; 8123 /*FALLTHROUGH*/ 8124 case CMD_CREATE_XRI_CR: 8125 case CMD_CLOSE_XRI_CN: 8126 case CMD_CLOSE_XRI_CX: 8127 break; 8128 default: 8129 goto iocb_busy; 8130 } 8131 8132 /* 8133 * For FCP commands, we must be in a state where we can process link 8134 * attention events. 8135 */ 8136 } else if (unlikely(pring->ringno == phba->sli.fcp_ring && 8137 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 8138 goto iocb_busy; 8139 } 8140 8141 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 8142 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 8143 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 8144 8145 if (iocb) 8146 lpfc_sli_update_ring(phba, pring); 8147 else 8148 lpfc_sli_update_full_ring(phba, pring); 8149 8150 if (!piocb) 8151 return IOCB_SUCCESS; 8152 8153 goto out_busy; 8154 8155 iocb_busy: 8156 pring->stats.iocb_cmd_delay++; 8157 8158 out_busy: 8159 8160 if (!(flag & SLI_IOCB_RET_IOCB)) { 8161 __lpfc_sli_ringtx_put(phba, pring, piocb); 8162 return IOCB_SUCCESS; 8163 } 8164 8165 return IOCB_BUSY; 8166 } 8167 8168 /** 8169 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 8170 * @phba: Pointer to HBA context object. 8171 * @piocb: Pointer to command iocb. 8172 * @sglq: Pointer to the scatter gather queue object. 8173 * 8174 * This routine converts the bpl or bde that is in the IOCB 8175 * to a sgl list for the sli4 hardware. The physical address 8176 * of the bpl/bde is converted back to a virtual address. 8177 * If the IOCB contains a BPL then the list of BDE's is 8178 * converted to sli4_sge's. If the IOCB contains a single 8179 * BDE then it is converted to a single sli_sge. 8180 * The IOCB is still in cpu endianess so the contents of 8181 * the bpl can be used without byte swapping. 8182 * 8183 * Returns valid XRI = Success, NO_XRI = Failure. 8184 **/ 8185 static uint16_t 8186 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 8187 struct lpfc_sglq *sglq) 8188 { 8189 uint16_t xritag = NO_XRI; 8190 struct ulp_bde64 *bpl = NULL; 8191 struct ulp_bde64 bde; 8192 struct sli4_sge *sgl = NULL; 8193 struct lpfc_dmabuf *dmabuf; 8194 IOCB_t *icmd; 8195 int numBdes = 0; 8196 int i = 0; 8197 uint32_t offset = 0; /* accumulated offset in the sg request list */ 8198 int inbound = 0; /* number of sg reply entries inbound from firmware */ 8199 8200 if (!piocbq || !sglq) 8201 return xritag; 8202 8203 sgl = (struct sli4_sge *)sglq->sgl; 8204 icmd = &piocbq->iocb; 8205 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 8206 return sglq->sli4_xritag; 8207 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 8208 numBdes = icmd->un.genreq64.bdl.bdeSize / 8209 sizeof(struct ulp_bde64); 8210 /* The addrHigh and addrLow fields within the IOCB 8211 * have not been byteswapped yet so there is no 8212 * need to swap them back. 8213 */ 8214 if (piocbq->context3) 8215 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 8216 else 8217 return xritag; 8218 8219 bpl = (struct ulp_bde64 *)dmabuf->virt; 8220 if (!bpl) 8221 return xritag; 8222 8223 for (i = 0; i < numBdes; i++) { 8224 /* Should already be byte swapped. */ 8225 sgl->addr_hi = bpl->addrHigh; 8226 sgl->addr_lo = bpl->addrLow; 8227 8228 sgl->word2 = le32_to_cpu(sgl->word2); 8229 if ((i+1) == numBdes) 8230 bf_set(lpfc_sli4_sge_last, sgl, 1); 8231 else 8232 bf_set(lpfc_sli4_sge_last, sgl, 0); 8233 /* swap the size field back to the cpu so we 8234 * can assign it to the sgl. 8235 */ 8236 bde.tus.w = le32_to_cpu(bpl->tus.w); 8237 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 8238 /* The offsets in the sgl need to be accumulated 8239 * separately for the request and reply lists. 8240 * The request is always first, the reply follows. 8241 */ 8242 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 8243 /* add up the reply sg entries */ 8244 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 8245 inbound++; 8246 /* first inbound? reset the offset */ 8247 if (inbound == 1) 8248 offset = 0; 8249 bf_set(lpfc_sli4_sge_offset, sgl, offset); 8250 bf_set(lpfc_sli4_sge_type, sgl, 8251 LPFC_SGE_TYPE_DATA); 8252 offset += bde.tus.f.bdeSize; 8253 } 8254 sgl->word2 = cpu_to_le32(sgl->word2); 8255 bpl++; 8256 sgl++; 8257 } 8258 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 8259 /* The addrHigh and addrLow fields of the BDE have not 8260 * been byteswapped yet so they need to be swapped 8261 * before putting them in the sgl. 8262 */ 8263 sgl->addr_hi = 8264 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 8265 sgl->addr_lo = 8266 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 8267 sgl->word2 = le32_to_cpu(sgl->word2); 8268 bf_set(lpfc_sli4_sge_last, sgl, 1); 8269 sgl->word2 = cpu_to_le32(sgl->word2); 8270 sgl->sge_len = 8271 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 8272 } 8273 return sglq->sli4_xritag; 8274 } 8275 8276 /** 8277 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry. 8278 * @phba: Pointer to HBA context object. 8279 * @piocb: Pointer to command iocb. 8280 * @wqe: Pointer to the work queue entry. 8281 * 8282 * This routine converts the iocb command to its Work Queue Entry 8283 * equivalent. The wqe pointer should not have any fields set when 8284 * this routine is called because it will memcpy over them. 8285 * This routine does not set the CQ_ID or the WQEC bits in the 8286 * wqe. 8287 * 8288 * Returns: 0 = Success, IOCB_ERROR = Failure. 8289 **/ 8290 static int 8291 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 8292 union lpfc_wqe *wqe) 8293 { 8294 uint32_t xmit_len = 0, total_len = 0; 8295 uint8_t ct = 0; 8296 uint32_t fip; 8297 uint32_t abort_tag; 8298 uint8_t command_type = ELS_COMMAND_NON_FIP; 8299 uint8_t cmnd; 8300 uint16_t xritag; 8301 uint16_t abrt_iotag; 8302 struct lpfc_iocbq *abrtiocbq; 8303 struct ulp_bde64 *bpl = NULL; 8304 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 8305 int numBdes, i; 8306 struct ulp_bde64 bde; 8307 struct lpfc_nodelist *ndlp; 8308 uint32_t *pcmd; 8309 uint32_t if_type; 8310 8311 fip = phba->hba_flag & HBA_FIP_SUPPORT; 8312 /* The fcp commands will set command type */ 8313 if (iocbq->iocb_flag & LPFC_IO_FCP) 8314 command_type = FCP_COMMAND; 8315 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 8316 command_type = ELS_COMMAND_FIP; 8317 else 8318 command_type = ELS_COMMAND_NON_FIP; 8319 8320 if (phba->fcp_embed_io) 8321 memset(wqe, 0, sizeof(union lpfc_wqe128)); 8322 /* Some of the fields are in the right position already */ 8323 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 8324 wqe->generic.wqe_com.word7 = 0; /* The ct field has moved so reset */ 8325 wqe->generic.wqe_com.word10 = 0; 8326 8327 abort_tag = (uint32_t) iocbq->iotag; 8328 xritag = iocbq->sli4_xritag; 8329 /* words0-2 bpl convert bde */ 8330 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 8331 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 8332 sizeof(struct ulp_bde64); 8333 bpl = (struct ulp_bde64 *) 8334 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 8335 if (!bpl) 8336 return IOCB_ERROR; 8337 8338 /* Should already be byte swapped. */ 8339 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 8340 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 8341 /* swap the size field back to the cpu so we 8342 * can assign it to the sgl. 8343 */ 8344 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 8345 xmit_len = wqe->generic.bde.tus.f.bdeSize; 8346 total_len = 0; 8347 for (i = 0; i < numBdes; i++) { 8348 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 8349 total_len += bde.tus.f.bdeSize; 8350 } 8351 } else 8352 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 8353 8354 iocbq->iocb.ulpIoTag = iocbq->iotag; 8355 cmnd = iocbq->iocb.ulpCommand; 8356 8357 switch (iocbq->iocb.ulpCommand) { 8358 case CMD_ELS_REQUEST64_CR: 8359 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 8360 ndlp = iocbq->context_un.ndlp; 8361 else 8362 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8363 if (!iocbq->iocb.ulpLe) { 8364 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8365 "2007 Only Limited Edition cmd Format" 8366 " supported 0x%x\n", 8367 iocbq->iocb.ulpCommand); 8368 return IOCB_ERROR; 8369 } 8370 8371 wqe->els_req.payload_len = xmit_len; 8372 /* Els_reguest64 has a TMO */ 8373 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 8374 iocbq->iocb.ulpTimeout); 8375 /* Need a VF for word 4 set the vf bit*/ 8376 bf_set(els_req64_vf, &wqe->els_req, 0); 8377 /* And a VFID for word 12 */ 8378 bf_set(els_req64_vfid, &wqe->els_req, 0); 8379 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 8380 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8381 iocbq->iocb.ulpContext); 8382 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 8383 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 8384 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 8385 if (command_type == ELS_COMMAND_FIP) 8386 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 8387 >> LPFC_FIP_ELS_ID_SHIFT); 8388 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 8389 iocbq->context2)->virt); 8390 if_type = bf_get(lpfc_sli_intf_if_type, 8391 &phba->sli4_hba.sli_intf); 8392 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) { 8393 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 8394 *pcmd == ELS_CMD_SCR || 8395 *pcmd == ELS_CMD_FDISC || 8396 *pcmd == ELS_CMD_LOGO || 8397 *pcmd == ELS_CMD_PLOGI)) { 8398 bf_set(els_req64_sp, &wqe->els_req, 1); 8399 bf_set(els_req64_sid, &wqe->els_req, 8400 iocbq->vport->fc_myDID); 8401 if ((*pcmd == ELS_CMD_FLOGI) && 8402 !(phba->fc_topology == 8403 LPFC_TOPOLOGY_LOOP)) 8404 bf_set(els_req64_sid, &wqe->els_req, 0); 8405 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 8406 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8407 phba->vpi_ids[iocbq->vport->vpi]); 8408 } else if (pcmd && iocbq->context1) { 8409 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 8410 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8411 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8412 } 8413 } 8414 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 8415 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8416 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 8417 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 8418 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 8419 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 8420 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 8421 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 8422 wqe->els_req.max_response_payload_len = total_len - xmit_len; 8423 break; 8424 case CMD_XMIT_SEQUENCE64_CX: 8425 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 8426 iocbq->iocb.un.ulpWord[3]); 8427 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 8428 iocbq->iocb.unsli3.rcvsli3.ox_id); 8429 /* The entire sequence is transmitted for this IOCB */ 8430 xmit_len = total_len; 8431 cmnd = CMD_XMIT_SEQUENCE64_CR; 8432 if (phba->link_flag & LS_LOOPBACK_MODE) 8433 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 8434 case CMD_XMIT_SEQUENCE64_CR: 8435 /* word3 iocb=io_tag32 wqe=reserved */ 8436 wqe->xmit_sequence.rsvd3 = 0; 8437 /* word4 relative_offset memcpy */ 8438 /* word5 r_ctl/df_ctl memcpy */ 8439 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 8440 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 8441 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 8442 LPFC_WQE_IOD_WRITE); 8443 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 8444 LPFC_WQE_LENLOC_WORD12); 8445 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 8446 wqe->xmit_sequence.xmit_len = xmit_len; 8447 command_type = OTHER_COMMAND; 8448 break; 8449 case CMD_XMIT_BCAST64_CN: 8450 /* word3 iocb=iotag32 wqe=seq_payload_len */ 8451 wqe->xmit_bcast64.seq_payload_len = xmit_len; 8452 /* word4 iocb=rsvd wqe=rsvd */ 8453 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 8454 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 8455 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 8456 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 8457 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 8458 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 8459 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 8460 LPFC_WQE_LENLOC_WORD3); 8461 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 8462 break; 8463 case CMD_FCP_IWRITE64_CR: 8464 command_type = FCP_COMMAND_DATA_OUT; 8465 /* word3 iocb=iotag wqe=payload_offset_len */ 8466 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8467 bf_set(payload_offset_len, &wqe->fcp_iwrite, 8468 xmit_len + sizeof(struct fcp_rsp)); 8469 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 8470 0); 8471 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 8472 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 8473 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 8474 iocbq->iocb.ulpFCP2Rcvy); 8475 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 8476 /* Always open the exchange */ 8477 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 8478 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 8479 LPFC_WQE_LENLOC_WORD4); 8480 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 8481 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 8482 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8483 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 8484 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 8485 if (iocbq->priority) { 8486 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 8487 (iocbq->priority << 1)); 8488 } else { 8489 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 8490 (phba->cfg_XLanePriority << 1)); 8491 } 8492 } 8493 /* Note, word 10 is already initialized to 0 */ 8494 8495 if (phba->fcp_embed_io) { 8496 struct lpfc_scsi_buf *lpfc_cmd; 8497 struct sli4_sge *sgl; 8498 union lpfc_wqe128 *wqe128; 8499 struct fcp_cmnd *fcp_cmnd; 8500 uint32_t *ptr; 8501 8502 /* 128 byte wqe support here */ 8503 wqe128 = (union lpfc_wqe128 *)wqe; 8504 8505 lpfc_cmd = iocbq->context1; 8506 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 8507 fcp_cmnd = lpfc_cmd->fcp_cmnd; 8508 8509 /* Word 0-2 - FCP_CMND */ 8510 wqe128->generic.bde.tus.f.bdeFlags = 8511 BUFF_TYPE_BDE_IMMED; 8512 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len; 8513 wqe128->generic.bde.addrHigh = 0; 8514 wqe128->generic.bde.addrLow = 88; /* Word 22 */ 8515 8516 bf_set(wqe_wqes, &wqe128->fcp_iwrite.wqe_com, 1); 8517 8518 /* Word 22-29 FCP CMND Payload */ 8519 ptr = &wqe128->words[22]; 8520 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 8521 } 8522 break; 8523 case CMD_FCP_IREAD64_CR: 8524 /* word3 iocb=iotag wqe=payload_offset_len */ 8525 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8526 bf_set(payload_offset_len, &wqe->fcp_iread, 8527 xmit_len + sizeof(struct fcp_rsp)); 8528 bf_set(cmd_buff_len, &wqe->fcp_iread, 8529 0); 8530 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 8531 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 8532 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 8533 iocbq->iocb.ulpFCP2Rcvy); 8534 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 8535 /* Always open the exchange */ 8536 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 8537 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 8538 LPFC_WQE_LENLOC_WORD4); 8539 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 8540 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 8541 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8542 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 8543 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 8544 if (iocbq->priority) { 8545 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 8546 (iocbq->priority << 1)); 8547 } else { 8548 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 8549 (phba->cfg_XLanePriority << 1)); 8550 } 8551 } 8552 /* Note, word 10 is already initialized to 0 */ 8553 8554 if (phba->fcp_embed_io) { 8555 struct lpfc_scsi_buf *lpfc_cmd; 8556 struct sli4_sge *sgl; 8557 union lpfc_wqe128 *wqe128; 8558 struct fcp_cmnd *fcp_cmnd; 8559 uint32_t *ptr; 8560 8561 /* 128 byte wqe support here */ 8562 wqe128 = (union lpfc_wqe128 *)wqe; 8563 8564 lpfc_cmd = iocbq->context1; 8565 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 8566 fcp_cmnd = lpfc_cmd->fcp_cmnd; 8567 8568 /* Word 0-2 - FCP_CMND */ 8569 wqe128->generic.bde.tus.f.bdeFlags = 8570 BUFF_TYPE_BDE_IMMED; 8571 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len; 8572 wqe128->generic.bde.addrHigh = 0; 8573 wqe128->generic.bde.addrLow = 88; /* Word 22 */ 8574 8575 bf_set(wqe_wqes, &wqe128->fcp_iread.wqe_com, 1); 8576 8577 /* Word 22-29 FCP CMND Payload */ 8578 ptr = &wqe128->words[22]; 8579 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 8580 } 8581 break; 8582 case CMD_FCP_ICMND64_CR: 8583 /* word3 iocb=iotag wqe=payload_offset_len */ 8584 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8585 bf_set(payload_offset_len, &wqe->fcp_icmd, 8586 xmit_len + sizeof(struct fcp_rsp)); 8587 bf_set(cmd_buff_len, &wqe->fcp_icmd, 8588 0); 8589 /* word3 iocb=IO_TAG wqe=reserved */ 8590 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 8591 /* Always open the exchange */ 8592 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 8593 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 8594 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 8595 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 8596 LPFC_WQE_LENLOC_NONE); 8597 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 8598 iocbq->iocb.ulpFCP2Rcvy); 8599 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8600 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 8601 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 8602 if (iocbq->priority) { 8603 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 8604 (iocbq->priority << 1)); 8605 } else { 8606 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 8607 (phba->cfg_XLanePriority << 1)); 8608 } 8609 } 8610 /* Note, word 10 is already initialized to 0 */ 8611 8612 if (phba->fcp_embed_io) { 8613 struct lpfc_scsi_buf *lpfc_cmd; 8614 struct sli4_sge *sgl; 8615 union lpfc_wqe128 *wqe128; 8616 struct fcp_cmnd *fcp_cmnd; 8617 uint32_t *ptr; 8618 8619 /* 128 byte wqe support here */ 8620 wqe128 = (union lpfc_wqe128 *)wqe; 8621 8622 lpfc_cmd = iocbq->context1; 8623 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 8624 fcp_cmnd = lpfc_cmd->fcp_cmnd; 8625 8626 /* Word 0-2 - FCP_CMND */ 8627 wqe128->generic.bde.tus.f.bdeFlags = 8628 BUFF_TYPE_BDE_IMMED; 8629 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len; 8630 wqe128->generic.bde.addrHigh = 0; 8631 wqe128->generic.bde.addrLow = 88; /* Word 22 */ 8632 8633 bf_set(wqe_wqes, &wqe128->fcp_icmd.wqe_com, 1); 8634 8635 /* Word 22-29 FCP CMND Payload */ 8636 ptr = &wqe128->words[22]; 8637 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 8638 } 8639 break; 8640 case CMD_GEN_REQUEST64_CR: 8641 /* For this command calculate the xmit length of the 8642 * request bde. 8643 */ 8644 xmit_len = 0; 8645 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 8646 sizeof(struct ulp_bde64); 8647 for (i = 0; i < numBdes; i++) { 8648 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 8649 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 8650 break; 8651 xmit_len += bde.tus.f.bdeSize; 8652 } 8653 /* word3 iocb=IO_TAG wqe=request_payload_len */ 8654 wqe->gen_req.request_payload_len = xmit_len; 8655 /* word4 iocb=parameter wqe=relative_offset memcpy */ 8656 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 8657 /* word6 context tag copied in memcpy */ 8658 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 8659 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 8660 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8661 "2015 Invalid CT %x command 0x%x\n", 8662 ct, iocbq->iocb.ulpCommand); 8663 return IOCB_ERROR; 8664 } 8665 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 8666 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 8667 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 8668 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 8669 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 8670 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 8671 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 8672 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 8673 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 8674 command_type = OTHER_COMMAND; 8675 break; 8676 case CMD_XMIT_ELS_RSP64_CX: 8677 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8678 /* words0-2 BDE memcpy */ 8679 /* word3 iocb=iotag32 wqe=response_payload_len */ 8680 wqe->xmit_els_rsp.response_payload_len = xmit_len; 8681 /* word4 */ 8682 wqe->xmit_els_rsp.word4 = 0; 8683 /* word5 iocb=rsvd wge=did */ 8684 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 8685 iocbq->iocb.un.xseq64.xmit_els_remoteID); 8686 8687 if_type = bf_get(lpfc_sli_intf_if_type, 8688 &phba->sli4_hba.sli_intf); 8689 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) { 8690 if (iocbq->vport->fc_flag & FC_PT2PT) { 8691 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 8692 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 8693 iocbq->vport->fc_myDID); 8694 if (iocbq->vport->fc_myDID == Fabric_DID) { 8695 bf_set(wqe_els_did, 8696 &wqe->xmit_els_rsp.wqe_dest, 0); 8697 } 8698 } 8699 } 8700 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 8701 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 8702 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 8703 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 8704 iocbq->iocb.unsli3.rcvsli3.ox_id); 8705 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 8706 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 8707 phba->vpi_ids[iocbq->vport->vpi]); 8708 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 8709 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 8710 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 8711 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 8712 LPFC_WQE_LENLOC_WORD3); 8713 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 8714 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 8715 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8716 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 8717 iocbq->context2)->virt); 8718 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 8719 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 8720 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 8721 iocbq->vport->fc_myDID); 8722 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 8723 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 8724 phba->vpi_ids[phba->pport->vpi]); 8725 } 8726 command_type = OTHER_COMMAND; 8727 break; 8728 case CMD_CLOSE_XRI_CN: 8729 case CMD_ABORT_XRI_CN: 8730 case CMD_ABORT_XRI_CX: 8731 /* words 0-2 memcpy should be 0 rserved */ 8732 /* port will send abts */ 8733 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 8734 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 8735 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 8736 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 8737 } else 8738 fip = 0; 8739 8740 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 8741 /* 8742 * The link is down, or the command was ELS_FIP 8743 * so the fw does not need to send abts 8744 * on the wire. 8745 */ 8746 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 8747 else 8748 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 8749 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 8750 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 8751 wqe->abort_cmd.rsrvd5 = 0; 8752 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 8753 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 8754 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 8755 /* 8756 * The abort handler will send us CMD_ABORT_XRI_CN or 8757 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 8758 */ 8759 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 8760 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 8761 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 8762 LPFC_WQE_LENLOC_NONE); 8763 cmnd = CMD_ABORT_XRI_CX; 8764 command_type = OTHER_COMMAND; 8765 xritag = 0; 8766 break; 8767 case CMD_XMIT_BLS_RSP64_CX: 8768 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8769 /* As BLS ABTS RSP WQE is very different from other WQEs, 8770 * we re-construct this WQE here based on information in 8771 * iocbq from scratch. 8772 */ 8773 memset(wqe, 0, sizeof(union lpfc_wqe)); 8774 /* OX_ID is invariable to who sent ABTS to CT exchange */ 8775 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 8776 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 8777 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 8778 LPFC_ABTS_UNSOL_INT) { 8779 /* ABTS sent by initiator to CT exchange, the 8780 * RX_ID field will be filled with the newly 8781 * allocated responder XRI. 8782 */ 8783 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 8784 iocbq->sli4_xritag); 8785 } else { 8786 /* ABTS sent by responder to CT exchange, the 8787 * RX_ID field will be filled with the responder 8788 * RX_ID from ABTS. 8789 */ 8790 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 8791 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 8792 } 8793 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 8794 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 8795 8796 /* Use CT=VPI */ 8797 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 8798 ndlp->nlp_DID); 8799 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 8800 iocbq->iocb.ulpContext); 8801 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 8802 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 8803 phba->vpi_ids[phba->pport->vpi]); 8804 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 8805 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 8806 LPFC_WQE_LENLOC_NONE); 8807 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 8808 command_type = OTHER_COMMAND; 8809 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 8810 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 8811 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 8812 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 8813 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 8814 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 8815 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 8816 } 8817 8818 break; 8819 case CMD_XRI_ABORTED_CX: 8820 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 8821 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 8822 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 8823 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 8824 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 8825 default: 8826 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8827 "2014 Invalid command 0x%x\n", 8828 iocbq->iocb.ulpCommand); 8829 return IOCB_ERROR; 8830 break; 8831 } 8832 8833 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 8834 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 8835 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 8836 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 8837 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 8838 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 8839 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 8840 LPFC_IO_DIF_INSERT); 8841 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 8842 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 8843 wqe->generic.wqe_com.abort_tag = abort_tag; 8844 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 8845 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 8846 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 8847 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 8848 return 0; 8849 } 8850 8851 /** 8852 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 8853 * @phba: Pointer to HBA context object. 8854 * @ring_number: SLI ring number to issue iocb on. 8855 * @piocb: Pointer to command iocb. 8856 * @flag: Flag indicating if this command can be put into txq. 8857 * 8858 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 8859 * an iocb command to an HBA with SLI-4 interface spec. 8860 * 8861 * This function is called with hbalock held. The function will return success 8862 * after it successfully submit the iocb to firmware or after adding to the 8863 * txq. 8864 **/ 8865 static int 8866 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 8867 struct lpfc_iocbq *piocb, uint32_t flag) 8868 { 8869 struct lpfc_sglq *sglq; 8870 union lpfc_wqe *wqe; 8871 union lpfc_wqe128 wqe128; 8872 struct lpfc_queue *wq; 8873 struct lpfc_sli_ring *pring = &phba->sli.ring[ring_number]; 8874 8875 lockdep_assert_held(&phba->hbalock); 8876 8877 /* 8878 * The WQE can be either 64 or 128 bytes, 8879 * so allocate space on the stack assuming the largest. 8880 */ 8881 wqe = (union lpfc_wqe *)&wqe128; 8882 8883 if (piocb->sli4_xritag == NO_XRI) { 8884 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 8885 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 8886 sglq = NULL; 8887 else { 8888 if (!list_empty(&pring->txq)) { 8889 if (!(flag & SLI_IOCB_RET_IOCB)) { 8890 __lpfc_sli_ringtx_put(phba, 8891 pring, piocb); 8892 return IOCB_SUCCESS; 8893 } else { 8894 return IOCB_BUSY; 8895 } 8896 } else { 8897 sglq = __lpfc_sli_get_sglq(phba, piocb); 8898 if (!sglq) { 8899 if (!(flag & SLI_IOCB_RET_IOCB)) { 8900 __lpfc_sli_ringtx_put(phba, 8901 pring, 8902 piocb); 8903 return IOCB_SUCCESS; 8904 } else 8905 return IOCB_BUSY; 8906 } 8907 } 8908 } 8909 } else if (piocb->iocb_flag & LPFC_IO_FCP) { 8910 /* These IO's already have an XRI and a mapped sgl. */ 8911 sglq = NULL; 8912 } else { 8913 /* 8914 * This is a continuation of a commandi,(CX) so this 8915 * sglq is on the active list 8916 */ 8917 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 8918 if (!sglq) 8919 return IOCB_ERROR; 8920 } 8921 8922 if (sglq) { 8923 piocb->sli4_lxritag = sglq->sli4_lxritag; 8924 piocb->sli4_xritag = sglq->sli4_xritag; 8925 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 8926 return IOCB_ERROR; 8927 } 8928 8929 if (lpfc_sli4_iocb2wqe(phba, piocb, wqe)) 8930 return IOCB_ERROR; 8931 8932 if ((piocb->iocb_flag & LPFC_IO_FCP) || 8933 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 8934 if (!phba->cfg_fof || (!(piocb->iocb_flag & LPFC_IO_OAS))) { 8935 wq = phba->sli4_hba.fcp_wq[piocb->fcp_wqidx]; 8936 } else { 8937 wq = phba->sli4_hba.oas_wq; 8938 } 8939 if (lpfc_sli4_wq_put(wq, wqe)) 8940 return IOCB_ERROR; 8941 } else { 8942 if (unlikely(!phba->sli4_hba.els_wq)) 8943 return IOCB_ERROR; 8944 if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, wqe)) 8945 return IOCB_ERROR; 8946 } 8947 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 8948 8949 return 0; 8950 } 8951 8952 /** 8953 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 8954 * 8955 * This routine wraps the actual lockless version for issusing IOCB function 8956 * pointer from the lpfc_hba struct. 8957 * 8958 * Return codes: 8959 * IOCB_ERROR - Error 8960 * IOCB_SUCCESS - Success 8961 * IOCB_BUSY - Busy 8962 **/ 8963 int 8964 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 8965 struct lpfc_iocbq *piocb, uint32_t flag) 8966 { 8967 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 8968 } 8969 8970 /** 8971 * lpfc_sli_api_table_setup - Set up sli api function jump table 8972 * @phba: The hba struct for which this call is being executed. 8973 * @dev_grp: The HBA PCI-Device group number. 8974 * 8975 * This routine sets up the SLI interface API function jump table in @phba 8976 * struct. 8977 * Returns: 0 - success, -ENODEV - failure. 8978 **/ 8979 int 8980 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 8981 { 8982 8983 switch (dev_grp) { 8984 case LPFC_PCI_DEV_LP: 8985 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 8986 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 8987 break; 8988 case LPFC_PCI_DEV_OC: 8989 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 8990 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 8991 break; 8992 default: 8993 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8994 "1419 Invalid HBA PCI-device group: 0x%x\n", 8995 dev_grp); 8996 return -ENODEV; 8997 break; 8998 } 8999 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 9000 return 0; 9001 } 9002 9003 /** 9004 * lpfc_sli_calc_ring - Calculates which ring to use 9005 * @phba: Pointer to HBA context object. 9006 * @ring_number: Initial ring 9007 * @piocb: Pointer to command iocb. 9008 * 9009 * For SLI4, FCP IO can deferred to one fo many WQs, based on 9010 * fcp_wqidx, thus we need to calculate the corresponding ring. 9011 * Since ABORTS must go on the same WQ of the command they are 9012 * aborting, we use command's fcp_wqidx. 9013 */ 9014 static int 9015 lpfc_sli_calc_ring(struct lpfc_hba *phba, uint32_t ring_number, 9016 struct lpfc_iocbq *piocb) 9017 { 9018 if (phba->sli_rev < LPFC_SLI_REV4) 9019 return ring_number; 9020 9021 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 9022 if (!(phba->cfg_fof) || 9023 (!(piocb->iocb_flag & LPFC_IO_FOF))) { 9024 if (unlikely(!phba->sli4_hba.fcp_wq)) 9025 return LPFC_HBA_ERROR; 9026 /* 9027 * for abort iocb fcp_wqidx should already 9028 * be setup based on what work queue we used. 9029 */ 9030 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) 9031 piocb->fcp_wqidx = 9032 lpfc_sli4_scmd_to_wqidx_distr(phba, 9033 piocb->context1); 9034 ring_number = MAX_SLI3_CONFIGURED_RINGS + 9035 piocb->fcp_wqidx; 9036 } else { 9037 if (unlikely(!phba->sli4_hba.oas_wq)) 9038 return LPFC_HBA_ERROR; 9039 piocb->fcp_wqidx = 0; 9040 ring_number = LPFC_FCP_OAS_RING; 9041 } 9042 } 9043 return ring_number; 9044 } 9045 9046 /** 9047 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 9048 * @phba: Pointer to HBA context object. 9049 * @pring: Pointer to driver SLI ring object. 9050 * @piocb: Pointer to command iocb. 9051 * @flag: Flag indicating if this command can be put into txq. 9052 * 9053 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 9054 * function. This function gets the hbalock and calls 9055 * __lpfc_sli_issue_iocb function and will return the error returned 9056 * by __lpfc_sli_issue_iocb function. This wrapper is used by 9057 * functions which do not hold hbalock. 9058 **/ 9059 int 9060 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 9061 struct lpfc_iocbq *piocb, uint32_t flag) 9062 { 9063 struct lpfc_fcp_eq_hdl *fcp_eq_hdl; 9064 struct lpfc_sli_ring *pring; 9065 struct lpfc_queue *fpeq; 9066 struct lpfc_eqe *eqe; 9067 unsigned long iflags; 9068 int rc, idx; 9069 9070 if (phba->sli_rev == LPFC_SLI_REV4) { 9071 ring_number = lpfc_sli_calc_ring(phba, ring_number, piocb); 9072 if (unlikely(ring_number == LPFC_HBA_ERROR)) 9073 return IOCB_ERROR; 9074 idx = piocb->fcp_wqidx; 9075 9076 pring = &phba->sli.ring[ring_number]; 9077 spin_lock_irqsave(&pring->ring_lock, iflags); 9078 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9079 spin_unlock_irqrestore(&pring->ring_lock, iflags); 9080 9081 if (lpfc_fcp_look_ahead && (piocb->iocb_flag & LPFC_IO_FCP)) { 9082 fcp_eq_hdl = &phba->sli4_hba.fcp_eq_hdl[idx]; 9083 9084 if (atomic_dec_and_test(&fcp_eq_hdl-> 9085 fcp_eq_in_use)) { 9086 9087 /* Get associated EQ with this index */ 9088 fpeq = phba->sli4_hba.hba_eq[idx]; 9089 9090 /* Turn off interrupts from this EQ */ 9091 lpfc_sli4_eq_clr_intr(fpeq); 9092 9093 /* 9094 * Process all the events on FCP EQ 9095 */ 9096 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 9097 lpfc_sli4_hba_handle_eqe(phba, 9098 eqe, idx); 9099 fpeq->EQ_processed++; 9100 } 9101 9102 /* Always clear and re-arm the EQ */ 9103 lpfc_sli4_eq_release(fpeq, 9104 LPFC_QUEUE_REARM); 9105 } 9106 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 9107 } 9108 } else { 9109 /* For now, SLI2/3 will still use hbalock */ 9110 spin_lock_irqsave(&phba->hbalock, iflags); 9111 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9112 spin_unlock_irqrestore(&phba->hbalock, iflags); 9113 } 9114 return rc; 9115 } 9116 9117 /** 9118 * lpfc_extra_ring_setup - Extra ring setup function 9119 * @phba: Pointer to HBA context object. 9120 * 9121 * This function is called while driver attaches with the 9122 * HBA to setup the extra ring. The extra ring is used 9123 * only when driver needs to support target mode functionality 9124 * or IP over FC functionalities. 9125 * 9126 * This function is called with no lock held. 9127 **/ 9128 static int 9129 lpfc_extra_ring_setup( struct lpfc_hba *phba) 9130 { 9131 struct lpfc_sli *psli; 9132 struct lpfc_sli_ring *pring; 9133 9134 psli = &phba->sli; 9135 9136 /* Adjust cmd/rsp ring iocb entries more evenly */ 9137 9138 /* Take some away from the FCP ring */ 9139 pring = &psli->ring[psli->fcp_ring]; 9140 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9141 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9142 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9143 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9144 9145 /* and give them to the extra ring */ 9146 pring = &psli->ring[psli->extra_ring]; 9147 9148 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9149 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9150 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9151 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9152 9153 /* Setup default profile for this ring */ 9154 pring->iotag_max = 4096; 9155 pring->num_mask = 1; 9156 pring->prt[0].profile = 0; /* Mask 0 */ 9157 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 9158 pring->prt[0].type = phba->cfg_multi_ring_type; 9159 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 9160 return 0; 9161 } 9162 9163 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 9164 * @phba: Pointer to HBA context object. 9165 * @iocbq: Pointer to iocb object. 9166 * 9167 * The async_event handler calls this routine when it receives 9168 * an ASYNC_STATUS_CN event from the port. The port generates 9169 * this event when an Abort Sequence request to an rport fails 9170 * twice in succession. The abort could be originated by the 9171 * driver or by the port. The ABTS could have been for an ELS 9172 * or FCP IO. The port only generates this event when an ABTS 9173 * fails to complete after one retry. 9174 */ 9175 static void 9176 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 9177 struct lpfc_iocbq *iocbq) 9178 { 9179 struct lpfc_nodelist *ndlp = NULL; 9180 uint16_t rpi = 0, vpi = 0; 9181 struct lpfc_vport *vport = NULL; 9182 9183 /* The rpi in the ulpContext is vport-sensitive. */ 9184 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 9185 rpi = iocbq->iocb.ulpContext; 9186 9187 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9188 "3092 Port generated ABTS async event " 9189 "on vpi %d rpi %d status 0x%x\n", 9190 vpi, rpi, iocbq->iocb.ulpStatus); 9191 9192 vport = lpfc_find_vport_by_vpid(phba, vpi); 9193 if (!vport) 9194 goto err_exit; 9195 ndlp = lpfc_findnode_rpi(vport, rpi); 9196 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) 9197 goto err_exit; 9198 9199 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 9200 lpfc_sli_abts_recover_port(vport, ndlp); 9201 return; 9202 9203 err_exit: 9204 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9205 "3095 Event Context not found, no " 9206 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 9207 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 9208 vpi, rpi); 9209 } 9210 9211 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 9212 * @phba: pointer to HBA context object. 9213 * @ndlp: nodelist pointer for the impacted rport. 9214 * @axri: pointer to the wcqe containing the failed exchange. 9215 * 9216 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 9217 * port. The port generates this event when an abort exchange request to an 9218 * rport fails twice in succession with no reply. The abort could be originated 9219 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 9220 */ 9221 void 9222 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 9223 struct lpfc_nodelist *ndlp, 9224 struct sli4_wcqe_xri_aborted *axri) 9225 { 9226 struct lpfc_vport *vport; 9227 uint32_t ext_status = 0; 9228 9229 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { 9230 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9231 "3115 Node Context not found, driver " 9232 "ignoring abts err event\n"); 9233 return; 9234 } 9235 9236 vport = ndlp->vport; 9237 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9238 "3116 Port generated FCP XRI ABORT event on " 9239 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 9240 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 9241 bf_get(lpfc_wcqe_xa_xri, axri), 9242 bf_get(lpfc_wcqe_xa_status, axri), 9243 axri->parameter); 9244 9245 /* 9246 * Catch the ABTS protocol failure case. Older OCe FW releases returned 9247 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 9248 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 9249 */ 9250 ext_status = axri->parameter & IOERR_PARAM_MASK; 9251 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 9252 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 9253 lpfc_sli_abts_recover_port(vport, ndlp); 9254 } 9255 9256 /** 9257 * lpfc_sli_async_event_handler - ASYNC iocb handler function 9258 * @phba: Pointer to HBA context object. 9259 * @pring: Pointer to driver SLI ring object. 9260 * @iocbq: Pointer to iocb object. 