1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2020 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 #ifdef CONFIG_X86 39 #include <asm/set_memory.h> 40 #endif 41 42 #include <linux/nvme-fc-driver.h> 43 44 #include "lpfc_hw4.h" 45 #include "lpfc_hw.h" 46 #include "lpfc_sli.h" 47 #include "lpfc_sli4.h" 48 #include "lpfc_nl.h" 49 #include "lpfc_disc.h" 50 #include "lpfc.h" 51 #include "lpfc_scsi.h" 52 #include "lpfc_nvme.h" 53 #include "lpfc_nvmet.h" 54 #include "lpfc_crtn.h" 55 #include "lpfc_logmsg.h" 56 #include "lpfc_compat.h" 57 #include "lpfc_debugfs.h" 58 #include "lpfc_vport.h" 59 #include "lpfc_version.h" 60 61 /* There are only four IOCB completion types. */ 62 typedef enum _lpfc_iocb_type { 63 LPFC_UNKNOWN_IOCB, 64 LPFC_UNSOL_IOCB, 65 LPFC_SOL_IOCB, 66 LPFC_ABORT_IOCB 67 } lpfc_iocb_type; 68 69 70 /* Provide function prototypes local to this module. */ 71 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint32_t); 73 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 74 uint8_t *, uint32_t *); 75 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 76 struct lpfc_iocbq *); 77 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 78 struct hbq_dmabuf *); 79 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 80 struct hbq_dmabuf *dmabuf); 81 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 82 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 83 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 84 int); 85 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 86 struct lpfc_queue *eq, 87 struct lpfc_eqe *eqe); 88 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 89 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 90 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 91 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 92 struct lpfc_queue *cq, 93 struct lpfc_cqe *cqe); 94 95 static IOCB_t * 96 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 97 { 98 return &iocbq->iocb; 99 } 100 101 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 102 /** 103 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 104 * @srcp: Source memory pointer. 105 * @destp: Destination memory pointer. 106 * @cnt: Number of words required to be copied. 107 * Must be a multiple of sizeof(uint64_t) 108 * 109 * This function is used for copying data between driver memory 110 * and the SLI WQ. This function also changes the endianness 111 * of each word if native endianness is different from SLI 112 * endianness. This function can be called with or without 113 * lock. 114 **/ 115 static void 116 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 117 { 118 uint64_t *src = srcp; 119 uint64_t *dest = destp; 120 int i; 121 122 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 123 *dest++ = *src++; 124 } 125 #else 126 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 127 #endif 128 129 /** 130 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 131 * @q: The Work Queue to operate on. 132 * @wqe: The work Queue Entry to put on the Work queue. 133 * 134 * This routine will copy the contents of @wqe to the next available entry on 135 * the @q. This function will then ring the Work Queue Doorbell to signal the 136 * HBA to start processing the Work Queue Entry. This function returns 0 if 137 * successful. If no entries are available on @q then this function will return 138 * -ENOMEM. 139 * The caller is expected to hold the hbalock when calling this routine. 140 **/ 141 static int 142 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 143 { 144 union lpfc_wqe *temp_wqe; 145 struct lpfc_register doorbell; 146 uint32_t host_index; 147 uint32_t idx; 148 uint32_t i = 0; 149 uint8_t *tmp; 150 u32 if_type; 151 152 /* sanity check on queue memory */ 153 if (unlikely(!q)) 154 return -ENOMEM; 155 temp_wqe = lpfc_sli4_qe(q, q->host_index); 156 157 /* If the host has not yet processed the next entry then we are done */ 158 idx = ((q->host_index + 1) % q->entry_count); 159 if (idx == q->hba_index) { 160 q->WQ_overflow++; 161 return -EBUSY; 162 } 163 q->WQ_posted++; 164 /* set consumption flag every once in a while */ 165 if (!((q->host_index + 1) % q->notify_interval)) 166 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 167 else 168 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 169 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 170 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 171 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 172 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 173 /* write to DPP aperture taking advatage of Combined Writes */ 174 tmp = (uint8_t *)temp_wqe; 175 #ifdef __raw_writeq 176 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 177 __raw_writeq(*((uint64_t *)(tmp + i)), 178 q->dpp_regaddr + i); 179 #else 180 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 181 __raw_writel(*((uint32_t *)(tmp + i)), 182 q->dpp_regaddr + i); 183 #endif 184 } 185 /* ensure WQE bcopy and DPP flushed before doorbell write */ 186 wmb(); 187 188 /* Update the host index before invoking device */ 189 host_index = q->host_index; 190 191 q->host_index = idx; 192 193 /* Ring Doorbell */ 194 doorbell.word0 = 0; 195 if (q->db_format == LPFC_DB_LIST_FORMAT) { 196 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 197 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 198 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 199 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 200 q->dpp_id); 201 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 202 q->queue_id); 203 } else { 204 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 205 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 206 207 /* Leave bits <23:16> clear for if_type 6 dpp */ 208 if_type = bf_get(lpfc_sli_intf_if_type, 209 &q->phba->sli4_hba.sli_intf); 210 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 211 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 212 host_index); 213 } 214 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 215 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 216 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 217 } else { 218 return -EINVAL; 219 } 220 writel(doorbell.word0, q->db_regaddr); 221 222 return 0; 223 } 224 225 /** 226 * lpfc_sli4_wq_release - Updates internal hba index for WQ 227 * @q: The Work Queue to operate on. 228 * @index: The index to advance the hba index to. 229 * 230 * This routine will update the HBA index of a queue to reflect consumption of 231 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 232 * an entry the host calls this function to update the queue's internal 233 * pointers. 234 **/ 235 static void 236 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 237 { 238 /* sanity check on queue memory */ 239 if (unlikely(!q)) 240 return; 241 242 q->hba_index = index; 243 } 244 245 /** 246 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 247 * @q: The Mailbox Queue to operate on. 248 * @wqe: The Mailbox Queue Entry to put on the Work queue. 249 * 250 * This routine will copy the contents of @mqe to the next available entry on 251 * the @q. This function will then ring the Work Queue Doorbell to signal the 252 * HBA to start processing the Work Queue Entry. This function returns 0 if 253 * successful. If no entries are available on @q then this function will return 254 * -ENOMEM. 255 * The caller is expected to hold the hbalock when calling this routine. 256 **/ 257 static uint32_t 258 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 259 { 260 struct lpfc_mqe *temp_mqe; 261 struct lpfc_register doorbell; 262 263 /* sanity check on queue memory */ 264 if (unlikely(!q)) 265 return -ENOMEM; 266 temp_mqe = lpfc_sli4_qe(q, q->host_index); 267 268 /* If the host has not yet processed the next entry then we are done */ 269 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 270 return -ENOMEM; 271 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 272 /* Save off the mailbox pointer for completion */ 273 q->phba->mbox = (MAILBOX_t *)temp_mqe; 274 275 /* Update the host index before invoking device */ 276 q->host_index = ((q->host_index + 1) % q->entry_count); 277 278 /* Ring Doorbell */ 279 doorbell.word0 = 0; 280 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 281 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 282 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 283 return 0; 284 } 285 286 /** 287 * lpfc_sli4_mq_release - Updates internal hba index for MQ 288 * @q: The Mailbox Queue to operate on. 289 * 290 * This routine will update the HBA index of a queue to reflect consumption of 291 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 292 * an entry the host calls this function to update the queue's internal 293 * pointers. This routine returns the number of entries that were consumed by 294 * the HBA. 295 **/ 296 static uint32_t 297 lpfc_sli4_mq_release(struct lpfc_queue *q) 298 { 299 /* sanity check on queue memory */ 300 if (unlikely(!q)) 301 return 0; 302 303 /* Clear the mailbox pointer for completion */ 304 q->phba->mbox = NULL; 305 q->hba_index = ((q->hba_index + 1) % q->entry_count); 306 return 1; 307 } 308 309 /** 310 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 311 * @q: The Event Queue to get the first valid EQE from 312 * 313 * This routine will get the first valid Event Queue Entry from @q, update 314 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 315 * the Queue (no more work to do), or the Queue is full of EQEs that have been 316 * processed, but not popped back to the HBA then this routine will return NULL. 317 **/ 318 static struct lpfc_eqe * 319 lpfc_sli4_eq_get(struct lpfc_queue *q) 320 { 321 struct lpfc_eqe *eqe; 322 323 /* sanity check on queue memory */ 324 if (unlikely(!q)) 325 return NULL; 326 eqe = lpfc_sli4_qe(q, q->host_index); 327 328 /* If the next EQE is not valid then we are done */ 329 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 330 return NULL; 331 332 /* 333 * insert barrier for instruction interlock : data from the hardware 334 * must have the valid bit checked before it can be copied and acted 335 * upon. Speculative instructions were allowing a bcopy at the start 336 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 337 * after our return, to copy data before the valid bit check above 338 * was done. As such, some of the copied data was stale. The barrier 339 * ensures the check is before any data is copied. 340 */ 341 mb(); 342 return eqe; 343 } 344 345 /** 346 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 347 * @q: The Event Queue to disable interrupts 348 * 349 **/ 350 void 351 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 352 { 353 struct lpfc_register doorbell; 354 355 doorbell.word0 = 0; 356 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 357 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 358 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 359 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 360 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 361 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 362 } 363 364 /** 365 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 366 * @q: The Event Queue to disable interrupts 367 * 368 **/ 369 void 370 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 371 { 372 struct lpfc_register doorbell; 373 374 doorbell.word0 = 0; 375 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 376 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 377 } 378 379 /** 380 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 381 * @phba: adapter with EQ 382 * @q: The Event Queue that the host has completed processing for. 383 * @count: Number of elements that have been consumed 384 * @arm: Indicates whether the host wants to arms this CQ. 385 * 386 * This routine will notify the HBA, by ringing the doorbell, that count 387 * number of EQEs have been processed. The @arm parameter indicates whether 388 * the queue should be rearmed when ringing the doorbell. 389 **/ 390 void 391 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 392 uint32_t count, bool arm) 393 { 394 struct lpfc_register doorbell; 395 396 /* sanity check on queue memory */ 397 if (unlikely(!q || (count == 0 && !arm))) 398 return; 399 400 /* ring doorbell for number popped */ 401 doorbell.word0 = 0; 402 if (arm) { 403 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 404 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 405 } 406 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 407 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 408 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 409 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 410 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 411 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 412 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 413 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 414 readl(q->phba->sli4_hba.EQDBregaddr); 415 } 416 417 /** 418 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 419 * @phba: adapter with EQ 420 * @q: The Event Queue that the host has completed processing for. 421 * @count: Number of elements that have been consumed 422 * @arm: Indicates whether the host wants to arms this CQ. 423 * 424 * This routine will notify the HBA, by ringing the doorbell, that count 425 * number of EQEs have been processed. The @arm parameter indicates whether 426 * the queue should be rearmed when ringing the doorbell. 427 **/ 428 void 429 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 430 uint32_t count, bool arm) 431 { 432 struct lpfc_register doorbell; 433 434 /* sanity check on queue memory */ 435 if (unlikely(!q || (count == 0 && !arm))) 436 return; 437 438 /* ring doorbell for number popped */ 439 doorbell.word0 = 0; 440 if (arm) 441 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 442 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 443 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 444 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 445 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 446 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 447 readl(q->phba->sli4_hba.EQDBregaddr); 448 } 449 450 static void 451 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 452 struct lpfc_eqe *eqe) 453 { 454 if (!phba->sli4_hba.pc_sli4_params.eqav) 455 bf_set_le32(lpfc_eqe_valid, eqe, 0); 456 457 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 458 459 /* if the index wrapped around, toggle the valid bit */ 460 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 461 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 462 } 463 464 static void 465 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 466 { 467 struct lpfc_eqe *eqe = NULL; 468 u32 eq_count = 0, cq_count = 0; 469 struct lpfc_cqe *cqe = NULL; 470 struct lpfc_queue *cq = NULL, *childq = NULL; 471 int cqid = 0; 472 473 /* walk all the EQ entries and drop on the floor */ 474 eqe = lpfc_sli4_eq_get(eq); 475 while (eqe) { 476 /* Get the reference to the corresponding CQ */ 477 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 478 cq = NULL; 479 480 list_for_each_entry(childq, &eq->child_list, list) { 481 if (childq->queue_id == cqid) { 482 cq = childq; 483 break; 484 } 485 } 486 /* If CQ is valid, iterate through it and drop all the CQEs */ 487 if (cq) { 488 cqe = lpfc_sli4_cq_get(cq); 489 while (cqe) { 490 __lpfc_sli4_consume_cqe(phba, cq, cqe); 491 cq_count++; 492 cqe = lpfc_sli4_cq_get(cq); 493 } 494 /* Clear and re-arm the CQ */ 495 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 496 LPFC_QUEUE_REARM); 497 cq_count = 0; 498 } 499 __lpfc_sli4_consume_eqe(phba, eq, eqe); 500 eq_count++; 501 eqe = lpfc_sli4_eq_get(eq); 502 } 503 504 /* Clear and re-arm the EQ */ 505 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 506 } 507 508 static int 509 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 510 uint8_t rearm) 511 { 512 struct lpfc_eqe *eqe; 513 int count = 0, consumed = 0; 514 515 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 516 goto rearm_and_exit; 517 518 eqe = lpfc_sli4_eq_get(eq); 519 while (eqe) { 520 lpfc_sli4_hba_handle_eqe(phba, eq, eqe); 521 __lpfc_sli4_consume_eqe(phba, eq, eqe); 522 523 consumed++; 524 if (!(++count % eq->max_proc_limit)) 525 break; 526 527 if (!(count % eq->notify_interval)) { 528 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 529 LPFC_QUEUE_NOARM); 530 consumed = 0; 531 } 532 533 eqe = lpfc_sli4_eq_get(eq); 534 } 535 eq->EQ_processed += count; 536 537 /* Track the max number of EQEs processed in 1 intr */ 538 if (count > eq->EQ_max_eqe) 539 eq->EQ_max_eqe = count; 540 541 eq->queue_claimed = 0; 542 543 rearm_and_exit: 544 /* Always clear the EQ. */ 545 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 546 547 return count; 548 } 549 550 /** 551 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 552 * @q: The Completion Queue to get the first valid CQE from 553 * 554 * This routine will get the first valid Completion Queue Entry from @q, update 555 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 556 * the Queue (no more work to do), or the Queue is full of CQEs that have been 557 * processed, but not popped back to the HBA then this routine will return NULL. 558 **/ 559 static struct lpfc_cqe * 560 lpfc_sli4_cq_get(struct lpfc_queue *q) 561 { 562 struct lpfc_cqe *cqe; 563 564 /* sanity check on queue memory */ 565 if (unlikely(!q)) 566 return NULL; 567 cqe = lpfc_sli4_qe(q, q->host_index); 568 569 /* If the next CQE is not valid then we are done */ 570 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 571 return NULL; 572 573 /* 574 * insert barrier for instruction interlock : data from the hardware 575 * must have the valid bit checked before it can be copied and acted 576 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 577 * instructions allowing action on content before valid bit checked, 578 * add barrier here as well. May not be needed as "content" is a 579 * single 32-bit entity here (vs multi word structure for cq's). 580 */ 581 mb(); 582 return cqe; 583 } 584 585 static void 586 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 587 struct lpfc_cqe *cqe) 588 { 589 if (!phba->sli4_hba.pc_sli4_params.cqav) 590 bf_set_le32(lpfc_cqe_valid, cqe, 0); 591 592 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 593 594 /* if the index wrapped around, toggle the valid bit */ 595 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 596 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 597 } 598 599 /** 600 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 601 * @phba: the adapter with the CQ 602 * @q: The Completion Queue that the host has completed processing for. 603 * @count: the number of elements that were consumed 604 * @arm: Indicates whether the host wants to arms this CQ. 605 * 606 * This routine will notify the HBA, by ringing the doorbell, that the 607 * CQEs have been processed. The @arm parameter specifies whether the 608 * queue should be rearmed when ringing the doorbell. 609 **/ 610 void 611 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 612 uint32_t count, bool arm) 613 { 614 struct lpfc_register doorbell; 615 616 /* sanity check on queue memory */ 617 if (unlikely(!q || (count == 0 && !arm))) 618 return; 619 620 /* ring doorbell for number popped */ 621 doorbell.word0 = 0; 622 if (arm) 623 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 624 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 625 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 626 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 627 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 628 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 629 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 630 } 631 632 /** 633 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 634 * @phba: the adapter with the CQ 635 * @q: The Completion Queue that the host has completed processing for. 636 * @count: the number of elements that were consumed 637 * @arm: Indicates whether the host wants to arms this CQ. 638 * 639 * This routine will notify the HBA, by ringing the doorbell, that the 640 * CQEs have been processed. The @arm parameter specifies whether the 641 * queue should be rearmed when ringing the doorbell. 642 **/ 643 void 644 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 645 uint32_t count, bool arm) 646 { 647 struct lpfc_register doorbell; 648 649 /* sanity check on queue memory */ 650 if (unlikely(!q || (count == 0 && !arm))) 651 return; 652 653 /* ring doorbell for number popped */ 654 doorbell.word0 = 0; 655 if (arm) 656 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 657 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 658 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 659 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 660 } 661 662 /** 663 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 664 * @q: The Header Receive Queue to operate on. 665 * @wqe: The Receive Queue Entry to put on the Receive queue. 666 * 667 * This routine will copy the contents of @wqe to the next available entry on 668 * the @q. This function will then ring the Receive Queue Doorbell to signal the 669 * HBA to start processing the Receive Queue Entry. This function returns the 670 * index that the rqe was copied to if successful. If no entries are available 671 * on @q then this function will return -ENOMEM. 672 * The caller is expected to hold the hbalock when calling this routine. 673 **/ 674 int 675 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 676 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 677 { 678 struct lpfc_rqe *temp_hrqe; 679 struct lpfc_rqe *temp_drqe; 680 struct lpfc_register doorbell; 681 int hq_put_index; 682 int dq_put_index; 683 684 /* sanity check on queue memory */ 685 if (unlikely(!hq) || unlikely(!dq)) 686 return -ENOMEM; 687 hq_put_index = hq->host_index; 688 dq_put_index = dq->host_index; 689 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 690 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 691 692 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 693 return -EINVAL; 694 if (hq_put_index != dq_put_index) 695 return -EINVAL; 696 /* If the host has not yet processed the next entry then we are done */ 697 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 698 return -EBUSY; 699 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 700 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 701 702 /* Update the host index to point to the next slot */ 703 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 704 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 705 hq->RQ_buf_posted++; 706 707 /* Ring The Header Receive Queue Doorbell */ 708 if (!(hq->host_index % hq->notify_interval)) { 709 doorbell.word0 = 0; 710 if (hq->db_format == LPFC_DB_RING_FORMAT) { 711 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 712 hq->notify_interval); 713 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 714 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 715 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 716 hq->notify_interval); 717 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 718 hq->host_index); 719 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 720 } else { 721 return -EINVAL; 722 } 723 writel(doorbell.word0, hq->db_regaddr); 724 } 725 return hq_put_index; 726 } 727 728 /** 729 * lpfc_sli4_rq_release - Updates internal hba index for RQ 730 * @q: The Header Receive Queue to operate on. 731 * 732 * This routine will update the HBA index of a queue to reflect consumption of 733 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 734 * consumed an entry the host calls this function to update the queue's 735 * internal pointers. This routine returns the number of entries that were 736 * consumed by the HBA. 737 **/ 738 static uint32_t 739 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 740 { 741 /* sanity check on queue memory */ 742 if (unlikely(!hq) || unlikely(!dq)) 743 return 0; 744 745 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 746 return 0; 747 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 748 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 749 return 1; 750 } 751 752 /** 753 * lpfc_cmd_iocb - Get next command iocb entry in the ring 754 * @phba: Pointer to HBA context object. 755 * @pring: Pointer to driver SLI ring object. 756 * 757 * This function returns pointer to next command iocb entry 758 * in the command ring. The caller must hold hbalock to prevent 759 * other threads consume the next command iocb. 760 * SLI-2/SLI-3 provide different sized iocbs. 761 **/ 762 static inline IOCB_t * 763 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 764 { 765 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 766 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 767 } 768 769 /** 770 * lpfc_resp_iocb - Get next response iocb entry in the ring 771 * @phba: Pointer to HBA context object. 772 * @pring: Pointer to driver SLI ring object. 773 * 774 * This function returns pointer to next response iocb entry 775 * in the response ring. The caller must hold hbalock to make sure 776 * that no other thread consume the next response iocb. 777 * SLI-2/SLI-3 provide different sized iocbs. 778 **/ 779 static inline IOCB_t * 780 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 781 { 782 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 783 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 784 } 785 786 /** 787 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 788 * @phba: Pointer to HBA context object. 789 * 790 * This function is called with hbalock held. This function 791 * allocates a new driver iocb object from the iocb pool. If the 792 * allocation is successful, it returns pointer to the newly 793 * allocated iocb object else it returns NULL. 794 **/ 795 struct lpfc_iocbq * 796 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 797 { 798 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 799 struct lpfc_iocbq * iocbq = NULL; 800 801 lockdep_assert_held(&phba->hbalock); 802 803 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 804 if (iocbq) 805 phba->iocb_cnt++; 806 if (phba->iocb_cnt > phba->iocb_max) 807 phba->iocb_max = phba->iocb_cnt; 808 return iocbq; 809 } 810 811 /** 812 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 813 * @phba: Pointer to HBA context object. 814 * @xritag: XRI value. 815 * 816 * This function clears the sglq pointer from the array of acive 817 * sglq's. The xritag that is passed in is used to index into the 818 * array. Before the xritag can be used it needs to be adjusted 819 * by subtracting the xribase. 820 * 821 * Returns sglq ponter = success, NULL = Failure. 822 **/ 823 struct lpfc_sglq * 824 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 825 { 826 struct lpfc_sglq *sglq; 827 828 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 829 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 830 return sglq; 831 } 832 833 /** 834 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 835 * @phba: Pointer to HBA context object. 836 * @xritag: XRI value. 837 * 838 * This function returns the sglq pointer from the array of acive 839 * sglq's. The xritag that is passed in is used to index into the 840 * array. Before the xritag can be used it needs to be adjusted 841 * by subtracting the xribase. 842 * 843 * Returns sglq ponter = success, NULL = Failure. 844 **/ 845 struct lpfc_sglq * 846 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 847 { 848 struct lpfc_sglq *sglq; 849 850 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 851 return sglq; 852 } 853 854 /** 855 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 856 * @phba: Pointer to HBA context object. 857 * @xritag: xri used in this exchange. 858 * @rrq: The RRQ to be cleared. 859 * 860 **/ 861 void 862 lpfc_clr_rrq_active(struct lpfc_hba *phba, 863 uint16_t xritag, 864 struct lpfc_node_rrq *rrq) 865 { 866 struct lpfc_nodelist *ndlp = NULL; 867 868 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp)) 869 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 870 871 /* The target DID could have been swapped (cable swap) 872 * we should use the ndlp from the findnode if it is 873 * available. 874 */ 875 if ((!ndlp) && rrq->ndlp) 876 ndlp = rrq->ndlp; 877 878 if (!ndlp) 879 goto out; 880 881 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 882 rrq->send_rrq = 0; 883 rrq->xritag = 0; 884 rrq->rrq_stop_time = 0; 885 } 886 out: 887 mempool_free(rrq, phba->rrq_pool); 888 } 889 890 /** 891 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 892 * @phba: Pointer to HBA context object. 893 * 894 * This function is called with hbalock held. This function 895 * Checks if stop_time (ratov from setting rrq active) has 896 * been reached, if it has and the send_rrq flag is set then 897 * it will call lpfc_send_rrq. If the send_rrq flag is not set 898 * then it will just call the routine to clear the rrq and 899 * free the rrq resource. 900 * The timer is set to the next rrq that is going to expire before 901 * leaving the routine. 902 * 903 **/ 904 void 905 lpfc_handle_rrq_active(struct lpfc_hba *phba) 906 { 907 struct lpfc_node_rrq *rrq; 908 struct lpfc_node_rrq *nextrrq; 909 unsigned long next_time; 910 unsigned long iflags; 911 LIST_HEAD(send_rrq); 912 913 spin_lock_irqsave(&phba->hbalock, iflags); 914 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 915 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 916 list_for_each_entry_safe(rrq, nextrrq, 917 &phba->active_rrq_list, list) { 918 if (time_after(jiffies, rrq->rrq_stop_time)) 919 list_move(&rrq->list, &send_rrq); 920 else if (time_before(rrq->rrq_stop_time, next_time)) 921 next_time = rrq->rrq_stop_time; 922 } 923 spin_unlock_irqrestore(&phba->hbalock, iflags); 924 if ((!list_empty(&phba->active_rrq_list)) && 925 (!(phba->pport->load_flag & FC_UNLOADING))) 926 mod_timer(&phba->rrq_tmr, next_time); 927 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 928 list_del(&rrq->list); 929 if (!rrq->send_rrq) { 930 /* this call will free the rrq */ 931 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 932 } else if (lpfc_send_rrq(phba, rrq)) { 933 /* if we send the rrq then the completion handler 934 * will clear the bit in the xribitmap. 935 */ 936 lpfc_clr_rrq_active(phba, rrq->xritag, 937 rrq); 938 } 939 } 940 } 941 942 /** 943 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 944 * @vport: Pointer to vport context object. 945 * @xri: The xri used in the exchange. 946 * @did: The targets DID for this exchange. 947 * 948 * returns NULL = rrq not found in the phba->active_rrq_list. 949 * rrq = rrq for this xri and target. 950 **/ 951 struct lpfc_node_rrq * 952 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 953 { 954 struct lpfc_hba *phba = vport->phba; 955 struct lpfc_node_rrq *rrq; 956 struct lpfc_node_rrq *nextrrq; 957 unsigned long iflags; 958 959 if (phba->sli_rev != LPFC_SLI_REV4) 960 return NULL; 961 spin_lock_irqsave(&phba->hbalock, iflags); 962 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 963 if (rrq->vport == vport && rrq->xritag == xri && 964 rrq->nlp_DID == did){ 965 list_del(&rrq->list); 966 spin_unlock_irqrestore(&phba->hbalock, iflags); 967 return rrq; 968 } 969 } 970 spin_unlock_irqrestore(&phba->hbalock, iflags); 971 return NULL; 972 } 973 974 /** 975 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 976 * @vport: Pointer to vport context object. 977 * @ndlp: Pointer to the lpfc_node_list structure. 978 * If ndlp is NULL Remove all active RRQs for this vport from the 979 * phba->active_rrq_list and clear the rrq. 980 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 981 **/ 982 void 983 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 984 985 { 986 struct lpfc_hba *phba = vport->phba; 987 struct lpfc_node_rrq *rrq; 988 struct lpfc_node_rrq *nextrrq; 989 unsigned long iflags; 990 LIST_HEAD(rrq_list); 991 992 if (phba->sli_rev != LPFC_SLI_REV4) 993 return; 994 if (!ndlp) { 995 lpfc_sli4_vport_delete_els_xri_aborted(vport); 996 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 997 } 998 spin_lock_irqsave(&phba->hbalock, iflags); 999 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) 1000 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp)) 1001 list_move(&rrq->list, &rrq_list); 1002 spin_unlock_irqrestore(&phba->hbalock, iflags); 1003 1004 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1005 list_del(&rrq->list); 1006 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1007 } 1008 } 1009 1010 /** 1011 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1012 * @phba: Pointer to HBA context object. 1013 * @ndlp: Targets nodelist pointer for this exchange. 1014 * @xritag the xri in the bitmap to test. 1015 * 1016 * This function returns: 1017 * 0 = rrq not active for this xri 1018 * 1 = rrq is valid for this xri. 1019 **/ 1020 int 1021 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1022 uint16_t xritag) 1023 { 1024 if (!ndlp) 1025 return 0; 1026 if (!ndlp->active_rrqs_xri_bitmap) 1027 return 0; 1028 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1029 return 1; 1030 else 1031 return 0; 1032 } 1033 1034 /** 1035 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1036 * @phba: Pointer to HBA context object. 1037 * @ndlp: nodelist pointer for this target. 1038 * @xritag: xri used in this exchange. 1039 * @rxid: Remote Exchange ID. 1040 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1041 * 1042 * This function takes the hbalock. 1043 * The active bit is always set in the active rrq xri_bitmap even 1044 * if there is no slot avaiable for the other rrq information. 1045 * 1046 * returns 0 rrq actived for this xri 1047 * < 0 No memory or invalid ndlp. 1048 **/ 1049 int 1050 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1051 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1052 { 1053 unsigned long iflags; 1054 struct lpfc_node_rrq *rrq; 1055 int empty; 1056 1057 if (!ndlp) 1058 return -EINVAL; 1059 1060 if (!phba->cfg_enable_rrq) 1061 return -EINVAL; 1062 1063 spin_lock_irqsave(&phba->hbalock, iflags); 1064 if (phba->pport->load_flag & FC_UNLOADING) { 1065 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1066 goto out; 1067 } 1068 1069 /* 1070 * set the active bit even if there is no mem available. 1071 */ 1072 if (NLP_CHK_FREE_REQ(ndlp)) 1073 goto out; 1074 1075 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1076 goto out; 1077 1078 if (!ndlp->active_rrqs_xri_bitmap) 1079 goto out; 1080 1081 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1082 goto out; 1083 1084 spin_unlock_irqrestore(&phba->hbalock, iflags); 1085 rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL); 1086 if (!rrq) { 1087 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1088 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1089 " DID:0x%x Send:%d\n", 1090 xritag, rxid, ndlp->nlp_DID, send_rrq); 1091 return -EINVAL; 1092 } 1093 if (phba->cfg_enable_rrq == 1) 1094 rrq->send_rrq = send_rrq; 1095 else 1096 rrq->send_rrq = 0; 1097 rrq->xritag = xritag; 1098 rrq->rrq_stop_time = jiffies + 1099 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1100 rrq->ndlp = ndlp; 1101 rrq->nlp_DID = ndlp->nlp_DID; 1102 rrq->vport = ndlp->vport; 1103 rrq->rxid = rxid; 1104 spin_lock_irqsave(&phba->hbalock, iflags); 1105 empty = list_empty(&phba->active_rrq_list); 1106 list_add_tail(&rrq->list, &phba->active_rrq_list); 1107 phba->hba_flag |= HBA_RRQ_ACTIVE; 1108 if (empty) 1109 lpfc_worker_wake_up(phba); 1110 spin_unlock_irqrestore(&phba->hbalock, iflags); 1111 return 0; 1112 out: 1113 spin_unlock_irqrestore(&phba->hbalock, iflags); 1114 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1115 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1116 " DID:0x%x Send:%d\n", 1117 xritag, rxid, ndlp->nlp_DID, send_rrq); 1118 return -EINVAL; 1119 } 1120 1121 /** 1122 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1123 * @phba: Pointer to HBA context object. 1124 * @piocb: Pointer to the iocbq. 1125 * 1126 * The driver calls this function with either the nvme ls ring lock 1127 * or the fc els ring lock held depending on the iocb usage. This function 1128 * gets a new driver sglq object from the sglq list. If the list is not empty 1129 * then it is successful, it returns pointer to the newly allocated sglq 1130 * object else it returns NULL. 1131 **/ 1132 static struct lpfc_sglq * 1133 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1134 { 1135 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1136 struct lpfc_sglq *sglq = NULL; 1137 struct lpfc_sglq *start_sglq = NULL; 1138 struct lpfc_io_buf *lpfc_cmd; 1139 struct lpfc_nodelist *ndlp; 1140 struct lpfc_sli_ring *pring = NULL; 1141 int found = 0; 1142 1143 if (piocbq->iocb_flag & LPFC_IO_NVME_LS) 1144 pring = phba->sli4_hba.nvmels_wq->pring; 1145 else 1146 pring = lpfc_phba_elsring(phba); 1147 1148 lockdep_assert_held(&pring->ring_lock); 1149 1150 if (piocbq->iocb_flag & LPFC_IO_FCP) { 1151 lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1; 1152 ndlp = lpfc_cmd->rdata->pnode; 1153 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 1154 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 1155 ndlp = piocbq->context_un.ndlp; 1156 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 1157 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 1158 ndlp = NULL; 1159 else 1160 ndlp = piocbq->context_un.ndlp; 1161 } else { 1162 ndlp = piocbq->context1; 1163 } 1164 1165 spin_lock(&phba->sli4_hba.sgl_list_lock); 1166 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1167 start_sglq = sglq; 1168 while (!found) { 1169 if (!sglq) 1170 break; 1171 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1172 test_bit(sglq->sli4_lxritag, 1173 ndlp->active_rrqs_xri_bitmap)) { 1174 /* This xri has an rrq outstanding for this DID. 1175 * put it back in the list and get another xri. 1176 */ 1177 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1178 sglq = NULL; 1179 list_remove_head(lpfc_els_sgl_list, sglq, 1180 struct lpfc_sglq, list); 1181 if (sglq == start_sglq) { 1182 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1183 sglq = NULL; 1184 break; 1185 } else 1186 continue; 1187 } 1188 sglq->ndlp = ndlp; 1189 found = 1; 1190 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1191 sglq->state = SGL_ALLOCATED; 1192 } 1193 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1194 return sglq; 1195 } 1196 1197 /** 1198 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1199 * @phba: Pointer to HBA context object. 1200 * @piocb: Pointer to the iocbq. 1201 * 1202 * This function is called with the sgl_list lock held. This function 1203 * gets a new driver sglq object from the sglq list. If the 1204 * list is not empty then it is successful, it returns pointer to the newly 1205 * allocated sglq object else it returns NULL. 1206 **/ 1207 struct lpfc_sglq * 1208 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1209 { 1210 struct list_head *lpfc_nvmet_sgl_list; 1211 struct lpfc_sglq *sglq = NULL; 1212 1213 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1214 1215 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1216 1217 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1218 if (!sglq) 1219 return NULL; 1220 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1221 sglq->state = SGL_ALLOCATED; 1222 return sglq; 1223 } 1224 1225 /** 1226 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1227 * @phba: Pointer to HBA context object. 1228 * 1229 * This function is called with no lock held. This function 1230 * allocates a new driver iocb object from the iocb pool. If the 1231 * allocation is successful, it returns pointer to the newly 1232 * allocated iocb object else it returns NULL. 1233 **/ 1234 struct lpfc_iocbq * 1235 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1236 { 1237 struct lpfc_iocbq * iocbq = NULL; 1238 unsigned long iflags; 1239 1240 spin_lock_irqsave(&phba->hbalock, iflags); 1241 iocbq = __lpfc_sli_get_iocbq(phba); 1242 spin_unlock_irqrestore(&phba->hbalock, iflags); 1243 return iocbq; 1244 } 1245 1246 /** 1247 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1248 * @phba: Pointer to HBA context object. 1249 * @iocbq: Pointer to driver iocb object. 1250 * 1251 * This function is called with hbalock held to release driver 1252 * iocb object to the iocb pool. The iotag in the iocb object 1253 * does not change for each use of the iocb object. This function 1254 * clears all other fields of the iocb object when it is freed. 1255 * The sqlq structure that holds the xritag and phys and virtual 1256 * mappings for the scatter gather list is retrieved from the 1257 * active array of sglq. The get of the sglq pointer also clears 1258 * the entry in the array. If the status of the IO indiactes that 1259 * this IO was aborted then the sglq entry it put on the 1260 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1261 * IO has good status or fails for any other reason then the sglq 1262 * entry is added to the free list (lpfc_els_sgl_list). 1263 **/ 1264 static void 1265 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1266 { 1267 struct lpfc_sglq *sglq; 1268 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1269 unsigned long iflag = 0; 1270 struct lpfc_sli_ring *pring; 1271 1272 lockdep_assert_held(&phba->hbalock); 1273 1274 if (iocbq->sli4_xritag == NO_XRI) 1275 sglq = NULL; 1276 else 1277 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1278 1279 1280 if (sglq) { 1281 if (iocbq->iocb_flag & LPFC_IO_NVMET) { 1282 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1283 iflag); 1284 sglq->state = SGL_FREED; 1285 sglq->ndlp = NULL; 1286 list_add_tail(&sglq->list, 1287 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1288 spin_unlock_irqrestore( 1289 &phba->sli4_hba.sgl_list_lock, iflag); 1290 goto out; 1291 } 1292 1293 pring = phba->sli4_hba.els_wq->pring; 1294 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1295 (sglq->state != SGL_XRI_ABORTED)) { 1296 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1297 iflag); 1298 list_add(&sglq->list, 1299 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1300 spin_unlock_irqrestore( 1301 &phba->sli4_hba.sgl_list_lock, iflag); 1302 } else { 1303 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1304 iflag); 1305 sglq->state = SGL_FREED; 1306 sglq->ndlp = NULL; 1307 list_add_tail(&sglq->list, 1308 &phba->sli4_hba.lpfc_els_sgl_list); 1309 spin_unlock_irqrestore( 1310 &phba->sli4_hba.sgl_list_lock, iflag); 1311 1312 /* Check if TXQ queue needs to be serviced */ 1313 if (!list_empty(&pring->txq)) 1314 lpfc_worker_wake_up(phba); 1315 } 1316 } 1317 1318 out: 1319 /* 1320 * Clean all volatile data fields, preserve iotag and node struct. 1321 */ 1322 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1323 iocbq->sli4_lxritag = NO_XRI; 1324 iocbq->sli4_xritag = NO_XRI; 1325 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | 1326 LPFC_IO_NVME_LS); 1327 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1328 } 1329 1330 1331 /** 1332 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1333 * @phba: Pointer to HBA context object. 1334 * @iocbq: Pointer to driver iocb object. 1335 * 1336 * This function is called with hbalock held to release driver 1337 * iocb object to the iocb pool. The iotag in the iocb object 1338 * does not change for each use of the iocb object. This function 1339 * clears all other fields of the iocb object when it is freed. 1340 **/ 1341 static void 1342 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1343 { 1344 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1345 1346 lockdep_assert_held(&phba->hbalock); 1347 1348 /* 1349 * Clean all volatile data fields, preserve iotag and node struct. 1350 */ 1351 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1352 iocbq->sli4_xritag = NO_XRI; 1353 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1354 } 1355 1356 /** 1357 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1358 * @phba: Pointer to HBA context object. 1359 * @iocbq: Pointer to driver iocb object. 1360 * 1361 * This function is called with hbalock held to release driver 1362 * iocb object to the iocb pool. The iotag in the iocb object 1363 * does not change for each use of the iocb object. This function 1364 * clears all other fields of the iocb object when it is freed. 1365 **/ 1366 static void 1367 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1368 { 1369 lockdep_assert_held(&phba->hbalock); 1370 1371 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1372 phba->iocb_cnt--; 1373 } 1374 1375 /** 1376 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1377 * @phba: Pointer to HBA context object. 1378 * @iocbq: Pointer to driver iocb object. 1379 * 1380 * This function is called with no lock held to release the iocb to 1381 * iocb pool. 1382 **/ 1383 void 1384 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1385 { 1386 unsigned long iflags; 1387 1388 /* 1389 * Clean all volatile data fields, preserve iotag and node struct. 1390 */ 1391 spin_lock_irqsave(&phba->hbalock, iflags); 1392 __lpfc_sli_release_iocbq(phba, iocbq); 1393 spin_unlock_irqrestore(&phba->hbalock, iflags); 1394 } 1395 1396 /** 1397 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1398 * @phba: Pointer to HBA context object. 1399 * @iocblist: List of IOCBs. 1400 * @ulpstatus: ULP status in IOCB command field. 1401 * @ulpWord4: ULP word-4 in IOCB command field. 1402 * 1403 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1404 * on the list by invoking the complete callback function associated with the 1405 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1406 * fields. 1407 **/ 1408 void 1409 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1410 uint32_t ulpstatus, uint32_t ulpWord4) 1411 { 1412 struct lpfc_iocbq *piocb; 1413 1414 while (!list_empty(iocblist)) { 1415 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1416 if (!piocb->iocb_cmpl) { 1417 if (piocb->iocb_flag & LPFC_IO_NVME) 1418 lpfc_nvme_cancel_iocb(phba, piocb); 1419 else 1420 lpfc_sli_release_iocbq(phba, piocb); 1421 } else { 1422 piocb->iocb.ulpStatus = ulpstatus; 1423 piocb->iocb.un.ulpWord[4] = ulpWord4; 1424 (piocb->iocb_cmpl) (phba, piocb, piocb); 1425 } 1426 } 1427 return; 1428 } 1429 1430 /** 1431 * lpfc_sli_iocb_cmd_type - Get the iocb type 1432 * @iocb_cmnd: iocb command code. 1433 * 1434 * This function is called by ring event handler function to get the iocb type. 1435 * This function translates the iocb command to an iocb command type used to 1436 * decide the final disposition of each completed IOCB. 1437 * The function returns 1438 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1439 * LPFC_SOL_IOCB if it is a solicited iocb completion 1440 * LPFC_ABORT_IOCB if it is an abort iocb 1441 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1442 * 1443 * The caller is not required to hold any lock. 1444 **/ 1445 static lpfc_iocb_type 1446 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1447 { 1448 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1449 1450 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1451 return 0; 1452 1453 switch (iocb_cmnd) { 1454 case CMD_XMIT_SEQUENCE_CR: 1455 case CMD_XMIT_SEQUENCE_CX: 1456 case CMD_XMIT_BCAST_CN: 1457 case CMD_XMIT_BCAST_CX: 1458 case CMD_ELS_REQUEST_CR: 1459 case CMD_ELS_REQUEST_CX: 1460 case CMD_CREATE_XRI_CR: 1461 case CMD_CREATE_XRI_CX: 1462 case CMD_GET_RPI_CN: 1463 case CMD_XMIT_ELS_RSP_CX: 1464 case CMD_GET_RPI_CR: 1465 case CMD_FCP_IWRITE_CR: 1466 case CMD_FCP_IWRITE_CX: 1467 case CMD_FCP_IREAD_CR: 1468 case CMD_FCP_IREAD_CX: 1469 case CMD_FCP_ICMND_CR: 1470 case CMD_FCP_ICMND_CX: 1471 case CMD_FCP_TSEND_CX: 1472 case CMD_FCP_TRSP_CX: 1473 case CMD_FCP_TRECEIVE_CX: 1474 case CMD_FCP_AUTO_TRSP_CX: 1475 case CMD_ADAPTER_MSG: 1476 case CMD_ADAPTER_DUMP: 1477 case CMD_XMIT_SEQUENCE64_CR: 1478 case CMD_XMIT_SEQUENCE64_CX: 1479 case CMD_XMIT_BCAST64_CN: 1480 case CMD_XMIT_BCAST64_CX: 1481 case CMD_ELS_REQUEST64_CR: 1482 case CMD_ELS_REQUEST64_CX: 1483 case CMD_FCP_IWRITE64_CR: 1484 case CMD_FCP_IWRITE64_CX: 1485 case CMD_FCP_IREAD64_CR: 1486 case CMD_FCP_IREAD64_CX: 1487 case CMD_FCP_ICMND64_CR: 1488 case CMD_FCP_ICMND64_CX: 1489 case CMD_FCP_TSEND64_CX: 1490 case CMD_FCP_TRSP64_CX: 1491 case CMD_FCP_TRECEIVE64_CX: 1492 case CMD_GEN_REQUEST64_CR: 1493 case CMD_GEN_REQUEST64_CX: 1494 case CMD_XMIT_ELS_RSP64_CX: 1495 case DSSCMD_IWRITE64_CR: 1496 case DSSCMD_IWRITE64_CX: 1497 case DSSCMD_IREAD64_CR: 1498 case DSSCMD_IREAD64_CX: 1499 type = LPFC_SOL_IOCB; 1500 break; 1501 case CMD_ABORT_XRI_CN: 1502 case CMD_ABORT_XRI_CX: 1503 case CMD_CLOSE_XRI_CN: 1504 case CMD_CLOSE_XRI_CX: 1505 case CMD_XRI_ABORTED_CX: 1506 case CMD_ABORT_MXRI64_CN: 1507 case CMD_XMIT_BLS_RSP64_CX: 1508 type = LPFC_ABORT_IOCB; 1509 break; 1510 case CMD_RCV_SEQUENCE_CX: 1511 case CMD_RCV_ELS_REQ_CX: 1512 case CMD_RCV_SEQUENCE64_CX: 1513 case CMD_RCV_ELS_REQ64_CX: 1514 case CMD_ASYNC_STATUS: 1515 case CMD_IOCB_RCV_SEQ64_CX: 1516 case CMD_IOCB_RCV_ELS64_CX: 1517 case CMD_IOCB_RCV_CONT64_CX: 1518 case CMD_IOCB_RET_XRI64_CX: 1519 type = LPFC_UNSOL_IOCB; 1520 break; 1521 case CMD_IOCB_XMIT_MSEQ64_CR: 1522 case CMD_IOCB_XMIT_MSEQ64_CX: 1523 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1524 case CMD_IOCB_RCV_ELS_LIST64_CX: 1525 case CMD_IOCB_CLOSE_EXTENDED_CN: 1526 case CMD_IOCB_ABORT_EXTENDED_CN: 1527 case CMD_IOCB_RET_HBQE64_CN: 1528 case CMD_IOCB_FCP_IBIDIR64_CR: 1529 case CMD_IOCB_FCP_IBIDIR64_CX: 1530 case CMD_IOCB_FCP_ITASKMGT64_CX: 1531 case CMD_IOCB_LOGENTRY_CN: 1532 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1533 printk("%s - Unhandled SLI-3 Command x%x\n", 1534 __func__, iocb_cmnd); 1535 type = LPFC_UNKNOWN_IOCB; 1536 break; 1537 default: 1538 type = LPFC_UNKNOWN_IOCB; 1539 break; 1540 } 1541 1542 return type; 1543 } 1544 1545 /** 1546 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1547 * @phba: Pointer to HBA context object. 1548 * 1549 * This function is called from SLI initialization code 1550 * to configure every ring of the HBA's SLI interface. The 1551 * caller is not required to hold any lock. This function issues 1552 * a config_ring mailbox command for each ring. 1553 * This function returns zero if successful else returns a negative 1554 * error code. 1555 **/ 1556 static int 1557 lpfc_sli_ring_map(struct lpfc_hba *phba) 1558 { 1559 struct lpfc_sli *psli = &phba->sli; 1560 LPFC_MBOXQ_t *pmb; 1561 MAILBOX_t *pmbox; 1562 int i, rc, ret = 0; 1563 1564 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1565 if (!pmb) 1566 return -ENOMEM; 1567 pmbox = &pmb->u.mb; 1568 phba->link_state = LPFC_INIT_MBX_CMDS; 1569 for (i = 0; i < psli->num_rings; i++) { 1570 lpfc_config_ring(phba, i, pmb); 1571 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1572 if (rc != MBX_SUCCESS) { 1573 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1574 "0446 Adapter failed to init (%d), " 1575 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1576 "ring %d\n", 1577 rc, pmbox->mbxCommand, 1578 pmbox->mbxStatus, i); 1579 phba->link_state = LPFC_HBA_ERROR; 1580 ret = -ENXIO; 1581 break; 1582 } 1583 } 1584 mempool_free(pmb, phba->mbox_mem_pool); 1585 return ret; 1586 } 1587 1588 /** 1589 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1590 * @phba: Pointer to HBA context object. 1591 * @pring: Pointer to driver SLI ring object. 1592 * @piocb: Pointer to the driver iocb object. 1593 * 1594 * The driver calls this function with the hbalock held for SLI3 ports or 1595 * the ring lock held for SLI4 ports. The function adds the 1596 * new iocb to txcmplq of the given ring. This function always returns 1597 * 0. If this function is called for ELS ring, this function checks if 1598 * there is a vport associated with the ELS command. This function also 1599 * starts els_tmofunc timer if this is an ELS command. 1600 **/ 1601 static int 1602 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1603 struct lpfc_iocbq *piocb) 1604 { 1605 if (phba->sli_rev == LPFC_SLI_REV4) 1606 lockdep_assert_held(&pring->ring_lock); 1607 else 1608 lockdep_assert_held(&phba->hbalock); 1609 1610 BUG_ON(!piocb); 1611 1612 list_add_tail(&piocb->list, &pring->txcmplq); 1613 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1614 pring->txcmplq_cnt++; 1615 1616 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1617 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1618 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1619 BUG_ON(!piocb->vport); 1620 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1621 mod_timer(&piocb->vport->els_tmofunc, 1622 jiffies + 1623 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1624 } 1625 1626 return 0; 1627 } 1628 1629 /** 1630 * lpfc_sli_ringtx_get - Get first element of the txq 1631 * @phba: Pointer to HBA context object. 1632 * @pring: Pointer to driver SLI ring object. 1633 * 1634 * This function is called with hbalock held to get next 1635 * iocb in txq of the given ring. If there is any iocb in 1636 * the txq, the function returns first iocb in the list after 1637 * removing the iocb from the list, else it returns NULL. 1638 **/ 1639 struct lpfc_iocbq * 1640 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1641 { 1642 struct lpfc_iocbq *cmd_iocb; 1643 1644 lockdep_assert_held(&phba->hbalock); 1645 1646 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1647 return cmd_iocb; 1648 } 1649 1650 /** 1651 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1652 * @phba: Pointer to HBA context object. 1653 * @pring: Pointer to driver SLI ring object. 1654 * 1655 * This function is called with hbalock held and the caller must post the 1656 * iocb without releasing the lock. If the caller releases the lock, 1657 * iocb slot returned by the function is not guaranteed to be available. 1658 * The function returns pointer to the next available iocb slot if there 1659 * is available slot in the ring, else it returns NULL. 1660 * If the get index of the ring is ahead of the put index, the function 1661 * will post an error attention event to the worker thread to take the 1662 * HBA to offline state. 1663 **/ 1664 static IOCB_t * 1665 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1666 { 1667 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1668 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1669 1670 lockdep_assert_held(&phba->hbalock); 1671 1672 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1673 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1674 pring->sli.sli3.next_cmdidx = 0; 1675 1676 if (unlikely(pring->sli.sli3.local_getidx == 1677 pring->sli.sli3.next_cmdidx)) { 1678 1679 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1680 1681 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1682 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 1683 "0315 Ring %d issue: portCmdGet %d " 1684 "is bigger than cmd ring %d\n", 1685 pring->ringno, 1686 pring->sli.sli3.local_getidx, 1687 max_cmd_idx); 1688 1689 phba->link_state = LPFC_HBA_ERROR; 1690 /* 1691 * All error attention handlers are posted to 1692 * worker thread 1693 */ 1694 phba->work_ha |= HA_ERATT; 1695 phba->work_hs = HS_FFER3; 1696 1697 lpfc_worker_wake_up(phba); 1698 1699 return NULL; 1700 } 1701 1702 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1703 return NULL; 1704 } 1705 1706 return lpfc_cmd_iocb(phba, pring); 1707 } 1708 1709 /** 1710 * lpfc_sli_next_iotag - Get an iotag for the iocb 1711 * @phba: Pointer to HBA context object. 1712 * @iocbq: Pointer to driver iocb object. 1713 * 1714 * This function gets an iotag for the iocb. If there is no unused iotag and 1715 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1716 * array and assigns a new iotag. 1717 * The function returns the allocated iotag if successful, else returns zero. 1718 * Zero is not a valid iotag. 1719 * The caller is not required to hold any lock. 1720 **/ 1721 uint16_t 1722 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1723 { 1724 struct lpfc_iocbq **new_arr; 1725 struct lpfc_iocbq **old_arr; 1726 size_t new_len; 1727 struct lpfc_sli *psli = &phba->sli; 1728 uint16_t iotag; 1729 1730 spin_lock_irq(&phba->hbalock); 1731 iotag = psli->last_iotag; 1732 if(++iotag < psli->iocbq_lookup_len) { 1733 psli->last_iotag = iotag; 1734 psli->iocbq_lookup[iotag] = iocbq; 1735 spin_unlock_irq(&phba->hbalock); 1736 iocbq->iotag = iotag; 1737 return iotag; 1738 } else if (psli->iocbq_lookup_len < (0xffff 1739 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1740 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1741 spin_unlock_irq(&phba->hbalock); 1742 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 1743 GFP_KERNEL); 1744 if (new_arr) { 1745 spin_lock_irq(&phba->hbalock); 1746 old_arr = psli->iocbq_lookup; 1747 if (new_len <= psli->iocbq_lookup_len) { 1748 /* highly unprobable case */ 1749 kfree(new_arr); 1750 iotag = psli->last_iotag; 1751 if(++iotag < psli->iocbq_lookup_len) { 1752 psli->last_iotag = iotag; 1753 psli->iocbq_lookup[iotag] = iocbq; 1754 spin_unlock_irq(&phba->hbalock); 1755 iocbq->iotag = iotag; 1756 return iotag; 1757 } 1758 spin_unlock_irq(&phba->hbalock); 1759 return 0; 1760 } 1761 if (psli->iocbq_lookup) 1762 memcpy(new_arr, old_arr, 1763 ((psli->last_iotag + 1) * 1764 sizeof (struct lpfc_iocbq *))); 1765 psli->iocbq_lookup = new_arr; 1766 psli->iocbq_lookup_len = new_len; 1767 psli->last_iotag = iotag; 1768 psli->iocbq_lookup[iotag] = iocbq; 1769 spin_unlock_irq(&phba->hbalock); 1770 iocbq->iotag = iotag; 1771 kfree(old_arr); 1772 return iotag; 1773 } 1774 } else 1775 spin_unlock_irq(&phba->hbalock); 1776 1777 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1778 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1779 psli->last_iotag); 1780 1781 return 0; 1782 } 1783 1784 /** 1785 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1786 * @phba: Pointer to HBA context object. 1787 * @pring: Pointer to driver SLI ring object. 1788 * @iocb: Pointer to iocb slot in the ring. 1789 * @nextiocb: Pointer to driver iocb object which need to be 1790 * posted to firmware. 1791 * 1792 * This function is called with hbalock held to post a new iocb to 1793 * the firmware. This function copies the new iocb to ring iocb slot and 1794 * updates the ring pointers. It adds the new iocb to txcmplq if there is 1795 * a completion call back for this iocb else the function will free the 1796 * iocb object. 1797 **/ 1798 static void 1799 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1800 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1801 { 1802 lockdep_assert_held(&phba->hbalock); 1803 /* 1804 * Set up an iotag 1805 */ 1806 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1807 1808 1809 if (pring->ringno == LPFC_ELS_RING) { 1810 lpfc_debugfs_slow_ring_trc(phba, 1811 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1812 *(((uint32_t *) &nextiocb->iocb) + 4), 1813 *(((uint32_t *) &nextiocb->iocb) + 6), 1814 *(((uint32_t *) &nextiocb->iocb) + 7)); 1815 } 1816 1817 /* 1818 * Issue iocb command to adapter 1819 */ 1820 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1821 wmb(); 1822 pring->stats.iocb_cmd++; 1823 1824 /* 1825 * If there is no completion routine to call, we can release the 1826 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1827 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1828 */ 1829 if (nextiocb->iocb_cmpl) 1830 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1831 else 1832 __lpfc_sli_release_iocbq(phba, nextiocb); 1833 1834 /* 1835 * Let the HBA know what IOCB slot will be the next one the 1836 * driver will put a command into. 1837 */ 1838 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1839 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1840 } 1841 1842 /** 1843 * lpfc_sli_update_full_ring - Update the chip attention register 1844 * @phba: Pointer to HBA context object. 1845 * @pring: Pointer to driver SLI ring object. 1846 * 1847 * The caller is not required to hold any lock for calling this function. 1848 * This function updates the chip attention bits for the ring to inform firmware 1849 * that there are pending work to be done for this ring and requests an 1850 * interrupt when there is space available in the ring. This function is 1851 * called when the driver is unable to post more iocbs to the ring due 1852 * to unavailability of space in the ring. 1853 **/ 1854 static void 1855 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1856 { 1857 int ringno = pring->ringno; 1858 1859 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1860 1861 wmb(); 1862 1863 /* 1864 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1865 * The HBA will tell us when an IOCB entry is available. 1866 */ 1867 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1868 readl(phba->CAregaddr); /* flush */ 1869 1870 pring->stats.iocb_cmd_full++; 1871 } 1872 1873 /** 1874 * lpfc_sli_update_ring - Update chip attention register 1875 * @phba: Pointer to HBA context object. 1876 * @pring: Pointer to driver SLI ring object. 1877 * 1878 * This function updates the chip attention register bit for the 1879 * given ring to inform HBA that there is more work to be done 1880 * in this ring. The caller is not required to hold any lock. 1881 **/ 1882 static void 1883 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1884 { 1885 int ringno = pring->ringno; 1886 1887 /* 1888 * Tell the HBA that there is work to do in this ring. 1889 */ 1890 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 1891 wmb(); 1892 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 1893 readl(phba->CAregaddr); /* flush */ 1894 } 1895 } 1896 1897 /** 1898 * lpfc_sli_resume_iocb - Process iocbs in the txq 1899 * @phba: Pointer to HBA context object. 1900 * @pring: Pointer to driver SLI ring object. 1901 * 1902 * This function is called with hbalock held to post pending iocbs 1903 * in the txq to the firmware. This function is called when driver 1904 * detects space available in the ring. 1905 **/ 1906 static void 1907 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1908 { 1909 IOCB_t *iocb; 1910 struct lpfc_iocbq *nextiocb; 1911 1912 lockdep_assert_held(&phba->hbalock); 1913 1914 /* 1915 * Check to see if: 1916 * (a) there is anything on the txq to send 1917 * (b) link is up 1918 * (c) link attention events can be processed (fcp ring only) 1919 * (d) IOCB processing is not blocked by the outstanding mbox command. 1920 */ 1921 1922 if (lpfc_is_link_up(phba) && 1923 (!list_empty(&pring->txq)) && 1924 (pring->ringno != LPFC_FCP_RING || 1925 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 1926 1927 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 1928 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 1929 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 1930 1931 if (iocb) 1932 lpfc_sli_update_ring(phba, pring); 1933 else 1934 lpfc_sli_update_full_ring(phba, pring); 1935 } 1936 1937 return; 1938 } 1939 1940 /** 1941 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 1942 * @phba: Pointer to HBA context object. 1943 * @hbqno: HBQ number. 1944 * 1945 * This function is called with hbalock held to get the next 1946 * available slot for the given HBQ. If there is free slot 1947 * available for the HBQ it will return pointer to the next available 1948 * HBQ entry else it will return NULL. 1949 **/ 1950 static struct lpfc_hbq_entry * 1951 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 1952 { 1953 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1954 1955 lockdep_assert_held(&phba->hbalock); 1956 1957 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 1958 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 1959 hbqp->next_hbqPutIdx = 0; 1960 1961 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 1962 uint32_t raw_index = phba->hbq_get[hbqno]; 1963 uint32_t getidx = le32_to_cpu(raw_index); 1964 1965 hbqp->local_hbqGetIdx = getidx; 1966 1967 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 1968 lpfc_printf_log(phba, KERN_ERR, 1969 LOG_SLI | LOG_VPORT, 1970 "1802 HBQ %d: local_hbqGetIdx " 1971 "%u is > than hbqp->entry_count %u\n", 1972 hbqno, hbqp->local_hbqGetIdx, 1973 hbqp->entry_count); 1974 1975 phba->link_state = LPFC_HBA_ERROR; 1976 return NULL; 1977 } 1978 1979 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 1980 return NULL; 1981 } 1982 1983 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 1984 hbqp->hbqPutIdx; 1985 } 1986 1987 /** 1988 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 1989 * @phba: Pointer to HBA context object. 1990 * 1991 * This function is called with no lock held to free all the 1992 * hbq buffers while uninitializing the SLI interface. It also 1993 * frees the HBQ buffers returned by the firmware but not yet 1994 * processed by the upper layers. 1995 **/ 1996 void 1997 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 1998 { 1999 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2000 struct hbq_dmabuf *hbq_buf; 2001 unsigned long flags; 2002 int i, hbq_count; 2003 2004 hbq_count = lpfc_sli_hbq_count(); 2005 /* Return all memory used by all HBQs */ 2006 spin_lock_irqsave(&phba->hbalock, flags); 2007 for (i = 0; i < hbq_count; ++i) { 2008 list_for_each_entry_safe(dmabuf, next_dmabuf, 2009 &phba->hbqs[i].hbq_buffer_list, list) { 2010 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2011 list_del(&hbq_buf->dbuf.list); 2012 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2013 } 2014 phba->hbqs[i].buffer_count = 0; 2015 } 2016 2017 /* Mark the HBQs not in use */ 2018 phba->hbq_in_use = 0; 2019 spin_unlock_irqrestore(&phba->hbalock, flags); 2020 } 2021 2022 /** 2023 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2024 * @phba: Pointer to HBA context object. 2025 * @hbqno: HBQ number. 2026 * @hbq_buf: Pointer to HBQ buffer. 2027 * 2028 * This function is called with the hbalock held to post a 2029 * hbq buffer to the firmware. If the function finds an empty 2030 * slot in the HBQ, it will post the buffer. The function will return 2031 * pointer to the hbq entry if it successfully post the buffer 2032 * else it will return NULL. 2033 **/ 2034 static int 2035 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2036 struct hbq_dmabuf *hbq_buf) 2037 { 2038 lockdep_assert_held(&phba->hbalock); 2039 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2040 } 2041 2042 /** 2043 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2044 * @phba: Pointer to HBA context object. 2045 * @hbqno: HBQ number. 2046 * @hbq_buf: Pointer to HBQ buffer. 2047 * 2048 * This function is called with the hbalock held to post a hbq buffer to the 2049 * firmware. If the function finds an empty slot in the HBQ, it will post the 2050 * buffer and place it on the hbq_buffer_list. The function will return zero if 2051 * it successfully post the buffer else it will return an error. 2052 **/ 2053 static int 2054 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2055 struct hbq_dmabuf *hbq_buf) 2056 { 2057 struct lpfc_hbq_entry *hbqe; 2058 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2059 2060 lockdep_assert_held(&phba->hbalock); 2061 /* Get next HBQ entry slot to use */ 2062 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2063 if (hbqe) { 2064 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2065 2066 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2067 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2068 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2069 hbqe->bde.tus.f.bdeFlags = 0; 2070 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2071 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2072 /* Sync SLIM */ 2073 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2074 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2075 /* flush */ 2076 readl(phba->hbq_put + hbqno); 2077 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2078 return 0; 2079 } else 2080 return -ENOMEM; 2081 } 2082 2083 /** 2084 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2085 * @phba: Pointer to HBA context object. 2086 * @hbqno: HBQ number. 2087 * @hbq_buf: Pointer to HBQ buffer. 2088 * 2089 * This function is called with the hbalock held to post an RQE to the SLI4 2090 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2091 * the hbq_buffer_list and return zero, otherwise it will return an error. 2092 **/ 2093 static int 2094 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2095 struct hbq_dmabuf *hbq_buf) 2096 { 2097 int rc; 2098 struct lpfc_rqe hrqe; 2099 struct lpfc_rqe drqe; 2100 struct lpfc_queue *hrq; 2101 struct lpfc_queue *drq; 2102 2103 if (hbqno != LPFC_ELS_HBQ) 2104 return 1; 2105 hrq = phba->sli4_hba.hdr_rq; 2106 drq = phba->sli4_hba.dat_rq; 2107 2108 lockdep_assert_held(&phba->hbalock); 2109 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2110 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2111 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2112 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2113 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2114 if (rc < 0) 2115 return rc; 2116 hbq_buf->tag = (rc | (hbqno << 16)); 2117 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2118 return 0; 2119 } 2120 2121 /* HBQ for ELS and CT traffic. */ 2122 static struct lpfc_hbq_init lpfc_els_hbq = { 2123 .rn = 1, 2124 .entry_count = 256, 2125 .mask_count = 0, 2126 .profile = 0, 2127 .ring_mask = (1 << LPFC_ELS_RING), 2128 .buffer_count = 0, 2129 .init_count = 40, 2130 .add_count = 40, 2131 }; 2132 2133 /* Array of HBQs */ 2134 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2135 &lpfc_els_hbq, 2136 }; 2137 2138 /** 2139 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2140 * @phba: Pointer to HBA context object. 2141 * @hbqno: HBQ number. 2142 * @count: Number of HBQ buffers to be posted. 2143 * 2144 * This function is called with no lock held to post more hbq buffers to the 2145 * given HBQ. The function returns the number of HBQ buffers successfully 2146 * posted. 2147 **/ 2148 static int 2149 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2150 { 2151 uint32_t i, posted = 0; 2152 unsigned long flags; 2153 struct hbq_dmabuf *hbq_buffer; 2154 LIST_HEAD(hbq_buf_list); 2155 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2156 return 0; 2157 2158 if ((phba->hbqs[hbqno].buffer_count + count) > 2159 lpfc_hbq_defs[hbqno]->entry_count) 2160 count = lpfc_hbq_defs[hbqno]->entry_count - 2161 phba->hbqs[hbqno].buffer_count; 2162 if (!count) 2163 return 0; 2164 /* Allocate HBQ entries */ 2165 for (i = 0; i < count; i++) { 2166 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2167 if (!hbq_buffer) 2168 break; 2169 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2170 } 2171 /* Check whether HBQ is still in use */ 2172 spin_lock_irqsave(&phba->hbalock, flags); 2173 if (!phba->hbq_in_use) 2174 goto err; 2175 while (!list_empty(&hbq_buf_list)) { 2176 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2177 dbuf.list); 2178 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2179 (hbqno << 16)); 2180 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2181 phba->hbqs[hbqno].buffer_count++; 2182 posted++; 2183 } else 2184 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2185 } 2186 spin_unlock_irqrestore(&phba->hbalock, flags); 2187 return posted; 2188 err: 2189 spin_unlock_irqrestore(&phba->hbalock, flags); 2190 while (!list_empty(&hbq_buf_list)) { 2191 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2192 dbuf.list); 2193 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2194 } 2195 return 0; 2196 } 2197 2198 /** 2199 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2200 * @phba: Pointer to HBA context object. 2201 * @qno: HBQ number. 2202 * 2203 * This function posts more buffers to the HBQ. This function 2204 * is called with no lock held. The function returns the number of HBQ entries 2205 * successfully allocated. 2206 **/ 2207 int 2208 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2209 { 2210 if (phba->sli_rev == LPFC_SLI_REV4) 2211 return 0; 2212 else 2213 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2214 lpfc_hbq_defs[qno]->add_count); 2215 } 2216 2217 /** 2218 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2219 * @phba: Pointer to HBA context object. 2220 * @qno: HBQ queue number. 2221 * 2222 * This function is called from SLI initialization code path with 2223 * no lock held to post initial HBQ buffers to firmware. The 2224 * function returns the number of HBQ entries successfully allocated. 2225 **/ 2226 static int 2227 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2228 { 2229 if (phba->sli_rev == LPFC_SLI_REV4) 2230 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2231 lpfc_hbq_defs[qno]->entry_count); 2232 else 2233 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2234 lpfc_hbq_defs[qno]->init_count); 2235 } 2236 2237 /** 2238 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2239 * @phba: Pointer to HBA context object. 2240 * @hbqno: HBQ number. 2241 * 2242 * This function removes the first hbq buffer on an hbq list and returns a 2243 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2244 **/ 2245 static struct hbq_dmabuf * 2246 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2247 { 2248 struct lpfc_dmabuf *d_buf; 2249 2250 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2251 if (!d_buf) 2252 return NULL; 2253 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2254 } 2255 2256 /** 2257 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2258 * @phba: Pointer to HBA context object. 2259 * @hbqno: HBQ number. 2260 * 2261 * This function removes the first RQ buffer on an RQ buffer list and returns a 2262 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2263 **/ 2264 static struct rqb_dmabuf * 2265 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2266 { 2267 struct lpfc_dmabuf *h_buf; 2268 struct lpfc_rqb *rqbp; 2269 2270 rqbp = hrq->rqbp; 2271 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2272 struct lpfc_dmabuf, list); 2273 if (!h_buf) 2274 return NULL; 2275 rqbp->buffer_count--; 2276 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2277 } 2278 2279 /** 2280 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2281 * @phba: Pointer to HBA context object. 2282 * @tag: Tag of the hbq buffer. 2283 * 2284 * This function searches for the hbq buffer associated with the given tag in 2285 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2286 * otherwise it returns NULL. 2287 **/ 2288 static struct hbq_dmabuf * 2289 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2290 { 2291 struct lpfc_dmabuf *d_buf; 2292 struct hbq_dmabuf *hbq_buf; 2293 uint32_t hbqno; 2294 2295 hbqno = tag >> 16; 2296 if (hbqno >= LPFC_MAX_HBQS) 2297 return NULL; 2298 2299 spin_lock_irq(&phba->hbalock); 2300 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2301 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2302 if (hbq_buf->tag == tag) { 2303 spin_unlock_irq(&phba->hbalock); 2304 return hbq_buf; 2305 } 2306 } 2307 spin_unlock_irq(&phba->hbalock); 2308 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT, 2309 "1803 Bad hbq tag. Data: x%x x%x\n", 2310 tag, phba->hbqs[tag >> 16].buffer_count); 2311 return NULL; 2312 } 2313 2314 /** 2315 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2316 * @phba: Pointer to HBA context object. 2317 * @hbq_buffer: Pointer to HBQ buffer. 2318 * 2319 * This function is called with hbalock. This function gives back 2320 * the hbq buffer to firmware. If the HBQ does not have space to 2321 * post the buffer, it will free the buffer. 2322 **/ 2323 void 2324 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2325 { 2326 uint32_t hbqno; 2327 2328 if (hbq_buffer) { 2329 hbqno = hbq_buffer->tag >> 16; 2330 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2331 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2332 } 2333 } 2334 2335 /** 2336 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2337 * @mbxCommand: mailbox command code. 2338 * 2339 * This function is called by the mailbox event handler function to verify 2340 * that the completed mailbox command is a legitimate mailbox command. If the 2341 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2342 * and the mailbox event handler will take the HBA offline. 2343 **/ 2344 static int 2345 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2346 { 2347 uint8_t ret; 2348 2349 switch (mbxCommand) { 2350 case MBX_LOAD_SM: 2351 case MBX_READ_NV: 2352 case MBX_WRITE_NV: 2353 case MBX_WRITE_VPARMS: 2354 case MBX_RUN_BIU_DIAG: 2355 case MBX_INIT_LINK: 2356 case MBX_DOWN_LINK: 2357 case MBX_CONFIG_LINK: 2358 case MBX_CONFIG_RING: 2359 case MBX_RESET_RING: 2360 case MBX_READ_CONFIG: 2361 case MBX_READ_RCONFIG: 2362 case MBX_READ_SPARM: 2363 case MBX_READ_STATUS: 2364 case MBX_READ_RPI: 2365 case MBX_READ_XRI: 2366 case MBX_READ_REV: 2367 case MBX_READ_LNK_STAT: 2368 case MBX_REG_LOGIN: 2369 case MBX_UNREG_LOGIN: 2370 case MBX_CLEAR_LA: 2371 case MBX_DUMP_MEMORY: 2372 case MBX_DUMP_CONTEXT: 2373 case MBX_RUN_DIAGS: 2374 case MBX_RESTART: 2375 case MBX_UPDATE_CFG: 2376 case MBX_DOWN_LOAD: 2377 case MBX_DEL_LD_ENTRY: 2378 case MBX_RUN_PROGRAM: 2379 case MBX_SET_MASK: 2380 case MBX_SET_VARIABLE: 2381 case MBX_UNREG_D_ID: 2382 case MBX_KILL_BOARD: 2383 case MBX_CONFIG_FARP: 2384 case MBX_BEACON: 2385 case MBX_LOAD_AREA: 2386 case MBX_RUN_BIU_DIAG64: 2387 case MBX_CONFIG_PORT: 2388 case MBX_READ_SPARM64: 2389 case MBX_READ_RPI64: 2390 case MBX_REG_LOGIN64: 2391 case MBX_READ_TOPOLOGY: 2392 case MBX_WRITE_WWN: 2393 case MBX_SET_DEBUG: 2394 case MBX_LOAD_EXP_ROM: 2395 case MBX_ASYNCEVT_ENABLE: 2396 case MBX_REG_VPI: 2397 case MBX_UNREG_VPI: 2398 case MBX_HEARTBEAT: 2399 case MBX_PORT_CAPABILITIES: 2400 case MBX_PORT_IOV_CONTROL: 2401 case MBX_SLI4_CONFIG: 2402 case MBX_SLI4_REQ_FTRS: 2403 case MBX_REG_FCFI: 2404 case MBX_UNREG_FCFI: 2405 case MBX_REG_VFI: 2406 case MBX_UNREG_VFI: 2407 case MBX_INIT_VPI: 2408 case MBX_INIT_VFI: 2409 case MBX_RESUME_RPI: 2410 case MBX_READ_EVENT_LOG_STATUS: 2411 case MBX_READ_EVENT_LOG: 2412 case MBX_SECURITY_MGMT: 2413 case MBX_AUTH_PORT: 2414 case MBX_ACCESS_VDATA: 2415 ret = mbxCommand; 2416 break; 2417 default: 2418 ret = MBX_SHUTDOWN; 2419 break; 2420 } 2421 return ret; 2422 } 2423 2424 /** 2425 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2426 * @phba: Pointer to HBA context object. 2427 * @pmboxq: Pointer to mailbox command. 2428 * 2429 * This is completion handler function for mailbox commands issued from 2430 * lpfc_sli_issue_mbox_wait function. This function is called by the 2431 * mailbox event handler function with no lock held. This function 2432 * will wake up thread waiting on the wait queue pointed by context1 2433 * of the mailbox. 2434 **/ 2435 void 2436 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2437 { 2438 unsigned long drvr_flag; 2439 struct completion *pmbox_done; 2440 2441 /* 2442 * If pmbox_done is empty, the driver thread gave up waiting and 2443 * continued running. 2444 */ 2445 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2446 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2447 pmbox_done = (struct completion *)pmboxq->context3; 2448 if (pmbox_done) 2449 complete(pmbox_done); 2450 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2451 return; 2452 } 2453 2454 static void 2455 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2456 { 2457 unsigned long iflags; 2458 2459 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2460 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2461 spin_lock_irqsave(&vport->phba->ndlp_lock, iflags); 2462 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2463 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2464 spin_unlock_irqrestore(&vport->phba->ndlp_lock, iflags); 2465 } 2466 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2467 } 2468 2469 /** 2470 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2471 * @phba: Pointer to HBA context object. 2472 * @pmb: Pointer to mailbox object. 2473 * 2474 * This function is the default mailbox completion handler. It 2475 * frees the memory resources associated with the completed mailbox 2476 * command. If the completed command is a REG_LOGIN mailbox command, 2477 * this function will issue a UREG_LOGIN to re-claim the RPI. 2478 **/ 2479 void 2480 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2481 { 2482 struct lpfc_vport *vport = pmb->vport; 2483 struct lpfc_dmabuf *mp; 2484 struct lpfc_nodelist *ndlp; 2485 struct Scsi_Host *shost; 2486 uint16_t rpi, vpi; 2487 int rc; 2488 2489 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 2490 2491 if (mp) { 2492 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2493 kfree(mp); 2494 } 2495 2496 /* 2497 * If a REG_LOGIN succeeded after node is destroyed or node 2498 * is in re-discovery driver need to cleanup the RPI. 2499 */ 2500 if (!(phba->pport->load_flag & FC_UNLOADING) && 2501 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2502 !pmb->u.mb.mbxStatus) { 2503 rpi = pmb->u.mb.un.varWords[0]; 2504 vpi = pmb->u.mb.un.varRegLogin.vpi; 2505 if (phba->sli_rev == LPFC_SLI_REV4) 2506 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2507 lpfc_unreg_login(phba, vpi, rpi, pmb); 2508 pmb->vport = vport; 2509 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2510 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2511 if (rc != MBX_NOT_FINISHED) 2512 return; 2513 } 2514 2515 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2516 !(phba->pport->load_flag & FC_UNLOADING) && 2517 !pmb->u.mb.mbxStatus) { 2518 shost = lpfc_shost_from_vport(vport); 2519 spin_lock_irq(shost->host_lock); 2520 vport->vpi_state |= LPFC_VPI_REGISTERED; 2521 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2522 spin_unlock_irq(shost->host_lock); 2523 } 2524 2525 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2526 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2527 lpfc_nlp_put(ndlp); 2528 pmb->ctx_buf = NULL; 2529 pmb->ctx_ndlp = NULL; 2530 } 2531 2532 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2533 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2534 2535 /* Check to see if there are any deferred events to process */ 2536 if (ndlp) { 2537 lpfc_printf_vlog( 2538 vport, 2539 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2540 "1438 UNREG cmpl deferred mbox x%x " 2541 "on NPort x%x Data: x%x x%x %px\n", 2542 ndlp->nlp_rpi, ndlp->nlp_DID, 2543 ndlp->nlp_flag, ndlp->nlp_defer_did, ndlp); 2544 2545 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2546 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2547 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2548 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2549 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2550 } else { 2551 __lpfc_sli_rpi_release(vport, ndlp); 2552 } 2553 if (vport->load_flag & FC_UNLOADING) 2554 lpfc_nlp_put(ndlp); 2555 pmb->ctx_ndlp = NULL; 2556 } 2557 } 2558 2559 /* Check security permission status on INIT_LINK mailbox command */ 2560 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2561 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2562 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2563 "2860 SLI authentication is required " 2564 "for INIT_LINK but has not done yet\n"); 2565 2566 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2567 lpfc_sli4_mbox_cmd_free(phba, pmb); 2568 else 2569 mempool_free(pmb, phba->mbox_mem_pool); 2570 } 2571 /** 2572 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2573 * @phba: Pointer to HBA context object. 2574 * @pmb: Pointer to mailbox object. 2575 * 2576 * This function is the unreg rpi mailbox completion handler. It 2577 * frees the memory resources associated with the completed mailbox 2578 * command. An additional refrenece is put on the ndlp to prevent 2579 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2580 * the unreg mailbox command completes, this routine puts the 2581 * reference back. 2582 * 2583 **/ 2584 void 2585 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2586 { 2587 struct lpfc_vport *vport = pmb->vport; 2588 struct lpfc_nodelist *ndlp; 2589 2590 ndlp = pmb->ctx_ndlp; 2591 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2592 if (phba->sli_rev == LPFC_SLI_REV4 && 2593 (bf_get(lpfc_sli_intf_if_type, 2594 &phba->sli4_hba.sli_intf) >= 2595 LPFC_SLI_INTF_IF_TYPE_2)) { 2596 if (ndlp) { 2597 lpfc_printf_vlog( 2598 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2599 "0010 UNREG_LOGIN vpi:%x " 2600 "rpi:%x DID:%x defer x%x flg x%x " 2601 "map:%x %px\n", 2602 vport->vpi, ndlp->nlp_rpi, 2603 ndlp->nlp_DID, ndlp->nlp_defer_did, 2604 ndlp->nlp_flag, 2605 ndlp->nlp_usg_map, ndlp); 2606 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2607 lpfc_nlp_put(ndlp); 2608 2609 /* Check to see if there are any deferred 2610 * events to process 2611 */ 2612 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2613 (ndlp->nlp_defer_did != 2614 NLP_EVT_NOTHING_PENDING)) { 2615 lpfc_printf_vlog( 2616 vport, KERN_INFO, LOG_DISCOVERY, 2617 "4111 UNREG cmpl deferred " 2618 "clr x%x on " 2619 "NPort x%x Data: x%x x%px\n", 2620 ndlp->nlp_rpi, ndlp->nlp_DID, 2621 ndlp->nlp_defer_did, ndlp); 2622 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2623 ndlp->nlp_defer_did = 2624 NLP_EVT_NOTHING_PENDING; 2625 lpfc_issue_els_plogi( 2626 vport, ndlp->nlp_DID, 0); 2627 } else { 2628 __lpfc_sli_rpi_release(vport, ndlp); 2629 } 2630 } 2631 } 2632 } 2633 2634 mempool_free(pmb, phba->mbox_mem_pool); 2635 } 2636 2637 /** 2638 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2639 * @phba: Pointer to HBA context object. 2640 * 2641 * This function is called with no lock held. This function processes all 2642 * the completed mailbox commands and gives it to upper layers. The interrupt 2643 * service routine processes mailbox completion interrupt and adds completed 2644 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2645 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2646 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2647 * function returns the mailbox commands to the upper layer by calling the 2648 * completion handler function of each mailbox. 2649 **/ 2650 int 2651 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2652 { 2653 MAILBOX_t *pmbox; 2654 LPFC_MBOXQ_t *pmb; 2655 int rc; 2656 LIST_HEAD(cmplq); 2657 2658 phba->sli.slistat.mbox_event++; 2659 2660 /* Get all completed mailboxe buffers into the cmplq */ 2661 spin_lock_irq(&phba->hbalock); 2662 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2663 spin_unlock_irq(&phba->hbalock); 2664 2665 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2666 do { 2667 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2668 if (pmb == NULL) 2669 break; 2670 2671 pmbox = &pmb->u.mb; 2672 2673 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2674 if (pmb->vport) { 2675 lpfc_debugfs_disc_trc(pmb->vport, 2676 LPFC_DISC_TRC_MBOX_VPORT, 2677 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2678 (uint32_t)pmbox->mbxCommand, 2679 pmbox->un.varWords[0], 2680 pmbox->un.varWords[1]); 2681 } 2682 else { 2683 lpfc_debugfs_disc_trc(phba->pport, 2684 LPFC_DISC_TRC_MBOX, 2685 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2686 (uint32_t)pmbox->mbxCommand, 2687 pmbox->un.varWords[0], 2688 pmbox->un.varWords[1]); 2689 } 2690 } 2691 2692 /* 2693 * It is a fatal error if unknown mbox command completion. 2694 */ 2695 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2696 MBX_SHUTDOWN) { 2697 /* Unknown mailbox command compl */ 2698 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2699 "(%d):0323 Unknown Mailbox command " 2700 "x%x (x%x/x%x) Cmpl\n", 2701 pmb->vport ? pmb->vport->vpi : 2702 LPFC_VPORT_UNKNOWN, 2703 pmbox->mbxCommand, 2704 lpfc_sli_config_mbox_subsys_get(phba, 2705 pmb), 2706 lpfc_sli_config_mbox_opcode_get(phba, 2707 pmb)); 2708 phba->link_state = LPFC_HBA_ERROR; 2709 phba->work_hs = HS_FFER3; 2710 lpfc_handle_eratt(phba); 2711 continue; 2712 } 2713 2714 if (pmbox->mbxStatus) { 2715 phba->sli.slistat.mbox_stat_err++; 2716 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2717 /* Mbox cmd cmpl error - RETRYing */ 2718 lpfc_printf_log(phba, KERN_INFO, 2719 LOG_MBOX | LOG_SLI, 2720 "(%d):0305 Mbox cmd cmpl " 2721 "error - RETRYing Data: x%x " 2722 "(x%x/x%x) x%x x%x x%x\n", 2723 pmb->vport ? pmb->vport->vpi : 2724 LPFC_VPORT_UNKNOWN, 2725 pmbox->mbxCommand, 2726 lpfc_sli_config_mbox_subsys_get(phba, 2727 pmb), 2728 lpfc_sli_config_mbox_opcode_get(phba, 2729 pmb), 2730 pmbox->mbxStatus, 2731 pmbox->un.varWords[0], 2732 pmb->vport ? pmb->vport->port_state : 2733 LPFC_VPORT_UNKNOWN); 2734 pmbox->mbxStatus = 0; 2735 pmbox->mbxOwner = OWN_HOST; 2736 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2737 if (rc != MBX_NOT_FINISHED) 2738 continue; 2739 } 2740 } 2741 2742 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2743 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2744 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 2745 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2746 "x%x x%x x%x\n", 2747 pmb->vport ? pmb->vport->vpi : 0, 2748 pmbox->mbxCommand, 2749 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2750 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2751 pmb->mbox_cmpl, 2752 *((uint32_t *) pmbox), 2753 pmbox->un.varWords[0], 2754 pmbox->un.varWords[1], 2755 pmbox->un.varWords[2], 2756 pmbox->un.varWords[3], 2757 pmbox->un.varWords[4], 2758 pmbox->un.varWords[5], 2759 pmbox->un.varWords[6], 2760 pmbox->un.varWords[7], 2761 pmbox->un.varWords[8], 2762 pmbox->un.varWords[9], 2763 pmbox->un.varWords[10]); 2764 2765 if (pmb->mbox_cmpl) 2766 pmb->mbox_cmpl(phba,pmb); 2767 } while (1); 2768 return 0; 2769 } 2770 2771 /** 2772 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2773 * @phba: Pointer to HBA context object. 2774 * @pring: Pointer to driver SLI ring object. 2775 * @tag: buffer tag. 2776 * 2777 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2778 * is set in the tag the buffer is posted for a particular exchange, 2779 * the function will return the buffer without replacing the buffer. 2780 * If the buffer is for unsolicited ELS or CT traffic, this function 2781 * returns the buffer and also posts another buffer to the firmware. 2782 **/ 2783 static struct lpfc_dmabuf * 2784 lpfc_sli_get_buff(struct lpfc_hba *phba, 2785 struct lpfc_sli_ring *pring, 2786 uint32_t tag) 2787 { 2788 struct hbq_dmabuf *hbq_entry; 2789 2790 if (tag & QUE_BUFTAG_BIT) 2791 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2792 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2793 if (!hbq_entry) 2794 return NULL; 2795 return &hbq_entry->dbuf; 2796 } 2797 2798 /** 2799 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 2800 * @phba: Pointer to HBA context object. 2801 * @pring: Pointer to driver SLI ring object. 2802 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 2803 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 2804 * @fch_type: the type for the first frame of the sequence. 2805 * 2806 * This function is called with no lock held. This function uses the r_ctl and 2807 * type of the received sequence to find the correct callback function to call 2808 * to process the sequence. 2809 **/ 2810 static int 2811 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2812 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 2813 uint32_t fch_type) 2814 { 2815 int i; 2816 2817 switch (fch_type) { 2818 case FC_TYPE_NVME: 2819 lpfc_nvmet_unsol_ls_event(phba, pring, saveq); 2820 return 1; 2821 default: 2822 break; 2823 } 2824 2825 /* unSolicited Responses */ 2826 if (pring->prt[0].profile) { 2827 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 2828 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 2829 saveq); 2830 return 1; 2831 } 2832 /* We must search, based on rctl / type 2833 for the right routine */ 2834 for (i = 0; i < pring->num_mask; i++) { 2835 if ((pring->prt[i].rctl == fch_r_ctl) && 2836 (pring->prt[i].type == fch_type)) { 2837 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 2838 (pring->prt[i].lpfc_sli_rcv_unsol_event) 2839 (phba, pring, saveq); 2840 return 1; 2841 } 2842 } 2843 return 0; 2844 } 2845 2846 /** 2847 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 2848 * @phba: Pointer to HBA context object. 2849 * @pring: Pointer to driver SLI ring object. 2850 * @saveq: Pointer to the unsolicited iocb. 2851 * 2852 * This function is called with no lock held by the ring event handler 2853 * when there is an unsolicited iocb posted to the response ring by the 2854 * firmware. This function gets the buffer associated with the iocbs 2855 * and calls the event handler for the ring. This function handles both 2856 * qring buffers and hbq buffers. 2857 * When the function returns 1 the caller can free the iocb object otherwise 2858 * upper layer functions will free the iocb objects. 2859 **/ 2860 static int 2861 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2862 struct lpfc_iocbq *saveq) 2863 { 2864 IOCB_t * irsp; 2865 WORD5 * w5p; 2866 uint32_t Rctl, Type; 2867 struct lpfc_iocbq *iocbq; 2868 struct lpfc_dmabuf *dmzbuf; 2869 2870 irsp = &(saveq->iocb); 2871 2872 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 2873 if (pring->lpfc_sli_rcv_async_status) 2874 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 2875 else 2876 lpfc_printf_log(phba, 2877 KERN_WARNING, 2878 LOG_SLI, 2879 "0316 Ring %d handler: unexpected " 2880 "ASYNC_STATUS iocb received evt_code " 2881 "0x%x\n", 2882 pring->ringno, 2883 irsp->un.asyncstat.evt_code); 2884 return 1; 2885 } 2886 2887 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 2888 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 2889 if (irsp->ulpBdeCount > 0) { 2890 dmzbuf = lpfc_sli_get_buff(phba, pring, 2891 irsp->un.ulpWord[3]); 2892 lpfc_in_buf_free(phba, dmzbuf); 2893 } 2894 2895 if (irsp->ulpBdeCount > 1) { 2896 dmzbuf = lpfc_sli_get_buff(phba, pring, 2897 irsp->unsli3.sli3Words[3]); 2898 lpfc_in_buf_free(phba, dmzbuf); 2899 } 2900 2901 if (irsp->ulpBdeCount > 2) { 2902 dmzbuf = lpfc_sli_get_buff(phba, pring, 2903 irsp->unsli3.sli3Words[7]); 2904 lpfc_in_buf_free(phba, dmzbuf); 2905 } 2906 2907 return 1; 2908 } 2909 2910 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 2911 if (irsp->ulpBdeCount != 0) { 2912 saveq->context2 = lpfc_sli_get_buff(phba, pring, 2913 irsp->un.ulpWord[3]); 2914 if (!saveq->context2) 2915 lpfc_printf_log(phba, 2916 KERN_ERR, 2917 LOG_SLI, 2918 "0341 Ring %d Cannot find buffer for " 2919 "an unsolicited iocb. tag 0x%x\n", 2920 pring->ringno, 2921 irsp->un.ulpWord[3]); 2922 } 2923 if (irsp->ulpBdeCount == 2) { 2924 saveq->context3 = lpfc_sli_get_buff(phba, pring, 2925 irsp->unsli3.sli3Words[7]); 2926 if (!saveq->context3) 2927 lpfc_printf_log(phba, 2928 KERN_ERR, 2929 LOG_SLI, 2930 "0342 Ring %d Cannot find buffer for an" 2931 " unsolicited iocb. tag 0x%x\n", 2932 pring->ringno, 2933 irsp->unsli3.sli3Words[7]); 2934 } 2935 list_for_each_entry(iocbq, &saveq->list, list) { 2936 irsp = &(iocbq->iocb); 2937 if (irsp->ulpBdeCount != 0) { 2938 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 2939 irsp->un.ulpWord[3]); 2940 if (!iocbq->context2) 2941 lpfc_printf_log(phba, 2942 KERN_ERR, 2943 LOG_SLI, 2944 "0343 Ring %d Cannot find " 2945 "buffer for an unsolicited iocb" 2946 ". tag 0x%x\n", pring->ringno, 2947 irsp->un.ulpWord[3]); 2948 } 2949 if (irsp->ulpBdeCount == 2) { 2950 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 2951 irsp->unsli3.sli3Words[7]); 2952 if (!iocbq->context3) 2953 lpfc_printf_log(phba, 2954 KERN_ERR, 2955 LOG_SLI, 2956 "0344 Ring %d Cannot find " 2957 "buffer for an unsolicited " 2958 "iocb. tag 0x%x\n", 2959 pring->ringno, 2960 irsp->unsli3.sli3Words[7]); 2961 } 2962 } 2963 } 2964 if (irsp->ulpBdeCount != 0 && 2965 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 2966 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 2967 int found = 0; 2968 2969 /* search continue save q for same XRI */ 2970 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 2971 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 2972 saveq->iocb.unsli3.rcvsli3.ox_id) { 2973 list_add_tail(&saveq->list, &iocbq->list); 2974 found = 1; 2975 break; 2976 } 2977 } 2978 if (!found) 2979 list_add_tail(&saveq->clist, 2980 &pring->iocb_continue_saveq); 2981 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 2982 list_del_init(&iocbq->clist); 2983 saveq = iocbq; 2984 irsp = &(saveq->iocb); 2985 } else 2986 return 0; 2987 } 2988 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 2989 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 2990 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 2991 Rctl = FC_RCTL_ELS_REQ; 2992 Type = FC_TYPE_ELS; 2993 } else { 2994 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 2995 Rctl = w5p->hcsw.Rctl; 2996 Type = w5p->hcsw.Type; 2997 2998 /* Firmware Workaround */ 2999 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3000 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3001 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3002 Rctl = FC_RCTL_ELS_REQ; 3003 Type = FC_TYPE_ELS; 3004 w5p->hcsw.Rctl = Rctl; 3005 w5p->hcsw.Type = Type; 3006 } 3007 } 3008 3009 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3010 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3011 "0313 Ring %d handler: unexpected Rctl x%x " 3012 "Type x%x received\n", 3013 pring->ringno, Rctl, Type); 3014 3015 return 1; 3016 } 3017 3018 /** 3019 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3020 * @phba: Pointer to HBA context object. 3021 * @pring: Pointer to driver SLI ring object. 3022 * @prspiocb: Pointer to response iocb object. 3023 * 3024 * This function looks up the iocb_lookup table to get the command iocb 3025 * corresponding to the given response iocb using the iotag of the 3026 * response iocb. The driver calls this function with the hbalock held 3027 * for SLI3 ports or the ring lock held for SLI4 ports. 3028 * This function returns the command iocb object if it finds the command 3029 * iocb else returns NULL. 3030 **/ 3031 static struct lpfc_iocbq * 3032 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3033 struct lpfc_sli_ring *pring, 3034 struct lpfc_iocbq *prspiocb) 3035 { 3036 struct lpfc_iocbq *cmd_iocb = NULL; 3037 uint16_t iotag; 3038 spinlock_t *temp_lock = NULL; 3039 unsigned long iflag = 0; 3040 3041 if (phba->sli_rev == LPFC_SLI_REV4) 3042 temp_lock = &pring->ring_lock; 3043 else 3044 temp_lock = &phba->hbalock; 3045 3046 spin_lock_irqsave(temp_lock, iflag); 3047 iotag = prspiocb->iocb.ulpIoTag; 3048 3049 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3050 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3051 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3052 /* remove from txcmpl queue list */ 3053 list_del_init(&cmd_iocb->list); 3054 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3055 pring->txcmplq_cnt--; 3056 spin_unlock_irqrestore(temp_lock, iflag); 3057 return cmd_iocb; 3058 } 3059 } 3060 3061 spin_unlock_irqrestore(temp_lock, iflag); 3062 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3063 "0317 iotag x%x is out of " 3064 "range: max iotag x%x wd0 x%x\n", 3065 iotag, phba->sli.last_iotag, 3066 *(((uint32_t *) &prspiocb->iocb) + 7)); 3067 return NULL; 3068 } 3069 3070 /** 3071 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3072 * @phba: Pointer to HBA context object. 3073 * @pring: Pointer to driver SLI ring object. 3074 * @iotag: IOCB tag. 3075 * 3076 * This function looks up the iocb_lookup table to get the command iocb 3077 * corresponding to the given iotag. The driver calls this function with 3078 * the ring lock held because this function is an SLI4 port only helper. 3079 * This function returns the command iocb object if it finds the command 3080 * iocb else returns NULL. 3081 **/ 3082 static struct lpfc_iocbq * 3083 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3084 struct lpfc_sli_ring *pring, uint16_t iotag) 3085 { 3086 struct lpfc_iocbq *cmd_iocb = NULL; 3087 spinlock_t *temp_lock = NULL; 3088 unsigned long iflag = 0; 3089 3090 if (phba->sli_rev == LPFC_SLI_REV4) 3091 temp_lock = &pring->ring_lock; 3092 else 3093 temp_lock = &phba->hbalock; 3094 3095 spin_lock_irqsave(temp_lock, iflag); 3096 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3097 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3098 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3099 /* remove from txcmpl queue list */ 3100 list_del_init(&cmd_iocb->list); 3101 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3102 pring->txcmplq_cnt--; 3103 spin_unlock_irqrestore(temp_lock, iflag); 3104 return cmd_iocb; 3105 } 3106 } 3107 3108 spin_unlock_irqrestore(temp_lock, iflag); 3109 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3110 "0372 iotag x%x lookup error: max iotag (x%x) " 3111 "iocb_flag x%x\n", 3112 iotag, phba->sli.last_iotag, 3113 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); 3114 return NULL; 3115 } 3116 3117 /** 3118 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3119 * @phba: Pointer to HBA context object. 3120 * @pring: Pointer to driver SLI ring object. 3121 * @saveq: Pointer to the response iocb to be processed. 3122 * 3123 * This function is called by the ring event handler for non-fcp 3124 * rings when there is a new response iocb in the response ring. 3125 * The caller is not required to hold any locks. This function 3126 * gets the command iocb associated with the response iocb and 3127 * calls the completion handler for the command iocb. If there 3128 * is no completion handler, the function will free the resources 3129 * associated with command iocb. If the response iocb is for 3130 * an already aborted command iocb, the status of the completion 3131 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3132 * This function always returns 1. 3133 **/ 3134 static int 3135 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3136 struct lpfc_iocbq *saveq) 3137 { 3138 struct lpfc_iocbq *cmdiocbp; 3139 int rc = 1; 3140 unsigned long iflag; 3141 3142 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3143 if (cmdiocbp) { 3144 if (cmdiocbp->iocb_cmpl) { 3145 /* 3146 * If an ELS command failed send an event to mgmt 3147 * application. 3148 */ 3149 if (saveq->iocb.ulpStatus && 3150 (pring->ringno == LPFC_ELS_RING) && 3151 (cmdiocbp->iocb.ulpCommand == 3152 CMD_ELS_REQUEST64_CR)) 3153 lpfc_send_els_failure_event(phba, 3154 cmdiocbp, saveq); 3155 3156 /* 3157 * Post all ELS completions to the worker thread. 3158 * All other are passed to the completion callback. 3159 */ 3160 if (pring->ringno == LPFC_ELS_RING) { 3161 if ((phba->sli_rev < LPFC_SLI_REV4) && 3162 (cmdiocbp->iocb_flag & 3163 LPFC_DRIVER_ABORTED)) { 3164 spin_lock_irqsave(&phba->hbalock, 3165 iflag); 3166 cmdiocbp->iocb_flag &= 3167 ~LPFC_DRIVER_ABORTED; 3168 spin_unlock_irqrestore(&phba->hbalock, 3169 iflag); 3170 saveq->iocb.ulpStatus = 3171 IOSTAT_LOCAL_REJECT; 3172 saveq->iocb.un.ulpWord[4] = 3173 IOERR_SLI_ABORTED; 3174 3175 /* Firmware could still be in progress 3176 * of DMAing payload, so don't free data 3177 * buffer till after a hbeat. 3178 */ 3179 spin_lock_irqsave(&phba->hbalock, 3180 iflag); 3181 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 3182 spin_unlock_irqrestore(&phba->hbalock, 3183 iflag); 3184 } 3185 if (phba->sli_rev == LPFC_SLI_REV4) { 3186 if (saveq->iocb_flag & 3187 LPFC_EXCHANGE_BUSY) { 3188 /* Set cmdiocb flag for the 3189 * exchange busy so sgl (xri) 3190 * will not be released until 3191 * the abort xri is received 3192 * from hba. 3193 */ 3194 spin_lock_irqsave( 3195 &phba->hbalock, iflag); 3196 cmdiocbp->iocb_flag |= 3197 LPFC_EXCHANGE_BUSY; 3198 spin_unlock_irqrestore( 3199 &phba->hbalock, iflag); 3200 } 3201 if (cmdiocbp->iocb_flag & 3202 LPFC_DRIVER_ABORTED) { 3203 /* 3204 * Clear LPFC_DRIVER_ABORTED 3205 * bit in case it was driver 3206 * initiated abort. 3207 */ 3208 spin_lock_irqsave( 3209 &phba->hbalock, iflag); 3210 cmdiocbp->iocb_flag &= 3211 ~LPFC_DRIVER_ABORTED; 3212 spin_unlock_irqrestore( 3213 &phba->hbalock, iflag); 3214 cmdiocbp->iocb.ulpStatus = 3215 IOSTAT_LOCAL_REJECT; 3216 cmdiocbp->iocb.un.ulpWord[4] = 3217 IOERR_ABORT_REQUESTED; 3218 /* 3219 * For SLI4, irsiocb contains 3220 * NO_XRI in sli_xritag, it 3221 * shall not affect releasing 3222 * sgl (xri) process. 3223 */ 3224 saveq->iocb.ulpStatus = 3225 IOSTAT_LOCAL_REJECT; 3226 saveq->iocb.un.ulpWord[4] = 3227 IOERR_SLI_ABORTED; 3228 spin_lock_irqsave( 3229 &phba->hbalock, iflag); 3230 saveq->iocb_flag |= 3231 LPFC_DELAY_MEM_FREE; 3232 spin_unlock_irqrestore( 3233 &phba->hbalock, iflag); 3234 } 3235 } 3236 } 3237 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 3238 } else 3239 lpfc_sli_release_iocbq(phba, cmdiocbp); 3240 } else { 3241 /* 3242 * Unknown initiating command based on the response iotag. 3243 * This could be the case on the ELS ring because of 3244 * lpfc_els_abort(). 3245 */ 3246 if (pring->ringno != LPFC_ELS_RING) { 3247 /* 3248 * Ring <ringno> handler: unexpected completion IoTag 3249 * <IoTag> 3250 */ 3251 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3252 "0322 Ring %d handler: " 3253 "unexpected completion IoTag x%x " 3254 "Data: x%x x%x x%x x%x\n", 3255 pring->ringno, 3256 saveq->iocb.ulpIoTag, 3257 saveq->iocb.ulpStatus, 3258 saveq->iocb.un.ulpWord[4], 3259 saveq->iocb.ulpCommand, 3260 saveq->iocb.ulpContext); 3261 } 3262 } 3263 3264 return rc; 3265 } 3266 3267 /** 3268 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3269 * @phba: Pointer to HBA context object. 3270 * @pring: Pointer to driver SLI ring object. 3271 * 3272 * This function is called from the iocb ring event handlers when 3273 * put pointer is ahead of the get pointer for a ring. This function signal 3274 * an error attention condition to the worker thread and the worker 3275 * thread will transition the HBA to offline state. 3276 **/ 3277 static void 3278 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3279 { 3280 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3281 /* 3282 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3283 * rsp ring <portRspMax> 3284 */ 3285 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3286 "0312 Ring %d handler: portRspPut %d " 3287 "is bigger than rsp ring %d\n", 3288 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3289 pring->sli.sli3.numRiocb); 3290 3291 phba->link_state = LPFC_HBA_ERROR; 3292 3293 /* 3294 * All error attention handlers are posted to 3295 * worker thread 3296 */ 3297 phba->work_ha |= HA_ERATT; 3298 phba->work_hs = HS_FFER3; 3299 3300 lpfc_worker_wake_up(phba); 3301 3302 return; 3303 } 3304 3305 /** 3306 * lpfc_poll_eratt - Error attention polling timer timeout handler 3307 * @ptr: Pointer to address of HBA context object. 3308 * 3309 * This function is invoked by the Error Attention polling timer when the 3310 * timer times out. It will check the SLI Error Attention register for 3311 * possible attention events. If so, it will post an Error Attention event 3312 * and wake up worker thread to process it. Otherwise, it will set up the 3313 * Error Attention polling timer for the next poll. 3314 **/ 3315 void lpfc_poll_eratt(struct timer_list *t) 3316 { 3317 struct lpfc_hba *phba; 3318 uint32_t eratt = 0; 3319 uint64_t sli_intr, cnt; 3320 3321 phba = from_timer(phba, t, eratt_poll); 3322 3323 /* Here we will also keep track of interrupts per sec of the hba */ 3324 sli_intr = phba->sli.slistat.sli_intr; 3325 3326 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3327 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3328 sli_intr); 3329 else 3330 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3331 3332 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3333 do_div(cnt, phba->eratt_poll_interval); 3334 phba->sli.slistat.sli_ips = cnt; 3335 3336 phba->sli.slistat.sli_prev_intr = sli_intr; 3337 3338 /* Check chip HA register for error event */ 3339 eratt = lpfc_sli_check_eratt(phba); 3340 3341 if (eratt) 3342 /* Tell the worker thread there is work to do */ 3343 lpfc_worker_wake_up(phba); 3344 else 3345 /* Restart the timer for next eratt poll */ 3346 mod_timer(&phba->eratt_poll, 3347 jiffies + 3348 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3349 return; 3350 } 3351 3352 3353 /** 3354 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3355 * @phba: Pointer to HBA context object. 3356 * @pring: Pointer to driver SLI ring object. 3357 * @mask: Host attention register mask for this ring. 3358 * 3359 * This function is called from the interrupt context when there is a ring 3360 * event for the fcp ring. The caller does not hold any lock. 3361 * The function processes each response iocb in the response ring until it 3362 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3363 * LE bit set. The function will call the completion handler of the command iocb 3364 * if the response iocb indicates a completion for a command iocb or it is 3365 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3366 * function if this is an unsolicited iocb. 3367 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3368 * to check it explicitly. 3369 */ 3370 int 3371 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3372 struct lpfc_sli_ring *pring, uint32_t mask) 3373 { 3374 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3375 IOCB_t *irsp = NULL; 3376 IOCB_t *entry = NULL; 3377 struct lpfc_iocbq *cmdiocbq = NULL; 3378 struct lpfc_iocbq rspiocbq; 3379 uint32_t status; 3380 uint32_t portRspPut, portRspMax; 3381 int rc = 1; 3382 lpfc_iocb_type type; 3383 unsigned long iflag; 3384 uint32_t rsp_cmpl = 0; 3385 3386 spin_lock_irqsave(&phba->hbalock, iflag); 3387 pring->stats.iocb_event++; 3388 3389 /* 3390 * The next available response entry should never exceed the maximum 3391 * entries. If it does, treat it as an adapter hardware error. 3392 */ 3393 portRspMax = pring->sli.sli3.numRiocb; 3394 portRspPut = le32_to_cpu(pgp->rspPutInx); 3395 if (unlikely(portRspPut >= portRspMax)) { 3396 lpfc_sli_rsp_pointers_error(phba, pring); 3397 spin_unlock_irqrestore(&phba->hbalock, iflag); 3398 return 1; 3399 } 3400 if (phba->fcp_ring_in_use) { 3401 spin_unlock_irqrestore(&phba->hbalock, iflag); 3402 return 1; 3403 } else 3404 phba->fcp_ring_in_use = 1; 3405 3406 rmb(); 3407 while (pring->sli.sli3.rspidx != portRspPut) { 3408 /* 3409 * Fetch an entry off the ring and copy it into a local data 3410 * structure. The copy involves a byte-swap since the 3411 * network byte order and pci byte orders are different. 3412 */ 3413 entry = lpfc_resp_iocb(phba, pring); 3414 phba->last_completion_time = jiffies; 3415 3416 if (++pring->sli.sli3.rspidx >= portRspMax) 3417 pring->sli.sli3.rspidx = 0; 3418 3419 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3420 (uint32_t *) &rspiocbq.iocb, 3421 phba->iocb_rsp_size); 3422 INIT_LIST_HEAD(&(rspiocbq.list)); 3423 irsp = &rspiocbq.iocb; 3424 3425 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3426 pring->stats.iocb_rsp++; 3427 rsp_cmpl++; 3428 3429 if (unlikely(irsp->ulpStatus)) { 3430 /* 3431 * If resource errors reported from HBA, reduce 3432 * queuedepths of the SCSI device. 3433 */ 3434 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3435 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3436 IOERR_NO_RESOURCES)) { 3437 spin_unlock_irqrestore(&phba->hbalock, iflag); 3438 phba->lpfc_rampdown_queue_depth(phba); 3439 spin_lock_irqsave(&phba->hbalock, iflag); 3440 } 3441 3442 /* Rsp ring <ringno> error: IOCB */ 3443 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3444 "0336 Rsp Ring %d error: IOCB Data: " 3445 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3446 pring->ringno, 3447 irsp->un.ulpWord[0], 3448 irsp->un.ulpWord[1], 3449 irsp->un.ulpWord[2], 3450 irsp->un.ulpWord[3], 3451 irsp->un.ulpWord[4], 3452 irsp->un.ulpWord[5], 3453 *(uint32_t *)&irsp->un1, 3454 *((uint32_t *)&irsp->un1 + 1)); 3455 } 3456 3457 switch (type) { 3458 case LPFC_ABORT_IOCB: 3459 case LPFC_SOL_IOCB: 3460 /* 3461 * Idle exchange closed via ABTS from port. No iocb 3462 * resources need to be recovered. 3463 */ 3464 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3465 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3466 "0333 IOCB cmd 0x%x" 3467 " processed. Skipping" 3468 " completion\n", 3469 irsp->ulpCommand); 3470 break; 3471 } 3472 3473 spin_unlock_irqrestore(&phba->hbalock, iflag); 3474 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3475 &rspiocbq); 3476 spin_lock_irqsave(&phba->hbalock, iflag); 3477 if (unlikely(!cmdiocbq)) 3478 break; 3479 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3480 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3481 if (cmdiocbq->iocb_cmpl) { 3482 spin_unlock_irqrestore(&phba->hbalock, iflag); 3483 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3484 &rspiocbq); 3485 spin_lock_irqsave(&phba->hbalock, iflag); 3486 } 3487 break; 3488 case LPFC_UNSOL_IOCB: 3489 spin_unlock_irqrestore(&phba->hbalock, iflag); 3490 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3491 spin_lock_irqsave(&phba->hbalock, iflag); 3492 break; 3493 default: 3494 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3495 char adaptermsg[LPFC_MAX_ADPTMSG]; 3496 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3497 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3498 MAX_MSG_DATA); 3499 dev_warn(&((phba->pcidev)->dev), 3500 "lpfc%d: %s\n", 3501 phba->brd_no, adaptermsg); 3502 } else { 3503 /* Unknown IOCB command */ 3504 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3505 "0334 Unknown IOCB command " 3506 "Data: x%x, x%x x%x x%x x%x\n", 3507 type, irsp->ulpCommand, 3508 irsp->ulpStatus, 3509 irsp->ulpIoTag, 3510 irsp->ulpContext); 3511 } 3512 break; 3513 } 3514 3515 /* 3516 * The response IOCB has been processed. Update the ring 3517 * pointer in SLIM. If the port response put pointer has not 3518 * been updated, sync the pgp->rspPutInx and fetch the new port 3519 * response put pointer. 3520 */ 3521 writel(pring->sli.sli3.rspidx, 3522 &phba->host_gp[pring->ringno].rspGetInx); 3523 3524 if (pring->sli.sli3.rspidx == portRspPut) 3525 portRspPut = le32_to_cpu(pgp->rspPutInx); 3526 } 3527 3528 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3529 pring->stats.iocb_rsp_full++; 3530 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3531 writel(status, phba->CAregaddr); 3532 readl(phba->CAregaddr); 3533 } 3534 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3535 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3536 pring->stats.iocb_cmd_empty++; 3537 3538 /* Force update of the local copy of cmdGetInx */ 3539 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3540 lpfc_sli_resume_iocb(phba, pring); 3541 3542 if ((pring->lpfc_sli_cmd_available)) 3543 (pring->lpfc_sli_cmd_available) (phba, pring); 3544 3545 } 3546 3547 phba->fcp_ring_in_use = 0; 3548 spin_unlock_irqrestore(&phba->hbalock, iflag); 3549 return rc; 3550 } 3551 3552 /** 3553 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3554 * @phba: Pointer to HBA context object. 3555 * @pring: Pointer to driver SLI ring object. 3556 * @rspiocbp: Pointer to driver response IOCB object. 3557 * 3558 * This function is called from the worker thread when there is a slow-path 3559 * response IOCB to process. This function chains all the response iocbs until 3560 * seeing the iocb with the LE bit set. The function will call 3561 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3562 * completion of a command iocb. The function will call the 3563 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3564 * The function frees the resources or calls the completion handler if this 3565 * iocb is an abort completion. The function returns NULL when the response 3566 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3567 * this function shall chain the iocb on to the iocb_continueq and return the 3568 * response iocb passed in. 3569 **/ 3570 static struct lpfc_iocbq * 3571 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3572 struct lpfc_iocbq *rspiocbp) 3573 { 3574 struct lpfc_iocbq *saveq; 3575 struct lpfc_iocbq *cmdiocbp; 3576 struct lpfc_iocbq *next_iocb; 3577 IOCB_t *irsp = NULL; 3578 uint32_t free_saveq; 3579 uint8_t iocb_cmd_type; 3580 lpfc_iocb_type type; 3581 unsigned long iflag; 3582 int rc; 3583 3584 spin_lock_irqsave(&phba->hbalock, iflag); 3585 /* First add the response iocb to the countinueq list */ 3586 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3587 pring->iocb_continueq_cnt++; 3588 3589 /* Now, determine whether the list is completed for processing */ 3590 irsp = &rspiocbp->iocb; 3591 if (irsp->ulpLe) { 3592 /* 3593 * By default, the driver expects to free all resources 3594 * associated with this iocb completion. 3595 */ 3596 free_saveq = 1; 3597 saveq = list_get_first(&pring->iocb_continueq, 3598 struct lpfc_iocbq, list); 3599 irsp = &(saveq->iocb); 3600 list_del_init(&pring->iocb_continueq); 3601 pring->iocb_continueq_cnt = 0; 3602 3603 pring->stats.iocb_rsp++; 3604 3605 /* 3606 * If resource errors reported from HBA, reduce 3607 * queuedepths of the SCSI device. 3608 */ 3609 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3610 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3611 IOERR_NO_RESOURCES)) { 3612 spin_unlock_irqrestore(&phba->hbalock, iflag); 3613 phba->lpfc_rampdown_queue_depth(phba); 3614 spin_lock_irqsave(&phba->hbalock, iflag); 3615 } 3616 3617 if (irsp->ulpStatus) { 3618 /* Rsp ring <ringno> error: IOCB */ 3619 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3620 "0328 Rsp Ring %d error: " 3621 "IOCB Data: " 3622 "x%x x%x x%x x%x " 3623 "x%x x%x x%x x%x " 3624 "x%x x%x x%x x%x " 3625 "x%x x%x x%x x%x\n", 3626 pring->ringno, 3627 irsp->un.ulpWord[0], 3628 irsp->un.ulpWord[1], 3629 irsp->un.ulpWord[2], 3630 irsp->un.ulpWord[3], 3631 irsp->un.ulpWord[4], 3632 irsp->un.ulpWord[5], 3633 *(((uint32_t *) irsp) + 6), 3634 *(((uint32_t *) irsp) + 7), 3635 *(((uint32_t *) irsp) + 8), 3636 *(((uint32_t *) irsp) + 9), 3637 *(((uint32_t *) irsp) + 10), 3638 *(((uint32_t *) irsp) + 11), 3639 *(((uint32_t *) irsp) + 12), 3640 *(((uint32_t *) irsp) + 13), 3641 *(((uint32_t *) irsp) + 14), 3642 *(((uint32_t *) irsp) + 15)); 3643 } 3644 3645 /* 3646 * Fetch the IOCB command type and call the correct completion 3647 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3648 * get freed back to the lpfc_iocb_list by the discovery 3649 * kernel thread. 3650 */ 3651 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3652 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3653 switch (type) { 3654 case LPFC_SOL_IOCB: 3655 spin_unlock_irqrestore(&phba->hbalock, iflag); 3656 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3657 spin_lock_irqsave(&phba->hbalock, iflag); 3658 break; 3659 3660 case LPFC_UNSOL_IOCB: 3661 spin_unlock_irqrestore(&phba->hbalock, iflag); 3662 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3663 spin_lock_irqsave(&phba->hbalock, iflag); 3664 if (!rc) 3665 free_saveq = 0; 3666 break; 3667 3668 case LPFC_ABORT_IOCB: 3669 cmdiocbp = NULL; 3670 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) { 3671 spin_unlock_irqrestore(&phba->hbalock, iflag); 3672 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3673 saveq); 3674 spin_lock_irqsave(&phba->hbalock, iflag); 3675 } 3676 if (cmdiocbp) { 3677 /* Call the specified completion routine */ 3678 if (cmdiocbp->iocb_cmpl) { 3679 spin_unlock_irqrestore(&phba->hbalock, 3680 iflag); 3681 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3682 saveq); 3683 spin_lock_irqsave(&phba->hbalock, 3684 iflag); 3685 } else 3686 __lpfc_sli_release_iocbq(phba, 3687 cmdiocbp); 3688 } 3689 break; 3690 3691 case LPFC_UNKNOWN_IOCB: 3692 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3693 char adaptermsg[LPFC_MAX_ADPTMSG]; 3694 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3695 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3696 MAX_MSG_DATA); 3697 dev_warn(&((phba->pcidev)->dev), 3698 "lpfc%d: %s\n", 3699 phba->brd_no, adaptermsg); 3700 } else { 3701 /* Unknown IOCB command */ 3702 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3703 "0335 Unknown IOCB " 3704 "command Data: x%x " 3705 "x%x x%x x%x\n", 3706 irsp->ulpCommand, 3707 irsp->ulpStatus, 3708 irsp->ulpIoTag, 3709 irsp->ulpContext); 3710 } 3711 break; 3712 } 3713 3714 if (free_saveq) { 3715 list_for_each_entry_safe(rspiocbp, next_iocb, 3716 &saveq->list, list) { 3717 list_del_init(&rspiocbp->list); 3718 __lpfc_sli_release_iocbq(phba, rspiocbp); 3719 } 3720 __lpfc_sli_release_iocbq(phba, saveq); 3721 } 3722 rspiocbp = NULL; 3723 } 3724 spin_unlock_irqrestore(&phba->hbalock, iflag); 3725 return rspiocbp; 3726 } 3727 3728 /** 3729 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3730 * @phba: Pointer to HBA context object. 3731 * @pring: Pointer to driver SLI ring object. 3732 * @mask: Host attention register mask for this ring. 3733 * 3734 * This routine wraps the actual slow_ring event process routine from the 3735 * API jump table function pointer from the lpfc_hba struct. 3736 **/ 3737 void 3738 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 3739 struct lpfc_sli_ring *pring, uint32_t mask) 3740 { 3741 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 3742 } 3743 3744 /** 3745 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 3746 * @phba: Pointer to HBA context object. 3747 * @pring: Pointer to driver SLI ring object. 3748 * @mask: Host attention register mask for this ring. 3749 * 3750 * This function is called from the worker thread when there is a ring event 3751 * for non-fcp rings. The caller does not hold any lock. The function will 3752 * remove each response iocb in the response ring and calls the handle 3753 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3754 **/ 3755 static void 3756 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 3757 struct lpfc_sli_ring *pring, uint32_t mask) 3758 { 3759 struct lpfc_pgp *pgp; 3760 IOCB_t *entry; 3761 IOCB_t *irsp = NULL; 3762 struct lpfc_iocbq *rspiocbp = NULL; 3763 uint32_t portRspPut, portRspMax; 3764 unsigned long iflag; 3765 uint32_t status; 3766 3767 pgp = &phba->port_gp[pring->ringno]; 3768 spin_lock_irqsave(&phba->hbalock, iflag); 3769 pring->stats.iocb_event++; 3770 3771 /* 3772 * The next available response entry should never exceed the maximum 3773 * entries. If it does, treat it as an adapter hardware error. 3774 */ 3775 portRspMax = pring->sli.sli3.numRiocb; 3776 portRspPut = le32_to_cpu(pgp->rspPutInx); 3777 if (portRspPut >= portRspMax) { 3778 /* 3779 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3780 * rsp ring <portRspMax> 3781 */ 3782 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3783 "0303 Ring %d handler: portRspPut %d " 3784 "is bigger than rsp ring %d\n", 3785 pring->ringno, portRspPut, portRspMax); 3786 3787 phba->link_state = LPFC_HBA_ERROR; 3788 spin_unlock_irqrestore(&phba->hbalock, iflag); 3789 3790 phba->work_hs = HS_FFER3; 3791 lpfc_handle_eratt(phba); 3792 3793 return; 3794 } 3795 3796 rmb(); 3797 while (pring->sli.sli3.rspidx != portRspPut) { 3798 /* 3799 * Build a completion list and call the appropriate handler. 3800 * The process is to get the next available response iocb, get 3801 * a free iocb from the list, copy the response data into the 3802 * free iocb, insert to the continuation list, and update the 3803 * next response index to slim. This process makes response 3804 * iocb's in the ring available to DMA as fast as possible but 3805 * pays a penalty for a copy operation. Since the iocb is 3806 * only 32 bytes, this penalty is considered small relative to 3807 * the PCI reads for register values and a slim write. When 3808 * the ulpLe field is set, the entire Command has been 3809 * received. 3810 */ 3811 entry = lpfc_resp_iocb(phba, pring); 3812 3813 phba->last_completion_time = jiffies; 3814 rspiocbp = __lpfc_sli_get_iocbq(phba); 3815 if (rspiocbp == NULL) { 3816 printk(KERN_ERR "%s: out of buffers! Failing " 3817 "completion.\n", __func__); 3818 break; 3819 } 3820 3821 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 3822 phba->iocb_rsp_size); 3823 irsp = &rspiocbp->iocb; 3824 3825 if (++pring->sli.sli3.rspidx >= portRspMax) 3826 pring->sli.sli3.rspidx = 0; 3827 3828 if (pring->ringno == LPFC_ELS_RING) { 3829 lpfc_debugfs_slow_ring_trc(phba, 3830 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 3831 *(((uint32_t *) irsp) + 4), 3832 *(((uint32_t *) irsp) + 6), 3833 *(((uint32_t *) irsp) + 7)); 3834 } 3835 3836 writel(pring->sli.sli3.rspidx, 3837 &phba->host_gp[pring->ringno].rspGetInx); 3838 3839 spin_unlock_irqrestore(&phba->hbalock, iflag); 3840 /* Handle the response IOCB */ 3841 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 3842 spin_lock_irqsave(&phba->hbalock, iflag); 3843 3844 /* 3845 * If the port response put pointer has not been updated, sync 3846 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 3847 * response put pointer. 3848 */ 3849 if (pring->sli.sli3.rspidx == portRspPut) { 3850 portRspPut = le32_to_cpu(pgp->rspPutInx); 3851 } 3852 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 3853 3854 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 3855 /* At least one response entry has been freed */ 3856 pring->stats.iocb_rsp_full++; 3857 /* SET RxRE_RSP in Chip Att register */ 3858 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3859 writel(status, phba->CAregaddr); 3860 readl(phba->CAregaddr); /* flush */ 3861 } 3862 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3863 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3864 pring->stats.iocb_cmd_empty++; 3865 3866 /* Force update of the local copy of cmdGetInx */ 3867 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3868 lpfc_sli_resume_iocb(phba, pring); 3869 3870 if ((pring->lpfc_sli_cmd_available)) 3871 (pring->lpfc_sli_cmd_available) (phba, pring); 3872 3873 } 3874 3875 spin_unlock_irqrestore(&phba->hbalock, iflag); 3876 return; 3877 } 3878 3879 /** 3880 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 3881 * @phba: Pointer to HBA context object. 3882 * @pring: Pointer to driver SLI ring object. 3883 * @mask: Host attention register mask for this ring. 3884 * 3885 * This function is called from the worker thread when there is a pending 3886 * ELS response iocb on the driver internal slow-path response iocb worker 3887 * queue. The caller does not hold any lock. The function will remove each 3888 * response iocb from the response worker queue and calls the handle 3889 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3890 **/ 3891 static void 3892 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 3893 struct lpfc_sli_ring *pring, uint32_t mask) 3894 { 3895 struct lpfc_iocbq *irspiocbq; 3896 struct hbq_dmabuf *dmabuf; 3897 struct lpfc_cq_event *cq_event; 3898 unsigned long iflag; 3899 int count = 0; 3900 3901 spin_lock_irqsave(&phba->hbalock, iflag); 3902 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 3903 spin_unlock_irqrestore(&phba->hbalock, iflag); 3904 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 3905 /* Get the response iocb from the head of work queue */ 3906 spin_lock_irqsave(&phba->hbalock, iflag); 3907 list_remove_head(&phba->sli4_hba.sp_queue_event, 3908 cq_event, struct lpfc_cq_event, list); 3909 spin_unlock_irqrestore(&phba->hbalock, iflag); 3910 3911 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 3912 case CQE_CODE_COMPL_WQE: 3913 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 3914 cq_event); 3915 /* Translate ELS WCQE to response IOCBQ */ 3916 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 3917 irspiocbq); 3918 if (irspiocbq) 3919 lpfc_sli_sp_handle_rspiocb(phba, pring, 3920 irspiocbq); 3921 count++; 3922 break; 3923 case CQE_CODE_RECEIVE: 3924 case CQE_CODE_RECEIVE_V1: 3925 dmabuf = container_of(cq_event, struct hbq_dmabuf, 3926 cq_event); 3927 lpfc_sli4_handle_received_buffer(phba, dmabuf); 3928 count++; 3929 break; 3930 default: 3931 break; 3932 } 3933 3934 /* Limit the number of events to 64 to avoid soft lockups */ 3935 if (count == 64) 3936 break; 3937 } 3938 } 3939 3940 /** 3941 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 3942 * @phba: Pointer to HBA context object. 3943 * @pring: Pointer to driver SLI ring object. 3944 * 3945 * This function aborts all iocbs in the given ring and frees all the iocb 3946 * objects in txq. This function issues an abort iocb for all the iocb commands 3947 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3948 * the return of this function. The caller is not required to hold any locks. 3949 **/ 3950 void 3951 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3952 { 3953 LIST_HEAD(completions); 3954 struct lpfc_iocbq *iocb, *next_iocb; 3955 3956 if (pring->ringno == LPFC_ELS_RING) { 3957 lpfc_fabric_abort_hba(phba); 3958 } 3959 3960 /* Error everything on txq and txcmplq 3961 * First do the txq. 3962 */ 3963 if (phba->sli_rev >= LPFC_SLI_REV4) { 3964 spin_lock_irq(&pring->ring_lock); 3965 list_splice_init(&pring->txq, &completions); 3966 pring->txq_cnt = 0; 3967 spin_unlock_irq(&pring->ring_lock); 3968 3969 spin_lock_irq(&phba->hbalock); 3970 /* Next issue ABTS for everything on the txcmplq */ 3971 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3972 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3973 spin_unlock_irq(&phba->hbalock); 3974 } else { 3975 spin_lock_irq(&phba->hbalock); 3976 list_splice_init(&pring->txq, &completions); 3977 pring->txq_cnt = 0; 3978 3979 /* Next issue ABTS for everything on the txcmplq */ 3980 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3981 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3982 spin_unlock_irq(&phba->hbalock); 3983 } 3984 3985 /* Cancel all the IOCBs from the completions list */ 3986 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 3987 IOERR_SLI_ABORTED); 3988 } 3989 3990 /** 3991 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 3992 * @phba: Pointer to HBA context object. 3993 * @pring: Pointer to driver SLI ring object. 3994 * 3995 * This function aborts all iocbs in FCP rings and frees all the iocb 3996 * objects in txq. This function issues an abort iocb for all the iocb commands 3997 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3998 * the return of this function. The caller is not required to hold any locks. 3999 **/ 4000 void 4001 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4002 { 4003 struct lpfc_sli *psli = &phba->sli; 4004 struct lpfc_sli_ring *pring; 4005 uint32_t i; 4006 4007 /* Look on all the FCP Rings for the iotag */ 4008 if (phba->sli_rev >= LPFC_SLI_REV4) { 4009 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4010 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4011 lpfc_sli_abort_iocb_ring(phba, pring); 4012 } 4013 } else { 4014 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4015 lpfc_sli_abort_iocb_ring(phba, pring); 4016 } 4017 } 4018 4019 /** 4020 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4021 * @phba: Pointer to HBA context object. 4022 * 4023 * This function flushes all iocbs in the IO ring and frees all the iocb 4024 * objects in txq and txcmplq. This function will not issue abort iocbs 4025 * for all the iocb commands in txcmplq, they will just be returned with 4026 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4027 * slot has been permanently disabled. 4028 **/ 4029 void 4030 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4031 { 4032 LIST_HEAD(txq); 4033 LIST_HEAD(txcmplq); 4034 struct lpfc_sli *psli = &phba->sli; 4035 struct lpfc_sli_ring *pring; 4036 uint32_t i; 4037 struct lpfc_iocbq *piocb, *next_iocb; 4038 4039 spin_lock_irq(&phba->hbalock); 4040 if (phba->hba_flag & HBA_IOQ_FLUSH || 4041 !phba->sli4_hba.hdwq) { 4042 spin_unlock_irq(&phba->hbalock); 4043 return; 4044 } 4045 /* Indicate the I/O queues are flushed */ 4046 phba->hba_flag |= HBA_IOQ_FLUSH; 4047 spin_unlock_irq(&phba->hbalock); 4048 4049 /* Look on all the FCP Rings for the iotag */ 4050 if (phba->sli_rev >= LPFC_SLI_REV4) { 4051 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4052 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4053 4054 spin_lock_irq(&pring->ring_lock); 4055 /* Retrieve everything on txq */ 4056 list_splice_init(&pring->txq, &txq); 4057 list_for_each_entry_safe(piocb, next_iocb, 4058 &pring->txcmplq, list) 4059 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4060 /* Retrieve everything on the txcmplq */ 4061 list_splice_init(&pring->txcmplq, &txcmplq); 4062 pring->txq_cnt = 0; 4063 pring->txcmplq_cnt = 0; 4064 spin_unlock_irq(&pring->ring_lock); 4065 4066 /* Flush the txq */ 4067 lpfc_sli_cancel_iocbs(phba, &txq, 4068 IOSTAT_LOCAL_REJECT, 4069 IOERR_SLI_DOWN); 4070 /* Flush the txcmpq */ 4071 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4072 IOSTAT_LOCAL_REJECT, 4073 IOERR_SLI_DOWN); 4074 } 4075 } else { 4076 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4077 4078 spin_lock_irq(&phba->hbalock); 4079 /* Retrieve everything on txq */ 4080 list_splice_init(&pring->txq, &txq); 4081 list_for_each_entry_safe(piocb, next_iocb, 4082 &pring->txcmplq, list) 4083 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4084 /* Retrieve everything on the txcmplq */ 4085 list_splice_init(&pring->txcmplq, &txcmplq); 4086 pring->txq_cnt = 0; 4087 pring->txcmplq_cnt = 0; 4088 spin_unlock_irq(&phba->hbalock); 4089 4090 /* Flush the txq */ 4091 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4092 IOERR_SLI_DOWN); 4093 /* Flush the txcmpq */ 4094 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4095 IOERR_SLI_DOWN); 4096 } 4097 } 4098 4099 /** 4100 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4101 * @phba: Pointer to HBA context object. 4102 * @mask: Bit mask to be checked. 4103 * 4104 * This function reads the host status register and compares 4105 * with the provided bit mask to check if HBA completed 4106 * the restart. This function will wait in a loop for the 4107 * HBA to complete restart. If the HBA does not restart within 4108 * 15 iterations, the function will reset the HBA again. The 4109 * function returns 1 when HBA fail to restart otherwise returns 4110 * zero. 4111 **/ 4112 static int 4113 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4114 { 4115 uint32_t status; 4116 int i = 0; 4117 int retval = 0; 4118 4119 /* Read the HBA Host Status Register */ 4120 if (lpfc_readl(phba->HSregaddr, &status)) 4121 return 1; 4122 4123 /* 4124 * Check status register every 100ms for 5 retries, then every 4125 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4126 * every 2.5 sec for 4. 4127 * Break our of the loop if errors occurred during init. 4128 */ 4129 while (((status & mask) != mask) && 4130 !(status & HS_FFERM) && 4131 i++ < 20) { 4132 4133 if (i <= 5) 4134 msleep(10); 4135 else if (i <= 10) 4136 msleep(500); 4137 else 4138 msleep(2500); 4139 4140 if (i == 15) { 4141 /* Do post */ 4142 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4143 lpfc_sli_brdrestart(phba); 4144 } 4145 /* Read the HBA Host Status Register */ 4146 if (lpfc_readl(phba->HSregaddr, &status)) { 4147 retval = 1; 4148 break; 4149 } 4150 } 4151 4152 /* Check to see if any errors occurred during init */ 4153 if ((status & HS_FFERM) || (i >= 20)) { 4154 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4155 "2751 Adapter failed to restart, " 4156 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4157 status, 4158 readl(phba->MBslimaddr + 0xa8), 4159 readl(phba->MBslimaddr + 0xac)); 4160 phba->link_state = LPFC_HBA_ERROR; 4161 retval = 1; 4162 } 4163 4164 return retval; 4165 } 4166 4167 /** 4168 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4169 * @phba: Pointer to HBA context object. 4170 * @mask: Bit mask to be checked. 4171 * 4172 * This function checks the host status register to check if HBA is 4173 * ready. This function will wait in a loop for the HBA to be ready 4174 * If the HBA is not ready , the function will will reset the HBA PCI 4175 * function again. The function returns 1 when HBA fail to be ready 4176 * otherwise returns zero. 4177 **/ 4178 static int 4179 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4180 { 4181 uint32_t status; 4182 int retval = 0; 4183 4184 /* Read the HBA Host Status Register */ 4185 status = lpfc_sli4_post_status_check(phba); 4186 4187 if (status) { 4188 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4189 lpfc_sli_brdrestart(phba); 4190 status = lpfc_sli4_post_status_check(phba); 4191 } 4192 4193 /* Check to see if any errors occurred during init */ 4194 if (status) { 4195 phba->link_state = LPFC_HBA_ERROR; 4196 retval = 1; 4197 } else 4198 phba->sli4_hba.intr_enable = 0; 4199 4200 return retval; 4201 } 4202 4203 /** 4204 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4205 * @phba: Pointer to HBA context object. 4206 * @mask: Bit mask to be checked. 4207 * 4208 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4209 * from the API jump table function pointer from the lpfc_hba struct. 4210 **/ 4211 int 4212 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4213 { 4214 return phba->lpfc_sli_brdready(phba, mask); 4215 } 4216 4217 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4218 4219 /** 4220 * lpfc_reset_barrier - Make HBA ready for HBA reset 4221 * @phba: Pointer to HBA context object. 4222 * 4223 * This function is called before resetting an HBA. This function is called 4224 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4225 **/ 4226 void lpfc_reset_barrier(struct lpfc_hba *phba) 4227 { 4228 uint32_t __iomem *resp_buf; 4229 uint32_t __iomem *mbox_buf; 4230 volatile uint32_t mbox; 4231 uint32_t hc_copy, ha_copy, resp_data; 4232 int i; 4233 uint8_t hdrtype; 4234 4235 lockdep_assert_held(&phba->hbalock); 4236 4237 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4238 if (hdrtype != 0x80 || 4239 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4240 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4241 return; 4242 4243 /* 4244 * Tell the other part of the chip to suspend temporarily all 4245 * its DMA activity. 4246 */ 4247 resp_buf = phba->MBslimaddr; 4248 4249 /* Disable the error attention */ 4250 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4251 return; 4252 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4253 readl(phba->HCregaddr); /* flush */ 4254 phba->link_flag |= LS_IGNORE_ERATT; 4255 4256 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4257 return; 4258 if (ha_copy & HA_ERATT) { 4259 /* Clear Chip error bit */ 4260 writel(HA_ERATT, phba->HAregaddr); 4261 phba->pport->stopped = 1; 4262 } 4263 4264 mbox = 0; 4265 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 4266 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 4267 4268 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4269 mbox_buf = phba->MBslimaddr; 4270 writel(mbox, mbox_buf); 4271 4272 for (i = 0; i < 50; i++) { 4273 if (lpfc_readl((resp_buf + 1), &resp_data)) 4274 return; 4275 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4276 mdelay(1); 4277 else 4278 break; 4279 } 4280 resp_data = 0; 4281 if (lpfc_readl((resp_buf + 1), &resp_data)) 4282 return; 4283 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4284 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4285 phba->pport->stopped) 4286 goto restore_hc; 4287 else 4288 goto clear_errat; 4289 } 4290 4291 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 4292 resp_data = 0; 4293 for (i = 0; i < 500; i++) { 4294 if (lpfc_readl(resp_buf, &resp_data)) 4295 return; 4296 if (resp_data != mbox) 4297 mdelay(1); 4298 else 4299 break; 4300 } 4301 4302 clear_errat: 4303 4304 while (++i < 500) { 4305 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4306 return; 4307 if (!(ha_copy & HA_ERATT)) 4308 mdelay(1); 4309 else 4310 break; 4311 } 4312 4313 if (readl(phba->HAregaddr) & HA_ERATT) { 4314 writel(HA_ERATT, phba->HAregaddr); 4315 phba->pport->stopped = 1; 4316 } 4317 4318 restore_hc: 4319 phba->link_flag &= ~LS_IGNORE_ERATT; 4320 writel(hc_copy, phba->HCregaddr); 4321 readl(phba->HCregaddr); /* flush */ 4322 } 4323 4324 /** 4325 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4326 * @phba: Pointer to HBA context object. 4327 * 4328 * This function issues a kill_board mailbox command and waits for 4329 * the error attention interrupt. This function is called for stopping 4330 * the firmware processing. The caller is not required to hold any 4331 * locks. This function calls lpfc_hba_down_post function to free 4332 * any pending commands after the kill. The function will return 1 when it 4333 * fails to kill the board else will return 0. 4334 **/ 4335 int 4336 lpfc_sli_brdkill(struct lpfc_hba *phba) 4337 { 4338 struct lpfc_sli *psli; 4339 LPFC_MBOXQ_t *pmb; 4340 uint32_t status; 4341 uint32_t ha_copy; 4342 int retval; 4343 int i = 0; 4344 4345 psli = &phba->sli; 4346 4347 /* Kill HBA */ 4348 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4349 "0329 Kill HBA Data: x%x x%x\n", 4350 phba->pport->port_state, psli->sli_flag); 4351 4352 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4353 if (!pmb) 4354 return 1; 4355 4356 /* Disable the error attention */ 4357 spin_lock_irq(&phba->hbalock); 4358 if (lpfc_readl(phba->HCregaddr, &status)) { 4359 spin_unlock_irq(&phba->hbalock); 4360 mempool_free(pmb, phba->mbox_mem_pool); 4361 return 1; 4362 } 4363 status &= ~HC_ERINT_ENA; 4364 writel(status, phba->HCregaddr); 4365 readl(phba->HCregaddr); /* flush */ 4366 phba->link_flag |= LS_IGNORE_ERATT; 4367 spin_unlock_irq(&phba->hbalock); 4368 4369 lpfc_kill_board(phba, pmb); 4370 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4371 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4372 4373 if (retval != MBX_SUCCESS) { 4374 if (retval != MBX_BUSY) 4375 mempool_free(pmb, phba->mbox_mem_pool); 4376 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4377 "2752 KILL_BOARD command failed retval %d\n", 4378 retval); 4379 spin_lock_irq(&phba->hbalock); 4380 phba->link_flag &= ~LS_IGNORE_ERATT; 4381 spin_unlock_irq(&phba->hbalock); 4382 return 1; 4383 } 4384 4385 spin_lock_irq(&phba->hbalock); 4386 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4387 spin_unlock_irq(&phba->hbalock); 4388 4389 mempool_free(pmb, phba->mbox_mem_pool); 4390 4391 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4392 * attention every 100ms for 3 seconds. If we don't get ERATT after 4393 * 3 seconds we still set HBA_ERROR state because the status of the 4394 * board is now undefined. 4395 */ 4396 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4397 return 1; 4398 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4399 mdelay(100); 4400 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4401 return 1; 4402 } 4403 4404 del_timer_sync(&psli->mbox_tmo); 4405 if (ha_copy & HA_ERATT) { 4406 writel(HA_ERATT, phba->HAregaddr); 4407 phba->pport->stopped = 1; 4408 } 4409 spin_lock_irq(&phba->hbalock); 4410 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4411 psli->mbox_active = NULL; 4412 phba->link_flag &= ~LS_IGNORE_ERATT; 4413 spin_unlock_irq(&phba->hbalock); 4414 4415 lpfc_hba_down_post(phba); 4416 phba->link_state = LPFC_HBA_ERROR; 4417 4418 return ha_copy & HA_ERATT ? 0 : 1; 4419 } 4420 4421 /** 4422 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4423 * @phba: Pointer to HBA context object. 4424 * 4425 * This function resets the HBA by writing HC_INITFF to the control 4426 * register. After the HBA resets, this function resets all the iocb ring 4427 * indices. This function disables PCI layer parity checking during 4428 * the reset. 4429 * This function returns 0 always. 4430 * The caller is not required to hold any locks. 4431 **/ 4432 int 4433 lpfc_sli_brdreset(struct lpfc_hba *phba) 4434 { 4435 struct lpfc_sli *psli; 4436 struct lpfc_sli_ring *pring; 4437 uint16_t cfg_value; 4438 int i; 4439 4440 psli = &phba->sli; 4441 4442 /* Reset HBA */ 4443 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4444 "0325 Reset HBA Data: x%x x%x\n", 4445 (phba->pport) ? phba->pport->port_state : 0, 4446 psli->sli_flag); 4447 4448 /* perform board reset */ 4449 phba->fc_eventTag = 0; 4450 phba->link_events = 0; 4451 if (phba->pport) { 4452 phba->pport->fc_myDID = 0; 4453 phba->pport->fc_prevDID = 0; 4454 } 4455 4456 /* Turn off parity checking and serr during the physical reset */ 4457 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 4458 return -EIO; 4459 4460 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4461 (cfg_value & 4462 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4463 4464 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4465 4466 /* Now toggle INITFF bit in the Host Control Register */ 4467 writel(HC_INITFF, phba->HCregaddr); 4468 mdelay(1); 4469 readl(phba->HCregaddr); /* flush */ 4470 writel(0, phba->HCregaddr); 4471 readl(phba->HCregaddr); /* flush */ 4472 4473 /* Restore PCI cmd register */ 4474 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4475 4476 /* Initialize relevant SLI info */ 4477 for (i = 0; i < psli->num_rings; i++) { 4478 pring = &psli->sli3_ring[i]; 4479 pring->flag = 0; 4480 pring->sli.sli3.rspidx = 0; 4481 pring->sli.sli3.next_cmdidx = 0; 4482 pring->sli.sli3.local_getidx = 0; 4483 pring->sli.sli3.cmdidx = 0; 4484 pring->missbufcnt = 0; 4485 } 4486 4487 phba->link_state = LPFC_WARM_START; 4488 return 0; 4489 } 4490 4491 /** 4492 * lpfc_sli4_brdreset - Reset a sli-4 HBA 4493 * @phba: Pointer to HBA context object. 4494 * 4495 * This function resets a SLI4 HBA. This function disables PCI layer parity 4496 * checking during resets the device. The caller is not required to hold 4497 * any locks. 4498 * 4499 * This function returns 0 on success else returns negative error code. 4500 **/ 4501 int 4502 lpfc_sli4_brdreset(struct lpfc_hba *phba) 4503 { 4504 struct lpfc_sli *psli = &phba->sli; 4505 uint16_t cfg_value; 4506 int rc = 0; 4507 4508 /* Reset HBA */ 4509 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4510 "0295 Reset HBA Data: x%x x%x x%x\n", 4511 phba->pport->port_state, psli->sli_flag, 4512 phba->hba_flag); 4513 4514 /* perform board reset */ 4515 phba->fc_eventTag = 0; 4516 phba->link_events = 0; 4517 phba->pport->fc_myDID = 0; 4518 phba->pport->fc_prevDID = 0; 4519 4520 spin_lock_irq(&phba->hbalock); 4521 psli->sli_flag &= ~(LPFC_PROCESS_LA); 4522 phba->fcf.fcf_flag = 0; 4523 spin_unlock_irq(&phba->hbalock); 4524 4525 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 4526 if (phba->hba_flag & HBA_FW_DUMP_OP) { 4527 phba->hba_flag &= ~HBA_FW_DUMP_OP; 4528 return rc; 4529 } 4530 4531 /* Now physically reset the device */ 4532 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4533 "0389 Performing PCI function reset!\n"); 4534 4535 /* Turn off parity checking and serr during the physical reset */ 4536 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 4537 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4538 "3205 PCI read Config failed\n"); 4539 return -EIO; 4540 } 4541 4542 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4543 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4544 4545 /* Perform FCoE PCI function reset before freeing queue memory */ 4546 rc = lpfc_pci_function_reset(phba); 4547 4548 /* Restore PCI cmd register */ 4549 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4550 4551 return rc; 4552 } 4553 4554 /** 4555 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4556 * @phba: Pointer to HBA context object. 4557 * 4558 * This function is called in the SLI initialization code path to 4559 * restart the HBA. The caller is not required to hold any lock. 4560 * This function writes MBX_RESTART mailbox command to the SLIM and 4561 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4562 * function to free any pending commands. The function enables 4563 * POST only during the first initialization. The function returns zero. 4564 * The function does not guarantee completion of MBX_RESTART mailbox 4565 * command before the return of this function. 4566 **/ 4567 static int 4568 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4569 { 4570 MAILBOX_t *mb; 4571 struct lpfc_sli *psli; 4572 volatile uint32_t word0; 4573 void __iomem *to_slim; 4574 uint32_t hba_aer_enabled; 4575 4576 spin_lock_irq(&phba->hbalock); 4577 4578 /* Take PCIe device Advanced Error Reporting (AER) state */ 4579 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4580 4581 psli = &phba->sli; 4582 4583 /* Restart HBA */ 4584 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4585 "0337 Restart HBA Data: x%x x%x\n", 4586 (phba->pport) ? phba->pport->port_state : 0, 4587 psli->sli_flag); 4588 4589 word0 = 0; 4590 mb = (MAILBOX_t *) &word0; 4591 mb->mbxCommand = MBX_RESTART; 4592 mb->mbxHc = 1; 4593 4594 lpfc_reset_barrier(phba); 4595 4596 to_slim = phba->MBslimaddr; 4597 writel(*(uint32_t *) mb, to_slim); 4598 readl(to_slim); /* flush */ 4599 4600 /* Only skip post after fc_ffinit is completed */ 4601 if (phba->pport && phba->pport->port_state) 4602 word0 = 1; /* This is really setting up word1 */ 4603 else 4604 word0 = 0; /* This is really setting up word1 */ 4605 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4606 writel(*(uint32_t *) mb, to_slim); 4607 readl(to_slim); /* flush */ 4608 4609 lpfc_sli_brdreset(phba); 4610 if (phba->pport) 4611 phba->pport->stopped = 0; 4612 phba->link_state = LPFC_INIT_START; 4613 phba->hba_flag = 0; 4614 spin_unlock_irq(&phba->hbalock); 4615 4616 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4617 psli->stats_start = ktime_get_seconds(); 4618 4619 /* Give the INITFF and Post time to settle. */ 4620 mdelay(100); 4621 4622 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4623 if (hba_aer_enabled) 4624 pci_disable_pcie_error_reporting(phba->pcidev); 4625 4626 lpfc_hba_down_post(phba); 4627 4628 return 0; 4629 } 4630 4631 /** 4632 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4633 * @phba: Pointer to HBA context object. 4634 * 4635 * This function is called in the SLI initialization code path to restart 4636 * a SLI4 HBA. The caller is not required to hold any lock. 4637 * At the end of the function, it calls lpfc_hba_down_post function to 4638 * free any pending commands. 4639 **/ 4640 static int 4641 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4642 { 4643 struct lpfc_sli *psli = &phba->sli; 4644 uint32_t hba_aer_enabled; 4645 int rc; 4646 4647 /* Restart HBA */ 4648 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4649 "0296 Restart HBA Data: x%x x%x\n", 4650 phba->pport->port_state, psli->sli_flag); 4651 4652 /* Take PCIe device Advanced Error Reporting (AER) state */ 4653 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4654 4655 rc = lpfc_sli4_brdreset(phba); 4656 if (rc) { 4657 phba->link_state = LPFC_HBA_ERROR; 4658 goto hba_down_queue; 4659 } 4660 4661 spin_lock_irq(&phba->hbalock); 4662 phba->pport->stopped = 0; 4663 phba->link_state = LPFC_INIT_START; 4664 phba->hba_flag = 0; 4665 spin_unlock_irq(&phba->hbalock); 4666 4667 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4668 psli->stats_start = ktime_get_seconds(); 4669 4670 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4671 if (hba_aer_enabled) 4672 pci_disable_pcie_error_reporting(phba->pcidev); 4673 4674 hba_down_queue: 4675 lpfc_hba_down_post(phba); 4676 lpfc_sli4_queue_destroy(phba); 4677 4678 return rc; 4679 } 4680 4681 /** 4682 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4683 * @phba: Pointer to HBA context object. 4684 * 4685 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4686 * API jump table function pointer from the lpfc_hba struct. 4687 **/ 4688 int 4689 lpfc_sli_brdrestart(struct lpfc_hba *phba) 4690 { 4691 return phba->lpfc_sli_brdrestart(phba); 4692 } 4693 4694 /** 4695 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4696 * @phba: Pointer to HBA context object. 4697 * 4698 * This function is called after a HBA restart to wait for successful 4699 * restart of the HBA. Successful restart of the HBA is indicated by 4700 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4701 * iteration, the function will restart the HBA again. The function returns 4702 * zero if HBA successfully restarted else returns negative error code. 4703 **/ 4704 int 4705 lpfc_sli_chipset_init(struct lpfc_hba *phba) 4706 { 4707 uint32_t status, i = 0; 4708 4709 /* Read the HBA Host Status Register */ 4710 if (lpfc_readl(phba->HSregaddr, &status)) 4711 return -EIO; 4712 4713 /* Check status register to see what current state is */ 4714 i = 0; 4715 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4716 4717 /* Check every 10ms for 10 retries, then every 100ms for 90 4718 * retries, then every 1 sec for 50 retires for a total of 4719 * ~60 seconds before reset the board again and check every 4720 * 1 sec for 50 retries. The up to 60 seconds before the 4721 * board ready is required by the Falcon FIPS zeroization 4722 * complete, and any reset the board in between shall cause 4723 * restart of zeroization, further delay the board ready. 4724 */ 4725 if (i++ >= 200) { 4726 /* Adapter failed to init, timeout, status reg 4727 <status> */ 4728 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4729 "0436 Adapter failed to init, " 4730 "timeout, status reg x%x, " 4731 "FW Data: A8 x%x AC x%x\n", status, 4732 readl(phba->MBslimaddr + 0xa8), 4733 readl(phba->MBslimaddr + 0xac)); 4734 phba->link_state = LPFC_HBA_ERROR; 4735 return -ETIMEDOUT; 4736 } 4737 4738 /* Check to see if any errors occurred during init */ 4739 if (status & HS_FFERM) { 4740 /* ERROR: During chipset initialization */ 4741 /* Adapter failed to init, chipset, status reg 4742 <status> */ 4743 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4744 "0437 Adapter failed to init, " 4745 "chipset, status reg x%x, " 4746 "FW Data: A8 x%x AC x%x\n", status, 4747 readl(phba->MBslimaddr + 0xa8), 4748 readl(phba->MBslimaddr + 0xac)); 4749 phba->link_state = LPFC_HBA_ERROR; 4750 return -EIO; 4751 } 4752 4753 if (i <= 10) 4754 msleep(10); 4755 else if (i <= 100) 4756 msleep(100); 4757 else 4758 msleep(1000); 4759 4760 if (i == 150) { 4761 /* Do post */ 4762 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4763 lpfc_sli_brdrestart(phba); 4764 } 4765 /* Read the HBA Host Status Register */ 4766 if (lpfc_readl(phba->HSregaddr, &status)) 4767 return -EIO; 4768 } 4769 4770 /* Check to see if any errors occurred during init */ 4771 if (status & HS_FFERM) { 4772 /* ERROR: During chipset initialization */ 4773 /* Adapter failed to init, chipset, status reg <status> */ 4774 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4775 "0438 Adapter failed to init, chipset, " 4776 "status reg x%x, " 4777 "FW Data: A8 x%x AC x%x\n", status, 4778 readl(phba->MBslimaddr + 0xa8), 4779 readl(phba->MBslimaddr + 0xac)); 4780 phba->link_state = LPFC_HBA_ERROR; 4781 return -EIO; 4782 } 4783 4784 /* Clear all interrupt enable conditions */ 4785 writel(0, phba->HCregaddr); 4786 readl(phba->HCregaddr); /* flush */ 4787 4788 /* setup host attn register */ 4789 writel(0xffffffff, phba->HAregaddr); 4790 readl(phba->HAregaddr); /* flush */ 4791 return 0; 4792 } 4793 4794 /** 4795 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 4796 * 4797 * This function calculates and returns the number of HBQs required to be 4798 * configured. 4799 **/ 4800 int 4801 lpfc_sli_hbq_count(void) 4802 { 4803 return ARRAY_SIZE(lpfc_hbq_defs); 4804 } 4805 4806 /** 4807 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 4808 * 4809 * This function adds the number of hbq entries in every HBQ to get 4810 * the total number of hbq entries required for the HBA and returns 4811 * the total count. 4812 **/ 4813 static int 4814 lpfc_sli_hbq_entry_count(void) 4815 { 4816 int hbq_count = lpfc_sli_hbq_count(); 4817 int count = 0; 4818 int i; 4819 4820 for (i = 0; i < hbq_count; ++i) 4821 count += lpfc_hbq_defs[i]->entry_count; 4822 return count; 4823 } 4824 4825 /** 4826 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 4827 * 4828 * This function calculates amount of memory required for all hbq entries 4829 * to be configured and returns the total memory required. 4830 **/ 4831 int 4832 lpfc_sli_hbq_size(void) 4833 { 4834 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 4835 } 4836 4837 /** 4838 * lpfc_sli_hbq_setup - configure and initialize HBQs 4839 * @phba: Pointer to HBA context object. 4840 * 4841 * This function is called during the SLI initialization to configure 4842 * all the HBQs and post buffers to the HBQ. The caller is not 4843 * required to hold any locks. This function will return zero if successful 4844 * else it will return negative error code. 4845 **/ 4846 static int 4847 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 4848 { 4849 int hbq_count = lpfc_sli_hbq_count(); 4850 LPFC_MBOXQ_t *pmb; 4851 MAILBOX_t *pmbox; 4852 uint32_t hbqno; 4853 uint32_t hbq_entry_index; 4854 4855 /* Get a Mailbox buffer to setup mailbox 4856 * commands for HBA initialization 4857 */ 4858 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4859 4860 if (!pmb) 4861 return -ENOMEM; 4862 4863 pmbox = &pmb->u.mb; 4864 4865 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 4866 phba->link_state = LPFC_INIT_MBX_CMDS; 4867 phba->hbq_in_use = 1; 4868 4869 hbq_entry_index = 0; 4870 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 4871 phba->hbqs[hbqno].next_hbqPutIdx = 0; 4872 phba->hbqs[hbqno].hbqPutIdx = 0; 4873 phba->hbqs[hbqno].local_hbqGetIdx = 0; 4874 phba->hbqs[hbqno].entry_count = 4875 lpfc_hbq_defs[hbqno]->entry_count; 4876 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 4877 hbq_entry_index, pmb); 4878 hbq_entry_index += phba->hbqs[hbqno].entry_count; 4879 4880 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 4881 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 4882 mbxStatus <status>, ring <num> */ 4883 4884 lpfc_printf_log(phba, KERN_ERR, 4885 LOG_SLI | LOG_VPORT, 4886 "1805 Adapter failed to init. " 4887 "Data: x%x x%x x%x\n", 4888 pmbox->mbxCommand, 4889 pmbox->mbxStatus, hbqno); 4890 4891 phba->link_state = LPFC_HBA_ERROR; 4892 mempool_free(pmb, phba->mbox_mem_pool); 4893 return -ENXIO; 4894 } 4895 } 4896 phba->hbq_count = hbq_count; 4897 4898 mempool_free(pmb, phba->mbox_mem_pool); 4899 4900 /* Initially populate or replenish the HBQs */ 4901 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 4902 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 4903 return 0; 4904 } 4905 4906 /** 4907 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 4908 * @phba: Pointer to HBA context object. 4909 * 4910 * This function is called during the SLI initialization to configure 4911 * all the HBQs and post buffers to the HBQ. The caller is not 4912 * required to hold any locks. This function will return zero if successful 4913 * else it will return negative error code. 4914 **/ 4915 static int 4916 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 4917 { 4918 phba->hbq_in_use = 1; 4919 /** 4920 * Specific case when the MDS diagnostics is enabled and supported. 4921 * The receive buffer count is truncated to manage the incoming 4922 * traffic. 4923 **/ 4924 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 4925 phba->hbqs[LPFC_ELS_HBQ].entry_count = 4926 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 4927 else 4928 phba->hbqs[LPFC_ELS_HBQ].entry_count = 4929 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 4930 phba->hbq_count = 1; 4931 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 4932 /* Initially populate or replenish the HBQs */ 4933 return 0; 4934 } 4935 4936 /** 4937 * lpfc_sli_config_port - Issue config port mailbox command 4938 * @phba: Pointer to HBA context object. 4939 * @sli_mode: sli mode - 2/3 4940 * 4941 * This function is called by the sli initialization code path 4942 * to issue config_port mailbox command. This function restarts the 4943 * HBA firmware and issues a config_port mailbox command to configure 4944 * the SLI interface in the sli mode specified by sli_mode 4945 * variable. The caller is not required to hold any locks. 4946 * The function returns 0 if successful, else returns negative error 4947 * code. 4948 **/ 4949 int 4950 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 4951 { 4952 LPFC_MBOXQ_t *pmb; 4953 uint32_t resetcount = 0, rc = 0, done = 0; 4954 4955 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4956 if (!pmb) { 4957 phba->link_state = LPFC_HBA_ERROR; 4958 return -ENOMEM; 4959 } 4960 4961 phba->sli_rev = sli_mode; 4962 while (resetcount < 2 && !done) { 4963 spin_lock_irq(&phba->hbalock); 4964 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 4965 spin_unlock_irq(&phba->hbalock); 4966 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4967 lpfc_sli_brdrestart(phba); 4968 rc = lpfc_sli_chipset_init(phba); 4969 if (rc) 4970 break; 4971 4972 spin_lock_irq(&phba->hbalock); 4973 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4974 spin_unlock_irq(&phba->hbalock); 4975 resetcount++; 4976 4977 /* Call pre CONFIG_PORT mailbox command initialization. A 4978 * value of 0 means the call was successful. Any other 4979 * nonzero value is a failure, but if ERESTART is returned, 4980 * the driver may reset the HBA and try again. 4981 */ 4982 rc = lpfc_config_port_prep(phba); 4983 if (rc == -ERESTART) { 4984 phba->link_state = LPFC_LINK_UNKNOWN; 4985 continue; 4986 } else if (rc) 4987 break; 4988 4989 phba->link_state = LPFC_INIT_MBX_CMDS; 4990 lpfc_config_port(phba, pmb); 4991 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 4992 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 4993 LPFC_SLI3_HBQ_ENABLED | 4994 LPFC_SLI3_CRP_ENABLED | 4995 LPFC_SLI3_DSS_ENABLED); 4996 if (rc != MBX_SUCCESS) { 4997 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4998 "0442 Adapter failed to init, mbxCmd x%x " 4999 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5000 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5001 spin_lock_irq(&phba->hbalock); 5002 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5003 spin_unlock_irq(&phba->hbalock); 5004 rc = -ENXIO; 5005 } else { 5006 /* Allow asynchronous mailbox command to go through */ 5007 spin_lock_irq(&phba->hbalock); 5008 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5009 spin_unlock_irq(&phba->hbalock); 5010 done = 1; 5011 5012 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5013 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5014 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5015 "3110 Port did not grant ASABT\n"); 5016 } 5017 } 5018 if (!done) { 5019 rc = -EINVAL; 5020 goto do_prep_failed; 5021 } 5022 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5023 if (!pmb->u.mb.un.varCfgPort.cMA) { 5024 rc = -ENXIO; 5025 goto do_prep_failed; 5026 } 5027 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5028 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5029 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5030 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5031 phba->max_vpi : phba->max_vports; 5032 5033 } else 5034 phba->max_vpi = 0; 5035 if (pmb->u.mb.un.varCfgPort.gerbm) 5036 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5037 if (pmb->u.mb.un.varCfgPort.gcrp) 5038 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5039 5040 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5041 phba->port_gp = phba->mbox->us.s3_pgp.port; 5042 5043 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5044 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5045 phba->cfg_enable_bg = 0; 5046 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5047 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5048 "0443 Adapter did not grant " 5049 "BlockGuard\n"); 5050 } 5051 } 5052 } else { 5053 phba->hbq_get = NULL; 5054 phba->port_gp = phba->mbox->us.s2.port; 5055 phba->max_vpi = 0; 5056 } 5057 do_prep_failed: 5058 mempool_free(pmb, phba->mbox_mem_pool); 5059 return rc; 5060 } 5061 5062 5063 /** 5064 * lpfc_sli_hba_setup - SLI initialization function 5065 * @phba: Pointer to HBA context object. 5066 * 5067 * This function is the main SLI initialization function. This function 5068 * is called by the HBA initialization code, HBA reset code and HBA 5069 * error attention handler code. Caller is not required to hold any 5070 * locks. This function issues config_port mailbox command to configure 5071 * the SLI, setup iocb rings and HBQ rings. In the end the function 5072 * calls the config_port_post function to issue init_link mailbox 5073 * command and to start the discovery. The function will return zero 5074 * if successful, else it will return negative error code. 5075 **/ 5076 int 5077 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5078 { 5079 uint32_t rc; 5080 int mode = 3, i; 5081 int longs; 5082 5083 switch (phba->cfg_sli_mode) { 5084 case 2: 5085 if (phba->cfg_enable_npiv) { 5086 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 5087 "1824 NPIV enabled: Override sli_mode " 5088 "parameter (%d) to auto (0).\n", 5089 phba->cfg_sli_mode); 5090 break; 5091 } 5092 mode = 2; 5093 break; 5094 case 0: 5095 case 3: 5096 break; 5097 default: 5098 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 5099 "1819 Unrecognized sli_mode parameter: %d.\n", 5100 phba->cfg_sli_mode); 5101 5102 break; 5103 } 5104 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5105 5106 rc = lpfc_sli_config_port(phba, mode); 5107 5108 if (rc && phba->cfg_sli_mode == 3) 5109 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 5110 "1820 Unable to select SLI-3. " 5111 "Not supported by adapter.\n"); 5112 if (rc && mode != 2) 5113 rc = lpfc_sli_config_port(phba, 2); 5114 else if (rc && mode == 2) 5115 rc = lpfc_sli_config_port(phba, 3); 5116 if (rc) 5117 goto lpfc_sli_hba_setup_error; 5118 5119 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5120 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5121 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5122 if (!rc) { 5123 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5124 "2709 This device supports " 5125 "Advanced Error Reporting (AER)\n"); 5126 spin_lock_irq(&phba->hbalock); 5127 phba->hba_flag |= HBA_AER_ENABLED; 5128 spin_unlock_irq(&phba->hbalock); 5129 } else { 5130 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5131 "2708 This device does not support " 5132 "Advanced Error Reporting (AER): %d\n", 5133 rc); 5134 phba->cfg_aer_support = 0; 5135 } 5136 } 5137 5138 if (phba->sli_rev == 3) { 5139 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5140 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5141 } else { 5142 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5143 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5144 phba->sli3_options = 0; 5145 } 5146 5147 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5148 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5149 phba->sli_rev, phba->max_vpi); 5150 rc = lpfc_sli_ring_map(phba); 5151 5152 if (rc) 5153 goto lpfc_sli_hba_setup_error; 5154 5155 /* Initialize VPIs. */ 5156 if (phba->sli_rev == LPFC_SLI_REV3) { 5157 /* 5158 * The VPI bitmask and physical ID array are allocated 5159 * and initialized once only - at driver load. A port 5160 * reset doesn't need to reinitialize this memory. 5161 */ 5162 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5163 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5164 phba->vpi_bmask = kcalloc(longs, 5165 sizeof(unsigned long), 5166 GFP_KERNEL); 5167 if (!phba->vpi_bmask) { 5168 rc = -ENOMEM; 5169 goto lpfc_sli_hba_setup_error; 5170 } 5171 5172 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5173 sizeof(uint16_t), 5174 GFP_KERNEL); 5175 if (!phba->vpi_ids) { 5176 kfree(phba->vpi_bmask); 5177 rc = -ENOMEM; 5178 goto lpfc_sli_hba_setup_error; 5179 } 5180 for (i = 0; i < phba->max_vpi; i++) 5181 phba->vpi_ids[i] = i; 5182 } 5183 } 5184 5185 /* Init HBQs */ 5186 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5187 rc = lpfc_sli_hbq_setup(phba); 5188 if (rc) 5189 goto lpfc_sli_hba_setup_error; 5190 } 5191 spin_lock_irq(&phba->hbalock); 5192 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5193 spin_unlock_irq(&phba->hbalock); 5194 5195 rc = lpfc_config_port_post(phba); 5196 if (rc) 5197 goto lpfc_sli_hba_setup_error; 5198 5199 return rc; 5200 5201 lpfc_sli_hba_setup_error: 5202 phba->link_state = LPFC_HBA_ERROR; 5203 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5204 "0445 Firmware initialization failed\n"); 5205 return rc; 5206 } 5207 5208 /** 5209 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5210 * @phba: Pointer to HBA context object. 5211 * @mboxq: mailbox pointer. 5212 * This function issue a dump mailbox command to read config region 5213 * 23 and parse the records in the region and populate driver 5214 * data structure. 5215 **/ 5216 static int 5217 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5218 { 5219 LPFC_MBOXQ_t *mboxq; 5220 struct lpfc_dmabuf *mp; 5221 struct lpfc_mqe *mqe; 5222 uint32_t data_length; 5223 int rc; 5224 5225 /* Program the default value of vlan_id and fc_map */ 5226 phba->valid_vlan = 0; 5227 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5228 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5229 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5230 5231 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5232 if (!mboxq) 5233 return -ENOMEM; 5234 5235 mqe = &mboxq->u.mqe; 5236 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5237 rc = -ENOMEM; 5238 goto out_free_mboxq; 5239 } 5240 5241 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5242 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5243 5244 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5245 "(%d):2571 Mailbox cmd x%x Status x%x " 5246 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5247 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5248 "CQ: x%x x%x x%x x%x\n", 5249 mboxq->vport ? mboxq->vport->vpi : 0, 5250 bf_get(lpfc_mqe_command, mqe), 5251 bf_get(lpfc_mqe_status, mqe), 5252 mqe->un.mb_words[0], mqe->un.mb_words[1], 5253 mqe->un.mb_words[2], mqe->un.mb_words[3], 5254 mqe->un.mb_words[4], mqe->un.mb_words[5], 5255 mqe->un.mb_words[6], mqe->un.mb_words[7], 5256 mqe->un.mb_words[8], mqe->un.mb_words[9], 5257 mqe->un.mb_words[10], mqe->un.mb_words[11], 5258 mqe->un.mb_words[12], mqe->un.mb_words[13], 5259 mqe->un.mb_words[14], mqe->un.mb_words[15], 5260 mqe->un.mb_words[16], mqe->un.mb_words[50], 5261 mboxq->mcqe.word0, 5262 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5263 mboxq->mcqe.trailer); 5264 5265 if (rc) { 5266 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5267 kfree(mp); 5268 rc = -EIO; 5269 goto out_free_mboxq; 5270 } 5271 data_length = mqe->un.mb_words[5]; 5272 if (data_length > DMP_RGN23_SIZE) { 5273 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5274 kfree(mp); 5275 rc = -EIO; 5276 goto out_free_mboxq; 5277 } 5278 5279 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5280 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5281 kfree(mp); 5282 rc = 0; 5283 5284 out_free_mboxq: 5285 mempool_free(mboxq, phba->mbox_mem_pool); 5286 return rc; 5287 } 5288 5289 /** 5290 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5291 * @phba: pointer to lpfc hba data structure. 5292 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5293 * @vpd: pointer to the memory to hold resulting port vpd data. 5294 * @vpd_size: On input, the number of bytes allocated to @vpd. 5295 * On output, the number of data bytes in @vpd. 5296 * 5297 * This routine executes a READ_REV SLI4 mailbox command. In 5298 * addition, this routine gets the port vpd data. 5299 * 5300 * Return codes 5301 * 0 - successful 5302 * -ENOMEM - could not allocated memory. 5303 **/ 5304 static int 5305 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5306 uint8_t *vpd, uint32_t *vpd_size) 5307 { 5308 int rc = 0; 5309 uint32_t dma_size; 5310 struct lpfc_dmabuf *dmabuf; 5311 struct lpfc_mqe *mqe; 5312 5313 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5314 if (!dmabuf) 5315 return -ENOMEM; 5316 5317 /* 5318 * Get a DMA buffer for the vpd data resulting from the READ_REV 5319 * mailbox command. 5320 */ 5321 dma_size = *vpd_size; 5322 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5323 &dmabuf->phys, GFP_KERNEL); 5324 if (!dmabuf->virt) { 5325 kfree(dmabuf); 5326 return -ENOMEM; 5327 } 5328 5329 /* 5330 * The SLI4 implementation of READ_REV conflicts at word1, 5331 * bits 31:16 and SLI4 adds vpd functionality not present 5332 * in SLI3. This code corrects the conflicts. 5333 */ 5334 lpfc_read_rev(phba, mboxq); 5335 mqe = &mboxq->u.mqe; 5336 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5337 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5338 mqe->un.read_rev.word1 &= 0x0000FFFF; 5339 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5340 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5341 5342 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5343 if (rc) { 5344 dma_free_coherent(&phba->pcidev->dev, dma_size, 5345 dmabuf->virt, dmabuf->phys); 5346 kfree(dmabuf); 5347 return -EIO; 5348 } 5349 5350 /* 5351 * The available vpd length cannot be bigger than the 5352 * DMA buffer passed to the port. Catch the less than 5353 * case and update the caller's size. 5354 */ 5355 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5356 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5357 5358 memcpy(vpd, dmabuf->virt, *vpd_size); 5359 5360 dma_free_coherent(&phba->pcidev->dev, dma_size, 5361 dmabuf->virt, dmabuf->phys); 5362 kfree(dmabuf); 5363 return 0; 5364 } 5365 5366 /** 5367 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5368 * @phba: pointer to lpfc hba data structure. 5369 * 5370 * This routine retrieves SLI4 device physical port name this PCI function 5371 * is attached to. 5372 * 5373 * Return codes 5374 * 0 - successful 5375 * otherwise - failed to retrieve controller attributes 5376 **/ 5377 static int 5378 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5379 { 5380 LPFC_MBOXQ_t *mboxq; 5381 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5382 struct lpfc_controller_attribute *cntl_attr; 5383 void *virtaddr = NULL; 5384 uint32_t alloclen, reqlen; 5385 uint32_t shdr_status, shdr_add_status; 5386 union lpfc_sli4_cfg_shdr *shdr; 5387 int rc; 5388 5389 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5390 if (!mboxq) 5391 return -ENOMEM; 5392 5393 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5394 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5395 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5396 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5397 LPFC_SLI4_MBX_NEMBED); 5398 5399 if (alloclen < reqlen) { 5400 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5401 "3084 Allocated DMA memory size (%d) is " 5402 "less than the requested DMA memory size " 5403 "(%d)\n", alloclen, reqlen); 5404 rc = -ENOMEM; 5405 goto out_free_mboxq; 5406 } 5407 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5408 virtaddr = mboxq->sge_array->addr[0]; 5409 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5410 shdr = &mbx_cntl_attr->cfg_shdr; 5411 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5412 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5413 if (shdr_status || shdr_add_status || rc) { 5414 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5415 "3085 Mailbox x%x (x%x/x%x) failed, " 5416 "rc:x%x, status:x%x, add_status:x%x\n", 5417 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5418 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5419 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5420 rc, shdr_status, shdr_add_status); 5421 rc = -ENXIO; 5422 goto out_free_mboxq; 5423 } 5424 5425 cntl_attr = &mbx_cntl_attr->cntl_attr; 5426 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5427 phba->sli4_hba.lnk_info.lnk_tp = 5428 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5429 phba->sli4_hba.lnk_info.lnk_no = 5430 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5431 5432 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 5433 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 5434 sizeof(phba->BIOSVersion)); 5435 5436 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5437 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s\n", 5438 phba->sli4_hba.lnk_info.lnk_tp, 5439 phba->sli4_hba.lnk_info.lnk_no, 5440 phba->BIOSVersion); 5441 out_free_mboxq: 5442 if (rc != MBX_TIMEOUT) { 5443 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5444 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5445 else 5446 mempool_free(mboxq, phba->mbox_mem_pool); 5447 } 5448 return rc; 5449 } 5450 5451 /** 5452 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 5453 * @phba: pointer to lpfc hba data structure. 5454 * 5455 * This routine retrieves SLI4 device physical port name this PCI function 5456 * is attached to. 5457 * 5458 * Return codes 5459 * 0 - successful 5460 * otherwise - failed to retrieve physical port name 5461 **/ 5462 static int 5463 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 5464 { 5465 LPFC_MBOXQ_t *mboxq; 5466 struct lpfc_mbx_get_port_name *get_port_name; 5467 uint32_t shdr_status, shdr_add_status; 5468 union lpfc_sli4_cfg_shdr *shdr; 5469 char cport_name = 0; 5470 int rc; 5471 5472 /* We assume nothing at this point */ 5473 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5474 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 5475 5476 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5477 if (!mboxq) 5478 return -ENOMEM; 5479 /* obtain link type and link number via READ_CONFIG */ 5480 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5481 lpfc_sli4_read_config(phba); 5482 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 5483 goto retrieve_ppname; 5484 5485 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 5486 rc = lpfc_sli4_get_ctl_attr(phba); 5487 if (rc) 5488 goto out_free_mboxq; 5489 5490 retrieve_ppname: 5491 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5492 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5493 sizeof(struct lpfc_mbx_get_port_name) - 5494 sizeof(struct lpfc_sli4_cfg_mhdr), 5495 LPFC_SLI4_MBX_EMBED); 5496 get_port_name = &mboxq->u.mqe.un.get_port_name; 5497 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5498 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5499 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5500 phba->sli4_hba.lnk_info.lnk_tp); 5501 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5502 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5503 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5504 if (shdr_status || shdr_add_status || rc) { 5505 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5506 "3087 Mailbox x%x (x%x/x%x) failed: " 5507 "rc:x%x, status:x%x, add_status:x%x\n", 5508 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5509 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5510 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5511 rc, shdr_status, shdr_add_status); 5512 rc = -ENXIO; 5513 goto out_free_mboxq; 5514 } 5515 switch (phba->sli4_hba.lnk_info.lnk_no) { 5516 case LPFC_LINK_NUMBER_0: 5517 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 5518 &get_port_name->u.response); 5519 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5520 break; 5521 case LPFC_LINK_NUMBER_1: 5522 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 5523 &get_port_name->u.response); 5524 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5525 break; 5526 case LPFC_LINK_NUMBER_2: 5527 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 5528 &get_port_name->u.response); 5529 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5530 break; 5531 case LPFC_LINK_NUMBER_3: 5532 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 5533 &get_port_name->u.response); 5534 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5535 break; 5536 default: 5537 break; 5538 } 5539 5540 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 5541 phba->Port[0] = cport_name; 5542 phba->Port[1] = '\0'; 5543 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5544 "3091 SLI get port name: %s\n", phba->Port); 5545 } 5546 5547 out_free_mboxq: 5548 if (rc != MBX_TIMEOUT) { 5549 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5550 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5551 else 5552 mempool_free(mboxq, phba->mbox_mem_pool); 5553 } 5554 return rc; 5555 } 5556 5557 /** 5558 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 5559 * @phba: pointer to lpfc hba data structure. 