9261 * 9262 * This function is called by the slow ring event handler 9263 * function when there is an ASYNC event iocb in the ring. 9264 * This function is called with no lock held. 9265 * Currently this function handles only temperature related 9266 * ASYNC events. The function decodes the temperature sensor 9267 * event message and posts events for the management applications. 9268 **/ 9269 static void 9270 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 9271 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 9272 { 9273 IOCB_t *icmd; 9274 uint16_t evt_code; 9275 struct temp_event temp_event_data; 9276 struct Scsi_Host *shost; 9277 uint32_t *iocb_w; 9278 9279 icmd = &iocbq->iocb; 9280 evt_code = icmd->un.asyncstat.evt_code; 9281 9282 switch (evt_code) { 9283 case ASYNC_TEMP_WARN: 9284 case ASYNC_TEMP_SAFE: 9285 temp_event_data.data = (uint32_t) icmd->ulpContext; 9286 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 9287 if (evt_code == ASYNC_TEMP_WARN) { 9288 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 9289 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 9290 "0347 Adapter is very hot, please take " 9291 "corrective action. temperature : %d Celsius\n", 9292 (uint32_t) icmd->ulpContext); 9293 } else { 9294 temp_event_data.event_code = LPFC_NORMAL_TEMP; 9295 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 9296 "0340 Adapter temperature is OK now. " 9297 "temperature : %d Celsius\n", 9298 (uint32_t) icmd->ulpContext); 9299 } 9300 9301 /* Send temperature change event to applications */ 9302 shost = lpfc_shost_from_vport(phba->pport); 9303 fc_host_post_vendor_event(shost, fc_get_event_number(), 9304 sizeof(temp_event_data), (char *) &temp_event_data, 9305 LPFC_NL_VENDOR_ID); 9306 break; 9307 case ASYNC_STATUS_CN: 9308 lpfc_sli_abts_err_handler(phba, iocbq); 9309 break; 9310 default: 9311 iocb_w = (uint32_t *) icmd; 9312 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9313 "0346 Ring %d handler: unexpected ASYNC_STATUS" 9314 " evt_code 0x%x\n" 9315 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 9316 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 9317 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 9318 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 9319 pring->ringno, icmd->un.asyncstat.evt_code, 9320 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 9321 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 9322 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 9323 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 9324 9325 break; 9326 } 9327 } 9328 9329 9330 /** 9331 * lpfc_sli_setup - SLI ring setup function 9332 * @phba: Pointer to HBA context object. 9333 * 9334 * lpfc_sli_setup sets up rings of the SLI interface with 9335 * number of iocbs per ring and iotags. This function is 9336 * called while driver attach to the HBA and before the 9337 * interrupts are enabled. So there is no need for locking. 9338 * 9339 * This function always returns 0. 9340 **/ 9341 int 9342 lpfc_sli_setup(struct lpfc_hba *phba) 9343 { 9344 int i, totiocbsize = 0; 9345 struct lpfc_sli *psli = &phba->sli; 9346 struct lpfc_sli_ring *pring; 9347 9348 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 9349 if (phba->sli_rev == LPFC_SLI_REV4) 9350 psli->num_rings += phba->cfg_fcp_io_channel; 9351 psli->sli_flag = 0; 9352 psli->fcp_ring = LPFC_FCP_RING; 9353 psli->next_ring = LPFC_FCP_NEXT_RING; 9354 psli->extra_ring = LPFC_EXTRA_RING; 9355 9356 psli->iocbq_lookup = NULL; 9357 psli->iocbq_lookup_len = 0; 9358 psli->last_iotag = 0; 9359 9360 for (i = 0; i < psli->num_rings; i++) { 9361 pring = &psli->ring[i]; 9362 switch (i) { 9363 case LPFC_FCP_RING: /* ring 0 - FCP */ 9364 /* numCiocb and numRiocb are used in config_port */ 9365 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 9366 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 9367 pring->sli.sli3.numCiocb += 9368 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9369 pring->sli.sli3.numRiocb += 9370 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9371 pring->sli.sli3.numCiocb += 9372 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9373 pring->sli.sli3.numRiocb += 9374 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9375 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9376 SLI3_IOCB_CMD_SIZE : 9377 SLI2_IOCB_CMD_SIZE; 9378 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9379 SLI3_IOCB_RSP_SIZE : 9380 SLI2_IOCB_RSP_SIZE; 9381 pring->iotag_ctr = 0; 9382 pring->iotag_max = 9383 (phba->cfg_hba_queue_depth * 2); 9384 pring->fast_iotag = pring->iotag_max; 9385 pring->num_mask = 0; 9386 break; 9387 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 9388 /* numCiocb and numRiocb are used in config_port */ 9389 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 9390 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 9391 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9392 SLI3_IOCB_CMD_SIZE : 9393 SLI2_IOCB_CMD_SIZE; 9394 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9395 SLI3_IOCB_RSP_SIZE : 9396 SLI2_IOCB_RSP_SIZE; 9397 pring->iotag_max = phba->cfg_hba_queue_depth; 9398 pring->num_mask = 0; 9399 break; 9400 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 9401 /* numCiocb and numRiocb are used in config_port */ 9402 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 9403 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 9404 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9405 SLI3_IOCB_CMD_SIZE : 9406 SLI2_IOCB_CMD_SIZE; 9407 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9408 SLI3_IOCB_RSP_SIZE : 9409 SLI2_IOCB_RSP_SIZE; 9410 pring->fast_iotag = 0; 9411 pring->iotag_ctr = 0; 9412 pring->iotag_max = 4096; 9413 pring->lpfc_sli_rcv_async_status = 9414 lpfc_sli_async_event_handler; 9415 pring->num_mask = LPFC_MAX_RING_MASK; 9416 pring->prt[0].profile = 0; /* Mask 0 */ 9417 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 9418 pring->prt[0].type = FC_TYPE_ELS; 9419 pring->prt[0].lpfc_sli_rcv_unsol_event = 9420 lpfc_els_unsol_event; 9421 pring->prt[1].profile = 0; /* Mask 1 */ 9422 pring->prt[1].rctl = FC_RCTL_ELS_REP; 9423 pring->prt[1].type = FC_TYPE_ELS; 9424 pring->prt[1].lpfc_sli_rcv_unsol_event = 9425 lpfc_els_unsol_event; 9426 pring->prt[2].profile = 0; /* Mask 2 */ 9427 /* NameServer Inquiry */ 9428 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 9429 /* NameServer */ 9430 pring->prt[2].type = FC_TYPE_CT; 9431 pring->prt[2].lpfc_sli_rcv_unsol_event = 9432 lpfc_ct_unsol_event; 9433 pring->prt[3].profile = 0; /* Mask 3 */ 9434 /* NameServer response */ 9435 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 9436 /* NameServer */ 9437 pring->prt[3].type = FC_TYPE_CT; 9438 pring->prt[3].lpfc_sli_rcv_unsol_event = 9439 lpfc_ct_unsol_event; 9440 break; 9441 } 9442 totiocbsize += (pring->sli.sli3.numCiocb * 9443 pring->sli.sli3.sizeCiocb) + 9444 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 9445 } 9446 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 9447 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 9448 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 9449 "SLI2 SLIM Data: x%x x%lx\n", 9450 phba->brd_no, totiocbsize, 9451 (unsigned long) MAX_SLIM_IOCB_SIZE); 9452 } 9453 if (phba->cfg_multi_ring_support == 2) 9454 lpfc_extra_ring_setup(phba); 9455 9456 return 0; 9457 } 9458 9459 /** 9460 * lpfc_sli_queue_setup - Queue initialization function 9461 * @phba: Pointer to HBA context object. 9462 * 9463 * lpfc_sli_queue_setup sets up mailbox queues and iocb queues for each 9464 * ring. This function also initializes ring indices of each ring. 9465 * This function is called during the initialization of the SLI 9466 * interface of an HBA. 9467 * This function is called with no lock held and always returns 9468 * 1. 9469 **/ 9470 int 9471 lpfc_sli_queue_setup(struct lpfc_hba *phba) 9472 { 9473 struct lpfc_sli *psli; 9474 struct lpfc_sli_ring *pring; 9475 int i; 9476 9477 psli = &phba->sli; 9478 spin_lock_irq(&phba->hbalock); 9479 INIT_LIST_HEAD(&psli->mboxq); 9480 INIT_LIST_HEAD(&psli->mboxq_cmpl); 9481 /* Initialize list headers for txq and txcmplq as double linked lists */ 9482 for (i = 0; i < psli->num_rings; i++) { 9483 pring = &psli->ring[i]; 9484 pring->ringno = i; 9485 pring->sli.sli3.next_cmdidx = 0; 9486 pring->sli.sli3.local_getidx = 0; 9487 pring->sli.sli3.cmdidx = 0; 9488 pring->flag = 0; 9489 INIT_LIST_HEAD(&pring->txq); 9490 INIT_LIST_HEAD(&pring->txcmplq); 9491 INIT_LIST_HEAD(&pring->iocb_continueq); 9492 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 9493 INIT_LIST_HEAD(&pring->postbufq); 9494 spin_lock_init(&pring->ring_lock); 9495 } 9496 spin_unlock_irq(&phba->hbalock); 9497 return 1; 9498 } 9499 9500 /** 9501 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 9502 * @phba: Pointer to HBA context object. 9503 * 9504 * This routine flushes the mailbox command subsystem. It will unconditionally 9505 * flush all the mailbox commands in the three possible stages in the mailbox 9506 * command sub-system: pending mailbox command queue; the outstanding mailbox 9507 * command; and completed mailbox command queue. It is caller's responsibility 9508 * to make sure that the driver is in the proper state to flush the mailbox 9509 * command sub-system. Namely, the posting of mailbox commands into the 9510 * pending mailbox command queue from the various clients must be stopped; 9511 * either the HBA is in a state that it will never works on the outstanding 9512 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 9513 * mailbox command has been completed. 9514 **/ 9515 static void 9516 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 9517 { 9518 LIST_HEAD(completions); 9519 struct lpfc_sli *psli = &phba->sli; 9520 LPFC_MBOXQ_t *pmb; 9521 unsigned long iflag; 9522 9523 /* Flush all the mailbox commands in the mbox system */ 9524 spin_lock_irqsave(&phba->hbalock, iflag); 9525 /* The pending mailbox command queue */ 9526 list_splice_init(&phba->sli.mboxq, &completions); 9527 /* The outstanding active mailbox command */ 9528 if (psli->mbox_active) { 9529 list_add_tail(&psli->mbox_active->list, &completions); 9530 psli->mbox_active = NULL; 9531 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9532 } 9533 /* The completed mailbox command queue */ 9534 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 9535 spin_unlock_irqrestore(&phba->hbalock, iflag); 9536 9537 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 9538 while (!list_empty(&completions)) { 9539 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 9540 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 9541 if (pmb->mbox_cmpl) 9542 pmb->mbox_cmpl(phba, pmb); 9543 } 9544 } 9545 9546 /** 9547 * lpfc_sli_host_down - Vport cleanup function 9548 * @vport: Pointer to virtual port object. 9549 * 9550 * lpfc_sli_host_down is called to clean up the resources 9551 * associated with a vport before destroying virtual 9552 * port data structures. 9553 * This function does following operations: 9554 * - Free discovery resources associated with this virtual 9555 * port. 9556 * - Free iocbs associated with this virtual port in 9557 * the txq. 9558 * - Send abort for all iocb commands associated with this 9559 * vport in txcmplq. 9560 * 9561 * This function is called with no lock held and always returns 1. 9562 **/ 9563 int 9564 lpfc_sli_host_down(struct lpfc_vport *vport) 9565 { 9566 LIST_HEAD(completions); 9567 struct lpfc_hba *phba = vport->phba; 9568 struct lpfc_sli *psli = &phba->sli; 9569 struct lpfc_sli_ring *pring; 9570 struct lpfc_iocbq *iocb, *next_iocb; 9571 int i; 9572 unsigned long flags = 0; 9573 uint16_t prev_pring_flag; 9574 9575 lpfc_cleanup_discovery_resources(vport); 9576 9577 spin_lock_irqsave(&phba->hbalock, flags); 9578 for (i = 0; i < psli->num_rings; i++) { 9579 pring = &psli->ring[i]; 9580 prev_pring_flag = pring->flag; 9581 /* Only slow rings */ 9582 if (pring->ringno == LPFC_ELS_RING) { 9583 pring->flag |= LPFC_DEFERRED_RING_EVENT; 9584 /* Set the lpfc data pending flag */ 9585 set_bit(LPFC_DATA_READY, &phba->data_flags); 9586 } 9587 /* 9588 * Error everything on the txq since these iocbs have not been 9589 * given to the FW yet. 9590 */ 9591 list_for_each_entry_safe(iocb, next_iocb, &pring->txq, list) { 9592 if (iocb->vport != vport) 9593 continue; 9594 list_move_tail(&iocb->list, &completions); 9595 } 9596 9597 /* Next issue ABTS for everything on the txcmplq */ 9598 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, 9599 list) { 9600 if (iocb->vport != vport) 9601 continue; 9602 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 9603 } 9604 9605 pring->flag = prev_pring_flag; 9606 } 9607 9608 spin_unlock_irqrestore(&phba->hbalock, flags); 9609 9610 /* Cancel all the IOCBs from the completions list */ 9611 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 9612 IOERR_SLI_DOWN); 9613 return 1; 9614 } 9615 9616 /** 9617 * lpfc_sli_hba_down - Resource cleanup function for the HBA 9618 * @phba: Pointer to HBA context object. 9619 * 9620 * This function cleans up all iocb, buffers, mailbox commands 9621 * while shutting down the HBA. This function is called with no 9622 * lock held and always returns 1. 9623 * This function does the following to cleanup driver resources: 9624 * - Free discovery resources for each virtual port 9625 * - Cleanup any pending fabric iocbs 9626 * - Iterate through the iocb txq and free each entry 9627 * in the list. 9628 * - Free up any buffer posted to the HBA 9629 * - Free mailbox commands in the mailbox queue. 9630 **/ 9631 int 9632 lpfc_sli_hba_down(struct lpfc_hba *phba) 9633 { 9634 LIST_HEAD(completions); 9635 struct lpfc_sli *psli = &phba->sli; 9636 struct lpfc_sli_ring *pring; 9637 struct lpfc_dmabuf *buf_ptr; 9638 unsigned long flags = 0; 9639 int i; 9640 9641 /* Shutdown the mailbox command sub-system */ 9642 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 9643 9644 lpfc_hba_down_prep(phba); 9645 9646 lpfc_fabric_abort_hba(phba); 9647 9648 spin_lock_irqsave(&phba->hbalock, flags); 9649 for (i = 0; i < psli->num_rings; i++) { 9650 pring = &psli->ring[i]; 9651 /* Only slow rings */ 9652 if (pring->ringno == LPFC_ELS_RING) { 9653 pring->flag |= LPFC_DEFERRED_RING_EVENT; 9654 /* Set the lpfc data pending flag */ 9655 set_bit(LPFC_DATA_READY, &phba->data_flags); 9656 } 9657 9658 /* 9659 * Error everything on the txq since these iocbs have not been 9660 * given to the FW yet. 9661 */ 9662 list_splice_init(&pring->txq, &completions); 9663 } 9664 spin_unlock_irqrestore(&phba->hbalock, flags); 9665 9666 /* Cancel all the IOCBs from the completions list */ 9667 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 9668 IOERR_SLI_DOWN); 9669 9670 spin_lock_irqsave(&phba->hbalock, flags); 9671 list_splice_init(&phba->elsbuf, &completions); 9672 phba->elsbuf_cnt = 0; 9673 phba->elsbuf_prev_cnt = 0; 9674 spin_unlock_irqrestore(&phba->hbalock, flags); 9675 9676 while (!list_empty(&completions)) { 9677 list_remove_head(&completions, buf_ptr, 9678 struct lpfc_dmabuf, list); 9679 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 9680 kfree(buf_ptr); 9681 } 9682 9683 /* Return any active mbox cmds */ 9684 del_timer_sync(&psli->mbox_tmo); 9685 9686 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 9687 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 9688 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 9689 9690 return 1; 9691 } 9692 9693 /** 9694 * lpfc_sli_pcimem_bcopy - SLI memory copy function 9695 * @srcp: Source memory pointer. 9696 * @destp: Destination memory pointer. 9697 * @cnt: Number of words required to be copied. 9698 * 9699 * This function is used for copying data between driver memory 9700 * and the SLI memory. This function also changes the endianness 9701 * of each word if native endianness is different from SLI 9702 * endianness. This function can be called with or without 9703 * lock. 9704 **/ 9705 void 9706 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 9707 { 9708 uint32_t *src = srcp; 9709 uint32_t *dest = destp; 9710 uint32_t ldata; 9711 int i; 9712 9713 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 9714 ldata = *src; 9715 ldata = le32_to_cpu(ldata); 9716 *dest = ldata; 9717 src++; 9718 dest++; 9719 } 9720 } 9721 9722 9723 /** 9724 * lpfc_sli_bemem_bcopy - SLI memory copy function 9725 * @srcp: Source memory pointer. 9726 * @destp: Destination memory pointer. 9727 * @cnt: Number of words required to be copied. 9728 * 9729 * This function is used for copying data between a data structure 9730 * with big endian representation to local endianness. 9731 * This function can be called with or without lock. 9732 **/ 9733 void 9734 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 9735 { 9736 uint32_t *src = srcp; 9737 uint32_t *dest = destp; 9738 uint32_t ldata; 9739 int i; 9740 9741 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 9742 ldata = *src; 9743 ldata = be32_to_cpu(ldata); 9744 *dest = ldata; 9745 src++; 9746 dest++; 9747 } 9748 } 9749 9750 /** 9751 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 9752 * @phba: Pointer to HBA context object. 9753 * @pring: Pointer to driver SLI ring object. 9754 * @mp: Pointer to driver buffer object. 9755 * 9756 * This function is called with no lock held. 9757 * It always return zero after adding the buffer to the postbufq 9758 * buffer list. 9759 **/ 9760 int 9761 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9762 struct lpfc_dmabuf *mp) 9763 { 9764 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 9765 later */ 9766 spin_lock_irq(&phba->hbalock); 9767 list_add_tail(&mp->list, &pring->postbufq); 9768 pring->postbufq_cnt++; 9769 spin_unlock_irq(&phba->hbalock); 9770 return 0; 9771 } 9772 9773 /** 9774 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 9775 * @phba: Pointer to HBA context object. 9776 * 9777 * When HBQ is enabled, buffers are searched based on tags. This function 9778 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 9779 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 9780 * does not conflict with tags of buffer posted for unsolicited events. 9781 * The function returns the allocated tag. The function is called with 9782 * no locks held. 9783 **/ 9784 uint32_t 9785 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 9786 { 9787 spin_lock_irq(&phba->hbalock); 9788 phba->buffer_tag_count++; 9789 /* 9790 * Always set the QUE_BUFTAG_BIT to distiguish between 9791 * a tag assigned by HBQ. 9792 */ 9793 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 9794 spin_unlock_irq(&phba->hbalock); 9795 return phba->buffer_tag_count; 9796 } 9797 9798 /** 9799 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 9800 * @phba: Pointer to HBA context object. 9801 * @pring: Pointer to driver SLI ring object. 9802 * @tag: Buffer tag. 9803 * 9804 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 9805 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 9806 * iocb is posted to the response ring with the tag of the buffer. 9807 * This function searches the pring->postbufq list using the tag 9808 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 9809 * iocb. If the buffer is found then lpfc_dmabuf object of the 9810 * buffer is returned to the caller else NULL is returned. 9811 * This function is called with no lock held. 9812 **/ 9813 struct lpfc_dmabuf * 9814 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9815 uint32_t tag) 9816 { 9817 struct lpfc_dmabuf *mp, *next_mp; 9818 struct list_head *slp = &pring->postbufq; 9819 9820 /* Search postbufq, from the beginning, looking for a match on tag */ 9821 spin_lock_irq(&phba->hbalock); 9822 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 9823 if (mp->buffer_tag == tag) { 9824 list_del_init(&mp->list); 9825 pring->postbufq_cnt--; 9826 spin_unlock_irq(&phba->hbalock); 9827 return mp; 9828 } 9829 } 9830 9831 spin_unlock_irq(&phba->hbalock); 9832 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9833 "0402 Cannot find virtual addr for buffer tag on " 9834 "ring %d Data x%lx x%p x%p x%x\n", 9835 pring->ringno, (unsigned long) tag, 9836 slp->next, slp->prev, pring->postbufq_cnt); 9837 9838 return NULL; 9839 } 9840 9841 /** 9842 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 9843 * @phba: Pointer to HBA context object. 9844 * @pring: Pointer to driver SLI ring object. 9845 * @phys: DMA address of the buffer. 9846 * 9847 * This function searches the buffer list using the dma_address 9848 * of unsolicited event to find the driver's lpfc_dmabuf object 9849 * corresponding to the dma_address. The function returns the 9850 * lpfc_dmabuf object if a buffer is found else it returns NULL. 9851 * This function is called by the ct and els unsolicited event 9852 * handlers to get the buffer associated with the unsolicited 9853 * event. 9854 * 9855 * This function is called with no lock held. 9856 **/ 9857 struct lpfc_dmabuf * 9858 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9859 dma_addr_t phys) 9860 { 9861 struct lpfc_dmabuf *mp, *next_mp; 9862 struct list_head *slp = &pring->postbufq; 9863 9864 /* Search postbufq, from the beginning, looking for a match on phys */ 9865 spin_lock_irq(&phba->hbalock); 9866 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 9867 if (mp->phys == phys) { 9868 list_del_init(&mp->list); 9869 pring->postbufq_cnt--; 9870 spin_unlock_irq(&phba->hbalock); 9871 return mp; 9872 } 9873 } 9874 9875 spin_unlock_irq(&phba->hbalock); 9876 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9877 "0410 Cannot find virtual addr for mapped buf on " 9878 "ring %d Data x%llx x%p x%p x%x\n", 9879 pring->ringno, (unsigned long long)phys, 9880 slp->next, slp->prev, pring->postbufq_cnt); 9881 return NULL; 9882 } 9883 9884 /** 9885 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 9886 * @phba: Pointer to HBA context object. 9887 * @cmdiocb: Pointer to driver command iocb object. 9888 * @rspiocb: Pointer to driver response iocb object. 9889 * 9890 * This function is the completion handler for the abort iocbs for 9891 * ELS commands. This function is called from the ELS ring event 9892 * handler with no lock held. This function frees memory resources 9893 * associated with the abort iocb. 9894 **/ 9895 static void 9896 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 9897 struct lpfc_iocbq *rspiocb) 9898 { 9899 IOCB_t *irsp = &rspiocb->iocb; 9900 uint16_t abort_iotag, abort_context; 9901 struct lpfc_iocbq *abort_iocb = NULL; 9902 9903 if (irsp->ulpStatus) { 9904 9905 /* 9906 * Assume that the port already completed and returned, or 9907 * will return the iocb. Just Log the message. 9908 */ 9909 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 9910 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 9911 9912 spin_lock_irq(&phba->hbalock); 9913 if (phba->sli_rev < LPFC_SLI_REV4) { 9914 if (abort_iotag != 0 && 9915 abort_iotag <= phba->sli.last_iotag) 9916 abort_iocb = 9917 phba->sli.iocbq_lookup[abort_iotag]; 9918 } else 9919 /* For sli4 the abort_tag is the XRI, 9920 * so the abort routine puts the iotag of the iocb 9921 * being aborted in the context field of the abort 9922 * IOCB. 9923 */ 9924 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 9925 9926 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 9927 "0327 Cannot abort els iocb %p " 9928 "with tag %x context %x, abort status %x, " 9929 "abort code %x\n", 9930 abort_iocb, abort_iotag, abort_context, 9931 irsp->ulpStatus, irsp->un.ulpWord[4]); 9932 9933 spin_unlock_irq(&phba->hbalock); 9934 } 9935 lpfc_sli_release_iocbq(phba, cmdiocb); 9936 return; 9937 } 9938 9939 /** 9940 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 9941 * @phba: Pointer to HBA context object. 9942 * @cmdiocb: Pointer to driver command iocb object. 9943 * @rspiocb: Pointer to driver response iocb object. 9944 * 9945 * The function is called from SLI ring event handler with no 9946 * lock held. This function is the completion handler for ELS commands 9947 * which are aborted. The function frees memory resources used for 9948 * the aborted ELS commands. 9949 **/ 9950 static void 9951 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 9952 struct lpfc_iocbq *rspiocb) 9953 { 9954 IOCB_t *irsp = &rspiocb->iocb; 9955 9956 /* ELS cmd tag <ulpIoTag> completes */ 9957 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 9958 "0139 Ignoring ELS cmd tag x%x completion Data: " 9959 "x%x x%x x%x\n", 9960 irsp->ulpIoTag, irsp->ulpStatus, 9961 irsp->un.ulpWord[4], irsp->ulpTimeout); 9962 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 9963 lpfc_ct_free_iocb(phba, cmdiocb); 9964 else 9965 lpfc_els_free_iocb(phba, cmdiocb); 9966 return; 9967 } 9968 9969 /** 9970 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb 9971 * @phba: Pointer to HBA context object. 9972 * @pring: Pointer to driver SLI ring object. 9973 * @cmdiocb: Pointer to driver command iocb object. 9974 * 9975 * This function issues an abort iocb for the provided command iocb down to 9976 * the port. Other than the case the outstanding command iocb is an abort 9977 * request, this function issues abort out unconditionally. This function is 9978 * called with hbalock held. The function returns 0 when it fails due to 9979 * memory allocation failure or when the command iocb is an abort request. 9980 **/ 9981 static int 9982 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9983 struct lpfc_iocbq *cmdiocb) 9984 { 9985 struct lpfc_vport *vport = cmdiocb->vport; 9986 struct lpfc_iocbq *abtsiocbp; 9987 IOCB_t *icmd = NULL; 9988 IOCB_t *iabt = NULL; 9989 int ring_number; 9990 int retval; 9991 unsigned long iflags; 9992 9993 lockdep_assert_held(&phba->hbalock); 9994 9995 /* 9996 * There are certain command types we don't want to abort. And we 9997 * don't want to abort commands that are already in the process of 9998 * being aborted. 9999 */ 10000 icmd = &cmdiocb->iocb; 10001 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 10002 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 10003 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 10004 return 0; 10005 10006 /* issue ABTS for this IOCB based on iotag */ 10007 abtsiocbp = __lpfc_sli_get_iocbq(phba); 10008 if (abtsiocbp == NULL) 10009 return 0; 10010 10011 /* This signals the response to set the correct status 10012 * before calling the completion handler 10013 */ 10014 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 10015 10016 iabt = &abtsiocbp->iocb; 10017 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 10018 iabt->un.acxri.abortContextTag = icmd->ulpContext; 10019 if (phba->sli_rev == LPFC_SLI_REV4) { 10020 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 10021 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 10022 } 10023 else 10024 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 10025 iabt->ulpLe = 1; 10026 iabt->ulpClass = icmd->ulpClass; 10027 10028 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10029 abtsiocbp->fcp_wqidx = cmdiocb->fcp_wqidx; 10030 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 10031 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 10032 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 10033 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 10034 10035 if (phba->link_state >= LPFC_LINK_UP) 10036 iabt->ulpCommand = CMD_ABORT_XRI_CN; 10037 else 10038 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 10039 10040 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 10041 abtsiocbp->vport = vport; 10042 10043 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 10044 "0339 Abort xri x%x, original iotag x%x, " 10045 "abort cmd iotag x%x\n", 10046 iabt->un.acxri.abortIoTag, 10047 iabt->un.acxri.abortContextTag, 10048 abtsiocbp->iotag); 10049 10050 if (phba->sli_rev == LPFC_SLI_REV4) { 10051 ring_number = 10052 lpfc_sli_calc_ring(phba, pring->ringno, abtsiocbp); 10053 if (unlikely(ring_number == LPFC_HBA_ERROR)) 10054 return 0; 10055 pring = &phba->sli.ring[ring_number]; 10056 /* Note: both hbalock and ring_lock need to be set here */ 10057 spin_lock_irqsave(&pring->ring_lock, iflags); 10058 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 10059 abtsiocbp, 0); 10060 spin_unlock_irqrestore(&pring->ring_lock, iflags); 10061 } else { 10062 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 10063 abtsiocbp, 0); 10064 } 10065 10066 if (retval) 10067 __lpfc_sli_release_iocbq(phba, abtsiocbp); 10068 10069 /* 10070 * Caller to this routine should check for IOCB_ERROR 10071 * and handle it properly. This routine no longer removes 10072 * iocb off txcmplq and call compl in case of IOCB_ERROR. 10073 */ 10074 return retval; 10075 } 10076 10077 /** 10078 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 10079 * @phba: Pointer to HBA context object. 10080 * @pring: Pointer to driver SLI ring object. 10081 * @cmdiocb: Pointer to driver command iocb object. 10082 * 10083 * This function issues an abort iocb for the provided command iocb. In case 10084 * of unloading, the abort iocb will not be issued to commands on the ELS 10085 * ring. Instead, the callback function shall be changed to those commands 10086 * so that nothing happens when them finishes. This function is called with 10087 * hbalock held. The function returns 0 when the command iocb is an abort 10088 * request. 10089 **/ 10090 int 10091 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10092 struct lpfc_iocbq *cmdiocb) 10093 { 10094 struct lpfc_vport *vport = cmdiocb->vport; 10095 int retval = IOCB_ERROR; 10096 IOCB_t *icmd = NULL; 10097 10098 lockdep_assert_held(&phba->hbalock); 10099 10100 /* 10101 * There are certain command types we don't want to abort. And we 10102 * don't want to abort commands that are already in the process of 10103 * being aborted. 10104 */ 10105 icmd = &cmdiocb->iocb; 10106 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 10107 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 10108 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 10109 return 0; 10110 10111 /* 10112 * If we're unloading, don't abort iocb on the ELS ring, but change 10113 * the callback so that nothing happens when it finishes. 10114 */ 10115 if ((vport->load_flag & FC_UNLOADING) && 10116 (pring->ringno == LPFC_ELS_RING)) { 10117 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 10118 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 10119 else 10120 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 10121 goto abort_iotag_exit; 10122 } 10123 10124 /* Now, we try to issue the abort to the cmdiocb out */ 10125 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb); 10126 10127 abort_iotag_exit: 10128 /* 10129 * Caller to this routine should check for IOCB_ERROR 10130 * and handle it properly. This routine no longer removes 10131 * iocb off txcmplq and call compl in case of IOCB_ERROR. 10132 */ 10133 return retval; 10134 } 10135 10136 /** 10137 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 10138 * @phba: pointer to lpfc HBA data structure. 10139 * 10140 * This routine will abort all pending and outstanding iocbs to an HBA. 10141 **/ 10142 void 10143 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 10144 { 10145 struct lpfc_sli *psli = &phba->sli; 10146 struct lpfc_sli_ring *pring; 10147 int i; 10148 10149 for (i = 0; i < psli->num_rings; i++) { 10150 pring = &psli->ring[i]; 10151 lpfc_sli_abort_iocb_ring(phba, pring); 10152 } 10153 } 10154 10155 /** 10156 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 10157 * @iocbq: Pointer to driver iocb object. 10158 * @vport: Pointer to driver virtual port object. 10159 * @tgt_id: SCSI ID of the target. 10160 * @lun_id: LUN ID of the scsi device. 10161 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 10162 * 10163 * This function acts as an iocb filter for functions which abort or count 10164 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 10165 * 0 if the filtering criteria is met for the given iocb and will return 10166 * 1 if the filtering criteria is not met. 10167 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 10168 * given iocb is for the SCSI device specified by vport, tgt_id and 10169 * lun_id parameter. 10170 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 10171 * given iocb is for the SCSI target specified by vport and tgt_id 10172 * parameters. 10173 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 10174 * given iocb is for the SCSI host associated with the given vport. 10175 * This function is called with no locks held. 10176 **/ 10177 static int 10178 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 10179 uint16_t tgt_id, uint64_t lun_id, 10180 lpfc_ctx_cmd ctx_cmd) 10181 { 10182 struct lpfc_scsi_buf *lpfc_cmd; 10183 int rc = 1; 10184 10185 if (!(iocbq->iocb_flag & LPFC_IO_FCP)) 10186 return rc; 10187 10188 if (iocbq->vport != vport) 10189 return rc; 10190 10191 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 10192 10193 if (lpfc_cmd->pCmd == NULL) 10194 return rc; 10195 10196 switch (ctx_cmd) { 10197 case LPFC_CTX_LUN: 10198 if ((lpfc_cmd->rdata->pnode) && 10199 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 10200 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 10201 rc = 0; 10202 break; 10203 case LPFC_CTX_TGT: 10204 if ((lpfc_cmd->rdata->pnode) && 10205 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 10206 rc = 0; 10207 break; 10208 case LPFC_CTX_HOST: 10209 rc = 0; 10210 break; 10211 default: 10212 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 10213 __func__, ctx_cmd); 10214 break; 10215 } 10216 10217 return rc; 10218 } 10219 10220 /** 10221 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 10222 * @vport: Pointer to virtual port. 10223 * @tgt_id: SCSI ID of the target. 10224 * @lun_id: LUN ID of the scsi device. 10225 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 10226 * 10227 * This function returns number of FCP commands pending for the vport. 10228 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 10229 * commands pending on the vport associated with SCSI device specified 10230 * by tgt_id and lun_id parameters. 10231 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 10232 * commands pending on the vport associated with SCSI target specified 10233 * by tgt_id parameter. 10234 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 10235 * commands pending on the vport. 10236 * This function returns the number of iocbs which satisfy the filter. 10237 * This function is called without any lock held. 10238 **/ 10239 int 10240 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 10241 lpfc_ctx_cmd ctx_cmd) 10242 { 10243 struct lpfc_hba *phba = vport->phba; 10244 struct lpfc_iocbq *iocbq; 10245 int sum, i; 10246 10247 spin_lock_irq(&phba->hbalock); 10248 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 10249 iocbq = phba->sli.iocbq_lookup[i]; 10250 10251 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 10252 ctx_cmd) == 0) 10253 sum++; 10254 } 10255 spin_unlock_irq(&phba->hbalock); 10256 10257 return sum; 10258 } 10259 10260 /** 10261 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 10262 * @phba: Pointer to HBA context object 10263 * @cmdiocb: Pointer to command iocb object. 10264 * @rspiocb: Pointer to response iocb object. 10265 * 10266 * This function is called when an aborted FCP iocb completes. This 10267 * function is called by the ring event handler with no lock held. 10268 * This function frees the iocb. 10269 **/ 10270 void 10271 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 10272 struct lpfc_iocbq *rspiocb) 10273 { 10274 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10275 "3096 ABORT_XRI_CN completing on rpi x%x " 10276 "original iotag x%x, abort cmd iotag x%x " 10277 "status 0x%x, reason 0x%x\n", 10278 cmdiocb->iocb.un.acxri.abortContextTag, 10279 cmdiocb->iocb.un.acxri.abortIoTag, 10280 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 10281 rspiocb->iocb.un.ulpWord[4]); 10282 lpfc_sli_release_iocbq(phba, cmdiocb); 10283 return; 10284 } 10285 10286 /** 10287 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 10288 * @vport: Pointer to virtual port. 10289 * @pring: Pointer to driver SLI ring object. 10290 * @tgt_id: SCSI ID of the target. 10291 * @lun_id: LUN ID of the scsi device. 10292 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 10293 * 10294 * This function sends an abort command for every SCSI command 10295 * associated with the given virtual port pending on the ring 10296 * filtered by lpfc_sli_validate_fcp_iocb function. 10297 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 10298 * FCP iocbs associated with lun specified by tgt_id and lun_id 10299 * parameters 10300 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 10301 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 10302 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 10303 * FCP iocbs associated with virtual port. 10304 * This function returns number of iocbs it failed to abort. 10305 * This function is called with no locks held. 10306 **/ 10307 int 10308 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 10309 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd) 10310 { 10311 struct lpfc_hba *phba = vport->phba; 10312 struct lpfc_iocbq *iocbq; 10313 struct lpfc_iocbq *abtsiocb; 10314 IOCB_t *cmd = NULL; 10315 int errcnt = 0, ret_val = 0; 10316 int i; 10317 10318 for (i = 1; i <= phba->sli.last_iotag; i++) { 10319 iocbq = phba->sli.iocbq_lookup[i]; 10320 10321 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 10322 abort_cmd) != 0) 10323 continue; 10324 10325 /* 10326 * If the iocbq is already being aborted, don't take a second 10327 * action, but do count it. 10328 */ 10329 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 10330 continue; 10331 10332 /* issue ABTS for this IOCB based on iotag */ 10333 abtsiocb = lpfc_sli_get_iocbq(phba); 10334 if (abtsiocb == NULL) { 10335 errcnt++; 10336 continue; 10337 } 10338 10339 /* indicate the IO is being aborted by the driver. */ 10340 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 10341 10342 cmd = &iocbq->iocb; 10343 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 10344 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext; 10345 if (phba->sli_rev == LPFC_SLI_REV4) 10346 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag; 10347 else 10348 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag; 10349 abtsiocb->iocb.ulpLe = 1; 10350 abtsiocb->iocb.ulpClass = cmd->ulpClass; 10351 abtsiocb->vport = vport; 10352 10353 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10354 abtsiocb->fcp_wqidx = iocbq->fcp_wqidx; 10355 if (iocbq->iocb_flag & LPFC_IO_FCP) 10356 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 10357 if (iocbq->iocb_flag & LPFC_IO_FOF) 10358 abtsiocb->iocb_flag |= LPFC_IO_FOF; 10359 10360 if (lpfc_is_link_up(phba)) 10361 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN; 10362 else 10363 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 10364 10365 /* Setup callback routine and issue the command. */ 10366 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 10367 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno, 10368 abtsiocb, 0); 10369 if (ret_val == IOCB_ERROR) { 10370 lpfc_sli_release_iocbq(phba, abtsiocb); 10371 errcnt++; 10372 continue; 10373 } 10374 } 10375 10376 return errcnt; 10377 } 10378 10379 /** 10380 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 10381 * @vport: Pointer to virtual port. 10382 * @pring: Pointer to driver SLI ring object. 10383 * @tgt_id: SCSI ID of the target. 10384 * @lun_id: LUN ID of the scsi device. 10385 * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 10386 * 10387 * This function sends an abort command for every SCSI command 10388 * associated with the given virtual port pending on the ring 10389 * filtered by lpfc_sli_validate_fcp_iocb function. 10390 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 10391 * FCP iocbs associated with lun specified by tgt_id and lun_id 10392 * parameters 10393 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 10394 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 10395 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 10396 * FCP iocbs associated with virtual port. 10397 * This function returns number of iocbs it aborted . 