5560 * 5561 * This routine is called to explicitly arm the SLI4 device's completion and 5562 * event queues 5563 **/ 5564 static void 5565 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 5566 { 5567 int qidx; 5568 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 5569 struct lpfc_sli4_hdw_queue *qp; 5570 struct lpfc_queue *eq; 5571 5572 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 5573 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 5574 if (sli4_hba->nvmels_cq) 5575 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 5576 LPFC_QUEUE_REARM); 5577 5578 if (sli4_hba->hdwq) { 5579 /* Loop thru all Hardware Queues */ 5580 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 5581 qp = &sli4_hba->hdwq[qidx]; 5582 /* ARM the corresponding CQ */ 5583 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 5584 LPFC_QUEUE_REARM); 5585 } 5586 5587 /* Loop thru all IRQ vectors */ 5588 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 5589 eq = sli4_hba->hba_eq_hdl[qidx].eq; 5590 /* ARM the corresponding EQ */ 5591 sli4_hba->sli4_write_eq_db(phba, eq, 5592 0, LPFC_QUEUE_REARM); 5593 } 5594 } 5595 5596 if (phba->nvmet_support) { 5597 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 5598 sli4_hba->sli4_write_cq_db(phba, 5599 sli4_hba->nvmet_cqset[qidx], 0, 5600 LPFC_QUEUE_REARM); 5601 } 5602 } 5603 } 5604 5605 /** 5606 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 5607 * @phba: Pointer to HBA context object. 5608 * @type: The resource extent type. 5609 * @extnt_count: buffer to hold port available extent count. 5610 * @extnt_size: buffer to hold element count per extent. 5611 * 5612 * This function calls the port and retrievs the number of available 5613 * extents and their size for a particular extent type. 5614 * 5615 * Returns: 0 if successful. Nonzero otherwise. 5616 **/ 5617 int 5618 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5619 uint16_t *extnt_count, uint16_t *extnt_size) 5620 { 5621 int rc = 0; 5622 uint32_t length; 5623 uint32_t mbox_tmo; 5624 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5625 LPFC_MBOXQ_t *mbox; 5626 5627 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5628 if (!mbox) 5629 return -ENOMEM; 5630 5631 /* Find out how many extents are available for this resource type */ 5632 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5633 sizeof(struct lpfc_sli4_cfg_mhdr)); 5634 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5635 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5636 length, LPFC_SLI4_MBX_EMBED); 5637 5638 /* Send an extents count of 0 - the GET doesn't use it. */ 5639 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5640 LPFC_SLI4_MBX_EMBED); 5641 if (unlikely(rc)) { 5642 rc = -EIO; 5643 goto err_exit; 5644 } 5645 5646 if (!phba->sli4_hba.intr_enable) 5647 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5648 else { 5649 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5650 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5651 } 5652 if (unlikely(rc)) { 5653 rc = -EIO; 5654 goto err_exit; 5655 } 5656 5657 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5658 if (bf_get(lpfc_mbox_hdr_status, 5659 &rsrc_info->header.cfg_shdr.response)) { 5660 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5661 "2930 Failed to get resource extents " 5662 "Status 0x%x Add'l Status 0x%x\n", 5663 bf_get(lpfc_mbox_hdr_status, 5664 &rsrc_info->header.cfg_shdr.response), 5665 bf_get(lpfc_mbox_hdr_add_status, 5666 &rsrc_info->header.cfg_shdr.response)); 5667 rc = -EIO; 5668 goto err_exit; 5669 } 5670 5671 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5672 &rsrc_info->u.rsp); 5673 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5674 &rsrc_info->u.rsp); 5675 5676 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5677 "3162 Retrieved extents type-%d from port: count:%d, " 5678 "size:%d\n", type, *extnt_count, *extnt_size); 5679 5680 err_exit: 5681 mempool_free(mbox, phba->mbox_mem_pool); 5682 return rc; 5683 } 5684 5685 /** 5686 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5687 * @phba: Pointer to HBA context object. 5688 * @type: The extent type to check. 5689 * 5690 * This function reads the current available extents from the port and checks 5691 * if the extent count or extent size has changed since the last access. 5692 * Callers use this routine post port reset to understand if there is a 5693 * extent reprovisioning requirement. 5694 * 5695 * Returns: 5696 * -Error: error indicates problem. 5697 * 1: Extent count or size has changed. 5698 * 0: No changes. 5699 **/ 5700 static int 5701 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5702 { 5703 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5704 uint16_t size_diff, rsrc_ext_size; 5705 int rc = 0; 5706 struct lpfc_rsrc_blks *rsrc_entry; 5707 struct list_head *rsrc_blk_list = NULL; 5708 5709 size_diff = 0; 5710 curr_ext_cnt = 0; 5711 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5712 &rsrc_ext_cnt, 5713 &rsrc_ext_size); 5714 if (unlikely(rc)) 5715 return -EIO; 5716 5717 switch (type) { 5718 case LPFC_RSC_TYPE_FCOE_RPI: 5719 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5720 break; 5721 case LPFC_RSC_TYPE_FCOE_VPI: 5722 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5723 break; 5724 case LPFC_RSC_TYPE_FCOE_XRI: 5725 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5726 break; 5727 case LPFC_RSC_TYPE_FCOE_VFI: 5728 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5729 break; 5730 default: 5731 break; 5732 } 5733 5734 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5735 curr_ext_cnt++; 5736 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5737 size_diff++; 5738 } 5739 5740 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5741 rc = 1; 5742 5743 return rc; 5744 } 5745 5746 /** 5747 * lpfc_sli4_cfg_post_extnts - 5748 * @phba: Pointer to HBA context object. 5749 * @extnt_cnt - number of available extents. 5750 * @type - the extent type (rpi, xri, vfi, vpi). 5751 * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5752 * @mbox - pointer to the caller's allocated mailbox structure. 5753 * 5754 * This function executes the extents allocation request. It also 5755 * takes care of the amount of memory needed to allocate or get the 5756 * allocated extents. It is the caller's responsibility to evaluate 5757 * the response. 5758 * 5759 * Returns: 5760 * -Error: Error value describes the condition found. 5761 * 0: if successful 5762 **/ 5763 static int 5764 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 5765 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 5766 { 5767 int rc = 0; 5768 uint32_t req_len; 5769 uint32_t emb_len; 5770 uint32_t alloc_len, mbox_tmo; 5771 5772 /* Calculate the total requested length of the dma memory */ 5773 req_len = extnt_cnt * sizeof(uint16_t); 5774 5775 /* 5776 * Calculate the size of an embedded mailbox. The uint32_t 5777 * accounts for extents-specific word. 5778 */ 5779 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 5780 sizeof(uint32_t); 5781 5782 /* 5783 * Presume the allocation and response will fit into an embedded 5784 * mailbox. If not true, reconfigure to a non-embedded mailbox. 5785 */ 5786 *emb = LPFC_SLI4_MBX_EMBED; 5787 if (req_len > emb_len) { 5788 req_len = extnt_cnt * sizeof(uint16_t) + 5789 sizeof(union lpfc_sli4_cfg_shdr) + 5790 sizeof(uint32_t); 5791 *emb = LPFC_SLI4_MBX_NEMBED; 5792 } 5793 5794 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5795 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 5796 req_len, *emb); 5797 if (alloc_len < req_len) { 5798 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5799 "2982 Allocated DMA memory size (x%x) is " 5800 "less than the requested DMA memory " 5801 "size (x%x)\n", alloc_len, req_len); 5802 return -ENOMEM; 5803 } 5804 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 5805 if (unlikely(rc)) 5806 return -EIO; 5807 5808 if (!phba->sli4_hba.intr_enable) 5809 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5810 else { 5811 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5812 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5813 } 5814 5815 if (unlikely(rc)) 5816 rc = -EIO; 5817 return rc; 5818 } 5819 5820 /** 5821 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 5822 * @phba: Pointer to HBA context object. 5823 * @type: The resource extent type to allocate. 5824 * 5825 * This function allocates the number of elements for the specified 5826 * resource type. 5827 **/ 5828 static int 5829 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 5830 { 5831 bool emb = false; 5832 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 5833 uint16_t rsrc_id, rsrc_start, j, k; 5834 uint16_t *ids; 5835 int i, rc; 5836 unsigned long longs; 5837 unsigned long *bmask; 5838 struct lpfc_rsrc_blks *rsrc_blks; 5839 LPFC_MBOXQ_t *mbox; 5840 uint32_t length; 5841 struct lpfc_id_range *id_array = NULL; 5842 void *virtaddr = NULL; 5843 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 5844 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 5845 struct list_head *ext_blk_list; 5846 5847 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5848 &rsrc_cnt, 5849 &rsrc_size); 5850 if (unlikely(rc)) 5851 return -EIO; 5852 5853 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 5854 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5855 "3009 No available Resource Extents " 5856 "for resource type 0x%x: Count: 0x%x, " 5857 "Size 0x%x\n", type, rsrc_cnt, 5858 rsrc_size); 5859 return -ENOMEM; 5860 } 5861 5862 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 5863 "2903 Post resource extents type-0x%x: " 5864 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 5865 5866 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5867 if (!mbox) 5868 return -ENOMEM; 5869 5870 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 5871 if (unlikely(rc)) { 5872 rc = -EIO; 5873 goto err_exit; 5874 } 5875 5876 /* 5877 * Figure out where the response is located. Then get local pointers 5878 * to the response data. The port does not guarantee to respond to 5879 * all extents counts request so update the local variable with the 5880 * allocated count from the port. 5881 */ 5882 if (emb == LPFC_SLI4_MBX_EMBED) { 5883 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 5884 id_array = &rsrc_ext->u.rsp.id[0]; 5885 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 5886 } else { 5887 virtaddr = mbox->sge_array->addr[0]; 5888 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 5889 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 5890 id_array = &n_rsrc->id; 5891 } 5892 5893 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 5894 rsrc_id_cnt = rsrc_cnt * rsrc_size; 5895 5896 /* 5897 * Based on the resource size and count, correct the base and max 5898 * resource values. 5899 */ 5900 length = sizeof(struct lpfc_rsrc_blks); 5901 switch (type) { 5902 case LPFC_RSC_TYPE_FCOE_RPI: 5903 phba->sli4_hba.rpi_bmask = kcalloc(longs, 5904 sizeof(unsigned long), 5905 GFP_KERNEL); 5906 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 5907 rc = -ENOMEM; 5908 goto err_exit; 5909 } 5910 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 5911 sizeof(uint16_t), 5912 GFP_KERNEL); 5913 if (unlikely(!phba->sli4_hba.rpi_ids)) { 5914 kfree(phba->sli4_hba.rpi_bmask); 5915 rc = -ENOMEM; 5916 goto err_exit; 5917 } 5918 5919 /* 5920 * The next_rpi was initialized with the maximum available 5921 * count but the port may allocate a smaller number. Catch 5922 * that case and update the next_rpi. 5923 */ 5924 phba->sli4_hba.next_rpi = rsrc_id_cnt; 5925 5926 /* Initialize local ptrs for common extent processing later. */ 5927 bmask = phba->sli4_hba.rpi_bmask; 5928 ids = phba->sli4_hba.rpi_ids; 5929 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5930 break; 5931 case LPFC_RSC_TYPE_FCOE_VPI: 5932 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 5933 GFP_KERNEL); 5934 if (unlikely(!phba->vpi_bmask)) { 5935 rc = -ENOMEM; 5936 goto err_exit; 5937 } 5938 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 5939 GFP_KERNEL); 5940 if (unlikely(!phba->vpi_ids)) { 5941 kfree(phba->vpi_bmask); 5942 rc = -ENOMEM; 5943 goto err_exit; 5944 } 5945 5946 /* Initialize local ptrs for common extent processing later. */ 5947 bmask = phba->vpi_bmask; 5948 ids = phba->vpi_ids; 5949 ext_blk_list = &phba->lpfc_vpi_blk_list; 5950 break; 5951 case LPFC_RSC_TYPE_FCOE_XRI: 5952 phba->sli4_hba.xri_bmask = kcalloc(longs, 5953 sizeof(unsigned long), 5954 GFP_KERNEL); 5955 if (unlikely(!phba->sli4_hba.xri_bmask)) { 5956 rc = -ENOMEM; 5957 goto err_exit; 5958 } 5959 phba->sli4_hba.max_cfg_param.xri_used = 0; 5960 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 5961 sizeof(uint16_t), 5962 GFP_KERNEL); 5963 if (unlikely(!phba->sli4_hba.xri_ids)) { 5964 kfree(phba->sli4_hba.xri_bmask); 5965 rc = -ENOMEM; 5966 goto err_exit; 5967 } 5968 5969 /* Initialize local ptrs for common extent processing later. */ 5970 bmask = phba->sli4_hba.xri_bmask; 5971 ids = phba->sli4_hba.xri_ids; 5972 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5973 break; 5974 case LPFC_RSC_TYPE_FCOE_VFI: 5975 phba->sli4_hba.vfi_bmask = kcalloc(longs, 5976 sizeof(unsigned long), 5977 GFP_KERNEL); 5978 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 5979 rc = -ENOMEM; 5980 goto err_exit; 5981 } 5982 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 5983 sizeof(uint16_t), 5984 GFP_KERNEL); 5985 if (unlikely(!phba->sli4_hba.vfi_ids)) { 5986 kfree(phba->sli4_hba.vfi_bmask); 5987 rc = -ENOMEM; 5988 goto err_exit; 5989 } 5990 5991 /* Initialize local ptrs for common extent processing later. */ 5992 bmask = phba->sli4_hba.vfi_bmask; 5993 ids = phba->sli4_hba.vfi_ids; 5994 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5995 break; 5996 default: 5997 /* Unsupported Opcode. Fail call. */ 5998 id_array = NULL; 5999 bmask = NULL; 6000 ids = NULL; 6001 ext_blk_list = NULL; 6002 goto err_exit; 6003 } 6004 6005 /* 6006 * Complete initializing the extent configuration with the 6007 * allocated ids assigned to this function. The bitmask serves 6008 * as an index into the array and manages the available ids. The 6009 * array just stores the ids communicated to the port via the wqes. 6010 */ 6011 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6012 if ((i % 2) == 0) 6013 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6014 &id_array[k]); 6015 else 6016 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6017 &id_array[k]); 6018 6019 rsrc_blks = kzalloc(length, GFP_KERNEL); 6020 if (unlikely(!rsrc_blks)) { 6021 rc = -ENOMEM; 6022 kfree(bmask); 6023 kfree(ids); 6024 goto err_exit; 6025 } 6026 rsrc_blks->rsrc_start = rsrc_id; 6027 rsrc_blks->rsrc_size = rsrc_size; 6028 list_add_tail(&rsrc_blks->list, ext_blk_list); 6029 rsrc_start = rsrc_id; 6030 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6031 phba->sli4_hba.io_xri_start = rsrc_start + 6032 lpfc_sli4_get_iocb_cnt(phba); 6033 } 6034 6035 while (rsrc_id < (rsrc_start + rsrc_size)) { 6036 ids[j] = rsrc_id; 6037 rsrc_id++; 6038 j++; 6039 } 6040 /* Entire word processed. Get next word.*/ 6041 if ((i % 2) == 1) 6042 k++; 6043 } 6044 err_exit: 6045 lpfc_sli4_mbox_cmd_free(phba, mbox); 6046 return rc; 6047 } 6048 6049 6050 6051 /** 6052 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6053 * @phba: Pointer to HBA context object. 6054 * @type: the extent's type. 6055 * 6056 * This function deallocates all extents of a particular resource type. 6057 * SLI4 does not allow for deallocating a particular extent range. It 6058 * is the caller's responsibility to release all kernel memory resources. 6059 **/ 6060 static int 6061 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6062 { 6063 int rc; 6064 uint32_t length, mbox_tmo = 0; 6065 LPFC_MBOXQ_t *mbox; 6066 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6067 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6068 6069 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6070 if (!mbox) 6071 return -ENOMEM; 6072 6073 /* 6074 * This function sends an embedded mailbox because it only sends the 6075 * the resource type. All extents of this type are released by the 6076 * port. 6077 */ 6078 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6079 sizeof(struct lpfc_sli4_cfg_mhdr)); 6080 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6081 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6082 length, LPFC_SLI4_MBX_EMBED); 6083 6084 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6085 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6086 LPFC_SLI4_MBX_EMBED); 6087 if (unlikely(rc)) { 6088 rc = -EIO; 6089 goto out_free_mbox; 6090 } 6091 if (!phba->sli4_hba.intr_enable) 6092 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6093 else { 6094 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6095 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6096 } 6097 if (unlikely(rc)) { 6098 rc = -EIO; 6099 goto out_free_mbox; 6100 } 6101 6102 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6103 if (bf_get(lpfc_mbox_hdr_status, 6104 &dealloc_rsrc->header.cfg_shdr.response)) { 6105 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 6106 "2919 Failed to release resource extents " 6107 "for type %d - Status 0x%x Add'l Status 0x%x. " 6108 "Resource memory not released.\n", 6109 type, 6110 bf_get(lpfc_mbox_hdr_status, 6111 &dealloc_rsrc->header.cfg_shdr.response), 6112 bf_get(lpfc_mbox_hdr_add_status, 6113 &dealloc_rsrc->header.cfg_shdr.response)); 6114 rc = -EIO; 6115 goto out_free_mbox; 6116 } 6117 6118 /* Release kernel memory resources for the specific type. */ 6119 switch (type) { 6120 case LPFC_RSC_TYPE_FCOE_VPI: 6121 kfree(phba->vpi_bmask); 6122 kfree(phba->vpi_ids); 6123 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6124 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6125 &phba->lpfc_vpi_blk_list, list) { 6126 list_del_init(&rsrc_blk->list); 6127 kfree(rsrc_blk); 6128 } 6129 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6130 break; 6131 case LPFC_RSC_TYPE_FCOE_XRI: 6132 kfree(phba->sli4_hba.xri_bmask); 6133 kfree(phba->sli4_hba.xri_ids); 6134 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6135 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6136 list_del_init(&rsrc_blk->list); 6137 kfree(rsrc_blk); 6138 } 6139 break; 6140 case LPFC_RSC_TYPE_FCOE_VFI: 6141 kfree(phba->sli4_hba.vfi_bmask); 6142 kfree(phba->sli4_hba.vfi_ids); 6143 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6144 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6145 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6146 list_del_init(&rsrc_blk->list); 6147 kfree(rsrc_blk); 6148 } 6149 break; 6150 case LPFC_RSC_TYPE_FCOE_RPI: 6151 /* RPI bitmask and physical id array are cleaned up earlier. */ 6152 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6153 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6154 list_del_init(&rsrc_blk->list); 6155 kfree(rsrc_blk); 6156 } 6157 break; 6158 default: 6159 break; 6160 } 6161 6162 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6163 6164 out_free_mbox: 6165 mempool_free(mbox, phba->mbox_mem_pool); 6166 return rc; 6167 } 6168 6169 static void 6170 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6171 uint32_t feature) 6172 { 6173 uint32_t len; 6174 6175 len = sizeof(struct lpfc_mbx_set_feature) - 6176 sizeof(struct lpfc_sli4_cfg_mhdr); 6177 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6178 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6179 LPFC_SLI4_MBX_EMBED); 6180 6181 switch (feature) { 6182 case LPFC_SET_UE_RECOVERY: 6183 bf_set(lpfc_mbx_set_feature_UER, 6184 &mbox->u.mqe.un.set_feature, 1); 6185 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6186 mbox->u.mqe.un.set_feature.param_len = 8; 6187 break; 6188 case LPFC_SET_MDS_DIAGS: 6189 bf_set(lpfc_mbx_set_feature_mds, 6190 &mbox->u.mqe.un.set_feature, 1); 6191 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6192 &mbox->u.mqe.un.set_feature, 1); 6193 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6194 mbox->u.mqe.un.set_feature.param_len = 8; 6195 break; 6196 case LPFC_SET_DUAL_DUMP: 6197 bf_set(lpfc_mbx_set_feature_dd, 6198 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6199 bf_set(lpfc_mbx_set_feature_ddquery, 6200 &mbox->u.mqe.un.set_feature, 0); 6201 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6202 mbox->u.mqe.un.set_feature.param_len = 4; 6203 break; 6204 } 6205 6206 return; 6207 } 6208 6209 /** 6210 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6211 * @phba: Pointer to HBA context object. 6212 * 6213 * Disable FW logging into host memory on the adapter. To 6214 * be done before reading logs from the host memory. 6215 **/ 6216 void 6217 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6218 { 6219 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6220 6221 spin_lock_irq(&phba->hbalock); 6222 ras_fwlog->state = INACTIVE; 6223 spin_unlock_irq(&phba->hbalock); 6224 6225 /* Disable FW logging to host memory */ 6226 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6227 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6228 6229 /* Wait 10ms for firmware to stop using DMA buffer */ 6230 usleep_range(10 * 1000, 20 * 1000); 6231 } 6232 6233 /** 6234 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6235 * @phba: Pointer to HBA context object. 6236 * 6237 * This function is called to free memory allocated for RAS FW logging 6238 * support in the driver. 6239 **/ 6240 void 6241 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6242 { 6243 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6244 struct lpfc_dmabuf *dmabuf, *next; 6245 6246 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6247 list_for_each_entry_safe(dmabuf, next, 6248 &ras_fwlog->fwlog_buff_list, 6249 list) { 6250 list_del(&dmabuf->list); 6251 dma_free_coherent(&phba->pcidev->dev, 6252 LPFC_RAS_MAX_ENTRY_SIZE, 6253 dmabuf->virt, dmabuf->phys); 6254 kfree(dmabuf); 6255 } 6256 } 6257 6258 if (ras_fwlog->lwpd.virt) { 6259 dma_free_coherent(&phba->pcidev->dev, 6260 sizeof(uint32_t) * 2, 6261 ras_fwlog->lwpd.virt, 6262 ras_fwlog->lwpd.phys); 6263 ras_fwlog->lwpd.virt = NULL; 6264 } 6265 6266 spin_lock_irq(&phba->hbalock); 6267 ras_fwlog->state = INACTIVE; 6268 spin_unlock_irq(&phba->hbalock); 6269 } 6270 6271 /** 6272 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6273 * @phba: Pointer to HBA context object. 6274 * @fwlog_buff_count: Count of buffers to be created. 6275 * 6276 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6277 * to update FW log is posted to the adapter. 6278 * Buffer count is calculated based on module param ras_fwlog_buffsize 6279 * Size of each buffer posted to FW is 64K. 6280 **/ 6281 6282 static int 6283 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6284 uint32_t fwlog_buff_count) 6285 { 6286 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6287 struct lpfc_dmabuf *dmabuf; 6288 int rc = 0, i = 0; 6289 6290 /* Initialize List */ 6291 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6292 6293 /* Allocate memory for the LWPD */ 6294 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6295 sizeof(uint32_t) * 2, 6296 &ras_fwlog->lwpd.phys, 6297 GFP_KERNEL); 6298 if (!ras_fwlog->lwpd.virt) { 6299 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6300 "6185 LWPD Memory Alloc Failed\n"); 6301 6302 return -ENOMEM; 6303 } 6304 6305 ras_fwlog->fw_buffcount = fwlog_buff_count; 6306 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6307 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6308 GFP_KERNEL); 6309 if (!dmabuf) { 6310 rc = -ENOMEM; 6311 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6312 "6186 Memory Alloc failed FW logging"); 6313 goto free_mem; 6314 } 6315 6316 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6317 LPFC_RAS_MAX_ENTRY_SIZE, 6318 &dmabuf->phys, GFP_KERNEL); 6319 if (!dmabuf->virt) { 6320 kfree(dmabuf); 6321 rc = -ENOMEM; 6322 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6323 "6187 DMA Alloc Failed FW logging"); 6324 goto free_mem; 6325 } 6326 dmabuf->buffer_tag = i; 6327 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6328 } 6329 6330 free_mem: 6331 if (rc) 6332 lpfc_sli4_ras_dma_free(phba); 6333 6334 return rc; 6335 } 6336 6337 /** 6338 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6339 * @phba: pointer to lpfc hba data structure. 6340 * @pmboxq: pointer to the driver internal queue element for mailbox command. 6341 * 6342 * Completion handler for driver's RAS MBX command to the device. 6343 **/ 6344 static void 6345 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6346 { 6347 MAILBOX_t *mb; 6348 union lpfc_sli4_cfg_shdr *shdr; 6349 uint32_t shdr_status, shdr_add_status; 6350 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6351 6352 mb = &pmb->u.mb; 6353 6354 shdr = (union lpfc_sli4_cfg_shdr *) 6355 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6356 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6357 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6358 6359 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6360 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 6361 "6188 FW LOG mailbox " 6362 "completed with status x%x add_status x%x," 6363 " mbx status x%x\n", 6364 shdr_status, shdr_add_status, mb->mbxStatus); 6365 6366 ras_fwlog->ras_hwsupport = false; 6367 goto disable_ras; 6368 } 6369 6370 spin_lock_irq(&phba->hbalock); 6371 ras_fwlog->state = ACTIVE; 6372 spin_unlock_irq(&phba->hbalock); 6373 mempool_free(pmb, phba->mbox_mem_pool); 6374 6375 return; 6376 6377 disable_ras: 6378 /* Free RAS DMA memory */ 6379 lpfc_sli4_ras_dma_free(phba); 6380 mempool_free(pmb, phba->mbox_mem_pool); 6381 } 6382 6383 /** 6384 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 6385 * @phba: pointer to lpfc hba data structure. 6386 * @fwlog_level: Logging verbosity level. 6387 * @fwlog_enable: Enable/Disable logging. 6388 * 6389 * Initialize memory and post mailbox command to enable FW logging in host 6390 * memory. 6391 **/ 6392 int 6393 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 6394 uint32_t fwlog_level, 6395 uint32_t fwlog_enable) 6396 { 6397 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6398 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 6399 struct lpfc_dmabuf *dmabuf; 6400 LPFC_MBOXQ_t *mbox; 6401 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 6402 int rc = 0; 6403 6404 spin_lock_irq(&phba->hbalock); 6405 ras_fwlog->state = INACTIVE; 6406 spin_unlock_irq(&phba->hbalock); 6407 6408 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 6409 phba->cfg_ras_fwlog_buffsize); 6410 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 6411 6412 /* 6413 * If re-enabling FW logging support use earlier allocated 6414 * DMA buffers while posting MBX command. 6415 **/ 6416 if (!ras_fwlog->lwpd.virt) { 6417 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 6418 if (rc) { 6419 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6420 "6189 FW Log Memory Allocation Failed"); 6421 return rc; 6422 } 6423 } 6424 6425 /* Setup Mailbox command */ 6426 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6427 if (!mbox) { 6428 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6429 "6190 RAS MBX Alloc Failed"); 6430 rc = -ENOMEM; 6431 goto mem_free; 6432 } 6433 6434 ras_fwlog->fw_loglevel = fwlog_level; 6435 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 6436 sizeof(struct lpfc_sli4_cfg_mhdr)); 6437 6438 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 6439 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 6440 len, LPFC_SLI4_MBX_EMBED); 6441 6442 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 6443 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 6444 fwlog_enable); 6445 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 6446 ras_fwlog->fw_loglevel); 6447 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 6448 ras_fwlog->fw_buffcount); 6449 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 6450 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 6451 6452 /* Update DMA buffer address */ 6453 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 6454 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 6455 6456 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 6457 putPaddrLow(dmabuf->phys); 6458 6459 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 6460 putPaddrHigh(dmabuf->phys); 6461 } 6462 6463 /* Update LPWD address */ 6464 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 6465 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 6466 6467 spin_lock_irq(&phba->hbalock); 6468 ras_fwlog->state = REG_INPROGRESS; 6469 spin_unlock_irq(&phba->hbalock); 6470 mbox->vport = phba->pport; 6471 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 6472 6473 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 6474 6475 if (rc == MBX_NOT_FINISHED) { 6476 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6477 "6191 FW-Log Mailbox failed. " 6478 "status %d mbxStatus : x%x", rc, 6479 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 6480 mempool_free(mbox, phba->mbox_mem_pool); 6481 rc = -EIO; 6482 goto mem_free; 6483 } else 6484 rc = 0; 6485 mem_free: 6486 if (rc) 6487 lpfc_sli4_ras_dma_free(phba); 6488 6489 return rc; 6490 } 6491 6492 /** 6493 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 6494 * @phba: Pointer to HBA context object. 6495 * 6496 * Check if RAS is supported on the adapter and initialize it. 6497 **/ 6498 void 6499 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 6500 { 6501 /* Check RAS FW Log needs to be enabled or not */ 6502 if (lpfc_check_fwlog_support(phba)) 6503 return; 6504 6505 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 6506 LPFC_RAS_ENABLE_LOGGING); 6507 } 6508 6509 /** 6510 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 6511 * @phba: Pointer to HBA context object. 6512 * 6513 * This function allocates all SLI4 resource identifiers. 6514 **/ 6515 int 6516 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 6517 { 6518 int i, rc, error = 0; 6519 uint16_t count, base; 6520 unsigned long longs; 6521 6522 if (!phba->sli4_hba.rpi_hdrs_in_use) 6523 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 6524 if (phba->sli4_hba.extents_in_use) { 6525 /* 6526 * The port supports resource extents. The XRI, VPI, VFI, RPI 6527 * resource extent count must be read and allocated before 6528 * provisioning the resource id arrays. 6529 */ 6530 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6531 LPFC_IDX_RSRC_RDY) { 6532 /* 6533 * Extent-based resources are set - the driver could 6534 * be in a port reset. Figure out if any corrective 6535 * actions need to be taken. 6536 */ 6537 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6538 LPFC_RSC_TYPE_FCOE_VFI); 6539 if (rc != 0) 6540 error++; 6541 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6542 LPFC_RSC_TYPE_FCOE_VPI); 6543 if (rc != 0) 6544 error++; 6545 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6546 LPFC_RSC_TYPE_FCOE_XRI); 6547 if (rc != 0) 6548 error++; 6549 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6550 LPFC_RSC_TYPE_FCOE_RPI); 6551 if (rc != 0) 6552 error++; 6553 6554 /* 6555 * It's possible that the number of resources 6556 * provided to this port instance changed between 6557 * resets. Detect this condition and reallocate 6558 * resources. Otherwise, there is no action. 6559 */ 6560 if (error) { 6561 lpfc_printf_log(phba, KERN_INFO, 6562 LOG_MBOX | LOG_INIT, 6563 "2931 Detected extent resource " 6564 "change. Reallocating all " 6565 "extents.\n"); 6566 rc = lpfc_sli4_dealloc_extent(phba, 6567 LPFC_RSC_TYPE_FCOE_VFI); 6568 rc = lpfc_sli4_dealloc_extent(phba, 6569 LPFC_RSC_TYPE_FCOE_VPI); 6570 rc = lpfc_sli4_dealloc_extent(phba, 6571 LPFC_RSC_TYPE_FCOE_XRI); 6572 rc = lpfc_sli4_dealloc_extent(phba, 6573 LPFC_RSC_TYPE_FCOE_RPI); 6574 } else 6575 return 0; 6576 } 6577 6578 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6579 if (unlikely(rc)) 6580 goto err_exit; 6581 6582 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6583 if (unlikely(rc)) 6584 goto err_exit; 6585 6586 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6587 if (unlikely(rc)) 6588 goto err_exit; 6589 6590 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6591 if (unlikely(rc)) 6592 goto err_exit; 6593 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6594 LPFC_IDX_RSRC_RDY); 6595 return rc; 6596 } else { 6597 /* 6598 * The port does not support resource extents. The XRI, VPI, 6599 * VFI, RPI resource ids were determined from READ_CONFIG. 6600 * Just allocate the bitmasks and provision the resource id 6601 * arrays. If a port reset is active, the resources don't 6602 * need any action - just exit. 6603 */ 6604 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6605 LPFC_IDX_RSRC_RDY) { 6606 lpfc_sli4_dealloc_resource_identifiers(phba); 6607 lpfc_sli4_remove_rpis(phba); 6608 } 6609 /* RPIs. */ 6610 count = phba->sli4_hba.max_cfg_param.max_rpi; 6611 if (count <= 0) { 6612 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6613 "3279 Invalid provisioning of " 6614 "rpi:%d\n", count); 6615 rc = -EINVAL; 6616 goto err_exit; 6617 } 6618 base = phba->sli4_hba.max_cfg_param.rpi_base; 6619 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6620 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6621 sizeof(unsigned long), 6622 GFP_KERNEL); 6623 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6624 rc = -ENOMEM; 6625 goto err_exit; 6626 } 6627 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 6628 GFP_KERNEL); 6629 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6630 rc = -ENOMEM; 6631 goto free_rpi_bmask; 6632 } 6633 6634 for (i = 0; i < count; i++) 6635 phba->sli4_hba.rpi_ids[i] = base + i; 6636 6637 /* VPIs. */ 6638 count = phba->sli4_hba.max_cfg_param.max_vpi; 6639 if (count <= 0) { 6640 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6641 "3280 Invalid provisioning of " 6642 "vpi:%d\n", count); 6643 rc = -EINVAL; 6644 goto free_rpi_ids; 6645 } 6646 base = phba->sli4_hba.max_cfg_param.vpi_base; 6647 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6648 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6649 GFP_KERNEL); 6650 if (unlikely(!phba->vpi_bmask)) { 6651 rc = -ENOMEM; 6652 goto free_rpi_ids; 6653 } 6654 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 6655 GFP_KERNEL); 6656 if (unlikely(!phba->vpi_ids)) { 6657 rc = -ENOMEM; 6658 goto free_vpi_bmask; 6659 } 6660 6661 for (i = 0; i < count; i++) 6662 phba->vpi_ids[i] = base + i; 6663 6664 /* XRIs. */ 6665 count = phba->sli4_hba.max_cfg_param.max_xri; 6666 if (count <= 0) { 6667 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6668 "3281 Invalid provisioning of " 6669 "xri:%d\n", count); 6670 rc = -EINVAL; 6671 goto free_vpi_ids; 6672 } 6673 base = phba->sli4_hba.max_cfg_param.xri_base; 6674 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6675 phba->sli4_hba.xri_bmask = kcalloc(longs, 6676 sizeof(unsigned long), 6677 GFP_KERNEL); 6678 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6679 rc = -ENOMEM; 6680 goto free_vpi_ids; 6681 } 6682 phba->sli4_hba.max_cfg_param.xri_used = 0; 6683 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 6684 GFP_KERNEL); 6685 if (unlikely(!phba->sli4_hba.xri_ids)) { 6686 rc = -ENOMEM; 6687 goto free_xri_bmask; 6688 } 6689 6690 for (i = 0; i < count; i++) 6691 phba->sli4_hba.xri_ids[i] = base + i; 6692 6693 /* VFIs. */ 6694 count = phba->sli4_hba.max_cfg_param.max_vfi; 6695 if (count <= 0) { 6696 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6697 "3282 Invalid provisioning of " 6698 "vfi:%d\n", count); 6699 rc = -EINVAL; 6700 goto free_xri_ids; 6701 } 6702 base = phba->sli4_hba.max_cfg_param.vfi_base; 6703 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6704 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6705 sizeof(unsigned long), 6706 GFP_KERNEL); 6707 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6708 rc = -ENOMEM; 6709 goto free_xri_ids; 6710 } 6711 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 6712 GFP_KERNEL); 6713 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6714 rc = -ENOMEM; 6715 goto free_vfi_bmask; 6716 } 6717 6718 for (i = 0; i < count; i++) 6719 phba->sli4_hba.vfi_ids[i] = base + i; 6720 6721 /* 6722 * Mark all resources ready. An HBA reset doesn't need 6723 * to reset the initialization. 6724 */ 6725 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6726 LPFC_IDX_RSRC_RDY); 6727 return 0; 6728 } 6729 6730 free_vfi_bmask: 6731 kfree(phba->sli4_hba.vfi_bmask); 6732 phba->sli4_hba.vfi_bmask = NULL; 6733 free_xri_ids: 6734 kfree(phba->sli4_hba.xri_ids); 6735 phba->sli4_hba.xri_ids = NULL; 6736 free_xri_bmask: 6737 kfree(phba->sli4_hba.xri_bmask); 6738 phba->sli4_hba.xri_bmask = NULL; 6739 free_vpi_ids: 6740 kfree(phba->vpi_ids); 6741 phba->vpi_ids = NULL; 6742 free_vpi_bmask: 6743 kfree(phba->vpi_bmask); 6744 phba->vpi_bmask = NULL; 6745 free_rpi_ids: 6746 kfree(phba->sli4_hba.rpi_ids); 6747 phba->sli4_hba.rpi_ids = NULL; 6748 free_rpi_bmask: 6749 kfree(phba->sli4_hba.rpi_bmask); 6750 phba->sli4_hba.rpi_bmask = NULL; 6751 err_exit: 6752 return rc; 6753 } 6754 6755 /** 6756 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 6757 * @phba: Pointer to HBA context object. 6758 * 6759 * This function allocates the number of elements for the specified 6760 * resource type. 6761 **/ 6762 int 6763 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 6764 { 6765 if (phba->sli4_hba.extents_in_use) { 6766 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6767 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6768 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6769 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6770 } else { 6771 kfree(phba->vpi_bmask); 6772 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6773 kfree(phba->vpi_ids); 6774 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6775 kfree(phba->sli4_hba.xri_bmask); 6776 kfree(phba->sli4_hba.xri_ids); 6777 kfree(phba->sli4_hba.vfi_bmask); 6778 kfree(phba->sli4_hba.vfi_ids); 6779 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6780 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6781 } 6782 6783 return 0; 6784 } 6785 6786 /** 6787 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 6788 * @phba: Pointer to HBA context object. 6789 * @type: The resource extent type. 6790 * @extnt_count: buffer to hold port extent count response 6791 * @extnt_size: buffer to hold port extent size response. 6792 * 6793 * This function calls the port to read the host allocated extents 6794 * for a particular type. 6795 **/ 6796 int 6797 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 6798 uint16_t *extnt_cnt, uint16_t *extnt_size) 6799 { 6800 bool emb; 6801 int rc = 0; 6802 uint16_t curr_blks = 0; 6803 uint32_t req_len, emb_len; 6804 uint32_t alloc_len, mbox_tmo; 6805 struct list_head *blk_list_head; 6806 struct lpfc_rsrc_blks *rsrc_blk; 6807 LPFC_MBOXQ_t *mbox; 6808 void *virtaddr = NULL; 6809 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6810 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6811 union lpfc_sli4_cfg_shdr *shdr; 6812 6813 switch (type) { 6814 case LPFC_RSC_TYPE_FCOE_VPI: 6815 blk_list_head = &phba->lpfc_vpi_blk_list; 6816 break; 6817 case LPFC_RSC_TYPE_FCOE_XRI: 6818 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 6819 break; 6820 case LPFC_RSC_TYPE_FCOE_VFI: 6821 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 6822 break; 6823 case LPFC_RSC_TYPE_FCOE_RPI: 6824 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 6825 break; 6826 default: 6827 return -EIO; 6828 } 6829 6830 /* Count the number of extents currently allocatd for this type. */ 6831 list_for_each_entry(rsrc_blk, blk_list_head, list) { 6832 if (curr_blks == 0) { 6833 /* 6834 * The GET_ALLOCATED mailbox does not return the size, 6835 * just the count. The size should be just the size 6836 * stored in the current allocated block and all sizes 6837 * for an extent type are the same so set the return 6838 * value now. 6839 */ 6840 *extnt_size = rsrc_blk->rsrc_size; 6841 } 6842 curr_blks++; 6843 } 6844 6845 /* 6846 * Calculate the size of an embedded mailbox. The uint32_t 6847 * accounts for extents-specific word. 6848 */ 6849 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6850 sizeof(uint32_t); 6851 6852 /* 6853 * Presume the allocation and response will fit into an embedded 6854 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6855 */ 6856 emb = LPFC_SLI4_MBX_EMBED; 6857 req_len = emb_len; 6858 if (req_len > emb_len) { 6859 req_len = curr_blks * sizeof(uint16_t) + 6860 sizeof(union lpfc_sli4_cfg_shdr) + 6861 sizeof(uint32_t); 6862 emb = LPFC_SLI4_MBX_NEMBED; 6863 } 6864 6865 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6866 if (!mbox) 6867 return -ENOMEM; 6868 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 6869 6870 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6871 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 6872 req_len, emb); 6873 if (alloc_len < req_len) { 6874 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6875 "2983 Allocated DMA memory size (x%x) is " 6876 "less than the requested DMA memory " 6877 "size (x%x)\n", alloc_len, req_len); 6878 rc = -ENOMEM; 6879 goto err_exit; 6880 } 6881 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 6882 if (unlikely(rc)) { 6883 rc = -EIO; 6884 goto err_exit; 6885 } 6886 6887 if (!phba->sli4_hba.intr_enable) 6888 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6889 else { 6890 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6891 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6892 } 6893 6894 if (unlikely(rc)) { 6895 rc = -EIO; 6896 goto err_exit; 6897 } 6898 6899 /* 6900 * Figure out where the response is located. Then get local pointers 6901 * to the response data. The port does not guarantee to respond to 6902 * all extents counts request so update the local variable with the 6903 * allocated count from the port. 6904 */ 6905 if (emb == LPFC_SLI4_MBX_EMBED) { 6906 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6907 shdr = &rsrc_ext->header.cfg_shdr; 6908 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6909 } else { 6910 virtaddr = mbox->sge_array->addr[0]; 6911 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6912 shdr = &n_rsrc->cfg_shdr; 6913 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6914 } 6915 6916 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 6917 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 6918 "2984 Failed to read allocated resources " 6919 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 6920 type, 6921 bf_get(lpfc_mbox_hdr_status, &shdr->response), 6922 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 6923 rc = -EIO; 6924 goto err_exit; 6925 } 6926 err_exit: 6927 lpfc_sli4_mbox_cmd_free(phba, mbox); 6928 return rc; 6929 } 6930 6931 /** 6932 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 6933 * @phba: pointer to lpfc hba data structure. 6934 * @pring: Pointer to driver SLI ring object. 6935 * @sgl_list: linked link of sgl buffers to post 6936 * @cnt: number of linked list buffers 6937 * 6938 * This routine walks the list of buffers that have been allocated and 6939 * repost them to the port by using SGL block post. This is needed after a 6940 * pci_function_reset/warm_start or start. It attempts to construct blocks 6941 * of buffer sgls which contains contiguous xris and uses the non-embedded 6942 * SGL block post mailbox commands to post them to the port. For single 6943 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 6944 * mailbox command for posting. 6945 * 6946 * Returns: 0 = success, non-zero failure. 6947 **/ 6948 static int 6949 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 6950 struct list_head *sgl_list, int cnt) 6951 { 6952 struct lpfc_sglq *sglq_entry = NULL; 6953 struct lpfc_sglq *sglq_entry_next = NULL; 6954 struct lpfc_sglq *sglq_entry_first = NULL; 6955 int status, total_cnt; 6956 int post_cnt = 0, num_posted = 0, block_cnt = 0; 6957 int last_xritag = NO_XRI; 6958 LIST_HEAD(prep_sgl_list); 6959 LIST_HEAD(blck_sgl_list); 6960 LIST_HEAD(allc_sgl_list); 6961 LIST_HEAD(post_sgl_list); 6962 LIST_HEAD(free_sgl_list); 6963 6964 spin_lock_irq(&phba->hbalock); 6965 spin_lock(&phba->sli4_hba.sgl_list_lock); 6966 list_splice_init(sgl_list, &allc_sgl_list); 6967 spin_unlock(&phba->sli4_hba.sgl_list_lock); 6968 spin_unlock_irq(&phba->hbalock); 6969 6970 total_cnt = cnt; 6971 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 6972 &allc_sgl_list, list) { 6973 list_del_init(&sglq_entry->list); 6974 block_cnt++; 6975 if ((last_xritag != NO_XRI) && 6976 (sglq_entry->sli4_xritag != last_xritag + 1)) { 6977 /* a hole in xri block, form a sgl posting block */ 6978 list_splice_init(&prep_sgl_list, &blck_sgl_list); 6979 post_cnt = block_cnt - 1; 6980 /* prepare list for next posting block */ 6981 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6982 block_cnt = 1; 6983 } else { 6984 /* prepare list for next posting block */ 6985 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6986 /* enough sgls for non-embed sgl mbox command */ 6987 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 6988 list_splice_init(&prep_sgl_list, 6989 &blck_sgl_list); 6990 post_cnt = block_cnt; 6991 block_cnt = 0; 6992 } 6993 } 6994 num_posted++; 6995 6996 /* keep track of last sgl's xritag */ 6997 last_xritag = sglq_entry->sli4_xritag; 6998 6999 /* end of repost sgl list condition for buffers */ 7000 if (num_posted == total_cnt) { 7001 if (post_cnt == 0) { 7002 list_splice_init(&prep_sgl_list, 7003 &blck_sgl_list); 7004 post_cnt = block_cnt; 7005 } else if (block_cnt == 1) { 7006 status = lpfc_sli4_post_sgl(phba, 7007 sglq_entry->phys, 0, 7008 sglq_entry->sli4_xritag); 7009 if (!status) { 7010 /* successful, put sgl to posted list */ 7011 list_add_tail(&sglq_entry->list, 7012 &post_sgl_list); 7013 } else { 7014 /* Failure, put sgl to free list */ 7015 lpfc_printf_log(phba, KERN_WARNING, 7016 LOG_SLI, 7017 "3159 Failed to post " 7018 "sgl, xritag:x%x\n", 7019 sglq_entry->sli4_xritag); 7020 list_add_tail(&sglq_entry->list, 7021 &free_sgl_list); 7022 total_cnt--; 7023 } 7024 } 7025 } 7026 7027 /* continue until a nembed page worth of sgls */ 7028 if (post_cnt == 0) 7029 continue; 7030 7031 /* post the buffer list sgls as a block */ 7032 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7033 post_cnt); 7034 7035 if (!status) { 7036 /* success, put sgl list to posted sgl list */ 7037 list_splice_init(&blck_sgl_list, &post_sgl_list); 7038 } else { 7039 /* Failure, put sgl list to free sgl list */ 7040 sglq_entry_first = list_first_entry(&blck_sgl_list, 7041 struct lpfc_sglq, 7042 list); 7043 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7044 "3160 Failed to post sgl-list, " 7045 "xritag:x%x-x%x\n", 7046 sglq_entry_first->sli4_xritag, 7047 (sglq_entry_first->sli4_xritag + 7048 post_cnt - 1)); 7049 list_splice_init(&blck_sgl_list, &free_sgl_list); 7050 total_cnt -= post_cnt; 7051 } 7052 7053 /* don't reset xirtag due to hole in xri block */ 7054 if (block_cnt == 0) 7055 last_xritag = NO_XRI; 7056 7057 /* reset sgl post count for next round of posting */ 7058 post_cnt = 0; 7059 } 7060 7061 /* free the sgls failed to post */ 7062 lpfc_free_sgl_list(phba, &free_sgl_list); 7063 7064 /* push sgls posted to the available list */ 7065 if (!list_empty(&post_sgl_list)) { 7066 spin_lock_irq(&phba->hbalock); 7067 spin_lock(&phba->sli4_hba.sgl_list_lock); 7068 list_splice_init(&post_sgl_list, sgl_list); 7069 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7070 spin_unlock_irq(&phba->hbalock); 7071 } else { 7072 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7073 "3161 Failure to post sgl to port.\n"); 7074 return -EIO; 7075 } 7076 7077 /* return the number of XRIs actually posted */ 7078 return total_cnt; 7079 } 7080 7081 /** 7082 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7083 * @phba: pointer to lpfc hba data structure. 7084 * 7085 * This routine walks the list of nvme buffers that have been allocated and 7086 * repost them to the port by using SGL block post. This is needed after a 7087 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7088 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7089 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7090 * 7091 * Returns: 0 = success, non-zero failure. 7092 **/ 7093 static int 7094 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7095 { 7096 LIST_HEAD(post_nblist); 7097 int num_posted, rc = 0; 7098 7099 /* get all NVME buffers need to repost to a local list */ 7100 lpfc_io_buf_flush(phba, &post_nblist); 7101 7102 /* post the list of nvme buffer sgls to port if available */ 7103 if (!list_empty(&post_nblist)) { 7104 num_posted = lpfc_sli4_post_io_sgl_list( 7105 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7106 /* failed to post any nvme buffer, return error */ 7107 if (num_posted == 0) 7108 rc = -EIO; 7109 } 7110 return rc; 7111 } 7112 7113 static void 7114 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7115 { 7116 uint32_t len; 7117 7118 len = sizeof(struct lpfc_mbx_set_host_data) - 7119 sizeof(struct lpfc_sli4_cfg_mhdr); 7120 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7121 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7122 LPFC_SLI4_MBX_EMBED); 7123 7124 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7125 mbox->u.mqe.un.set_host_data.param_len = 7126 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7127 snprintf(mbox->u.mqe.un.set_host_data.data, 7128 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7129 "Linux %s v"LPFC_DRIVER_VERSION, 7130 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7131 } 7132 7133 int 7134 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7135 struct lpfc_queue *drq, int count, int idx) 7136 { 7137 int rc, i; 7138 struct lpfc_rqe hrqe; 7139 struct lpfc_rqe drqe; 7140 struct lpfc_rqb *rqbp; 7141 unsigned long flags; 7142 struct rqb_dmabuf *rqb_buffer; 7143 LIST_HEAD(rqb_buf_list); 7144 7145 spin_lock_irqsave(&phba->hbalock, flags); 7146 rqbp = hrq->rqbp; 7147 for (i = 0; i < count; i++) { 7148 /* IF RQ is already full, don't bother */ 7149 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) 7150 break; 7151 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7152 if (!rqb_buffer) 7153 break; 7154 rqb_buffer->hrq = hrq; 7155 rqb_buffer->drq = drq; 7156 rqb_buffer->idx = idx; 7157 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7158 } 7159 while (!list_empty(&rqb_buf_list)) { 7160 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7161 hbuf.list); 7162 7163 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7164 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7165 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7166 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7167 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7168 if (rc < 0) { 7169 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7170 "6421 Cannot post to HRQ %d: %x %x %x " 7171 "DRQ %x %x\n", 7172 hrq->queue_id, 7173 hrq->host_index, 7174 hrq->hba_index, 7175 hrq->entry_count, 7176 drq->host_index, 7177 drq->hba_index); 7178 rqbp->rqb_free_buffer(phba, rqb_buffer); 7179 } else { 7180 list_add_tail(&rqb_buffer->hbuf.list, 7181 &rqbp->rqb_buffer_list); 7182 rqbp->buffer_count++; 7183 } 7184 } 7185 spin_unlock_irqrestore(&phba->hbalock, flags); 7186 return 1; 7187 } 7188 7189 /** 7190 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 7191 * @phba: Pointer to HBA context object. 7192 * 7193 * This function is the main SLI4 device initialization PCI function. This 7194 * function is called by the HBA initialization code, HBA reset code and 7195 * HBA error attention handler code. Caller is not required to hold any 7196 * locks. 7197 **/ 7198 int 7199 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 7200 { 7201 int rc, i, cnt, len, dd; 7202 LPFC_MBOXQ_t *mboxq; 7203 struct lpfc_mqe *mqe; 7204 uint8_t *vpd; 7205 uint32_t vpd_size; 7206 uint32_t ftr_rsp = 0; 7207 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 7208 struct lpfc_vport *vport = phba->pport; 7209 struct lpfc_dmabuf *mp; 7210 struct lpfc_rqb *rqbp; 7211 7212 /* Perform a PCI function reset to start from clean */ 7213 rc = lpfc_pci_function_reset(phba); 7214 if (unlikely(rc)) 7215 return -ENODEV; 7216 7217 /* Check the HBA Host Status Register for readyness */ 7218 rc = lpfc_sli4_post_status_check(phba); 7219 if (unlikely(rc)) 7220 return -ENODEV; 7221 else { 7222 spin_lock_irq(&phba->hbalock); 7223 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 7224 spin_unlock_irq(&phba->hbalock); 7225 } 7226 7227 /* 7228 * Allocate a single mailbox container for initializing the 7229 * port. 7230 */ 7231 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7232 if (!mboxq) 7233 return -ENOMEM; 7234 7235 /* Issue READ_REV to collect vpd and FW information. */ 7236 vpd_size = SLI4_PAGE_SIZE; 7237 vpd = kzalloc(vpd_size, GFP_KERNEL); 7238 if (!vpd) { 7239 rc = -ENOMEM; 7240 goto out_free_mbox; 7241 } 7242 7243 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 7244 if (unlikely(rc)) { 7245 kfree(vpd); 7246 goto out_free_mbox; 7247 } 7248 7249 mqe = &mboxq->u.mqe; 7250 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 7251 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 7252 phba->hba_flag |= HBA_FCOE_MODE; 7253 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 7254 } else { 7255 phba->hba_flag &= ~HBA_FCOE_MODE; 7256 } 7257 7258 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 7259 LPFC_DCBX_CEE_MODE) 7260 phba->hba_flag |= HBA_FIP_SUPPORT; 7261 else 7262 phba->hba_flag &= ~HBA_FIP_SUPPORT; 7263 7264 phba->hba_flag &= ~HBA_IOQ_FLUSH; 7265 7266 if (phba->sli_rev != LPFC_SLI_REV4) { 7267 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7268 "0376 READ_REV Error. SLI Level %d " 7269 "FCoE enabled %d\n", 7270 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 7271 rc = -EIO; 7272 kfree(vpd); 7273 goto out_free_mbox; 7274 } 7275 7276 /* 7277 * Continue initialization with default values even if driver failed 7278 * to read FCoE param config regions, only read parameters if the 7279 * board is FCoE 7280 */ 7281 if (phba->hba_flag & HBA_FCOE_MODE && 7282 lpfc_sli4_read_fcoe_params(phba)) 7283 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 7284 "2570 Failed to read FCoE parameters\n"); 7285 7286 /* 7287 * Retrieve sli4 device physical port name, failure of doing it 7288 * is considered as non-fatal. 7289 */ 7290 rc = lpfc_sli4_retrieve_pport_name(phba); 7291 if (!rc) 7292 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7293 "3080 Successful retrieving SLI4 device " 7294 "physical port name: %s.\n", phba->Port); 7295 7296 rc = lpfc_sli4_get_ctl_attr(phba); 7297 if (!rc) 7298 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7299 "8351 Successful retrieving SLI4 device " 7300 "CTL ATTR\n"); 7301 7302 /* 7303 * Evaluate the read rev and vpd data. Populate the driver 7304 * state with the results. If this routine fails, the failure 7305 * is not fatal as the driver will use generic values. 7306 */ 7307 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 7308 if (unlikely(!rc)) { 7309 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7310 "0377 Error %d parsing vpd. " 7311 "Using defaults.\n", rc); 7312 rc = 0; 7313 } 7314 kfree(vpd); 7315 7316 /* Save information as VPD data */ 7317 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 7318 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 7319 7320 /* 7321 * This is because first G7 ASIC doesn't support the standard 7322 * 0x5a NVME cmd descriptor type/subtype 7323 */ 7324 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7325 LPFC_SLI_INTF_IF_TYPE_6) && 7326 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 7327 (phba->vpd.rev.smRev == 0) && 7328 (phba->cfg_nvme_embed_cmd == 1)) 7329 phba->cfg_nvme_embed_cmd = 0; 7330 7331 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 7332 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 7333 &mqe->un.read_rev); 7334 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 7335 &mqe->un.read_rev); 7336 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 7337 &mqe->un.read_rev); 7338 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 7339 &mqe->un.read_rev); 7340 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 7341 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 7342 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 7343 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 7344 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 7345 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 7346 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7347 "(%d):0380 READ_REV Status x%x " 7348 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 7349 mboxq->vport ? mboxq->vport->vpi : 0, 7350 bf_get(lpfc_mqe_status, mqe), 7351 phba->vpd.rev.opFwName, 7352 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 7353 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 7354 7355 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7356 LPFC_SLI_INTF_IF_TYPE_0) { 7357 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 7358 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7359 if (rc == MBX_SUCCESS) { 7360 phba->hba_flag |= HBA_RECOVERABLE_UE; 7361 /* Set 1Sec interval to detect UE */ 7362 phba->eratt_poll_interval = 1; 7363 phba->sli4_hba.ue_to_sr = bf_get( 7364 lpfc_mbx_set_feature_UESR, 7365 &mboxq->u.mqe.un.set_feature); 7366 phba->sli4_hba.ue_to_rp = bf_get( 7367 lpfc_mbx_set_feature_UERP, 7368 &mboxq->u.mqe.un.set_feature); 7369 } 7370 } 7371 7372 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 7373 /* Enable MDS Diagnostics only if the SLI Port supports it */ 7374 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 7375 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7376 if (rc != MBX_SUCCESS) 7377 phba->mds_diags_support = 0; 7378 } 7379 7380 /* 7381 * Discover the port's supported feature set and match it against the 7382 * hosts requests. 7383 */ 7384 lpfc_request_features(phba, mboxq); 7385 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7386 if (unlikely(rc)) { 7387 rc = -EIO; 7388 goto out_free_mbox; 7389 } 7390 7391 /* 7392 * The port must support FCP initiator mode as this is the 7393 * only mode running in the host. 7394 */ 7395 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 7396 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7397 "0378 No support for fcpi mode.\n"); 7398 ftr_rsp++; 7399 } 7400 7401 /* Performance Hints are ONLY for FCoE */ 7402 if (phba->hba_flag & HBA_FCOE_MODE) { 7403 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 7404 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 7405 else 7406 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 7407 } 7408 7409 /* 7410 * If the port cannot support the host's requested features 7411 * then turn off the global config parameters to disable the 7412 * feature in the driver. This is not a fatal error. 7413 */ 7414 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 7415 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 7416 phba->cfg_enable_bg = 0; 7417 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 7418 ftr_rsp++; 7419 } 7420 } 7421 7422 if (phba->max_vpi && phba->cfg_enable_npiv && 7423 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7424 ftr_rsp++; 7425 7426 if (ftr_rsp) { 7427 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7428 "0379 Feature Mismatch Data: x%08x %08x " 7429 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 7430 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 7431 phba->cfg_enable_npiv, phba->max_vpi); 7432 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 7433 phba->cfg_enable_bg = 0; 7434 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7435 phba->cfg_enable_npiv = 0; 7436 } 7437 7438 /* These SLI3 features are assumed in SLI4 */ 7439 spin_lock_irq(&phba->hbalock); 7440 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 7441 spin_unlock_irq(&phba->hbalock); 7442 7443 /* Always try to enable dual dump feature if we can */ 7444 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 7445 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7446 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 7447 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 7448 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_INIT, 7449 "6448 Dual Dump is enabled\n"); 7450 else 7451 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 7452 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 7453 "rc:x%x dd:x%x\n", 7454 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7455 lpfc_sli_config_mbox_subsys_get( 7456 phba, mboxq), 7457 lpfc_sli_config_mbox_opcode_get( 7458 phba, mboxq), 7459 rc, dd); 7460 /* 7461 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 7462 * calls depends on these resources to complete port setup. 7463 */ 7464 rc = lpfc_sli4_alloc_resource_identifiers(phba); 7465 if (rc) { 7466 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7467 "2920 Failed to alloc Resource IDs " 7468 "rc = x%x\n", rc); 7469 goto out_free_mbox; 7470 } 7471 7472 lpfc_set_host_data(phba, mboxq); 7473 7474 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7475 if (rc) { 7476 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7477 "2134 Failed to set host os driver version %x", 7478 rc); 7479 } 7480 7481 /* Read the port's service parameters. */ 7482 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 7483 if (rc) { 7484 phba->link_state = LPFC_HBA_ERROR; 7485 rc = -ENOMEM; 7486 goto out_free_mbox; 7487 } 7488 7489 mboxq->vport = vport; 7490 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7491 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 7492 if (rc == MBX_SUCCESS) { 7493 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 7494 rc = 0; 7495 } 7496 7497 /* 7498 * This memory was allocated by the lpfc_read_sparam routine. Release 7499 * it to the mbuf pool. 7500 */ 7501 lpfc_mbuf_free(phba, mp->virt, mp->phys); 7502 kfree(mp); 7503 mboxq->ctx_buf = NULL; 7504 if (unlikely(rc)) { 7505 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7506 "0382 READ_SPARAM command failed " 7507 "status %d, mbxStatus x%x\n", 7508 rc, bf_get(lpfc_mqe_status, mqe)); 7509 phba->link_state = LPFC_HBA_ERROR; 7510 rc = -EIO; 7511 goto out_free_mbox; 7512 } 7513 7514 lpfc_update_vport_wwn(vport); 7515 7516 /* Update the fc_host data structures with new wwn. */ 7517 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 7518 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 7519 7520 /* Create all the SLI4 queues */ 7521 rc = lpfc_sli4_queue_create(phba); 7522 if (rc) { 7523 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7524 "3089 Failed to allocate queues\n"); 7525 rc = -ENODEV; 7526 goto out_free_mbox; 7527 } 7528 /* Set up all the queues to the device */ 7529 rc = lpfc_sli4_queue_setup(phba); 7530 if (unlikely(rc)) { 7531 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7532 "0381 Error %d during queue setup.\n ", rc); 7533 goto out_stop_timers; 7534 } 7535 /* Initialize the driver internal SLI layer lists. */ 7536 lpfc_sli4_setup(phba); 7537 lpfc_sli4_queue_init(phba); 7538 7539 /* update host els xri-sgl sizes and mappings */ 7540 rc = lpfc_sli4_els_sgl_update(phba); 7541 if (unlikely(rc)) { 7542 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7543 "1400 Failed to update xri-sgl size and " 7544 "mapping: %d\n", rc); 7545 goto out_destroy_queue; 7546 } 7547 7548 /* register the els sgl pool to the port */ 7549 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 7550 phba->sli4_hba.els_xri_cnt); 7551 if (unlikely(rc < 0)) { 7552 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7553 "0582 Error %d during els sgl post " 7554 "operation\n", rc); 7555 rc = -ENODEV; 7556 goto out_destroy_queue; 7557 } 7558 phba->sli4_hba.els_xri_cnt = rc; 7559 7560 if (phba->nvmet_support) { 7561 /* update host nvmet xri-sgl sizes and mappings */ 7562 rc = lpfc_sli4_nvmet_sgl_update(phba); 7563 if (unlikely(rc)) { 7564 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7565 "6308 Failed to update nvmet-sgl size " 7566 "and mapping: %d\n", rc); 7567 goto out_destroy_queue; 7568 } 7569 7570 /* register the nvmet sgl pool to the port */ 7571 rc = lpfc_sli4_repost_sgl_list( 7572 phba, 7573 &phba->sli4_hba.lpfc_nvmet_sgl_list, 7574 phba->sli4_hba.nvmet_xri_cnt); 7575 if (unlikely(rc < 0)) { 7576 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7577 "3117 Error %d during nvmet " 7578 "sgl post\n", rc); 7579 rc = -ENODEV; 7580 goto out_destroy_queue; 7581 } 7582 phba->sli4_hba.nvmet_xri_cnt = rc; 7583 7584 /* We allocate an iocbq for every receive context SGL. 7585 * The additional allocation is for abort and ls handling. 7586 */ 7587 cnt = phba->sli4_hba.nvmet_xri_cnt + 7588 phba->sli4_hba.max_cfg_param.max_xri; 7589 } else { 7590 /* update host common xri-sgl sizes and mappings */ 7591 rc = lpfc_sli4_io_sgl_update(phba); 7592 if (unlikely(rc)) { 7593 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7594 "6082 Failed to update nvme-sgl size " 7595 "and mapping: %d\n", rc); 7596 goto out_destroy_queue; 7597 } 7598 7599 /* register the allocated common sgl pool to the port */ 7600 rc = lpfc_sli4_repost_io_sgl_list(phba); 7601 if (unlikely(rc)) { 7602 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7603 "6116 Error %d during nvme sgl post " 7604 "operation\n", rc); 7605 /* Some NVME buffers were moved to abort nvme list */ 7606 /* A pci function reset will repost them */ 7607 rc = -ENODEV; 7608 goto out_destroy_queue; 7609 } 7610 /* Each lpfc_io_buf job structure has an iocbq element. 7611 * This cnt provides for abort, els, ct and ls requests. 7612 */ 7613 cnt = phba->sli4_hba.max_cfg_param.max_xri; 7614 } 7615 7616 if (!phba->sli.iocbq_lookup) { 7617 /* Initialize and populate the iocb list per host */ 7618 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7619 "2821 initialize iocb list with %d entries\n", 7620 cnt); 7621 rc = lpfc_init_iocb_list(phba, cnt); 7622 if (rc) { 7623 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7624 "1413 Failed to init iocb list.\n"); 7625 goto out_destroy_queue; 7626 } 7627 } 7628 7629 if (phba->nvmet_support) 7630 lpfc_nvmet_create_targetport(phba); 7631 7632 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 7633 /* Post initial buffers to all RQs created */ 7634 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 7635 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 7636 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 7637 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 7638 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 7639 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 7640 rqbp->buffer_count = 0; 7641 7642 lpfc_post_rq_buffer( 7643 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 7644 phba->sli4_hba.nvmet_mrq_data[i], 7645 phba->cfg_nvmet_mrq_post, i); 7646 } 7647 } 7648 7649 /* Post the rpi header region to the device. */ 7650 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 7651 if (unlikely(rc)) { 7652 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7653 "0393 Error %d during rpi post operation\n", 7654 rc); 7655 rc = -ENODEV; 7656 goto out_destroy_queue; 7657 } 7658 lpfc_sli4_node_prep(phba); 7659 7660 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 7661 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 7662 /* 7663 * The FC Port needs to register FCFI (index 0) 7664 */ 7665 lpfc_reg_fcfi(phba, mboxq); 7666 mboxq->vport = phba->pport; 7667 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7668 if (rc != MBX_SUCCESS) 7669 goto out_unset_queue; 7670 rc = 0; 7671 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 7672 &mboxq->u.mqe.un.reg_fcfi); 7673 } else { 7674 /* We are a NVME Target mode with MRQ > 1 */ 7675 7676 /* First register the FCFI */ 7677 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 7678 mboxq->vport = phba->pport; 7679 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7680 if (rc != MBX_SUCCESS) 7681 goto out_unset_queue; 7682 rc = 0; 7683 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 7684 &mboxq->u.mqe.un.reg_fcfi_mrq); 7685 7686 /* Next register the MRQs */ 7687 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 7688 mboxq->vport = phba->pport; 7689 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7690 if (rc != MBX_SUCCESS) 7691 goto out_unset_queue; 7692 rc = 0; 7693 } 7694 /* Check if the port is configured to be disabled */ 7695 lpfc_sli_read_link_ste(phba); 7696 } 7697 7698 /* Don't post more new bufs if repost already recovered 7699 * the nvme sgls. 7700 */ 7701 if (phba->nvmet_support == 0) { 7702 if (phba->sli4_hba.io_xri_cnt == 0) { 7703 len = lpfc_new_io_buf( 7704 phba, phba->sli4_hba.io_xri_max); 7705 if (len == 0) { 7706 rc = -ENOMEM; 7707 goto out_unset_queue; 7708 } 7709 7710 if (phba->cfg_xri_rebalancing) 7711 lpfc_create_multixri_pools(phba); 7712 } 7713 } else { 7714 phba->cfg_xri_rebalancing = 0; 7715 } 7716 7717 /* Allow asynchronous mailbox command to go through */ 7718 spin_lock_irq(&phba->hbalock); 7719 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7720 spin_unlock_irq(&phba->hbalock); 7721 7722 /* Post receive buffers to the device */ 7723 lpfc_sli4_rb_setup(phba); 7724 7725 /* Reset HBA FCF states after HBA reset */ 7726 phba->fcf.fcf_flag = 0; 7727 phba->fcf.current_rec.flag = 0; 7728 7729 /* Start the ELS watchdog timer */ 7730 mod_timer(&vport->els_tmofunc, 7731 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 7732 7733 /* Start heart beat timer */ 7734 mod_timer(&phba->hb_tmofunc, 7735 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 7736 phba->hb_outstanding = 0; 7737 phba->last_completion_time = jiffies; 7738 7739 /* start eq_delay heartbeat */ 7740 if (phba->cfg_auto_imax) 7741 queue_delayed_work(phba->wq, &phba->eq_delay_work, 7742 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 7743 7744 /* Start error attention (ERATT) polling timer */ 7745 mod_timer(&phba->eratt_poll, 7746 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 7747 7748 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 7749 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 7750 rc = pci_enable_pcie_error_reporting(phba->pcidev); 7751 if (!rc) { 7752 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7753 "2829 This device supports " 7754 "Advanced Error Reporting (AER)\n"); 7755 spin_lock_irq(&phba->hbalock); 7756 phba->hba_flag |= HBA_AER_ENABLED; 7757 spin_unlock_irq(&phba->hbalock); 7758 } else { 7759 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7760 "2830 This device does not support " 7761 "Advanced Error Reporting (AER)\n"); 7762 phba->cfg_aer_support = 0; 7763 } 7764 rc = 0; 7765 } 7766 7767 /* 7768 * The port is ready, set the host's link state to LINK_DOWN 7769 * in preparation for link interrupts. 7770 */ 7771 spin_lock_irq(&phba->hbalock); 7772 phba->link_state = LPFC_LINK_DOWN; 7773 7774 /* Check if physical ports are trunked */ 7775 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 7776 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 7777 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 7778 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 7779 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 7780 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 7781 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 7782 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 7783 spin_unlock_irq(&phba->hbalock); 7784 7785 /* Arm the CQs and then EQs on device */ 7786 lpfc_sli4_arm_cqeq_intr(phba); 7787 7788 /* Indicate device interrupt mode */ 7789 phba->sli4_hba.intr_enable = 1; 7790 7791 if (!(phba->hba_flag & HBA_FCOE_MODE) && 7792 (phba->hba_flag & LINK_DISABLED)) { 7793 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 7794 "3103 Adapter Link is disabled.\n"); 7795 lpfc_down_link(phba, mboxq); 7796 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7797 if (rc != MBX_SUCCESS) { 7798 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 7799 "3104 Adapter failed to issue " 7800 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 7801 goto out_io_buff_free; 7802 } 7803 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 7804 /* don't perform init_link on SLI4 FC port loopback test */ 7805 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 7806 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 7807 if (rc) 7808 goto out_io_buff_free; 7809 } 7810 } 7811 mempool_free(mboxq, phba->mbox_mem_pool); 7812 return rc; 7813 out_io_buff_free: 7814 /* Free allocated IO Buffers */ 7815 lpfc_io_free(phba); 7816 out_unset_queue: 7817 /* Unset all the queues set up in this routine when error out */ 7818 lpfc_sli4_queue_unset(phba); 7819 out_destroy_queue: 7820 lpfc_free_iocb_list(phba); 7821 lpfc_sli4_queue_destroy(phba); 7822 out_stop_timers: 7823 lpfc_stop_hba_timers(phba); 7824 out_free_mbox: 7825 mempool_free(mboxq, phba->mbox_mem_pool); 7826 return rc; 7827 } 7828 7829 /** 7830 * lpfc_mbox_timeout - Timeout call back function for mbox timer 7831 * @ptr: context object - pointer to hba structure. 7832 * 7833 * This is the callback function for mailbox timer. The mailbox 7834 * timer is armed when a new mailbox command is issued and the timer 7835 * is deleted when the mailbox complete. The function is called by 7836 * the kernel timer code when a mailbox does not complete within 7837 * expected time. This function wakes up the worker thread to 7838 * process the mailbox timeout and returns. All the processing is 7839 * done by the worker thread function lpfc_mbox_timeout_handler. 7840 **/ 7841 void 7842 lpfc_mbox_timeout(struct timer_list *t) 7843 { 7844 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 7845 unsigned long iflag; 7846 uint32_t tmo_posted; 7847 7848 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 7849 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 7850 if (!tmo_posted) 7851 phba->pport->work_port_events |= WORKER_MBOX_TMO; 7852 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 7853 7854 if (!tmo_posted) 7855 lpfc_worker_wake_up(phba); 7856 return; 7857 } 7858 7859 /** 7860 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 7861 * are pending 7862 * @phba: Pointer to HBA context object. 7863 * 7864 * This function checks if any mailbox completions are present on the mailbox 7865 * completion queue. 7866 **/ 7867 static bool 7868 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 7869 { 7870 7871 uint32_t idx; 7872 struct lpfc_queue *mcq; 7873 struct lpfc_mcqe *mcqe; 7874 bool pending_completions = false; 7875 uint8_t qe_valid; 7876 7877 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 7878 return false; 7879 7880 /* Check for completions on mailbox completion queue */ 7881 7882 mcq = phba->sli4_hba.mbx_cq; 7883 idx = mcq->hba_index; 7884 qe_valid = mcq->qe_valid; 7885 while (bf_get_le32(lpfc_cqe_valid, 7886 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 7887 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 7888 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 7889 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 7890 pending_completions = true; 7891 break; 7892 } 7893 idx = (idx + 1) % mcq->entry_count; 7894 if (mcq->hba_index == idx) 7895 break; 7896 7897 /* if the index wrapped around, toggle the valid bit */ 7898 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 7899 qe_valid = (qe_valid) ? 0 : 1; 7900 } 7901 return pending_completions; 7902 7903 } 7904 7905 /** 7906 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 7907 * that were missed. 7908 * @phba: Pointer to HBA context object. 7909 * 7910 * For sli4, it is possible to miss an interrupt. As such mbox completions 7911 * maybe missed causing erroneous mailbox timeouts to occur. This function 7912 * checks to see if mbox completions are on the mailbox completion queue 7913 * and will process all the completions associated with the eq for the 7914 * mailbox completion queue. 7915 **/ 7916 static bool 7917 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 7918 { 7919 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 7920 uint32_t eqidx; 7921 struct lpfc_queue *fpeq = NULL; 7922 struct lpfc_queue *eq; 7923 bool mbox_pending; 7924 7925 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 7926 return false; 7927 7928 /* Find the EQ associated with the mbox CQ */ 7929 if (sli4_hba->hdwq) { 7930 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 7931 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 7932 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 7933 fpeq = eq; 7934 break; 7935 } 7936 } 7937 } 7938 if (!fpeq) 7939 return false; 7940 7941 /* Turn off interrupts from this EQ */ 7942 7943 sli4_hba->sli4_eq_clr_intr(fpeq); 7944 7945 /* Check to see if a mbox completion is pending */ 7946 7947 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 7948 7949 /* 7950 * If a mbox completion is pending, process all the events on EQ 7951 * associated with the mbox completion queue (this could include 7952 * mailbox commands, async events, els commands, receive queue data 7953 * and fcp commands) 7954 */ 7955 7956 if (mbox_pending) 7957 /* process and rearm the EQ */ 7958 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 7959 else 7960 /* Always clear and re-arm the EQ */ 7961 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 7962 7963 return mbox_pending; 7964 7965 } 7966 7967 /** 7968 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 7969 * @phba: Pointer to HBA context object. 7970 * 7971 * This function is called from worker thread when a mailbox command times out. 7972 * The caller is not required to hold any locks. This function will reset the 7973 * HBA and recover all the pending commands. 7974 **/ 7975 void 7976 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 7977 { 7978 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 7979 MAILBOX_t *mb = NULL; 7980 7981 struct lpfc_sli *psli = &phba->sli; 7982 7983 /* If the mailbox completed, process the completion and return */ 7984 if (lpfc_sli4_process_missed_mbox_completions(phba)) 7985 return; 7986 7987 if (pmbox != NULL) 7988 mb = &pmbox->u.mb; 7989 /* Check the pmbox pointer first. There is a race condition 7990 * between the mbox timeout handler getting executed in the 7991 * worklist and the mailbox actually completing. When this 7992 * race condition occurs, the mbox_active will be NULL. 7993 */ 7994 spin_lock_irq(&phba->hbalock); 7995 if (pmbox == NULL) { 7996 lpfc_printf_log(phba, KERN_WARNING, 7997 LOG_MBOX | LOG_SLI, 7998 "0353 Active Mailbox cleared - mailbox timeout " 7999 "exiting\n"); 8000 spin_unlock_irq(&phba->hbalock); 8001 return; 8002 } 8003 8004 /* Mbox cmd <mbxCommand> timeout */ 8005 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8006 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 8007 mb->mbxCommand, 8008 phba->pport->port_state, 8009 phba->sli.sli_flag, 8010 phba->sli.mbox_active); 8011 spin_unlock_irq(&phba->hbalock); 8012 8013 /* Setting state unknown so lpfc_sli_abort_iocb_ring 8014 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 8015 * it to fail all outstanding SCSI IO. 8016 */ 8017 spin_lock_irq(&phba->pport->work_port_lock); 8018 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 8019 spin_unlock_irq(&phba->pport->work_port_lock); 8020 spin_lock_irq(&phba->hbalock); 8021 phba->link_state = LPFC_LINK_UNKNOWN; 8022 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 8023 spin_unlock_irq(&phba->hbalock); 8024 8025 lpfc_sli_abort_fcp_rings(phba); 8026 8027 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8028 "0345 Resetting board due to mailbox timeout\n"); 8029 8030 /* Reset the HBA device */ 8031 lpfc_reset_hba(phba); 8032 } 8033 8034 /** 8035 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 8036 * @phba: Pointer to HBA context object. 8037 * @pmbox: Pointer to mailbox object. 8038 * @flag: Flag indicating how the mailbox need to be processed. 8039 * 8040 * This function is called by discovery code and HBA management code 8041 * to submit a mailbox command to firmware with SLI-3 interface spec. This 8042 * function gets the hbalock to protect the data structures. 8043 * The mailbox command can be submitted in polling mode, in which case 8044 * this function will wait in a polling loop for the completion of the 8045 * mailbox. 8046 * If the mailbox is submitted in no_wait mode (not polling) the 8047 * function will submit the command and returns immediately without waiting 8048 * for the mailbox completion. The no_wait is supported only when HBA 8049 * is in SLI2/SLI3 mode - interrupts are enabled. 8050 * The SLI interface allows only one mailbox pending at a time. If the 8051 * mailbox is issued in polling mode and there is already a mailbox 8052 * pending, then the function will return an error. If the mailbox is issued 8053 * in NO_WAIT mode and there is a mailbox pending already, the function 8054 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 8055 * The sli layer owns the mailbox object until the completion of mailbox 8056 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 8057 * return codes the caller owns the mailbox command after the return of 8058 * the function. 8059 **/ 8060 static int 8061 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 8062 uint32_t flag) 8063 { 8064 MAILBOX_t *mbx; 8065 struct lpfc_sli *psli = &phba->sli; 8066 uint32_t status, evtctr; 8067 uint32_t ha_copy, hc_copy; 8068 int i; 8069 unsigned long timeout; 8070 unsigned long drvr_flag = 0; 8071 uint32_t word0, ldata; 8072 void __iomem *to_slim; 8073 int processing_queue = 0; 8074 8075 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8076 if (!pmbox) { 8077 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8078 /* processing mbox queue from intr_handler */ 8079 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8080 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8081 return MBX_SUCCESS; 8082 } 8083 processing_queue = 1; 8084 pmbox = lpfc_mbox_get(phba); 8085 if (!pmbox) { 8086 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8087 return MBX_SUCCESS; 8088 } 8089 } 8090 8091 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 8092 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 8093 if(!pmbox->vport) { 8094 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8095 lpfc_printf_log(phba, KERN_ERR, 8096 LOG_MBOX | LOG_VPORT, 8097 "1806 Mbox x%x failed. No vport\n", 8098 pmbox->u.mb.mbxCommand); 8099 dump_stack(); 8100 goto out_not_finished; 8101 } 8102 } 8103 8104 /* If the PCI channel is in offline state, do not post mbox. */ 8105 if (unlikely(pci_channel_offline(phba->pcidev))) { 8106 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8107 goto out_not_finished; 8108 } 8109 8110 /* If HBA has a deferred error attention, fail the iocb. */ 8111 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 8112 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8113 goto out_not_finished; 8114 } 8115 8116 psli = &phba->sli; 8117 8118 mbx = &pmbox->u.mb; 8119 status = MBX_SUCCESS; 8120 8121 if (phba->link_state == LPFC_HBA_ERROR) { 8122 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8123 8124 /* Mbox command <mbxCommand> cannot issue */ 8125 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8126 "(%d):0311 Mailbox command x%x cannot " 8127 "issue Data: x%x x%x\n", 8128 pmbox->vport ? pmbox->vport->vpi : 0, 8129 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8130 goto out_not_finished; 8131 } 8132 8133 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 8134 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 8135 !(hc_copy & HC_MBINT_ENA)) { 8136 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8137 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8138 "(%d):2528 Mailbox command x%x cannot " 8139 "issue Data: x%x x%x\n", 8140 pmbox->vport ? pmbox->vport->vpi : 0, 8141 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8142 goto out_not_finished; 8143 } 8144 } 8145 8146 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8147 /* Polling for a mbox command when another one is already active 8148 * is not allowed in SLI. Also, the driver must have established 8149 * SLI2 mode to queue and process multiple mbox commands. 8150 */ 8151 8152 if (flag & MBX_POLL) { 8153 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8154 8155 /* Mbox command <mbxCommand> cannot issue */ 8156 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8157 "(%d):2529 Mailbox command x%x " 8158 "cannot issue Data: x%x x%x\n", 8159 pmbox->vport ? pmbox->vport->vpi : 0, 8160 pmbox->u.mb.mbxCommand, 8161 psli->sli_flag, flag); 8162 goto out_not_finished; 8163 } 8164 8165 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 8166 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8167 /* Mbox command <mbxCommand> cannot issue */ 8168 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8169 "(%d):2530 Mailbox command x%x " 8170 "cannot issue Data: x%x x%x\n", 8171 pmbox->vport ? pmbox->vport->vpi : 0, 8172 pmbox->u.mb.mbxCommand, 8173 psli->sli_flag, flag); 8174 goto out_not_finished; 8175 } 8176 8177 /* Another mailbox command is still being processed, queue this 8178 * command to be processed later. 8179 */ 8180 lpfc_mbox_put(phba, pmbox); 8181 8182 /* Mbox cmd issue - BUSY */ 8183 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8184 "(%d):0308 Mbox cmd issue - BUSY Data: " 8185 "x%x x%x x%x x%x\n", 8186 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 8187 mbx->mbxCommand, 8188 phba->pport ? phba->pport->port_state : 0xff, 8189 psli->sli_flag, flag); 8190 8191 psli->slistat.mbox_busy++; 8192 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8193 8194 if (pmbox->vport) { 8195 lpfc_debugfs_disc_trc(pmbox->vport, 8196 LPFC_DISC_TRC_MBOX_VPORT, 8197 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 8198 (uint32_t)mbx->mbxCommand, 8199 mbx->un.varWords[0], mbx->un.varWords[1]); 8200 } 8201 else { 8202 lpfc_debugfs_disc_trc(phba->pport, 8203 LPFC_DISC_TRC_MBOX, 8204 "MBOX Bsy: cmd:x%x mb:x%x x%x", 8205 (uint32_t)mbx->mbxCommand, 8206 mbx->un.varWords[0], mbx->un.varWords[1]); 8207 } 8208 8209 return MBX_BUSY; 8210 } 8211 8212 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8213 8214 /* If we are not polling, we MUST be in SLI2 mode */ 8215 if (flag != MBX_POLL) { 8216 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 8217 (mbx->mbxCommand != MBX_KILL_BOARD)) { 8218 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8219 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8220 /* Mbox command <mbxCommand> cannot issue */ 8221 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8222 "(%d):2531 Mailbox command x%x " 8223 "cannot issue Data: x%x x%x\n", 8224 pmbox->vport ? pmbox->vport->vpi : 0, 8225 pmbox->u.mb.mbxCommand, 8226 psli->sli_flag, flag); 8227 goto out_not_finished; 8228 } 8229 /* timeout active mbox command */ 8230 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8231 1000); 8232 mod_timer(&psli->mbox_tmo, jiffies + timeout); 8233 } 8234 8235 /* Mailbox cmd <cmd> issue */ 8236 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8237 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 8238 "x%x\n", 8239 pmbox->vport ? pmbox->vport->vpi : 0, 8240 mbx->mbxCommand, 8241 phba->pport ? phba->pport->port_state : 0xff, 8242 psli->sli_flag, flag); 8243 8244 if (mbx->mbxCommand != MBX_HEARTBEAT) { 8245 if (pmbox->vport) { 8246 lpfc_debugfs_disc_trc(pmbox->vport, 8247 LPFC_DISC_TRC_MBOX_VPORT, 8248 "MBOX Send vport: cmd:x%x mb:x%x x%x", 8249 (uint32_t)mbx->mbxCommand, 8250 mbx->un.varWords[0], mbx->un.varWords[1]); 8251 } 8252 else { 8253 lpfc_debugfs_disc_trc(phba->pport, 8254 LPFC_DISC_TRC_MBOX, 8255 "MBOX Send: cmd:x%x mb:x%x x%x", 8256 (uint32_t)mbx->mbxCommand, 8257 mbx->un.varWords[0], mbx->un.varWords[1]); 8258 } 8259 } 8260 8261 psli->slistat.mbox_cmd++; 8262 evtctr = psli->slistat.mbox_event; 8263 8264 /* next set own bit for the adapter and copy over command word */ 8265 mbx->mbxOwner = OWN_CHIP; 8266 8267 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8268 /* Populate mbox extension offset word. */ 8269 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 8270 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8271 = (uint8_t *)phba->mbox_ext 8272 - (uint8_t *)phba->mbox; 8273 } 8274 8275 /* Copy the mailbox extension data */ 8276 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 8277 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 8278 (uint8_t *)phba->mbox_ext, 8279 pmbox->in_ext_byte_len); 8280 } 8281 /* Copy command data to host SLIM area */ 8282 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 8283 } else { 8284 /* Populate mbox extension offset word. */ 8285 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 8286 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8287 = MAILBOX_HBA_EXT_OFFSET; 8288 8289 /* Copy the mailbox extension data */ 8290 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 8291 lpfc_memcpy_to_slim(phba->MBslimaddr + 8292 MAILBOX_HBA_EXT_OFFSET, 8293 pmbox->ctx_buf, pmbox->in_ext_byte_len); 8294 8295 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8296 /* copy command data into host mbox for cmpl */ 8297 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 8298 MAILBOX_CMD_SIZE); 8299 8300 /* First copy mbox command data to HBA SLIM, skip past first 8301 word */ 8302 to_slim = phba->MBslimaddr + sizeof (uint32_t); 8303 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 8304 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 8305 8306 /* Next copy over first word, with mbxOwner set */ 8307 ldata = *((uint32_t *)mbx); 8308 to_slim = phba->MBslimaddr; 8309 writel(ldata, to_slim); 8310 readl(to_slim); /* flush */ 8311 8312 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8313 /* switch over to host mailbox */ 8314 psli->sli_flag |= LPFC_SLI_ACTIVE; 8315 } 8316 8317 wmb(); 8318 8319 switch (flag) { 8320 case MBX_NOWAIT: 8321 /* Set up reference to mailbox command */ 8322 psli->mbox_active = pmbox; 8323 /* Interrupt board to do it */ 8324 writel(CA_MBATT, phba->CAregaddr); 8325 readl(phba->CAregaddr); /* flush */ 8326 /* Don't wait for it to finish, just return */ 8327 break; 8328 8329 case MBX_POLL: 8330 /* Set up null reference to mailbox command */ 8331 psli->mbox_active = NULL; 8332 /* Interrupt board to do it */ 8333 writel(CA_MBATT, phba->CAregaddr); 8334 readl(phba->CAregaddr); /* flush */ 8335 8336 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8337 /* First read mbox status word */ 8338 word0 = *((uint32_t *)phba->mbox); 8339 word0 = le32_to_cpu(word0); 8340 } else { 8341 /* First read mbox status word */ 8342 if (lpfc_readl(phba->MBslimaddr, &word0)) { 8343 spin_unlock_irqrestore(&phba->hbalock, 8344 drvr_flag); 8345 goto out_not_finished; 8346 } 8347 } 8348 8349 /* Read the HBA Host Attention Register */ 8350 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8351 spin_unlock_irqrestore(&phba->hbalock, 8352 drvr_flag); 8353 goto out_not_finished; 8354 } 8355 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8356 1000) + jiffies; 8357 i = 0; 8358 /* Wait for command to complete */ 8359 while (((word0 & OWN_CHIP) == OWN_CHIP) || 8360 (!