10398 * This function is called with no locks held right after a taskmgmt 10399 * command is sent. 10400 **/ 10401 int 10402 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 10403 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 10404 { 10405 struct lpfc_hba *phba = vport->phba; 10406 struct lpfc_scsi_buf *lpfc_cmd; 10407 struct lpfc_iocbq *abtsiocbq; 10408 struct lpfc_nodelist *ndlp; 10409 struct lpfc_iocbq *iocbq; 10410 IOCB_t *icmd; 10411 int sum, i, ret_val; 10412 unsigned long iflags; 10413 struct lpfc_sli_ring *pring_s4; 10414 uint32_t ring_number; 10415 10416 spin_lock_irq(&phba->hbalock); 10417 10418 /* all I/Os are in process of being flushed */ 10419 if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) { 10420 spin_unlock_irq(&phba->hbalock); 10421 return 0; 10422 } 10423 sum = 0; 10424 10425 for (i = 1; i <= phba->sli.last_iotag; i++) { 10426 iocbq = phba->sli.iocbq_lookup[i]; 10427 10428 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 10429 cmd) != 0) 10430 continue; 10431 10432 /* 10433 * If the iocbq is already being aborted, don't take a second 10434 * action, but do count it. 10435 */ 10436 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 10437 continue; 10438 10439 /* issue ABTS for this IOCB based on iotag */ 10440 abtsiocbq = __lpfc_sli_get_iocbq(phba); 10441 if (abtsiocbq == NULL) 10442 continue; 10443 10444 icmd = &iocbq->iocb; 10445 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 10446 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 10447 if (phba->sli_rev == LPFC_SLI_REV4) 10448 abtsiocbq->iocb.un.acxri.abortIoTag = 10449 iocbq->sli4_xritag; 10450 else 10451 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 10452 abtsiocbq->iocb.ulpLe = 1; 10453 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 10454 abtsiocbq->vport = vport; 10455 10456 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10457 abtsiocbq->fcp_wqidx = iocbq->fcp_wqidx; 10458 if (iocbq->iocb_flag & LPFC_IO_FCP) 10459 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 10460 if (iocbq->iocb_flag & LPFC_IO_FOF) 10461 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 10462 10463 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 10464 ndlp = lpfc_cmd->rdata->pnode; 10465 10466 if (lpfc_is_link_up(phba) && 10467 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 10468 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 10469 else 10470 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 10471 10472 /* Setup callback routine and issue the command. */ 10473 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 10474 10475 /* 10476 * Indicate the IO is being aborted by the driver and set 10477 * the caller's flag into the aborted IO. 10478 */ 10479 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 10480 10481 if (phba->sli_rev == LPFC_SLI_REV4) { 10482 ring_number = MAX_SLI3_CONFIGURED_RINGS + 10483 iocbq->fcp_wqidx; 10484 pring_s4 = &phba->sli.ring[ring_number]; 10485 /* Note: both hbalock and ring_lock must be set here */ 10486 spin_lock_irqsave(&pring_s4->ring_lock, iflags); 10487 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 10488 abtsiocbq, 0); 10489 spin_unlock_irqrestore(&pring_s4->ring_lock, iflags); 10490 } else { 10491 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 10492 abtsiocbq, 0); 10493 } 10494 10495 10496 if (ret_val == IOCB_ERROR) 10497 __lpfc_sli_release_iocbq(phba, abtsiocbq); 10498 else 10499 sum++; 10500 } 10501 spin_unlock_irq(&phba->hbalock); 10502 return sum; 10503 } 10504 10505 /** 10506 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 10507 * @phba: Pointer to HBA context object. 10508 * @cmdiocbq: Pointer to command iocb. 10509 * @rspiocbq: Pointer to response iocb. 10510 * 10511 * This function is the completion handler for iocbs issued using 10512 * lpfc_sli_issue_iocb_wait function. This function is called by the 10513 * ring event handler function without any lock held. This function 10514 * can be called from both worker thread context and interrupt 10515 * context. This function also can be called from other thread which 10516 * cleans up the SLI layer objects. 10517 * This function copy the contents of the response iocb to the 10518 * response iocb memory object provided by the caller of 10519 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 10520 * sleeps for the iocb completion. 10521 **/ 10522 static void 10523 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 10524 struct lpfc_iocbq *cmdiocbq, 10525 struct lpfc_iocbq *rspiocbq) 10526 { 10527 wait_queue_head_t *pdone_q; 10528 unsigned long iflags; 10529 struct lpfc_scsi_buf *lpfc_cmd; 10530 10531 spin_lock_irqsave(&phba->hbalock, iflags); 10532 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 10533 10534 /* 10535 * A time out has occurred for the iocb. If a time out 10536 * completion handler has been supplied, call it. Otherwise, 10537 * just free the iocbq. 10538 */ 10539 10540 spin_unlock_irqrestore(&phba->hbalock, iflags); 10541 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 10542 cmdiocbq->wait_iocb_cmpl = NULL; 10543 if (cmdiocbq->iocb_cmpl) 10544 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 10545 else 10546 lpfc_sli_release_iocbq(phba, cmdiocbq); 10547 return; 10548 } 10549 10550 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 10551 if (cmdiocbq->context2 && rspiocbq) 10552 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 10553 &rspiocbq->iocb, sizeof(IOCB_t)); 10554 10555 /* Set the exchange busy flag for task management commands */ 10556 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 10557 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 10558 lpfc_cmd = container_of(cmdiocbq, struct lpfc_scsi_buf, 10559 cur_iocbq); 10560 lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY; 10561 } 10562 10563 pdone_q = cmdiocbq->context_un.wait_queue; 10564 if (pdone_q) 10565 wake_up(pdone_q); 10566 spin_unlock_irqrestore(&phba->hbalock, iflags); 10567 return; 10568 } 10569 10570 /** 10571 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 10572 * @phba: Pointer to HBA context object.. 10573 * @piocbq: Pointer to command iocb. 10574 * @flag: Flag to test. 10575 * 10576 * This routine grabs the hbalock and then test the iocb_flag to 10577 * see if the passed in flag is set. 10578 * Returns: 10579 * 1 if flag is set. 10580 * 0 if flag is not set. 10581 **/ 10582 static int 10583 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 10584 struct lpfc_iocbq *piocbq, uint32_t flag) 10585 { 10586 unsigned long iflags; 10587 int ret; 10588 10589 spin_lock_irqsave(&phba->hbalock, iflags); 10590 ret = piocbq->iocb_flag & flag; 10591 spin_unlock_irqrestore(&phba->hbalock, iflags); 10592 return ret; 10593 10594 } 10595 10596 /** 10597 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 10598 * @phba: Pointer to HBA context object.. 10599 * @pring: Pointer to sli ring. 10600 * @piocb: Pointer to command iocb. 10601 * @prspiocbq: Pointer to response iocb. 10602 * @timeout: Timeout in number of seconds. 10603 * 10604 * This function issues the iocb to firmware and waits for the 10605 * iocb to complete. The iocb_cmpl field of the shall be used 10606 * to handle iocbs which time out. If the field is NULL, the 10607 * function shall free the iocbq structure. If more clean up is 10608 * needed, the caller is expected to provide a completion function 10609 * that will provide the needed clean up. If the iocb command is 10610 * not completed within timeout seconds, the function will either 10611 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 10612 * completion function set in the iocb_cmpl field and then return 10613 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 10614 * resources if this function returns IOCB_TIMEDOUT. 10615 * The function waits for the iocb completion using an 10616 * non-interruptible wait. 10617 * This function will sleep while waiting for iocb completion. 10618 * So, this function should not be called from any context which 10619 * does not allow sleeping. Due to the same reason, this function 10620 * cannot be called with interrupt disabled. 10621 * This function assumes that the iocb completions occur while 10622 * this function sleep. So, this function cannot be called from 10623 * the thread which process iocb completion for this ring. 10624 * This function clears the iocb_flag of the iocb object before 10625 * issuing the iocb and the iocb completion handler sets this 10626 * flag and wakes this thread when the iocb completes. 10627 * The contents of the response iocb will be copied to prspiocbq 10628 * by the completion handler when the command completes. 10629 * This function returns IOCB_SUCCESS when success. 10630 * This function is called with no lock held. 10631 **/ 10632 int 10633 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 10634 uint32_t ring_number, 10635 struct lpfc_iocbq *piocb, 10636 struct lpfc_iocbq *prspiocbq, 10637 uint32_t timeout) 10638 { 10639 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 10640 long timeleft, timeout_req = 0; 10641 int retval = IOCB_SUCCESS; 10642 uint32_t creg_val; 10643 struct lpfc_iocbq *iocb; 10644 int txq_cnt = 0; 10645 int txcmplq_cnt = 0; 10646 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 10647 unsigned long iflags; 10648 bool iocb_completed = true; 10649 10650 /* 10651 * If the caller has provided a response iocbq buffer, then context2 10652 * is NULL or its an error. 10653 */ 10654 if (prspiocbq) { 10655 if (piocb->context2) 10656 return IOCB_ERROR; 10657 piocb->context2 = prspiocbq; 10658 } 10659 10660 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 10661 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 10662 piocb->context_un.wait_queue = &done_q; 10663 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 10664 10665 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 10666 if (lpfc_readl(phba->HCregaddr, &creg_val)) 10667 return IOCB_ERROR; 10668 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 10669 writel(creg_val, phba->HCregaddr); 10670 readl(phba->HCregaddr); /* flush */ 10671 } 10672 10673 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 10674 SLI_IOCB_RET_IOCB); 10675 if (retval == IOCB_SUCCESS) { 10676 timeout_req = msecs_to_jiffies(timeout * 1000); 10677 timeleft = wait_event_timeout(done_q, 10678 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 10679 timeout_req); 10680 spin_lock_irqsave(&phba->hbalock, iflags); 10681 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 10682 10683 /* 10684 * IOCB timed out. Inform the wake iocb wait 10685 * completion function and set local status 10686 */ 10687 10688 iocb_completed = false; 10689 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 10690 } 10691 spin_unlock_irqrestore(&phba->hbalock, iflags); 10692 if (iocb_completed) { 10693 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10694 "0331 IOCB wake signaled\n"); 10695 /* Note: we are not indicating if the IOCB has a success 10696 * status or not - that's for the caller to check. 10697 * IOCB_SUCCESS means just that the command was sent and 10698 * completed. Not that it completed successfully. 10699 * */ 10700 } else if (timeleft == 0) { 10701 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 10702 "0338 IOCB wait timeout error - no " 10703 "wake response Data x%x\n", timeout); 10704 retval = IOCB_TIMEDOUT; 10705 } else { 10706 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 10707 "0330 IOCB wake NOT set, " 10708 "Data x%x x%lx\n", 10709 timeout, (timeleft / jiffies)); 10710 retval = IOCB_TIMEDOUT; 10711 } 10712 } else if (retval == IOCB_BUSY) { 10713 if (phba->cfg_log_verbose & LOG_SLI) { 10714 list_for_each_entry(iocb, &pring->txq, list) { 10715 txq_cnt++; 10716 } 10717 list_for_each_entry(iocb, &pring->txcmplq, list) { 10718 txcmplq_cnt++; 10719 } 10720 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10721 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 10722 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 10723 } 10724 return retval; 10725 } else { 10726 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10727 "0332 IOCB wait issue failed, Data x%x\n", 10728 retval); 10729 retval = IOCB_ERROR; 10730 } 10731 10732 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 10733 if (lpfc_readl(phba->HCregaddr, &creg_val)) 10734 return IOCB_ERROR; 10735 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 10736 writel(creg_val, phba->HCregaddr); 10737 readl(phba->HCregaddr); /* flush */ 10738 } 10739 10740 if (prspiocbq) 10741 piocb->context2 = NULL; 10742 10743 piocb->context_un.wait_queue = NULL; 10744 piocb->iocb_cmpl = NULL; 10745 return retval; 10746 } 10747 10748 /** 10749 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 10750 * @phba: Pointer to HBA context object. 10751 * @pmboxq: Pointer to driver mailbox object. 10752 * @timeout: Timeout in number of seconds. 10753 * 10754 * This function issues the mailbox to firmware and waits for the 10755 * mailbox command to complete. If the mailbox command is not 10756 * completed within timeout seconds, it returns MBX_TIMEOUT. 10757 * The function waits for the mailbox completion using an 10758 * interruptible wait. If the thread is woken up due to a 10759 * signal, MBX_TIMEOUT error is returned to the caller. Caller 10760 * should not free the mailbox resources, if this function returns 10761 * MBX_TIMEOUT. 10762 * This function will sleep while waiting for mailbox completion. 10763 * So, this function should not be called from any context which 10764 * does not allow sleeping. Due to the same reason, this function 10765 * cannot be called with interrupt disabled. 10766 * This function assumes that the mailbox completion occurs while 10767 * this function sleep. So, this function cannot be called from 10768 * the worker thread which processes mailbox completion. 10769 * This function is called in the context of HBA management 10770 * applications. 10771 * This function returns MBX_SUCCESS when successful. 10772 * This function is called with no lock held. 10773 **/ 10774 int 10775 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 10776 uint32_t timeout) 10777 { 10778 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 10779 MAILBOX_t *mb = NULL; 10780 int retval; 10781 unsigned long flag; 10782 10783 /* The caller might set context1 for extended buffer */ 10784 if (pmboxq->context1) 10785 mb = (MAILBOX_t *)pmboxq->context1; 10786 10787 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 10788 /* setup wake call as IOCB callback */ 10789 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 10790 /* setup context field to pass wait_queue pointer to wake function */ 10791 pmboxq->context1 = &done_q; 10792 10793 /* now issue the command */ 10794 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 10795 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 10796 wait_event_interruptible_timeout(done_q, 10797 pmboxq->mbox_flag & LPFC_MBX_WAKE, 10798 msecs_to_jiffies(timeout * 1000)); 10799 10800 spin_lock_irqsave(&phba->hbalock, flag); 10801 /* restore the possible extended buffer for free resource */ 10802 pmboxq->context1 = (uint8_t *)mb; 10803 /* 10804 * if LPFC_MBX_WAKE flag is set the mailbox is completed 10805 * else do not free the resources. 10806 */ 10807 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 10808 retval = MBX_SUCCESS; 10809 } else { 10810 retval = MBX_TIMEOUT; 10811 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 10812 } 10813 spin_unlock_irqrestore(&phba->hbalock, flag); 10814 } else { 10815 /* restore the possible extended buffer for free resource */ 10816 pmboxq->context1 = (uint8_t *)mb; 10817 } 10818 10819 return retval; 10820 } 10821 10822 /** 10823 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 10824 * @phba: Pointer to HBA context. 10825 * 10826 * This function is called to shutdown the driver's mailbox sub-system. 10827 * It first marks the mailbox sub-system is in a block state to prevent 10828 * the asynchronous mailbox command from issued off the pending mailbox 10829 * command queue. If the mailbox command sub-system shutdown is due to 10830 * HBA error conditions such as EEH or ERATT, this routine shall invoke 10831 * the mailbox sub-system flush routine to forcefully bring down the 10832 * mailbox sub-system. Otherwise, if it is due to normal condition (such 10833 * as with offline or HBA function reset), this routine will wait for the 10834 * outstanding mailbox command to complete before invoking the mailbox 10835 * sub-system flush routine to gracefully bring down mailbox sub-system. 10836 **/ 10837 void 10838 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 10839 { 10840 struct lpfc_sli *psli = &phba->sli; 10841 unsigned long timeout; 10842 10843 if (mbx_action == LPFC_MBX_NO_WAIT) { 10844 /* delay 100ms for port state */ 10845 msleep(100); 10846 lpfc_sli_mbox_sys_flush(phba); 10847 return; 10848 } 10849 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 10850 10851 spin_lock_irq(&phba->hbalock); 10852 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 10853 10854 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 10855 /* Determine how long we might wait for the active mailbox 10856 * command to be gracefully completed by firmware. 10857 */ 10858 if (phba->sli.mbox_active) 10859 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 10860 phba->sli.mbox_active) * 10861 1000) + jiffies; 10862 spin_unlock_irq(&phba->hbalock); 10863 10864 while (phba->sli.mbox_active) { 10865 /* Check active mailbox complete status every 2ms */ 10866 msleep(2); 10867 if (time_after(jiffies, timeout)) 10868 /* Timeout, let the mailbox flush routine to 10869 * forcefully release active mailbox command 10870 */ 10871 break; 10872 } 10873 } else 10874 spin_unlock_irq(&phba->hbalock); 10875 10876 lpfc_sli_mbox_sys_flush(phba); 10877 } 10878 10879 /** 10880 * lpfc_sli_eratt_read - read sli-3 error attention events 10881 * @phba: Pointer to HBA context. 10882 * 10883 * This function is called to read the SLI3 device error attention registers 10884 * for possible error attention events. The caller must hold the hostlock 10885 * with spin_lock_irq(). 10886 * 10887 * This function returns 1 when there is Error Attention in the Host Attention 10888 * Register and returns 0 otherwise. 10889 **/ 10890 static int 10891 lpfc_sli_eratt_read(struct lpfc_hba *phba) 10892 { 10893 uint32_t ha_copy; 10894 10895 /* Read chip Host Attention (HA) register */ 10896 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 10897 goto unplug_err; 10898 10899 if (ha_copy & HA_ERATT) { 10900 /* Read host status register to retrieve error event */ 10901 if (lpfc_sli_read_hs(phba)) 10902 goto unplug_err; 10903 10904 /* Check if there is a deferred error condition is active */ 10905 if ((HS_FFER1 & phba->work_hs) && 10906 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 10907 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 10908 phba->hba_flag |= DEFER_ERATT; 10909 /* Clear all interrupt enable conditions */ 10910 writel(0, phba->HCregaddr); 10911 readl(phba->HCregaddr); 10912 } 10913 10914 /* Set the driver HA work bitmap */ 10915 phba->work_ha |= HA_ERATT; 10916 /* Indicate polling handles this ERATT */ 10917 phba->hba_flag |= HBA_ERATT_HANDLED; 10918 return 1; 10919 } 10920 return 0; 10921 10922 unplug_err: 10923 /* Set the driver HS work bitmap */ 10924 phba->work_hs |= UNPLUG_ERR; 10925 /* Set the driver HA work bitmap */ 10926 phba->work_ha |= HA_ERATT; 10927 /* Indicate polling handles this ERATT */ 10928 phba->hba_flag |= HBA_ERATT_HANDLED; 10929 return 1; 10930 } 10931 10932 /** 10933 * lpfc_sli4_eratt_read - read sli-4 error attention events 10934 * @phba: Pointer to HBA context. 10935 * 10936 * This function is called to read the SLI4 device error attention registers 10937 * for possible error attention events. The caller must hold the hostlock 10938 * with spin_lock_irq(). 10939 * 10940 * This function returns 1 when there is Error Attention in the Host Attention 10941 * Register and returns 0 otherwise. 10942 **/ 10943 static int 10944 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 10945 { 10946 uint32_t uerr_sta_hi, uerr_sta_lo; 10947 uint32_t if_type, portsmphr; 10948 struct lpfc_register portstat_reg; 10949 10950 /* 10951 * For now, use the SLI4 device internal unrecoverable error 10952 * registers for error attention. This can be changed later. 10953 */ 10954 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10955 switch (if_type) { 10956 case LPFC_SLI_INTF_IF_TYPE_0: 10957 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 10958 &uerr_sta_lo) || 10959 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 10960 &uerr_sta_hi)) { 10961 phba->work_hs |= UNPLUG_ERR; 10962 phba->work_ha |= HA_ERATT; 10963 phba->hba_flag |= HBA_ERATT_HANDLED; 10964 return 1; 10965 } 10966 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 10967 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 10968 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10969 "1423 HBA Unrecoverable error: " 10970 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 10971 "ue_mask_lo_reg=0x%x, " 10972 "ue_mask_hi_reg=0x%x\n", 10973 uerr_sta_lo, uerr_sta_hi, 10974 phba->sli4_hba.ue_mask_lo, 10975 phba->sli4_hba.ue_mask_hi); 10976 phba->work_status[0] = uerr_sta_lo; 10977 phba->work_status[1] = uerr_sta_hi; 10978 phba->work_ha |= HA_ERATT; 10979 phba->hba_flag |= HBA_ERATT_HANDLED; 10980 return 1; 10981 } 10982 break; 10983 case LPFC_SLI_INTF_IF_TYPE_2: 10984 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 10985 &portstat_reg.word0) || 10986 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 10987 &portsmphr)){ 10988 phba->work_hs |= UNPLUG_ERR; 10989 phba->work_ha |= HA_ERATT; 10990 phba->hba_flag |= HBA_ERATT_HANDLED; 10991 return 1; 10992 } 10993 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 10994 phba->work_status[0] = 10995 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 10996 phba->work_status[1] = 10997 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 10998 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10999 "2885 Port Status Event: " 11000 "port status reg 0x%x, " 11001 "port smphr reg 0x%x, " 11002 "error 1=0x%x, error 2=0x%x\n", 11003 portstat_reg.word0, 11004 portsmphr, 11005 phba->work_status[0], 11006 phba->work_status[1]); 11007 phba->work_ha |= HA_ERATT; 11008 phba->hba_flag |= HBA_ERATT_HANDLED; 11009 return 1; 11010 } 11011 break; 11012 case LPFC_SLI_INTF_IF_TYPE_1: 11013 default: 11014 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11015 "2886 HBA Error Attention on unsupported " 11016 "if type %d.", if_type); 11017 return 1; 11018 } 11019 11020 return 0; 11021 } 11022 11023 /** 11024 * lpfc_sli_check_eratt - check error attention events 11025 * @phba: Pointer to HBA context. 11026 * 11027 * This function is called from timer soft interrupt context to check HBA's 11028 * error attention register bit for error attention events. 11029 * 11030 * This function returns 1 when there is Error Attention in the Host Attention 11031 * Register and returns 0 otherwise. 11032 **/ 11033 int 11034 lpfc_sli_check_eratt(struct lpfc_hba *phba) 11035 { 11036 uint32_t ha_copy; 11037 11038 /* If somebody is waiting to handle an eratt, don't process it 11039 * here. The brdkill function will do this. 11040 */ 11041 if (phba->link_flag & LS_IGNORE_ERATT) 11042 return 0; 11043 11044 /* Check if interrupt handler handles this ERATT */ 11045 spin_lock_irq(&phba->hbalock); 11046 if (phba->hba_flag & HBA_ERATT_HANDLED) { 11047 /* Interrupt handler has handled ERATT */ 11048 spin_unlock_irq(&phba->hbalock); 11049 return 0; 11050 } 11051 11052 /* 11053 * If there is deferred error attention, do not check for error 11054 * attention 11055 */ 11056 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11057 spin_unlock_irq(&phba->hbalock); 11058 return 0; 11059 } 11060 11061 /* If PCI channel is offline, don't process it */ 11062 if (unlikely(pci_channel_offline(phba->pcidev))) { 11063 spin_unlock_irq(&phba->hbalock); 11064 return 0; 11065 } 11066 11067 switch (phba->sli_rev) { 11068 case LPFC_SLI_REV2: 11069 case LPFC_SLI_REV3: 11070 /* Read chip Host Attention (HA) register */ 11071 ha_copy = lpfc_sli_eratt_read(phba); 11072 break; 11073 case LPFC_SLI_REV4: 11074 /* Read device Uncoverable Error (UERR) registers */ 11075 ha_copy = lpfc_sli4_eratt_read(phba); 11076 break; 11077 default: 11078 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11079 "0299 Invalid SLI revision (%d)\n", 11080 phba->sli_rev); 11081 ha_copy = 0; 11082 break; 11083 } 11084 spin_unlock_irq(&phba->hbalock); 11085 11086 return ha_copy; 11087 } 11088 11089 /** 11090 * lpfc_intr_state_check - Check device state for interrupt handling 11091 * @phba: Pointer to HBA context. 11092 * 11093 * This inline routine checks whether a device or its PCI slot is in a state 11094 * that the interrupt should be handled. 11095 * 11096 * This function returns 0 if the device or the PCI slot is in a state that 11097 * interrupt should be handled, otherwise -EIO. 11098 */ 11099 static inline int 11100 lpfc_intr_state_check(struct lpfc_hba *phba) 11101 { 11102 /* If the pci channel is offline, ignore all the interrupts */ 11103 if (unlikely(pci_channel_offline(phba->pcidev))) 11104 return -EIO; 11105 11106 /* Update device level interrupt statistics */ 11107 phba->sli.slistat.sli_intr++; 11108 11109 /* Ignore all interrupts during initialization. */ 11110 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 11111 return -EIO; 11112 11113 return 0; 11114 } 11115 11116 /** 11117 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 11118 * @irq: Interrupt number. 11119 * @dev_id: The device context pointer. 11120 * 11121 * This function is directly called from the PCI layer as an interrupt 11122 * service routine when device with SLI-3 interface spec is enabled with 11123 * MSI-X multi-message interrupt mode and there are slow-path events in 11124 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 11125 * interrupt mode, this function is called as part of the device-level 11126 * interrupt handler. When the PCI slot is in error recovery or the HBA 11127 * is undergoing initialization, the interrupt handler will not process 11128 * the interrupt. The link attention and ELS ring attention events are 11129 * handled by the worker thread. The interrupt handler signals the worker 11130 * thread and returns for these events. This function is called without 11131 * any lock held. It gets the hbalock to access and update SLI data 11132 * structures. 11133 * 11134 * This function returns IRQ_HANDLED when interrupt is handled else it 11135 * returns IRQ_NONE. 11136 **/ 11137 irqreturn_t 11138 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 11139 { 11140 struct lpfc_hba *phba; 11141 uint32_t ha_copy, hc_copy; 11142 uint32_t work_ha_copy; 11143 unsigned long status; 11144 unsigned long iflag; 11145 uint32_t control; 11146 11147 MAILBOX_t *mbox, *pmbox; 11148 struct lpfc_vport *vport; 11149 struct lpfc_nodelist *ndlp; 11150 struct lpfc_dmabuf *mp; 11151 LPFC_MBOXQ_t *pmb; 11152 int rc; 11153 11154 /* 11155 * Get the driver's phba structure from the dev_id and 11156 * assume the HBA is not interrupting. 11157 */ 11158 phba = (struct lpfc_hba *)dev_id; 11159 11160 if (unlikely(!phba)) 11161 return IRQ_NONE; 11162 11163 /* 11164 * Stuff needs to be attented to when this function is invoked as an 11165 * individual interrupt handler in MSI-X multi-message interrupt mode 11166 */ 11167 if (phba->intr_type == MSIX) { 11168 /* Check device state for handling interrupt */ 11169 if (lpfc_intr_state_check(phba)) 11170 return IRQ_NONE; 11171 /* Need to read HA REG for slow-path events */ 11172 spin_lock_irqsave(&phba->hbalock, iflag); 11173 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 11174 goto unplug_error; 11175 /* If somebody is waiting to handle an eratt don't process it 11176 * here. The brdkill function will do this. 11177 */ 11178 if (phba->link_flag & LS_IGNORE_ERATT) 11179 ha_copy &= ~HA_ERATT; 11180 /* Check the need for handling ERATT in interrupt handler */ 11181 if (ha_copy & HA_ERATT) { 11182 if (phba->hba_flag & HBA_ERATT_HANDLED) 11183 /* ERATT polling has handled ERATT */ 11184 ha_copy &= ~HA_ERATT; 11185 else 11186 /* Indicate interrupt handler handles ERATT */ 11187 phba->hba_flag |= HBA_ERATT_HANDLED; 11188 } 11189 11190 /* 11191 * If there is deferred error attention, do not check for any 11192 * interrupt. 11193 */ 11194 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11195 spin_unlock_irqrestore(&phba->hbalock, iflag); 11196 return IRQ_NONE; 11197 } 11198 11199 /* Clear up only attention source related to slow-path */ 11200 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 11201 goto unplug_error; 11202 11203 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 11204 HC_LAINT_ENA | HC_ERINT_ENA), 11205 phba->HCregaddr); 11206 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 11207 phba->HAregaddr); 11208 writel(hc_copy, phba->HCregaddr); 11209 readl(phba->HAregaddr); /* flush */ 11210 spin_unlock_irqrestore(&phba->hbalock, iflag); 11211 } else 11212 ha_copy = phba->ha_copy; 11213 11214 work_ha_copy = ha_copy & phba->work_ha_mask; 11215 11216 if (work_ha_copy) { 11217 if (work_ha_copy & HA_LATT) { 11218 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 11219 /* 11220 * Turn off Link Attention interrupts 11221 * until CLEAR_LA done 11222 */ 11223 spin_lock_irqsave(&phba->hbalock, iflag); 11224 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 11225 if (lpfc_readl(phba->HCregaddr, &control)) 11226 goto unplug_error; 11227 control &= ~HC_LAINT_ENA; 11228 writel(control, phba->HCregaddr); 11229 readl(phba->HCregaddr); /* flush */ 11230 spin_unlock_irqrestore(&phba->hbalock, iflag); 11231 } 11232 else 11233 work_ha_copy &= ~HA_LATT; 11234 } 11235 11236 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 11237 /* 11238 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 11239 * the only slow ring. 11240 */ 11241 status = (work_ha_copy & 11242 (HA_RXMASK << (4*LPFC_ELS_RING))); 11243 status >>= (4*LPFC_ELS_RING); 11244 if (status & HA_RXMASK) { 11245 spin_lock_irqsave(&phba->hbalock, iflag); 11246 if (lpfc_readl(phba->HCregaddr, &control)) 11247 goto unplug_error; 11248 11249 lpfc_debugfs_slow_ring_trc(phba, 11250 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 11251 control, status, 11252 (uint32_t)phba->sli.slistat.sli_intr); 11253 11254 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 11255 lpfc_debugfs_slow_ring_trc(phba, 11256 "ISR Disable ring:" 11257 "pwork:x%x hawork:x%x wait:x%x", 11258 phba->work_ha, work_ha_copy, 11259 (uint32_t)((unsigned long) 11260 &phba->work_waitq)); 11261 11262 control &= 11263 ~(HC_R0INT_ENA << LPFC_ELS_RING); 11264 writel(control, phba->HCregaddr); 11265 readl(phba->HCregaddr); /* flush */ 11266 } 11267 else { 11268 lpfc_debugfs_slow_ring_trc(phba, 11269 "ISR slow ring: pwork:" 11270 "x%x hawork:x%x wait:x%x", 11271 phba->work_ha, work_ha_copy, 11272 (uint32_t)((unsigned long) 11273 &phba->work_waitq)); 11274 } 11275 spin_unlock_irqrestore(&phba->hbalock, iflag); 11276 } 11277 } 11278 spin_lock_irqsave(&phba->hbalock, iflag); 11279 if (work_ha_copy & HA_ERATT) { 11280 if (lpfc_sli_read_hs(phba)) 11281 goto unplug_error; 11282 /* 11283 * Check if there is a deferred error condition 11284 * is active 11285 */ 11286 if ((HS_FFER1 & phba->work_hs) && 11287 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 11288 HS_FFER6 | HS_FFER7 | HS_FFER8) & 11289 phba->work_hs)) { 11290 phba->hba_flag |= DEFER_ERATT; 11291 /* Clear all interrupt enable conditions */ 11292 writel(0, phba->HCregaddr); 11293 readl(phba->HCregaddr); 11294 } 11295 } 11296 11297 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 11298 pmb = phba->sli.mbox_active; 11299 pmbox = &pmb->u.mb; 11300 mbox = phba->mbox; 11301 vport = pmb->vport; 11302 11303 /* First check out the status word */ 11304 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 11305 if (pmbox->mbxOwner != OWN_HOST) { 11306 spin_unlock_irqrestore(&phba->hbalock, iflag); 11307 /* 11308 * Stray Mailbox Interrupt, mbxCommand <cmd> 11309 * mbxStatus <status> 11310 */ 11311 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 11312 LOG_SLI, 11313 "(%d):0304 Stray Mailbox " 11314 "Interrupt mbxCommand x%x " 11315 "mbxStatus x%x\n", 11316 (vport ? vport->vpi : 0), 11317 pmbox->mbxCommand, 11318 pmbox->mbxStatus); 11319 /* clear mailbox attention bit */ 11320 work_ha_copy &= ~HA_MBATT; 11321 } else { 11322 phba->sli.mbox_active = NULL; 11323 spin_unlock_irqrestore(&phba->hbalock, iflag); 11324 phba->last_completion_time = jiffies; 11325 del_timer(&phba->sli.mbox_tmo); 11326 if (pmb->mbox_cmpl) { 11327 lpfc_sli_pcimem_bcopy(mbox, pmbox, 11328 MAILBOX_CMD_SIZE); 11329 if (pmb->out_ext_byte_len && 11330 pmb->context2) 11331 lpfc_sli_pcimem_bcopy( 11332 phba->mbox_ext, 11333 pmb->context2, 11334 pmb->out_ext_byte_len); 11335 } 11336 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 11337 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 11338 11339 lpfc_debugfs_disc_trc(vport, 11340 LPFC_DISC_TRC_MBOX_VPORT, 11341 "MBOX dflt rpi: : " 11342 "status:x%x rpi:x%x", 11343 (uint32_t)pmbox->mbxStatus, 11344 pmbox->un.varWords[0], 0); 11345 11346 if (!pmbox->mbxStatus) { 11347 mp = (struct lpfc_dmabuf *) 11348 (pmb->context1); 11349 ndlp = (struct lpfc_nodelist *) 11350 pmb->context2; 11351 11352 /* Reg_LOGIN of dflt RPI was 11353 * successful. new lets get 11354 * rid of the RPI using the 11355 * same mbox buffer. 11356 */ 11357 lpfc_unreg_login(phba, 11358 vport->vpi, 11359 pmbox->un.varWords[0], 11360 pmb); 11361 pmb->mbox_cmpl = 11362 lpfc_mbx_cmpl_dflt_rpi; 11363 pmb->context1 = mp; 11364 pmb->context2 = ndlp; 11365 pmb->vport = vport; 11366 rc = lpfc_sli_issue_mbox(phba, 11367 pmb, 11368 MBX_NOWAIT); 11369 if (rc != MBX_BUSY) 11370 lpfc_printf_log(phba, 11371 KERN_ERR, 11372 LOG_MBOX | LOG_SLI, 11373 "0350 rc should have" 11374 "been MBX_BUSY\n"); 11375 if (rc != MBX_NOT_FINISHED) 11376 goto send_current_mbox; 11377 } 11378 } 11379 spin_lock_irqsave( 11380 &phba->pport->work_port_lock, 11381 iflag); 11382 phba->pport->work_port_events &= 11383 ~WORKER_MBOX_TMO; 11384 spin_unlock_irqrestore( 11385 &phba->pport->work_port_lock, 11386 iflag); 11387 lpfc_mbox_cmpl_put(phba, pmb); 11388 } 11389 } else 11390 spin_unlock_irqrestore(&phba->hbalock, iflag); 11391 11392 if ((work_ha_copy & HA_MBATT) && 11393 (phba->sli.mbox_active == NULL)) { 11394 send_current_mbox: 11395 /* Process next mailbox command if there is one */ 11396 do { 11397 rc = lpfc_sli_issue_mbox(phba, NULL, 11398 MBX_NOWAIT); 11399 } while (rc == MBX_NOT_FINISHED); 11400 if (rc != MBX_SUCCESS) 11401 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 11402 LOG_SLI, "0349 rc should be " 11403 "MBX_SUCCESS\n"); 11404 } 11405 11406 spin_lock_irqsave(&phba->hbalock, iflag); 11407 phba->work_ha |= work_ha_copy; 11408 spin_unlock_irqrestore(&phba->hbalock, iflag); 11409 lpfc_worker_wake_up(phba); 11410 } 11411 return IRQ_HANDLED; 11412 unplug_error: 11413 spin_unlock_irqrestore(&phba->hbalock, iflag); 11414 return IRQ_HANDLED; 11415 11416 } /* lpfc_sli_sp_intr_handler */ 11417 11418 /** 11419 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 11420 * @irq: Interrupt number. 11421 * @dev_id: The device context pointer. 11422 * 11423 * This function is directly called from the PCI layer as an interrupt 11424 * service routine when device with SLI-3 interface spec is enabled with 11425 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 11426 * ring event in the HBA. However, when the device is enabled with either 11427 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 11428 * device-level interrupt handler. When the PCI slot is in error recovery 11429 * or the HBA is undergoing initialization, the interrupt handler will not 11430 * process the interrupt. The SCSI FCP fast-path ring event are handled in 11431 * the intrrupt context. This function is called without any lock held. 11432 * It gets the hbalock to access and update SLI data structures. 11433 * 11434 * This function returns IRQ_HANDLED when interrupt is handled else it 11435 * returns IRQ_NONE. 11436 **/ 11437 irqreturn_t 11438 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 11439 { 11440 struct lpfc_hba *phba; 11441 uint32_t ha_copy; 11442 unsigned long status; 11443 unsigned long iflag; 11444 11445 /* Get the driver's phba structure from the dev_id and 11446 * assume the HBA is not interrupting. 11447 */ 11448 phba = (struct lpfc_hba *) dev_id; 11449 11450 if (unlikely(!phba)) 11451 return IRQ_NONE; 11452 11453 /* 11454 * Stuff needs to be attented to when this function is invoked as an 11455 * individual interrupt handler in MSI-X multi-message interrupt mode 11456 */ 11457 if (phba->intr_type == MSIX) { 11458 /* Check device state for handling interrupt */ 11459 if (lpfc_intr_state_check(phba)) 11460 return IRQ_NONE; 11461 /* Need to read HA REG for FCP ring and other ring events */ 11462 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 11463 return IRQ_HANDLED; 11464 /* Clear up only attention source related to fast-path */ 11465 spin_lock_irqsave(&phba->hbalock, iflag); 11466 /* 11467 * If there is deferred error attention, do not check for 11468 * any interrupt. 11469 */ 11470 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11471 spin_unlock_irqrestore(&phba->hbalock, iflag); 11472 return IRQ_NONE; 11473 } 11474 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 11475 phba->HAregaddr); 11476 readl(phba->HAregaddr); /* flush */ 11477 spin_unlock_irqrestore(&phba->hbalock, iflag); 11478 } else 11479 ha_copy = phba->ha_copy; 11480 11481 /* 11482 * Process all events on FCP ring. Take the optimized path for FCP IO. 11483 */ 11484 ha_copy &= ~(phba->work_ha_mask); 11485 11486 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 11487 status >>= (4*LPFC_FCP_RING); 11488 if (status & HA_RXMASK) 11489 lpfc_sli_handle_fast_ring_event(phba, 11490 &phba->sli.ring[LPFC_FCP_RING], 11491 status); 11492 11493 if (phba->cfg_multi_ring_support == 2) { 11494 /* 11495 * Process all events on extra ring. Take the optimized path 11496 * for extra ring IO. 11497 */ 11498 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 11499 status >>= (4*LPFC_EXTRA_RING); 11500 if (status & HA_RXMASK) { 11501 lpfc_sli_handle_fast_ring_event(phba, 11502 &phba->sli.ring[LPFC_EXTRA_RING], 11503 status); 11504 } 11505 } 11506 return IRQ_HANDLED; 11507 } /* lpfc_sli_fp_intr_handler */ 11508 11509 /** 11510 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 11511 * @irq: Interrupt number. 11512 * @dev_id: The device context pointer. 11513 * 11514 * This function is the HBA device-level interrupt handler to device with 11515 * SLI-3 interface spec, called from the PCI layer when either MSI or 11516 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 11517 * requires driver attention. This function invokes the slow-path interrupt 11518 * attention handling function and fast-path interrupt attention handling 11519 * function in turn to process the relevant HBA attention events. This 11520 * function is called without any lock held. It gets the hbalock to access 11521 * and update SLI data structures. 11522 * 11523 * This function returns IRQ_HANDLED when interrupt is handled, else it 11524 * returns IRQ_NONE. 11525 **/ 11526 irqreturn_t 11527 lpfc_sli_intr_handler(int irq, void *dev_id) 11528 { 11529 struct lpfc_hba *phba; 11530 irqreturn_t sp_irq_rc, fp_irq_rc; 11531 unsigned long status1, status2; 11532 uint32_t hc_copy; 11533 11534 /* 11535 * Get the driver's phba structure from the dev_id and 11536 * assume the HBA is not interrupting. 11537 */ 11538 phba = (struct lpfc_hba *) dev_id; 11539 11540 if (unlikely(!phba)) 11541 return IRQ_NONE; 11542 11543 /* Check device state for handling interrupt */ 11544 if (lpfc_intr_state_check(phba)) 11545 return IRQ_NONE; 11546 11547 spin_lock(&phba->hbalock); 11548 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 11549 spin_unlock(&phba->hbalock); 11550 return IRQ_HANDLED; 11551 } 11552 11553 if (unlikely(!phba->ha_copy)) { 11554 spin_unlock(&phba->hbalock); 11555 return IRQ_NONE; 11556 } else if (phba->ha_copy & HA_ERATT) { 11557 if (phba->hba_flag & HBA_ERATT_HANDLED) 11558 /* ERATT polling has handled ERATT */ 11559 phba->ha_copy &= ~HA_ERATT; 11560 else 11561 /* Indicate interrupt handler handles ERATT */ 11562 phba->hba_flag |= HBA_ERATT_HANDLED; 11563 } 11564 11565 /* 11566 * If there is deferred error attention, do not check for any interrupt. 11567 */ 11568 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11569 spin_unlock(&phba->hbalock); 11570 return IRQ_NONE; 11571 } 11572 11573 /* Clear attention sources except link and error attentions */ 11574 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 11575 spin_unlock(&phba->hbalock); 11576 return IRQ_HANDLED; 11577 } 11578 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 11579 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 11580 phba->HCregaddr); 11581 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 11582 writel(hc_copy, phba->HCregaddr); 11583 readl(phba->HAregaddr); /* flush */ 11584 spin_unlock(&phba->hbalock); 11585 11586 /* 11587 * Invokes slow-path host attention interrupt handling as appropriate. 11588 */ 11589 11590 /* status of events with mailbox and link attention */ 11591 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 11592 11593 /* status of events with ELS ring */ 11594 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 11595 status2 >>= (4*LPFC_ELS_RING); 11596 11597 if (status1 || (status2 & HA_RXMASK)) 11598 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 11599 else 11600 sp_irq_rc = IRQ_NONE; 11601 11602 /* 11603 * Invoke fast-path host attention interrupt handling as appropriate. 11604 */ 11605 11606 /* status of events with FCP ring */ 11607 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 11608 status1 >>= (4*LPFC_FCP_RING); 11609 11610 /* status of events with extra ring */ 11611 if (phba->cfg_multi_ring_support == 2) { 11612 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 11613 status2 >>= (4*LPFC_EXTRA_RING); 11614 } else 11615 status2 = 0; 11616 11617 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 11618 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 11619 else 11620 fp_irq_rc = IRQ_NONE; 11621 11622 /* Return device-level interrupt handling status */ 11623 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 11624 } /* lpfc_sli_intr_handler */ 11625 11626 /** 11627 * lpfc_sli4_fcp_xri_abort_event_proc - Process fcp xri abort event 11628 * @phba: pointer to lpfc hba data structure. 11629 * 11630 * This routine is invoked by the worker thread to process all the pending 11631 * SLI4 FCP abort XRI events. 