(ha_copy & HA_MBATT) && 8361 (phba->link_state > LPFC_WARM_START))) { 8362 if (time_after(jiffies, timeout)) { 8363 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8364 spin_unlock_irqrestore(&phba->hbalock, 8365 drvr_flag); 8366 goto out_not_finished; 8367 } 8368 8369 /* Check if we took a mbox interrupt while we were 8370 polling */ 8371 if (((word0 & OWN_CHIP) != OWN_CHIP) 8372 && (evtctr != psli->slistat.mbox_event)) 8373 break; 8374 8375 if (i++ > 10) { 8376 spin_unlock_irqrestore(&phba->hbalock, 8377 drvr_flag); 8378 msleep(1); 8379 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8380 } 8381 8382 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8383 /* First copy command data */ 8384 word0 = *((uint32_t *)phba->mbox); 8385 word0 = le32_to_cpu(word0); 8386 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 8387 MAILBOX_t *slimmb; 8388 uint32_t slimword0; 8389 /* Check real SLIM for any errors */ 8390 slimword0 = readl(phba->MBslimaddr); 8391 slimmb = (MAILBOX_t *) & slimword0; 8392 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 8393 && slimmb->mbxStatus) { 8394 psli->sli_flag &= 8395 ~LPFC_SLI_ACTIVE; 8396 word0 = slimword0; 8397 } 8398 } 8399 } else { 8400 /* First copy command data */ 8401 word0 = readl(phba->MBslimaddr); 8402 } 8403 /* Read the HBA Host Attention Register */ 8404 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8405 spin_unlock_irqrestore(&phba->hbalock, 8406 drvr_flag); 8407 goto out_not_finished; 8408 } 8409 } 8410 8411 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8412 /* copy results back to user */ 8413 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 8414 MAILBOX_CMD_SIZE); 8415 /* Copy the mailbox extension data */ 8416 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8417 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 8418 pmbox->ctx_buf, 8419 pmbox->out_ext_byte_len); 8420 } 8421 } else { 8422 /* First copy command data */ 8423 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 8424 MAILBOX_CMD_SIZE); 8425 /* Copy the mailbox extension data */ 8426 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8427 lpfc_memcpy_from_slim( 8428 pmbox->ctx_buf, 8429 phba->MBslimaddr + 8430 MAILBOX_HBA_EXT_OFFSET, 8431 pmbox->out_ext_byte_len); 8432 } 8433 } 8434 8435 writel(HA_MBATT, phba->HAregaddr); 8436 readl(phba->HAregaddr); /* flush */ 8437 8438 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8439 status = mbx->mbxStatus; 8440 } 8441 8442 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8443 return status; 8444 8445 out_not_finished: 8446 if (processing_queue) { 8447 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 8448 lpfc_mbox_cmpl_put(phba, pmbox); 8449 } 8450 return MBX_NOT_FINISHED; 8451 } 8452 8453 /** 8454 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 8455 * @phba: Pointer to HBA context object. 8456 * 8457 * The function blocks the posting of SLI4 asynchronous mailbox commands from 8458 * the driver internal pending mailbox queue. It will then try to wait out the 8459 * possible outstanding mailbox command before return. 8460 * 8461 * Returns: 8462 * 0 - the outstanding mailbox command completed; otherwise, the wait for 8463 * the outstanding mailbox command timed out. 8464 **/ 8465 static int 8466 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 8467 { 8468 struct lpfc_sli *psli = &phba->sli; 8469 int rc = 0; 8470 unsigned long timeout = 0; 8471 8472 /* Mark the asynchronous mailbox command posting as blocked */ 8473 spin_lock_irq(&phba->hbalock); 8474 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 8475 /* Determine how long we might wait for the active mailbox 8476 * command to be gracefully completed by firmware. 8477 */ 8478 if (phba->sli.mbox_active) 8479 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 8480 phba->sli.mbox_active) * 8481 1000) + jiffies; 8482 spin_unlock_irq(&phba->hbalock); 8483 8484 /* Make sure the mailbox is really active */ 8485 if (timeout) 8486 lpfc_sli4_process_missed_mbox_completions(phba); 8487 8488 /* Wait for the outstnading mailbox command to complete */ 8489 while (phba->sli.mbox_active) { 8490 /* Check active mailbox complete status every 2ms */ 8491 msleep(2); 8492 if (time_after(jiffies, timeout)) { 8493 /* Timeout, marked the outstanding cmd not complete */ 8494 rc = 1; 8495 break; 8496 } 8497 } 8498 8499 /* Can not cleanly block async mailbox command, fails it */ 8500 if (rc) { 8501 spin_lock_irq(&phba->hbalock); 8502 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8503 spin_unlock_irq(&phba->hbalock); 8504 } 8505 return rc; 8506 } 8507 8508 /** 8509 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 8510 * @phba: Pointer to HBA context object. 8511 * 8512 * The function unblocks and resume posting of SLI4 asynchronous mailbox 8513 * commands from the driver internal pending mailbox queue. It makes sure 8514 * that there is no outstanding mailbox command before resuming posting 8515 * asynchronous mailbox commands. If, for any reason, there is outstanding 8516 * mailbox command, it will try to wait it out before resuming asynchronous 8517 * mailbox command posting. 8518 **/ 8519 static void 8520 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 8521 { 8522 struct lpfc_sli *psli = &phba->sli; 8523 8524 spin_lock_irq(&phba->hbalock); 8525 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8526 /* Asynchronous mailbox posting is not blocked, do nothing */ 8527 spin_unlock_irq(&phba->hbalock); 8528 return; 8529 } 8530 8531 /* Outstanding synchronous mailbox command is guaranteed to be done, 8532 * successful or timeout, after timing-out the outstanding mailbox 8533 * command shall always be removed, so just unblock posting async 8534 * mailbox command and resume 8535 */ 8536 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8537 spin_unlock_irq(&phba->hbalock); 8538 8539 /* wake up worker thread to post asynchronous mailbox command */ 8540 lpfc_worker_wake_up(phba); 8541 } 8542 8543 /** 8544 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 8545 * @phba: Pointer to HBA context object. 8546 * @mboxq: Pointer to mailbox object. 8547 * 8548 * The function waits for the bootstrap mailbox register ready bit from 8549 * port for twice the regular mailbox command timeout value. 8550 * 8551 * 0 - no timeout on waiting for bootstrap mailbox register ready. 8552 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 8553 **/ 8554 static int 8555 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8556 { 8557 uint32_t db_ready; 8558 unsigned long timeout; 8559 struct lpfc_register bmbx_reg; 8560 8561 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 8562 * 1000) + jiffies; 8563 8564 do { 8565 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 8566 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 8567 if (!db_ready) 8568 mdelay(2); 8569 8570 if (time_after(jiffies, timeout)) 8571 return MBXERR_ERROR; 8572 } while (!db_ready); 8573 8574 return 0; 8575 } 8576 8577 /** 8578 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 8579 * @phba: Pointer to HBA context object. 8580 * @mboxq: Pointer to mailbox object. 8581 * 8582 * The function posts a mailbox to the port. The mailbox is expected 8583 * to be comletely filled in and ready for the port to operate on it. 8584 * This routine executes a synchronous completion operation on the 8585 * mailbox by polling for its completion. 8586 * 8587 * The caller must not be holding any locks when calling this routine. 8588 * 8589 * Returns: 8590 * MBX_SUCCESS - mailbox posted successfully 8591 * Any of the MBX error values. 8592 **/ 8593 static int 8594 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8595 { 8596 int rc = MBX_SUCCESS; 8597 unsigned long iflag; 8598 uint32_t mcqe_status; 8599 uint32_t mbx_cmnd; 8600 struct lpfc_sli *psli = &phba->sli; 8601 struct lpfc_mqe *mb = &mboxq->u.mqe; 8602 struct lpfc_bmbx_create *mbox_rgn; 8603 struct dma_address *dma_address; 8604 8605 /* 8606 * Only one mailbox can be active to the bootstrap mailbox region 8607 * at a time and there is no queueing provided. 8608 */ 8609 spin_lock_irqsave(&phba->hbalock, iflag); 8610 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8611 spin_unlock_irqrestore(&phba->hbalock, iflag); 8612 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8613 "(%d):2532 Mailbox command x%x (x%x/x%x) " 8614 "cannot issue Data: x%x x%x\n", 8615 mboxq->vport ? mboxq->vport->vpi : 0, 8616 mboxq->u.mb.mbxCommand, 8617 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8618 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8619 psli->sli_flag, MBX_POLL); 8620 return MBXERR_ERROR; 8621 } 8622 /* The server grabs the token and owns it until release */ 8623 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8624 phba->sli.mbox_active = mboxq; 8625 spin_unlock_irqrestore(&phba->hbalock, iflag); 8626 8627 /* wait for bootstrap mbox register for readyness */ 8628 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8629 if (rc) 8630 goto exit; 8631 /* 8632 * Initialize the bootstrap memory region to avoid stale data areas 8633 * in the mailbox post. Then copy the caller's mailbox contents to 8634 * the bmbx mailbox region. 8635 */ 8636 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 8637 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 8638 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 8639 sizeof(struct lpfc_mqe)); 8640 8641 /* Post the high mailbox dma address to the port and wait for ready. */ 8642 dma_address = &phba->sli4_hba.bmbx.dma_address; 8643 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 8644 8645 /* wait for bootstrap mbox register for hi-address write done */ 8646 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8647 if (rc) 8648 goto exit; 8649 8650 /* Post the low mailbox dma address to the port. */ 8651 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 8652 8653 /* wait for bootstrap mbox register for low address write done */ 8654 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8655 if (rc) 8656 goto exit; 8657 8658 /* 8659 * Read the CQ to ensure the mailbox has completed. 8660 * If so, update the mailbox status so that the upper layers 8661 * can complete the request normally. 8662 */ 8663 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 8664 sizeof(struct lpfc_mqe)); 8665 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 8666 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 8667 sizeof(struct lpfc_mcqe)); 8668 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 8669 /* 8670 * When the CQE status indicates a failure and the mailbox status 8671 * indicates success then copy the CQE status into the mailbox status 8672 * (and prefix it with x4000). 8673 */ 8674 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 8675 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 8676 bf_set(lpfc_mqe_status, mb, 8677 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 8678 rc = MBXERR_ERROR; 8679 } else 8680 lpfc_sli4_swap_str(phba, mboxq); 8681 8682 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8683 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 8684 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 8685 " x%x x%x CQ: x%x x%x x%x x%x\n", 8686 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 8687 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8688 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8689 bf_get(lpfc_mqe_status, mb), 8690 mb->un.mb_words[0], mb->un.mb_words[1], 8691 mb->un.mb_words[2], mb->un.mb_words[3], 8692 mb->un.mb_words[4], mb->un.mb_words[5], 8693 mb->un.mb_words[6], mb->un.mb_words[7], 8694 mb->un.mb_words[8], mb->un.mb_words[9], 8695 mb->un.mb_words[10], mb->un.mb_words[11], 8696 mb->un.mb_words[12], mboxq->mcqe.word0, 8697 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 8698 mboxq->mcqe.trailer); 8699 exit: 8700 /* We are holding the token, no needed for lock when release */ 8701 spin_lock_irqsave(&phba->hbalock, iflag); 8702 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8703 phba->sli.mbox_active = NULL; 8704 spin_unlock_irqrestore(&phba->hbalock, iflag); 8705 return rc; 8706 } 8707 8708 /** 8709 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 8710 * @phba: Pointer to HBA context object. 8711 * @pmbox: Pointer to mailbox object. 8712 * @flag: Flag indicating how the mailbox need to be processed. 8713 * 8714 * This function is called by discovery code and HBA management code to submit 8715 * a mailbox command to firmware with SLI-4 interface spec. 8716 * 8717 * Return codes the caller owns the mailbox command after the return of the 8718 * function. 8719 **/ 8720 static int 8721 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 8722 uint32_t flag) 8723 { 8724 struct lpfc_sli *psli = &phba->sli; 8725 unsigned long iflags; 8726 int rc; 8727 8728 /* dump from issue mailbox command if setup */ 8729 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 8730 8731 rc = lpfc_mbox_dev_check(phba); 8732 if (unlikely(rc)) { 8733 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8734 "(%d):2544 Mailbox command x%x (x%x/x%x) " 8735 "cannot issue Data: x%x x%x\n", 8736 mboxq->vport ? mboxq->vport->vpi : 0, 8737 mboxq->u.mb.mbxCommand, 8738 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8739 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8740 psli->sli_flag, flag); 8741 goto out_not_finished; 8742 } 8743 8744 /* Detect polling mode and jump to a handler */ 8745 if (!phba->sli4_hba.intr_enable) { 8746 if (flag == MBX_POLL) 8747 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8748 else 8749 rc = -EIO; 8750 if (rc != MBX_SUCCESS) 8751 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8752 "(%d):2541 Mailbox command x%x " 8753 "(x%x/x%x) failure: " 8754 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8755 "Data: x%x x%x\n,", 8756 mboxq->vport ? mboxq->vport->vpi : 0, 8757 mboxq->u.mb.mbxCommand, 8758 lpfc_sli_config_mbox_subsys_get(phba, 8759 mboxq), 8760 lpfc_sli_config_mbox_opcode_get(phba, 8761 mboxq), 8762 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8763 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8764 bf_get(lpfc_mcqe_ext_status, 8765 &mboxq->mcqe), 8766 psli->sli_flag, flag); 8767 return rc; 8768 } else if (flag == MBX_POLL) { 8769 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8770 "(%d):2542 Try to issue mailbox command " 8771 "x%x (x%x/x%x) synchronously ahead of async " 8772 "mailbox command queue: x%x x%x\n", 8773 mboxq->vport ? mboxq->vport->vpi : 0, 8774 mboxq->u.mb.mbxCommand, 8775 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8776 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8777 psli->sli_flag, flag); 8778 /* Try to block the asynchronous mailbox posting */ 8779 rc = lpfc_sli4_async_mbox_block(phba); 8780 if (!rc) { 8781 /* Successfully blocked, now issue sync mbox cmd */ 8782 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8783 if (rc != MBX_SUCCESS) 8784 lpfc_printf_log(phba, KERN_WARNING, 8785 LOG_MBOX | LOG_SLI, 8786 "(%d):2597 Sync Mailbox command " 8787 "x%x (x%x/x%x) failure: " 8788 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8789 "Data: x%x x%x\n,", 8790 mboxq->vport ? mboxq->vport->vpi : 0, 8791 mboxq->u.mb.mbxCommand, 8792 lpfc_sli_config_mbox_subsys_get(phba, 8793 mboxq), 8794 lpfc_sli_config_mbox_opcode_get(phba, 8795 mboxq), 8796 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8797 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8798 bf_get(lpfc_mcqe_ext_status, 8799 &mboxq->mcqe), 8800 psli->sli_flag, flag); 8801 /* Unblock the async mailbox posting afterward */ 8802 lpfc_sli4_async_mbox_unblock(phba); 8803 } 8804 return rc; 8805 } 8806 8807 /* Now, interrupt mode asynchronous mailbox command */ 8808 rc = lpfc_mbox_cmd_check(phba, mboxq); 8809 if (rc) { 8810 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8811 "(%d):2543 Mailbox command x%x (x%x/x%x) " 8812 "cannot issue Data: x%x x%x\n", 8813 mboxq->vport ? mboxq->vport->vpi : 0, 8814 mboxq->u.mb.mbxCommand, 8815 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8816 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8817 psli->sli_flag, flag); 8818 goto out_not_finished; 8819 } 8820 8821 /* Put the mailbox command to the driver internal FIFO */ 8822 psli->slistat.mbox_busy++; 8823 spin_lock_irqsave(&phba->hbalock, iflags); 8824 lpfc_mbox_put(phba, mboxq); 8825 spin_unlock_irqrestore(&phba->hbalock, iflags); 8826 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8827 "(%d):0354 Mbox cmd issue - Enqueue Data: " 8828 "x%x (x%x/x%x) x%x x%x x%x\n", 8829 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 8830 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8831 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8832 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8833 phba->pport->port_state, 8834 psli->sli_flag, MBX_NOWAIT); 8835 /* Wake up worker thread to transport mailbox command from head */ 8836 lpfc_worker_wake_up(phba); 8837 8838 return MBX_BUSY; 8839 8840 out_not_finished: 8841 return MBX_NOT_FINISHED; 8842 } 8843 8844 /** 8845 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 8846 * @phba: Pointer to HBA context object. 8847 * 8848 * This function is called by worker thread to send a mailbox command to 8849 * SLI4 HBA firmware. 8850 * 8851 **/ 8852 int 8853 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 8854 { 8855 struct lpfc_sli *psli = &phba->sli; 8856 LPFC_MBOXQ_t *mboxq; 8857 int rc = MBX_SUCCESS; 8858 unsigned long iflags; 8859 struct lpfc_mqe *mqe; 8860 uint32_t mbx_cmnd; 8861 8862 /* Check interrupt mode before post async mailbox command */ 8863 if (unlikely(!phba->sli4_hba.intr_enable)) 8864 return MBX_NOT_FINISHED; 8865 8866 /* Check for mailbox command service token */ 8867 spin_lock_irqsave(&phba->hbalock, iflags); 8868 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8869 spin_unlock_irqrestore(&phba->hbalock, iflags); 8870 return MBX_NOT_FINISHED; 8871 } 8872 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8873 spin_unlock_irqrestore(&phba->hbalock, iflags); 8874 return MBX_NOT_FINISHED; 8875 } 8876 if (unlikely(phba->sli.mbox_active)) { 8877 spin_unlock_irqrestore(&phba->hbalock, iflags); 8878 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8879 "0384 There is pending active mailbox cmd\n"); 8880 return MBX_NOT_FINISHED; 8881 } 8882 /* Take the mailbox command service token */ 8883 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8884 8885 /* Get the next mailbox command from head of queue */ 8886 mboxq = lpfc_mbox_get(phba); 8887 8888 /* If no more mailbox command waiting for post, we're done */ 8889 if (!mboxq) { 8890 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8891 spin_unlock_irqrestore(&phba->hbalock, iflags); 8892 return MBX_SUCCESS; 8893 } 8894 phba->sli.mbox_active = mboxq; 8895 spin_unlock_irqrestore(&phba->hbalock, iflags); 8896 8897 /* Check device readiness for posting mailbox command */ 8898 rc = lpfc_mbox_dev_check(phba); 8899 if (unlikely(rc)) 8900 /* Driver clean routine will clean up pending mailbox */ 8901 goto out_not_finished; 8902 8903 /* Prepare the mbox command to be posted */ 8904 mqe = &mboxq->u.mqe; 8905 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 8906 8907 /* Start timer for the mbox_tmo and log some mailbox post messages */ 8908 mod_timer(&psli->mbox_tmo, (jiffies + 8909 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 8910 8911 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8912 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 8913 "x%x x%x\n", 8914 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 8915 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8916 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8917 phba->pport->port_state, psli->sli_flag); 8918 8919 if (mbx_cmnd != MBX_HEARTBEAT) { 8920 if (mboxq->vport) { 8921 lpfc_debugfs_disc_trc(mboxq->vport, 8922 LPFC_DISC_TRC_MBOX_VPORT, 8923 "MBOX Send vport: cmd:x%x mb:x%x x%x", 8924 mbx_cmnd, mqe->un.mb_words[0], 8925 mqe->un.mb_words[1]); 8926 } else { 8927 lpfc_debugfs_disc_trc(phba->pport, 8928 LPFC_DISC_TRC_MBOX, 8929 "MBOX Send: cmd:x%x mb:x%x x%x", 8930 mbx_cmnd, mqe->un.mb_words[0], 8931 mqe->un.mb_words[1]); 8932 } 8933 } 8934 psli->slistat.mbox_cmd++; 8935 8936 /* Post the mailbox command to the port */ 8937 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 8938 if (rc != MBX_SUCCESS) { 8939 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8940 "(%d):2533 Mailbox command x%x (x%x/x%x) " 8941 "cannot issue Data: x%x x%x\n", 8942 mboxq->vport ? mboxq->vport->vpi : 0, 8943 mboxq->u.mb.mbxCommand, 8944 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8945 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8946 psli->sli_flag, MBX_NOWAIT); 8947 goto out_not_finished; 8948 } 8949 8950 return rc; 8951 8952 out_not_finished: 8953 spin_lock_irqsave(&phba->hbalock, iflags); 8954 if (phba->sli.mbox_active) { 8955 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 8956 __lpfc_mbox_cmpl_put(phba, mboxq); 8957 /* Release the token */ 8958 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8959 phba->sli.mbox_active = NULL; 8960 } 8961 spin_unlock_irqrestore(&phba->hbalock, iflags); 8962 8963 return MBX_NOT_FINISHED; 8964 } 8965 8966 /** 8967 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 8968 * @phba: Pointer to HBA context object. 8969 * @pmbox: Pointer to mailbox object. 8970 * @flag: Flag indicating how the mailbox need to be processed. 8971 * 8972 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 8973 * the API jump table function pointer from the lpfc_hba struct. 8974 * 8975 * Return codes the caller owns the mailbox command after the return of the 8976 * function. 8977 **/ 8978 int 8979 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 8980 { 8981 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 8982 } 8983 8984 /** 8985 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 8986 * @phba: The hba struct for which this call is being executed. 8987 * @dev_grp: The HBA PCI-Device group number. 8988 * 8989 * This routine sets up the mbox interface API function jump table in @phba 8990 * struct. 8991 * Returns: 0 - success, -ENODEV - failure. 8992 **/ 8993 int 8994 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 8995 { 8996 8997 switch (dev_grp) { 8998 case LPFC_PCI_DEV_LP: 8999 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 9000 phba->lpfc_sli_handle_slow_ring_event = 9001 lpfc_sli_handle_slow_ring_event_s3; 9002 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 9003 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 9004 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 9005 break; 9006 case LPFC_PCI_DEV_OC: 9007 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 9008 phba->lpfc_sli_handle_slow_ring_event = 9009 lpfc_sli_handle_slow_ring_event_s4; 9010 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 9011 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 9012 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 9013 break; 9014 default: 9015 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9016 "1420 Invalid HBA PCI-device group: 0x%x\n", 9017 dev_grp); 9018 return -ENODEV; 9019 break; 9020 } 9021 return 0; 9022 } 9023 9024 /** 9025 * __lpfc_sli_ringtx_put - Add an iocb to the txq 9026 * @phba: Pointer to HBA context object. 9027 * @pring: Pointer to driver SLI ring object. 9028 * @piocb: Pointer to address of newly added command iocb. 9029 * 9030 * This function is called with hbalock held for SLI3 ports or 9031 * the ring lock held for SLI4 ports to add a command 9032 * iocb to the txq when SLI layer cannot submit the command iocb 9033 * to the ring. 9034 **/ 9035 void 9036 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9037 struct lpfc_iocbq *piocb) 9038 { 9039 if (phba->sli_rev == LPFC_SLI_REV4) 9040 lockdep_assert_held(&pring->ring_lock); 9041 else 9042 lockdep_assert_held(&phba->hbalock); 9043 /* Insert the caller's iocb in the txq tail for later processing. */ 9044 list_add_tail(&piocb->list, &pring->txq); 9045 } 9046 9047 /** 9048 * lpfc_sli_next_iocb - Get the next iocb in the txq 9049 * @phba: Pointer to HBA context object. 9050 * @pring: Pointer to driver SLI ring object. 9051 * @piocb: Pointer to address of newly added command iocb. 9052 * 9053 * This function is called with hbalock held before a new 9054 * iocb is submitted to the firmware. This function checks 9055 * txq to flush the iocbs in txq to Firmware before 9056 * submitting new iocbs to the Firmware. 9057 * If there are iocbs in the txq which need to be submitted 9058 * to firmware, lpfc_sli_next_iocb returns the first element 9059 * of the txq after dequeuing it from txq. 9060 * If there is no iocb in the txq then the function will return 9061 * *piocb and *piocb is set to NULL. Caller needs to check 9062 * *piocb to find if there are more commands in the txq. 9063 **/ 9064 static struct lpfc_iocbq * 9065 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9066 struct lpfc_iocbq **piocb) 9067 { 9068 struct lpfc_iocbq * nextiocb; 9069 9070 lockdep_assert_held(&phba->hbalock); 9071 9072 nextiocb = lpfc_sli_ringtx_get(phba, pring); 9073 if (!nextiocb) { 9074 nextiocb = *piocb; 9075 *piocb = NULL; 9076 } 9077 9078 return nextiocb; 9079 } 9080 9081 /** 9082 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 9083 * @phba: Pointer to HBA context object. 9084 * @ring_number: SLI ring number to issue iocb on. 9085 * @piocb: Pointer to command iocb. 9086 * @flag: Flag indicating if this command can be put into txq. 9087 * 9088 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 9089 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 9090 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 9091 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 9092 * this function allows only iocbs for posting buffers. This function finds 9093 * next available slot in the command ring and posts the command to the 9094 * available slot and writes the port attention register to request HBA start 9095 * processing new iocb. If there is no slot available in the ring and 9096 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 9097 * the function returns IOCB_BUSY. 9098 * 9099 * This function is called with hbalock held. The function will return success 9100 * after it successfully submit the iocb to firmware or after adding to the 9101 * txq. 9102 **/ 9103 static int 9104 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 9105 struct lpfc_iocbq *piocb, uint32_t flag) 9106 { 9107 struct lpfc_iocbq *nextiocb; 9108 IOCB_t *iocb; 9109 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 9110 9111 lockdep_assert_held(&phba->hbalock); 9112 9113 if (piocb->iocb_cmpl && (!piocb->vport) && 9114 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 9115 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 9116 lpfc_printf_log(phba, KERN_ERR, 9117 LOG_SLI | LOG_VPORT, 9118 "1807 IOCB x%x failed. No vport\n", 9119 piocb->iocb.ulpCommand); 9120 dump_stack(); 9121 return IOCB_ERROR; 9122 } 9123 9124 9125 /* If the PCI channel is in offline state, do not post iocbs. */ 9126 if (unlikely(pci_channel_offline(phba->pcidev))) 9127 return IOCB_ERROR; 9128 9129 /* If HBA has a deferred error attention, fail the iocb. */ 9130 if (unlikely(phba->hba_flag & DEFER_ERATT)) 9131 return IOCB_ERROR; 9132 9133 /* 9134 * We should never get an IOCB if we are in a < LINK_DOWN state 9135 */ 9136 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 9137 return IOCB_ERROR; 9138 9139 /* 9140 * Check to see if we are blocking IOCB processing because of a 9141 * outstanding event. 9142 */ 9143 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 9144 goto iocb_busy; 9145 9146 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 9147 /* 9148 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 9149 * can be issued if the link is not up. 9150 */ 9151 switch (piocb->iocb.ulpCommand) { 9152 case CMD_GEN_REQUEST64_CR: 9153 case CMD_GEN_REQUEST64_CX: 9154 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 9155 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 9156 FC_RCTL_DD_UNSOL_CMD) || 9157 (piocb->iocb.un.genreq64.w5.hcsw.Type != 9158 MENLO_TRANSPORT_TYPE)) 9159 9160 goto iocb_busy; 9161 break; 9162 case CMD_QUE_RING_BUF_CN: 9163 case CMD_QUE_RING_BUF64_CN: 9164 /* 9165 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 9166 * completion, iocb_cmpl MUST be 0. 9167 */ 9168 if (piocb->iocb_cmpl) 9169 piocb->iocb_cmpl = NULL; 9170 /*FALLTHROUGH*/ 9171 case CMD_CREATE_XRI_CR: 9172 case CMD_CLOSE_XRI_CN: 9173 case CMD_CLOSE_XRI_CX: 9174 break; 9175 default: 9176 goto iocb_busy; 9177 } 9178 9179 /* 9180 * For FCP commands, we must be in a state where we can process link 9181 * attention events. 9182 */ 9183 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 9184 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 9185 goto iocb_busy; 9186 } 9187 9188 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 9189 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 9190 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 9191 9192 if (iocb) 9193 lpfc_sli_update_ring(phba, pring); 9194 else 9195 lpfc_sli_update_full_ring(phba, pring); 9196 9197 if (!piocb) 9198 return IOCB_SUCCESS; 9199 9200 goto out_busy; 9201 9202 iocb_busy: 9203 pring->stats.iocb_cmd_delay++; 9204 9205 out_busy: 9206 9207 if (!(flag & SLI_IOCB_RET_IOCB)) { 9208 __lpfc_sli_ringtx_put(phba, pring, piocb); 9209 return IOCB_SUCCESS; 9210 } 9211 9212 return IOCB_BUSY; 9213 } 9214 9215 /** 9216 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 9217 * @phba: Pointer to HBA context object. 9218 * @piocb: Pointer to command iocb. 9219 * @sglq: Pointer to the scatter gather queue object. 9220 * 9221 * This routine converts the bpl or bde that is in the IOCB 9222 * to a sgl list for the sli4 hardware. The physical address 9223 * of the bpl/bde is converted back to a virtual address. 9224 * If the IOCB contains a BPL then the list of BDE's is 9225 * converted to sli4_sge's. If the IOCB contains a single 9226 * BDE then it is converted to a single sli_sge. 9227 * The IOCB is still in cpu endianess so the contents of 9228 * the bpl can be used without byte swapping. 9229 * 9230 * Returns valid XRI = Success, NO_XRI = Failure. 9231 **/ 9232 static uint16_t 9233 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 9234 struct lpfc_sglq *sglq) 9235 { 9236 uint16_t xritag = NO_XRI; 9237 struct ulp_bde64 *bpl = NULL; 9238 struct ulp_bde64 bde; 9239 struct sli4_sge *sgl = NULL; 9240 struct lpfc_dmabuf *dmabuf; 9241 IOCB_t *icmd; 9242 int numBdes = 0; 9243 int i = 0; 9244 uint32_t offset = 0; /* accumulated offset in the sg request list */ 9245 int inbound = 0; /* number of sg reply entries inbound from firmware */ 9246 9247 if (!piocbq || !sglq) 9248 return xritag; 9249 9250 sgl = (struct sli4_sge *)sglq->sgl; 9251 icmd = &piocbq->iocb; 9252 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 9253 return sglq->sli4_xritag; 9254 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9255 numBdes = icmd->un.genreq64.bdl.bdeSize / 9256 sizeof(struct ulp_bde64); 9257 /* The addrHigh and addrLow fields within the IOCB 9258 * have not been byteswapped yet so there is no 9259 * need to swap them back. 9260 */ 9261 if (piocbq->context3) 9262 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 9263 else 9264 return xritag; 9265 9266 bpl = (struct ulp_bde64 *)dmabuf->virt; 9267 if (!bpl) 9268 return xritag; 9269 9270 for (i = 0; i < numBdes; i++) { 9271 /* Should already be byte swapped. */ 9272 sgl->addr_hi = bpl->addrHigh; 9273 sgl->addr_lo = bpl->addrLow; 9274 9275 sgl->word2 = le32_to_cpu(sgl->word2); 9276 if ((i+1) == numBdes) 9277 bf_set(lpfc_sli4_sge_last, sgl, 1); 9278 else 9279 bf_set(lpfc_sli4_sge_last, sgl, 0); 9280 /* swap the size field back to the cpu so we 9281 * can assign it to the sgl. 9282 */ 9283 bde.tus.w = le32_to_cpu(bpl->tus.w); 9284 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 9285 /* The offsets in the sgl need to be accumulated 9286 * separately for the request and reply lists. 9287 * The request is always first, the reply follows. 9288 */ 9289 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 9290 /* add up the reply sg entries */ 9291 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 9292 inbound++; 9293 /* first inbound? reset the offset */ 9294 if (inbound == 1) 9295 offset = 0; 9296 bf_set(lpfc_sli4_sge_offset, sgl, offset); 9297 bf_set(lpfc_sli4_sge_type, sgl, 9298 LPFC_SGE_TYPE_DATA); 9299 offset += bde.tus.f.bdeSize; 9300 } 9301 sgl->word2 = cpu_to_le32(sgl->word2); 9302 bpl++; 9303 sgl++; 9304 } 9305 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 9306 /* The addrHigh and addrLow fields of the BDE have not 9307 * been byteswapped yet so they need to be swapped 9308 * before putting them in the sgl. 9309 */ 9310 sgl->addr_hi = 9311 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 9312 sgl->addr_lo = 9313 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 9314 sgl->word2 = le32_to_cpu(sgl->word2); 9315 bf_set(lpfc_sli4_sge_last, sgl, 1); 9316 sgl->word2 = cpu_to_le32(sgl->word2); 9317 sgl->sge_len = 9318 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 9319 } 9320 return sglq->sli4_xritag; 9321 } 9322 9323 /** 9324 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry. 9325 * @phba: Pointer to HBA context object. 9326 * @piocb: Pointer to command iocb. 9327 * @wqe: Pointer to the work queue entry. 9328 * 9329 * This routine converts the iocb command to its Work Queue Entry 9330 * equivalent. The wqe pointer should not have any fields set when 9331 * this routine is called because it will memcpy over them. 9332 * This routine does not set the CQ_ID or the WQEC bits in the 9333 * wqe. 9334 * 9335 * Returns: 0 = Success, IOCB_ERROR = Failure. 9336 **/ 9337 static int 9338 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 9339 union lpfc_wqe128 *wqe) 9340 { 9341 uint32_t xmit_len = 0, total_len = 0; 9342 uint8_t ct = 0; 9343 uint32_t fip; 9344 uint32_t abort_tag; 9345 uint8_t command_type = ELS_COMMAND_NON_FIP; 9346 uint8_t cmnd; 9347 uint16_t xritag; 9348 uint16_t abrt_iotag; 9349 struct lpfc_iocbq *abrtiocbq; 9350 struct ulp_bde64 *bpl = NULL; 9351 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 9352 int numBdes, i; 9353 struct ulp_bde64 bde; 9354 struct lpfc_nodelist *ndlp; 9355 uint32_t *pcmd; 9356 uint32_t if_type; 9357 9358 fip = phba->hba_flag & HBA_FIP_SUPPORT; 9359 /* The fcp commands will set command type */ 9360 if (iocbq->iocb_flag & LPFC_IO_FCP) 9361 command_type = FCP_COMMAND; 9362 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 9363 command_type = ELS_COMMAND_FIP; 9364 else 9365 command_type = ELS_COMMAND_NON_FIP; 9366 9367 if (phba->fcp_embed_io) 9368 memset(wqe, 0, sizeof(union lpfc_wqe128)); 9369 /* Some of the fields are in the right position already */ 9370 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 9371 /* The ct field has moved so reset */ 9372 wqe->generic.wqe_com.word7 = 0; 9373 wqe->generic.wqe_com.word10 = 0; 9374 9375 abort_tag = (uint32_t) iocbq->iotag; 9376 xritag = iocbq->sli4_xritag; 9377 /* words0-2 bpl convert bde */ 9378 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9379 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 9380 sizeof(struct ulp_bde64); 9381 bpl = (struct ulp_bde64 *) 9382 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 9383 if (!bpl) 9384 return IOCB_ERROR; 9385 9386 /* Should already be byte swapped. */ 9387 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 9388 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 9389 /* swap the size field back to the cpu so we 9390 * can assign it to the sgl. 9391 */ 9392 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 9393 xmit_len = wqe->generic.bde.tus.f.bdeSize; 9394 total_len = 0; 9395 for (i = 0; i < numBdes; i++) { 9396 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 9397 total_len += bde.tus.f.bdeSize; 9398 } 9399 } else 9400 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 9401 9402 iocbq->iocb.ulpIoTag = iocbq->iotag; 9403 cmnd = iocbq->iocb.ulpCommand; 9404 9405 switch (iocbq->iocb.ulpCommand) { 9406 case CMD_ELS_REQUEST64_CR: 9407 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 9408 ndlp = iocbq->context_un.ndlp; 9409 else 9410 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9411 if (!iocbq->iocb.ulpLe) { 9412 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9413 "2007 Only Limited Edition cmd Format" 9414 " supported 0x%x\n", 9415 iocbq->iocb.ulpCommand); 9416 return IOCB_ERROR; 9417 } 9418 9419 wqe->els_req.payload_len = xmit_len; 9420 /* Els_reguest64 has a TMO */ 9421 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 9422 iocbq->iocb.ulpTimeout); 9423 /* Need a VF for word 4 set the vf bit*/ 9424 bf_set(els_req64_vf, &wqe->els_req, 0); 9425 /* And a VFID for word 12 */ 9426 bf_set(els_req64_vfid, &wqe->els_req, 0); 9427 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9428 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9429 iocbq->iocb.ulpContext); 9430 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 9431 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 9432 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 9433 if (command_type == ELS_COMMAND_FIP) 9434 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 9435 >> LPFC_FIP_ELS_ID_SHIFT); 9436 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9437 iocbq->context2)->virt); 9438 if_type = bf_get(lpfc_sli_intf_if_type, 9439 &phba->sli4_hba.sli_intf); 9440 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 9441 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 9442 *pcmd == ELS_CMD_SCR || 9443 *pcmd == ELS_CMD_RDF || 9444 *pcmd == ELS_CMD_RSCN_XMT || 9445 *pcmd == ELS_CMD_FDISC || 9446 *pcmd == ELS_CMD_LOGO || 9447 *pcmd == ELS_CMD_PLOGI)) { 9448 bf_set(els_req64_sp, &wqe->els_req, 1); 9449 bf_set(els_req64_sid, &wqe->els_req, 9450 iocbq->vport->fc_myDID); 9451 if ((*pcmd == ELS_CMD_FLOGI) && 9452 !(phba->fc_topology == 9453 LPFC_TOPOLOGY_LOOP)) 9454 bf_set(els_req64_sid, &wqe->els_req, 0); 9455 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 9456 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9457 phba->vpi_ids[iocbq->vport->vpi]); 9458 } else if (pcmd && iocbq->context1) { 9459 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 9460 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9461 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9462 } 9463 } 9464 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 9465 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9466 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 9467 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 9468 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 9469 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 9470 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9471 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 9472 wqe->els_req.max_response_payload_len = total_len - xmit_len; 9473 break; 9474 case CMD_XMIT_SEQUENCE64_CX: 9475 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 9476 iocbq->iocb.un.ulpWord[3]); 9477 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 9478 iocbq->iocb.unsli3.rcvsli3.ox_id); 9479 /* The entire sequence is transmitted for this IOCB */ 9480 xmit_len = total_len; 9481 cmnd = CMD_XMIT_SEQUENCE64_CR; 9482 if (phba->link_flag & LS_LOOPBACK_MODE) 9483 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 9484 /* fall through */ 9485 case CMD_XMIT_SEQUENCE64_CR: 9486 /* word3 iocb=io_tag32 wqe=reserved */ 9487 wqe->xmit_sequence.rsvd3 = 0; 9488 /* word4 relative_offset memcpy */ 9489 /* word5 r_ctl/df_ctl memcpy */ 9490 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 9491 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 9492 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 9493 LPFC_WQE_IOD_WRITE); 9494 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 9495 LPFC_WQE_LENLOC_WORD12); 9496 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 9497 wqe->xmit_sequence.xmit_len = xmit_len; 9498 command_type = OTHER_COMMAND; 9499 break; 9500 case CMD_XMIT_BCAST64_CN: 9501 /* word3 iocb=iotag32 wqe=seq_payload_len */ 9502 wqe->xmit_bcast64.seq_payload_len = xmit_len; 9503 /* word4 iocb=rsvd wqe=rsvd */ 9504 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 9505 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 9506 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 9507 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9508 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 9509 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 9510 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 9511 LPFC_WQE_LENLOC_WORD3); 9512 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 9513 break; 9514 case CMD_FCP_IWRITE64_CR: 9515 command_type = FCP_COMMAND_DATA_OUT; 9516 /* word3 iocb=iotag wqe=payload_offset_len */ 9517 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9518 bf_set(payload_offset_len, &wqe->fcp_iwrite, 9519 xmit_len + sizeof(struct fcp_rsp)); 9520 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 9521 0); 9522 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9523 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9524 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 9525 iocbq->iocb.ulpFCP2Rcvy); 9526 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 9527 /* Always open the exchange */ 9528 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 9529 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 9530 LPFC_WQE_LENLOC_WORD4); 9531 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 9532 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 9533 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9534 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 9535 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 9536 if (iocbq->priority) { 9537 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9538 (iocbq->priority << 1)); 9539 } else { 9540 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9541 (phba->cfg_XLanePriority << 1)); 9542 } 9543 } 9544 /* Note, word 10 is already initialized to 0 */ 9545 9546 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9547 if (phba->cfg_enable_pbde) 9548 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1); 9549 else 9550 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 9551 9552 if (phba->fcp_embed_io) { 9553 struct lpfc_io_buf *lpfc_cmd; 9554 struct sli4_sge *sgl; 9555 struct fcp_cmnd *fcp_cmnd; 9556 uint32_t *ptr; 9557 9558 /* 128 byte wqe support here */ 9559 9560 lpfc_cmd = iocbq->context1; 9561 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9562 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9563 9564 /* Word 0-2 - FCP_CMND */ 9565 wqe->generic.bde.tus.f.bdeFlags = 9566 BUFF_TYPE_BDE_IMMED; 9567 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9568 wqe->generic.bde.addrHigh = 0; 9569 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9570 9571 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 9572 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 9573 9574 /* Word 22-29 FCP CMND Payload */ 9575 ptr = &wqe->words[22]; 9576 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9577 } 9578 break; 9579 case CMD_FCP_IREAD64_CR: 9580 /* word3 iocb=iotag wqe=payload_offset_len */ 9581 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9582 bf_set(payload_offset_len, &wqe->fcp_iread, 9583 xmit_len + sizeof(struct fcp_rsp)); 9584 bf_set(cmd_buff_len, &wqe->fcp_iread, 9585 0); 9586 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9587 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9588 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 9589 iocbq->iocb.ulpFCP2Rcvy); 9590 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 9591 /* Always open the exchange */ 9592 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 9593 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 9594 LPFC_WQE_LENLOC_WORD4); 9595 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 9596 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 9597 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9598 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 9599 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 9600 if (iocbq->priority) { 9601 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9602 (iocbq->priority << 1)); 9603 } else { 9604 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9605 (phba->cfg_XLanePriority << 1)); 9606 } 9607 } 9608 /* Note, word 10 is already initialized to 0 */ 9609 9610 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9611 if (phba->cfg_enable_pbde) 9612 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1); 9613 else 9614 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 9615 9616 if (phba->fcp_embed_io) { 9617 struct lpfc_io_buf *lpfc_cmd; 9618 struct sli4_sge *sgl; 9619 struct fcp_cmnd *fcp_cmnd; 9620 uint32_t *ptr; 9621 9622 /* 128 byte wqe support here */ 9623 9624 lpfc_cmd = iocbq->context1; 9625 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9626 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9627 9628 /* Word 0-2 - FCP_CMND */ 9629 wqe->generic.bde.tus.f.bdeFlags = 9630 BUFF_TYPE_BDE_IMMED; 9631 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9632 wqe->generic.bde.addrHigh = 0; 9633 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9634 9635 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 9636 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 9637 9638 /* Word 22-29 FCP CMND Payload */ 9639 ptr = &wqe->words[22]; 9640 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9641 } 9642 break; 9643 case CMD_FCP_ICMND64_CR: 9644 /* word3 iocb=iotag wqe=payload_offset_len */ 9645 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9646 bf_set(payload_offset_len, &wqe->fcp_icmd, 9647 xmit_len + sizeof(struct fcp_rsp)); 9648 bf_set(cmd_buff_len, &wqe->fcp_icmd, 9649 0); 9650 /* word3 iocb=IO_TAG wqe=reserved */ 9651 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 9652 /* Always open the exchange */ 9653 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 9654 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 9655 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 9656 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 9657 LPFC_WQE_LENLOC_NONE); 9658 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 9659 iocbq->iocb.ulpFCP2Rcvy); 9660 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9661 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 9662 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 9663 if (iocbq->priority) { 9664 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9665 (iocbq->priority << 1)); 9666 } else { 9667 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9668 (phba->cfg_XLanePriority << 1)); 9669 } 9670 } 9671 /* Note, word 10 is already initialized to 0 */ 9672 9673 if (phba->fcp_embed_io) { 9674 struct lpfc_io_buf *lpfc_cmd; 9675 struct sli4_sge *sgl; 9676 struct fcp_cmnd *fcp_cmnd; 9677 uint32_t *ptr; 9678 9679 /* 128 byte wqe support here */ 9680 9681 lpfc_cmd = iocbq->context1; 9682 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9683 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9684 9685 /* Word 0-2 - FCP_CMND */ 9686 wqe->generic.bde.tus.f.bdeFlags = 9687 BUFF_TYPE_BDE_IMMED; 9688 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9689 wqe->generic.bde.addrHigh = 0; 9690 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9691 9692 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 9693 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 9694 9695 /* Word 22-29 FCP CMND Payload */ 9696 ptr = &wqe->words[22]; 9697 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9698 } 9699 break; 9700 case CMD_GEN_REQUEST64_CR: 9701 /* For this command calculate the xmit length of the 9702 * request bde. 9703 */ 9704 xmit_len = 0; 9705 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 9706 sizeof(struct ulp_bde64); 9707 for (i = 0; i < numBdes; i++) { 9708 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 9709 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 9710 break; 9711 xmit_len += bde.tus.f.bdeSize; 9712 } 9713 /* word3 iocb=IO_TAG wqe=request_payload_len */ 9714 wqe->gen_req.request_payload_len = xmit_len; 9715 /* word4 iocb=parameter wqe=relative_offset memcpy */ 9716 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 9717 /* word6 context tag copied in memcpy */ 9718 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 9719 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9720 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9721 "2015 Invalid CT %x command 0x%x\n", 9722 ct, iocbq->iocb.ulpCommand); 9723 return IOCB_ERROR; 9724 } 9725 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 9726 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 9727 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 9728 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 9729 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 9730 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 9731 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9732 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 9733 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 9734 command_type = OTHER_COMMAND; 9735 break; 9736 case CMD_XMIT_ELS_RSP64_CX: 9737 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9738 /* words0-2 BDE memcpy */ 9739 /* word3 iocb=iotag32 wqe=response_payload_len */ 9740 wqe->xmit_els_rsp.response_payload_len = xmit_len; 9741 /* word4 */ 9742 wqe->xmit_els_rsp.word4 = 0; 9743 /* word5 iocb=rsvd wge=did */ 9744 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 9745 iocbq->iocb.un.xseq64.xmit_els_remoteID); 9746 9747 if_type = bf_get(lpfc_sli_intf_if_type, 9748 &phba->sli4_hba.sli_intf); 9749 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 9750 if (iocbq->vport->fc_flag & FC_PT2PT) { 9751 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 9752 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 9753 iocbq->vport->fc_myDID); 9754 if (iocbq->vport->fc_myDID == Fabric_DID) { 9755 bf_set(wqe_els_did, 9756 &wqe->xmit_els_rsp.wqe_dest, 0); 9757 } 9758 } 9759 } 9760 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 9761 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9762 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 9763 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 9764 iocbq->iocb.unsli3.rcvsli3.ox_id); 9765 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 9766 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9767 phba->vpi_ids[iocbq->vport->vpi]); 9768 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 9769 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 9770 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 9771 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 9772 LPFC_WQE_LENLOC_WORD3); 9773 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 9774 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 9775 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9776 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9777 iocbq->context2)->virt); 9778 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 9779 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 9780 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 9781 iocbq->vport->fc_myDID); 9782 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 9783 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9784 phba->vpi_ids[phba->pport->vpi]); 9785 } 9786 command_type = OTHER_COMMAND; 9787 break; 9788 case CMD_CLOSE_XRI_CN: 9789 case CMD_ABORT_XRI_CN: 9790 case CMD_ABORT_XRI_CX: 9791 /* words 0-2 memcpy should be 0 rserved */ 9792 /* port will send abts */ 9793 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 9794 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 9795 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 9796 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 9797 } else 9798 fip = 0; 9799 9800 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 9801 /* 9802 * The link is down, or the command was ELS_FIP 9803 * so the fw does not need to send abts 9804 * on the wire. 9805 */ 9806 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 9807 else 9808 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 9809 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 9810 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 9811 wqe->abort_cmd.rsrvd5 = 0; 9812 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 9813 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9814 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 9815 /* 9816 * The abort handler will send us CMD_ABORT_XRI_CN or 9817 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 9818 */ 9819 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 9820 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 9821 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 9822 LPFC_WQE_LENLOC_NONE); 9823 cmnd = CMD_ABORT_XRI_CX; 9824 command_type = OTHER_COMMAND; 9825 xritag = 0; 9826 break; 9827 case CMD_XMIT_BLS_RSP64_CX: 9828 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9829 /* As BLS ABTS RSP WQE is very different from other WQEs, 9830 * we re-construct this WQE here based on information in 9831 * iocbq from scratch. 9832 */ 9833 memset(wqe, 0, sizeof(*wqe)); 9834 /* OX_ID is invariable to who sent ABTS to CT exchange */ 9835 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 9836 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 9837 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 9838 LPFC_ABTS_UNSOL_INT) { 9839 /* ABTS sent by initiator to CT exchange, the 9840 * RX_ID field will be filled with the newly 9841 * allocated responder XRI. 9842 */ 9843 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 9844 iocbq->sli4_xritag); 9845 } else { 9846 /* ABTS sent by responder to CT exchange, the 9847 * RX_ID field will be filled with the responder 9848 * RX_ID from ABTS. 9849 */ 9850 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 9851 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 9852 } 9853 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 9854 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 9855 9856 /* Use CT=VPI */ 9857 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 9858 ndlp->nlp_DID); 9859 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 9860 iocbq->iocb.ulpContext); 9861 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 9862 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 9863 phba->vpi_ids[phba->pport->vpi]); 9864 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 9865 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 9866 LPFC_WQE_LENLOC_NONE); 9867 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 9868 command_type = OTHER_COMMAND; 9869 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 9870 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 9871 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 9872 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 9873 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 9874 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 9875 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 9876 } 9877 9878 break; 9879 case CMD_SEND_FRAME: 9880 bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME); 9881 bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */ 9882 bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */ 9883 bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1); 9884 bf_set(wqe_xbl, &wqe->generic.wqe_com, 1); 9885 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 9886 bf_set(wqe_xc, &wqe->generic.wqe_com, 1); 9887 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA); 9888 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 9889 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 9890 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 9891 return 0; 9892 case CMD_XRI_ABORTED_CX: 9893 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 9894 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 9895 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 9896 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 9897 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 9898 default: 9899 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9900 "2014 Invalid command 0x%x\n", 9901 iocbq->iocb.ulpCommand); 9902 return IOCB_ERROR; 9903 break; 9904 } 9905 9906 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 9907 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 9908 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 9909 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 9910 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 9911 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 9912 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 9913 LPFC_IO_DIF_INSERT); 9914 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 9915 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 9916 wqe->generic.wqe_com.abort_tag = abort_tag; 9917 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 9918 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 9919 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 9920 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 9921 return 0; 9922 } 9923 9924 /** 9925 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 9926 * @phba: Pointer to HBA context object. 9927 * @ring_number: SLI ring number to issue iocb on. 9928 * @piocb: Pointer to command iocb. 9929 * @flag: Flag indicating if this command can be put into txq. 9930 * 9931 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 9932 * an iocb command to an HBA with SLI-4 interface spec. 9933 * 9934 * This function is called with ringlock held. The function will return success 9935 * after it successfully submit the iocb to firmware or after adding to the 9936 * txq. 9937 **/ 9938 static int 9939 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 9940 struct lpfc_iocbq *piocb, uint32_t flag) 9941 { 9942 struct lpfc_sglq *sglq; 9943 union lpfc_wqe128 wqe; 9944 struct lpfc_queue *wq; 9945 struct lpfc_sli_ring *pring; 9946 9947 /* Get the WQ */ 9948 if ((piocb->iocb_flag & LPFC_IO_FCP) || 9949 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 9950 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 9951 } else { 9952 wq = phba->sli4_hba.els_wq; 9953 } 9954 9955 /* Get corresponding ring */ 9956 pring = wq->pring; 9957 9958 /* 9959 * The WQE can be either 64 or 128 bytes, 9960 */ 9961 9962 lockdep_assert_held(&pring->ring_lock); 9963 9964 if (piocb->sli4_xritag == NO_XRI) { 9965 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 9966 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 9967 sglq = NULL; 9968 else { 9969 if (!list_empty(&pring->txq)) { 9970 if (!(flag & SLI_IOCB_RET_IOCB)) { 9971 __lpfc_sli_ringtx_put(phba, 9972 pring, piocb); 9973 return IOCB_SUCCESS; 9974 } else { 9975 return IOCB_BUSY; 9976 } 9977 } else { 9978 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 9979 if (!sglq) { 9980 if (!(flag & SLI_IOCB_RET_IOCB)) { 9981 __lpfc_sli_ringtx_put(phba, 9982 pring, 9983 piocb); 9984 return IOCB_SUCCESS; 9985 } else 9986 return IOCB_BUSY; 9987 } 9988 } 9989 } 9990 } else if (piocb->iocb_flag & LPFC_IO_FCP) 9991 /* These IO's already have an XRI and a mapped sgl. */ 9992 sglq = NULL; 9993 else { 9994 /* 9995 * This is a continuation of a commandi,(CX) so this 9996 * sglq is on the active list 9997 */ 9998 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 9999 if (!sglq) 10000 return IOCB_ERROR; 10001 } 10002 10003 if (sglq) { 10004 piocb->sli4_lxritag = sglq->sli4_lxritag; 10005 piocb->sli4_xritag = sglq->sli4_xritag; 10006 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 10007 return IOCB_ERROR; 10008 } 10009 10010 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe)) 10011 return IOCB_ERROR; 10012 10013 if (lpfc_sli4_wq_put(wq, &wqe)) 10014 return IOCB_ERROR; 10015 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10016 10017 return 0; 10018 } 10019 10020 /** 10021 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10022 * 10023 * This routine wraps the actual lockless version for issusing IOCB function 10024 * pointer from the lpfc_hba struct. 10025 * 10026 * Return codes: 10027 * IOCB_ERROR - Error 10028 * IOCB_SUCCESS - Success 10029 * IOCB_BUSY - Busy 10030 **/ 10031 int 10032 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10033 struct lpfc_iocbq *piocb, uint32_t flag) 10034 { 10035 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10036 } 10037 10038 /** 10039 * lpfc_sli_api_table_setup - Set up sli api function jump table 10040 * @phba: The hba struct for which this call is being executed. 10041 * @dev_grp: The HBA PCI-Device group number. 10042 * 10043 * This routine sets up the SLI interface API function jump table in @phba 10044 * struct. 10045 * Returns: 0 - success, -ENODEV - failure. 10046 **/ 10047 int 10048 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10049 { 10050 10051 switch (dev_grp) { 10052 case LPFC_PCI_DEV_LP: 10053 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 10054 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 10055 break; 10056 case LPFC_PCI_DEV_OC: 10057 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 10058 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 10059 break; 10060 default: 10061 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10062 "1419 Invalid HBA PCI-device group: 0x%x\n", 10063 dev_grp); 10064 return -ENODEV; 10065 break; 10066 } 10067 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 10068 return 0; 10069 } 10070 10071 /** 10072 * lpfc_sli4_calc_ring - Calculates which ring to use 10073 * @phba: Pointer to HBA context object. 10074 * @piocb: Pointer to command iocb. 10075 * 10076 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 10077 * hba_wqidx, thus we need to calculate the corresponding ring. 10078 * Since ABORTS must go on the same WQ of the command they are 10079 * aborting, we use command's hba_wqidx. 10080 */ 10081 struct lpfc_sli_ring * 10082 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 10083 { 10084 struct lpfc_io_buf *lpfc_cmd; 10085 10086 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 10087 if (unlikely(!phba->sli4_hba.hdwq)) 10088 return NULL; 10089 /* 10090 * for abort iocb hba_wqidx should already 10091 * be setup based on what work queue we used. 10092 */ 10093 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 10094 lpfc_cmd = (struct lpfc_io_buf *)piocb->context1; 10095 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 10096 } 10097 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 10098 } else { 10099 if (unlikely(!phba->sli4_hba.els_wq)) 10100 return NULL; 10101 piocb->hba_wqidx = 0; 10102 return phba->sli4_hba.els_wq->pring; 10103 } 10104 } 10105 10106 /** 10107 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 10108 * @phba: Pointer to HBA context object. 10109 * @pring: Pointer to driver SLI ring object. 10110 * @piocb: Pointer to command iocb. 10111 * @flag: Flag indicating if this command can be put into txq. 10112 * 10113 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 10114 * function. This function gets the hbalock and calls 10115 * __lpfc_sli_issue_iocb function and will return the error returned 10116 * by __lpfc_sli_issue_iocb function. This wrapper is used by 10117 * functions which do not hold hbalock. 10118 **/ 10119 int 10120 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10121 struct lpfc_iocbq *piocb, uint32_t flag) 10122 { 10123 struct lpfc_sli_ring *pring; 10124 struct lpfc_queue *eq; 10125 unsigned long iflags; 10126 int rc; 10127 10128 if (phba->sli_rev == LPFC_SLI_REV4) { 10129 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 10130 10131 pring = lpfc_sli4_calc_ring(phba, piocb); 10132 if (unlikely(pring == NULL)) 10133 return IOCB_ERROR; 10134 10135 spin_lock_irqsave(&pring->ring_lock, iflags); 10136 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10137 spin_unlock_irqrestore(&pring->ring_lock, iflags); 10138 10139 lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH); 10140 } else { 10141 /* For now, SLI2/3 will still use hbalock */ 10142 spin_lock_irqsave(&phba->hbalock, iflags); 10143 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10144 spin_unlock_irqrestore(&phba->hbalock, iflags); 10145 } 10146 return rc; 10147 } 10148 10149 /** 10150 * lpfc_extra_ring_setup - Extra ring setup function 10151 * @phba: Pointer to HBA context object. 10152 * 10153 * This function is called while driver attaches with the 10154 * HBA to setup the extra ring. The extra ring is used 10155 * only when driver needs to support target mode functionality 10156 * or IP over FC functionalities. 10157 * 10158 * This function is called with no lock held. SLI3 only. 10159 **/ 10160 static int 10161 lpfc_extra_ring_setup( struct lpfc_hba *phba) 10162 { 10163 struct lpfc_sli *psli; 10164 struct lpfc_sli_ring *pring; 10165 10166 psli = &phba->sli; 10167 10168 /* Adjust cmd/rsp ring iocb entries more evenly */ 10169 10170 /* Take some away from the FCP ring */ 10171 pring = &psli->sli3_ring[LPFC_FCP_RING]; 10172 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10173 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10174 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10175 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10176 10177 /* and give them to the extra ring */ 10178 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 10179 10180 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10181 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10182 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10183 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10184 10185 /* Setup default profile for this ring */ 10186 pring->iotag_max = 4096; 10187 pring->num_mask = 1; 10188 pring->prt[0].profile = 0; /* Mask 0 */ 10189 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 10190 pring->prt[0].type = phba->cfg_multi_ring_type; 10191 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 10192 return 0; 10193 } 10194 10195 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 10196 * @phba: Pointer to HBA context object. 10197 * @iocbq: Pointer to iocb object. 10198 * 10199 * The async_event handler calls this routine when it receives 10200 * an ASYNC_STATUS_CN event from the port. The port generates 10201 * this event when an Abort Sequence request to an rport fails 10202 * twice in succession. The abort could be originated by the 10203 * driver or by the port. The ABTS could have been for an ELS 10204 * or FCP IO. The port only generates this event when an ABTS 10205 * fails to complete after one retry. 10206 */ 10207 static void 10208 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 10209 struct lpfc_iocbq *iocbq) 10210 { 10211 struct lpfc_nodelist *ndlp = NULL; 10212 uint16_t rpi = 0, vpi = 0; 10213 struct lpfc_vport *vport = NULL; 10214 10215 /* The rpi in the ulpContext is vport-sensitive. */ 10216 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 10217 rpi = iocbq->iocb.ulpContext; 10218 10219 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10220 "3092 Port generated ABTS async event " 10221 "on vpi %d rpi %d status 0x%x\n", 10222 vpi, rpi, iocbq->iocb.ulpStatus); 10223 10224 vport = lpfc_find_vport_by_vpid(phba, vpi); 10225 if (!vport) 10226 goto err_exit; 10227 ndlp = lpfc_findnode_rpi(vport, rpi); 10228 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) 10229 goto err_exit; 10230 10231 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 10232 lpfc_sli_abts_recover_port(vport, ndlp); 10233 return; 10234 10235 err_exit: 10236 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10237 "3095 Event Context not found, no " 10238 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 10239 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 10240 vpi, rpi); 10241 } 10242 10243 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 10244 * @phba: pointer to HBA context object. 10245 * @ndlp: nodelist pointer for the impacted rport. 10246 * @axri: pointer to the wcqe containing the failed exchange. 10247 * 10248 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 10249 * port. The port generates this event when an abort exchange request to an 10250 * rport fails twice in succession with no reply. The abort could be originated 10251 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 10252 */ 10253 void 10254 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 10255 struct lpfc_nodelist *ndlp, 10256 struct sli4_wcqe_xri_aborted *axri) 10257 { 10258 struct lpfc_vport *vport; 10259 uint32_t ext_status = 0; 10260 10261 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { 10262 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10263 "3115 Node Context not found, driver " 10264 "ignoring abts err event\n"); 10265 return; 10266 } 10267 10268 vport = ndlp->vport; 10269 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10270 "3116 Port generated FCP XRI ABORT event on " 10271 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 10272 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 10273 bf_get(lpfc_wcqe_xa_xri, axri), 10274 bf_get(lpfc_wcqe_xa_status, axri), 10275 axri->parameter); 10276 10277 /* 10278 * Catch the ABTS protocol failure case. Older OCe FW releases returned 10279 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 10280 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 10281 */ 10282 ext_status = axri->parameter & IOERR_PARAM_MASK; 10283 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 10284 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 10285 lpfc_sli_abts_recover_port(vport, ndlp); 10286 } 10287 10288 /** 10289 * lpfc_sli_async_event_handler - ASYNC iocb handler function 10290 * @phba: Pointer to HBA context object. 10291 * @pring: Pointer to driver SLI ring object. 10292 * @iocbq: Pointer to iocb object. 10293 * 10294 * This function is called by the slow ring event handler 10295 * function when there is an ASYNC event iocb in the ring. 10296 * This function is called with no lock held. 10297 * Currently this function handles only temperature related 10298 * ASYNC events. The function decodes the temperature sensor 10299 * event message and posts events for the management applications. 10300 **/ 10301 static void 10302 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 10303 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 10304 { 10305 IOCB_t *icmd; 10306 uint16_t evt_code; 10307 struct temp_event temp_event_data; 10308 struct Scsi_Host *shost; 10309 uint32_t *iocb_w; 10310 10311 icmd = &iocbq->iocb; 10312 evt_code = icmd->un.asyncstat.evt_code; 10313 10314 switch (evt_code) { 10315 case ASYNC_TEMP_WARN: 10316 case ASYNC_TEMP_SAFE: 10317 temp_event_data.data = (uint32_t) icmd->ulpContext; 10318 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 10319 if (evt_code == ASYNC_TEMP_WARN) { 10320 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 10321 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 10322 "0347 Adapter is very hot, please take " 10323 "corrective action. temperature : %d Celsius\n", 10324 (uint32_t) icmd->ulpContext); 10325 } else { 10326 temp_event_data.event_code = LPFC_NORMAL_TEMP; 10327 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 10328 "0340 Adapter temperature is OK now. " 10329 "temperature : %d Celsius\n", 10330 (uint32_t) icmd->ulpContext); 10331 } 10332 10333 /* Send temperature change event to applications */ 10334 shost = lpfc_shost_from_vport(phba->pport); 10335 fc_host_post_vendor_event(shost, fc_get_event_number(), 10336 sizeof(temp_event_data), (char *) &temp_event_data, 10337 LPFC_NL_VENDOR_ID); 10338 break; 10339 case ASYNC_STATUS_CN: 10340 lpfc_sli_abts_err_handler(phba, iocbq); 10341 break; 10342 default: 10343 iocb_w = (uint32_t *) icmd; 10344 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 10345 "0346 Ring %d handler: unexpected ASYNC_STATUS" 10346 " evt_code 0x%x\n" 10347 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 10348 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 10349 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 10350 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 10351 pring->ringno, icmd->un.asyncstat.evt_code, 10352 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 10353 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 10354 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 10355 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 10356 10357 break; 10358 } 10359 } 10360 10361 10362 /** 10363 * lpfc_sli4_setup - SLI ring setup function 10364 * @phba: Pointer to HBA context object. 10365 * 10366 * lpfc_sli_setup sets up rings of the SLI interface with 10367 * number of iocbs per ring and iotags. This function is 10368 * called while driver attach to the HBA and before the 10369 * interrupts are enabled. So there is no need for locking. 10370 * 10371 * This function always returns 0. 10372 **/ 10373 int 10374 lpfc_sli4_setup(struct lpfc_hba *phba) 10375 { 10376 struct lpfc_sli_ring *pring; 10377 10378 pring = phba->sli4_hba.els_wq->pring; 10379 pring->num_mask = LPFC_MAX_RING_MASK; 10380 pring->prt[0].profile = 0; /* Mask 0 */ 10381 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10382 pring->prt[0].type = FC_TYPE_ELS; 10383 pring->prt[0].lpfc_sli_rcv_unsol_event = 10384 lpfc_els_unsol_event; 10385 pring->prt[1].profile = 0; /* Mask 1 */ 10386 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10387 pring->prt[1].type = FC_TYPE_ELS; 10388 pring->prt[1].lpfc_sli_rcv_unsol_event = 10389 lpfc_els_unsol_event; 10390 pring->prt[2].profile = 0; /* Mask 2 */ 10391 /* NameServer Inquiry */ 10392 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10393 /* NameServer */ 10394 pring->prt[2].type = FC_TYPE_CT; 10395 pring->prt[2].lpfc_sli_rcv_unsol_event = 10396 lpfc_ct_unsol_event; 10397 pring->prt[3].profile = 0; /* Mask 3 */ 10398 /* NameServer response */ 10399 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10400 /* NameServer */ 10401 pring->prt[3].type = FC_TYPE_CT; 10402 pring->prt[3].lpfc_sli_rcv_unsol_event = 10403 lpfc_ct_unsol_event; 10404 return 0; 10405 } 10406 10407 /** 10408 * lpfc_sli_setup - SLI ring setup function 10409 * @phba: Pointer to HBA context object. 10410 * 10411 * lpfc_sli_setup sets up rings of the SLI interface with 10412 * number of iocbs per ring and iotags. This function is 10413 * called while driver attach to the HBA and before the 10414 * interrupts are enabled. So there is no need for locking. 10415 * 10416 * This function always returns 0. SLI3 only. 10417 **/ 10418 int 10419 lpfc_sli_setup(struct lpfc_hba *phba) 10420 { 10421 int i, totiocbsize = 0; 10422 struct lpfc_sli *psli = &phba->sli; 10423 struct lpfc_sli_ring *pring; 10424 10425 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 10426 psli->sli_flag = 0; 10427 10428 psli->iocbq_lookup = NULL; 10429 psli->iocbq_lookup_len = 0; 10430 psli->last_iotag = 0; 10431 10432 for (i = 0; i < psli->num_rings; i++) { 10433 pring = &psli->sli3_ring[i]; 10434 switch (i) { 10435 case LPFC_FCP_RING: /* ring 0 - FCP */ 10436 /* numCiocb and numRiocb are used in config_port */ 10437 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 10438 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 10439 pring->sli.sli3.numCiocb += 10440 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10441 pring->sli.sli3.numRiocb += 10442 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10443 pring->sli.sli3.numCiocb += 10444 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10445 pring->sli.sli3.numRiocb += 10446 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10447 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10448 SLI3_IOCB_CMD_SIZE : 10449 SLI2_IOCB_CMD_SIZE; 10450 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10451 SLI3_IOCB_RSP_SIZE : 10452 SLI2_IOCB_RSP_SIZE; 10453 pring->iotag_ctr = 0; 10454 pring->iotag_max = 10455 (phba->cfg_hba_queue_depth * 2); 10456 pring->fast_iotag = pring->iotag_max; 10457 pring->num_mask = 0; 10458 break; 10459 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 10460 /* numCiocb and numRiocb are used in config_port */ 10461 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 10462 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 10463 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10464 SLI3_IOCB_CMD_SIZE : 10465 SLI2_IOCB_CMD_SIZE; 10466 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10467 SLI3_IOCB_RSP_SIZE : 10468 SLI2_IOCB_RSP_SIZE; 10469 pring->iotag_max = phba->cfg_hba_queue_depth; 10470 pring->num_mask = 0; 10471 break; 10472 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 10473 /* numCiocb and numRiocb are used in config_port */ 10474 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 10475 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 10476 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10477 SLI3_IOCB_CMD_SIZE : 10478 SLI2_IOCB_CMD_SIZE; 10479 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10480 SLI3_IOCB_RSP_SIZE : 10481 SLI2_IOCB_RSP_SIZE; 10482 pring->fast_iotag = 0; 10483 pring->iotag_ctr = 0; 10484 pring->iotag_max = 4096; 10485 pring->lpfc_sli_rcv_async_status = 10486 lpfc_sli_async_event_handler; 10487 pring->num_mask = LPFC_MAX_RING_MASK; 10488 pring->prt[0].profile = 0; /* Mask 0 */ 10489 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10490 pring->prt[0].type = FC_TYPE_ELS; 10491 pring->prt[0].lpfc_sli_rcv_unsol_event = 10492 lpfc_els_unsol_event; 10493 pring->prt[1].profile = 0; /* Mask 1 */ 10494 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10495 pring->prt[1].type = FC_TYPE_ELS; 10496 pring->prt[1].lpfc_sli_rcv_unsol_event = 10497 lpfc_els_unsol_event; 10498 pring->prt[2].profile = 0; /* Mask 2 */ 10499 /* NameServer Inquiry */ 10500 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10501 /* NameServer */ 10502 pring->prt[2].type = FC_TYPE_CT; 10503 pring->prt[2].lpfc_sli_rcv_unsol_event = 10504 lpfc_ct_unsol_event; 10505 pring->prt[3].profile = 0; /* Mask 3 */ 10506 /* NameServer response */ 10507 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10508 /* NameServer */ 10509 pring->prt[3].type = FC_TYPE_CT; 10510 pring->prt[3].lpfc_sli_rcv_unsol_event = 10511 lpfc_ct_unsol_event; 10512 break; 10513 } 10514 totiocbsize += (pring->sli.sli3.numCiocb * 10515 pring->sli.sli3.sizeCiocb) + 10516 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 10517 } 10518 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 10519 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 10520 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 10521 "SLI2 SLIM Data: x%x x%lx\n", 10522 phba->brd_no, totiocbsize, 10523 (unsigned long) MAX_SLIM_IOCB_SIZE); 10524 } 10525 if (phba->cfg_multi_ring_support == 2) 10526 lpfc_extra_ring_setup(phba); 10527 10528 return 0; 10529 } 10530 10531 /** 10532 * lpfc_sli4_queue_init - Queue initialization function 10533 * @phba: Pointer to HBA context object. 10534 * 10535 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 10536 * ring. This function also initializes ring indices of each ring. 10537 * This function is called during the initialization of the SLI 10538 * interface of an HBA. 10539 * This function is called with no lock held and always returns 10540 * 1. 10541 **/ 10542 void 10543 lpfc_sli4_queue_init(struct lpfc_hba *phba) 10544 { 10545 struct lpfc_sli *psli; 10546 struct lpfc_sli_ring *pring; 10547 int i; 10548 10549 psli = &phba->sli; 10550 spin_lock_irq(&phba->hbalock); 10551 INIT_LIST_HEAD(&psli->mboxq); 10552 INIT_LIST_HEAD(&psli->mboxq_cmpl); 10553 /* Initialize list headers for txq and txcmplq as double linked lists */ 10554 for (i = 0; i < phba->cfg_hdw_queue; i++) { 10555 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 10556 pring->flag = 0; 10557 pring->ringno = LPFC_FCP_RING; 10558 pring->txcmplq_cnt = 0; 10559 INIT_LIST_HEAD(&pring->txq); 10560 INIT_LIST_HEAD(&pring->txcmplq); 10561 INIT_LIST_HEAD(&pring->iocb_continueq); 10562 spin_lock_init(&pring->ring_lock); 10563 } 10564 pring = phba->sli4_hba.els_wq->pring; 10565 pring->flag = 0; 10566 pring->ringno = LPFC_ELS_RING; 10567 pring->txcmplq_cnt = 0; 10568 INIT_LIST_HEAD(&pring->txq); 10569 INIT_LIST_HEAD(&pring->txcmplq); 10570 INIT_LIST_HEAD(&pring->iocb_continueq); 10571 spin_lock_init(&pring->ring_lock); 10572 10573 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 10574 pring = phba->sli4_hba.nvmels_wq->pring; 10575 pring->flag = 0; 10576 pring->ringno = LPFC_ELS_RING; 10577 pring->txcmplq_cnt = 0; 10578 INIT_LIST_HEAD(&pring->txq); 10579 INIT_LIST_HEAD(&pring->txcmplq); 10580 INIT_LIST_HEAD(&pring->iocb_continueq); 10581 spin_lock_init(&pring->ring_lock); 10582 } 10583 10584 spin_unlock_irq(&phba->hbalock); 10585 } 10586 10587 /** 10588 * lpfc_sli_queue_init - Queue initialization function 10589 * @phba: Pointer to HBA context object. 10590 * 10591 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 10592 * ring. This function also initializes ring indices of each ring. 10593 * This function is called during the initialization of the SLI 10594 * interface of an HBA. 10595 * This function is called with no lock held and always returns 10596 * 1. 10597 **/ 10598 void 10599 lpfc_sli_queue_init(struct lpfc_hba *phba) 10600 { 10601 struct lpfc_sli *psli; 10602 struct lpfc_sli_ring *pring; 10603 int i; 10604 10605 psli = &phba->sli; 10606 spin_lock_irq(&phba->hbalock); 10607 INIT_LIST_HEAD(&psli->mboxq); 10608 INIT_LIST_HEAD(&psli->mboxq_cmpl); 10609 /* Initialize list headers for txq and txcmplq as double linked lists */ 10610 for (i = 0; i < psli->num_rings; i++) { 10611 pring = &psli->sli3_ring[i]; 10612 pring->ringno = i; 10613 pring->sli.sli3.next_cmdidx = 0; 10614 pring->sli.sli3.local_getidx = 0; 10615 pring->sli.sli3.cmdidx = 0; 10616 INIT_LIST_HEAD(&pring->iocb_continueq); 10617 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 10618 INIT_LIST_HEAD(&pring->postbufq); 10619 pring->flag = 0; 10620 INIT_LIST_HEAD(&pring->txq); 10621 INIT_LIST_HEAD(&pring->txcmplq); 10622 spin_lock_init(&pring->ring_lock); 10623 } 10624 spin_unlock_irq(&phba->hbalock); 10625 } 10626 10627 /** 10628 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 10629 * @phba: Pointer to HBA context object. 10630 * 10631 * This routine flushes the mailbox command subsystem. It will unconditionally 10632 * flush all the mailbox commands in the three possible stages in the mailbox 10633 * command sub-system: pending mailbox command queue; the outstanding mailbox 10634 * command; and completed mailbox command queue. It is caller's responsibility 10635 * to make sure that the driver is in the proper state to flush the mailbox 10636 * command sub-system. Namely, the posting of mailbox commands into the 10637 * pending mailbox command queue from the various clients must be stopped; 10638 * either the HBA is in a state that it will never works on the outstanding 10639 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 10640 * mailbox command has been completed. 10641 **/ 10642 static void 10643 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 10644 { 10645 LIST_HEAD(completions); 10646 struct lpfc_sli *psli = &phba->sli; 10647 LPFC_MBOXQ_t *pmb; 10648 unsigned long iflag; 10649 10650 /* Disable softirqs, including timers from obtaining phba->hbalock */ 10651 local_bh_disable(); 10652 10653 /* Flush all the mailbox commands in the mbox system */ 10654 spin_lock_irqsave(&phba->hbalock, iflag); 10655 10656 /* The pending mailbox command queue */ 10657 list_splice_init(&phba->sli.mboxq, &completions); 10658 /* The outstanding active mailbox command */ 10659 if (psli->mbox_active) { 10660 list_add_tail(&psli->mbox_active->list, &completions); 10661 psli->mbox_active = NULL; 10662 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10663 } 10664 /* The completed mailbox command queue */ 10665 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 10666 spin_unlock_irqrestore(&phba->hbalock, iflag); 10667 10668 /* Enable softirqs again, done with phba->hbalock */ 10669 local_bh_enable(); 10670 10671 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 10672 while (!list_empty(&completions)) { 10673 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 10674 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 10675 if (pmb->mbox_cmpl) 10676 pmb->mbox_cmpl(phba, pmb); 10677 } 10678 } 10679 10680 /** 10681 * lpfc_sli_host_down - Vport cleanup function 10682 * @vport: Pointer to virtual port object. 10683 * 10684 * lpfc_sli_host_down is called to clean up the resources 10685 * associated with a vport before destroying virtual 10686 * port data structures. 10687 * This function does following operations: 10688 * - Free discovery resources associated with this virtual 10689 * port. 10690 * - Free iocbs associated with this virtual port in 10691 * the txq. 10692 * - Send abort for all iocb commands associated with this 10693 * vport in txcmplq. 10694 * 10695 * This function is called with no lock held and always returns 1. 10696 **/ 10697 int 10698 lpfc_sli_host_down(struct lpfc_vport *vport) 10699 { 10700 LIST_HEAD(completions); 10701 struct lpfc_hba *phba = vport->phba; 10702 struct lpfc_sli *psli = &phba->sli; 10703 struct lpfc_queue *qp = NULL; 10704 struct lpfc_sli_ring *pring; 10705 struct lpfc_iocbq *iocb, *next_iocb; 10706 int i; 10707 unsigned long flags = 0; 10708 uint16_t prev_pring_flag; 10709 10710 lpfc_cleanup_discovery_resources(vport); 10711 10712 spin_lock_irqsave(&phba->hbalock, flags); 10713 10714 /* 10715 * Error everything on the txq since these iocbs 10716 * have not been given to the FW yet. 10717 * Also issue ABTS for everything on the txcmplq 10718 */ 10719 if (phba->sli_rev != LPFC_SLI_REV4) { 10720 for (i = 0; i < psli->num_rings; i++) { 10721 pring = &psli->sli3_ring[i]; 10722 prev_pring_flag = pring->flag; 10723 /* Only slow rings */ 10724 if (pring->ringno == LPFC_ELS_RING) { 10725 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10726 /* Set the lpfc data pending flag */ 10727 set_bit(LPFC_DATA_READY, &phba->data_flags); 10728 } 10729 list_for_each_entry_safe(iocb, next_iocb, 10730 &pring->txq, list) { 10731 if (iocb->vport != vport) 10732 continue; 10733 list_move_tail(&iocb->list, &completions); 10734 } 10735 list_for_each_entry_safe(iocb, next_iocb, 10736 &pring->txcmplq, list) { 10737 if (iocb->vport != vport) 10738 continue; 10739 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10740 } 10741 pring->flag = prev_pring_flag; 10742 } 10743 } else { 10744 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10745 pring = qp->pring; 10746 if (!pring) 10747 continue; 10748 if (pring == phba->sli4_hba.els_wq->pring) { 10749 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10750 /* Set the lpfc data pending flag */ 10751 set_bit(LPFC_DATA_READY, &phba->data_flags); 10752 } 10753 prev_pring_flag = pring->flag; 10754 spin_lock(&pring->ring_lock); 10755 list_for_each_entry_safe(iocb, next_iocb, 10756 &pring->txq, list) { 10757 if (iocb->vport != vport) 10758 continue; 10759 list_move_tail(&iocb->list, &completions); 10760 } 10761 spin_unlock(&pring->ring_lock); 10762 list_for_each_entry_safe(iocb, next_iocb, 10763 &pring->txcmplq, list) { 10764 if (iocb->vport != vport) 10765 continue; 10766 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10767 } 10768 pring->flag = prev_pring_flag; 10769 } 10770 } 10771 spin_unlock_irqrestore(&phba->hbalock, flags); 10772 10773 /* Cancel all the IOCBs from the completions list */ 10774 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10775 IOERR_SLI_DOWN); 10776 return 1; 10777 } 10778 10779 /** 10780 * lpfc_sli_hba_down - Resource cleanup function for the HBA 10781 * @phba: Pointer to HBA context object. 