11632 **/ 11633 void lpfc_sli4_fcp_xri_abort_event_proc(struct lpfc_hba *phba) 11634 { 11635 struct lpfc_cq_event *cq_event; 11636 11637 /* First, declare the fcp xri abort event has been handled */ 11638 spin_lock_irq(&phba->hbalock); 11639 phba->hba_flag &= ~FCP_XRI_ABORT_EVENT; 11640 spin_unlock_irq(&phba->hbalock); 11641 /* Now, handle all the fcp xri abort events */ 11642 while (!list_empty(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue)) { 11643 /* Get the first event from the head of the event queue */ 11644 spin_lock_irq(&phba->hbalock); 11645 list_remove_head(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue, 11646 cq_event, struct lpfc_cq_event, list); 11647 spin_unlock_irq(&phba->hbalock); 11648 /* Notify aborted XRI for FCP work queue */ 11649 lpfc_sli4_fcp_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 11650 /* Free the event processed back to the free pool */ 11651 lpfc_sli4_cq_event_release(phba, cq_event); 11652 } 11653 } 11654 11655 /** 11656 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 11657 * @phba: pointer to lpfc hba data structure. 11658 * 11659 * This routine is invoked by the worker thread to process all the pending 11660 * SLI4 els abort xri events. 11661 **/ 11662 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 11663 { 11664 struct lpfc_cq_event *cq_event; 11665 11666 /* First, declare the els xri abort event has been handled */ 11667 spin_lock_irq(&phba->hbalock); 11668 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 11669 spin_unlock_irq(&phba->hbalock); 11670 /* Now, handle all the els xri abort events */ 11671 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 11672 /* Get the first event from the head of the event queue */ 11673 spin_lock_irq(&phba->hbalock); 11674 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 11675 cq_event, struct lpfc_cq_event, list); 11676 spin_unlock_irq(&phba->hbalock); 11677 /* Notify aborted XRI for ELS work queue */ 11678 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 11679 /* Free the event processed back to the free pool */ 11680 lpfc_sli4_cq_event_release(phba, cq_event); 11681 } 11682 } 11683 11684 /** 11685 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 11686 * @phba: pointer to lpfc hba data structure 11687 * @pIocbIn: pointer to the rspiocbq 11688 * @pIocbOut: pointer to the cmdiocbq 11689 * @wcqe: pointer to the complete wcqe 11690 * 11691 * This routine transfers the fields of a command iocbq to a response iocbq 11692 * by copying all the IOCB fields from command iocbq and transferring the 11693 * completion status information from the complete wcqe. 11694 **/ 11695 static void 11696 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 11697 struct lpfc_iocbq *pIocbIn, 11698 struct lpfc_iocbq *pIocbOut, 11699 struct lpfc_wcqe_complete *wcqe) 11700 { 11701 int numBdes, i; 11702 unsigned long iflags; 11703 uint32_t status, max_response; 11704 struct lpfc_dmabuf *dmabuf; 11705 struct ulp_bde64 *bpl, bde; 11706 size_t offset = offsetof(struct lpfc_iocbq, iocb); 11707 11708 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 11709 sizeof(struct lpfc_iocbq) - offset); 11710 /* Map WCQE parameters into irspiocb parameters */ 11711 status = bf_get(lpfc_wcqe_c_status, wcqe); 11712 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 11713 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 11714 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 11715 pIocbIn->iocb.un.fcpi.fcpi_parm = 11716 pIocbOut->iocb.un.fcpi.fcpi_parm - 11717 wcqe->total_data_placed; 11718 else 11719 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 11720 else { 11721 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 11722 switch (pIocbOut->iocb.ulpCommand) { 11723 case CMD_ELS_REQUEST64_CR: 11724 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 11725 bpl = (struct ulp_bde64 *)dmabuf->virt; 11726 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 11727 max_response = bde.tus.f.bdeSize; 11728 break; 11729 case CMD_GEN_REQUEST64_CR: 11730 max_response = 0; 11731 if (!pIocbOut->context3) 11732 break; 11733 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 11734 sizeof(struct ulp_bde64); 11735 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 11736 bpl = (struct ulp_bde64 *)dmabuf->virt; 11737 for (i = 0; i < numBdes; i++) { 11738 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 11739 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 11740 max_response += bde.tus.f.bdeSize; 11741 } 11742 break; 11743 default: 11744 max_response = wcqe->total_data_placed; 11745 break; 11746 } 11747 if (max_response < wcqe->total_data_placed) 11748 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 11749 else 11750 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 11751 wcqe->total_data_placed; 11752 } 11753 11754 /* Convert BG errors for completion status */ 11755 if (status == CQE_STATUS_DI_ERROR) { 11756 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 11757 11758 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 11759 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 11760 else 11761 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 11762 11763 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 11764 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 11765 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11766 BGS_GUARD_ERR_MASK; 11767 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 11768 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11769 BGS_APPTAG_ERR_MASK; 11770 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 11771 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11772 BGS_REFTAG_ERR_MASK; 11773 11774 /* Check to see if there was any good data before the error */ 11775 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 11776 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11777 BGS_HI_WATER_MARK_PRESENT_MASK; 11778 pIocbIn->iocb.unsli3.sli3_bg.bghm = 11779 wcqe->total_data_placed; 11780 } 11781 11782 /* 11783 * Set ALL the error bits to indicate we don't know what 11784 * type of error it is. 11785 */ 11786 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 11787 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11788 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 11789 BGS_GUARD_ERR_MASK); 11790 } 11791 11792 /* Pick up HBA exchange busy condition */ 11793 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 11794 spin_lock_irqsave(&phba->hbalock, iflags); 11795 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 11796 spin_unlock_irqrestore(&phba->hbalock, iflags); 11797 } 11798 } 11799 11800 /** 11801 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 11802 * @phba: Pointer to HBA context object. 11803 * @wcqe: Pointer to work-queue completion queue entry. 11804 * 11805 * This routine handles an ELS work-queue completion event and construct 11806 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 11807 * discovery engine to handle. 11808 * 11809 * Return: Pointer to the receive IOCBQ, NULL otherwise. 11810 **/ 11811 static struct lpfc_iocbq * 11812 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 11813 struct lpfc_iocbq *irspiocbq) 11814 { 11815 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 11816 struct lpfc_iocbq *cmdiocbq; 11817 struct lpfc_wcqe_complete *wcqe; 11818 unsigned long iflags; 11819 11820 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 11821 spin_lock_irqsave(&pring->ring_lock, iflags); 11822 pring->stats.iocb_event++; 11823 /* Look up the ELS command IOCB and create pseudo response IOCB */ 11824 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 11825 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 11826 /* Put the iocb back on the txcmplq */ 11827 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 11828 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11829 11830 if (unlikely(!cmdiocbq)) { 11831 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11832 "0386 ELS complete with no corresponding " 11833 "cmdiocb: iotag (%d)\n", 11834 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 11835 lpfc_sli_release_iocbq(phba, irspiocbq); 11836 return NULL; 11837 } 11838 11839 /* Fake the irspiocbq and copy necessary response information */ 11840 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 11841 11842 return irspiocbq; 11843 } 11844 11845 /** 11846 * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event 11847 * @phba: Pointer to HBA context object. 11848 * @cqe: Pointer to mailbox completion queue entry. 11849 * 11850 * This routine process a mailbox completion queue entry with asynchrous 11851 * event. 11852 * 11853 * Return: true if work posted to worker thread, otherwise false. 11854 **/ 11855 static bool 11856 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 11857 { 11858 struct lpfc_cq_event *cq_event; 11859 unsigned long iflags; 11860 11861 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11862 "0392 Async Event: word0:x%x, word1:x%x, " 11863 "word2:x%x, word3:x%x\n", mcqe->word0, 11864 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 11865 11866 /* Allocate a new internal CQ_EVENT entry */ 11867 cq_event = lpfc_sli4_cq_event_alloc(phba); 11868 if (!cq_event) { 11869 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11870 "0394 Failed to allocate CQ_EVENT entry\n"); 11871 return false; 11872 } 11873 11874 /* Move the CQE into an asynchronous event entry */ 11875 memcpy(&cq_event->cqe, mcqe, sizeof(struct lpfc_mcqe)); 11876 spin_lock_irqsave(&phba->hbalock, iflags); 11877 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 11878 /* Set the async event flag */ 11879 phba->hba_flag |= ASYNC_EVENT; 11880 spin_unlock_irqrestore(&phba->hbalock, iflags); 11881 11882 return true; 11883 } 11884 11885 /** 11886 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 11887 * @phba: Pointer to HBA context object. 11888 * @cqe: Pointer to mailbox completion queue entry. 11889 * 11890 * This routine process a mailbox completion queue entry with mailbox 11891 * completion event. 11892 * 11893 * Return: true if work posted to worker thread, otherwise false. 11894 **/ 11895 static bool 11896 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 11897 { 11898 uint32_t mcqe_status; 11899 MAILBOX_t *mbox, *pmbox; 11900 struct lpfc_mqe *mqe; 11901 struct lpfc_vport *vport; 11902 struct lpfc_nodelist *ndlp; 11903 struct lpfc_dmabuf *mp; 11904 unsigned long iflags; 11905 LPFC_MBOXQ_t *pmb; 11906 bool workposted = false; 11907 int rc; 11908 11909 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 11910 if (!bf_get(lpfc_trailer_completed, mcqe)) 11911 goto out_no_mqe_complete; 11912 11913 /* Get the reference to the active mbox command */ 11914 spin_lock_irqsave(&phba->hbalock, iflags); 11915 pmb = phba->sli.mbox_active; 11916 if (unlikely(!pmb)) { 11917 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 11918 "1832 No pending MBOX command to handle\n"); 11919 spin_unlock_irqrestore(&phba->hbalock, iflags); 11920 goto out_no_mqe_complete; 11921 } 11922 spin_unlock_irqrestore(&phba->hbalock, iflags); 11923 mqe = &pmb->u.mqe; 11924 pmbox = (MAILBOX_t *)&pmb->u.mqe; 11925 mbox = phba->mbox; 11926 vport = pmb->vport; 11927 11928 /* Reset heartbeat timer */ 11929 phba->last_completion_time = jiffies; 11930 del_timer(&phba->sli.mbox_tmo); 11931 11932 /* Move mbox data to caller's mailbox region, do endian swapping */ 11933 if (pmb->mbox_cmpl && mbox) 11934 lpfc_sli_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 11935 11936 /* 11937 * For mcqe errors, conditionally move a modified error code to 11938 * the mbox so that the error will not be missed. 11939 */ 11940 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 11941 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 11942 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 11943 bf_set(lpfc_mqe_status, mqe, 11944 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 11945 } 11946 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 11947 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 11948 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 11949 "MBOX dflt rpi: status:x%x rpi:x%x", 11950 mcqe_status, 11951 pmbox->un.varWords[0], 0); 11952 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 11953 mp = (struct lpfc_dmabuf *)(pmb->context1); 11954 ndlp = (struct lpfc_nodelist *)pmb->context2; 11955 /* Reg_LOGIN of dflt RPI was successful. Now lets get 11956 * RID of the PPI using the same mbox buffer. 11957 */ 11958 lpfc_unreg_login(phba, vport->vpi, 11959 pmbox->un.varWords[0], pmb); 11960 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 11961 pmb->context1 = mp; 11962 pmb->context2 = ndlp; 11963 pmb->vport = vport; 11964 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 11965 if (rc != MBX_BUSY) 11966 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 11967 LOG_SLI, "0385 rc should " 11968 "have been MBX_BUSY\n"); 11969 if (rc != MBX_NOT_FINISHED) 11970 goto send_current_mbox; 11971 } 11972 } 11973 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 11974 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 11975 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 11976 11977 /* There is mailbox completion work to do */ 11978 spin_lock_irqsave(&phba->hbalock, iflags); 11979 __lpfc_mbox_cmpl_put(phba, pmb); 11980 phba->work_ha |= HA_MBATT; 11981 spin_unlock_irqrestore(&phba->hbalock, iflags); 11982 workposted = true; 11983 11984 send_current_mbox: 11985 spin_lock_irqsave(&phba->hbalock, iflags); 11986 /* Release the mailbox command posting token */ 11987 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11988 /* Setting active mailbox pointer need to be in sync to flag clear */ 11989 phba->sli.mbox_active = NULL; 11990 spin_unlock_irqrestore(&phba->hbalock, iflags); 11991 /* Wake up worker thread to post the next pending mailbox command */ 11992 lpfc_worker_wake_up(phba); 11993 out_no_mqe_complete: 11994 if (bf_get(lpfc_trailer_consumed, mcqe)) 11995 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 11996 return workposted; 11997 } 11998 11999 /** 12000 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 12001 * @phba: Pointer to HBA context object. 12002 * @cqe: Pointer to mailbox completion queue entry. 12003 * 12004 * This routine process a mailbox completion queue entry, it invokes the 12005 * proper mailbox complete handling or asynchrous event handling routine 12006 * according to the MCQE's async bit. 12007 * 12008 * Return: true if work posted to worker thread, otherwise false. 12009 **/ 12010 static bool 12011 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_cqe *cqe) 12012 { 12013 struct lpfc_mcqe mcqe; 12014 bool workposted; 12015 12016 /* Copy the mailbox MCQE and convert endian order as needed */ 12017 lpfc_sli_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 12018 12019 /* Invoke the proper event handling routine */ 12020 if (!bf_get(lpfc_trailer_async, &mcqe)) 12021 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 12022 else 12023 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 12024 return workposted; 12025 } 12026 12027 /** 12028 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 12029 * @phba: Pointer to HBA context object. 12030 * @cq: Pointer to associated CQ 12031 * @wcqe: Pointer to work-queue completion queue entry. 12032 * 12033 * This routine handles an ELS work-queue completion event. 12034 * 12035 * Return: true if work posted to worker thread, otherwise false. 12036 **/ 12037 static bool 12038 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12039 struct lpfc_wcqe_complete *wcqe) 12040 { 12041 struct lpfc_iocbq *irspiocbq; 12042 unsigned long iflags; 12043 struct lpfc_sli_ring *pring = cq->pring; 12044 int txq_cnt = 0; 12045 int txcmplq_cnt = 0; 12046 int fcp_txcmplq_cnt = 0; 12047 12048 /* Get an irspiocbq for later ELS response processing use */ 12049 irspiocbq = lpfc_sli_get_iocbq(phba); 12050 if (!irspiocbq) { 12051 if (!list_empty(&pring->txq)) 12052 txq_cnt++; 12053 if (!list_empty(&pring->txcmplq)) 12054 txcmplq_cnt++; 12055 if (!list_empty(&phba->sli.ring[LPFC_FCP_RING].txcmplq)) 12056 fcp_txcmplq_cnt++; 12057 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12058 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 12059 "fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n", 12060 txq_cnt, phba->iocb_cnt, 12061 fcp_txcmplq_cnt, 12062 txcmplq_cnt); 12063 return false; 12064 } 12065 12066 /* Save off the slow-path queue event for work thread to process */ 12067 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 12068 spin_lock_irqsave(&phba->hbalock, iflags); 12069 list_add_tail(&irspiocbq->cq_event.list, 12070 &phba->sli4_hba.sp_queue_event); 12071 phba->hba_flag |= HBA_SP_QUEUE_EVT; 12072 spin_unlock_irqrestore(&phba->hbalock, iflags); 12073 12074 return true; 12075 } 12076 12077 /** 12078 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 12079 * @phba: Pointer to HBA context object. 12080 * @wcqe: Pointer to work-queue completion queue entry. 12081 * 12082 * This routine handles slow-path WQ entry consumed event by invoking the 12083 * proper WQ release routine to the slow-path WQ. 12084 **/ 12085 static void 12086 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 12087 struct lpfc_wcqe_release *wcqe) 12088 { 12089 /* sanity check on queue memory */ 12090 if (unlikely(!phba->sli4_hba.els_wq)) 12091 return; 12092 /* Check for the slow-path ELS work queue */ 12093 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 12094 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 12095 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 12096 else 12097 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12098 "2579 Slow-path wqe consume event carries " 12099 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 12100 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 12101 phba->sli4_hba.els_wq->queue_id); 12102 } 12103 12104 /** 12105 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 12106 * @phba: Pointer to HBA context object. 12107 * @cq: Pointer to a WQ completion queue. 12108 * @wcqe: Pointer to work-queue completion queue entry. 12109 * 12110 * This routine handles an XRI abort event. 12111 * 12112 * Return: true if work posted to worker thread, otherwise false. 12113 **/ 12114 static bool 12115 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 12116 struct lpfc_queue *cq, 12117 struct sli4_wcqe_xri_aborted *wcqe) 12118 { 12119 bool workposted = false; 12120 struct lpfc_cq_event *cq_event; 12121 unsigned long iflags; 12122 12123 /* Allocate a new internal CQ_EVENT entry */ 12124 cq_event = lpfc_sli4_cq_event_alloc(phba); 12125 if (!cq_event) { 12126 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12127 "0602 Failed to allocate CQ_EVENT entry\n"); 12128 return false; 12129 } 12130 12131 /* Move the CQE into the proper xri abort event list */ 12132 memcpy(&cq_event->cqe, wcqe, sizeof(struct sli4_wcqe_xri_aborted)); 12133 switch (cq->subtype) { 12134 case LPFC_FCP: 12135 spin_lock_irqsave(&phba->hbalock, iflags); 12136 list_add_tail(&cq_event->list, 12137 &phba->sli4_hba.sp_fcp_xri_aborted_work_queue); 12138 /* Set the fcp xri abort event flag */ 12139 phba->hba_flag |= FCP_XRI_ABORT_EVENT; 12140 spin_unlock_irqrestore(&phba->hbalock, iflags); 12141 workposted = true; 12142 break; 12143 case LPFC_ELS: 12144 spin_lock_irqsave(&phba->hbalock, iflags); 12145 list_add_tail(&cq_event->list, 12146 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 12147 /* Set the els xri abort event flag */ 12148 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 12149 spin_unlock_irqrestore(&phba->hbalock, iflags); 12150 workposted = true; 12151 break; 12152 default: 12153 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12154 "0603 Invalid work queue CQE subtype (x%x)\n", 12155 cq->subtype); 12156 workposted = false; 12157 break; 12158 } 12159 return workposted; 12160 } 12161 12162 /** 12163 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 12164 * @phba: Pointer to HBA context object. 12165 * @rcqe: Pointer to receive-queue completion queue entry. 12166 * 12167 * This routine process a receive-queue completion queue entry. 12168 * 12169 * Return: true if work posted to worker thread, otherwise false. 12170 **/ 12171 static bool 12172 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 12173 { 12174 bool workposted = false; 12175 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 12176 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 12177 struct hbq_dmabuf *dma_buf; 12178 uint32_t status, rq_id; 12179 unsigned long iflags; 12180 12181 /* sanity check on queue memory */ 12182 if (unlikely(!hrq) || unlikely(!drq)) 12183 return workposted; 12184 12185 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 12186 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 12187 else 12188 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 12189 if (rq_id != hrq->queue_id) 12190 goto out; 12191 12192 status = bf_get(lpfc_rcqe_status, rcqe); 12193 switch (status) { 12194 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 12195 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12196 "2537 Receive Frame Truncated!!\n"); 12197 hrq->RQ_buf_trunc++; 12198 case FC_STATUS_RQ_SUCCESS: 12199 lpfc_sli4_rq_release(hrq, drq); 12200 spin_lock_irqsave(&phba->hbalock, iflags); 12201 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 12202 if (!dma_buf) { 12203 hrq->RQ_no_buf_found++; 12204 spin_unlock_irqrestore(&phba->hbalock, iflags); 12205 goto out; 12206 } 12207 hrq->RQ_rcv_buf++; 12208 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 12209 /* save off the frame for the word thread to process */ 12210 list_add_tail(&dma_buf->cq_event.list, 12211 &phba->sli4_hba.sp_queue_event); 12212 /* Frame received */ 12213 phba->hba_flag |= HBA_SP_QUEUE_EVT; 12214 spin_unlock_irqrestore(&phba->hbalock, iflags); 12215 workposted = true; 12216 break; 12217 case FC_STATUS_INSUFF_BUF_NEED_BUF: 12218 case FC_STATUS_INSUFF_BUF_FRM_DISC: 12219 hrq->RQ_no_posted_buf++; 12220 /* Post more buffers if possible */ 12221 spin_lock_irqsave(&phba->hbalock, iflags); 12222 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 12223 spin_unlock_irqrestore(&phba->hbalock, iflags); 12224 workposted = true; 12225 break; 12226 } 12227 out: 12228 return workposted; 12229 } 12230 12231 /** 12232 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 12233 * @phba: Pointer to HBA context object. 12234 * @cq: Pointer to the completion queue. 12235 * @wcqe: Pointer to a completion queue entry. 12236 * 12237 * This routine process a slow-path work-queue or receive queue completion queue 12238 * entry. 12239 * 12240 * Return: true if work posted to worker thread, otherwise false. 12241 **/ 12242 static bool 12243 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12244 struct lpfc_cqe *cqe) 12245 { 12246 struct lpfc_cqe cqevt; 12247 bool workposted = false; 12248 12249 /* Copy the work queue CQE and convert endian order if needed */ 12250 lpfc_sli_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 12251 12252 /* Check and process for different type of WCQE and dispatch */ 12253 switch (bf_get(lpfc_cqe_code, &cqevt)) { 12254 case CQE_CODE_COMPL_WQE: 12255 /* Process the WQ/RQ complete event */ 12256 phba->last_completion_time = jiffies; 12257 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 12258 (struct lpfc_wcqe_complete *)&cqevt); 12259 break; 12260 case CQE_CODE_RELEASE_WQE: 12261 /* Process the WQ release event */ 12262 lpfc_sli4_sp_handle_rel_wcqe(phba, 12263 (struct lpfc_wcqe_release *)&cqevt); 12264 break; 12265 case CQE_CODE_XRI_ABORTED: 12266 /* Process the WQ XRI abort event */ 12267 phba->last_completion_time = jiffies; 12268 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 12269 (struct sli4_wcqe_xri_aborted *)&cqevt); 12270 break; 12271 case CQE_CODE_RECEIVE: 12272 case CQE_CODE_RECEIVE_V1: 12273 /* Process the RQ event */ 12274 phba->last_completion_time = jiffies; 12275 workposted = lpfc_sli4_sp_handle_rcqe(phba, 12276 (struct lpfc_rcqe *)&cqevt); 12277 break; 12278 default: 12279 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12280 "0388 Not a valid WCQE code: x%x\n", 12281 bf_get(lpfc_cqe_code, &cqevt)); 12282 break; 12283 } 12284 return workposted; 12285 } 12286 12287 /** 12288 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 12289 * @phba: Pointer to HBA context object. 12290 * @eqe: Pointer to fast-path event queue entry. 12291 * 12292 * This routine process a event queue entry from the slow-path event queue. 12293 * It will check the MajorCode and MinorCode to determine this is for a 12294 * completion event on a completion queue, if not, an error shall be logged 12295 * and just return. Otherwise, it will get to the corresponding completion 12296 * queue and process all the entries on that completion queue, rearm the 12297 * completion queue, and then return. 12298 * 12299 **/ 12300 static void 12301 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 12302 struct lpfc_queue *speq) 12303 { 12304 struct lpfc_queue *cq = NULL, *childq; 12305 struct lpfc_cqe *cqe; 12306 bool workposted = false; 12307 int ecount = 0; 12308 uint16_t cqid; 12309 12310 /* Get the reference to the corresponding CQ */ 12311 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 12312 12313 list_for_each_entry(childq, &speq->child_list, list) { 12314 if (childq->queue_id == cqid) { 12315 cq = childq; 12316 break; 12317 } 12318 } 12319 if (unlikely(!cq)) { 12320 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 12321 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12322 "0365 Slow-path CQ identifier " 12323 "(%d) does not exist\n", cqid); 12324 return; 12325 } 12326 12327 /* Process all the entries to the CQ */ 12328 switch (cq->type) { 12329 case LPFC_MCQ: 12330 while ((cqe = lpfc_sli4_cq_get(cq))) { 12331 workposted |= lpfc_sli4_sp_handle_mcqe(phba, cqe); 12332 if (!(++ecount % cq->entry_repost)) 12333 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12334 cq->CQ_mbox++; 12335 } 12336 break; 12337 case LPFC_WCQ: 12338 while ((cqe = lpfc_sli4_cq_get(cq))) { 12339 if (cq->subtype == LPFC_FCP) 12340 workposted |= lpfc_sli4_fp_handle_wcqe(phba, cq, 12341 cqe); 12342 else 12343 workposted |= lpfc_sli4_sp_handle_cqe(phba, cq, 12344 cqe); 12345 if (!(++ecount % cq->entry_repost)) 12346 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12347 } 12348 12349 /* Track the max number of CQEs processed in 1 EQ */ 12350 if (ecount > cq->CQ_max_cqe) 12351 cq->CQ_max_cqe = ecount; 12352 break; 12353 default: 12354 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12355 "0370 Invalid completion queue type (%d)\n", 12356 cq->type); 12357 return; 12358 } 12359 12360 /* Catch the no cq entry condition, log an error */ 12361 if (unlikely(ecount == 0)) 12362 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12363 "0371 No entry from the CQ: identifier " 12364 "(x%x), type (%d)\n", cq->queue_id, cq->type); 12365 12366 /* In any case, flash and re-arm the RCQ */ 12367 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 12368 12369 /* wake up worker thread if there are works to be done */ 12370 if (workposted) 12371 lpfc_worker_wake_up(phba); 12372 } 12373 12374 /** 12375 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 12376 * @phba: Pointer to HBA context object. 12377 * @cq: Pointer to associated CQ 12378 * @wcqe: Pointer to work-queue completion queue entry. 12379 * 12380 * This routine process a fast-path work queue completion entry from fast-path 12381 * event queue for FCP command response completion. 12382 **/ 12383 static void 12384 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12385 struct lpfc_wcqe_complete *wcqe) 12386 { 12387 struct lpfc_sli_ring *pring = cq->pring; 12388 struct lpfc_iocbq *cmdiocbq; 12389 struct lpfc_iocbq irspiocbq; 12390 unsigned long iflags; 12391 12392 /* Check for response status */ 12393 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 12394 /* If resource errors reported from HBA, reduce queue 12395 * depth of the SCSI device. 12396 */ 12397 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 12398 IOSTAT_LOCAL_REJECT)) && 12399 ((wcqe->parameter & IOERR_PARAM_MASK) == 12400 IOERR_NO_RESOURCES)) 12401 phba->lpfc_rampdown_queue_depth(phba); 12402 12403 /* Log the error status */ 12404 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12405 "0373 FCP complete error: status=x%x, " 12406 "hw_status=x%x, total_data_specified=%d, " 12407 "parameter=x%x, word3=x%x\n", 12408 bf_get(lpfc_wcqe_c_status, wcqe), 12409 bf_get(lpfc_wcqe_c_hw_status, wcqe), 12410 wcqe->total_data_placed, wcqe->parameter, 12411 wcqe->word3); 12412 } 12413 12414 /* Look up the FCP command IOCB and create pseudo response IOCB */ 12415 spin_lock_irqsave(&pring->ring_lock, iflags); 12416 pring->stats.iocb_event++; 12417 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 12418 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12419 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12420 if (unlikely(!cmdiocbq)) { 12421 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12422 "0374 FCP complete with no corresponding " 12423 "cmdiocb: iotag (%d)\n", 12424 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12425 return; 12426 } 12427 if (unlikely(!cmdiocbq->iocb_cmpl)) { 12428 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12429 "0375 FCP cmdiocb not callback function " 12430 "iotag: (%d)\n", 12431 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12432 return; 12433 } 12434 12435 /* Fake the irspiocb and copy necessary response information */ 12436 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 12437 12438 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 12439 spin_lock_irqsave(&phba->hbalock, iflags); 12440 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 12441 spin_unlock_irqrestore(&phba->hbalock, iflags); 12442 } 12443 12444 /* Pass the cmd_iocb and the rsp state to the upper layer */ 12445 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 12446 } 12447 12448 /** 12449 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 12450 * @phba: Pointer to HBA context object. 12451 * @cq: Pointer to completion queue. 12452 * @wcqe: Pointer to work-queue completion queue entry. 12453 * 12454 * This routine handles an fast-path WQ entry consumed event by invoking the 12455 * proper WQ release routine to the slow-path WQ. 12456 **/ 12457 static void 12458 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12459 struct lpfc_wcqe_release *wcqe) 12460 { 12461 struct lpfc_queue *childwq; 12462 bool wqid_matched = false; 12463 uint16_t fcp_wqid; 12464 12465 /* Check for fast-path FCP work queue release */ 12466 fcp_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 12467 list_for_each_entry(childwq, &cq->child_list, list) { 12468 if (childwq->queue_id == fcp_wqid) { 12469 lpfc_sli4_wq_release(childwq, 12470 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 12471 wqid_matched = true; 12472 break; 12473 } 12474 } 12475 /* Report warning log message if no match found */ 12476 if (wqid_matched != true) 12477 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12478 "2580 Fast-path wqe consume event carries " 12479 "miss-matched qid: wcqe-qid=x%x\n", fcp_wqid); 12480 } 12481 12482 /** 12483 * lpfc_sli4_fp_handle_wcqe - Process fast-path work queue completion entry 12484 * @cq: Pointer to the completion queue. 12485 * @eqe: Pointer to fast-path completion queue entry. 12486 * 12487 * This routine process a fast-path work queue completion entry from fast-path 12488 * event queue for FCP command response completion. 12489 **/ 12490 static int 12491 lpfc_sli4_fp_handle_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12492 struct lpfc_cqe *cqe) 12493 { 12494 struct lpfc_wcqe_release wcqe; 12495 bool workposted = false; 12496 12497 /* Copy the work queue CQE and convert endian order if needed */ 12498 lpfc_sli_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 12499 12500 /* Check and process for different type of WCQE and dispatch */ 12501 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 12502 case CQE_CODE_COMPL_WQE: 12503 cq->CQ_wq++; 12504 /* Process the WQ complete event */ 12505 phba->last_completion_time = jiffies; 12506 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 12507 (struct lpfc_wcqe_complete *)&wcqe); 12508 break; 12509 case CQE_CODE_RELEASE_WQE: 12510 cq->CQ_release_wqe++; 12511 /* Process the WQ release event */ 12512 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 12513 (struct lpfc_wcqe_release *)&wcqe); 12514 break; 12515 case CQE_CODE_XRI_ABORTED: 12516 cq->CQ_xri_aborted++; 12517 /* Process the WQ XRI abort event */ 12518 phba->last_completion_time = jiffies; 12519 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 12520 (struct sli4_wcqe_xri_aborted *)&wcqe); 12521 break; 12522 default: 12523 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12524 "0144 Not a valid WCQE code: x%x\n", 12525 bf_get(lpfc_wcqe_c_code, &wcqe)); 12526 break; 12527 } 12528 return workposted; 12529 } 12530 12531 /** 12532 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 12533 * @phba: Pointer to HBA context object. 12534 * @eqe: Pointer to fast-path event queue entry. 12535 * 12536 * This routine process a event queue entry from the fast-path event queue. 12537 * It will check the MajorCode and MinorCode to determine this is for a 12538 * completion event on a completion queue, if not, an error shall be logged 12539 * and just return. Otherwise, it will get to the corresponding completion 12540 * queue and process all the entries on the completion queue, rearm the 12541 * completion queue, and then return. 12542 **/ 12543 static void 12544 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 12545 uint32_t qidx) 12546 { 12547 struct lpfc_queue *cq; 12548 struct lpfc_cqe *cqe; 12549 bool workposted = false; 12550 uint16_t cqid; 12551 int ecount = 0; 12552 12553 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 12554 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12555 "0366 Not a valid completion " 12556 "event: majorcode=x%x, minorcode=x%x\n", 12557 bf_get_le32(lpfc_eqe_major_code, eqe), 12558 bf_get_le32(lpfc_eqe_minor_code, eqe)); 12559 return; 12560 } 12561 12562 /* Get the reference to the corresponding CQ */ 12563 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 12564 12565 /* Check if this is a Slow path event */ 12566 if (unlikely(cqid != phba->sli4_hba.fcp_cq_map[qidx])) { 12567 lpfc_sli4_sp_handle_eqe(phba, eqe, 12568 phba->sli4_hba.hba_eq[qidx]); 12569 return; 12570 } 12571 12572 if (unlikely(!phba->sli4_hba.fcp_cq)) { 12573 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12574 "3146 Fast-path completion queues " 12575 "does not exist\n"); 12576 return; 12577 } 12578 cq = phba->sli4_hba.fcp_cq[qidx]; 12579 if (unlikely(!cq)) { 12580 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 12581 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12582 "0367 Fast-path completion queue " 12583 "(%d) does not exist\n", qidx); 12584 return; 12585 } 12586 12587 if (unlikely(cqid != cq->queue_id)) { 12588 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12589 "0368 Miss-matched fast-path completion " 12590 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 12591 cqid, cq->queue_id); 12592 return; 12593 } 12594 12595 /* Process all the entries to the CQ */ 12596 while ((cqe = lpfc_sli4_cq_get(cq))) { 12597 workposted |= lpfc_sli4_fp_handle_wcqe(phba, cq, cqe); 12598 if (!(++ecount % cq->entry_repost)) 12599 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12600 } 12601 12602 /* Track the max number of CQEs processed in 1 EQ */ 12603 if (ecount > cq->CQ_max_cqe) 12604 cq->CQ_max_cqe = ecount; 12605 12606 /* Catch the no cq entry condition */ 12607 if (unlikely(ecount == 0)) 12608 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12609 "0369 No entry from fast-path completion " 12610 "queue fcpcqid=%d\n", cq->queue_id); 12611 12612 /* In any case, flash and re-arm the CQ */ 12613 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 12614 12615 /* wake up worker thread if there are works to be done */ 12616 if (workposted) 12617 lpfc_worker_wake_up(phba); 12618 } 12619 12620 static void 12621 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 12622 { 12623 struct lpfc_eqe *eqe; 12624 12625 /* walk all the EQ entries and drop on the floor */ 12626 while ((eqe = lpfc_sli4_eq_get(eq))) 12627 ; 12628 12629 /* Clear and re-arm the EQ */ 12630 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM); 12631 } 12632 12633 12634 /** 12635 * lpfc_sli4_fof_handle_eqe - Process a Flash Optimized Fabric event queue 12636 * entry 12637 * @phba: Pointer to HBA context object. 12638 * @eqe: Pointer to fast-path event queue entry. 12639 * 12640 * This routine process a event queue entry from the Flash Optimized Fabric 12641 * event queue. It will check the MajorCode and MinorCode to determine this 12642 * is for a completion event on a completion queue, if not, an error shall be 12643 * logged and just return. Otherwise, it will get to the corresponding 12644 * completion queue and process all the entries on the completion queue, rearm 12645 * the completion queue, and then return. 12646 **/ 12647 static void 12648 lpfc_sli4_fof_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe) 12649 { 12650 struct lpfc_queue *cq; 12651 struct lpfc_cqe *cqe; 12652 bool workposted = false; 12653 uint16_t cqid; 12654 int ecount = 0; 12655 12656 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 12657 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12658 "9147 Not a valid completion " 12659 "event: majorcode=x%x, minorcode=x%x\n", 12660 bf_get_le32(lpfc_eqe_major_code, eqe), 12661 bf_get_le32(lpfc_eqe_minor_code, eqe)); 12662 return; 12663 } 12664 12665 /* Get the reference to the corresponding CQ */ 12666 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 12667 12668 /* Next check for OAS */ 12669 cq = phba->sli4_hba.oas_cq; 12670 if (unlikely(!cq)) { 12671 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 12672 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12673 "9148 OAS completion queue " 12674 "does not exist\n"); 12675 return; 12676 } 12677 12678 if (unlikely(cqid != cq->queue_id)) { 12679 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12680 "9149 Miss-matched fast-path compl " 12681 "queue id: eqcqid=%d, fcpcqid=%d\n", 12682 cqid, cq->queue_id); 12683 return; 12684 } 12685 12686 /* Process all the entries to the OAS CQ */ 12687 while ((cqe = lpfc_sli4_cq_get(cq))) { 12688 workposted |= lpfc_sli4_fp_handle_wcqe(phba, cq, cqe); 12689 if (!(++ecount % cq->entry_repost)) 12690 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12691 } 12692 12693 /* Track the max number of CQEs processed in 1 EQ */ 12694 if (ecount > cq->CQ_max_cqe) 12695 cq->CQ_max_cqe = ecount; 12696 12697 /* Catch the no cq entry condition */ 12698 if (unlikely(ecount == 0)) 12699 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12700 "9153 No entry from fast-path completion " 12701 "queue fcpcqid=%d\n", cq->queue_id); 12702 12703 /* In any case, flash and re-arm the CQ */ 12704 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 12705 12706 /* wake up worker thread if there are works to be done */ 12707 if (workposted) 12708 lpfc_worker_wake_up(phba); 12709 } 12710 12711 /** 12712 * lpfc_sli4_fof_intr_handler - HBA interrupt handler to SLI-4 device 12713 * @irq: Interrupt number. 12714 * @dev_id: The device context pointer. 12715 * 12716 * This function is directly called from the PCI layer as an interrupt 12717 * service routine when device with SLI-4 interface spec is enabled with 12718 * MSI-X multi-message interrupt mode and there is a Flash Optimized Fabric 12719 * IOCB ring event in the HBA. However, when the device is enabled with either 12720 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 12721 * device-level interrupt handler. When the PCI slot is in error recovery 12722 * or the HBA is undergoing initialization, the interrupt handler will not 12723 * process the interrupt. The Flash Optimized Fabric ring event are handled in 12724 * the intrrupt context. This function is called without any lock held. 12725 * It gets the hbalock to access and update SLI data structures. Note that, 12726 * the EQ to CQ are one-to-one map such that the EQ index is 12727 * equal to that of CQ index. 12728 * 12729 * This function returns IRQ_HANDLED when interrupt is handled else it 12730 * returns IRQ_NONE. 12731 **/ 12732 irqreturn_t 12733 lpfc_sli4_fof_intr_handler(int irq, void *dev_id) 12734 { 12735 struct lpfc_hba *phba; 12736 struct lpfc_fcp_eq_hdl *fcp_eq_hdl; 12737 struct lpfc_queue *eq; 12738 struct lpfc_eqe *eqe; 12739 unsigned long iflag; 12740 int ecount = 0; 12741 12742 /* Get the driver's phba structure from the dev_id */ 12743 fcp_eq_hdl = (struct lpfc_fcp_eq_hdl *)dev_id; 12744 phba = fcp_eq_hdl->phba; 12745 12746 if (unlikely(!phba)) 12747 return IRQ_NONE; 12748 12749 /* Get to the EQ struct associated with this vector */ 12750 eq = phba->sli4_hba.fof_eq; 12751 if (unlikely(!eq)) 12752 return IRQ_NONE; 12753 12754 /* Check device state for handling interrupt */ 12755 if (unlikely(lpfc_intr_state_check(phba))) { 12756 eq->EQ_badstate++; 12757 /* Check again for link_state with lock held */ 12758 spin_lock_irqsave(&phba->hbalock, iflag); 12759 if (phba->link_state < LPFC_LINK_DOWN) 12760 /* Flush, clear interrupt, and rearm the EQ */ 12761 lpfc_sli4_eq_flush(phba, eq); 12762 spin_unlock_irqrestore(&phba->hbalock, iflag); 12763 return IRQ_NONE; 12764 } 12765 12766 /* 12767 * Process all the event on FCP fast-path EQ 12768 */ 12769 while ((eqe = lpfc_sli4_eq_get(eq))) { 12770 lpfc_sli4_fof_handle_eqe(phba, eqe); 12771 if (!