10782 * 10783 * This function cleans up all iocb, buffers, mailbox commands 10784 * while shutting down the HBA. This function is called with no 10785 * lock held and always returns 1. 10786 * This function does the following to cleanup driver resources: 10787 * - Free discovery resources for each virtual port 10788 * - Cleanup any pending fabric iocbs 10789 * - Iterate through the iocb txq and free each entry 10790 * in the list. 10791 * - Free up any buffer posted to the HBA 10792 * - Free mailbox commands in the mailbox queue. 10793 **/ 10794 int 10795 lpfc_sli_hba_down(struct lpfc_hba *phba) 10796 { 10797 LIST_HEAD(completions); 10798 struct lpfc_sli *psli = &phba->sli; 10799 struct lpfc_queue *qp = NULL; 10800 struct lpfc_sli_ring *pring; 10801 struct lpfc_dmabuf *buf_ptr; 10802 unsigned long flags = 0; 10803 int i; 10804 10805 /* Shutdown the mailbox command sub-system */ 10806 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 10807 10808 lpfc_hba_down_prep(phba); 10809 10810 /* Disable softirqs, including timers from obtaining phba->hbalock */ 10811 local_bh_disable(); 10812 10813 lpfc_fabric_abort_hba(phba); 10814 10815 spin_lock_irqsave(&phba->hbalock, flags); 10816 10817 /* 10818 * Error everything on the txq since these iocbs 10819 * have not been given to the FW yet. 10820 */ 10821 if (phba->sli_rev != LPFC_SLI_REV4) { 10822 for (i = 0; i < psli->num_rings; i++) { 10823 pring = &psli->sli3_ring[i]; 10824 /* Only slow rings */ 10825 if (pring->ringno == LPFC_ELS_RING) { 10826 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10827 /* Set the lpfc data pending flag */ 10828 set_bit(LPFC_DATA_READY, &phba->data_flags); 10829 } 10830 list_splice_init(&pring->txq, &completions); 10831 } 10832 } else { 10833 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10834 pring = qp->pring; 10835 if (!pring) 10836 continue; 10837 spin_lock(&pring->ring_lock); 10838 list_splice_init(&pring->txq, &completions); 10839 spin_unlock(&pring->ring_lock); 10840 if (pring == phba->sli4_hba.els_wq->pring) { 10841 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10842 /* Set the lpfc data pending flag */ 10843 set_bit(LPFC_DATA_READY, &phba->data_flags); 10844 } 10845 } 10846 } 10847 spin_unlock_irqrestore(&phba->hbalock, flags); 10848 10849 /* Cancel all the IOCBs from the completions list */ 10850 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10851 IOERR_SLI_DOWN); 10852 10853 spin_lock_irqsave(&phba->hbalock, flags); 10854 list_splice_init(&phba->elsbuf, &completions); 10855 phba->elsbuf_cnt = 0; 10856 phba->elsbuf_prev_cnt = 0; 10857 spin_unlock_irqrestore(&phba->hbalock, flags); 10858 10859 while (!list_empty(&completions)) { 10860 list_remove_head(&completions, buf_ptr, 10861 struct lpfc_dmabuf, list); 10862 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 10863 kfree(buf_ptr); 10864 } 10865 10866 /* Enable softirqs again, done with phba->hbalock */ 10867 local_bh_enable(); 10868 10869 /* Return any active mbox cmds */ 10870 del_timer_sync(&psli->mbox_tmo); 10871 10872 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 10873 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 10874 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 10875 10876 return 1; 10877 } 10878 10879 /** 10880 * lpfc_sli_pcimem_bcopy - SLI memory copy function 10881 * @srcp: Source memory pointer. 10882 * @destp: Destination memory pointer. 10883 * @cnt: Number of words required to be copied. 10884 * 10885 * This function is used for copying data between driver memory 10886 * and the SLI memory. This function also changes the endianness 10887 * of each word if native endianness is different from SLI 10888 * endianness. This function can be called with or without 10889 * lock. 10890 **/ 10891 void 10892 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 10893 { 10894 uint32_t *src = srcp; 10895 uint32_t *dest = destp; 10896 uint32_t ldata; 10897 int i; 10898 10899 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 10900 ldata = *src; 10901 ldata = le32_to_cpu(ldata); 10902 *dest = ldata; 10903 src++; 10904 dest++; 10905 } 10906 } 10907 10908 10909 /** 10910 * lpfc_sli_bemem_bcopy - SLI memory copy function 10911 * @srcp: Source memory pointer. 10912 * @destp: Destination memory pointer. 10913 * @cnt: Number of words required to be copied. 10914 * 10915 * This function is used for copying data between a data structure 10916 * with big endian representation to local endianness. 10917 * This function can be called with or without lock. 10918 **/ 10919 void 10920 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 10921 { 10922 uint32_t *src = srcp; 10923 uint32_t *dest = destp; 10924 uint32_t ldata; 10925 int i; 10926 10927 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 10928 ldata = *src; 10929 ldata = be32_to_cpu(ldata); 10930 *dest = ldata; 10931 src++; 10932 dest++; 10933 } 10934 } 10935 10936 /** 10937 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 10938 * @phba: Pointer to HBA context object. 10939 * @pring: Pointer to driver SLI ring object. 10940 * @mp: Pointer to driver buffer object. 10941 * 10942 * This function is called with no lock held. 10943 * It always return zero after adding the buffer to the postbufq 10944 * buffer list. 10945 **/ 10946 int 10947 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10948 struct lpfc_dmabuf *mp) 10949 { 10950 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 10951 later */ 10952 spin_lock_irq(&phba->hbalock); 10953 list_add_tail(&mp->list, &pring->postbufq); 10954 pring->postbufq_cnt++; 10955 spin_unlock_irq(&phba->hbalock); 10956 return 0; 10957 } 10958 10959 /** 10960 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 10961 * @phba: Pointer to HBA context object. 10962 * 10963 * When HBQ is enabled, buffers are searched based on tags. This function 10964 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 10965 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 10966 * does not conflict with tags of buffer posted for unsolicited events. 10967 * The function returns the allocated tag. The function is called with 10968 * no locks held. 10969 **/ 10970 uint32_t 10971 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 10972 { 10973 spin_lock_irq(&phba->hbalock); 10974 phba->buffer_tag_count++; 10975 /* 10976 * Always set the QUE_BUFTAG_BIT to distiguish between 10977 * a tag assigned by HBQ. 10978 */ 10979 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 10980 spin_unlock_irq(&phba->hbalock); 10981 return phba->buffer_tag_count; 10982 } 10983 10984 /** 10985 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 10986 * @phba: Pointer to HBA context object. 10987 * @pring: Pointer to driver SLI ring object. 10988 * @tag: Buffer tag. 10989 * 10990 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 10991 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 10992 * iocb is posted to the response ring with the tag of the buffer. 10993 * This function searches the pring->postbufq list using the tag 10994 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 10995 * iocb. If the buffer is found then lpfc_dmabuf object of the 10996 * buffer is returned to the caller else NULL is returned. 10997 * This function is called with no lock held. 10998 **/ 10999 struct lpfc_dmabuf * 11000 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11001 uint32_t tag) 11002 { 11003 struct lpfc_dmabuf *mp, *next_mp; 11004 struct list_head *slp = &pring->postbufq; 11005 11006 /* Search postbufq, from the beginning, looking for a match on tag */ 11007 spin_lock_irq(&phba->hbalock); 11008 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11009 if (mp->buffer_tag == tag) { 11010 list_del_init(&mp->list); 11011 pring->postbufq_cnt--; 11012 spin_unlock_irq(&phba->hbalock); 11013 return mp; 11014 } 11015 } 11016 11017 spin_unlock_irq(&phba->hbalock); 11018 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11019 "0402 Cannot find virtual addr for buffer tag on " 11020 "ring %d Data x%lx x%px x%px x%x\n", 11021 pring->ringno, (unsigned long) tag, 11022 slp->next, slp->prev, pring->postbufq_cnt); 11023 11024 return NULL; 11025 } 11026 11027 /** 11028 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 11029 * @phba: Pointer to HBA context object. 11030 * @pring: Pointer to driver SLI ring object. 11031 * @phys: DMA address of the buffer. 11032 * 11033 * This function searches the buffer list using the dma_address 11034 * of unsolicited event to find the driver's lpfc_dmabuf object 11035 * corresponding to the dma_address. The function returns the 11036 * lpfc_dmabuf object if a buffer is found else it returns NULL. 11037 * This function is called by the ct and els unsolicited event 11038 * handlers to get the buffer associated with the unsolicited 11039 * event. 11040 * 11041 * This function is called with no lock held. 11042 **/ 11043 struct lpfc_dmabuf * 11044 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11045 dma_addr_t phys) 11046 { 11047 struct lpfc_dmabuf *mp, *next_mp; 11048 struct list_head *slp = &pring->postbufq; 11049 11050 /* Search postbufq, from the beginning, looking for a match on phys */ 11051 spin_lock_irq(&phba->hbalock); 11052 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11053 if (mp->phys == phys) { 11054 list_del_init(&mp->list); 11055 pring->postbufq_cnt--; 11056 spin_unlock_irq(&phba->hbalock); 11057 return mp; 11058 } 11059 } 11060 11061 spin_unlock_irq(&phba->hbalock); 11062 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11063 "0410 Cannot find virtual addr for mapped buf on " 11064 "ring %d Data x%llx x%px x%px x%x\n", 11065 pring->ringno, (unsigned long long)phys, 11066 slp->next, slp->prev, pring->postbufq_cnt); 11067 return NULL; 11068 } 11069 11070 /** 11071 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 11072 * @phba: Pointer to HBA context object. 11073 * @cmdiocb: Pointer to driver command iocb object. 11074 * @rspiocb: Pointer to driver response iocb object. 11075 * 11076 * This function is the completion handler for the abort iocbs for 11077 * ELS commands. This function is called from the ELS ring event 11078 * handler with no lock held. This function frees memory resources 11079 * associated with the abort iocb. 11080 **/ 11081 static void 11082 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11083 struct lpfc_iocbq *rspiocb) 11084 { 11085 IOCB_t *irsp = &rspiocb->iocb; 11086 uint16_t abort_iotag, abort_context; 11087 struct lpfc_iocbq *abort_iocb = NULL; 11088 11089 if (irsp->ulpStatus) { 11090 11091 /* 11092 * Assume that the port already completed and returned, or 11093 * will return the iocb. Just Log the message. 11094 */ 11095 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 11096 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 11097 11098 spin_lock_irq(&phba->hbalock); 11099 if (phba->sli_rev < LPFC_SLI_REV4) { 11100 if (irsp->ulpCommand == CMD_ABORT_XRI_CX && 11101 irsp->ulpStatus == IOSTAT_LOCAL_REJECT && 11102 irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) { 11103 spin_unlock_irq(&phba->hbalock); 11104 goto release_iocb; 11105 } 11106 if (abort_iotag != 0 && 11107 abort_iotag <= phba->sli.last_iotag) 11108 abort_iocb = 11109 phba->sli.iocbq_lookup[abort_iotag]; 11110 } else 11111 /* For sli4 the abort_tag is the XRI, 11112 * so the abort routine puts the iotag of the iocb 11113 * being aborted in the context field of the abort 11114 * IOCB. 11115 */ 11116 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 11117 11118 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 11119 "0327 Cannot abort els iocb x%px " 11120 "with tag %x context %x, abort status %x, " 11121 "abort code %x\n", 11122 abort_iocb, abort_iotag, abort_context, 11123 irsp->ulpStatus, irsp->un.ulpWord[4]); 11124 11125 spin_unlock_irq(&phba->hbalock); 11126 } 11127 release_iocb: 11128 lpfc_sli_release_iocbq(phba, cmdiocb); 11129 return; 11130 } 11131 11132 /** 11133 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 11134 * @phba: Pointer to HBA context object. 11135 * @cmdiocb: Pointer to driver command iocb object. 11136 * @rspiocb: Pointer to driver response iocb object. 11137 * 11138 * The function is called from SLI ring event handler with no 11139 * lock held. This function is the completion handler for ELS commands 11140 * which are aborted. The function frees memory resources used for 11141 * the aborted ELS commands. 11142 **/ 11143 static void 11144 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11145 struct lpfc_iocbq *rspiocb) 11146 { 11147 IOCB_t *irsp = &rspiocb->iocb; 11148 11149 /* ELS cmd tag <ulpIoTag> completes */ 11150 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 11151 "0139 Ignoring ELS cmd tag x%x completion Data: " 11152 "x%x x%x x%x\n", 11153 irsp->ulpIoTag, irsp->ulpStatus, 11154 irsp->un.ulpWord[4], irsp->ulpTimeout); 11155 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 11156 lpfc_ct_free_iocb(phba, cmdiocb); 11157 else 11158 lpfc_els_free_iocb(phba, cmdiocb); 11159 return; 11160 } 11161 11162 /** 11163 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb 11164 * @phba: Pointer to HBA context object. 11165 * @pring: Pointer to driver SLI ring object. 11166 * @cmdiocb: Pointer to driver command iocb object. 11167 * 11168 * This function issues an abort iocb for the provided command iocb down to 11169 * the port. Other than the case the outstanding command iocb is an abort 11170 * request, this function issues abort out unconditionally. This function is 11171 * called with hbalock held. The function returns 0 when it fails due to 11172 * memory allocation failure or when the command iocb is an abort request. 11173 **/ 11174 static int 11175 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11176 struct lpfc_iocbq *cmdiocb) 11177 { 11178 struct lpfc_vport *vport = cmdiocb->vport; 11179 struct lpfc_iocbq *abtsiocbp; 11180 IOCB_t *icmd = NULL; 11181 IOCB_t *iabt = NULL; 11182 int retval; 11183 unsigned long iflags; 11184 struct lpfc_nodelist *ndlp; 11185 11186 lockdep_assert_held(&phba->hbalock); 11187 11188 /* 11189 * There are certain command types we don't want to abort. And we 11190 * don't want to abort commands that are already in the process of 11191 * being aborted. 11192 */ 11193 icmd = &cmdiocb->iocb; 11194 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11195 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 11196 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 11197 return 0; 11198 11199 /* issue ABTS for this IOCB based on iotag */ 11200 abtsiocbp = __lpfc_sli_get_iocbq(phba); 11201 if (abtsiocbp == NULL) 11202 return 0; 11203 11204 /* This signals the response to set the correct status 11205 * before calling the completion handler 11206 */ 11207 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 11208 11209 iabt = &abtsiocbp->iocb; 11210 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 11211 iabt->un.acxri.abortContextTag = icmd->ulpContext; 11212 if (phba->sli_rev == LPFC_SLI_REV4) { 11213 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 11214 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 11215 } else { 11216 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 11217 if (pring->ringno == LPFC_ELS_RING) { 11218 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1); 11219 iabt->un.acxri.abortContextTag = ndlp->nlp_rpi; 11220 } 11221 } 11222 iabt->ulpLe = 1; 11223 iabt->ulpClass = icmd->ulpClass; 11224 11225 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11226 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 11227 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 11228 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 11229 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 11230 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 11231 11232 if (phba->link_state >= LPFC_LINK_UP) 11233 iabt->ulpCommand = CMD_ABORT_XRI_CN; 11234 else 11235 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 11236 11237 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 11238 abtsiocbp->vport = vport; 11239 11240 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 11241 "0339 Abort xri x%x, original iotag x%x, " 11242 "abort cmd iotag x%x\n", 11243 iabt->un.acxri.abortIoTag, 11244 iabt->un.acxri.abortContextTag, 11245 abtsiocbp->iotag); 11246 11247 if (phba->sli_rev == LPFC_SLI_REV4) { 11248 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 11249 if (unlikely(pring == NULL)) 11250 return 0; 11251 /* Note: both hbalock and ring_lock need to be set here */ 11252 spin_lock_irqsave(&pring->ring_lock, iflags); 11253 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11254 abtsiocbp, 0); 11255 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11256 } else { 11257 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11258 abtsiocbp, 0); 11259 } 11260 11261 if (retval) 11262 __lpfc_sli_release_iocbq(phba, abtsiocbp); 11263 11264 /* 11265 * Caller to this routine should check for IOCB_ERROR 11266 * and handle it properly. This routine no longer removes 11267 * iocb off txcmplq and call compl in case of IOCB_ERROR. 11268 */ 11269 return retval; 11270 } 11271 11272 /** 11273 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 11274 * @phba: Pointer to HBA context object. 11275 * @pring: Pointer to driver SLI ring object. 11276 * @cmdiocb: Pointer to driver command iocb object. 11277 * 11278 * This function issues an abort iocb for the provided command iocb. In case 11279 * of unloading, the abort iocb will not be issued to commands on the ELS 11280 * ring. Instead, the callback function shall be changed to those commands 11281 * so that nothing happens when them finishes. This function is called with 11282 * hbalock held. The function returns 0 when the command iocb is an abort 11283 * request. 11284 **/ 11285 int 11286 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11287 struct lpfc_iocbq *cmdiocb) 11288 { 11289 struct lpfc_vport *vport = cmdiocb->vport; 11290 int retval = IOCB_ERROR; 11291 IOCB_t *icmd = NULL; 11292 11293 lockdep_assert_held(&phba->hbalock); 11294 11295 /* 11296 * There are certain command types we don't want to abort. And we 11297 * don't want to abort commands that are already in the process of 11298 * being aborted. 11299 */ 11300 icmd = &cmdiocb->iocb; 11301 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11302 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 11303 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 11304 return 0; 11305 11306 if (!pring) { 11307 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11308 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11309 else 11310 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11311 goto abort_iotag_exit; 11312 } 11313 11314 /* 11315 * If we're unloading, don't abort iocb on the ELS ring, but change 11316 * the callback so that nothing happens when it finishes. 11317 */ 11318 if ((vport->load_flag & FC_UNLOADING) && 11319 (pring->ringno == LPFC_ELS_RING)) { 11320 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11321 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11322 else 11323 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11324 goto abort_iotag_exit; 11325 } 11326 11327 /* Now, we try to issue the abort to the cmdiocb out */ 11328 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb); 11329 11330 abort_iotag_exit: 11331 /* 11332 * Caller to this routine should check for IOCB_ERROR 11333 * and handle it properly. This routine no longer removes 11334 * iocb off txcmplq and call compl in case of IOCB_ERROR. 11335 */ 11336 return retval; 11337 } 11338 11339 /** 11340 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 11341 * @phba: pointer to lpfc HBA data structure. 11342 * 11343 * This routine will abort all pending and outstanding iocbs to an HBA. 11344 **/ 11345 void 11346 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 11347 { 11348 struct lpfc_sli *psli = &phba->sli; 11349 struct lpfc_sli_ring *pring; 11350 struct lpfc_queue *qp = NULL; 11351 int i; 11352 11353 if (phba->sli_rev != LPFC_SLI_REV4) { 11354 for (i = 0; i < psli->num_rings; i++) { 11355 pring = &psli->sli3_ring[i]; 11356 lpfc_sli_abort_iocb_ring(phba, pring); 11357 } 11358 return; 11359 } 11360 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11361 pring = qp->pring; 11362 if (!pring) 11363 continue; 11364 lpfc_sli_abort_iocb_ring(phba, pring); 11365 } 11366 } 11367 11368 /** 11369 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 11370 * @iocbq: Pointer to driver iocb object. 11371 * @vport: Pointer to driver virtual port object. 11372 * @tgt_id: SCSI ID of the target. 11373 * @lun_id: LUN ID of the scsi device. 11374 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 11375 * 11376 * This function acts as an iocb filter for functions which abort or count 11377 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 11378 * 0 if the filtering criteria is met for the given iocb and will return 11379 * 1 if the filtering criteria is not met. 11380 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 11381 * given iocb is for the SCSI device specified by vport, tgt_id and 11382 * lun_id parameter. 11383 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 11384 * given iocb is for the SCSI target specified by vport and tgt_id 11385 * parameters. 11386 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 11387 * given iocb is for the SCSI host associated with the given vport. 11388 * This function is called with no locks held. 11389 **/ 11390 static int 11391 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 11392 uint16_t tgt_id, uint64_t lun_id, 11393 lpfc_ctx_cmd ctx_cmd) 11394 { 11395 struct lpfc_io_buf *lpfc_cmd; 11396 int rc = 1; 11397 11398 if (iocbq->vport != vport) 11399 return rc; 11400 11401 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 11402 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) 11403 return rc; 11404 11405 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 11406 11407 if (lpfc_cmd->pCmd == NULL) 11408 return rc; 11409 11410 switch (ctx_cmd) { 11411 case LPFC_CTX_LUN: 11412 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11413 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 11414 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 11415 rc = 0; 11416 break; 11417 case LPFC_CTX_TGT: 11418 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11419 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 11420 rc = 0; 11421 break; 11422 case LPFC_CTX_HOST: 11423 rc = 0; 11424 break; 11425 default: 11426 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 11427 __func__, ctx_cmd); 11428 break; 11429 } 11430 11431 return rc; 11432 } 11433 11434 /** 11435 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 11436 * @vport: Pointer to virtual port. 11437 * @tgt_id: SCSI ID of the target. 11438 * @lun_id: LUN ID of the scsi device. 11439 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11440 * 11441 * This function returns number of FCP commands pending for the vport. 11442 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 11443 * commands pending on the vport associated with SCSI device specified 11444 * by tgt_id and lun_id parameters. 11445 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 11446 * commands pending on the vport associated with SCSI target specified 11447 * by tgt_id parameter. 11448 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 11449 * commands pending on the vport. 11450 * This function returns the number of iocbs which satisfy the filter. 11451 * This function is called without any lock held. 11452 **/ 11453 int 11454 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 11455 lpfc_ctx_cmd ctx_cmd) 11456 { 11457 struct lpfc_hba *phba = vport->phba; 11458 struct lpfc_iocbq *iocbq; 11459 int sum, i; 11460 11461 spin_lock_irq(&phba->hbalock); 11462 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 11463 iocbq = phba->sli.iocbq_lookup[i]; 11464 11465 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 11466 ctx_cmd) == 0) 11467 sum++; 11468 } 11469 spin_unlock_irq(&phba->hbalock); 11470 11471 return sum; 11472 } 11473 11474 /** 11475 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 11476 * @phba: Pointer to HBA context object 11477 * @cmdiocb: Pointer to command iocb object. 11478 * @rspiocb: Pointer to response iocb object. 11479 * 11480 * This function is called when an aborted FCP iocb completes. This 11481 * function is called by the ring event handler with no lock held. 11482 * This function frees the iocb. 11483 **/ 11484 void 11485 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11486 struct lpfc_iocbq *rspiocb) 11487 { 11488 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11489 "3096 ABORT_XRI_CN completing on rpi x%x " 11490 "original iotag x%x, abort cmd iotag x%x " 11491 "status 0x%x, reason 0x%x\n", 11492 cmdiocb->iocb.un.acxri.abortContextTag, 11493 cmdiocb->iocb.un.acxri.abortIoTag, 11494 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 11495 rspiocb->iocb.un.ulpWord[4]); 11496 lpfc_sli_release_iocbq(phba, cmdiocb); 11497 return; 11498 } 11499 11500 /** 11501 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 11502 * @vport: Pointer to virtual port. 11503 * @pring: Pointer to driver SLI ring object. 11504 * @tgt_id: SCSI ID of the target. 11505 * @lun_id: LUN ID of the scsi device. 11506 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11507 * 11508 * This function sends an abort command for every SCSI command 11509 * associated with the given virtual port pending on the ring 11510 * filtered by lpfc_sli_validate_fcp_iocb function. 11511 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 11512 * FCP iocbs associated with lun specified by tgt_id and lun_id 11513 * parameters 11514 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 11515 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11516 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 11517 * FCP iocbs associated with virtual port. 11518 * This function returns number of iocbs it failed to abort. 11519 * This function is called with no locks held. 11520 **/ 11521 int 11522 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 11523 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd) 11524 { 11525 struct lpfc_hba *phba = vport->phba; 11526 struct lpfc_iocbq *iocbq; 11527 struct lpfc_iocbq *abtsiocb; 11528 struct lpfc_sli_ring *pring_s4; 11529 IOCB_t *cmd = NULL; 11530 int errcnt = 0, ret_val = 0; 11531 int i; 11532 11533 /* all I/Os are in process of being flushed */ 11534 if (phba->hba_flag & HBA_IOQ_FLUSH) 11535 return errcnt; 11536 11537 for (i = 1; i <= phba->sli.last_iotag; i++) { 11538 iocbq = phba->sli.iocbq_lookup[i]; 11539 11540 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 11541 abort_cmd) != 0) 11542 continue; 11543 11544 /* 11545 * If the iocbq is already being aborted, don't take a second 11546 * action, but do count it. 11547 */ 11548 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 11549 continue; 11550 11551 /* issue ABTS for this IOCB based on iotag */ 11552 abtsiocb = lpfc_sli_get_iocbq(phba); 11553 if (abtsiocb == NULL) { 11554 errcnt++; 11555 continue; 11556 } 11557 11558 /* indicate the IO is being aborted by the driver. */ 11559 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 11560 11561 cmd = &iocbq->iocb; 11562 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 11563 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext; 11564 if (phba->sli_rev == LPFC_SLI_REV4) 11565 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag; 11566 else 11567 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag; 11568 abtsiocb->iocb.ulpLe = 1; 11569 abtsiocb->iocb.ulpClass = cmd->ulpClass; 11570 abtsiocb->vport = vport; 11571 11572 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11573 abtsiocb->hba_wqidx = iocbq->hba_wqidx; 11574 if (iocbq->iocb_flag & LPFC_IO_FCP) 11575 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 11576 if (iocbq->iocb_flag & LPFC_IO_FOF) 11577 abtsiocb->iocb_flag |= LPFC_IO_FOF; 11578 11579 if (lpfc_is_link_up(phba)) 11580 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN; 11581 else 11582 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 11583 11584 /* Setup callback routine and issue the command. */ 11585 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 11586 if (phba->sli_rev == LPFC_SLI_REV4) { 11587 pring_s4 = lpfc_sli4_calc_ring(phba, iocbq); 11588 if (!pring_s4) 11589 continue; 11590 ret_val = lpfc_sli_issue_iocb(phba, pring_s4->ringno, 11591 abtsiocb, 0); 11592 } else 11593 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno, 11594 abtsiocb, 0); 11595 if (ret_val == IOCB_ERROR) { 11596 lpfc_sli_release_iocbq(phba, abtsiocb); 11597 errcnt++; 11598 continue; 11599 } 11600 } 11601 11602 return errcnt; 11603 } 11604 11605 /** 11606 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 11607 * @vport: Pointer to virtual port. 11608 * @pring: Pointer to driver SLI ring object. 11609 * @tgt_id: SCSI ID of the target. 11610 * @lun_id: LUN ID of the scsi device. 11611 * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11612 * 11613 * This function sends an abort command for every SCSI command 11614 * associated with the given virtual port pending on the ring 11615 * filtered by lpfc_sli_validate_fcp_iocb function. 11616 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 11617 * FCP iocbs associated with lun specified by tgt_id and lun_id 11618 * parameters 11619 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 11620 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11621 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 11622 * FCP iocbs associated with virtual port. 11623 * This function returns number of iocbs it aborted . 11624 * This function is called with no locks held right after a taskmgmt 11625 * command is sent. 11626 **/ 11627 int 11628 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 11629 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 11630 { 11631 struct lpfc_hba *phba = vport->phba; 11632 struct lpfc_io_buf *lpfc_cmd; 11633 struct lpfc_iocbq *abtsiocbq; 11634 struct lpfc_nodelist *ndlp; 11635 struct lpfc_iocbq *iocbq; 11636 IOCB_t *icmd; 11637 int sum, i, ret_val; 11638 unsigned long iflags; 11639 struct lpfc_sli_ring *pring_s4 = NULL; 11640 11641 spin_lock_irqsave(&phba->hbalock, iflags); 11642 11643 /* all I/Os are in process of being flushed */ 11644 if (phba->hba_flag & HBA_IOQ_FLUSH) { 11645 spin_unlock_irqrestore(&phba->hbalock, iflags); 11646 return 0; 11647 } 11648 sum = 0; 11649 11650 for (i = 1; i <= phba->sli.last_iotag; i++) { 11651 iocbq = phba->sli.iocbq_lookup[i]; 11652 11653 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 11654 cmd) != 0) 11655 continue; 11656 11657 /* Guard against IO completion being called at same time */ 11658 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 11659 spin_lock(&lpfc_cmd->buf_lock); 11660 11661 if (!lpfc_cmd->pCmd) { 11662 spin_unlock(&lpfc_cmd->buf_lock); 11663 continue; 11664 } 11665 11666 if (phba->sli_rev == LPFC_SLI_REV4) { 11667 pring_s4 = 11668 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 11669 if (!pring_s4) { 11670 spin_unlock(&lpfc_cmd->buf_lock); 11671 continue; 11672 } 11673 /* Note: both hbalock and ring_lock must be set here */ 11674 spin_lock(&pring_s4->ring_lock); 11675 } 11676 11677 /* 11678 * If the iocbq is already being aborted, don't take a second 11679 * action, but do count it. 11680 */ 11681 if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) || 11682 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) { 11683 if (phba->sli_rev == LPFC_SLI_REV4) 11684 spin_unlock(&pring_s4->ring_lock); 11685 spin_unlock(&lpfc_cmd->buf_lock); 11686 continue; 11687 } 11688 11689 /* issue ABTS for this IOCB based on iotag */ 11690 abtsiocbq = __lpfc_sli_get_iocbq(phba); 11691 if (!abtsiocbq) { 11692 if (phba->sli_rev == LPFC_SLI_REV4) 11693 spin_unlock(&pring_s4->ring_lock); 11694 spin_unlock(&lpfc_cmd->buf_lock); 11695 continue; 11696 } 11697 11698 icmd = &iocbq->iocb; 11699 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 11700 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 11701 if (phba->sli_rev == LPFC_SLI_REV4) 11702 abtsiocbq->iocb.un.acxri.abortIoTag = 11703 iocbq->sli4_xritag; 11704 else 11705 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 11706 abtsiocbq->iocb.ulpLe = 1; 11707 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 11708 abtsiocbq->vport = vport; 11709 11710 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11711 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 11712 if (iocbq->iocb_flag & LPFC_IO_FCP) 11713 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 11714 if (iocbq->iocb_flag & LPFC_IO_FOF) 11715 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 11716 11717 ndlp = lpfc_cmd->rdata->pnode; 11718 11719 if (lpfc_is_link_up(phba) && 11720 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 11721 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 11722 else 11723 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 11724 11725 /* Setup callback routine and issue the command. */ 11726 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 11727 11728 /* 11729 * Indicate the IO is being aborted by the driver and set 11730 * the caller's flag into the aborted IO. 11731 */ 11732 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 11733 11734 if (phba->sli_rev == LPFC_SLI_REV4) { 11735 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 11736 abtsiocbq, 0); 11737 spin_unlock(&pring_s4->ring_lock); 11738 } else { 11739 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 11740 abtsiocbq, 0); 11741 } 11742 11743 spin_unlock(&lpfc_cmd->buf_lock); 11744 11745 if (ret_val == IOCB_ERROR) 11746 __lpfc_sli_release_iocbq(phba, abtsiocbq); 11747 else 11748 sum++; 11749 } 11750 spin_unlock_irqrestore(&phba->hbalock, iflags); 11751 return sum; 11752 } 11753 11754 /** 11755 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 11756 * @phba: Pointer to HBA context object. 11757 * @cmdiocbq: Pointer to command iocb. 11758 * @rspiocbq: Pointer to response iocb. 11759 * 11760 * This function is the completion handler for iocbs issued using 11761 * lpfc_sli_issue_iocb_wait function. This function is called by the 11762 * ring event handler function without any lock held. This function 11763 * can be called from both worker thread context and interrupt 11764 * context. This function also can be called from other thread which 11765 * cleans up the SLI layer objects. 11766 * This function copy the contents of the response iocb to the 11767 * response iocb memory object provided by the caller of 11768 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 11769 * sleeps for the iocb completion. 11770 **/ 11771 static void 11772 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 11773 struct lpfc_iocbq *cmdiocbq, 11774 struct lpfc_iocbq *rspiocbq) 11775 { 11776 wait_queue_head_t *pdone_q; 11777 unsigned long iflags; 11778 struct lpfc_io_buf *lpfc_cmd; 11779 11780 spin_lock_irqsave(&phba->hbalock, iflags); 11781 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 11782 11783 /* 11784 * A time out has occurred for the iocb. If a time out 11785 * completion handler has been supplied, call it. Otherwise, 11786 * just free the iocbq. 11787 */ 11788 11789 spin_unlock_irqrestore(&phba->hbalock, iflags); 11790 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 11791 cmdiocbq->wait_iocb_cmpl = NULL; 11792 if (cmdiocbq->iocb_cmpl) 11793 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 11794 else 11795 lpfc_sli_release_iocbq(phba, cmdiocbq); 11796 return; 11797 } 11798 11799 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 11800 if (cmdiocbq->context2 && rspiocbq) 11801 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 11802 &rspiocbq->iocb, sizeof(IOCB_t)); 11803 11804 /* Set the exchange busy flag for task management commands */ 11805 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 11806 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 11807 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 11808 cur_iocbq); 11809 if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY)) 11810 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 11811 else 11812 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 11813 } 11814 11815 pdone_q = cmdiocbq->context_un.wait_queue; 11816 if (pdone_q) 11817 wake_up(pdone_q); 11818 spin_unlock_irqrestore(&phba->hbalock, iflags); 11819 return; 11820 } 11821 11822 /** 11823 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 11824 * @phba: Pointer to HBA context object.. 11825 * @piocbq: Pointer to command iocb. 11826 * @flag: Flag to test. 11827 * 11828 * This routine grabs the hbalock and then test the iocb_flag to 11829 * see if the passed in flag is set. 11830 * Returns: 11831 * 1 if flag is set. 11832 * 0 if flag is not set. 11833 **/ 11834 static int 11835 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 11836 struct lpfc_iocbq *piocbq, uint32_t flag) 11837 { 11838 unsigned long iflags; 11839 int ret; 11840 11841 spin_lock_irqsave(&phba->hbalock, iflags); 11842 ret = piocbq->iocb_flag & flag; 11843 spin_unlock_irqrestore(&phba->hbalock, iflags); 11844 return ret; 11845 11846 } 11847 11848 /** 11849 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 11850 * @phba: Pointer to HBA context object.. 11851 * @pring: Pointer to sli ring. 11852 * @piocb: Pointer to command iocb. 11853 * @prspiocbq: Pointer to response iocb. 11854 * @timeout: Timeout in number of seconds. 11855 * 11856 * This function issues the iocb to firmware and waits for the 11857 * iocb to complete. The iocb_cmpl field of the shall be used 11858 * to handle iocbs which time out. If the field is NULL, the 11859 * function shall free the iocbq structure. If more clean up is 11860 * needed, the caller is expected to provide a completion function 11861 * that will provide the needed clean up. If the iocb command is 11862 * not completed within timeout seconds, the function will either 11863 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 11864 * completion function set in the iocb_cmpl field and then return 11865 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 11866 * resources if this function returns IOCB_TIMEDOUT. 11867 * The function waits for the iocb completion using an 11868 * non-interruptible wait. 11869 * This function will sleep while waiting for iocb completion. 11870 * So, this function should not be called from any context which 11871 * does not allow sleeping. Due to the same reason, this function 11872 * cannot be called with interrupt disabled. 11873 * This function assumes that the iocb completions occur while 11874 * this function sleep. So, this function cannot be called from 11875 * the thread which process iocb completion for this ring. 11876 * This function clears the iocb_flag of the iocb object before 11877 * issuing the iocb and the iocb completion handler sets this 11878 * flag and wakes this thread when the iocb completes. 11879 * The contents of the response iocb will be copied to prspiocbq 11880 * by the completion handler when the command completes. 11881 * This function returns IOCB_SUCCESS when success. 11882 * This function is called with no lock held. 11883 **/ 11884 int 11885 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 11886 uint32_t ring_number, 11887 struct lpfc_iocbq *piocb, 11888 struct lpfc_iocbq *prspiocbq, 11889 uint32_t timeout) 11890 { 11891 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 11892 long timeleft, timeout_req = 0; 11893 int retval = IOCB_SUCCESS; 11894 uint32_t creg_val; 11895 struct lpfc_iocbq *iocb; 11896 int txq_cnt = 0; 11897 int txcmplq_cnt = 0; 11898 struct lpfc_sli_ring *pring; 11899 unsigned long iflags; 11900 bool iocb_completed = true; 11901 11902 if (phba->sli_rev >= LPFC_SLI_REV4) 11903 pring = lpfc_sli4_calc_ring(phba, piocb); 11904 else 11905 pring = &phba->sli.sli3_ring[ring_number]; 11906 /* 11907 * If the caller has provided a response iocbq buffer, then context2 11908 * is NULL or its an error. 11909 */ 11910 if (prspiocbq) { 11911 if (piocb->context2) 11912 return IOCB_ERROR; 11913 piocb->context2 = prspiocbq; 11914 } 11915 11916 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 11917 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 11918 piocb->context_un.wait_queue = &done_q; 11919 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 11920 11921 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 11922 if (lpfc_readl(phba->HCregaddr, &creg_val)) 11923 return IOCB_ERROR; 11924 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 11925 writel(creg_val, phba->HCregaddr); 11926 readl(phba->HCregaddr); /* flush */ 11927 } 11928 11929 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 11930 SLI_IOCB_RET_IOCB); 11931 if (retval == IOCB_SUCCESS) { 11932 timeout_req = msecs_to_jiffies(timeout * 1000); 11933 timeleft = wait_event_timeout(done_q, 11934 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 11935 timeout_req); 11936 spin_lock_irqsave(&phba->hbalock, iflags); 11937 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 11938 11939 /* 11940 * IOCB timed out. Inform the wake iocb wait 11941 * completion function and set local status 11942 */ 11943 11944 iocb_completed = false; 11945 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 11946 } 11947 spin_unlock_irqrestore(&phba->hbalock, iflags); 11948 if (iocb_completed) { 11949 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11950 "0331 IOCB wake signaled\n"); 11951 /* Note: we are not indicating if the IOCB has a success 11952 * status or not - that's for the caller to check. 11953 * IOCB_SUCCESS means just that the command was sent and 11954 * completed. Not that it completed successfully. 11955 * */ 11956 } else if (timeleft == 0) { 11957 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11958 "0338 IOCB wait timeout error - no " 11959 "wake response Data x%x\n", timeout); 11960 retval = IOCB_TIMEDOUT; 11961 } else { 11962 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11963 "0330 IOCB wake NOT set, " 11964 "Data x%x x%lx\n", 11965 timeout, (timeleft / jiffies)); 11966 retval = IOCB_TIMEDOUT; 11967 } 11968 } else if (retval == IOCB_BUSY) { 11969 if (phba->cfg_log_verbose & LOG_SLI) { 11970 list_for_each_entry(iocb, &pring->txq, list) { 11971 txq_cnt++; 11972 } 11973 list_for_each_entry(iocb, &pring->txcmplq, list) { 11974 txcmplq_cnt++; 11975 } 11976 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11977 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 11978 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 11979 } 11980 return retval; 11981 } else { 11982 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11983 "0332 IOCB wait issue failed, Data x%x\n", 11984 retval); 11985 retval = IOCB_ERROR; 11986 } 11987 11988 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 11989 if (lpfc_readl(phba->HCregaddr, &creg_val)) 11990 return IOCB_ERROR; 11991 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 11992 writel(creg_val, phba->HCregaddr); 11993 readl(phba->HCregaddr); /* flush */ 11994 } 11995 11996 if (prspiocbq) 11997 piocb->context2 = NULL; 11998 11999 piocb->context_un.wait_queue = NULL; 12000 piocb->iocb_cmpl = NULL; 12001 return retval; 12002 } 12003 12004 /** 12005 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 12006 * @phba: Pointer to HBA context object. 12007 * @pmboxq: Pointer to driver mailbox object. 12008 * @timeout: Timeout in number of seconds. 12009 * 12010 * This function issues the mailbox to firmware and waits for the 12011 * mailbox command to complete. If the mailbox command is not 12012 * completed within timeout seconds, it returns MBX_TIMEOUT. 12013 * The function waits for the mailbox completion using an 12014 * interruptible wait. If the thread is woken up due to a 12015 * signal, MBX_TIMEOUT error is returned to the caller. Caller 12016 * should not free the mailbox resources, if this function returns 12017 * MBX_TIMEOUT. 12018 * This function will sleep while waiting for mailbox completion. 12019 * So, this function should not be called from any context which 12020 * does not allow sleeping. Due to the same reason, this function 12021 * cannot be called with interrupt disabled. 12022 * This function assumes that the mailbox completion occurs while 12023 * this function sleep. So, this function cannot be called from 12024 * the worker thread which processes mailbox completion. 12025 * This function is called in the context of HBA management 12026 * applications. 12027 * This function returns MBX_SUCCESS when successful. 12028 * This function is called with no lock held. 12029 **/ 12030 int 12031 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 12032 uint32_t timeout) 12033 { 12034 struct completion mbox_done; 12035 int retval; 12036 unsigned long flag; 12037 12038 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 12039 /* setup wake call as IOCB callback */ 12040 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 12041 12042 /* setup context3 field to pass wait_queue pointer to wake function */ 12043 init_completion(&mbox_done); 12044 pmboxq->context3 = &mbox_done; 12045 /* now issue the command */ 12046 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 12047 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 12048 wait_for_completion_timeout(&mbox_done, 12049 msecs_to_jiffies(timeout * 1000)); 12050 12051 spin_lock_irqsave(&phba->hbalock, flag); 12052 pmboxq->context3 = NULL; 12053 /* 12054 * if LPFC_MBX_WAKE flag is set the mailbox is completed 12055 * else do not free the resources. 12056 */ 12057 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 12058 retval = MBX_SUCCESS; 12059 } else { 12060 retval = MBX_TIMEOUT; 12061 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 12062 } 12063 spin_unlock_irqrestore(&phba->hbalock, flag); 12064 } 12065 return retval; 12066 } 12067 12068 /** 12069 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 12070 * @phba: Pointer to HBA context. 12071 * 12072 * This function is called to shutdown the driver's mailbox sub-system. 12073 * It first marks the mailbox sub-system is in a block state to prevent 12074 * the asynchronous mailbox command from issued off the pending mailbox 12075 * command queue. If the mailbox command sub-system shutdown is due to 12076 * HBA error conditions such as EEH or ERATT, this routine shall invoke 12077 * the mailbox sub-system flush routine to forcefully bring down the 12078 * mailbox sub-system. Otherwise, if it is due to normal condition (such 12079 * as with offline or HBA function reset), this routine will wait for the 12080 * outstanding mailbox command to complete before invoking the mailbox 12081 * sub-system flush routine to gracefully bring down mailbox sub-system. 12082 **/ 12083 void 12084 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 12085 { 12086 struct lpfc_sli *psli = &phba->sli; 12087 unsigned long timeout; 12088 12089 if (mbx_action == LPFC_MBX_NO_WAIT) { 12090 /* delay 100ms for port state */ 12091 msleep(100); 12092 lpfc_sli_mbox_sys_flush(phba); 12093 return; 12094 } 12095 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 12096 12097 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12098 local_bh_disable(); 12099 12100 spin_lock_irq(&phba->hbalock); 12101 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 12102 12103 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 12104 /* Determine how long we might wait for the active mailbox 12105 * command to be gracefully completed by firmware. 12106 */ 12107 if (phba->sli.mbox_active) 12108 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 12109 phba->sli.mbox_active) * 12110 1000) + jiffies; 12111 spin_unlock_irq(&phba->hbalock); 12112 12113 /* Enable softirqs again, done with phba->hbalock */ 12114 local_bh_enable(); 12115 12116 while (phba->sli.mbox_active) { 12117 /* Check active mailbox complete status every 2ms */ 12118 msleep(2); 12119 if (time_after(jiffies, timeout)) 12120 /* Timeout, let the mailbox flush routine to 12121 * forcefully release active mailbox command 12122 */ 12123 break; 12124 } 12125 } else { 12126 spin_unlock_irq(&phba->hbalock); 12127 12128 /* Enable softirqs again, done with phba->hbalock */ 12129 local_bh_enable(); 12130 } 12131 12132 lpfc_sli_mbox_sys_flush(phba); 12133 } 12134 12135 /** 12136 * lpfc_sli_eratt_read - read sli-3 error attention events 12137 * @phba: Pointer to HBA context. 12138 * 12139 * This function is called to read the SLI3 device error attention registers 12140 * for possible error attention events. The caller must hold the hostlock 12141 * with spin_lock_irq(). 12142 * 12143 * This function returns 1 when there is Error Attention in the Host Attention 12144 * Register and returns 0 otherwise. 12145 **/ 12146 static int 12147 lpfc_sli_eratt_read(struct lpfc_hba *phba) 12148 { 12149 uint32_t ha_copy; 12150 12151 /* Read chip Host Attention (HA) register */ 12152 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12153 goto unplug_err; 12154 12155 if (ha_copy & HA_ERATT) { 12156 /* Read host status register to retrieve error event */ 12157 if (lpfc_sli_read_hs(phba)) 12158 goto unplug_err; 12159 12160 /* Check if there is a deferred error condition is active */ 12161 if ((HS_FFER1 & phba->work_hs) && 12162 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12163 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 12164 phba->hba_flag |= DEFER_ERATT; 12165 /* Clear all interrupt enable conditions */ 12166 writel(0, phba->HCregaddr); 12167 readl(phba->HCregaddr); 12168 } 12169 12170 /* Set the driver HA work bitmap */ 12171 phba->work_ha |= HA_ERATT; 12172 /* Indicate polling handles this ERATT */ 12173 phba->hba_flag |= HBA_ERATT_HANDLED; 12174 return 1; 12175 } 12176 return 0; 12177 12178 unplug_err: 12179 /* Set the driver HS work bitmap */ 12180 phba->work_hs |= UNPLUG_ERR; 12181 /* Set the driver HA work bitmap */ 12182 phba->work_ha |= HA_ERATT; 12183 /* Indicate polling handles this ERATT */ 12184 phba->hba_flag |= HBA_ERATT_HANDLED; 12185 return 1; 12186 } 12187 12188 /** 12189 * lpfc_sli4_eratt_read - read sli-4 error attention events 12190 * @phba: Pointer to HBA context. 12191 * 12192 * This function is called to read the SLI4 device error attention registers 12193 * for possible error attention events. The caller must hold the hostlock 12194 * with spin_lock_irq(). 12195 * 12196 * This function returns 1 when there is Error Attention in the Host Attention 12197 * Register and returns 0 otherwise. 12198 **/ 12199 static int 12200 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 12201 { 12202 uint32_t uerr_sta_hi, uerr_sta_lo; 12203 uint32_t if_type, portsmphr; 12204 struct lpfc_register portstat_reg; 12205 12206 /* 12207 * For now, use the SLI4 device internal unrecoverable error 12208 * registers for error attention. This can be changed later. 12209 */ 12210 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 12211 switch (if_type) { 12212 case LPFC_SLI_INTF_IF_TYPE_0: 12213 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 12214 &uerr_sta_lo) || 12215 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 12216 &uerr_sta_hi)) { 12217 phba->work_hs |= UNPLUG_ERR; 12218 phba->work_ha |= HA_ERATT; 12219 phba->hba_flag |= HBA_ERATT_HANDLED; 12220 return 1; 12221 } 12222 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 12223 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 12224 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12225 "1423 HBA Unrecoverable error: " 12226 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 12227 "ue_mask_lo_reg=0x%x, " 12228 "ue_mask_hi_reg=0x%x\n", 12229 uerr_sta_lo, uerr_sta_hi, 12230 phba->sli4_hba.ue_mask_lo, 12231 phba->sli4_hba.ue_mask_hi); 12232 phba->work_status[0] = uerr_sta_lo; 12233 phba->work_status[1] = uerr_sta_hi; 12234 phba->work_ha |= HA_ERATT; 12235 phba->hba_flag |= HBA_ERATT_HANDLED; 12236 return 1; 12237 } 12238 break; 12239 case LPFC_SLI_INTF_IF_TYPE_2: 12240 case LPFC_SLI_INTF_IF_TYPE_6: 12241 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 12242 &portstat_reg.word0) || 12243 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 12244 &portsmphr)){ 12245 phba->work_hs |= UNPLUG_ERR; 12246 phba->work_ha |= HA_ERATT; 12247 phba->hba_flag |= HBA_ERATT_HANDLED; 12248 return 1; 12249 } 12250 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 12251 phba->work_status[0] = 12252 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 12253 phba->work_status[1] = 12254 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 12255 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12256 "2885 Port Status Event: " 12257 "port status reg 0x%x, " 12258 "port smphr reg 0x%x, " 12259 "error 1=0x%x, error 2=0x%x\n", 12260 portstat_reg.word0, 12261 portsmphr, 12262 phba->work_status[0], 12263 phba->work_status[1]); 12264 phba->work_ha |= HA_ERATT; 12265 phba->hba_flag |= HBA_ERATT_HANDLED; 12266 return 1; 12267 } 12268 break; 12269 case LPFC_SLI_INTF_IF_TYPE_1: 12270 default: 12271 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12272 "2886 HBA Error Attention on unsupported " 12273 "if type %d.", if_type); 12274 return 1; 12275 } 12276 12277 return 0; 12278 } 12279 12280 /** 12281 * lpfc_sli_check_eratt - check error attention events 12282 * @phba: Pointer to HBA context. 12283 * 12284 * This function is called from timer soft interrupt context to check HBA's 12285 * error attention register bit for error attention events. 12286 * 12287 * This function returns 1 when there is Error Attention in the Host Attention 12288 * Register and returns 0 otherwise. 12289 **/ 12290 int 12291 lpfc_sli_check_eratt(struct lpfc_hba *phba) 12292 { 12293 uint32_t ha_copy; 12294 12295 /* If somebody is waiting to handle an eratt, don't process it 12296 * here. The brdkill function will do this. 12297 */ 12298 if (phba->link_flag & LS_IGNORE_ERATT) 12299 return 0; 12300 12301 /* Check if interrupt handler handles this ERATT */ 12302 spin_lock_irq(&phba->hbalock); 12303 if (phba->hba_flag & HBA_ERATT_HANDLED) { 12304 /* Interrupt handler has handled ERATT */ 12305 spin_unlock_irq(&phba->hbalock); 12306 return 0; 12307 } 12308 12309 /* 12310 * If there is deferred error attention, do not check for error 12311 * attention 12312 */ 12313 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12314 spin_unlock_irq(&phba->hbalock); 12315 return 0; 12316 } 12317 12318 /* If PCI channel is offline, don't process it */ 12319 if (unlikely(pci_channel_offline(phba->pcidev))) { 12320 spin_unlock_irq(&phba->hbalock); 12321 return 0; 12322 } 12323 12324 switch (phba->sli_rev) { 12325 case LPFC_SLI_REV2: 12326 case LPFC_SLI_REV3: 12327 /* Read chip Host Attention (HA) register */ 12328 ha_copy = lpfc_sli_eratt_read(phba); 12329 break; 12330 case LPFC_SLI_REV4: 12331 /* Read device Uncoverable Error (UERR) registers */ 12332 ha_copy = lpfc_sli4_eratt_read(phba); 12333 break; 12334 default: 12335 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12336 "0299 Invalid SLI revision (%d)\n", 12337 phba->sli_rev); 12338 ha_copy = 0; 12339 break; 12340 } 12341 spin_unlock_irq(&phba->hbalock); 12342 12343 return ha_copy; 12344 } 12345 12346 /** 12347 * lpfc_intr_state_check - Check device state for interrupt handling 12348 * @phba: Pointer to HBA context. 12349 * 12350 * This inline routine checks whether a device or its PCI slot is in a state 12351 * that the interrupt should be handled. 12352 * 12353 * This function returns 0 if the device or the PCI slot is in a state that 12354 * interrupt should be handled, otherwise -EIO. 12355 */ 12356 static inline int 12357 lpfc_intr_state_check(struct lpfc_hba *phba) 12358 { 12359 /* If the pci channel is offline, ignore all the interrupts */ 12360 if (unlikely(pci_channel_offline(phba->pcidev))) 12361 return -EIO; 12362 12363 /* Update device level interrupt statistics */ 12364 phba->sli.slistat.sli_intr++; 12365 12366 /* Ignore all interrupts during initialization. */ 12367 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 12368 return -EIO; 12369 12370 return 0; 12371 } 12372 12373 /** 12374 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 12375 * @irq: Interrupt number. 12376 * @dev_id: The device context pointer. 12377 * 12378 * This function is directly called from the PCI layer as an interrupt 12379 * service routine when device with SLI-3 interface spec is enabled with 12380 * MSI-X multi-message interrupt mode and there are slow-path events in 12381 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 12382 * interrupt mode, this function is called as part of the device-level 12383 * interrupt handler. When the PCI slot is in error recovery or the HBA 12384 * is undergoing initialization, the interrupt handler will not process 12385 * the interrupt. The link attention and ELS ring attention events are 12386 * handled by the worker thread. The interrupt handler signals the worker 12387 * thread and returns for these events. This function is called without 12388 * any lock held. It gets the hbalock to access and update SLI data 12389 * structures. 12390 * 12391 * This function returns IRQ_HANDLED when interrupt is handled else it 12392 * returns IRQ_NONE. 12393 **/ 12394 irqreturn_t 12395 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 12396 { 12397 struct lpfc_hba *phba; 12398 uint32_t ha_copy, hc_copy; 12399 uint32_t work_ha_copy; 12400 unsigned long status; 12401 unsigned long iflag; 12402 uint32_t control; 12403 12404 MAILBOX_t *mbox, *pmbox; 12405 struct lpfc_vport *vport; 12406 struct lpfc_nodelist *ndlp; 12407 struct lpfc_dmabuf *mp; 12408 LPFC_MBOXQ_t *pmb; 12409 int rc; 12410 12411 /* 12412 * Get the driver's phba structure from the dev_id and 12413 * assume the HBA is not interrupting. 12414 */ 12415 phba = (struct lpfc_hba *)dev_id; 12416 12417 if (unlikely(!phba)) 12418 return IRQ_NONE; 12419 12420 /* 12421 * Stuff needs to be attented to when this function is invoked as an 12422 * individual interrupt handler in MSI-X multi-message interrupt mode 12423 */ 12424 if (phba->intr_type == MSIX) { 12425 /* Check device state for handling interrupt */ 12426 if (lpfc_intr_state_check(phba)) 12427 return IRQ_NONE; 12428 /* Need to read HA REG for slow-path events */ 12429 spin_lock_irqsave(&phba->hbalock, iflag); 12430 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12431 goto unplug_error; 12432 /* If somebody is waiting to handle an eratt don't process it 12433 * here. The brdkill function will do this. 12434 */ 12435 if (phba->link_flag & LS_IGNORE_ERATT) 12436 ha_copy &= ~HA_ERATT; 12437 /* Check the need for handling ERATT in interrupt handler */ 12438 if (ha_copy & HA_ERATT) { 12439 if (phba->hba_flag & HBA_ERATT_HANDLED) 12440 /* ERATT polling has handled ERATT */ 12441 ha_copy &= ~HA_ERATT; 12442 else 12443 /* Indicate interrupt handler handles ERATT */ 12444 phba->hba_flag |= HBA_ERATT_HANDLED; 12445 } 12446 12447 /* 12448 * If there is deferred error attention, do not check for any 12449 * interrupt. 12450 */ 12451 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12452 spin_unlock_irqrestore(&phba->hbalock, iflag); 12453 return IRQ_NONE; 12454 } 12455 12456 /* Clear up only attention source related to slow-path */ 12457 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 12458 goto unplug_error; 12459 12460 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 12461 HC_LAINT_ENA | HC_ERINT_ENA), 12462 phba->HCregaddr); 12463 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 12464 phba->HAregaddr); 12465 writel(hc_copy, phba->HCregaddr); 12466 readl(phba->HAregaddr); /* flush */ 12467 spin_unlock_irqrestore(&phba->hbalock, iflag); 12468 } else 12469 ha_copy = phba->ha_copy; 12470 12471 work_ha_copy = ha_copy & phba->work_ha_mask; 12472 12473 if (work_ha_copy) { 12474 if (work_ha_copy & HA_LATT) { 12475 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 12476 /* 12477 * Turn off Link Attention interrupts 12478 * until CLEAR_LA done 12479 */ 12480 spin_lock_irqsave(&phba->hbalock, iflag); 12481 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 12482 if (lpfc_readl(phba->HCregaddr, &control)) 12483 goto unplug_error; 12484 control &= ~HC_LAINT_ENA; 12485 writel(control, phba->HCregaddr); 12486 readl(phba->HCregaddr); /* flush */ 12487 spin_unlock_irqrestore(&phba->hbalock, iflag); 12488 } 12489 else 12490 work_ha_copy &= ~HA_LATT; 12491 } 12492 12493 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 12494 /* 12495 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 12496 * the only slow ring. 12497 */ 12498 status = (work_ha_copy & 12499 (HA_RXMASK << (4*LPFC_ELS_RING))); 12500 status >>= (4*LPFC_ELS_RING); 12501 if (status & HA_RXMASK) { 12502 spin_lock_irqsave(&phba->hbalock, iflag); 12503 if (lpfc_readl(phba->HCregaddr, &control)) 12504 goto unplug_error; 12505 12506 lpfc_debugfs_slow_ring_trc(phba, 12507 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 12508 control, status, 12509 (uint32_t)phba->sli.slistat.sli_intr); 12510 12511 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 12512 lpfc_debugfs_slow_ring_trc(phba, 12513 "ISR Disable ring:" 12514 "pwork:x%x hawork:x%x wait:x%x", 12515 phba->work_ha, work_ha_copy, 12516 (uint32_t)((unsigned long) 12517 &phba->work_waitq)); 12518 12519 control &= 12520 ~(HC_R0INT_ENA << LPFC_ELS_RING); 12521 writel(control, phba->HCregaddr); 12522 readl(phba->HCregaddr); /* flush */ 12523 } 12524 else { 12525 lpfc_debugfs_slow_ring_trc(phba, 12526 "ISR slow ring: pwork:" 12527 "x%x hawork:x%x wait:x%x", 12528 phba->work_ha, work_ha_copy, 12529 (uint32_t)((unsigned long) 12530 &phba->work_waitq)); 12531 } 12532 spin_unlock_irqrestore(&phba->hbalock, iflag); 12533 } 12534 } 12535 spin_lock_irqsave(&phba->hbalock, iflag); 12536 if (work_ha_copy & HA_ERATT) { 12537 if (lpfc_sli_read_hs(phba)) 12538 goto unplug_error; 12539 /* 12540 * Check if there is a deferred error condition 12541 * is active 12542 */ 12543 if ((HS_FFER1 & phba->work_hs) && 12544 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12545 HS_FFER6 | HS_FFER7 | HS_FFER8) & 12546 phba->work_hs)) { 12547 phba->hba_flag |= DEFER_ERATT; 12548 /* Clear all interrupt enable conditions */ 12549 writel(0, phba->HCregaddr); 12550 readl(phba->HCregaddr); 12551 } 12552 } 12553 12554 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 12555 pmb = phba->sli.mbox_active; 12556 pmbox = &pmb->u.mb; 12557 mbox = phba->mbox; 12558 vport = pmb->vport; 12559 12560 /* First check out the status word */ 12561 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 12562 if (pmbox->mbxOwner != OWN_HOST) { 12563 spin_unlock_irqrestore(&phba->hbalock, iflag); 12564 /* 12565 * Stray Mailbox Interrupt, mbxCommand <cmd> 12566 * mbxStatus <status> 12567 */ 12568 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 12569 LOG_SLI, 12570 "(%d):0304 Stray Mailbox " 12571 "Interrupt mbxCommand x%x " 12572 "mbxStatus x%x\n", 12573 (vport ? vport->vpi : 0), 12574 pmbox->mbxCommand, 12575 pmbox->mbxStatus); 12576 /* clear mailbox attention bit */ 12577 work_ha_copy &= ~HA_MBATT; 12578 } else { 12579 phba->sli.mbox_active = NULL; 12580 spin_unlock_irqrestore(&phba->hbalock, iflag); 12581 phba->last_completion_time = jiffies; 12582 del_timer(&phba->sli.mbox_tmo); 12583 if (pmb->mbox_cmpl) { 12584 lpfc_sli_pcimem_bcopy(mbox, pmbox, 12585 MAILBOX_CMD_SIZE); 12586 if (pmb->out_ext_byte_len && 12587 pmb->ctx_buf) 12588 lpfc_sli_pcimem_bcopy( 12589 phba->mbox_ext, 12590 pmb->ctx_buf, 12591 pmb->out_ext_byte_len); 12592 } 12593 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 12594 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 12595 12596 lpfc_debugfs_disc_trc(vport, 12597 LPFC_DISC_TRC_MBOX_VPORT, 12598 "MBOX dflt rpi: : " 12599 "status:x%x rpi:x%x", 12600 (uint32_t)pmbox->mbxStatus, 12601 pmbox->un.varWords[0], 0); 12602 12603 if (!pmbox->mbxStatus) { 12604 mp = (struct lpfc_dmabuf *) 12605 (pmb->ctx_buf); 12606 ndlp = (struct lpfc_nodelist *) 12607 pmb->ctx_ndlp; 12608 12609 /* Reg_LOGIN of dflt RPI was 12610 * successful. new lets get 12611 * rid of the RPI using the 12612 * same mbox buffer. 12613 */ 12614 lpfc_unreg_login(phba, 12615 vport->vpi, 12616 pmbox->un.varWords[0], 12617 pmb); 12618 pmb->mbox_cmpl = 12619 lpfc_mbx_cmpl_dflt_rpi; 12620 pmb->ctx_buf = mp; 12621 pmb->ctx_ndlp = ndlp; 12622 pmb->vport = vport; 12623 rc = lpfc_sli_issue_mbox(phba, 12624 pmb, 12625 MBX_NOWAIT); 12626 if (rc != MBX_BUSY) 12627 lpfc_printf_log(phba, 12628 KERN_ERR, 12629 LOG_MBOX | LOG_SLI, 12630 "0350 rc should have" 12631 "been MBX_BUSY\n"); 12632 if (rc != MBX_NOT_FINISHED) 12633 goto send_current_mbox; 12634 } 12635 } 12636 spin_lock_irqsave( 12637 &phba->pport->work_port_lock, 12638 iflag); 12639 phba->pport->work_port_events &= 12640 ~WORKER_MBOX_TMO; 12641 spin_unlock_irqrestore( 12642 &phba->pport->work_port_lock, 12643 iflag); 12644 lpfc_mbox_cmpl_put(phba, pmb); 12645 } 12646 } else 12647 spin_unlock_irqrestore(&phba->hbalock, iflag); 12648 12649 if ((work_ha_copy & HA_MBATT) && 12650 (phba->sli.mbox_active == NULL)) { 12651 send_current_mbox: 12652 /* Process next mailbox command if there is one */ 12653 do { 12654 rc = lpfc_sli_issue_mbox(phba, NULL, 12655 MBX_NOWAIT); 12656 } while (rc == MBX_NOT_FINISHED); 12657 if (rc != MBX_SUCCESS) 12658 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 12659 LOG_SLI, "0349 rc should be " 12660 "MBX_SUCCESS\n"); 12661 } 12662 12663 spin_lock_irqsave(&phba->hbalock, iflag); 12664 phba->work_ha |= work_ha_copy; 12665 spin_unlock_irqrestore(&phba->hbalock, iflag); 12666 lpfc_worker_wake_up(phba); 12667 } 12668 return IRQ_HANDLED; 12669 unplug_error: 12670 spin_unlock_irqrestore(&phba->hbalock, iflag); 12671 return IRQ_HANDLED; 12672 12673 } /* lpfc_sli_sp_intr_handler */ 12674 12675 /** 12676 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 12677 * @irq: Interrupt number. 12678 * @dev_id: The device context pointer. 12679 * 12680 * This function is directly called from the PCI layer as an interrupt 12681 * service routine when device with SLI-3 interface spec is enabled with 12682 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 12683 * ring event in the HBA. However, when the device is enabled with either 12684 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 12685 * device-level interrupt handler. When the PCI slot is in error recovery 12686 * or the HBA is undergoing initialization, the interrupt handler will not 12687 * process the interrupt. The SCSI FCP fast-path ring event are handled in 12688 * the intrrupt context. This function is called without any lock held. 12689 * It gets the hbalock to access and update SLI data structures. 12690 * 12691 * This function returns IRQ_HANDLED when interrupt is handled else it 12692 * returns IRQ_NONE. 12693 **/ 12694 irqreturn_t 12695 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 12696 { 12697 struct lpfc_hba *phba; 12698 uint32_t ha_copy; 12699 unsigned long status; 12700 unsigned long iflag; 12701 struct lpfc_sli_ring *pring; 12702 12703 /* Get the driver's phba structure from the dev_id and 12704 * assume the HBA is not interrupting. 12705 */ 12706 phba = (struct lpfc_hba *) dev_id; 12707 12708 if (unlikely(!phba)) 12709 return IRQ_NONE; 12710 12711 /* 12712 * Stuff needs to be attented to when this function is invoked as an 12713 * individual interrupt handler in MSI-X multi-message interrupt mode 12714 */ 12715 if (phba->intr_type == MSIX) { 12716 /* Check device state for handling interrupt */ 12717 if (lpfc_intr_state_check(phba)) 12718 return IRQ_NONE; 12719 /* Need to read HA REG for FCP ring and other ring events */ 12720 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12721 return IRQ_HANDLED; 12722 /* Clear up only attention source related to fast-path */ 12723 spin_lock_irqsave(&phba->hbalock, iflag); 12724 /* 12725 * If there is deferred error attention, do not check for 12726 * any interrupt. 12727 */ 12728 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12729 spin_unlock_irqrestore(&phba->hbalock, iflag); 12730 return IRQ_NONE; 12731 } 12732 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 12733 phba->HAregaddr); 12734 readl(phba->HAregaddr); /* flush */ 12735 spin_unlock_irqrestore(&phba->hbalock, iflag); 12736 } else 12737 ha_copy = phba->ha_copy; 12738 12739 /* 12740 * Process all events on FCP ring. Take the optimized path for FCP IO. 12741 */ 12742 ha_copy &= ~(phba->work_ha_mask); 12743 12744 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12745 status >>= (4*LPFC_FCP_RING); 12746 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12747 if (status & HA_RXMASK) 12748 lpfc_sli_handle_fast_ring_event(phba, pring, status); 12749 12750 if (phba->cfg_multi_ring_support == 2) { 12751 /* 12752 * Process all events on extra ring. Take the optimized path 12753 * for extra ring IO. 12754 */ 12755 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12756 status >>= (4*LPFC_EXTRA_RING); 12757 if (status & HA_RXMASK) { 12758 lpfc_sli_handle_fast_ring_event(phba, 12759 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 12760 status); 12761 } 12762 } 12763 return IRQ_HANDLED; 12764 } /* lpfc_sli_fp_intr_handler */ 12765 12766 /** 12767 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 12768 * @irq: Interrupt number. 12769 * @dev_id: The device context pointer. 12770 * 12771 * This function is the HBA device-level interrupt handler to device with 12772 * SLI-3 interface spec, called from the PCI layer when either MSI or 12773 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 12774 * requires driver attention. This function invokes the slow-path interrupt 12775 * attention handling function and fast-path interrupt attention handling 12776 * function in turn to process the relevant HBA attention events. This 12777 * function is called without any lock held. It gets the hbalock to access 12778 * and update SLI data structures. 12779 * 12780 * This function returns IRQ_HANDLED when interrupt is handled, else it 12781 * returns IRQ_NONE. 12782 **/ 12783 irqreturn_t 12784 lpfc_sli_intr_handler(int irq, void *dev_id) 12785 { 12786 struct lpfc_hba *phba; 12787 irqreturn_t sp_irq_rc, fp_irq_rc; 12788 unsigned long status1, status2; 12789 uint32_t hc_copy; 12790 12791 /* 12792 * Get the driver's phba structure from the dev_id and 12793 * assume the HBA is not interrupting. 12794 */ 12795 phba = (struct lpfc_hba *) dev_id; 12796 12797 if (unlikely(!phba)) 12798 return IRQ_NONE; 12799 12800 /* Check device state for handling interrupt */ 12801 if (lpfc_intr_state_check(phba)) 12802 return IRQ_NONE; 12803 12804 spin_lock(&phba->hbalock); 12805 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 12806 spin_unlock(&phba->hbalock); 12807 return IRQ_HANDLED; 12808 } 12809 12810 if (unlikely(!phba->ha_copy)) { 12811 spin_unlock(&phba->hbalock); 12812 return IRQ_NONE; 12813 } else if (phba->ha_copy & HA_ERATT) { 12814 if (phba->hba_flag & HBA_ERATT_HANDLED) 12815 /* ERATT polling has handled ERATT */ 12816 phba->ha_copy &= ~HA_ERATT; 12817 else 12818 /* Indicate interrupt handler handles ERATT */ 12819 phba->hba_flag |= HBA_ERATT_HANDLED; 12820 } 12821 12822 /* 12823 * If there is deferred error attention, do not check for any interrupt. 12824 */ 12825 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12826 spin_unlock(&phba->hbalock); 12827 return IRQ_NONE; 12828 } 12829 12830 /* Clear attention sources except link and error attentions */ 12831 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 12832 spin_unlock(&phba->hbalock); 12833 return IRQ_HANDLED; 12834 } 12835 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 12836 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 12837 phba->HCregaddr); 12838 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 12839 writel(hc_copy, phba->HCregaddr); 12840 readl(phba->HAregaddr); /* flush */ 12841 spin_unlock(&phba->hbalock); 12842 12843 /* 12844 * Invokes slow-path host attention interrupt handling as appropriate. 12845 */ 12846 12847 /* status of events with mailbox and link attention */ 12848 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 12849 12850 /* status of events with ELS ring */ 12851 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 12852 status2 >>= (4*LPFC_ELS_RING); 12853 12854 if (status1 || (status2 & HA_RXMASK)) 12855 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 12856 else 12857 sp_irq_rc = IRQ_NONE; 12858 12859 /* 12860 * Invoke fast-path host attention interrupt handling as appropriate. 12861 */ 12862 12863 /* status of events with FCP ring */ 12864 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12865 status1 >>= (4*LPFC_FCP_RING); 12866 12867 /* status of events with extra ring */ 12868 if (phba->cfg_multi_ring_support == 2) { 12869 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12870 status2 >>= (4*LPFC_EXTRA_RING); 12871 } else 12872 status2 = 0; 12873 12874 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 12875 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 12876 else 12877 fp_irq_rc = IRQ_NONE; 12878 12879 /* Return device-level interrupt handling status */ 12880 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 12881 } /* lpfc_sli_intr_handler */ 12882 12883 /** 12884 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 12885 * @phba: pointer to lpfc hba data structure. 12886 * 12887 * This routine is invoked by the worker thread to process all the pending 12888 * SLI4 els abort xri events. 12889 **/ 12890 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 12891 { 12892 struct lpfc_cq_event *cq_event; 12893 12894 /* First, declare the els xri abort event has been handled */ 12895 spin_lock_irq(&phba->hbalock); 12896 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 12897 spin_unlock_irq(&phba->hbalock); 12898 /* Now, handle all the els xri abort events */ 12899 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 12900 /* Get the first event from the head of the event queue */ 12901 spin_lock_irq(&phba->hbalock); 12902 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 12903 cq_event, struct lpfc_cq_event, list); 12904 spin_unlock_irq(&phba->hbalock); 12905 /* Notify aborted XRI for ELS work queue */ 12906 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 12907 /* Free the event processed back to the free pool */ 12908 lpfc_sli4_cq_event_release(phba, cq_event); 12909 } 12910 } 12911 12912 /** 12913 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 12914 * @phba: pointer to lpfc hba data structure 12915 * @pIocbIn: pointer to the rspiocbq 12916 * @pIocbOut: pointer to the cmdiocbq 12917 * @wcqe: pointer to the complete wcqe 12918 * 12919 * This routine transfers the fields of a command iocbq to a response iocbq 12920 * by copying all the IOCB fields from command iocbq and transferring the 12921 * completion status information from the complete wcqe. 12922 **/ 12923 static void 12924 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 12925 struct lpfc_iocbq *pIocbIn, 12926 struct lpfc_iocbq *pIocbOut, 12927 struct lpfc_wcqe_complete *wcqe) 12928 { 12929 int numBdes, i; 12930 unsigned long iflags; 12931 uint32_t status, max_response; 12932 struct lpfc_dmabuf *dmabuf; 12933 struct ulp_bde64 *bpl, bde; 12934 size_t offset = offsetof(struct lpfc_iocbq, iocb); 12935 12936 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 12937 sizeof(struct lpfc_iocbq) - offset); 12938 /* Map WCQE parameters into irspiocb parameters */ 12939 status = bf_get(lpfc_wcqe_c_status, wcqe); 12940 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 12941 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 12942 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 12943 pIocbIn->iocb.un.fcpi.fcpi_parm = 12944 pIocbOut->iocb.un.fcpi.fcpi_parm - 12945 wcqe->total_data_placed; 12946 else 12947 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 12948 else { 12949 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 12950 switch (pIocbOut->iocb.ulpCommand) { 12951 case CMD_ELS_REQUEST64_CR: 12952 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 12953 bpl = (struct ulp_bde64 *)dmabuf->virt; 12954 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 12955 max_response = bde.tus.f.bdeSize; 12956 break; 12957 case CMD_GEN_REQUEST64_CR: 12958 max_response = 0; 12959 if (!pIocbOut->context3) 12960 break; 12961 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 12962 sizeof(struct ulp_bde64); 12963 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 12964 bpl = (struct ulp_bde64 *)dmabuf->virt; 12965 for (i = 0; i < numBdes; i++) { 12966 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 12967 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 12968 max_response += bde.tus.f.bdeSize; 12969 } 12970 break; 12971 default: 12972 max_response = wcqe->total_data_placed; 12973 break; 12974 } 12975 if (max_response < wcqe->total_data_placed) 12976 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 12977 else 12978 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 12979 wcqe->total_data_placed; 12980 } 12981 12982 /* Convert BG errors for completion status */ 12983 if (status == CQE_STATUS_DI_ERROR) { 12984 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 12985 12986 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 12987 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 12988 else 12989 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 12990 12991 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 12992 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 12993 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12994 BGS_GUARD_ERR_MASK; 12995 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 12996 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12997 BGS_APPTAG_ERR_MASK; 12998 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 12999 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13000 BGS_REFTAG_ERR_MASK; 13001 13002 /* Check to see if there was any good data before the error */ 13003 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 13004 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13005 BGS_HI_WATER_MARK_PRESENT_MASK; 13006 pIocbIn->iocb.unsli3.sli3_bg.bghm = 13007 wcqe->total_data_placed; 13008 } 13009 13010 /* 13011 * Set ALL the error bits to indicate we don't know what 13012 * type of error it is. 13013 */ 13014 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 13015 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13016 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 13017 BGS_GUARD_ERR_MASK); 13018 } 13019 13020 /* Pick up HBA exchange busy condition */ 13021 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 13022 spin_lock_irqsave(&phba->hbalock, iflags); 13023 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 13024 spin_unlock_irqrestore(&phba->hbalock, iflags); 13025 } 13026 } 13027 13028 /** 13029 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 13030 * @phba: Pointer to HBA context object. 13031 * @wcqe: Pointer to work-queue completion queue entry. 13032 * 13033 * This routine handles an ELS work-queue completion event and construct 13034 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 13035 * discovery engine to handle. 13036 * 13037 * Return: Pointer to the receive IOCBQ, NULL otherwise. 13038 **/ 13039 static struct lpfc_iocbq * 13040 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 13041 struct lpfc_iocbq *irspiocbq) 13042 { 13043 struct lpfc_sli_ring *pring; 13044 struct lpfc_iocbq *cmdiocbq; 13045 struct lpfc_wcqe_complete *wcqe; 13046 unsigned long iflags; 13047 13048 pring = lpfc_phba_elsring(phba); 13049 if (unlikely(!pring)) 13050 return NULL; 13051 13052 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 13053 pring->stats.iocb_event++; 13054 /* Look up the ELS command IOCB and create pseudo response IOCB */ 13055 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13056 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13057 if (unlikely(!cmdiocbq)) { 13058 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13059 "0386 ELS complete with no corresponding " 13060 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 13061 wcqe->word0, wcqe->total_data_placed, 13062 wcqe->parameter, wcqe->word3); 13063 lpfc_sli_release_iocbq(phba, irspiocbq); 13064 return NULL; 13065 } 13066 13067 spin_lock_irqsave(&pring->ring_lock, iflags); 13068 /* Put the iocb back on the txcmplq */ 13069 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 13070 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13071 13072 /* Fake the irspiocbq and copy necessary response information */ 13073 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 13074 13075 return irspiocbq; 13076 } 13077 13078 inline struct lpfc_cq_event * 13079 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 13080 { 13081 struct lpfc_cq_event *cq_event; 13082 13083 /* Allocate a new internal CQ_EVENT entry */ 13084 cq_event = lpfc_sli4_cq_event_alloc(phba); 13085 if (!cq_event) { 13086 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13087 "0602 Failed to alloc CQ_EVENT entry\n"); 13088 return NULL; 13089 } 13090 13091 /* Move the CQE into the event */ 13092 memcpy(&cq_event->cqe, entry, size); 13093 return cq_event; 13094 } 13095 13096 /** 13097 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 13098 * @phba: Pointer to HBA context object. 13099 * @cqe: Pointer to mailbox completion queue entry. 13100 * 13101 * This routine process a mailbox completion queue entry with asynchronous 13102 * event. 13103 * 13104 * Return: true if work posted to worker thread, otherwise false. 13105 **/ 13106 static bool 13107 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13108 { 13109 struct lpfc_cq_event *cq_event; 13110 unsigned long iflags; 13111 13112 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13113 "0392 Async Event: word0:x%x, word1:x%x, " 13114 "word2:x%x, word3:x%x\n", mcqe->word0, 13115 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 13116 13117 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 13118 if (!cq_event) 13119 return false; 13120 spin_lock_irqsave(&phba->hbalock, iflags); 13121 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 13122 /* Set the async event flag */ 13123 phba->hba_flag |= ASYNC_EVENT; 13124 spin_unlock_irqrestore(&phba->hbalock, iflags); 13125 13126 return true; 13127 } 13128 13129 /** 13130 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 13131 * @phba: Pointer to HBA context object. 13132 * @cqe: Pointer to mailbox completion queue entry. 13133 * 13134 * This routine process a mailbox completion queue entry with mailbox 13135 * completion event. 13136 * 13137 * Return: true if work posted to worker thread, otherwise false. 13138 **/ 13139 static bool 13140 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13141 { 13142 uint32_t mcqe_status; 13143 MAILBOX_t *mbox, *pmbox; 13144 struct lpfc_mqe *mqe; 13145 struct lpfc_vport *vport; 13146 struct lpfc_nodelist *ndlp; 13147 struct lpfc_dmabuf *mp; 13148 unsigned long iflags; 13149 LPFC_MBOXQ_t *pmb; 13150 bool workposted = false; 13151 int rc; 13152 13153 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 13154 if (!bf_get(lpfc_trailer_completed, mcqe)) 13155 goto out_no_mqe_complete; 13156 13157 /* Get the reference to the active mbox command */ 13158 spin_lock_irqsave(&phba->hbalock, iflags); 13159 pmb = phba->sli.mbox_active; 13160 if (unlikely(!pmb)) { 13161 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 13162 "1832 No pending MBOX command to handle\n"); 13163 spin_unlock_irqrestore(&phba->hbalock, iflags); 13164 goto out_no_mqe_complete; 13165 } 13166 spin_unlock_irqrestore(&phba->hbalock, iflags); 13167 mqe = &pmb->u.mqe; 13168 pmbox = (MAILBOX_t *)&pmb->u.mqe; 13169 mbox = phba->mbox; 13170 vport = pmb->vport; 13171 13172 /* Reset heartbeat timer */ 13173 phba->last_completion_time = jiffies; 13174 del_timer(&phba->sli.mbox_tmo); 13175 13176 /* Move mbox data to caller's mailbox region, do endian swapping */ 13177 if (pmb->mbox_cmpl && mbox) 13178 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 13179 13180 /* 13181 * For mcqe errors, conditionally move a modified error code to 13182 * the mbox so that the error will not be missed. 13183 */ 13184 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 13185 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 13186 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 13187 bf_set(lpfc_mqe_status, mqe, 13188 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 13189 } 13190 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13191 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13192 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 13193 "MBOX dflt rpi: status:x%x rpi:x%x", 13194 mcqe_status, 13195 pmbox->un.varWords[0], 0); 13196 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 13197 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 13198 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 13199 /* Reg_LOGIN of dflt RPI was successful. Now lets get 13200 * RID of the PPI using the same mbox buffer. 13201 */ 13202 lpfc_unreg_login(phba, vport->vpi, 13203 pmbox->un.varWords[0], pmb); 13204 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 13205 pmb->ctx_buf = mp; 13206 pmb->ctx_ndlp = ndlp; 13207 pmb->vport = vport; 13208 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 13209 if (rc != MBX_BUSY) 13210 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 13211 LOG_SLI, "0385 rc should " 13212 "have been MBX_BUSY\n"); 13213 if (rc != MBX_NOT_FINISHED) 13214 goto send_current_mbox; 13215 } 13216 } 13217 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 13218 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 13219 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 13220 13221 /* There is mailbox completion work to do */ 13222 spin_lock_irqsave(&phba->hbalock, iflags); 13223 __lpfc_mbox_cmpl_put(phba, pmb); 13224 phba->work_ha |= HA_MBATT; 13225 spin_unlock_irqrestore(&phba->hbalock, iflags); 13226 workposted = true; 13227 13228 send_current_mbox: 13229 spin_lock_irqsave(&phba->hbalock, iflags); 13230 /* Release the mailbox command posting token */ 13231 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 13232 /* Setting active mailbox pointer need to be in sync to flag clear */ 13233 phba->sli.mbox_active = NULL; 13234 if (bf_get(lpfc_trailer_consumed, mcqe)) 13235 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13236 spin_unlock_irqrestore(&phba->hbalock, iflags); 13237 /* Wake up worker thread to post the next pending mailbox command */ 13238 lpfc_worker_wake_up(phba); 13239 return workposted; 13240 13241 out_no_mqe_complete: 13242 spin_lock_irqsave(&phba->hbalock, iflags); 13243 if (bf_get(lpfc_trailer_consumed, mcqe)) 13244 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13245 spin_unlock_irqrestore(&phba->hbalock, iflags); 13246 return false; 13247 } 13248 13249 /** 13250 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 13251 * @phba: Pointer to HBA context object. 13252 * @cqe: Pointer to mailbox completion queue entry. 13253 * 13254 * This routine process a mailbox completion queue entry, it invokes the 13255 * proper mailbox complete handling or asynchronous event handling routine 13256 * according to the MCQE's async bit. 13257 * 13258 * Return: true if work posted to worker thread, otherwise false. 13259 **/ 13260 static bool 13261 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13262 struct lpfc_cqe *cqe) 13263 { 13264 struct lpfc_mcqe mcqe; 13265 bool workposted; 13266 13267 cq->CQ_mbox++; 13268 13269 /* Copy the mailbox MCQE and convert endian order as needed */ 13270 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 13271 13272 /* Invoke the proper event handling routine */ 13273 if (!bf_get(lpfc_trailer_async, &mcqe)) 13274 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 13275 else 13276 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 13277 return workposted; 13278 } 13279 13280 /** 13281 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 13282 * @phba: Pointer to HBA context object. 13283 * @cq: Pointer to associated CQ 13284 * @wcqe: Pointer to work-queue completion queue entry. 13285 * 13286 * This routine handles an ELS work-queue completion event. 13287 * 13288 * Return: true if work posted to worker thread, otherwise false. 13289 **/ 13290 static bool 13291 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13292 struct lpfc_wcqe_complete *wcqe) 13293 { 13294 struct lpfc_iocbq *irspiocbq; 13295 unsigned long iflags; 13296 struct lpfc_sli_ring *pring = cq->pring; 13297 int txq_cnt = 0; 13298 int txcmplq_cnt = 0; 13299 13300 /* Check for response status */ 13301 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 13302 /* Log the error status */ 13303 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13304 "0357 ELS CQE error: status=x%x: " 13305 "CQE: %08x %08x %08x %08x\n", 13306 bf_get(lpfc_wcqe_c_status, wcqe), 13307 wcqe->word0, wcqe->total_data_placed, 13308 wcqe->parameter, wcqe->word3); 13309 } 13310 13311 /* Get an irspiocbq for later ELS response processing use */ 13312 irspiocbq = lpfc_sli_get_iocbq(phba); 13313 if (!irspiocbq) { 13314 if (!list_empty(&pring->txq)) 13315 txq_cnt++; 13316 if (!list_empty(&pring->txcmplq)) 13317 txcmplq_cnt++; 13318 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13319 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 13320 "els_txcmplq_cnt=%d\n", 13321 txq_cnt, phba->iocb_cnt, 13322 txcmplq_cnt); 13323 return false; 13324 } 13325 13326 /* Save off the slow-path queue event for work thread to process */ 13327 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 13328 spin_lock_irqsave(&phba->hbalock, iflags); 13329 list_add_tail(&irspiocbq->cq_event.list, 13330 &phba->sli4_hba.sp_queue_event); 13331 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13332 spin_unlock_irqrestore(&phba->hbalock, iflags); 13333 13334 return true; 13335 } 13336 13337 /** 13338 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 13339 * @phba: Pointer to HBA context object. 13340 * @wcqe: Pointer to work-queue completion queue entry. 13341 * 13342 * This routine handles slow-path WQ entry consumed event by invoking the 13343 * proper WQ release routine to the slow-path WQ. 13344 **/ 13345 static void 13346 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 13347 struct lpfc_wcqe_release *wcqe) 13348 { 13349 /* sanity check on queue memory */ 13350 if (unlikely(!phba->sli4_hba.els_wq)) 13351 return; 13352 /* Check for the slow-path ELS work queue */ 13353 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 13354 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 13355 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 13356 else 13357 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13358 "2579 Slow-path wqe consume event carries " 13359 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 13360 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 13361 phba->sli4_hba.els_wq->queue_id); 13362 } 13363 13364 /** 13365 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 13366 * @phba: Pointer to HBA context object. 13367 * @cq: Pointer to a WQ completion queue. 13368 * @wcqe: Pointer to work-queue completion queue entry. 13369 * 13370 * This routine handles an XRI abort event. 13371 * 13372 * Return: true if work posted to worker thread, otherwise false. 13373 **/ 13374 static bool 13375 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 13376 struct lpfc_queue *cq, 13377 struct sli4_wcqe_xri_aborted *wcqe) 13378 { 13379 bool workposted = false; 13380 struct lpfc_cq_event *cq_event; 13381 unsigned long iflags; 13382 13383 switch (cq->subtype) { 13384 case LPFC_IO: 13385 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 13386 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13387 /* Notify aborted XRI for NVME work queue */ 13388 if (phba->nvmet_support) 13389 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 13390 } 13391 workposted = false; 13392 break; 13393 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 13394 case LPFC_ELS: 13395 cq_event = lpfc_cq_event_setup( 13396 phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted)); 13397 if (!cq_event) 13398 return false; 13399 cq_event->hdwq = cq->hdwq; 13400 spin_lock_irqsave(&phba->hbalock, iflags); 13401 list_add_tail(&cq_event->list, 13402 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 13403 /* Set the els xri abort event flag */ 13404 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 13405 spin_unlock_irqrestore(&phba->hbalock, iflags); 13406 workposted = true; 13407 break; 13408 default: 13409 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13410 "0603 Invalid CQ subtype %d: " 13411 "%08x %08x %08x %08x\n", 13412 cq->subtype, wcqe->word0, wcqe->parameter, 13413 wcqe->word2, wcqe->word3); 13414 workposted = false; 13415 break; 13416 } 13417 return workposted; 13418 } 13419 13420 #define FC_RCTL_MDS_DIAGS 0xF4 13421 13422 /** 13423 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 13424 * @phba: Pointer to HBA context object. 13425 * @rcqe: Pointer to receive-queue completion queue entry. 13426 * 13427 * This routine process a receive-queue completion queue entry. 13428 * 13429 * Return: true if work posted to worker thread, otherwise false. 13430 **/ 13431 static bool 13432 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 13433 { 13434 bool workposted = false; 13435 struct fc_frame_header *fc_hdr; 13436 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 13437 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 13438 struct lpfc_nvmet_tgtport *tgtp; 13439 struct hbq_dmabuf *dma_buf; 13440 uint32_t status, rq_id; 13441 unsigned long iflags; 13442 13443 /* sanity check on queue memory */ 13444 if (unlikely(!hrq) || unlikely(!drq)) 13445 return workposted; 13446 13447 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13448 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13449 else 13450 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13451 if (rq_id != hrq->queue_id) 13452 goto out; 13453 13454 status = bf_get(lpfc_rcqe_status, rcqe); 13455 switch (status) { 13456 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13457 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13458 "2537 Receive Frame Truncated!!\n"); 13459 /* fall through */ 13460 case FC_STATUS_RQ_SUCCESS: 13461 spin_lock_irqsave(&phba->hbalock, iflags); 13462 lpfc_sli4_rq_release(hrq, drq); 13463 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 13464 if (!dma_buf) { 13465 hrq->RQ_no_buf_found++; 13466 spin_unlock_irqrestore(&phba->hbalock, iflags); 13467 goto out; 13468 } 13469 hrq->RQ_rcv_buf++; 13470 hrq->RQ_buf_posted--; 13471 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 13472 13473 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 13474 13475 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 13476 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 13477 spin_unlock_irqrestore(&phba->hbalock, iflags); 13478 /* Handle MDS Loopback frames */ 13479 lpfc_sli4_handle_mds_loopback(phba->pport, dma_buf); 13480 break; 13481 } 13482 13483 /* save off the frame for the work thread to process */ 13484 list_add_tail(&dma_buf->cq_event.list, 13485 &phba->sli4_hba.sp_queue_event); 13486 /* Frame received */ 13487 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13488 spin_unlock_irqrestore(&phba->hbalock, iflags); 13489 workposted = true; 13490 break; 13491 case FC_STATUS_INSUFF_BUF_FRM_DISC: 13492 if (phba->nvmet_support) { 13493 tgtp = phba->targetport->private; 13494 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME, 13495 "6402 RQE Error x%x, posted %d err_cnt " 13496 "%d: %x %x %x\n", 13497 status, hrq->RQ_buf_posted, 13498 hrq->RQ_no_posted_buf, 13499 atomic_read(&tgtp->rcv_fcp_cmd_in), 13500 atomic_read(&tgtp->rcv_fcp_cmd_out), 13501 atomic_read(&tgtp->xmt_fcp_release)); 13502 } 13503 /* fallthrough */ 13504 13505 case FC_STATUS_INSUFF_BUF_NEED_BUF: 13506 hrq->RQ_no_posted_buf++; 13507 /* Post more buffers if possible */ 13508 spin_lock_irqsave(&phba->hbalock, iflags); 13509 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 13510 spin_unlock_irqrestore(&phba->hbalock, iflags); 13511 workposted = true; 13512 break; 13513 } 13514 out: 13515 return workposted; 13516 } 13517 13518 /** 13519 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 13520 * @phba: Pointer to HBA context object. 13521 * @cq: Pointer to the completion queue. 13522 * @cqe: Pointer to a completion queue entry. 13523 * 13524 * This routine process a slow-path work-queue or receive queue completion queue 13525 * entry. 13526 * 13527 * Return: true if work posted to worker thread, otherwise false. 13528 **/ 13529 static bool 13530 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13531 struct lpfc_cqe *cqe) 13532 { 13533 struct lpfc_cqe cqevt; 13534 bool workposted = false; 13535 13536 /* Copy the work queue CQE and convert endian order if needed */ 13537 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 13538 13539 /* Check and process for different type of WCQE and dispatch */ 13540 switch (bf_get(lpfc_cqe_code, &cqevt)) { 13541 case CQE_CODE_COMPL_WQE: 13542 /* Process the WQ/RQ complete event */ 13543 phba->last_completion_time = jiffies; 13544 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 13545 (struct lpfc_wcqe_complete *)&cqevt); 13546 break; 13547 case CQE_CODE_RELEASE_WQE: 13548 /* Process the WQ release event */ 13549 lpfc_sli4_sp_handle_rel_wcqe(phba, 13550 (struct lpfc_wcqe_release *)&cqevt); 13551 break; 13552 case CQE_CODE_XRI_ABORTED: 13553 /* Process the WQ XRI abort event */ 13554 phba->last_completion_time = jiffies; 13555 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 13556 (struct sli4_wcqe_xri_aborted *)&cqevt); 13557 break; 13558 case CQE_CODE_RECEIVE: 13559 case CQE_CODE_RECEIVE_V1: 13560 /* Process the RQ event */ 13561 phba->last_completion_time = jiffies; 13562 workposted = lpfc_sli4_sp_handle_rcqe(phba, 13563 (struct lpfc_rcqe *)&cqevt); 13564 break; 13565 default: 13566 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13567 "0388 Not a valid WCQE code: x%x\n", 13568 bf_get(lpfc_cqe_code, &cqevt)); 13569 break; 13570 } 13571 return workposted; 13572 } 13573 13574 /** 13575 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 13576 * @phba: Pointer to HBA context object. 13577 * @eqe: Pointer to fast-path event queue entry. 13578 * 13579 * This routine process a event queue entry from the slow-path event queue. 13580 * It will check the MajorCode and MinorCode to determine this is for a 13581 * completion event on a completion queue, if not, an error shall be logged 13582 * and just return. Otherwise, it will get to the corresponding completion 13583 * queue and process all the entries on that completion queue, rearm the 13584 * completion queue, and then return. 13585 * 13586 **/ 13587 static void 13588 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 13589 struct lpfc_queue *speq) 13590 { 13591 struct lpfc_queue *cq = NULL, *childq; 13592 uint16_t cqid; 13593 13594 /* Get the reference to the corresponding CQ */ 13595 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 13596 13597 list_for_each_entry(childq, &speq->child_list, list) { 13598 if (childq->queue_id == cqid) { 13599 cq = childq; 13600 break; 13601 } 13602 } 13603 if (unlikely(!cq)) { 13604 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 13605 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13606 "0365 Slow-path CQ identifier " 13607 "(%d) does not exist\n", cqid); 13608 return; 13609 } 13610 13611 /* Save EQ associated with this CQ */ 13612 cq->assoc_qp = speq; 13613 13614 if (!queue_work_on(cq->chann, phba->wq, &cq->spwork)) 13615 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13616 "0390 Cannot schedule soft IRQ " 13617 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 13618 cqid, cq->queue_id, raw_smp_processor_id()); 13619 } 13620 13621 /** 13622 * __lpfc_sli4_process_cq - Process elements of a CQ 13623 * @phba: Pointer to HBA context object. 13624 * @cq: Pointer to CQ to be processed 13625 * @handler: Routine to process each cqe 13626 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 13627 * 13628 * This routine processes completion queue entries in a CQ. While a valid 13629 * queue element is found, the handler is called. During processing checks 13630 * are made for periodic doorbell writes to let the hardware know of 13631 * element consumption. 13632 * 13633 * If the max limit on cqes to process is hit, or there are no more valid 13634 * entries, the loop stops. If we processed a sufficient number of elements, 13635 * meaning there is sufficient load, rather than rearming and generating 13636 * another interrupt, a cq rescheduling delay will be set. A delay of 0 13637 * indicates no rescheduling. 13638 * 13639 * Returns True if work scheduled, False otherwise. 13640 **/ 13641 static bool 13642 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 13643 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 13644 struct lpfc_cqe *), unsigned long *delay) 13645 { 13646 struct lpfc_cqe *cqe; 13647 bool workposted = false; 13648 int count = 0, consumed = 0; 13649 bool arm = true; 13650 13651 /* default - no reschedule */ 13652 *delay = 0; 13653 13654 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 13655 goto rearm_and_exit; 13656 13657 /* Process all the entries to the CQ */ 13658 cq->q_flag = 0; 13659 cqe = lpfc_sli4_cq_get(cq); 13660 while (cqe) { 13661 workposted |= handler(phba, cq, cqe); 13662 __lpfc_sli4_consume_cqe(phba, cq, cqe); 13663 13664 consumed++; 13665 if (!(++count % cq->max_proc_limit)) 13666 break; 13667 13668 if (!(count % cq->notify_interval)) { 13669 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 13670 LPFC_QUEUE_NOARM); 13671 consumed = 0; 13672 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 13673 } 13674 13675 if (count == LPFC_NVMET_CQ_NOTIFY) 13676 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 13677 13678 cqe = lpfc_sli4_cq_get(cq); 13679 } 13680 if (count >= phba->cfg_cq_poll_threshold) { 13681 *delay = 1; 13682 arm = false; 13683 } 13684 13685 /* Track the max number of CQEs processed in 1 EQ */ 13686 if (count > cq->CQ_max_cqe) 13687 cq->CQ_max_cqe = count; 13688 13689 cq->assoc_qp->EQ_cqe_cnt += count; 13690 13691 /* Catch the no cq entry condition */ 13692 if (unlikely(count == 0)) 13693 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13694 "0369 No entry from completion queue " 13695 "qid=%d\n", cq->queue_id); 13696 13697 cq->queue_claimed = 0; 13698 13699 rearm_and_exit: 13700 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 13701 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 13702 13703 return workposted; 13704 } 13705 13706 /** 13707 * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 13708 * @cq: pointer to CQ to process 13709 * 13710 * This routine calls the cq processing routine with a handler specific 13711 * to the type of queue bound to it. 13712 * 13713 * The CQ routine returns two values: the first is the calling status, 13714 * which indicates whether work was queued to the background discovery 13715 * thread. If true, the routine should wakeup the discovery thread; 13716 * the second is the delay parameter. If non-zero, rather than rearming 13717 * the CQ and yet another interrupt, the CQ handler should be queued so 13718 * that it is processed in a subsequent polling action. The value of 13719 * the delay indicates when to reschedule it. 13720 **/ 13721 static void 13722 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 13723 { 13724 struct lpfc_hba *phba = cq->phba; 13725 unsigned long delay; 13726 bool workposted = false; 13727 13728 /* Process and rearm the CQ */ 13729 switch (cq->type) { 13730 case LPFC_MCQ: 13731 workposted |= __lpfc_sli4_process_cq(phba, cq, 13732 lpfc_sli4_sp_handle_mcqe, 13733 &delay); 13734 break; 13735 case LPFC_WCQ: 13736 if (cq->subtype == LPFC_IO) 13737 workposted |= __lpfc_sli4_process_cq(phba, cq, 13738 lpfc_sli4_fp_handle_cqe, 13739 &delay); 13740 else 13741 workposted |= __lpfc_sli4_process_cq(phba, cq, 13742 lpfc_sli4_sp_handle_cqe, 13743 &delay); 13744 break; 13745 default: 13746 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13747 "0370 Invalid completion queue type (%d)\n", 13748 cq->type); 13749 return; 13750 } 13751 13752 if (delay) { 13753 if (!queue_delayed_work_on(cq->chann, phba->wq, 13754 &cq->sched_spwork, delay)) 13755 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13756 "0394 Cannot schedule soft IRQ " 13757 "for cqid=%d on CPU %d\n", 13758 cq->queue_id, cq->chann); 13759 } 13760 13761 /* wake up worker thread if there are works to be done */ 13762 if (workposted) 13763 lpfc_worker_wake_up(phba); 13764 } 13765 13766 /** 13767 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 13768 * interrupt 13769 * @work: pointer to work element 13770 * 13771 * translates from the work handler and calls the slow-path handler. 13772 **/ 13773 static void 13774 lpfc_sli4_sp_process_cq(struct work_struct *work) 13775 { 13776 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 13777 13778 __lpfc_sli4_sp_process_cq(cq); 13779 } 13780 13781 /** 13782 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 13783 * @work: pointer to work element 13784 * 13785 * translates from the work handler and calls the slow-path handler. 13786 **/ 13787 static void 13788 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 13789 { 13790 struct lpfc_queue *cq = container_of(to_delayed_work(work), 13791 struct lpfc_queue, sched_spwork); 13792 13793 __lpfc_sli4_sp_process_cq(cq); 13794 } 13795 13796 /** 13797 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 13798 * @phba: Pointer to HBA context object. 13799 * @cq: Pointer to associated CQ 13800 * @wcqe: Pointer to work-queue completion queue entry. 13801 * 13802 * This routine process a fast-path work queue completion entry from fast-path 13803 * event queue for FCP command response completion. 13804 **/ 13805 static void 13806 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13807 struct lpfc_wcqe_complete *wcqe) 13808 { 13809 struct lpfc_sli_ring *pring = cq->pring; 13810 struct lpfc_iocbq *cmdiocbq; 13811 struct lpfc_iocbq irspiocbq; 13812 unsigned long iflags; 13813 13814 /* Check for response status */ 13815 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 13816 /* If resource errors reported from HBA, reduce queue 13817 * depth of the SCSI device. 13818 */ 13819 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 13820 IOSTAT_LOCAL_REJECT)) && 13821 ((wcqe->parameter & IOERR_PARAM_MASK) == 13822 IOERR_NO_RESOURCES)) 13823 phba->lpfc_rampdown_queue_depth(phba); 13824 13825 /* Log the error status */ 13826 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13827 "0373 FCP CQE error: status=x%x: " 13828 "CQE: %08x %08x %08x %08x\n", 13829 bf_get(lpfc_wcqe_c_status, wcqe), 13830 wcqe->word0, wcqe->total_data_placed, 13831 wcqe->parameter, wcqe->word3); 13832 } 13833 13834 /* Look up the FCP command IOCB and create pseudo response IOCB */ 13835 spin_lock_irqsave(&pring->ring_lock, iflags); 13836 pring->stats.iocb_event++; 13837 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13838 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13839 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13840 if (unlikely(!cmdiocbq)) { 13841 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13842 "0374 FCP complete with no corresponding " 13843 "cmdiocb: iotag (%d)\n", 13844 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13845 return; 13846 } 13847 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 13848 cmdiocbq->isr_timestamp = cq->isr_timestamp; 13849 #endif 13850 if (cmdiocbq->iocb_cmpl == NULL) { 13851 if (cmdiocbq->wqe_cmpl) { 13852 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 13853 spin_lock_irqsave(&phba->hbalock, iflags); 13854 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 13855 spin_unlock_irqrestore(&phba->hbalock, iflags); 13856 } 13857 13858 /* Pass the cmd_iocb and the wcqe to the upper layer */ 13859 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); 13860 return; 13861 } 13862 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13863 "0375 FCP cmdiocb not callback function " 13864 "iotag: (%d)\n", 13865 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13866 return; 13867 } 13868 13869 /* Fake the irspiocb and copy necessary response information */ 13870 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 13871 13872 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 13873 spin_lock_irqsave(&phba->hbalock, iflags); 13874 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 13875 spin_unlock_irqrestore(&phba->hbalock, iflags); 13876 } 13877 13878 /* Pass the cmd_iocb and the rsp state to the upper layer */ 13879 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 13880 } 13881 13882 /** 13883 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 13884 * @phba: Pointer to HBA context object. 13885 * @cq: Pointer to completion queue. 13886 * @wcqe: Pointer to work-queue completion queue entry. 13887 * 13888 * This routine handles an fast-path WQ entry consumed event by invoking the 13889 * proper WQ release routine to the slow-path WQ. 13890 **/ 13891 static void 13892 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13893 struct lpfc_wcqe_release *wcqe) 13894 { 13895 struct lpfc_queue *childwq; 13896 bool wqid_matched = false; 13897 uint16_t hba_wqid; 13898 13899 /* Check for fast-path FCP work queue release */ 13900 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 13901 list_for_each_entry(childwq, &cq->child_list, list) { 13902 if (childwq->queue_id == hba_wqid) { 13903 lpfc_sli4_wq_release(childwq, 13904 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 13905 if (childwq->q_flag & HBA_NVMET_WQFULL) 13906 lpfc_nvmet_wqfull_process(phba, childwq); 13907 wqid_matched = true; 13908 break; 13909 } 13910 } 13911 /* Report warning log message if no match found */ 13912 if (wqid_matched != true) 13913 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13914 "2580 Fast-path wqe consume event carries " 13915 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 13916 } 13917 13918 /** 13919 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 13920 * @phba: Pointer to HBA context object. 13921 * @rcqe: Pointer to receive-queue completion queue entry. 13922 * 13923 * This routine process a receive-queue completion queue entry. 13924 * 13925 * Return: true if work posted to worker thread, otherwise false. 13926 **/ 13927 static bool 13928 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13929 struct lpfc_rcqe *rcqe) 13930 { 13931 bool workposted = false; 13932 struct lpfc_queue *hrq; 13933 struct lpfc_queue *drq; 13934 struct rqb_dmabuf *dma_buf; 13935 struct fc_frame_header *fc_hdr; 13936 struct lpfc_nvmet_tgtport *tgtp; 13937 uint32_t status, rq_id; 13938 unsigned long iflags; 13939 uint32_t fctl, idx; 13940 13941 if ((phba->nvmet_support == 0) || 13942 (phba->sli4_hba.nvmet_cqset == NULL)) 13943 return workposted; 13944 13945 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 13946 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 13947 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 13948 13949 /* sanity check on queue memory */ 13950 if (unlikely(!hrq) || unlikely(!drq)) 13951 return workposted; 13952 13953 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13954 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13955 else 13956 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13957 13958 if ((phba->nvmet_support == 0) || 13959 (rq_id != hrq->queue_id)) 13960 return workposted; 13961 13962 status = bf_get(lpfc_rcqe_status, rcqe); 13963 switch (status) { 13964 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13965 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13966 "6126 Receive Frame Truncated!!\n"); 13967 /* fall through */ 13968 case FC_STATUS_RQ_SUCCESS: 13969 spin_lock_irqsave(&phba->hbalock, iflags); 13970 lpfc_sli4_rq_release(hrq, drq); 13971 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 13972 if (!dma_buf) { 13973 hrq->RQ_no_buf_found++; 13974 spin_unlock_irqrestore(&phba->hbalock, iflags); 13975 goto out; 13976 } 13977 spin_unlock_irqrestore(&phba->hbalock, iflags); 13978 hrq->RQ_rcv_buf++; 13979 hrq->RQ_buf_posted--; 13980 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 13981 13982 /* Just some basic sanity checks on FCP Command frame */ 13983 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 13984 fc_hdr->fh_f_ctl[1] << 8 | 13985 fc_hdr->fh_f_ctl[2]); 13986 if (((fctl & 13987 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 13988 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 13989 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 13990 goto drop; 13991 13992 if (fc_hdr->fh_type == FC_TYPE_FCP) { 13993 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 13994 lpfc_nvmet_unsol_fcp_event( 13995 phba, idx, dma_buf, cq->isr_timestamp, 13996 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 13997 return false; 13998 } 13999 drop: 14000 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 14001 break; 14002 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14003 if (phba->nvmet_support) { 14004 tgtp = phba->targetport->private; 14005 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME, 14006 "6401 RQE Error x%x, posted %d err_cnt " 14007 "%d: %x %x %x\n", 14008 status, hrq->RQ_buf_posted, 14009 hrq->RQ_no_posted_buf, 14010 atomic_read(&tgtp->rcv_fcp_cmd_in), 14011 atomic_read(&tgtp->rcv_fcp_cmd_out), 14012 atomic_read(&tgtp->xmt_fcp_release)); 14013 } 14014 /* fallthrough */ 14015 14016 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14017 hrq->RQ_no_posted_buf++; 14018 /* Post more buffers if possible */ 14019 break; 14020 } 14021 out: 14022 return workposted; 14023 } 14024 14025 /** 14026 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 14027 * @phba: adapter with cq 14028 * @cq: Pointer to the completion queue. 14029 * @eqe: Pointer to fast-path completion queue entry. 14030 * 14031 * This routine process a fast-path work queue completion entry from fast-path 14032 * event queue for FCP command response completion. 14033 * 14034 * Return: true if work posted to worker thread, otherwise false. 14035 **/ 14036 static bool 14037 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14038 struct lpfc_cqe *cqe) 14039 { 14040 struct lpfc_wcqe_release wcqe; 14041 bool workposted = false; 14042 14043 /* Copy the work queue CQE and convert endian order if needed */ 14044 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 14045 14046 /* Check and process for different type of WCQE and dispatch */ 14047 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 14048 case CQE_CODE_COMPL_WQE: 14049 case CQE_CODE_NVME_ERSP: 14050 cq->CQ_wq++; 14051 /* Process the WQ complete event */ 14052 phba->last_completion_time = jiffies; 14053 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 14054 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 14055 (struct lpfc_wcqe_complete *)&wcqe); 14056 break; 14057 case CQE_CODE_RELEASE_WQE: 14058 cq->CQ_release_wqe++; 14059 /* Process the WQ release event */ 14060 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 14061 (struct lpfc_wcqe_release *)&wcqe); 14062 break; 14063 case CQE_CODE_XRI_ABORTED: 14064 cq->CQ_xri_aborted++; 14065 /* Process the WQ XRI abort event */ 14066 phba->last_completion_time = jiffies; 14067 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14068 (struct sli4_wcqe_xri_aborted *)&wcqe); 14069 break; 14070 case CQE_CODE_RECEIVE_V1: 14071 case CQE_CODE_RECEIVE: 14072 phba->last_completion_time = jiffies; 14073 if (cq->subtype == LPFC_NVMET) { 14074 workposted = lpfc_sli4_nvmet_handle_rcqe( 14075 phba, cq, (struct lpfc_rcqe *)&wcqe); 14076 } 14077 break; 14078 default: 14079 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14080 "0144 Not a valid CQE code: x%x\n", 14081 bf_get(lpfc_wcqe_c_code, &wcqe)); 14082 break; 14083 } 14084 return workposted; 14085 } 14086 14087 /** 14088 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 14089 * @phba: Pointer to HBA context object. 14090 * @eqe: Pointer to fast-path event queue entry. 14091 * 14092 * This routine process a event queue entry from the fast-path event queue. 14093 * It will check the MajorCode and MinorCode to determine this is for a 14094 * completion event on a completion queue, if not, an error shall be logged 14095 * and just return. Otherwise, it will get to the corresponding completion 14096 * queue and process all the entries on the completion queue, rearm the 14097 * completion queue, and then return. 14098 **/ 14099 static void 14100 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 14101 struct lpfc_eqe *eqe) 14102 { 14103 struct lpfc_queue *cq = NULL; 14104 uint32_t qidx = eq->hdwq; 14105 uint16_t cqid, id; 14106 14107 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 14108 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14109 "0366 Not a valid completion " 14110 "event: majorcode=x%x, minorcode=x%x\n", 14111 bf_get_le32(lpfc_eqe_major_code, eqe), 14112 bf_get_le32(lpfc_eqe_minor_code, eqe)); 14113 return; 14114 } 14115 14116 /* Get the reference to the corresponding CQ */ 14117 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14118 14119 /* Use the fast lookup method first */ 14120 if (cqid <= phba->sli4_hba.cq_max) { 14121 cq = phba->sli4_hba.cq_lookup[cqid]; 14122 if (cq) 14123 goto work_cq; 14124 } 14125 14126 /* Next check for NVMET completion */ 14127 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 14128 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 14129 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 14130 /* Process NVMET unsol rcv */ 14131 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 14132 goto process_cq; 14133 } 14134 } 14135 14136 if (phba->sli4_hba.nvmels_cq && 14137 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 14138 /* Process NVME unsol rcv */ 14139 cq = phba->sli4_hba.nvmels_cq; 14140 } 14141 14142 /* Otherwise this is a Slow path event */ 14143 if (cq == NULL) { 14144 lpfc_sli4_sp_handle_eqe(phba, eqe, 14145 phba->sli4_hba.hdwq[qidx].hba_eq); 14146 return; 14147 } 14148 14149 process_cq: 14150 if (unlikely(cqid != cq->queue_id)) { 14151 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14152 "0368 Miss-matched fast-path completion " 14153 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 14154 cqid, cq->queue_id); 14155 return; 14156 } 14157 14158 work_cq: 14159 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 14160 if (phba->ktime_on) 14161 cq->isr_timestamp = ktime_get_ns(); 14162 else 14163 cq->isr_timestamp = 0; 14164 #endif 14165 if (!queue_work_on(cq->chann, phba->wq, &cq->irqwork)) 14166 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14167 "0363 Cannot schedule soft IRQ " 14168 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14169 cqid, cq->queue_id, raw_smp_processor_id()); 14170 } 14171 14172 /** 14173 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 14174 * @cq: Pointer to CQ to be processed 14175 * 14176 * This routine calls the cq processing routine with the handler for 14177 * fast path CQEs. 14178 * 14179 * The CQ routine returns two values: the first is the calling status, 14180 * which indicates whether work was queued to the background discovery 14181 * thread. If true, the routine should wakeup the discovery thread; 14182 * the second is the delay parameter. If non-zero, rather than rearming 14183 * the CQ and yet another interrupt, the CQ handler should be queued so 14184 * that it is processed in a subsequent polling action. The value of 14185 * the delay indicates when to reschedule it. 14186 **/ 14187 static void 14188 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq) 14189 { 14190 struct lpfc_hba *phba = cq->phba; 14191 unsigned long delay; 14192 bool workposted = false; 14193 14194 /* process and rearm the CQ */ 14195 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 14196 &delay); 14197 14198 if (delay) { 14199 if (!queue_delayed_work_on(cq->chann, phba->wq, 14200 &cq->sched_irqwork, delay)) 14201 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14202 "0367 Cannot schedule soft IRQ " 14203 "for cqid=%d on CPU %d\n", 14204 cq->queue_id, cq->chann); 14205 } 14206 14207 /* wake up worker thread if there are works to be done */ 14208 if (workposted) 14209 lpfc_worker_wake_up(phba); 14210 } 14211 14212 /** 14213 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 14214 * interrupt 14215 * @work: pointer to work element 14216 * 14217 * translates from the work handler and calls the fast-path handler. 14218 **/ 14219 static void 14220 lpfc_sli4_hba_process_cq(struct work_struct *work) 14221 { 14222 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 14223 14224 __lpfc_sli4_hba_process_cq(cq); 14225 } 14226 14227 /** 14228 * lpfc_sli4_hba_process_cq - fast-path work handler when started by timer 14229 * @work: pointer to work element 14230 * 14231 * translates from the work handler and calls the fast-path handler. 14232 **/ 14233 static void 14234 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 14235 { 14236 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14237 struct lpfc_queue, sched_irqwork); 14238 14239 __lpfc_sli4_hba_process_cq(cq); 14240 } 14241 14242 /** 14243 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 14244 * @irq: Interrupt number. 14245 * @dev_id: The device context pointer. 14246 * 14247 * This function is directly called from the PCI layer as an interrupt 14248 * service routine when device with SLI-4 interface spec is enabled with 14249 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 14250 * ring event in the HBA. However, when the device is enabled with either 14251 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 14252 * device-level interrupt handler. When the PCI slot is in error recovery 14253 * or the HBA is undergoing initialization, the interrupt handler will not 14254 * process the interrupt. The SCSI FCP fast-path ring event are handled in 14255 * the intrrupt context. This function is called without any lock held. 14256 * It gets the hbalock to access and update SLI data structures. Note that, 14257 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 14258 * equal to that of FCP CQ index. 14259 * 14260 * The link attention and ELS ring attention events are handled 14261 * by the worker thread. The interrupt handler signals the worker thread 14262 * and returns for these events. This function is called without any lock 14263 * held. It gets the hbalock to access and update SLI data structures. 14264 * 14265 * This function returns IRQ_HANDLED when interrupt is handled else it 14266 * returns IRQ_NONE. 14267 **/ 14268 irqreturn_t 14269 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 14270 { 14271 struct lpfc_hba *phba; 14272 struct lpfc_hba_eq_hdl *hba_eq_hdl; 14273 struct lpfc_queue *fpeq; 14274 unsigned long iflag; 14275 int ecount = 0; 14276 int hba_eqidx; 14277 struct lpfc_eq_intr_info *eqi; 14278 uint32_t icnt; 14279 14280 /* Get the driver's phba structure from the dev_id */ 14281 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 14282 phba = hba_eq_hdl->phba; 14283 hba_eqidx = hba_eq_hdl->idx; 14284 14285 if (unlikely(!phba)) 14286 return IRQ_NONE; 14287 if (unlikely(!phba->sli4_hba.hdwq)) 14288 return IRQ_NONE; 14289 14290 /* Get to the EQ struct associated with this vector */ 14291 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 14292 if (unlikely(!fpeq)) 14293 return IRQ_NONE; 14294 14295 /* Check device state for handling interrupt */ 14296 if (unlikely(lpfc_intr_state_check(phba))) { 14297 /* Check again for link_state with lock held */ 14298 spin_lock_irqsave(&phba->hbalock, iflag); 14299 if (phba->link_state < LPFC_LINK_DOWN) 14300 /* Flush, clear interrupt, and rearm the EQ */ 14301 lpfc_sli4_eqcq_flush(phba, fpeq); 14302 spin_unlock_irqrestore(&phba->hbalock, iflag); 14303 return IRQ_NONE; 14304 } 14305 14306 eqi = phba->sli4_hba.eq_info; 14307 icnt = this_cpu_inc_return(eqi->icnt); 14308 fpeq->last_cpu = raw_smp_processor_id(); 14309 14310 if (icnt > LPFC_EQD_ISR_TRIGGER && 14311 fpeq->q_flag & HBA_EQ_DELAY_CHK && 14312 phba->cfg_auto_imax && 14313 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 14314 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 14315 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 14316 14317 /* process and rearm the EQ */ 14318 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 14319 14320 if (unlikely(ecount == 0)) { 14321 fpeq->EQ_no_entry++; 14322 if (phba->intr_type == MSIX) 14323 /* MSI-X treated interrupt served as no EQ share INT */ 14324 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14325 "0358 MSI-X interrupt with no EQE\n"); 14326 else 14327 /* Non MSI-X treated on interrupt as EQ share INT */ 14328 return IRQ_NONE; 14329 } 14330 14331 return IRQ_HANDLED; 14332 } /* lpfc_sli4_fp_intr_handler */ 14333 14334 /** 14335 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 14336 * @irq: Interrupt number. 14337 * @dev_id: The device context pointer. 14338 * 14339 * This function is the device-level interrupt handler to device with SLI-4 14340 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 14341 * interrupt mode is enabled and there is an event in the HBA which requires 14342 * driver attention. This function invokes the slow-path interrupt attention 14343 * handling function and fast-path interrupt attention handling function in 14344 * turn to process the relevant HBA attention events. This function is called 14345 * without any lock held. It gets the hbalock to access and update SLI data 14346 * structures. 14347 * 14348 * This function returns IRQ_HANDLED when interrupt is handled, else it 14349 * returns IRQ_NONE. 14350 **/ 14351 irqreturn_t 14352 lpfc_sli4_intr_handler(int irq, void *dev_id) 14353 { 14354 struct lpfc_hba *phba; 14355 irqreturn_t hba_irq_rc; 14356 bool hba_handled = false; 14357 int qidx; 14358 14359 /* Get the driver's phba structure from the dev_id */ 14360 phba = (struct lpfc_hba *)dev_id; 14361 14362 if (unlikely(!phba)) 14363 return IRQ_NONE; 14364 14365 /* 14366 * Invoke fast-path host attention interrupt handling as appropriate. 14367 */ 14368 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 14369 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 14370 &phba->sli4_hba.hba_eq_hdl[qidx]); 14371 if (hba_irq_rc == IRQ_HANDLED) 14372 hba_handled |= true; 14373 } 14374 14375 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 14376 } /* lpfc_sli4_intr_handler */ 14377 14378 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 14379 { 14380 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 14381 struct lpfc_queue *eq; 14382 int i = 0; 14383 14384 rcu_read_lock(); 14385 14386 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 14387 i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH); 14388 if (!list_empty(&phba->poll_list)) 14389 mod_timer(&phba->cpuhp_poll_timer, 14390 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 14391 14392 rcu_read_unlock(); 14393 } 14394 14395 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path) 14396 { 14397 struct lpfc_hba *phba = eq->phba; 14398 int i = 0; 14399 14400 /* 14401 * Unlocking an irq is one of the entry point to check 14402 * for re-schedule, but we are good for io submission 14403 * path as midlayer does a get_cpu to glue us in. Flush 14404 * out the invalidate queue so we can see the updated 14405 * value for flag. 14406 */ 14407 smp_rmb(); 14408 14409 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 14410 /* We will not likely get the completion for the caller 14411 * during this iteration but i guess that's fine. 14412 * Future io's coming on this eq should be able to 14413 * pick it up. As for the case of single io's, they 14414 * will be handled through a sched from polling timer 14415 * function which is currently triggered every 1msec. 14416 */ 14417 i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM); 14418 14419 return i; 14420 } 14421 14422 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 14423 { 14424 struct lpfc_hba *phba = eq->phba; 14425 14426 /* kickstart slowpath processing if needed */ 14427 if (list_empty(&phba->poll_list)) 14428 mod_timer(&phba->cpuhp_poll_timer, 14429 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 14430 14431 list_add_rcu(&eq->_poll_list, &phba->poll_list); 14432 synchronize_rcu(); 14433 } 14434 14435 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 14436 { 14437 struct lpfc_hba *phba = eq->phba; 14438 14439 /* Disable slowpath processing for this eq. Kick start the eq 14440 * by RE-ARMING the eq's ASAP 14441 */ 14442 list_del_rcu(&eq->_poll_list); 14443 synchronize_rcu(); 14444 14445 if (list_empty(&phba->poll_list)) 14446 del_timer_sync(&phba->cpuhp_poll_timer); 14447 } 14448 14449 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 14450 { 14451 struct lpfc_queue *eq, *next; 14452 14453 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 14454 list_del(&eq->_poll_list); 14455 14456 INIT_LIST_HEAD(&phba->poll_list); 14457 synchronize_rcu(); 14458 } 14459 14460 static inline void 14461 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 14462 { 14463 if (mode == eq->mode) 14464 return; 14465 /* 14466 * currently this function is only called during a hotplug 14467 * event and the cpu on which this function is executing 14468 * is going offline. By now the hotplug has instructed 14469 * the scheduler to remove this cpu from cpu active mask. 14470 * So we don't need to work about being put aside by the 14471 * scheduler for a high priority process. Yes, the inte- 14472 * rrupts could come but they are known to retire ASAP. 14473 */ 14474 14475 /* Disable polling in the fastpath */ 14476 WRITE_ONCE(eq->mode, mode); 14477 /* flush out the store buffer */ 14478 smp_wmb(); 14479 14480 /* 14481 * Add this eq to the polling list and start polling. For 14482 * a grace period both interrupt handler and poller will 14483 * try to process the eq _but_ that's fine. We have a 14484 * synchronization mechanism in place (queue_claimed) to 14485 * deal with it. This is just a draining phase for int- 14486 * errupt handler (not eq's) as we have guranteed through 14487 * barrier that all the CPUs have seen the new CQ_POLLED 14488 * state. which will effectively disable the REARMING of 14489 * the EQ. The whole idea is eq's die off eventually as 14490 * we are not rearming EQ's anymore. 14491 */ 14492 mode ? lpfc_sli4_add_to_poll_list(eq) : 14493 lpfc_sli4_remove_from_poll_list(eq); 14494 } 14495 14496 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 14497 { 14498 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 14499 } 14500 14501 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 14502 { 14503 struct lpfc_hba *phba = eq->phba; 14504 14505 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 14506 14507 /* Kick start for the pending io's in h/w. 14508 * Once we switch back to interrupt processing on a eq 14509 * the io path completion will only arm eq's when it 14510 * receives a completion. But since eq's are in disa- 14511 * rmed state it doesn't receive a completion. This 14512 * creates a deadlock scenaro. 14513 */ 14514 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 14515 } 14516 14517 /** 14518 * lpfc_sli4_queue_free - free a queue structure and associated memory 14519 * @queue: The queue structure to free. 14520 * 14521 * This function frees a queue structure and the DMAable memory used for 14522 * the host resident queue. This function must be called after destroying the 14523 * queue on the HBA. 14524 **/ 14525 void 14526 lpfc_sli4_queue_free(struct lpfc_queue *queue) 14527 { 14528 struct lpfc_dmabuf *dmabuf; 14529 14530 if (!queue) 14531 return; 14532 14533 if (!list_empty(&queue->wq_list)) 14534 list_del(&queue->wq_list); 14535 14536 while (!list_empty(&queue->page_list)) { 14537 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 14538 list); 14539 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 14540 dmabuf->virt, dmabuf->phys); 14541 kfree(dmabuf); 14542 } 14543 if (queue->rqbp) { 14544 lpfc_free_rq_buffer(queue->phba, queue); 14545 kfree(queue->rqbp); 14546 } 14547 14548 if (!list_empty(&queue->cpu_list)) 14549 list_del(&queue->cpu_list); 14550 14551 kfree(queue); 14552 return; 14553 } 14554 14555 /** 14556 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 14557 * @phba: The HBA that this queue is being created on. 14558 * @page_size: The size of a queue page 14559 * @entry_size: The size of each queue entry for this queue. 14560 * @entry count: The number of entries that this queue will handle. 14561 * @cpu: The cpu that will primarily utilize this queue. 14562 * 14563 * This function allocates a queue structure and the DMAable memory used for 14564 * the host resident queue. This function must be called before creating the 14565 * queue on the HBA. 14566 **/ 14567 struct lpfc_queue * 14568 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 14569 uint32_t entry_size, uint32_t entry_count, int cpu) 14570 { 14571 struct lpfc_queue *queue; 14572 struct lpfc_dmabuf *dmabuf; 14573 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14574 uint16_t x, pgcnt; 14575 14576 if (!phba->sli4_hba.pc_sli4_params.supported) 14577 hw_page_size = page_size; 14578 14579 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 14580 14581 /* If needed, Adjust page count to match the max the adapter supports */ 14582 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 14583 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 14584 14585 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 14586 GFP_KERNEL, cpu_to_node(cpu)); 14587 if (!queue) 14588 return NULL; 14589 14590 INIT_LIST_HEAD(&queue->list); 14591 INIT_LIST_HEAD(&queue->_poll_list); 14592 INIT_LIST_HEAD(&queue->wq_list); 14593 INIT_LIST_HEAD(&queue->wqfull_list); 14594 INIT_LIST_HEAD(&queue->page_list); 14595 INIT_LIST_HEAD(&queue->child_list); 14596 INIT_LIST_HEAD(&queue->cpu_list); 14597 14598 /* Set queue parameters now. If the system cannot provide memory 14599 * resources, the free routine needs to know what was allocated. 14600 */ 14601 queue->page_count = pgcnt; 14602 queue->q_pgs = (void **)&queue[1]; 14603 queue->entry_cnt_per_pg = hw_page_size / entry_size; 14604 queue->entry_size = entry_size; 14605 queue->entry_count = entry_count; 14606 queue->page_size = hw_page_size; 14607 queue->phba = phba; 14608 14609 for (x = 0; x < queue->page_count; x++) { 14610 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 14611 dev_to_node(&phba->pcidev->dev)); 14612 if (!dmabuf) 14613 goto out_fail; 14614 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 14615 hw_page_size, &dmabuf->phys, 14616 GFP_KERNEL); 14617 if (!dmabuf->virt) { 14618 kfree(dmabuf); 14619 goto out_fail; 14620 } 14621 dmabuf->buffer_tag = x; 14622 list_add_tail(&dmabuf->list, &queue->page_list); 14623 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 14624 queue->q_pgs[x] = dmabuf->virt; 14625 } 14626 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 14627 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 14628 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 14629 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 14630 14631 /* notify_interval will be set during q creation */ 14632 14633 return queue; 14634 out_fail: 14635 lpfc_sli4_queue_free(queue); 14636 return NULL; 14637 } 14638 14639 /** 14640 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 14641 * @phba: HBA structure that indicates port to create a queue on. 14642 * @pci_barset: PCI BAR set flag. 14643 * 14644 * This function shall perform iomap of the specified PCI BAR address to host 14645 * memory address if not already done so and return it. The returned host 14646 * memory address can be NULL. 14647 */ 14648 static void __iomem * 14649 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 14650 { 14651 if (!phba->pcidev) 14652 return NULL; 14653 14654 switch (pci_barset) { 14655 case WQ_PCI_BAR_0_AND_1: 14656 return phba->pci_bar0_memmap_p; 14657 case WQ_PCI_BAR_2_AND_3: 14658 return phba->pci_bar2_memmap_p; 14659 case WQ_PCI_BAR_4_AND_5: 14660 return phba->pci_bar4_memmap_p; 14661 default: 14662 break; 14663 } 14664 return NULL; 14665 } 14666 14667 /** 14668 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 14669 * @phba: HBA structure that EQs are on. 14670 * @startq: The starting EQ index to modify 14671 * @numq: The number of EQs (consecutive indexes) to modify 14672 * @usdelay: amount of delay 14673 * 14674 * This function revises the EQ delay on 1 or more EQs. The EQ delay 14675 * is set either by writing to a register (if supported by the SLI Port) 14676 * or by mailbox command. The mailbox command allows several EQs to be 14677 * updated at once. 14678 * 14679 * The @phba struct is used to send a mailbox command to HBA. The @startq 14680 * is used to get the starting EQ index to change. The @numq value is 14681 * used to specify how many consecutive EQ indexes, starting at EQ index, 14682 * are to be changed. This function is asynchronous and will wait for any 14683 * mailbox commands to finish before returning. 14684 * 14685 * On success this function will return a zero. If unable to allocate 14686 * enough memory this function will return -ENOMEM. If a mailbox command 14687 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 14688 * have had their delay multipler changed. 14689 **/ 14690 void 14691 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 14692 uint32_t numq, uint32_t usdelay) 14693 { 14694 struct lpfc_mbx_modify_eq_delay *eq_delay; 14695 LPFC_MBOXQ_t *mbox; 14696 struct lpfc_queue *eq; 14697 int cnt = 0, rc, length; 14698 uint32_t shdr_status, shdr_add_status; 14699 uint32_t dmult; 14700 int qidx; 14701 union lpfc_sli4_cfg_shdr *shdr; 14702 14703 if (startq >= phba->cfg_irq_chann) 14704 return; 14705 14706 if (usdelay > 0xFFFF) { 14707 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 14708 "6429 usdelay %d too large. Scaled down to " 14709 "0xFFFF.\n", usdelay); 14710 usdelay = 0xFFFF; 14711 } 14712 14713 /* set values by EQ_DELAY register if supported */ 14714 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 14715 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 14716 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 14717 if (!eq) 14718 continue; 14719 14720 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 14721 14722 if (++cnt >= numq) 14723 break; 14724 } 14725 return; 14726 } 14727 14728 /* Otherwise, set values by mailbox cmd */ 14729 14730 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14731 if (!mbox) { 14732 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_FCP | LOG_NVME, 14733 "6428 Failed allocating mailbox cmd buffer." 14734 " EQ delay was not set.\n"); 14735 return; 14736 } 14737 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 14738 sizeof(struct lpfc_sli4_cfg_mhdr)); 14739 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14740 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 14741 length, LPFC_SLI4_MBX_EMBED); 14742 eq_delay = &mbox->u.mqe.un.eq_delay; 14743 14744 /* Calculate delay multiper from maximum interrupt per second */ 14745 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 14746 if (dmult) 14747 dmult--; 14748 if (dmult > LPFC_DMULT_MAX) 14749 dmult = LPFC_DMULT_MAX; 14750 14751 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 14752 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 14753 if (!eq) 14754 continue; 14755 eq->q_mode = usdelay; 14756 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 14757 eq_delay->u.request.eq[cnt].phase = 0; 14758 eq_delay->u.request.eq[cnt].delay_multi = dmult; 14759 14760 if (++cnt >= numq) 14761 break; 14762 } 14763 eq_delay->u.request.num_eq = cnt; 14764 14765 mbox->vport = phba->pport; 14766 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14767 mbox->ctx_buf = NULL; 14768 mbox->ctx_ndlp = NULL; 14769 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14770 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 14771 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14772 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14773 if (shdr_status || shdr_add_status || rc) { 14774 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14775 "2512 MODIFY_EQ_DELAY mailbox failed with " 14776 "status x%x add_status x%x, mbx status x%x\n", 14777 shdr_status, shdr_add_status, rc); 14778 } 14779 mempool_free(mbox, phba->mbox_mem_pool); 14780 return; 14781 } 14782 14783 /** 14784 * lpfc_eq_create - Create an Event Queue on the HBA 14785 * @phba: HBA structure that indicates port to create a queue on. 14786 * @eq: The queue structure to use to create the event queue. 14787 * @imax: The maximum interrupt per second limit. 14788 * 14789 * This function creates an event queue, as detailed in @eq, on a port, 14790 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 14791 * 14792 * The @phba struct is used to send mailbox command to HBA. The @eq struct 14793 * is used to get the entry count and entry size that are necessary to 14794 * determine the number of pages to allocate and use for this queue. This 14795 * function will send the EQ_CREATE mailbox command to the HBA to setup the 14796 * event queue. This function is asynchronous and will wait for the mailbox 14797 * command to finish before continuing. 14798 * 14799 * On success this function will return a zero. If unable to allocate enough 14800 * memory this function will return -ENOMEM. If the queue create mailbox command 14801 * fails this function will return -ENXIO. 14802 **/ 14803 int 14804 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 14805 { 14806 struct lpfc_mbx_eq_create *eq_create; 14807 LPFC_MBOXQ_t *mbox; 14808 int rc, length, status = 0; 14809 struct lpfc_dmabuf *dmabuf; 14810 uint32_t shdr_status, shdr_add_status; 14811 union lpfc_sli4_cfg_shdr *shdr; 14812 uint16_t dmult; 14813 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14814 14815 /* sanity check on queue memory */ 14816 if (!eq) 14817 return -ENODEV; 14818 if (!phba->sli4_hba.pc_sli4_params.supported) 14819 hw_page_size = SLI4_PAGE_SIZE; 14820 14821 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14822 if (!mbox) 14823 return -ENOMEM; 14824 length = (sizeof(struct lpfc_mbx_eq_create) - 14825 sizeof(struct lpfc_sli4_cfg_mhdr)); 14826 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14827 LPFC_MBOX_OPCODE_EQ_CREATE, 14828 length, LPFC_SLI4_MBX_EMBED); 14829 eq_create = &mbox->u.mqe.un.eq_create; 14830 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 14831 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 14832 eq->page_count); 14833 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 14834 LPFC_EQE_SIZE); 14835 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 14836 14837 /* Use version 2 of CREATE_EQ if eqav is set */ 14838 if (phba->sli4_hba.pc_sli4_params.eqav) { 14839 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14840 LPFC_Q_CREATE_VERSION_2); 14841 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 14842 phba->sli4_hba.pc_sli4_params.eqav); 14843 } 14844 14845 /* don't setup delay multiplier using EQ_CREATE */ 14846 dmult = 0; 14847 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 14848 dmult); 14849 switch (eq->entry_count) { 14850 default: 14851 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14852 "0360 Unsupported EQ count. (%d)\n", 14853 eq->entry_count); 14854 if (eq->entry_count < 256) { 14855 status = -EINVAL; 14856 goto out; 14857 } 14858 /* fall through - otherwise default to smallest count */ 14859 case 256: 14860 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14861 LPFC_EQ_CNT_256); 14862 break; 14863 case 512: 14864 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14865 LPFC_EQ_CNT_512); 14866 break; 14867 case 1024: 14868 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14869 LPFC_EQ_CNT_1024); 14870 break; 14871 case 2048: 14872 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14873 LPFC_EQ_CNT_2048); 14874 break; 14875 case 4096: 14876 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14877 LPFC_EQ_CNT_4096); 14878 break; 14879 } 14880 list_for_each_entry(dmabuf, &eq->page_list, list) { 14881 memset(dmabuf->virt, 0, hw_page_size); 14882 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14883 putPaddrLow(dmabuf->phys); 14884 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14885 putPaddrHigh(dmabuf->phys); 14886 } 14887 mbox->vport = phba->pport; 14888 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14889 mbox->ctx_buf = NULL; 14890 mbox->ctx_ndlp = NULL; 14891 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14892 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14893 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14894 if (shdr_status || shdr_add_status || rc) { 14895 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14896 "2500 EQ_CREATE mailbox failed with " 14897 "status x%x add_status x%x, mbx status x%x\n", 14898 shdr_status, shdr_add_status, rc); 14899 status = -ENXIO; 14900 } 14901 eq->type = LPFC_EQ; 14902 eq->subtype = LPFC_NONE; 14903 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 14904 if (eq->queue_id == 0xFFFF) 14905 status = -ENXIO; 14906 eq->host_index = 0; 14907 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 14908 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 14909 out: 14910 mempool_free(mbox, phba->mbox_mem_pool); 14911 return status; 14912 } 14913 14914 /** 14915 * lpfc_cq_create - Create a Completion Queue on the HBA 14916 * @phba: HBA structure that indicates port to create a queue on. 14917 * @cq: The queue structure to use to create the completion queue. 14918 * @eq: The event queue to bind this completion queue to. 14919 * 14920 * This function creates a completion queue, as detailed in @wq, on a port, 14921 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 14922 * 14923 * The @phba struct is used to send mailbox command to HBA. The @cq struct 14924 * is used to get the entry count and entry size that are necessary to 14925 * determine the number of pages to allocate and use for this queue. The @eq 14926 * is used to indicate which event queue to bind this completion queue to. This 14927 * function will send the CQ_CREATE mailbox command to the HBA to setup the 14928 * completion queue. This function is asynchronous and will wait for the mailbox 14929 * command to finish before continuing. 14930 * 14931 * On success this function will return a zero. If unable to allocate enough 14932 * memory this function will return -ENOMEM. If the queue create mailbox command 14933 * fails this function will return -ENXIO. 14934 **/ 14935 int 14936 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 14937 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 14938 { 14939 struct lpfc_mbx_cq_create *cq_create; 14940 struct lpfc_dmabuf *dmabuf; 14941 LPFC_MBOXQ_t *mbox; 14942 int rc, length, status = 0; 14943 uint32_t shdr_status, shdr_add_status; 14944 union lpfc_sli4_cfg_shdr *shdr; 14945 14946 /* sanity check on queue memory */ 14947 if (!cq || !eq) 14948 return -ENODEV; 14949 14950 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14951 if (!mbox) 14952 return -ENOMEM; 14953 length = (sizeof(struct lpfc_mbx_cq_create) - 14954 sizeof(struct lpfc_sli4_cfg_mhdr)); 14955 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14956 LPFC_MBOX_OPCODE_CQ_CREATE, 14957 length, LPFC_SLI4_MBX_EMBED); 14958 cq_create = &mbox->u.mqe.un.cq_create; 14959 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 14960 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 14961 cq->page_count); 14962 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 14963 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 14964 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14965 phba->sli4_hba.pc_sli4_params.cqv); 14966 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 14967 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 14968 (cq->page_size / SLI4_PAGE_SIZE)); 14969 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 14970 eq->queue_id); 14971 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 14972 phba->sli4_hba.pc_sli4_params.cqav); 14973 } else { 14974 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 14975 eq->queue_id); 14976 } 14977 switch (cq->entry_count) { 14978 case 2048: 14979 case 4096: 14980 if (phba->sli4_hba.pc_sli4_params.cqv == 14981 LPFC_Q_CREATE_VERSION_2) { 14982 cq_create->u.request.context.lpfc_cq_context_count = 14983 cq->entry_count; 14984 bf_set(lpfc_cq_context_count, 14985 &cq_create->u.request.context, 14986 LPFC_CQ_CNT_WORD7); 14987 break; 14988 } 14989 /* fall through */ 14990 default: 14991 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14992 "0361 Unsupported CQ count: " 14993 "entry cnt %d sz %d pg cnt %d\n", 14994 cq->entry_count, cq->entry_size, 14995 cq->page_count); 14996 if (cq->entry_count < 256) { 14997 status = -EINVAL; 14998 goto out; 14999 } 15000 /* fall through - otherwise default to smallest count */ 15001 case 256: 15002 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15003 LPFC_CQ_CNT_256); 15004 break; 15005 case 512: 15006 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15007 LPFC_CQ_CNT_512); 15008 break; 15009 case 1024: 15010 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15011 LPFC_CQ_CNT_1024); 15012 break; 15013 } 15014 list_for_each_entry(dmabuf, &cq->page_list, list) { 15015 memset(dmabuf->virt, 0, cq->page_size); 15016 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15017 putPaddrLow(dmabuf->phys); 15018 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15019 putPaddrHigh(dmabuf->phys); 15020 } 15021 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15022 15023 /* The IOCTL status is embedded in the mailbox subheader. */ 15024 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15025 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15026 if (shdr_status || shdr_add_status || rc) { 15027 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15028 "2501 CQ_CREATE mailbox failed with " 15029 "status x%x add_status x%x, mbx status x%x\n", 15030 shdr_status, shdr_add_status, rc); 15031 status = -ENXIO; 15032 goto out; 15033 } 15034 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15035 if (cq->queue_id == 0xFFFF) { 15036 status = -ENXIO; 15037 goto out; 15038 } 15039 /* link the cq onto the parent eq child list */ 15040 list_add_tail(&cq->list, &eq->child_list); 15041 /* Set up completion queue's type and subtype */ 15042 cq->type = type; 15043 cq->subtype = subtype; 15044 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15045 cq->assoc_qid = eq->queue_id; 15046 cq->assoc_qp = eq; 15047 cq->host_index = 0; 15048 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 15049 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 15050 15051 if (cq->queue_id > phba->sli4_hba.cq_max) 15052 phba->sli4_hba.cq_max = cq->queue_id; 15053 out: 15054 mempool_free(mbox, phba->mbox_mem_pool); 15055 return status; 15056 } 15057 15058 /** 15059 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 15060 * @phba: HBA structure that indicates port to create a queue on. 15061 * @cqp: The queue structure array to use to create the completion queues. 15062 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 15063 * 15064 * This function creates a set of completion queue, s to support MRQ 15065 * as detailed in @cqp, on a port, 15066 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 15067 * 15068 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15069 * is used to get the entry count and entry size that are necessary to 15070 * determine the number of pages to allocate and use for this queue. The @eq 15071 * is used to indicate which event queue to bind this completion queue to. This 15072 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 15073 * completion queue. This function is asynchronous and will wait for the mailbox 15074 * command to finish before continuing. 15075 * 15076 * On success this function will return a zero. If unable to allocate enough 15077 * memory this function will return -ENOMEM. If the queue create mailbox command 15078 * fails this function will return -ENXIO. 15079 **/ 15080 int 15081 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 15082 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 15083 uint32_t subtype) 15084 { 15085 struct lpfc_queue *cq; 15086 struct lpfc_queue *eq; 15087 struct lpfc_mbx_cq_create_set *cq_set; 15088 struct lpfc_dmabuf *dmabuf; 15089 LPFC_MBOXQ_t *mbox; 15090 int rc, length, alloclen, status = 0; 15091 int cnt, idx, numcq, page_idx = 0; 15092 uint32_t shdr_status, shdr_add_status; 15093 union lpfc_sli4_cfg_shdr *shdr; 15094 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15095 15096 /* sanity check on queue memory */ 15097 numcq = phba->cfg_nvmet_mrq; 15098 if (!cqp || !hdwq || !numcq) 15099 return -ENODEV; 15100 15101 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15102 if (!mbox) 15103 return -ENOMEM; 15104 15105 length = sizeof(struct lpfc_mbx_cq_create_set); 15106 length += ((numcq * cqp[0]->page_count) * 15107 sizeof(struct dma_address)); 15108 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15109 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 15110 LPFC_SLI4_MBX_NEMBED); 15111 if (alloclen < length) { 15112 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15113 "3098 Allocated DMA memory size (%d) is " 15114 "less than the requested DMA memory size " 15115 "(%d)\n", alloclen, length); 15116 status = -ENOMEM; 15117 goto out; 15118 } 15119 cq_set = mbox->sge_array->addr[0]; 15120 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 15121 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 15122 15123 for (idx = 0; idx < numcq; idx++) { 15124 cq = cqp[idx]; 15125 eq = hdwq[idx].hba_eq; 15126 if (!cq || !eq) { 15127 status = -ENOMEM; 15128 goto out; 15129 } 15130 if (!phba->sli4_hba.pc_sli4_params.supported) 15131 hw_page_size = cq->page_size; 15132 15133 switch (idx) { 15134 case 0: 15135 bf_set(lpfc_mbx_cq_create_set_page_size, 15136 &cq_set->u.request, 15137 (hw_page_size / SLI4_PAGE_SIZE)); 15138 bf_set(lpfc_mbx_cq_create_set_num_pages, 15139 &cq_set->u.request, cq->page_count); 15140 bf_set(lpfc_mbx_cq_create_set_evt, 15141 &cq_set->u.request, 1); 15142 bf_set(lpfc_mbx_cq_create_set_valid, 15143 &cq_set->u.request, 1); 15144 bf_set(lpfc_mbx_cq_create_set_cqe_size, 15145 &cq_set->u.request, 0); 15146 bf_set(lpfc_mbx_cq_create_set_num_cq, 15147 &cq_set->u.request, numcq); 15148 bf_set(lpfc_mbx_cq_create_set_autovalid, 15149 &cq_set->u.request, 15150 phba->sli4_hba.pc_sli4_params.cqav); 15151 switch (cq->entry_count) { 15152 case 2048: 15153 case 4096: 15154 if (phba->sli4_hba.pc_sli4_params.cqv == 15155 LPFC_Q_CREATE_VERSION_2) { 15156 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15157 &cq_set->u.request, 15158 cq->entry_count); 15159 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15160 &cq_set->u.request, 15161 LPFC_CQ_CNT_WORD7); 15162 break; 15163 } 15164 /* fall through */ 15165 default: 15166 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15167 "3118 Bad CQ count. (%d)\n", 15168 cq->entry_count); 15169 if (cq->entry_count < 256) { 15170 status = -EINVAL; 15171 goto out; 15172 } 15173 /* fall through - otherwise default to smallest */ 15174 case 256: 15175 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15176 &cq_set->u.request, LPFC_CQ_CNT_256); 15177 break; 15178 case 512: 15179 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15180 &cq_set->u.request, LPFC_CQ_CNT_512); 15181 break; 15182 case 1024: 15183 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15184 &cq_set->u.request, LPFC_CQ_CNT_1024); 15185 break; 15186 } 15187 bf_set(lpfc_mbx_cq_create_set_eq_id0, 15188 &cq_set->u.request, eq->queue_id); 15189 break; 15190 case 1: 15191 bf_set(lpfc_mbx_cq_create_set_eq_id1, 15192 &cq_set->u.request, eq->queue_id); 15193 break; 15194 case 2: 15195 bf_set(lpfc_mbx_cq_create_set_eq_id2, 15196 &cq_set->u.request, eq->queue_id); 15197 break; 15198 case 3: 15199 bf_set(lpfc_mbx_cq_create_set_eq_id3, 15200 &cq_set->u.request, eq->queue_id); 15201 break; 15202 case 4: 15203 bf_set(lpfc_mbx_cq_create_set_eq_id4, 15204 &cq_set->u.request, eq->queue_id); 15205 break; 15206 case 5: 15207 bf_set(lpfc_mbx_cq_create_set_eq_id5, 15208 &cq_set->u.request, eq->queue_id); 15209 break; 15210 case 6: 15211 bf_set(lpfc_mbx_cq_create_set_eq_id6, 15212 &cq_set->u.request, eq->queue_id); 15213 break; 15214 case 7: 15215 bf_set(lpfc_mbx_cq_create_set_eq_id7, 15216 &cq_set->u.request, eq->queue_id); 15217 break; 15218 case 8: 15219 bf_set(lpfc_mbx_cq_create_set_eq_id8, 15220 &cq_set->u.request, eq->queue_id); 15221 break; 15222 case 9: 15223 bf_set(lpfc_mbx_cq_create_set_eq_id9, 15224 &cq_set->u.request, eq->queue_id); 15225 break; 15226 case 10: 15227 bf_set(lpfc_mbx_cq_create_set_eq_id10, 15228 &cq_set->u.request, eq->queue_id); 15229 break; 15230 case 11: 15231 bf_set(lpfc_mbx_cq_create_set_eq_id11, 15232 &cq_set->u.request, eq->queue_id); 15233 break; 15234 case 12: 15235 bf_set(lpfc_mbx_cq_create_set_eq_id12, 15236 &cq_set->u.request, eq->queue_id); 15237 break; 15238 case 13: 15239 bf_set(lpfc_mbx_cq_create_set_eq_id13, 15240 &cq_set->u.request, eq->queue_id); 15241 break; 15242 case 14: 15243 bf_set(lpfc_mbx_cq_create_set_eq_id14, 15244 &cq_set->u.request, eq->queue_id); 15245 break; 15246 case 15: 15247 bf_set(lpfc_mbx_cq_create_set_eq_id15, 15248 &cq_set->u.request, eq->queue_id); 15249 break; 15250 } 15251 15252 /* link the cq onto the parent eq child list */ 15253 list_add_tail(&cq->list, &eq->child_list); 15254 /* Set up completion queue's type and subtype */ 15255 cq->type = type; 15256 cq->subtype = subtype; 15257 cq->assoc_qid = eq->queue_id; 15258 cq->assoc_qp = eq; 15259 cq->host_index = 0; 15260 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 15261 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 15262 cq->entry_count); 15263 cq->chann = idx; 15264 15265 rc = 0; 15266 list_for_each_entry(dmabuf, &cq->page_list, list) { 15267 memset(dmabuf->virt, 0, hw_page_size); 15268 cnt = page_idx + dmabuf->buffer_tag; 15269 cq_set->u.request.page[cnt].addr_lo = 15270 putPaddrLow(dmabuf->phys); 15271 cq_set->u.request.page[cnt].addr_hi = 15272 putPaddrHigh(dmabuf->phys); 15273 rc++; 15274 } 15275 page_idx += rc; 15276 } 15277 15278 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15279 15280 /* The IOCTL status is embedded in the mailbox subheader. */ 15281 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15282 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15283 if (shdr_status || shdr_add_status || rc) { 15284 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15285 "3119 CQ_CREATE_SET mailbox failed with " 15286 "status x%x add_status x%x, mbx status x%x\n", 15287 shdr_status, shdr_add_status, rc); 15288 status = -ENXIO; 15289 goto out; 15290 } 15291 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 15292 if (rc == 0xFFFF) { 15293 status = -ENXIO; 15294 goto out; 15295 } 15296 15297 for (idx = 0; idx < numcq; idx++) { 15298 cq = cqp[idx]; 15299 cq->queue_id = rc + idx; 15300 if (cq->queue_id > phba->sli4_hba.cq_max) 15301 phba->sli4_hba.cq_max = cq->queue_id; 15302 } 15303 15304 out: 15305 lpfc_sli4_mbox_cmd_free(phba, mbox); 15306 return status; 15307 } 15308 15309 /** 15310 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 15311 * @phba: HBA structure that indicates port to create a queue on. 15312 * @mq: The queue structure to use to create the mailbox queue. 15313 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 15314 * @cq: The completion queue to associate with this cq. 15315 * 15316 * This function provides failback (fb) functionality when the 15317 * mq_create_ext fails on older FW generations. It's purpose is identical 15318 * to mq_create_ext otherwise. 15319 * 15320 * This routine cannot fail as all attributes were previously accessed and 15321 * initialized in mq_create_ext. 15322 **/ 15323 static void 15324 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 15325 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 15326 { 15327 struct lpfc_mbx_mq_create *mq_create; 15328 struct lpfc_dmabuf *dmabuf; 15329 int length; 15330 15331 length = (sizeof(struct lpfc_mbx_mq_create) - 15332 sizeof(struct lpfc_sli4_cfg_mhdr)); 15333 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15334 LPFC_MBOX_OPCODE_MQ_CREATE, 15335 length, LPFC_SLI4_MBX_EMBED); 15336 mq_create = &mbox->u.mqe.un.mq_create; 15337 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 15338 mq->page_count); 15339 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 15340 cq->queue_id); 15341 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 15342 switch (mq->entry_count) { 15343 case 16: 15344 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15345 LPFC_MQ_RING_SIZE_16); 15346 break; 15347 case 32: 15348 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15349 LPFC_MQ_RING_SIZE_32); 15350 break; 15351 case 64: 15352 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15353 LPFC_MQ_RING_SIZE_64); 15354 break; 15355 case 128: 15356 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15357 LPFC_MQ_RING_SIZE_128); 15358 break; 15359 } 15360 list_for_each_entry(dmabuf, &mq->page_list, list) { 15361 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15362 putPaddrLow(dmabuf->phys); 15363 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15364 putPaddrHigh(dmabuf->phys); 15365 } 15366 } 15367 15368 /** 15369 * lpfc_mq_create - Create a mailbox Queue on the HBA 15370 * @phba: HBA structure that indicates port to create a queue on. 15371 * @mq: The queue structure to use to create the mailbox queue. 15372 * @cq: The completion queue to associate with this cq. 15373 * @subtype: The queue's subtype. 15374 * 15375 * This function creates a mailbox queue, as detailed in @mq, on a port, 15376 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 15377 * 15378 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15379 * is used to get the entry count and entry size that are necessary to 15380 * determine the number of pages to allocate and use for this queue. This 15381 * function will send the MQ_CREATE mailbox command to the HBA to setup the 15382 * mailbox queue. This function is asynchronous and will wait for the mailbox 15383 * command to finish before continuing. 15384 * 15385 * On success this function will return a zero. If unable to allocate enough 15386 * memory this function will return -ENOMEM. If the queue create mailbox command 15387 * fails this function will return -ENXIO. 15388 **/ 15389 int32_t 15390 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 15391 struct lpfc_queue *cq, uint32_t subtype) 15392 { 15393 struct lpfc_mbx_mq_create *mq_create; 15394 struct lpfc_mbx_mq_create_ext *mq_create_ext; 15395 struct lpfc_dmabuf *dmabuf; 15396 LPFC_MBOXQ_t *mbox; 15397 int rc, length, status = 0; 15398 uint32_t shdr_status, shdr_add_status; 15399 union lpfc_sli4_cfg_shdr *shdr; 15400 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15401 15402 /* sanity check on queue memory */ 15403 if (!mq || !cq) 15404 return -ENODEV; 15405 if (!phba->sli4_hba.pc_sli4_params.supported) 15406 hw_page_size = SLI4_PAGE_SIZE; 15407 15408 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15409 if (!mbox) 15410 return -ENOMEM; 15411 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 15412 sizeof(struct lpfc_sli4_cfg_mhdr)); 15413 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15414 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 15415 length, LPFC_SLI4_MBX_EMBED); 15416 15417 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 15418 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 15419 bf_set(lpfc_mbx_mq_create_ext_num_pages, 15420 &mq_create_ext->u.request, mq->page_count); 15421 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 15422 &mq_create_ext->u.request, 1); 15423 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 15424 &mq_create_ext->u.request, 1); 15425 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 15426 &mq_create_ext->u.request, 1); 15427 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 15428 &mq_create_ext->u.request, 1); 15429 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 15430 &mq_create_ext->u.request, 1); 15431 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 15432 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15433 phba->sli4_hba.pc_sli4_params.mqv); 15434 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 15435 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 15436 cq->queue_id); 15437 else 15438 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 15439 cq->queue_id); 15440 switch (mq->entry_count) { 15441 default: 15442 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15443 "0362 Unsupported MQ count. (%d)\n", 15444 mq->entry_count); 15445 if (mq->entry_count < 16) { 15446 status = -EINVAL; 15447 goto out; 15448 } 15449 /* fall through - otherwise default to smallest count */ 15450 case 16: 15451 bf_set(lpfc_mq_context_ring_size, 15452 &mq_create_ext->u.request.context, 15453 LPFC_MQ_RING_SIZE_16); 15454 break; 15455 case 32: 15456 bf_set(lpfc_mq_context_ring_size, 15457 &mq_create_ext->u.request.context, 15458 LPFC_MQ_RING_SIZE_32); 15459 break; 15460 case 64: 15461 bf_set(lpfc_mq_context_ring_size, 15462 &mq_create_ext->u.request.context, 15463 LPFC_MQ_RING_SIZE_64); 15464 break; 15465 case 128: 15466 bf_set(lpfc_mq_context_ring_size, 15467 &mq_create_ext->u.request.context, 15468 LPFC_MQ_RING_SIZE_128); 15469 break; 15470 } 15471 list_for_each_entry(dmabuf, &mq->page_list, list) { 15472 memset(dmabuf->virt, 0, hw_page_size); 15473 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 15474 putPaddrLow(dmabuf->phys); 15475 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 15476 putPaddrHigh(dmabuf->phys); 15477 } 15478 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15479 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 15480 &mq_create_ext->u.response); 15481 if (rc != MBX_SUCCESS) { 15482 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15483 "2795 MQ_CREATE_EXT failed with " 15484 "status x%x. Failback to MQ_CREATE.\n", 15485 rc); 15486 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 15487 mq_create = &mbox->u.mqe.un.mq_create; 15488 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15489 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 15490 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 15491 &mq_create->u.response); 15492 } 15493 15494 /* The IOCTL status is embedded in the mailbox subheader. */ 15495 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15496 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15497 if (shdr_status || shdr_add_status || rc) { 15498 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15499 "2502 MQ_CREATE mailbox failed with " 15500 "status x%x add_status x%x, mbx status x%x\n", 15501 shdr_status, shdr_add_status, rc); 15502 status = -ENXIO; 15503 goto out; 15504 } 15505 if (mq->queue_id == 0xFFFF) { 15506 status = -ENXIO; 15507 goto out; 15508 } 15509 mq->type = LPFC_MQ; 15510 mq->assoc_qid = cq->queue_id; 15511 mq->subtype = subtype; 15512 mq->host_index = 0; 15513 mq->hba_index = 0; 15514 15515 /* link the mq onto the parent cq child list */ 15516 list_add_tail(&mq->list, &cq->child_list); 15517 out: 15518 mempool_free(mbox, phba->mbox_mem_pool); 15519 return status; 15520 } 15521 15522 /** 15523 * lpfc_wq_create - Create a Work Queue on the HBA 15524 * @phba: HBA structure that indicates port to create a queue on. 15525 * @wq: The queue structure to use to create the work queue. 15526 * @cq: The completion queue to bind this work queue to. 15527 * @subtype: The subtype of the work queue indicating its functionality. 15528 * 15529 * This function creates a work queue, as detailed in @wq, on a port, described 15530 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 15531 * 15532 * The @phba struct is used to send mailbox command to HBA. The @wq struct 15533 * is used to get the entry count and entry size that are necessary to 15534 * determine the number of pages to allocate and use for this queue. The @cq 15535 * is used to indicate which completion queue to bind this work queue to. This 15536 * function will send the WQ_CREATE mailbox command to the HBA to setup the 15537 * work queue. This function is asynchronous and will wait for the mailbox 15538 * command to finish before continuing. 15539 * 15540 * On success this function will return a zero. If unable to allocate enough 15541 * memory this function will return -ENOMEM. If the queue create mailbox command 15542 * fails this function will return -ENXIO. 15543 **/ 15544 int 15545 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 15546 struct lpfc_queue *cq, uint32_t subtype) 15547 { 15548 struct lpfc_mbx_wq_create *wq_create; 15549 struct lpfc_dmabuf *dmabuf; 15550 LPFC_MBOXQ_t *mbox; 15551 int rc, length, status = 0; 15552 uint32_t shdr_status, shdr_add_status; 15553 union lpfc_sli4_cfg_shdr *shdr; 15554 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15555 struct dma_address *page; 15556 void __iomem *bar_memmap_p; 15557 uint32_t db_offset; 15558 uint16_t pci_barset; 15559 uint8_t dpp_barset; 15560 uint32_t dpp_offset; 15561 unsigned long pg_addr; 15562 uint8_t wq_create_version; 15563 15564 /* sanity check on queue memory */ 15565 if (!wq || !cq) 15566 return -ENODEV; 15567 if (!phba->sli4_hba.pc_sli4_params.supported) 15568 hw_page_size = wq->page_size; 15569 15570 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15571 if (!mbox) 15572 return -ENOMEM; 15573 length = (sizeof(struct lpfc_mbx_wq_create) - 15574 sizeof(struct lpfc_sli4_cfg_mhdr)); 15575 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15576 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 15577 length, LPFC_SLI4_MBX_EMBED); 15578 wq_create = &mbox->u.mqe.un.wq_create; 15579 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 15580 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 15581 wq->page_count); 15582 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 15583 cq->queue_id); 15584 15585 /* wqv is the earliest version supported, NOT the latest */ 15586 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15587 phba->sli4_hba.pc_sli4_params.wqv); 15588 15589 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 15590 (wq->page_size > SLI4_PAGE_SIZE)) 15591 wq_create_version = LPFC_Q_CREATE_VERSION_1; 15592 else 15593 wq_create_version = LPFC_Q_CREATE_VERSION_0; 15594 15595 15596 if (phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) 15597 wq_create_version = LPFC_Q_CREATE_VERSION_1; 15598 else 15599 wq_create_version = LPFC_Q_CREATE_VERSION_0; 15600 15601 switch (wq_create_version) { 15602 case LPFC_Q_CREATE_VERSION_1: 15603 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 15604 wq->entry_count); 15605 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15606 LPFC_Q_CREATE_VERSION_1); 15607 15608 switch (wq->entry_size) { 15609 default: 15610 case 64: 15611 bf_set(lpfc_mbx_wq_create_wqe_size, 15612 &wq_create->u.request_1, 15613 LPFC_WQ_WQE_SIZE_64); 15614 break; 15615 case 128: 15616 bf_set(lpfc_mbx_wq_create_wqe_size, 15617 &wq_create->u.request_1, 15618 LPFC_WQ_WQE_SIZE_128); 15619 break; 15620 } 15621 /* Request DPP by default */ 15622 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 15623 bf_set(lpfc_mbx_wq_create_page_size, 15624 &wq_create->u.request_1, 15625 (wq->page_size / SLI4_PAGE_SIZE)); 15626 page = wq_create->u.request_1.page; 15627 break; 15628 default: 15629 page = wq_create->u.request.page; 15630 break; 15631 } 15632 15633 list_for_each_entry(dmabuf, &wq->page_list, list) { 15634 memset(dmabuf->virt, 0, hw_page_size); 15635 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 15636 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 15637 } 15638 15639 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15640 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 15641 15642 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15643 /* The IOCTL status is embedded in the mailbox subheader. */ 15644 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15645 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15646 if (shdr_status || shdr_add_status || rc) { 15647 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15648 "2503 WQ_CREATE mailbox failed with " 15649 "status x%x add_status x%x, mbx status x%x\n", 15650 shdr_status, shdr_add_status, rc); 15651 status = -ENXIO; 15652 goto out; 15653 } 15654 15655 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 15656 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 15657 &wq_create->u.response); 15658 else 15659 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 15660 &wq_create->u.response_1); 15661 15662 if (wq->queue_id == 0xFFFF) { 15663 status = -ENXIO; 15664 goto out; 15665 } 15666 15667 wq->db_format = LPFC_DB_LIST_FORMAT; 15668 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 15669 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 15670 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 15671 &wq_create->u.response); 15672 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 15673 (wq->db_format != LPFC_DB_RING_FORMAT)) { 15674 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15675 "3265 WQ[%d] doorbell format " 15676 "not supported: x%x\n", 15677 wq->queue_id, wq->db_format); 15678 status = -EINVAL; 15679 goto out; 15680 } 15681 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 15682 &wq_create->u.response); 15683 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15684 pci_barset); 15685 if (!bar_memmap_p) { 15686 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15687 "3263 WQ[%d] failed to memmap " 15688 "pci barset:x%x\n", 15689 wq->queue_id, pci_barset); 15690 status = -ENOMEM; 15691 goto out; 15692 } 15693 db_offset = wq_create->u.response.doorbell_offset; 15694 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 15695 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 15696 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15697 "3252 WQ[%d] doorbell offset " 15698 "not supported: x%x\n", 15699 wq->queue_id, db_offset); 15700 status = -EINVAL; 15701 goto out; 15702 } 15703 wq->db_regaddr = bar_memmap_p + db_offset; 15704 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15705 "3264 WQ[%d]: barset:x%x, offset:x%x, " 15706 "format:x%x\n", wq->queue_id, 15707 pci_barset, db_offset, wq->db_format); 15708 } else 15709 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 15710 } else { 15711 /* Check if DPP was honored by the firmware */ 15712 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 15713 &wq_create->u.response_1); 15714 if (wq->dpp_enable) { 15715 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 15716 &wq_create->u.response_1); 15717 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15718 pci_barset); 15719 if (!bar_memmap_p) { 15720 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15721 "3267 WQ[%d] failed to memmap " 15722 "pci barset:x%x\n", 15723 wq->queue_id, pci_barset); 15724 status = -ENOMEM; 15725 goto out; 15726 } 15727 db_offset = wq_create->u.response_1.doorbell_offset; 15728 wq->db_regaddr = bar_memmap_p + db_offset; 15729 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 15730 &wq_create->u.response_1); 15731 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 15732 &wq_create->u.response_1); 15733 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15734 dpp_barset); 15735 if (!bar_memmap_p) { 15736 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15737 "3268 WQ[%d] failed to memmap " 15738 "pci barset:x%x\n", 15739 wq->queue_id, dpp_barset); 15740 status = -ENOMEM; 15741 goto out; 15742 } 15743 dpp_offset = wq_create->u.response_1.dpp_offset; 15744 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 15745 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15746 "3271 WQ[%d]: barset:x%x, offset:x%x, " 15747 "dpp_id:x%x dpp_barset:x%x " 15748 "dpp_offset:x%x\n", 15749 wq->queue_id, pci_barset, db_offset, 15750 wq->dpp_id, dpp_barset, dpp_offset); 15751 15752 /* Enable combined writes for DPP aperture */ 15753 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 15754 #ifdef CONFIG_X86 15755 rc = set_memory_wc(pg_addr, 1); 15756 if (rc) { 15757 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15758 "3272 Cannot setup Combined " 15759 "Write on WQ[%d] - disable DPP\n", 15760 wq->queue_id); 15761 phba->cfg_enable_dpp = 0; 15762 } 15763 #else 15764 phba->cfg_enable_dpp = 0; 15765 #endif 15766 } else 15767 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 15768 } 15769 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 15770 if (wq->pring == NULL) { 15771 status = -ENOMEM; 15772 goto out; 15773 } 15774 wq->type = LPFC_WQ; 15775 wq->assoc_qid = cq->queue_id; 15776 wq->subtype = subtype; 15777 wq->host_index = 0; 15778 wq->hba_index = 0; 15779 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 15780 15781 /* link the wq onto the parent cq child list */ 15782 list_add_tail(&wq->list, &cq->child_list); 15783 out: 15784 mempool_free(mbox, phba->mbox_mem_pool); 15785 return status; 15786 } 15787 15788 /** 15789 * lpfc_rq_create - Create a Receive Queue on the HBA 15790 * @phba: HBA structure that indicates port to create a queue on. 15791 * @hrq: The queue structure to use to create the header receive queue. 15792 * @drq: The queue structure to use to create the data receive queue. 15793 * @cq: The completion queue to bind this work queue to. 15794 * 15795 * This function creates a receive buffer queue pair , as detailed in @hrq and 15796 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 15797 * to the HBA. 15798 * 15799 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 15800 * struct is used to get the entry count that is necessary to determine the 15801 * number of pages to use for this queue. The @cq is used to indicate which 15802 * completion queue to bind received buffers that are posted to these queues to. 15803 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 15804 * receive queue pair. This function is asynchronous and will wait for the 15805 * mailbox command to finish before continuing. 15806 * 15807 * On success this function will return a zero. If unable to allocate enough 15808 * memory this function will return -ENOMEM. If the queue create mailbox command 15809 * fails this function will return -ENXIO. 