(++ecount % eq->entry_repost)) 12772 lpfc_sli4_eq_release(eq, LPFC_QUEUE_NOARM); 12773 eq->EQ_processed++; 12774 } 12775 12776 /* Track the max number of EQEs processed in 1 intr */ 12777 if (ecount > eq->EQ_max_eqe) 12778 eq->EQ_max_eqe = ecount; 12779 12780 12781 if (unlikely(ecount == 0)) { 12782 eq->EQ_no_entry++; 12783 12784 if (phba->intr_type == MSIX) 12785 /* MSI-X treated interrupt served as no EQ share INT */ 12786 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12787 "9145 MSI-X interrupt with no EQE\n"); 12788 else { 12789 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12790 "9146 ISR interrupt with no EQE\n"); 12791 /* Non MSI-X treated on interrupt as EQ share INT */ 12792 return IRQ_NONE; 12793 } 12794 } 12795 /* Always clear and re-arm the fast-path EQ */ 12796 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM); 12797 return IRQ_HANDLED; 12798 } 12799 12800 /** 12801 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 12802 * @irq: Interrupt number. 12803 * @dev_id: The device context pointer. 12804 * 12805 * This function is directly called from the PCI layer as an interrupt 12806 * service routine when device with SLI-4 interface spec is enabled with 12807 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 12808 * ring event in the HBA. However, when the device is enabled with either 12809 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 12810 * device-level interrupt handler. When the PCI slot is in error recovery 12811 * or the HBA is undergoing initialization, the interrupt handler will not 12812 * process the interrupt. The SCSI FCP fast-path ring event are handled in 12813 * the intrrupt context. This function is called without any lock held. 12814 * It gets the hbalock to access and update SLI data structures. Note that, 12815 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 12816 * equal to that of FCP CQ index. 12817 * 12818 * The link attention and ELS ring attention events are handled 12819 * by the worker thread. The interrupt handler signals the worker thread 12820 * and returns for these events. This function is called without any lock 12821 * held. It gets the hbalock to access and update SLI data structures. 12822 * 12823 * This function returns IRQ_HANDLED when interrupt is handled else it 12824 * returns IRQ_NONE. 12825 **/ 12826 irqreturn_t 12827 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 12828 { 12829 struct lpfc_hba *phba; 12830 struct lpfc_fcp_eq_hdl *fcp_eq_hdl; 12831 struct lpfc_queue *fpeq; 12832 struct lpfc_eqe *eqe; 12833 unsigned long iflag; 12834 int ecount = 0; 12835 int fcp_eqidx; 12836 12837 /* Get the driver's phba structure from the dev_id */ 12838 fcp_eq_hdl = (struct lpfc_fcp_eq_hdl *)dev_id; 12839 phba = fcp_eq_hdl->phba; 12840 fcp_eqidx = fcp_eq_hdl->idx; 12841 12842 if (unlikely(!phba)) 12843 return IRQ_NONE; 12844 if (unlikely(!phba->sli4_hba.hba_eq)) 12845 return IRQ_NONE; 12846 12847 /* Get to the EQ struct associated with this vector */ 12848 fpeq = phba->sli4_hba.hba_eq[fcp_eqidx]; 12849 if (unlikely(!fpeq)) 12850 return IRQ_NONE; 12851 12852 if (lpfc_fcp_look_ahead) { 12853 if (atomic_dec_and_test(&fcp_eq_hdl->fcp_eq_in_use)) 12854 lpfc_sli4_eq_clr_intr(fpeq); 12855 else { 12856 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 12857 return IRQ_NONE; 12858 } 12859 } 12860 12861 /* Check device state for handling interrupt */ 12862 if (unlikely(lpfc_intr_state_check(phba))) { 12863 fpeq->EQ_badstate++; 12864 /* Check again for link_state with lock held */ 12865 spin_lock_irqsave(&phba->hbalock, iflag); 12866 if (phba->link_state < LPFC_LINK_DOWN) 12867 /* Flush, clear interrupt, and rearm the EQ */ 12868 lpfc_sli4_eq_flush(phba, fpeq); 12869 spin_unlock_irqrestore(&phba->hbalock, iflag); 12870 if (lpfc_fcp_look_ahead) 12871 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 12872 return IRQ_NONE; 12873 } 12874 12875 /* 12876 * Process all the event on FCP fast-path EQ 12877 */ 12878 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 12879 if (eqe == NULL) 12880 break; 12881 12882 lpfc_sli4_hba_handle_eqe(phba, eqe, fcp_eqidx); 12883 if (!(++ecount % fpeq->entry_repost)) 12884 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_NOARM); 12885 fpeq->EQ_processed++; 12886 } 12887 12888 /* Track the max number of EQEs processed in 1 intr */ 12889 if (ecount > fpeq->EQ_max_eqe) 12890 fpeq->EQ_max_eqe = ecount; 12891 12892 /* Always clear and re-arm the fast-path EQ */ 12893 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 12894 12895 if (unlikely(ecount == 0)) { 12896 fpeq->EQ_no_entry++; 12897 12898 if (lpfc_fcp_look_ahead) { 12899 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 12900 return IRQ_NONE; 12901 } 12902 12903 if (phba->intr_type == MSIX) 12904 /* MSI-X treated interrupt served as no EQ share INT */ 12905 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12906 "0358 MSI-X interrupt with no EQE\n"); 12907 else 12908 /* Non MSI-X treated on interrupt as EQ share INT */ 12909 return IRQ_NONE; 12910 } 12911 12912 if (lpfc_fcp_look_ahead) 12913 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 12914 return IRQ_HANDLED; 12915 } /* lpfc_sli4_fp_intr_handler */ 12916 12917 /** 12918 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 12919 * @irq: Interrupt number. 12920 * @dev_id: The device context pointer. 12921 * 12922 * This function is the device-level interrupt handler to device with SLI-4 12923 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 12924 * interrupt mode is enabled and there is an event in the HBA which requires 12925 * driver attention. This function invokes the slow-path interrupt attention 12926 * handling function and fast-path interrupt attention handling function in 12927 * turn to process the relevant HBA attention events. This function is called 12928 * without any lock held. It gets the hbalock to access and update SLI data 12929 * structures. 12930 * 12931 * This function returns IRQ_HANDLED when interrupt is handled, else it 12932 * returns IRQ_NONE. 12933 **/ 12934 irqreturn_t 12935 lpfc_sli4_intr_handler(int irq, void *dev_id) 12936 { 12937 struct lpfc_hba *phba; 12938 irqreturn_t hba_irq_rc; 12939 bool hba_handled = false; 12940 int fcp_eqidx; 12941 12942 /* Get the driver's phba structure from the dev_id */ 12943 phba = (struct lpfc_hba *)dev_id; 12944 12945 if (unlikely(!phba)) 12946 return IRQ_NONE; 12947 12948 /* 12949 * Invoke fast-path host attention interrupt handling as appropriate. 12950 */ 12951 for (fcp_eqidx = 0; fcp_eqidx < phba->cfg_fcp_io_channel; fcp_eqidx++) { 12952 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 12953 &phba->sli4_hba.fcp_eq_hdl[fcp_eqidx]); 12954 if (hba_irq_rc == IRQ_HANDLED) 12955 hba_handled |= true; 12956 } 12957 12958 if (phba->cfg_fof) { 12959 hba_irq_rc = lpfc_sli4_fof_intr_handler(irq, 12960 &phba->sli4_hba.fcp_eq_hdl[0]); 12961 if (hba_irq_rc == IRQ_HANDLED) 12962 hba_handled |= true; 12963 } 12964 12965 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 12966 } /* lpfc_sli4_intr_handler */ 12967 12968 /** 12969 * lpfc_sli4_queue_free - free a queue structure and associated memory 12970 * @queue: The queue structure to free. 12971 * 12972 * This function frees a queue structure and the DMAable memory used for 12973 * the host resident queue. This function must be called after destroying the 12974 * queue on the HBA. 12975 **/ 12976 void 12977 lpfc_sli4_queue_free(struct lpfc_queue *queue) 12978 { 12979 struct lpfc_dmabuf *dmabuf; 12980 12981 if (!queue) 12982 return; 12983 12984 while (!list_empty(&queue->page_list)) { 12985 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 12986 list); 12987 dma_free_coherent(&queue->phba->pcidev->dev, SLI4_PAGE_SIZE, 12988 dmabuf->virt, dmabuf->phys); 12989 kfree(dmabuf); 12990 } 12991 kfree(queue); 12992 return; 12993 } 12994 12995 /** 12996 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 12997 * @phba: The HBA that this queue is being created on. 12998 * @entry_size: The size of each queue entry for this queue. 12999 * @entry count: The number of entries that this queue will handle. 13000 * 13001 * This function allocates a queue structure and the DMAable memory used for 13002 * the host resident queue. This function must be called before creating the 13003 * queue on the HBA. 13004 **/ 13005 struct lpfc_queue * 13006 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t entry_size, 13007 uint32_t entry_count) 13008 { 13009 struct lpfc_queue *queue; 13010 struct lpfc_dmabuf *dmabuf; 13011 int x, total_qe_count; 13012 void *dma_pointer; 13013 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13014 13015 if (!phba->sli4_hba.pc_sli4_params.supported) 13016 hw_page_size = SLI4_PAGE_SIZE; 13017 13018 queue = kzalloc(sizeof(struct lpfc_queue) + 13019 (sizeof(union sli4_qe) * entry_count), GFP_KERNEL); 13020 if (!queue) 13021 return NULL; 13022 queue->page_count = (ALIGN(entry_size * entry_count, 13023 hw_page_size))/hw_page_size; 13024 INIT_LIST_HEAD(&queue->list); 13025 INIT_LIST_HEAD(&queue->page_list); 13026 INIT_LIST_HEAD(&queue->child_list); 13027 for (x = 0, total_qe_count = 0; x < queue->page_count; x++) { 13028 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 13029 if (!dmabuf) 13030 goto out_fail; 13031 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, 13032 hw_page_size, &dmabuf->phys, 13033 GFP_KERNEL); 13034 if (!dmabuf->virt) { 13035 kfree(dmabuf); 13036 goto out_fail; 13037 } 13038 dmabuf->buffer_tag = x; 13039 list_add_tail(&dmabuf->list, &queue->page_list); 13040 /* initialize queue's entry array */ 13041 dma_pointer = dmabuf->virt; 13042 for (; total_qe_count < entry_count && 13043 dma_pointer < (hw_page_size + dmabuf->virt); 13044 total_qe_count++, dma_pointer += entry_size) { 13045 queue->qe[total_qe_count].address = dma_pointer; 13046 } 13047 } 13048 queue->entry_size = entry_size; 13049 queue->entry_count = entry_count; 13050 13051 /* 13052 * entry_repost is calculated based on the number of entries in the 13053 * queue. This works out except for RQs. If buffers are NOT initially 13054 * posted for every RQE, entry_repost should be adjusted accordingly. 13055 */ 13056 queue->entry_repost = (entry_count >> 3); 13057 if (queue->entry_repost < LPFC_QUEUE_MIN_REPOST) 13058 queue->entry_repost = LPFC_QUEUE_MIN_REPOST; 13059 queue->phba = phba; 13060 13061 return queue; 13062 out_fail: 13063 lpfc_sli4_queue_free(queue); 13064 return NULL; 13065 } 13066 13067 /** 13068 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 13069 * @phba: HBA structure that indicates port to create a queue on. 13070 * @pci_barset: PCI BAR set flag. 13071 * 13072 * This function shall perform iomap of the specified PCI BAR address to host 13073 * memory address if not already done so and return it. The returned host 13074 * memory address can be NULL. 13075 */ 13076 static void __iomem * 13077 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 13078 { 13079 if (!phba->pcidev) 13080 return NULL; 13081 13082 switch (pci_barset) { 13083 case WQ_PCI_BAR_0_AND_1: 13084 return phba->pci_bar0_memmap_p; 13085 case WQ_PCI_BAR_2_AND_3: 13086 return phba->pci_bar2_memmap_p; 13087 case WQ_PCI_BAR_4_AND_5: 13088 return phba->pci_bar4_memmap_p; 13089 default: 13090 break; 13091 } 13092 return NULL; 13093 } 13094 13095 /** 13096 * lpfc_modify_fcp_eq_delay - Modify Delay Multiplier on FCP EQs 13097 * @phba: HBA structure that indicates port to create a queue on. 13098 * @startq: The starting FCP EQ to modify 13099 * 13100 * This function sends an MODIFY_EQ_DELAY mailbox command to the HBA. 13101 * 13102 * The @phba struct is used to send mailbox command to HBA. The @startq 13103 * is used to get the starting FCP EQ to change. 13104 * This function is asynchronous and will wait for the mailbox 13105 * command to finish before continuing. 13106 * 13107 * On success this function will return a zero. If unable to allocate enough 13108 * memory this function will return -ENOMEM. If the queue create mailbox command 13109 * fails this function will return -ENXIO. 13110 **/ 13111 int 13112 lpfc_modify_fcp_eq_delay(struct lpfc_hba *phba, uint32_t startq) 13113 { 13114 struct lpfc_mbx_modify_eq_delay *eq_delay; 13115 LPFC_MBOXQ_t *mbox; 13116 struct lpfc_queue *eq; 13117 int cnt, rc, length, status = 0; 13118 uint32_t shdr_status, shdr_add_status; 13119 uint32_t result; 13120 int fcp_eqidx; 13121 union lpfc_sli4_cfg_shdr *shdr; 13122 uint16_t dmult; 13123 13124 if (startq >= phba->cfg_fcp_io_channel) 13125 return 0; 13126 13127 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13128 if (!mbox) 13129 return -ENOMEM; 13130 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 13131 sizeof(struct lpfc_sli4_cfg_mhdr)); 13132 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13133 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 13134 length, LPFC_SLI4_MBX_EMBED); 13135 eq_delay = &mbox->u.mqe.un.eq_delay; 13136 13137 /* Calculate delay multiper from maximum interrupt per second */ 13138 result = phba->cfg_fcp_imax / phba->cfg_fcp_io_channel; 13139 if (result > LPFC_DMULT_CONST) 13140 dmult = 0; 13141 else 13142 dmult = LPFC_DMULT_CONST/result - 1; 13143 13144 cnt = 0; 13145 for (fcp_eqidx = startq; fcp_eqidx < phba->cfg_fcp_io_channel; 13146 fcp_eqidx++) { 13147 eq = phba->sli4_hba.hba_eq[fcp_eqidx]; 13148 if (!eq) 13149 continue; 13150 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 13151 eq_delay->u.request.eq[cnt].phase = 0; 13152 eq_delay->u.request.eq[cnt].delay_multi = dmult; 13153 cnt++; 13154 if (cnt >= LPFC_MAX_EQ_DELAY) 13155 break; 13156 } 13157 eq_delay->u.request.num_eq = cnt; 13158 13159 mbox->vport = phba->pport; 13160 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13161 mbox->context1 = NULL; 13162 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13163 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 13164 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13165 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13166 if (shdr_status || shdr_add_status || rc) { 13167 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13168 "2512 MODIFY_EQ_DELAY mailbox failed with " 13169 "status x%x add_status x%x, mbx status x%x\n", 13170 shdr_status, shdr_add_status, rc); 13171 status = -ENXIO; 13172 } 13173 mempool_free(mbox, phba->mbox_mem_pool); 13174 return status; 13175 } 13176 13177 /** 13178 * lpfc_eq_create - Create an Event Queue on the HBA 13179 * @phba: HBA structure that indicates port to create a queue on. 13180 * @eq: The queue structure to use to create the event queue. 13181 * @imax: The maximum interrupt per second limit. 13182 * 13183 * This function creates an event queue, as detailed in @eq, on a port, 13184 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 13185 * 13186 * The @phba struct is used to send mailbox command to HBA. The @eq struct 13187 * is used to get the entry count and entry size that are necessary to 13188 * determine the number of pages to allocate and use for this queue. This 13189 * function will send the EQ_CREATE mailbox command to the HBA to setup the 13190 * event queue. This function is asynchronous and will wait for the mailbox 13191 * command to finish before continuing. 13192 * 13193 * On success this function will return a zero. If unable to allocate enough 13194 * memory this function will return -ENOMEM. If the queue create mailbox command 13195 * fails this function will return -ENXIO. 13196 **/ 13197 int 13198 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 13199 { 13200 struct lpfc_mbx_eq_create *eq_create; 13201 LPFC_MBOXQ_t *mbox; 13202 int rc, length, status = 0; 13203 struct lpfc_dmabuf *dmabuf; 13204 uint32_t shdr_status, shdr_add_status; 13205 union lpfc_sli4_cfg_shdr *shdr; 13206 uint16_t dmult; 13207 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13208 13209 /* sanity check on queue memory */ 13210 if (!eq) 13211 return -ENODEV; 13212 if (!phba->sli4_hba.pc_sli4_params.supported) 13213 hw_page_size = SLI4_PAGE_SIZE; 13214 13215 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13216 if (!mbox) 13217 return -ENOMEM; 13218 length = (sizeof(struct lpfc_mbx_eq_create) - 13219 sizeof(struct lpfc_sli4_cfg_mhdr)); 13220 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13221 LPFC_MBOX_OPCODE_EQ_CREATE, 13222 length, LPFC_SLI4_MBX_EMBED); 13223 eq_create = &mbox->u.mqe.un.eq_create; 13224 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 13225 eq->page_count); 13226 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 13227 LPFC_EQE_SIZE); 13228 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 13229 /* don't setup delay multiplier using EQ_CREATE */ 13230 dmult = 0; 13231 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 13232 dmult); 13233 switch (eq->entry_count) { 13234 default: 13235 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13236 "0360 Unsupported EQ count. (%d)\n", 13237 eq->entry_count); 13238 if (eq->entry_count < 256) 13239 return -EINVAL; 13240 /* otherwise default to smallest count (drop through) */ 13241 case 256: 13242 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13243 LPFC_EQ_CNT_256); 13244 break; 13245 case 512: 13246 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13247 LPFC_EQ_CNT_512); 13248 break; 13249 case 1024: 13250 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13251 LPFC_EQ_CNT_1024); 13252 break; 13253 case 2048: 13254 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13255 LPFC_EQ_CNT_2048); 13256 break; 13257 case 4096: 13258 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13259 LPFC_EQ_CNT_4096); 13260 break; 13261 } 13262 list_for_each_entry(dmabuf, &eq->page_list, list) { 13263 memset(dmabuf->virt, 0, hw_page_size); 13264 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13265 putPaddrLow(dmabuf->phys); 13266 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13267 putPaddrHigh(dmabuf->phys); 13268 } 13269 mbox->vport = phba->pport; 13270 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13271 mbox->context1 = NULL; 13272 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13273 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 13274 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13275 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13276 if (shdr_status || shdr_add_status || rc) { 13277 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13278 "2500 EQ_CREATE mailbox failed with " 13279 "status x%x add_status x%x, mbx status x%x\n", 13280 shdr_status, shdr_add_status, rc); 13281 status = -ENXIO; 13282 } 13283 eq->type = LPFC_EQ; 13284 eq->subtype = LPFC_NONE; 13285 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 13286 if (eq->queue_id == 0xFFFF) 13287 status = -ENXIO; 13288 eq->host_index = 0; 13289 eq->hba_index = 0; 13290 13291 mempool_free(mbox, phba->mbox_mem_pool); 13292 return status; 13293 } 13294 13295 /** 13296 * lpfc_cq_create - Create a Completion Queue on the HBA 13297 * @phba: HBA structure that indicates port to create a queue on. 13298 * @cq: The queue structure to use to create the completion queue. 13299 * @eq: The event queue to bind this completion queue to. 13300 * 13301 * This function creates a completion queue, as detailed in @wq, on a port, 13302 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 13303 * 13304 * The @phba struct is used to send mailbox command to HBA. The @cq struct 13305 * is used to get the entry count and entry size that are necessary to 13306 * determine the number of pages to allocate and use for this queue. The @eq 13307 * is used to indicate which event queue to bind this completion queue to. This 13308 * function will send the CQ_CREATE mailbox command to the HBA to setup the 13309 * completion queue. This function is asynchronous and will wait for the mailbox 13310 * command to finish before continuing. 13311 * 13312 * On success this function will return a zero. If unable to allocate enough 13313 * memory this function will return -ENOMEM. If the queue create mailbox command 13314 * fails this function will return -ENXIO. 13315 **/ 13316 int 13317 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 13318 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 13319 { 13320 struct lpfc_mbx_cq_create *cq_create; 13321 struct lpfc_dmabuf *dmabuf; 13322 LPFC_MBOXQ_t *mbox; 13323 int rc, length, status = 0; 13324 uint32_t shdr_status, shdr_add_status; 13325 union lpfc_sli4_cfg_shdr *shdr; 13326 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13327 13328 /* sanity check on queue memory */ 13329 if (!cq || !eq) 13330 return -ENODEV; 13331 if (!phba->sli4_hba.pc_sli4_params.supported) 13332 hw_page_size = SLI4_PAGE_SIZE; 13333 13334 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13335 if (!mbox) 13336 return -ENOMEM; 13337 length = (sizeof(struct lpfc_mbx_cq_create) - 13338 sizeof(struct lpfc_sli4_cfg_mhdr)); 13339 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13340 LPFC_MBOX_OPCODE_CQ_CREATE, 13341 length, LPFC_SLI4_MBX_EMBED); 13342 cq_create = &mbox->u.mqe.un.cq_create; 13343 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 13344 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 13345 cq->page_count); 13346 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 13347 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 13348 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13349 phba->sli4_hba.pc_sli4_params.cqv); 13350 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 13351 /* FW only supports 1. Should be PAGE_SIZE/SLI4_PAGE_SIZE */ 13352 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 1); 13353 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 13354 eq->queue_id); 13355 } else { 13356 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 13357 eq->queue_id); 13358 } 13359 switch (cq->entry_count) { 13360 default: 13361 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13362 "0361 Unsupported CQ count. (%d)\n", 13363 cq->entry_count); 13364 if (cq->entry_count < 256) { 13365 status = -EINVAL; 13366 goto out; 13367 } 13368 /* otherwise default to smallest count (drop through) */ 13369 case 256: 13370 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 13371 LPFC_CQ_CNT_256); 13372 break; 13373 case 512: 13374 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 13375 LPFC_CQ_CNT_512); 13376 break; 13377 case 1024: 13378 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 13379 LPFC_CQ_CNT_1024); 13380 break; 13381 } 13382 list_for_each_entry(dmabuf, &cq->page_list, list) { 13383 memset(dmabuf->virt, 0, hw_page_size); 13384 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13385 putPaddrLow(dmabuf->phys); 13386 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13387 putPaddrHigh(dmabuf->phys); 13388 } 13389 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13390 13391 /* The IOCTL status is embedded in the mailbox subheader. */ 13392 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13393 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13394 if (shdr_status || shdr_add_status || rc) { 13395 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13396 "2501 CQ_CREATE mailbox failed with " 13397 "status x%x add_status x%x, mbx status x%x\n", 13398 shdr_status, shdr_add_status, rc); 13399 status = -ENXIO; 13400 goto out; 13401 } 13402 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 13403 if (cq->queue_id == 0xFFFF) { 13404 status = -ENXIO; 13405 goto out; 13406 } 13407 /* link the cq onto the parent eq child list */ 13408 list_add_tail(&cq->list, &eq->child_list); 13409 /* Set up completion queue's type and subtype */ 13410 cq->type = type; 13411 cq->subtype = subtype; 13412 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 13413 cq->assoc_qid = eq->queue_id; 13414 cq->host_index = 0; 13415 cq->hba_index = 0; 13416 13417 out: 13418 mempool_free(mbox, phba->mbox_mem_pool); 13419 return status; 13420 } 13421 13422 /** 13423 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 13424 * @phba: HBA structure that indicates port to create a queue on. 13425 * @mq: The queue structure to use to create the mailbox queue. 13426 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 13427 * @cq: The completion queue to associate with this cq. 13428 * 13429 * This function provides failback (fb) functionality when the 13430 * mq_create_ext fails on older FW generations. It's purpose is identical 13431 * to mq_create_ext otherwise. 13432 * 13433 * This routine cannot fail as all attributes were previously accessed and 13434 * initialized in mq_create_ext. 13435 **/ 13436 static void 13437 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 13438 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 13439 { 13440 struct lpfc_mbx_mq_create *mq_create; 13441 struct lpfc_dmabuf *dmabuf; 13442 int length; 13443 13444 length = (sizeof(struct lpfc_mbx_mq_create) - 13445 sizeof(struct lpfc_sli4_cfg_mhdr)); 13446 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13447 LPFC_MBOX_OPCODE_MQ_CREATE, 13448 length, LPFC_SLI4_MBX_EMBED); 13449 mq_create = &mbox->u.mqe.un.mq_create; 13450 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 13451 mq->page_count); 13452 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 13453 cq->queue_id); 13454 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 13455 switch (mq->entry_count) { 13456 case 16: 13457 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 13458 LPFC_MQ_RING_SIZE_16); 13459 break; 13460 case 32: 13461 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 13462 LPFC_MQ_RING_SIZE_32); 13463 break; 13464 case 64: 13465 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 13466 LPFC_MQ_RING_SIZE_64); 13467 break; 13468 case 128: 13469 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 13470 LPFC_MQ_RING_SIZE_128); 13471 break; 13472 } 13473 list_for_each_entry(dmabuf, &mq->page_list, list) { 13474 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13475 putPaddrLow(dmabuf->phys); 13476 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13477 putPaddrHigh(dmabuf->phys); 13478 } 13479 } 13480 13481 /** 13482 * lpfc_mq_create - Create a mailbox Queue on the HBA 13483 * @phba: HBA structure that indicates port to create a queue on. 13484 * @mq: The queue structure to use to create the mailbox queue. 13485 * @cq: The completion queue to associate with this cq. 13486 * @subtype: The queue's subtype. 13487 * 13488 * This function creates a mailbox queue, as detailed in @mq, on a port, 13489 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 13490 * 13491 * The @phba struct is used to send mailbox command to HBA. The @cq struct 13492 * is used to get the entry count and entry size that are necessary to 13493 * determine the number of pages to allocate and use for this queue. This 13494 * function will send the MQ_CREATE mailbox command to the HBA to setup the 13495 * mailbox queue. This function is asynchronous and will wait for the mailbox 13496 * command to finish before continuing. 13497 * 13498 * On success this function will return a zero. If unable to allocate enough 13499 * memory this function will return -ENOMEM. If the queue create mailbox command 13500 * fails this function will return -ENXIO. 13501 **/ 13502 int32_t 13503 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 13504 struct lpfc_queue *cq, uint32_t subtype) 13505 { 13506 struct lpfc_mbx_mq_create *mq_create; 13507 struct lpfc_mbx_mq_create_ext *mq_create_ext; 13508 struct lpfc_dmabuf *dmabuf; 13509 LPFC_MBOXQ_t *mbox; 13510 int rc, length, status = 0; 13511 uint32_t shdr_status, shdr_add_status; 13512 union lpfc_sli4_cfg_shdr *shdr; 13513 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13514 13515 /* sanity check on queue memory */ 13516 if (!mq || !cq) 13517 return -ENODEV; 13518 if (!phba->sli4_hba.pc_sli4_params.supported) 13519 hw_page_size = SLI4_PAGE_SIZE; 13520 13521 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13522 if (!mbox) 13523 return -ENOMEM; 13524 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 13525 sizeof(struct lpfc_sli4_cfg_mhdr)); 13526 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13527 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 13528 length, LPFC_SLI4_MBX_EMBED); 13529 13530 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 13531 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 13532 bf_set(lpfc_mbx_mq_create_ext_num_pages, 13533 &mq_create_ext->u.request, mq->page_count); 13534 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 13535 &mq_create_ext->u.request, 1); 13536 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 13537 &mq_create_ext->u.request, 1); 13538 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 13539 &mq_create_ext->u.request, 1); 13540 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 13541 &mq_create_ext->u.request, 1); 13542 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 13543 &mq_create_ext->u.request, 1); 13544 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 13545 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13546 phba->sli4_hba.pc_sli4_params.mqv); 13547 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 13548 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 13549 cq->queue_id); 13550 else 13551 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 13552 cq->queue_id); 13553 switch (mq->entry_count) { 13554 default: 13555 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13556 "0362 Unsupported MQ count. (%d)\n", 13557 mq->entry_count); 13558 if (mq->entry_count < 16) { 13559 status = -EINVAL; 13560 goto out; 13561 } 13562 /* otherwise default to smallest count (drop through) */ 13563 case 16: 13564 bf_set(lpfc_mq_context_ring_size, 13565 &mq_create_ext->u.request.context, 13566 LPFC_MQ_RING_SIZE_16); 13567 break; 13568 case 32: 13569 bf_set(lpfc_mq_context_ring_size, 13570 &mq_create_ext->u.request.context, 13571 LPFC_MQ_RING_SIZE_32); 13572 break; 13573 case 64: 13574 bf_set(lpfc_mq_context_ring_size, 13575 &mq_create_ext->u.request.context, 13576 LPFC_MQ_RING_SIZE_64); 13577 break; 13578 case 128: 13579 bf_set(lpfc_mq_context_ring_size, 13580 &mq_create_ext->u.request.context, 13581 LPFC_MQ_RING_SIZE_128); 13582 break; 13583 } 13584 list_for_each_entry(dmabuf, &mq->page_list, list) { 13585 memset(dmabuf->virt, 0, hw_page_size); 13586 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 13587 putPaddrLow(dmabuf->phys); 13588 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 13589 putPaddrHigh(dmabuf->phys); 13590 } 13591 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13592 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 13593 &mq_create_ext->u.response); 13594 if (rc != MBX_SUCCESS) { 13595 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13596 "2795 MQ_CREATE_EXT failed with " 13597 "status x%x. Failback to MQ_CREATE.\n", 13598 rc); 13599 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 13600 mq_create = &mbox->u.mqe.un.mq_create; 13601 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13602 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 13603 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 13604 &mq_create->u.response); 13605 } 13606 13607 /* The IOCTL status is embedded in the mailbox subheader. */ 13608 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13609 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13610 if (shdr_status || shdr_add_status || rc) { 13611 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13612 "2502 MQ_CREATE mailbox failed with " 13613 "status x%x add_status x%x, mbx status x%x\n", 13614 shdr_status, shdr_add_status, rc); 13615 status = -ENXIO; 13616 goto out; 13617 } 13618 if (mq->queue_id == 0xFFFF) { 13619 status = -ENXIO; 13620 goto out; 13621 } 13622 mq->type = LPFC_MQ; 13623 mq->assoc_qid = cq->queue_id; 13624 mq->subtype = subtype; 13625 mq->host_index = 0; 13626 mq->hba_index = 0; 13627 13628 /* link the mq onto the parent cq child list */ 13629 list_add_tail(&mq->list, &cq->child_list); 13630 out: 13631 mempool_free(mbox, phba->mbox_mem_pool); 13632 return status; 13633 } 13634 13635 /** 13636 * lpfc_wq_create - Create a Work Queue on the HBA 13637 * @phba: HBA structure that indicates port to create a queue on. 13638 * @wq: The queue structure to use to create the work queue. 13639 * @cq: The completion queue to bind this work queue to. 13640 * @subtype: The subtype of the work queue indicating its functionality. 13641 * 13642 * This function creates a work queue, as detailed in @wq, on a port, described 13643 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 13644 * 13645 * The @phba struct is used to send mailbox command to HBA. The @wq struct 13646 * is used to get the entry count and entry size that are necessary to 13647 * determine the number of pages to allocate and use for this queue. The @cq 13648 * is used to indicate which completion queue to bind this work queue to. This 13649 * function will send the WQ_CREATE mailbox command to the HBA to setup the 13650 * work queue. This function is asynchronous and will wait for the mailbox 13651 * command to finish before continuing. 13652 * 13653 * On success this function will return a zero. If unable to allocate enough 13654 * memory this function will return -ENOMEM. If the queue create mailbox command 13655 * fails this function will return -ENXIO. 13656 **/ 13657 int 13658 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 13659 struct lpfc_queue *cq, uint32_t subtype) 13660 { 13661 struct lpfc_mbx_wq_create *wq_create; 13662 struct lpfc_dmabuf *dmabuf; 13663 LPFC_MBOXQ_t *mbox; 13664 int rc, length, status = 0; 13665 uint32_t shdr_status, shdr_add_status; 13666 union lpfc_sli4_cfg_shdr *shdr; 13667 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13668 struct dma_address *page; 13669 void __iomem *bar_memmap_p; 13670 uint32_t db_offset; 13671 uint16_t pci_barset; 13672 13673 /* sanity check on queue memory */ 13674 if (!wq || !cq) 13675 return -ENODEV; 13676 if (!phba->sli4_hba.pc_sli4_params.supported) 13677 hw_page_size = SLI4_PAGE_SIZE; 13678 13679 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13680 if (!mbox) 13681 return -ENOMEM; 13682 length = (sizeof(struct lpfc_mbx_wq_create) - 13683 sizeof(struct lpfc_sli4_cfg_mhdr)); 13684 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 13685 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 13686 length, LPFC_SLI4_MBX_EMBED); 13687 wq_create = &mbox->u.mqe.un.wq_create; 13688 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 13689 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 13690 wq->page_count); 13691 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 13692 cq->queue_id); 13693 13694 /* wqv is the earliest version supported, NOT the latest */ 13695 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13696 phba->sli4_hba.pc_sli4_params.wqv); 13697 13698 switch (phba->sli4_hba.pc_sli4_params.wqv) { 13699 case LPFC_Q_CREATE_VERSION_0: 13700 switch (wq->entry_size) { 13701 default: 13702 case 64: 13703 /* Nothing to do, version 0 ONLY supports 64 byte */ 13704 page = wq_create->u.request.page; 13705 break; 13706 case 128: 13707 if (!(phba->sli4_hba.pc_sli4_params.wqsize & 13708 LPFC_WQ_SZ128_SUPPORT)) { 13709 status = -ERANGE; 13710 goto out; 13711 } 13712 /* If we get here the HBA MUST also support V1 and 13713 * we MUST use it 13714 */ 13715 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13716 LPFC_Q_CREATE_VERSION_1); 13717 13718 bf_set(lpfc_mbx_wq_create_wqe_count, 13719 &wq_create->u.request_1, wq->entry_count); 13720 bf_set(lpfc_mbx_wq_create_wqe_size, 13721 &wq_create->u.request_1, 13722 LPFC_WQ_WQE_SIZE_128); 13723 bf_set(lpfc_mbx_wq_create_page_size, 13724 &wq_create->u.request_1, 13725 (PAGE_SIZE/SLI4_PAGE_SIZE)); 13726 page = wq_create->u.request_1.page; 13727 break; 13728 } 13729 break; 13730 case LPFC_Q_CREATE_VERSION_1: 13731 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 13732 wq->entry_count); 13733 switch (wq->entry_size) { 13734 default: 13735 case 64: 13736 bf_set(lpfc_mbx_wq_create_wqe_size, 13737 &wq_create->u.request_1, 13738 LPFC_WQ_WQE_SIZE_64); 13739 break; 13740 case 128: 13741 if (!(phba->sli4_hba.pc_sli4_params.wqsize & 13742 LPFC_WQ_SZ128_SUPPORT)) { 13743 status = -ERANGE; 13744 goto out; 13745 } 13746 bf_set(lpfc_mbx_wq_create_wqe_size, 13747 &wq_create->u.request_1, 13748 LPFC_WQ_WQE_SIZE_128); 13749 break; 13750 } 13751 bf_set(lpfc_mbx_wq_create_page_size, &wq_create->u.request_1, 13752 (PAGE_SIZE/SLI4_PAGE_SIZE)); 13753 page = wq_create->u.request_1.page; 13754 break; 13755 default: 13756 status = -ERANGE; 13757 goto out; 13758 } 13759 13760 list_for_each_entry(dmabuf, &wq->page_list, list) { 13761 memset(dmabuf->virt, 0, hw_page_size); 13762 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 13763 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 13764 } 13765 13766 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 13767 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 13768 13769 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13770 /* The IOCTL status is embedded in the mailbox subheader. */ 13771 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13772 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13773 if (shdr_status || shdr_add_status || rc) { 13774 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13775 "2503 WQ_CREATE mailbox failed with " 13776 "status x%x add_status x%x, mbx status x%x\n", 13777 shdr_status, shdr_add_status, rc); 13778 status = -ENXIO; 13779 goto out; 13780 } 13781 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, &wq_create->u.response); 13782 if (wq->queue_id == 0xFFFF) { 13783 status = -ENXIO; 13784 goto out; 13785 } 13786 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 13787 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 13788 &wq_create->u.response); 13789 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 13790 (wq->db_format != LPFC_DB_RING_FORMAT)) { 13791 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13792 "3265 WQ[%d] doorbell format not " 13793 "supported: x%x\n", wq->queue_id, 13794 wq->db_format); 13795 status = -EINVAL; 13796 goto out; 13797 } 13798 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 13799 &wq_create->u.response); 13800 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 13801 if (!bar_memmap_p) { 13802 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13803 "3263 WQ[%d] failed to memmap pci " 13804 "barset:x%x\n", wq->queue_id, 13805 pci_barset); 13806 status = -ENOMEM; 13807 goto out; 13808 } 13809 db_offset = wq_create->u.response.doorbell_offset; 13810 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 13811 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 13812 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13813 "3252 WQ[%d] doorbell offset not " 13814 "supported: x%x\n", wq->queue_id, 13815 db_offset); 13816 status = -EINVAL; 13817 goto out; 13818 } 13819 wq->db_regaddr = bar_memmap_p + db_offset; 13820 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13821 "3264 WQ[%d]: barset:x%x, offset:x%x, " 13822 "format:x%x\n", wq->queue_id, pci_barset, 13823 db_offset, wq->db_format); 13824 } else { 13825 wq->db_format = LPFC_DB_LIST_FORMAT; 13826 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 13827 } 13828 wq->type = LPFC_WQ; 13829 wq->assoc_qid = cq->queue_id; 13830 wq->subtype = subtype; 13831 wq->host_index = 0; 13832 wq->hba_index = 0; 13833 wq->entry_repost = LPFC_RELEASE_NOTIFICATION_INTERVAL; 13834 13835 /* link the wq onto the parent cq child list */ 13836 list_add_tail(&wq->list, &cq->child_list); 13837 out: 13838 mempool_free(mbox, phba->mbox_mem_pool); 13839 return status; 13840 } 13841 13842 /** 13843 * lpfc_rq_adjust_repost - Adjust entry_repost for an RQ 13844 * @phba: HBA structure that indicates port to create a queue on. 13845 * @rq: The queue structure to use for the receive queue. 13846 * @qno: The associated HBQ number 13847 * 13848 * 13849 * For SLI4 we need to adjust the RQ repost value based on 13850 * the number of buffers that are initially posted to the RQ. 13851 */ 13852 void 13853 lpfc_rq_adjust_repost(struct lpfc_hba *phba, struct lpfc_queue *rq, int qno) 13854 { 13855 uint32_t cnt; 13856 13857 /* sanity check on queue memory */ 13858 if (!rq) 13859 return; 13860 cnt = lpfc_hbq_defs[qno]->entry_count; 13861 13862 /* Recalc repost for RQs based on buffers initially posted */ 13863 cnt = (cnt >> 3); 13864 if (cnt < LPFC_QUEUE_MIN_REPOST) 13865 cnt = LPFC_QUEUE_MIN_REPOST; 13866 13867 rq->entry_repost = cnt; 13868 } 13869 13870 /** 13871 * lpfc_rq_create - Create a Receive Queue on the HBA 13872 * @phba: HBA structure that indicates port to create a queue on. 13873 * @hrq: The queue structure to use to create the header receive queue. 13874 * @drq: The queue structure to use to create the data receive queue. 13875 * @cq: The completion queue to bind this work queue to. 13876 * 13877 * This function creates a receive buffer queue pair , as detailed in @hrq and 13878 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 13879 * to the HBA. 13880 * 13881 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 13882 * struct is used to get the entry count that is necessary to determine the 13883 * number of pages to use for this queue. The @cq is used to indicate which 13884 * completion queue to bind received buffers that are posted to these queues to. 13885 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 13886 * receive queue pair. This function is asynchronous and will wait for the 13887 * mailbox command to finish before continuing. 13888 * 13889 * On success this function will return a zero. If unable to allocate enough 13890 * memory this function will return -ENOMEM. If the queue create mailbox command 13891 * fails this function will return -ENXIO. 13892 **/ 13893 int 13894 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 13895 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 13896 { 13897 struct lpfc_mbx_rq_create *rq_create; 13898 struct lpfc_dmabuf *dmabuf; 13899 LPFC_MBOXQ_t *mbox; 13900 int rc, length, status = 0; 13901 uint32_t shdr_status, shdr_add_status; 13902 union lpfc_sli4_cfg_shdr *shdr; 13903 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13904 void __iomem *bar_memmap_p; 13905 uint32_t db_offset; 13906 uint16_t pci_barset; 13907 13908 /* sanity check on queue memory */ 13909 if (!hrq || !drq || !cq) 13910 return -ENODEV; 13911 if (!phba->sli4_hba.pc_sli4_params.supported) 13912 hw_page_size = SLI4_PAGE_SIZE; 13913 13914 if (hrq->entry_count != drq->entry_count) 13915 return -EINVAL; 13916 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13917 if (!mbox) 13918 return -ENOMEM; 13919 length = (sizeof(struct lpfc_mbx_rq_create) - 13920 sizeof(struct lpfc_sli4_cfg_mhdr)); 13921 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 13922 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 13923 length, LPFC_SLI4_MBX_EMBED); 13924 rq_create = &mbox->u.mqe.un.rq_create; 13925 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 13926 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13927 phba->sli4_hba.pc_sli4_params.rqv); 13928 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 13929 bf_set(lpfc_rq_context_rqe_count_1, 13930 &rq_create->u.request.context, 13931 hrq->entry_count); 13932 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 13933 bf_set(lpfc_rq_context_rqe_size, 13934 &rq_create->u.request.context, 13935 LPFC_RQE_SIZE_8); 13936 bf_set(lpfc_rq_context_page_size, 13937 &rq_create->u.request.context, 13938 (PAGE_SIZE/SLI4_PAGE_SIZE)); 13939 } else { 13940 switch (hrq->entry_count) { 13941 default: 13942 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13943 "2535 Unsupported RQ count. (%d)\n", 13944 hrq->entry_count); 13945 if (hrq->entry_count < 512) { 13946 status = -EINVAL; 13947 goto out; 13948 } 13949 /* otherwise default to smallest count (drop through) */ 13950 case 512: 13951 bf_set(lpfc_rq_context_rqe_count, 13952 &rq_create->u.request.context, 13953 LPFC_RQ_RING_SIZE_512); 13954 break; 13955 case 1024: 13956 bf_set(lpfc_rq_context_rqe_count, 13957 &rq_create->u.request.context, 13958 LPFC_RQ_RING_SIZE_1024); 13959 break; 13960 case 2048: 13961 bf_set(lpfc_rq_context_rqe_count, 13962 &rq_create->u.request.context, 13963 LPFC_RQ_RING_SIZE_2048); 13964 break; 13965 case 4096: 13966 bf_set(lpfc_rq_context_rqe_count, 13967 &rq_create->u.request.context, 13968 LPFC_RQ_RING_SIZE_4096); 13969 break; 13970 } 13971 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 13972 LPFC_HDR_BUF_SIZE); 13973 } 13974 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 13975 cq->queue_id); 13976 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 13977 hrq->page_count); 13978 list_for_each_entry(dmabuf, &hrq->page_list, list) { 13979 memset(dmabuf->virt, 0, hw_page_size); 13980 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13981 putPaddrLow(dmabuf->phys); 13982 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13983 putPaddrHigh(dmabuf->phys); 13984 } 13985 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 13986 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 13987 13988 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13989 /* The IOCTL status is embedded in the mailbox subheader. */ 13990 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13991 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13992 if (shdr_status || shdr_add_status || rc) { 13993 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13994 "2504 RQ_CREATE mailbox failed with " 13995 "status x%x add_status x%x, mbx status x%x\n", 13996 shdr_status, shdr_add_status, rc); 13997 status = -ENXIO; 13998 goto out; 13999 } 14000 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 14001 if (hrq->queue_id == 0xFFFF) { 14002 status = -ENXIO; 14003 goto out; 14004 } 14005 14006 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 14007 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 14008 &rq_create->u.response); 14009 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 14010 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 14011 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14012 "3262 RQ [%d] doorbell format not " 14013 "supported: x%x\n", hrq->queue_id, 14014 hrq->db_format); 14015 status = -EINVAL; 14016 goto out; 14017 } 14018 14019 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 14020 &rq_create->u.response); 14021 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 14022 if (!bar_memmap_p) { 14023 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14024 "3269 RQ[%d] failed to memmap pci " 14025 "barset:x%x\n", hrq->queue_id, 14026 pci_barset); 14027 status = -ENOMEM; 14028 goto out; 14029 } 14030 14031 db_offset = rq_create->u.response.doorbell_offset; 14032 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 14033 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 14034 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14035 "3270 RQ[%d] doorbell offset not " 14036 "supported: x%x\n", hrq->queue_id, 14037 db_offset); 14038 status = -EINVAL; 14039 goto out; 14040 } 14041 hrq->db_regaddr = bar_memmap_p + db_offset; 14042 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14043 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 14044 "format:x%x\n", hrq->queue_id, pci_barset, 14045 db_offset, hrq->db_format); 14046 } else { 14047 hrq->db_format = LPFC_DB_RING_FORMAT; 14048 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 14049 } 14050 hrq->type = LPFC_HRQ; 14051 hrq->assoc_qid = cq->queue_id; 14052 hrq->subtype = subtype; 14053 hrq->host_index = 0; 14054 hrq->hba_index = 0; 14055 14056 /* now create the data queue */ 14057 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14058 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 14059 length, LPFC_SLI4_MBX_EMBED); 14060 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14061 phba->sli4_hba.pc_sli4_params.rqv); 14062 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 14063 bf_set(lpfc_rq_context_rqe_count_1, 14064 &rq_create->u.request.context, hrq->entry_count); 14065 rq_create->u.request.context.buffer_size = LPFC_DATA_BUF_SIZE; 14066 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 14067 LPFC_RQE_SIZE_8); 14068 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 14069 (PAGE_SIZE/SLI4_PAGE_SIZE)); 14070 } else { 14071 switch (drq->entry_count) { 14072 default: 14073 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14074 "2536 Unsupported RQ count. (%d)\n", 14075 drq->entry_count); 14076 if (drq->entry_count < 512) { 14077 status = -EINVAL; 14078 goto out; 14079 } 14080 /* otherwise default to smallest count (drop through) */ 14081 case 512: 14082 bf_set(lpfc_rq_context_rqe_count, 14083 &rq_create->u.request.context, 14084 LPFC_RQ_RING_SIZE_512); 14085 break; 14086 case 1024: 14087 bf_set(lpfc_rq_context_rqe_count, 14088 &rq_create->u.request.context, 14089 LPFC_RQ_RING_SIZE_1024); 14090 break; 14091 case 2048: 14092 bf_set(lpfc_rq_context_rqe_count, 14093 &rq_create->u.request.context, 14094 LPFC_RQ_RING_SIZE_2048); 14095 break; 14096 case 4096: 14097 bf_set(lpfc_rq_context_rqe_count, 14098 &rq_create->u.request.context, 14099 LPFC_RQ_RING_SIZE_4096); 14100 break; 14101 } 14102 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 14103 LPFC_DATA_BUF_SIZE); 14104 } 14105 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 14106 cq->queue_id); 14107 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 14108 drq->page_count); 14109 list_for_each_entry(dmabuf, &drq->page_list, list) { 14110 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14111 putPaddrLow(dmabuf->phys); 14112 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14113 putPaddrHigh(dmabuf->phys); 14114 } 14115 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 14116 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 14117 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14118 /* The IOCTL status is embedded in the mailbox subheader. */ 14119 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 14120 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14121 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14122 if (shdr_status || shdr_add_status || rc) { 14123 status = -ENXIO; 14124 goto out; 14125 } 14126 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 14127 if (drq->queue_id == 0xFFFF) { 14128 status = -ENXIO; 14129 goto out; 14130 } 14131 drq->type = LPFC_DRQ; 14132 drq->assoc_qid = cq->queue_id; 14133 drq->subtype = subtype; 14134 drq->host_index = 0; 14135 drq->hba_index = 0; 14136 14137 /* link the header and data RQs onto the parent cq child list */ 14138 list_add_tail(&hrq->list, &cq->child_list); 14139 list_add_tail(&drq->list, &cq->child_list); 14140 14141 out: 14142 mempool_free(mbox, phba->mbox_mem_pool); 14143 return status; 14144 } 14145 14146 /** 14147 * lpfc_eq_destroy - Destroy an event Queue on the HBA 14148 * @eq: The queue structure associated with the queue to destroy. 14149 * 14150 * This function destroys a queue, as detailed in @eq by sending an mailbox 14151 * command, specific to the type of queue, to the HBA. 14152 * 14153 * The @eq struct is used to get the queue ID of the queue to destroy. 14154 * 14155 * On success this function will return a zero. If the queue destroy mailbox 14156 * command fails this function will return -ENXIO. 14157 **/ 14158 int 14159 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 14160 { 14161 LPFC_MBOXQ_t *mbox; 14162 int rc, length, status = 0; 14163 uint32_t shdr_status, shdr_add_status; 14164 union lpfc_sli4_cfg_shdr *shdr; 14165 14166 /* sanity check on queue memory */ 14167 if (!eq) 14168 return -ENODEV; 14169 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 14170 if (!mbox) 14171 return -ENOMEM; 14172 length = (sizeof(struct lpfc_mbx_eq_destroy) - 14173 sizeof(struct lpfc_sli4_cfg_mhdr)); 14174 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14175 LPFC_MBOX_OPCODE_EQ_DESTROY, 14176 length, LPFC_SLI4_MBX_EMBED); 14177 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 14178 eq->queue_id); 14179 mbox->vport = eq->phba->pport; 14180 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14181 14182 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 14183 /* The IOCTL status is embedded in the mailbox subheader. */ 14184 shdr = (union lpfc_sli4_cfg_shdr *) 14185 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 14186 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14187 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14188 if (shdr_status || shdr_add_status || rc) { 14189 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14190 "2505 EQ_DESTROY mailbox failed with " 14191 "status x%x add_status x%x, mbx status x%x\n", 14192 shdr_status, shdr_add_status, rc); 14193 status = -ENXIO; 14194 } 14195 14196 /* Remove eq from any list */ 14197 list_del_init(&eq->list); 14198 mempool_free(mbox, eq->phba->mbox_mem_pool); 14199 return status; 14200 } 14201 14202 /** 14203 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 14204 * @cq: The queue structure associated with the queue to destroy. 14205 * 14206 * This function destroys a queue, as detailed in @cq by sending an mailbox 14207 * command, specific to the type of queue, to the HBA. 14208 * 14209 * The @cq struct is used to get the queue ID of the queue to destroy. 14210 * 14211 * On success this function will return a zero. If the queue destroy mailbox 14212 * command fails this function will return -ENXIO. 14213 **/ 14214 int 14215 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 14216 { 14217 LPFC_MBOXQ_t *mbox; 14218 int rc, length, status = 0; 14219 uint32_t shdr_status, shdr_add_status; 14220 union lpfc_sli4_cfg_shdr *shdr; 14221 14222 /* sanity check on queue memory */ 14223 if (!cq) 14224 return -ENODEV; 14225 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 14226 if (!mbox) 14227 return -ENOMEM; 14228 length = (sizeof(struct lpfc_mbx_cq_destroy) - 14229 sizeof(struct lpfc_sli4_cfg_mhdr)); 14230 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14231 LPFC_MBOX_OPCODE_CQ_DESTROY, 14232 length, LPFC_SLI4_MBX_EMBED); 14233 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 14234 cq->queue_id); 14235 mbox->vport = cq->phba->pport; 14236 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14237 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 14238 /* The IOCTL status is embedded in the mailbox subheader. */ 14239 shdr = (union lpfc_sli4_cfg_shdr *) 14240 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 14241 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14242 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14243 if (shdr_status || shdr_add_status || rc) { 14244 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14245 "2506 CQ_DESTROY mailbox failed with " 14246 "status x%x add_status x%x, mbx status x%x\n", 14247 shdr_status, shdr_add_status, rc); 14248 status = -ENXIO; 14249 } 14250 /* Remove cq from any list */ 14251 list_del_init(&cq->list); 14252 mempool_free(mbox, cq->phba->mbox_mem_pool); 14253 return status; 14254 } 14255 14256 /** 14257 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 14258 * @qm: The queue structure associated with the queue to destroy. 14259 * 14260 * This function destroys a queue, as detailed in @mq by sending an mailbox 14261 * command, specific to the type of queue, to the HBA. 14262 * 14263 * The @mq struct is used to get the queue ID of the queue to destroy. 14264 * 14265 * On success this function will return a zero. If the queue destroy mailbox 14266 * command fails this function will return -ENXIO. 14267 **/ 14268 int 14269 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 14270 { 14271 LPFC_MBOXQ_t *mbox; 14272 int rc, length, status = 0; 14273 uint32_t shdr_status, shdr_add_status; 14274 union lpfc_sli4_cfg_shdr *shdr; 14275 14276 /* sanity check on queue memory */ 14277 if (!mq) 14278 return -ENODEV; 14279 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 14280 if (!mbox) 14281 return -ENOMEM; 14282 length = (sizeof(struct lpfc_mbx_mq_destroy) - 14283 sizeof(struct lpfc_sli4_cfg_mhdr)); 14284 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14285 LPFC_MBOX_OPCODE_MQ_DESTROY, 14286 length, LPFC_SLI4_MBX_EMBED); 14287 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 14288 mq->queue_id); 14289 mbox->vport = mq->phba->pport; 14290 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14291 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 14292 /* The IOCTL status is embedded in the mailbox subheader. */ 14293 shdr = (union lpfc_sli4_cfg_shdr *) 14294 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 14295 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14296 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14297 if (shdr_status || shdr_add_status || rc) { 14298 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14299 "2507 MQ_DESTROY mailbox failed with " 14300 "status x%x add_status x%x, mbx status x%x\n", 14301 shdr_status, shdr_add_status, rc); 14302 status = -ENXIO; 14303 } 14304 /* Remove mq from any list */ 14305 list_del_init(&mq->list); 14306 mempool_free(mbox, mq->phba->mbox_mem_pool); 14307 return status; 14308 } 14309 14310 /** 14311 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 14312 * @wq: The queue structure associated with the queue to destroy. 14313 * 14314 * This function destroys a queue, as detailed in @wq by sending an mailbox 14315 * command, specific to the type of queue, to the HBA. 14316 * 14317 * The @wq struct is used to get the queue ID of the queue to destroy. 14318 * 14319 * On success this function will return a zero. If the queue destroy mailbox 14320 * command fails this function will return -ENXIO. 14321 **/ 14322 int 14323 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 14324 { 14325 LPFC_MBOXQ_t *mbox; 14326 int rc, length, status = 0; 14327 uint32_t shdr_status, shdr_add_status; 14328 union lpfc_sli4_cfg_shdr *shdr; 14329 14330 /* sanity check on queue memory */ 14331 if (!wq) 14332 return -ENODEV; 14333 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 14334 if (!mbox) 14335 return -ENOMEM; 14336 length = (sizeof(struct lpfc_mbx_wq_destroy) - 14337 sizeof(struct lpfc_sli4_cfg_mhdr)); 14338 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14339 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 14340 length, LPFC_SLI4_MBX_EMBED); 14341 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 14342 wq->queue_id); 14343 mbox->vport = wq->phba->pport; 14344 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14345 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 14346 shdr = (union lpfc_sli4_cfg_shdr *) 14347 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 14348 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14349 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14350 if (shdr_status || shdr_add_status || rc) { 14351 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14352 "2508 WQ_DESTROY mailbox failed with " 14353 "status x%x add_status x%x, mbx status x%x\n", 14354 shdr_status, shdr_add_status, rc); 14355 status = -ENXIO; 14356 } 14357 /* Remove wq from any list */ 14358 list_del_init(&wq->list); 14359 mempool_free(mbox, wq->phba->mbox_mem_pool); 14360 return status; 14361 } 14362 14363 /** 14364 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 14365 * @rq: The queue structure associated with the queue to destroy. 14366 * 14367 * This function destroys a queue, as detailed in @rq by sending an mailbox 14368 * command, specific to the type of queue, to the HBA. 14369 * 14370 * The @rq struct is used to get the queue ID of the queue to destroy. 14371 * 14372 * On success this function will return a zero. If the queue destroy mailbox 14373 * command fails this function will return -ENXIO. 14374 **/ 14375 int 14376 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 14377 struct lpfc_queue *drq) 14378 { 14379 LPFC_MBOXQ_t *mbox; 14380 int rc, length, status = 0; 14381 uint32_t shdr_status, shdr_add_status; 14382 union lpfc_sli4_cfg_shdr *shdr; 14383 14384 /* sanity check on queue memory */ 14385 if (!hrq || !drq) 14386 return -ENODEV; 14387 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 14388 if (!mbox) 14389 return -ENOMEM; 14390 length = (sizeof(struct lpfc_mbx_rq_destroy) - 14391 sizeof(struct lpfc_sli4_cfg_mhdr)); 14392 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14393 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 14394 length, LPFC_SLI4_MBX_EMBED); 14395 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 14396 hrq->queue_id); 14397 mbox->vport = hrq->phba->pport; 14398 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14399 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 14400 /* The IOCTL status is embedded in the mailbox subheader. */ 14401 shdr = (union lpfc_sli4_cfg_shdr *) 14402 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 14403 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14404 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14405 if (shdr_status || shdr_add_status || rc) { 14406 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14407 "2509 RQ_DESTROY mailbox failed with " 14408 "status x%x add_status x%x, mbx status x%x\n", 14409 shdr_status, shdr_add_status, rc); 14410 if (rc != MBX_TIMEOUT) 14411 mempool_free(mbox, hrq->phba->mbox_mem_pool); 14412 return -ENXIO; 14413 } 14414 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 14415 drq->queue_id); 14416 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 14417 shdr = (union lpfc_sli4_cfg_shdr *) 14418 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 14419 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14420 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14421 if (shdr_status || shdr_add_status || rc) { 14422 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14423 "2510 RQ_DESTROY mailbox failed with " 14424 "status x%x add_status x%x, mbx status x%x\n", 14425 shdr_status, shdr_add_status, rc); 14426 status = -ENXIO; 14427 } 14428 list_del_init(&hrq->list); 14429 list_del_init(&drq->list); 14430 mempool_free(mbox, hrq->phba->mbox_mem_pool); 14431 return status; 14432 } 14433 14434 /** 14435 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 14436 * @phba: The virtual port for which this call being executed. 14437 * @pdma_phys_addr0: Physical address of the 1st SGL page. 14438 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 14439 * @xritag: the xritag that ties this io to the SGL pages. 14440 * 14441 * This routine will post the sgl pages for the IO that has the xritag 14442 * that is in the iocbq structure. The xritag is assigned during iocbq 14443 * creation and persists for as long as the driver is loaded. 14444 * if the caller has fewer than 256 scatter gather segments to map then 14445 * pdma_phys_addr1 should be 0. 14446 * If the caller needs to map more than 256 scatter gather segment then 14447 * pdma_phys_addr1 should be a valid physical address. 14448 * physical address for SGLs must be 64 byte aligned. 14449 * If you are going to map 2 SGL's then the first one must have 256 entries 14450 * the second sgl can have between 1 and 256 entries. 14451 * 14452 * Return codes: 14453 * 0 - Success 14454 * -ENXIO, -ENOMEM - Failure 14455 **/ 14456 int 14457 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 14458 dma_addr_t pdma_phys_addr0, 14459 dma_addr_t pdma_phys_addr1, 14460 uint16_t xritag) 14461 { 14462 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 14463 LPFC_MBOXQ_t *mbox; 14464 int rc; 14465 uint32_t shdr_status, shdr_add_status; 14466 uint32_t mbox_tmo; 14467 union lpfc_sli4_cfg_shdr *shdr; 14468 14469 if (xritag == NO_XRI) { 14470 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14471 "0364 Invalid param:\n"); 14472 return -EINVAL; 14473 } 14474 14475 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14476 if (!mbox) 14477 return -ENOMEM; 14478 14479 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14480 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 14481 sizeof(struct lpfc_mbx_post_sgl_pages) - 14482 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 14483 14484 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 14485 &mbox->u.mqe.un.post_sgl_pages; 14486 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 14487 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 14488 14489 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 14490 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 14491 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 14492 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 14493 14494 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 14495 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 14496 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 14497 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 14498 if (!phba->sli4_hba.intr_enable) 14499 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14500 else { 14501 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 14502 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 14503 } 14504 /* The IOCTL status is embedded in the mailbox subheader. */ 14505 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 14506 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14507 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14508 if (rc != MBX_TIMEOUT) 14509 mempool_free(mbox, phba->mbox_mem_pool); 14510 if (shdr_status || shdr_add_status || rc) { 14511 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14512 "2511 POST_SGL mailbox failed with " 14513 "status x%x add_status x%x, mbx status x%x\n", 14514 shdr_status, shdr_add_status, rc); 14515 } 14516 return 0; 14517 } 14518 14519 /** 14520 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 14521 * @phba: pointer to lpfc hba data structure. 14522 * 14523 * This routine is invoked to post rpi header templates to the 14524 * HBA consistent with the SLI-4 interface spec. This routine 14525 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 14526 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 14527 * 14528 * Returns 14529 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 14530 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 14531 **/ 14532 static uint16_t 14533 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 14534 { 14535 unsigned long xri; 14536 14537 /* 14538 * Fetch the next logical xri. Because this index is logical, 14539 * the driver starts at 0 each time. 14540 */ 14541 spin_lock_irq(&phba->hbalock); 14542 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 14543 phba->sli4_hba.max_cfg_param.max_xri, 0); 14544 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 14545 spin_unlock_irq(&phba->hbalock); 14546 return NO_XRI; 14547 } else { 14548 set_bit(xri, phba->sli4_hba.xri_bmask); 14549 phba->sli4_hba.max_cfg_param.xri_used++; 14550 } 14551 spin_unlock_irq(&phba->hbalock); 14552 return xri; 14553 } 14554 14555 /** 14556 * lpfc_sli4_free_xri - Release an xri for reuse. 14557 * @phba: pointer to lpfc hba data structure. 14558 * 14559 * This routine is invoked to release an xri to the pool of 14560 * available rpis maintained by the driver. 14561 **/ 14562 static void 14563 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 14564 { 14565 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 14566 phba->sli4_hba.max_cfg_param.xri_used--; 14567 } 14568 } 14569 14570 /** 14571 * lpfc_sli4_free_xri - Release an xri for reuse. 14572 * @phba: pointer to lpfc hba data structure. 14573 * 14574 * This routine is invoked to release an xri to the pool of 14575 * available rpis maintained by the driver. 14576 **/ 14577 void 14578 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 14579 { 14580 spin_lock_irq(&phba->hbalock); 14581 __lpfc_sli4_free_xri(phba, xri); 14582 spin_unlock_irq(&phba->hbalock); 14583 } 14584 14585 /** 14586 * lpfc_sli4_next_xritag - Get an xritag for the io 14587 * @phba: Pointer to HBA context object. 14588 * 14589 * This function gets an xritag for the iocb. If there is no unused xritag 14590 * it will return 0xffff. 14591 * The function returns the allocated xritag if successful, else returns zero. 14592 * Zero is not a valid xritag. 14593 * The caller is not required to hold any lock. 14594 **/ 14595 uint16_t 14596 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 14597 { 14598 uint16_t xri_index; 14599 14600 xri_index = lpfc_sli4_alloc_xri(phba); 14601 if (xri_index == NO_XRI) 14602 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14603 "2004 Failed to allocate XRI.last XRITAG is %d" 14604 " Max XRI is %d, Used XRI is %d\n", 14605 xri_index, 14606 phba->sli4_hba.max_cfg_param.max_xri, 14607 phba->sli4_hba.max_cfg_param.xri_used); 14608 return xri_index; 14609 } 14610 14611 /** 14612 * lpfc_sli4_post_els_sgl_list - post a block of ELS sgls to the port. 14613 * @phba: pointer to lpfc hba data structure. 14614 * @post_sgl_list: pointer to els sgl entry list. 14615 * @count: number of els sgl entries on the list. 14616 * 14617 * This routine is invoked to post a block of driver's sgl pages to the 14618 * HBA using non-embedded mailbox command. No Lock is held. This routine 14619 * is only called when the driver is loading and after all IO has been 14620 * stopped. 14621 **/ 14622 static int 14623 lpfc_sli4_post_els_sgl_list(struct lpfc_hba *phba, 14624 struct list_head *post_sgl_list, 14625 int post_cnt) 14626 { 14627 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 14628 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 14629 struct sgl_page_pairs *sgl_pg_pairs; 14630 void *viraddr; 14631 LPFC_MBOXQ_t *mbox; 14632 uint32_t reqlen, alloclen, pg_pairs; 14633 uint32_t mbox_tmo; 14634 uint16_t xritag_start = 0; 14635 int rc = 0; 14636 uint32_t shdr_status, shdr_add_status; 14637 union lpfc_sli4_cfg_shdr *shdr; 14638 14639 reqlen = phba->sli4_hba.els_xri_cnt * sizeof(struct sgl_page_pairs) + 14640 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 14641 if (reqlen > SLI4_PAGE_SIZE) { 14642 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 14643 "2559 Block sgl registration required DMA " 14644 "size (%d) great than a page\n", reqlen); 14645 return -ENOMEM; 14646 } 14647 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14648 if (!mbox) 14649 return -ENOMEM; 14650 14651 /* Allocate DMA memory and set up the non-embedded mailbox command */ 14652 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14653 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 14654 LPFC_SLI4_MBX_NEMBED); 14655 14656 if (alloclen < reqlen) { 14657 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14658 "0285 Allocated DMA memory size (%d) is " 14659 "less than the requested DMA memory " 14660 "size (%d)\n", alloclen, reqlen); 14661 lpfc_sli4_mbox_cmd_free(phba, mbox); 14662 return -ENOMEM; 14663 } 14664 /* Set up the SGL pages in the non-embedded DMA pages */ 14665 viraddr = mbox->sge_array->addr[0]; 14666 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 14667 sgl_pg_pairs = &sgl->sgl_pg_pairs; 14668 14669 pg_pairs = 0; 14670 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 14671 /* Set up the sge entry */ 14672 sgl_pg_pairs->sgl_pg0_addr_lo = 14673 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 14674 sgl_pg_pairs->sgl_pg0_addr_hi = 14675 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 14676 sgl_pg_pairs->sgl_pg1_addr_lo = 14677 cpu_to_le32(putPaddrLow(0)); 14678 sgl_pg_pairs->sgl_pg1_addr_hi = 14679 cpu_to_le32(putPaddrHigh(0)); 14680 14681 /* Keep the first xritag on the list */ 14682 if (pg_pairs == 0) 14683 xritag_start = sglq_entry->sli4_xritag; 14684 sgl_pg_pairs++; 14685 pg_pairs++; 14686 } 14687 14688 /* Complete initialization and perform endian conversion. */ 14689 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 14690 bf_set(lpfc_post_sgl_pages_xricnt, sgl, phba->sli4_hba.els_xri_cnt); 14691 sgl->word0 = cpu_to_le32(sgl->word0); 14692 if (!phba->sli4_hba.intr_enable) 14693 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14694 else { 14695 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 14696 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 14697 } 14698 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 14699 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14700 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14701 if (rc != MBX_TIMEOUT) 14702 lpfc_sli4_mbox_cmd_free(phba, mbox); 14703 if (shdr_status || shdr_add_status || rc) { 14704 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14705 "2513 POST_SGL_BLOCK mailbox command failed " 14706 "status x%x add_status x%x mbx status x%x\n", 14707 shdr_status, shdr_add_status, rc); 14708 rc = -ENXIO; 14709 } 14710 return rc; 14711 } 14712 14713 /** 14714 * lpfc_sli4_post_scsi_sgl_block - post a block of scsi sgl list to firmware 14715 * @phba: pointer to lpfc hba data structure. 14716 * @sblist: pointer to scsi buffer list. 14717 * @count: number of scsi buffers on the list. 14718 * 14719 * This routine is invoked to post a block of @count scsi sgl pages from a 14720 * SCSI buffer list @sblist to the HBA using non-embedded mailbox command. 14721 * No Lock is held. 14722 * 14723 **/ 14724 int 14725 lpfc_sli4_post_scsi_sgl_block(struct lpfc_hba *phba, 14726 struct list_head *sblist, 14727 int count) 14728 { 14729 struct lpfc_scsi_buf *psb; 14730 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 14731 struct sgl_page_pairs *sgl_pg_pairs; 14732 void *viraddr; 14733 LPFC_MBOXQ_t *mbox; 14734 uint32_t reqlen, alloclen, pg_pairs; 14735 uint32_t mbox_tmo; 14736 uint16_t xritag_start = 0; 14737 int rc = 0; 14738 uint32_t shdr_status, shdr_add_status; 14739 dma_addr_t pdma_phys_bpl1; 14740 union lpfc_sli4_cfg_shdr *shdr; 14741 14742 /* Calculate the requested length of the dma memory */ 14743 reqlen = count * sizeof(struct sgl_page_pairs) + 14744 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 14745 if (reqlen > SLI4_PAGE_SIZE) { 14746 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 14747 "0217 Block sgl registration required DMA " 14748 "size (%d) great than a page\n", reqlen); 14749 return -ENOMEM; 14750 } 14751 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14752 if (!mbox) { 14753 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14754 "0283 Failed to allocate mbox cmd memory\n"); 14755 return -ENOMEM; 14756 } 14757 14758 /* Allocate DMA memory and set up the non-embedded mailbox command */ 14759 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14760 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 14761 LPFC_SLI4_MBX_NEMBED); 14762 14763 if (alloclen < reqlen) { 14764 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14765 "2561 Allocated DMA memory size (%d) is " 14766 "less than the requested DMA memory " 14767 "size (%d)\n", alloclen, reqlen); 14768 lpfc_sli4_mbox_cmd_free(phba, mbox); 14769 return -ENOMEM; 14770 } 14771 14772 /* Get the first SGE entry from the non-embedded DMA memory */ 14773 viraddr = mbox->sge_array->addr[0]; 14774 14775 /* Set up the SGL pages in the non-embedded DMA pages */ 14776 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 14777 sgl_pg_pairs = &sgl->sgl_pg_pairs; 14778 14779 pg_pairs = 0; 14780 list_for_each_entry(psb, sblist, list) { 14781 /* Set up the sge entry */ 14782 sgl_pg_pairs->sgl_pg0_addr_lo = 14783 cpu_to_le32(putPaddrLow(psb->dma_phys_bpl)); 14784 sgl_pg_pairs->sgl_pg0_addr_hi = 14785 cpu_to_le32(putPaddrHigh(psb->dma_phys_bpl)); 14786 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 14787 pdma_phys_bpl1 = psb->dma_phys_bpl + SGL_PAGE_SIZE; 14788 else 14789 pdma_phys_bpl1 = 0; 14790 sgl_pg_pairs->sgl_pg1_addr_lo = 14791 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 14792 sgl_pg_pairs->sgl_pg1_addr_hi = 14793 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 14794 /* Keep the first xritag on the list */ 14795 if (pg_pairs == 0) 14796 xritag_start = psb->cur_iocbq.sli4_xritag; 14797 sgl_pg_pairs++; 14798 pg_pairs++; 14799 } 14800 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 14801 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 14802 /* Perform endian conversion if necessary */ 14803 sgl->word0 = cpu_to_le32(sgl->word0); 14804 14805 if (!phba->sli4_hba.intr_enable) 14806 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14807 else { 14808 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 14809 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 14810 } 14811 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 14812 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14813 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14814 if (rc != MBX_TIMEOUT) 14815 lpfc_sli4_mbox_cmd_free(phba, mbox); 14816 if (shdr_status || shdr_add_status || rc) { 14817 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14818 "2564 POST_SGL_BLOCK mailbox command failed " 14819 "status x%x add_status x%x mbx status x%x\n", 14820 shdr_status, shdr_add_status, rc); 14821 rc = -ENXIO; 14822 } 14823 return rc; 14824 } 14825 14826 /** 14827 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 14828 * @phba: pointer to lpfc_hba struct that the frame was received on 14829 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 14830 * 14831 * This function checks the fields in the @fc_hdr to see if the FC frame is a 14832 * valid type of frame that the LPFC driver will handle. This function will 14833 * return a zero if the frame is a valid frame or a non zero value when the 14834 * frame does not pass the check. 14835 **/ 14836 static int 14837 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 14838 { 14839 /* make rctl_names static to save stack space */ 14840 static char *rctl_names[] = FC_RCTL_NAMES_INIT; 14841 char *type_names[] = FC_TYPE_NAMES_INIT; 14842 struct fc_vft_header *fc_vft_hdr; 14843 uint32_t *header = (uint32_t *) fc_hdr; 14844 14845 switch (fc_hdr->fh_r_ctl) { 14846 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 14847 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 14848 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 14849 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 14850 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 14851 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 14852 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 14853 case FC_RCTL_DD_CMD_STATUS: /* command status */ 14854 case FC_RCTL_ELS_REQ: /* extended link services request */ 14855 case FC_RCTL_ELS_REP: /* extended link services reply */ 14856 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 14857 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 14858 case FC_RCTL_BA_NOP: /* basic link service NOP */ 14859 case FC_RCTL_BA_ABTS: /* basic link service abort */ 14860 case FC_RCTL_BA_RMC: /* remove connection */ 14861 case FC_RCTL_BA_ACC: /* basic accept */ 14862 case FC_RCTL_BA_RJT: /* basic reject */ 14863 case FC_RCTL_BA_PRMT: 14864 case FC_RCTL_ACK_1: /* acknowledge_1 */ 14865 case FC_RCTL_ACK_0: /* acknowledge_0 */ 14866 case FC_RCTL_P_RJT: /* port reject */ 14867 case FC_RCTL_F_RJT: /* fabric reject */ 14868 case FC_RCTL_P_BSY: /* port busy */ 14869 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 14870 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 14871 case FC_RCTL_LCR: /* link credit reset */ 14872 case FC_RCTL_END: /* end */ 14873 break; 14874 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 14875 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 14876 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 14877 return lpfc_fc_frame_check(phba, fc_hdr); 14878 default: 14879 goto drop; 14880 } 14881 switch (fc_hdr->fh_type) { 14882 case FC_TYPE_BLS: 14883 case FC_TYPE_ELS: 14884 case FC_TYPE_FCP: 14885 case FC_TYPE_CT: 14886 break; 14887 case FC_TYPE_IP: 14888 case FC_TYPE_ILS: 14889 default: 14890 goto drop; 14891 } 14892 14893 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 14894 "2538 Received frame rctl:%s (x%x), type:%s (x%x), " 14895 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 14896 rctl_names[fc_hdr->fh_r_ctl], fc_hdr->fh_r_ctl, 14897 type_names[fc_hdr->fh_type], fc_hdr->fh_type, 14898 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 14899 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 14900 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 14901 be32_to_cpu(header[6])); 14902 return 0; 14903 drop: 14904 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 14905 "2539 Dropped frame rctl:%s type:%s\n", 14906 rctl_names[fc_hdr->fh_r_ctl], 14907 type_names[fc_hdr->fh_type]); 14908 return 1; 14909 } 14910 14911 /** 14912 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 14913 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 14914 * 14915 * This function processes the FC header to retrieve the VFI from the VF 14916 * header, if one exists. This function will return the VFI if one exists 14917 * or 0 if no VSAN Header exists. 14918 **/ 14919 static uint32_t 14920 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 14921 { 14922 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 14923 14924 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 14925 return 0; 14926 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 14927 } 14928 14929 /** 14930 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 14931 * @phba: Pointer to the HBA structure to search for the vport on 14932 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 14933 * @fcfi: The FC Fabric ID that the frame came from 14934 * 14935 * This function searches the @phba for a vport that matches the content of the 14936 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 14937 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 14938 * returns the matching vport pointer or NULL if unable to match frame to a 14939 * vport. 14940 **/ 14941 static struct lpfc_vport * 14942 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 14943 uint16_t fcfi) 14944 { 14945 struct lpfc_vport **vports; 14946 struct lpfc_vport *vport = NULL; 14947 int i; 14948 uint32_t did = (fc_hdr->fh_d_id[0] << 16 | 14949 fc_hdr->fh_d_id[1] << 8 | 14950 fc_hdr->fh_d_id[2]); 14951 14952 if (did == Fabric_DID) 14953 return phba->pport; 14954 if ((phba->pport->fc_flag & FC_PT2PT) && 14955 !(phba->link_state == LPFC_HBA_READY)) 14956 return phba->pport; 14957 14958 vports = lpfc_create_vport_work_array(phba); 14959 if (vports != NULL) 14960 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 14961 if (phba->fcf.fcfi == fcfi && 14962 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 14963 vports[i]->fc_myDID == did) { 14964 vport = vports[i]; 14965 break; 14966 } 14967 } 14968 lpfc_destroy_vport_work_array(phba, vports); 14969 return vport; 14970 } 14971 14972 /** 14973 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 14974 * @vport: The vport to work on. 14975 * 14976 * This function updates the receive sequence time stamp for this vport. The 14977 * receive sequence time stamp indicates the time that the last frame of the 14978 * the sequence that has been idle for the longest amount of time was received. 