15810 **/ 15811 int 15812 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 15813 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 15814 { 15815 struct lpfc_mbx_rq_create *rq_create; 15816 struct lpfc_dmabuf *dmabuf; 15817 LPFC_MBOXQ_t *mbox; 15818 int rc, length, status = 0; 15819 uint32_t shdr_status, shdr_add_status; 15820 union lpfc_sli4_cfg_shdr *shdr; 15821 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15822 void __iomem *bar_memmap_p; 15823 uint32_t db_offset; 15824 uint16_t pci_barset; 15825 15826 /* sanity check on queue memory */ 15827 if (!hrq || !drq || !cq) 15828 return -ENODEV; 15829 if (!phba->sli4_hba.pc_sli4_params.supported) 15830 hw_page_size = SLI4_PAGE_SIZE; 15831 15832 if (hrq->entry_count != drq->entry_count) 15833 return -EINVAL; 15834 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15835 if (!mbox) 15836 return -ENOMEM; 15837 length = (sizeof(struct lpfc_mbx_rq_create) - 15838 sizeof(struct lpfc_sli4_cfg_mhdr)); 15839 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15840 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 15841 length, LPFC_SLI4_MBX_EMBED); 15842 rq_create = &mbox->u.mqe.un.rq_create; 15843 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 15844 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15845 phba->sli4_hba.pc_sli4_params.rqv); 15846 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 15847 bf_set(lpfc_rq_context_rqe_count_1, 15848 &rq_create->u.request.context, 15849 hrq->entry_count); 15850 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 15851 bf_set(lpfc_rq_context_rqe_size, 15852 &rq_create->u.request.context, 15853 LPFC_RQE_SIZE_8); 15854 bf_set(lpfc_rq_context_page_size, 15855 &rq_create->u.request.context, 15856 LPFC_RQ_PAGE_SIZE_4096); 15857 } else { 15858 switch (hrq->entry_count) { 15859 default: 15860 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15861 "2535 Unsupported RQ count. (%d)\n", 15862 hrq->entry_count); 15863 if (hrq->entry_count < 512) { 15864 status = -EINVAL; 15865 goto out; 15866 } 15867 /* fall through - otherwise default to smallest count */ 15868 case 512: 15869 bf_set(lpfc_rq_context_rqe_count, 15870 &rq_create->u.request.context, 15871 LPFC_RQ_RING_SIZE_512); 15872 break; 15873 case 1024: 15874 bf_set(lpfc_rq_context_rqe_count, 15875 &rq_create->u.request.context, 15876 LPFC_RQ_RING_SIZE_1024); 15877 break; 15878 case 2048: 15879 bf_set(lpfc_rq_context_rqe_count, 15880 &rq_create->u.request.context, 15881 LPFC_RQ_RING_SIZE_2048); 15882 break; 15883 case 4096: 15884 bf_set(lpfc_rq_context_rqe_count, 15885 &rq_create->u.request.context, 15886 LPFC_RQ_RING_SIZE_4096); 15887 break; 15888 } 15889 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 15890 LPFC_HDR_BUF_SIZE); 15891 } 15892 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 15893 cq->queue_id); 15894 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 15895 hrq->page_count); 15896 list_for_each_entry(dmabuf, &hrq->page_list, list) { 15897 memset(dmabuf->virt, 0, hw_page_size); 15898 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15899 putPaddrLow(dmabuf->phys); 15900 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15901 putPaddrHigh(dmabuf->phys); 15902 } 15903 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15904 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 15905 15906 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15907 /* The IOCTL status is embedded in the mailbox subheader. */ 15908 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15909 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15910 if (shdr_status || shdr_add_status || rc) { 15911 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15912 "2504 RQ_CREATE mailbox failed with " 15913 "status x%x add_status x%x, mbx status x%x\n", 15914 shdr_status, shdr_add_status, rc); 15915 status = -ENXIO; 15916 goto out; 15917 } 15918 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 15919 if (hrq->queue_id == 0xFFFF) { 15920 status = -ENXIO; 15921 goto out; 15922 } 15923 15924 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 15925 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 15926 &rq_create->u.response); 15927 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 15928 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 15929 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15930 "3262 RQ [%d] doorbell format not " 15931 "supported: x%x\n", hrq->queue_id, 15932 hrq->db_format); 15933 status = -EINVAL; 15934 goto out; 15935 } 15936 15937 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 15938 &rq_create->u.response); 15939 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 15940 if (!bar_memmap_p) { 15941 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15942 "3269 RQ[%d] failed to memmap pci " 15943 "barset:x%x\n", hrq->queue_id, 15944 pci_barset); 15945 status = -ENOMEM; 15946 goto out; 15947 } 15948 15949 db_offset = rq_create->u.response.doorbell_offset; 15950 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 15951 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 15952 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15953 "3270 RQ[%d] doorbell offset not " 15954 "supported: x%x\n", hrq->queue_id, 15955 db_offset); 15956 status = -EINVAL; 15957 goto out; 15958 } 15959 hrq->db_regaddr = bar_memmap_p + db_offset; 15960 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15961 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 15962 "format:x%x\n", hrq->queue_id, pci_barset, 15963 db_offset, hrq->db_format); 15964 } else { 15965 hrq->db_format = LPFC_DB_RING_FORMAT; 15966 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 15967 } 15968 hrq->type = LPFC_HRQ; 15969 hrq->assoc_qid = cq->queue_id; 15970 hrq->subtype = subtype; 15971 hrq->host_index = 0; 15972 hrq->hba_index = 0; 15973 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 15974 15975 /* now create the data queue */ 15976 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15977 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 15978 length, LPFC_SLI4_MBX_EMBED); 15979 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15980 phba->sli4_hba.pc_sli4_params.rqv); 15981 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 15982 bf_set(lpfc_rq_context_rqe_count_1, 15983 &rq_create->u.request.context, hrq->entry_count); 15984 if (subtype == LPFC_NVMET) 15985 rq_create->u.request.context.buffer_size = 15986 LPFC_NVMET_DATA_BUF_SIZE; 15987 else 15988 rq_create->u.request.context.buffer_size = 15989 LPFC_DATA_BUF_SIZE; 15990 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 15991 LPFC_RQE_SIZE_8); 15992 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 15993 (PAGE_SIZE/SLI4_PAGE_SIZE)); 15994 } else { 15995 switch (drq->entry_count) { 15996 default: 15997 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15998 "2536 Unsupported RQ count. (%d)\n", 15999 drq->entry_count); 16000 if (drq->entry_count < 512) { 16001 status = -EINVAL; 16002 goto out; 16003 } 16004 /* fall through - otherwise default to smallest count */ 16005 case 512: 16006 bf_set(lpfc_rq_context_rqe_count, 16007 &rq_create->u.request.context, 16008 LPFC_RQ_RING_SIZE_512); 16009 break; 16010 case 1024: 16011 bf_set(lpfc_rq_context_rqe_count, 16012 &rq_create->u.request.context, 16013 LPFC_RQ_RING_SIZE_1024); 16014 break; 16015 case 2048: 16016 bf_set(lpfc_rq_context_rqe_count, 16017 &rq_create->u.request.context, 16018 LPFC_RQ_RING_SIZE_2048); 16019 break; 16020 case 4096: 16021 bf_set(lpfc_rq_context_rqe_count, 16022 &rq_create->u.request.context, 16023 LPFC_RQ_RING_SIZE_4096); 16024 break; 16025 } 16026 if (subtype == LPFC_NVMET) 16027 bf_set(lpfc_rq_context_buf_size, 16028 &rq_create->u.request.context, 16029 LPFC_NVMET_DATA_BUF_SIZE); 16030 else 16031 bf_set(lpfc_rq_context_buf_size, 16032 &rq_create->u.request.context, 16033 LPFC_DATA_BUF_SIZE); 16034 } 16035 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16036 cq->queue_id); 16037 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16038 drq->page_count); 16039 list_for_each_entry(dmabuf, &drq->page_list, list) { 16040 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16041 putPaddrLow(dmabuf->phys); 16042 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16043 putPaddrHigh(dmabuf->phys); 16044 } 16045 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16046 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16047 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16048 /* The IOCTL status is embedded in the mailbox subheader. */ 16049 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 16050 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16051 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16052 if (shdr_status || shdr_add_status || rc) { 16053 status = -ENXIO; 16054 goto out; 16055 } 16056 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16057 if (drq->queue_id == 0xFFFF) { 16058 status = -ENXIO; 16059 goto out; 16060 } 16061 drq->type = LPFC_DRQ; 16062 drq->assoc_qid = cq->queue_id; 16063 drq->subtype = subtype; 16064 drq->host_index = 0; 16065 drq->hba_index = 0; 16066 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16067 16068 /* link the header and data RQs onto the parent cq child list */ 16069 list_add_tail(&hrq->list, &cq->child_list); 16070 list_add_tail(&drq->list, &cq->child_list); 16071 16072 out: 16073 mempool_free(mbox, phba->mbox_mem_pool); 16074 return status; 16075 } 16076 16077 /** 16078 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 16079 * @phba: HBA structure that indicates port to create a queue on. 16080 * @hrqp: The queue structure array to use to create the header receive queues. 16081 * @drqp: The queue structure array to use to create the data receive queues. 16082 * @cqp: The completion queue array to bind these receive queues to. 16083 * 16084 * This function creates a receive buffer queue pair , as detailed in @hrq and 16085 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 16086 * to the HBA. 16087 * 16088 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 16089 * struct is used to get the entry count that is necessary to determine the 16090 * number of pages to use for this queue. The @cq is used to indicate which 16091 * completion queue to bind received buffers that are posted to these queues to. 16092 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 16093 * receive queue pair. This function is asynchronous and will wait for the 16094 * mailbox command to finish before continuing. 16095 * 16096 * On success this function will return a zero. If unable to allocate enough 16097 * memory this function will return -ENOMEM. If the queue create mailbox command 16098 * fails this function will return -ENXIO. 16099 **/ 16100 int 16101 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 16102 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 16103 uint32_t subtype) 16104 { 16105 struct lpfc_queue *hrq, *drq, *cq; 16106 struct lpfc_mbx_rq_create_v2 *rq_create; 16107 struct lpfc_dmabuf *dmabuf; 16108 LPFC_MBOXQ_t *mbox; 16109 int rc, length, alloclen, status = 0; 16110 int cnt, idx, numrq, page_idx = 0; 16111 uint32_t shdr_status, shdr_add_status; 16112 union lpfc_sli4_cfg_shdr *shdr; 16113 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16114 16115 numrq = phba->cfg_nvmet_mrq; 16116 /* sanity check on array memory */ 16117 if (!hrqp || !drqp || !cqp || !numrq) 16118 return -ENODEV; 16119 if (!phba->sli4_hba.pc_sli4_params.supported) 16120 hw_page_size = SLI4_PAGE_SIZE; 16121 16122 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16123 if (!mbox) 16124 return -ENOMEM; 16125 16126 length = sizeof(struct lpfc_mbx_rq_create_v2); 16127 length += ((2 * numrq * hrqp[0]->page_count) * 16128 sizeof(struct dma_address)); 16129 16130 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16131 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 16132 LPFC_SLI4_MBX_NEMBED); 16133 if (alloclen < length) { 16134 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16135 "3099 Allocated DMA memory size (%d) is " 16136 "less than the requested DMA memory size " 16137 "(%d)\n", alloclen, length); 16138 status = -ENOMEM; 16139 goto out; 16140 } 16141 16142 16143 16144 rq_create = mbox->sge_array->addr[0]; 16145 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 16146 16147 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 16148 cnt = 0; 16149 16150 for (idx = 0; idx < numrq; idx++) { 16151 hrq = hrqp[idx]; 16152 drq = drqp[idx]; 16153 cq = cqp[idx]; 16154 16155 /* sanity check on queue memory */ 16156 if (!hrq || !drq || !cq) { 16157 status = -ENODEV; 16158 goto out; 16159 } 16160 16161 if (hrq->entry_count != drq->entry_count) { 16162 status = -EINVAL; 16163 goto out; 16164 } 16165 16166 if (idx == 0) { 16167 bf_set(lpfc_mbx_rq_create_num_pages, 16168 &rq_create->u.request, 16169 hrq->page_count); 16170 bf_set(lpfc_mbx_rq_create_rq_cnt, 16171 &rq_create->u.request, (numrq * 2)); 16172 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 16173 1); 16174 bf_set(lpfc_rq_context_base_cq, 16175 &rq_create->u.request.context, 16176 cq->queue_id); 16177 bf_set(lpfc_rq_context_data_size, 16178 &rq_create->u.request.context, 16179 LPFC_NVMET_DATA_BUF_SIZE); 16180 bf_set(lpfc_rq_context_hdr_size, 16181 &rq_create->u.request.context, 16182 LPFC_HDR_BUF_SIZE); 16183 bf_set(lpfc_rq_context_rqe_count_1, 16184 &rq_create->u.request.context, 16185 hrq->entry_count); 16186 bf_set(lpfc_rq_context_rqe_size, 16187 &rq_create->u.request.context, 16188 LPFC_RQE_SIZE_8); 16189 bf_set(lpfc_rq_context_page_size, 16190 &rq_create->u.request.context, 16191 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16192 } 16193 rc = 0; 16194 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16195 memset(dmabuf->virt, 0, hw_page_size); 16196 cnt = page_idx + dmabuf->buffer_tag; 16197 rq_create->u.request.page[cnt].addr_lo = 16198 putPaddrLow(dmabuf->phys); 16199 rq_create->u.request.page[cnt].addr_hi = 16200 putPaddrHigh(dmabuf->phys); 16201 rc++; 16202 } 16203 page_idx += rc; 16204 16205 rc = 0; 16206 list_for_each_entry(dmabuf, &drq->page_list, list) { 16207 memset(dmabuf->virt, 0, hw_page_size); 16208 cnt = page_idx + dmabuf->buffer_tag; 16209 rq_create->u.request.page[cnt].addr_lo = 16210 putPaddrLow(dmabuf->phys); 16211 rq_create->u.request.page[cnt].addr_hi = 16212 putPaddrHigh(dmabuf->phys); 16213 rc++; 16214 } 16215 page_idx += rc; 16216 16217 hrq->db_format = LPFC_DB_RING_FORMAT; 16218 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16219 hrq->type = LPFC_HRQ; 16220 hrq->assoc_qid = cq->queue_id; 16221 hrq->subtype = subtype; 16222 hrq->host_index = 0; 16223 hrq->hba_index = 0; 16224 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16225 16226 drq->db_format = LPFC_DB_RING_FORMAT; 16227 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16228 drq->type = LPFC_DRQ; 16229 drq->assoc_qid = cq->queue_id; 16230 drq->subtype = subtype; 16231 drq->host_index = 0; 16232 drq->hba_index = 0; 16233 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16234 16235 list_add_tail(&hrq->list, &cq->child_list); 16236 list_add_tail(&drq->list, &cq->child_list); 16237 } 16238 16239 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16240 /* The IOCTL status is embedded in the mailbox subheader. */ 16241 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16242 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16243 if (shdr_status || shdr_add_status || rc) { 16244 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16245 "3120 RQ_CREATE mailbox failed with " 16246 "status x%x add_status x%x, mbx status x%x\n", 16247 shdr_status, shdr_add_status, rc); 16248 status = -ENXIO; 16249 goto out; 16250 } 16251 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16252 if (rc == 0xFFFF) { 16253 status = -ENXIO; 16254 goto out; 16255 } 16256 16257 /* Initialize all RQs with associated queue id */ 16258 for (idx = 0; idx < numrq; idx++) { 16259 hrq = hrqp[idx]; 16260 hrq->queue_id = rc + (2 * idx); 16261 drq = drqp[idx]; 16262 drq->queue_id = rc + (2 * idx) + 1; 16263 } 16264 16265 out: 16266 lpfc_sli4_mbox_cmd_free(phba, mbox); 16267 return status; 16268 } 16269 16270 /** 16271 * lpfc_eq_destroy - Destroy an event Queue on the HBA 16272 * @eq: The queue structure associated with the queue to destroy. 16273 * 16274 * This function destroys a queue, as detailed in @eq by sending an mailbox 16275 * command, specific to the type of queue, to the HBA. 16276 * 16277 * The @eq struct is used to get the queue ID of the queue to destroy. 16278 * 16279 * On success this function will return a zero. If the queue destroy mailbox 16280 * command fails this function will return -ENXIO. 16281 **/ 16282 int 16283 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 16284 { 16285 LPFC_MBOXQ_t *mbox; 16286 int rc, length, status = 0; 16287 uint32_t shdr_status, shdr_add_status; 16288 union lpfc_sli4_cfg_shdr *shdr; 16289 16290 /* sanity check on queue memory */ 16291 if (!eq) 16292 return -ENODEV; 16293 16294 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 16295 if (!mbox) 16296 return -ENOMEM; 16297 length = (sizeof(struct lpfc_mbx_eq_destroy) - 16298 sizeof(struct lpfc_sli4_cfg_mhdr)); 16299 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16300 LPFC_MBOX_OPCODE_EQ_DESTROY, 16301 length, LPFC_SLI4_MBX_EMBED); 16302 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 16303 eq->queue_id); 16304 mbox->vport = eq->phba->pport; 16305 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16306 16307 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 16308 /* The IOCTL status is embedded in the mailbox subheader. */ 16309 shdr = (union lpfc_sli4_cfg_shdr *) 16310 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 16311 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16312 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16313 if (shdr_status || shdr_add_status || rc) { 16314 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16315 "2505 EQ_DESTROY mailbox failed with " 16316 "status x%x add_status x%x, mbx status x%x\n", 16317 shdr_status, shdr_add_status, rc); 16318 status = -ENXIO; 16319 } 16320 16321 /* Remove eq from any list */ 16322 list_del_init(&eq->list); 16323 mempool_free(mbox, eq->phba->mbox_mem_pool); 16324 return status; 16325 } 16326 16327 /** 16328 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 16329 * @cq: The queue structure associated with the queue to destroy. 16330 * 16331 * This function destroys a queue, as detailed in @cq by sending an mailbox 16332 * command, specific to the type of queue, to the HBA. 16333 * 16334 * The @cq struct is used to get the queue ID of the queue to destroy. 16335 * 16336 * On success this function will return a zero. If the queue destroy mailbox 16337 * command fails this function will return -ENXIO. 16338 **/ 16339 int 16340 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 16341 { 16342 LPFC_MBOXQ_t *mbox; 16343 int rc, length, status = 0; 16344 uint32_t shdr_status, shdr_add_status; 16345 union lpfc_sli4_cfg_shdr *shdr; 16346 16347 /* sanity check on queue memory */ 16348 if (!cq) 16349 return -ENODEV; 16350 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 16351 if (!mbox) 16352 return -ENOMEM; 16353 length = (sizeof(struct lpfc_mbx_cq_destroy) - 16354 sizeof(struct lpfc_sli4_cfg_mhdr)); 16355 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16356 LPFC_MBOX_OPCODE_CQ_DESTROY, 16357 length, LPFC_SLI4_MBX_EMBED); 16358 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 16359 cq->queue_id); 16360 mbox->vport = cq->phba->pport; 16361 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16362 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 16363 /* The IOCTL status is embedded in the mailbox subheader. */ 16364 shdr = (union lpfc_sli4_cfg_shdr *) 16365 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 16366 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16367 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16368 if (shdr_status || shdr_add_status || rc) { 16369 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16370 "2506 CQ_DESTROY mailbox failed with " 16371 "status x%x add_status x%x, mbx status x%x\n", 16372 shdr_status, shdr_add_status, rc); 16373 status = -ENXIO; 16374 } 16375 /* Remove cq from any list */ 16376 list_del_init(&cq->list); 16377 mempool_free(mbox, cq->phba->mbox_mem_pool); 16378 return status; 16379 } 16380 16381 /** 16382 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 16383 * @qm: The queue structure associated with the queue to destroy. 16384 * 16385 * This function destroys a queue, as detailed in @mq by sending an mailbox 16386 * command, specific to the type of queue, to the HBA. 16387 * 16388 * The @mq struct is used to get the queue ID of the queue to destroy. 16389 * 16390 * On success this function will return a zero. If the queue destroy mailbox 16391 * command fails this function will return -ENXIO. 16392 **/ 16393 int 16394 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 16395 { 16396 LPFC_MBOXQ_t *mbox; 16397 int rc, length, status = 0; 16398 uint32_t shdr_status, shdr_add_status; 16399 union lpfc_sli4_cfg_shdr *shdr; 16400 16401 /* sanity check on queue memory */ 16402 if (!mq) 16403 return -ENODEV; 16404 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 16405 if (!mbox) 16406 return -ENOMEM; 16407 length = (sizeof(struct lpfc_mbx_mq_destroy) - 16408 sizeof(struct lpfc_sli4_cfg_mhdr)); 16409 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16410 LPFC_MBOX_OPCODE_MQ_DESTROY, 16411 length, LPFC_SLI4_MBX_EMBED); 16412 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 16413 mq->queue_id); 16414 mbox->vport = mq->phba->pport; 16415 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16416 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 16417 /* The IOCTL status is embedded in the mailbox subheader. */ 16418 shdr = (union lpfc_sli4_cfg_shdr *) 16419 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 16420 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16421 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16422 if (shdr_status || shdr_add_status || rc) { 16423 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16424 "2507 MQ_DESTROY mailbox failed with " 16425 "status x%x add_status x%x, mbx status x%x\n", 16426 shdr_status, shdr_add_status, rc); 16427 status = -ENXIO; 16428 } 16429 /* Remove mq from any list */ 16430 list_del_init(&mq->list); 16431 mempool_free(mbox, mq->phba->mbox_mem_pool); 16432 return status; 16433 } 16434 16435 /** 16436 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 16437 * @wq: The queue structure associated with the queue to destroy. 16438 * 16439 * This function destroys a queue, as detailed in @wq by sending an mailbox 16440 * command, specific to the type of queue, to the HBA. 16441 * 16442 * The @wq struct is used to get the queue ID of the queue to destroy. 16443 * 16444 * On success this function will return a zero. If the queue destroy mailbox 16445 * command fails this function will return -ENXIO. 16446 **/ 16447 int 16448 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 16449 { 16450 LPFC_MBOXQ_t *mbox; 16451 int rc, length, status = 0; 16452 uint32_t shdr_status, shdr_add_status; 16453 union lpfc_sli4_cfg_shdr *shdr; 16454 16455 /* sanity check on queue memory */ 16456 if (!wq) 16457 return -ENODEV; 16458 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 16459 if (!mbox) 16460 return -ENOMEM; 16461 length = (sizeof(struct lpfc_mbx_wq_destroy) - 16462 sizeof(struct lpfc_sli4_cfg_mhdr)); 16463 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16464 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 16465 length, LPFC_SLI4_MBX_EMBED); 16466 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 16467 wq->queue_id); 16468 mbox->vport = wq->phba->pport; 16469 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16470 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 16471 shdr = (union lpfc_sli4_cfg_shdr *) 16472 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 16473 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16474 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16475 if (shdr_status || shdr_add_status || rc) { 16476 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16477 "2508 WQ_DESTROY mailbox failed with " 16478 "status x%x add_status x%x, mbx status x%x\n", 16479 shdr_status, shdr_add_status, rc); 16480 status = -ENXIO; 16481 } 16482 /* Remove wq from any list */ 16483 list_del_init(&wq->list); 16484 kfree(wq->pring); 16485 wq->pring = NULL; 16486 mempool_free(mbox, wq->phba->mbox_mem_pool); 16487 return status; 16488 } 16489 16490 /** 16491 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 16492 * @rq: The queue structure associated with the queue to destroy. 16493 * 16494 * This function destroys a queue, as detailed in @rq by sending an mailbox 16495 * command, specific to the type of queue, to the HBA. 16496 * 16497 * The @rq struct is used to get the queue ID of the queue to destroy. 16498 * 16499 * On success this function will return a zero. If the queue destroy mailbox 16500 * command fails this function will return -ENXIO. 16501 **/ 16502 int 16503 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 16504 struct lpfc_queue *drq) 16505 { 16506 LPFC_MBOXQ_t *mbox; 16507 int rc, length, status = 0; 16508 uint32_t shdr_status, shdr_add_status; 16509 union lpfc_sli4_cfg_shdr *shdr; 16510 16511 /* sanity check on queue memory */ 16512 if (!hrq || !drq) 16513 return -ENODEV; 16514 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 16515 if (!mbox) 16516 return -ENOMEM; 16517 length = (sizeof(struct lpfc_mbx_rq_destroy) - 16518 sizeof(struct lpfc_sli4_cfg_mhdr)); 16519 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16520 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 16521 length, LPFC_SLI4_MBX_EMBED); 16522 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 16523 hrq->queue_id); 16524 mbox->vport = hrq->phba->pport; 16525 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16526 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 16527 /* The IOCTL status is embedded in the mailbox subheader. */ 16528 shdr = (union lpfc_sli4_cfg_shdr *) 16529 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 16530 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16531 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16532 if (shdr_status || shdr_add_status || rc) { 16533 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16534 "2509 RQ_DESTROY mailbox failed with " 16535 "status x%x add_status x%x, mbx status x%x\n", 16536 shdr_status, shdr_add_status, rc); 16537 if (rc != MBX_TIMEOUT) 16538 mempool_free(mbox, hrq->phba->mbox_mem_pool); 16539 return -ENXIO; 16540 } 16541 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 16542 drq->queue_id); 16543 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 16544 shdr = (union lpfc_sli4_cfg_shdr *) 16545 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 16546 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16547 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16548 if (shdr_status || shdr_add_status || rc) { 16549 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16550 "2510 RQ_DESTROY mailbox failed with " 16551 "status x%x add_status x%x, mbx status x%x\n", 16552 shdr_status, shdr_add_status, rc); 16553 status = -ENXIO; 16554 } 16555 list_del_init(&hrq->list); 16556 list_del_init(&drq->list); 16557 mempool_free(mbox, hrq->phba->mbox_mem_pool); 16558 return status; 16559 } 16560 16561 /** 16562 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 16563 * @phba: The virtual port for which this call being executed. 16564 * @pdma_phys_addr0: Physical address of the 1st SGL page. 16565 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 16566 * @xritag: the xritag that ties this io to the SGL pages. 16567 * 16568 * This routine will post the sgl pages for the IO that has the xritag 16569 * that is in the iocbq structure. The xritag is assigned during iocbq 16570 * creation and persists for as long as the driver is loaded. 16571 * if the caller has fewer than 256 scatter gather segments to map then 16572 * pdma_phys_addr1 should be 0. 16573 * If the caller needs to map more than 256 scatter gather segment then 16574 * pdma_phys_addr1 should be a valid physical address. 16575 * physical address for SGLs must be 64 byte aligned. 16576 * If you are going to map 2 SGL's then the first one must have 256 entries 16577 * the second sgl can have between 1 and 256 entries. 16578 * 16579 * Return codes: 16580 * 0 - Success 16581 * -ENXIO, -ENOMEM - Failure 16582 **/ 16583 int 16584 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 16585 dma_addr_t pdma_phys_addr0, 16586 dma_addr_t pdma_phys_addr1, 16587 uint16_t xritag) 16588 { 16589 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 16590 LPFC_MBOXQ_t *mbox; 16591 int rc; 16592 uint32_t shdr_status, shdr_add_status; 16593 uint32_t mbox_tmo; 16594 union lpfc_sli4_cfg_shdr *shdr; 16595 16596 if (xritag == NO_XRI) { 16597 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16598 "0364 Invalid param:\n"); 16599 return -EINVAL; 16600 } 16601 16602 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16603 if (!mbox) 16604 return -ENOMEM; 16605 16606 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16607 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 16608 sizeof(struct lpfc_mbx_post_sgl_pages) - 16609 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 16610 16611 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 16612 &mbox->u.mqe.un.post_sgl_pages; 16613 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 16614 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 16615 16616 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 16617 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 16618 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 16619 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 16620 16621 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 16622 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 16623 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 16624 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 16625 if (!phba->sli4_hba.intr_enable) 16626 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16627 else { 16628 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16629 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16630 } 16631 /* The IOCTL status is embedded in the mailbox subheader. */ 16632 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 16633 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16634 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16635 if (rc != MBX_TIMEOUT) 16636 mempool_free(mbox, phba->mbox_mem_pool); 16637 if (shdr_status || shdr_add_status || rc) { 16638 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16639 "2511 POST_SGL mailbox failed with " 16640 "status x%x add_status x%x, mbx status x%x\n", 16641 shdr_status, shdr_add_status, rc); 16642 } 16643 return 0; 16644 } 16645 16646 /** 16647 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 16648 * @phba: pointer to lpfc hba data structure. 16649 * 16650 * This routine is invoked to post rpi header templates to the 16651 * HBA consistent with the SLI-4 interface spec. This routine 16652 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 16653 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 16654 * 16655 * Returns 16656 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 16657 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 16658 **/ 16659 static uint16_t 16660 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 16661 { 16662 unsigned long xri; 16663 16664 /* 16665 * Fetch the next logical xri. Because this index is logical, 16666 * the driver starts at 0 each time. 16667 */ 16668 spin_lock_irq(&phba->hbalock); 16669 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 16670 phba->sli4_hba.max_cfg_param.max_xri, 0); 16671 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 16672 spin_unlock_irq(&phba->hbalock); 16673 return NO_XRI; 16674 } else { 16675 set_bit(xri, phba->sli4_hba.xri_bmask); 16676 phba->sli4_hba.max_cfg_param.xri_used++; 16677 } 16678 spin_unlock_irq(&phba->hbalock); 16679 return xri; 16680 } 16681 16682 /** 16683 * lpfc_sli4_free_xri - Release an xri for reuse. 16684 * @phba: pointer to lpfc hba data structure. 16685 * 16686 * This routine is invoked to release an xri to the pool of 16687 * available rpis maintained by the driver. 16688 **/ 16689 static void 16690 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 16691 { 16692 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 16693 phba->sli4_hba.max_cfg_param.xri_used--; 16694 } 16695 } 16696 16697 /** 16698 * lpfc_sli4_free_xri - Release an xri for reuse. 16699 * @phba: pointer to lpfc hba data structure. 16700 * 16701 * This routine is invoked to release an xri to the pool of 16702 * available rpis maintained by the driver. 16703 **/ 16704 void 16705 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 16706 { 16707 spin_lock_irq(&phba->hbalock); 16708 __lpfc_sli4_free_xri(phba, xri); 16709 spin_unlock_irq(&phba->hbalock); 16710 } 16711 16712 /** 16713 * lpfc_sli4_next_xritag - Get an xritag for the io 16714 * @phba: Pointer to HBA context object. 16715 * 16716 * This function gets an xritag for the iocb. If there is no unused xritag 16717 * it will return 0xffff. 16718 * The function returns the allocated xritag if successful, else returns zero. 16719 * Zero is not a valid xritag. 16720 * The caller is not required to hold any lock. 16721 **/ 16722 uint16_t 16723 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 16724 { 16725 uint16_t xri_index; 16726 16727 xri_index = lpfc_sli4_alloc_xri(phba); 16728 if (xri_index == NO_XRI) 16729 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 16730 "2004 Failed to allocate XRI.last XRITAG is %d" 16731 " Max XRI is %d, Used XRI is %d\n", 16732 xri_index, 16733 phba->sli4_hba.max_cfg_param.max_xri, 16734 phba->sli4_hba.max_cfg_param.xri_used); 16735 return xri_index; 16736 } 16737 16738 /** 16739 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 16740 * @phba: pointer to lpfc hba data structure. 16741 * @post_sgl_list: pointer to els sgl entry list. 16742 * @count: number of els sgl entries on the list. 16743 * 16744 * This routine is invoked to post a block of driver's sgl pages to the 16745 * HBA using non-embedded mailbox command. No Lock is held. This routine 16746 * is only called when the driver is loading and after all IO has been 16747 * stopped. 16748 **/ 16749 static int 16750 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 16751 struct list_head *post_sgl_list, 16752 int post_cnt) 16753 { 16754 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 16755 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 16756 struct sgl_page_pairs *sgl_pg_pairs; 16757 void *viraddr; 16758 LPFC_MBOXQ_t *mbox; 16759 uint32_t reqlen, alloclen, pg_pairs; 16760 uint32_t mbox_tmo; 16761 uint16_t xritag_start = 0; 16762 int rc = 0; 16763 uint32_t shdr_status, shdr_add_status; 16764 union lpfc_sli4_cfg_shdr *shdr; 16765 16766 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 16767 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 16768 if (reqlen > SLI4_PAGE_SIZE) { 16769 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16770 "2559 Block sgl registration required DMA " 16771 "size (%d) great than a page\n", reqlen); 16772 return -ENOMEM; 16773 } 16774 16775 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16776 if (!mbox) 16777 return -ENOMEM; 16778 16779 /* Allocate DMA memory and set up the non-embedded mailbox command */ 16780 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16781 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 16782 LPFC_SLI4_MBX_NEMBED); 16783 16784 if (alloclen < reqlen) { 16785 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16786 "0285 Allocated DMA memory size (%d) is " 16787 "less than the requested DMA memory " 16788 "size (%d)\n", alloclen, reqlen); 16789 lpfc_sli4_mbox_cmd_free(phba, mbox); 16790 return -ENOMEM; 16791 } 16792 /* Set up the SGL pages in the non-embedded DMA pages */ 16793 viraddr = mbox->sge_array->addr[0]; 16794 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 16795 sgl_pg_pairs = &sgl->sgl_pg_pairs; 16796 16797 pg_pairs = 0; 16798 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 16799 /* Set up the sge entry */ 16800 sgl_pg_pairs->sgl_pg0_addr_lo = 16801 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 16802 sgl_pg_pairs->sgl_pg0_addr_hi = 16803 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 16804 sgl_pg_pairs->sgl_pg1_addr_lo = 16805 cpu_to_le32(putPaddrLow(0)); 16806 sgl_pg_pairs->sgl_pg1_addr_hi = 16807 cpu_to_le32(putPaddrHigh(0)); 16808 16809 /* Keep the first xritag on the list */ 16810 if (pg_pairs == 0) 16811 xritag_start = sglq_entry->sli4_xritag; 16812 sgl_pg_pairs++; 16813 pg_pairs++; 16814 } 16815 16816 /* Complete initialization and perform endian conversion. */ 16817 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 16818 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 16819 sgl->word0 = cpu_to_le32(sgl->word0); 16820 16821 if (!phba->sli4_hba.intr_enable) 16822 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16823 else { 16824 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16825 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16826 } 16827 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 16828 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16829 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16830 if (rc != MBX_TIMEOUT) 16831 lpfc_sli4_mbox_cmd_free(phba, mbox); 16832 if (shdr_status || shdr_add_status || rc) { 16833 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16834 "2513 POST_SGL_BLOCK mailbox command failed " 16835 "status x%x add_status x%x mbx status x%x\n", 16836 shdr_status, shdr_add_status, rc); 16837 rc = -ENXIO; 16838 } 16839 return rc; 16840 } 16841 16842 /** 16843 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 16844 * @phba: pointer to lpfc hba data structure. 16845 * @nblist: pointer to nvme buffer list. 16846 * @count: number of scsi buffers on the list. 16847 * 16848 * This routine is invoked to post a block of @count scsi sgl pages from a 16849 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 16850 * No Lock is held. 16851 * 16852 **/ 16853 static int 16854 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 16855 int count) 16856 { 16857 struct lpfc_io_buf *lpfc_ncmd; 16858 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 16859 struct sgl_page_pairs *sgl_pg_pairs; 16860 void *viraddr; 16861 LPFC_MBOXQ_t *mbox; 16862 uint32_t reqlen, alloclen, pg_pairs; 16863 uint32_t mbox_tmo; 16864 uint16_t xritag_start = 0; 16865 int rc = 0; 16866 uint32_t shdr_status, shdr_add_status; 16867 dma_addr_t pdma_phys_bpl1; 16868 union lpfc_sli4_cfg_shdr *shdr; 16869 16870 /* Calculate the requested length of the dma memory */ 16871 reqlen = count * sizeof(struct sgl_page_pairs) + 16872 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 16873 if (reqlen > SLI4_PAGE_SIZE) { 16874 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 16875 "6118 Block sgl registration required DMA " 16876 "size (%d) great than a page\n", reqlen); 16877 return -ENOMEM; 16878 } 16879 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16880 if (!mbox) { 16881 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16882 "6119 Failed to allocate mbox cmd memory\n"); 16883 return -ENOMEM; 16884 } 16885 16886 /* Allocate DMA memory and set up the non-embedded mailbox command */ 16887 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16888 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 16889 reqlen, LPFC_SLI4_MBX_NEMBED); 16890 16891 if (alloclen < reqlen) { 16892 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16893 "6120 Allocated DMA memory size (%d) is " 16894 "less than the requested DMA memory " 16895 "size (%d)\n", alloclen, reqlen); 16896 lpfc_sli4_mbox_cmd_free(phba, mbox); 16897 return -ENOMEM; 16898 } 16899 16900 /* Get the first SGE entry from the non-embedded DMA memory */ 16901 viraddr = mbox->sge_array->addr[0]; 16902 16903 /* Set up the SGL pages in the non-embedded DMA pages */ 16904 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 16905 sgl_pg_pairs = &sgl->sgl_pg_pairs; 16906 16907 pg_pairs = 0; 16908 list_for_each_entry(lpfc_ncmd, nblist, list) { 16909 /* Set up the sge entry */ 16910 sgl_pg_pairs->sgl_pg0_addr_lo = 16911 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 16912 sgl_pg_pairs->sgl_pg0_addr_hi = 16913 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 16914 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 16915 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 16916 SGL_PAGE_SIZE; 16917 else 16918 pdma_phys_bpl1 = 0; 16919 sgl_pg_pairs->sgl_pg1_addr_lo = 16920 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 16921 sgl_pg_pairs->sgl_pg1_addr_hi = 16922 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 16923 /* Keep the first xritag on the list */ 16924 if (pg_pairs == 0) 16925 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 16926 sgl_pg_pairs++; 16927 pg_pairs++; 16928 } 16929 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 16930 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 16931 /* Perform endian conversion if necessary */ 16932 sgl->word0 = cpu_to_le32(sgl->word0); 16933 16934 if (!phba->sli4_hba.intr_enable) { 16935 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16936 } else { 16937 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16938 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16939 } 16940 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 16941 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16942 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16943 if (rc != MBX_TIMEOUT) 16944 lpfc_sli4_mbox_cmd_free(phba, mbox); 16945 if (shdr_status || shdr_add_status || rc) { 16946 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16947 "6125 POST_SGL_BLOCK mailbox command failed " 16948 "status x%x add_status x%x mbx status x%x\n", 16949 shdr_status, shdr_add_status, rc); 16950 rc = -ENXIO; 16951 } 16952 return rc; 16953 } 16954 16955 /** 16956 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 16957 * @phba: pointer to lpfc hba data structure. 16958 * @post_nblist: pointer to the nvme buffer list. 16959 * 16960 * This routine walks a list of nvme buffers that was passed in. It attempts 16961 * to construct blocks of nvme buffer sgls which contains contiguous xris and 16962 * uses the non-embedded SGL block post mailbox commands to post to the port. 16963 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 16964 * embedded SGL post mailbox command for posting. The @post_nblist passed in 16965 * must be local list, thus no lock is needed when manipulate the list. 16966 * 16967 * Returns: 0 = failure, non-zero number of successfully posted buffers. 16968 **/ 16969 int 16970 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 16971 struct list_head *post_nblist, int sb_count) 16972 { 16973 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 16974 int status, sgl_size; 16975 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 16976 dma_addr_t pdma_phys_sgl1; 16977 int last_xritag = NO_XRI; 16978 int cur_xritag; 16979 LIST_HEAD(prep_nblist); 16980 LIST_HEAD(blck_nblist); 16981 LIST_HEAD(nvme_nblist); 16982 16983 /* sanity check */ 16984 if (sb_count <= 0) 16985 return -EINVAL; 16986 16987 sgl_size = phba->cfg_sg_dma_buf_size; 16988 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 16989 list_del_init(&lpfc_ncmd->list); 16990 block_cnt++; 16991 if ((last_xritag != NO_XRI) && 16992 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 16993 /* a hole in xri block, form a sgl posting block */ 16994 list_splice_init(&prep_nblist, &blck_nblist); 16995 post_cnt = block_cnt - 1; 16996 /* prepare list for next posting block */ 16997 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 16998 block_cnt = 1; 16999 } else { 17000 /* prepare list for next posting block */ 17001 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 17002 /* enough sgls for non-embed sgl mbox command */ 17003 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 17004 list_splice_init(&prep_nblist, &blck_nblist); 17005 post_cnt = block_cnt; 17006 block_cnt = 0; 17007 } 17008 } 17009 num_posting++; 17010 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 17011 17012 /* end of repost sgl list condition for NVME buffers */ 17013 if (num_posting == sb_count) { 17014 if (post_cnt == 0) { 17015 /* last sgl posting block */ 17016 list_splice_init(&prep_nblist, &blck_nblist); 17017 post_cnt = block_cnt; 17018 } else if (block_cnt == 1) { 17019 /* last single sgl with non-contiguous xri */ 17020 if (sgl_size > SGL_PAGE_SIZE) 17021 pdma_phys_sgl1 = 17022 lpfc_ncmd->dma_phys_sgl + 17023 SGL_PAGE_SIZE; 17024 else 17025 pdma_phys_sgl1 = 0; 17026 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 17027 status = lpfc_sli4_post_sgl( 17028 phba, lpfc_ncmd->dma_phys_sgl, 17029 pdma_phys_sgl1, cur_xritag); 17030 if (status) { 17031 /* Post error. Buffer unavailable. */ 17032 lpfc_ncmd->flags |= 17033 LPFC_SBUF_NOT_POSTED; 17034 } else { 17035 /* Post success. Bffer available. */ 17036 lpfc_ncmd->flags &= 17037 ~LPFC_SBUF_NOT_POSTED; 17038 lpfc_ncmd->status = IOSTAT_SUCCESS; 17039 num_posted++; 17040 } 17041 /* success, put on NVME buffer sgl list */ 17042 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 17043 } 17044 } 17045 17046 /* continue until a nembed page worth of sgls */ 17047 if (post_cnt == 0) 17048 continue; 17049 17050 /* post block of NVME buffer list sgls */ 17051 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 17052 post_cnt); 17053 17054 /* don't reset xirtag due to hole in xri block */ 17055 if (block_cnt == 0) 17056 last_xritag = NO_XRI; 17057 17058 /* reset NVME buffer post count for next round of posting */ 17059 post_cnt = 0; 17060 17061 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 17062 while (!list_empty(&blck_nblist)) { 17063 list_remove_head(&blck_nblist, lpfc_ncmd, 17064 struct lpfc_io_buf, list); 17065 if (status) { 17066 /* Post error. Mark buffer unavailable. */ 17067 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 17068 } else { 17069 /* Post success, Mark buffer available. */ 17070 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 17071 lpfc_ncmd->status = IOSTAT_SUCCESS; 17072 num_posted++; 17073 } 17074 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 17075 } 17076 } 17077 /* Push NVME buffers with sgl posted to the available list */ 17078 lpfc_io_buf_replenish(phba, &nvme_nblist); 17079 17080 return num_posted; 17081 } 17082 17083 /** 17084 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 17085 * @phba: pointer to lpfc_hba struct that the frame was received on 17086 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17087 * 17088 * This function checks the fields in the @fc_hdr to see if the FC frame is a 17089 * valid type of frame that the LPFC driver will handle. This function will 17090 * return a zero if the frame is a valid frame or a non zero value when the 17091 * frame does not pass the check. 17092 **/ 17093 static int 17094 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 17095 { 17096 /* make rctl_names static to save stack space */ 17097 struct fc_vft_header *fc_vft_hdr; 17098 uint32_t *header = (uint32_t *) fc_hdr; 17099 17100 #define FC_RCTL_MDS_DIAGS 0xF4 17101 17102 switch (fc_hdr->fh_r_ctl) { 17103 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 17104 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 17105 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 17106 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 17107 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 17108 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 17109 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 17110 case FC_RCTL_DD_CMD_STATUS: /* command status */ 17111 case FC_RCTL_ELS_REQ: /* extended link services request */ 17112 case FC_RCTL_ELS_REP: /* extended link services reply */ 17113 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 17114 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 17115 case FC_RCTL_BA_NOP: /* basic link service NOP */ 17116 case FC_RCTL_BA_ABTS: /* basic link service abort */ 17117 case FC_RCTL_BA_RMC: /* remove connection */ 17118 case FC_RCTL_BA_ACC: /* basic accept */ 17119 case FC_RCTL_BA_RJT: /* basic reject */ 17120 case FC_RCTL_BA_PRMT: 17121 case FC_RCTL_ACK_1: /* acknowledge_1 */ 17122 case FC_RCTL_ACK_0: /* acknowledge_0 */ 17123 case FC_RCTL_P_RJT: /* port reject */ 17124 case FC_RCTL_F_RJT: /* fabric reject */ 17125 case FC_RCTL_P_BSY: /* port busy */ 17126 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 17127 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 17128 case FC_RCTL_LCR: /* link credit reset */ 17129 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 17130 case FC_RCTL_END: /* end */ 17131 break; 17132 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 17133 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 17134 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 17135 return lpfc_fc_frame_check(phba, fc_hdr); 17136 default: 17137 goto drop; 17138 } 17139 17140 switch (fc_hdr->fh_type) { 17141 case FC_TYPE_BLS: 17142 case FC_TYPE_ELS: 17143 case FC_TYPE_FCP: 17144 case FC_TYPE_CT: 17145 case FC_TYPE_NVME: 17146 break; 17147 case FC_TYPE_IP: 17148 case FC_TYPE_ILS: 17149 default: 17150 goto drop; 17151 } 17152 17153 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 17154 "2538 Received frame rctl:x%x, type:x%x, " 17155 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 17156 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 17157 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 17158 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 17159 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 17160 be32_to_cpu(header[6])); 17161 return 0; 17162 drop: 17163 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 17164 "2539 Dropped frame rctl:x%x type:x%x\n", 17165 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17166 return 1; 17167 } 17168 17169 /** 17170 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 17171 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17172 * 17173 * This function processes the FC header to retrieve the VFI from the VF 17174 * header, if one exists. This function will return the VFI if one exists 17175 * or 0 if no VSAN Header exists. 17176 **/ 17177 static uint32_t 17178 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 17179 { 17180 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 17181 17182 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 17183 return 0; 17184 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 17185 } 17186 17187 /** 17188 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 17189 * @phba: Pointer to the HBA structure to search for the vport on 17190 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17191 * @fcfi: The FC Fabric ID that the frame came from 17192 * 17193 * This function searches the @phba for a vport that matches the content of the 17194 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 17195 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 17196 * returns the matching vport pointer or NULL if unable to match frame to a 17197 * vport. 17198 **/ 17199 static struct lpfc_vport * 17200 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 17201 uint16_t fcfi, uint32_t did) 17202 { 17203 struct lpfc_vport **vports; 17204 struct lpfc_vport *vport = NULL; 17205 int i; 17206 17207 if (did == Fabric_DID) 17208 return phba->pport; 17209 if ((phba->pport->fc_flag & FC_PT2PT) && 17210 !(phba->link_state == LPFC_HBA_READY)) 17211 return phba->pport; 17212 17213 vports = lpfc_create_vport_work_array(phba); 17214 if (vports != NULL) { 17215 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 17216 if (phba->fcf.fcfi == fcfi && 17217 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 17218 vports[i]->fc_myDID == did) { 17219 vport = vports[i]; 17220 break; 17221 } 17222 } 17223 } 17224 lpfc_destroy_vport_work_array(phba, vports); 17225 return vport; 17226 } 17227 17228 /** 17229 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 17230 * @vport: The vport to work on. 17231 * 17232 * This function updates the receive sequence time stamp for this vport. The 17233 * receive sequence time stamp indicates the time that the last frame of the 17234 * the sequence that has been idle for the longest amount of time was received. 17235 * the driver uses this time stamp to indicate if any received sequences have 17236 * timed out. 17237 **/ 17238 static void 17239 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 17240 { 17241 struct lpfc_dmabuf *h_buf; 17242 struct hbq_dmabuf *dmabuf = NULL; 17243 17244 /* get the oldest sequence on the rcv list */ 17245 h_buf = list_get_first(&vport->rcv_buffer_list, 17246 struct lpfc_dmabuf, list); 17247 if (!h_buf) 17248 return; 17249 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17250 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 17251 } 17252 17253 /** 17254 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 17255 * @vport: The vport that the received sequences were sent to. 17256 * 17257 * This function cleans up all outstanding received sequences. This is called 17258 * by the driver when a link event or user action invalidates all the received 17259 * sequences. 17260 **/ 17261 void 17262 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 17263 { 17264 struct lpfc_dmabuf *h_buf, *hnext; 17265 struct lpfc_dmabuf *d_buf, *dnext; 17266 struct hbq_dmabuf *dmabuf = NULL; 17267 17268 /* start with the oldest sequence on the rcv list */ 17269 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17270 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17271 list_del_init(&dmabuf->hbuf.list); 17272 list_for_each_entry_safe(d_buf, dnext, 17273 &dmabuf->dbuf.list, list) { 17274 list_del_init(&d_buf->list); 17275 lpfc_in_buf_free(vport->phba, d_buf); 17276 } 17277 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17278 } 17279 } 17280 17281 /** 17282 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 17283 * @vport: The vport that the received sequences were sent to. 17284 * 17285 * This function determines whether any received sequences have timed out by 17286 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 17287 * indicates that there is at least one timed out sequence this routine will 17288 * go through the received sequences one at a time from most inactive to most 17289 * active to determine which ones need to be cleaned up. Once it has determined 17290 * that a sequence needs to be cleaned up it will simply free up the resources 17291 * without sending an abort. 17292 **/ 17293 void 17294 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 17295 { 17296 struct lpfc_dmabuf *h_buf, *hnext; 17297 struct lpfc_dmabuf *d_buf, *dnext; 17298 struct hbq_dmabuf *dmabuf = NULL; 17299 unsigned long timeout; 17300 int abort_count = 0; 17301 17302 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17303 vport->rcv_buffer_time_stamp); 17304 if (list_empty(&vport->rcv_buffer_list) || 17305 time_before(jiffies, timeout)) 17306 return; 17307 /* start with the oldest sequence on the rcv list */ 17308 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17309 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17310 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17311 dmabuf->time_stamp); 17312 if (time_before(jiffies, timeout)) 17313 break; 17314 abort_count++; 17315 list_del_init(&dmabuf->hbuf.list); 17316 list_for_each_entry_safe(d_buf, dnext, 17317 &dmabuf->dbuf.list, list) { 17318 list_del_init(&d_buf->list); 17319 lpfc_in_buf_free(vport->phba, d_buf); 17320 } 17321 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17322 } 17323 if (abort_count) 17324 lpfc_update_rcv_time_stamp(vport); 17325 } 17326 17327 /** 17328 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 17329 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 17330 * 17331 * This function searches through the existing incomplete sequences that have 17332 * been sent to this @vport. If the frame matches one of the incomplete 17333 * sequences then the dbuf in the @dmabuf is added to the list of frames that 17334 * make up that sequence. If no sequence is found that matches this frame then 17335 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 17336 * This function returns a pointer to the first dmabuf in the sequence list that 17337 * the frame was linked to. 17338 **/ 17339 static struct hbq_dmabuf * 17340 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 17341 { 17342 struct fc_frame_header *new_hdr; 17343 struct fc_frame_header *temp_hdr; 17344 struct lpfc_dmabuf *d_buf; 17345 struct lpfc_dmabuf *h_buf; 17346 struct hbq_dmabuf *seq_dmabuf = NULL; 17347 struct hbq_dmabuf *temp_dmabuf = NULL; 17348 uint8_t found = 0; 17349 17350 INIT_LIST_HEAD(&dmabuf->dbuf.list); 17351 dmabuf->time_stamp = jiffies; 17352 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17353 17354 /* Use the hdr_buf to find the sequence that this frame belongs to */ 17355 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 17356 temp_hdr = (struct fc_frame_header *)h_buf->virt; 17357 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 17358 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 17359 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 17360 continue; 17361 /* found a pending sequence that matches this frame */ 17362 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17363 break; 17364 } 17365 if (!seq_dmabuf) { 17366 /* 17367 * This indicates first frame received for this sequence. 17368 * Queue the buffer on the vport's rcv_buffer_list. 17369 */ 17370 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17371 lpfc_update_rcv_time_stamp(vport); 17372 return dmabuf; 17373 } 17374 temp_hdr = seq_dmabuf->hbuf.virt; 17375 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 17376 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17377 list_del_init(&seq_dmabuf->hbuf.list); 17378 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17379 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17380 lpfc_update_rcv_time_stamp(vport); 17381 return dmabuf; 17382 } 17383 /* move this sequence to the tail to indicate a young sequence */ 17384 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 17385 seq_dmabuf->time_stamp = jiffies; 17386 lpfc_update_rcv_time_stamp(vport); 17387 if (list_empty(&seq_dmabuf->dbuf.list)) { 17388 temp_hdr = dmabuf->hbuf.virt; 17389 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17390 return seq_dmabuf; 17391 } 17392 /* find the correct place in the sequence to insert this frame */ 17393 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 17394 while (!found) { 17395 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17396 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 17397 /* 17398 * If the frame's sequence count is greater than the frame on 17399 * the list then insert the frame right after this frame 17400 */ 17401 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 17402 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17403 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 17404 found = 1; 17405 break; 17406 } 17407 17408 if (&d_buf->list == &seq_dmabuf->dbuf.list) 17409 break; 17410 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 17411 } 17412 17413 if (found) 17414 return seq_dmabuf; 17415 return NULL; 17416 } 17417 17418 /** 17419 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 17420 * @vport: pointer to a vitural port 17421 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17422 * 17423 * This function tries to abort from the partially assembed sequence, described 17424 * by the information from basic abbort @dmabuf. It checks to see whether such 17425 * partially assembled sequence held by the driver. If so, it shall free up all 17426 * the frames from the partially assembled sequence. 17427 * 17428 * Return 17429 * true -- if there is matching partially assembled sequence present and all 17430 * the frames freed with the sequence; 17431 * false -- if there is no matching partially assembled sequence present so 17432 * nothing got aborted in the lower layer driver 17433 **/ 17434 static bool 17435 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 17436 struct hbq_dmabuf *dmabuf) 17437 { 17438 struct fc_frame_header *new_hdr; 17439 struct fc_frame_header *temp_hdr; 17440 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 17441 struct hbq_dmabuf *seq_dmabuf = NULL; 17442 17443 /* Use the hdr_buf to find the sequence that matches this frame */ 17444 INIT_LIST_HEAD(&dmabuf->dbuf.list); 17445 INIT_LIST_HEAD(&dmabuf->hbuf.list); 17446 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17447 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 17448 temp_hdr = (struct fc_frame_header *)h_buf->virt; 17449 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 17450 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 17451 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 17452 continue; 17453 /* found a pending sequence that matches this frame */ 17454 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17455 break; 17456 } 17457 17458 /* Free up all the frames from the partially assembled sequence */ 17459 if (seq_dmabuf) { 17460 list_for_each_entry_safe(d_buf, n_buf, 17461 &seq_dmabuf->dbuf.list, list) { 17462 list_del_init(&d_buf->list); 17463 lpfc_in_buf_free(vport->phba, d_buf); 17464 } 17465 return true; 17466 } 17467 return false; 17468 } 17469 17470 /** 17471 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 17472 * @vport: pointer to a vitural port 17473 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17474 * 17475 * This function tries to abort from the assembed sequence from upper level 17476 * protocol, described by the information from basic abbort @dmabuf. It 17477 * checks to see whether such pending context exists at upper level protocol. 17478 * If so, it shall clean up the pending context. 17479 * 17480 * Return 17481 * true -- if there is matching pending context of the sequence cleaned 17482 * at ulp; 17483 * false -- if there is no matching pending context of the sequence present 17484 * at ulp. 17485 **/ 17486 static bool 17487 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 17488 { 17489 struct lpfc_hba *phba = vport->phba; 17490 int handled; 17491 17492 /* Accepting abort at ulp with SLI4 only */ 17493 if (phba->sli_rev < LPFC_SLI_REV4) 17494 return false; 17495 17496 /* Register all caring upper level protocols to attend abort */ 17497 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 17498 if (handled) 17499 return true; 17500 17501 return false; 17502 } 17503 17504 /** 17505 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 17506 * @phba: Pointer to HBA context object. 17507 * @cmd_iocbq: pointer to the command iocbq structure. 17508 * @rsp_iocbq: pointer to the response iocbq structure. 17509 * 17510 * This function handles the sequence abort response iocb command complete 17511 * event. It properly releases the memory allocated to the sequence abort 17512 * accept iocb. 17513 **/ 17514 static void 17515 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 17516 struct lpfc_iocbq *cmd_iocbq, 17517 struct lpfc_iocbq *rsp_iocbq) 17518 { 17519 struct lpfc_nodelist *ndlp; 17520 17521 if (cmd_iocbq) { 17522 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 17523 lpfc_nlp_put(ndlp); 17524 lpfc_nlp_not_used(ndlp); 17525 lpfc_sli_release_iocbq(phba, cmd_iocbq); 17526 } 17527 17528 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 17529 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 17530 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17531 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 17532 rsp_iocbq->iocb.ulpStatus, 17533 rsp_iocbq->iocb.un.ulpWord[4]); 17534 } 17535 17536 /** 17537 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 17538 * @phba: Pointer to HBA context object. 17539 * @xri: xri id in transaction. 17540 * 17541 * This function validates the xri maps to the known range of XRIs allocated an 17542 * used by the driver. 17543 **/ 17544 uint16_t 17545 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 17546 uint16_t xri) 17547 { 17548 uint16_t i; 17549 17550 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 17551 if (xri == phba->sli4_hba.xri_ids[i]) 17552 return i; 17553 } 17554 return NO_XRI; 17555 } 17556 17557 /** 17558 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 17559 * @phba: Pointer to HBA context object. 17560 * @fc_hdr: pointer to a FC frame header. 17561 * 17562 * This function sends a basic response to a previous unsol sequence abort 17563 * event after aborting the sequence handling. 17564 **/ 17565 void 17566 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 17567 struct fc_frame_header *fc_hdr, bool aborted) 17568 { 17569 struct lpfc_hba *phba = vport->phba; 17570 struct lpfc_iocbq *ctiocb = NULL; 17571 struct lpfc_nodelist *ndlp; 17572 uint16_t oxid, rxid, xri, lxri; 17573 uint32_t sid, fctl; 17574 IOCB_t *icmd; 17575 int rc; 17576 17577 if (!lpfc_is_link_up(phba)) 17578 return; 17579 17580 sid = sli4_sid_from_fc_hdr(fc_hdr); 17581 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 17582 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 17583 17584 ndlp = lpfc_findnode_did(vport, sid); 17585 if (!ndlp) { 17586 ndlp = lpfc_nlp_init(vport, sid); 17587 if (!ndlp) { 17588 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 17589 "1268 Failed to allocate ndlp for " 17590 "oxid:x%x SID:x%x\n", oxid, sid); 17591 return; 17592 } 17593 /* Put ndlp onto pport node list */ 17594 lpfc_enqueue_node(vport, ndlp); 17595 } else if (!NLP_CHK_NODE_ACT(ndlp)) { 17596 /* re-setup ndlp without removing from node list */ 17597 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE); 17598 if (!ndlp) { 17599 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 17600 "3275 Failed to active ndlp found " 17601 "for oxid:x%x SID:x%x\n", oxid, sid); 17602 return; 17603 } 17604 } 17605 17606 /* Allocate buffer for rsp iocb */ 17607 ctiocb = lpfc_sli_get_iocbq(phba); 17608 if (!ctiocb) 17609 return; 17610 17611 /* Extract the F_CTL field from FC_HDR */ 17612 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 17613 17614 icmd = &ctiocb->iocb; 17615 icmd->un.xseq64.bdl.bdeSize = 0; 17616 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 17617 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 17618 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 17619 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 17620 17621 /* Fill in the rest of iocb fields */ 17622 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 17623 icmd->ulpBdeCount = 0; 17624 icmd->ulpLe = 1; 17625 icmd->ulpClass = CLASS3; 17626 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 17627 ctiocb->context1 = lpfc_nlp_get(ndlp); 17628 17629 ctiocb->vport = phba->pport; 17630 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 17631 ctiocb->sli4_lxritag = NO_XRI; 17632 ctiocb->sli4_xritag = NO_XRI; 17633 17634 if (fctl & FC_FC_EX_CTX) 17635 /* Exchange responder sent the abort so we 17636 * own the oxid. 17637 */ 17638 xri = oxid; 17639 else 17640 xri = rxid; 17641 lxri = lpfc_sli4_xri_inrange(phba, xri); 17642 if (lxri != NO_XRI) 17643 lpfc_set_rrq_active(phba, ndlp, lxri, 17644 (xri == oxid) ? rxid : oxid, 0); 17645 /* For BA_ABTS from exchange responder, if the logical xri with 17646 * the oxid maps to the FCP XRI range, the port no longer has 17647 * that exchange context, send a BLS_RJT. Override the IOCB for 17648 * a BA_RJT. 17649 */ 17650 if ((fctl & FC_FC_EX_CTX) && 17651 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 17652 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 17653 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 17654 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 17655 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 17656 } 17657 17658 /* If BA_ABTS failed to abort a partially assembled receive sequence, 17659 * the driver no longer has that exchange, send a BLS_RJT. Override 17660 * the IOCB for a BA_RJT. 17661 */ 17662 if (aborted == false) { 17663 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 17664 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 17665 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 17666 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 17667 } 17668 17669 if (fctl & FC_FC_EX_CTX) { 17670 /* ABTS sent by responder to CT exchange, construction 17671 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 17672 * field and RX_ID from ABTS for RX_ID field. 17673 */ 17674 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 17675 } else { 17676 /* ABTS sent by initiator to CT exchange, construction 17677 * of BA_ACC will need to allocate a new XRI as for the 17678 * XRI_TAG field. 17679 */ 17680 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 17681 } 17682 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 17683 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 17684 17685 /* Xmit CT abts response on exchange <xid> */ 17686 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 17687 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 17688 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 17689 17690 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 17691 if (rc == IOCB_ERROR) { 17692 lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS, 17693 "2925 Failed to issue CT ABTS RSP x%x on " 17694 "xri x%x, Data x%x\n", 17695 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 17696 phba->link_state); 17697 lpfc_nlp_put(ndlp); 17698 ctiocb->context1 = NULL; 17699 lpfc_sli_release_iocbq(phba, ctiocb); 17700 } 17701 } 17702 17703 /** 17704 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 17705 * @vport: Pointer to the vport on which this sequence was received 17706 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17707 * 17708 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 17709 * receive sequence is only partially assembed by the driver, it shall abort 17710 * the partially assembled frames for the sequence. Otherwise, if the 17711 * unsolicited receive sequence has been completely assembled and passed to 17712 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the 17713 * unsolicited sequence has been aborted. After that, it will issue a basic 17714 * accept to accept the abort. 17715 **/ 17716 static void 17717 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 17718 struct hbq_dmabuf *dmabuf) 17719 { 17720 struct lpfc_hba *phba = vport->phba; 17721 struct fc_frame_header fc_hdr; 17722 uint32_t fctl; 17723 bool aborted; 17724 17725 /* Make a copy of fc_hdr before the dmabuf being released */ 17726 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 17727 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 17728 17729 if (fctl & FC_FC_EX_CTX) { 17730 /* ABTS by responder to exchange, no cleanup needed */ 17731 aborted = true; 17732 } else { 17733 /* ABTS by initiator to exchange, need to do cleanup */ 17734 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 17735 if (aborted == false) 17736 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 17737 } 17738 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17739 17740 if (phba->nvmet_support) { 17741 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 17742 return; 17743 } 17744 17745 /* Respond with BA_ACC or BA_RJT accordingly */ 17746 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 17747 } 17748 17749 /** 17750 * lpfc_seq_complete - Indicates if a sequence is complete 17751 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17752 * 17753 * This function checks the sequence, starting with the frame described by 17754 * @dmabuf, to see if all the frames associated with this sequence are present. 17755 * the frames associated with this sequence are linked to the @dmabuf using the 17756 * dbuf list. This function looks for two major things. 1) That the first frame 17757 * has a sequence count of zero. 2) There is a frame with last frame of sequence 17758 * set. 3) That there are no holes in the sequence count. The function will 17759 * return 1 when the sequence is complete, otherwise it will return 0. 17760 **/ 17761 static int 17762 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 17763 { 17764 struct fc_frame_header *hdr; 17765 struct lpfc_dmabuf *d_buf; 17766 struct hbq_dmabuf *seq_dmabuf; 17767 uint32_t fctl; 17768 int seq_count = 0; 17769 17770 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17771 /* make sure first fame of sequence has a sequence count of zero */ 17772 if (hdr->fh_seq_cnt != seq_count) 17773 return 0; 17774 fctl = (hdr->fh_f_ctl[0] << 16 | 17775 hdr->fh_f_ctl[1] << 8 | 17776 hdr->fh_f_ctl[2]); 17777 /* If last frame of sequence we can return success. */ 17778 if (fctl & FC_FC_END_SEQ) 17779 return 1; 17780 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 17781 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17782 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 17783 /* If there is a hole in the sequence count then fail. */ 17784 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 17785 return 0; 17786 fctl = (hdr->fh_f_ctl[0] << 16 | 17787 hdr->fh_f_ctl[1] << 8 | 17788 hdr->fh_f_ctl[2]); 17789 /* If last frame of sequence we can return success. */ 17790 if (fctl & FC_FC_END_SEQ) 17791 return 1; 17792 } 17793 return 0; 17794 } 17795 17796 /** 17797 * lpfc_prep_seq - Prep sequence for ULP processing 17798 * @vport: Pointer to the vport on which this sequence was received 17799 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17800 * 17801 * This function takes a sequence, described by a list of frames, and creates 17802 * a list of iocbq structures to describe the sequence. This iocbq list will be 17803 * used to issue to the generic unsolicited sequence handler. This routine 17804 * returns a pointer to the first iocbq in the list. If the function is unable 17805 * to allocate an iocbq then it throw out the received frames that were not 17806 * able to be described and return a pointer to the first iocbq. If unable to 17807 * allocate any iocbqs (including the first) this function will return NULL. 17808 **/ 17809 static struct lpfc_iocbq * 17810 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 17811 { 17812 struct hbq_dmabuf *hbq_buf; 17813 struct lpfc_dmabuf *d_buf, *n_buf; 17814 struct lpfc_iocbq *first_iocbq, *iocbq; 17815 struct fc_frame_header *fc_hdr; 17816 uint32_t sid; 17817 uint32_t len, tot_len; 17818 struct ulp_bde64 *pbde; 17819 17820 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 17821 /* remove from receive buffer list */ 17822 list_del_init(&seq_dmabuf->hbuf.list); 17823 lpfc_update_rcv_time_stamp(vport); 17824 /* get the Remote Port's SID */ 17825 sid = sli4_sid_from_fc_hdr(fc_hdr); 17826 tot_len = 0; 17827 /* Get an iocbq struct to fill in. */ 17828 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 17829 if (first_iocbq) { 17830 /* Initialize the first IOCB. */ 17831 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 17832 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 17833 first_iocbq->vport = vport; 17834 17835 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 17836 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 17837 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 17838 first_iocbq->iocb.un.rcvels.parmRo = 17839 sli4_did_from_fc_hdr(fc_hdr); 17840 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 17841 } else 17842 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 17843 first_iocbq->iocb.ulpContext = NO_XRI; 17844 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 17845 be16_to_cpu(fc_hdr->fh_ox_id); 17846 /* iocbq is prepped for internal consumption. Physical vpi. */ 17847 first_iocbq->iocb.unsli3.rcvsli3.vpi = 17848 vport->phba->vpi_ids[vport->vpi]; 17849 /* put the first buffer into the first IOCBq */ 17850 tot_len = bf_get(lpfc_rcqe_length, 17851 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 17852 17853 first_iocbq->context2 = &seq_dmabuf->dbuf; 17854 first_iocbq->context3 = NULL; 17855 first_iocbq->iocb.ulpBdeCount = 1; 17856 if (tot_len > LPFC_DATA_BUF_SIZE) 17857 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 17858 LPFC_DATA_BUF_SIZE; 17859 else 17860 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 17861 17862 first_iocbq->iocb.un.rcvels.remoteID = sid; 17863 17864 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 17865 } 17866 iocbq = first_iocbq; 17867 /* 17868 * Each IOCBq can have two Buffers assigned, so go through the list 17869 * of buffers for this sequence and save two buffers in each IOCBq 17870 */ 17871 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 17872 if (!iocbq) { 17873 lpfc_in_buf_free(vport->phba, d_buf); 17874 continue; 17875 } 17876 if (!iocbq->context3) { 17877 iocbq->context3 = d_buf; 17878 iocbq->iocb.ulpBdeCount++; 17879 /* We need to get the size out of the right CQE */ 17880 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17881 len = bf_get(lpfc_rcqe_length, 17882 &hbq_buf->cq_event.cqe.rcqe_cmpl); 17883 pbde = (struct ulp_bde64 *) 17884 &iocbq->iocb.unsli3.sli3Words[4]; 17885 if (len > LPFC_DATA_BUF_SIZE) 17886 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 17887 else 17888 pbde->tus.f.bdeSize = len; 17889 17890 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 17891 tot_len += len; 17892 } else { 17893 iocbq = lpfc_sli_get_iocbq(vport->phba); 17894 if (!iocbq) { 17895 if (first_iocbq) { 17896 first_iocbq->iocb.ulpStatus = 17897 IOSTAT_FCP_RSP_ERROR; 17898 first_iocbq->iocb.un.ulpWord[4] = 17899 IOERR_NO_RESOURCES; 17900 } 17901 lpfc_in_buf_free(vport->phba, d_buf); 17902 continue; 17903 } 17904 /* We need to get the size out of the right CQE */ 17905 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17906 len = bf_get(lpfc_rcqe_length, 17907 &hbq_buf->cq_event.cqe.rcqe_cmpl); 17908 iocbq->context2 = d_buf; 17909 iocbq->context3 = NULL; 17910 iocbq->iocb.ulpBdeCount = 1; 17911 if (len > LPFC_DATA_BUF_SIZE) 17912 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 17913 LPFC_DATA_BUF_SIZE; 17914 else 17915 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 17916 17917 tot_len += len; 17918 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 17919 17920 iocbq->iocb.un.rcvels.remoteID = sid; 17921 list_add_tail(&iocbq->list, &first_iocbq->list); 17922 } 17923 } 17924 /* Free the sequence's header buffer */ 17925 if (!first_iocbq) 17926 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 17927 17928 return first_iocbq; 17929 } 17930 17931 static void 17932 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 17933 struct hbq_dmabuf *seq_dmabuf) 17934 { 17935 struct fc_frame_header *fc_hdr; 17936 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 17937 struct lpfc_hba *phba = vport->phba; 17938 17939 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 17940 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 17941 if (!iocbq) { 17942 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17943 "2707 Ring %d handler: Failed to allocate " 17944 "iocb Rctl x%x Type x%x received\n", 17945 LPFC_ELS_RING, 17946 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17947 return; 17948 } 17949 if (!lpfc_complete_unsol_iocb(phba, 17950 phba->sli4_hba.els_wq->pring, 17951 iocbq, fc_hdr->fh_r_ctl, 17952 fc_hdr->fh_type)) 17953 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17954 "2540 Ring %d handler: unexpected Rctl " 17955 "x%x Type x%x received\n", 17956 LPFC_ELS_RING, 17957 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17958 17959 /* Free iocb created in lpfc_prep_seq */ 17960 list_for_each_entry_safe(curr_iocb, next_iocb, 17961 &iocbq->list, list) { 17962 list_del_init(&curr_iocb->list); 17963 lpfc_sli_release_iocbq(phba, curr_iocb); 17964 } 17965 lpfc_sli_release_iocbq(phba, iocbq); 17966 } 17967 17968 static void 17969 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 17970 struct lpfc_iocbq *rspiocb) 17971 { 17972 struct lpfc_dmabuf *pcmd = cmdiocb->context2; 17973 17974 if (pcmd && pcmd->virt) 17975 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 17976 kfree(pcmd); 17977 lpfc_sli_release_iocbq(phba, cmdiocb); 17978 lpfc_drain_txq(phba); 17979 } 17980 17981 static void 17982 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 17983 struct hbq_dmabuf *dmabuf) 17984 { 17985 struct fc_frame_header *fc_hdr; 17986 struct lpfc_hba *phba = vport->phba; 17987 struct lpfc_iocbq *iocbq = NULL; 17988 union lpfc_wqe *wqe; 17989 struct lpfc_dmabuf *pcmd = NULL; 17990 uint32_t frame_len; 17991 int rc; 17992 unsigned long iflags; 17993 17994 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17995 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 17996 17997 /* Send the received frame back */ 17998 iocbq = lpfc_sli_get_iocbq(phba); 17999 if (!iocbq) { 18000 /* Queue cq event and wakeup worker thread to process it */ 18001 spin_lock_irqsave(&phba->hbalock, iflags); 18002 list_add_tail(&dmabuf->cq_event.list, 18003 &phba->sli4_hba.sp_queue_event); 18004 phba->hba_flag |= HBA_SP_QUEUE_EVT; 18005 spin_unlock_irqrestore(&phba->hbalock, iflags); 18006 lpfc_worker_wake_up(phba); 18007 return; 18008 } 18009 18010 /* Allocate buffer for command payload */ 18011 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 18012 if (pcmd) 18013 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 18014 &pcmd->phys); 18015 if (!pcmd || !pcmd->virt) 18016 goto exit; 18017 18018 INIT_LIST_HEAD(&pcmd->list); 18019 18020 /* copyin the payload */ 18021 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 18022 18023 /* fill in BDE's for command */ 18024 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys); 18025 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys); 18026 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 18027 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len; 18028 18029 iocbq->context2 = pcmd; 18030 iocbq->vport = vport; 18031 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK; 18032 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 18033 18034 /* 18035 * Setup rest of the iocb as though it were a WQE 18036 * Build the SEND_FRAME WQE 18037 */ 18038 wqe = (union lpfc_wqe *)&iocbq->iocb; 18039 18040 wqe->send_frame.frame_len = frame_len; 18041 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr)); 18042 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1)); 18043 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2)); 18044 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3)); 18045 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4)); 18046 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5)); 18047 18048 iocbq->iocb.ulpCommand = CMD_SEND_FRAME; 18049 iocbq->iocb.ulpLe = 1; 18050 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl; 18051 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 18052 if (rc == IOCB_ERROR) 18053 goto exit; 18054 18055 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18056 return; 18057 18058 exit: 18059 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18060 "2023 Unable to process MDS loopback frame\n"); 18061 if (pcmd && pcmd->virt) 18062 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 18063 kfree(pcmd); 18064 if (iocbq) 18065 lpfc_sli_release_iocbq(phba, iocbq); 18066 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18067 } 18068 18069 /** 18070 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 18071 * @phba: Pointer to HBA context object. 18072 * 18073 * This function is called with no lock held. This function processes all 18074 * the received buffers and gives it to upper layers when a received buffer 18075 * indicates that it is the final frame in the sequence. The interrupt 18076 * service routine processes received buffers at interrupt contexts. 18077 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 18078 * appropriate receive function when the final frame in a sequence is received. 18079 **/ 18080 void 18081 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 18082 struct hbq_dmabuf *dmabuf) 18083 { 18084 struct hbq_dmabuf *seq_dmabuf; 18085 struct fc_frame_header *fc_hdr; 18086 struct lpfc_vport *vport; 18087 uint32_t fcfi; 18088 uint32_t did; 18089 18090 /* Process each received buffer */ 18091 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18092 18093 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 18094 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 18095 vport = phba->pport; 18096 /* Handle MDS Loopback frames */ 18097 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 18098 return; 18099 } 18100 18101 /* check to see if this a valid type of frame */ 18102 if (lpfc_fc_frame_check(phba, fc_hdr)) { 18103 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18104 return; 18105 } 18106 18107 if ((bf_get(lpfc_cqe_code, 18108 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 18109 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 18110 &dmabuf->cq_event.cqe.rcqe_cmpl); 18111 else 18112 fcfi = bf_get(lpfc_rcqe_fcf_id, 18113 &dmabuf->cq_event.cqe.rcqe_cmpl); 18114 18115 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 18116 vport = phba->pport; 18117 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 18118 "2023 MDS Loopback %d bytes\n", 18119 bf_get(lpfc_rcqe_length, 18120 &dmabuf->cq_event.cqe.rcqe_cmpl)); 18121 /* Handle MDS Loopback frames */ 18122 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 18123 return; 18124 } 18125 18126 /* d_id this frame is directed to */ 18127 did = sli4_did_from_fc_hdr(fc_hdr); 18128 18129 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 18130 if (!vport) { 18131 /* throw out the frame */ 18132 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18133 return; 18134 } 18135 18136 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 18137 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 18138 (did != Fabric_DID)) { 18139 /* 18140 * Throw out the frame if we are not pt2pt. 18141 * The pt2pt protocol allows for discovery frames 18142 * to be received without a registered VPI. 18143 */ 18144 if (!(vport->fc_flag & FC_PT2PT) || 18145 (phba->link_state == LPFC_HBA_READY)) { 18146 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18147 return; 18148 } 18149 } 18150 18151 /* Handle the basic abort sequence (BA_ABTS) event */ 18152 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 18153 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 18154 return; 18155 } 18156 18157 /* Link this frame */ 18158 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 18159 if (!seq_dmabuf) { 18160 /* unable to add frame to vport - throw it out */ 18161 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18162 return; 18163 } 18164 /* If not last frame in sequence continue processing frames. */ 18165 if (!lpfc_seq_complete(seq_dmabuf)) 18166 return; 18167 18168 /* Send the complete sequence to the upper layer protocol */ 18169 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 18170 } 18171 18172 /** 18173 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 18174 * @phba: pointer to lpfc hba data structure. 18175 * 18176 * This routine is invoked to post rpi header templates to the 18177 * HBA consistent with the SLI-4 interface spec. This routine 18178 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18179 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18180 * 18181 * This routine does not require any locks. It's usage is expected 18182 * to be driver load or reset recovery when the driver is 18183 * sequential. 18184 * 18185 * Return codes 18186 * 0 - successful 18187 * -EIO - The mailbox failed to complete successfully. 18188 * When this error occurs, the driver is not guaranteed 18189 * to have any rpi regions posted to the device and 18190 * must either attempt to repost the regions or take a 18191 * fatal error. 18192 **/ 18193 int 18194 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 18195 { 18196 struct lpfc_rpi_hdr *rpi_page; 18197 uint32_t rc = 0; 18198 uint16_t lrpi = 0; 18199 18200 /* SLI4 ports that support extents do not require RPI headers. */ 18201 if (!phba->sli4_hba.rpi_hdrs_in_use) 18202 goto exit; 18203 if (phba->sli4_hba.extents_in_use) 18204 return -EIO; 18205 18206 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 18207 /* 18208 * Assign the rpi headers a physical rpi only if the driver 18209 * has not initialized those resources. A port reset only 18210 * needs the headers posted. 18211 */ 18212 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 18213 LPFC_RPI_RSRC_RDY) 18214 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18215 18216 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 18217 if (rc != MBX_SUCCESS) { 18218 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18219 "2008 Error %d posting all rpi " 18220 "headers\n", rc); 18221 rc = -EIO; 18222 break; 18223 } 18224 } 18225 18226 exit: 18227 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 18228 LPFC_RPI_RSRC_RDY); 18229 return rc; 18230 } 18231 18232 /** 18233 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 18234 * @phba: pointer to lpfc hba data structure. 18235 * @rpi_page: pointer to the rpi memory region. 18236 * 18237 * This routine is invoked to post a single rpi header to the 18238 * HBA consistent with the SLI-4 interface spec. This memory region 18239 * maps up to 64 rpi context regions. 18240 * 18241 * Return codes 18242 * 0 - successful 18243 * -ENOMEM - No available memory 18244 * -EIO - The mailbox failed to complete successfully. 