14979 * the driver uses this time stamp to indicate if any received sequences have 14980 * timed out. 14981 **/ 14982 static void 14983 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 14984 { 14985 struct lpfc_dmabuf *h_buf; 14986 struct hbq_dmabuf *dmabuf = NULL; 14987 14988 /* get the oldest sequence on the rcv list */ 14989 h_buf = list_get_first(&vport->rcv_buffer_list, 14990 struct lpfc_dmabuf, list); 14991 if (!h_buf) 14992 return; 14993 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 14994 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 14995 } 14996 14997 /** 14998 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 14999 * @vport: The vport that the received sequences were sent to. 15000 * 15001 * This function cleans up all outstanding received sequences. This is called 15002 * by the driver when a link event or user action invalidates all the received 15003 * sequences. 15004 **/ 15005 void 15006 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 15007 { 15008 struct lpfc_dmabuf *h_buf, *hnext; 15009 struct lpfc_dmabuf *d_buf, *dnext; 15010 struct hbq_dmabuf *dmabuf = NULL; 15011 15012 /* start with the oldest sequence on the rcv list */ 15013 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 15014 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 15015 list_del_init(&dmabuf->hbuf.list); 15016 list_for_each_entry_safe(d_buf, dnext, 15017 &dmabuf->dbuf.list, list) { 15018 list_del_init(&d_buf->list); 15019 lpfc_in_buf_free(vport->phba, d_buf); 15020 } 15021 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 15022 } 15023 } 15024 15025 /** 15026 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 15027 * @vport: The vport that the received sequences were sent to. 15028 * 15029 * This function determines whether any received sequences have timed out by 15030 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 15031 * indicates that there is at least one timed out sequence this routine will 15032 * go through the received sequences one at a time from most inactive to most 15033 * active to determine which ones need to be cleaned up. Once it has determined 15034 * that a sequence needs to be cleaned up it will simply free up the resources 15035 * without sending an abort. 15036 **/ 15037 void 15038 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 15039 { 15040 struct lpfc_dmabuf *h_buf, *hnext; 15041 struct lpfc_dmabuf *d_buf, *dnext; 15042 struct hbq_dmabuf *dmabuf = NULL; 15043 unsigned long timeout; 15044 int abort_count = 0; 15045 15046 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 15047 vport->rcv_buffer_time_stamp); 15048 if (list_empty(&vport->rcv_buffer_list) || 15049 time_before(jiffies, timeout)) 15050 return; 15051 /* start with the oldest sequence on the rcv list */ 15052 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 15053 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 15054 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 15055 dmabuf->time_stamp); 15056 if (time_before(jiffies, timeout)) 15057 break; 15058 abort_count++; 15059 list_del_init(&dmabuf->hbuf.list); 15060 list_for_each_entry_safe(d_buf, dnext, 15061 &dmabuf->dbuf.list, list) { 15062 list_del_init(&d_buf->list); 15063 lpfc_in_buf_free(vport->phba, d_buf); 15064 } 15065 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 15066 } 15067 if (abort_count) 15068 lpfc_update_rcv_time_stamp(vport); 15069 } 15070 15071 /** 15072 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 15073 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 15074 * 15075 * This function searches through the existing incomplete sequences that have 15076 * been sent to this @vport. If the frame matches one of the incomplete 15077 * sequences then the dbuf in the @dmabuf is added to the list of frames that 15078 * make up that sequence. If no sequence is found that matches this frame then 15079 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 15080 * This function returns a pointer to the first dmabuf in the sequence list that 15081 * the frame was linked to. 15082 **/ 15083 static struct hbq_dmabuf * 15084 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 15085 { 15086 struct fc_frame_header *new_hdr; 15087 struct fc_frame_header *temp_hdr; 15088 struct lpfc_dmabuf *d_buf; 15089 struct lpfc_dmabuf *h_buf; 15090 struct hbq_dmabuf *seq_dmabuf = NULL; 15091 struct hbq_dmabuf *temp_dmabuf = NULL; 15092 uint8_t found = 0; 15093 15094 INIT_LIST_HEAD(&dmabuf->dbuf.list); 15095 dmabuf->time_stamp = jiffies; 15096 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 15097 15098 /* Use the hdr_buf to find the sequence that this frame belongs to */ 15099 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 15100 temp_hdr = (struct fc_frame_header *)h_buf->virt; 15101 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 15102 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 15103 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 15104 continue; 15105 /* found a pending sequence that matches this frame */ 15106 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 15107 break; 15108 } 15109 if (!seq_dmabuf) { 15110 /* 15111 * This indicates first frame received for this sequence. 15112 * Queue the buffer on the vport's rcv_buffer_list. 15113 */ 15114 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 15115 lpfc_update_rcv_time_stamp(vport); 15116 return dmabuf; 15117 } 15118 temp_hdr = seq_dmabuf->hbuf.virt; 15119 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 15120 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 15121 list_del_init(&seq_dmabuf->hbuf.list); 15122 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 15123 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 15124 lpfc_update_rcv_time_stamp(vport); 15125 return dmabuf; 15126 } 15127 /* move this sequence to the tail to indicate a young sequence */ 15128 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 15129 seq_dmabuf->time_stamp = jiffies; 15130 lpfc_update_rcv_time_stamp(vport); 15131 if (list_empty(&seq_dmabuf->dbuf.list)) { 15132 temp_hdr = dmabuf->hbuf.virt; 15133 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 15134 return seq_dmabuf; 15135 } 15136 /* find the correct place in the sequence to insert this frame */ 15137 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 15138 while (!found) { 15139 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 15140 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 15141 /* 15142 * If the frame's sequence count is greater than the frame on 15143 * the list then insert the frame right after this frame 15144 */ 15145 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 15146 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 15147 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 15148 found = 1; 15149 break; 15150 } 15151 15152 if (&d_buf->list == &seq_dmabuf->dbuf.list) 15153 break; 15154 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 15155 } 15156 15157 if (found) 15158 return seq_dmabuf; 15159 return NULL; 15160 } 15161 15162 /** 15163 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 15164 * @vport: pointer to a vitural port 15165 * @dmabuf: pointer to a dmabuf that describes the FC sequence 15166 * 15167 * This function tries to abort from the partially assembed sequence, described 15168 * by the information from basic abbort @dmabuf. It checks to see whether such 15169 * partially assembled sequence held by the driver. If so, it shall free up all 15170 * the frames from the partially assembled sequence. 15171 * 15172 * Return 15173 * true -- if there is matching partially assembled sequence present and all 15174 * the frames freed with the sequence; 15175 * false -- if there is no matching partially assembled sequence present so 15176 * nothing got aborted in the lower layer driver 15177 **/ 15178 static bool 15179 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 15180 struct hbq_dmabuf *dmabuf) 15181 { 15182 struct fc_frame_header *new_hdr; 15183 struct fc_frame_header *temp_hdr; 15184 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 15185 struct hbq_dmabuf *seq_dmabuf = NULL; 15186 15187 /* Use the hdr_buf to find the sequence that matches this frame */ 15188 INIT_LIST_HEAD(&dmabuf->dbuf.list); 15189 INIT_LIST_HEAD(&dmabuf->hbuf.list); 15190 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 15191 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 15192 temp_hdr = (struct fc_frame_header *)h_buf->virt; 15193 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 15194 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 15195 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 15196 continue; 15197 /* found a pending sequence that matches this frame */ 15198 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 15199 break; 15200 } 15201 15202 /* Free up all the frames from the partially assembled sequence */ 15203 if (seq_dmabuf) { 15204 list_for_each_entry_safe(d_buf, n_buf, 15205 &seq_dmabuf->dbuf.list, list) { 15206 list_del_init(&d_buf->list); 15207 lpfc_in_buf_free(vport->phba, d_buf); 15208 } 15209 return true; 15210 } 15211 return false; 15212 } 15213 15214 /** 15215 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 15216 * @vport: pointer to a vitural port 15217 * @dmabuf: pointer to a dmabuf that describes the FC sequence 15218 * 15219 * This function tries to abort from the assembed sequence from upper level 15220 * protocol, described by the information from basic abbort @dmabuf. It 15221 * checks to see whether such pending context exists at upper level protocol. 15222 * If so, it shall clean up the pending context. 15223 * 15224 * Return 15225 * true -- if there is matching pending context of the sequence cleaned 15226 * at ulp; 15227 * false -- if there is no matching pending context of the sequence present 15228 * at ulp. 15229 **/ 15230 static bool 15231 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 15232 { 15233 struct lpfc_hba *phba = vport->phba; 15234 int handled; 15235 15236 /* Accepting abort at ulp with SLI4 only */ 15237 if (phba->sli_rev < LPFC_SLI_REV4) 15238 return false; 15239 15240 /* Register all caring upper level protocols to attend abort */ 15241 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 15242 if (handled) 15243 return true; 15244 15245 return false; 15246 } 15247 15248 /** 15249 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 15250 * @phba: Pointer to HBA context object. 15251 * @cmd_iocbq: pointer to the command iocbq structure. 15252 * @rsp_iocbq: pointer to the response iocbq structure. 15253 * 15254 * This function handles the sequence abort response iocb command complete 15255 * event. It properly releases the memory allocated to the sequence abort 15256 * accept iocb. 15257 **/ 15258 static void 15259 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 15260 struct lpfc_iocbq *cmd_iocbq, 15261 struct lpfc_iocbq *rsp_iocbq) 15262 { 15263 struct lpfc_nodelist *ndlp; 15264 15265 if (cmd_iocbq) { 15266 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 15267 lpfc_nlp_put(ndlp); 15268 lpfc_nlp_not_used(ndlp); 15269 lpfc_sli_release_iocbq(phba, cmd_iocbq); 15270 } 15271 15272 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 15273 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 15274 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15275 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 15276 rsp_iocbq->iocb.ulpStatus, 15277 rsp_iocbq->iocb.un.ulpWord[4]); 15278 } 15279 15280 /** 15281 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 15282 * @phba: Pointer to HBA context object. 15283 * @xri: xri id in transaction. 15284 * 15285 * This function validates the xri maps to the known range of XRIs allocated an 15286 * used by the driver. 15287 **/ 15288 uint16_t 15289 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 15290 uint16_t xri) 15291 { 15292 uint16_t i; 15293 15294 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 15295 if (xri == phba->sli4_hba.xri_ids[i]) 15296 return i; 15297 } 15298 return NO_XRI; 15299 } 15300 15301 /** 15302 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 15303 * @phba: Pointer to HBA context object. 15304 * @fc_hdr: pointer to a FC frame header. 15305 * 15306 * This function sends a basic response to a previous unsol sequence abort 15307 * event after aborting the sequence handling. 15308 **/ 15309 static void 15310 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 15311 struct fc_frame_header *fc_hdr, bool aborted) 15312 { 15313 struct lpfc_hba *phba = vport->phba; 15314 struct lpfc_iocbq *ctiocb = NULL; 15315 struct lpfc_nodelist *ndlp; 15316 uint16_t oxid, rxid, xri, lxri; 15317 uint32_t sid, fctl; 15318 IOCB_t *icmd; 15319 int rc; 15320 15321 if (!lpfc_is_link_up(phba)) 15322 return; 15323 15324 sid = sli4_sid_from_fc_hdr(fc_hdr); 15325 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 15326 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 15327 15328 ndlp = lpfc_findnode_did(vport, sid); 15329 if (!ndlp) { 15330 ndlp = mempool_alloc(phba->nlp_mem_pool, GFP_KERNEL); 15331 if (!ndlp) { 15332 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 15333 "1268 Failed to allocate ndlp for " 15334 "oxid:x%x SID:x%x\n", oxid, sid); 15335 return; 15336 } 15337 lpfc_nlp_init(vport, ndlp, sid); 15338 /* Put ndlp onto pport node list */ 15339 lpfc_enqueue_node(vport, ndlp); 15340 } else if (!NLP_CHK_NODE_ACT(ndlp)) { 15341 /* re-setup ndlp without removing from node list */ 15342 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE); 15343 if (!ndlp) { 15344 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 15345 "3275 Failed to active ndlp found " 15346 "for oxid:x%x SID:x%x\n", oxid, sid); 15347 return; 15348 } 15349 } 15350 15351 /* Allocate buffer for rsp iocb */ 15352 ctiocb = lpfc_sli_get_iocbq(phba); 15353 if (!ctiocb) 15354 return; 15355 15356 /* Extract the F_CTL field from FC_HDR */ 15357 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 15358 15359 icmd = &ctiocb->iocb; 15360 icmd->un.xseq64.bdl.bdeSize = 0; 15361 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 15362 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 15363 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 15364 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 15365 15366 /* Fill in the rest of iocb fields */ 15367 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 15368 icmd->ulpBdeCount = 0; 15369 icmd->ulpLe = 1; 15370 icmd->ulpClass = CLASS3; 15371 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 15372 ctiocb->context1 = lpfc_nlp_get(ndlp); 15373 15374 ctiocb->iocb_cmpl = NULL; 15375 ctiocb->vport = phba->pport; 15376 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 15377 ctiocb->sli4_lxritag = NO_XRI; 15378 ctiocb->sli4_xritag = NO_XRI; 15379 15380 if (fctl & FC_FC_EX_CTX) 15381 /* Exchange responder sent the abort so we 15382 * own the oxid. 15383 */ 15384 xri = oxid; 15385 else 15386 xri = rxid; 15387 lxri = lpfc_sli4_xri_inrange(phba, xri); 15388 if (lxri != NO_XRI) 15389 lpfc_set_rrq_active(phba, ndlp, lxri, 15390 (xri == oxid) ? rxid : oxid, 0); 15391 /* For BA_ABTS from exchange responder, if the logical xri with 15392 * the oxid maps to the FCP XRI range, the port no longer has 15393 * that exchange context, send a BLS_RJT. Override the IOCB for 15394 * a BA_RJT. 15395 */ 15396 if ((fctl & FC_FC_EX_CTX) && 15397 (lxri > lpfc_sli4_get_els_iocb_cnt(phba))) { 15398 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 15399 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 15400 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 15401 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 15402 } 15403 15404 /* If BA_ABTS failed to abort a partially assembled receive sequence, 15405 * the driver no longer has that exchange, send a BLS_RJT. Override 15406 * the IOCB for a BA_RJT. 15407 */ 15408 if (aborted == false) { 15409 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 15410 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 15411 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 15412 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 15413 } 15414 15415 if (fctl & FC_FC_EX_CTX) { 15416 /* ABTS sent by responder to CT exchange, construction 15417 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 15418 * field and RX_ID from ABTS for RX_ID field. 15419 */ 15420 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 15421 } else { 15422 /* ABTS sent by initiator to CT exchange, construction 15423 * of BA_ACC will need to allocate a new XRI as for the 15424 * XRI_TAG field. 15425 */ 15426 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 15427 } 15428 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 15429 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 15430 15431 /* Xmit CT abts response on exchange <xid> */ 15432 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 15433 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 15434 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 15435 15436 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 15437 if (rc == IOCB_ERROR) { 15438 lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS, 15439 "2925 Failed to issue CT ABTS RSP x%x on " 15440 "xri x%x, Data x%x\n", 15441 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 15442 phba->link_state); 15443 lpfc_nlp_put(ndlp); 15444 ctiocb->context1 = NULL; 15445 lpfc_sli_release_iocbq(phba, ctiocb); 15446 } 15447 } 15448 15449 /** 15450 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 15451 * @vport: Pointer to the vport on which this sequence was received 15452 * @dmabuf: pointer to a dmabuf that describes the FC sequence 15453 * 15454 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 15455 * receive sequence is only partially assembed by the driver, it shall abort 15456 * the partially assembled frames for the sequence. Otherwise, if the 15457 * unsolicited receive sequence has been completely assembled and passed to 15458 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the 15459 * unsolicited sequence has been aborted. After that, it will issue a basic 15460 * accept to accept the abort. 15461 **/ 15462 static void 15463 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 15464 struct hbq_dmabuf *dmabuf) 15465 { 15466 struct lpfc_hba *phba = vport->phba; 15467 struct fc_frame_header fc_hdr; 15468 uint32_t fctl; 15469 bool aborted; 15470 15471 /* Make a copy of fc_hdr before the dmabuf being released */ 15472 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 15473 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 15474 15475 if (fctl & FC_FC_EX_CTX) { 15476 /* ABTS by responder to exchange, no cleanup needed */ 15477 aborted = true; 15478 } else { 15479 /* ABTS by initiator to exchange, need to do cleanup */ 15480 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 15481 if (aborted == false) 15482 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 15483 } 15484 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15485 15486 /* Respond with BA_ACC or BA_RJT accordingly */ 15487 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 15488 } 15489 15490 /** 15491 * lpfc_seq_complete - Indicates if a sequence is complete 15492 * @dmabuf: pointer to a dmabuf that describes the FC sequence 15493 * 15494 * This function checks the sequence, starting with the frame described by 15495 * @dmabuf, to see if all the frames associated with this sequence are present. 15496 * the frames associated with this sequence are linked to the @dmabuf using the 15497 * dbuf list. This function looks for two major things. 1) That the first frame 15498 * has a sequence count of zero. 2) There is a frame with last frame of sequence 15499 * set. 3) That there are no holes in the sequence count. The function will 15500 * return 1 when the sequence is complete, otherwise it will return 0. 15501 **/ 15502 static int 15503 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 15504 { 15505 struct fc_frame_header *hdr; 15506 struct lpfc_dmabuf *d_buf; 15507 struct hbq_dmabuf *seq_dmabuf; 15508 uint32_t fctl; 15509 int seq_count = 0; 15510 15511 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 15512 /* make sure first fame of sequence has a sequence count of zero */ 15513 if (hdr->fh_seq_cnt != seq_count) 15514 return 0; 15515 fctl = (hdr->fh_f_ctl[0] << 16 | 15516 hdr->fh_f_ctl[1] << 8 | 15517 hdr->fh_f_ctl[2]); 15518 /* If last frame of sequence we can return success. */ 15519 if (fctl & FC_FC_END_SEQ) 15520 return 1; 15521 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 15522 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 15523 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 15524 /* If there is a hole in the sequence count then fail. */ 15525 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 15526 return 0; 15527 fctl = (hdr->fh_f_ctl[0] << 16 | 15528 hdr->fh_f_ctl[1] << 8 | 15529 hdr->fh_f_ctl[2]); 15530 /* If last frame of sequence we can return success. */ 15531 if (fctl & FC_FC_END_SEQ) 15532 return 1; 15533 } 15534 return 0; 15535 } 15536 15537 /** 15538 * lpfc_prep_seq - Prep sequence for ULP processing 15539 * @vport: Pointer to the vport on which this sequence was received 15540 * @dmabuf: pointer to a dmabuf that describes the FC sequence 15541 * 15542 * This function takes a sequence, described by a list of frames, and creates 15543 * a list of iocbq structures to describe the sequence. This iocbq list will be 15544 * used to issue to the generic unsolicited sequence handler. This routine 15545 * returns a pointer to the first iocbq in the list. If the function is unable 15546 * to allocate an iocbq then it throw out the received frames that were not 15547 * able to be described and return a pointer to the first iocbq. If unable to 15548 * allocate any iocbqs (including the first) this function will return NULL. 15549 **/ 15550 static struct lpfc_iocbq * 15551 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 15552 { 15553 struct hbq_dmabuf *hbq_buf; 15554 struct lpfc_dmabuf *d_buf, *n_buf; 15555 struct lpfc_iocbq *first_iocbq, *iocbq; 15556 struct fc_frame_header *fc_hdr; 15557 uint32_t sid; 15558 uint32_t len, tot_len; 15559 struct ulp_bde64 *pbde; 15560 15561 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 15562 /* remove from receive buffer list */ 15563 list_del_init(&seq_dmabuf->hbuf.list); 15564 lpfc_update_rcv_time_stamp(vport); 15565 /* get the Remote Port's SID */ 15566 sid = sli4_sid_from_fc_hdr(fc_hdr); 15567 tot_len = 0; 15568 /* Get an iocbq struct to fill in. */ 15569 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 15570 if (first_iocbq) { 15571 /* Initialize the first IOCB. */ 15572 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 15573 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 15574 15575 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 15576 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 15577 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 15578 first_iocbq->iocb.un.rcvels.parmRo = 15579 sli4_did_from_fc_hdr(fc_hdr); 15580 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 15581 } else 15582 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 15583 first_iocbq->iocb.ulpContext = NO_XRI; 15584 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 15585 be16_to_cpu(fc_hdr->fh_ox_id); 15586 /* iocbq is prepped for internal consumption. Physical vpi. */ 15587 first_iocbq->iocb.unsli3.rcvsli3.vpi = 15588 vport->phba->vpi_ids[vport->vpi]; 15589 /* put the first buffer into the first IOCBq */ 15590 tot_len = bf_get(lpfc_rcqe_length, 15591 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 15592 15593 first_iocbq->context2 = &seq_dmabuf->dbuf; 15594 first_iocbq->context3 = NULL; 15595 first_iocbq->iocb.ulpBdeCount = 1; 15596 if (tot_len > LPFC_DATA_BUF_SIZE) 15597 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 15598 LPFC_DATA_BUF_SIZE; 15599 else 15600 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 15601 15602 first_iocbq->iocb.un.rcvels.remoteID = sid; 15603 15604 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 15605 } 15606 iocbq = first_iocbq; 15607 /* 15608 * Each IOCBq can have two Buffers assigned, so go through the list 15609 * of buffers for this sequence and save two buffers in each IOCBq 15610 */ 15611 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 15612 if (!iocbq) { 15613 lpfc_in_buf_free(vport->phba, d_buf); 15614 continue; 15615 } 15616 if (!iocbq->context3) { 15617 iocbq->context3 = d_buf; 15618 iocbq->iocb.ulpBdeCount++; 15619 /* We need to get the size out of the right CQE */ 15620 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 15621 len = bf_get(lpfc_rcqe_length, 15622 &hbq_buf->cq_event.cqe.rcqe_cmpl); 15623 pbde = (struct ulp_bde64 *) 15624 &iocbq->iocb.unsli3.sli3Words[4]; 15625 if (len > LPFC_DATA_BUF_SIZE) 15626 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 15627 else 15628 pbde->tus.f.bdeSize = len; 15629 15630 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 15631 tot_len += len; 15632 } else { 15633 iocbq = lpfc_sli_get_iocbq(vport->phba); 15634 if (!iocbq) { 15635 if (first_iocbq) { 15636 first_iocbq->iocb.ulpStatus = 15637 IOSTAT_FCP_RSP_ERROR; 15638 first_iocbq->iocb.un.ulpWord[4] = 15639 IOERR_NO_RESOURCES; 15640 } 15641 lpfc_in_buf_free(vport->phba, d_buf); 15642 continue; 15643 } 15644 /* We need to get the size out of the right CQE */ 15645 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 15646 len = bf_get(lpfc_rcqe_length, 15647 &hbq_buf->cq_event.cqe.rcqe_cmpl); 15648 iocbq->context2 = d_buf; 15649 iocbq->context3 = NULL; 15650 iocbq->iocb.ulpBdeCount = 1; 15651 if (len > LPFC_DATA_BUF_SIZE) 15652 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 15653 LPFC_DATA_BUF_SIZE; 15654 else 15655 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 15656 15657 tot_len += len; 15658 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 15659 15660 iocbq->iocb.un.rcvels.remoteID = sid; 15661 list_add_tail(&iocbq->list, &first_iocbq->list); 15662 } 15663 } 15664 return first_iocbq; 15665 } 15666 15667 static void 15668 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 15669 struct hbq_dmabuf *seq_dmabuf) 15670 { 15671 struct fc_frame_header *fc_hdr; 15672 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 15673 struct lpfc_hba *phba = vport->phba; 15674 15675 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 15676 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 15677 if (!iocbq) { 15678 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15679 "2707 Ring %d handler: Failed to allocate " 15680 "iocb Rctl x%x Type x%x received\n", 15681 LPFC_ELS_RING, 15682 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 15683 return; 15684 } 15685 if (!lpfc_complete_unsol_iocb(phba, 15686 &phba->sli.ring[LPFC_ELS_RING], 15687 iocbq, fc_hdr->fh_r_ctl, 15688 fc_hdr->fh_type)) 15689 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15690 "2540 Ring %d handler: unexpected Rctl " 15691 "x%x Type x%x received\n", 15692 LPFC_ELS_RING, 15693 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 15694 15695 /* Free iocb created in lpfc_prep_seq */ 15696 list_for_each_entry_safe(curr_iocb, next_iocb, 15697 &iocbq->list, list) { 15698 list_del_init(&curr_iocb->list); 15699 lpfc_sli_release_iocbq(phba, curr_iocb); 15700 } 15701 lpfc_sli_release_iocbq(phba, iocbq); 15702 } 15703 15704 /** 15705 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 15706 * @phba: Pointer to HBA context object. 15707 * 15708 * This function is called with no lock held. This function processes all 15709 * the received buffers and gives it to upper layers when a received buffer 15710 * indicates that it is the final frame in the sequence. The interrupt 15711 * service routine processes received buffers at interrupt contexts and adds 15712 * received dma buffers to the rb_pend_list queue and signals the worker thread. 15713 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 15714 * appropriate receive function when the final frame in a sequence is received. 15715 **/ 15716 void 15717 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 15718 struct hbq_dmabuf *dmabuf) 15719 { 15720 struct hbq_dmabuf *seq_dmabuf; 15721 struct fc_frame_header *fc_hdr; 15722 struct lpfc_vport *vport; 15723 uint32_t fcfi; 15724 uint32_t did; 15725 15726 /* Process each received buffer */ 15727 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 15728 /* check to see if this a valid type of frame */ 15729 if (lpfc_fc_frame_check(phba, fc_hdr)) { 15730 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15731 return; 15732 } 15733 if ((bf_get(lpfc_cqe_code, 15734 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 15735 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 15736 &dmabuf->cq_event.cqe.rcqe_cmpl); 15737 else 15738 fcfi = bf_get(lpfc_rcqe_fcf_id, 15739 &dmabuf->cq_event.cqe.rcqe_cmpl); 15740 15741 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi); 15742 if (!vport) { 15743 /* throw out the frame */ 15744 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15745 return; 15746 } 15747 15748 /* d_id this frame is directed to */ 15749 did = sli4_did_from_fc_hdr(fc_hdr); 15750 15751 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 15752 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 15753 (did != Fabric_DID)) { 15754 /* 15755 * Throw out the frame if we are not pt2pt. 15756 * The pt2pt protocol allows for discovery frames 15757 * to be received without a registered VPI. 15758 */ 15759 if (!(vport->fc_flag & FC_PT2PT) || 15760 (phba->link_state == LPFC_HBA_READY)) { 15761 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15762 return; 15763 } 15764 } 15765 15766 /* Handle the basic abort sequence (BA_ABTS) event */ 15767 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 15768 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 15769 return; 15770 } 15771 15772 /* Link this frame */ 15773 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 15774 if (!seq_dmabuf) { 15775 /* unable to add frame to vport - throw it out */ 15776 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15777 return; 15778 } 15779 /* If not last frame in sequence continue processing frames. */ 15780 if (!lpfc_seq_complete(seq_dmabuf)) 15781 return; 15782 15783 /* Send the complete sequence to the upper layer protocol */ 15784 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 15785 } 15786 15787 /** 15788 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 15789 * @phba: pointer to lpfc hba data structure. 15790 * 15791 * This routine is invoked to post rpi header templates to the 15792 * HBA consistent with the SLI-4 interface spec. This routine 15793 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 15794 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 15795 * 15796 * This routine does not require any locks. It's usage is expected 15797 * to be driver load or reset recovery when the driver is 15798 * sequential. 15799 * 15800 * Return codes 15801 * 0 - successful 15802 * -EIO - The mailbox failed to complete successfully. 15803 * When this error occurs, the driver is not guaranteed 15804 * to have any rpi regions posted to the device and 15805 * must either attempt to repost the regions or take a 15806 * fatal error. 15807 **/ 15808 int 15809 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 15810 { 15811 struct lpfc_rpi_hdr *rpi_page; 15812 uint32_t rc = 0; 15813 uint16_t lrpi = 0; 15814 15815 /* SLI4 ports that support extents do not require RPI headers. */ 15816 if (!phba->sli4_hba.rpi_hdrs_in_use) 15817 goto exit; 15818 if (phba->sli4_hba.extents_in_use) 15819 return -EIO; 15820 15821 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 15822 /* 15823 * Assign the rpi headers a physical rpi only if the driver 15824 * has not initialized those resources. A port reset only 15825 * needs the headers posted. 15826 */ 15827 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 15828 LPFC_RPI_RSRC_RDY) 15829 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 15830 15831 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 15832 if (rc != MBX_SUCCESS) { 15833 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15834 "2008 Error %d posting all rpi " 15835 "headers\n", rc); 15836 rc = -EIO; 15837 break; 15838 } 15839 } 15840 15841 exit: 15842 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 15843 LPFC_RPI_RSRC_RDY); 15844 return rc; 15845 } 15846 15847 /** 15848 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 15849 * @phba: pointer to lpfc hba data structure. 15850 * @rpi_page: pointer to the rpi memory region. 15851 * 15852 * This routine is invoked to post a single rpi header to the 15853 * HBA consistent with the SLI-4 interface spec. This memory region 15854 * maps up to 64 rpi context regions. 15855 * 15856 * Return codes 15857 * 0 - successful 15858 * -ENOMEM - No available memory 15859 * -EIO - The mailbox failed to complete successfully. 15860 **/ 15861 int 15862 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 15863 { 15864 LPFC_MBOXQ_t *mboxq; 15865 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 15866 uint32_t rc = 0; 15867 uint32_t shdr_status, shdr_add_status; 15868 union lpfc_sli4_cfg_shdr *shdr; 15869 15870 /* SLI4 ports that support extents do not require RPI headers. */ 15871 if (!phba->sli4_hba.rpi_hdrs_in_use) 15872 return rc; 15873 if (phba->sli4_hba.extents_in_use) 15874 return -EIO; 15875 15876 /* The port is notified of the header region via a mailbox command. */ 15877 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15878 if (!mboxq) { 15879 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15880 "2001 Unable to allocate memory for issuing " 15881 "SLI_CONFIG_SPECIAL mailbox command\n"); 15882 return -ENOMEM; 15883 } 15884 15885 /* Post all rpi memory regions to the port. */ 15886 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 15887 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 15888 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 15889 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 15890 sizeof(struct lpfc_sli4_cfg_mhdr), 15891 LPFC_SLI4_MBX_EMBED); 15892 15893 15894 /* Post the physical rpi to the port for this rpi header. */ 15895 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 15896 rpi_page->start_rpi); 15897 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 15898 hdr_tmpl, rpi_page->page_count); 15899 15900 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 15901 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 15902 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 15903 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 15904 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15905 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15906 if (rc != MBX_TIMEOUT) 15907 mempool_free(mboxq, phba->mbox_mem_pool); 15908 if (shdr_status || shdr_add_status || rc) { 15909 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15910 "2514 POST_RPI_HDR mailbox failed with " 15911 "status x%x add_status x%x, mbx status x%x\n", 15912 shdr_status, shdr_add_status, rc); 15913 rc = -ENXIO; 15914 } 15915 return rc; 15916 } 15917 15918 /** 15919 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 15920 * @phba: pointer to lpfc hba data structure. 15921 * 15922 * This routine is invoked to post rpi header templates to the 15923 * HBA consistent with the SLI-4 interface spec. This routine 15924 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 15925 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 15926 * 15927 * Returns 15928 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 15929 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 15930 **/ 15931 int 15932 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 15933 { 15934 unsigned long rpi; 15935 uint16_t max_rpi, rpi_limit; 15936 uint16_t rpi_remaining, lrpi = 0; 15937 struct lpfc_rpi_hdr *rpi_hdr; 15938 unsigned long iflag; 15939 15940 /* 15941 * Fetch the next logical rpi. Because this index is logical, 15942 * the driver starts at 0 each time. 15943 */ 15944 spin_lock_irqsave(&phba->hbalock, iflag); 15945 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 15946 rpi_limit = phba->sli4_hba.next_rpi; 15947 15948 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 15949 if (rpi >= rpi_limit) 15950 rpi = LPFC_RPI_ALLOC_ERROR; 15951 else { 15952 set_bit(rpi, phba->sli4_hba.rpi_bmask); 15953 phba->sli4_hba.max_cfg_param.rpi_used++; 15954 phba->sli4_hba.rpi_count++; 15955 } 15956 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 15957 "0001 rpi:%x max:%x lim:%x\n", 15958 (int) rpi, max_rpi, rpi_limit); 15959 15960 /* 15961 * Don't try to allocate more rpi header regions if the device limit 15962 * has been exhausted. 15963 */ 15964 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 15965 (phba->sli4_hba.rpi_count >= max_rpi)) { 15966 spin_unlock_irqrestore(&phba->hbalock, iflag); 15967 return rpi; 15968 } 15969 15970 /* 15971 * RPI header postings are not required for SLI4 ports capable of 15972 * extents. 15973 */ 15974 if (!phba->sli4_hba.rpi_hdrs_in_use) { 15975 spin_unlock_irqrestore(&phba->hbalock, iflag); 15976 return rpi; 15977 } 15978 15979 /* 15980 * If the driver is running low on rpi resources, allocate another 15981 * page now. Note that the next_rpi value is used because 15982 * it represents how many are actually in use whereas max_rpi notes 15983 * how many are supported max by the device. 15984 */ 15985 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 15986 spin_unlock_irqrestore(&phba->hbalock, iflag); 15987 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 15988 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 15989 if (!rpi_hdr) { 15990 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15991 "2002 Error Could not grow rpi " 15992 "count\n"); 15993 } else { 15994 lrpi = rpi_hdr->start_rpi; 15995 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 15996 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 15997 } 15998 } 15999 16000 return rpi; 16001 } 16002 16003 /** 16004 * lpfc_sli4_free_rpi - Release an rpi for reuse. 16005 * @phba: pointer to lpfc hba data structure. 16006 * 16007 * This routine is invoked to release an rpi to the pool of 16008 * available rpis maintained by the driver. 16009 **/ 16010 static void 16011 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 16012 { 16013 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 16014 phba->sli4_hba.rpi_count--; 16015 phba->sli4_hba.max_cfg_param.rpi_used--; 16016 } 16017 } 16018 16019 /** 16020 * lpfc_sli4_free_rpi - Release an rpi for reuse. 16021 * @phba: pointer to lpfc hba data structure. 16022 * 16023 * This routine is invoked to release an rpi to the pool of 16024 * available rpis maintained by the driver. 16025 **/ 16026 void 16027 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 16028 { 16029 spin_lock_irq(&phba->hbalock); 16030 __lpfc_sli4_free_rpi(phba, rpi); 16031 spin_unlock_irq(&phba->hbalock); 16032 } 16033 16034 /** 16035 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 16036 * @phba: pointer to lpfc hba data structure. 16037 * 16038 * This routine is invoked to remove the memory region that 16039 * provided rpi via a bitmask. 16040 **/ 16041 void 16042 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 16043 { 16044 kfree(phba->sli4_hba.rpi_bmask); 16045 kfree(phba->sli4_hba.rpi_ids); 16046 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 16047 } 16048 16049 /** 16050 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 16051 * @phba: pointer to lpfc hba data structure. 16052 * 16053 * This routine is invoked to remove the memory region that 16054 * provided rpi via a bitmask. 16055 **/ 16056 int 16057 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 16058 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 16059 { 16060 LPFC_MBOXQ_t *mboxq; 16061 struct lpfc_hba *phba = ndlp->phba; 16062 int rc; 16063 16064 /* The port is notified of the header region via a mailbox command. */ 16065 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16066 if (!mboxq) 16067 return -ENOMEM; 16068 16069 /* Post all rpi memory regions to the port. */ 16070 lpfc_resume_rpi(mboxq, ndlp); 16071 if (cmpl) { 16072 mboxq->mbox_cmpl = cmpl; 16073 mboxq->context1 = arg; 16074 mboxq->context2 = ndlp; 16075 } else 16076 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16077 mboxq->vport = ndlp->vport; 16078 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 16079 if (rc == MBX_NOT_FINISHED) { 16080 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16081 "2010 Resume RPI Mailbox failed " 16082 "status %d, mbxStatus x%x\n", rc, 16083 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 16084 mempool_free(mboxq, phba->mbox_mem_pool); 16085 return -EIO; 16086 } 16087 return 0; 16088 } 16089 16090 /** 16091 * lpfc_sli4_init_vpi - Initialize a vpi with the port 16092 * @vport: Pointer to the vport for which the vpi is being initialized 16093 * 16094 * This routine is invoked to activate a vpi with the port. 16095 * 16096 * Returns: 16097 * 0 success 16098 * -Evalue otherwise 16099 **/ 16100 int 16101 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 16102 { 16103 LPFC_MBOXQ_t *mboxq; 16104 int rc = 0; 16105 int retval = MBX_SUCCESS; 16106 uint32_t mbox_tmo; 16107 struct lpfc_hba *phba = vport->phba; 16108 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16109 if (!mboxq) 16110 return -ENOMEM; 16111 lpfc_init_vpi(phba, mboxq, vport->vpi); 16112 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 16113 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 16114 if (rc != MBX_SUCCESS) { 16115 lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI, 16116 "2022 INIT VPI Mailbox failed " 16117 "status %d, mbxStatus x%x\n", rc, 16118 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 16119 retval = -EIO; 16120 } 16121 if (rc != MBX_TIMEOUT) 16122 mempool_free(mboxq, vport->phba->mbox_mem_pool); 16123 16124 return retval; 16125 } 16126 16127 /** 16128 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 16129 * @phba: pointer to lpfc hba data structure. 16130 * @mboxq: Pointer to mailbox object. 16131 * 16132 * This routine is invoked to manually add a single FCF record. The caller 16133 * must pass a completely initialized FCF_Record. This routine takes 16134 * care of the nonembedded mailbox operations. 16135 **/ 16136 static void 16137 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 16138 { 16139 void *virt_addr; 16140 union lpfc_sli4_cfg_shdr *shdr; 16141 uint32_t shdr_status, shdr_add_status; 16142 16143 virt_addr = mboxq->sge_array->addr[0]; 16144 /* The IOCTL status is embedded in the mailbox subheader. */ 16145 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 16146 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16147 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16148 16149 if ((shdr_status || shdr_add_status) && 16150 (shdr_status != STATUS_FCF_IN_USE)) 16151 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16152 "2558 ADD_FCF_RECORD mailbox failed with " 16153 "status x%x add_status x%x\n", 16154 shdr_status, shdr_add_status); 16155 16156 lpfc_sli4_mbox_cmd_free(phba, mboxq); 16157 } 16158 16159 /** 16160 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 16161 * @phba: pointer to lpfc hba data structure. 16162 * @fcf_record: pointer to the initialized fcf record to add. 16163 * 16164 * This routine is invoked to manually add a single FCF record. The caller 16165 * must pass a completely initialized FCF_Record. This routine takes 16166 * care of the nonembedded mailbox operations. 16167 **/ 16168 int 16169 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 16170 { 16171 int rc = 0; 16172 LPFC_MBOXQ_t *mboxq; 16173 uint8_t *bytep; 16174 void *virt_addr; 16175 struct lpfc_mbx_sge sge; 16176 uint32_t alloc_len, req_len; 16177 uint32_t fcfindex; 16178 16179 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16180 if (!mboxq) { 16181 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16182 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 16183 return -ENOMEM; 16184 } 16185 16186 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 16187 sizeof(uint32_t); 16188 16189 /* Allocate DMA memory and set up the non-embedded mailbox command */ 16190 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 16191 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 16192 req_len, LPFC_SLI4_MBX_NEMBED); 16193 if (alloc_len < req_len) { 16194 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16195 "2523 Allocated DMA memory size (x%x) is " 16196 "less than the requested DMA memory " 16197 "size (x%x)\n", alloc_len, req_len); 16198 lpfc_sli4_mbox_cmd_free(phba, mboxq); 16199 return -ENOMEM; 16200 } 16201 16202 /* 16203 * Get the first SGE entry from the non-embedded DMA memory. This 16204 * routine only uses a single SGE. 16205 */ 16206 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 16207 virt_addr = mboxq->sge_array->addr[0]; 16208 /* 16209 * Configure the FCF record for FCFI 0. This is the driver's 16210 * hardcoded default and gets used in nonFIP mode. 16211 */ 16212 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 16213 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 16214 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 16215 16216 /* 16217 * Copy the fcf_index and the FCF Record Data. The data starts after 16218 * the FCoE header plus word10. The data copy needs to be endian 16219 * correct. 16220 */ 16221 bytep += sizeof(uint32_t); 16222 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 16223 mboxq->vport = phba->pport; 16224 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 16225 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 16226 if (rc == MBX_NOT_FINISHED) { 16227 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16228 "2515 ADD_FCF_RECORD mailbox failed with " 16229 "status 0x%x\n", rc); 16230 lpfc_sli4_mbox_cmd_free(phba, mboxq); 16231 rc = -EIO; 16232 } else 16233 rc = 0; 16234 16235 return rc; 16236 } 16237 16238 /** 16239 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 16240 * @phba: pointer to lpfc hba data structure. 16241 * @fcf_record: pointer to the fcf record to write the default data. 16242 * @fcf_index: FCF table entry index. 16243 * 16244 * This routine is invoked to build the driver's default FCF record. The 16245 * values used are hardcoded. This routine handles memory initialization. 16246 * 16247 **/ 16248 void 16249 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 16250 struct fcf_record *fcf_record, 16251 uint16_t fcf_index) 16252 { 16253 memset(fcf_record, 0, sizeof(struct fcf_record)); 16254 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 16255 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 16256 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 16257 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 16258 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 16259 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 16260 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 16261 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 16262 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 16263 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 16264 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 16265 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 16266 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 16267 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 16268 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 16269 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 16270 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 16271 /* Set the VLAN bit map */ 16272 if (phba->valid_vlan) { 16273 fcf_record->vlan_bitmap[phba->vlan_id / 8] 16274 = 1 << (phba->vlan_id % 8); 16275 } 16276 } 16277 16278 /** 16279 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 16280 * @phba: pointer to lpfc hba data structure. 16281 * @fcf_index: FCF table entry offset. 16282 * 16283 * This routine is invoked to scan the entire FCF table by reading FCF 16284 * record and processing it one at a time starting from the @fcf_index 16285 * for initial FCF discovery or fast FCF failover rediscovery. 16286 * 16287 * Return 0 if the mailbox command is submitted successfully, none 0 16288 * otherwise. 16289 **/ 16290 int 16291 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 16292 { 16293 int rc = 0, error; 16294 LPFC_MBOXQ_t *mboxq; 16295 16296 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 16297 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 16298 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16299 if (!mboxq) { 16300 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16301 "2000 Failed to allocate mbox for " 16302 "READ_FCF cmd\n"); 16303 error = -ENOMEM; 16304 goto fail_fcf_scan; 16305 } 16306 /* Construct the read FCF record mailbox command */ 16307 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 16308 if (rc) { 16309 error = -EINVAL; 16310 goto fail_fcf_scan; 16311 } 16312 /* Issue the mailbox command asynchronously */ 16313 mboxq->vport = phba->pport; 16314 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 16315 16316 spin_lock_irq(&phba->hbalock); 16317 phba->hba_flag |= FCF_TS_INPROG; 16318 spin_unlock_irq(&phba->hbalock); 16319 16320 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 16321 if (rc == MBX_NOT_FINISHED) 16322 error = -EIO; 16323 else { 16324 /* Reset eligible FCF count for new scan */ 16325 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 16326 phba->fcf.eligible_fcf_cnt = 0; 16327 error = 0; 16328 } 16329 fail_fcf_scan: 16330 if (error) { 16331 if (mboxq) 16332 lpfc_sli4_mbox_cmd_free(phba, mboxq); 16333 /* FCF scan failed, clear FCF_TS_INPROG flag */ 16334 spin_lock_irq(&phba->hbalock); 16335 phba->hba_flag &= ~FCF_TS_INPROG; 16336 spin_unlock_irq(&phba->hbalock); 16337 } 16338 return error; 16339 } 16340 16341 /** 16342 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 16343 * @phba: pointer to lpfc hba data structure. 16344 * @fcf_index: FCF table entry offset. 16345 * 16346 * This routine is invoked to read an FCF record indicated by @fcf_index 16347 * and to use it for FLOGI roundrobin FCF failover. 16348 * 16349 * Return 0 if the mailbox command is submitted successfully, none 0 16350 * otherwise. 16351 **/ 16352 int 16353 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 16354 { 16355 int rc = 0, error; 16356 LPFC_MBOXQ_t *mboxq; 16357 16358 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16359 if (!mboxq) { 16360 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 16361 "2763 Failed to allocate mbox for " 16362 "READ_FCF cmd\n"); 16363 error = -ENOMEM; 16364 goto fail_fcf_read; 16365 } 16366 /* Construct the read FCF record mailbox command */ 16367 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 16368 if (rc) { 16369 error = -EINVAL; 16370 goto fail_fcf_read; 16371 } 16372 /* Issue the mailbox command asynchronously */ 16373 mboxq->vport = phba->pport; 16374 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 16375 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 16376 if (rc == MBX_NOT_FINISHED) 16377 error = -EIO; 16378 else 16379 error = 0; 16380 16381 fail_fcf_read: 16382 if (error && mboxq) 16383 lpfc_sli4_mbox_cmd_free(phba, mboxq); 16384 return error; 16385 } 16386 16387 /** 16388 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 16389 * @phba: pointer to lpfc hba data structure. 16390 * @fcf_index: FCF table entry offset. 16391 * 16392 * This routine is invoked to read an FCF record indicated by @fcf_index to 16393 * determine whether it's eligible for FLOGI roundrobin failover list. 16394 * 16395 * Return 0 if the mailbox command is submitted successfully, none 0 16396 * otherwise. 16397 **/ 16398 int 16399 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 16400 { 16401 int rc = 0, error; 16402 LPFC_MBOXQ_t *mboxq; 16403 16404 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16405 if (!mboxq) { 16406 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 16407 "2758 Failed to allocate mbox for " 16408 "READ_FCF cmd\n"); 16409 error = -ENOMEM; 16410 goto fail_fcf_read; 16411 } 16412 /* Construct the read FCF record mailbox command */ 16413 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 16414 if (rc) { 16415 error = -EINVAL; 16416 goto fail_fcf_read; 16417 } 16418 /* Issue the mailbox command asynchronously */ 16419 mboxq->vport = phba->pport; 16420 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 16421 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 16422 if (rc == MBX_NOT_FINISHED) 16423 error = -EIO; 16424 else 16425 error = 0; 16426 16427 fail_fcf_read: 16428 if (error && mboxq) 16429 lpfc_sli4_mbox_cmd_free(phba, mboxq); 16430 return error; 16431 } 16432 16433 /** 16434 * lpfc_check_next_fcf_pri_level 16435 * phba pointer to the lpfc_hba struct for this port. 16436 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 16437 * routine when the rr_bmask is empty. The FCF indecies are put into the 16438 * rr_bmask based on their priority level. Starting from the highest priority 16439 * to the lowest. The most likely FCF candidate will be in the highest 16440 * priority group. When this routine is called it searches the fcf_pri list for 16441 * next lowest priority group and repopulates the rr_bmask with only those 16442 * fcf_indexes. 16443 * returns: 16444 * 1=success 0=failure 16445 **/ 16446 static int 16447 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 16448 { 16449 uint16_t next_fcf_pri; 16450 uint16_t last_index; 16451 struct lpfc_fcf_pri *fcf_pri; 16452 int rc; 16453 int ret = 0; 16454 16455 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 16456 LPFC_SLI4_FCF_TBL_INDX_MAX); 16457 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16458 "3060 Last IDX %d\n", last_index); 16459 16460 /* Verify the priority list has 2 or more entries */ 16461 spin_lock_irq(&phba->hbalock); 16462 if (list_empty(&phba->fcf.fcf_pri_list) || 16463 list_is_singular(&phba->fcf.fcf_pri_list)) { 16464 spin_unlock_irq(&phba->hbalock); 16465 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 16466 "3061 Last IDX %d\n", last_index); 16467 return 0; /* Empty rr list */ 16468 } 16469 spin_unlock_irq(&phba->hbalock); 16470 16471 next_fcf_pri = 0; 16472 /* 16473 * Clear the rr_bmask and set all of the bits that are at this 16474 * priority. 16475 */ 16476 memset(phba->fcf.fcf_rr_bmask, 0, 16477 sizeof(*phba->fcf.fcf_rr_bmask)); 16478 spin_lock_irq(&phba->hbalock); 16479 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 16480 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 16481 continue; 16482 /* 16483 * the 1st priority that has not FLOGI failed 16484 * will be the highest. 16485 */ 16486 if (!next_fcf_pri) 16487 next_fcf_pri = fcf_pri->fcf_rec.priority; 16488 spin_unlock_irq(&phba->hbalock); 16489 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 16490 rc = lpfc_sli4_fcf_rr_index_set(phba, 16491 fcf_pri->fcf_rec.fcf_index); 16492 if (rc) 16493 return 0; 16494 } 16495 spin_lock_irq(&phba->hbalock); 16496 } 16497 /* 16498 * if next_fcf_pri was not set above and the list is not empty then 16499 * we have failed flogis on all of them. So reset flogi failed 16500 * and start at the beginning. 16501 */ 16502 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 16503 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 16504 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 16505 /* 16506 * the 1st priority that has not FLOGI failed 16507 * will be the highest. 16508 */ 16509 if (!next_fcf_pri) 16510 next_fcf_pri = fcf_pri->fcf_rec.priority; 16511 spin_unlock_irq(&phba->hbalock); 16512 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 16513 rc = lpfc_sli4_fcf_rr_index_set(phba, 16514 fcf_pri->fcf_rec.fcf_index); 16515 if (rc) 16516 return 0; 16517 } 16518 spin_lock_irq(&phba->hbalock); 16519 } 16520 } else 16521 ret = 1; 16522 spin_unlock_irq(&phba->hbalock); 16523 16524 return ret; 16525 } 16526 /** 16527 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 16528 * @phba: pointer to lpfc hba data structure. 16529 * 16530 * This routine is to get the next eligible FCF record index in a round 16531 * robin fashion. If the next eligible FCF record index equals to the 16532 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 16533 * shall be returned, otherwise, the next eligible FCF record's index 16534 * shall be returned. 16535 **/ 16536 uint16_t 16537 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 16538 { 16539 uint16_t next_fcf_index; 16540 16541 initial_priority: 16542 /* Search start from next bit of currently registered FCF index */ 16543 next_fcf_index = phba->fcf.current_rec.fcf_indx; 16544 16545 next_priority: 16546 /* Determine the next fcf index to check */ 16547 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 16548 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 16549 LPFC_SLI4_FCF_TBL_INDX_MAX, 16550 next_fcf_index); 16551 16552 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 16553 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 16554 /* 16555 * If we have wrapped then we need to clear the bits that 16556 * have been tested so that we can detect when we should 16557 * change the priority level. 16558 */ 16559 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 16560 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 16561 } 16562 16563 16564 /* Check roundrobin failover list empty condition */ 16565 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 16566 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 16567 /* 16568 * If next fcf index is not found check if there are lower 16569 * Priority level fcf's in the fcf_priority list. 16570 * Set up the rr_bmask with all of the avaiable fcf bits 16571 * at that level and continue the selection process. 16572 */ 16573 if (lpfc_check_next_fcf_pri_level(phba)) 16574 goto initial_priority; 16575 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 16576 "2844 No roundrobin failover FCF available\n"); 16577 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) 16578 return LPFC_FCOE_FCF_NEXT_NONE; 16579 else { 16580 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 16581 "3063 Only FCF available idx %d, flag %x\n", 16582 next_fcf_index, 16583 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag); 16584 return next_fcf_index; 16585 } 16586 } 16587 16588 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 16589 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 16590 LPFC_FCF_FLOGI_FAILED) { 16591 if (list_is_singular(&phba->fcf.fcf_pri_list)) 16592 return LPFC_FCOE_FCF_NEXT_NONE; 16593 16594 goto next_priority; 16595 } 16596 16597 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16598 "2845 Get next roundrobin failover FCF (x%x)\n", 16599 next_fcf_index); 16600 16601 return next_fcf_index; 16602 } 16603 16604 /** 16605 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 16606 * @phba: pointer to lpfc hba data structure. 16607 * 16608 * This routine sets the FCF record index in to the eligible bmask for 16609 * roundrobin failover search. It checks to make sure that the index 16610 * does not go beyond the range of the driver allocated bmask dimension 16611 * before setting the bit. 16612 * 16613 * Returns 0 if the index bit successfully set, otherwise, it returns 16614 * -EINVAL. 16615 **/ 16616 int 16617 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 16618 { 16619 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 16620 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 16621 "2610 FCF (x%x) reached driver's book " 16622 "keeping dimension:x%x\n", 16623 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 16624 return -EINVAL; 16625 } 16626 /* Set the eligible FCF record index bmask */ 16627 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 16628 16629 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16630 "2790 Set FCF (x%x) to roundrobin FCF failover " 16631 "bmask\n", fcf_index); 16632 16633 return 0; 16634 } 16635 16636 /** 16637 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 16638 * @phba: pointer to lpfc hba data structure. 16639 * 16640 * This routine clears the FCF record index from the eligible bmask for 16641 * roundrobin failover search. It checks to make sure that the index 16642 * does not go beyond the range of the driver allocated bmask dimension 16643 * before clearing the bit. 16644 **/ 16645 void 16646 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 16647 { 16648 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 16649 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 16650 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 16651 "2762 FCF (x%x) reached driver's book " 16652 "keeping dimension:x%x\n", 16653 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 16654 return; 16655 } 16656 /* Clear the eligible FCF record index bmask */ 16657 spin_lock_irq(&phba->hbalock); 16658 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 16659 list) { 16660 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 16661 list_del_init(&fcf_pri->list); 16662 break; 16663 } 16664 } 16665 spin_unlock_irq(&phba->hbalock); 16666 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 16667 16668 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16669 "2791 Clear FCF (x%x) from roundrobin failover " 16670 "bmask\n", fcf_index); 16671 } 16672 16673 /** 16674 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 16675 * @phba: pointer to lpfc hba data structure. 16676 * 16677 * This routine is the completion routine for the rediscover FCF table mailbox 16678 * command. If the mailbox command returned failure, it will try to stop the 16679 * FCF rediscover wait timer. 16680 **/ 16681 static void 16682 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 16683 { 16684 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 16685 uint32_t shdr_status, shdr_add_status; 16686 16687 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 16688 16689 shdr_status = bf_get(lpfc_mbox_hdr_status, 16690 &redisc_fcf->header.cfg_shdr.response); 16691 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 16692 &redisc_fcf->header.cfg_shdr.response); 16693 if (shdr_status || shdr_add_status) { 16694 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 16695 "2746 Requesting for FCF rediscovery failed " 16696 "status x%x add_status x%x\n", 16697 shdr_status, shdr_add_status); 16698 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 16699 spin_lock_irq(&phba->hbalock); 16700 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 16701 spin_unlock_irq(&phba->hbalock); 16702 /* 16703 * CVL event triggered FCF rediscover request failed, 16704 * last resort to re-try current registered FCF entry. 16705 */ 16706 lpfc_retry_pport_discovery(phba); 16707 } else { 16708 spin_lock_irq(&phba->hbalock); 16709 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 16710 spin_unlock_irq(&phba->hbalock); 16711 /* 16712 * DEAD FCF event triggered FCF rediscover request 16713 * failed, last resort to fail over as a link down 16714 * to FCF registration. 16715 */ 16716 lpfc_sli4_fcf_dead_failthrough(phba); 16717 } 16718 } else { 16719 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16720 "2775 Start FCF rediscover quiescent timer\n"); 16721 /* 16722 * Start FCF rediscovery wait timer for pending FCF 16723 * before rescan FCF record table. 16724 */ 16725 lpfc_fcf_redisc_wait_start_timer(phba); 16726 } 16727 16728 mempool_free(mbox, phba->mbox_mem_pool); 16729 } 16730 16731 /** 16732 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 16733 * @phba: pointer to lpfc hba data structure. 16734 * 16735 * This routine is invoked to request for rediscovery of the entire FCF table 16736 * by the port. 16737 **/ 16738 int 16739 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 16740 { 16741 LPFC_MBOXQ_t *mbox; 16742 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 16743 int rc, length; 16744 16745 /* Cancel retry delay timers to all vports before FCF rediscover */ 16746 lpfc_cancel_all_vport_retry_delay_timer(phba); 16747 16748 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16749 if (!mbox) { 16750 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16751 "2745 Failed to allocate mbox for " 16752 "requesting FCF rediscover.\n"); 16753 return -ENOMEM; 16754 } 16755 16756 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 16757 sizeof(struct lpfc_sli4_cfg_mhdr)); 16758 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16759 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 16760 length, LPFC_SLI4_MBX_EMBED); 16761 16762 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 16763 /* Set count to 0 for invalidating the entire FCF database */ 16764 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 16765 16766 /* Issue the mailbox command asynchronously */ 16767 mbox->vport = phba->pport; 16768 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 16769 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 16770 16771 if (rc == MBX_NOT_FINISHED) { 16772 mempool_free(mbox, phba->mbox_mem_pool); 16773 return -EIO; 16774 } 16775 return 0; 16776 } 16777 16778 /** 16779 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 16780 * @phba: pointer to lpfc hba data structure. 16781 * 16782 * This function is the failover routine as a last resort to the FCF DEAD 16783 * event when driver failed to perform fast FCF failover. 16784 **/ 16785 void 16786 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 16787 { 16788 uint32_t link_state; 16789 16790 /* 16791 * Last resort as FCF DEAD event failover will treat this as 16792 * a link down, but save the link state because we don't want 16793 * it to be changed to Link Down unless it is already down. 16794 */ 16795 link_state = phba->link_state; 16796 lpfc_linkdown(phba); 16797 phba->link_state = link_state; 16798 16799 /* Unregister FCF if no devices connected to it */ 16800 lpfc_unregister_unused_fcf(phba); 16801 } 16802 16803 /** 16804 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 16805 * @phba: pointer to lpfc hba data structure. 16806 * @rgn23_data: pointer to configure region 23 data. 16807 * 16808 * This function gets SLI3 port configure region 23 data through memory dump 16809 * mailbox command. When it successfully retrieves data, the size of the data 16810 * will be returned, otherwise, 0 will be returned. 16811 **/ 16812 static uint32_t 16813 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 16814 { 16815 LPFC_MBOXQ_t *pmb = NULL; 16816 MAILBOX_t *mb; 16817 uint32_t offset = 0; 16818 int rc; 16819 16820 if (!rgn23_data) 16821 return 0; 16822 16823 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16824 if (!pmb) { 16825 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16826 "2600 failed to allocate mailbox memory\n"); 16827 return 0; 16828 } 16829 mb = &pmb->u.mb; 16830 16831 do { 16832 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 16833 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 16834 16835 if (rc != MBX_SUCCESS) { 16836 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16837 "2601 failed to read config " 16838 "region 23, rc 0x%x Status 0x%x\n", 16839 rc, mb->mbxStatus); 16840 mb->un.varDmp.word_cnt = 0; 16841 } 16842 /* 16843 * dump mem may return a zero when finished or we got a 16844 * mailbox error, either way we are done. 16845 */ 16846 if (mb->un.varDmp.word_cnt == 0) 16847 break; 16848 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 16849 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 16850 16851 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 16852 rgn23_data + offset, 16853 mb->un.varDmp.word_cnt); 16854 offset += mb->un.varDmp.word_cnt; 16855 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 16856 16857 mempool_free(pmb, phba->mbox_mem_pool); 16858 return offset; 16859 } 16860 16861 /** 16862 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 16863 * @phba: pointer to lpfc hba data structure. 16864 * @rgn23_data: pointer to configure region 23 data. 16865 * 16866 * This function gets SLI4 port configure region 23 data through memory dump 16867 * mailbox command. When it successfully retrieves data, the size of the data 16868 * will be returned, otherwise, 0 will be returned. 16869 **/ 16870 static uint32_t 16871 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 16872 { 16873 LPFC_MBOXQ_t *mboxq = NULL; 16874 struct lpfc_dmabuf *mp = NULL; 16875 struct lpfc_mqe *mqe; 16876 uint32_t data_length = 0; 16877 int rc; 16878 16879 if (!rgn23_data) 16880 return 0; 16881 16882 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16883 if (!mboxq) { 16884 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16885 "3105 failed to allocate mailbox memory\n"); 16886 return 0; 16887 } 16888 16889 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 16890 goto out; 16891 mqe = &mboxq->u.mqe; 16892 mp = (struct lpfc_dmabuf *) mboxq->context1; 16893 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 16894 if (rc) 16895 goto out; 16896 data_length = mqe->un.mb_words[5]; 16897 if (data_length == 0) 16898 goto out; 16899 if (data_length > DMP_RGN23_SIZE) { 16900 data_length = 0; 16901 goto out; 16902 } 16903 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 16904 out: 16905 mempool_free(mboxq, phba->mbox_mem_pool); 16906 if (mp) { 16907 lpfc_mbuf_free(phba, mp->virt, mp->phys); 16908 kfree(mp); 16909 } 16910 return data_length; 16911 } 16912 16913 /** 16914 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 16915 * @phba: pointer to lpfc hba data structure. 16916 * 16917 * This function read region 23 and parse TLV for port status to 16918 * decide if the user disaled the port. If the TLV indicates the 16919 * port is disabled, the hba_flag is set accordingly. 16920 **/ 16921 void 16922 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 16923 { 16924 uint8_t *rgn23_data = NULL; 16925 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 16926 uint32_t offset = 0; 16927 16928 /* Get adapter Region 23 data */ 16929 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 16930 if (!rgn23_data) 16931 goto out; 16932 16933 if (phba->sli_rev < LPFC_SLI_REV4) 16934 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 16935 else { 16936 if_type = bf_get(lpfc_sli_intf_if_type, 16937 &phba->sli4_hba.sli_intf); 16938 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 16939 goto out; 16940 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 16941 } 16942 16943 if (!data_size) 16944 goto out; 16945 16946 /* Check the region signature first */ 16947 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 16948 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16949 "2619 Config region 23 has bad signature\n"); 16950 goto out; 16951 } 16952 offset += 4; 16953 16954 /* Check the data structure version */ 16955 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 16956 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16957 "2620 Config region 23 has bad version\n"); 16958 goto out; 16959 } 16960 offset += 4; 16961 16962 /* Parse TLV entries in the region */ 16963 while (offset < data_size) { 16964 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 16965 break; 16966 /* 16967 * If the TLV is not driver specific TLV or driver id is 16968 * not linux driver id, skip the record. 16969 */ 16970 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 16971 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 16972 (rgn23_data[offset + 3] != 0)) { 16973 offset += rgn23_data[offset + 1] * 4 + 4; 16974 continue; 16975 } 16976 16977 /* Driver found a driver specific TLV in the config region */ 16978 sub_tlv_len = rgn23_data[offset + 1] * 4; 16979 offset += 4; 16980 tlv_offset = 0; 16981 16982 /* 16983 * Search for configured port state sub-TLV. 16984 */ 16985 while ((offset < data_size) && 16986 (tlv_offset < sub_tlv_len)) { 16987 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 16988 offset += 4; 16989 tlv_offset += 4; 16990 break; 16991 } 16992 if (rgn23_data[offset] != PORT_STE_TYPE) { 16993 offset += rgn23_data[offset + 1] * 4 + 4; 16994 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 16995 continue; 16996 } 16997 16998 /* This HBA contains PORT_STE configured */ 16999 if (!rgn23_data[offset + 2]) 17000 phba->hba_flag |= LINK_DISABLED; 17001 17002 goto out; 17003 } 17004 } 17005 17006 out: 17007 kfree(rgn23_data); 17008 return; 17009 } 17010 17011 /** 17012 * lpfc_wr_object - write an object to the firmware 17013 * @phba: HBA structure that indicates port to create a queue on. 17014 * @dmabuf_list: list of dmabufs to write to the port. 17015 * @size: the total byte value of the objects to write to the port. 17016 * @offset: the current offset to be used to start the transfer. 17017 * 17018 * This routine will create a wr_object mailbox command to send to the port. 17019 * the mailbox command will be constructed using the dma buffers described in 17020 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 17021 * BDEs that the imbedded mailbox can support. The @offset variable will be 17022 * used to indicate the starting offset of the transfer and will also return 17023 * the offset after the write object mailbox has completed. @size is used to 17024 * determine the end of the object and whether the eof bit should be set. 17025 * 17026 * Return 0 is successful and offset will contain the the new offset to use 17027 * for the next write. 17028 * Return negative value for error cases. 17029 **/ 17030 int 17031 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 17032 uint32_t size, uint32_t *offset) 17033 { 17034 struct lpfc_mbx_wr_object *wr_object; 17035 LPFC_MBOXQ_t *mbox; 17036 int rc = 0, i = 0; 17037 uint32_t shdr_status, shdr_add_status; 17038 uint32_t mbox_tmo; 17039 union lpfc_sli4_cfg_shdr *shdr; 17040 struct lpfc_dmabuf *dmabuf; 17041 uint32_t written = 0; 17042 17043 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17044 if (!mbox) 17045 return -ENOMEM; 17046 17047 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17048 LPFC_MBOX_OPCODE_WRITE_OBJECT, 17049 sizeof(struct lpfc_mbx_wr_object) - 17050 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17051 17052 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 17053 wr_object->u.request.write_offset = *offset; 17054 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 17055 wr_object->u.request.object_name[0] = 17056 cpu_to_le32(wr_object->u.request.object_name[0]); 17057 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 17058 list_for_each_entry(dmabuf, dmabuf_list, list) { 17059 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 17060 break; 17061 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 17062 wr_object->u.request.bde[i].addrHigh = 17063 putPaddrHigh(dmabuf->phys); 17064 if (written + SLI4_PAGE_SIZE >= size) { 17065 wr_object->u.request.bde[i].tus.f.bdeSize = 17066 (size - written); 17067 written += (size - written); 17068 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 17069 } else { 17070 wr_object->u.request.bde[i].tus.f.bdeSize = 17071 SLI4_PAGE_SIZE; 17072 written += SLI4_PAGE_SIZE; 17073 } 17074 i++; 17075 } 17076 wr_object->u.request.bde_count = i; 17077 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 17078 if (!phba->sli4_hba.intr_enable) 17079 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17080 else { 17081 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17082 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17083 } 17084 /* The IOCTL status is embedded in the mailbox subheader. */ 17085 shdr = (union lpfc_sli4_cfg_shdr *) &wr_object->header.cfg_shdr; 17086 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17087 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17088 if (rc != MBX_TIMEOUT) 17089 mempool_free(mbox, phba->mbox_mem_pool); 17090 if (shdr_status || shdr_add_status || rc) { 17091 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17092 "3025 Write Object mailbox failed with " 17093 "status x%x add_status x%x, mbx status x%x\n", 17094 shdr_status, shdr_add_status, rc); 17095 rc = -ENXIO; 17096 } else 17097 *offset += wr_object->u.response.actual_write_length; 17098 return rc; 17099 } 17100 17101 /** 17102 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 17103 * @vport: pointer to vport data structure. 17104 * 17105 * This function iterate through the mailboxq and clean up all REG_LOGIN 17106 * and REG_VPI mailbox commands associated with the vport. This function 17107 * is called when driver want to restart discovery of the vport due to 17108 * a Clear Virtual Link event. 17109 **/ 17110 void 17111 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 17112 { 17113 struct lpfc_hba *phba = vport->phba; 17114 LPFC_MBOXQ_t *mb, *nextmb; 17115 struct lpfc_dmabuf *mp; 17116 struct lpfc_nodelist *ndlp; 17117 struct lpfc_nodelist *act_mbx_ndlp = NULL; 17118 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 17119 LIST_HEAD(mbox_cmd_list); 17120 uint8_t restart_loop; 17121 17122 /* Clean up internally queued mailbox commands with the vport */ 17123 spin_lock_irq(&phba->hbalock); 17124 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 17125 if (mb->vport != vport) 17126 continue; 17127 17128 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 17129 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 17130 continue; 17131 17132 list_del(&mb->list); 17133 list_add_tail(&mb->list, &mbox_cmd_list); 17134 } 17135 /* Clean up active mailbox command with the vport */ 17136 mb = phba->sli.mbox_active; 17137 if (mb && (mb->vport == vport)) { 17138 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 17139 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 17140 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17141 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 17142 act_mbx_ndlp = (struct lpfc_nodelist *)mb->context2; 17143 /* Put reference count for delayed processing */ 17144 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 17145 /* Unregister the RPI when mailbox complete */ 17146 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 17147 } 17148 } 17149 /* Cleanup any mailbox completions which are not yet processed */ 17150 do { 17151 restart_loop = 0; 17152 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 17153 /* 17154 * If this mailox is already processed or it is 17155 * for another vport ignore it. 17156 */ 17157 if ((mb->vport != vport) || 17158 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 17159 continue; 17160 17161 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 17162 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 17163 continue; 17164 17165 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17166 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 17167 ndlp = (struct lpfc_nodelist *)mb->context2; 17168 /* Unregister the RPI when mailbox complete */ 17169 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 17170 restart_loop = 1; 17171 spin_unlock_irq(&phba->hbalock); 17172 spin_lock(shost->host_lock); 17173 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 17174 spin_unlock(shost->host_lock); 17175 spin_lock_irq(&phba->hbalock); 17176 break; 17177 } 17178 } 17179 } while (restart_loop); 17180 17181 spin_unlock_irq(&phba->hbalock); 17182 17183 /* Release the cleaned-up mailbox commands */ 17184 while (!list_empty(&mbox_cmd_list)) { 17185 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 17186 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 17187 mp = (struct lpfc_dmabuf *) (mb->context1); 17188 if (mp) { 17189 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 17190 kfree(mp); 17191 } 17192 ndlp = (struct lpfc_nodelist *) mb->context2; 17193 mb->context2 = NULL; 17194 if (ndlp) { 17195 spin_lock(shost->host_lock); 17196 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 17197 spin_unlock(shost->host_lock); 17198 lpfc_nlp_put(ndlp); 17199 } 17200 } 17201 mempool_free(mb, phba->mbox_mem_pool); 17202 } 17203 17204 /* Release the ndlp with the cleaned-up active mailbox command */ 17205 if (act_mbx_ndlp) { 17206 spin_lock(shost->host_lock); 17207 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 17208 spin_unlock(shost->host_lock); 17209 lpfc_nlp_put(act_mbx_ndlp); 17210 } 17211 } 17212 17213 /** 17214 * lpfc_drain_txq - Drain the txq 17215 * @phba: Pointer to HBA context object. 17216 * 17217 * This function attempt to submit IOCBs on the txq 17218 * to the adapter. For SLI4 adapters, the txq contains 17219 * ELS IOCBs that have been deferred because the there 17220 * are no SGLs. This congestion can occur with large 17221 * vport counts during node discovery. 17222 **/ 17223 17224 uint32_t 17225 lpfc_drain_txq(struct lpfc_hba *phba) 17226 { 17227 LIST_HEAD(completions); 17228 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 17229 struct lpfc_iocbq *piocbq = NULL; 17230 unsigned long iflags = 0; 17231 char *fail_msg = NULL; 17232 struct lpfc_sglq *sglq; 17233 union lpfc_wqe128 wqe128; 17234 union lpfc_wqe *wqe = (union lpfc_wqe *) &wqe128; 17235 uint32_t txq_cnt = 0; 17236 17237 spin_lock_irqsave(&pring->ring_lock, iflags); 17238 list_for_each_entry(piocbq, &pring->txq, list) { 17239 txq_cnt++; 17240 } 17241 17242 if (txq_cnt > pring->txq_max) 17243 pring->txq_max = txq_cnt; 17244 17245 spin_unlock_irqrestore(&pring->ring_lock, iflags); 17246 17247 while (!list_empty(&pring->txq)) { 17248 spin_lock_irqsave(&pring->ring_lock, iflags); 17249 17250 piocbq = lpfc_sli_ringtx_get(phba, pring); 17251 if (!piocbq) { 17252 spin_unlock_irqrestore(&pring->ring_lock, iflags); 17253 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17254 "2823 txq empty and txq_cnt is %d\n ", 17255 txq_cnt); 17256 break; 17257 } 17258 sglq = __lpfc_sli_get_sglq(phba, piocbq); 17259 if (!sglq) { 17260 __lpfc_sli_ringtx_put(phba, pring, piocbq); 17261 spin_unlock_irqrestore(&pring->ring_lock, iflags); 17262 break; 17263 } 17264 txq_cnt--; 17265 17266 /* The xri and iocb resources secured, 17267 * attempt to issue request 17268 */ 17269 piocbq->sli4_lxritag = sglq->sli4_lxritag; 17270 piocbq->sli4_xritag = sglq->sli4_xritag; 17271 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 17272 fail_msg = "to convert bpl to sgl"; 17273 else if (lpfc_sli4_iocb2wqe(phba, piocbq, wqe)) 17274 fail_msg = "to convert iocb to wqe"; 17275 else if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, wqe)) 17276 fail_msg = " - Wq is full"; 17277 else 17278 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 17279 17280 if (fail_msg) { 17281 /* Failed means we can't issue and need to cancel */ 17282 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17283 "2822 IOCB failed %s iotag 0x%x " 17284 "xri 0x%x\n", 17285 fail_msg, 17286 piocbq->iotag, piocbq->sli4_xritag); 17287 list_add_tail(&piocbq->list, &completions); 17288 } 17289 spin_unlock_irqrestore(&pring->ring_lock, iflags); 17290 } 17291 17292 /* Cancel all the IOCBs that cannot be issued */ 17293 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 17294 IOERR_SLI_ABORTED); 17295 17296 return txq_cnt; 17297 } 17298