18245 **/ 18246 int 18247 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 18248 { 18249 LPFC_MBOXQ_t *mboxq; 18250 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 18251 uint32_t rc = 0; 18252 uint32_t shdr_status, shdr_add_status; 18253 union lpfc_sli4_cfg_shdr *shdr; 18254 18255 /* SLI4 ports that support extents do not require RPI headers. */ 18256 if (!phba->sli4_hba.rpi_hdrs_in_use) 18257 return rc; 18258 if (phba->sli4_hba.extents_in_use) 18259 return -EIO; 18260 18261 /* The port is notified of the header region via a mailbox command. */ 18262 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18263 if (!mboxq) { 18264 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18265 "2001 Unable to allocate memory for issuing " 18266 "SLI_CONFIG_SPECIAL mailbox command\n"); 18267 return -ENOMEM; 18268 } 18269 18270 /* Post all rpi memory regions to the port. */ 18271 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 18272 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 18273 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 18274 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 18275 sizeof(struct lpfc_sli4_cfg_mhdr), 18276 LPFC_SLI4_MBX_EMBED); 18277 18278 18279 /* Post the physical rpi to the port for this rpi header. */ 18280 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 18281 rpi_page->start_rpi); 18282 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 18283 hdr_tmpl, rpi_page->page_count); 18284 18285 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 18286 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 18287 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 18288 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 18289 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18290 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18291 if (rc != MBX_TIMEOUT) 18292 mempool_free(mboxq, phba->mbox_mem_pool); 18293 if (shdr_status || shdr_add_status || rc) { 18294 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18295 "2514 POST_RPI_HDR mailbox failed with " 18296 "status x%x add_status x%x, mbx status x%x\n", 18297 shdr_status, shdr_add_status, rc); 18298 rc = -ENXIO; 18299 } else { 18300 /* 18301 * The next_rpi stores the next logical module-64 rpi value used 18302 * to post physical rpis in subsequent rpi postings. 18303 */ 18304 spin_lock_irq(&phba->hbalock); 18305 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 18306 spin_unlock_irq(&phba->hbalock); 18307 } 18308 return rc; 18309 } 18310 18311 /** 18312 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 18313 * @phba: pointer to lpfc hba data structure. 18314 * 18315 * This routine is invoked to post rpi header templates to the 18316 * HBA consistent with the SLI-4 interface spec. This routine 18317 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18318 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18319 * 18320 * Returns 18321 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 18322 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 18323 **/ 18324 int 18325 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 18326 { 18327 unsigned long rpi; 18328 uint16_t max_rpi, rpi_limit; 18329 uint16_t rpi_remaining, lrpi = 0; 18330 struct lpfc_rpi_hdr *rpi_hdr; 18331 unsigned long iflag; 18332 18333 /* 18334 * Fetch the next logical rpi. Because this index is logical, 18335 * the driver starts at 0 each time. 18336 */ 18337 spin_lock_irqsave(&phba->hbalock, iflag); 18338 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 18339 rpi_limit = phba->sli4_hba.next_rpi; 18340 18341 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 18342 if (rpi >= rpi_limit) 18343 rpi = LPFC_RPI_ALLOC_ERROR; 18344 else { 18345 set_bit(rpi, phba->sli4_hba.rpi_bmask); 18346 phba->sli4_hba.max_cfg_param.rpi_used++; 18347 phba->sli4_hba.rpi_count++; 18348 } 18349 lpfc_printf_log(phba, KERN_INFO, 18350 LOG_NODE | LOG_DISCOVERY, 18351 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 18352 (int) rpi, max_rpi, rpi_limit); 18353 18354 /* 18355 * Don't try to allocate more rpi header regions if the device limit 18356 * has been exhausted. 18357 */ 18358 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 18359 (phba->sli4_hba.rpi_count >= max_rpi)) { 18360 spin_unlock_irqrestore(&phba->hbalock, iflag); 18361 return rpi; 18362 } 18363 18364 /* 18365 * RPI header postings are not required for SLI4 ports capable of 18366 * extents. 18367 */ 18368 if (!phba->sli4_hba.rpi_hdrs_in_use) { 18369 spin_unlock_irqrestore(&phba->hbalock, iflag); 18370 return rpi; 18371 } 18372 18373 /* 18374 * If the driver is running low on rpi resources, allocate another 18375 * page now. Note that the next_rpi value is used because 18376 * it represents how many are actually in use whereas max_rpi notes 18377 * how many are supported max by the device. 18378 */ 18379 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 18380 spin_unlock_irqrestore(&phba->hbalock, iflag); 18381 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 18382 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 18383 if (!rpi_hdr) { 18384 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18385 "2002 Error Could not grow rpi " 18386 "count\n"); 18387 } else { 18388 lrpi = rpi_hdr->start_rpi; 18389 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18390 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 18391 } 18392 } 18393 18394 return rpi; 18395 } 18396 18397 /** 18398 * lpfc_sli4_free_rpi - Release an rpi for reuse. 18399 * @phba: pointer to lpfc hba data structure. 18400 * 18401 * This routine is invoked to release an rpi to the pool of 18402 * available rpis maintained by the driver. 18403 **/ 18404 static void 18405 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 18406 { 18407 /* 18408 * if the rpi value indicates a prior unreg has already 18409 * been done, skip the unreg. 18410 */ 18411 if (rpi == LPFC_RPI_ALLOC_ERROR) 18412 return; 18413 18414 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 18415 phba->sli4_hba.rpi_count--; 18416 phba->sli4_hba.max_cfg_param.rpi_used--; 18417 } else { 18418 lpfc_printf_log(phba, KERN_INFO, 18419 LOG_NODE | LOG_DISCOVERY, 18420 "2016 rpi %x not inuse\n", 18421 rpi); 18422 } 18423 } 18424 18425 /** 18426 * lpfc_sli4_free_rpi - Release an rpi for reuse. 18427 * @phba: pointer to lpfc hba data structure. 18428 * 18429 * This routine is invoked to release an rpi to the pool of 18430 * available rpis maintained by the driver. 18431 **/ 18432 void 18433 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 18434 { 18435 spin_lock_irq(&phba->hbalock); 18436 __lpfc_sli4_free_rpi(phba, rpi); 18437 spin_unlock_irq(&phba->hbalock); 18438 } 18439 18440 /** 18441 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 18442 * @phba: pointer to lpfc hba data structure. 18443 * 18444 * This routine is invoked to remove the memory region that 18445 * provided rpi via a bitmask. 18446 **/ 18447 void 18448 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 18449 { 18450 kfree(phba->sli4_hba.rpi_bmask); 18451 kfree(phba->sli4_hba.rpi_ids); 18452 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 18453 } 18454 18455 /** 18456 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 18457 * @phba: pointer to lpfc hba data structure. 18458 * 18459 * This routine is invoked to remove the memory region that 18460 * provided rpi via a bitmask. 18461 **/ 18462 int 18463 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 18464 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 18465 { 18466 LPFC_MBOXQ_t *mboxq; 18467 struct lpfc_hba *phba = ndlp->phba; 18468 int rc; 18469 18470 /* The port is notified of the header region via a mailbox command. */ 18471 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18472 if (!mboxq) 18473 return -ENOMEM; 18474 18475 /* Post all rpi memory regions to the port. */ 18476 lpfc_resume_rpi(mboxq, ndlp); 18477 if (cmpl) { 18478 mboxq->mbox_cmpl = cmpl; 18479 mboxq->ctx_buf = arg; 18480 mboxq->ctx_ndlp = ndlp; 18481 } else 18482 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 18483 mboxq->vport = ndlp->vport; 18484 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18485 if (rc == MBX_NOT_FINISHED) { 18486 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18487 "2010 Resume RPI Mailbox failed " 18488 "status %d, mbxStatus x%x\n", rc, 18489 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 18490 mempool_free(mboxq, phba->mbox_mem_pool); 18491 return -EIO; 18492 } 18493 return 0; 18494 } 18495 18496 /** 18497 * lpfc_sli4_init_vpi - Initialize a vpi with the port 18498 * @vport: Pointer to the vport for which the vpi is being initialized 18499 * 18500 * This routine is invoked to activate a vpi with the port. 18501 * 18502 * Returns: 18503 * 0 success 18504 * -Evalue otherwise 18505 **/ 18506 int 18507 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 18508 { 18509 LPFC_MBOXQ_t *mboxq; 18510 int rc = 0; 18511 int retval = MBX_SUCCESS; 18512 uint32_t mbox_tmo; 18513 struct lpfc_hba *phba = vport->phba; 18514 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18515 if (!mboxq) 18516 return -ENOMEM; 18517 lpfc_init_vpi(phba, mboxq, vport->vpi); 18518 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 18519 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 18520 if (rc != MBX_SUCCESS) { 18521 lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI, 18522 "2022 INIT VPI Mailbox failed " 18523 "status %d, mbxStatus x%x\n", rc, 18524 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 18525 retval = -EIO; 18526 } 18527 if (rc != MBX_TIMEOUT) 18528 mempool_free(mboxq, vport->phba->mbox_mem_pool); 18529 18530 return retval; 18531 } 18532 18533 /** 18534 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 18535 * @phba: pointer to lpfc hba data structure. 18536 * @mboxq: Pointer to mailbox object. 18537 * 18538 * This routine is invoked to manually add a single FCF record. The caller 18539 * must pass a completely initialized FCF_Record. This routine takes 18540 * care of the nonembedded mailbox operations. 18541 **/ 18542 static void 18543 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 18544 { 18545 void *virt_addr; 18546 union lpfc_sli4_cfg_shdr *shdr; 18547 uint32_t shdr_status, shdr_add_status; 18548 18549 virt_addr = mboxq->sge_array->addr[0]; 18550 /* The IOCTL status is embedded in the mailbox subheader. */ 18551 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 18552 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18553 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18554 18555 if ((shdr_status || shdr_add_status) && 18556 (shdr_status != STATUS_FCF_IN_USE)) 18557 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18558 "2558 ADD_FCF_RECORD mailbox failed with " 18559 "status x%x add_status x%x\n", 18560 shdr_status, shdr_add_status); 18561 18562 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18563 } 18564 18565 /** 18566 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 18567 * @phba: pointer to lpfc hba data structure. 18568 * @fcf_record: pointer to the initialized fcf record to add. 18569 * 18570 * This routine is invoked to manually add a single FCF record. The caller 18571 * must pass a completely initialized FCF_Record. This routine takes 18572 * care of the nonembedded mailbox operations. 18573 **/ 18574 int 18575 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 18576 { 18577 int rc = 0; 18578 LPFC_MBOXQ_t *mboxq; 18579 uint8_t *bytep; 18580 void *virt_addr; 18581 struct lpfc_mbx_sge sge; 18582 uint32_t alloc_len, req_len; 18583 uint32_t fcfindex; 18584 18585 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18586 if (!mboxq) { 18587 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18588 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 18589 return -ENOMEM; 18590 } 18591 18592 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 18593 sizeof(uint32_t); 18594 18595 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18596 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 18597 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 18598 req_len, LPFC_SLI4_MBX_NEMBED); 18599 if (alloc_len < req_len) { 18600 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18601 "2523 Allocated DMA memory size (x%x) is " 18602 "less than the requested DMA memory " 18603 "size (x%x)\n", alloc_len, req_len); 18604 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18605 return -ENOMEM; 18606 } 18607 18608 /* 18609 * Get the first SGE entry from the non-embedded DMA memory. This 18610 * routine only uses a single SGE. 18611 */ 18612 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 18613 virt_addr = mboxq->sge_array->addr[0]; 18614 /* 18615 * Configure the FCF record for FCFI 0. This is the driver's 18616 * hardcoded default and gets used in nonFIP mode. 18617 */ 18618 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 18619 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 18620 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 18621 18622 /* 18623 * Copy the fcf_index and the FCF Record Data. The data starts after 18624 * the FCoE header plus word10. The data copy needs to be endian 18625 * correct. 18626 */ 18627 bytep += sizeof(uint32_t); 18628 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 18629 mboxq->vport = phba->pport; 18630 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 18631 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18632 if (rc == MBX_NOT_FINISHED) { 18633 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18634 "2515 ADD_FCF_RECORD mailbox failed with " 18635 "status 0x%x\n", rc); 18636 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18637 rc = -EIO; 18638 } else 18639 rc = 0; 18640 18641 return rc; 18642 } 18643 18644 /** 18645 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 18646 * @phba: pointer to lpfc hba data structure. 18647 * @fcf_record: pointer to the fcf record to write the default data. 18648 * @fcf_index: FCF table entry index. 18649 * 18650 * This routine is invoked to build the driver's default FCF record. The 18651 * values used are hardcoded. This routine handles memory initialization. 18652 * 18653 **/ 18654 void 18655 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 18656 struct fcf_record *fcf_record, 18657 uint16_t fcf_index) 18658 { 18659 memset(fcf_record, 0, sizeof(struct fcf_record)); 18660 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 18661 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 18662 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 18663 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 18664 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 18665 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 18666 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 18667 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 18668 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 18669 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 18670 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 18671 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 18672 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 18673 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 18674 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 18675 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 18676 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 18677 /* Set the VLAN bit map */ 18678 if (phba->valid_vlan) { 18679 fcf_record->vlan_bitmap[phba->vlan_id / 8] 18680 = 1 << (phba->vlan_id % 8); 18681 } 18682 } 18683 18684 /** 18685 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 18686 * @phba: pointer to lpfc hba data structure. 18687 * @fcf_index: FCF table entry offset. 18688 * 18689 * This routine is invoked to scan the entire FCF table by reading FCF 18690 * record and processing it one at a time starting from the @fcf_index 18691 * for initial FCF discovery or fast FCF failover rediscovery. 18692 * 18693 * Return 0 if the mailbox command is submitted successfully, none 0 18694 * otherwise. 18695 **/ 18696 int 18697 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 18698 { 18699 int rc = 0, error; 18700 LPFC_MBOXQ_t *mboxq; 18701 18702 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 18703 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 18704 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18705 if (!mboxq) { 18706 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18707 "2000 Failed to allocate mbox for " 18708 "READ_FCF cmd\n"); 18709 error = -ENOMEM; 18710 goto fail_fcf_scan; 18711 } 18712 /* Construct the read FCF record mailbox command */ 18713 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 18714 if (rc) { 18715 error = -EINVAL; 18716 goto fail_fcf_scan; 18717 } 18718 /* Issue the mailbox command asynchronously */ 18719 mboxq->vport = phba->pport; 18720 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 18721 18722 spin_lock_irq(&phba->hbalock); 18723 phba->hba_flag |= FCF_TS_INPROG; 18724 spin_unlock_irq(&phba->hbalock); 18725 18726 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18727 if (rc == MBX_NOT_FINISHED) 18728 error = -EIO; 18729 else { 18730 /* Reset eligible FCF count for new scan */ 18731 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 18732 phba->fcf.eligible_fcf_cnt = 0; 18733 error = 0; 18734 } 18735 fail_fcf_scan: 18736 if (error) { 18737 if (mboxq) 18738 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18739 /* FCF scan failed, clear FCF_TS_INPROG flag */ 18740 spin_lock_irq(&phba->hbalock); 18741 phba->hba_flag &= ~FCF_TS_INPROG; 18742 spin_unlock_irq(&phba->hbalock); 18743 } 18744 return error; 18745 } 18746 18747 /** 18748 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 18749 * @phba: pointer to lpfc hba data structure. 18750 * @fcf_index: FCF table entry offset. 18751 * 18752 * This routine is invoked to read an FCF record indicated by @fcf_index 18753 * and to use it for FLOGI roundrobin FCF failover. 18754 * 18755 * Return 0 if the mailbox command is submitted successfully, none 0 18756 * otherwise. 18757 **/ 18758 int 18759 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 18760 { 18761 int rc = 0, error; 18762 LPFC_MBOXQ_t *mboxq; 18763 18764 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18765 if (!mboxq) { 18766 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 18767 "2763 Failed to allocate mbox for " 18768 "READ_FCF cmd\n"); 18769 error = -ENOMEM; 18770 goto fail_fcf_read; 18771 } 18772 /* Construct the read FCF record mailbox command */ 18773 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 18774 if (rc) { 18775 error = -EINVAL; 18776 goto fail_fcf_read; 18777 } 18778 /* Issue the mailbox command asynchronously */ 18779 mboxq->vport = phba->pport; 18780 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 18781 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18782 if (rc == MBX_NOT_FINISHED) 18783 error = -EIO; 18784 else 18785 error = 0; 18786 18787 fail_fcf_read: 18788 if (error && mboxq) 18789 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18790 return error; 18791 } 18792 18793 /** 18794 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 18795 * @phba: pointer to lpfc hba data structure. 18796 * @fcf_index: FCF table entry offset. 18797 * 18798 * This routine is invoked to read an FCF record indicated by @fcf_index to 18799 * determine whether it's eligible for FLOGI roundrobin failover list. 18800 * 18801 * Return 0 if the mailbox command is submitted successfully, none 0 18802 * otherwise. 18803 **/ 18804 int 18805 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 18806 { 18807 int rc = 0, error; 18808 LPFC_MBOXQ_t *mboxq; 18809 18810 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18811 if (!mboxq) { 18812 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 18813 "2758 Failed to allocate mbox for " 18814 "READ_FCF cmd\n"); 18815 error = -ENOMEM; 18816 goto fail_fcf_read; 18817 } 18818 /* Construct the read FCF record mailbox command */ 18819 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 18820 if (rc) { 18821 error = -EINVAL; 18822 goto fail_fcf_read; 18823 } 18824 /* Issue the mailbox command asynchronously */ 18825 mboxq->vport = phba->pport; 18826 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 18827 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18828 if (rc == MBX_NOT_FINISHED) 18829 error = -EIO; 18830 else 18831 error = 0; 18832 18833 fail_fcf_read: 18834 if (error && mboxq) 18835 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18836 return error; 18837 } 18838 18839 /** 18840 * lpfc_check_next_fcf_pri_level 18841 * phba pointer to the lpfc_hba struct for this port. 18842 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 18843 * routine when the rr_bmask is empty. The FCF indecies are put into the 18844 * rr_bmask based on their priority level. Starting from the highest priority 18845 * to the lowest. The most likely FCF candidate will be in the highest 18846 * priority group. When this routine is called it searches the fcf_pri list for 18847 * next lowest priority group and repopulates the rr_bmask with only those 18848 * fcf_indexes. 18849 * returns: 18850 * 1=success 0=failure 18851 **/ 18852 static int 18853 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 18854 { 18855 uint16_t next_fcf_pri; 18856 uint16_t last_index; 18857 struct lpfc_fcf_pri *fcf_pri; 18858 int rc; 18859 int ret = 0; 18860 18861 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 18862 LPFC_SLI4_FCF_TBL_INDX_MAX); 18863 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18864 "3060 Last IDX %d\n", last_index); 18865 18866 /* Verify the priority list has 2 or more entries */ 18867 spin_lock_irq(&phba->hbalock); 18868 if (list_empty(&phba->fcf.fcf_pri_list) || 18869 list_is_singular(&phba->fcf.fcf_pri_list)) { 18870 spin_unlock_irq(&phba->hbalock); 18871 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18872 "3061 Last IDX %d\n", last_index); 18873 return 0; /* Empty rr list */ 18874 } 18875 spin_unlock_irq(&phba->hbalock); 18876 18877 next_fcf_pri = 0; 18878 /* 18879 * Clear the rr_bmask and set all of the bits that are at this 18880 * priority. 18881 */ 18882 memset(phba->fcf.fcf_rr_bmask, 0, 18883 sizeof(*phba->fcf.fcf_rr_bmask)); 18884 spin_lock_irq(&phba->hbalock); 18885 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 18886 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 18887 continue; 18888 /* 18889 * the 1st priority that has not FLOGI failed 18890 * will be the highest. 18891 */ 18892 if (!next_fcf_pri) 18893 next_fcf_pri = fcf_pri->fcf_rec.priority; 18894 spin_unlock_irq(&phba->hbalock); 18895 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 18896 rc = lpfc_sli4_fcf_rr_index_set(phba, 18897 fcf_pri->fcf_rec.fcf_index); 18898 if (rc) 18899 return 0; 18900 } 18901 spin_lock_irq(&phba->hbalock); 18902 } 18903 /* 18904 * if next_fcf_pri was not set above and the list is not empty then 18905 * we have failed flogis on all of them. So reset flogi failed 18906 * and start at the beginning. 18907 */ 18908 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 18909 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 18910 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 18911 /* 18912 * the 1st priority that has not FLOGI failed 18913 * will be the highest. 18914 */ 18915 if (!next_fcf_pri) 18916 next_fcf_pri = fcf_pri->fcf_rec.priority; 18917 spin_unlock_irq(&phba->hbalock); 18918 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 18919 rc = lpfc_sli4_fcf_rr_index_set(phba, 18920 fcf_pri->fcf_rec.fcf_index); 18921 if (rc) 18922 return 0; 18923 } 18924 spin_lock_irq(&phba->hbalock); 18925 } 18926 } else 18927 ret = 1; 18928 spin_unlock_irq(&phba->hbalock); 18929 18930 return ret; 18931 } 18932 /** 18933 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 18934 * @phba: pointer to lpfc hba data structure. 18935 * 18936 * This routine is to get the next eligible FCF record index in a round 18937 * robin fashion. If the next eligible FCF record index equals to the 18938 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 18939 * shall be returned, otherwise, the next eligible FCF record's index 18940 * shall be returned. 18941 **/ 18942 uint16_t 18943 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 18944 { 18945 uint16_t next_fcf_index; 18946 18947 initial_priority: 18948 /* Search start from next bit of currently registered FCF index */ 18949 next_fcf_index = phba->fcf.current_rec.fcf_indx; 18950 18951 next_priority: 18952 /* Determine the next fcf index to check */ 18953 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 18954 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 18955 LPFC_SLI4_FCF_TBL_INDX_MAX, 18956 next_fcf_index); 18957 18958 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 18959 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 18960 /* 18961 * If we have wrapped then we need to clear the bits that 18962 * have been tested so that we can detect when we should 18963 * change the priority level. 18964 */ 18965 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 18966 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 18967 } 18968 18969 18970 /* Check roundrobin failover list empty condition */ 18971 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 18972 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 18973 /* 18974 * If next fcf index is not found check if there are lower 18975 * Priority level fcf's in the fcf_priority list. 18976 * Set up the rr_bmask with all of the avaiable fcf bits 18977 * at that level and continue the selection process. 18978 */ 18979 if (lpfc_check_next_fcf_pri_level(phba)) 18980 goto initial_priority; 18981 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 18982 "2844 No roundrobin failover FCF available\n"); 18983 18984 return LPFC_FCOE_FCF_NEXT_NONE; 18985 } 18986 18987 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 18988 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 18989 LPFC_FCF_FLOGI_FAILED) { 18990 if (list_is_singular(&phba->fcf.fcf_pri_list)) 18991 return LPFC_FCOE_FCF_NEXT_NONE; 18992 18993 goto next_priority; 18994 } 18995 18996 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18997 "2845 Get next roundrobin failover FCF (x%x)\n", 18998 next_fcf_index); 18999 19000 return next_fcf_index; 19001 } 19002 19003 /** 19004 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 19005 * @phba: pointer to lpfc hba data structure. 19006 * 19007 * This routine sets the FCF record index in to the eligible bmask for 19008 * roundrobin failover search. It checks to make sure that the index 19009 * does not go beyond the range of the driver allocated bmask dimension 19010 * before setting the bit. 19011 * 19012 * Returns 0 if the index bit successfully set, otherwise, it returns 19013 * -EINVAL. 19014 **/ 19015 int 19016 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 19017 { 19018 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19019 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19020 "2610 FCF (x%x) reached driver's book " 19021 "keeping dimension:x%x\n", 19022 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 19023 return -EINVAL; 19024 } 19025 /* Set the eligible FCF record index bmask */ 19026 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 19027 19028 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19029 "2790 Set FCF (x%x) to roundrobin FCF failover " 19030 "bmask\n", fcf_index); 19031 19032 return 0; 19033 } 19034 19035 /** 19036 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 19037 * @phba: pointer to lpfc hba data structure. 19038 * 19039 * This routine clears the FCF record index from the eligible bmask for 19040 * roundrobin failover search. It checks to make sure that the index 19041 * does not go beyond the range of the driver allocated bmask dimension 19042 * before clearing the bit. 19043 **/ 19044 void 19045 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 19046 { 19047 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 19048 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19049 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19050 "2762 FCF (x%x) reached driver's book " 19051 "keeping dimension:x%x\n", 19052 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 19053 return; 19054 } 19055 /* Clear the eligible FCF record index bmask */ 19056 spin_lock_irq(&phba->hbalock); 19057 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 19058 list) { 19059 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 19060 list_del_init(&fcf_pri->list); 19061 break; 19062 } 19063 } 19064 spin_unlock_irq(&phba->hbalock); 19065 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 19066 19067 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19068 "2791 Clear FCF (x%x) from roundrobin failover " 19069 "bmask\n", fcf_index); 19070 } 19071 19072 /** 19073 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 19074 * @phba: pointer to lpfc hba data structure. 19075 * 19076 * This routine is the completion routine for the rediscover FCF table mailbox 19077 * command. If the mailbox command returned failure, it will try to stop the 19078 * FCF rediscover wait timer. 19079 **/ 19080 static void 19081 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 19082 { 19083 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 19084 uint32_t shdr_status, shdr_add_status; 19085 19086 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 19087 19088 shdr_status = bf_get(lpfc_mbox_hdr_status, 19089 &redisc_fcf->header.cfg_shdr.response); 19090 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 19091 &redisc_fcf->header.cfg_shdr.response); 19092 if (shdr_status || shdr_add_status) { 19093 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19094 "2746 Requesting for FCF rediscovery failed " 19095 "status x%x add_status x%x\n", 19096 shdr_status, shdr_add_status); 19097 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 19098 spin_lock_irq(&phba->hbalock); 19099 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 19100 spin_unlock_irq(&phba->hbalock); 19101 /* 19102 * CVL event triggered FCF rediscover request failed, 19103 * last resort to re-try current registered FCF entry. 19104 */ 19105 lpfc_retry_pport_discovery(phba); 19106 } else { 19107 spin_lock_irq(&phba->hbalock); 19108 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 19109 spin_unlock_irq(&phba->hbalock); 19110 /* 19111 * DEAD FCF event triggered FCF rediscover request 19112 * failed, last resort to fail over as a link down 19113 * to FCF registration. 19114 */ 19115 lpfc_sli4_fcf_dead_failthrough(phba); 19116 } 19117 } else { 19118 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19119 "2775 Start FCF rediscover quiescent timer\n"); 19120 /* 19121 * Start FCF rediscovery wait timer for pending FCF 19122 * before rescan FCF record table. 19123 */ 19124 lpfc_fcf_redisc_wait_start_timer(phba); 19125 } 19126 19127 mempool_free(mbox, phba->mbox_mem_pool); 19128 } 19129 19130 /** 19131 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 19132 * @phba: pointer to lpfc hba data structure. 19133 * 19134 * This routine is invoked to request for rediscovery of the entire FCF table 19135 * by the port. 19136 **/ 19137 int 19138 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 19139 { 19140 LPFC_MBOXQ_t *mbox; 19141 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 19142 int rc, length; 19143 19144 /* Cancel retry delay timers to all vports before FCF rediscover */ 19145 lpfc_cancel_all_vport_retry_delay_timer(phba); 19146 19147 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19148 if (!mbox) { 19149 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 19150 "2745 Failed to allocate mbox for " 19151 "requesting FCF rediscover.\n"); 19152 return -ENOMEM; 19153 } 19154 19155 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 19156 sizeof(struct lpfc_sli4_cfg_mhdr)); 19157 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 19158 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 19159 length, LPFC_SLI4_MBX_EMBED); 19160 19161 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 19162 /* Set count to 0 for invalidating the entire FCF database */ 19163 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 19164 19165 /* Issue the mailbox command asynchronously */ 19166 mbox->vport = phba->pport; 19167 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 19168 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 19169 19170 if (rc == MBX_NOT_FINISHED) { 19171 mempool_free(mbox, phba->mbox_mem_pool); 19172 return -EIO; 19173 } 19174 return 0; 19175 } 19176 19177 /** 19178 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 19179 * @phba: pointer to lpfc hba data structure. 19180 * 19181 * This function is the failover routine as a last resort to the FCF DEAD 19182 * event when driver failed to perform fast FCF failover. 19183 **/ 19184 void 19185 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 19186 { 19187 uint32_t link_state; 19188 19189 /* 19190 * Last resort as FCF DEAD event failover will treat this as 19191 * a link down, but save the link state because we don't want 19192 * it to be changed to Link Down unless it is already down. 19193 */ 19194 link_state = phba->link_state; 19195 lpfc_linkdown(phba); 19196 phba->link_state = link_state; 19197 19198 /* Unregister FCF if no devices connected to it */ 19199 lpfc_unregister_unused_fcf(phba); 19200 } 19201 19202 /** 19203 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 19204 * @phba: pointer to lpfc hba data structure. 19205 * @rgn23_data: pointer to configure region 23 data. 19206 * 19207 * This function gets SLI3 port configure region 23 data through memory dump 19208 * mailbox command. When it successfully retrieves data, the size of the data 19209 * will be returned, otherwise, 0 will be returned. 19210 **/ 19211 static uint32_t 19212 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19213 { 19214 LPFC_MBOXQ_t *pmb = NULL; 19215 MAILBOX_t *mb; 19216 uint32_t offset = 0; 19217 int rc; 19218 19219 if (!rgn23_data) 19220 return 0; 19221 19222 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19223 if (!pmb) { 19224 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19225 "2600 failed to allocate mailbox memory\n"); 19226 return 0; 19227 } 19228 mb = &pmb->u.mb; 19229 19230 do { 19231 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 19232 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 19233 19234 if (rc != MBX_SUCCESS) { 19235 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19236 "2601 failed to read config " 19237 "region 23, rc 0x%x Status 0x%x\n", 19238 rc, mb->mbxStatus); 19239 mb->un.varDmp.word_cnt = 0; 19240 } 19241 /* 19242 * dump mem may return a zero when finished or we got a 19243 * mailbox error, either way we are done. 19244 */ 19245 if (mb->un.varDmp.word_cnt == 0) 19246 break; 19247 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 19248 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 19249 19250 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 19251 rgn23_data + offset, 19252 mb->un.varDmp.word_cnt); 19253 offset += mb->un.varDmp.word_cnt; 19254 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 19255 19256 mempool_free(pmb, phba->mbox_mem_pool); 19257 return offset; 19258 } 19259 19260 /** 19261 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 19262 * @phba: pointer to lpfc hba data structure. 19263 * @rgn23_data: pointer to configure region 23 data. 19264 * 19265 * This function gets SLI4 port configure region 23 data through memory dump 19266 * mailbox command. When it successfully retrieves data, the size of the data 19267 * will be returned, otherwise, 0 will be returned. 19268 **/ 19269 static uint32_t 19270 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19271 { 19272 LPFC_MBOXQ_t *mboxq = NULL; 19273 struct lpfc_dmabuf *mp = NULL; 19274 struct lpfc_mqe *mqe; 19275 uint32_t data_length = 0; 19276 int rc; 19277 19278 if (!rgn23_data) 19279 return 0; 19280 19281 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19282 if (!mboxq) { 19283 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19284 "3105 failed to allocate mailbox memory\n"); 19285 return 0; 19286 } 19287 19288 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 19289 goto out; 19290 mqe = &mboxq->u.mqe; 19291 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 19292 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19293 if (rc) 19294 goto out; 19295 data_length = mqe->un.mb_words[5]; 19296 if (data_length == 0) 19297 goto out; 19298 if (data_length > DMP_RGN23_SIZE) { 19299 data_length = 0; 19300 goto out; 19301 } 19302 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 19303 out: 19304 mempool_free(mboxq, phba->mbox_mem_pool); 19305 if (mp) { 19306 lpfc_mbuf_free(phba, mp->virt, mp->phys); 19307 kfree(mp); 19308 } 19309 return data_length; 19310 } 19311 19312 /** 19313 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 19314 * @phba: pointer to lpfc hba data structure. 19315 * 19316 * This function read region 23 and parse TLV for port status to 19317 * decide if the user disaled the port. If the TLV indicates the 19318 * port is disabled, the hba_flag is set accordingly. 19319 **/ 19320 void 19321 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 19322 { 19323 uint8_t *rgn23_data = NULL; 19324 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 19325 uint32_t offset = 0; 19326 19327 /* Get adapter Region 23 data */ 19328 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 19329 if (!rgn23_data) 19330 goto out; 19331 19332 if (phba->sli_rev < LPFC_SLI_REV4) 19333 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 19334 else { 19335 if_type = bf_get(lpfc_sli_intf_if_type, 19336 &phba->sli4_hba.sli_intf); 19337 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 19338 goto out; 19339 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 19340 } 19341 19342 if (!data_size) 19343 goto out; 19344 19345 /* Check the region signature first */ 19346 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 19347 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19348 "2619 Config region 23 has bad signature\n"); 19349 goto out; 19350 } 19351 offset += 4; 19352 19353 /* Check the data structure version */ 19354 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 19355 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19356 "2620 Config region 23 has bad version\n"); 19357 goto out; 19358 } 19359 offset += 4; 19360 19361 /* Parse TLV entries in the region */ 19362 while (offset < data_size) { 19363 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 19364 break; 19365 /* 19366 * If the TLV is not driver specific TLV or driver id is 19367 * not linux driver id, skip the record. 19368 */ 19369 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 19370 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 19371 (rgn23_data[offset + 3] != 0)) { 19372 offset += rgn23_data[offset + 1] * 4 + 4; 19373 continue; 19374 } 19375 19376 /* Driver found a driver specific TLV in the config region */ 19377 sub_tlv_len = rgn23_data[offset + 1] * 4; 19378 offset += 4; 19379 tlv_offset = 0; 19380 19381 /* 19382 * Search for configured port state sub-TLV. 19383 */ 19384 while ((offset < data_size) && 19385 (tlv_offset < sub_tlv_len)) { 19386 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 19387 offset += 4; 19388 tlv_offset += 4; 19389 break; 19390 } 19391 if (rgn23_data[offset] != PORT_STE_TYPE) { 19392 offset += rgn23_data[offset + 1] * 4 + 4; 19393 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 19394 continue; 19395 } 19396 19397 /* This HBA contains PORT_STE configured */ 19398 if (!rgn23_data[offset + 2]) 19399 phba->hba_flag |= LINK_DISABLED; 19400 19401 goto out; 19402 } 19403 } 19404 19405 out: 19406 kfree(rgn23_data); 19407 return; 19408 } 19409 19410 /** 19411 * lpfc_wr_object - write an object to the firmware 19412 * @phba: HBA structure that indicates port to create a queue on. 19413 * @dmabuf_list: list of dmabufs to write to the port. 19414 * @size: the total byte value of the objects to write to the port. 19415 * @offset: the current offset to be used to start the transfer. 19416 * 19417 * This routine will create a wr_object mailbox command to send to the port. 19418 * the mailbox command will be constructed using the dma buffers described in 19419 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 19420 * BDEs that the imbedded mailbox can support. The @offset variable will be 19421 * used to indicate the starting offset of the transfer and will also return 19422 * the offset after the write object mailbox has completed. @size is used to 19423 * determine the end of the object and whether the eof bit should be set. 19424 * 19425 * Return 0 is successful and offset will contain the the new offset to use 19426 * for the next write. 19427 * Return negative value for error cases. 19428 **/ 19429 int 19430 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 19431 uint32_t size, uint32_t *offset) 19432 { 19433 struct lpfc_mbx_wr_object *wr_object; 19434 LPFC_MBOXQ_t *mbox; 19435 int rc = 0, i = 0; 19436 uint32_t shdr_status, shdr_add_status, shdr_change_status, shdr_csf; 19437 uint32_t mbox_tmo; 19438 struct lpfc_dmabuf *dmabuf; 19439 uint32_t written = 0; 19440 bool check_change_status = false; 19441 19442 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19443 if (!mbox) 19444 return -ENOMEM; 19445 19446 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 19447 LPFC_MBOX_OPCODE_WRITE_OBJECT, 19448 sizeof(struct lpfc_mbx_wr_object) - 19449 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 19450 19451 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 19452 wr_object->u.request.write_offset = *offset; 19453 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 19454 wr_object->u.request.object_name[0] = 19455 cpu_to_le32(wr_object->u.request.object_name[0]); 19456 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 19457 list_for_each_entry(dmabuf, dmabuf_list, list) { 19458 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 19459 break; 19460 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 19461 wr_object->u.request.bde[i].addrHigh = 19462 putPaddrHigh(dmabuf->phys); 19463 if (written + SLI4_PAGE_SIZE >= size) { 19464 wr_object->u.request.bde[i].tus.f.bdeSize = 19465 (size - written); 19466 written += (size - written); 19467 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 19468 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 19469 check_change_status = true; 19470 } else { 19471 wr_object->u.request.bde[i].tus.f.bdeSize = 19472 SLI4_PAGE_SIZE; 19473 written += SLI4_PAGE_SIZE; 19474 } 19475 i++; 19476 } 19477 wr_object->u.request.bde_count = i; 19478 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 19479 if (!phba->sli4_hba.intr_enable) 19480 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 19481 else { 19482 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 19483 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 19484 } 19485 /* The IOCTL status is embedded in the mailbox subheader. */ 19486 shdr_status = bf_get(lpfc_mbox_hdr_status, 19487 &wr_object->header.cfg_shdr.response); 19488 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 19489 &wr_object->header.cfg_shdr.response); 19490 if (check_change_status) { 19491 shdr_change_status = bf_get(lpfc_wr_object_change_status, 19492 &wr_object->u.response); 19493 19494 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 19495 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 19496 shdr_csf = bf_get(lpfc_wr_object_csf, 19497 &wr_object->u.response); 19498 if (shdr_csf) 19499 shdr_change_status = 19500 LPFC_CHANGE_STATUS_PCI_RESET; 19501 } 19502 19503 switch (shdr_change_status) { 19504 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 19505 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19506 "3198 Firmware write complete: System " 19507 "reboot required to instantiate\n"); 19508 break; 19509 case (LPFC_CHANGE_STATUS_FW_RESET): 19510 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19511 "3199 Firmware write complete: Firmware" 19512 " reset required to instantiate\n"); 19513 break; 19514 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 19515 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19516 "3200 Firmware write complete: Port " 19517 "Migration or PCI Reset required to " 19518 "instantiate\n"); 19519 break; 19520 case (LPFC_CHANGE_STATUS_PCI_RESET): 19521 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19522 "3201 Firmware write complete: PCI " 19523 "Reset required to instantiate\n"); 19524 break; 19525 default: 19526 break; 19527 } 19528 } 19529 if (rc != MBX_TIMEOUT) 19530 mempool_free(mbox, phba->mbox_mem_pool); 19531 if (shdr_status || shdr_add_status || rc) { 19532 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19533 "3025 Write Object mailbox failed with " 19534 "status x%x add_status x%x, mbx status x%x\n", 19535 shdr_status, shdr_add_status, rc); 19536 rc = -ENXIO; 19537 *offset = shdr_add_status; 19538 } else 19539 *offset += wr_object->u.response.actual_write_length; 19540 return rc; 19541 } 19542 19543 /** 19544 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 19545 * @vport: pointer to vport data structure. 19546 * 19547 * This function iterate through the mailboxq and clean up all REG_LOGIN 19548 * and REG_VPI mailbox commands associated with the vport. This function 19549 * is called when driver want to restart discovery of the vport due to 19550 * a Clear Virtual Link event. 19551 **/ 19552 void 19553 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 19554 { 19555 struct lpfc_hba *phba = vport->phba; 19556 LPFC_MBOXQ_t *mb, *nextmb; 19557 struct lpfc_dmabuf *mp; 19558 struct lpfc_nodelist *ndlp; 19559 struct lpfc_nodelist *act_mbx_ndlp = NULL; 19560 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 19561 LIST_HEAD(mbox_cmd_list); 19562 uint8_t restart_loop; 19563 19564 /* Clean up internally queued mailbox commands with the vport */ 19565 spin_lock_irq(&phba->hbalock); 19566 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 19567 if (mb->vport != vport) 19568 continue; 19569 19570 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 19571 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 19572 continue; 19573 19574 list_del(&mb->list); 19575 list_add_tail(&mb->list, &mbox_cmd_list); 19576 } 19577 /* Clean up active mailbox command with the vport */ 19578 mb = phba->sli.mbox_active; 19579 if (mb && (mb->vport == vport)) { 19580 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 19581 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 19582 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19583 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 19584 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 19585 /* Put reference count for delayed processing */ 19586 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 19587 /* Unregister the RPI when mailbox complete */ 19588 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 19589 } 19590 } 19591 /* Cleanup any mailbox completions which are not yet processed */ 19592 do { 19593 restart_loop = 0; 19594 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 19595 /* 19596 * If this mailox is already processed or it is 19597 * for another vport ignore it. 19598 */ 19599 if ((mb->vport != vport) || 19600 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 19601 continue; 19602 19603 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 19604 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 19605 continue; 19606 19607 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19608 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 19609 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 19610 /* Unregister the RPI when mailbox complete */ 19611 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 19612 restart_loop = 1; 19613 spin_unlock_irq(&phba->hbalock); 19614 spin_lock(shost->host_lock); 19615 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19616 spin_unlock(shost->host_lock); 19617 spin_lock_irq(&phba->hbalock); 19618 break; 19619 } 19620 } 19621 } while (restart_loop); 19622 19623 spin_unlock_irq(&phba->hbalock); 19624 19625 /* Release the cleaned-up mailbox commands */ 19626 while (!list_empty(&mbox_cmd_list)) { 19627 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 19628 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 19629 mp = (struct lpfc_dmabuf *)(mb->ctx_buf); 19630 if (mp) { 19631 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 19632 kfree(mp); 19633 } 19634 mb->ctx_buf = NULL; 19635 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 19636 mb->ctx_ndlp = NULL; 19637 if (ndlp) { 19638 spin_lock(shost->host_lock); 19639 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19640 spin_unlock(shost->host_lock); 19641 lpfc_nlp_put(ndlp); 19642 } 19643 } 19644 mempool_free(mb, phba->mbox_mem_pool); 19645 } 19646 19647 /* Release the ndlp with the cleaned-up active mailbox command */ 19648 if (act_mbx_ndlp) { 19649 spin_lock(shost->host_lock); 19650 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19651 spin_unlock(shost->host_lock); 19652 lpfc_nlp_put(act_mbx_ndlp); 19653 } 19654 } 19655 19656 /** 19657 * lpfc_drain_txq - Drain the txq 19658 * @phba: Pointer to HBA context object. 19659 * 19660 * This function attempt to submit IOCBs on the txq 19661 * to the adapter. For SLI4 adapters, the txq contains 19662 * ELS IOCBs that have been deferred because the there 19663 * are no SGLs. This congestion can occur with large 19664 * vport counts during node discovery. 19665 **/ 19666 19667 uint32_t 19668 lpfc_drain_txq(struct lpfc_hba *phba) 19669 { 19670 LIST_HEAD(completions); 19671 struct lpfc_sli_ring *pring; 19672 struct lpfc_iocbq *piocbq = NULL; 19673 unsigned long iflags = 0; 19674 char *fail_msg = NULL; 19675 struct lpfc_sglq *sglq; 19676 union lpfc_wqe128 wqe; 19677 uint32_t txq_cnt = 0; 19678 struct lpfc_queue *wq; 19679 19680 if (phba->link_flag & LS_MDS_LOOPBACK) { 19681 /* MDS WQE are posted only to first WQ*/ 19682 wq = phba->sli4_hba.hdwq[0].io_wq; 19683 if (unlikely(!wq)) 19684 return 0; 19685 pring = wq->pring; 19686 } else { 19687 wq = phba->sli4_hba.els_wq; 19688 if (unlikely(!wq)) 19689 return 0; 19690 pring = lpfc_phba_elsring(phba); 19691 } 19692 19693 if (unlikely(!pring) || list_empty(&pring->txq)) 19694 return 0; 19695 19696 spin_lock_irqsave(&pring->ring_lock, iflags); 19697 list_for_each_entry(piocbq, &pring->txq, list) { 19698 txq_cnt++; 19699 } 19700 19701 if (txq_cnt > pring->txq_max) 19702 pring->txq_max = txq_cnt; 19703 19704 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19705 19706 while (!list_empty(&pring->txq)) { 19707 spin_lock_irqsave(&pring->ring_lock, iflags); 19708 19709 piocbq = lpfc_sli_ringtx_get(phba, pring); 19710 if (!piocbq) { 19711 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19712 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 19713 "2823 txq empty and txq_cnt is %d\n ", 19714 txq_cnt); 19715 break; 19716 } 19717 sglq = __lpfc_sli_get_els_sglq(phba, piocbq); 19718 if (!sglq) { 19719 __lpfc_sli_ringtx_put(phba, pring, piocbq); 19720 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19721 break; 19722 } 19723 txq_cnt--; 19724 19725 /* The xri and iocb resources secured, 19726 * attempt to issue request 19727 */ 19728 piocbq->sli4_lxritag = sglq->sli4_lxritag; 19729 piocbq->sli4_xritag = sglq->sli4_xritag; 19730 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 19731 fail_msg = "to convert bpl to sgl"; 19732 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 19733 fail_msg = "to convert iocb to wqe"; 19734 else if (lpfc_sli4_wq_put(wq, &wqe)) 19735 fail_msg = " - Wq is full"; 19736 else 19737 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 19738 19739 if (fail_msg) { 19740 /* Failed means we can't issue and need to cancel */ 19741 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 19742 "2822 IOCB failed %s iotag 0x%x " 19743 "xri 0x%x\n", 19744 fail_msg, 19745 piocbq->iotag, piocbq->sli4_xritag); 19746 list_add_tail(&piocbq->list, &completions); 19747 } 19748 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19749 } 19750 19751 /* Cancel all the IOCBs that cannot be issued */ 19752 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 19753 IOERR_SLI_ABORTED); 19754 19755 return txq_cnt; 19756 } 19757 19758 /** 19759 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 19760 * @phba: Pointer to HBA context object. 19761 * @pwqe: Pointer to command WQE. 19762 * @sglq: Pointer to the scatter gather queue object. 19763 * 19764 * This routine converts the bpl or bde that is in the WQE 19765 * to a sgl list for the sli4 hardware. The physical address 19766 * of the bpl/bde is converted back to a virtual address. 19767 * If the WQE contains a BPL then the list of BDE's is 19768 * converted to sli4_sge's. If the WQE contains a single 19769 * BDE then it is converted to a single sli_sge. 19770 * The WQE is still in cpu endianness so the contents of 19771 * the bpl can be used without byte swapping. 19772 * 19773 * Returns valid XRI = Success, NO_XRI = Failure. 19774 */ 19775 static uint16_t 19776 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 19777 struct lpfc_sglq *sglq) 19778 { 19779 uint16_t xritag = NO_XRI; 19780 struct ulp_bde64 *bpl = NULL; 19781 struct ulp_bde64 bde; 19782 struct sli4_sge *sgl = NULL; 19783 struct lpfc_dmabuf *dmabuf; 19784 union lpfc_wqe128 *wqe; 19785 int numBdes = 0; 19786 int i = 0; 19787 uint32_t offset = 0; /* accumulated offset in the sg request list */ 19788 int inbound = 0; /* number of sg reply entries inbound from firmware */ 19789 uint32_t cmd; 19790 19791 if (!pwqeq || !sglq) 19792 return xritag; 19793 19794 sgl = (struct sli4_sge *)sglq->sgl; 19795 wqe = &pwqeq->wqe; 19796 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 19797 19798 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 19799 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 19800 return sglq->sli4_xritag; 19801 numBdes = pwqeq->rsvd2; 19802 if (numBdes) { 19803 /* The addrHigh and addrLow fields within the WQE 19804 * have not been byteswapped yet so there is no 19805 * need to swap them back. 19806 */ 19807 if (pwqeq->context3) 19808 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 19809 else 19810 return xritag; 19811 19812 bpl = (struct ulp_bde64 *)dmabuf->virt; 19813 if (!bpl) 19814 return xritag; 19815 19816 for (i = 0; i < numBdes; i++) { 19817 /* Should already be byte swapped. */ 19818 sgl->addr_hi = bpl->addrHigh; 19819 sgl->addr_lo = bpl->addrLow; 19820 19821 sgl->word2 = le32_to_cpu(sgl->word2); 19822 if ((i+1) == numBdes) 19823 bf_set(lpfc_sli4_sge_last, sgl, 1); 19824 else 19825 bf_set(lpfc_sli4_sge_last, sgl, 0); 19826 /* swap the size field back to the cpu so we 19827 * can assign it to the sgl. 19828 */ 19829 bde.tus.w = le32_to_cpu(bpl->tus.w); 19830 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 19831 /* The offsets in the sgl need to be accumulated 19832 * separately for the request and reply lists. 19833 * The request is always first, the reply follows. 19834 */ 19835 switch (cmd) { 19836 case CMD_GEN_REQUEST64_WQE: 19837 /* add up the reply sg entries */ 19838 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 19839 inbound++; 19840 /* first inbound? reset the offset */ 19841 if (inbound == 1) 19842 offset = 0; 19843 bf_set(lpfc_sli4_sge_offset, sgl, offset); 19844 bf_set(lpfc_sli4_sge_type, sgl, 19845 LPFC_SGE_TYPE_DATA); 19846 offset += bde.tus.f.bdeSize; 19847 break; 19848 case CMD_FCP_TRSP64_WQE: 19849 bf_set(lpfc_sli4_sge_offset, sgl, 0); 19850 bf_set(lpfc_sli4_sge_type, sgl, 19851 LPFC_SGE_TYPE_DATA); 19852 break; 19853 case CMD_FCP_TSEND64_WQE: 19854 case CMD_FCP_TRECEIVE64_WQE: 19855 bf_set(lpfc_sli4_sge_type, sgl, 19856 bpl->tus.f.bdeFlags); 19857 if (i < 3) 19858 offset = 0; 19859 else 19860 offset += bde.tus.f.bdeSize; 19861 bf_set(lpfc_sli4_sge_offset, sgl, offset); 19862 break; 19863 } 19864 sgl->word2 = cpu_to_le32(sgl->word2); 19865 bpl++; 19866 sgl++; 19867 } 19868 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 19869 /* The addrHigh and addrLow fields of the BDE have not 19870 * been byteswapped yet so they need to be swapped 19871 * before putting them in the sgl. 19872 */ 19873 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 19874 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 19875 sgl->word2 = le32_to_cpu(sgl->word2); 19876 bf_set(lpfc_sli4_sge_last, sgl, 1); 19877 sgl->word2 = cpu_to_le32(sgl->word2); 19878 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 19879 } 19880 return sglq->sli4_xritag; 19881 } 19882 19883 /** 19884 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 19885 * @phba: Pointer to HBA context object. 19886 * @ring_number: Base sli ring number 19887 * @pwqe: Pointer to command WQE. 19888 **/ 19889 int 19890 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 19891 struct lpfc_iocbq *pwqe) 19892 { 19893 union lpfc_wqe128 *wqe = &pwqe->wqe; 19894 struct lpfc_nvmet_rcv_ctx *ctxp; 19895 struct lpfc_queue *wq; 19896 struct lpfc_sglq *sglq; 19897 struct lpfc_sli_ring *pring; 19898 unsigned long iflags; 19899 uint32_t ret = 0; 19900 19901 /* NVME_LS and NVME_LS ABTS requests. */ 19902 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { 19903 pring = phba->sli4_hba.nvmels_wq->pring; 19904 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 19905 qp, wq_access); 19906 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 19907 if (!sglq) { 19908 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19909 return WQE_BUSY; 19910 } 19911 pwqe->sli4_lxritag = sglq->sli4_lxritag; 19912 pwqe->sli4_xritag = sglq->sli4_xritag; 19913 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 19914 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19915 return WQE_ERROR; 19916 } 19917 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 19918 pwqe->sli4_xritag); 19919 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 19920 if (ret) { 19921 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19922 return ret; 19923 } 19924 19925 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 19926 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19927 19928 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 19929 return 0; 19930 } 19931 19932 /* NVME_FCREQ and NVME_ABTS requests */ 19933 if (pwqe->iocb_flag & LPFC_IO_NVME) { 19934 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 19935 wq = qp->io_wq; 19936 pring = wq->pring; 19937 19938 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 19939 19940 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 19941 qp, wq_access); 19942 ret = lpfc_sli4_wq_put(wq, wqe); 19943 if (ret) { 19944 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19945 return ret; 19946 } 19947 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 19948 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19949 19950 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 19951 return 0; 19952 } 19953 19954 /* NVMET requests */ 19955 if (pwqe->iocb_flag & LPFC_IO_NVMET) { 19956 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 19957 wq = qp->io_wq; 19958 pring = wq->pring; 19959 19960 ctxp = pwqe->context2; 19961 sglq = ctxp->ctxbuf->sglq; 19962 if (pwqe->sli4_xritag == NO_XRI) { 19963 pwqe->sli4_lxritag = sglq->sli4_lxritag; 19964 pwqe->sli4_xritag = sglq->sli4_xritag; 19965 } 19966 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 19967 pwqe->sli4_xritag); 19968 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 19969 19970 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 19971 qp, wq_access); 19972 ret = lpfc_sli4_wq_put(wq, wqe); 19973 if (ret) { 19974 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19975 return ret; 19976 } 19977 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 19978 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19979 19980 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 19981 return 0; 19982 } 19983 return WQE_ERROR; 19984 } 19985 19986 #ifdef LPFC_MXP_STAT 19987 /** 19988 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 19989 * @phba: pointer to lpfc hba data structure. 19990 * @hwqid: belong to which HWQ. 19991 * 19992 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 19993 * 15 seconds after a test case is running. 19994 * 19995 * The user should call lpfc_debugfs_multixripools_write before running a test 19996 * case to clear stat_snapshot_taken. Then the user starts a test case. During 19997 * test case is running, stat_snapshot_taken is incremented by 1 every time when 19998 * this routine is called from heartbeat timer. When stat_snapshot_taken is 19999 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 20000 **/ 20001 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 20002 { 20003 struct lpfc_sli4_hdw_queue *qp; 20004 struct lpfc_multixri_pool *multixri_pool; 20005 struct lpfc_pvt_pool *pvt_pool; 20006 struct lpfc_pbl_pool *pbl_pool; 20007 u32 txcmplq_cnt; 20008 20009 qp = &phba->sli4_hba.hdwq[hwqid]; 20010 multixri_pool = qp->p_multixri_pool; 20011 if (!multixri_pool) 20012 return; 20013 20014 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 20015 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20016 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20017 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20018 20019 multixri_pool->stat_pbl_count = pbl_pool->count; 20020 multixri_pool->stat_pvt_count = pvt_pool->count; 20021 multixri_pool->stat_busy_count = txcmplq_cnt; 20022 } 20023 20024 multixri_pool->stat_snapshot_taken++; 20025 } 20026 #endif 20027 20028 /** 20029 * lpfc_adjust_pvt_pool_count - Adjust private pool count 20030 * @phba: pointer to lpfc hba data structure. 20031 * @hwqid: belong to which HWQ. 20032 * 20033 * This routine moves some XRIs from private to public pool when private pool 20034 * is not busy. 20035 **/ 20036 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 20037 { 20038 struct lpfc_multixri_pool *multixri_pool; 20039 u32 io_req_count; 20040 u32 prev_io_req_count; 20041 20042 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 20043 if (!multixri_pool) 20044 return; 20045 io_req_count = multixri_pool->io_req_count; 20046 prev_io_req_count = multixri_pool->prev_io_req_count; 20047 20048 if (prev_io_req_count != io_req_count) { 20049 /* Private pool is busy */ 20050 multixri_pool->prev_io_req_count = io_req_count; 20051 } else { 20052 /* Private pool is not busy. 20053 * Move XRIs from private to public pool. 20054 */ 20055 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 20056 } 20057 } 20058 20059 /** 20060 * lpfc_adjust_high_watermark - Adjust high watermark 20061 * @phba: pointer to lpfc hba data structure. 20062 * @hwqid: belong to which HWQ. 20063 * 20064 * This routine sets high watermark as number of outstanding XRIs, 20065 * but make sure the new value is between xri_limit/2 and xri_limit. 20066 **/ 20067 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 20068 { 20069 u32 new_watermark; 20070 u32 watermark_max; 20071 u32 watermark_min; 20072 u32 xri_limit; 20073 u32 txcmplq_cnt; 20074 u32 abts_io_bufs; 20075 struct lpfc_multixri_pool *multixri_pool; 20076 struct lpfc_sli4_hdw_queue *qp; 20077 20078 qp = &phba->sli4_hba.hdwq[hwqid]; 20079 multixri_pool = qp->p_multixri_pool; 20080 if (!multixri_pool) 20081 return; 20082 xri_limit = multixri_pool->xri_limit; 20083 20084 watermark_max = xri_limit; 20085 watermark_min = xri_limit / 2; 20086 20087 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20088 abts_io_bufs = qp->abts_scsi_io_bufs; 20089 abts_io_bufs += qp->abts_nvme_io_bufs; 20090 20091 new_watermark = txcmplq_cnt + abts_io_bufs; 20092 new_watermark = min(watermark_max, new_watermark); 20093 new_watermark = max(watermark_min, new_watermark); 20094 multixri_pool->pvt_pool.high_watermark = new_watermark; 20095 20096 #ifdef LPFC_MXP_STAT 20097 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 20098 new_watermark); 20099 #endif 20100 } 20101 20102 /** 20103 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 20104 * @phba: pointer to lpfc hba data structure. 20105 * @hwqid: belong to which HWQ. 20106 * 20107 * This routine is called from hearbeat timer when pvt_pool is idle. 20108 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 20109 * The first step moves (all - low_watermark) amount of XRIs. 20110 * The second step moves the rest of XRIs. 20111 **/ 20112 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 20113 { 20114 struct lpfc_pbl_pool *pbl_pool; 20115 struct lpfc_pvt_pool *pvt_pool; 20116 struct lpfc_sli4_hdw_queue *qp; 20117 struct lpfc_io_buf *lpfc_ncmd; 20118 struct lpfc_io_buf *lpfc_ncmd_next; 20119 unsigned long iflag; 20120 struct list_head tmp_list; 20121 u32 tmp_count; 20122 20123 qp = &phba->sli4_hba.hdwq[hwqid]; 20124 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20125 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20126 tmp_count = 0; 20127 20128 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 20129 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 20130 20131 if (pvt_pool->count > pvt_pool->low_watermark) { 20132 /* Step 1: move (all - low_watermark) from pvt_pool 20133 * to pbl_pool 20134 */ 20135 20136 /* Move low watermark of bufs from pvt_pool to tmp_list */ 20137 INIT_LIST_HEAD(&tmp_list); 20138 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 20139 &pvt_pool->list, list) { 20140 list_move_tail(&lpfc_ncmd->list, &tmp_list); 20141 tmp_count++; 20142 if (tmp_count >= pvt_pool->low_watermark) 20143 break; 20144 } 20145 20146 /* Move all bufs from pvt_pool to pbl_pool */ 20147 list_splice_init(&pvt_pool->list, &pbl_pool->list); 20148 20149 /* Move all bufs from tmp_list to pvt_pool */ 20150 list_splice(&tmp_list, &pvt_pool->list); 20151 20152 pbl_pool->count += (pvt_pool->count - tmp_count); 20153 pvt_pool->count = tmp_count; 20154 } else { 20155 /* Step 2: move the rest from pvt_pool to pbl_pool */ 20156 list_splice_init(&pvt_pool->list, &pbl_pool->list); 20157 pbl_pool->count += pvt_pool->count; 20158 pvt_pool->count = 0; 20159 } 20160 20161 spin_unlock(&pvt_pool->lock); 20162 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20163 } 20164 20165 /** 20166 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 20167 * @phba: pointer to lpfc hba data structure 20168 * @pbl_pool: specified public free XRI pool 20169 * @pvt_pool: specified private free XRI pool 20170 * @count: number of XRIs to move 20171 * 20172 * This routine tries to move some free common bufs from the specified pbl_pool 20173 * to the specified pvt_pool. It might move less than count XRIs if there's not 20174 * enough in public pool. 20175 * 20176 * Return: 20177 * true - if XRIs are successfully moved from the specified pbl_pool to the 20178 * specified pvt_pool 20179 * false - if the specified pbl_pool is empty or locked by someone else 20180 **/ 20181 static bool 20182 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 20183 struct lpfc_pbl_pool *pbl_pool, 20184 struct lpfc_pvt_pool *pvt_pool, u32 count) 20185 { 20186 struct lpfc_io_buf *lpfc_ncmd; 20187 struct lpfc_io_buf *lpfc_ncmd_next; 20188 unsigned long iflag; 20189 int ret; 20190 20191 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 20192 if (ret) { 20193 if (pbl_pool->count) { 20194 /* Move a batch of XRIs from public to private pool */ 20195 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 20196 list_for_each_entry_safe(lpfc_ncmd, 20197 lpfc_ncmd_next, 20198 &pbl_pool->list, 20199 list) { 20200 list_move_tail(&lpfc_ncmd->list, 20201 &pvt_pool->list); 20202 pvt_pool->count++; 20203 pbl_pool->count--; 20204 count--; 20205 if (count == 0) 20206 break; 20207 } 20208 20209 spin_unlock(&pvt_pool->lock); 20210 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20211 return true; 20212 } 20213 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20214 } 20215 20216 return false; 20217 } 20218 20219 /** 20220 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 20221 * @phba: pointer to lpfc hba data structure. 20222 * @hwqid: belong to which HWQ. 20223 * @count: number of XRIs to move 20224 * 20225 * This routine tries to find some free common bufs in one of public pools with 20226 * Round Robin method. The search always starts from local hwqid, then the next 20227 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 20228 * a batch of free common bufs are moved to private pool on hwqid. 20229 * It might move less than count XRIs if there's not enough in public pool. 20230 **/ 20231 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 20232 { 20233 struct lpfc_multixri_pool *multixri_pool; 20234 struct lpfc_multixri_pool *next_multixri_pool; 20235 struct lpfc_pvt_pool *pvt_pool; 20236 struct lpfc_pbl_pool *pbl_pool; 20237 struct lpfc_sli4_hdw_queue *qp; 20238 u32 next_hwqid; 20239 u32 hwq_count; 20240 int ret; 20241 20242 qp = &phba->sli4_hba.hdwq[hwqid]; 20243 multixri_pool = qp->p_multixri_pool; 20244 pvt_pool = &multixri_pool->pvt_pool; 20245 pbl_pool = &multixri_pool->pbl_pool; 20246 20247 /* Check if local pbl_pool is available */ 20248 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 20249 if (ret) { 20250 #ifdef LPFC_MXP_STAT 20251 multixri_pool->local_pbl_hit_count++; 20252 #endif 20253 return; 20254 } 20255 20256 hwq_count = phba->cfg_hdw_queue; 20257 20258 /* Get the next hwqid which was found last time */ 20259 next_hwqid = multixri_pool->rrb_next_hwqid; 20260 20261 do { 20262 /* Go to next hwq */ 20263 next_hwqid = (next_hwqid + 1) % hwq_count; 20264 20265 next_multixri_pool = 20266 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 20267 pbl_pool = &next_multixri_pool->pbl_pool; 20268 20269 /* Check if the public free xri pool is available */ 20270 ret = _lpfc_move_xri_pbl_to_pvt( 20271 phba, qp, pbl_pool, pvt_pool, count); 20272 20273 /* Exit while-loop if success or all hwqid are checked */ 20274 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 20275 20276 /* Starting point for the next time */ 20277 multixri_pool->rrb_next_hwqid = next_hwqid; 20278 20279 if (!ret) { 20280 /* stats: all public pools are empty*/ 20281 multixri_pool->pbl_empty_count++; 20282 } 20283 20284 #ifdef LPFC_MXP_STAT 20285 if (ret) { 20286 if (next_hwqid == hwqid) 20287 multixri_pool->local_pbl_hit_count++; 20288 else 20289 multixri_pool->other_pbl_hit_count++; 20290 } 20291 #endif 20292 } 20293 20294 /** 20295 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 20296 * @phba: pointer to lpfc hba data structure. 20297 * @qp: belong to which HWQ. 20298 * 20299 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 20300 * low watermark. 20301 **/ 20302 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 20303 { 20304 struct lpfc_multixri_pool *multixri_pool; 20305 struct lpfc_pvt_pool *pvt_pool; 20306 20307 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 20308 pvt_pool = &multixri_pool->pvt_pool; 20309 20310 if (pvt_pool->count < pvt_pool->low_watermark) 20311 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 20312 } 20313 20314 /** 20315 * lpfc_release_io_buf - Return one IO buf back to free pool 20316 * @phba: pointer to lpfc hba data structure. 20317 * @lpfc_ncmd: IO buf to be returned. 20318 * @qp: belong to which HWQ. 20319 * 20320 * This routine returns one IO buf back to free pool. If this is an urgent IO, 20321 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 20322 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 20323 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 20324 * lpfc_io_buf_list_put. 20325 **/ 20326 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 20327 struct lpfc_sli4_hdw_queue *qp) 20328 { 20329 unsigned long iflag; 20330 struct lpfc_pbl_pool *pbl_pool; 20331 struct lpfc_pvt_pool *pvt_pool; 20332 struct lpfc_epd_pool *epd_pool; 20333 u32 txcmplq_cnt; 20334 u32 xri_owned; 20335 u32 xri_limit; 20336 u32 abts_io_bufs; 20337 20338 /* MUST zero fields if buffer is reused by another protocol */ 20339 lpfc_ncmd->nvmeCmd = NULL; 20340 lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL; 20341 lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL; 20342 20343 if (phba->cfg_xpsgl && !phba->nvmet_support && 20344 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 20345 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 20346 20347 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 20348 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 20349 20350 if (phba->cfg_xri_rebalancing) { 20351 if (lpfc_ncmd->expedite) { 20352 /* Return to expedite pool */ 20353 epd_pool = &phba->epd_pool; 20354 spin_lock_irqsave(&epd_pool->lock, iflag); 20355 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 20356 epd_pool->count++; 20357 spin_unlock_irqrestore(&epd_pool->lock, iflag); 20358 return; 20359 } 20360 20361 /* Avoid invalid access if an IO sneaks in and is being rejected 20362 * just _after_ xri pools are destroyed in lpfc_offline. 20363 * Nothing much can be done at this point. 20364 */ 20365 if (!qp->p_multixri_pool) 20366 return; 20367 20368 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20369 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20370 20371 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20372 abts_io_bufs = qp->abts_scsi_io_bufs; 20373 abts_io_bufs += qp->abts_nvme_io_bufs; 20374 20375 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 20376 xri_limit = qp->p_multixri_pool->xri_limit; 20377 20378 #ifdef LPFC_MXP_STAT 20379 if (xri_owned <= xri_limit) 20380 qp->p_multixri_pool->below_limit_count++; 20381 else 20382 qp->p_multixri_pool->above_limit_count++; 20383 #endif 20384 20385 /* XRI goes to either public or private free xri pool 20386 * based on watermark and xri_limit 20387 */ 20388 if ((pvt_pool->count < pvt_pool->low_watermark) || 20389 (xri_owned < xri_limit && 20390 pvt_pool->count < pvt_pool->high_watermark)) { 20391 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 20392 qp, free_pvt_pool); 20393 list_add_tail(&lpfc_ncmd->list, 20394 &pvt_pool->list); 20395 pvt_pool->count++; 20396 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 20397 } else { 20398 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 20399 qp, free_pub_pool); 20400 list_add_tail(&lpfc_ncmd->list, 20401 &pbl_pool->list); 20402 pbl_pool->count++; 20403 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20404 } 20405 } else { 20406 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 20407 qp, free_xri); 20408 list_add_tail(&lpfc_ncmd->list, 20409 &qp->lpfc_io_buf_list_put); 20410 qp->put_io_bufs++; 20411 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 20412 iflag); 20413 } 20414 } 20415 20416 /** 20417 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 20418 * @phba: pointer to lpfc hba data structure. 20419 * @pvt_pool: pointer to private pool data structure. 20420 * @ndlp: pointer to lpfc nodelist data structure. 20421 * 20422 * This routine tries to get one free IO buf from private pool. 20423 * 20424 * Return: 20425 * pointer to one free IO buf - if private pool is not empty 20426 * NULL - if private pool is empty 20427 **/ 20428 static struct lpfc_io_buf * 20429 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 20430 struct lpfc_sli4_hdw_queue *qp, 20431 struct lpfc_pvt_pool *pvt_pool, 20432 struct lpfc_nodelist *ndlp) 20433 { 20434 struct lpfc_io_buf *lpfc_ncmd; 20435 struct lpfc_io_buf *lpfc_ncmd_next; 20436 unsigned long iflag; 20437 20438 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 20439 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 20440 &pvt_pool->list, list) { 20441 if (lpfc_test_rrq_active( 20442 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 20443 continue; 20444 list_del(&lpfc_ncmd->list); 20445 pvt_pool->count--; 20446 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 20447 return lpfc_ncmd; 20448 } 20449 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 20450 20451 return NULL; 20452 } 20453 20454 /** 20455 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 20456 * @phba: pointer to lpfc hba data structure. 20457 * 20458 * This routine tries to get one free IO buf from expedite pool. 20459 * 20460 * Return: 20461 * pointer to one free IO buf - if expedite pool is not empty 20462 * NULL - if expedite pool is empty 20463 **/ 20464 static struct lpfc_io_buf * 20465 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 20466 { 20467 struct lpfc_io_buf *lpfc_ncmd; 20468 struct lpfc_io_buf *lpfc_ncmd_next; 20469 unsigned long iflag; 20470 struct lpfc_epd_pool *epd_pool; 20471 20472 epd_pool = &phba->epd_pool; 20473 lpfc_ncmd = NULL; 20474 20475 spin_lock_irqsave(&epd_pool->lock, iflag); 20476 if (epd_pool->count > 0) { 20477 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 20478 &epd_pool->list, list) { 20479 list_del(&lpfc_ncmd->list); 20480 epd_pool->count--; 20481 break; 20482 } 20483 } 20484 spin_unlock_irqrestore(&epd_pool->lock, iflag); 20485 20486 return lpfc_ncmd; 20487 } 20488 20489 /** 20490 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 20491 * @phba: pointer to lpfc hba data structure. 20492 * @ndlp: pointer to lpfc nodelist data structure. 20493 * @hwqid: belong to which HWQ 20494 * @expedite: 1 means this request is urgent. 20495 * 20496 * This routine will do the following actions and then return a pointer to 20497 * one free IO buf. 20498 * 20499 * 1. If private free xri count is empty, move some XRIs from public to 20500 * private pool. 20501 * 2. Get one XRI from private free xri pool. 20502 * 3. If we fail to get one from pvt_pool and this is an expedite request, 20503 * get one free xri from expedite pool. 20504 * 20505 * Note: ndlp is only used on SCSI side for RRQ testing. 20506 * The caller should pass NULL for ndlp on NVME side. 20507 * 20508 * Return: 20509 * pointer to one free IO buf - if private pool is not empty 20510 * NULL - if private pool is empty 20511 **/ 20512 static struct lpfc_io_buf * 20513 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 20514 struct lpfc_nodelist *ndlp, 20515 int hwqid, int expedite) 20516 { 20517 struct lpfc_sli4_hdw_queue *qp; 20518 struct lpfc_multixri_pool *multixri_pool; 20519 struct lpfc_pvt_pool *pvt_pool; 20520 struct lpfc_io_buf *lpfc_ncmd; 20521 20522 qp = &phba->sli4_hba.hdwq[hwqid]; 20523 lpfc_ncmd = NULL; 20524 multixri_pool = qp->p_multixri_pool; 20525 pvt_pool = &multixri_pool->pvt_pool; 20526 multixri_pool->io_req_count++; 20527 20528 /* If pvt_pool is empty, move some XRIs from public to private pool */ 20529 if (pvt_pool->count == 0) 20530 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 20531 20532 /* Get one XRI from private free xri pool */ 20533 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 20534 20535 if (lpfc_ncmd) { 20536 lpfc_ncmd->hdwq = qp; 20537 lpfc_ncmd->hdwq_no = hwqid; 20538 } else if (expedite) { 20539 /* If we fail to get one from pvt_pool and this is an expedite 20540 * request, get one free xri from expedite pool. 20541 */ 20542 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 20543 } 20544 20545 return lpfc_ncmd; 20546 } 20547 20548 static inline struct lpfc_io_buf * 20549 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 20550 { 20551 struct lpfc_sli4_hdw_queue *qp; 20552 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 20553 20554 qp = &phba->sli4_hba.hdwq[idx]; 20555 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 20556 &qp->lpfc_io_buf_list_get, list) { 20557 if (lpfc_test_rrq_active(phba, ndlp, 20558 lpfc_cmd->cur_iocbq.sli4_lxritag)) 20559 continue; 20560 20561 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 20562 continue; 20563 20564 list_del_init(&lpfc_cmd->list); 20565 qp->get_io_bufs--; 20566 lpfc_cmd->hdwq = qp; 20567 lpfc_cmd->hdwq_no = idx; 20568 return lpfc_cmd; 20569 } 20570 return NULL; 20571 } 20572 20573 /** 20574 * lpfc_get_io_buf - Get one IO buffer from free pool 20575 * @phba: The HBA for which this call is being executed. 20576 * @ndlp: pointer to lpfc nodelist data structure. 20577 * @hwqid: belong to which HWQ 20578 * @expedite: 1 means this request is urgent. 20579 * 20580 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 20581 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 20582 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 20583 * 20584 * Note: ndlp is only used on SCSI side for RRQ testing. 20585 * The caller should pass NULL for ndlp on NVME side. 20586 * 20587 * Return codes: 20588 * NULL - Error 20589 * Pointer to lpfc_io_buf - Success 20590 **/ 20591 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 20592 struct lpfc_nodelist *ndlp, 20593 u32 hwqid, int expedite) 20594 { 20595 struct lpfc_sli4_hdw_queue *qp; 20596 unsigned long iflag; 20597 struct lpfc_io_buf *lpfc_cmd; 20598 20599 qp = &phba->sli4_hba.hdwq[hwqid]; 20600 lpfc_cmd = NULL; 20601 20602 if (phba->cfg_xri_rebalancing) 20603 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 20604 phba, ndlp, hwqid, expedite); 20605 else { 20606 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 20607 qp, alloc_xri_get); 20608 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 20609 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 20610 if (!lpfc_cmd) { 20611 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 20612 qp, alloc_xri_put); 20613 list_splice(&qp->lpfc_io_buf_list_put, 20614 &qp->lpfc_io_buf_list_get); 20615 qp->get_io_bufs += qp->put_io_bufs; 20616 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 20617 qp->put_io_bufs = 0; 20618 spin_unlock(&qp->io_buf_list_put_lock); 20619 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 20620 expedite) 20621 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 20622 } 20623 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 20624 } 20625 20626 return lpfc_cmd; 20627 } 20628 20629 /** 20630 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 20631 * @phba: The HBA for which this call is being executed. 20632 * @lpfc_buf: IO buf structure to append the SGL chunk 20633 * 20634 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 20635 * and will allocate an SGL chunk if the pool is empty. 20636 * 20637 * Return codes: 20638 * NULL - Error 20639 * Pointer to sli4_hybrid_sgl - Success 20640 **/ 20641 struct sli4_hybrid_sgl * 20642 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 20643 { 20644 struct sli4_hybrid_sgl *list_entry = NULL; 20645 struct sli4_hybrid_sgl *tmp = NULL; 20646 struct sli4_hybrid_sgl *allocated_sgl = NULL; 20647 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 20648 struct list_head *buf_list = &hdwq->sgl_list; 20649 unsigned long iflags; 20650 20651 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20652 20653 if (likely(!list_empty(buf_list))) { 20654 /* break off 1 chunk from the sgl_list */ 20655 list_for_each_entry_safe(list_entry, tmp, 20656 buf_list, list_node) { 20657 list_move_tail(&list_entry->list_node, 20658 &lpfc_buf->dma_sgl_xtra_list); 20659 break; 20660 } 20661 } else { 20662 /* allocate more */ 20663 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20664 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 20665 cpu_to_node(hdwq->io_wq->chann)); 20666 if (!tmp) { 20667 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 20668 "8353 error kmalloc memory for HDWQ " 20669 "%d %s\n", 20670 lpfc_buf->hdwq_no, __func__); 20671 return NULL; 20672 } 20673 20674 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 20675 GFP_ATOMIC, &tmp->dma_phys_sgl); 20676 if (!tmp->dma_sgl) { 20677 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 20678 "8354 error pool_alloc memory for HDWQ " 20679 "%d %s\n", 20680 lpfc_buf->hdwq_no, __func__); 20681 kfree(tmp); 20682 return NULL; 20683 } 20684 20685 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20686 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 20687 } 20688 20689 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 20690 struct sli4_hybrid_sgl, 20691 list_node); 20692 20693 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20694 20695 return allocated_sgl; 20696 } 20697 20698 /** 20699 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 20700 * @phba: The HBA for which this call is being executed. 20701 * @lpfc_buf: IO buf structure with the SGL chunk 20702 * 20703 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 20704 * 20705 * Return codes: 20706 * 0 - Success 20707 * -EINVAL - Error 20708 **/ 20709 int 20710 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 20711 { 20712 int rc = 0; 20713 struct sli4_hybrid_sgl *list_entry = NULL; 20714 struct sli4_hybrid_sgl *tmp = NULL; 20715 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 20716 struct list_head *buf_list = &hdwq->sgl_list; 20717 unsigned long iflags; 20718 20719 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20720 20721 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 20722 list_for_each_entry_safe(list_entry, tmp, 20723 &lpfc_buf->dma_sgl_xtra_list, 20724 list_node) { 20725 list_move_tail(&list_entry->list_node, 20726 buf_list); 20727 } 20728 } else { 20729 rc = -EINVAL; 20730 } 20731 20732 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20733 return rc; 20734 } 20735 20736 /** 20737 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 20738 * @phba: phba object 20739 * @hdwq: hdwq to cleanup sgl buff resources on 20740 * 20741 * This routine frees all SGL chunks of hdwq SGL chunk pool. 20742 * 20743 * Return codes: 20744 * None 20745 **/ 20746 void 20747 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 20748 struct lpfc_sli4_hdw_queue *hdwq) 20749 { 20750 struct list_head *buf_list = &hdwq->sgl_list; 20751 struct sli4_hybrid_sgl *list_entry = NULL; 20752 struct sli4_hybrid_sgl *tmp = NULL; 20753 unsigned long iflags; 20754 20755 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20756 20757 /* Free sgl pool */ 20758 list_for_each_entry_safe(list_entry, tmp, 20759 buf_list, list_node) { 20760 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 20761 list_entry->dma_sgl, 20762 list_entry->dma_phys_sgl); 20763 list_del(&list_entry->list_node); 20764 kfree(list_entry); 20765 } 20766 20767 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20768 } 20769 20770 /** 20771 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 20772 * @phba: The HBA for which this call is being executed. 20773 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 20774 * 20775 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 20776 * and will allocate an CMD/RSP buffer if the pool is empty. 20777 * 20778 * Return codes: 20779 * NULL - Error 20780 * Pointer to fcp_cmd_rsp_buf - Success 20781 **/ 20782 struct fcp_cmd_rsp_buf * 20783 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 20784 struct lpfc_io_buf *lpfc_buf) 20785 { 20786 struct fcp_cmd_rsp_buf *list_entry = NULL; 20787 struct fcp_cmd_rsp_buf *tmp = NULL; 20788 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 20789 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 20790 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 20791 unsigned long iflags; 20792 20793 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20794 20795 if (likely(!list_empty(buf_list))) { 20796 /* break off 1 chunk from the list */ 20797 list_for_each_entry_safe(list_entry, tmp, 20798 buf_list, 20799 list_node) { 20800 list_move_tail(&list_entry->list_node, 20801 &lpfc_buf->dma_cmd_rsp_list); 20802 break; 20803 } 20804 } else { 20805 /* allocate more */ 20806 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20807 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 20808 cpu_to_node(hdwq->io_wq->chann)); 20809 if (!tmp) { 20810 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 20811 "8355 error kmalloc memory for HDWQ " 20812 "%d %s\n", 20813 lpfc_buf->hdwq_no, __func__); 20814 return NULL; 20815 } 20816 20817 tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool, 20818 GFP_ATOMIC, 20819 &tmp->fcp_cmd_rsp_dma_handle); 20820 20821 if (!tmp->fcp_cmnd) { 20822 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 20823 "8356 error pool_alloc memory for HDWQ " 20824 "%d %s\n", 20825 lpfc_buf->hdwq_no, __func__); 20826 kfree(tmp); 20827 return NULL; 20828 } 20829 20830 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 20831 sizeof(struct fcp_cmnd)); 20832 20833 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20834 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 20835 } 20836 20837 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 20838 struct fcp_cmd_rsp_buf, 20839 list_node); 20840 20841 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20842 20843 return allocated_buf; 20844 } 20845 20846 /** 20847 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 20848 * @phba: The HBA for which this call is being executed. 20849 * @lpfc_buf: IO buf structure with the CMD/RSP buf 20850 * 20851 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 20852 * 20853 * Return codes: 20854 * 0 - Success 20855 * -EINVAL - Error 20856 **/ 20857 int 20858 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 20859 struct lpfc_io_buf *lpfc_buf) 20860 { 20861 int rc = 0; 20862 struct fcp_cmd_rsp_buf *list_entry = NULL; 20863 struct fcp_cmd_rsp_buf *tmp = NULL; 20864 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 20865 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 20866 unsigned long iflags; 20867 20868 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20869 20870 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 20871 list_for_each_entry_safe(list_entry, tmp, 20872 &lpfc_buf->dma_cmd_rsp_list, 20873 list_node) { 20874 list_move_tail(&list_entry->list_node, 20875 buf_list); 20876 } 20877 } else { 20878 rc = -EINVAL; 20879 } 20880 20881 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20882 return rc; 20883 } 20884 20885 /** 20886 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 20887 * @phba: phba object 20888 * @hdwq: hdwq to cleanup cmd rsp buff resources on 20889 * 20890 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 20891 * 20892 * Return codes: 20893 * None 20894 **/ 20895 void 20896 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 20897 struct lpfc_sli4_hdw_queue *hdwq) 20898 { 20899 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 20900 struct fcp_cmd_rsp_buf *list_entry = NULL; 20901 struct fcp_cmd_rsp_buf *tmp = NULL; 20902 unsigned long iflags; 20903 20904 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20905 20906 /* Free cmd_rsp buf pool */ 20907 list_for_each_entry_safe(list_entry, tmp, 20908 buf_list, 20909 list_node) { 20910 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 20911 list_entry->fcp_cmnd, 20912 list_entry->fcp_cmd_rsp_dma_handle); 20913 list_del(&list_entry->list_node); 20914 kfree(list_entry); 20915 } 20916 20917 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20918 } 20919